

Lecture Notes in Computer Science 4949
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Robert M. Hierons Jonathan P. Bowen
Mark Harman (Eds.)

Formal Methods
and Testing

An Outcome of the FORTEST Network
Revised Selected Papers

13

Volume Editors

Robert M. Hierons
Brunel University
School of Information Systems, Computing and Mathematics
Uxbridge, Middlesex UB8 3PH, UK
E-mail: rob.hierons@brunel.ac.uk

Jonathan P. Bowen
Mark Harman
King’s College London, Department of Computer Science
Strand, London WC2R 2LS, UK
E-mail: jpbowen@gmail.com, mark.harman@kcl.ac.uk

Library of Congress Control Number: 2008923977

CR Subject Classification (1998): D.2, D.3, F.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-78916-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78916-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12249992 06/3180 5 4 3 2 1 0

Model Based Testing
with Labelled Transition Systems

Jan Tretmans

Embedded Systems Institute, Eindhoven,
and Radboud University, Nijmegen,

The Netherlands
jan.tretmans@esi.nl

Abstract. Model based testing is one of the promising technologies to
meet the challenges imposed on software testing. In model based test-
ing an implementation under test is tested for compliance with a model
that describes the required behaviour of the implementation. This tu-
torial chapter describes a model based testing theory where models are
expressed as labelled transition systems, and compliance is defined with
the ‘ioco’ implementation relation. The ioco-testing theory, on the one
hand, provides a sound and well-defined foundation for labelled transi-
tion system testing, having its roots in the theoretical area of testing
equivalences and refusal testing. On the other hand, it has proved to be
a practical basis for several model based test generation tools and appli-
cations. Definitions, underlying assumptions, an algorithm, properties,
and several examples of the ioco-testing theory are discussed, involving
specifications, implementations, tests, the ioco implementation relation
and some of its variants, a test generation algorithm, and the soundness
and exhaustiveness of this algorithm.

1 Introduction

Software testing. Systematic testing is one of the most important and widely used
techniques to check the quality of software. Testing, however, is often a manual
and laborious process without effective automation, which makes it error-prone,
time consuming, and very costly. Estimates are that testing consumes 30–50%
of the total software development costs. The tendency is that the effort spent
on testing is still increasing due to the continuing quest for better software
quality, and the ever growing size and complexity of systems. The situation is
aggravated by the fact that the complexity of testing tends to grow faster than
the complexity of the systems being tested, in the worst case even exponentially.
Whereas development and construction methods for software allow the building
of ever larger and more complex systems, there is a real danger that testing
methods cannot keep pace with construction. This may seriously hamper the
development of future generations of software systems.

Model based testing. One of the new technologies to meet the challenges imposed
on software testing is model based testing. In model based testing a model of

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 1–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Tretmans

the desired behaviour of the implementation under test (IUT) is the starting
point for testing. Model based testing has recently gained attention with the
popularization of modelling itself both in academia and in industry. The main
virtue of model based testing is that it allows test automation that goes well
beyond the mere automatic execution of manually crafted test cases. It allows for
the algorithmic generation of large amounts of test cases, including test oracles,
completely automatically from the model of required behaviour. If this model
is valid, i.e., expresses precisely what the system under test should do, all these
tests are also provably valid.

From an industrial perspective, model based testing is a promising technique
to improve the quality and effectiveness of testing, and to reduce its cost. The
current state of practice is that test automation mainly concentrates on the
automatic execution of tests, but that the problem of test generation is not
addressed. Model based testing aims at automatically generating high-quality
test suites from models, thus complementing automatic test execution.

From an academic perspective, model based testing is a natural extension of
formal methods and verification techniques, where many of the formal techniques
can be reused. Formal verification and model based testing serve complementary
goals. Formal verification intends to show that a system has some desired prop-
erties by proving that a model of that system satisfies these properties. Thus,
any verification is only as good as the validity of the model on which it is based.
Model based testing starts with a (verified) model, and then intends to show that
the real, physical implementation of the system behaves in compliance with this
model. Due to the inherent limitations of testing, such as the limited number
of tests that can be performed, testing can never be complete: testing can only
show the presence of errors, not their absence.

Sorts of model based testing. There are different kinds of model based testing
depending on the kind of models being used, the quality aspects being tested,
the level of formality involved, and the degree of accessibility and observability
of the system being tested. In this contribution we consider model based testing
as formal, specification based, active, black-box, functionality testing.

It is testing, because it involves checking some properties of the IUT by system-
atically performing experiments on the real, executing IUT, as opposed to, e.g.,
formal verification, where properties are checked on the level of formal descriptions
of the system. The kind of properties being checked are concerned with function-
ality, i.e., testing whether the system correctly does what it should do in terms of
correct responses to given stimuli, as opposed to, e.g., performance, usability, re-
liability, or maintainability properties. Such classes of properties are also referred
to as quality characteristics. The testing is active, in the sense that the tester con-
trols and observes the IUT in an active way by giving stimuli and triggers to the
IUT, and observing its responses, as opposed to passive testing, or monitoring.

The basis and starting point for testing is the specification, which prescribes
what the IUT should, and should not do. The specification is given in the form of
some model of behaviour to which the behaviour of the IUT must conform. This
model is assumed to be correct and valid: it is not itself the subject of testing

Model Based Testing with Labelled Transition Systems 3

or validation. Moreover, the testing is black-box. The IUT is seen as a black box
without internal detail, which can only be accessed and observed through its
external interfaces, as opposed to white-box testing, where the internal structure
of the IUT, i.e., the code, is the basis for testing.

Finally, we deal with formal testing: the model, or specification, prescribing
the desired behaviour is given in some formal language with precisely defined
syntax and semantics. But formal testing involves more than just a formal spec-
ification. It also involves a formal definition of what a conforming IUT is, a
well-defined algorithm for the generation of tests, and a correctness proof that
the generated tests are sound and exhaustive, i.e., that they exactly test what
they should test.

Goal. The aim of this contribution is to be a tutorial for a particular model based
testing theory, viz. the ioco-testing theory for labelled transition systems. This
theory uses labelled transition systems as models for specifications, implemen-
tations, and tests, and a formal implementation relation called ioco defines con-
formance between implementations (IUTs) and specifications. Moreover, there
is an algorithm to generate test cases, for which there is a completeness theorem
(soundness and exhaustiveness) expressing that the algorithmically generated
test cases exactly test for ioco-conformance. All of these aspects are elaborated
in the following sections.

There are a couple of test generation tools, which implement, more or less
directly, the ioco-testing theory, e.g., TVEDA [1], TGV [2], the Agedis Tool

Set [3], TestGen [4], and TorX [5]. As such, this contribution also aims at
giving the theory behind these tools.

The main source for this contribution is [6]. The most important technical
change with respect to [6] is the input enabledness of test cases, which was
inspired by [7]; see Section 3.5.

Overview. Section 2 starts with a framework for formal, model based testing
introducing the required concepts, artefacts, and relations between them. This
formalism independent framework should provide a structure for discussing for-
mal testing, and it should allow classification and comparison of different formal
testing approaches. Section 3 describes the models and languages used in this
contribution: labelled transition systems, and some variants of them to model
specifications, implementations, and test cases. Moreover, a process language for
representing them is introduced. Section 4 discusses, and formally defines the im-
plementation relation ioco, which expresses what a correct implementation of a
given specification should, and should not do. The algorithm for the generation
of test cases from a specification is presented in Section 5. That section also
considers test execution, and the correctness of the test generation algorithm.
Finally, in Section 6 a few concluding remarks are given.

This contribution intends to be a tutorial accessible for anyone with some basic
formal, mathematical knowledge. This implies that some readers may want to
skip some of the introductory sections, in particular, the basic definitions about
transition systems in Sections 3.1 and 3.2. Also Section 4.2 can be skipped; it

4 J. Tretmans

only contains variations on the main theme which are not strictly necessary for
understanding the subsequent sections.

2 Formal Testing

When performing formal, specification based testing there are different concepts
and objects that we need. This section presents these concepts and objects, and
the relations between them. This constitutes a kind of framework for formal test-
ing of an implementation with respect to a formal specification of its functional
behaviour. This framework, which is at a high level of abstraction, and which
does not make any reference to a specific specification formalism, is depicted in
Figure 1, and is explained in this section. In Sections 3, 4, and 5 these concepts
will then be concretized and instantiated with the testing theory of labelled
transition systems.

Implementation. The first thing needed for testing is the Implementation Under
Test iut. The iut is the system being tested. An implementation can be a
real, physical object, such as a piece of hardware, a computer program with all
its libraries running on a particular processor, an embedded system consisting
of software embedded in some physical device, or a process control system with
sensors and actuators. Since we deal with black-box testing, an implementation is
treated as a black-box exhibiting behaviour and interacting with its environment,
but without knowledge about its internal structure. The only way a tester can
control and observe an implementation is via its interfaces. The aim of testing
is to check the correctness of the behaviour of the iut on its interfaces.

i fails Ts

test

imp
generation

i ∈ MOD

execution

implementation

specification
s ∈ SPEC

test cases

Ts ⊆ TEST

test

i passes Ts

Fig. 1. The formal, specification based testing process

Model Based Testing with Labelled Transition Systems 5

Specification. Correctness of an iut is expressed as conformance to a specifica-
tion. The specification prescribes what the implementation should do, and what
it should not do. In formal testing the specification is expressed in some formal
language, i.e., a language with a formal syntax and semantics. Let this language,
i.e., the set of all valid expressions in this language, be denoted by SPEC , then
a specification s is an element of this language: s ∈ SPEC . By means of testing
we want to check whether the behaviour of the iut conforms to s.

Conformance. To check whether the iut conforms to a specification s we need to
know precisely what it means for an iut to conform to s, i.e., a formal definition
of conformance is required. Such a definition should relate implementations to
specifications. But, if we want to define such a relation between implementations
and specifications, we encounter a problem. Whereas a specification s is a formal
object taken from a formal domain SPEC , an implementation under test is
not amenable to formal reasoning. An iut is not a formal object: it is a real,
physical thing, which consists of software, hardware, physical components, or a
combination of these, on which only experiments and tests can be performed.

In order to formally reason about implementations we do a little trick: we make
the assumption that any real implementation under test iut can be modelled
by some formal object iIUT in a set of models MOD . The domain MOD is a-
priori chosen, and is referred to as the universe of implementation models. This
assumption is commonly referred to as the test assumption. Note that the test
assumption presupposes a particular domain of models MOD , and that it is only
assumed that a valid model iIUT of the iut exists in this domain, but not that
this model iIUT is a-priori known.

Thus, the test assumption allows reasoning about implementations under test
as if they were formal implementations in MOD . This is what we will do from
now on. Consequently, conformance can be expressed by a formal relation be-
tween models of implementations and specifications. Such a relation is called an
implementation relation imp ⊆ MOD × SPEC . An implementation model i is
said to be correct with respect to s ∈ SPEC if i imp s.

Testing. The behaviour of an implementation is investigated by performing ex-
periments on it. An experiment consists of supplying stimuli to the implemen-
tation and observing its responses. The specification of such an experiment,
including both the stimuli and the expected responses, is called a test case, and
it is formally expressed as an element of some domain of test cases TEST . The
process of applying a test to an implementation is called test execution. Test
execution may be successful, meaning that the observed responses correspond
to the expected responses, or it may be unsuccessful. The successful execution
of a test t to an implementation i is expressed as i passes t ; unsuccessful exe-
cution is denoted as i fails t ⇔ i /passes t. This is easily extended to a test suite
T ⊆ TEST : i passes T ⇔ ∀t ∈ T : i passes t.

Conformance testing. Conformance testing involves assessing, by means of test-
ing, whether an implementation conforms, with respect to implementation

6 J. Tretmans

relation imp, to its specification. Hence, the notions of conformance, expressed
by imp, and of test execution, expressed by passes, have to be linked in such a
way that from test execution an indication about conformance can be obtained.
So, for conformance testing we are looking for a test suite Ts such that

∀i ∈ MOD : i imp s ⇐⇒ i passes Ts (1)

A test suite with this property is said to be complete; it can distinguish exactly
between all conforming and non-conforming implementations, i.e., testing is a
complete decision procedure for imp-conformance to s. For practical testing this
is a very strong requirement: complete test suites are infinite, and consequently
not practically executable. Hence, usually a weaker requirement on test suites is
posed: they should be sound, which means that all correct implementations, and
possibly some incorrect implementations, will pass them; or, in other words, any
failing implementation is indeed non-conforming, but not the other way around.
Soundness corresponds to the left-to-right implication in (1). The right-to-left
implication is referred to as exhaustiveness; it means that all non-conforming
implementations are detected.

It may seem that the meaning of these concepts is reversed with respect
to their usual meaning, where soundness means that no false deductions can
be made, and completeness means that all correct deductions can be made.
Testing, however, is about detecting errors, so that a deduction corresponds to
the detection of an error. Consequently, soundness in testing means that no
false deductions, i.e., no false detections of errors, can be made. Analogously,
exhaustiveness (completeness) in testing means that all correct deductions can
be made, i.e., that all errors can be detected.

Test generation. The systematic, algorithmic generation of test suites from a
specification for a given implementation relation is called test generation:
genimp : SPEC → P(TEST), (where P(TEST) denotes the power set of TEST ,
i.e., the set of all subsets of TEST). Such an algorithm is complete (sound,
exhaustive) if the generated test suites are complete (sound, exhaustive) for all
specifications.

Test generation is the most beneficial and visible aspect of model based test-
ing: it allows the automatic production of large and provably sound test suites.

Conclusion. For model based testing we need a formal specification language
SPEC , a domain of models of implementations MOD , an implementation rela-
tion imp ⊆ MOD × SPEC expressing correctness, a test execution procedure
passes ⊆ MOD × TEST expressing when a model of an implementation passes
a test case, a test generation algorithm gen imp : SPEC → P(TEST), and a
proof that a model of an implementation passes a generated test suite if and
only if it is imp-correct. The process of formal, specification based testing is
schematically depicted in Figure 1.

Thenext sectionswill elaborate these concepts for the formalismof labelled tran-
sition systems. This means thatwe will use (variants of) labelled transition systems

Model Based Testing with Labelled Transition Systems 7

for SPEC (Section 3.3), MOD (Section 3.4), and TEST (Section 3.5), that confor-
mance is expressed as a relation on labelled transition systems (Section 4), that
test execution of a labelled transition system test with an implementation is de-
fined (Section 5.1), and that a test generation algorithm is presented (Section 5.2),
which is proved to generate sound and exhaustive labelled transition system test
suites from a labelled transition system specification (Section 5.3).

Bibliographic notes. This framework for model based testing comes from [8,9],
with inspiration concerning test assumptions and test hypotheses from [10,11].
There are also international standardization efforts in this direction [12]. The
next sections will consider this framework instantiated with labelled transition
systems, but also other formalisms may be used, e.g., Finite State Machines
(FSM, Mealy Machines) [13], Abstract Data Types [11], object oriented for-
malisms [14], or (mathematical) functions [15].

3 Models

Model based testing uses formal specifications, models of implementations, and
test case descriptions; see Figure 1. This section presents the modelling for-
malisms on which these specifications, models, and descriptions are built. The
basic model that we use in our formal testing theory is that of a labelled transition
system, which is defined in Section 3.1. Section 3.2 considers the representation
of labelled transition systems by a formal language. Subsequently, three variants
of labelled transition systems are presented: labelled transition systems with in-
puts and outputs (Section 3.3), input-output transition systems (Section 3.4),
and test transition systems (Section 3.5), which are used to model specifications,
implementations, and test cases, respectively.

3.1 Labelled Transition Systems

A labelled transition system is a structure consisting of states with transitions,
labelled with actions, between them. The states model the system states; the
labelled transitions model the actions that a system can perform.

Definition 1. A labelled transition system is a 4-tuple 〈Q, L, T, q0〉 where

– Q is a countable, non-empty set of states;
– L is a countable set of labels;
– T ⊆ Q × (L ∪ {τ}) × Q, with τ /∈ L, is the transition relation;
– q0 ∈ Q is the initial state.

We write q μ−−→ q′ if there is a transition labelled μ from state q to state q′, i.e.,
(q, μ, q′) ∈ T . The informal idea of such a transition is that when the system
is in state q it may perform action μ, and go to state q′ . Suppose that in
state q′ the system can perform action μ′, i.e., q′ μ′

−−→ q′′, then these transitions
can be composed: q μ−−→ q′ μ′

−−→ q′′, which is written as q μ·μ′
−−−→ q′′. In general, the

8 J. Tretmans

composition of transitions q1
μ1·μ2·...·μn−−−−−−−−→ q2 expresses that the system, when in

state q1, can perform the sequence of actions μ1·μ2· . . . ·μn, and may end in state
q2. The use of may is important here: because of non-determinism, it may be
the case that the system can also perform the same sequence of actions, but end
in another state: q1

μ1·μ2·...·μn−−−−−−−−→ q3 with q2 �= q3.

Definition 2. Let A be a set. Then A∗ is the set of all finite sequences over
A, with ε denoting the empty sequence. If σ1, σ2 ∈ A∗ are finite sequences, then
σ1·σ2 is the concatenation of σ1 and σ2.

Definition 3. Let p = 〈Q, L, T, q0〉 be a labelled transition system with q, q′ ∈ Q,
and let μ, μi ∈ L ∪ {τ}.

q μ−−→ q′ ⇔def (q, μ, q′) ∈ T

q μ1·...·μn−−−−−−→ q′ ⇔def ∃q0, . . . , qn : q = q0
μ1−−→ q1

μ2−−→ . . . μn−−→ qn = q′

q μ1·...·μn−−−−−−→ ⇔def ∃q′ : q μ1·...·μn−−−−−−→ q′

q
μ1·...·μn−−−−−−−→/ ⇔def not ∃q′ : q μ1·...·μn−−−−−−→ q′

Example 1. Figure 2 presents five examples of labelled transition systems repre-
senting candy machines. There is a button interaction but , and labels for choco-
late choc and liquorice liq . The transition systems are represented as graphs,
where nodes represent states and labelled edges represent transitions. The dan-
gling arrow points to the initial state.

The tree q represents the labelled transition system
〈 {q0, q1, q2, q3}, {but , liq , choc}, { 〈q0, but , q1〉, 〈q1, liq , q2〉, 〈q1, choc, q3〉 }, q0 〉.
For r we have that r0

but−−−→ r1, and also r0
but−−−→ r2. Moreover, r0

but·liq−−−−−→ r3, so
also r0

but·liq−−−−−→ , but r0
but·choc−−−−−−−→/ .

The labels in L represent the observable actions of a system; they model the
system’s interactions with its environment. Internal actions are denoted by the
special label τ (τ /∈ L), which is assumed to be unobservable for the system’s
environment. Also states are assumed to be unobservable for the environment.
Consequently, the observable behaviour of a system is captured by the system’s

q0

q1

q2 q3

q

liq

but
p0

p1

p2

p

liq choc

u

but

u1

u0

v0

τbutliq

v v1

choc

liq

but

but

but
r0

r2

r3
r4

r5
r

r1
chocliq

but

Fig. 2. Labelled transition systems

Model Based Testing with Labelled Transition Systems 9

ability to perform sequences of observable actions. Such a sequence of observable
actions is obtained from a sequence of actions under abstraction from the inter-
nal action τ . If q can perform the sequence of actions a·τ ·τ ·b·c·τ (a, b, c ∈ L),
i.e., q a·τ ·τ ·b·c·τ−−−−−−−→ q′, then we write q

a·b·c===⇒ q′ for the τ -abstracted sequence of
observable actions. We say that q is able to perform the trace a·b·c ∈ L∗. These,
and some other notations and properties are formally given in Definition 4.

Definition 4. Let p = 〈Q, L, T, q0〉 be a labelled transition system with q, q′ ∈ Q,
a, ai ∈ L, and σ ∈ L∗.

q
ε=⇒ q′ ⇔def q = q′ or q τ ·...·τ−−−−→ q′

q
a=⇒ q′ ⇔def ∃q1, q2 : q

ε=⇒ q1
a−→ q2

ε=⇒ q′

q
a1·...·an======⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ=⇒ ⇔def ∃q′ : q

σ=⇒ q′

q
σ

=�⇒ ⇔def not ∃q′ : q
σ=⇒ q′

Example 2. In Figure 2:

u0
but·liq·but·choc

===========⇒ u0, v0
but·but·but·liq

==========⇒ v0, and u0
but·but

=====�⇒ .

In our reasoning about labelled transition systems we will not always distinguish
between a transition system and its initial state. If p = 〈Q, L, T, q0〉, we will
identify the process p with its initial state q0, and, e.g., we write p

σ=⇒ instead
of q0

σ=⇒ . With this in mind, we give some additional definitions and notations
in Definition 5, which are exemplified in Example 3.

Definition 5. Let p be a (state of a) labelled transition system, and σ ∈ L∗.

1. init(p) =def { μ ∈ L ∪ {τ} | p μ−−→ }
2. traces(p) =def { σ ∈ L∗ | p

σ=⇒ }
3. p after σ =def { p′ | p

σ=⇒ p′ }
4. P after σ =def

⋃
{ p after σ | p ∈ P }, where P is a set of states.

5. P refuses A =def ∃p ∈ P, ∀μ ∈ A ∪ {τ} : p
μ−−→/ ,

where P and A are sets of states and labels, respectively.
6. der (p) =def { p′ | ∃σ ∈ L∗ : p

σ=⇒ p′ }
7. p has finite behaviour if there is a natural number n such that all traces in

traces(p) have length smaller than n.
8. p is finite state if the number of reachable states der (p) is finite.
9. p is deterministic if, for all σ ∈ L∗, p after σ has at most one element.

If σ ∈ traces(p), then p after σ may be overloaded to denote this element.
10. p is image finite if, for all σ ∈ L∗, p after σ is finite.
11. p is strongly converging if there is no state of p that can perform an infinite

sequence of internal transitions.
12. LTS(L) is the class of all image finite and strongly converging labelled tran-

sition systems with labels in L.

10 J. Tretmans

bi

aaaa

wz

a3a2a1 a aaa4
aia0 a5

b0 b1 b2 b3 b4 b5 bi b0 b1 b2 b3 b4 b5

Fig. 3. An image-finite and an image-infinite transition system

In the sequel LTS(L) will be our basic class of models. We restrict this class to
strongly converging and image finite transition systems to make it possible to
algorithmically compute an after-set. It will turn out that the computation of
these sets is crucial for the test generation algorithm; see Section 5.2. Most of the
results presented in the next sections are also valid without these restrictions,
but at the expense of some extra complexity.

Example 3. All possible execution sequences of process r in Figure 2 are given
by traces(r) = {ε, but , but ·liq , but ·but , but ·but ·choc}. Process u has infinitely
many traces: traces(u) = {ε, but , but ·liq , but ·choc, but ·liq ·but , . . . }, but
although the set of traces has infinitely many elements, each trace, by definition,
has finite length.

Some states in which a system can be after a trace are: r after ε = {r0};
r after but = {r1, r2}; r after but ·choc = ∅; v after but ·liq ·but = {v0, v1}.

We have that q after but refuses {but} , but not q after but refuses {liq} ,
and not q after but refuses {but , liq} . Moreover, r after but refuses {but} and
r after but refuses {liq} , but not r after but refuses {but, liq} . For v we have

that v
but·liq

=====⇒ , but also v after but refuses {liq} .
The three processes p, q and r have finite behaviour and are finite state; u

and v are finite state, but have infinite behaviour. Transition systems p, q, and
u are deterministic, whereas r and v are non-deterministic. All five processes are
image finite.

The transition system z in Figure 3 is deterministic, has infinitely many states,
but has finite behaviour, and is image finite: for each i ∈ IN, z after ai is a
singleton. The system w in Figure 3 is not deterministic and not image finite:
w after a has infinitely many states.

3.2 Representing Labelled Transition Systems

Labelled transition systems constitute a powerful semantic model to reason
about processes, such as specifications, implementations, and tests. However,
except for the most trivial processes, like the ones in Figure 2, an explicit repre-
sentation as 4-tuple, or a representation by means of a tree or a graph is usually
not feasible. Realistic systems easily have billions of states, so that drawing or
enumerating them is not an option. We need another way of representing a tran-
sition system, and the usual way is to define a language with labelled transition

Model Based Testing with Labelled Transition Systems 11

systems as its operational semantics. Each expression in such a language defines,
through its semantics, a labelled transition system. Expressions can be combined
with language operators, so that complex transition systems can be composed
from simpler ones. We call such a language a process language.

There exist many process languages. We use a variant of the language Lotos,
for which we introduce some of the constructs that are used in the sequel to define
test cases, test execution, and the composition of systems. Since this text is not
intended as a tutorial in such languages, we refer to the standard literature for
a more detailed treatment.

The language expressions defining labelled transition systems are called be-
haviour expressions. We have the following syntax for behaviour expressions,
where a ∈ L is a label, B is a behaviour expression, B is a countable set of
behaviour expressions, G ⊆ L is a set of labels, and P is a process name.

B ::= a ; B | i ; B | Σ B | B |[G]| B | hide G in B | P

The action prefix expression a ; B defines the behaviour, which can perform
the action a and then behaves as B, i.e., a ; B defines the labelled transition
system which makes a transition labelled a to the transition system defined
by B. The expression i ; B is analogous to a ; B, the difference being that i
denotes the internal action τ in the transition system.

The choice expression Σ B denotes a choice of behaviour. It behaves as one
of the processes in the set B. This choice is determined by the first transition
which is made. We use B1�B2 as an abbreviation for Σ {B1, B2} , i.e., B1�B2
behaves either as B1 or as B2. The expression stop is an abbreviation for Σ ∅ ,
i.e., it is the behaviour which cannot perform any action, so it is the deadlocked
process.

The parallel expression B1 |[G]| B2 denotes the parallel execution of B1 and
B2. In this parallel execution all actions in G must synchronize, whereas all
actions not in G (including τ) can occur independently in both processes, i.e.,
interleaved. We use ‖ as an abbreviation for |[L]| , i.e., sychronization on all
observable actions, and ||| as an abbreviation for |[∅]| , i.e., full interleaving and
no synchronization.

The hiding expression hide G in B denotes the transition system of B where
all labels in G have been hidden, i.e., replaced by the internal action τ .

The last language constructs are process definitions and process instantiations.
A process definition links a process name to a behaviour expression: P := B .
The name P can then be used as a process instantiation in behaviour expressions
to stand for the behaviour contained in its corresponding process definition.

As usual, parentheses are used to disambiguate expressions. If no parentheses
are used ‘;’ binds stronger than ‘�’, which binds stronger than ‘|[G]|’, which
in turn binds stronger than hide . The parallel operators are read from left to
right, but note that they are not associative for different synchronization sets.
So, hide a, c in a; B1 || b ; B2 � c; B3 ||| d; B4 is read as

(hide a, c in (((a; B1) || ((b ; B2) � (c; B3))) ||| (d; B4)))

12 J. Tretmans

Table 1. Structural operational semantics

a ;B a−→ B i ;B τ−→ B
B

μ−→ B′

Σ B μ−→ B′ B ∈ B, μ ∈ L ∪ {τ}

B1
μ−→ B′

1

B1 |[G]| B2
μ−→B′

1 |[G]| B2

B2
μ−→ B′

2

B1 |[G]| B2
μ−→B1 |[G]| B′

2
μ∈(L∪{τ})\G

B1
a−→ B′

1, B2
a−→ B′

2

B1 |[G]| B2
a−→B′

1 |[G]| B′
2

a∈G
BP

μ−→ B′

P
μ−→ B′ P := BP , μ∈L∪{τ}

B
a−→ B′

hide G in B
τ−→hide G in B′ a∈G

B
μ−→ B′

hide G in B
μ−→hide G in B′ μ /∈G

The formal semantics of a process language is usually formally defined in
the form of structural operational semantics. Such a semantic definition consists
of axioms and inference rules which define for each behaviour expression the
corresponding labelled transition system; see Table 1. Consider as an example
the axiom for a ; B . This axiom is to be read as: an expression of the form
a ; B can always make a transition a−→ to a state from where it behaves as B.
Consider as another example the inference rule for Σ B. Suppose that we can
satisfy the premiss, i.e., B can make a transition labelled μ to B′, and B ∈ B,
and μ is an observable or internal action, then we can conclude that Σ B can
make a transition labelled μ to B′. We give the remaining axioms and rules for
our language in Table 1 without further comments.

Example 4. Behaviour expressions representing the processes of Figure 2 are:

p : but ; liq ; stop
q : but ; (liq ; stop � choc; stop)
r : but ; liq ; stop � but ; but ; choc; stop
u : U where U := but ; (liq ; U � choc; U)
v : V where V := but ; (liq ; V � i; V)

These behaviour expressions are not unique, e.g., we could also choose

p : but ; liq ; liq ; stop || but ; liq ; choc; stop
q : but ; Σ{liq; stop, choc; stop}

The parallel operator in particular can be used to efficiently represent large
transition systems. Consider the process p of Figure 2 which has 3 states. The
interleaving of p with itself, p ||| p , has 3 × 3 = 9 states; and p ||| p ||| p has 27
states, and so forth.

Also infinite-state processes can be represented with finite expressions, e.g.,
Y with Y := a ; (b ; stop ||| Y) has infinitely many states; it can perform

Model Based Testing with Labelled Transition Systems 13

actions a and b but it can never do more b’s than a’s. The infinite-state transition
system z in Figure 3 can be written as Σ { ai ; bi ; stop | i ∈ IN }.

Finally, note that not every behaviour expression represents a transition sys-
tem in LTS(L), e.g., the image-infinite transition system w of Figure 3 can be
expressed in our language: Σ{ a ; bi ; stop | i ∈ IN }. Also the transition system
defined by hide a in P0 , where Pi := a ; Pi+1 � bi ; stop with i ∈ IN, is not
in LTS(L); it is neither image finite, nor strongly converging. In the rest of this
paper we will not bother about the semantics being only partially defined.

3.3 Inputs and Outputs

A labelled transition system defines the possible sequences of interactions that
a system may have with its environment. These interactions are abstract, in the
sense that they are only identified by a label; there is no notion of initiative or
direction of the interaction, nor of input or output. An interaction can occur
if both the process and its environment are able to perform that interaction,
implying that they can also both block the occurrence of the interaction. The
communication between a system and its environment is symmetric. When the
environment is also a labelled transition system this communication can be ex-
pressed in our language by the parallel synchronization operator |[G]|, where
the labels in G model the possible interactions.

Although this paradigm of abstract interaction is sufficient for analysing and
reasoning about many applications, there are also systems which communicate
in a different way, in particular those systems that we will consider for testing.
Those systems do not abstract from initiative and direction; they do distinguish
between actions initiated by the environment, and actions initiated by them-
selves. They communicate via inputs and outputs : outputs are actions initiated
by the system, and inputs are actions initiated by the environment.

We define labelled transition system with inputs and outputs to model systems
for which the set of actions is partitioned into input actions contained in an input
label set LI , and output actions in an output label set LU . (The ‘U’ refers to
‘uitvoer’, the Dutch word for ‘output’, which is preferred to avoid confusion
between LO (letter ‘O’) and L0 (digit zero)).

Definition 6. A labelled transition system with inputs and outputs is a 5-tuple
〈Q, LI , LU , T, q0〉 where

– 〈Q, LI ∪ LU , T, q0〉 is a labelled transition system in LTS(LI ∪ LU);
– LI and LU are countable sets of input labels and output labels, respectively,

which are disjoint: LI ∩ LU = ∅.

The class of labelled transition systems with inputs in LI and outputs in LU is
denoted by LTS(LI , LU).

Inputs are usually decorated with ‘?’ and outputs with ‘!’. Labelled transition
systems with inputs and outputs are used as formal specifications in our test-
ing theory, i.e., LTS(LI , LU) instantiates the class of specifications SPEC ; see

14 J. Tretmans

Section 2. Of course, this does not mean that specifications have to be writ-
ten explicitly as labelled transition systems: any language with labelled tran-
sition system semantics suffices, for example, the process language defined in
Section 3.2.

3.4 Input-Output Transition Systems

Labelled transition systems with inputs and outputs do not really differ from
normal labelled transition systems. We define input-output transition systems
to model systems with inputs and outputs, in which outputs are initiated by
the system and never refused by the environment, and inputs are initiated by
the system’s environment and never refused by the system. This means that
the system is always prepared to perform any input action, i.e., all inputs are
enabled in all states.

!liq

?but

k1

?but

k2 k3

!liq

?but

?but

?but

p1

p2

p0

!choc

?but
r0

r1

r3

r2

r4

r5

!liq
?but

?but ?but ?but

?but

?but

?but ?but

!choc

Fig. 4. Input-output transition systems

Definition 7. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q, LI , LU , T, q0〉 where all input actions are enabled in
any reachable state:

∀q ∈ der (q0), ∀a ∈ LI : q
a=⇒

The class of input-output transition systems with inputs in LI and outputs in
LU is denoted by IOTS(LI , LU) ⊆ LTS(LI , LU).

Example 5. In Figure 2 only v is an input-output transition system, when LI =
{?but} and LU ⊇ {!liq}. Some other input-output transition systems are given
in Figure 4. In k1 we can push the button ?but , which is an input for the candy
machine, and then the machine outputs liquorice !liq . After ?but has been pushed
once, and also after the machine has released !liq , any more pushing of ?but has
no effect: k1 makes a self-loop and does not change state. In fact, k1, k2, and k3
are almost the same transition systems as p, q, and r in Figure 2, interpreting
LI = {?but} as inputs and LU = {!liq, !choc} as outputs, and the difference
being that self-loop transition have been added to make them input enabled;
this adding of input self-loops is sometimes referred to as angelic completion.

Model Based Testing with Labelled Transition Systems 15

χ

χ

LI τ τ LI ∪ LU

LI τ τ LI ∪ LU

?but !choc

?but

!liq

uχ

Fig. 5. Demonic completion

Another way of making systems input-enabled is to add a special error state,
and to add transitions to this error state for all non-specified inputs. In Figure 5
yet another completion method, viz. demonic completion, is used to make u in
Figure 2 input enabled: all non-specified inputs lead to the chaos process χ.
Once in χ any behaviour is possible.

Since input-output transition systems are just a special kind of labelled transition
systems, all definitions for them apply. In particular, the parallel synchroniza-
tion operator ‖ is used to model the communication between a system s and its
environment e. Naturally, the set LI of inputs of s should correspond to the out-
puts of e, and the set LU of outputs of s are the inputs of e: e ∈ IOTS(LU , LI).
Since the inputs of s are always enabled, e can autonomously determine whether
an action in LI will occur, or not. Conversely, since all actions in LU are always
enabled in e, it is up to s to determine whether an action in LU occurs, or not.
If s cannot perform an output action, it can only wait until e performs one of
e’s outputs. Such a state without output actions, where s cannot autonomously
proceed, is called suspended, or quiescent. A quiescent state q is denoted as δ(q).
If, and only if, both s and e are quiescent then there is no way to proceed: they
are in deadlock.

A system s with environment e is in deadlock after trace σ if there is no pos-
sible action to proceed: (s ‖ e) after σ refuses L . For non-input-enabled tran-
sition systems this means

∃As, Ae ⊆ L : As ∪ Ae = L
and s after σ refuses As and e after σ refuses Ae

(2)

For input-output transition systems this is simplified, since s can never refuse
actions in LI : if s after σ refuses As then As ⊆ LU . Analogously, if e refuses
something it must be a subset of LI . Since LI ∩ LU = ∅, the only sets satisfying
(2) are As = LU and Ae = LI , i.e., when both s and e are quiescent: δ(s) and
δ(e).

Although this rationale for introducing quiescence is based on input-output
transition systems, the definition applies equally well to non-input-output transi-
tion systems, and since in subsequent sections we will indeed consider quiescence

16 J. Tretmans

also for non-input-enabled transition systems, it is generally defined in Defini-
tions 8 and 9 for labelled transitions with inputs and outputs.

Definition 8. Let p ∈ LTS(LI , LU).

1. A state q of p is quiescent, denoted by δ(q), if ∀μ ∈ LU ∪ {τ} : q
μ−−→/

2. The quiescent traces of p are those traces that may lead to a quiescent state:
Qtraces(p) =def { σ ∈ L∗ | ∃p′ ∈ (p after σ) : δ(p′) }

An observer looking at a quiescent system does not see any outputs. This partic-
ular observation of seeing nothing can itself be considered as an event. It turns
out to be convenient to express this ‘seeing nothing’, i.e., quiescence, as a special
‘output action’; it is denoted by δ (δ �∈ L∪{τ}). Once we have this special action
we can also consider transitions with δ. Such a transition p δ−→ expresses that p
allows the observation of quiescence, i.e., p cannot perform any output action.
In this way the absence of outputs is made into an explicitly observable event.
Since quiescence implies that no real transition is performed, the goal state after
a δ-transition is always the same as the start state, so p δ−→ p if δ(p).

With δ-transitions it is also possible to extend traces with δ. For example,
p

δ·?a·δ·?b·!x========⇒ expresses that initially p is quiescent, i.e., does not produce out-
puts, but p does accept input action ?a, after which there are again no outputs;
when then input ?b is performed, the output !x is produced. Traces that may
contain the quiescence action δ, are called suspension traces.

Definition 9. Let p = 〈Q, LI , LU , T, q0〉 ∈ LTS(LI , LU).

1. Lδ =def L ∪ {δ}
2. pδ =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,

with Tδ =def { q δ−→ q | q ∈ Q, δ(q) }
3. The suspension traces of p are Straces(p) =def { σ ∈ L∗

δ | pδ
σ=⇒ }

From now on we will usually include δ-transitions in the transition relations, i.e.,
we consider pδ instead of p, unless otherwise indicated. Definitions 3, 4, and 5
also apply to transition systems with label set Lδ.

In our testing theory it will be assumed that an implementation under test
can be modelled as an input-output transition system, i.e., IOTS(LI , LU) in-
stantiates the class of models of implementations MOD , where LI and LU are
assumed to be the same as given for the specification; see Section 2. Since models
of implementations are only assumed to exist, the language representation issue
does not play a role for implementations. Whereas implementations are input-
enabled, specifications are not necessarily input-enabled. This difference allows
having partial specifications; this will be elaborated in Section 4, in particular
in Examples 9 and 10.

Example 6. For k1 in Figure 4 we have that δ(p0), δ(p2), but not δ(p1) because
state p1 can perform output !liq .

As explained above, the definition of quiescence is not restricted to input-
enabled systems. It can be applied to any transition system with inputs and

Model Based Testing with Labelled Transition Systems 17

pδ

δ

δ

?but

!liq

p0

p2

p1
δ

δ

δ

δ

!choc

?but!liq

r0

r3
r4

r5rδ

r2
r1

?but ?but

δ

δ

!liq δ

δ

δ
?but

δ
!choc

?but

?but

!choc

determinized rδ

Fig. 6. Quiescence

outputs. If in Figure 2 we take LI = {?but} and LU = {!liq, !choc}, then for
process p we have: δ(p0), δ(p2), but not δ(p1).

In Figure 6, quiescence has been made explicit by adding the δ-transitions for
p and r of Figure 2. So, we have, for example, pδ

δ·?but·!liq·δ·δ
=========⇒ , and the sus-

pension trace ?but ·δ·?but ·!choc ∈ Straces(r), but ?but ·δ·?but ·!liq �∈ Straces(r).
Since δ(r2) but not δ(r1) we know that we are in the right branch after having
observed ?but ·δ. In the determinization of rδ this is even more explicit: after
the sequence ?but ·δ the continuation is ?but ·!choc. This determinization of rδ,
which may serve as a kind of canonical representation of transition systems
modulo equality of suspension traces, is sometimes referred to as the suspen-
sion automaton of r. In such a determinization a δ-transition is not necessarily
a loop anymore, and an output- and δ-transition may be enabled in one state.
Determinizing a transition system to which δ-transitions have been added is not
the same as adding δ-transitions to a determinized transition system. Moreover,
there are deterministic transition systems over LI ∪ LU ∪ {δ} for which there is
no labelled transition system for which it is the suspension automaton.

3.5 Test Cases

A test case is a specification of the behaviour of a tester in an experiment car-
ried out on an implementation under test. In this experiment the tester serves
as a kind of artificial environment of the implementation. Following the discus-
sion in Section 3.4 about the communication between an implementation and
its environment, an implementation can do three different things: it can accept
any input in LI , it can produce an output in LU , or it can remain quiescent.
This implies that the tester, being this environment, must provide these inputs,
must be able to observe these outputs, and must be able to observe quiescence if
there is no output. Moreover, the tester should be input-enabled for all actions
in LU . The behaviour of such a tester is also modelled as an input-output tran-
sition system, but, naturally, with inputs and outputs exchanged. For observing

18 J. Tretmans

quiescence, we add a special label θ to the transition systems modelling tests
(θ �∈ LI ∪ LU ∪ {τ, δ}). The occurrence of θ in a test indicates the detection
of quiescence δ; i.e., the observation that no output is produced by the imple-
mentation. Theoretically, this means that the tester has to wait for an infinite
amount of time in order to conclude that implementation does not, and will
never produce any output. More practically, one could think of θ as being im-
plemented as the expiration of a time-out. Of course, care should be taken when
choosing such a (finite) time-out value in order to have confidence that after an
output-less time-out period the system indeed is quiescent.

Combining the above, we have that test cases are in the first place processes in
IOTS(LU , LI ∪ {θ}). But, based on the observation that the execution of a
test case is an experiment under control of the tester, a few restrictions are
added. First, there must be a mechanism in test cases to assign verdicts. This
is accomplished by having two special verdict states called pass and fail, which
are sink states, i.e., once in pass (fail) the test case cannot leave that state
anymore. Second, in order to make it possible to assign a verdict within finite
time, test cases should always allow reaching a pass or fail state within finitely
many transitions. Third, in order to keep the tester in control, unnecessary non-
determinism should be avoided. In the first place, this implies that the test case
itself is deterministic. In the second place, this means that a tester should never
offer more than one input action (from the perspective of the implementation) at
a time. Since the implementation is able to accept any input action, offering more
inputs would always lead to an unnecessarily non-deterministic continuation of
the test run. Having a deterministic test case does not imply that a test run has
a unique result: due to non-determinism in the implementation under test, and
due to non-determinism in the test run itself, the repetition of a test run may lead
to a different result; see also Section 5.1. Altogether, we come to the following
definition of the class of test transition systems T TS, which instantiates the
domain of test cases TEST ; see Section 2.

Since the use of ‘input’ and ‘output’ in a test case is always confusing (and it
will be even more confusing once we start the discussion on test execution, where
implementations and tests come together), we try to use the convention that
‘input’ and ‘output’ always refer to the inputs and outputs of the specification
and implementation under test. Consequently, input-enabledness of a test case
means that all actions in LU are enabled. Also the decorations ‘?’ and ‘!’ refer
to the use of actions in the specification (or implementation). The special action
θ is indeed special: it is considered neither input, nor output.

Definition 10

1. A test case t for an implementation with inputs in LI and outputs in LU is an
input-output transition system 〈Q, LU , LI ∪{θ}, T, q0〉 ∈ IOTS(LU , LI ∪{θ})
such that
– t is finite state and deterministic;
– Q contains two special states pass and fail, pass �= fail, with

pass := Σ { x ; pass | x ∈ LU ∪ {θ} }
fail := Σ { x ; fail | x ∈ LU ∪ {θ} }

Model Based Testing with Labelled Transition Systems 19

LU ∪ θ

fail

fail

fail

fail

fail

t1

!choc
!liq

θ
!choc

?but
!liq

fail failθ

fail failθ fail

pass fail pass

!choc

fail

fail

pass fail pass

θ

t2

!choc

!liq
!choc

?but !liq

!choc
!liq

!liq !choc

?but !liq !choc

?but

!liq

θ!liq
!choc

passfail

Fig. 7. Test cases

– t has no cycles except those in states pass and fail
(formally: for σ ∈ (L∪{θ})∗\{ε}: q

σ=⇒ q implies q = pass or q = fail)
– for any state q ∈ Q of the test case

either init(q) = {a} ∪ LU for some a ∈ LI

or init(q) = LU ∪ {θ}.
2. The class of test cases for implementations with inputs LI and outputs LU

is denoted as T TS(LU , LI).
3. A test suite T is a set of test cases: T ⊆ T TS(LU , LI).

Example 7. Figure 7 gives two example test cases with LI = {?but} and LU =
{!liq , !choc}. Test case t1 provides input ?but to an implementation. If this is
successful t1 expects to receive !liq from the implementation followed by nothing,
i.e., quiescence. Any other reaction is considered erroneous and leads to fail.

In test case t2 the loops in the states pass and fail have been omitted. Since
they are only there to make the test case input enabled, we will omit them from
now on.

3.6 Some Bibliographic Notes

Labelled transition systems are a basic model in formal theories. Many languages
for processes, in particular process algebras, use transition systems for their
operational semantics, which is usually defined through structured operational
semantics; [16] may serve as a literature entry. The language presented here is
mainly inspired by Lotos [17,18].

Input-output transition systems are analogous to Input/Output Automata
(IOA) [19], and to Input-Output State Machines [1], but they differ from classical
Finite State Machines or Mealy Machines. Input-output transition systems differ
marginally from Input/Output Automata in input enabling: instead of requiring
strong input enabling as in [19] (∀a ∈ LI : p′ a−→), input-output transition
systems allow input enabling via internal transitions (weak input enabling, ∀a ∈
LI : p′ a=⇒). Moreover, as is usual for labelled transition systems, all internal
actions are denoted by the same label τ , which is possible, since we do not

20 J. Tretmans

consider fairness explicitly, so we do not need to express a partitioning of output
and internal actions to pose fairness requirements as in Input/Output Automata.
Testing is only about finite behaviours.

4 The Implementation Relation

The purpose of this section is to define precisely when an implementation in
IOTS(LI , LU) is correct with respect to a specification in LTS(LI , LU), i.e., to
define an implementation relation; see Section 2. There are many ways of defining
an implementation relation. In principle, any relation between IOTS(LI , LU)
and LTS(LI , LU) could serve as an implementation relation, but, of course,
some relations appear more natural and intuitive than others. The main relation
that we consider is called ioco, and it is defined in Section 4.1. Subsequently,
Section 4.2 discusses some variants and properties of ioco.

4.1 The Implementation Relation ioco

The implementation relation on which we build our test theory is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i ∈ IOTS(LI , LU) is ioco-conforming to specification s ∈ LTS(LI , LU) if any
experiment derived from s and executed on i leads to an output from i that is
foreseen by s. A special output of i is the absence of outputs as modelled by
quiescence δ; see Section 3.4. This means that if i is quiescent then s should
have the possibility to be quiescent, too. A formal definition of ioco starts with
defining the set out of possible outputs. This set can contain the special label
δ. It is defined for a single state, and then generalized to a set of states. The
latter is used in combination with after (Definition 5.3): out(p after σ) gives
all possible outputs occurring after having performed the trace σ ∈ L∗

δ .

Definition 11. Let q be a state in a transition system, and let Q be a set of
states, then

1. out(q) =def { x ∈ LU | q x−−→ } ∪ { δ | δ(q) }
2. out(Q) =def

⋃
{ out(q) | q ∈ Q }

Example 8. Some examples for k3 in Figure 4:

out(k3 after ε) = out(r0) = {δ}
out(k3 after δ) = out(r0) = {δ}
out(k3 after !liq) = out(∅) = ∅
out(k3 after ?but) = out(r1) ∪ out(r2) = {!liq , δ}
out(k3 after ?but ·?but) = out(r1) ∪ out(r4) = {!liq , !choc}
out(k3 after ?but ·δ·?but) = out(r4) = {!choc}
out(k3 after ?but ·?but ·!liq) = out(r3) = {δ}
out(k3 after ?but ·δ·?but ·!liq) = out(∅) = ∅

Model Based Testing with Labelled Transition Systems 21

The informal idea that ‘any output produced by i has been foreseen in s’ is
formally expressed by requiring that the out-set of the implementation is a subset
of the out-set of the specification. This should hold for any state, but due to non-
determinism we do not exactly know in which state we are during testing. What
can be observed is the suspension trace σ ∈ L∗

δ executed so far, which may lead
to different states. The set p after σ collects all these possible current states, so
out(p after σ) contains all possible outputs, possibly including δ, after σ. This
set, when obtained from the implementation, must be included in the analogous
set obtained from the specification, but only if σ is a suspension trace of the
specification. Altogether, these considerations lead to Definition 12.

Definition 12. Given a set of input labels LI and a set of output labels LU , the
relation ioco ⊆ IOTS(LI , LU) × LTS(LI , LU) is defined as follows:

i ioco s ⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

The fact that ioco only requires inclusion of out-sets for the suspension traces
of the specification, together with the fact that specifications can be non-input
enabled, makes it possible to have partial specifications. For suspension traces
which are not in Straces(s) there is no requirement whatsoever on the imple-
mentation, which implies that an implementation is free to implement anything
it likes after such a trace. Such a trace is said to be underspecified. In many
situations it can be beneficial to a have a partial specification, whereas in other
situations a complete specification is preferred: a complete specification speci-
fies after every trace what should happen. Completeness can always be achieved
with ioco by having an input enabled specification: if s ∈ IOTS(LI , LU) then
there are no underspecified traces.

Example 9. Figure 8 gives some implementations and specifications with LI =
{?a, ?b} and LU = {!x, !y}:

im ioco sn s1 s2 s3 s4

i1 ioco ioco /ioco ioco
i2 /ioco ioco /ioco /ioco
i3 ioco ioco ioco ioco
i4 /ioco /ioco /ioco ioco

Specification s1 specifies that after input ?a output !x must occur, which is
expressed as: out(s1 after ?a) = {x}. Implementation i1 satisfies this require-
ment, but i2 and i4 do not: out(i2 after ?a) = {x, y} �⊆ {x}, out(i4 after ?a) =
{x, δ} �⊆ {x}. For i3, out(i3 after ?a) = {x} ⊆ out(s1 after ?a). Moreover,
out(i3 after ?b) = {y} �⊆ out(s1 after ?b) = ∅, but since ?b �∈ Straces(s1) this
does not matter, and hence i3 ioco s1.

We see from i2 /ioco s1 that an implementation should not produce more out-
puts than allowed by the specification, and from i4 /ioco s1 that the implemen-
tation should not be quiescent, when the specification expects an output. But
from i3 ioco s1 we see that an implementation may have additional features, in

22 J. Tretmans

!x

?a

s1

i1

?a

!x

i2

?a

!x !y

i3

!x

?a

!x

?a

i4

s2

?a

!y!x

s3

!x

?b

!y

?a

s4

!x

?a

τ

?b ?b

!y

?b

?a, ?b

?a, ?b

?a, ?b ?a, ?b

?a, ?b

?a, ?b ?a, ?b

?b ?a, ?b?a, ?b

?a, ?b

?a, ?b

?a ?a, ?b

Fig. 8. Implementations and specifications with ioco

this case the behaviour ?b·!y ; the specification is partial, or underspecified for
?b: s1 does not prescribe any requirements for behaviour that follows ?b, and an
implementation is completely free to do anything it likes after ?b.

Specification s2 requires that after input ?a either output !x or !y is performed.
This means that i1, i2, i3 ioco s2, but not i4 ioco s2, since i4 may not produce
any output at all: out(i4 after ?a) = {x, δ} �⊆ {x, y}.

We see from i1 ioco s2 that an implementation may have less outputs than
the specification allows, but having no output at all is not allowed.

Specification s3 specifies that output !x must be performed after ?a, and !y
after ?b. Implementations i1, i2, and i4 are quiescent after ?b, so they are not
ioco-correct; i3 does satisfy this requirement.

Specification s4 specifies that after ?a either output !x should be produced, or
the implementation may be quiescent: out(s4 after ?a) = {x, δ}. Only i2 may
produce output !y and is not ioco-correct.

The implementations can also be mutually compared. Of course, ik ioco ik
for k = 1, 2, 3, 4, since ioco is reflexive on IOTS(LI , LU). Furthermore, only
i1 ioco i2, i4. Mutually comparing the specifications does not make sense, since
the specifications are not input enabled, so ioco is not defined.

Example 10. Consider Figure 4. We have that k1 ioco k2: an implementation ca-
pable of only producing !liq conforms to a specification that prescribes to produce
either !liq or !choc. Although k2 is deterministic according to Definition 5.9, in fact,

Model Based Testing with Labelled Transition Systems 23

it specifies in an input-output context that after ?but there is a non-deterministic
choice between supplying !liq or !choc.

If we want to specify a machine that produces both liquorice and chocolate,
then two buttons are needed to select the respective candies, cf. s3 in Example 9:

?liq-button ; !liq ; stop � ?choc-button ; !choc ; stop

On the other hand, k2 /ioco k1 and k2 /ioco k3: if the specification prescribes
to produce only !liq then an implementation shall not have the possibility to
produce !choc.

We have k1 ioco k3, but k3 /ioco k1 and k3 /ioco k2, since k3 may refuse to
produce anything after the button has been pushed once, whereas both k1 and
k2 will always output something; formally: δ ∈ out(k3 after ?but), whereas δ �∈
out(k1 after ?but) and δ �∈ out(k2 after ?but).

Figure 2 contains three non-input-enabled transition systems, which may serve
as specifications. We have k1 ioco p, and k2 /ioco p. Also p is underspecified: p
does not specify what should happen after the button has been pushed twice,
since ?but ·?but �∈ Straces(p).

Moreover, k1 ioco q and k2 ioco q, but k3 /ioco p and k3 /ioco q. As before,
this is the case because δ ∈ out(k3 after ?but), whereas δ �∈ out(p after ?but)
and δ �∈ out(q after ?but).

4.2 Some Variations and Properties of ioco

Generalization. The implementation relation ioco (Definition 12) requires that
the out-set of the implementation be a subset of the specification’s out-set for
all traces in the set of suspension traces of the specification. By making this
set of suspension traces a parameter of the relation a family of implementation
relations is defined.

Definition 13. Let F ⊆ (LI ∪ LU ∪ {δ})∗ be a set of suspension traces,
i ∈ IOTS(LI , LU), and s ∈ LTS(LI, LU).

i iocoF s ⇔def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ)

Typically, the set F ⊆ L∗
δ depends on the specification s. Clearly, i ioco s iff

i iocoStraces(s) s, but also some other relations for specific F have been given
names, and, based on sub-setting of the respective sets F these relations can be
easily compared.

Definition 14. Let i ∈ IOTS(LI , LU), s ∈ LTS(LI, LU).

1. i ≤ior s =def i iocoL∗
δ

s
iff ∀σ ∈ L∗

δ : out(i after σ) ⊆ out(s after σ)
2. i ioconf s =def i iocotraces(s) s

iff ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ)
3. i ≤iot s =def i iocoL∗ s

iff ∀σ ∈ L∗ : out(i after σ) ⊆ out(s after σ)

24 J. Tretmans

�≤ior , /ioco

≤iot , ioconf
≤ior , ioco

≤iot , ioconf

!liq

?but

r1

!liq

r2

!choc

?but

?but

?but

?but

!choc

?but

?but ?but

!liq
?but

?but

?but

?but

?but

?but

?but

Fig. 9. The difference between ≤iot and ≤ior

Proposition 1

1. ≤ior and ≤iot are preorders on IOTS(LI , LU), i.e., they are reflexive and
transitive when restricted to input-enabled transition systems.

2. F1 ⊆ F2 implies iocoF1 ⊇ iocoF2

3. ≤ior ⊂
{

≤iot

ioco

}

⊂ ioconf

4. i ≤ior s iff Straces(i) ⊆ Straces(s).
5. i ≤iot s iff traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s)

Example 11. The difference between ≤iot and ≤ior , and between ioconf and
ioco is illustrated with the processes r1 and r2 in Figure 9: r1 ioconf r2, but
r1 /ioco r2; in terms of out-sets: out(r1 after ?but ·δ·?but) = {!liq , !choc} and
out(r2 after ?but ·δ·?but) = {!choc}.

Intuitively, after pushing the button, we observe that nothing is produced by
the machine, so we push the button again. Machine r1 may then produce either
liquorice or chocolate, while machine r2 will always produce chocolate. When we
use the relation ioconf , the observation always terminates after observing that
nothing is produced; quiescence can only be an element of the out-set, but it
cannot occur in the trace leading to the state where the out -set is calculated.
Hence, there is no way to distinguish between entering the left or the right branch
of r1 or r2; after the button is pushed twice, both machines may produce either
liquorice or chocolate: out(r1,2 after ?but ·?but) = {!liq , !choc}.

Partial specifications. In Section 4.1 it was mentioned that two conditions make
it possible to have partial specifications, viz. first, that ioco only requires inclu-
sion of out -sets for the suspension traces of the specification, and, second, that
specifications are non-input enabled.

If the first condition is changed to inclusion of out-sets for all possible suspen-
sion traces in L∗

δ , the relation ≤ior is obtained; see Definition 14.1. From Propo-
sition 1.4 it follows that ≤ior indeed does not allow partiality: all behaviours of a
≤ior -correct implementation, as expressed by its suspension traces, are contained
in those of the specification. This is also valid for underspecified specifications

Model Based Testing with Labelled Transition Systems 25

in LTS(LI , LU)\IOTS(LI , LU), which implies that it does not make sense to
have an underspecified specification in combination with ≤ior .

With respect to the second condition, if specifications are input enabled, i.e.,
ioco is restricted to a relation on IOTS(LI , LU), and there are no underspecified
traces anymore, then what remains turns out to be exactly the relation ≤ior .

Proposition 2

1. σ ∈ Straces(p) iff out(p after σ) �= ∅
2. If i, s ∈ IOTS(LI , LU) then i ioco s iff i ≤ior s
3. If p, q ∈ IOTS(LI , LU), and s ∈ LTS(LI , LU) then

p ioco q and q ioco s imply p ioco s.
4. ioco is a preorder on IOTS(LI , LU).

Underspecified traces and uioco. Another relation in the family iocoF is uioco.
For the rationale for uioco consider r in Figure 2 as a specification with LI =
{?but} and LU = {!liq , !choc}. Since r is not input enabled, it is a partial specifi-
cation. For example, ?but ·?but ·?but is an underspecified trace, and any behaviour
is allowed after it. On the other hand, ?but is clearly specified; the allowed outputs
after it are !liq and δ. For the trace ?but ·?but the situation is less clear. According
to ioco the expected output after ?but ·?but is out(r after ?but ·?but) = {!choc}.
But suppose that in the first ?but-transition r moves non-deterministically to state
r1 (the left branch) then one might argue that the second ?but -transition is un-
derspecified, and that, consequently, any possible behaviour is allowed in an im-
plementation. This is exactly where ioco and uioco differ: ioco postulates that
?but ·?but is not an underspecified trace, because there exists a state where it is
specified, whereas uioco states that ?but ·?but is underspecified, because there ex-
ists a state where it is underspecified.

Formally, ioco quantifies over F = Straces(s), which are all possible sus-
pension traces of the specification s. The relation uioco quantifies over F =
Utraces(s) ⊆ Straces(s), which are the suspension traces without the possibly
underspecified traces, i.e., see Definition 15.1, all suspension traces σ of s for
which it is not possible that a prefix σ1 of σ (σ = σ1·a·σ2) leads to a state of s
where the remainder a·σ2 of σ is underspecified, that is, a is refused.

An alternative characterization of uioco can be given by transforming a par-
tial specification into an input enabled one with demonic completion using the
chaos process χ, as explained in Example 5. In this way the specification makes
explicit that after an underspecified trace anything is allowed.

Definition 15. Let i ∈ IOTS(LI , LU), and s ∈ LTS(LI , LU).

1. Utraces(s) =def { σ ∈ Straces(s) | ∀σ1, σ2 ∈ L∗
δ , a ∈ LI :

σ = σ1·a·σ2 implies not s after σ1 refuses {a} }
2. i uioco s ⇔def i iocoUtraces(s) s

Example 12. Because Utraces(s) ⊆ Straces(s) it is clear (proposition 1.2) that
uioco is not stronger than ioco. That it is strictly weaker follows from the
following example. Take r in Figure 2 as (partial) specification, and consider

26 J. Tretmans

r1 and r2 from Figure 9 as potential implementations. Then r2 /ioco r because
!liq ∈ out(r2 after ?but ·?but) and !liq �∈ out(r after ?but ·?but), but r2 uioco r
because ?but ·?but �∈ Utraces(r). Also r1 /ioco r, but in this case also r1 /uioco r
because ?but ·δ·?but ∈ Utraces(r), !liq ∈ out(r1 after ?but ·δ·?but) and !liq �∈
out(r after ?but ·δ·?but).

Variants. A couple of other variations on ioco have been defined:

TGV-ioco. TGV is a tool for the automatic synthesis of test cases for non-
deterministic systems [2]. Its underlying theory is analogous to the ioco
theory with a small extension. TGV deals with divergences or livelocks con-
sisting of τ -loops. Such a livelock is given an unfair semantics, which means
that the system can loop for ever. This implies that an external observer will
not see any progress in the system, i.e., the observer will see quiescence.

mioco. The relation multi-ioco extends ioco with multiple channels [20]. Each
action belongs to exactly one input channel or output channel. Each output
channel can be quiescent, and moreover each input channel can be blocked
meaning that the channel (temporarily) does not accept any inputs. Anal-
ogous to ioco, mioco requires that the outputs, output quiescences, and
input blockings occurring in an implementation, are included in those of the
specification.

(r)tioco. Different(real)-timed-ioco relations have been defined: [21,22,23]. The
difficulty, and the difference between the different versions of timed-ioco is
the treatment of quiescence. Quiescence in ioco means that no outputs are
produced, not now and not in the future. If time is an explicit parameter
in the models, it is also possible to require and observe that no outputs are
produced for a specified period of time, whereas ‘in the future’ should be
defined more precisely with explicit mentioning of time.

iocor. Sometimes, the level of granularity of the actions in the implementation
is different from that of the specification, i.e., the label sets LI and LU of
specification and implementation cannot be assumed to be the same. Usually,
this means that one abstract action of the specification is implemented by a
sequence of actions in the implementation. This is called action refinement,
and leads to a relation iocor [24].

sioco. Actions are sometimes parameterized with data. In order to avoid state
explosion during test generation, this data is treated in a symbolic way,
leading to a symbolic-ioco [25]. Whereas the other variants above exend or
alter ioco, sioco does not change it; it only gives another representation of
the relation in case data variables and parameters are involved.

hioco. Hybrid systems are systems in which discrete actions and continuous
variables play a role. Ongoing research aims at defining a relation hybrid-
ioco to formalize the relation between a hybrid transition system implemen-
tation and its specification.

Compositional testing. With the popularization of component based develop-
ment it is desirable that also testing and integration can be based on components,

Model Based Testing with Labelled Transition Systems 27

i.e., that successfully tested components can be integrated into correctly func-
tioning systems. Unfortunately, this is not directly the case for ioco-correctness:
the composition of two ioco-correct implementations i1 and i2, communicating
through actions in V , and modelled as hide V in i1 |[V]| i2, is not necessar-
ily ioco-correct to the composition of their specifications; see Proposition 3.1.
Technically, this means that ioco is not a precongruence for the hiding and par-
allel operators. Intuitively, it can be understood by seeing that a component’s
specification may have underspecified traces after which the component’s im-
plementation may show any possible behaviour. In a composition with another
component this behaviour may lead to undesired behaviour which is not allowed
by the composition of the specifications. This problem can be avoided by having
no underspecified traces: the precongruence property does hold for input enabled
specifications; see Proposition 3.2.

Proposition 3. Let ik ∈ IOTS(LIk, LU k) and sk ∈ LTS(LIk, LU k) for k =
1, 2, be two components, such that they have disjoint inputs and disjoint outputs:
LI1 ∩ LI2 = LU1 ∩ LU2 = ∅. Let V = (LI1 ∩ LU2) ∪ (LU 1 ∩ LI2) be the set of
their common interactions.

1. i1 ioco s1 and i2 ioco s2 does not imply
(hide V in i1 |[V]| i2) ioco (hide V in s1 |[V]| s2)

!x !y

i2i1

!err

?a
?err

?ok ?a

τ

!y

hide ok , err in i1 |[ok , err]| i2

?a

?a

?ok , ?err

?ok , ?err

?a

?a

?a?ok , ?err

s1

!err

?a ?a

τ

!x

hide ok , err in s1 |[ok , err]| s2

!ok

?ok , ?err

s2

!x

?ok

Fig. 10. Compositional testing

28 J. Tretmans

2. If s1, s2 are input-enabled, i.e., sk ∈ IOTS(LIk, LU k) for k = 1, 2; then
i1 ioco s1 and i2 ioco s2 implies that
(hide V in i1 |[V]| i2) ioco (hide V in s1 |[V]| s2)

Example 13. Consider specifications s1 and s2 and implementations i1 and i2 in
Figure 10. The input set for s1 and i1 is LI1 = {a}; the outputs of s1 and i1 are
equal to the inputs of s2 and i2: LU1 = LI2 = {ok , err}; the outputs of s2 and
i2 are LU2 = {x, y}.

Specification s1 specifies that upon input ?a an output !ok or !err shall be
produced, which is ioco-correctly implemented in i1. The partial specification s2
specifies that on input ?ok the output !x shall be provided, which i2 correctly im-
plements; hence, i1 ioco s1 and i2 ioco s2. But upon composing i1 and i2 the addi-
tional behaviour of i2, viz. providing output !y for input ?err that is underspecified
in s2, causes incorrect behaviour with respect to the composition of the specifica-
tions: (hide ok , err in i1 |[ok , err]| i2) /ioco (hide ok , err in s1 |[ok , err]| s2).

4.3 Some Bibliographic Notes

The relation ioco inherits many ideas from other relations on transition systems
defined in the literature. Its roots are in the theory of testing equivalence and
preorders [26,27], where the relation testing preorder on transitions systems is
defined by explicitly introducing the environment, or tester, and the observa-
tions that a tester can make of a system. Some developments, which build on
these testing preorders, are of importance for ioco. In the first place, there was
the introduction of more powerful testers, which can detect not only the occur-
rence of actions but also the absence of actions, i.e., refusals, in [28], and the
addition of a special label θ to observe refusals in [29]. A second development
was a testing theory based on testing preorders, where a conformance relation
conf , and test generation algorithms were defined by restricting all observations
of testing preorder testers to those traces that are explicitly contained in the
specification [30]. A third development was the application of the principles of
testing preorder to Input/Output Automata (IOA) in [31], where it was shown
that testing preorder coincides with quiescent trace preorder [32] when requiring
that inputs are always enabled. The relation ioco inherits from all these devel-
opments. The definition of ioco follows the principles of testing preorder with
tests that can also detect the refusal of actions. Outputs and always enabled
inputs are distinguished analogous to IOA, and, moreover, a restriction is made
to only the traces of the specification as in conf .

Whereas this section first presented ioco and then introduced iocoF , ≤ior ,
≤iot , and ioconf as variants, the historical development, and the way they were
presented in [6], were the other way around: it started with ≤iot , and then
ioconf , ≤ior , ioco, and iocoF followed. Moreover, the original definitions are
given as testing relations as in [26,27], and the definitions in this text were
propositions in [6].

Another interesting historical event was the development of the testing theory
for the tool TVEDA [1], which occurred independently and without reference to

Model Based Testing with Labelled Transition Systems 29

an underlying theory of testing equivalence or refusal testing, but only based on
intuition and formalization of existing protocol testing practice and experience.
This resulted in a relation called R1 which strongly resembles ioco. This may be
another indication, apart from all case studies done since then, of the practical
relevance of ioco.

The relation uioco, also called iocoU , was the result of studying congru-
ence and compositionality properties for ioco in [33]. The anomaly of non-
deterministic underspecified traces was also remarked in [7,34].

Most of the complete proofs for ioco can be found in [6, technical report
version].

5 Testing with Labelled Transition Systems

Now that we have formal specifications, implementations, test cases, and the im-
plementation relation ioco expressing correctness, we can start the discussion on
testing. We are looking for a test generation algorithm that derives a set of tests
from a specification, so that by executing these tests we know, or at least can get
an indication, whether an implementation ioco-conforms to that specification.
For that, we first have to discuss what test execution is, and what it means to
pass a test. This is done in Section 5.1. Then the test generation algorithm is
given in Section 5.2. Subsequently, Section 5.3 shows that this algorithm has the
required correctness properties, that is, the generated test suites detect all and
only non-conforming implementations. This means that such a generated test
suite can serve as a decision procedure for ioco-conformance.

5.1 Test Execution

A test run of a test case t ∈ T TS(LU , LI) with an implementation under test
i ∈ IOTS(LI , LU) is an experiment where the test case supplies inputs to the
implementation, while observing the outputs, and the absence of outputs (qui-
escence) of the implementation. This might be described as the parallel synchro-
nization t ‖ i (Section 3.2), but this does not take into account the peculiarities
of the special labels δ and θ. Hence, we extend ‖ to �| to take into account that
θ is used to observe quiescence δ; see Definition 16.1.

A test run t �| i can always continue, i.e., it has no deadlocks. This follows
from the construction of a test case; see Definition 10.1: for each state t′ of a test
case either init(t′) = {a} ∪ {LU} for some a ∈ LI , or init(t′) = LU ∪ {θ}. In the
former case the action a can always be performed on the implementation since i
is input enabled. In the latter case either i produces some output x ∈ LU , or i is
quiescent. In both cases the test run can continue, be it with an infinite sequence
of θ actions. Since pass and fail are sink states a test run can be stopped if one
of these is reached. The trace of t�| i to that point identifies the test run; it can
be seen as the test log of the test run.

Since an implementation can behave non-deterministically, different test runs
of the same test case with the same implementation may lead to different termi-
nal states, and hence to different verdicts. An implementation passes a test case

30 J. Tretmans

if and only if all possible test runs lead to the verdict pass. This means that
each test case must be executed several times in order to explore all possible non-
deterministic behaviours of the implementation, and, moreover, that a particular
fairness must be assumed on implementations, i.e., it is assumed that an imple-
mentation by re-execution of a test case shows all its possible non-deterministic
behaviours with that test case.

Definition 16. Let t ∈ T TS(LU , LI) and i ∈ IOTS(LI , LU).

1. Running a test case t with an implementation i is expressed by the parallel

operator �| : T TS(LU , LI) × IOTS(LI , LU) → LTS(LI ∪ LU ∪ {θ}) which

is defined by the following inference rules:

i
τ−→ i′

t�| i τ−→ t�| i′
t

a−→ t′, i
a−→ i′

t�| i a−→ t′�| i′ a ∈ LI ∪ LU
t

θ−→ t′, i
δ−→

t�| i θ−→ t′�| i

2. A test run of t with i is a trace of t�| i leading to one of the states pass or
fail of t:

σ is a test run of t and i ⇔def ∃i′ : t�| i σ=⇒pass�| i′ or t�| i σ=⇒ fail�| i′

3. Implementation i passes test case t if all test runs go to the pass-state of t:

i passes t ⇔def ∀σ ∈ L∗
θ, ∀i′ : t�| i

σ

=�⇒ fail�| i′

4. An implementation i passes a test suite T if it passes all test cases in T :

i passes T ⇔def ∀t ∈ T : i passes t

If i does not pass the test suite, it fails: i fails T ⇔def ∃t ∈ T : i /passes t.

Example 14. Consider the test cases in Figure 7 and the implementations in
Figure 4. The only test run of t1 with k1 is t1�| k1

?but·!liq·θ
=======⇒pass�| k′

1, so
k1 passes t1.
For t1 with k2 there are two test runs:
t1�| k2

?but·!liq·θ
=======⇒pass�| k′

2, and t1�| k2
?but·!choc=======⇒ fail�| k′′

2 , so k2 fails t1.

Also k3 fails t1: t1�| k3
?but·!liq·θ

=======⇒pass�| k′
3, but also t1�| k3

?but·θ====⇒ fail�| k′′
3 .

When t2 is applied to k3 we get:
t2�| k3

?but·!liq·?but·θ
==========⇒pass�| k′

3, t2�| k3
?but·θ·?but·!choc===========⇒ fail�| k′′

3 , so k3 fails t2.

5.2 Test Generation

Now all ingredients are there to present an algorithm to generate test cases
from a labelled transition system specification, which test implementations for
ioco-correctness. To see how such test cases may be constructed, we consider the

Model Based Testing with Labelled Transition Systems 31

definition of ioco; see Definition 12. We see that to test for ioco we have to check
whether out(i after σ) ⊆ out(s after σ) for each σ ∈ traces(s). Basically, this
can be done by having a test case t that executes σ: t�| i σ=⇒ t′�| i′ . After this the
test case should check whether the produced outputs by i′ are allowed by s. This
can be done by having transitions from t′ to pass-states for all allowed outputs –
those in out(s after σ) – and transitions to fail-states for all erroneous outputs
– those not in out(s after σ). Special care should be taken for the special output
δ: δ models the absence of any output, which matches with the θ-transition in
the test case. Consequently, the θ-transition will go the pass-state if quiescence
is allowed – δ ∈ out(s after σ) – and to the fail-state if the specification does
not allow quiescence at that point.

All this is reflected in the following test generation algorithm. The algorithm
is recursive: the first transition of the test case is derived from the states in
which the specification can initially be, after which the remaining part of test
case is recursively derived from the specification states reachable from the inital
states via this first test case transition. The algorithm is non-deterministic in the
sense that in each recursive step it can be continued in many different ways: the
test case can be terminated with the test case pass (choice 1); the test case can
continue with any input allowed by the specification, which can be interrupted
by an arriving output (choice 2); or the test case can wait for an output and
check it, or conclude that the implementation is quiescent (choice 3). Each choice
for continuation results in another, valid test case. Also here the set LU , i.e., the
specification’s outputs, contains the inputs of the generated test case, and LI its
outputs.

Algorithm 1. Let s ∈ LTS(LI , LU) be a specification, and let S initially be
S = s after ε .

A test case t ∈ T TS(LU , LI) is obtained from a non-empty set of states S
by a finite number of recursive applications of one of the following three non-
deterministic choices:

1.

LU ∪ θ

pass

t := pass
2.

fail

xj �∈ out(S)

fail

xi ∈ out(S)

txita

xj

tx1

xi

a

32 J. Tretmans

t := a ; ta
� Σ { xj ; fail | xj ∈ LU , xj �∈ out(S) }
� Σ { xi ; txi | xi ∈ LU , xi ∈ out(S) }

where a ∈ LI such that S after a �= ∅, ta is obtained by recursively
applying the algorithm for the set of states S after a , and for each xi ∈
out(S), txi is obtained by recursively applying the algorithm for the set of
states S after xi .

3.
xi ∈ out(S)

θ

fail fail

xj �∈ out(S)

tx1 txi tθ

xjxi

t := Σ { xj ; fail | xj ∈ LU , xj �∈ out(S) }
� Σ { θ ; fail | δ �∈ out(S) }
� Σ { xi ; txi | xi ∈ LU , xi ∈ out(S) }
� Σ { θ ; tθ | δ ∈ out(S) }

where for each xi ∈ out(S), txi is obtained by recursively applying the al-
gorithm for the set of states S after xi , and tθ is obtained by recursively
applying the algorithm for the set of states S after δ .

Algorithm 1 generates a test case from a set of states S. This set represents the
set of all possible states in which the specification can be at the given stage of
the test case generation. Initially, this is the set s after ε = q0 after ε , where
q0 is the initial state of s. Then the test case is built step by step. In each step
there are three ways to make a test case:

1. The first choice is the single-state test case pass, which is always a sound
test case. It stops the recursion in the algorithm, and thus terminates the
test case.

2. In the second choice test case t attempts to supply input a to the imple-
mentation, and subsequently behaves as test case ta. Test case ta is obtained
by recursive application of the algorithm with the set S after a , which is
the set of specification states that can be reached via an a-transition from
some current state in S. Moreover, t is prepared to accept any output of
the implementation (not quiescence) that might occur before a is supplied.
Analogous to ta, each txi is obtained from S after xi .

3. The third choice consists of checking the next output of the implementation.
In this case the test case does not attempt to supply an input; it waits
until an output arrives, and if no output arrives it observes quiescence. If
the response, whether a real output or quiescence, is not allowed, i.e., xj �∈
out(S), the test case terminates with fail. If the response is allowed the
algorithm continues with recursively generating a test case from the set of
states S after xi .

Model Based Testing with Labelled Transition Systems 33

Example 15. Test case t1 of Figure 7 can be obtained from specification p in
Figure 2 using Algorithm 1:

1. Initially, S = p after ε = {p0}.
2. Choice 2 is made, i.e., we try to give an input to the implementation. The only

input with S after a �= ∅ is ?but , so t1 := ?but ; t21 � !liq ; fail � !choc; fail.
3. To obtain t21, the next output of the implementation is checked (choice 3):

t21 := !liq ; t31 � !choc; fail � θ; fail.
4. For t31 the output is checked again (choice 3), where now the only allowed

response is quiescence: t31 := !liq ; fail � !choc; fail � θ; t41.
5. For t41 we stop (choice 1): t41 := pass.

After putting all pieces together, we obtain t1 of Figure 7 as a test case for p.

Example 16. Test case t2 of Figure 7 can be generated from v in Figure 2:

1. Initially, S = v after ε = {v0}.
2. In the first step input ?but is tried: t2 := ?but ; t22 � !liq ; fail � !choc; fail,

after which S = {v0} after ?but = {v0, v1}.
3. The allowed outputs are checked: out(S) = out({v0, v1}) = {!liq , δ}.

This leads to the test case t22 := !liq ; t32 � !choc; fail � θ; t42.
4. For t32 we continue with S = {v0, v1} after !liq = {v0}. Another input ?but

is tried: t32 := ?but ; t52 � !liq ; fail � !choc; fail.
5. Then the output is checked again, which may be !liq or δ:

t52 := !liq ; t62 � !choc; fail � θ; t72.
6. The test case is stopped: t62 := pass and t72 := pass.
7. Further with t42: this is the test case after quiescence has been observed; t42 is

generated from S = {v0, v1} after δ = {v0}. From {v0} another input ?but
can be supplied: t42 := ?but ; t82 � !liq ; fail � !choc; fail.

8. Analogous to t52 the output is checked: t82 := !liq ; t92 � !choc; fail � θ; t102 .
9. After this the test case is stopped: t92 := pass and t102 := pass.

When concatenating these pieces the test case t2 of Figure 7 is obtained. It is
clear that this is only one test case which can be generated. Infinitely many
different test cases can be generated from specification v by considering longer
and longer test cases.

5.3 Completeness of Test Generation

Now all ingredients are there to present the main result of the ioco test theory,
viz. that the test cases generated with Algorithm 1 can detect all, and only
all, non-ioco correct implementations. Before giving this completeness result
we first formally define what completeness is in the context of ioco testing.
Moreover, a complete test suite is usually infinitely large, and not executable in
a practical situation, as is shown, for instance, for the system v in Example 16.
Consequently, a distinction is made between test suites which detect only errors
– but possibly not all of them – and test suites which detect all errors – and
possibly more. The former are called sound, and the latter exhaustive; see also
Section 2.

34 J. Tretmans

Definition 17. Let s be a specification and T a test suite; then for ioco:

T is complete ⇔def ∀i ∈ IOTS(LI , LU) : i ioco s iff i passes T
T is sound ⇔def ∀i ∈ IOTS(LI , LU) : i ioco s implies i passes T
T is exhaustive ⇔def ∀i ∈ IOTS(LI , LU) : i ioco s if i passes T

Theorem 2.1 expresses that all tests generated with the algorithm are sound,
i.e., give the result fail only if the implementation is not ioco-correct. Theo-
rem 2.2 states that all possible test cases together form an exhaustive (and thus
complete) test suite, which means that for any ioco-incorrect implementation
there is, in principle, a test case generated with Algorithm 1, that can detect
that incorrect implementation.

Theorem 2. Let s ∈ LTS(LI , LU) be a specification, and let Ts be the set of all
test cases that can be generated from s with algorithm 1; let gen : LTS(LI , LU) →
P(T TS(LU , LI)) be a test derivation function satisfying gen(s) ⊆ Ts; then:

1. gen(s) is sound for s with respect to ioco;
2. Ts is exhaustive for s with respect to ioco.

Exhaustiveness is more a theoretical result than a practical one. Theoretically,
it implies that any non-conforming implementation can be detected, i.e., that
there are no errors that can never be detected. From a practical perspective, an
exhaustive test suite, except for the most trivial systems such as p in Figure 2,
will contain infinitely many test cases, and thus can never be executed in finite
time. The question of which test cases to generate and execute from the infinitely
large exhaustive test suite is referred to as test selection. Such a selection of test
cases should minimize the test costs, e.g., in terms of the necessary test execution
time, while maximizing the probability of detecting errors. Test selection is an
important yet difficult topic, but it is not further discussed here.

Example 17. In Example 15 test case t1 of Figure 7 was generated from specifi-
cation p in Figure 2. Indeed, we had in Example 10: k1 ioco p, k2 /ioco p, and
k3 /ioco p, which is consistent with the test execution results from Example 14:
k1 passes t1, k2 fails t1, and k3 fails t1.

5.4 Bibliographic Notes

In the original definition of test cases, and in the original test generation algo-
rithm, test cases were not input enabled [6]. This resulted in a paradox where
environments are assumed to be input enabled for the outputs of the system,
but test cases, being particular environments, are not. It also meant that test
cases could prevent the system from performing an output. Inspired by timed
test generation algorithms [23], and by [7], test cases were redefined to be input
enabled.

The issue of test selection is studied in many papers, e.g., by using test pur-
poses [2,35], by using metrics [36,37], by defining an integral over the space of
implementations [38], by approximate analysis [39], by coverage analysis [40],
and many others.

An annotated bibliography of testing transition systems can be found in [41].

Model Based Testing with Labelled Transition Systems 35

6 Concluding Remarks

This contribution has presented a model based testing theory for labelled tran-
sition systems. Labelled transition systems were introduced as models for spec-
ifications, implementations, and tests, and a process language for representing
complex transition systems was given. An important point of the theory is the
definition of formal correctness between a specification and an implementation.
This was done with the implementation relation ioco. Some variants of ioco were
briefly discussed, and in particular the notion of partial specification has been
elaborated. A test generation algorithm was given, and it was proved to be com-
plete, i.e., to generate test suites which can exactly test for ioco conformance.

Although the emphasis in this contribution was on the theory of model based
testing, such theory is only useful if it is supported by model based test tools,
in particular test generation tools. Although the principles of the test genera-
tion algorithm are not very complex, the application to any realistically sized
transition system specification is far beyond what is manually feasible. And, of
course, by trying to do it manually, one of the great benefits of model based
testing, viz. the automatic generation of large quantities of large tests, would
be lost. Prototype tools implementing this test theory exist, e.g., TVEDA [1],
TGV [2], the Agedis Tool Set [3], TestGen [4], and TorX [5], and also
quite a number of case studies have been performed with these tools, see, e.g.,
[42,43,44,45].

One of the most important open issues in this model based testing theory is
the question of test selection. Since exhaustive testing of any realistic system is
not an option, an important question is which test cases should be generated
and executed, and why one test suite is better than another one. The tools men-
tioned above use different approaches, from completely random as in TorX, to
a manual approach where a user has to provide test purposes to steer the se-
lection process. Other approaches are defining some measures of coverage, e.g.,
using heuristics for coverage of transition systems such as traversing every state
at least once, heuristic measures from classical software testing such as equiv-
alence partitioning or boundary value analysis, explicitly defining fault models,
or assuming some test hypothesis for the implementation under test. Related
to the question of test selection is the issue of how the completeness, coverage,
or quality of an automatically generated test suite can be expressed, measured,
and, ultimately, controlled. Even more intriguing is the question how a measure
of test suite quality can be related to a measure of product quality. After all,
product quality is the ultimate reason to make efforts to do testing.

References

1. Phalippou, M.: Relations d’Implantation et Hypothèses de Test sur des Automates
à Entrées et Sorties. PhD thesis, L’Université de Bordeaux I, France (1994)

2. Jard, C., Jéron, T.: TGV: Theory, Principles and Algorithms: A Tool for the Au-
tomatic Synthesis of Conformance Test Cases for Non-Deterministic Reactive Sys-
tems. Software Tools for Technology Transfer 7(4), 297–315 (2005)

36 J. Tretmans

3. Hartman, A., Nagin, K.: The AGEDIS Tools for Model Based Testing. In: Int.
Symposium on Software Testing and Analysis – ISSTA 2004, pp. 129–132. ACM
Press, New York (2004)

4. He, J., Turner, K.: Protocol-Inspired Hardware Testing. In: Csopaki, G., Dibuz,
S., Tarnay, K. (eds.) Int. Workshop on Testing of Communicating Systems 12, pp.
131–147. Kluwer Academic Publishers, Dordrecht (1999)

5. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing. In: Hartman,
A., Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Software
Engineering, Imbuss, Möhrendorf, Germany, p. 13 (2003)

6. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools 17(3), 103–120 Also: Technical Report No. 96-
26, Centre for Telematics and Information Technology, University of Twente, The
Netherlands (1996)

7. Petrenko, A., Yevtushenko, N., Huo, J.L.: Testing Transition Systems with In-
put and Output Testers. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS,
vol. 2644, Springer, Heidelberg (2003)

8. Brinksma, E., Alderden, R., Langerak, R., Lagemaat, J.v.d., Tretmans, J.: A for-
mal approach to conformance testing. In: de Meer, J., Mackert, L., Effelsberg, W.
(eds.) Second Int.Workshop on Protocol Test Systems, pp. 349–363. North-Holland,
Amsterdam (1990)

9. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer,
Heidelberg (1999)

10. Bernot, G., Gaudel, M.G., Marre, B.: Software testing based on formal specifi-
cations: a theory and a tool. Software Engineering Journal, 387–405 (November
1991)

11. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

12. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8: Information Retrieval, Transfer
and Management for OSI – Framework: Formal Methods in Conformance Testing.
Committee Draft CD 13245-1, Proposed ITU-T Recommendation Z.500. ISO –
ITU-T, Geneve (1997)

13. Petrenko, A.: Fault Model-Driven Test Derivation from Finite State Models: Anno-
tated Bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

14. Campbell, C., W., G., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
Technical Report MSR-TR-2005-59, Microsoft Research, Redmond, USA (2005)

15. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic Auto-
mated Software Testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

17. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems 14, 25–59 (1987)

18. ISO: Information Processing Systems, Open Systems Interconnection, LOTOS - A
Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. International Standard IS-8807. ISO, Geneve (1989)

Model Based Testing with Labelled Transition Systems 37

19. Lynch, N., Tuttle, M.: An introduction to Input/Output Automata. CWI Quarterly
2(3) (1989) 219–246 Also: Technical Report MIT/LCS/TM-373 (TM-351 revised),
Massachusetts Institute of Technology, Cambridge, U.S.A. (1988)

20. Heerink, L.: Ins and Outs in Refusal Testing. PhD thesis, University of Twente,
Enschede, The Netherlands (1998)

21. Krichen, M., Tripakis, S.: Black-Box Conformance Testing for Real-Time Systems.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg
(2004)

22. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-Time Systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005)

23. Brandán Briones, L., Brinksma, E.: A Test Generation Framework for quiescent
Real-Time Systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS,
vol. 3395, pp. 64–78. Springer, Heidelberg (2005)

24. Bijl, M.v.d., Rensink, A., Tretmans, J.: Action Refinement in Conformance Testing.
In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 81–96.
Springer, Heidelberg (2005)

25. Frantzen, L., Tretmans, J., Willemse, T.: Test Generation Based on Symbolic Spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

26. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
puter Science 34, 83–133 (1984)

27. De Nicola, R.:Extensional Equivalences for Transition Systems.Acta Informatica 24,
211–237 (1987)

28. Phillips, I.: Refusal testing. Theoretical Computer Science 50(2), 241–284 (1987)
29. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Brinksma,

E., Scollo, G., Vissers, C.A. (eds.) Protocol Specification, Testing, and Verification
IX, pp. 87–98. North-Holland, Amsterdam (1990)

30. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implemen-
tations and their tests. In: Bochmann, G.v., Sarikaya, B. (eds.) Protocol Spec-
ification, Testing, and Verification VI, pp. 349–360. North-Holland, Amsterdam
(1987)

31. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 324–338. Springer, Heidelberg
(1993)

32. Vaandrager, F.: On the relationship between process algebra and Input/Output
Automata. In: Logic in Computer Science, Sixth Annual IEEE Symposium, pp.
387–398. IEEE Computer Society Press, Los Alamitos (1991)

33. Bijl, M.v.d., Rensink, A., Tretmans, J.: Compositional Testing with IOCO. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

34. Huo, J.L., Petrenko, A.: On Testing Partially Specified IOTS through Lossless
Queues. In: Groz, R., Hierons, R.M. (eds.) TestCom 2004. LNCS, vol. 2978, pp.
2004–2016. Springer, Heidelberg (2004)

35. Vries, R.d., Tretmans, J.: Towards Formal Test Purposes. In: Brinksma, E., Tret-
mans, J., eds.: Formal Approaches to Testing of Software – FATES, Number NS-
01-4 in BRICS Notes Series, University of Aarhus, Denmark, BRICS, pp. 61–76
(2001)

36. Curgus, J., Vuong, S.: Sensitivity analysis of the metric based test selection. In:
Kim, M., Kang, S., Hong, K. (eds.) Int.Workshop on Testing of Communicating
Systems 10, pp. 200–219. Chapman & Hall, Boca Raton (1997)

38 J. Tretmans

37. Feijs, L., Goga, N., Mauw, S., Tretmans, J.: Test Selection, Trace Distance and
Heuristics. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) Testing of Communi-
cating Systems XIV, pp. 267–282. Kluwer Academic Publishers, Dordrecht (2002)

38. Brinksma, E.: On the coverage of partial validations. In: Nivat, M., Rattray, C.,
Rus, T., Scollo, G. (eds.) AMAST 1993. BCS-FACS Workshops in Computing
Series, pp. 247–254. Springer, Heidelberg (1993)

39. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic Test Selection based on
Approximate Analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, Springer, Heidelberg (2005)

40. Groz, R., Charles, O., Renévot, J.: Relating Conformance Test Coverage to Formal
Specifications. In: Gotzhein, R. (ed.) FORTE 1996, Chapman & Hall, Boca Raton
(1996)

41. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

42. Groz, R., Risser, N.: Eight Years of Experience in Test Generation from FDTs
using TVEDA. In: Mizuno, T., Shiratori, N., Higashino, T., Togashi, A. (eds.)
Formal Desciption Techniques and Protocol Specification, Testing and Verification
FORTE X /PSTV XVII 1997, Chapman & Hall, Boca Raton (1997)

43. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: Automated Test and Oracle Gener-
ation for Smart-Card Applications. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 58–70. Springer, Heidelberg (2001)

44. Sardis, I.C., Heuillard, M.,, T.: AGEDIS Case Studies: Model-Based Testing in
Industry. In: Hartman, A., Dussa-Zieger, K. (eds.) First European Conference on
Model-Driven Software Engineering, Imbuss, Möhrendorf, Germany (2003)

45. Vries, R.d., Belinfante, A., Feenstra, J.: Automated Testing in Practice: The High-
way Tolling System. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) Testing
of Communicating Systems XIV, pp. 219–234. Kluwer Academic Publishers, Dor-
drecht (2002)

Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte,
Nikolai Tillmann, and Lev Nachmanson

Microsoft Research, Redmond, WA, USA
{margus,wrwg,schulte,nikolait,levnach}@microsoft.com,

colin@modeled-computation.com

Abstract. Testing is one of the costliest aspects of commercial software devel-
opment. Model-based testing is a promising approach addressing these deficits.
At Microsoft, model-based testing technology developed by the Foundations of
Software Engineering group in Microsoft Research has been used since 2003.
The second generation of this tool set, Spec Explorer, deployed in 2004, is now
used on a daily basis by Microsoft product groups for testing operating system
components, .NET framework components and other areas. This chapter provides
a comprehensive survey of the concepts of the tool and their foundations.

1 Introduction

Testing is one of the costliest aspects of commercial software development. Not only
laborious and expensive, it also often lacks systematic engineering methodology, clear
semantics and adequate tool support.

Model-based testing is one of the most promising approaches for addressing these
deficits. At Microsoft, model-based testing technology developed by the Foundations
of Software Engineering group in Microsoft Research has been used internally since
2003 [19,6]. The second generation of this tool set, Spec Explorer [1], deployed in
2004, is now used on a daily basis by Microsoft product groups for testing operating
system components, .NET framework components and other areas. While we can refer
the reader to papers [21,30,13,12,36] that describe some aspects of Spec Explorer, this
chapter provides a comprehensive survey of the tool and its foundations.

Spec Explorer is a tool for testing reactive, object-oriented software systems. The
inputs and outputs of such systems can be abstractly viewed as parameterized action
labels, that is, as invocations of methods with dynamically created object instances and
other complex data structures as parameters and return values. Thus, inputs and outputs
are more than just atomic data-type values, like integers. From the tester’s perspective,
the system under test is controlled by invoking methods on objects and other runtime
values and monitored by observing invocations of other methods. This is similar to the
“invocation and call back” and “event processing” metaphors familiar to most program-
mers. The outputs of reactive systems may be unsolicited, for example, as in the case
of event notifications.

Reactive systems are inherently nondeterministic. No single agent (component,
thread, network node, etc.) controls all state transitions. Network delay, thread scheduling

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 39–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 M. Veanes et al.

and other external factors can influence the system’s behaviour. In addition, a
system’s specification may leave some choices open for the implementer. In these cases,
the freedom given to the implementer may be interpreted as nondeterminism, even if
a given version of the system does not exploit the full range of permitted behaviour.
Spec Explorer handles nondeterminism by distinguishing between controllable actions
invoked by the tester and observable actions that are outside of the tester’s control.

Reactive systems may be “large” in terms of the number of possible actions they
support and the number of runtime states they entail. They can even have an unbounded
number of states, for example, when dynamically instantiated objects are involved. Spec
Explorer handles infinite states spaces by separating the description of the model state
space which may be infinite and finitizations provided by user scenarios and test cases.

The following sections provide a detailed overview of Spec Explorer foundations.
Section 2 introduces the methodology used by Spec Explorer with a small exam-

ple, a distributed chat server. The system’s behaviour is described by a model program
written in the language Spec# [2], an extension of C#. A model program defines the
state variables and update rules of an abstract state machine [23]. The states of the ma-
chine are first-order structures that capture a snapshot of variable values in each step.
The machine’s steps (i.e., the transitions between states) are invocations of the model
program’s methods that satisfy the given state-based preconditions. The tool explores
the machine’s states and transitions with techniques similar to those of explicit state
model checkers. This process results in a finite graph that is a representative subset of
model states and transitions. Spec Explorer provides powerful means for visualizing
the results of exploration. Finally, Spec Explorer produces test cases for the explored
behaviour that may be run against the system under test to check the consistency of
actual and predicted behaviour.

Subsequent sections give a more in-depth look at the semantic foundations of Spec
Explorer. In Section 3, we introduce model automata, an extension of interface au-
tomata over states that are first-order structures. The basic conformance notion, al-
ternating simulation [4,15], is derived from interface automata. Model automata also
include the concept of accepting states familiar in formal languages, which character-
ize those states in which a test run is conclusive. Model automata include states and
transitions, but they extend traditional model-based testing by admitting open systems
whose transitions are not just a subset of the specification’s transitions and by treating
states as first-order structures of mathematical logic.

Section 4 gives techniques for scenario control, in cases where the model describes a
larger state space than the tester wants to cover. Scenario control is achieved by method
restriction, state filtering, state grouping and directed search. This section also intro-
duces the exploration algorithm.

Section 5 describes our techniques for test generation. Traditionally, test generation
and test execution are seen as two independent phases, where the first generates an arte-
fact, called the test suite, that is then interpreted by the second phase, test execution.
We call this traditional case offline testing. However, test generation and test execution
can be also folded in one process, where the immediate result of test execution is used
to prune the generation process. This we call online testing (also called “on-the-fly”
testing in the literature). Online testing is particularly useful for reactive systems with

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 41

large state spaces where deriving an exhaustive test suite is not feasible. In the testing
framework presented here, both the online case and the offline case are viewed as spe-
cial cases of the same general testing process. In the offline case the input to the test
execution engine (discussed in Section 6) is a test suite in form of a model automaton
of a particular form. In the online case the input to the test execution engine is a dy-
namic unfolding of the model program itself, i.e. the test suite has not been explicitly
precomputed.

Section 6 discusses the conformance relation (alternating refinement) that is used
during both online and offline testing. We address the problem of harnessing a dis-
tributed system with an observationally complete “wrapper” and of creating bindings
between abstract entities (such as object identities) found in the model and the system
under test.

The chapter closes with a survey of related work in Section 7 and a discussion of
open problems in Section 8.

Users perspective. The focus of this chapter is on the foundations of the tool. The main
functionality of Spec Explorer from users perspective is to provide an integrated tool
environment to develop models, to explore and validate models, to generate tests from
models, and to execute tests against an implementation under test. The authoring of
models can be done in MS Word that is integrated into Spec Explorer, or in a plain text
editor. Spec Explorer supports both AsmL and Spec# as modelling languages. Several
examples of how modelling can be done in either of those languages is provided in the
installation kit [1]. A central part of the functionality of Spec Explorer is to visualize
finite state machines generated from models as graphs. This is a very effective way to
validate models and to understand their behaviour, prior to test case generation. Gener-
ated test cases can either be saved as programs in C# or VB (Visual Basic), and executed
later, or generated tests can also be directly executed against an implementation under
test. The tool provides a way to bind actions in the model to methods in the implemen-
tation. A project file is used where most of the settings that the user chooses during a
session of the tool are saved. Internally, the tool has a service oriented architecture that
allows more sophisticated users to extend the tool in various ways. Most of the services
provide a programmatic access to the data structures used internally and the various al-
gorithms used for test case generation. The best way to get a more comprehensive user
experience for what Spec Explorer is all about, is to install it and to try it out.

2 A Sample: Chat

To illustrate the basic concepts and the methodology of Spec Explorer, we look at a
simple example: a distributed chat system. We will also refer back to this sample to
illustrate points made in later sections.

The chat system is a distributed, reactive system with an arbitrary number of clients.
Each client may post text messages that will be delivered by the system to all other
clients that have entered the chat session. The system delivers pending messages in
FIFO order with local consistency. In other words, a client always receives messages
from any given sender in the order sent. However, if there are multiple senders, the
messages may be interleaved arbitrarily.

42 M. Veanes et al.

class Client {
bool entered;
Map<Client,Seq<string>> unreceivedMsgs;

[Action] Client() {
this.unreceivedMsgs = Map;
foreach (Client c in enumof(Client), c != this){

c.unreceivedMsgs[this] = Seq{};
this.unreceivedMsgs[c] = Seq{};

}
entered = false;

}

[Action] void Enter()
requires !entered; {
entered = true;

}

[Action] void Send(string message)
requires entered; {
foreach (Client c in enumof(Client), c != this, c.entered)

c.unreceivedMsgs[this] += Seq{message};
}

[Action(Kind=ActionAttributeKind.Observable)]
void Receive(Client sender, string message)

requires sender != this &&
unreceivedMsgs[sender].Length > 0 &&
unreceivedMsgs[sender].Head == message; {

unreceivedMsgs[sender] = unreceivedMsgs[sender].Tail;
}

}

Fig. 1. Model program written in Spec# specifying the possible behavior of a chat system. The
Map and Seq data types are special high-level value types of Spec# that provide convenient
notations like display and comprehensions (Seq{} denotes the empty sequence). The Action
attribute indicates that a method is an action of the abstract state machine given by the model
program. The enumof(T) form denotes the set of instances of type T that exist in the current
state. The requires keyword introduces a method precondition.

Figure 1 shows the Spec# model of the chat system. The model consists of a class
that represents the abstract state and operations of a client of a chat session. Each in-
stance of the class will contain two variables. The variable entered records whether
the client instance has entered the session. A mapping unreceivedMsgs maintains
separate queues for messages that have been sent by other clients but not yet received
by this client. Messages in the queues are “in flight”. Note that the model program is not
an example implementation. No client instance of an implementation could be expected

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 43

to maintain queues of messages it has not yet received! Not surprisingly, modelling the
expected behaviour of a distributed system is easier than implementing it.

We model four actions:

– The Client constructor creates an instance of a new client. The state of the system
after the constructor has been invoked will include empty message queues between
the new client and all previously created client instances. These queues can be
thought of as virtual one-way “channels” between each pair of client instances.
There will n(n − 1) queues in the system overall if there are n clients.

– The Enter action advances the client into a state where it has entered the chat
session. A Boolean-valued flag is enough to record this change of state.

– The Send action appends a new message to the queues of unreceived messages in
all other clients which have entered the session.

– TheReceivemethod extracts a message sent from a given sender from the sender’s
queue in the client.

Typically the terms “input” and “output” are used either relative to the model or
relative to the system. To avoid possible confusion, we use the following terminology:
The Send action is said to be controllable because it can be invoked by a user to
provide system input. The Receive action is observable; it is an output message from
the system.

For a model like in Figure 1, Spec Explorer extracts a representative behaviour ac-
cording to user-defined parameters for scenario control. To do this Spec Explorer uses
a state exploration algorithm that informally works as follows:

1. in a given model state (starting with the initial state) determine those invocations
— action/parameter combinations — which are enabled by their preconditions in
that state;

2. compute successor states for each invocation;
3. repeat until there are no more states and invocations to explore.

The parameters used for the invocations are provided by parameter generators which
are state dependent; if in a given state the parameter set is empty, the action will not
be considered. Default generators are selected automatically (for example, for objects
the default parameter generator delivers the enumof(T) collection). Enabledness is
determined by the precondition of the method. Besides of the choice of parameters, the
exploration can be pruned by various other scenario control techniques (see Section 4).

Figure 2 shows a scenario extracted from the chat model as a model automaton
(cf. Section 3). State filters restrict the number of clients and avoid the case where
the same message is sent twice by a client. The message parameter of the Send
method is restricted to the value "hi". Additional method restrictions avoid sending
any messages before both the two clients have been created and entered the session
(cf. Section 4 for a discussion of scenario control).

The nodes of the graph in Figure 2 represent distinct states of the system as a whole.
The arcs are transitions that change the system state. Each state in the graph is either
passive or active. Ovals represent active states where a client may give the system new
work to do. Diamonds represent passive states where the client may wait for an action
from the system or transition into an active state after a state-dependent timeout occurs.

44 M. Veanes et al.

S10

S9

c0.Send(’’hi from c0’’)

S3

S5

c0.Enter()

S0

S1

Client()/c0

S2

Client()/c1

S6

c0.?Receive(c1, ’’hi from c1’’)

S7

c1.?Receive(c0, ’’hi from c0’’)

S8

S4

c1.Enter()c1.Send(’’hi from c1’’)

c0.Send(’’hi from c0’’)

c1.Send(’’hi from c1’’)

c1.Enter() c0.Enter()c1.?Receive(c0, ’’hi from c0’’)

c0.?Receive(c1, ’’hi from c1’’)

Fig. 2. A model automaton of a scenario, extracted from the chat model program and visualized
by Spec Explorer, with two clients (c0 and c1) and a fixed message send by each client (“hi from
...”). The initial state is shown in grey. Actions labels prefixed by “?” indicate observable actions.
Labels without prefix indicate controllable actions. Active states (where no observable actions are
expected) are shown as ovals. Passive states (where the tester may observe system actions) are
shown as diamonds. The unlabeled transitions represent an internal transition (“timeout”) from
passive to active.

We say that a model and an implementation under test (IUT) conform if the fol-
lowing conditions are met: The IUT must be able to perform all transitions outgoing
from an active state. The IUT must produce no transitions other than those outgoing
from a passive state. Every test must terminate in an accepting state. In other words,
these conditions mean that the system being tested must accept all inputs provided by
the tester and only produce outputs that are expected by the tester. Further, to prevent
unresponsive systems from passing the test, tests must end in an expected final state.

Note that in some passive states there is a race between what the tester may do and
what the system may do. The timeout transition, here represented by a transition with no
label, indicates that an internal transition from a passive state to an active state occurred
without observing output from the system. In other words, nothing was observed in the
time the tester was willing to wait (cf. Section 5).

The scenario shown in Figure 2 does not yet reveal the chat system’s desired property
of local consistency, i.e., preserving the ordering of messages from one client. For that
scenario we need at least three clients, where one of them posts at least two messages. In
this case we should observe that the ordering of the two messages is preserved from the
receiver’s point of view, regardless of any interleaving with other messages. Figure 3

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 45

G2

G3

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

G5

c1.?Receive(c0, ’’bye’’)|
c2.?Receive(c0, ’’bye’’)

G0

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

G6

c1.?Receive(c0, ’’bye’’)|
c2.?Receive(c0, ’’bye’’)

G1

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

G4

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

G7

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

Fig. 3. A projection on a model automaton extracted and visualized by Spec Explorer for a
scenario with three clients, where client c0 sends two messages (“hi” and “bye”) in order, client
c1 sends one message (“hi”), and client c2 does not send any message. The projection groups
states equivalent under a user defined grouping function into one node, and in the visualization
merges arcs between these nodes. In this case, the range of the grouping function is a mapping
of clients to the sequences of messages which have been sent by that client but not yet received
by all the other clients. This visualization also hides all transitions with actions different from
Receive, and hides loops on grouped states.

illustrates local consistency. The full model automaton underlying this view has too
many transitions to be amenable for depiction in this context. However, the projected
view (where some states are grouped together) shows that there is no path where the
“bye” message of client c0 is received before the “hi” message of the same client.

The actual conformance testing of an implementation based on model automata as
described above happens either offline or online (“on-the-fly”) in Spec Explorer. For of-
fline testing, the model automaton is reduced to an automaton that represents a test suite
and can then be compiled to a stand-alone program. The resulting program encodes the
complete oracle as provided by the model. For online testing, model exploration and
conformance testing are merged into one algorithm. If the system-under-test is a non-
distributed .NET program, then all test harnessing will be provided automatically by the
tool. In other cases, the user has to write a wrapper in a .NET language which encapsu-
lates the actual implementation, using .NET’s interoperability features. This technique
has been used to test a very wide variety of systems, including distributed systems and
components that run in the operating system kernel.

We describe the foundations of modelling and testing techniques that have been
developed at Microsoft Research specifically for dealing with large, reactive and dis-
tributed systems. We place these techniques in the context of Spec Explorer , a model-
based testing tool we have developed that is in daily use in the production cycle at
Microsoft Corporation.

We start by giving an overview in this section of the basic approach, and then provide
complete definitions in individual sections.

46 M. Veanes et al.

Transition systems formalize conformance testing. The term model-based testing refers
to any kind of testing based on transition systems. However, this encompasses a broad
category of techniques.

Labeled Transition Systems (LTSs) are a practical and theoretically sound way to
test the evolution of semi-independent state spaces. There is a well developed body of
testing literature (called “ioco” theory – input-output conformance) [35,11,33] based
on LTSs. This approach checks for conformance by checking that traces of observed
system transitions are included in the set of all possible traces of a specification.

Interface automata [16] are an extension to LTSs that addresses the issue of open
systems. They do this by making a distinction between input transitions and output tran-
sitions (a distinction not seen in LTSs). Although interface automata were developed for
hardware verification applications, we have found that they are a useful abstraction for
testing as well [38]. In some states, input is enabled, and the tester can drive the system
forward by giving it new things to do; at other times the system and its environment
choose what happens next. This is like a game where players take turns. Sometimes it
is the tester’s turn to make a move; sometimes it is the systems.

Conformance for interface automata is defined in terms of alternating simulation.
Unlike conformance based on trace inclusion, alternating simulation allows us to define
conformance for an open system that may accept more kinds of input than our speci-
fication describes. However, for any specified input, a complete description of output
behaviours is defined.

Let’s start with an example of a network-based chat system to illustrate the basic
concepts.

Example 1. The Chat system is a distributed, reactive system that permits an arbi-
trary number of clients. Each client may post text messages that will be delivered by the
system to all other clients that have entered the chat session. The system delivers pend-
ing, unreceived messages in FIFO order with local consistency. In other words, a given
client always receives messages from any given sender in the order sent. However, if
there are multiple senders, the messages may be interleaved arbitrarily. Figure 4 shows
a typical scenario of the chat system’s behaviour as an interface automaton.

The nodes of the graph represent distinct states of the system. The arcs represent
transitions that change the system state. Each state in the graph is either passive or
active. Ovals represent active states where a client may give the system new work to do.
Diamonds represent passive states where the client waits for an action from the system
or transitions into an active state after a state-dependent timeout occurs.

First-order structures define system state. Abstract State Machines (ASMs) [10,23,24]
are a branch of mathematical logic and model theory that extends the semantic founda-
tions by Turing machines. We find them useful for testing because they provide pow-
erful and convenient ways to construct the kinds of automata needed for testing. ASM
states are first-order structures. Guarded update rules (a “program”) define possible
transitions between states. Our experience shows that this form is more practical for
reactive systems than using a graphical input language for individual transitions.

We introduce model automata, a conservative extension of interface automata over
states that are first-order structures. Model automata also include the concept of accepting

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 47

S0

S1

Post(c0, "hi")

S2

Post(c1, "bye")?Deliver("hi", c0, c1)

S3

?Deliver("bye", c1, c0)

S4

S5

Post(c1, "bye") Post(c0, "hi")

?Deliver("bye", c1, c0) ?Deliver("hi", c0, c1)

Fig. 4. Exploration of the Chat model with two clients (c0 and c1), a fixed message (“hi” sent by
c0 and “bye” sent by c1) and the restriction that the number of pending deliveries for each client
is at most 1. The initial state is shown in grey. Action labels prefixed by “?” indicate observable
actions. Labels without prefix indicate controllable actions. Active states are shown as ovals.
Passive states are shown as diamonds. The unlabeled transitions represent an internal transition
(“timeout”) from passive to active.

states familiar in formal languages. As in the LTS-based approach, model automata de-
pend on states and transitions, but they extend traditional model-based testing by admit-
ting open systems whose transitions are not a subset of the specification’s transitions and
by treating states as first-order structures of mathematical logic.

The states we consider are full first-order structures of mathematical logic. First-
order structures include a vocabulary of named values and functions that can express
queries.

Example 2. The states of the chat example can be seen as states with variables, as
shown in Figure 1. Actions labels are also structured as action methods with parameters
and return values.

Table 1. States of the Chat example, corresponding to Figure 4, showing the queues of pending
messages between each client. If there are n clients, then there are n(n − 1) such queues.

State Msgs from c0 to c1 Msgs from c1 to c0 Mode
S0 Seq{} Seq{} Active
S1 Seq{”hi”} Seq{} Passive
S2 Seq{} Seq{”bye”} Passive
S3 Seq{”hi”} Seq{} Active
S4 Seq{} Seq{”bye”} Active
S5 Seq{”hi”} Seq{”bye”} Passive

48 M. Veanes et al.

Model programs compactly encode large transition systems. Here is a model pro-
gram that describes the chat system shown above, written in the Spec# language. We
extend the description with some additional functionality beyond what was shown in
Figure 4. The state of the system consists of instances of the class Client that have
been created so far, and a map Members that for each client specifies the messages that
have been sent but not yet delivered to that client as sender queues. Each sender queue
is identified by the client that sent the messages in the queue. In the initial state of the
system there are no clients and and Members is an empty map.

class Client
type Message = string;
type SendersQueue = Map<Client,Seq<Message>>;
type MemberState = Map<Client,SendersQueue>;

MemberState Members = new Map();

Next we describe the actions methods of the system. These are methods with pre-
conditions that say in which state of the system they may occur and for which input
parameters. There are four action methods for the chat system: the controllable action
methods Create, Enter, Send, and the observable action method Deliver. An
action is enabled if the Boolean expressions given by the requires clauses are true
with respect to the actual parameters of the method call and the values of the state
variables in the current state.

The Create action method creates a new instance of the Client class, as a result
of this action the enumof(Client) set is extended with the new client.

Client! Create()
{ return new Client(); }

A client that is not already a member of the chat session may join the session. A
client c becomes a member of the chat session when the action Enter(c) is called.
When a client joins the session, the related message queues are initialized appropriately.

void Enter(Client! c)
requires c notin Members;

{ foreach (Client d in Members) Members[d][c] = Seq{};
Members[c] = Map{d in Members; <d,Seq{}>}};

A member of the chat session may post a message for all members except himself
to receive. When a sender posts a message, the message is appended at the end of the
corresponding sender queue of each of the other members of the session.

void Post(Client! sndr, Message msg)
requires sndr in Members && Members.Size > 1;

{ foreach (rcvr in Members)
if (rcvr != sndr) Members[rcvr][sndr] += Seq{msg}; }

A message being delivered from a sender to a receiver is an observable action or a
notification call-back that occurs whenever the chat system forwards a particular mes-
sage to a particular client. When a delivery is observed, the corresponding sender queue

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 49

of the receiver has to be nonempty, and the message must match the first message in
that queue or else local consistency is violated. If the preconditions of the delivery are
satisfied then the delivered message is simply removed from the corresponding sender
queue of the recipient.

void Deliver(Message msg, Client! sndr, Client! rcvr)
requires rcvr in Members && sndr in Members[rcvr];
requires Members[rcvr][sndr].Length > 0 &&

Members[rcvr][sndr].Head == msg;
{ Members[rcvr][sndr] = Members[rcvr][sndr].Tail; }

Encoding a specification of the system’s intended behavior in an abstractly exe-
cutable form is not the same as writing a second implementation. The model program
does less than the implementation. Its purpose is to capture the states of the system that
affect the observable behaviour of interest.

Exploration produces a model automaton. The model program can be unwound into
a model automaton. Unwinding The model automaton defined by a model program is
a complete unwinding or expansion of the program. An explicit state model checking
algorithm is used to compute the (possibly infinite) space of all possible sequences
of method invocations that 1) do not violate the pre- and postconditions and invariant
of the system’s contracts and 2) are relevant to a user-specified set of test properties
[19].

If the model is infinite state, unwinding does not terminate. Spec Explorer thus in-
cludes practical features that control how the state space is explored. We mention two
of these: State groupings allow the exploration to prune away states that are distinct but
indistinguishable under a user-provided equivalence relation [12]. Avoiding isomorphic
cases that differ in the choice of input but have identical runs results in a body of tests
with a better chance of detecting a conformance discrepancy. State-dependent param-
eter generation allows the computation of the parameter domains of each action with
respect to the current state. This can make exploration more efficient by reducing the
search for input parameters to feasible cases.

Traversal of automata underlies automatic test generation. Test cases can be au-
tomatically generated by traversing the graph of the model automaton. The graph also
serves as a test oracle: a test fails if observed transitions of the implementation under
test do not match transitions in the graph. Additionally, successful test runs must be-
gin in the initial state and terminate in an accepting state. Accepting states are states
that satisfy a user-specified logical condition that says whether the system is in a final,
de-initialized state. In this example, the accepting state occurs whenever the message
queues are empty.

Although any traversal of the graph is a possible trace of the system, we can only
choose moves in the active states (i.e., those drawn as ovals in the graph). A state where
the system can choose from among more than one move represents nondeterminism
from the observers point of view. This means a test case is not a just sequence of ac-
tions but a tree of actions and possible system responses. Executing a test is like a so-
called game against nature where a players opponent chooses moves randomly. Spec

50 M. Veanes et al.

Explorer implements game strategies using Markov decision processes as a technique
for intelligently choosing input actions that broaden the coverage of nondeterministic
tests [30].

When dealing with model programs that have very large state spaces, we can com-
bine the state exploration and test case generation into an online algorithm called on-
the-fly testing [36].

When testing in its on-the-fly mode, Spec Explorer exploration engine makes moves
based on the observed history of the test run. This allows it to omit exploration of non-
deterministic branches that were not taken by the implementation during the test run.
It can also be run in a way that attempts to match the distribution of actions exercised
during testing to an application profile (i.e. a histogram of action frequencies) given as
input.

Spec Explorer users rely on both pre-generated, offline tests with complete behavi-
oural coverage over a restricted domain of system inputs and online tests generated on
the fly which randomly sample a larger number of system inputs.

Conformance can be formally defined as alternating simulation. Differences be-
tween the predicted and actual system behaviour are called conformance failures. What
constitutes a difference is mathematically defined in terms of alternating refinement of
interface automata. Alternating refinement means that the system under test must accept
at least as many inputs as the interface automaton defines (it may accept more inputs)
and that, conversely, the test harness must accept at least as many outputs as the sys-
tem may produce (it may accept more outputs than the system is capable of producing)
[15].

Test execution implements the conformance relation. Our test graphs are also used to
automatically harness the implementation for conformance testing. Spec Explorer can
instrument a .NET assembly, that is a managed code library of the common language
runtime of Microsoft, and cause implementation methods corresponding to model ac-
tions to be invoked as needed.

Running a test results in a trace log that shows a comparison of expected versus
actual behaviour. A failing test run is shown in Table 2. This test run observed that the
particular chat system implementation being tested did not deliver messages in the order
posted, as required by the specification. The server delivered in LIFO order instead of
FIFO.

Table 2. A failing test run of the chat implementation

Step Invocation From
State

To
State

Status

1 Post(c0, ”hi”) S0 S1 Succeeded
2 ?Timeout S1 S1’ Succeeded
3 Post(c0, ”bye”) S1’ S7 Succeeded
4 ?Deliver(”bye”, c0, c1) S7 S2 FAILED: observed Deliver(”bye”, c0, c1),

expected Deliver(”hi”, c0, c1)

52 M. Veanes et al.

When it is clear from the context, we often say automata for model automata. Notice
that actions have the same interpretation in all states, this will allow us later to relate
actions in different states in a uniform way. Intuitively, a state is uniquely defined by an
interpretation of the symbols in V .

For a given state s ∈ S, we let Acts(s) denote the set of all actions a ∈ Acts such that
(s, a, t) ∈ δ for some t; we say that a is enabled in state s. We let Ctrl(s) = Acts(s)∩Ctrl
and Obs(s) = Acts(s) ∩ Obs.

In order to identify a component of a model automaton M, we sometimes index that
component by M, unless M is clear from the context. When convenient, we denote M
by the tuple

(Sinit, S, Sacc, Obs, Ctrl, δ).

We will use the notion of a sub-automaton and a reduct when we define tests in
Section 5.1. Tests are special automata that have been expanded with new state variables
and actions but that preserve the transitions when the additional state variables and
actions are ignored.

Definition 2. A model automaton M is a sub-automaton of a model automaton N, in
symbols M ⊆ N, if SM ⊆ SN , Sinit

M ⊆ Sinit
N , Sacc

M ⊆ Sacc
N , CtrlM ⊆ CtrlN , ObsM ⊆ ObsN ,

and δM ⊆ δN .

We lift reduction on vocabularies, S�V , to automatons:

Definition 3. Given an automaton M and a vocabulary V ⊆ ΣM , we write T�V for the
following automaton N, called the reduct of M to V:

– SN = SM�V , Sinit
N = Sinit

M �V , Sacc
N = Sacc

M �V ,
– ActsN is the set of all a in ActsM such that a is a term over V ,
– δN = {(s�V, a, t�V) : (s, a, t) ∈ δM, a ∈ ActsN}.

M is called an expansion of N.

A reduct of an automaton to a subset of the state variables may collapse several states
into a single state, which is illustrated later. Therefore, projection does not always pre-
serve determinism. In this paper, projections are used in a limited way so that the re-
sulting automaton is always deterministic.

3.3 Model Programs

A model program P declares a finite set M of action methods and a set of state variables
V . A state of P is given by the values (or interpretations) of the state vocabulary symbols
Σ that occur in the model program. The value of a state variable in V ⊆ Σ may change
as a result of program execution. Examples of function symbols whose interpretation
does not change are built-in operators, data constructors, etc. A nullary state variable is
a normal (static) program variable that may be updated. A unary state variable repre-
sents either an instance field of a class (by mapping from object identities to the value
of that field) or a dynamic universe of objects that have been created during program
execution.

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 53

Each action method m, with variables x as its formal input parameters, is associated
with a state based Boolean expression Prem[x] called the precondition of m. The execu-
tion of m in a given state s and with given actual parameters v, produces a sequel state
where some of the state variables have changed. In general the execution of m may also
do other things, such as write to an external file, or prompt up a dialog box to a user,
but abstractly we consider m as an update rule that is a function that given a state and
actual parameters for m that satisfy the precondition of m, produces a new state t where
some state variables in V have been updated.

A model program can be written in a high level specification language such as
AsmL [25] or Spec# [7], or in a programming language such as C# or Visual Basic.
A guarded update rule in P is defined as a parameterized method, similar to the way
methods are written in a normal program. A guarded update rule defined by a method
is called an action method.

The model automaton MP defined by a model program P is a complete unwinding
of P as defined below. We omit the subscript P from MP when it is clear from the
context. Since model programs deal with rich data structures, states are not just abstract
entities without internal structure, but full first-order structures. We define actions and
the state to state transition function δM that represents execution of actions. Unlike an
explicit transition system with given sets of nodes and arcs, the states and transitions of
a model program must be deduced by executing sequences of atomic actions starting in
the initial state. For this reason, we use the term exploration to refer to the process of
producing δM .

The set of initial states Sinit is the singleton set containing the state with the initial
values of state variables as declared in P. The set of all states S is the least set that
contains Sinit

M and is closed under the transition relation δM defined below.

Example 3. Consider the Chat example. The set V contains the dynamic universe
Client for the instances to that type (denoted as enumof(Client) in Spec#), and
a unary dynamic function for the entered and unreceivedMsgs instance fields.
In the initial state of the model, say s0, there are no elements in Client, and the unary
functions that represent the instance fields map to undef. In addition, Σ contains other
function symbols such as the empty sequence, Seq{}, the binary Boolean function in
that in this context checks if a given element is in the domain of a map, etc. All the
symbols in Σ − V have the same interpretation or meaning in all states in SM , whereas
the interpretation of symbols in V may change from state to state.

3.4 State Exploration

Actions are not considered as abstract labels but have internal structure. The vocabulary
of non-variable symbols Σ − V is divided into the following disjoint sub-vocabularies:
a set F of function symbols for operators and constructors on data, and a set M of
function symbols for methods.

An action over (M, F) is a term m(v1, . . . , vk) where m ∈ M, k ≥ 0 is the arity
of m, and each vi is a term over F . Each parameter of m is either an input parameter
or an output parameter. We assume that all the input parameters precede all the output

54 M. Veanes et al.

parameters in the parameter list of m. When the distinction between input parameters and
output parameters is relevant we denote m(v1, . . . , vk) by m(v1, . . . , vl)/vl+1, . . . , vk,
where v1, . . . , vl, l ≤ k, are input parameters. The set of all actions over (M, F) is
denoted by ActsM,F , or simply Acts, when F and M are clear from the context. Any
two terms over F are equal if and only if they denote the same value in U , and the
value of a term over F is the same for all states in SM . The symbols in M have the term
interpretation, i.e. m(v) and m′(v) are equal if and only if m and m′ are the same symbol
and v and w are equal.

Given an action a = m(v)/w and a state s, a is enabled in s (i.e., a ∈ ActsM(s)) if
the following conditions hold:

– Prem[v] is true in s;
– The invocation of m(v) in s yields the output parameters w.

Let Actsm(s) denote the set of all enabled actions with method m in state s. The set of
all enabled actions ActsM(s) in a state s is the union of all Actsm(s) for all action methods
m; s is called terminal if ActsM(s) is empty. Notice that Actsm(s) may be infinite if there
are infinitely many possible parameters for m. The set ActsM is the union of all ActsM(s)
for all s in SM.

Given a = m(v)/w ∈ ActsM(s), we let δM(s, a) be the target state of the invocation
m(v). The invocation of m(v) in a state s can be formalized using ASM theory [23].
Formally, a method invocation produces a set of updates that assign new values to some
state variables that are then applied to s to produce the target state with the updated
values. The interested reader should consult [25] for a detailed exposition of the update
semantics of AsmL programs, or [18] that includes the update semantics for the core
language constructs.

Example 4. To illustrate how exploration works, let us continue from Example 3. We
can invoke the Client constructor method in state s0, since the precondition is true.
This invocation produces an update that adds a new object, say c0, to the dynamic uni-
verse Client. Let s1 be the resulting state. We have explored the following transition:
δ(s0,Client()/c0) = s1.

From state s1 we can continue exploration by invoking c0.Enter().1 The pre-
condition PreEnter[c0] requires that c0 is a member of Client (due to the type dec-
laration) and that c0.entered is false. Thus c0.Enter() is enabled in s1. The
invocation produces updates on the dynamic unary function for entered. Let the new
target state be s2. We have thus explored the transition δ(s1,c0.Enter()) = s2.

3.5 Controllable and Observable Actions

In order to distinguish behaviour that can be controlled from behaviour that can only
be observed, the methods in M are split into controllable and observable ones. This
induces, for each state s, a corresponding partitioning of ActsM(s) into controllable
actions CtrlM(s) and observable actions ObsM(s) which are enabled in s. The action set
ActsM is partitioned accordingly into ObsM and CtrlM.

1 The notation o.f (. . .) is the same as f (o, . . .) but provides a more intuitive object-oriented
view when o is an object and f a field or a method of o.

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 55

Example 5. In the Chat server model there are three action methods Client, Enter,
and Send that are controllable, and a single observable action method Receive. The
reason why Receive is observable is that it corresponds to a reaction of the system
under test that cannot be controlled by the tester.

In Spec Explorer, observable and controllable actions can either be indicated by at-
taching corresponding .NET attributes to the methods in the source text of the model
program, or by using the actions settings part of the project configuration for the model.

3.6 Accepting States

The model program has an accepting state condition that is a closed Boolean state
based expression. A state s is an accepting state if the accepting state condition is true
in s. The notion of accepting states is motivated by the requirement to identify model
states where tests are allowed to terminate. This is particularly important when testing
distributed or multi-threaded systems, where it is not always feasible to stop the testing
process in an arbitrary state, i.e., prior tests must first be finished before new tests can
be started. For example, as a result of a controllable action that starts a thread in the
IUT, the thread may acquire shared resources that are later released. A successful test
should not be finished before the resources have been released.

Formally, there is an implicit controllable succeed action and a special terminal goal
state g in SM, s.t. for all accepting states s, δM(s, succeed) = g. It is assumed that in the
IUT the corresponding method call takes the system into a state where no observable
actions are enabled. Thus, ending the test in an accepting state, corresponds to choosing
the succeed action.

In every terminal non-accepting state s there is an implicit controllable fail action
such that δM(s, fail) = s. It is assumed that the corresponding action in the imple-
mentation is not enabled in any state. In other words, as will become apparent from
the specification relation described below, if a terminal non-accepting model state is
reached, the test case fails.

Example 6. A natural accepting state condition in the Chat example is to exclude the
initial state and states where pending messages have not yet been received. In such a
state there are no observable actions enabled:

enumof(Client).Size > 0 &&
Forall{ c in enumof(Client), s in c.unreceivedMsgs.Keys;

c.unreceivedMsgs[s].Length == 0}

3.7 State Invariants

The model program may also have state invariants associated with it. A state invariant is
a closed Boolean state based expression that must hold in all states. The model program
violates a state invariant ϕ if ϕ is false in some state of the model, in which case the
model program is not valid. A state invariant is thus a safety condition on the transition
function or an axiom on the reachable state space that must always hold.

Example 7. We could add the following state invariant to the Chat example:

Forall{ c in enumof(Client); c notin c.unreceivedMsgs.Keys }

56 M. Veanes et al.

It says that no client should be considered as a possible recipient of his own messages.
This state invariant would be violated, if we had by mistake forgotten the c != this
condition in the foreach-loop in the body of the Client method in Figure 1.

Execution of an action is considered to be an atomic step. In Example 7 there are “inter-
nal states” that exists during execution of the Client action; however, these internal
states are not visible in the transition relation and will not be considered for invariant
checking by the Spec Explorer tool.

4 Techniques for Scenario Control

We saw in Section 3 how the methods of a model program can be unwound into a model
automaton with controllable and observable actions. In typical practice, the model pro-
gram defines the operational contract of the system under test without regard for any
particular test purpose. Hence, it is not unusual that a model program may correspond to
an automaton with a large or even infinite number of transitions. When this happens we
may want to apply techniques for selectively exploring the transitions of the model pro-
gram. These techniques are ways of limiting the scenarios that will be considered. They
allow us to produce automata that are specialized for various test purposes or goals that
the tester wishes to achieve. This is also a useful technique for analyzing properties of
the model, regardless of whether an implementation is available for testing.

In the remainder of this section, we introduce techniques for scenario control used by
Spec Explorer. We define each technique as a function that maps a model automaton M
into a new automaton M′ with the property described. These techniques take advantage
of the fact that states are first-order structures that may be queried and classified. The
techniques also rely on the fact that the transition labels are structured into action names
with parameter lists (terms and symbolic identifiers).

We will describe the following techniques:

– Parameter selection limits exploration to a finite but representative set of parame-
ters for the action methods.

– Method restriction removes some transitions based on user-provided criteria.
– State filtering prunes away states that fail to satisfy a given state-based predicate.
– Directed search performs a finite-length walk of transitions with respect to user-

provided priorities. States and transitions that are not visited are pruned away. There
are several ways that the search may be limited and directed.

– State grouping selects representative examples of states from user-provided equiv-
alence classes [12,19].

4.1 Parameter Selection

Using the action signatures of Section 3, we define parameter selection in terms of a
relation, D, with (s, m,v) ∈ D where s ∈ S, m ∈ Acts, and v are tuples of elements in
F with as many entries as m has input parameters.

The result of applying parameter selection D to M is an automaton M′ whose transi-
tion relation is a subset of the transition relation of M. A transition δM(s, m(v)/w) = t

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 57

of M is included as a transition of M′ if (s, m,v) is in D. The initial states of M′ are the
initial states of M. The states of M′ consist of all states that are reachable from an initial
state using the transition rules of M′.

Note that if there is no v such that (s, m,v) ∈ D, no transition for m will be available
in the state s: parameter selection can also prune away actions, and overlaps to that end
with method restriction.

Implementation. The Spec Explorer tool provides a user interface for parameter selec-
tion with four levels of control. Rather than populate the relation D in advance, the tool
uses expressions that encode the choice of parameters and evaluates these expressions
on demand.

Defaults. Spec Explorer uses the type system of the modeling language as a way to
organize default domains for parameter selection. The user may rely upon built-in
defaults provided by the tool for each type. For example, all action input parameters
of type bool will be restricted in all states to the values true and false by default.
Moreover, all input parameters which represent object instances will default to all
available instances of the object type in the given state.

Per Type. If the tool’s built-in parameter domain for a given data type is insufficient,
the user may override it. This is done by giving an expression whose evaluation in
a each state provides defaults for parameters of the given type.

Per Parameter. The user may specify the domain of individual parameters by a state-
based expression, overriding defaults associated with the parameter’s type. If not
otherwise specified, the tool will combine the domains associated with individ-
ual parameters of a method (either defined directly with the parameter or with the
parameter’s type) to build a Cartesian product or a pairwise combination of the
parameter domains.

Per Method. The user can also define parameter tuples for a given method explicitly
by providing a state based expression which delivers a set of tuples. This allows one
to express full control over parameter selection, expressing dependencies between
individual parameter selections.

Example 8. For the Chat example given in Section 2, the Send action has an implicit
parameter this and an explicit parameter message. By default, the parameter domain
of parameter this ranges over all client instances, while message ranges over some
predefined strings. These domains come from the defaults associated with the types of
the parameters,Client and string respectively. We can change the default by associat-
ing the domain Set{"hi"} with the parameter message. Combined with the default
for type Client, this would be equivalent to providing explicit parameter tuples with
the expression Set{c in enumof(Client); <c, "hi">}.

4.2 Method Restriction

An action m is said to be enabled in state s if the preconditions of m are satisfied. We can
limit the scenarios included in our transition system by strengthening the preconditions
of m. We call this method restriction.

58 M. Veanes et al.

To do this the user may supply a parameterized, state-based expression e as an ad-
ditional precondition of m. The action’s parameters will be substituted in e prior to
evaluation.

The result of applying method restriction e to M is an automaton M′ whose transition
relation is a subset of the transition relation of M. A transition δM(s, m(v)/w) = t of
M is included as a transition of M′ if e[v](s) is true. The initial states of M′ are the
initial states of M. The states of M′ consist of all states that are reachable from an initial
state using the transition rules of M′.

Example 9. In the Chat sample, we used method restriction to avoid that clients send
messages before all configured clients are created and entered the session. To that end,
we used an auxiliary type representing the mode of the system, which is defined as
follows:

enum Mode { Creating, Entering, Sending };

Mode CurrentMode {
get {
if (enumof(Client).Size < 2)

return Mode.Creating;
if (Set{c in enumof(Client), !c.entered;c}.Size < 2)

return Mode.Entering;
return Mode.Sending;

}
}

Now we can use expressions like CurrentMode == Mode.Creating to restrict
the enabling of the actions Client, Enter and Send to those states where we want
to see them.

Note that in this sample we are only restricting controllable actions. It is usually safe
to restrict controllable actions since it is the tester’s choice what scenarios should be
tested. Restricting observable actions should be avoided, since their occurrence is not
under the control of the tester and may result in inconclusive tests.

4.3 State Filtering

A state filter is a set Sf of states where Sinit ⊆ Sf . Applying state filter Sf to automaton
M yields M′. A transition δM(s, m(v)/w) = t of M is included as a transition of M′ if
t ∈ Sf . The initial states of M′ are the initial states of M. The states of M′ consist of all
states that are reachable from an initial state of M′ using the transition rules of M′.

Implementation. Spec Explorer allows the user to specify the set Sf in terms of a
state-based expression. A state s is considered to be in Sf if e(s) is true.

Example 10. In the Chat sample, we used a state filter to avoid states in which the
same message is posted more than once by a given client before it has been received.
The filter is given by the expression:

Forall{c in enumof(Client), s in c.unreceivedMsgs.Keys,
m1 in c.unreceivedMsgs[s], m2 in c.unreceivedMsgs[s]; m1!= m2}

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 59

This has the effect of pruning away all transitions that result in a state which does not
satisfy this expression. Note that in the case of the Chat sample, this filter in combina-
tion with the finite parameter selection and finite restriction on the number of created
clients makes the extracted scenario finite, since we can only have distinct messages not
yet received by clients, and the number of those messages is finite.

4.4 Directed Search

When the number of states of M is large, it is sometimes useful to produce M′ using a
stochastic process that traverses (or explores) M incrementally. Bounded, nondetermin-
istic search is a convenient approach. The version used in Spec Explorer allows the user
to influence the choice of scenarios by fixing the probability space of the random vari-
ables used for selection. Transitions and states are explored until user-provided bound
conditions are met, for example, when the maximum number of explored transitions ex-
ceeds a fixed limit. Suitably weighted selection criteria influence the kinds of scenarios
that will be covered by M′.

For the purposes of exposition, we can assume that the directed search algorithm
operates on a model automaton that has already been restricted using the methods de-
scribed in sections 4.1 to 4.3 above.

The general exploration algorithm is given in Figure 5. It assumes two auxiliary
predicates:

– InBounds is true if user-given bounds on the number of transitions, the number of
states, etc., are satisfied.

– IncludeTarget(s, a, t) is true for those transitions (s, a, t) that lead to a desired tar-
get state. By default, IncludeTarget returns true. (We will see in Section 4.5 an
alternative definition.)

In the algorithm the variable frontier represents the transitions to be explored and is
initially set to all those transitions which start in an initial state. The variable included
represents those states of M′ whose outgoing transitions have been already added to the

var frontier = {(s, a, t) | s ∈ Sinit, (s, a, t) ∈ δ}
var included = Sinit

var δ′ = ∅

while frontier �= ∅ ∧ InBounds
choose (s, a, t) ∈ frontier

frontier := frontier \ {(s, a, t)}
if t ∈ included ∨ IncludeTarget(s, a, t)

δ′ := δ′ ∪ {(s, a, t)}
if t /∈ included

frontier := frontier ∪ {(t, a′, t′) | (t, a′, t′) ∈ δ}
included := included ∪ {t}

Fig. 5. Directed search in Spec Explorer

60 M. Veanes et al.

frontier, and is initially set to the initial states of M. The variable δ′ represents the com-
puted transition relation of the sub-automaton M′. The algorithm continues exploring
as long as the frontier is not empty and the bounds are satisfied. In each iteration step,
it selects some transition from the frontier, and updates δ′, included and frontier.

Upon completion of the algorithm, the transitions of M′ are the final value of δ′. The
initial states of M′ are the initial states of M. The states of M′ consist of all states that
are reachable from an initial state of M′ using the transitions of M′. (This will be the
same as the final value of included.)

The freedom for directing search of this algorithm appears in the choose operation.
We can affect the outcome by controlling the way in which choice occurs. We consider
two mechanisms: per-state weights and action weights.

Per-state weights prioritize user-specified target states for transitions of controllable
actions. The weight of state s is denoted by ωs. At each step of exploration the proba-
bility of choosing a transition whose target state is t is

prob(t) =
{

0, if t /∈ T;
ωt/

∑
s∈T ωs, t ∈ T.

where T = {t | (s, a, t) ∈ frontier, a ∈ Ctrl}.
As an alternative to per-state weights, we can introduce action weights that prioritize

individual transitions.
Let ω(s, m, δ′) denote the weight of action method m in state s with respect to the cur-

rent step of the exploration algorithm and the transitions found so far in δ′. If m1, . . . , mk

are all the controllable action methods enabled in s, then the probability of an action
method mi being chosen is

prob(s, mi, δ
′) =

{
0, if ω(s, mi, δ

′) = 0;
ω(s, mi)/

∑k
j=1 ω(s, mj, δ

′), otherwise

The state of the exploration algorithm, namely, the set of transitions already selected for
inclusion (δ′), may affect an action method’s weight. This occurs in the case of decre-
menting action weights where the likelihood of selection decreases with the number
of times a method has previously included in δ′. A more detailed exposition of action
weights is given in [36].

Implementation. Weights are given in Spec Explorer as state-based expressions that
return non-negative integers.

4.5 State Grouping

State grouping is a technique for controlling scenarios by selecting representative states
with respect to an equivalence class. We use a state-based grouping expression G to
express the equivalence relation. If G(s) = G(t) for states s and t, then s and t are of
member of the same group under grouping function G. The G-group represented by a
state s is the evaluation of G with respect to state s, namely G(s). S/G denotes the set of
all G-groups represented by the elements of set S.

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 61

State groupings are useful for visualization and analysis (as we saw in Section 2),
but they can also be used as a practical way to prune exploration to distinct cases of
interest for testing, in particular to avoid exploring symmetric configurations.

For a given model automaton M and a state s ∈ SM, let [s]Gi denote the set of states
which are equivalent under one grouping Gi, i.e., the set {s′ | s′ ∈ SM, Gi(s′) = Gi(s)}.

We can limit exploration with respect to state groupings G1, . . . , Gn by using state-
based expressions the yield the desired number of representatives of each group. Let
B1, . . . , Bi be state-based bound expressions which evaluate to a non-negative integer
for each i, 1 ≤ i ≤ n.

Pruning based on state-grouping bounds can be interpreted in the context of the
bounded search algorithm shown in Figure 5, if the IncludeTarget(s, a, t) predicate is
defined as ∃(i ∈ {1 . . . k})#([t]Gi ∩ included) < Bi(t). In other words, a newly visited
target state is included if there exists at least one state grouping of the target state whose
bound has not yet been reached. Note that the effect of pruning with state grouping de-
pends on the strategy used by the exploration algorithm, i.e., the order in which states
and transitions are explored.

Implementation. Spec Explorer visualizes a state grouping G of model automaton M as
a graph. The nodes of the graph are elements of S/G. Arc a is shown between G(s) and
G(t) if (s, a, t) ∈ δM .

Figure 3 is a drawing produced by Spec Explorer using this technique.

Example 11. Recall the model automaton for the Chat sample in Figure 2. Here, after
two clients have been constructed, two different orders in which the clients enter the
session, as well as two different orders in which clients send the message "hi" are
represented. We might want to abstract from these symmetries for the testing problem
at hand. This can be achieved by providing a state grouping expression which abstracts
from the object identities of the clients:

Bag{c in enumof(Client);
<c.entered,Bag{<s,m> in c.unreceivedMsgs; m}>}

In the resulting model automaton, the scenarios where clients enter in different order
and send messages in different order are not distinguished. Note that with n clients there
would be n! many orders that are avoided with the grouping. The use of groupings has
sometimes an effect similar to partial order reduction in model-checking.

5 Test Generation

Model based test generation and test execution are two closely related processes. In one
extreme case, which is also the traditional view on test generation, tests are generated
in advance from a given specification or model where the purpose of the generated tests
is either to provide some kind of coverage of the state space, to reach a state satisfying
some particular property, or to generate random walks in the state space. We call this
offline testing since test execution is a secondary process that takes the pre-generated
tests and runs them against an implementation under test to find discrepancies between
the behaviour of the system under test and the predicted behaviour. Tests may include

62 M. Veanes et al.

aspects of expected behaviour such as expected results, or may be intended just to drive
the system under test, with the validation part done separately during test execution. In
another extreme, both processes are intertwined into a single process where tests are
generated on-the-fly as testing progresses. We call this mode of testing online testing,
or on-the-fly testing.

In the testing framework presented here, both the online case and the offline case
are viewed as special cases of a general testing process in the following sense. In the
offline case the input to the test execution engine (discussed in Section 6) is a test suite
in form of a model automaton that is pre-generated from the model program. In the
online case the input to the test execution engine is a dynamic unfolding of the model
program itself, i.e., the test suite has not been explicitly pre-computed.

5.1 Test Suites and Test Cases

Let M be a finitization of the automaton MP of the model program P; M has been com-
puted using techniques described in Section 4. Recall that M is a finite sub-automaton
of MP. A test suite is just another automaton T of a particular kind that has been pro-
duced by a traversal of M as discussed in Section 5.2. A path of T from s1 to sn is a
sequence of states (s1, s2, . . . , sn) in T such that there is a transition from si to si+1
in T.

Definition 4. A test suite generated from an automaton M is an automaton T such that:

1. The states in T may use new state variables called test variables, i.e. VM ⊆ VT .
2. The set of action methods MT of T contains a new controllable action (method) Ob-

serve of arity 0 and a new observable action (method) Timeout of arity 0 that are not
in ΣM. Observe and Timeout are called test actions and corresponding transitions
in T are called test transitions. For any test transition δT(s, a) = t, s�ΣM = t�ΣM .

3. The reduction of T to ΣM is a sub-automaton of M, i.e. T�ΣM ⊆ M.
4. An accepting state is reachable from every state in ST .
5. For all non-terminal states s ∈ ST , either

(a) s is active: CtrlT(s) 	= ∅ and ObsT(s) = ∅, or
(b) s is passive: ObsT(s) 	= ∅ and CtrlT(s) = ∅.
The target state of a transition is passive if and only if it is an Observe-transition.

6. For all transitions δT(a, s) = t, there is no path in T from t to s.

By a test case in T we mean the sub-automaton of T that includes a single initial state
of T and is closed under δT . Given a state s ∈ ST , s�ΣM is called the corresponding
state of M.

Here is an intuitive explanation for each of the conditions: 1) The use of test variables
makes it possible to represent traversals of M, i.e. to record history that distinguishes
different occurrences of corresponding states in M. 2) The Observe action encodes the
decision to wait for an observable action. The Timeout action encodes that no other
observable action happened. Test actions are not allowed to alter the corresponding
state of M. 3) For all states s ∈ ST , all properties of the corresponding state of M
carry over to s. Typically, there may be several initial states in T; all test cases start in

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 63

the corresponding initial state of M. Moreover, each transition in T, other than a test
transition, must correspond to a transition in M. Note that the source and the target of
any test transition must correspond to the same state in SM. 4) It must be possible to end
each test case in an accepting state. In particular, each terminal state must correspond
to accepting state of M. 5) The strategy of a test, whether to be passive and expect an
observable action or to be active and invoke a controllable action is made explicit by the
Observe action. If several controllable actions are possible in a given active state, one
is chosen randomly. 6) The test suite does not loop, i.e., T is a directed asyclic graph
(dag). This guarantees termination of a test, either due to a conformance failure or due
to reaching a terminal accepting state.

The distinction between a test suite and a single test case will only be relevant during
test execution, when the distinction is irrelevant we say that T is a test. Note that if M
itself satisfies all these properties, M can be considered as a test (that is a single test case
because M has a single initial state). A test T is control deterministic if for all active
states s ∈ ST , CtrlT(s) is a singleton set. A test T is observationally deterministic if for
all passive states s ∈ ST , ObsT(s) is a singleton set. A test is deterministic if it is both
control deterministic and observationally deterministic.

Given a test T and an active state s ∈ ST , we write T(s) for a choice of an action
a ∈ CtrlT(s).

Implementation. In Spec Explorer tests are represented explicitly in the offline case as
sets of action sequences called test segments. Test segments are linked together to en-
code branching with respect to observable actions. In a deterministic test, the segments
correspond to test sequences in the traditional sense. Some segments may be used mul-
tiple times, there is an additional test variable that records the number of times each
segment has been used to guarantee termination of test execution.

Example 12. Consider the following model program P with M = {F,G,H} where all
action methods are controllable and have arity 0, and V = {mode}.

enum Mode = {A,B,C}
Mode mode = A;
void F() requires mode == A {mode = B;}
void G() requires mode == B {mode = C;}
void H() requires mode == B {mode = C;}

Suppose that the accepting state condition is that mode is C. Consider also a model
program P′ that is P extended with an action I that takes the model back to its initial
state:

void I() requires mode == C {mode = A;}

The full exploration of P (P′) yields a finite automaton M = MP (M′ = PP′) shown in
Figure 6.

States of M are denoted by the value of mode. A deterministic test T for M, as
illustrated in Figure 6, uses an additional state variable, say n, that represents the “test
case number” (similarly for T ′). Each state of T is labelled by the pair (n,mode). In
Spec Explorer the test T is represented by the action sequences (F,G) and (F,H). Note
that M itself is a test for M, where M(B) is a random choice of G or H.

64 M. Veanes et al.

M
A B C

F G

H

T
1,A 1,B 1,C

F G
2,A 2,B 2,C

F

H

M′

A B C
F G

H

I T ′

1,A 1,B 1,C
F G

2,A 2,B 2,C
I F

H

Fig. 6. Automaton M (M′) for the model program P (P′) in Example 12; T is a test for M and M′;
T ′ is a test for M′

Each m ∈ M with formal input parameters x is associated in Spec Explorer with a
positive real valued state based expression Weightm[x] whose value by default is 1. The
weight of an action a = m(v)/w in a state s is given by Weightm[v]. A random choice
of an action a ∈ CtrlT(s) in an active state s has probability

WeightsT(a)
∑

b∈CtrlT (s) WeightsT(b)
.

5.2 Traversal Algorithms

Given M, a traversal algorithm produces a test suite T for M, for a particular test pur-
pose. A test purpose might be to reach some state satisfying a particular condition, to
generate a transition coverage of M, or to just produce a set of random walks. There
is extensive literature on different traversal algorithms from deterministic finite state
machines [29], that produce test suites in form of test sequences. When dealing with
non-deterministic systems, the game view of testing was initially proposed in [3] and is
discussed at length in [39].

In the following we discuss the main definitions of test purposes used in our frame-
work. The definitions can be analyzed separately for control deterministic and control
non-deterministic (stochastic) tests. For ease of presentation, we limit the discussion to
control deterministic tests. We introduce first the following notion.

Definition 5. An alternating path P of T starting from s is a tree with root s:

– P has no sub-trees and is called a leaf, or
– P has, for each state t ∈ {δT(s, a) | a ∈ ActsT(s)} an immediate sub-tree that is an

alternating path of T starting from t.

In the case when T is deterministic, any alternating path is also a path and vice versa.
The difference arises in the presence of observational non-determinism. Intuitively, an
alternating path takes into account all the possible observable actions in a passive state,
whereas a path is just a branch of some alternating path. We say that an alternating path
P reaches a set S of states if each leaf of P is in S.

Definition 6. Let T be a test for M.

1. Given a subset S ⊆ SM , T covers S if S ⊆ ST�ΣM .
2. T covers all transitions of M if T�ΣM = M.

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 65

3. Given a subset S ⊆ SM, T can reach S if there is a path from some initial state of T
to a state t such that t�ΣM ∈ S.

4. Given a subset S ⊆ SM, T is guaranteed to reach S if, for some initial state s of T,
there is an alternating path of T from s to a state t such that t�ΣM ∈ S.

5. Given a grouping G for M, T covers G, if G(SM) = G(ST�ΣM).

For active tests, the definitions are more or less standard, and execution of a test case
produces the given coverage. In the case of reactive systems with observable actions,
assumptions have to be made about fairness and the probabilities of the observable
actions. In the general case, we have extended the Chinese postman tour algorithm to
non-deterministic systems. For alternating reachability a version of Dijkstra’s shortest
path can be extended to alternating paths, that is used, if possible, to generate tests that
are guaranteed to reach a a set of states. Both algorithms are discussed in [30]. For
computing test cases that optimize the expected cost, where the system under test is
viewed as nature, algorithms from Markov decision process theory can be adapted [9].

Implementation. In Spec Explorer, the algorithms discussed in [30] have been imple-
mented for the purposes of reaching a set of states and for state and transition coverage.
Also in Spec Explorer, the desired set of states is always specified by a state based
expression. Each action is associated with a cost and a weight using a state based ex-
pression as well. Weights are used to calculate action probabilities. Spec explorer uses
the value iteration algorithm for negative Markov decision problems, that is discussed
in [9], to generate tests that optimize the expected cost where the observable actions are
given probabilities.

For certain traversal algorithms in Spec Explorer, such as a random walks, the tests
are limited to a maximum number of steps. Once the maximum number has been
reached the test continues with a shortest path to an accepting state. For other test pur-
poses, such as transition coverage, one may need to re-execute some of the test segments
in order to observe different observable actions from the same underlying state. In such
cases, there is a limit on the number of tries related to each segment that always limits
each test to a finite number of steps. In those cases, the tests are not explicitly repre-
sented as automata, but implicitly by a program that produces the tests dynamically
(during test execution) from the segments generated from M.

Example 13. Consider M in Example 12. The test T for M that is illustrated in Figure 6
covers all transitions of M.

5.3 Online Test Generation

Rather than using pre-generated tests, in online testing or on-the-fly testing, test cases
are created dynamically as testing proceeds. Online testing uses to the model program
“as is”. The online technique was motivated by problems that we observed while testing
large-scale commercial systems; it has been used in an industrial setting to test operating
system components and Web service infrastructure.

We provide here a high level description of the basic OTF (on-the-fly) algorithm [38]
as a transformation of M. Given a model program P, let M = MP. OTF is a trans-
formation of M that given a desired number of test cases n and a desired number of

66 M. Veanes et al.

steps k in each test case, produces a test suite T for M. The OTF transformation is
done lazily during test execution. We present here the mathematical definition of T as
a non-deterministic unfolding of M, where the choices of observable actions reflect the
observable actions that take place during test execution. The choices of controllable ac-
tions are random selections of actions made by the OTF algorithm. It is assumed that
an accepting state is reachable from every state of M.

T has the test variables TestCaseNr, StepNr that hold integer values, and a Boolean
test variable active. OTF produces test cases Ti with TestCaseNr = i for 1 ≤ i ≤ n.

Each Ti is an unfolding of M produced by the following non-deterministic algorithm.
Consider a fixed Ti. Let s0 be the initial state of M. We let s denote the current state of
M. Initially s = s0, StepNr = 0, and active = true.

The following steps are repeated first until StepNr = k, or s is a terminal state, and
after that until s is an accepting state.

1. Assume active = true. If CtrlM(s) 	= ∅ and ObsM(s) 	= ∅ choose randomly to do
either either (1a) or (1b), else if CtrlM(s) 	= ∅ do (1a), otherwise do (1b).
(a) Choose randomly a controllable action a ∈ CtrlM(s), let t = δM(a, s), and let

a be the only action enabled in the current state and let StepNr := StepNr +
1, active := true, s := t.

(b) Let Observe be the only action enabled in the current state and switch to passive
mode active := false.

2. Assume active = false. All actions in ObsM(s) and Timeout are enabled in the
current state, no controllable actions are enabled. Choose non-deterministically an
action a ∈ ObsM(s) ∪ {Timeout}, let StepNr := StepNr + 1, active := true, and if
a 	= Timeout let s := δM(a, s).

A single test case in T is formally an unfolding of M from the initial state in form
of an alternating path from the initial state, all of whose leaves are accepting states and
either the length of each branch is at least k, and ends in a first encounter of an accepting
state, or the length of the branch is less than k and ends in a terminal accepting state.
Since T is created during execution, only a single path is created for each test case that
includes the actual observable actions that happened.

Implementation. The implementation of OTF in Spec Explorer uses the model program
P. Action weights are used in the manner explained in Example 12, to select controllable
actions from among a set of actions for which parameters have been generated from
state based parameter generators. Besides state based weights one can also associate
decrementing weights with action methods. Then the likelihood of selection decreases
with the number of times a method has previously been used, i.e. the weight expression
depends on the test variables. The OTF algorithm is discussed in more detail in [36,38].

6 Test Execution

We discuss here the conformance relation that is used during testing. The testing pro-
cess assumes that the implementation under test is encapsulated in an observationally

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 67

complete “wrapper”, that is discussed first. This is needed in order to be able to guar-
antee termination of test execution. We then discuss how object bindings between the
implementation and the model world are maintained and how these bindings affect the
conformance relation. Next, the conformance relation is defined formally as an exten-
sion of alternating simulation. Finally, we discuss how action bindings are checked and
how the conformance engine works.

6.1 Observational Completeness of Implementation under Test

The actual implementation under test may be a distributed system consisting of sub-
systems, a (multithreaded) API (application programmers interface), a GUI (graphical
user interface), etc. We think of the behaviour of the IUT (implementation under test)
as an automaton I that provides an interleaved view of the behaviour of the subsystems
if there are several of them. The implementation uses the same set of function symbols
F and action methods M as the model. Values are interpreted in the same universe U .
For testability, the IUT is assumed to have a wrapper N that provides an observationally
complete view of the actual behaviour in the following sense:

1. The action method vocabulary MN of N is M extended with the test actions Ob-
serve and Timeout used in tests.

2. The reduct of N to ΣMIUT is MIUT.
3. For each state s ∈ SN , Observe ∈ CtrlN(s) and, given t = δN(s, Observe), ObsN(t)

	= ∅, and ObsI(t) ⊆ ObsN(t) ⊆ ObsI(t) ∪ {Timeout}.
4. Only Observe transitions to a state of N where observable actions are enabled.

Implementation. The timeout action is approximated by using a state based expression
that determines the amount of time to wait for observable actions from I to occur. In
general, the timeout may not necessarily indicate absence of other actions, e.g., if the
waiting time is too short.

6.2 Object Bindings

The universe U includes an infinite sub-universe O of objects. Each object o ∈ O
has a name and any two distinct object names in a given automaton denote distinct
objects in O. An automaton M and an automaton N may use distinct objects in their
actions. We want to compare the executions of M and N modulo a partial isomorphism
from the set of objects used in M to the set of objects used in N. The isomorphism is
partial in the sense that it only relates objects that have been encountered in actions.
The isomorphism between objects extends naturally to arbitrary values in the so called
background universe that includes maps, sets, sequences, etc. The theory of background
is worked out in detail in [8], where objects are called reserve elements.

By an object binding function σ from M to N, we mean a partial injective (one-
to-one) function over O that induces a partial isomorphism, also denoted by σ, from
actions in M to actions in N. Given an action a of M, we write σ(a) or aσ for the
corresponding action in N. Given that σ(o) = o′, we say that o is bound to o′ in σ
and denote it by o
→σ o′; we omit σ and write o
→ o′ when σ is clear from the
context.

68 M. Veanes et al.

6.3 Refinement of Model Automata

The refinement relation from a model P1 to an implementation P2 is formalized as the
refinement relation between the underlying automata

Mi = (Sinit
i , Si, Sacc

i , Obsi, Ctrli, δi), for i ∈ {1, 2}.

The following definitions of alternating simulation and refinement for model au-
tomata extend the corresponding notions of interface automata as defined in [15]. We
denote the universe of finite object binding functions by Bind.

Definition 7. An alternating simulation from M1 to M2 is a relation ρ ⊂ S1×Bind×S2
such that, for all (s, σ, t) ∈ ρ,

1. For each action a ∈ Ctrl1(s), there is a smallest extension θ of σ such that aθ ∈
Ctrl2(t) and (δ1(s, a), θ, δ2(t, aθ)) ∈ ρ;

2. For each action a ∈ Obs2(t), there is a smallest extension θ of σ such that aθ−1 ∈
Obs1(s) and (δ1(s, aθ−1), θ, δ2(t, a)) ∈ ρ.

The intuition behind alternating simulation is as follows. Consider fixed model and im-
plementation states. The first condition ensures that every controllable action enabled in
the model must also be enabled in the implementation modulo object bindings, and that
the alternating simulation relation must hold again after transitioning to the target states,
where the set of object bindings may have been extended for objects that have not been
encountered before. The second condition is symmetrical for observable actions, going
in the opposite direction. The role of object bindings is important; if a model object
is bound to an implementation object then the same model object cannot subsequently
be bound to a different implementation object and vice versa, since that would violate
injectivity of an object binding function.

In the special case when no objects are used, it is easy to see that the projection
of ρ to states is an alternating simulation from M1 to M2 viewed as interface automata,
provided that controllable actions are considered as input actions and observable actions
are considered as output actions [15]. In general though, alternating simulation with
object bindings cannot be reduced to alternating simulation because object bindings are
not known in advance and may be different along different paths of execution; this is
illustrated with the following example.

Example 14. Consider the chat example. Let M1 = MChat and let M2 be the automaton
of a chat system implementation. Consider the following sequence of transitions in M1:

(s0,Create()/c1, s1), (s1,Create()/c2, s2)

In other words, two clients are created one after another. Assume these are the only
controllable actions enabled in s0 and s1. The same method call in the initial state of
the implementation, say t0 would result in different objects being created each time
Create is invoked. For example, the following transitions could be possible in the
implementation:

(t0,Create()/d1, t1), (t1,Create()/d2, t2),
(t0,Create()/e1, t3), (t3,Create()/e2, t4), . . .

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 69

There is an alternating simulation from M1 to M2 where c1 is bound to d1 and c2 is
bound to d2 along one possible path, or where c1 is bound to e1 and c2 is bound to
e2 along another path.

Definition 8. A refinement from M1 to M2 is an alternating simulation from M1 to M2
such that Sinit

1 × {∅} × Sinit
2 ⊂ ρ.

A refinement relation is essentially an alternating simulation relation that must hold
from all initial states (with no initial object bindings). We say that M1 specifies M2,
or M2 conforms to or is specified by M1, if there exists a refinement from M1 to M2.
Again, it is easy to see that when there are no objects then the refinement relation
reduces essentially to refinement of interface automata as defined in [15]. The following
example shows a case when refinement does not hold due to a conflict with object
bindings.

Example 15. Let M1 be as in Example 14, and let M3 be the automaton of a buggy
implementation that in successive calls of Create returns the same object that is cre-
ated initially after the first call. For example the transitions of M3, where t0 is the initial
state, could be:

(t0,Create()/d1, t1), (t1,Create()/d1, t2)

Let us try to build up a refinement relation ρ iteratively following definitions 7 and 8.
Initially (s0, ∅, t0) ∈ ρ. After the first iteration,

(s0, ∅, t0), (s1, {c1
→ d1}, t1) ∈ ρ.

After another invocation of Create from s1 there are two distinct objects c1 and c2
in s2. It is not possible to further extend ρ, since one would need to extend {c1
→ d1}
with the binding c2
→ d1 that would identify two distinct model objects with the same
implementation object.

6.4 Checking Enabledness of Actions

We describe in more detail, given a model automaton M = MP and an implementation
automaton N, a procedure for deciding if an action a of M and an action b of M can
be bound by extending a given set of object bindings σ. It is assumed here that the
signatures of M and N are such that F = FM = FN and M = MM = MN .

Implementation. Spec Explorer provides a mechanism for the user to bind the action
methods in the model to methods with matching signatures in the IUT. Abstractly, two
methods that are bound correspond to the same element in M.

In the following we describe how, in a given model state s with a given set σ of object
bindings, a controllable action a = m(v)/w is chosen in M and how its enabledness in
N is validated.

1. Input parameters v for m are generated in such a way that the precondition Prem[v]
holds in s. All object symbols in v must already be bound to corresponding imple-
mentation objects, otherwise a can not be bound to any implementation action.

70 M. Veanes et al.

2. The method call m(v) is executed in the model and the method call m(vσ−1) is
executed in the implementation.

3. The method call in the model produces output parameters w and the method call in
the implementation produces output parameters w′. Values in w and w′ are com-
pared for equality and σ is extended with new bindings, if an extension is possible
without violating injectivity, otherwise the actions cannot be bound.

Conversely, in order to check enabledness of an observable implementation action
a = m(v)/w in the model the following steps are taken.

1. A binding error occurs if there is an implementation object in v that is not in σ
and a corresponding model object cannot be created. If σ can be extended to σ′,
Prem[vσ′] is checked in s. If the precondition does not hold, a is not enabled in the
model.

2. The method call m(vσ′) is executed in the model yielding output parameters w′.
3. This may yield a conformance failure if either σ′ cannot be extended or if the values

do not match.

Example 16. Calling a controllable action a in the model may return the value 1, but
IUT throws an exception, resulting in a conformance failure. A binding violation occurs
if for example the implementation returns an object that is already bound to a model
object, but the model returns a new object or an object that is bound to a different
implementation object.

6.5 Conformance Automaton

The conformance automaton is a machine that takes a model M, a test T and an ob-
servationally complete implementation wrapper N. It executes each test in T against N.
The conformance automaton keeps track of the set of object bindings. The following
variables are used:

– A variable verdict, that may take one of the values Undecided, Succeeded, Failed,
TimedOut, or Inconclusive.

– A set of object bindings β that is initially empty.
– The current state of T, sT .
– The current state of N, sN .

For each initial state s0 of T, the following is done. Let sT = s0. Let sN be the initial
state of N. The following steps are repeated while verdict = Undecided.

Observe: Assume sT is passive. Observe an action b ∈ ObsN(sN) and let sN :=
δN(b, sN). There are two cases:
1. If β can be extended to β′ such that a = bβ′−1 ∈ ObsM(sT) then β := β′.

(a) If a ∈ ObsT(sT) then sT := δT(a, sT).
(b) Otherwise verdict := Inconclusive.

2. Otherwise, if a = Timeout then verdict := TimedOut else verdict := Failed.
Control: Assume sT is active. Let a = T(sT) and let sT := δT(a, sT). There are two

cases:

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 71

1. If β can be extended to β′ such that b = aβ′ ∈ CtrlN(sN) then β := β′ and
sN := δN(b, sN).

2. Otherwise verdict := Failed.
Finish: Assume sT is terminal. Let verdict := Succeeded.

An inconclusive verdict corresponds to the case when the test case has eliminated
some possible observable actions, i.e., an observable action happens but the test case
does not know how to proceed, although the observable action is enabled in the model.
One may consider a class of complete tests T such that for each passive state s, ObsT(sT)
⊇ ObsM(sT), to avoid inconclusive verdicts. The test produced by the OTF transforma-
tion is complete in this sense. The TimedOut verdict is a violation of the specification
from T to N but not a violation of the specification from M to I. However, if the verdict
is Failed then I does not conform to M, which follows from the assumption that the
reduct of T to ΣM is a sub-automaton of M and that the reduct of N to ΣI is I.

Implementation. The inconclusive verdict is currently not implemented in Spec Ex-
plorer; it is the testers responsibility to guarantee that the test is complete or to tolerate
a failure verdict also for inconclusive tests.

The implementation of the conformance automaton does not know the full state of
N. The description given above is an abstract view of the behaviour. In particular, the
choice of an observable action a in ObsN(sN) corresponds to the implementation wrap-
per producing an action a, which is guaranteed by observational completeness of N.

7 Related Work

Extension of the FSM-based testing theory to nondeterministic and probabilistic FSMs
received attention some time ago [22,31,40]. The use of games for testing is pioneered
in [3]. A recent overview of using games in testing is given in [39]. Games have been
studied extensively during the past years to solve various control and verification prob-
lems for open systems. A comprehensive overview on this subject is given in [15],
where the game approach is proposed as a general framework for dealing with system
refinement and composition. The paper [15] was influential in our work for formulating
the testing problem by using alternating simulation of automata. The notion of alternat-
ing simulation was first introduced in [4].

Model-based testing allows one to test a software system using a specification (a.k.a.
a model) of the system under test [6]. There are other model-based testing tools
[5,26,27,28,34]. To the best of our knowledge, Spec Explorer is the first tool to sup-
port the game approach to testing. Our models are Abstract State Machines [10,23,24].
In Spec Explorer, the user writes models in AsmL [25] or in Spec# [7].

The basic idea of online or on-the-fly testing is not new. It has been introduced in
the context of labelled transition systems using “ioco” (input-output conformance) the-
ory [35,11,33] and has been implemented in the TorX tool [34]. Ioco theory is a formal
testing approach based on labelled transition systems (that are sometimes also called
I/O automata). An extension of ioco theory to symbolic transition systems has recently
been proposed in [17].

72 M. Veanes et al.

The main difference between alternating simulation and ioco is that the system un-
der test is required to be input-enabled in ioco (inputs are controllable actions), whereas
alternating simulation does not require this since enabledness of actions is determined
dynamically and is symmetric in both ways. In our context it is often unnatural to as-
sume input completeness of the system under test, e.g., when dealing with objects that
have not yet been created. An action on an object can only be enabled when the object
actually exists in a given state. Refinement of model automata also allows the view of
testing as a game, and one can separate the concerns of the conformance relation from
how you test through different test strategies that are encoded in test suites.

There are other important differences between ioco and our approach. In ioco the-
ory, tests can in general terminate in arbitrary states, and accepting states are not used
to terminate tests. In ioco, quiescence is used to represent the absence of observable
actions in a given state, and quiescence is itself considered as an action. Timeouts in
Spec Explorer are essentially used to model special observable actions that switch the
tester from passive to active mode and in that sense influence the action selection strate-
gies in tests. Typically a timeout is enabled in a passive state where also other observ-
able actions are enabled; thus timeouts do not, in general, represent absence of other
observable actions. In our approach, states are full first-order structures from mathe-
matical logic. The update semantics of an action method is given by an abstract state
machine (ASM) [23]. The ASM framework provides a solid mathematical foundation
to deal with arbitrarily complex states. In particular, we can use state-based expressions
to specify action weights, action parameters, and other configurations for test genera-
tion. We can also reason about dynamically created object instances, which is essential
in testing object-oriented systems. Support for dynamic object graphs is also present in
the Agedis tools [26].

Generating test cases from finite model automata is studied in [9,30]. Some of the
algorithms reduce to solving negative Markov decision problems with the total reward
criterion, in particular using value iteration [32], and the result that linear programming
yields a unique optimal solution for negative Markov decision problems after eliminat-
ing vertices from which the target state is not reachable [14, Theorem 9].

The predecessor of Spec Explorer was the AsmLT tool [6]. In AsmLT accepting
states and timeouts were not used. The use of state groupings was first studied in [19]
and extended in [12] to multiple groupings.

8 Conclusion

We have presented the concepts and foundations of Spec Explorer, a model-based
testing tool that provides a comprehensive solution for the testing of reactive object-
oriented software system. Based on an accessible and powerful modeling notation,
Spec#, Spec Explorer covers a broad range of problems and solutions in the domain, in-
cluding dynamic object creation, non-determinism and reactive behaviour, model anal-
ysis, offline and online testing and automatic harnessing.

Being used on a daily basis internally at Microsoft, user feedback indicates that im-
provements to the approach are necessary. We identify various areas below, some of which
we are tackling in the design and implementation of the next generation of the tool.

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 73

Scenario control. Scenario control is the major issue where improvements are needed.
Currently, scenario control is realized by parameter generators, state filters, method
restriction, state grouping, and so on. For some occasions, describing scenario con-
trol can be more challenging than describing the functionality of the test oracle.
This is partly because of the lack of adequate notations for scenario control, and
also because fragments of the scenario control are spread over various places in
the model and configuration dialog settings, making it hard to understand which
scenarios are captured.

It would be desirable to centralize all scenario control related information as
one “aspect” in a single document, which can be reviewed in isolation. Moreover,
scenario-oriented notations like use cases would simplify formulating certain kind
of scenarios.

We are currently working on an extension of our approach that allows the user to
write scenarios in an arbitrary modelling style, such as Abstract State Machines or
Use Cases. The scenario control can be seen as an independent model, which can
be reviewed and explored on its own. Model composition combines the scenario
control model with the functional model.

Model Composition. Another important issue identified by our users is model com-
position. At Microsoft, as is typical in the industry as a whole, product groups are
usually organized in small feature teams, where one developer and one tester are re-
sponsible for a particular feature (part of the full functionality of a product). In this
environment it must be possible to model, explore and test features independently.
However, for integration testing, the features also need to be tested together. To that
end, Spec Explorer users would like to be able to compose compound models from
existing models. For the next generation of the tool, we view the scenario control
problem as a special instance of the model composition problem.

Symbolic exploration. The current Spec Explorer tool requires the use of ground data
in parameters provided for actions. This restriction is sometimes artificial and re-
quired only by underlying technical constraints of the tool. Consider the Chat ex-
ample from earlier in the chapter: it does not really matter which data is send by
a client, but only that this same data eventually arrives at the other clients. For
the next generation of the tool, we are therefore generalizing exploration to the
symbolic case [20]. We will use an exploration infrastructure that connects to an
underlying constraint solver.

Measuring coverage and testing success. One major problem of model-based testing
is developing adequate coverage and test sufficiency metrics. Coverage becomes
particularly difficult in the case of internal non-determinism in the implementation:
how can behavioural coverage be achieved for observable actions of the imple-
mentation? Testing success is often measured in industry by rates of bug detection;
however, model-based testing might show lower bug counts since bugs can be dis-
covered during modelling and resolved before any test is ever run.

Failure analysis and reproduction cases. Understanding the cause of a failure after
a long test run is related to a similar problem in the context of model-checking.
There might be a shorter run that also leads to the error and which should be used
as the reproduction case passed to the developer. Moreover, in the case of non-
deterministic systems, it is desirable to have a reproduction sample that discovers

74 M. Veanes et al.

the error reliably with every run. Generating reproduction cases is actually closely
related to the problem of online testing, but here we want to drive the IUT into a
certain state where a particular error can be discovered. Some of these problems
can be recast as problems of test strategy generation in the game-based sense. We
are currently extending the work started in [9] to online testing, using Markov de-
cision theory for optimal strategy generation from finite approximations of model
automata. For online testing, we are also investigating the use of model-based learn-
ing algorithms [37].

Continuing testing after failures. If a failure is detected by model-based testing – of-
fline or online – testing can usually not be continued from the failing state, since the
model’s behavior is not defined for that case. In practice, however, the time from
when a bug is discovered and when it is fixed might be rather long, and it should
be possible to continue testing even in the presence of bugs. Current practice is
to modify scenarios to deal with this problem, but there could be more systematic
support for dealing with this standard situation.

In this chapter we have provided a detailed description of the foundations of the model-
based testing tool Spec Explorer. The tool is publicly available from [1]. The develop-
ment of the features in the tool have in many respects been driven by demands of users
within Microsoft. Model-based testing is gaining importance in the software industry
as systems are becoming more complex and distributed, and require formal specifica-
tions for interoperability. Spec Explorer has shown that model-based testing can be very
useful and can be integrated into the software development process. There are several
interesting directions for further research in which the technology can be improved.
Some of the main directions are compositional modelling, improved online algorithms,
and symbolic execution.

References

1. Spec Explorer tool. public release January 2005, updated release October 2006,
http://research.microsoft.com/specexplorer

2. Spec# tool (public release, March 2005)
http://research.microsoft.com/specsharp

3. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proc. 27th Ann. ACM Symp. Theory of Computing, pp. 363–372
(1995)

4. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement relations. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer,
Heidelberg (1998)

5. Artho, C., Drusinsky, D., Goldberg, A., Havelund, K., Lowry, M., Pasareanu, C., Rosu, G.,
Visser, W.: Experiments with test case generation and runtime analysis. In: Börger, E., Gar-
gantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 87–107. Springer, Hei-
delberg (2003)

6. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: To-
wards a tool environment for model-based testing with AsmL. In: Petrenko, A., Ulrich, A.
(eds.) FATES 2003. LNCS, vol. 2931, pp. 264–280. Springer, Heidelberg (2004)

http://research.microsoft.com/specexplorer
http://research.microsoft.com/specsharp

Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer 75

7. Barnett, M., Leino, R., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

8. Blass, A., Gurevich, Y.: Background, reserve, and Gandy machines. In: Clote, P.G.,
Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer, Heidelberg
(2000)

9. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to test. In: Grieskamp, W., Weise,
C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer, Heidelberg (2006)

10. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

11. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp.
187–193. Springer, Heidelberg (2001)

12. Campbell, C., Veanes, M.: State exploration with multiple state groupings. In: Beauquier,
D., Börger, E., Slissenko, A. (eds.) 12th International Workshop on Abstract State Machines,
ASM 2005, March 8–11, 2005, Laboratory of Algorithms, Complexity and Logic, University
Paris 12 – Val de Marne, Créteil, France, pp. 119–130 (2005)

13. Campbell, C., Veanes, M., Huo, J., Petrenko, A.: Multiplexing of partially ordered events.
In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 97–110. Springer,
Heidelberg (2005)

14. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic sys-
tems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81.
Springer, Heidelberg (1999)

15. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

16. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th European Soft-
ware Engineering Conference and the 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pp. 109–120. ACM, New York (2001)

17. Franzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic specifica-
tions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 1–15. Springer,
Heidelberg (2005)

18. Glässer, U., Gurevich, Y., Veanes, M.: Abstract communication model for distributed sys-
tems. IEEE Transactions on Software Engineering 30(7), 458–472 (2004)

19. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from
abstract state machines. In: ISSTA 2002. Software Engineering Notes, vol. 27, pp. 112–122.
ACM, New York (2002)

20. Grieskamp, W., Kicillof, N., Tillmann, N.: Action machines: a framework for encoding and
composing partial behaviors. International Journal of Software Engineering and Knowledge
Engineering 16(5), 705–726 (2006)

21. Grieskamp, W., Tillmann, N., Veanes, M.: Instrumenting scenarios in a model-driven devel-
opment environment. Information and Software Technology 46(15), 1027–1036 (2004)

22. Gujiwara, S., Bochman, G.V.: Testing non-deterministic state machines with fault-coverage.
In: Kroon, J., Heijunk, R.J., Brinksma, E. (eds.) Protocol Test Systems, pp. 267–280 (1992)

23. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

24. Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS, vol. 1912.
Springer, Heidelberg (2000)

25. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theoretical Computer
Science 343(3), 370–412 (2005)

76 M. Veanes et al.

26. Hartman, A., Nagin, K.: Model driven testing - AGEDIS architecture interfaces and tools.
In: 1st European Conference on Model Driven Software Engineering, Nuremberg, Germany,
December 2003, pp. 1–11 (2003)

27. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: The Sixth World Conference
on Integrated Design and Process Technology, IDPT 2002, Pasadena, California (June 2002)

28. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., Bourdonov, I.B.: UniTesK: Model based
testing in industrial practice. In: 1st European Conference on Model Driven Software Engi-
neering, Nuremberg, Germany, December 2003, pp. 55–63 (2003)

29. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines – a survey.
In: Proceedings of the IEEE, Berlin, August 1996, vol. 84, pp. 1090–1123. IEEE Computer
Society Press, Los Alamitos (1996)

30. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal strate-
gies for testing nondeterministic systems. In: ISSTA 2004, July 2004. Software Engineering
Notes, vol. 29, pp. 55–64. ACM, New York (2004)

31. Petrenko, A., Yevtushenko, N., Bochmann, G.v.: Testing deterministic implementations from
nondeterministic FSM specifications. In: Baumgarten, B., Burkhardt, H.-J., Giessler, A.
(eds.) IFIP TC6 9th International Workshop on Testing of Communicating Systems, pp. 125–
140. Chapman & Hall, Boca Raton (1996)

32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience, New York (1994)

33. Tretmans, J., Belinfante, A.: Automatic testing with formal methods. In: EuroSTAR 1999:
7th European Int. Conference on Software Testing, Analysis & Review. EuroStar Confer-
ences, Barcelona, Spain, Galway, Ireland, November 8–12 (1999)

34. Tretmans, J., Brinksma, E.: TorX: Automated model based testing. In: 1st European Con-
ference on Model Driven Software Engineering, Nuremberg, Germany, December 2003, pp.
31–43 (2003)

35. van der Bij, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In: Petrenko, A.,
Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg (2004)

36. Veanes, M., Campbell, C., Schulte, W., Kohli, P.: On-the-fly testing of reactive systems.
Technical Report MSR-TR-2005-03, Microsoft Research (January 2005)

37. Veanes, M., Roy, P., Campbell, C.: Online testing with reinforcement learning. In: Havelund,
K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp.
240–253. Springer, Heidelberg (2006)

38. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, pp. 273–282. ACM, New York (2005)

39. Yannakakis, M.: Testing, optimization, and games. In: Proceedings of the Nineteenth Annual
IEEE Symposium on Logic In Computer Science, LICS 2004, pp. 78–88. IEEE Computer
Society Press, Los Alamitos (2004)

40. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Testing and
Verification XII, pp. 347–361. North-Holland, Amsterdam (1992)

Testing Real-Time Systems Using UPPAAL

Anders Hessel1, Kim G. Larsen2, Marius Mikucionis2, Brian Nielsen2,
Paul Pettersson1, and Arne Skou2

1 Department of Information Technology, Uppsala University, P.O. Box 337,
SE-751 05 Uppsala, Sweden
{hessel,paupet}@it.uu.se

2 Department of Computer Science, Aalborg University, Fredrik Bajersvej 7E,
DK-9220 Aalborg, Denmark

{kgl,marius,bnielsen,ask}@cs.aau.dk

Abstract. This chapter presents principles and techniques for model-
based black-box conformance testing of real-time systems using the
Uppaal model-checking tool-suite. The basis for testing is given as a
network of concurrent timed automata specified by the test engineer.
Relativized input/output conformance serves as the notion of implemen-
tation correctness, essentially timed trace inclusion taking environment
assumptions into account. Test cases can be generated offline and later
executed, or they can be generated and executed online. For both ap-
proaches this chapter discusses how to specify test objectives, derive test
sequences, apply these to the system under test, and assign a verdict.

1 Introduction

Many computer-based systems monitor and control a physical environment thro-
ugh sensors and actuators. The physical laws governing the environment induce a
set of real-time constraints which the system must obey in order to achieve satis-
factory or safe operation.Thus the computer system must not only produce correct
result or reaction, but must do so at the correct time; neither too early nor too late.
Fora real-timesystem the timely reaction is justas importantas thekindof reaction.

Testing real-time systems is even more challenging than testing untimed re-
active systems, because the tester must now consider when to stimulate system,
when to expect responses, and how to assign verdicts to the observed timed
event sequence. Further, the test cases must be executed in real-time, i.e., the
test execution system itself becomes a real-time system.

In this chapter we introduce a formal approach to model-based black-box
conformance testing of real-time systems. We aim both at introducing timed
testing to readers that are new in the area by giving many examples, and to
more experienced readers by being formally precise and by touching on more
advanced topics.

1.1 Approach and Chapter Outline

Real-time influences all aspects of test generation: The specification language
must allow for the specification of real-time constraints. The conformance

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 77–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 A. Hessel et al.

(implementation) relation must define what real-time behavior should be consid-
ered correct. It should be possible to specify what parts of the specified behavior
should be tested. This can be done through test purposes, coverage criteria,
or random exploration. Finally, the test generation algorithm must analyze the
real-time specification, select and instantiate test cases, and output these in a
timed test notation language. This computation must be done efficiently in order
to handle large and complex specifications.

The timed automata formalism has become a popular and widespread for-
malism for specifying real-time systems. We adopt the particular Uppaal style
of timed automata. Uppaal style timed automata have proven very expressive
and convenient, but can still be analyzed efficiently. Section 2 introduces timed
automata, their formal semantics in terms of timed labeled transition systems,
and how to use timed automata to model and specify the behavior of real-time
systems.

In the timed testing research community there is still no consensus on the
exact conformance relation to use to evaluate the correctness of an implementa-
tion compared to its specification. Timed trace inclusion captures many of our
intuitive expectations as well as having desired formal properties and is con-
sistent with the widely accepted untimed input/output conformance-relation of
Tretmans. We propose relativized timed input/output conformance relation be-
tween model and implementation under test (IUT) which coincides with timed
trace inclusion taking assumptions about the environment behavior explicitly
into account. In addition to allowing explicit and independent modelling of the
environment, it also has some nice theoretical properties that allow testing effort
to be reused when the environment or system requirements change. Relativized
real-time input-output conformance is presented in Section 3.

Common approaches to test selection include test purposes or coverage crite-
ria. When a model-checker is to be used to generate test sequences, the model
is typically explicitly annotated with auxillary variables or automata that allow
the test purpose or coverage criterion to be formulated as a reachability prop-
erty that can be issued to the model-checker. In this chapter we present a more
elegant approach where test purposes and coverage criteria can be formulated
as observer automata that can be automatically superimposed on the model.
This avoids explicit changes to the model, and allows the user to specify his
own coverage criteria with relative ease. Observers and test generation using
model-checking are presented in Section 4.

Given the model and observer automata, the problem becomes how to im-
plement a test generator that efficiently can generate the required test suite. In
Section 4.4 we propose an efficient algorithm that extends the basic reachabil-
ity algorithm in Uppaal with a compact bit-vector encoding of the specified
coverage criteria.

The chapter illustrates two different approaches to timed testing which can be
viewed as two extremes in a spectrum of possible approaches, offline and online
testing, as depicted in Figure 1. In between these extremes are approaches that
precompute a strategy or reduced specification (with particular test purpose in

Testing Real-Time Systems Using UPPAAL 79

Test Generation Test Execution

M IUT

Verdict

o

i

(a) Offline

Test Generation &Execution

M IUT

Verdict

i

o

(b) Online

Fig. 1. Online vs. Offline Test Generation

mind) later to be executed online. Offline and online testing are compared below
and discussed in detail in Sections 4 and 5.

1.2 Offline Test Generation

In offline test generation the test suite is pre-computed completely from the
specification before it is executed on the implementation under test. Offline test
generation inherits a general advantage of automated model-based testing such
that when the requirements or model change, test cases can be automatically
re-generated to reflect the change, rather than manually updating every test case
and test script.

The advantages of offline test generation are that test cases are easier, cheaper,
and faster to execute because all time constraints in the specification have been
resolved at test generation time, and in addition, that the test suite can be gen-
erated with some a-priori guarantees, e.g., that the specification is structurally
covered, or that a given set of test-objectives are met as fast or with as few
resources as possible.

There are two main disadvantages of offline test generation. One is that the
specification must be analyzed in its entirety, which often results in a state-
explosion which limits the size of the specification that can be handled. Another
problem is non-deterministic implementations and specifications. In this case,
the output (and output timing) cannot be predicted, and the test case must be
adaptive. Typically, the test case takes the form of a test-tree that branches for
all possible outcomes. This may lead to very large test cases. In particular for
real-time systems the test case may need to branch for all time instances where
an output could arrive.

Offline test generators therefore often limit the expressiveness and amount
of non-determinism of the specification language. This has been a particular
problem for offline test generation from timed automata specifications, because
the technique of determinizing the specification cannot be directly applied.

Given a restricted class of deterministic and output urgent timed auto-
mata we show in Section 4 how it is possible to use the unmodified Uppaal

80 A. Hessel et al.

model-checker to synthesize test cases that are guaranteed to take the least pos-
sible time to execute. We also define a language for defining test purposes and
coverage criteria, and present an efficient test generation algorithm.

1.3 Online Testing

Another testing approach is online (on-the-fly) testing that combines test gener-
ation and execution. Here the test generator interactively interprets the model,
and stimulates and observes the IUT. Only a single test input is generated from
the model at a time which is then immediately executed on the IUT. Then the
produced output (if any) by the IUT as well as its time of occurrence are checked
against the specification, a new input is produced and so forth until it is decided
to end the test, or an error is detected. Typically, the inputs and delays are
chosen randomly. An observed test run is a trace consisting of an alternating
sequence of (input or output) actions and time delays.

There are several advantages of online testing. Testing may potentially con-
tinue for a long time (hours or even days), and therefore long, intricate test
cases that stress the IUT may be executed. The state-space-explosion problem
experienced by many offline test generation tools is reduced because only a lim-
ited part of the state-space needs to be stored at any point in time. Further,
online test generators often allow more expressive specification languages, espe-
cially wrt. allowed non-determinism in real-time models: Since they are generated
event-by-event they are automatically adaptive to the non-determinism of the
specification and implementation. Online testing has proven an effective error
detection technique [59, 62, 6].

A disadvantage is that the specification must be analyzed online and in real-
time which require very efficient test generation algorithms to keep up with
the implementation and specified real-time requirements. Also the test runs are
typically long, and consequently the cause of a test failure may be difficult to
diagnose. Although some guidance is possible, test generation is typically ran-
domized which means that satisfaction of coverage criteria cannot be a priory
guaranteed, but must instead be evaluated post mortem.

In Section 5 we present a sound and complete algorithm for online testing of
real-time systems from timed automata specifications allowing full
non-determinism. We describe an extension of Uppaal, named TRON, that
implements this algorithm, and give an application example. We furthermore
show how testing can be viewed as the two sub-problems of environment em-
ulation and system monitoring, and we show how TRON can be configured to
perform both combined or independently.

2 Specification of Real-Time Systems

This section formally presents our semantic framework, and introduces timed
input/output transition systems (TIOTS), timed automata (TA), and our rela-
tivized timed input/output conformance relation.

Testing Real-Time Systems Using UPPAAL 81

2.1 Environment and System Modelling

An embedded system interacts closely with its environment which typically con-
sists of the controlled physical equipment (the plant) accessible via sensors and
actuators, other computer based systems or digital devices accessible via com-
munication networks using dedicated protocols, and human users. A major de-
velopment task is to ensure that an embedded system works correctly in its real
operating environment. Due to lack of resources it is not feasible to validate the
system for all possible (imaginary) environments. Also it is not necessary if the
environments are known to a large extent. However, the requirements and the
assumptions of the environment should be clear and explicit.

We denote the system being developed IUT, and its real operating environment
RealENV. These communicate by exchanging input and output signals (seen from
the perspective of IUT). Using a model-based development approach, the envi-
ronment assumptions and system requirements are captured through abstract
behavioral models denoted E and S respectively, communicating on abstract sig-
nals i ∈ Ain and o ∈ Aout corresponding (via a suitable abstraction) to the real
input and output , see Figure 2.

output

o

IUT

i

RealENV

E S

input

Fig. 2. Abstraction of a system

Modelling the environment explicitly and separately and taking this into ac-
count during test generation has several advantages: 1) the test generation tool
can synthesize only relevant and realistic scenarios for the given type of environ-
ment, which in turn reduces the number of required tests and improves the quality
of the test suite; 2) the engineer can guide the test generator to specific situations
of interest; 3) a separate environment model avoids explicit changes to the system
model if testing must be done under different assumptions or use patterns.

2.2 Timed I/O Transition Systems

To define our testing framework formally we need to introduce a semantic foun-
dation for real-time systems. We use it to model systems and to define the formal
semantics of timed automata. A timed input/output transition system (TIOTS)

82 A. Hessel et al.

is a labelled transition system where actions have been classified as inputs or out-
puts, and where dedicated delay labels model the progress of time. In our case
we use the set of positive real-numbers to model time. Below we also extend
commonly used notation for labeled transition systems to TIOTS.

Formal Definition of TIOTS. We assume a given set of actions A partitioned
into two disjoint sets of output actions Aout and input actions Ain . In addition
we assume that there is a distinguished unobservable action τ �∈ A. We denote
by Aτ the set A ∪ {τ}.

A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout , −→),
where

– S is a set of states, s0 ∈ S,
– and −→ ⊆ S × (Aτ ∪ R≥0) × S is a transition relation satisfying the usual

constraints of time determinism (if s
d−→ s′ and s

d−→ s′′ then s′ = s′′), time
additivity (if s

d1−→ s′ and s′ d2−→ s′′ then s
d1+d2−−−−→ s′′), and zero-delay (for all

states s
0−→ s). d, d1, d2 ∈ R≥0, and R≥0 denotes non-negative real numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪R≥0, and d, d1...n ∈ R≥0. We
write s

α−→ iff s
α−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition

relation such that s
a⇒ s′ iff s

τ−→
∗ a−→ τ−→

∗
s′, and s

d⇒ s′ iff s
τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗

· · · τ−→
∗ dn−→ τ−→

∗
s′ where d = d1 + d2 + · · ·dn. We extend ⇒ to sequences in the

usual manner.
S is strongly input enabled iff s

i−→ for all states s and for all input actions i.
It is weakly input enabled iff s

i⇒ for all states s and for all input actions i. We
assume that input actions (seen from the system point of view) are controlled
by the environment and outputs are controlled by the system. An input enabled
system cannot refuse input actions. However it may decide to ignore the input
by executing a transition that results in the same state.

S is non-blocking iff for any state s and any t ∈ R≥0 there is a timed output
trace σ = d1o1 . . . ondn+1, oi ∈ Aout , such that s

σ⇒ and
∑

i di ≥ t. Thus S will
not block time in any input enabled environment. This property ensures that a
system will not force or rush its environment to deliver an input, and vice versa,
the environment will never force outputs from the system. Time is common for
both the system and its environment, and neither controls it.

To model potential implementations it is useful to define the properties of
isolated outputs and determinism. S is deterministic if for all delays or actions
α ∈ Aτ ∪ R≥0, and all states s, whenever s

α−→ s′ and s
α−→ s′′ then s′ = s′′. That

is, the successor state of an action is always uniquely known.
We say that S has isolated outputs if whenever s

o−→ for some output action

o, then s � τ−→ and s � d−→ for all d > 0 and whenever s
o′
−→ then o′ = o. A system

with isolated outputs will only offer one output at a time, and will never retract
an offered output by performing internal actions or delays.

Finally, a TIOTS exhibits output urgency iff whenever an output (or τ) is
enabled, it will occur immediately, i.e., whenever s

α−→, α ∈ Aout ∪ {τ} then

Testing Real-Time Systems Using UPPAAL 83

s � d−→, d ∈ R≥0. An output urgent system will deliver the output immediately
when ready.

An observable timed trace σ ∈ (A∪R≥0)∗ is of the form σ = d1a1d2 . . . akdk+1.
We define the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)∗ | s σ⇒} (1)
For a state s (and subset S′ ⊆ S) and a timed trace σ, s After σ is the set of

states that can be reached after σ:
s After σ = { s′ | s

σ⇒ s′ }, S′ After σ =
⋃

s∈S′

s After σ (2)

The set Out
(
s
)

of observable outputs or delays from states s ∈ S′ ⊆ S is defined
as: Out

(
s
)

= { a ∈ Aout ∪ R≥0 | s
a⇒ }, Out

(
S′) =

⋃

s∈S′

Out
(
s
)

(3)

TIOTS Composition. Let S = (S, s0, Ain , Aout , −→) and E = (E, eo, Aout , Ain ,
−→) be TIOTSs. Here E is the set of environment states and the set of input
(output) actions of E is identical to the output (input) actions of S. The parallel
composition of S and E forms a closed system S ‖ E whose observable behavior
is defined by the TIOTS (S × E, (s0, e0), Ain , Aout , −→) where −→ is defined as

s
a−→ s′ e

a−→ e′

(s, e) a−→ (s′, e′)

s
τ−→ s′

(s, e) τ−→ (s′, e)

e
τ−→ e′

(s, e) τ−→ (s, e′)

s
d−→ s′ e

d−→ e′

(s, e) d−→ (s′, e′)
(4)

2.3 Timed Automata

Timed automata [2] is an expressive and popular formalism for modelling real-
time systems. Essentially a timed automaton is an extended finite state machine
equipped with a set of real-valued clock-variables that track the progress of time
and that can guard when transitions are allowed.

Formal Definition of Timed Automata. Let X be a set of R≥0-valued vari-
ables called clocks. Let G(X) denote the set of guards on clocks being conjunc-
tions of constraints of the form x �� c, and let U(X) denote the set of updates
of clocks corresponding to sequences of statements of the form x := c, where
x ∈ X , c ∈ N, and �� ∈ {≤, <, =, >, ≥}. A timed automaton over (A, X) is a
tuple (L, �0, I, E), where

– L is a set of locations, �0 ∈ L is an initial location,
– I : L → G(X) assigns invariants to locations, and
– E is a set of edges such that E ⊆ L × G(X) × Aτ × U(X) × L.

We write �
g,α,u−−−−→ �′ iff (�, g, α, u, �′) ∈ E.

The semantics of a TA is defined in terms of a TIOTS over states of the form
s = (�, v̄), where � is a location and v̄ ∈ R

X
≥0 is a clock valuation satisfying the

invariant of �. Intuitively, a timed automaton can either progress by executing
an edge or by remaining in a location and letting time pass:

∀d′ ≤ d. I�(d′)

(�, v̄) d−→ (�, v̄ + d)

�
g,α,u−−−−→ �′ ∧ g(v̄) ∧ I�′(v̄′), v̄′ = u(v̄)

(�, v̄) α−→ (�′, v̄′)
(5)

84 A. Hessel et al.

In delaying transitions, (�, v̄) d−→ (�, v̄ + d), the values of all clocks of the
automaton are incremented by the amount of the delay d, denoted v̄ + d. The
automaton may delay in a location � as long as the invariant I� for that location
remains true. Discrete transitions (�, v̄) α−→ (�′, v̄′) correspond to execution of
edges (�, g, α, u, �′) for which the guard g is satisfied by v̄, and for which the
invariant of the target location I�′ is satisfied by the updated clock valuation
v̄′. The target state’s clock valuation v̄′ is obtained by applying clock updates u
on v̄.

Uppaal Timed Automata. Throughout this chapter we use Uppaal syntax
to illustrate TA, and the figures are direct exports from Uppaal. Uppaal al-
lows construction of large models by composing timed automata in parallel and
lets these communicate using shared discrete and clock variables and synchro-
nize (rendezvous-style) on complementary input and output actions, as well as
broadcast actions.

Initial locations are marked using a double circle. Edges are by convention
labeled by the triple: guard, action, and assignment in that order. The internal
τ -action is indicated by an absent action-label. Committed locations are indi-
cated by a location with an encircled “C”. A committed location must be left
immediately by the next transition taken in the system. An urgent location (en-
circled “U”) must be left without letting time pass, but allows interleaving by
other automata. Finally, bold-faced clock conditions placed under locations are
location invariants. In addition to clocks, Uppaal also allows integer variables
to be used in guards and assignments.

The latest version further supports a safe subset of C-code in assignments and
guards, and C-data-structures.

Example 1. Fig. 3 shows a TA modelling the behavior of a simple light-controller.
The user interacts with the controller by touching a touch sensitive pad. The light
has three intensity levels: OFF, DIMMED, and BRIGHT. Depending on the timing

off!

touch?

bright!

off!

dim!

touch?

touch?

touch?

touch?

touch?
bright!

dim!
dim2

bright2

off1

bright1

x<Tsw

DIMOFF

dim1

BRIGHT

off2

x=0

x<Tidle

x=0

x>=Tidle

x<Tsw

x=0

x=0

x=0

x=0

x>=Tsw

x>=Tsw

Fig. 3. Light Controller

Testing Real-Time Systems Using UPPAAL 85

between successive touches (recorded by the clock x), the controller toggles the
light levels. For example, in dimmed state, if a second touch is made quickly
(before the switching time Tsw = 4 time units) after the touch that caused the
controller to enter dimmed state (from either off or bright state), the controller
increases the level to bright. Conversely, if the second touch happens after the
switching time, the controller switches the light off. If the light controller has
been in off state for a long time (longer than or equal to Tidle = 20), it should
reactivate upon a touch by going directly to bright level.

The simple light controller can perform the execution sequence (OFF, x =
0) 5−→ (OFF, x = 5) touch?−−−−→ (dim1, x = 0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x =

3.14) touch?−−−−→ (bright2, x = 0)
bright!−−−−→ (BRIGHT, x = 0) resulting in the observ-

able trace σ = 5 · touch? · dim! · 3.14 · touch! · bright !. Note that {(OFF, x =
0)} After σ = {(BRIGHT, x = 0)}, Out

(
{(OFF, x = 0)} After σ

)
= R≥0, but

Out
(
(bright2, x = 0)

)
= {bright !} ∪ {0}.

dim?

off?

bright?

z=0

z>=Treact

touch!

touch!

z=0 off?

touch!touch!

bright?

dim?

z>=Tpause and t==2z>=Treact and t<2

touch!

t=1,
z=0

z=0,
t=t+1

z=0,
t=t+1

(a) (b)

Fig. 4. Two possible environment models for the simple light switch

Figure 4 shows two possible environment models for the simple light controller.
Figure 4(a) models a user capable of performing any sequence of touch actions.
When the constant Treact is set to zero he is arbitrarily fast. A more realistic user
is only capable of producing touches with a limited rate; this can be modeled
setting Treact to a non-zero value. Figure 4(b) models a different user able to
make two quick successive touches (counted by integer variable t), but which
then is required to pause for some time (to avoid cramp), e.g., Tpause = 5.

The TA shown in Figure 3 and Figure 4 respectively can be composed in
parallel on actions Ain = {touch} and Aout = {off, dim, bright} forming a closed
network (to avoid cluttering the figures we may sometimes omit making them
explicitly input enabled; for the unspecified inputs there is a non-drawn self
looping edge that merely consumes the input without changing the location).

Example 2. Figure 5(a) shows a timed automaton specification Cr for a controller
whose goal is to control and keep the room temperature in Med range by turning
On and Off the room cooling device. The controller is required: 1) to turn On
the cooling device within an allowed reaction time r when the room temperature
reaches High range, and 2) to turn it Off within r when the temperature drops to
Low range. Observe how location invariants are used to force the automaton to

86 A. Hessel et al.

Med?High?

Off!

High?

Med?

Low?

Low?

On!

Low?
Med?

Low?

Med?

High?

x<=r x<=r

x=0

x=0

off

on

updn

Med?

High?

x=0

Med?

x=0x=0

x=0

x=0x=0

(a) Cr: simple cooling controller with reaction time r.

Off?

On?

(b) EL.

Med!

High!

On?

Low!

Off?

(c) EM .

High!

Med!

Off?

Med!

Low!

Off?

On?

On?Off? L

y>=d

y>=d

M

H On?

y=0

y=0

y>=d

y=0

y>=d

y=0

(d) Ed
1 .

Med!

High!

Off?

On?

On?

Med!

Low!
y=0

Off?

On?

Off?OffHigh

OffMed

y<=s

y<=s

OnHigh

OffLow

OnMed

OnLow

y=0

y>=d

y>=d y>=d

y=0

y=0

y<=s
y>=d

y<=s

(e) Ed,step
2 .

Fig. 5. Timed automata of simple controller and various environments

leave the dn and up locations before the reaction time has elapsed, in consequence
producing the output at some time before the required reaction time. When the
room temperature is medium the cooling is allowed to be either on or off.

This specification is non-deterministic in two ways. First, there are several
next states to a Med temperature, e.g.,

{(off, x = 0)} After 5 · Med? = {(off, x = 5), (up, x = 0)}. (6)

Second, the controller switches state within the reaction time r, but it is
unknown when. Thus from e.g., state (up, x = 0) the controller may execute any
of the observable traces, d · On!, 0 ≤ d ≤ r. Note that

Out
(
(up, x = 0)

)
= {On!} ∪ {d | 0 ≤ d ≤ r}. (7)

The intention of this specification (given our conformance relation) is to allow
implementation freedom to the manufacturer wrt. exact functionality, speed,
timing tolerances, etc..

The Uppaal Tool. In the Uppaal tool it is possible to edit, simulate and
check properties of Uppaal timed automata in a graphical environment. The

Testing Real-Time Systems Using UPPAAL 87

property specification language supports safety, liveness, deadlock, and response
properties.

In this chapter we use the Uppaal tool for offline test generation by expressing
the test case generation problem as a safety property that can be solved by
reachability analysis. Safety properties are used to expresses requirements of the
form “the model can never reach an undesired state”. The dual properties like
“the system can reach a desired state”, are usually referred to as reachability
properties.

When checking a safety property, the Uppaal tool performs symbolic reach-
ability analysis of the network of timed automata to search for reachable states
where the property is satisfied (or not satisfied). If a state that satisfies the prop-
erty is found, Uppaal generate a diagnostic traces witnessing a submitted safety
property. Currently Uppaal supports three options for diagnostic trace genera-
tion: some trace leading to the goal state, the shortest trace with the minimum
number of transitions, and fastest trace with the shortest accumulated time delay.
The underlying algorithm used for finding time-optimal traces is a variation of
the A∗-algorithm [5,39]. Hence, to improve performance it is possible to supply a
heuristic function estimating the remaining cost from any state to the goal state.

To perform reachability analysis of (densely) timed automata Uppaal uses
a (finite) symbolic representation of the state space and symbolic computation
steps.

A symbolic state is of the form (�, D), where � is a control location of a timed
automaton and D is a convex subset of R

|X|
≥0 , i.e. it represents the (potentially

infinite) set of concrete states {(�′, v̄) | �′ = �∧ v̄ ∈ D}. The initial symbolic state
is (�0, D0), where D0 = { v̄ | (�0, v̄0)

d−→ (�0, v̄) } and v̄0 is the clock valuation
assigning all clocks to zero.

A symbolic computation step (�, D) α−→ (�′, D′) consists of performing an action
followed by some delay, and can be performed iff (�, v̄) α−→ (�′, v̄′), and
D′ =

{
v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D

}
.

It is possible to represent a convex subset D as a so-called difference bounded
matrix [21] that can be efficiently manipulated by constraint-solving techniques
[53], implemented as model-checking tools such as Uppaal and Kronos [20].

3 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion
derives from the input/output conformance relation (ioco) of Tretmans and de
Vries [58, 63] by taking time and environment constraints into account. Under
assumptions of weak input enabledness our relativized timed conformance rela-
tion (denoted rtiocoe) coincides with relativized timed trace inclusion. Like ioco,
this relation ensures that the implementation has only the behavior allowed by
the specification. In particular, 1) it is not allowed to produce an output at a
time when one is not allowed by the specification, 2) it is not allowed to omit
producing an output when one is required by the specification.

88 A. Hessel et al.

The ioco relation operates with the concept of quiescence allowing (eternal)
absence of outputs to be observed by means of a finite time out, and be equalized
with a special observable action, resulting in a more discriminating relation. It
is debatable whether the same abstraction is reasonable in real-time systems.
Briones et al. have proposed relations that allows this [12], see also the discussion
in Section 6.1. Our relation takes the view that only finite progress of time can be
observed in a real-time system. Thus, rtiocoe offers the notion of time-bounded
(finite) quiescence, that—in contrast to ioco’s conceptual eternal quiescence—
can be observed in a real-time system.

Formal Definition of rtiocoe. Let S = (S, s0, Ain , Aout , −→) be an weak-input
enabled and non-blocking TIOTS. An environment for S is itself a weak-input
enabled and non-blocking TIOTS E = (E, eo, Aout , Ain , −→) with reversed inputs
and outputs.

Given an environment e ∈ E the e-relativized timed input/output confor-
mance relation rtiocoe between system states s, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(
(s, e) After σ

)
⊆ Out

(
(t, e) After σ

)

Whenever s rtiocoe t we will say that s is a correct implementation (or re-
finement) of the specification t under the environmental constraints expressed
by e. Under the assumption of weak input-enabledness of both S and E we may
characterize relativized conformance in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp.,
then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ⇒

but t � σ⇒. Given the notion of relativized conformance it is natural to consider
the preorder on environments based on their discriminating power, i.e. for envi-
ronments e and f :

e � f iff rtiocof ⊆ rtiocoe (8)

(to be read f is more discriminating than e). It follows from the definition of
rtioco that e � f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) dis-
criminating (weakly) input enabled and non-blocking environment U (O) given
by TTr(U) = (A ∪ R≥0)∗

(
TTr(O) = (Aout ∪ R≥0)∗

)
. The corresponding con-

formance relation rtiocoU (rtiocoO) specializes to simple timed trace inclusion
(timed output trace inclusion) between system states.

Moreover, because we treat environment constraints explicitly and separately,
rtiocoe has some nice theoretical and practical attractive properties that allows
the tester to re-use testing effort if either the environment assumption is strength-
ened, or if the system specification is weakened. Assume that i rtiocoe s, then
without re-testing

if s � s′ then i rtiocoe s′ (9)

if e′ � e then i rtiocoe′ s (10)

Testing Real-Time Systems Using UPPAAL 89

In the following we exemplify how our conformance relation discriminates sys-
tems, and illustrate the potential power of environment assumptions and how this
can help to increase the relevance of the generated tests for a given environment.

Example 3. Consider the simple cooling controller Cr of Figure 5(a), where r is
a parameter r with its reaction time, and the environment in Figure 5(c).

Take C10 to be the specification and assume that the implementation behaves
like C12. Clearly, C8 rtiocoEM C6 because σ = 0 · Med ! · 7 · On! ∈ TTr(C8), but
σ �∈ TTr(C6), or alternatively, Out

(
C8 After 0 · Med ! · 7

)
= {On!} ∪ R≥0 �⊆

Out
(
C6 After 0 · Med ! · 7

)
= R≥0 (recall that Cr may remain in location off on

input Med and not produce any output). The implementation can thus perform
an output at a time not allowed by the specification.

Next, suppose Cr is implemented by a timed automaton C′r equal to Cr, except
the transition up Low−−−→ dn is missing, and replaced by a self loop up Low−−−→ up.

They are distinguishable by the timed trace 0·Med?·0·High?·0· Low?·0· On!
in the implementation that is not in the specification (switches the compressor
Off instead).

Example 4. Figure 5(c) shows the universal (most general) and completely un-
constrained environment EM where room temperature may change unconstrained
and may change (discretely) with any rate. This may not be realistic in the given
physical environment, and there may be less need to test the controller in such
an environment, as temperature normally evolves slowly and continuously, e.g., it
cannot change drastically from Low to High and back unless through Med. Sim-
ilarly, most embedded and real-time systems also interact with physical environ-
ments and other digital systems that— depending on circumstances—can be as-
sumed to be correct and correctly communicate using well defined interfaces and
protocols.

Figures 5(b) to 5(e) show four possible environment assumptions for Cr.
Figure 5(c) and Figure 5(b) shows respectively the most discriminating and
least discriminating environments. Figure 5(d) shows the environment model Ed

1
where the temperature changes through Med range and with a speed bounded
by d. Figure 5(e) shows an even more constrained environment Ed,s

2 that assumes
that the cooling device works, e.g., temperature changes with an upper and lower
speed bounded by d and s.

Notice that E2 and E1 have less discriminating power and thus may not reveal
faults found under more discriminating environments. However, if the erroneous
behavior is impossible in the actual operating environment the error may be
irrelevant. Consider again the implementation C′r from above. This error can be
detected under E0 and Ek

1 if k = 3d and r > k, via the timed trace that respects
d·Med?·d·High?·d·Med?·d·Low?·ε· On!, ε ≤ r. The specification would produce
Off. The error cannot be detected under E1 if it is too slow 3d > r, and never
under E2 for no value of d.

In the extreme the environment behavior can be so restricted that it only
reflects a single test scenario that should be tested. In our view, the environment
assumptions should be specified explicitly and separately.

90 A. Hessel et al.

4 Offline Test Generation

In this section, we describe an offline test generation approach for real-time
systems specified as timed automata. In order to specify that a certain level of
thoroughness is achieved in the testing we shall require that a generated test
suite satisfies a given coverage criterion. For untimed systems coverage criteria
have been studied by researchers for many years, and a number specific coverage
criteria have been proposed in the literature, including [45,52,14,15,17,26,41,51,
49, 23, 54]. In comparison, research in real-time coverage criteria is still a more
immature area where not many general results are available. Therefore, most
of the coverage criteria and test generation techniques described in this section
were originally proposed for testing of untimed systems. However, they can often
be adopted for the domain of real-time system. For example, the well-known all-
definitions use-pair coverage criterion [26,41] (described in Sections 4.2 and 4.3),
can be applied to definitions and uses of timers, as well as data variables.

We will see in Section 4.2 how test case generation can be performed by
reformulating the problem as a model-checking problem that can be solved by
a model-checking tool like Uppaal. This will require that the original system is
annotated with variables that are needed to formulate the test case generation
problem as a model-checking problem. For intricate coverage criteria, it can be
cumbersome to find and manually do the right model annotations. The auxiliary
variables also add extra complexity to the timed automata model. In Section 4.3
we present a formal language to specify coverage criteria and we review an
algorithm which handles the extra information directly in the algorithm. In this
way the process becomes more user friendly, and the coverage information can
be dealt with more efficiently using a bit-vector representation.

In order to make offline test case generation applicable to timed automata
specifications, we shall assume that the underlying TIOTS is deterministic,
weakly input enabled, output urgent, with isolated outputs as defined in Section
2.2. This means that the S is assumed to react deterministically to any input
provided, and will always be able to accept input from the test case. At any
state, the S is also assumed to always have at most one output action that will
occur immediately.

Further, as discussed in Section 2, we shall assume that the test specification
is given as a closed network of TA that can be partitioned into one subnetwork
S specifying the required behavior of the IUT, and one subnetwork E modelling
the behavior of its intended environment RealENV, as depicted in Fig. 2.

4.1 Test-Case Generation by Model-Checking

When generating test cases by model-checking, the idea is to formulate the prob-
lem as a reachability problem that can be solved with an existing model-checking
tool. As mentioned, we will use the Uppaal tool introduced in Section 2.3 to
perform reachability analysis of timed automata. More precisely, we shall use a
boolean combination of comparisons between integer constants and variables in
the model to characterise a desired state to be reached.

Testing Real-Time Systems Using UPPAAL 91

In Section 4.2, we will describe in more details how Uppaal’s ability to pro-
duce traces witnessing a posed reachability property can be used to produce
test cases for a given test purpose or coverage criteria. First, we describe how
diagnostic traces can be interpreted as test cases.

From Diagnostic Traces to Test Cases. Let A be a TA composition of an
IUT model S and a model E of its intended environment RealENV. A diagnostic
trace produced by Uppaal for a given reachability question on A demonstrates
the sequence of moves to be made by each of the system components and the
required clock constraints needed to reach the target location. A (concrete) di-
agnostic trace will have the form:

(s0, e0)
γ0−→ (s1, e1)

γ1−→ (s2, e2)
γ2−→ · · · (sn, en)

where si, ei are states of the S and E , respectively, and γi are either time-delays
or synchronization (or internal) actions. The latter may be further partitioned
into purely S or E transitions (hence invisible for the other part) or synchronizing
transitions between the IUT and the RealENV (hence observable for both parties).

A test sequence is an alternating sequence of concrete delay actions and ob-
servable actions. From the diagnostic trace above a test sequence, λ ∈ Ain∪Aout∪
R≥0, may be obtained simply by projecting the trace to the E-component, while
removing invisible transitions, and summing adjacent delay actions. Finally, a
test case to be executed on the real IUT implementation may be obtained from
λ by the addition of verdicts.

First note that with the assumptions made on the underlying TIOTS made
above, the conformance relation specializes to timed trace inclusion, as discussed
in Section 3. Thus, after any input sequence, the implementation is allowed to
produce an output only if the specification is also able to produce that output.
Similarly, the implementation may delay (thereby staying silent) only if the
specification also may delay. The test sequences produced by our techniques are
derived from diagnostic traces, and are thus guaranteed to be included in the
specification.

To clarify the construction we may model the test case itself as a TA Aλ for
the test sequence λ. Locations in Aλ are labelled using two distinguished labels,
PASS and FAIL. The execution of a test case is now formalized as the composition
of the test case automaton Aλ and IUT AI .

IUT passes λ iff Aλ ‖ AI �−→∗ FAIL

Aλ is constructed such that a complete execution terminates in a FAIL state
if the IUT cannot perform λ and such that it terminates in a PASS state if the
IUT can execute all actions of λ. The construction is illustrated in Figure 6.

4.2 Coverage-Based Test Case Generation

We shall see how test cases satisfying a given coverage criterion can be generated
by model-checking. A common approach to the generation of test cases is to first

92 A. Hessel et al.

o_1?

o_n?

o_0?

i_0!

z=0

o_0?

PASS
FAIL

FAIL

FAIL

z=0

z==delay

z<=delayz<delay

z<=0

Fig. 6. Test case automaton for the sequence i0! · delay · o0?

manually formulate a set of informal test purposes and then to formalize these
such that the model can be used to generate one or more test cases for each test
purpose.

Test Purposes. A test purpose is a specific test objective (or property) that
the tester would like to observe on the IUT. We will formulate the test purpose
as a property that can be checked by reachability analysis of the combined E
and S model. Different techniques can be used for this purpose. Sometimes the
test purpose can be directly transformed into a simple model-checking property
expressed as a boolean combination of automata locations. In other cases it may
require decoration of the model with auxiliary flag variables. Another technique
is to replace the environment model with a more restricted one that matches the
behavior of the test purpose only.

Example 5. We exemplify these two approaches using the following two test
purposes expressing test objectives of the simple light controller in Example 1.

TP1: Check that the light can become bright.
TP2: Check that the light switches off after three successive touches.

The test purpose TP1 can be formulated as a simple reachability property
requiring that eventually the lightContoller can enter location BRIGHT. Gen-
erating the shortest diagnostic trace results in the test sequence:

off? dim? bright?bright?off? dim? dim?

z>=Treact and z<Tsw z>=Treact and z<Tsw

z=0

z<Tsw

goal

bright?

touch!touch! touch! off?
z=0 z=0

Fig. 7. Test Environment for TP2

Testing Real-Time Systems Using UPPAAL 93

20 · touch! · 0 · bright?

However, the fastest sequence satisfying the test purpose is

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?

The test purpose TP2 can be formulated by a reachability property requiring
that a location in a specific environment automaton can be reached. In Figure 7
an environment automaton tpEnv for TP2 is shown. The automaton restricts
the possible user input so that there is at least Treact time units in between
two consecutive touches. The fastest test sequence satisfying the test purpose is:

0 · touch! · 0 · dim? · Treact · touch! · 0 · bright? · Treact · touch! · 0 · off ?

Coverage Criteria. Often the tester is interested in creating a test suite that
ensures that the specification or implementation is covered in a certain way. This
ensures that a certain level of thoroughness has been achieved in the test gener-
ation process. Here we explain how test sequences with guaranteed coverage of
the IUT model can be computed by model-checking, effectively giving automated
tool support.

A large suite of coverage criteria have been proposed in the literature, such
as statement, transition, and definition-use coverage, each with its own merits
and application domain. We explain how to apply some of these to TA models
(more coverage criteria will be introduced in Section 4.3).

Edge Coverage: A test sequence satisfies the edge-coverage criterion [45] if,
when executed on the model, it traverses every edge of the selected TA-
components. Edge coverage can be formulated as a reachability property in
the following way: add an auxiliary variable ei of type boolean (initially false)
for each edge to be covered (typically realized as a bit array in Uppaal),
and add to the assignments of each edge i an assignment ei := true; a test
suite can be generated by formulating a property requiring that a state can
be reached in which all ei variables are true, i.e., (e0==true ∧ e1==true ∧
. . .∧en==true). The auxiliary variables are needed to enable formulation of
the coverage criterion as a reachability property using the Uppaal property
specification language which is a restricted subset of timed computation tree
logic (TCTL) [3].

Location Coverage: A test sequence satisfies the location-coverage criterion
[45] if, when executed on the model, it visits every location of the selected TA-
components. To generate test sequences with location coverage, we introduce
an auxiliary variable bi of type boolean (initially false for all locations except
the initial) for each location �i to be covered. For every edge with destination
�i: �′

g,a,u−−−−→ �i add to the assignments u bi:=true; the reachability property
will then require all bi variables to be true.

Definition-Use Pair Coverage: The definition-use pair criterion [17] is a
data-flow coverage technique where the idea is to cover paths in which a
variable is defined, i.e. appears in the left-hand side of an assignment, and
later is used, i.e. appears in a guard or the right-hand side of an assignment.

94 A. Hessel et al.

We use (v, ed, eu) to denote a definition-use pair (DU-pair) for variable
v if ed is an edge where v is defined and eu is an edge where v is used. A
DU-pair (v, ed, eu) is valid if eu is reachable from ed and v is not redefined in
the path from ed to eu. A test sequence covers (v, ed, eu) iff (at least) once
in the sequence, there is a valid DU-pair (v, ed, eu). A test sequence satisfies
the (all-uses) DU-pair coverage criterion of v if it covers all valid DU-pairs
of v.

To generate test sequences with definition-use pair coverage, we assume
that the edges for a model are enumerated, so that ei is the number of edge
i. We introduce an auxiliary data-variable vd (initially false) with value
domain {false} ∪ {1 . . . |E|} to keep track of the edge at which variable v
was last defined, and a two-dimensional boolean array du of size |E| × |E|
(initially false) to store the covered pairs. For each edge ei at which v is
defined we add vd := ei, and for each edge ej at which v is used we add the
conditional assignment if (vd �= false)then du[vd, ej] := true. Note that if v
is both used and defined on the same edge, the array assignment must be
made before the assignment of vd.

The reachability property will then require all du[i, j] representing valid
DU-pairs to be true for the (all-uses) DU-pair criterion. Note that a test
sequence satisfying the DU-pair criterion for several variables can be gener-
ated using the same encoding, but extended with one auxiliary variable and
array for each covered variable.

Example 6. The light switch in Figure 3 requires a bit-array of 12 elements (one
per edge). When the environment can touch arbitrarily fast the generated fastest
edge covering test sequence has the accumulated execution time 28. The solution
(there might be more traces with the same fastest execution time) generated by
Uppaal is:

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?·
0 · touch! · 0 · off ? · 20 · touch! · 0 · bright?·

4 · touch! · 0 · dim? · 4 · touch! · 0 · off ?

4.3 Test Case Generation Using Observers

As described in the previous section, it is in principle possible to generate test
cases by annotating Uppaal timed automata with auxiliary variables, and solve
the problem by reachability analysis. However, for more intricate coverage cri-
teria it can be cumbersome and very time-consuming to find the proper model
annotations. Another problem with using model-checking algorithms and tools
to generate test cases is that they are not really tailored for the problem, which
may lead to problems with performance.

In this section, we shall present another approach to offline test case generation
for real-time systems modeled as timed automata. Instead of using model anno-
tations and reachability properties to specify coverage criteria, we shall present
a language of observers as a generic and formal specification language for cov-
erage criteria. We shall further see how to adapt a model-checking algorithm to

Testing Real-Time Systems Using UPPAAL 95

internally handle information about coverage, so that test-case generation can
be performed in a more efficient way.

The observers presented here are based on the notion of observers described by
Blom et.al., in [7]. In their setting, observers are used to express coverage criteria
of test cases generated from system specification described as extended finite
state machines (EFSMs). In this section, we shall review their work and adapt
the results to our setting, i.e., for timed automata specifications of real-time
systems. We first describe how observers are used to specify coverage criteria.

The Observer Language. As we have seen, a coverage criterion typically
consists of a (rather large) set of items that should be “covered” or examined
by the test suite. The set of items to be covered is derived from a more general
criterion, requiring that some property ψ should be fulfilled, where ψ is a logical
property characterizing the items to be covered. For example, ψ could be satisfied
for all locations or edges of a model, to characterize the location of edge coverage
criteria mentioned in the previous section. In the following, we will use the term
coverage item for an item satisfying ψ, and assume that a coverage criterion is
to cover as many coverage items ψ as possible of a model.

Using standard techniques from model-checking and run-time verification it is
possible to represent a coverage item by an observer that monitors how a timed
automaton executes. Whenever a coverage item characterized by the observer
is fulfilled, the observer will “accept” the trace. We shall assume that an ob-
server can observe the actions in a trace of an automaton, and also other details
about the timed automata performing the action, such as the source and tar-
get locations, and the values of its state variables. This will make it possible to
characterise a wide range of coverage criteria as observers.

Formally, an observer of a timed automaton S = (L, �0, I, E) is a tuple
(Q, q0, Qf , B) where

– Q is a finite set of observer locations
– q0 is the initial observer location.
– Qf ⊆ Q is a set of accepting observer locations.
– B is a set of edges, each of form q

b−→ q′ where q, q′ ∈ Q and b is a predicate
that depend on the S transition (�, v̄) α−→ (�′, v̄′). The evaluation of b can
depend on an input/output action α, and/or the syntactic edge �

g,α,u−−−−→ �′

the S transition is derived from.1

In many cases, the initial location q0 has an edge to itself with the predicate
true. We use the symbol • to represent q0 together with such a self-loop. Simi-
larly, we assume that each qf ∈ Qf has an edge to itself with the predicate true.
We use the symbol � to represent accepting locations. Intuitively, the loop in q0
is often used to allow the observer to “non-deterministically” start monitoring
at any point in a timed trace. The loop in each qf is used to allow an observer
to stay in an accepting location.
1 For Uppaal timed automata extended by variables, b can also depend on the vari-

ables.

96 A. Hessel et al.

loc(up)

q0

target loc(up)

Fig. 8. An observer for location coverage of location up

Example 7. As a very simple example, consider the observer shown in Figure 8
characterizing the coverage item “visit location up of the automaton”. It has an
initial location q0 and an accepting location loc(up). The predicate target loc(up)
is satisfied when location up is reached in the monitored timed automata. Hence,
the observer could e.g., be used to express that location up should be covered in
automaton Cr of Figure 5.

Intuitively, observers have the following semantics: At any specific instant an
observer operates in one or serveral of its locations, say Qi ⊆ Q. At each transi-
tion, the observer traverses all outgoing edges from each location q ∈ Qi, whose
predicates are satisfied (enabled) due to the monitored transition of S. Note that
more than one (or none) of the outgoing edges can be enabled. Thus the possible
successors of a single location q can be zero or more locations. This means that,
if there is a path to an accepting location qf , that can be reached by choosing
the “right” enabled edge after each transition of S, the observer will find that
path, like a non-deterministic automaton would do. In that sense, an observer
will monitor and find all possible coverage items. Later in this section, we will
define formally how observers monitor coverage criteria.

Since, a coverage criterion typically stipulates that a set of coverage items
should be covered, the notion of observers is extended with a parameterization
mechanism so that they can specify a set of coverage items. Parameterized ob-
servers are observers, in which locations and edges may have parameters that
range over given domains. Each possible instantiation of a parameter gives a cer-
tain observer location or edge. For each specified coverage item, the observer has
an accepting (possibly parameterized) location which (for convenience) is given
the name of the corresponding coverage item. When the accepting location is
reached, the trace has covered the corresponding coverage item.

Example 8. The coverage criterion “visit all locations of Cr” can be represented
by a parameterized observer with one initial state, and one parameterized ac-
cepting location, named loc(L), where L is a parameter that ranges over locations
in automaton Cr. For each value � of L, the location loc(�) is entered when the
automaton enters location �. A parameterized observer for location coverage is
shown in Figure 9(a).

Without loss of generality we will, in the following description of observers, use
a single timed automaton corresponding to the TIOTS S in Section 2. Internal
actions of the E will not affect the observer and the extension to a network of
timed automata is straight forward.

Testing Real-Time Systems Using UPPAAL 97

How Observers Monitor Coverage Criteria. In test case generation an
observer observes the transitions of the timed automaton monitored. Reached
accepting locations correspond to covered coverage items. We formally define the
execution of an observer in terms of a composition between a timed automaton
and an observer, which has the form of a superposition of the observer onto the
timed automaton. Each state of this superposition consists of a state of the timed
automaton, together with a set of currently occupied observer locations.

If a predicate b on an observer edge is satisfied by a timed automaton transi-
tion (�, v̄) α−→ (�′, v̄′) we write (�, v̄) α−→ (�′, v̄′) |= b. Formally, the superposition
of an observer (Q, q0, Qf , B) onto a timed automaton S is defined as follows:

– States are of the form 〈(�, v̄)|Q〉, where (�, v̄) is a state of the timed automa-
ton, and Q is a set of locations of the observer.

– The initial state is the tuple 〈(�0, v̄0)|{q0}〉, where (�0, v̄0) is the initial state
of the timed automaton, and q0 is the initial location of the observer.

– A computation step is defined by the following two rules
• 〈(�, v̄)|Q〉 α

� 〈(�′, v̄′)|Q′〉 if (�, v̄) α−→ (�′, v̄′) and
Q′ =

{
q′ | q

b−→ q′ and q ∈ Q and (�, v̄) α−→ (�′, v̄′) |= b
}

• 〈(�, v̄)|Q〉 d
� 〈(�, v̄′)|Q〉 if (�, v̄) d−→ (�, v̄′)

– A state 〈(�, v̄)|Q〉 of the superposition covers the coverage item represented
by the location qf ∈ Qf if qf ∈ Q.

Note that the way the set Q is updated essentially results in an (on-the-fly)
subset construction of the parameterized observer. Initially, Q contains only the
initial observer location q0. In the subsequent computation steps, Q contains the
set of all occupied observer locations, representing already covered and partially
covered coverage items. In each discrete action step, the set of occupied observer
locations Q′ is obtained by generating all possible successors to the locations in
Q, i.e. all q′ such that there exists a q ∈ Q and an edge q

b−→ q′ ∈ B with b
satisfied by the computation step of the timed automaton. The observer set Q
is not affected by delay transitions, indicating that the the notion of observers
presented in this chapter can not observe time delays.

Both the initial and all accepting observer locations (most commonly) have
implicit self-loops with predicate true. This means that in the superposition of
the observer onto a timed automaton, the initial observer location q0 is always
occupied and all reached accepting observer locations (representing covered cov-
erage items) are guaranteed to remain in Q. As mentioned before, The fact that
q0 is always occupied can be intuitively understood as allowing for the observer
to non-deterministically start monitoring a timed automaton (or an IUT) at any
computation step of a run (or at any point during test execution).

Example 9. Figure 9 shows observers specifying a number of coverage criteria
described in the literature [17].

98 A. Hessel et al.

¬def (Y)

q0

da(X, Y) ∧ edge(E)

q1(X, Y, E)

q0

(e)

(c)

¬def (X)

q0

q1(X, E)

edge cov(E)

q0

affect pair(X, E, Z, E′)

du(X, E, E′)

(b)

all def (E)

use(X)

¬def (X)

def (X) ∧ edge(E)

q1(X, E)

q0

loc(L)

(a)

(d)

target loc(L) edge(E) def (X) ∧ edge(E)

use(X) ∧ edge(E′)

da(Y, Z) ∧ edge(E′)

Fig. 9. Five examples of coverage criteria expressed as observers

The all-locations [45] coverage criteria is specified by the observer shown in
Figure 9(a), where the parameter L is any location in a timed automaton (if
restricted to one automaton). If the observer is superposed onto a TIOTS con-
sisting of the timed automaton Cr in Figure 5, we have that L = {on, dn, off , up}
and the edge of the parameterized observer represents one edge for each location
in the automaton Cr i.e. an edge guarded by target loc(on) with target location
loc(on) etc. Here target loc(L) is a predicate which evaluates to true if the ob-
server monitors an edge of the timed automaton Cr with the target location L.
The set of possible coverage items is thus {loc(on), loc(dn), loc(off), loc(up)}.

The all-edges [45] coverage observer in Figure 9(b) is similar to the all-location
coverage observer. Here edge(E) is a predicate which evaluates to true if the
observer monitors edge E of the timed automaton Cr. The edges of the timed
automaton Cr in Figure 5 are E={e0 , . . . , e15}2, and thus the set of possible
coverage items when the observer is superposed onto the timed automaton is
{edge cov (ei) | ei ∈ E }.

The all-definition use-pairs (all-uses [17], reach coverage [26, 41]) coverage
observer is shown in Figure 9(c). It uses the two predicates def (X) and use(X)
that are true if X is defined and used on the monitored edge, respectively (as
defined in Section 4.2). The observer has an accepting location du(X, E, E′), where
X is a variable name, E is an edge on which X is defined, and E′ an edge on which
X is used. Variable X may not be redefined in the trace between E and E′. If the

2 We assume that the edges can be referred to by indexes 0 to 15.

Testing Real-Time Systems Using UPPAAL 99

observer monitors the execution sequence (OFF, x = 0) 5−→ (OFF, x = 5) touch?−−−−→
(dim1, x = 0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x = 3.14) touch?−−−−→ (bright2, x =

0)
bright!−−−−→ (BRIGHT, x = 0) of the timed automaton in Figure 3 the only covered

coverage item is du(x , OFF
touch?−−−−→ dim1, DIM

touch?−−−−→ bright2).
The all-definitions [51] coverage observer of Figure 9(d) is similar to the all-

definition use-pairs coverage except that only the defining edges are required
to be covered. When the observer is superposed with the timed automaton
in Figure 3 the set of accepting locations is { all def (OFF touch?−−−−→ bright1),
all def (BRIGHT touch?−−−−→ dim2), all def (DIM touch?−−−−→ bright2), all def (OFF touch?−−−−→
dim1), all def (DIM touch?−−−−→ off2), all def (BRIGHT touch?−−−−→ off1) }. The all affect-
pairs (Ntafos’ required k-Tuples [49]) coverage observer is shown in Figure 9(e).
It uses the predicate da(x, y) that is true if the observer monitors a transition in
which the value of variable x affects the value of variable y. The observer accepts
whenever a variable x affects a variable z via another variable y. In this case we
require that x directly affects y which, without redefinition, directly affects z .

A Symbolic Semantics of Observers. The way observers monitor coverage
criteria, as defined above for timed automata, will result in an infinite state space
due to the dense representation of time. Therefore, before presenting the test case
generation algorithm, we shall introduce a finite-state symbolic semantics based
on the symbolic semantics of timed automata described in Section 2.3.

Formally, the symbolic semantics of observers superposed onto a timed au-
tomaton is defined as follows:

– Symbolic states are of the form 〈(�, D)|Q〉, where (�, D) is a symbolic state
of the timed automaton, and Q is a set of observer locations.

– A initial symbolic state is a tuple 〈(�0, D0)|{q0}〉, where (�0, D0) is the initial
symbolic state of the timed automaton, and q0 is the initial observer location.

– A computation step is a triple 〈(�, D)|Q〉
α
� 〈(�′, D′)|Q′〉 for �′ and α such

that (�, v̄) α−→ (�′, v̄′),
D′ =

{
v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D

}
, and

Q′ =
{

q′ | q
b−→ q′ ∧ q ∈ Q ∧ (�, v̄) α−→ (�′, v̄′) |= b

}
.

Note that the evaluation of b does not depend on the clock values of the observed
timed automata. Thus, if (�, v̄) α−→ (�′, v̄′) is a valid transition satisfying b, then
any valid transition (�, v̄′′) α−→ (�′, v̄′′′) in (l, D) α−→ (l′, D′) will also satisfy b.

4.4 Test Case Generation with Observers

In test case generation with observers, we use the superposition of an observer
onto a timed automaton, and view the test case generation problem as a state-
space exploration problem. To cover a single coverage item qf is the problem of
finding a trace

100 A. Hessel et al.

tr = 〈(�0, v̄0)|{q0}〉 d
�

α
� . . .

d′
�

α′
�

d′′
� 〈(�, v̄)|Q〉 such that qf ∈ Q (11)

It can be shown, that the problem can also be stated based on the symbolic
semantics as

tr = 〈(�0, D0)|{q0}〉
α
� . . .

α′

� 〈(�, D)|Q〉 such that qf ∈ Q (12)

We will use ω(tr) = α . . . α′ to denote the word of the trace tr, or just ω whenever
tr is clear from the context. In general, a single trace tr may cover several
accepting locations of the observer. We say that the trace ω covers n accepting
observer states if there are n accepting states in Q, and we use |Qf ∩Q| to denote
the number of accepting states in Q.

Algorithm 1. Test generation for maximum coverage.
Pass:= ∅; Max := 0; ωmax := ω0;1

Wait:= {〈〈(�0, D0)|{q0}〉, ω0〉};2

while Wait�= ∅ do3

select 〈〈(�, D)|Q〉, ω〉 from Wait;4

if |Qf ∩ Q| > Max then5

ωmax := ω; Max := |Qf ∩ Q|;6

if for all 〈(�,D′)|Q′〉 in Pass: Q �⊆ Q′ or D �⊆ D′ then7

add 〈(�, D)|Q〉 to Pass;8

for all 〈(�′′, D′′)|Q′′〉 such that 〈(�, D)|Q〉
α

� 〈(�′′, D′′)|Q′′〉 do9

add 〈〈(�′′, D′′)|Q′′〉, ωα 〉 to Wait;10

return ωmax and Max;11

We are now ready to describe the test case generation algorithm [7]. We shall
restrict the presentation to an algorithm generating a single trace. The same
technique can be used to produce sets of traces to cover many coverage items.
Alternatively, the timed system model S can be annotated with edges that reset
the system to its initial state. A generated trace can then be interpreted as a set
of test cases separated by the reset edges [27].

An abstract algorithm to compute test case is shown in Algorithm 1. The
algorithm computes the maximum number of coverage items that can be visited
(Max), and returns a trace with maximum coverage (ωmax). The two main data
structures Wait and Pass are used to keep track of the states waiting to be
explored, and the states already explored, respectively.

Initially, the set of already explored states is empty and the only state waiting
to be explored is the extended state 〈〈(�0, D0)|{q0}〉, ω0〉, where ω0 is the empty
trace. The algorithm then repeatedly examines extended states from Wait. If a
state 〈(�, D)|Q〉 found in Wait is included in a state 〈(�, D′)|Q′〉 in Pass, then
obviously 〈(�, D)|Q〉 does not need to be further examined. If not, all successor
states that are reachable from 〈(�, D)|Q〉 in one computation step are put on
Wait, with their traces extended with the action of the computation step from

Testing Real-Time Systems Using UPPAAL 101

Test Execution

CoVer

Test Generation

.xml

verdict

.cfg

.cfg

.obs

.xml IUTExecuter

Fig. 10. Uppaal co�er setup

which they are generated. The state 〈(�, D)|Q〉 is saved in Pass. The algorithm
terminates when Wait is empty.

The variables ωmax and Max are initially set to the empty trace and 0,
respectively. They are updated whenever an extended state is found in Wait

which covers a higher number of coverage items than the current value of Max.
Throughout the execution of the algorithm, the value of Max is the maximum
number of coverage items that have been covered by a single trace, and ωmax is
one such trace. When the algorithm terminates, the two values Max and ωmax

are returned.
It has been shown in e.g. [40] how to extract a concrete diagnostic trace from

traces generated by symbolic model-checkers for timed automata. The same tech-
nique can be directly applied to extract concrete traces with Algorithm 1. Thus,
we can compute traces like Equation 11 from traces like Equation 12 generated
by the algorithm. The results on soundness and completeness of symbolic model-
checking for timed automata also applies to Algorithm 1 since the number of
possible elements in the sets Q is guaranteed to be finite.

4.5 Tool Implementation

The concept of observers and the test case generation algorithm presented in this
section have been implemented in a version of the Uppaal tool, called Uppaal

co�er
3 [28,29]. The current implementation uses bit-vector analysis techniques

to represent and manipulate coverage, and supports an extended version of the
observer language described in this section [7]. For a given coverage criterion
(a set of) test cases can be generated from system specifications described as a
network of Uppaal timed automata [27].

A typical setup in which Uppaal co�er is used to test an IUT is shown in
Figure 10. The setup is divided in two parts, a test generation part for generating
3 More information about Uppaal co�er is available at the web site http://user.-
it.uu.se/~hessel/CoVer/.

102 A. Hessel et al.

and transforming test cases into XML-format, and a test execution part that
executes the tests on the IUT in a controlled environment.

The input to Uppaal co�er is a model, an observer, and a configuration file.
The model is an Uppaal timed automata network (.xml) with a system part and
an environment part. The observer (.obs) expresses the coverage criterion that
steers the exploration during test case generation. The configuration file (.cfg)
describes the signals in the timed automata network that should be considered
as external, i.e. the interactions between the system part and the environment
part. The configuration file also specifies the variables that should be passed as
parameters in the input/ output signals.

The Uppaal co�er tool produces a test suite consisting of a set of test
cases (.xml) that are timed traces where each input and output signal has a
list of parameters with values (according to the configuration file). An Executer
interprets the test cases, executes them, and returns a verdict for each test case.

Uppaal co�er has been used in a large case study in collaboration with
Ericsson, in which model-based testing was applied to test a WAP gateway [29].
In the case study, the session and transaction layers of the WAP protocol were
modeled in detail as Uppaal timed automata, and observers were used to specify
the coverage criteria the test suites should satisfy. The Uppaal co�er tool was
applied to generate test suites that were automatically translated into executable
test scripts that revealed several discrepancies between the model and the actual
implementation.

The observer techniques presented in this section have also been implemented
in a tool operating on a subset of the functional language Erlang [8]. The tool
has been applied in a case study in collaboration with the Swedish tele commu-
nication company Mobile Arts AB.

5 Online Testing

The previous section described offline test generation from timed automata spec-
ifications given test purposes or coverage criteria specified as observer automata
or reachability properties, but was limited to deterministic specifications. How-
ever, for many real-time systems the ordering or timing of events cannot be
known a priory, and hence its behavior can not be appropriately captured by a
deterministic model.

Moreover, as elaborated in Section 6.3, timed automata cannot be deter-
minized, and hence using determinization as intermediate step as is done by
many untimed test generators is infeasible for timed automata, and other ap-
proaches are necessary. Here we present online testing which is a promising
approach. We present a real-time online testing algorithm, its soundness, com-
pleteness and implementation.

5.1 Non-determinism and Time

In general non-determinism in specification is used as a means of abstraction. It
may be that the exact circumstances in the implementation that lead to different

Testing Real-Time Systems Using UPPAAL 103

event orderings or timings are not known or would require a model with too
many details. It may also be that the implementation internally exhibits non-
determinism which cannot be observed or controlled by the tester, e.g., the exact
arrival order and timings of external interrupts. A further typical use of non-
determinism is to model optional behavior that is permitted, but not required
by all implementations.

Non-determinism plays a particular role in real-time systems because it is
used to express timing uncertainty. A typical real-time requirement is that the
IUT must deliver an output within a given time bound, but as long as the
deadline is satisfied, the IUT conforms. In TIOTS, this is specified as a non-
deterministic choice between letting time pass and producing an output. In timed
automata this is described syntactically by using an invariant on a location with
the outgoing edge producing the output (see e.g., location l2 of Figure 5(a) where
the compressor is required to switch on (and off) within r time units.

Further, outputs from the IUT may be delayed by an unpredictable amount of
time in the communication software between the test host and IUT. Some timing
tolerance on most output actions is often required.

A non-deterministic model may reach/occupy several possible states after
having executed an action, and as a consequence it may have different possible
next behaviors. This possible set of states represents the uncertainty the tester
has about the exact state of a (conforming) IUT, and the tester must be prepared
to accept any legal next behavior according to the state set.

Example 10. As examples, consider the simple compressor controller of
Figure 5(a). Upon receiving a medium temperature reading the controller may ei-
ther stay off or switch on the compressor, see Equation 6. Further consider the
timed automata in Figure 11. The following equations list the states that can be
reached after an observable action and a delay. Note that in the second case even
a single transition can result in more (infinite with dense time) states. In this ex-
ample it is not known when the clock x is reset on the internal transition.

{〈l0, x = 3〉} After a = {〈l2, x = 3〉, 〈l4, x = 3〉, 〈l3, x = 0〉}

{〈l5, x = 0〉} After 4 = {〈l5, x = 4〉, 〈l6, 0 ≤ x ≤ 4〉}

l0

l1

l2

l3

l4

x>=7
a?

a?

a?
x=0

(a) S1

l5 l6
x=0

(b) S2

Fig. 11. Two non-deterministic timed automata

104 A. Hessel et al.

Such non-deterministic timed specifications are algorithmically and computa-
tionally more complex to analyze than their untimed counter parts because they
require symbolic manipulation of sets of infinite sets of states.

5.2 A Real-Time Online Testing Algorithm

The test specification input to Algorithm 2 consists of two weakly input enabled
and non-blocking TIOTSs S ‖ E respectively modelling the IUT and its environ-
ment. It maintains the current reachable state set Z ⊆ S ×E that the test spec-
ification can possibly occupy after the timed trace σ observed so far. Knowing
this state-set allows it to choose appropriate inputs and to validate IUT outputs.
Moreover, if the computed state set becomes empty (S ‖ E After σ = ∅), the
IUT has exhibited a timed trace not in the test specification, and the IUTcannot
be rtioco conforming, see Section 3. The possible set of states is computed incre-
mentally event by event.

Algorithm 2. Test generation and execution: TestGenExe(S, E , IUT, T).
Z := {(s0, e0)}; // initialize the state set with initial state1

while Z �= ∅ ∧ �iterations ≤ T do2

switch between action, delay and restart randomly do3

case action: // offer an input4

if EnvOutput(Z) �= ∅ then5

randomly choose i ∈ EnvOutput(Z);6

send i to IUT,;7

Z := Z After i;8

case delay: // wait for an output9

randomly choose d ∈ Delays(Z);10

sleep for d time units or wake up on output o at d′ ≤ d;11

if o occurs then12

Z := Z After d′;13

if o /∈ ImpOutput(Z) then return fail ;14

else Z := Z After o15

else Z := Z After d; // no output within d delay16

case restart: Z := {(s0, e0)}; reset IUT; // reset and restart17

if Z = ∅ then return fail else return pass;18

The tester can perform three basic actions: either send an input (enabled
environment output) to the IUT, wait for an output for some time, or reset
the IUT and restart. If the tester observes an output or a time delay it checks
whether this is legal according to the state set. The state set is updated whenever
an input is given, or an output or a delay is observed.

Illegal occurrence or absence of an output is detected if the state set becomes
empty which is the result if the observed trace is not in the specification. The

Testing Real-Time Systems Using UPPAAL 105

functions used in Algorithm 2 are defined as: EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈
Z.e

a−→}, ImpOutput(Z) = {a ∈ Aout | ∃(s, e) ∈ Z.s
a−→}, and Delays(Z) =

{d | ∃(s, e) ∈ Z.e
d⇒} 4. Note that EnvOutput is empty if the environment has

no outputs to offer. Similarly, the Delays function cannot pick at random from
the entire domain of real-numbers if the environment must produce an input to
the IUT model before a certain moment in time.

5.3 Soundness and Completeness

Algorithm 2 constitutes a randomized algorithm for providing stimuli to (in
terms of input and delays) and observing resulting reactions from (in terms of
output) a given IUT. Under a testing hypothesis about the behavior of the IUT
and given that the TIOTSs S and E satisfy the below given assumptions, the
randomization used in Algorithm 2 may be chosen such that the algorithm is
both complete and sound in the sense that it (eventually with probability one)
gives the verdict “fail” in all cases of non-conformance and the verdict “pass” in
cases of conformance.

The hypothesis is based on the results on digitization techniques in [57]5 which
allow the dense-time trace inclusion problem between two sets of timed traces
to be reduced to discrete time. In particular it suffices to choose unit delays in
Algorithm 2 (assuming that the models and the IUT share the same magnitude
of a time unit).

Moreover, if the behavior of the IUT is a non-blocking, input enabled, de-
terministic TIOTS with isolated outputs the reaction to any given timed input
trace σ = d1i1 . . . dkikdi+1 is completely deterministic. More precisely, given the
stimuli σ there is a unique ρ ∈ TTr(IUT) such that ρ ↑ Ain = σ, where ρ ↑ Ain is
the natural projection of the timed trace ρ to the set of input actions. If the IUT
is allowed to be non-deterministic it cannot be guarenteed that all its behavior
have been revealed.

Theorem 1. Assume that the behavior of IUT may be modeled6 as a weakly in-
put enabled, non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT)
and TTr(E) are closed under digitization and that TTr(S) is closed under inverse
digitization. Then Algorithm 2 with only unit delays is sound and complete in
the following senses:
4 According to the definition of rtiocoe given in Section 3, all environment traces and

delays must be considered, not only the delays that can occur in the parallel com-
position of S and E ; in a parallel composition a delay is only permitted if both
components agree. Therefore Delays(Z) extracts the possible delays from the envi-
ronment component e of the system state (s,e) to ensure that the algorithm will try
to wait beyond the specified deadlines before supplying a new input.

5 We refer the reader to [57] for the precise definition of digitization and inverse digi-
tization.

6 The assumption that the IUT can be modeled by a formal object in a given class
is commonly referred to as the test hypothesis. Only its existence is assumed, not a
known instance.

106 A. Hessel et al.

1. Whenever TestGenExe(S, E , IUT, T) = fail then IUT rtiocoE S.
2. Whenever IUT rtiocoE S then Prob

(
TestGenExe(S, E , IUT, T) = fail

) T→∞−−−−→
1
where T is the maximum number of iterations of the while-loop before exiting.

Proof. The proof can be found in [38].

From [57, 34] it follows that the closure properties required in Theorem 1 are
satisfied if the behavior of the IUT and the E are TIOTSs induced by closed timed
automata (i.e. where all guards and invariants are non-strict) and S is a TIOTS
induced by an open timed automaton (i.e. with guards and invariants being
strict). In practice these requirements are not restrictive, e.g. for strict guards
one can always scale the clock constants to obtain arbitrary high precision.

5.4 Tool Implementation

The online testing algorithm Algorithm 2 is implemented in a tool named Up-

paal-TRON [38]: Uppaal extended for Testing Real-time systems ONline. It
implements the setup shown in Figure 12.

We assume that the IUT is a black-box whose state is not directly observable,
i.e., only physical input and output actions are observable. The adapter is an IUT
specific hardware/software component that connects the IUT to TRON and is
responsible for translating abstract input “in” test events into physical stimuli
and physical IUT output observations into abstract model outputs “out”. All
events are time-stamped at testing tool side, meaning that the adapter model
should be included as part of implementation specification. TRON engine loads
the test specification which is a network of timed automata partitioned into
models of the environment and the IUT. The goal of TRON is to emulate and
replace the environment of the IUT: stimulate the IUT with input that is deemed
relevant by the environment part of the model, based on the timed sequence of
input and output actions performed so far.

Because TRON executes on platforms whose execution cannot be entirely
predicted and controlled (e.g. due to operating system scheduling and tool anal-
ysis performance issues), Algorithm 2 is implemented in such a way that TRON
checks the validity of output with timing and also the actual timing of input

Simulated Environment

ImplementationEnvironment
assumptions specification

out?

in!

out!

in?

"in"

"out" Under Test

Implementation
output

input

P
h

ys
ic

al
 A

P
I

A
d

ap
te

r

A
d

ap
te

r
A

P
I

UPPAAL TRON engine

Fig. 12. TRON test setup

Testing Real-Time Systems Using UPPAAL 107

execution. TRON provides an application programming interface to enable pro-
gramming of adapters, and provides the means for loading this as a dynamically
linked library.

Internally, TRON uses matured efficient timed automata symbolic reachability
algorithm from Uppaal [4] to compute the symbolic state set which means
that the model semantics is preserved and analysis is efficient for online testing.
Thus, to compute the operator After the online testing algorithm manipulates
sets of symbolic states (�, D), see Section 2.3, and is constructed such that it
terminates even if the model contains τ action loops. Further information about
the implementation of the required symbolic operations can be found in [38].

To evaluate online testing we have created a number of small academic speci-
fications and implementation (and mutants thereof). The results regarding both
performance and error detection capability are promising. More details can be
found in [38]. We have also evaluated online testing on an industrial case [44], an
electronic refrigeration controller provided by the Danish manufacturer Danfoss
A/S. Besides temperature based compressor regulation it has numerous features
for handling alarms and defrosting cycles, etc.

We found that real-time online testing is an effective means of detecting dis-
crepancies between the model and the implementation in practice. It also appears
feasible performance-wise for such realistic models.

However, large and very non-deterministic models can run into a state explo-
sion making it problematic to update the state-set in real-time which may limit
the granularity of time constraints that can be checked in real-time. In a typical
test run in the Danfoss case, the state-set varied typically between a few symbolic
states and a few hundred symbolic states. Exploring these is unproblematic for
the modern model-checking engine employed by TRON. Updating even medium
sized state-sets with around a 100 states requires only a few milli-seconds of
CPU-time on a modern PC. The largest encountered state-sets (around 3000
states) were very infrequent, and required around 300 milli-seconds.

Real-time online testing thus appears feasible for a large range of embedded
systems.

5.5 Testing = Environment Emulation + Implementation
Monitoring

On closer inspection it turns out that online testing consists of two logically
different functions, namely environment emulation and IUT monitoring:

Environment Emulation: An environment emulator (completely or partly)
replaces the real environment of the IUT, and stimulates the IUT with new
inputs based on the history of previous inputs and observed outputs. An en-
vironment emulator thus executes online in real-time and actively stimulates
the IUT, but does not assign verdicts to the observed trace.

IUT Monitoring: A monitor passively observes the timed input/output se-
quence produced between the IUTand its real-environment, and determines
whether this behavior is (relativized input/output) conforming to the

108 A. Hessel et al.

specification. Hence, the monitor functions as a test oracle. Monitoring is
also sometimes called passive testing.

The monitor can be executed in three different ways. It may run real-
time online in which case non-conformance is reported immediately. This
requires that the monitor has sufficient computational resources to analyze
the model at the pace dictated by the IUT. Alternatively the monitor may
be executed online, but at its own pace (virtual time). Events that are un-
processed are buffered until the monitor becomes ready. Non-conformance
will be reported while the IUTis running, but typically some time after it
has occurred. Finally, the monitor can be executed offline (post-mortem) on
a collected (finite) trace.

Until now we have presented our framework, test-generation and execution
algorithm, and TRON as a tool that performs environment emulation and online
real-time monitoring as an integrated program.

However, in some situations it is beneficial to separate the two functions in
different parts/tools. For example, the two functions can be performed by ded-
icated tools specialized for the particular function or executed on dedicated
platforms (e.g., a hard real-time operating system/computer for environment
emulation and a fast (soft-real-time) number-crunching computer for monitor-
ing). Another example is performance. It may not be possible to evaluate a
large detailed model of the IUT online in real-time (models of the IUT tends to
be larger and much more detailed than the environment model). With a sepa-
rate monitoring function this can be done afterwards or on a separate dedicated
computer.

The explicit separation of the test specification into an environment part and
an IUT part allows TRON to be configured easily to perform both pure emulation
and monitoring as described in the following.

We denote the behavioral model of the IUT with input actions Ain and out-
put actions Aout by S(Ain , Aout). Similarly, we denote the environment by
E(Aout , Ain). Also let U(Ain , Aout) and O(Ain , Aout) denote respectively the
most (universal) and least (passive) discriminating and least discriminating timed
automata, see Section 3. The universal timed automaton is capable of performing
any trace. The passive timed automata silently consume input actions.

To use TRON for pure environment emulator use the intended environment
model E(Aout , Ain) and replace the IUT-model S(Ain , Aout) by U(Ain , Aout).
In consequence TRON will produce timed traces only in E(Aout , Ain). Non-
conformance will never be reported because U(Ain , Aout) allows any timed trace.
This configuration is depicted in Figure 13(a).

Similarly, pure monitoring can be achieved using a slightly modified IUT-
model S′ = S(∅, Ain ∪ Aout) where all input actions are changed to output
actions, see Figure 13(b). This model contains the same traces (ignoring i/o label-
ing) as the original. The environment model must be completely passive and not
contain any inputs (as seen from the IUT point of view), O′ = O(Ain ∪ Aout , ∅).
Thus, with no essential modification to TRON or Algorithm 2 the monitoring
can be executed in simulated time or offline. If the monitor is uncertain about

Testing Real-Time Systems Using UPPAAL 109

output

input

IUT
i

oE U

Env. Emulator

(a) Environment Emulation.

input

output IUT
real

ENV

O′
i

o S′

Monitor

(b) Monitoring.

Fig. 13. Model based emulation and monitoring

input

output IUT

O′
i

o S′

U

i

oE

Monitor

Env. Emulator

Fig. 14. Model-based Testing via Combined Environment Emulation and Monitoring

the state of the IUT when started, Algorithm 2 can be started with a different
(over-approximated) state-set instead of the initial state.

Finally, we observe that online testing can be obtained by running two in-
stances of TRON, one performing monitoring and the other environment emula-
tion, see Figure 14. The two instances may possibly run on different computers.

6 Discussion and Future Work

Model-based test generation for real-time specifications has been investigated
by others (see e.g., [50, 43, 11, 30, 22, 13, 56, 47, 36, 27, 42]), but remain relatively
immature. In this section we discuss our approach to timed testing and compare
to important related work. Also we mention topics for future work in the area.

110 A. Hessel et al.

6.1 Conformance Relations

The choice of conformance relation is important for both theoretical and practi-
cal reasons, yet there is still no wide spread consensus in the community about
its definition.

Our relativized timed input/output conformance relation is a timed and
environment-relativized extension of a solid and widespread implementation re-
lation used in model based conformance testing of untimed systems, namely the
input/output conformance relation by Tretmans [58]. Informally, input/output
conformance requires for all specification traces that the implementation never
produces an output not allowed by the specification, and that it never refuses
to produce an output (forever stays quiescent) when the specification requires
one. As also noted in [36, 42] a timed input/output conformance relation can
be obtained (assuming input enabledness) as timed trace inclusion between the
implementation and its specification.

A fundamental question is how quantitative properties like real-time can be
observed of the physical IUT. E.g., can event occurrences be observed at time
points or only within error bounds, and should such fundamental physical uncer-
tainties be an explicit part of the theory? Similarly, does a concept like quiescence
make sense in a real-time system, or are only time bounded (finite time) ob-
servations possible? New alternative timed implementation relations have been
formulated by Briones and Brinksma in [12].

Another question is related to the goal of real-time testing. Timed trace in-
clusion does not allow the implementation to be faster than the specification. In
some cases this may be unsafe. However, in many other cases it seems natural
that the implementation should be allowed to be as fast as possible. Therefore
faster-than type relations have been proposed [19, 46]. Thus there seem to be
a unclear cut boundary between real-time correctness testing and performance
testing.

6.2 Specification of Tests

The test cases to be executed on the IUT can be selected by different means.
Typical approaches are test purposes, model-coverage criteria, fault-models (see
e.g., [30, 22]) , or randomly.

Test purposes are specific observation objectives formulated by the test en-
gineer, see e.g. [23, 54]. Another popular approach is to cover the model in the
hope that a covering test suite is also thorough. Further, model coverage is an
important measure for estimating the confidence the developers can have in the
executed tests.

In typical approaches, the selection of test cases follows some particular cov-
erage criterion, such as coverage of control states, edges, etc. For finite-state
machines several approaches focus on particular coverage criteria, e.g., Bouquet
and Legeard [9] synthesize test cases corresponding to combinations of choices
of control flow and boundary values of state variables. Nielsen and Skou [48]
generate test cases from timed automata that cover different time-domains rep-
resented as reachable symbolic states.

Testing Real-Time Systems Using UPPAAL 111

Since different coverage criteria are suitable in different situations, and satisfy
different constraints on fault detection capability, cost, information about where
potential faults may be located, etc., it is highly desirable that a test generation
tool is able to generate test suites in a flexible manner, for a wide variety of
different coverage criteria. In other words, a test generation tool should accept
a simple specification of a coverage criterion, given in a language that can eas-
ily specify a large set of coverage criteria, and be able to generate test suites
accordingly. Hong et al [32,31] describe how flow-based coverage criteria can be
expressed in temporal logic. Friedman et al [24] specifies coverage by giving a set
of projections of the state space (e.g., on individual state variables, components
of control flow) that should be covered, possibly under some restrictions.

The observer approach described in this chapter generalizes these approaches
and provides such a flexible language. Test purposes can in some sense be re-
garded as coverage observers, but are not used to specify more generic coverage
criteria and do not make use of parameterization, as we do.

Where offline test generationuses symbolic and constraint solving algorithms to
satisfy a coverage criterion, online test generators typically uses cheap randomized
choice techniques, and can thus not guarantee satisfaction of the coverage crite-
ria, or only provide a probabilistic guarantee provided (unrealistic) long execution
time. The achieved coverage of an online testing session can easily be evaluated
post-mortem by comparing the collected timed trace with the model. This can
for instance be done by executing the timed trace on the model suitably extended
with auxiliary coverage or meta-variables, as described in Section 4.2. Another ap-
proach is to dynamically collect coverage information during the test run and use
this to guide (reduce the random choices) toward uncovered parts of the model.

Except for the obvious extensions of untimed coverage criteria, there exists
very little research [48, 16] that deals explicitly with real-time coverage criteria,
i.e., criteria that tries to cover the time domain and timer/clock values of a timed
specification. Future work includes formulating such real-time coverage criteria
and extending the observer approach to allow easy specification of these.

6.3 Test Generation Algorithms

Many model-checker based test generators that generate tests from a coverage
criterion invoke the model checker for each coverage item resulting in a single
test case per coverage item, see e.g., [25]. This not only results in many test cases
and a large test generation overhead, but also a large test execution overhead
because many sub-sequences will be identical. It may be more efficient to cover
several items by the same test, and generate a test suite that covers the model
as much as possible, as our algorithm in Section 4.4. However, this requires that
the model checker is extended with dedicated search and pruning algorithms
and efficient bit vector encodings of the coverage criteria. We also expect such
efficient encodings to play an important role in monitoring and guiding the online
test generator toward a coverage goal.

Moreover, whereas most other work on optimizing test suites, e.g. [1, 60, 33],
focus on minimizing the length of the test suite, our technique may also reduce

112 A. Hessel et al.

the actual execution time, because it considers that some events take longer to
produce or and take real-time constraints into account. It may even produce the
time optimal test sequences.

Most offline algorithms explicitly determinize the specification [18, 35, 47] as
an intermediate step. However, for expressive formalisms like TA this approach
is problematic because in general they cannot be determinized.

It is well-known that from the theory of timed automata that non-deterministic
timed automata (unlike finite automata) cannot be determinized to a language
equivalent deterministic timed automata [2]. It is also not in general possible to
remove internal transitions from a timed automata (and when they can, it may be
very costly) [61]. Much work on timed test generation from TA therefore restrict
the amount and type of allowed non-determinism: [56,22,27] completely disallow
non-determinism, [36, 47] restrict the use of clocks, guards or clock resets. This
gives a less expressive and less flexible specification language. In contrast, online
testing is automatically adaptive and only implicitly determinizes the specifica-
tion, and only partially up to the concrete trace observed so far.

Our approach to online testing is inspired by the (untimed) algorithm pro-
posed by Tretmans et. al. in [63,6]. They have implemented online testing from
Promela [63] and Lotos specifications in the TorX [62] tool, and practical ap-
plication to real case studies show promising results [59, 62, 6]. However, TorX

provides no support for real-time. Similarly to Krichen and Tripakis [55, 42] we
use symbolic reachability computation algorithms to track the current state-set
for timed automata with unrestricted non-determinism. We extend the Uppaal

model-checker resulting in an integrated and mature testing and verification tool.
It seems likely that a combination of the strengths of offline and online test-

ing will require the notion of games. In a two-player game one player is trying
to reach a winning state by performing controllable game-moves while being
affected by uncontrollable moves by the opponent. Translated into testing this
corresponds to the situation where the tester is trying reach a state where the test
purpose (or coverage criterion) is satisfied by giving controllable inputs to the
IUT (the opponent) that responds by making uncontrollable and unpredictable
output actions. The goal of the test generator is to compute a winning strategy
that will partly be computed statically and partly be interpreted and computed
dynamically. Although promising work is in progress on such timed games [10]
the required concepts are not sufficiently well developed yet.

The Uppaal framework is perfectly suited for exploring timed properties of
the model, but there is little effort done toward combining it with more compli-
cated test data generation. The recent release of Uppaal supports C-like data
declarations which would enable to combine and implement ideas from [37].

6.4 Real-Time Test Execution and Diagnostics

The execution of real-time test cases is also a challenge, both for online and
offline generated tests, because the test execution system is a real-time system
with deadlines and potential narrow tolerances. There are two main problems.
One is that the host platform may cause unpredictable real-time performance

Testing Real-Time Systems Using UPPAAL 113

of the tester because of scheduling latency, competing processes, i/o activity
and disturbances from competing processes. The other is that there is commu-
nication media between the tester and the IUT that must be factored into the
test generation or execution. It introduces latency and uncertainty on the order
and timing of observations. These problems are not only technical engineering
problems, but also seem to require clarification at a semantic and theoretical
level.

When non-conformance has been detected the next step is to diagnose why
the run failed. It may be an error in the specification, the adaptor layer, or the
implementation. If the error is in the implementation the exact cause has to be
found and corrected, and regression testing must be performed.

For online testers these issues are especially problematic, because test se-
quences are typically very long and randomly generated, and hence are difficult
to diagnose and reproduce for regression testing. The current TRON implemen-
tation assumes that the fault appears in the last testing step and gives a hint
about what output was expected and when, and prints information about the
last known non-empty state-set. While very helpful, it does not necessarily in-
dicate the cause of the fault, which may have been caused by an internal fault
executed by the IUT much earlier. Also TRON allows a recorded timed trace to
be replayed against the implementation. However, doing so for long traces with
narrow timing tolerances is technically very challenging.

In the future we plan to combine coverage facts with information about passed
and failed test runs, in the hope that difference in coverage (of the model or code)
could help locate the cause of the error, an approach inspired by the concept of
delta-debugging [64].

7 Conclusions

In this chapter we reviewed progress on formal model-based testing of real-time
systems. We presented a testing framework consisting of a formal, timed speci-
fication language, timed automata, and a formal real-time correctness relation,
relativized input/output conformance. We conclude that this framework is solid,
technically sound and works well in practice. Based on this common framework
we demonstrated two extreme approaches to timed test generation. In offline (op-
timal) satisfaction of test purpose or coverage criterion is the aim, while online
testing ensures thoroughness through volume and brute-force.

These approaches are implemented by (substantially) extending the efficient
algorithms and data structures from the Uppaal model-checker. We find such
a mature tool and efficient machinery important for the practical use of the test
generation techniques.

Overall, we conclude that significant progress has been made in the area of
timed testing, but also that many exciting and important challenges remain.
These range from technical engineering problems to principal semantic (and
perhaps philosophical) ones.

114 A. Hessel et al.

Acknowledgements

We would like to thank the anonymous reviewers for their detailed and construc-
tive comments that greatly helped improving this presentation.

References

1. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.Ü.: An Optimization Technique for
Protocol Conformance Test Generation Based on UIO Sequences and Rural Chi-
nese Postman Tours. IEEE Transactions on Communications 39(11), 1604–1615
(1991)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for Real-Time Systems. In:
Proc. of Logic in Computer Science, Jun 1990, pp. 414–425. IEEE Computer So-
ciety Press, Los Alamitos (1990)

4. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

5. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.:
Efficient Guiding Towards Cost-Optimality in UPPAAL. In: Margaria, T., Yi, W.
(eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer,
Heidelberg (2001)

6. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G.,
Dibuz, S., Tarnay, K. (eds.) 12th Int. Workshop on Testing of Communicating
Systems, pp. 179–196. Kluwer Academic Publishers, Dordrecht (1999)

7. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

8. Blom, J., Jonsson, B.: Automated test generation for industrial erlang applications.
In: Proc. 2003 ACM SIGPLAN workshop on Erlang, Uppsala, Sweden, pp. 8–14
(August 2003)

9. Bouquet, F., Legeard, B.: Reification of executable test scripts in formal
specification-based test generation: The java card transaction mechanism case
study. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 778–795. Springer, Heidelberg (2003)

10. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal Strategies in Priced
Timed Game Autoamata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004.
LNCS, vol. 3328, Springer, Heidelberg (2004)

11. Braberman, V., Felder, M., Marré, M.: Testing Timing Behaviors of Real Time
Software. In: Quality Week 1997, San Francisco, USA, pp. 143–155 (April-May
1997)

12. Briones, L.B., Brinksma, E.: A Test Generation Framework for Quiescent Real-
Time Systems. In: Grabowski, J., Nielsen, B. (eds.) International workshop on
Formal Approaches to Testing of Software. Co-located with IEEE Conference on
Automates Software Engineering 2004, Linz, Austria, pp. 64–78 (September 2004)

13. Cardell-Oliver, R.: Conformance Testing of Real-Time Systems with Timed Au-
tomata. Formal Aspects of Computing 12(5), 350–371 (2000)

Testing Real-Time Systems Using UPPAAL 115

14. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Software Engineering Journal 9(5), 193–200 (1994)

15. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering 4(3), 178–187 (1978)

16. Clarke, D., Lee, I.: Testing Real-Time Constraints in a Process Algebraic Setting.
In: 17th International Conference on Software Engineering (1995)

17. Clarke, L.A., Podgurski, A., Richardsson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. on Software Engineering 15(11),
1318–1332 (1989)

18. Cleaveland, R., Hennessy, M.: Testing Equivalence as a Bisimulation Equivalence.
Formal Aspects of Computing 5, 1–20 (1993)

19. Cleaveland, R., Zwarico, A.E.: A Theory of Testing for Real-Time. In: Sixth Annual
IEEE Symposium on Logic in Computer Science, pp. 110–119 (1991)

20. Daws, C., Olivero, A., Yovine, S.: Verifying ET-LOTOS programs with Kronos.
In: Hogrefe, D., Leue, S. (eds.) Proc. of 7th Int. Conf. on Formal Description
Techniques, North-Holland, Amsterdam (1994)

21. Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

22. En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed Test Cases Genera-
tion Based on State Characterization Technique. In: 19th IEEE Real-Time Systems
Symposium (RTSS 1998), December 2–4 1998, pp. 220–229 (1998)

23. Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: An experiment in automatic gener-
ation of test suites for protocols with verification technology. Science of Computer
Programming 29 (1997)

24. Friedman, G., Hartman, A., Nagin, K., Shiran, T.: Projected state machine cov-
erage for software testing. In: Proc. ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 134–143 (2002)

25. Heimdahl, M.P.E., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-
generating Test Sequences Usiong Model Checkers: A Case Study. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, Springer, Heidelberg (2004)

26. Herman, P.M.: A data flow analysis approach to program testing. Australian Com-
puter J. 8(3) (November 1976)

27. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-Optimal Real-
Time Test Case Generation using UPPAAL. In: Petrenko, A., Ulrich, A. (eds.)
FATES 2003. LNCS, vol. 2931, pp. 136–151. Springer, Heidelberg (2004)

28. Hessel, A., Pettersson, P.: A test generation algorithm for real-time systems. In:
Ehrich, H.-D., Schewe, K.-D. (eds.) Proc. of 4th Int. Conf. on Quality Software,
September 2004, pp. 268–273. IEEE Computer Society Press, Los Alamitos (2004)

29. Hessel, A., Pettersson, P.: Model-Based Testing of a WAP Gateway: an Industrial
Study. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, Springer, Heidelberg (2007)

30. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.R.: Generating Test Cases
for a Timed I/O Automaton Model. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.)
Testing of Communicating Systems: Method and Applications, IFIP TC6 12th
International Workshop on Testing Communicating Systems (IWTCS), Budapest,
Hungary, September 1–3, 1999. IFIP Conference Proceedings, vol. 147, pp. 197–
214. Kluwer, Dordrecht (1999)

31. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model
checking. In: ICSE 2003: 25th Int. Conf. on Software Enginering, May 2003, pp.
232–242 (2003)

116 A. Hessel et al.

32. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002.
LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002)

33. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A Temporal Logic Based Theory of Test
Coverage and Generation. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and
TACAS 2002. LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002)

34. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: 18th IEEE Symposium on Logic in Computer Science (LICS
2003), Ottawa, Canada, June 2003, pp. 198–207. IEEE Computer Society Press,
Los Alamitos (2003)

35. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–122. Springer, Heidel-
berg (1999)

36. Khoumsi, A., Jéron, T., Marchand, H.: Test cases generation for nondeterministic
real-time systems. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931,
Springer, Heidelberg (2004)

37. Koopman, P.W.M., Alimarine, A., Tretmans, J., Plasmeijer, M.J.: Gast: Generic
automated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

38. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) International workshop on Formal Ap-
proaches to Testing of Software. Co-located with IEEE Conference on Automates
Software Engineering 2004, Linz, Austria (September 2004)

39. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automat. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

40. Larsen, K.G., Pettersson, P., Yi, W.: Diagnostic Model-Checking for Real-Time
Systems. In: Proc. of Workshop on Verification and Control of Hybrid Systems III,
October 1995. LNCS, vol. 1066, pp. 575–586. Springer, Heidelberg (1995)

41. Laski, J.W., Korel, B.: A data flow oriented program testing strategy. IEEE Trans-
actions on Software Engineering SE-9(3), 347–354 (1983)

42. Krichen, M., Tripakis, S.: Black-box Conformance Testing for Real-Time Systems.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg
(2004)

43. Mandrioli, D., Morasca, S., Morzenti, A.: Generating Test Cases for Real-Time
Systems from Logic Specifications. ACM Transactions on Computer Systems 13(4),
365–398 (1995)

44. Mikucionis, M., Larsen, K.G., Nielsen, B., Skou, A.: Testing rea-time embedded
software using uppaal-tron —an industrial case study. In: Embedded Software (EM-
SOFT), New Jersey, USA (September 2005)

45. Myers, G.: The Art of Software Testing. Wiley-Interscience, Chichester (1979)
46. Núñez, M., Rodŕıguez, I.: Conformance Testing Relations for Timed Systems. In:

Grieskamp, W., Weise, C. (eds.) International workshop on Formal Approaches
to Testing of Software, Co-located with Computer Aided Verification, Edinburgh,
Scotland, UK (July 2005)

47. Nielsen, B., Skou, A.: Automated Test Generation from Timed Automata. In:
Tools and Algorithms for the Construction and Analysis of Systems, April 2001,
pp. 343–357 (2001)

48. Nielsenand, B., Skou, A.: Automated test generation from timed automata. Inter-
national Journal on Software Tools for Technology Transfer 5, 59–77 (2003)

Testing Real-Time Systems Using UPPAAL 117

49. Ntafos, S.: A comparison of some structural testing strategies. IEEE Transaction
on Software Engineering 14, 868–874 (1988)

50. Peleska, J., Amthor, P., Dick, S., Meyer, O., Siegel, M., Zahlten, C.: Testing Re-
active Real-Time Systems. In: Material for the School – 5th International School
and Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1998), Lyngby, Denmark (1998)

51. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering 11(4), 367–375 (1985)

52. RCTA, Washington D.C., USA. RTCA/DO-178B, Software Considerations in Air-
borne Systems and Equipment Certifications (December 1992)

53. Rokicki, T.G., Myers, C.J.: Automatic verification of timed circuits. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 468–480. Springer, Heidelberg (1994)

54. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

55. Tripakis, S.: Fault Diagnosis for Timed Automata. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, Springer, Heidelberg (2002)

56. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing Timed Automata. The-
oretical Computer Science 254(1–2), 225–257 (2001)

57. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

58. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

59. Tretmans, J., Belinfante, A.: Automatic testing with formal methods. In: Eu-
roSTAR 1999: 7th European Int. Conference on Software Testing, Analysis & Re-
view. Barcelona, Spain. EuroStar Conferences, Galway, Ireland, November 8–12
(1999)

60. Ümit Uyar, M., Fecko, M.A., Sethi, A.S., Amar, P.D.: Testing Protocols Modeled
as FSMs with Timing Parameters. Computer Networks: The International Journal
of Computer and Telecommunication Networking 31(18), 1967–1998 (1999)

61. Diekert, V., Gastin, P., Petit, A.: Removing epsilon-Transitions in Timed Au-
tomata. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp.
583–594. Springer, Heidelberg (1997)

62. de Vries, R., Tretmans, J., Belinfante, A., Feenstra, J., Feijs, L., Mauw, S., Goga,
N., Heerink, L., de Heer, A.: Côte de resyste in PROGRESS. In: STW Technology
Foundation, editor, PROGRESS 2000 – Workshop on Embedded Systems, October
2000, pp. 141–148. The Netherlands, Utrecht (2000)

63. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Software
Tools for Technology Transfer 2(4), 382–393 (2000)

64. Zeller, A., Hildebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Transactions on Software Engineering 28(2), 183–200 (2002)

Coverage Criteria for State Based Specifications

Paul Ammann, Jeff Offutt, and Wuzhi Xu

Department of Information and Software Engineering
George Mason University, USA

{pammann,offutt,wxu2}@gmu.edu

Abstract. Test engineers often face the task of developing a set of test
cases that are appropriate for a given software artefact. The software
testing literature is replete with testing methods tailored to the various
specification, design, and implementation methods used in software en-
gineering. This chapter takes a novel inverted view. Instead of starting
with the specific artefact at hand, we identify two general sets of cover-
age criteria – one based on graphs and the other based on predicates. We
then ask two questions with respect to the specific artefact under test:
(1) What graphs are suitable abstractions of the artefact for the purpose
of testing? (2) What predicates should be extracted from this artefact
for the purpose of testing? Combining the answers to these two questions
with the standard graph-based and logic-based coverage criteria yields
test requirements. The test engineer can then proceed to identify test
cases that satisfy the various requirements. This chapter illustrate this
technique in the context of testing software that is modelled by state-
based specifications. We present a representative sample of graph-based
and logic-based test coverage criteria. We extract appropriate graphs
and predicates from state based specifications and apply the coverage
criteria.

1 Overview

This chapter describes two kinds of test criteria. One kind is based on graphs,
the most common source of tests in use today, and the other is based on logic
expressions. The use of logic coverage criteria has been steadily growing in recent
years. One major cause for their use in practice has been the requirement by the
US Federal Aviation Administration (FAA) that the logic coverage criteria MCDC
be used for safety critical parts of the avionics software in commercial aircraft.

Each section, Section 2 for graphs and Section 3 for logic expressions, starts
out in a very theoretical way, but a firm grasp of the theoretical aspects of
coverage makes the remainder of the chapter simpler. The first subsection in
each section emphasizes generic views of graphs and logic expressions without
regard to the their source or what aspect of the software they model. After this
model and the criteria are established, the next subsections turn to practical
applications by demonstrating how generic versions of the criteria are adapted to
specific graphs and expressions from various software artefacts, including code,
specifications, and finite state machines. References to the research literature

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 118–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coverage Criteria for State Based Specifications 119

are postponed to the end of the chapter, and appear as a separate bibliographic
notes section.

1.1 Graphs and Test Paths

Directed graphs form the foundation for many coverage criteria. Given some
artefact under test, the idea is to obtain some graph abstraction of that artefact.
For example, the most common graph abstraction for source maps statements
to a control flow graph. It is important to understand that the graph is not the
same as the artefact, and that, indeed, artefacts typically have several useful,
but nonetheless quite different, graph abstractions. The same abstraction that
produces the graph from the artefact also maps test cases for the artefact to
paths in the graph. Accordingly, a graph-based coverage criterion evaluates a
test set for an artefact in terms of how the paths corresponding to the test cases
“cover” the artefact’s graph abstraction.

We give our basic notion of a graph below and add additional structures as
necessary. A graph G formally is:

– a set N of nodes, where N �= ∅
– a set N0 of initial nodes, where N0 ⊆ N and N0 �= ∅
– a set Nf of final nodes, where Nf ⊆ N and Nf �= ∅
– a set E of edges, where E is a subset of N × N

Note that there may be more than one initial node; that is, N0 is a set. This
is necessary for some software artefacts, for example, if a class has multiple en-
try points, but sometimes we will restrict the graph to having one initial node.
Edges are considered to be from one node and to another and written as (ni, nj).
The edge’s initial node ni is sometimes called the predecessor and nj is called the
successor.

We always identify final nodes, and there is always at least one final node.
The reason is that every test must start in some initial node, and end in some
final node. The concept of a final node depends on the kind of software artefact
the graph represents. Some test criteria require tests to end in a particular final
node. Other test criteria are satisfied with any node for a final node, in which
case the set Nf is the same as the set N .

The term “node” has various synonyms. Graph theory texts sometimes call
a node a vertex, and testing texts typically identify a node with the structure
it represents, often a statement or a basic block. Similarly, graph theory texts
sometimes call an edge an arc, and testing texts typically identify an edge with
the structure it represents, often a branch. This section discusses graph criteria
in a generic way; thus we stick to general graph terms.

Graphs are often depicted with bubbles and arrows. Figure 1 shows three
example graphs. The nodes with incoming edges but no predecessor nodes are
the initial nodes. The nodes with heavy borders are final nodes. Figure 1(a) has
a single initial node and no cycles. Figure 1(b) has three initial nodes, as well as
a cycle ([n1, n4, n8, n5, n1]). Figure 1(c) has no initial nodes, and so does not
meet the requirements of our definition of a graph.

120 P. Ammann, J. Offutt, and W. Xu

N = { n0, n1, n2, n3 }
N0 = { n0 }
E = { (n0, n1), (n0, n2), (n1, n3),(n2, n3) }

 (a) Graph with a single initial node

N = { n0, n1, n2, n3, n4, n5, n6, n7, n8, n9}
N0 = { n0, n1, n2}
Twelve edges

(b) Graph with mutiple initial nodes

N = { n0, n1, n2, n3 }
Four edges

 (c) Graph with no initial node

0

21

3

0

43

7

1

5

8

2

6

9

0

21

3

Fig. 1. Graph (a) has a single initial node, graph (b) multiple initial nodes, and graph
(c) (rejected) with no initial nodes

(a) Path examples

Reachability Examples

1 reach (0) = N - { 2, 6 }

2 reach (0, 1, 2) = N

3 reach (4) = { 1, 4, 5, 7, 8, 9 }

4 reach ((6, 9)) = { 9 }

(b) Reachability examples

Path Examples

1 [0, 3, 7]
2 [1, 4, 8, 5, 1]
3 [2, 6, 9]

Invalid Path Examples

1 [0, 7]
2 [3, 4]
3 [2, 6, 8]

0

43

7

1

5

8

2

6

9

Fig. 2. Example of paths

A path is a sequence [n1, n2, . . . , nM] of nodes, where each pair of adjacent
nodes, (ni, ni+1), 1 ≤ i < M , is in the set E of edges. The length of a path is
defined as the number of edges it contains and we sometimes consider paths and
subpaths of length zero. A subpath of a path p is a subsequence of p (possibly p
itself). Following the notation for edges, we say a path is from the first node in
the path and to the last node in the path. It is also useful to be able to say that
a path is from (or to) an edge e, which simply means that e is the first (or last)
edge in the path.

Figure 2 shows a graph along with several example paths, and several examples
that are not paths. For instance, the sequence [n0, n7] is not a path because there
is not a direct edge between the two nodes.

Some test criteria require traversing a path that starts at a specific node and
ends at another. This is only possible if there is a path in the graph between
those nodes. When we apply these criteria on specific graphs, we sometimes find

Coverage Criteria for State Based Specifications 121

that we have asked for a path that for some reason cannot be executed. For
example, a path may demand that a loop be executed zero times in a situation
where the program always executes the loop at least once. This kind of problem
is based on the semantics of the software artefact that the graph represents.

The graphs are models of the software in some abstract way and it is conve-
nient to assume that they correspond to an actual program in some way. Likewise,
paths in the graph are assumed to correspond to execution paths in the program.
So the graphs are used to derive tests, which are then run on an executable
program. In this chapter, we use the concept “executing a path in the graph”
synonymously with “executing statements in the program that correspond with
a path in the graph”, with an implicit understanding that some translation from
graph model to program statements are needed. How this translation works in
practice depends on how the graph is modelling the program.

We say that a node n (or an edge e) is syntactically reachable from node ni if
there exists a path from node ni to n (or edge e). A node n (or edge e) is also
“semantically reachable” if it is possible to execute at least one of the execution
paths with some input. We can define the function reachG(x) as the portion of
a graph that is syntactically reachable from the parameter x. The parameter for
reachG() can be a node, an edge, or a set of nodes or edges. Then reachG(ni)
is the set of nodes and edges (subset of G) that is syntactically reachable from
node ni, reachG(N0) is the subset of G that is syntactically reachable from any
initial node, reachG(e) is the subset of G that is syntactically reachable from
edge e, and so on. Some graphs have nodes that cannot be syntactically reached
from any initial nodes. These graphs frustrate attempts to satisfy a coverage
criterion, so we typically restrict our attention to reachG(N0).1

Consider the examples in Figure 2. From n0, it is possible to reach all nodes
except for n2 and n6. From the entire set of initial nodes {n0, n1, n2}, it is
possible to reach all nodes. If we start at n4, it is possible to reach all nodes
except n0, n2, n3, and n6. If we start at edge (n6, n9), it is only possible to reach
n9. Note that we assume that it is always possible to reach a node from itself via
a path of length zero. In addition, some graphs (such as finite state machines)
have explicit edges from a node to itself, that is, (ni, ni). Basic graph algorithms
can be used to compute syntactic reachability.

A test path represents the execution of a test case on the program that the
graph models. The reason test paths must start in N0 is that test cases always
begin from an initial node. It is important to note that a single test path in the
graph may correspond to a very large number of test cases on the software. It is
also possible that a test path may correspond to zero test cases if the test path
happens to be infeasible.

Definition 1. Test path: A test path is a path, possibly of length zero, that
starts at some node in N0 and ends at some node in Nf .

1 By way of example, typical control flow graphs have very few if any syntactically
unreachable nodes, but call graphs, especially for object-oriented programs, often
do.

122 P. Ammann, J. Offutt, and W. Xu

0

1

3

5

4

6

2

Fig. 3. A Single-Entry Single-Exit graph. This example is sometimes called the
“double-diamond” graph.

For some graphs, all test paths start at the same node and end at the same node.
We call these single entry/single exit or SESE graphs. For SESE graphs, the set
N0 has exactly one node, called n0, and the set Nf also has exactly one node,
called nf . We require that nf be syntactically reachable from every node in N ,
and that no node in N (except nf) be syntactically reachable from nf . In other
words, no edges start at nf .

Figure 3 is an example of a SESE graph. This particular structure is sometimes
called a “double-diamond” graph, and corresponds to the control flow graph for
a sequence of two if-then-else statements. The initial node, n0, is designated
with an incoming arrow (remember that there is only one), and the final node, n6,
is designated with a thick circle. There are exactly four test paths in the double-
diamond graph: [n0, n1, n3, n4, n6], [n0, n1, n3, n5, n6], [n0, n2, n3, n4, n6],
and [n0, n2, n3, n5, n6].

We need some terminology to express the notion of nodes, edges, and subpaths
that appear in test paths, and choose familiar terminology from travelling. A test
path p is said to visit node n if n is in p. Test path p is said to visit edge e if
e is in p. The term visit applies well to single nodes and edges, but sometimes
we want to turn our attention to subpaths. For subpaths, we use the term tour.
Test path p is said to tour subpath q if q is a subpath of p. The first path of
Figure 3, [n0, n1, n3, n4, n6], visits nodes n0 and n1, visits edges (n0, n1) and
(n3, n4), and tours the subpath [n1, n3, n4].

We define a mapping pathG for tests, so for a test case t, pathG(t) is the test
path in graph G that is executed by t. Since it is usually obvious which graph
we are discussing, we omit the subscript G. We also define the set of paths
toured by a set of tests. For a test set T , path(T) is the set of test paths in T :
pathG(T) = {pathG(t) | t ∈ T }.

1.2 Logic Predicates and Clauses

The other model that we use to generate tests is logic predicates. We formalize
logical expressions in a common mathematical way. A predicate is an expression
that evaluates to a boolean value, and is our topmost structure. A simple example
is: ((a > b) ∨ C) ∧ p(x). Predicates may contain boolean variables, non-boolean
variables that are compared with the comparator operators { >, <, =, ≥, ≤, �= },
and function calls. The internal structure is created by the logical operators:

Coverage Criteria for State Based Specifications 123

– ¬ – the negation operator
– ∧ – the and operator
– ∨ – the or operator
– → – the implication operator
– ⊕ – the exclusive or operator
– ↔ – the equivalence operator

Some of these operators (⊕, →, ↔) may seem unusual for readers with a
bias toward source code, but they turn out to be common in some specification
languages and very handy for our purposes. Short circuit versions of the and and
or operators are also sometimes useful, and will be addressed when necessary.
We adopt a typical precedence, which, from highest to lowest, matches the order
listed above. When there is doubt, we use parentheses for clarity.

A clause is a predicate that does not contain any of the logical operators. For
example, the predicate (a > b) ∨ C ∧ p(x), contains three clauses; a relational
expression (a > b), a boolean variable C and the function call p(x). Because
they may contain a structure of their own, relational expressions require special
treatment.

A predicate may be written in a variety of logically equivalent ways. For
example, the predicate ((a = b) ∨ p(x)) ∧ (C ∨ p(x)) is logically equivalent to
the predicate given in the previous paragraph, but ((a = b) ∧ p(x)) ∨ (C ∧ p(x))
is not. The usual rules of boolean algebra (not reviewed here) may be used to
convert boolean expressions into equivalent forms. Many of our examples are
given in disjunctive normal form for convenience, but this is not necessary.

Logical expressions come from a variety of sources. The most familiar to most
readers will probably be source code of a program. For example, the following if
statement:

if ((a > b) || C) && (x < y)
o.m();

else
o.n();

will yield the expression given previously: ((a > b) ∨ C) ∧ (x < y). Other
sources of logical expressions include transitions in finite state machines. A tran-
sition such as: button2 = true (when gear = park) will yield the expression
gear = park ∧ button2 = true. Similarly, a precondition in a specification such
as "pre: stack Not full AND object reference parameter not null" will
result in a logical expression such as ¬ stackFull() ∧ newObj �= null.

Next, this chapter turns to test criteria that are defined on graphs, and Section 3
describes test criteria that are defined on logical expressions.

2 Graph Coverage

The structure described in Section 1.1 is adequate to define coverage on graphs.
As is usual in the testing literature, we divide these criteria into two types.

124 P. Ammann, J. Offutt, and W. Xu

The first are commonly referred to as control flow coverage criteria. Because
we generalize this situation, we call them structural graph coverage criteria.
The other set of criteria are based on the flow of data through the software
artefact represented by the graph, and are called data flow coverage criteria.
Data flow is not widely studied for specifications, thus these criteria are not
relevant to this chapter. We identify the appropriate test requirements and then
define each criterion in terms of the test requirements. In general, for any graph-
based coverage criterion, the idea is to identify the test requirements in terms of
various structures in the graph.

For graphs, coverage criteria define test requirements, TR, in terms of prop-
erties of test paths in a graph G. A typical test requirement is met by visiting
a particular node or edge or by touring a particular path. The definitions in
Section 1 far for a visit are adequate, but the notion of a tour requires more
development.

Definition 2. Satisfaction: Given a set TR of test requirements for graph
coverage criterion C, test set T satisfies C coverage on graph G if and only if
for every test requirement tr in TR, there is a test path p in path(T) such that
p meets the test requirement tr.

This is a very general statement that now must be refined for individual kinds
of coverage.

2.1 Graph Coverage Criteria

We specify graph coverage criteria by specifying a set of test requirements, TR.
We will start by defining criteria to visit every node and then every edge in a
graph. The first criterion is probably familiar and is based on the old notion of
executing every statement in a program. This concept has variously been called
“statement coverage,” “block coverage,” “state coverage,” and “node coverage.”
We use the general graph term “node coverage.” Although this concept is fa-
miliar and simple, we introduce some additional notation. The notation initially
seems to complicate the criterion, but ultimately has the effect of making subse-
quent criteria cleaner and mathematically precise, avoiding confusion with more
complicated situations.

The requirements that are produced by a graph criterion are technically pred-
icates that can have either the value true (the requirement has been met) or false
(the requirement has not been met). For the double-diamond graph in Figure 3,
the test requirements for node coverage are: TR = {visit n0, visit n1, visit n2,
visit n3, visit n4, visit n5, visit n6}. That is, we must satisfy a predicate for
each node, where the predicate asks whether the node has been visited or not.

We choose to use a simple formulation of the definition that abstracts the
issue of predicates in the test requirements.

Criterion 1. Node Coverage (NC): TR contains each reachable node in
G.

Coverage Criteria for State Based Specifications 125

With this definition, it is left as understood that the term “contains” actually
means “contains the predicate visitn.” This simplification allows us to simplify
the writing of the test requirements for Figure 3 to only contain the nodes:
TR = {n0, n1, n2, n3, n4, n5, n6}. Test path p1 = [n0, n1, n3, n4, n6]
meets the first, second, fourth, fifth, and seventh test requirements, and test
path p2 = [n0, n2, n3, n5, n6] meets the first, third, fourth, sixth and seventh.
Therefore if a test set T contains {t1, t2}, where path(t1) = p1 and path(t2) = p2,
then T satisfies node coverage on G.

Node Coverage is implemented in many commercial testing tools, most often
as statement coverage. So is the next common criterion of edge coverage, usually
implemented as branch coverage:

Criterion 2. Edge Coverage (EC): TR contains each reachable path of
length up to 1 in G.

The reader might wonder why the test requirements for edge coverage also ex-
plicitly include the test requirements for node coverage – that is, why the phrase
“up to” is included in the definition. In fact, all the graph coverage criteria are
developed in this way. The motivation is subsumption for graphs that do not
contain more complex structures. For example, consider a graph with a node
that has no edges. Without the “up to” clause in the definition, edge coverage
would not cover that node. Intuitively, we would like edge testing to be at least
as demanding as node testing. The chosen style of definition seems to be the
best way to achieve this property. To make our TR sets readable, we list only
the maximal length paths.

Figure 4 illustrates the difference between node and edge coverage. In program
statement terms, this is a graph of the common “if-else” structure.

t1 satisfies node coverage on the graph, but not edge coverage
t2 satisfies edge coverage

path (t1) = [0, 1, 2]
path (t2) = [0, 2]

 x < y

 x > y

0

1

2

Fig. 4. A graph showing Node and Edge Coverage

There are other coverage criteria that only use the graph definitions intro-
duced so far. For example, one requirement is that each path of length (up to)
two be toured in some test path. With this context, Node Coverage could be
redefined to contain each path of length zero. Clearly, this idea can be extended
to paths of any length, although possibly with diminishing returns. We formally
define one of these criteria.

126 P. Ammann, J. Offutt, and W. Xu

Criterion 3. Edge-Pair Coverage (EPC): TR contains each reachable
path of length up to 2 in G.

One useful testing criterion is to start the software in some state (for example, a
node in the finite state machine) and then follow transitions (that is, edges) so
that the last state is the same as the start state. This type of testing is used to
verify that the system is not changed by certain inputs. Shortly, we will formalize
this notion as round trip coverage.

Before proceeding, a few more definitions are needed. A path from ni to nj is
simple if no node appears more than once on the path, with the exception that
the first and last nodes may be identical. That is, there are no internal loops in
a simple path, although the entire path itself may wind up being a loop. One
aspect of simple paths is that all non-simple paths can be created by composing
simple paths.

A round trip path is a simple path of nonzero length that starts and ends at
the same node. One type of round trip test coverage requires at least one round
trip path to be taken for each node, and another requires all possible round trip
paths.

Criterion 4. Simple Round Trip Coverage (SRTC): TR contains at
least one round-trip path for each reachable node in G that begins and ends a
round-trip path.

Criterion 5. Complete Round Trip Coverage (CRTC): TR contains
all round-trip paths for each reachable node in G.

Next is path coverage, which is traditional in the testing literature.

Criterion 6. Complete Path Coverage (CPC): TR contains all paths
in G.

Sadly, Complete Path coverage is useless if a graph has a cycle, since there are
an infinite number of paths, and hence an infinite number of test requirements.
A variant of this criterion is, however, useful. Suppose that instead of requiring
all paths, we consider a specified set of paths. For example, these paths might
be given by the customer in the form of usage scenarios.

Criterion 7. Specified Path Coverage (SPC): TR contains a set S of
test paths, where S is supplied as a parameter.

2.2 Graph Coverage for Specification

The general graph criteria defined in Section 2.1 can be used on many kinds
of graphs, the most familiar to developers probably being control flow graphs.
However, the criteria are independent from where the graphs come from, so this
section turns to the question of where to obtain the graphs by discussing two
specific aspects of software that are commonly modelled by graphs.

Coverage Criteria for State Based Specifications 127

The literature has a large proliferation of techniques for generating graphs
and criteria for covering those graphs, but most of them are in fact very similar.
This section begins by looking at graphs based on sequencing constraints among
methods in classes, then graphs that represent state behavior of software. Both
aspects of programs can be modelled in many languages; this treatment tries to
stay as language-neutral as possible.

Testing Sequencing Constraints. It was pointed out in Section 1.1 that call
graphs for classes often wind up being disconnected and in many cases (such
as with small Abstract Data Types or ADTs), there are no calls at all between
methods in a class. However, there are almost always rules that constrain the
order of calls. For example, many ADTs must be initialized before being used, it
is invalid to pop an element from a stack until something has been pushed onto
it, and an element cannot be removed from a queue until an element has been
put on. These rules impose constraints on the order in which methods may be
called. Generally, a sequencing constraint is a rule that imposes some restriction
on the order in which certain methods may be called.

Sequencing constraints are sometimes explicitly expressed, sometimes implic-
itly expressed, and sometimes not expressed at all. Sometimes they are encoded
as a precondition or other specification, but not directly as a sequencing condi-
tion. For example, consider the following informal precondition for DeQueue():

public int DeQueue ()
{
// Pre: At least one element must be on the queue.
.
:
public EnQueue (int e)
{
// Post: e is on the end of the queue.

Although it is not said explicitly, a clever programmer can infer that the only
way an element can “be on the queue” is if EnQueue() has previously been
called. Thus there is an implicit sequencing constraint between EnQueue() and
DeQueue().

Of course formal specifications can help make the relationships more pre-
cise. Wise testers will certainly use formal specifications when available, but
responsible testers must look for formal relationships even when they are not
explicitly stated. Also note that sequencing constraints do not capture all the
behavior, but only abstract certain key aspects. The sequence constraint that
EnQueue() must be called before DeQueue() does not capture the fact that if
we only EnQueue() one item, and then try to DeQueue() two items, the queue
will be empty. The precondition may capture this fact, but usually not in a for-
mal way that automated tools can use. This kind of relationship is beyond the
ability of a simple sequencing constraint but can be dealt with by some of the
state behavior techniques in the next subsection.

128 P. Ammann, J. Offutt, and W. Xu

This relationship is used during testing in two different ways. They are illus-
trated with a small example of a class that encapsulates operations on a cache.
The class Cache has three methods:

– loadCache (File F) // loads the cache from the file with name F
– saveCache (File F) // Saves the cache to disk and makes it unavailable
– writeCache (Object O) // Writes an object into the cache

This class has several sequencing constraints that can be inferred even from the
informal descriptions. The statements use “must” and “should” in very specific
ways. When “must” is used, it implies that violation of the constraint is a fault.
When “should” is used, it implies that violation of the constraint is a poten-
tial fault, but not necessarily. Explicit sequencing constraints can be written as
follows:

1. A loadCache (f) must be executed before every writeCache (f)
2. A loadCache (f) must be executed before every saveCache (f)
3. A writeCache (f) may not be executed after a saveCache (f) unless there

is a loadCache (f) in between
4. A writeCache (f) should be executed before every saveCache (f)

Constraints are used in testing in two ways to evaluate software that uses the
class (a “client”), based on the Control Flow Graph (CFG). Consider the two
(partial) CFGs in Figure 5, representing two units that use Cache. This graph
can be used to test the use of the Cache class by checking for sequence violations.
This can be done both statically and dynamically.

Static checks (not considered to be traditional testing) proceed by checking
each constraint. First consider the writeCache () statements at nodes 2 and 5
in graph (a). First check to see whether there are paths from the loadCache ()

1

2 3

6

54

1

2 3

8

5
4

6 7

loadCache (F)

saveCache (F)

writeCache (obj)

writeCache (obj)

loadCache (F)

writeCache (obj)

writeCache (obj)

saveCache (F)

saveCache (F)

(a) (b)

Fig. 5. Control flow graph using the File ADT

Coverage Criteria for State Based Specifications 129

at node 1 to nodes 2 and 5 (constraint 1). Next check whether there is a path
from the loadCache () at node 1 to the saveCache () at node 6 (constraint
2). For constraints 3 and 4, check to see if there is a path from the saveCache
() at node 6 to any of the writeCache () statements, and see if there exists
a path from the loadCache () to the saveCache () that does not go through
at least one writeCache (). This will uncover one possible problem, the path
[1, 3, 4, 6] goes from a loadCache () to a saveCache () with no intervening
writeCache () calls.

This process will find a more serious problem with graph (b) in 5. There is
a path from the saveCache () at node 7 to the writeCache () at node 5 and
to the writeCache () at node 4. While this may seem simple enough not to
require formalism for such small graphs, this process is quite difficult with large
graphs containing dozens or hundreds of nodes.

Dynamic testing follows a slightly different approach. Consider the problem
in graph (a) where there is no writeCache () on the possible path [1, 3, 4, 6].
It is quite possible that the logic of the program dictates that the edge (3, 4) can
never be taken unless the loop [3, 5, 3] is taken at least once. Because deciding
whether the path [1, 3, 4, 6] can be taken or not is a formally undecidable
problem, this situation can only be checked by dynamic execution. Thus test
requirements are generated to try to violate the sequencing constraints. For the
Cache class, generate the following sets of test requirements:

1. Cover every path from the start node to every node that contains a write
Cache () such that the path does not go through a node containing a
loadCache ().

2. Cover every path from the start node to every node that contains a save
Cache () such that the path does not go through a node containing a
loadCache ().

3. Cover every path from every node that contains a saveCache () to every
node that contains a writeCache ().

4. Cover every path from every node that contains a loadCache () to every
node that contains a saveCache () such that the path does not go through
a node containing a writeCache ().

Of course, in a well written program, all of these test requirements will be infea-
sible. However, any tests that are created as a result of these requirements will
almost certainly reveal a sequencing fault if one exists.

Testing State Behavior of Software. Another major use of graphs based
on specifications is to model state behavior of the software by developing some
form of finite state machine (FSM). Over the last 25 years, there have been many
suggestions for creating FSMs and how to test software based on the FSM. The
topic of how to create, draw, and interpret an FSM has filled entire textbooks,
and authors have gone into great depth and effort to define what exactly goes into
a state, what can go onto edges, and what causes transitions. Rather than using
any particular notation, this chapter defines a very generic model for FSMs that
can be adapted to virtually any notation. These FSMs are essentially graphs,

130 P. Ammann, J. Offutt, and W. Xu

and the graph testing criteria already defined are used to test software based on
the FSM.

One advantage of basing tests on FSMs is that huge numbers of practical soft-
ware applications are based on a finite state machine model, or can be modelled
as a finite state machine. Virtually all embedded software fits in this category,
including software in remote controls, household appliances, watches, cars, cell
phones, airplane flight guidance, traffic signals, railroad control systems, net-
work routers and factory automation. Indeed, most software can be modelled
with FSMs, the primary limitation being the number of states needed to model
the software. Word processors, for example, contain so many commands and
states that modelling them as an FSM is probably impractical.

There is often great value in creating FSMs. If the test engineer creates an
FSM to describe existing software, he or she will almost certainly find faults in
the software. Some would even argue the converse; if the designers created FSMs,
the testers should not bother creating them because problems will be rare.

A Finite State Machine is a graph whose nodes represent states in the execu-
tion behavior of the software and edges represent transitions among the states.
A state represents a recognizable situation that remains in existence over some
period of time. A state is defined by specific values for a set of variables; as long
as those variables have those values the software is considered to be in that state.
(Note that these variables are defined at the modelling/design level and may not
necessarily correspond to variables in the software.) A transition is thought of
as occurring in zero time and represents a change to the values of one or more
variables. When the variables change, the software is considered to move from
the transition’s pre-state (predecessor) to its post-state (successor). FSMs often
define preconditions or guards on transitions, which define values that specific
variables must have for the transition to be enabled, and triggering events, which
are changes in variable values that cause the transition to be taken. A trigger
event “triggers” the change in state. For example, the modelling language SCR
calls these WHEN conditions and triggering events. The values the triggering
events have before the transition are sometimes called before-values, and the
values after the transition are sometimes called after-values. When graphs are
drawn, transitions are often annotated with the guards and or the values that
change.

Figure 6 illustrates this model with a simple transition that opens an elevator
door. If the elevator button is pressed (the trigger event), the door opens only
if the elevator is not moving (the precondition, elevSpeed = 0).

Given this type of graph, many of the previous criteria can be defined directly.
Node Coverage requires that each state in the FSM be visited at least once. In
the context of FSMS, node coverage is sometimes called State Coverage. Edge
Coverage is applied by requiring that each transition in the FSM be visited at
least once, which has been called Transition Coverage. The Edge-Pair Coverage
criterion was originally defined for FSMs and is also called transition-pair and
two-trip.

Coverage Criteria for State Based Specifications 131

Closed Open

open
door

post-state
pre-state

pre: elevSpeed = 0
trigger: openButton = pressed

Fig. 6. Elevator door open transition

3 Logic Coverage

Logical expressions show up in all sorts of places in software and are essential
in some form or another to most specification languages, formal and informal.
This section discusses criteria on generic logical expressions, then how logical
expressions can be obtained from specifications.

3.1 Logic Expression Coverage Criteria

Clauses and predicates are used to introduce a variety of coverage criteria. Let P
be a set of predicates and C be a set of clauses in the predicates in P . For each
predicate p ∈ P , let Cp be the clauses in p, that is Cp = {c|c ∈ p}. Typically,
C is the union of the clauses in each predicate in P , that is C =

⋃

p∈P

Cp.

Criterion 8. Predicate Coverage (PC): For each p ∈ P , TR contains
two requirements: p evaluates to true, and p evaluates to false.

This is where the graph criteria conceptually overlap the logic expression criteria;
the graph version of Predicate Coverage was introduced in Section 2.1 as Edge
Coverage. For control flow graphs where P is the set of predicates associated
with branches, Predicate Coverage and Edge Coverage are the same. For the
predicate given above, ((a > b) ∨ C) ∧ p(x), two tests that satisfy Predicate
Coverage are (a = 5, b = 4, C = true, p(x) = true) and (a = 5, b = 6, C =
false, p(x) = false).

An obvious failing of this criterion is that the individual clauses are not always
exercised. Predicate coverage for the above clause could also be satisfied with
the two tests (a = 5, b = 4, C = true, p(x) = true) and (a = 5, b = 4, C =
true, p(x) = false), in which the first two clauses never have the value false!
The solution to this problem is to move to the clause level.

Criterion 9. Clause Coverage (CC): For each c ∈ C, TR contains two
requirements: c evaluates to true, and c evaluates to false.

The predicate ((a > b)∨C)∧p(x) requires different values to satisfy CC. Clause
Coverage requires that (a > b) = true and false, C = true and false, and
p(x) = true and false. These requirements can be satisfied with two tests: ((a =
5, b = 4), (C = true), p(x) = true) and ((a = 5, b = 6), (C = false), p(x) =
false)).

132 P. Ammann, J. Offutt, and W. Xu

Clause Coverage does not subsume Predicate Coverage, and Predicate Cov-
erage does not subsume Clause Coverage, as shown by the predicate p = a ∨ b.
Formally, the clauses C are those in p: C = Cp = {a, b}. Consider the four
test inputs that enumerate the combinations of logical values for the clauses:

p = a ∨ b

t1 = (a = true, b = true) → p = true

t2 = (a = true, b = false) → p = true

t3 = (a = false, b = true) → p = true

t4 = (a = false, b = false) → p = false

The pair of test cases T1 = {t1, t2} satisfies neither Clause Coverage (because
a is never false) nor Predicate Coverage (because p is never false). Test set
T2 = {t2, t3} satisfies Clause Coverage, but not Predicate Coverage (because
p is never false). Test set T3 = {t2, t4} satisfies Predicate Coverage, but not
Clause Coverage (because b is never true). Test set T4 = {t1, t4} is the only
pair that satisfies both Clause Coverage and Predicate Coverage. These test sets
demonstrate that neither Predicate Coverage nor Clause Coverage subsume the
other.

From the testing perspective, a coverage criterion should test individual
clauses and also the predicate. The most direct approach to rectify this problem
is to try all combinations of clauses:

Criterion 10. Combinatorial Coverage (CoC): For each p ∈ P , TR has
test requirements for the clauses in Cp to evaluate to each possible combination
of truth values.

Combinatorial Coverage is also called Multiple Condition Coverage. For the pred-
icate ((A ∨ B) ∧ C), the complete truth table contains eight elements:

A B C (A ∨ B) ∧ C)
1 T T T T
2 T T F F
3 T F T T
4 T F F F
5 F T T T
6 F T F F
7 F F T F
8 F F F F

A predicate p with n independent clauses has 2n possible assignments of truth
values. This may be okay with three or four clauses, but a predicate with five
clauses has 32 possible assignments, making Combinatorial Coverage unwieldy
at best, and possibly impractical. What is needed is a criterion that captures
the effect of each clause, but does so in a reasonable number of tests. These

Coverage Criteria for State Based Specifications 133

observations lead, after some thought2, to a powerful collection of test criteria
that are based on the notion of making individual clauses “active” as defined in
the next subsection.

Active Clause Coverage. The lack of subsumption between Clause and Pred-
icate Coverage is unfortunate, but there are deeper problems with Clause and
Predicate Coverage. Specifically, tests at the clause level, should have an effect
on the predicate. When debugging, we say that one fault masks another if the
second fault cannot be observed until the first fault is corrected. There is a
similar notion of masking in logical expressions. In the predicate p = a ∧ b,
if b = false, b can be said to mask a, because no matter what value a has,
p will still be false. To avoid masking when tests are constructed, it is neces-
sary to consider the circumstances under which a clause affects the value of a
predicate.

Definition 3. Determination: Given a clause ci in predicate p, called the
major clause, ci determines p if the remaining minor clauses cj ∈ p, j �= i have
values so that changing the truth value of ci changes the truth value of p.

Note that this definition explicitly does not require that ci = p. This issue has
been left ambiguous by previous definitions, some of which require the predicate
and the major clause to have the same value. This interpretation is not practical.
When the negation operator is used, for example, if the predicate is p = ¬a,
it becomes impossible for the major clause and the predicate to have the same
value.

Consider the example above, where p = a ∨ b. If b is false, then clause a
determines p, because then the value of p is exactly the value of a. However if
b is true, then a does not determine p, since p is true regardless of the value
of a.

From the testing perspective, we would like to test each clause under circum-
stances where the clause determines the predicate. Consider again the predicate
p = a ∨ b. If b is not varied under circumstances where b determines p, then
there is no evidence that b is used correctly. For example, test set T4, which
satisfies both Clause and Predicate Coverage, tests neither a nor b effectively. In
fact, if the or operator uses short circuit evaluation, test case t1 does not even
cause b to be evaluated!

Criterion 11. Active Clause Coverage (ACC): For each p ∈ P and
each major clause ci ∈ Cp, choose minor clauses cj, j �= i so that ci determines
p. TR has two requirements for each ci: ci evaluates to true and ci evaluates
to false.

For example, for p = a∨b, TR has a a total of four requirements, two for clause
a and two for clause b. Clause a determines p if and only if b is false. This results
2 In practice, this “thought” turned out to be the collective effort of over a dozen

researchers, who published tens of papers over a 15 to 20 year period, as detailed in
Section 5.

134 P. Ammann, J. Offutt, and W. Xu

in the two test requirements {(a = true, b = false), (a = false, b = false)}.
Clause b determines p if and only if a is false. This results in the two test
requirements {(a = false, b = true), (a = false, b = false)}. This concept is
summarized in the partial truth table below, (the values for the major clauses
are in bold face).

a b
ci = a T f

F f
ci = b f T

f F

Two of these requirements are identical, resulting in three distinct test re-
quirements for Active Clause Coverage for the predicate a ∨ b, namely, {(a =
true, b = false), (a = false, b = true), (a = false, b = false)}. Such overlap
always happens, and it turns out that for a predicate with n clauses, n + 1 dis-
tinct test requirements, rather than the 2n one might expect, are sufficient to
satisfy Active Clause Coverage.

ACC is almost identical to the way early papers described another technique
called MCDC. It turns out that this criterion has some ambiguity, which has led
to a fair amount of confusion of interpretation of MCDC over the years. The most
important question is whether the minor clauses cj need to have the same values
when the major clause ci is true as when ci is false. Resolving this ambiguity
leads to three distinct and interesting flavours of Active Clause Coverage. For a
simple predicate such as p = a ∨ b, the three flavours turn out to be identical,
but differences appear for more complex predicates. The most general flavour
allows the minor clauses to have different values.

Criterion 12. General Active Clause Coverage (GACC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j �= i so that ci

determines p. TR has two requirements for each ci: ci evaluates to true and ci

evaluates to false. The values chosen for the minor clauses cj do not need to
be the same when ci is true as when ci is false, that is, cj(ci = true) = cj(ci =
false) ∀ cj OR cj(ci = true) �= cj(ci = false) ∀ cj.

Unfortunately, it turns out that General Active Clause Coverage does not sub-
sume Predicate Coverage, as the following example shows.

Consider the predicate p = a ↔ b. Clause a determines p for any assignment
of truth values to b. So, let us choose for the case where a is true, b to be true as
well, and for the case where a is false, b false as well. For clause b, make the same
selections. This results in only two test requirements, TR = {(a = true, b =
true), (a = false, b = false)}. p evaluates to true for both of these cases, so
Predicate Coverage is not achieved.

Many testing researchers have a strong feeling that ACC should subsume PC,
thus the second flavour of ACC insists that p evaluates to true for one assign-
ment of values to the major clause ci, and false for the other. Note that ci

Coverage Criteria for State Based Specifications 135

and p do not have to have the same values, as discussed with the definition for
determination.

Criterion 13. Correlated Active Clause Coverage (CACC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j �= i so that
ci determines p. TR has two requirements for each ci: ci evaluates to true and
ci evaluates to false. The values chosen for the minor clauses cj must cause p
to be true for one value of the major clause ci and false for the other, that is,
it is required that p(ci = true) �= p(ci = false).

Consider the example p = a ∧ (b ∨ c). For a to determine the value of p, the
expression b ∨ c must be true. There are three ways to achieve this: b true and
c false, b false and c true, and both b and c true. So, it would be possible to
satisfy Correlated Active Clause Coverage with respect to clause a with the
two test requirements: {(a = true, b = true, c = false), (a = false, b =
false, c = true)}. There are other possible test requirements with respect to
a. The following truth table helps enumerate them. The row numbers are taken
from the complete truth table for the predicate given previously. Specifically,
CACC can be satisfied for a by choosing one test requirement from rows 1, 2
and 3, and the second from rows 5, 6 and 7. There are, of course, nine possible
ways to do this.

a b c a ∧ (b ∨ c)
1 T T T T
2 T T F T
3 T F T T
5 F T T F
6 F T F F
7 F F T F

The final flavour forces the value for clause cj to be identical for both assign-
ments of truth values to ci.

Criterion 14. Restricted Active Clause Coverage (RACC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j �= i so that
ci determines p. TR has two requirements for each ci: ci evaluates to true
and ci evaluates to false. The values chosen for the minor clauses cj must
be the same when ci is true as when ci is false, that is, it is required that
cj(ci = true) = cj(ci = false) ∀ cj.

For the example p = a∧ (b∨ c), only three of the nine sets of test requirements
that satisfy Correlated Active Clause Coverage with respect to clause a will
satisfy Restricted Active Clause Coverage with respect to clause a. In terms of
the previously given complete truth table, row 2 can be paired with row 6, row
3 with row 7, or row 1 with row 5. Thus, instead of the nine ways to satisfy
CACC, only three can satisfy RACC.

136 P. Ammann, J. Offutt, and W. Xu

a b c a ∧ (b ∨ c)
1 T T T T
5 F T T F
2 T T F T
6 F T F F
3 T F T T
7 F F T F

CACC versus RACC. Examples of satisfying a predicate for each of these
three criteria are given later. One point that may not be immediately obvious is
how CACC and RACC differ in practice.

It turns out that some logical expressions can be completely satisfied under
CACC, but have infeasible test requirements under RACC. These expressions
are a little subtle and only exist if there are dependency relationships among
the clauses, that is, some combinations of values for the clauses are prohibited.
Since this often happens in real programs – because program variables frequently
depend upon one another – it is useful to consider such an example.

Consider a system with a valve that might be either open or closed, and several
modes, two of which are “Operational” and “Standby.” Suppose that there are
two constraints:

1. The valve must be open in “Operational” and closed in all other modes.
2. The mode cannot be both “Operational” and “Standby” at the same time.

This leads to the following clause definitions:

a = “The valve is closed′′

b = “The system status is Operational′′

c = “The system status is Standby′′

Suppose that a certain action can only be taken if the valve is closed and the
system status is either in Operational or Standby. That is:

p = valve is closed AND (system status is Operational OR

system status is Standby)
= a ∧ (b ∨ c)

This is exactly the predicate that was analyzed above. The constraints above
can be formalized as:

1 ¬a ↔ b

2 ¬(b ∧ c)

These constraints limit the feasible values in the truth table. As a reminder,
the complete truth table for this predicate is:

Coverage Criteria for State Based Specifications 137

a b c a ∧ (b ∨ c))
1 T T T T violates constraints 1 & 2
2 T T F T violates constraint 1
3 T F T T
4 T F F F
5 F T T F violates constraint 2
6 F T F F
7 F F T F violates constraint 1
8 F F F F violates constraint 1

Recall that for a to determine the value of P , either b or c or both must be
true. Constraint 1 rules out the rows where a and b have the same values, that
is, rows 1, 2, 7, and 8. Constraint 2 rules out the rows where b and c are both
true, that is, rows 1 and 5. Thus the only feasible rows are 3, 4, and 6. Recall
that CACC can be satisfied by choosing one from rows 1, 2 or 3 and one from
rows 5, 6 or 7. But RACC requires one of the pairs 2 and 6, 3 and 7, or 1 and
5. Thus RACC is infeasible for a in this predicate.

Inactive Clause Coverage. The Active Clause Coverage Criteria focus on
making sure the major clauses do affect their predicates. A complementary cri-
terion to Active Clause Coverage ensures that changing a major clause that
should not affect the predicate does not, in fact, affect the predicate.

Criterion 15. Inactive Clause Coverage: For each p ∈ P and each major
clause ci ∈ Cp, choose minor clauses cj, j �= i so that ci does not determine p.
TR has four requirements for ci under these circumstances: (1) ci evaluates to
true with p true, (2) ci evaluates to false with p true, (3) ci evaluates to true
with p false, and (4) ci evaluates to false with p false.

Although Inactive Clause Coverage (ICC) has some of the same ambiguity as
does ACC, there are only two distinct flavours, namely General Inactive Clause
Coverage (GICC) and Restricted Inactive Clause Coverage (RICC). The notion
of correlation is not relevant for Inactive Clause Coverage because ci cannot
correlate with p since ci does not determine p. Also, Predicate Coverage is guar-
anteed in all flavours due to the structure of the definition.

The formal versions of GICC and RICC are as follows.

Criterion 16. General Inactive Clause Coverage (GICC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j �= i so that
ci does not determine p. The values chosen for the minor clauses cj do not
need to be the same when ci is true as when ci is false, that is, cj(ci = true) =
cj(ci = false) ∀ cj OR cj(ci = true) �= cj(ci = false) ∀ cj.

Criterion 17. Restricted Inactive Clause Coverage (RICC): For
each p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j �= i
so that ci does not determine p. The values chosen for the minor clauses cj

must be the same when ci is true as when ci is false, that is, it is required that
cj(ci = true) = cj(ci = false) ∀ cj.

138 P. Ammann, J. Offutt, and W. Xu

Complete Clause
Coverage

CoC

Restricted Inactive
Clause Coverage

RICC

General Active
Clause Coverage

GACC

Correlated Active
Clause Coverage

CACC

Restricted Active
Clause Coverage

RACC

General Inactive
Clause Coverage

GICC

Clause
Coverage

CC

Predicate
Coverage

PC

Fig. 7. Subsumption relations among logic coverage criteria

Figure 7 shows the subsumption relationships among the logic expression criteria.
Note that the Inactive Clause Coverage Criteria do not subsume any of the
Active Criteria, and vice versa.

Making a Clause Determine a Predicate. So, how does one go about
finding values for the minor clauses cj so that the major clause ci determines
the value of p? The authors are aware of three different methods presented in the
literature; a direct definitional approach is given here. Pointers to the other two,
one of which is an algorithmic version of the definitional approach, are given in
the bibliographic notes.

For a predicate p with clause (or boolean variable) c, let pc=true represent
the predicate p with every occurrence of c replaced by true and pc=false be the
predicate p with every occurrence of c replaced by false. The rest of this devel-
opment assumes there are no duplicates (that is, p contains only one occurrence
of c). Note that neither pc=true nor pc=false contains any occurrences of the
clause c. Now connect the two expressions with an exclusive or:

pc = pc=true ⊕ pc=false

Coverage Criteria for State Based Specifications 139

It turns out that pc describes the exact conditions under which the value of
c determines that of p. That is, if values for the clauses in pc are chosen so
that pc is true, then the truth value of c determines the truth value of p. If the
clauses in pc are chosen so that pc evaluates to false, then the truth value of p is
independent of the truth value of c. This is exactly what is needed to implement
the various flavours of Active and Inactive Clause Coverage.

As a first example, try p = a ∨ b. pa is, by definition:

pa = pa=true ⊕ pa=false

= (true ∨ b) ⊕ (false ∨ b)
= true ⊕ b

= ¬b

That is, for the major clause a to determine the predicate p, the only minor
clause b must be false. This should make sense intuitively, since the value of a
will have any effect on the value of p only if b is false. By symmetry, it is clear
that pb is ¬a.

Changing the predicate to p = a ∧ b results in

pa = pa=true ⊕ pa=false

= (true ∧ b) ⊕ (false ∧ b)
= b ⊕ false

= b

That is, b = true is needed to make a determine p. By a similar analysis, pb = a.
The equivalence operator is a little less obvious and brings up an interesting

point. Consider p = a ↔ b.

pa = pa=true ⊕ pa=false

= (true ↔ b) ⊕ (false ↔ b)
= b ⊕ ¬b

= true

That is, for any value of b, a determines the value of p without regard to
the value for b! This means that for a predicate p, such as this one, where the
value of pc is the constant true, the Inactive Clause Criteria are infeasible with
respect to c. Inactive Clause Coverage cannot be applied to expressions that use
the equivalence operator.

A more general version of this conclusion can be drawn that applies to the
Active Criteria as well. If a predicate p contains a clause c such that pc evaluates
to the constant false, the Active Criteria are infeasible with respect to c. The
ultimate reason is that the clause in question is redundant; the predicate can
be rewritten without it. While this may sound like a theoretical curiosity, it
is actually a very useful result for testers. If a predicate contains a redundant
clause, that is a very strong signal that something is wrong with the predicate!

140 P. Ammann, J. Offutt, and W. Xu

Consider p = a ∧ b ∨ a ∧ ¬b. This is really just the predicate p = a; b is
irrelevant. Computing pb yields

pb = pb=true ⊕ pb=false

= (a ∧ true ∨ a ∧ ¬true) ⊕ (a ∧ false ∨ a ∧ ¬false)
= (a ∨ false) ⊕ (false ∨ a)
= a ⊕ a

= false

so it is impossible for b to determine p.
Now consider how to make clauses determine predicates for more complicated

expressions. The expression p = a ∧ (b ∨ c) yields

pa = pa=true ⊕ pa=false

= (true ∧ (b ∨ c)) ⊕ (false ∧ (b ∨ c))
= (b ∨ c) ⊕ false

= b ∨ c

This example ends with an undetermined answer, which points out the key
difference between CACC and RACC. Three choices of values make b ∨ c true,
(b = c = true), (b = true, c = false), and (b = false, c = true). Correlated Active
Clause Coverage allows one pair of values to be used when a is true and another
when a is false. Restricted Active Clause Coverage requires the same pair to be
used for both values of a.

The derivation for b and equivalently for c is slightly more complicated:

pb = pb=true ⊕ pb=false

= (a ∧ (true ∨ c)) ⊕ (a ∧ (false ∨ c))
= (a ∧ true) ⊕ (a ∧ c)
= a ⊕ (a ∧ c)
= a ∧ ¬c

Finding Satisfying Values. The final step in applying the logic coverage
criteria is, of course, to choose values that satisfy the criteria. This step can be
automated fairly easily, although sometimes arbitrary choices can be made. This
section shows how to generate values for one example. The example is from the
first section of the chapter:

p = (a ∨ b) ∧ c

Finding values for Predicate Coverage is easy and was already shown in
Section 3. There are two test requirements:

TRPC = {p = true, p = false}
and they can be satisfied with the following values for the clauses:

Coverage Criteria for State Based Specifications 141

a b c
p = true t t t
p = false t t f

To run the test cases, of course, we need to refine these truth assignments to
create values for clauses a, b, and c. Suppose that clauses a, b, and c were defined
in terms of Java program variables as follows:

a x < y, a relational expression for program variables x and y
b done, a primitive boolean value
c list.contains(str), for List and String objects

Thus, the complete expanded predicate is actually:

p = (x < y ∨ done) ∧ list.contains(str)

Then the following values for the program variables satisfy the test require-
ments for predicate coverage.

a b c
p = true x=3 y=5 done = true list=[”Rat”,”Cat”,”Dog”] str = ”Cat”
p = false x=0 y=7 done = true list=[”Red”,”White”] str = ”Blue”

Note that the values for the program variables need not be the same in a
particular test case if the goal is to set a clause to a particular value. For example,
clause a is true in both tests, even though program variables x and y have
different values.

Values to satisfy Clause Coverage were also shown in Section 3. There are
six test requirements: TRCC = {a = true, a = false, b = true, b = false,
c = true, c = false}
and they can be satisfied with the following values for the clauses (blank cells
represent “don’t-care” values):

a b c
a = true t
a = false f
b = true t
b = false f
c = true t
c = false f

Refining the truth assignments to create values for program variables x, y, b,
list, and str is similar and straightforward.

Values for minor clauses to ensure the major clauses will determine the values
for p, as given in Section 3.1, are:

pa ¬b ∧ c
pb ¬a ∧ c
pc a ∨ b

142 P. Ammann, J. Offutt, and W. Xu

The next criterion is Combinatorial Coverage, which requires all combi-
nations of values for the clauses. CoC has eight test requirements, which can be
satisfied with the following values:

a b c (a ∨ b) ∧ c
1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Recall that General Active Clause Coverage requires that each major
clause be true and false and the minor clauses be such that the major clause
determines the value of the predicate. Similarly to Clause Coverage, there are
three pairs of test requirements:

TRGACC = {(a = true∧pa, a = false∧pa), (b = true∧pb, b = false∧pb), (c =
true ∧ pc, c = false ∧ pc)}

The test requirements can be satisfied with the following values for the clauses.
Note that these can be the same as with Clause Coverage with the exception
that the blank cells from Clause Coverage are replaced with the values from
the determination analysis. In the following table, values for major clauses are
indicated with upper case letters in bold-face.

a b c p
a = true ∧ pa T f t t
a = false ∧ pa F f t f
b = true ∧ pb f T t t
b = false ∧ pb f F t f
c = true ∧ pc t f T t
c = false ∧ pc f t F f

Note the duplication; the first and fifth rows are identical, and the second and
fourth are identical. Thus only four tests are needed to satisfy GACC.

A different way of looking at GACC considers all of the possible pairs of test
inputs for each pair of test requirements. Recall that the active clause coverage
criteria always generate test requirements in pairs, with one pair generated for
each clause in the predicate under test. The row numbers from the truth table
are used to identify these test inputs. Hence, the pair (3, 7) represents the first
two tests listed in the table above.

It turns out that (3, 7) is the only pair that satisfies the GACC test require-
ments with respect to clause a, and (5, 7) is the only pair that satisfies the GACC
test requirements with respect to clause b. For clause c, the situation is more
interesting. Nine pairs satisfy the GACC test requirements for clause c, namely

Coverage Criteria for State Based Specifications 143

{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7)}

Recall that Correlated Active Clause Coverage requires that each major
clause be true and false, the minor clauses be such that the major clause deter-
mines the value of the predicate, and the predicate must have both the value
true and false. As with GACC, there are three pairs of test requirements: For
clause a, the pair of test requirements is:

a = true ∧ pa ∧ p = x

a = false ∧ pa ∧ p = ¬x

where x may be either true or false. The point is that p must have a different
truth value in the two test cases. The CACC test requirements with respect to
b and c are similar.

For the example predicate p, a careful examination of the pairs of test cases
for GACC reveals that p takes on both truth values in each pair. Hence, there
is no difference between GACC and CACC for predicate p, and the same pairs
of test inputs apply. This is not, of course, true in general.

The situation for RACC is quite different, however, for the example p. Recall
that Restricted Active Clause Coverage is the same as CACC except that it
requires the values for the minor clauses cj to be identical for both assignments
of truth values to the major clause. For clause a, the pair of test requirements
that RACC generates is:

a = true ∧ pa ∧ b = B ∧ c = C

a = false ∧ pa ∧ b = B ∧ c = C

for some boolean constants B and C. An examination of the pairs given above for
GACC reveal that with respect to clauses a and b, there is no change. Namely,
pair (3, 7) satisfies RACC with respect to clause a and pair (5, 7) satisfies RACC
with respect to b. However, with respect to c, only three pairs satisfy RACC,
namely,

{(1, 5), (2, 6), (3, 7)}
This example leaves one question about the different flavours of Active Cov-

erage, namely, what is the practical difference among them? That is, beyond the
subtle difference in the arithmetic, how do they affect practical testers? The real
differences do not show up very often, but when they do they can be dramatic
and quite annoying.

GACC does not require that Predicate Coverage be satisfied, so use of that
flavour may mean the program is not tested as thoroughly as it should be.
In practical use, it is easy to construct examples where GACC is satisfied but
Predicate Coverage is not when the predicates are very small (one or two terms),
but difficult with three or more terms.

The restrictive nature of RACC, on the other hand, can sometimes make it
hard to satisfy the criterion. This is particularly true when there are depen-
dencies among the clauses. Consider a case where in the predicate used above,

144 P. Ammann, J. Offutt, and W. Xu

when x < y is true, the semantics of the program force done to be true, and
when x < y is false, done must be false. When this happens, the two clauses
are said to be correlated. Then RACC cannot be 100% satisfied (that is, there
are infeasible test requirements), but CACC can. Thus, the authors recommend
that Correlated Active Clause Coverage is usually the most practical flavour of
ACC.

Complicating Issues. A variety of technical issues have been identified that
complicate the Active Clause Coverage criteria. As with many criteria, the most
important is the issue of infeasibility. Infeasibility is often a problem because
clauses are sometimes related to one another. That is, choosing the truth value
for one clause may affect the truth value for another clause. Consider, for exam-
ple, a common loop structure, which assumes short circuit semantics:

while (i < n and a[i] != 0) {do something to a[i]}

The idea here is to avoid evaluating a[i] if i is out of range, and short circuit
evaluation is not only assumed, but depended on. Clearly, it is not going to be
possible to develop a test case where i < n is false and a[i] != 0 is true.

In principle, the issue of infeasibility for clause and predicate criteria is no
different from that for graph criteria. In both cases, the solution is to satisfy test
requirements that are feasible, and then identify and remove from consideration
test requirements that are infeasible.

It is also worth noting that this development treats clauses semantically, rather
than using the syntactic treatment that is common in the literature. That is,
the following predicate:

a ∧ b ∨ ¬a ∧ ¬b

is treated as having two clauses – a and b. The fact that both of these clauses show
up multiple times is ignored. The advantage of this approach is that exactly the
same test requirements are developed, no matter how the predicate is expressed.

3.2 Logic Coverage for Specifications

Software specifications, both formal and informal, appear in a variety of forms
and languages. They almost invariably include logical expressions, allowing the
logic coverage criteria to be applied. The first subsection looks at their applica-
tion to simple preconditions on methods, then other forms of specifications.

Specification-based Logic Coverage. Programmers often include precon-
ditions as part of their methods. The preconditions are sometimes written as
part of the design, and sometimes added later as documentation. Many formal
specification languages (such as Z) have explicit preconditions. Some sort of pre-
condition is always valid, although they are often not written explicitly. A tester
may still consider using this technique when the preconditions are not explicit,
by developing the preconditions as part of the testing process.

Consider the cal method in Figure 3.2. The method lists explicit preconditions
in natural language, which can be translated into predicate form as follows:

Coverage Criteria for State Based Specifications 145

month1 >= 0∧month1 <=12∧month2 >=0∧month2 <=12∧month1 <= month2

∧day1 >= 1∧day1 <= 31∧day2 >= 1∧day2 <= 31∧year >= 1∧year <= 10000

The comment about day1 and day2 being in the same year can be safely
ignored, because that prerequisite is enforced syntactically by the fact that only
one parameter appears for year. It is probably also clear that these preconditions
are not complete. Specifically, a day of 31 is only valid for some months. This
requirement should be reflected in the specifications or in the program.

This predicate has a very simple structure. It has eleven clauses (which sounds
like a lot!) but the only logical operator is “and,” so it is in disjunctive normal
form. Satisfying predicate coverage for cal() is simple – all clauses need to
be true for the true case and all clauses need to be false for the false case.
So (month1 = 4, month2 = 4, day1 = 12, day2 = 30, year = 1961) and
(month1 = 6, month2 = 4, day1 = 12, day2 = 30, year = 1961) satisfy predicate
coverage. Clause coverage requires all clauses to be true and false. It is reasonable
to try to satisfy this requirement with only two tests, but some clauses are related
and cannot both be false at the same time. For example, month1 cannot be
less than 0 and greater than 12 at the same time. The true test for predicate
coverage allows all clauses to be positive, then the following tests make each
clause negative. (month1 = −1, month2 = −2, day1 = 0, day2 = 0, year = 0)
and (month1 = 13, month2 = 13, day1 = 32, day2 = 32, year = 10500).

public static int cal (int month1, int day1, int month2,
int day2, int year)

{
//***
// Calculate the number of Days between the two given days in
// the same year.
// preconditions : day1 and day2 must be in same year
// 1 <= month1, month2 <= 12
// 1 <= day1, day2 <= 31
// month1 <= month2
// The range for year: 1 ... 10000
//***

Fig. 8. Header for calendar method

Making each clause determine the predicate with disjunctive normal form
predicates is simple – each minor clause must be true. To find the remaining
tests, each other predicate is made to be false in turn. Therefore, CACC (and
also RACC) is satisfied by the tests that are specified in Table 1. (Abbreviations
of the variable names are used to save space.)

Logic Coverage of Finite State Machines. Section 2.1 discussed the ap-
plication of graph coverage criteria to Finite State Machines. Recall that FSMs
are graphs with nodes that represent states and edges that represent transitions,

146 P. Ammann, J. Offutt, and W. Xu

Table 1. Correlated Active Clause Coverage for cal() Preconditions

m1 ≥ 0m1 ≤ 12m2 ≥ 0m2 ≤ 12m1 ≤ m2d1 ≥ 1d1 ≤ 31d2 ≥ 1d2 ≤ 31y ≥ 1y ≤ 10000
1.m1 ≥ 0 = T T t t t t t t t t t t
2.m1 ≥ 0 = F F t t t t t t t t t t
4.m1 ≤ 12 = F t F t t t t t t t t t
5.m2 ≥ 0 = F t t F t t t t t t t t
6.m2 ≤ 12 = F t t t F t t t t t t t
7.m1 ≤ m2 = F t t t t F t t t t t t
8.d1 ≥ 1 = F t t t t t F t t t t t
9.d1 ≤ 31 = F t t t t t t F t t t t

10.d2 ≥ 1 = F t t t t t t t F t t t
11.d2 ≤ 31 = F t t t t t t t t F t t
12.y ≥ 1 = F t t t t t t t t t F t
13.y ≤ 10000 = F t t t t t t t t t t F

with pre-states and a post-states. FSMs usually model behaviour of the software
and can be more or less formal and precise, depending on the needs and incli-
nations of the developers. This section treats FSMs in a generic way, as graphs.
Differences in notations are considered only in terms of the effect they have on
applying the criteria.

The most common way to apply logic coverage criteria to FSMs is to use
logical expressions from the transitions as predicates. In the Elevator example
in the Section 2.1, the trigger and thus the predicate is openButton = pressed.
Tests are created by applying the criteria from Section 3 to these predicates.

Consider the slightly larger example in Figure 9. This FSM models the behav-
ior of the memory seat in a car. The memory seat has two configurations for two
separate drivers and controls the side mirrors (sideMirrors), the vertical height
of the seat (seatBottom), the horizontal distance of the seat from the steering
wheel (seatBack), and the lumbar support (lumbar). The intent is to remember
the configurations so that the drivers can conveniently switch configurations with
the press of a button. Each state in the figure has a number for efficient reference.

The initial state of the FSM is whichever configuration it was in when the
system was last shut down, either Driver 1 or Driver 2. The drivers can modify
the configuration by manipulating one of the four controls; changing the side
mirrors, moving the seat backward or forward, raising or lowering the seat, or
modifying the lumbar support (triggering events). These controls only work if the
ignition is on (a guard). The driver can also change to the other configuration
by pressing either Button1 or Button2. In these cases, the guards only allow the
configuration to be changed if the Gear is in Park or the ignition is off. These
are safety constraints, because it would be dangerous to allow the driver’s seat
to go flying around when the car is moving.

When the driver changes one of the controls, the memory seat is put into
the modified configuration state. The new state can be saved by simultaneously
pressing the Reset button and either Button1 or Button2. The new configura-
tion is permanently saved when the ignition is turned off.

Coverage Criteria for State Based Specifications 147

Press seatBottom button
[Ignition = on]

2
Driver 2

Configuration

3
Modified

Configuration

4
New Configuration

Driver1

5
New Configuration

Driver2

1
Driver 1

Configuration

Button2 [Gear = Park OR
Ignition = off]

Button1 [Gear = Park OR
Ignition = off]

ignition = off

seatBack button
[Ignition = on]

Press lumbar button
[Ignition = on]

Press sideMirrors button
[Ignition = on]

seatBack button
[Ignition = on]

seatBottom button
[Ignition = on]

lumbar button
[Ignition = on]

sideMirrors button
[Ignition = on]

ignition = off

Reset and Button1
[Ignition = on]

Reset and Button2
[Ignition = on]

seatBack button
[Ignition = on]

lumbar button
[Ignition = on]

seatBottom button
[Ignition = on]

sideMirrors button
[Ignition = on]

seatBack button
[Ignition = on]

lumbar button
[Ignition = on]

seatBottom button
[Ignition = on]

sideMirrors button
[Ignition = on]

Button2 [Gear = Park OR
Ignition = off]

Button1 [Gear = Park OR
Ignition = off]

Fig. 9. FSM for a memory car seat

This type of FSM provides an effective model for testing software, although
several issues must be understood and dealt with when creating predicates and
then test values. Guards are not always explicitly listed as conjuncts, but they are
conjuncts in effect and so should be combined with the triggers using the AND
operator. In some specification languages, for example SCR, the triggers actually
imply two values. In SCR, if an event is labeled as triggering, it means that the
value of the resulting expression must explicitly change. This implies two values
– a before and after value, and is modelled by introducing a new variable. For
example, in the memory seat example, the transition from New Configuration
Driver 1 to Driver 1 Configuration is taken when the ignition is turned off.
If that is a triggering transition in the SCR sense, then the predicate needs to
have two parts: ignition = on ∧ ignition′ = off . ignition′ is the after value.

The transitions from Modified Configuration to the two New Configuration
states demonstrate another issue. The two buttons Reset and Button1 (or
Button2) must be pressed simultaneously. In practical terms for this example,
it is important to test for what happens when one button is pressed slightly prior

148 P. Ammann, J. Offutt, and W. Xu

to the other. Unfortunately, the mathematics of logical expressions used here do
not have an explicit way to represent this requirement, thus this situation is not
handled explicitly. The two buttons are connected in the predicate with the AND
operator. This is a simple example of the general problem of timing, and needs to
be addressed in the context of real-time software.

The predicates for the memory seat example are in Table 2 (using the state
numbers from Figure 9).

The tests to satisfy the various criteria are fairly straightforward and are left
to the exercises. Several issues must be addressed when choosing values for test
cases. The first is that of reachability; the test case must include prefix values to
reach the pre-state. For most FSMs, this is just a matter of finding a path from
an initial state to the pre-state (using a depth first search), and the predicates
associated with the transitions are solved to produce inputs. The memory seat
example has two initial states, and the tester cannot control which one is entered
because it depends on the last state the system was in when it was last shut down.
In this case, however, an obvious solution presents itself. Every test can begin
by putting the Gear in park and pushing Button 1 (part of the prefix). If the
system is in the Driver 2 state, these inputs will cause the system to transition
to the Driver 1 state. If the system is in the Driver 1 state, these inputs will
have no effect. In either case, the system will effectively start in the Driver 1
state.

Some FSMs also have exit states that must be reached with postfix values.
Finding these values is essentially the same as finding prefix values; that is,
finding a path from the post-state to a final state. In the memory seat example,
there is no exit state so this step can be skipped. The results of the test case
(verification values) must also be made visible. This might be possible by giving
an input to the program to print the current state, or causing some other output
that is dependent on the state. The exact form and syntax this takes depends
on the implementation, so cannot be finalized until the input-output behaviour
syntax of the software is designed.

One major advantage of this form of testing is determining the expected
output. It is simply the post-state of the transition for the test case values
that cause the transition to be true, and the pre-state for the test case values
that cause the transition to be false (the system should remain in the current
state). The only exception to this rule is that occasionally a false predicate
might coincidentally be a true predicate for another transition, in which case
the expected output should be the post-state of the alternate transition. This
situation can be recognized automatically.

The final problem is that of converting a test case (composed of prefix values,
test case values, postfix values, and expected output) into an executable test
script. The potential problem here is that the variable assignments for the pred-
icates must be converted into inputs to the software. This has been called the
mapping problem with FSMs and is analogous to the internal variable problem
of automatic test data generation for programs. Sometimes this step is a simple
syntactic rewriting predicate assignments (Button1 to program input button1).

Coverage Criteria for State Based Specifications 149

Table 2. Predicates from Memory Seat Example

Pre-state Post-state Predicate
1 2 Button2 ∧ (Gear = Park ∨ ignition = off)
1 3 sideMirors ∧ ignition = on
1 3 seatButton ∧ ignition = on
1 3 lumbar ∧ ignition = on
1 3 seatBack ∧ ignition = on

2 1 Button1 ∧ (Gear = Park ∨ ignition = off)
2 3 sideMirors ∧ ignition = on
2 3 seatButton ∧ ignition = on
2 3 lumbar ∧ ignition = on
2 3 seatBack ∧ ignition = on

3 1 Button1 ∧ (Gear = Park ∨ ignition = off)
3 2 Button2 ∧ (Gear = Park ∨ ignition = off)
3 4 Reset ∧ Button1 ∧ ignition = on
3 5 Reset ∧ Button2 ∧ ignition = on

4 1 ignition = off
4 3 sideMirors ∧ ignition = on
4 3 seatButton ∧ ignition = on
4 3 lumbar ∧ ignition = on
4 3 seatBack ∧ ignition = on

5 2 ignition = off
5 3 sideMirors ∧ ignition = on
5 3 seatButton ∧ ignition = on
5 3 lumbar ∧ ignition = on
5 3 seatBack ∧ ignition = on

Other times the input values can be directly encoded as method calls and em-
bedded into a program (for example, Button1 becomes pressButton1()). Other
times, however, this problem is much greater and can involve turning seemingly
small inputs at the FSM modelling level into long sequences of inputs or method
calls. The exact situation depends on the software implementation, thus a gen-
eral solution to this problem is at present elusive.

4 Summary

This chapter describes two kinds of test criteria suitable for software modelled
by state-based specifications. One kind is based on graphs, and the other is
based on logic expressions. After we present a representative sample of graph-
based and logic-based test coverage criteria, we extract appropriate graphs and
predicates from state-based specifications and apply the coverage criteria. The
unusual part of our presentation is the identification of the coverage criteria
first, followed by the application of the criteria to software artefact at hand. In
contrast, most treatments of software testing criteria identify the artefact first,
and then develop the criteria. The approach used here has the advantage of
focusing on the common aspects of coverage criteria across all software artefacts.

150 P. Ammann, J. Offutt, and W. Xu

The overall result of the chapter is a guide that helps test engineers in the task of
developing a set of test cases that are appropriate for a state-based specification.

5 Bibliographic Notes

During the research for this paper, one thing that became abundantly clear is
that this field has had a significant amount of parallel discovery of the same
techniques by people working independently. Some individuals have discovered
various aspects of the same technique, which was subsequently polished up into
test criteria. Others have invented the same techniques, but based them on
different types of graphs or used different names. Thus, ascribing credit for these
testing criteria is a perilous task. This section is a sincere effort, but the authors
only claim that the bibliographic notes in this chapter are starting points for
further study in the literature.

5.1 Graph Coverage Criteria

The research into covering graphs seems to have started with generating tests
from finite state machines (FSM), which has a long and rich history. Some of the
earliest papers were in the 1970s [15,29,31,41,49]. The primary focus of most of
these papers was on using FSMs to generate tests for telecommunication systems
that are defined with standard finite automata, although much of the work
pertained to general graphs. The control flow graph seems to have been invented
either by Kosaraju in 1974 [38] or by Legard in 1975 [40]. In papers published
in 1975, Huang [31] suggested covering each edge in a FSM, and Howden [29]
suggested covering complete trips through a FSM, but without looping. In a
similar paper from the same year [47,48] (as cited by Zhu [59]), Paige defined
“level-i path coverage.” Informally, the level-i criterion starts with testing all
paths that have no duplicate nodes from a start node to an end node. Then,
subpaths that have no duplicate nodes that have not yet been covered must be
covered. Gourlay’s extension was length-n coverage [27], which requires coverage
of all subpaths of length less than or equal to n.

In 1976, McCabe [41] suggested the same idea on control flow graphs as the
primary application of his cyclomatic complexity metric. In 1976, Pimont and
Rault [49] suggested covering pairs of edges, using the term “switch cover.”
In 1978, Chow [15] suggested generating a spanning tree from the FSM and
then basing test sequences on paths through this tree. In 1991, Fujiwara [25]
extended Pimont and Rault’s pairs of edges to arbitrary lengths, and used the
term “n-switch” to refer to a sequence of edges. He also attributed “1-switch,”
or switch cover, to Chow and called it the “W-method,” an inaccuracy that
has been repeated in numerous papers. The idea of covering pairs of edges was
rediscovered in the 1990s and included in the British Computer Society Standard
for Software Component Testing and called two-trip [9] and by Offutt et al. [46],
who called it transition-pair.

Other test generation methods based on FSMs include tour [44], the dis-
tinguished sequence method [26], and unique input-output method [52]. Their

Coverage Criteria for State Based Specifications 151

objectives are to detect output errors based on state transitions driven by in-
puts. FSM based test generation has been used to test a variety of applications
including lexical analyzers, real-time process control software, protocols, data
processing, and telephony. One important observation in this chapter is that the
criteria for covering finite state machines are not substantially different from
criteria for other graphs.

Several later papers focused on automatic test data generation to cover struc-
tural elements in the program [6,7,16,21,24,30,36,37,45,50]. Much of this work
was based on the analysis techniques of symbolic evaluation [10,17,18,21,23,29].
and slicing [53,55]. Recently, researchers have been trying to use search-based al-
gorithms (such as genetic and evolutionary algorithms) to address the automatic
test data generation problem [42].

The problem of handling loops has plagued graph-based criteria from the be-
ginning. It seems obvious that paths should be covered, but loops create infinite
numbers of paths. In Howden’s 1975 paper [29], he specifically addressed loops
by covering complete paths “without looping,” and Chow’s 1978 suggestion to
use spanning trees was an explicit attempt to avoid having to execute loops [15].
Binder’s book [5] used the technique from Chow’s paper, but changed the name
to round trip, which is the name that used here.

Another early suggestion was based on testing loop free programs [11], which
is certainly interesting from a theoretical view, but not totally practical.

White and Wiszniewski [58] suggested limiting the number of loops that need
to be executed based on specific patterns. Weyuker, Weiss and Hamlet tried to
choose specific loops to test based on data definitions and uses [57].

Kim, Hong, Cho, Bae and Cha used a graph-based approach to generate tests
from UML state diagrams [34]. SCR was first discussed by Henninger [28] and its
use in model checking and testing was introduced by Atlee [3]. Constructing tests
from UML use case diagrams is a more recent development, though relatively
straightforward. It was first suggested by Briand and Labiche [8]. This chapter
does not include this idea explicitly.

5.2 Logic Coverage Criteria

The active clause criteria seem to have their beginnings in Myers’ 1979 book
[43]. A more accessible paper is by Zhu [59]. He defined decision and condition
coverage, which Chilenski and Miller later used as a conceptual basis for MCDC
[12,51]. The definitions as originally given correspond to GACC in this book
and did not address whether minor clauses had to have the same value for both
values of the major clause. Most members of the aviation community interpreted
MCDC to mean that the values of the minor clauses had to be the same, an
interpretation that is called “unique-cause MCDC” [14]. Unique-cause MCDC
corresponds to RACC. More recently, the FAA has accepted the view that the
minor clauses can differ, which is called “masking MCDC” [13]. Masking MCDC
corresponds to CACC. A previous paper [2] clarified the definitions in the form
used here and introduced the term “CACC.”

152 P. Ammann, J. Offutt, and W. Xu

The inactive clause criteria are adapted from the RC/DC method of Vilkomir
and Bowen [54]. This chapter treats the criteria differently by viewing them as
complementary to the ACC criteria instead of competitive.

Jasper et al. presented techniques for generating tests to satisfy MCDC [32].
They took the definition of MCDC from Chilenski and Miller’s paper with the
“default” interpretation that the minor clauses must be the same for both values
of the major clauses. They went on to modify the interpretation so that if two
clauses are coupled, which implies it is impossible to satisfy determination for
both, the two clauses are allowed to have different values for the minor clauses.
The fact that different values are allowed only when clauses are coupled puts
their interpretation of MCDC between RACC and CACC.

Weyuker, Goradia and Singh presented techniques for generating test data for
software specifications that are limited to boolean variables [56]. The techniques
were compared in terms of the ability of the resulting test cases to kill mutants
[20,21]. The results were that their technique, which is closely related to MCDC,
performed better than any of the other techniques. Weyuker et al. incorporated
syntax as well as meaning into their criteria. They presented a notion called
meaningful impact which is related to the notion of determination, but which
has a syntactic basis rather than a semantic one. The concepts in that paper de-
scribed subsets of the mutation operators for logical expressions used in previous
mutation systems such as Mothra [21,35,19].

Kuhn investigated methods for generating tests to satisfy various decision-
based criteria, including MCDC tests [39]. He used the definition from Chilenski
and Miller [51,12], and proposed the boolean derivative to satisfy MCDC. In
effect, this interpreted MCDC in such a way to match CACC.

Dupuy and Leveson’s 2000 paper evaluated MCDC experimentally [22]. They
presented results from an empirical study that compared pure functional testing
with functional testing augmented by MCDC. The experiment was performed
during the testing of the attitude control software for the HETE-2 (High Energy
Transient Explorer) scientific satellite. The definition of MCDC from their paper
is the traditional definition given in the FAA report and Chilenski and Miller’s
paper: “Every point of entry and exit in the program has been invoked at least
once, every condition in a decision in the program has taken on all possible
outcomes at least once, and each condition has been shown to affect that decision
outcome independently. A condition is shown to affect a decision’s outcome
independently by varying just that decision while holding fixed all other possible
conditions.”

Note the typo in last line: “varying just that decision” should be “varying just
that condition”. This does not say that the decision has a different value when
the condition’s value changes. “Holding fixed” can be assumed to imply that the
minor clauses cannot change with different values for the major clause (that is,
RACC, not CACC).

The full predicate method of Offutt, Liu, Abdurazik and Ammann [46] explic-
itly relaxed the requirement that the major clauses have the same value as the
predicate. This is equivalent to CACC and almost the same as masking MCDC.

Coverage Criteria for State Based Specifications 153

Jones and Harrold have developed a method for reducing the regression tests
that were developed to satisfy MCDC [33]. They defined MCDC as follows:
“MC/DC is a stricter form of decision (or branch) coverage. . . . MC/DC requires
that each condition in a decision be shown by execution to independently affect
the outcome of the decision”. This is taken directly from Chilenski and Miller’s
original paper, and their interpretation of the definition is the same as CACC.

SCR was first discussed by Henninger [28] and its use in model checking and
testing was introduced by Atlee [4,3].

The method of determining pc given in this book uses the boolean deriva-
tive developed by Akers [1]. Both Chilenski [13] and Kuhn [39] applied Akers’s
derivative to exactly the problem given in this chapter. The other methods are
the pairs table method of Chilenski and Miller and the tree method, indepen-
dently discovered by Chilenski [13] and Offutt [46]. The tree method implements
the boolean derivative method in a procedural way.

Ordered Binary Decision Diagrams (OBDDs) offer another way of determining
pc. In particular, consider any OBDD in which clause c is ordered last. Then any
path through the OBDD that reaches a node labeled c (there will be exactly zero,
one, or two such nodes) is, in fact, an assignment of values to the other variables
so that c determines p. Continuing the path on to the constants T and F yields
a pair of test satisfying RACC with respect to c. Selecting two different paths
that reach the same node labeled c, and then extending each so that one reaches
T and the other reaches F yields a pair of tests that satisfy CACC, but not
RACC, with respect to c. Finally, if there are two nodes labeled c, then it is
possible to satisfy GACC but not CACC with respect to c: Select paths to each
of the two nodes labeled c, extend one path by choosing c true, and the other by
choosing c false. Both paths will necessarily end up in the same node, namely,
either T or F . ICC tests with respect to c can be derived by considering paths to
T and F in and OBDD where the paths do not include variable c. The attractive
aspect of using OBDDs to derive ACC or ICC tests is that a variety of existing
tools can handle a relatively large number of clauses. The unattractive aspect is
that for a predicate with N clauses, N different OBDDs for a given function are
required, since the clause being attended to needs to be the last in the ordering.
To the knowledge of the authors, the use of OBDDs to derive ACC or ICC tests
does not appear in the literature.

References

1. Akers, S.B.: On a theory of boolean functions. Journal Society Industrial Applied
Mathematics 7(4), 487–498 (1959)

2. Ammann, P., Offutt, J., Huang, H.: Coverage criteria for logical expressions. In:
Proceedings of the 14th International Symposium on Software Reliability Engi-
neering, Denver, CO, November 2003, pp. 99–107. IEEE Computer Society Press,
Los Alamitos (2003)

3. Atlee, J.M.: Native model-checking of SCR requirements. In: Fourth International
SCR Workshop (November 1994)

4. Atlee, J.M., Gannon, J.: State-based model checking of event-driven system re-
quirements. IEEE Transactions on Software Engineering 19(1), 24–40 (1993)

154 P. Ammann, J. Offutt, and W. Xu

5. Binder, R.: Testing Object-oriented Systems. Addison-Wesley Publishing Company
Inc., New York (2000)

6. Borzovs, J., Kalniņš, A., Medvedis, I.: Automatic construction of test sets: Practical
approach. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS,
vol. 502, pp. 360–432. Springer, Heidelberg (1991)

7. Boyer, R.S., Elpas, B., Levitt, K.N.: Select–a formal system for testing and debug-
ging programs by symbolic execution. In: Proceedings of the International Confer-
ence on Reliable Software, June 1975, SIGPLAN Notices, vol. 10(6) (1975)

8. Briand, L., Labiche, Y.: A UML-based approach to system testing. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 194–208. Springer, Heidelberg
(2001)

9. Special Interest Group in Software Testing British Computer Society. Standard for
Software Component Testing, Working Draft 3.3. British Computer Society (1997),
http://www.rmcs.cranfield.ac.uk/∼cised/sreid/BCS SIG/

10. Cheatham, T.E., Holloway, G.H., Townley, J.A.: Symbolic evaluation and the anal-
ysis of programs. IEEE Transactions on Software Engineering 4 (July 1979)

11. Cherniavsky, J.C.: On finding test data sets for loop free programs. Information
Processing Letters 8(2), 106–107 (1979)

12. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Software Engineering Journal 9(5), 193–200 (1994)

13. Chilenski, J., Richey, L.A.: Definition for a masking form of modified condition
decision coverage (MCDC). Technical report, Boeing, Seattle, WA (1997),
http://www.boeing.com/nosearch/mcdc/

14. Chilenski, J.J.: Personal communication (March 2003)
15. Chow, T.: Testing software designs modeled by finite-state machines. IEEE Trans-

actions on Software Engineering SE-4(3), 178–187 (1978)
16. Clarke, L.A.: A system to generate test data and symbolically execute programs.

IEEE Transactions on Software Engineering 2(3), 215–222 (1976)
17. Clarke, L.A., Richardson, D.J.: Applications of symbolic evaluation. The Journal

of Systems and Software 5(1), 15–35 (1985)
18. Darringer, J.A., King, J.C.: Applications of symbolic execution to program testing.

IEEE Computer 4 (April 1978)
19. DeMillo, R.A., Guindi, D.S., King, K.N., McCracken, W.M., Offutt, J.: An ex-

tended overview of the Mothra software testing environment. In: Proceedings of
the Second Workshop on Software Testing, Verification, and Analysis, Banff, Al-
berta, July 1988, pp. 142–151. IEEE Computer Society Press, Los Alamitos (1988)

20. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. IEEE Computer 11(4), 34–41 (1978)

21. DeMillo, R.A., Offutt, J.: Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering 17(9), 900–910 (1991)

22. Dupuy, A., Leveson, N.: An empirical evaluation of the MC/DC coverage criterion
on the HETE-2 satellite software. In: Proceedings of the Digital Aviations Systems
Conference (DASC) (October 2000)

23. Fairley, R.E.: An experimental program testing facility. IEEE Transactions on Soft-
ware Engineering SE-1, 350–3571 (1975)

24. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Transactions on Software Engineering Methodology 5(1), 63–86 (1996)

25. Fujiwara, S., Bochman, G., Khendek, F., Amalou, M., Ghedasmi, A.: Test selection
based on finite state models. IEEE Transactions on Software Engineering 17(6),
591–603 (1991)

http://www.rmcs.cranfield.ac.uk/~cised/sreid/BCS_SIG/
http://www.boeing.com/nosearch/mcdc/

Coverage Criteria for State Based Specifications 155

26. Gonenc, G.: A method for the design of fault-detection experiments. IEEE Trans-
actions on Computers C-19, 155–558 (1970)

27. Gourlay, J.S.: A mathematical framework for the investigation of testing. IEEE
Transactions on Software Engineering 9(6), 686–709 (1983)

28. Henninger, K.: Specifying software requirements for complex systems: New tech-
niques and their applications. IEEE Transactions on Software Engineering SE-6(1),
2–12 (1980)

29. Howden, W.E.: Methodology for the generation of program test data. IEEE Trans-
actions on Software Engineering SE-24 (May 1975)

30. Howden, W.E.: Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Transactions on Software Engineering 3(4) (July 1977)

31. Huang, J.C.: An approach to program testing. ACM Computing Surveys 7(3),
113–128 (1975)

32. Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman, D.: Test data
generation and feasible path analysis. In: Proceedings of the 1994 International
Symposium on Software Testing, and Analysis, August 1994, August 1994, pp.
95–107. ACM Press, New York (1994)

33. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritizaion for modified con-
dition / decision coverage. IEEE Transactions on Software Engineering 29(3), 195–
209 (2003)

34. Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D.: Test cases generation
from UML state diagrams. IEE Proceedings – Software 146(4), 187–192 (1999)

35. King, K.N., Offutt, J.: A Fortran language system for mutation-based software
testing. Software – Practice and Experience 21(7), 685–718 (1991)

36. Korel, B.: Automated software test data generation. IEEE Transactions on Soft-
ware Engineering 16(8), 870–879 (1990)

37. Korel, B.: Dynamic method for software test data generation. Software Testing,
Verification, and Reliability 2(4), 203–213 (1992)

38. Kosaraju, S.: Analysis of structured programs. Journal of Computer Systems and
Science 9, 232–255 (1974)

39. Kuhn, D.R.: Fault classes and error detection capability of specification-based test-
ing. ACM Transactions on Software Engineering Methodology 8(4), 411–424 (1999)

40. Legard, H., Marcotty, M.: A generalogy of control structures. Communications of
the ACM 18, 629–639 (1975)

41. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing SE-2(4), 308–320 (1976)

42. McMinn, P.: Search-based software test data generation: A survey. Software Test-
ing, Verification, and Reliability 13(2), 105–156 (2004)

43. Myers, G.: The Art of Software Testing. John Wiley and Sons, New York (1979)
44. Naito, S., Tsunoyama, M.: Fault detection for sequential machines by transition

tours. In: Proceedings Fault Tolerant Computing Systems, pp. 238–243. IEEE
Computer Society Press, Los Alamitos (1981)

45. Offutt, J., Jin, Z., Pan, J.: The dynamic domain reduction approach to test data
generation. Software – Practice and Experience 29(2), 167–193 (1999)

46. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Software Testing, Verification, and Reliability 13(1), 25–53
(2003)

47. Paige, M.R.: Program graphs, an algebra, and their implication for programming.
IEEE Transactions on Software Engineering SE-1(3), 286–291 (1975)

48. Paige, M.R.: In: Proc. of IEEE 2nd Annual International Computer Software and
Applications Conference (COMPSAC 1978), pp. 527–532 (1978)

156 P. Ammann, J. Offutt, and W. Xu

49. Pimont, S., Rault, J.C.: A software reliability assessment based on a structural
behavioral analysis of programs. In: Proceedings of the Second International Con-
ference on Software Engineering, San Francisco, CA (October 1976)

50. Ramamoorthy, C.V., Ho, S.F., Chen, W.T.: On the automated generation of pro-
gram test data. IEEE Transactions on Software Engineering 2(4), 293–300 (1976)

51. RTCA-DO-178B. Software considerations in airborne systems and equipment cer-
tification (December 1992)

52. Sabnani, K., Dahbura, A.: A protocol testing procedure. Computer Networks and
ISDN Systems 14(4), 285–297 (1988)

53. Tip, F.: A survey of program slicing techniques. Technical report CS-R-9438, Com-
puter Science/Department of Software Technology, Centrum voor Wiskunde en
Informatica (1994)

54. Vilkomir, S.A., Bowen, J.P.: Reinforced condition/decision coverage (RC/DC): A
new criterion for software testing. In: Bert, D., P. Bowen, J., C. Henson, M., Robin-
son, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 295–313. Springer, Hei-
delberg (2002)

55. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering SE-10(4),
352–357 (1984)

56. Weyuker, E., Goradia, T., Singh, A.: Automatically generating test data from a
boolean specification. IEEE Transactions on Software Engineering 20(5), 353–363
(1994)

57. Weyuker, E.J., Weiss, S.N., Hamlet, R.G.: Data flow-based adequacy analysis for
languages with pointers. In: Proceedings of the Fourth Symposium on Software
Testing, Analysis, and Verification, Victoria, British Columbia, Canada, October
1991, pp. 74–86. IEEE Computer Society Press, Los Alamitos (1991)

58. White, L., Wiszniewski, B.: Path testing of computer programs with loops using
a tool for simple loop patterns. Software – Practice and Experience 21(10), 1075–
1102 (1991)

59. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

Testing in the Distributed Test Architecture

J. Chen1, R.M. Hierons2, and H. Ural3

1 School of Computer Science, University of Windsor
Windsor, Ontario, Canada N9B 3P4

xjchen@uwindsor.ca
2 Department of Information Systems and Computing, Brunel University

Uxbridge, Middlesex, UB8 3PH, United Kingdom
rob.hierons@brunel.ac.uk

3 School of Information Technology and Engineering, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5

ural@site.ottawa.ca

Abstract. The introduction of multiple remote testers to apply a test
or checking sequence introduces the possibility of controllability and ob-
servability problems. These problems can require the use of external
coordination message exchanges among testers. It is desirable to con-
struct a test or checking sequence from the specification of the system
under test such that it is free from these problems without requiring
the use of external coordination messages. Here we define criteria on the
specification of the system under test for this to be possible. For specifi-
cations satisfying the criteria, algorithms for constructing subsequences
that eliminate the need for external coordination messages are given.

1 Introduction

Testing an implementation of a system under test (SUT) N is often carried out by
constructing an input sequence from the specification M of the system, applying
the input sequence in a test architecture, and analyzing the resulting output
sequence to determine whether the implementation conforms to the specification
on this input sequence. Conformance testing has been extensively studied in the
context where M is a Finite State Machine (FSM) and N is a state-based system
whose externally observable behaviour can also be represented by an FSM. This
is motivated by the fact that FSMs are used to model a number of classes of
systems including communications protocols [23] and control circuits [16]. The
focus of much of the previous work has been on automatically generating input
sequences from FSMs (see, for example, [1,12,13,29,28]). According to different
test criteria, such an input sequence can be a test sequence [20,21] or a checking
sequence [9,11,17].

The widespread use of distributed systems has led to interest in FSM-based
testing when the SUT is a distributed system. A distributed system may have
multiple sources of input and multiple destinations for output, often spread over
a wide area across the machine boundary. This may lead to a distributed test
architecture in which there is one tester at each interface/port. For example,

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 157–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J. Chen, R.M. Hierons, and H. Ural

when testing a layer of a protocol stack we can use one tester at the upper port
and one tester at the lower port [4].

The application of a test or checking sequence in the distributed test archi-
tecture introduces the possibility of controllability and observability problems.
The controllability problem manifests itself when a tester is required to send
the current input and because it did not send the previous input and did not
receive the previous output it cannot determine when to send the input. The
observability problem manifests itself when a tester is expecting an output in
response to either a previous input or the current input and because it is not the
sender of the current input, it cannot determine when to start and stop waiting
for the output. Suppose, for example, that a transition t2 follows a transition
t1 in testing and that t1 should send output o to port p and t2 should send no
output to port p. We get an output shift fault if in N t1 sends no output to
p and t2 send o to p. This is a potentially undetectable output shift fault if t2
does not involve input at p in which case all of the testers observe the expected
sequences of inputs and outputs if this output shift fault occurs: the faults in t1
and t2 mask one another in this test or checking sequence.

It is desirable to construct a test or checking sequence that causes no con-
trollability or observability problems during its application in a distributed test
architecture (see, for example, [2,8,10,14,18,22,24,30]). For some specifications,
there exists such an input sequence in which the coordination among testers
is achieved indirectly via their interactions with N [21,19]. However, for some
other specifications, there may not exist an input sequence in which the testers
can coordinate solely via their interactions with N [2,22]. In this case it is nec-
essary for testers to communicate directly by exchanging external coordination
messages among themselves over a dedicated channel during the application of
the input sequence [3].

Both controllability and observability problems may be overcome through the
use of external coordination messages among remote testers [3]. However, using
external coordination messages introduces the necessity to set up a separate
communications network. In addition, external coordination messages introduce
delays and these delays can cause problems if we have timing issues in our testing.
This is particularly problematic if the SUT responds rapidly to inputs, relative
to the network used for external coordination messages.

In this chapter, we summarize the literature on resolving these controllability
and observability problems. We present conditions on M under which these
problems can be overcome and algorithms for constructing subsequences that
eliminate the controllability and observability problems. First we give a necessary
and sufficient condition on M so that each transition involved in a potentially
undetectable output shift fault can be independently verified at port p. By verified
at port p, we mean we are able to conclude that the output of this transition at
port p is correct if we observe the correct output sequence on a certain transition
path. By independently, we mean that the above conclusion regarding the output
at port p for a transition does not rely on the correctness of any other transitions.
Independence here can be helpful for fault diagnoses. Sometimes we do not

Testing in the Distributed Test Architecture 159

require this notion of independence. If this is the case then the above condition
on M can be weakened. We present an algorithm that determines whether M
satisfies this weaker condition and when it does so constructs subsequences that
check the transitions.

The rest of this chapter is organized as follows. Section 2 introduces the prelim-
inary terminology. Section 3 gives a formal definition of the controllability prob-
lem and a brief overview of related work. In Section 4 we give a formal definition
of the observability problem and summarize previous work. Sections 5 - 9 con-
tain our work regarding overcoming the controllability and observability prob-
lems. This includes the procedure to identify observability problems (Section 5),
the formal definition of verifiability of potentially undetectable output shift faults
(Section 6), a necessary and sufficient condition to independently resolve all po-
tentially undetectable output shift faults in our context (Section 7), a general ap-
proach to check for the satisfiability of the criterion in a given specification to
resolve all potentially undetectable output shift faults in our context (Section 8),
as well as the comparison between these two approaches (Section 9). Conclusions
are given in Section 10.

2 An n-Port FSM and Its Graphical Representation

When a system interacts with its environment at more than one port it is nec-
essary to extend the FSM notation. This can be achieved through having input
and output alphabets associated with each port. A transition is triggered by
input from one port and sends output to zero or more ports. Thus, the output
of a transition can be represented by a set or vector [3].

An n-port Finite State Machine M (simply called an FSM M) is defined as
M = (S, I, O, δ, λ, s0) where S is a finite set of states of M ; s0 ∈ S is the initial
state of M ; I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i, and Ii ∩ Ij = ∅

for i, j ∈ [1, n], i �= j; O =
∏n

i=1(Oi ∪ {−}), where Oi is the output alphabet of
port i, and − means null output; δ is the transition function that maps S × I to
S; and λ is the output function that maps S × I to O. Each y ∈ O is a vector of
outputs, i.e., y = 〈o1, o2, ..., on〉 where oi ∈ Oi ∪ {−} for i ∈ [1, n]. We use ∗ to
denote any possible output, including −, at a port and + to denote non-empty
output. We also use ∗ to denote any possible input or any possible vector of
outputs.

We will use 2-port FSMs in all examples. In a 2-port FSM, ports U and L
stand for the upper interface and the lower interface of the FSM. An output
vector y = 〈o1, o2〉 on the label of a transition of a 2-port FSM is a pair of
outputs with o1 ∈ O1 at U and o2 ∈ O2 at L.

Example 1. Figure 1 shows a 2-port FSM. Suppose s0 is the initial state. In this
state, the FSM M can receive from port L an input request initReq to start a
conversation. Upon this request, it gives output initReqToU to inform the upper
layer at port U , and enters state s1. This request may either be rejected or be
accepted: In state s1, i) if there is an input initRej from port U to reject the
request, then there will be a message initRejToL sent to L and the machine will

160 J. Chen, R.M. Hierons, and H. Ural

initRej, initAcc, data, end are input at U
initReq is input at L

s0

end/<-,->

initReq/<initReqToU, ->

s2
s1

initRej/
<-, initRejToL>

initAcc/<-, initAccToL>

data/<-,dataToL>

Fig. 1. A 2-port finite state machine

return back to the inital state; ii) if there is an input initAcc from port U to
accept the request, then there will be a message initAccToL sent to port L and
the machine will be in state s2 for the conversation. In state s2 we can recursively
receive input data from port U and send dataToL to port L, until a special input
end is received and the machine returns back to the initial state.

In the following, p ∈ [1, n] is a port. A transition of an FSM M is a triple
t = (s1, s2, x/y), where s1, s2 ∈ S, x ∈ I, and y ∈ O such that δ(s1, x) = s2,
λ(s1, x) = y. s1 and s2 are called the starting state and the ending state of t
respectively. The input/output pair x/y is the label of t and t will also be denoted

as s1
x/y−−−→ s2. We use y |p or t |p to denote the output at port p in output vector

y or in transition t respectively. We use T to denote the set of all transitions in
M .

A path ρ = t1 t2 . . . tk (k ≥ 0) is a finite sequence of transitions such that
for k ≥ 2, the ending state of ti is the starting state of ti+1 for all i ∈ [1, k − 1].
When the ending state of the last transition of path ρ1 is the starting state
of the first transition of path ρ2, we use ρ1@ρ2 to denote the concatenation of
ρ1 and ρ2. The label of a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk)
(k ≥ 1) is the sequence of input/output pairs x1/y1 x2/y2 . . . xk/yk which is an
input/output sequence. The input portion of a path (s1, s2, x1/y1) (s2, s3, x2/y2)
. . . (sk, sk+1, xk/yk) (k ≥ 1) is the input sequence x1x2 . . . xk. We say t is con-
tained in ρ if t is a transition along path ρ.

When ρ is non-empty, we use first(ρ) and last(ρ) to denote the first and last
transitions of path ρ respectively and pre(ρ) to denote the path obtained from
ρ by removing its last transition.

A same-port-output-cycle in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . .
(sk, sk+1, xk/yk) (k ≥ 2) such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and there
exists a port p with yi |p �= − and xi �∈ Ip for all i ∈ [1, k]. An isolated-port-cycle
in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) (k ≥ 2)

Testing in the Distributed Test Architecture 161

i1/<*,o1>

s2s1

−≠1o

i1, i2 are input at U
−≠2o

i2/<*,o2>

(a)

i3/<-,o3>

s4s3

i3, i4 are input at L

i4/<-,o4>

(b)

Fig. 2. (a): A 2-port FSM with same-port-output-cycle; (b): A 2-port FSM with
isolated-port-cycle

such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and there exists a port p with
yi |p= − and xi �∈ Ip for all i ∈ [1, k].

Example 2. In the FSM in Figure 2(a), i1 and i2 are input at U while o1 and
o2 are non-empty output at L. So path (s1, s2, i1/〈∗, o1〉) (s2, s1, i2/〈∗, o2〉) is a
same-port-output-cycle. In the FSM in Figure 2(b), i3 and i4 are input at L, so
path (s3, s4, i3/〈−, o3〉) (s4, s3, i4/〈−, o4〉) is an isolated-port-cycle as the output
of these transitions at U are all empty.

3 Controllability Problems

When testing a system with multiple ports, there is one tester at each port. Let
us suppose that testing involves the input of xi at port p and then xi+1 at port
p′ �= p. In order for the tester at p′ to know when to input xi+1 it must know
when xi has been input. If the tester at p′ does not know when xi has been input
because it does not receive output from the transition triggered by xi, then we
encounter a controllability problem.

Formally, given an FSM M and an input/output sequence x1/y1 x2/y2 . . .
xk/yk of M a controllability (also called synchronization) problem occurs when,
in the labels xi/yi and xi+1/yi+1 of two consecutive transitions, there exists
p ∈ [1, n] such that xi+1 ∈ Ip, xi �∈ Ip, yi |p= − (i ∈ [1, k − 1]).

Consecutive transitions ti and ti+1 form a synchronizable pair of transitions if
ti+1 can follow ti without causing a synchronization problem. In this case, ti+1
is said to be an eligible successor of ti.

Example 3. In Figure 1, let

t1 = (s0, s1, initReq/〈initReqToU, −〉),
t2 = (s1, s0, initRej/〈−, initRejToL〉),
t3 = (s1, s2, initAcc/〈−, initAccToL〉),

162 J. Chen, R.M. Hierons, and H. Ural

t4 = (s2, s2, data/〈−, dataToL〉),
t5 = (s2, s0, end/〈−, −〉).

t1 and t2 form a synchronizable pair of transitions. The tester at port U knows
that input initRej of t2 should be given after it has received the output initReq-
ToU of the previous transition t1.

By contrast, t5 and t1 do not form a synchronizable pair of transitions, because
the tester at port L neither gives the input of the first transition t5 nor receives
its output, so it does not know when it should give input initReq of the second
transition t1.

Any path in which every pair of transitions is synchronizable is a synchronizable
path. An input/output sequence is synchronizable if it is the label of a synchro-
nizable path.

We assume that for every pair of transitions (t, t′) there is a synchronizable
path that starts with t and ends with t′. If this condition does not hold, then
the FSM is said to be intrinsically non-synchronizable [2].

The methods proposed in [24,8,10] are based on heuristic techniques for the
solution of the synchronization problem. They construct what is called an aux-
iliary graph from the given FSM and a tour of this auxiliary graph yields a
synchronizable test sequence [24,8] or checking sequence [10]. These methods as-
sume that there are two ports in the SUT and thus two testers, namely U and L.
They also require that for each state s of M there are two sequences, called syn-
chronizable unique input/output sequences (SUIOs), SUIOU (s) and SUIOL(s)
such that for p ∈ {U, L} SUIOp(s) has the following property: SUIOp(s) starts
with input at p and for every state s′ �= s the expected output from applying
SUIOp(s) in states s and s′ are different. SUIOs are used to check the final states
of transitions, synchronization problems between a SUIO and its predecessor be-
ing eliminated by an appropriate choice of SUIO. A digraph G = (V, E) is said
to be order-specified if for each edge ei,j = (vi, vj , x/y) ∈ E, a subset of the edges
leaving vertex vj is specified as eligible successors of ei,j , and a path in G is said
to be correctly ordered if for every consecutive pair of edges ej,k = (vj , vk; xj/yj)
and ek,l = (vk, vl; xk/yk), ek,l is an eligible successor of ej,k. Given a 2p-FSM M ,
a test sequence can be constructed from the order-specified digraph G = (V, E)
and a set of SUIOs [24].

The method proposed in [10] assumes the existence of a reliable reset fea-
ture1 and aims to construct a checking sequence. The solution is based on the
construction of a correctly-ordered digraph G′ = (V ′, E′) such that all edges of
G are in one-to-one correspondence with edges in G′, and all paths in G′ are
correctly ordered paths in G and thus correspond to synchronized paths in M .
SUIO sequences are used to construct test subsequences that start at the initial
state and these are connected by a reset. The checking sequence constructed by

1 A reset feature is an operation that returns the specification M to its initial state
irrespective of its current state. A reliable reset feature is a reset feature that is
known to have been correctly implemented in the SUT.

Testing in the Distributed Test Architecture 163

this method is minimized by eliminating redundant subsequences and using the
judicious choice of transition sequences and SUIOs.

The literature proposes several methods for constructing a synchronizable test
or checking sequence. A key point here is to construct a synchronizable path that
starts with a given transition t and ends with another given transition t′. This
can be achieved by searching for an appropriate path in the correctly-ordered
digraph G′.

The methods described above make the assumption that the testers may only
communicate with each other indirectly via their interactions with the SUT.
It is recognized that these methods will not yield synchronizable input/output
sequences for all FSMs because some FSMs are intrinsically non-synchronizable.

Alternatively, we can assume that the testers may communicate with each
other directly over some dedicated channels. Suppose that a synchronization
problem occurs in two consecutive transitions with labels xj/yj and xj+1/yj+1.
Let U (or L) be the tester that sends xj . A typical solution is to insert an exter-
nal coordination message exchange 〈−CL(U), +CU(L)〉 relating to controllability
between xj/yj and xj+1/yj+1 where “−CL(U)” denotes the sending of an exter-
nal coordination message C (informing the tester at L (or U) that it can send
input xj+1) to tester L (or U) from tester U (or L), and “+CU(L)” denotes the
receipt of C from tester U (or L) by tester L (or U) [3].

The method presented in [8] supports an additional communication channel
that facilitates external coordination message exchanges related to controlla-
bility amongst the testers, and the cost of these messages is included in the
minimization algorithm. The use of such external coordination messages allows
for the construction of a synchronizable test sequence for any FSM, including
those which are intrinsically non-synchronizable. The solution proposed in [3]
also uses external coordination messages to resolve controllability problems.

Tai and Young [22] introduce an alternative definition of synchronizable which
depends on the current state and eligible transitions of the FSM as well as the
transitions in the test sequences. Specifically, their definition states that a test
sequence is synchronizable if any execution of M and the testers according to
the test sequence is deterministic (i.e., the current state of M has at most one
eligible transition). Tai and Young refer to the synchronization problem as it
is defined in this section as the pair-wise synchronization problem. The authors
also discuss both port-based testing, which allows testers to communicate with
each other only indirectly via their interactions with the SUT, and group-based
testing, which divides the ports of the SUT into groups and allows the testers for
ports in the same group to communicate with each other directly using external
coordination messages.

4 Observability Problems

One of the difficulties in dealing with distributed systems comes from the absence
of a global clock. This complicates testing in a distributed test architecture [18]
in the sense that, with multiple ports, it is hard to determine the global order of
the input and output and in particular, which input triggered a particular output

164 J. Chen, R.M. Hierons, and H. Ural

initRej, initAcc, data, end are input at U
initReq is input at L

s0

end/<-,->

initReq/<initReqToU, ->

s2
s1

initRej/
<-, initRejToL>

initAcc/<-, initAccToL>

data/<-,dataToL>

(a)

r0

end/<-,dataToL>

initReq/<initReqToU, ->

r2
r1

initRej/
<-, initRejToL>

initAcc/<-, initAccToL>

data/<-,->

(b)

Fig. 3. An example to illustrate the observability problem

value. As a consequence, it is difficult to detect output being shifted along the
path while applying a test or checking sequence.

Suppose we have the FSM in Figure 1 as the specification FSM which is also
given in Figure 3(a) for convenience. Recall that t4 = (s2, s2, data/〈−, dataToL〉),
and t5 = (s2, s0, end/〈−, −〉), as defined in Example 3.

In t4, the input of data at port U is expected to lead to dataToL being output
at port L. In t5, the input of end at port U does not invoke any output. t4 and
t5 form a synchronizable pair of transitions as the tester at port U inputs end
after it has given input data.

It is possible that in the implementation N , however, these two transitions are
incorrectly implemented as shown in Figure 3(b): there is no output in response
to the input of data while the input of end leads to output dataToL at port L. In
this case by applying the input sequence of t4t5, each tester observes the correct
behaviour: the tester at U observes input data followed by input end, and the
tester at port L observes output dataToL. While the inputs of data and end lead
to the wrong output in N , the testers do not observe a failure since the two
faults mask one another in this sequence. Since this can occur, we say that the
two transitions t4 and t5 in Figure 3(a) are involved in a potentially undetectable
output shift fault in the sense that it is possible that the SUT has an output
shifted to/from another transition and this fault cannot be detected by the test
or checking sequence.

We distinguish between forward and backward output shift faults. The former
refers to the possible output shifts along the path while we apply a test or checking
sequence, and the latter refers to possible output shifts against the path while we
apply a test or checking sequence. In the above example, we have a potentially
undetectable forward output shift. Suppose that M is as shown in Figure 3(b).
Then M contains a potentially undetectable output shift fault in the same pair
of transitions: it is possible that N is the same as M except that this sequence is
implemented as shown in Figure 3(a). This fault is a backward output shift.

Testing in the Distributed Test Architecture 165

initRej, initAcc, data, end are input at U
initReq is input at L

w0

end/<-,->

initReq/<-, ->

w2
w1

initRej/
<-, initRejToL>

initAcc/
< initReqToU, initAccToL>

data/<-,dataToL>

Fig. 4. An example to illustrate the detectable output shift

Note that not all output shifts are undetectable. Again, suppose that we have
a specification M shown in Figure 3(a): the tester at port L inputs initReq,
which is expected to lead to initReqToU being output at port U . Tester at U
then inputs initAcc, which is expected to lead to output of initAccToL at port
L. It is possible that N is the same as M except that this pair of transitions
is implemented as Figure 4 shows. However, this output shift is detectable at U
because the tester at port U can realize that there is no output initReqToU in
response to input initReq before it gives input initAcc.

Potentially undetectable output shift faults represent possible fault masking
in a given test or checking sequence. In this chapter, we are interested in avoiding
potentially undetectable output shift faults, because the faults that are masked
in testing might lead to problems when the system is used since these transitions
could be used in different sequences that reveal the faults.

Before reviewing related work we formally define output shift faults.

Definition 1. A transition t is involved in a potentially undetectable output
shift fault at p if and only if there exists a transition t′ and a transition path ρ
such that at least one of the following holds.

1. tρt′ is a synchronizable path, no transition in ρt′ contains input at p, the
outputs at p in all transitions contained in ρ are empty, t |p= − and t′ |p �= −.
In this case an undetectable output shift fault can occur between t and t′ in
tρt′ and we call this a backward output shift fault.

2. t′ρt is a synchronizable path, no transition in ρt contains input at p, the
outputs at p in all transitions contained in ρ are empty, t |p= − and t′ |p �= −.
In this case an undetectable output shift fault can occur between t′ and t in
t′ρt and we call this a forward output shift fault.

When ρ is empty, we also say that t is involved in a potentially undetectable
1-shift output fault.

The observability problem occurs when we have potentially undetectable output
shift faults in the specification FSM and this is a problem we wish to avoid in
test or checking sequence generation.

166 J. Chen, R.M. Hierons, and H. Ural

s1

i2/<-, *>i4/<+, ->

s3

s4

i1/<o1, o2> −≠2o

i2, i3 are input at L
i1, i4 are input at U

i3/<o3, ->

−≠3o

t1: (s1, s2, i1/<o1,o2>)
t2: (s2, s3, i2/<-,*>)
t3: (s3, s4, i3/<o3,->)
t4: (s4, s1, i4/<+,->)

s2
−≠1o

Fig. 5. Illustration of observability problem

Example 4. The specification given in Figure 5 is free from same-port-output-
cycles and isolated-port-cycles. Any two consecutive transitions in it form a syn-
chronizable pair. However, it contains observability problems. Let t = t3, ρ = t4
and t′ = t1. We have (i) tρt′ is a synchronizable path; (ii) since i1 and i4 are
input at port U , no transition in ρt′ contains input at port L; (iii) the output
at port L in the transition contained in ρ is empty; (iv) t has empty output at
L while t′ has nonempty output at L so transition t3 is involved in a potentially
undetectable backward output shift fault at port L.

The dashed arrows in Figure 5 illustrates all potentially undetectable output
shift faults in this example:

– t1 and t2 are involved in potentially undetectable 1-shift forward output shift
fault at port U ;

– t2 and t3 are involved in potentially undetectable 1-shift backward output
shift fault at port U ;

– t1 and t4 are involved in potentially undetectable 1-shift backward output
shift fault at port L;

– t3 is involved in a potentially undetectable backward output shift fault at
port L.

Let U (or L) be the tester that sends xj+1. As with the controllability prob-
lems, some solutions in the literature assume the possibility of inserting an exter-
nal coordination message exchange 〈−BL(U), +BU(L)〉 relating to observability
between xj/yj and xj+1/yj+1 where “−BL(U)” denotes the sending of an ex-
ternal coordination message B to tester L (or U) from tester U (or L), and
“+BU(L)” denotes the receipt of B from tester U (or L) by tester L (or U) [3].
Through this exchange of the external coordination message B, tester U (or L)
informs tester L (or U) that it should expect to receive an output from N (in

Testing in the Distributed Test Architecture 167

the case of a backward shift) or that it should have received an output from N
by now (in the case of a forward shift).

Many researchers have studied the observability problem, very often together
with the controllability problem. Earlier studies on the observability problem
proposed solutions where first a synchronizable test sequence or checking se-
quence is generated and then this is inspected for observability problems. These
problems are then resolved by augmenting the sequence with additional se-
quences or direct communication between testers, depending on the test ar-
chitecture. Solutions that assume only indirect communication among testers
generate additional synchronizable subsequences for the purpose of resolving
observability problems. Those solutions which support direct communication re-
solve such problems by inserting external coordination message exchanges into
the test sequence.

Young and Tau [30] assumes that testers may communicate only indirectly via
their interactions with the SUT. Their strategy is to validate the transitions in
the test sequence one at a time, i.e. given a test sequence consisting of transitions
t1, t2, t3, . . ., tn for a given FSM M and the implementation N of M , first test
N by using t1. If this test is successful, test N using t1, t2, then t1, t2, t3, and
so on.

Luo et al. [19] proposes an approach that adds specific transitions to the
synchronizable test sequence, with the intent of detecting all 1-shift output faults
during the application of the sequences in the distributed test architecture. They
proposes the following algorithm to accomplish this:

– generate a synchronizable test sequence Π by using one of the test generation
methods for FSMs;

– find a set Ω of consecutive pairs of transition along the path caused by ap-
plying Π , where each pair may have a potential undetectable 1-shift output
fault;

– if Ω is empty, stop. Otherwise, add a set of additional synchronizable test
subsequences to Π such that Π can ensure the absence of potential unde-
tectable 1-shift output faults in the transition pairs of Π .

Hierons and Ural [15] propose a method for generating a checking sequence
based on UIO sequences2. It is assumed in [15] that testers may communicate
only indirectly via their interactions with the SUT. To verify the uniqueness of
state si, the input portion of the UIO sequence for every state must be applied
at si. Therefore, the method requires that the input portion of every UIO se-
quence can be applied at every state without causing synchronization problems.
Potential 1-shift output faults are detected by adding specific transitions to the
synchronizable checking sequence, as in [19].

Cacciari and Rafiq [3] propose the use of external coordination messages to
resolve problems relating to controllability and observability. They show in [3]
how a minimal set of messages can be added to a given test sequence to produce
2 An input/output sequence x/y is a UIO for a state s of M if the response of M to

x is y if and only if M was in state s.

168 J. Chen, R.M. Hierons, and H. Ural

a synchronised test sequence that detects the potentially undetectable output
shift faults. This approach can be adopted only when the test generation is
separated into two phases: the generation of the initial test sequence that satisfies
certain test criterion, and the insertion of the external coordination messages into
the initial test sequence. Apparently, the separation of the test generation into
two phases may lead to a suboptimal test: a short initial sequence may require
the addition of many messages. To overcome this problem, Hierons [14] and
Whittier [25] show how a single phase can be used to construct test sequences
that are free from controllability and observability problems, and they resolve
the optimization problem in doing so. The method in [14] generates a minimal
length test sequence, while the method in [25] generates a test sequence that
is minimal in terms of both the length of the test sequence and the number of
external coordination message exchanges.

In the methods described in [3,19,30,25], the fault model3 assumed consists of
only output faults in which a transition could produce the wrong output vector.
These synchronizable test sequences may not detect faults in an implementation
that also has transfer faults in which the end state of a transition is incorrect. The
checking sequence method presented in [15] assumes a remote test architecture
in which testers can only communicate via their interactions with the SUT. As
a result, the method must make restrictive assumptions regarding the existence
of synchronizable UIO sequences, and requires additional input sequences to
address problems related to observability.

Ural and Williams propose two methods based on distinguishing sequences4

that will detect the presence of any output and/or transfer fault(s) in an imple-
mentation of an FSM [26,27]. The first method assumes the presence of a reliable
reset that returns the implementation to its initial state, while the second method
does not. Both methods take into consideration both external coordination and
input/output costs and consist of a set of transformation rules that construct
modified digraphs from the specification of a given 2p-FSM M , allowing for
the construction of a synchronizable checking sequence that verifies every state
and transition. This synchronizable checking sequence will ensure also that no
1-shift output fault remain undetected. Both methods attempt to reduce the
total number of external coordination message exchanges by taking their cost
into consideration during the construction of the checking sequence.

5 Identifying Observability Problems

To resolve the observability problems, i.e. to verify that the SUT is free from
undetectable output shift faults, we need to verify the output of transition t at

3 A fault model describes the set of possible faulty SUTs and given a fault model F
we can aim to find a test or checking sequence that will lead to failures for any faulty
members of F .

4 An input sequence x is a distinguishing sequence for M if no two states of M lead
to the same response to x.

Testing in the Distributed Test Architecture 169

port p for each t which is involved in a potentially undetectable output fault at
p. First of all, we need to identify all such transitions for each port p.

We will use Tp to denote the set of transitions that are involved in potentially
undetectable output shift faults at p. Let T ′

p = Tp ∩ {t | t|p �= −} denote the set
of transitions that are involved in potentially undetectable output shift faults
at p and whose output at p is non-empty. Similarly, Tp − T ′

p denotes the set of
transitions that are involved in potentially undetectable output shift faults at p
and whose output at p is empty.

Example 5. In the given specification in Figure 6, there is an undetectable output
shift fault in t1t3 at port U , because the input of t3 is not at U while there is
a potential output shift of o from t3 to t1. In fact, TU = {t1, t3}, T ′

U = {t3},
TL = T ′

L = ∅.

s2

t1: (s1, s2, i1/<-,+>)

i3 is input at L

t2: (s2, s1, i2/<+,+>)

t3: (s2, s1, i3/<o,+>)
i1, i2 are input at U

i1/<-,+>

i2/<+,+>

i3/<o,+>

s1

Fig. 6. An example where Tp is verifiable at U

To calculate T ′
p and Tp − T ′

p , we can first determine all transitions involved in
potentially undetectable 1-shift output faults. This can be done by comparing

every synchronizable pair of transitions s1
x1/y1−−−−→ s2 and s2

x2/y2−−−−→ s3 where x2
is not at p. If y1 has non-empty output at p while y2 does not, or vice versa,
then t1 and t2 are involved in potentially undetectable 1-shift output fault and
we can put them into T ′

p and Tp − T ′
p respectively. In particular, for the purpose

of the next step of the calculation, we can mark each transition put into Tp −
T ′

p as backward or forward to indicate whether it is involved in a potentially
undetectable backward or forward output shift. Note that a transition can be
marked as both forward and backward. This step takes O(v2) time where v is
the number of transitions in M . At the end of this step, the set T ′

p calculated
is what we want. Then we can find all of the other transitions in Tp − T ′

p that
have empty output at p and are involved in potentially undetectable output shift

faults. We can keep adding transitions s1
x1/y1−−−−→ s2 into Tp − T ′

p if the output of
y1 at p is empty and one of the following holds:

– There exists s2
x2/y2−−−−→ s3 in Tp −T ′

p marked as backward, x2 is not at p, and

s2
x2/y2−−−−→ s3 is an eligible successor of s1

x1/y1−−−−→ s2. In this case, the added
transition is also marked as backward.

– There exists s3
x2/y2−−−−→ s1 in Tp − T ′

p marked as forward, x1 is not at p, and

s1
x1/y1−−−−→ s2 is an eligible successor of s3

x2/y2−−−−→ s1. In this case, the added
transition is also marked as forward.

This step also takes O(v2) time.

170 J. Chen, R.M. Hierons, and H. Ural

6 Verifiability of Outputs

Now that we have identified all the transitions that are involved in potentially
undetectable output shift fault, we want to produce test or checking sequences
that verify the output of transition t at port p for each t ∈ Tp. Without using
external coordination messages, we reach this goal by constructing a subsequence
for each transition in Tp so that if these subsequences appear in the test or
checking sequence, and the output observed when the test or checking sequences
is applied to the SUT is correct, then it is guaranteed that the SUT is free from
undetectable output shift faults.

Now suppose that t ∈ Tp. If we can find a synchronizable path ρ containing t
such that the following conditions hold, then the input portion of ρ can serve as
such a subsequence for (t, p).

– ρ is synchronizable;
– we are able to determine the output sequence of ρ at p from applying the

input portion of ρ from the starting state of ρ;
– from the correct output sequence of ρ at p we can deduce that the output

of t at p is correct.

We require that first(ρ) and last(ρ) have input at p in order to identify a certain
output sequence: no matter how ρ is concatenated with other subsequences, we
can always determine the output sequence produced at p in response to the
first |pre(ρ)| inputs of ρ since this output sequence is immediately preceded and
followed by input at p.

To determine the correct output of (t, p) from the correct output sequence of
ρ at p, we require that

– If the output of (t, p) is nonempty, then all the outputs at p in pre(ρ) are
either also nonempty or already known to be correct.

– If the output of (t, p) is empty, then all the outputs at p in pre(ρ) are either
also empty or already known to be correct.

We say that transitions t1 and t2 have the same type of output at p when the
output of t1 and t2 at p are either both empty or both non-empty.

Example 6. In the specification in Figure 6, we know that there is an unde-
tectable output shift fault in t1t3 at port U . We are interested in constructing a
path to verify that the output of transition t1 and t3 at this port are correct.

ρ1 = t1t2 is such a synchronizable path for t1: it has input at U in t1 (first(ρ))
and input at U in t2 (last(ρ)), and if the correct the output is observed at U
between these two inputs when ρ1 is applied as a subsequence, we are able to
deduce that the output of t1 at U is correct.

If we know that the output of t1 at U is correct, then ρ2 = t1t3t1 is also a
sufficient synchronizable path for t3: it has input at U in t1 (for both first(ρ)
and last(ρ)), and if the correct output is observed at U between these two inputs
when ρ2 is applied then we are able to deduce that the output of t3 at U is
correct since we already know that the output of t1 at U is correct.

Testing in the Distributed Test Architecture 171

Formally, we introduce the following concept.

Definition 2. Let t be a transition and v a set of transitions in M . ρ is an
absolute verifying path upon v for (t, p) if

– ρ is a synchronizable path;
– t is contained in pre(ρ);
– first(ρ) and last(ρ) and only these two transitions in ρ have input at p;
– t �∈ v and for all t′ contained in pre(ρ), either t′ ∈ v or t′ |p= − ⇔ t |p= −.

Note that given t and ρ we will typically consider a minimal set v that satisfies
the above conditions: if t′ |p= − ⇔ t |p= − then t′ �∈ v.

Example 7. In Figure 6,

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

Directly from this definition, we have:

Proposition 1. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set, then ρ is an absolute verifying path upon v for (t′, p) for any
t′ contained in pre(ρ) such that t′ |p= − ⇔ t |p= −.

No matter how ρ is concatenated with other subsequences, we can always deter-
mine the output sequence produced at p in response to the first |ρ| − 1 inputs of
ρ since this output sequence is immediately preceded and followed by input at p.
By checking the correctness of this output sequence, we would like to conclude
that the output of t at p is correct. This is expressed in the following proposition:

Proposition 2. Let v be a set of transitions in M , ρ an absolute verifying path
upon v for (t, p). If for every transition t′ in v, the output at p of t′ in the SUT
is correct, then the correct output sequence at p in response to the first |pre(ρ)|
inputs of ρ implies the correct output of (t,p).

Proof. Suppose t |p �= − (The proof for the case when t |p= − is analogous).
Suppose that m inputs from pre(ρ) lead to non-empty output at p in M . Thus,

if we observe the correct output sequence in response to the first |pre(ρ)| inputs
of ρ then we must observe m outputs at p in response to these inputs.

Since t |p �= −, and ρ is an absolute verifying path upon v for (t, p), we know
by definition that for all t′ in ρ′ such that t′ |p= −, the output of t′ at p is correct
(and so is −) in the SUT. So, we know that the corresponding |pre(ρ)|−m inputs
in pre(ρ) lead to empty output at p in the SUT. Thus we can map the observed
outputs at p, in response to the input portion of pre(ρ), to the inputs that caused
them and so if the correct output sequence is observed then the output of p at
t must be correct.

172 J. Chen, R.M. Hierons, and H. Ural

7 Finding an Absolute Verifying Path Upon ∅

To verify the output of (t, p), we try to find a path ρ that is an absolute verifying
path upon v for (t, p) for some set v such that the output at p for every transition
in v is verified. As a special case, we would like to know if there exists an absolute
verifying path upon ∅ for each t ∈ Tp. Of course, if this is possible then the input
portion of these paths can be used as the subsequences we want. The advantage
in doing so is that we can independently verify each output of a transition in
the sense that we are able to conclude that the output of this transition at port
p is correct from observing the correct output sequence on a certain transition
path, and that the above conclusion does not rely on assuming the correctness
of any other transitions. Independence here can be helpful for fault diagnoses:
in the case that the SUT contains only undetectable output shift faults, we will
be able to identify them.

Below, we present a necessary and sufficient condition on M for (t, p) to have
an absolute verifying path upon ∅ for each p and each t ∈ Tp. This condition
is presented in terms of potentially undetectable 1-shift output faults as in [6]
while it holds also for general potentially undetectable output shift faults.

7.1 Condition

If ρ1@t@ρ2 is an absolute verifying path upon ∅ for (t, p), then ρ1 and ρ2 are
called an absolute leading path and an absolute trailing path respectively [6].
Suppose that M is an FSM which is not intrinsically non-synchronizable, has
no same-port-output-cycles, and has no isolated-port-cycles. The following is a
necessary and sufficient condition on M to guarantee the existence of an absolute
leading path and an absolute trailing path for (t, p) for each t involved in a
potentially undetectable output shift fault.

Given an FSM M which is not intrinsically non-synchronizable and has neither
same-port-output-cycles nor isolated-port-cycles, there exist absolute verifying
paths upon ∅ for all of its potentially undetectable 1-shift output faults if and only

if for any synchronizable pair of transitions t1 = s1
∗/∗−−−→ s and t2 = s

∗/∗−−−→ s2
in M ,

a if there exists a potentially undetectable forward shift of an output at port p,
then there exists at least one transition to s with a null output at port p that
forms a synchronizable pair of transitions with t2, and at least one transition
from s with either an input or a non-empty output at port p that forms a
synchronizable pair of transitions with t1.

b if there exists a potentially undetectable backward shift of an output at port p,
then there exists at least one transition to s with a non-empty output at port
p that forms a synchronizable pair of transitions with t2, and at least one
transition from s with either an input or a null output at port p that forms
a synchronizable pair of transitions with t1.

Testing in the Distributed Test Architecture 173

s1
/<o1,> i1/<-,*>

i2/<o2,*>

s2

s4

s

or i3/<*,*>s3

/<-,>

s1
/<-,> i1/<o1,*>

s2

s4

s

/<o2,>

s3

i2/<-,*>
or i3/<*,*>

(a) (b)

−≠2o
i1, i2 are input at L
i3 is input at U

Fig. 7. illustration of the condition

Figure 7 illustrates the condition in a 2-port FSM setting. In this figure, we have
potentially undetectable forward output shift fault in (a) and potentially unde-
tectable backward output shift fault in (b), as the dashed arrows show. For such
potential faults, we have a transition from s3 to s and a transition from s to s4,
so the condition holds. In fact, in (a), the transition from s to s4 will be used to

check if there is a missing output o1 in transition s1
∗/<o1,∗>−−−−−−−→ s, as a result of a

forward output shift. The transition from s3 to s will be used to check if there is

an extra output in transition s
i1/<−,∗>−−−−−−−→ s2 as a result of a forward output shift.

The transitions from s3 to s and from s to s4 in (b) will be used analogously.

Theorem 1. Let M be a given FSM which is not intrinsically non-synchronizable
and has no same-port-output-cycles and has no isolated-port-cycles. Let p be any
port of M . There is an absolute verifying path upon ∅ for every t ∈ Tp, if and only

if for any synchronizable pair of transitions t1 = s1
x1/y1−−−−→ s and t2 = s

x2/y2−−−−→ s2
in the FSM,

(x2 �∈ Ip ∧ y1|p = − ⇔ y2|p �= −) implies

∃s3, x3, y3, s4, x4, y4 s.t. t3 = s3
x3/y3−−−−→ s, (y3|p = − ⇔ y1|p �= −), t4 = s

x4/y4−−−−→
s4, (x4 ∈ Ip ∨ (y4|p = − ⇔ y2|p �= −)), t1 and t4 form a synchronizable pair of
transitions, and t3 and t2 form a synchronizable pair of transitions.

Proof. (⇒) Let t1 = s1
x1/y1−−−−→ s and t2 = s

x2/y2−−−−→ s2 be any synchronizable pair
of transitions in M .

Suppose x2 �∈ Ip, and y1|p = − ⇔ y2|p �= −, i.e. t1 and t2 are involved in
a potentially undetectable output shift. By the hypothesis there exists absolute
verifying paths upon ∅ for t1 and t2 respectively.

174 J. Chen, R.M. Hierons, and H. Ural

Let ρ1 be an absolute leading path for t2. Since x2 �∈ Ip, ρ1 �= ε. Let t3 =

s3
x3/y3−−−−→ s be the last transition of ρ1 then we have (y3|p = − ⇔ y1|p �= −) and

by definition t3 and t2 form a synchronizable pair of transitions as required.

Let ρ2 be an absolute trailing path for t1 and so ρ2 �= ε. Let t4 = s
x4/y4−−−−→ s4

be the first transition of ρ2 then we have (x4 ∈ Ip or (y4|p = − ⇔ y2|p �= −))
and by definition t1 and t4 form a synchronizable pair of transitions.

(⇐) Let t be any transition in Tp. We prove that there is an absolute leading
path ρ1 for (t, p). The part for absolute trailing path follows in the same way.

If the input of t is at p, then ε is an absolute leading path. Suppose instead
that the input of t is not at p. Let ρ′ be a longest synchronizable path ending
in t in which every transition has the same type of output at p as t, and no
transition has input at p. Since M has a finite number of states and has neither
same-port-output-cycles or isolated-port-cycles, the existence of such a (finite)

ρ′ is guaranteed. Let t′1 be the first transition of ρ′. Let t′2 = s′2
x2/y2−−−−→ s′1 be

any transition ending at the starting state of t′1 such that t′2 and t′1 form a
synchronizable pair of transitions. If y2|p = − ⇔ t|p = −, then t′2@ρ′ is an
absolute leading path as by the maximality of ρ′ we have that x2 ∈ Ip. If y2|p =
− ⇔ t|p �= −, then t′2 and t′1 are involved in a potentially undetectable output

shift fault. According to the condition, there exists t′3 = s′3
x3/y3−−−−→ s′1 such that

y3|p = − ⇔ t|p = − and t′3 and t′1 form a synchronizable pair of transitions.
Again, x3 ∈ Ip, so t′3@ρ′ is a absolute leading path as required.

7.2 Algorithm

In Section 5 we showed how one can identify all pairs of transitions that are
involved in a potentially undetectable output shift fault. For each such pair, we
can determine in constant time whether the above condition is satisfied. Once we
know that a given specification satisfies the condition, we can use the algorithm
in Figure 8 to construct an absolute verifying path upon ∅ for (t, p) for a given
transition t ∈ Tp.

This algorithm is composed of two parts: lines 3-13 find an absolute leading
path ρ1 and the rest of the algorithm produces an absolute trailing path ρ2. Here
we briefly describe the first of these two parts as they are quite similar.

If the input of transition t is at p then we can terminate with ρ1 = ε. Other-
wise, we check if there exists a transition ending at the starting state v of ρ1@t
that can form a synchronizable path with ρ1@t and which has input at p and the
same type of output at p as t. If there is such a transition, the current ρ1 preceded
by this transition suffices. Otherwise we precede ρ1 with a transition ending at
the starting state of ρ1@t that can form a synchronizable path with ρ1@t and
which has the same type of output at p as t, and repeat the procedure. Such a

transition is guaranteed to exist: if there exists v′′. v′′
x′/y′

−−−−→ v that can form a
synchronizable path with ρ1@t where the type of the output of y at p is different
from that of t, then there exists a potentially undetectable output shift between

v′′
x′/y′

−−−−→ v and the first transition of ρ1@t. By our condition, ∃v′. v′
x/y−−−→ v that

Testing in the Distributed Test Architecture 175

1: input: an FSM M that satisfies the above condition, a port p of M , and a transition
t ∈ Tp of M where the output of t at p is y∗

2: output: ρ1@t@ρ2 which is an absolute verifying path upon ∅ for (t, p)
3: let ρ1 := ε
4: if the input of t is not at port p then
5: let v := the starting state of t

6: while ¬∃v′ s.t. v′ x/y−−−→ v, v′ x/y−−−→ v@ρ1@t is a synchronizable path, x ∈ Ip and
(y |p= − ⇔ y∗ |p= −) do

7: let v′ be a state s.t. v′ x/y−−−→ v, v′ x/y−−−→ v@ρ1@t is a synchronizable path, (y |p=
− ⇔ y∗ |p= −)

8: let ρ1 := (v′, v, x/y)@ρ1

9: let v := v′

10: end while
11: let v′ be a state s.t. v′ x/y−−−→ v, v′ x/y−−−→ v@ρ1@t is a synchronizable path, x ∈ Ip

and (y |p= − ⇔ y∗ |p= −)
12: let ρ1 := (v′, v, x/y)@ρ1

13: end if
14: let ρ2 = ε
15: let v := the ending state of t

16: while ¬∃v′ s.t. v
x/y−−−→ v′, t@ρ2@v′ x/y−−−→ v is a synchronizable path, and x ∈ Ip

do
17: let v′ be a state s.t. v

x/y−−−→ v′, t@ρ2@v
x/y−−−→ v′ is a synchronizable path, and

(y |p= − ↔ y∗ |p= −)
18: let ρ2 := ρ2@(v, v′, x/y)
19: let v := v′

20: end while
21: let v′ be a state s.t. v

x/y−−−→ v′, t@ρ2v
x/y−−−→ v′ is a synchronizable path, and x ∈ Ip

22: let ρ2 := ρ2@(v, v′, x/y)

Fig. 8. Algorithm 1: generating absolute verifying paths upon ∅

forms a synchronizable path path with ρ1@t such that the type of the output of
y at p is the same as that of t.

Termination is guaranteed because M must be free from same-port-output-
cycles and isolated-port-cycles. Furthermore, since M has no same-port-output-
cycles or isolated-port-cycles, this procedure cannot repeat a state of M and
thus, if M has m states, ρ1 can have length at most m − 1.

8 Finding an Absolute Verifying Path Upon a Set v

When the given specification does not satisfy the above criterion, we are not able
to construct subsequences to independently verify the output of each transition
involved in a potentially undetectable output shift fault at port p. However, there
may still exists a set of subsequences such that when these subsequences are
included into the test or checking sequence and the observed output is correct,
we have confidence that the implementation is free from undetectable output

176 J. Chen, R.M. Hierons, and H. Ural

shift faults. In this section, we describe this general approach. As in [7], the
results are applicable to any potentially undetectable output shift faults, not
restricted to only potentially undetectable 1-shift output faults.

8.1 Constructing Absolute Verifying Path Upon Set v

To verify the output of each transition involved in a potentially undetectable
output shift fault at port p, we try to find a path ρ that is an absolute verifying
path upon v for (t, p) for some (possibly empty) set v such that the output at
p for every transition in v is verified by some other path that has been chosen.
In doing so, we need to search for an acyclic digraph of transitions such that
each transition in this digraph has an absolute verifying path upon a set of
transitions that appear as its successors in the digraph. Such an acyclic graph
can be represented as a partial order in the following way.

A relation R between elements of a set A and elements of a set B is a subset
of A × B. If (a, b) is an element of relation R then a is related to b under R and
we also write aRb. The set of elements related to a ∈ A under R is denoted R(a)
and thus R(a) = {b ∈ B|(a, b) ∈ R}.

Given a set A, a relation R between A and A is a partial order if it satisfies
the following conditions.

1. For all a ∈ A, aRa.
2. If aRa′ and a′Ra then a = a′.
3. If a1Ra2 and a2Ra3 then a1Ra3.

Definition 3. Suppose that U is a set of transitions of M , R is a relation from
U to U , and P is a function from U to synchronizable paths of M . Let p be
any port in M . The set U of transitions is verifiable at p under R and P if the
following hold.

(a) For all t ∈ U , P(t) is an absolute verifying path upon R(t) for (t, p);
(b) R ∪ {(t, t)|t ∈ U} is a partial order.

Where such R and P exist we also say that U is verifiable at p.

Suppose that U is verifiable at p under R and P and we observe correct output
sequence corresponding to the first |pre(P(t))| output of P(t) for each t ∈ U .
Then according to Proposition 2, we know that the output of t at p is correct
for each t ∈ U . So our goal is to find a set U that is verifiable at p such that
Tp ⊆ U .

Example 8. In Figure 6, for port U , we have TU = {t1, t3}. TU is verifiable at U
because

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

So let P(t1) = t1t2, P(t3) = t1t3t1, R(t1) = ∅, R(t3) = {t1} (i.e. R =
{(t3, t1)}), then Tp = {t1, t3} is verifiable at U under P and R.

Testing in the Distributed Test Architecture 177

Proposition 3. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set then v ⊆ Tp.

Proof. Let ρ = t1 . . . tk (for k ≥ 2) where t = ti for some i ∈ [1, k − 1]. Suppose
ti |p �= − (the case for ti |p= − is analogous). Consider an arbitrary transition
t′ ∈ v: it is sufficient to prove that t′ ∈ Tp.

By the minimality of v we have that t′ is contained in pre(ρ) and so t′ = tj
for some j ∈ [1, k − 1]. Since ρ is an absolute verifying path upon v for (ti, p),
ti �∈ v and so j �= i. Suppose i < j (the case for i > j is analogous).

Since tj ∈ v, by the minimality of v we have that tj |p= −. Now as i < j,
ti |p �= −, tj |p= −, there exists some maximal l with i ≤ l < j such that
tl |p �= −. Let ρ′ = tl . . . tj . By Definition 2, no transition in ρ′ has input at p. By
considering ρ′ we see that tj ∈ Tp.

This result allows us to consider only transitions in Tp for U .

Proposition 4. Suppose that M is an FSM that is not intrinsically non-
synchronizable, p is a port of M and U is a set of transitions verifiable at port
p. If T ′

p ⊆ U or Tp − T ′
p ⊆ U , then Tp is verifiable at p.

Proof. Suppose U is verifiable under R and P and that R is a minimal such
relation (i.e. U is not verifiable using a relation that contains fewer pairs).

First, consider the case that T ′
p ⊆ U . According to Theorem 2 in [5], there

exists an absolute verifying path upon T ′
p for (t, p) for every t �∈ T ′

p . Since T ′
p ⊆ U ,

there exists ρ′p,t, the absolute verifying path upon T ′
p for (t, p), for t ∈ Tp − U .

Now define relation R′ and function P ′ in the following way.

1. R′ = R ∪ {(t, t′)|t ∈ Tp − U ∧ t′ ∈ T ′
p}

2. P ′ = P ∪ {(t, ρ′p,t)|t ∈ Tp − U}

It is easy to check that Tp is verifiable at p under R′ and P ′ as required.
Now consider the case that T − T ′

p ⊆ U . Similar to Theorem 2 in [5], we can
prove that there exists an absolute verifying path upon Tp − T ′

p for (t, p) for
every t �∈ T − T ′

p . The proof is then similar to that for the case where T ′
p ⊆ U .

8.2 Algorithm

Now we consider an algorithm:

– to check if Tp is verifiable at p. According to Proposition 4, this amounts to
checking whether there exists U such that U is verifiable at p and T ′

p ⊆ U or
Tp − T ′

p ⊆ U ;
– when Tp is verifiable at p, construct absolute verifying paths for each tran-

sition in Tp.

Figure 9 gives such an algorithm. Here, U is a set of transitions that are
verifiable at p. It is initially set to empty. We search for transitions to be added
into U and try to make U ⊇ Tp. According to Proposition 3, we only need to

178 J. Chen, R.M. Hierons, and H. Ural

1: input: M and a port p of M
2: output: whether Tp is verifiable at p, and if so, provide ρp,t for each transition

t ∈ Tp

3: U := ∅
4: for all t ∈ Tp do
5: P(t) := null
6: end for
7: if Tp = ∅ then
8: success := true
9: goto line 27

10: end if
11: success := false
12: checkset := Tp

13: checkset′ := ∅
14: while checkset �= ∅ ∧ checkset′ �= checkset do
15: checkset′ := checkset
16: if we can find an absolute verifying path ρp,t upon U for (t, p) for some t ∈

checkset then
17: for t′ contained in pre(ρp,t) such that (t′ �∈ U) and (t′|p = − ⇔ t|p = −) do
18: add t′ to U
19: P(t′) := ρp,t

20: end for
21: checkset := Tp − U
22: if checkset = ∅ then
23: success := true
24: end if
25: end if
26: end while
27: if success then
28: output(“success”, P)
29: else
30: output(“no such set of sequences exists.”)
31: end if

Fig. 9. Algorithm 2: generating a set of paths

consider transitions in Tp to be added into U , so in fact, we seek a set U such
that U = Tp.

If we succeed, we have an absolute verifying path ρp,t in P(t) for each t ∈ U .
Of course, if we do not need the absolute verifying paths but just want to check
whether Tp is verifiable at p, the algorithm can be easily modified so that it stops
whenever Tp ⊆ U or T ′

p ⊆ U (Proposition 4).
If Tp is empty, then we do not need to do anything (lines 7-10). If Tp �= ∅, then

we start to check if there exists a transition t ∈ Tp that has an absolute verifying
path (upon ∅) for (t, p). We use checkset to denote the current set of transitions
that we need to search for absolute verifying paths and initially checkset = Tp.
Thus if checkset becomes ∅ then we terminate the loop and the algorithm has
found a sufficient set of paths. At the end of an iteration the set checkset′ denotes

Testing in the Distributed Test Architecture 179

the value of checkset before the iteration of the while loop and thus if there is
no progress (checkset′ = checkset at this point) the algorithm terminates with
failure.

Whenever we find an absolute verifying path ρp,t upon U , we can add t′ to
U for all t′ contained in pre(ρ) and t′ |p= − ⇔ t|p = −. This is based on
Proposition 1. At the same time, we update checkset.

Recall that G′ is a correctly ordered directed graph in which paths correspond
to synchronizable paths in M [10]. To find an absolute verifying path ρ upon U
for (t, p), we can construct G′[t, U] which is obtained from G′ by removing all
edges except those corresponding to a transition t′ in one of the following cases:

– t′ has input at p;
– t′ |p= − ⇔ t |p= −;
– t′ ∈ U .

We then search for a synchronizable path in G′[t, U] that contains t, starts
with input at p, and ends with input at p. It is natural to search for such a path
using a breadth-first search in order to find a shortest such path. Note that we
do not need to consider cycles in G′[t, U]: if there exists an absolute verifying
path with a cycle then there is such a path that has no cycles.

The following two results show that Algorithm 2 is correct.

Theorem 2. Suppose that Algorithm 2 outputs “success” and P. Then there
exists a relation R such that Tp is verifiable at p under R and P.

Proof. Define a relation R in the following way. Given a transition t ∈ Tp consider
the iteration in which t is added to U and let Ut denote the value of U at the
beginning of this iteration. Then, since we could add t to U on this iteration,
there is an absolute verifying path upon Ut for (t, p). Thus, we let R be the
relation such that for all t ∈ Tp, R(t) = Ut. Clearly Tp is verifiable at p under R
and P as required.

Theorem 3. Suppose that Algorithm 2 does not output “success”. Then Tp is
not verifiable at p.

Proof. Proof by contradiction: suppose that there exists R and P such that Tp

is verifiable at p under R and P and that Algorithm 2 terminates with a set U
such that Tp �⊆ U .

Define a function depth from Tp to the integers in the following way. The
base case is depth(t) = 1 if R(t) = ∅. The recursive case is if R(t) �= ∅ then
depth(t) = 1 + maxt′∈R(t)\{t}depth(t′). Let t denote an element of Tp \ U that
minimises depth(t). But, every element of R(t) is in U and thus there exists
an absolute verifying path upon R(t) for (p, t). This contradicts the algorithm
terminating with set U such that Tp �⊆ U as required.

Now we turn to the complexity of the algorithm.
Let m = |Tp| be the number of transitions involved in output shift faults at p.

For each while-loop (line 14-26), we construct an absolute verifying path upon U

180 J. Chen, R.M. Hierons, and H. Ural

for one of the transitions in checkset, and we can remove at least one transition
from checkset. As initially |checkset| = m, the while-loop will be executed at
most m times.

Within each while-loop in lines 14-26, we check whether we can find an ab-
solute verifying path ρp,t upon U for (t, p) for some t ∈ checkset. This can be
realized by trying to construct ρp,t for each t ∈ checkset until such a ρp,t is found.
This involves at most |checkset| ≤ m time for each iteration.

For each attempt to construct an absolute verifying path upon U for a given
transition t, it takes O(wv) time to construct a path where w is the number of
vertices in G′ and v is the number of transitions in M .

For the for-loop in lines 17-20, we can keep a set α of all transitions t′ contained
in pre(ρp,t) such that t′ �∈ U and t′|p = − ⇔ t|p = − during the construction of
ρp,t. This does not affect our estimated time O(wv). After we have found such
an ρp,t successfully, we can move all transitions in α from checkset to U . For each
such move, there will be one less while-loop executed, and thus the time for the
operation of the for-loop in lines 17-20 can be ignored.

In summary, the time complexity of Algorithm 1 is O(m2wv).

9 Comparison

To make sure that each transition involved in a potentially undetectable output
shift fault can be independently verified at port p, we need to have an abso-
lute verifying path upon ∅ for (t, p) for all transition t involved in a potentially
undetectable output shift fault. We have presented a necessary and sufficient
condition on the specification FSM for this to be possible. This condition is suf-
ficient for Tp to be verifiable. However, it is not necessary for Tp to be verifiable.

Example 9. In Figure 6 we have shown that Tp is verifiable at U . However, the
condition in Section 7 does not hold. This is because for (t3, U), t3 does not have
input at U and there is no transition ending at s2 with non-empty output at U .

The following shows another more elaborated example where Tp is verifiable at
U while the condition in Section 7 does not hold.

Example 10. In Figure 10, there are undetectable output shift faults at port U
in t1t2 and in t2t5. TU = {t1, t2, t5}. T ′

U = {t1, t5}.
The condition in Section 7 does not hold because for (t1, U), there is no

transition starting from s2 that has either input at U or non-empty output at
U .

However, TU is verifiable at U :

– t4t5t1 is an absolute verifying path upon ∅ for (t5, U).
– t3t2t5t1 is an absolute verifying path upon {t5} for (t2, U).
– t1t2t5t1 is an absolute verifying path upon {t2, t5} for (t1, U).

Testing in the Distributed Test Architecture 181

s1

s2 s3

i5/<o3,*>

i2/<-,*>i1/<o1,*>

i4/<o2,*>

i3/<-,*>

i2, i5 are input at L

t1: (s1, s2, i1/<o1,*>)

t2: (s2, s3, i2/<-,*>)
t3: (s1, s2, i3/<-,*>)
t4: (s1, s3, i4/<o2,*>)

t5: (s3, s1, i5/<o3,*>)

i1, i3, i4 are input at U

Fig. 10. Comparing the two conditions

10 Conclusion

This chapter has presented a sound procedure to check for the possibility of
constructing a test or checking sequence that will not cause controllability and
observability problems and will not require external coordination message ex-
changes among remote testers during its application in a distributed test archi-
tecture. This is realized by constructing a path that can help check the output
of a transition t at a given port p, for each transition t involved in a potentially
undetectable output shift fault. The effectiveness of this path, for checking the
output of transition t at port p, must not be affected by controllability and ob-
servability problems. The correct output of transition t at port p is deduced from
observing the correct output sequence when applying the input portion of this
path. There remains the open problem of producing an efficient test or checking
sequence from an FSM, that is guaranteed to determine the correctness of the
SUT for the considered fault model.

Acknowledgements

This work was supported in part by Engineering and Physical Sciences Research
Council grant number GR/R43150, Formal Methods and Testing (FORTEST),
Natural Sciences and Engineering Research Council (NSERC) of Canada under
grant RGPIN 976 and 209774, and Leverhulme Trust grant number F/00275/D,
Testing State Based Systems.

References

1. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and Rural Chinese
Postman Tours. In: Protocol Specification, Testing, and Verification VIII, Atlantic
City, pp. 75–86. Elsevier, North-Holland (1988)

2. Boyd, S., Ural, H.: The synchronization problem in protocol testing and its com-
plexity. Information Processing Letters 40, 131–136 (1991)

3. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing.
Information and Software Technology 41, 767–780 (1999)

182 J. Chen, R.M. Hierons, and H. Ural

4. Chanson, S.T., Lee, B.P., Parakh, N.J., Zeng, H.X.: Design and implementation of
a Ferry Clip test system. In: Protocol Specification, Testing and Verificaion, IX,
pp. 101–118. Elsevier, North-Holland (1990)

5. Chen, J., Hierons, R.M., Ural, H.: Overcoming observability problems in dis-
tributed test architectures. Information Processing Letters 98, 177–182 (2006)

6. Chen, J., Hierons, R.M., Ural, H.: Conditions for resolving observability problems
in distributed testing. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 229–242. Springer, Heidelberg (2004)

7. Chen, J., Hierons, R.M., Ural, H.: Resolving observability problems in distributed
test architecture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 219–232.
Springer, Heidelberg (2005)

8. Chen, W., Ural, H.: Synchronizable checking sequences based on multiple UIO
sequences. IEEE/ACM Transactions on Networking 3, 152–157 (1995)

9. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New
York (1962)

10. Guyot, S., Ural, H.: Synchronizable checking sequences based on UIO sequences.
In: Proc. of IFIP IWPTS 1995, Evry, France, September 1995, pp. 395–407 (1995)

11. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proc. of Fifth
Ann. Symp. Switching Circuit Theory and Logical Design, Princeton, N.J., pp.
95–110 (1964)

12. Hierons, R.M.: Extending test sequence overlap by invertibility. The Computer
Journal 39, 325–330 (1996)

13. Hierons, R.M.: Testing from a finite state machine: Extending invertibility to se-
quences. The Computer Journal 40, 220–230 (1997)

14. Hierons, R.M.: Testing a distributed system: generating minimal synchronised test
sequences that detect output-shifting faults. Information and Software Technol-
ogy 43(9), 551–560 (2001)

15. Hierons, R.M., Ural, H.: Synchronized checking sequences based on UIO sequences.
Information and Software Technology 45(12), 793–803 (2003)

16. Iyengar, V., Chakrabarty, K.: An efficient finite-state machine implementation of
Huffman decoders. Information Processing Letters 64, 271–275 (1998)

17. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84(8), 1089–1123 (1996)

18. Luo, G., Dssouli, R., Bochmann, G.v.: Generating synchronizable test sequences
based on finite state machine with distributed ports. In: The 6th IFIP Workshop
on Protocol Test Systems, pp. 139–153. Elsevier, North-Holland (1993)

19. Luo, G., Dssouli, R., Bochmann, G.v., Venkataram, P., Ghedamsi, A.: Test genera-
tion with respect to distributed interfaces. Computer Standards and Interfaces 16,
119–132 (1994)

20. Sabnani, K.K., Dahbura, A.T.: A protocol test generation procedure. Computer
Networks 15, 285–297 (1988)

21. Sarikaya, B., Bochmann, G.v.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32, 389–395 (1984)

22. Tai, K.C., Young, Y.C.: Synchronizable test sequences of finite state machines.
Computer Networks 13, 1111–1134 (1998)

23. Tanenbaum, A.S.: Computer Networks, 3rd edn. Prentice-Hall, Englewood Cliffs
(1996)

24. Ural, H., Wang, Z.: Synchronizable test sequence generation using UIO sequences.
Computer Communications 16, 653–661 (1993)

25. Ural, H., Whittier, D.: Distributed testing without encountering controllability and
observability problems. Information Processing Letters 88(3), 133–141 (2003)

Testing in the Distributed Test Architecture 183

26. Ural, H., Williams, C.: Generating checking sequences for a distributed test archi-
tecture. In: IFIP TestCom, Sophia Antipolis, France, pp. 146–162 (2003)

27. Ural, H., Williams, C.: Constructing checking sequences for distributed testing.
Formal Aspects of Computing 18(1), 84–101 (2006)

28. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46, 93–99 (1997)

29. Yang, B., Ural, H.: Protocol conformance test generation using multiple UIO se-
quences with overlapping. In: ACM SIGCOMM 1990: Communications, Architec-
tures, and Protocols, Twente, The Netherlands (September 1990)

30. Young, Y.C., Tai, K.C.: Observation inaccuracy in conformance testing with mul-
tiple testers. In: Proc. of IEEE WASET, pp. 80–85 (1998)

Testing from X-Machine Specifications

Kirill Bogdanov

Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

K.Bogdanov@dcs.shef.ac.uk

Abstract. The chapter describes how to model software containing
complex data using X-machines and how test generation can be per-
formed from such models. Testing using X-machines can be used to
demonstrate specific results by testing: one may even claim that an im-
plementation is behaviourally-equivalent to a specification if testing did
not reveal defects. The ability to make such claims requires a tester to
be precise in what is actually being tested and what has to be assumed.
A number of assumptions underlying the testing method are described
including what can be done when they cannot be satisfied.

1 Introduction

Finite-state machines are useful for modelling systems which do not rely on rich
data. Many real systems use numerous variables, each of which may take many
different values; directly representing such systems as finite-state machines leads
to a known problem of state explosion, in that the number of states in a finite-
state machine representing such a system becomes too big for model-checking or
testing methods to complete in realistic amount of time. For this reason, a lot of
existing papers seek to simplify a system in some way, but not to over-simplify,
so that results of model-checking or testing from a simplified system can be
related to the original one. This chapter describes a specific approach to such
a simplification and the related testing method, advocated in papers devoted
to X-machines and shows its relation to the existing work. The presentation
is deliberately informal, introducing the ideas of how things work and why; a
purely formal description can be found in [BHI+06].

1.1 Software Testing

Software testing has been traditionally viewed as a way to exercise a system in an
attempt to break it [Mye79]. Identification of the number of faults remaining in
a program once testing is complete gave rise to software fault estimation models
[Woo96] which use the number of defects found during development and aim to
estimate the number left. One may reasonably expect that both a highly-complex
subsystem and the one with a large number of defects previously detected in it
will be relatively error-prone, however models estimating the number of defects
left do not provide any information on the type of remaining defects. They serve

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 184–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Testing from X-Machine Specifications 185

as a risk-management tool for a business to decide when to ship a product rather
than a guide to developers.

Exhaustive testing, in other words, the one where all possible sequences of
inputs are attempted, will be able to find all faults, but it is also too time-
consuming to be of a practical value. For instance, there is an infinite number
of possible sequences of button presses for programs with a user interface, hence
exhaustive testing of most programs will never terminate. Choosing the ‘rele-
vant’ inputs from an infinite set of them is the problem of testing. Since not all
possible sequences will be attempted, it is necessary to extrapolate from results
of executing a small sample of possible inputs, to other possible sequences.

A lot of software testing is based on the coverage concept: a program which
is more thoroughly tested is the one which has more constructs of it visited
(covered) during testing. This idea makes it possible to test software for which
no specification or any kind of model exists, only the source code. At the same
time, it does not permit one to draw definite conclusions about the quality of
software once testing is complete. There is nothing like ‘such and such faults are
not present’, it is more like ‘covered so much, seems ok’. In the area where latent
faults may cause a very costly failure, such as in telecommunications, there was a
demand for better testing methods. It turned out that many network protocols
can be modelled as finite-state machines (FSM) and a lot of work has been
done in testing from FSM, in relation to testing of such protocols. Due to their
simplicity, very powerful testing methods from FSM exist, permitting one, for
instance, to demonstrate by testing that an implementation is equivalent to a
specification, under specific conditions.

Given a specification and an implementation, the problem whether they have
the same behaviour is not decidable in general; testing aims to look into a specific
part of each of the two systems (i.e., a small decidable part of the overall prob-
lem). The rest (necessarily undecidable) has to be contained in the assumptions.
These assumptions are known in different papers under the name of test hypoth-
esis [Gau95] or fault model (described, for instance, in paper [Pet00]). How good
or bad a testing method is can be judged from two perspectives: mathematical
and practical. The former is to do with (1) whether equivalence or conformance
of an implementation to a specification can be demonstrated by testing (subject
to assumptions) (2) the range of systems which can be tested using any given
method and (3) how easy it is to justify the assumptions of this method. From a
practical point of view, it all depends on the range of systems a particular com-
pany needs to test, how hard it is to apply a method and whether the method
does a better job than methods already in use by the said company.

1.2 The Problem of Abstraction

Many real systems tend to be rather complex, which stems from the complexity
of tasks they have to complete. For instance, an email client has to be able
to retrieve messages from a server in response to user requests, decode different
types of messages, format them for presentation, include a text editor to compose
messages and send them. This may seem like a very brief description, but even

186 K. Bogdanov

retrieving messages could be a complex problem on its own: the client has to
utilise a specific protocol to talk to a server (perhaps even negotiate the one
to use), the server may respond with a valid message, with garbage, respond
with either of this multiple times, return an error or fail to respond at all. It is
important to be able to check whether an email system is capable of handling
these errors without loss of data, regardless of the order in which they appear.
Methods developed for finite-state machines are very powerful in this respect, so
it seems like a good idea to apply them to such a complex system. This in turn
requires a system to be represented as a finite-state machine (FSM) in which
every combination of values of program’s variables has to be represented by a
state. Even for a program with a hundred 32-bit variables, the total state space
is 232∗100 ≈ 10963. In testing of such a system, one cannot realistically expect
to explore the whole of this state space directly; moreover, this may often be
unnecessary. For instance, when testing network protocols, such as handshake
or quality of service, it may not matter which data is being transmitted; in
testing from a user interface, one may expect the network to work reliably. In
addition, some parts of the email application will be provided by an operating
system, which could make them ‘trustworthy’ and hence details of their operation
could be omitted from the model used as a basis for test generation. This leads
to an important question: where do we draw boundaries between the parts to
include in FSM model and those not to? If one attempts to test a subsystem
which is too complex, it may take too long in practice to explore even 1010

states; moreover, a complex system is a lot more difficult to control and observe
than a simple one. Finally, a failing test may be notoriously hard to debug.
One may consider splitting a system into a number of parts and testing each
of them using the best method available. The conclusion of correctness of an
implementation can then be drawn from results of testing and the approach
taken to decomposition, provided the assumptions (mentioned above) made by
each of the testing methods utilised are satisfied. This is not the only way to
test a system with a large state space. A possible alternative is to limit testing
to specific parts of a system a developer is interested in. This is the idea behind
testing using a test purpose [GP05]; the paper [PBG04] considers both limiting
state identification (Section 4.3) to relevant subsets of states and usage of an
abstraction technique.

In a similar way to finite-state machines, X-machines contain a transition
diagram, but labels of transitions in X-machines are names of functions which
perform computations, this way X-machines describe possible sequences in which
these functions can be executed. The X-machine testing method was developed
to demonstrate absence of specific control-flow defects in an implementation
(specifically, to check the equivalence of transition diagrams between a specifi-
cation and an implementation), under assumptions that (a) an implementation
can be modelled with an X-machine containing the same functions (which also
have to be tested) and (b) certain conditions on both a specification and an im-
plementation are satisfied. These conditions are not always possible to ensure; in
situations where they do not hold, the method can be modified to take specific

Testing from X-Machine Specifications 187

properties of a system into account in order not to weaken the conclusions of
testing [Van02, BH01]. If a system is being built in consideration that it will have
to be tested (a rather desirable expectation!), one may introduce facilities into
it, in order to make testing easier. The splitting of testing into that of functions
and a transition diagram provided by X-machines offers a possible method to
structure testing of a complex system; transition diagram testing corresponds to
an integration testing of functions [Pre94].

2 Introduction to X-Machines

Consider a simple email client which communicates with an email server. A com-
plete email client has to have an interface, including message view and composi-
tion windows and many other parts; for simplicity, only the message-retrieving
part is described here. A user is presented with a list of messages from which he
or she can request any to be retrieved and the client will request this message
from the server and display it on a screen. It takes time to retrieve a message,
so an impatient user may click again, instructing the client to obtain a new mes-
sage. A transition diagram of an X-machine describing such a system is shown in
Figure 1; this diagram only contains labels which give names to computations.
The computations themselves (called functions) have to be described elsewhere
and in the case of the email client, they are shown in Table 1.

The initial state is the idle I state, corresponding to the email client waiting
for user’s clicks; this state is denoted by an arrow pointing at it out of nowhere.
If a user clicks on the message already being displayed, the transition with the
sel same label is taken to ignore the click, otherwise, sel diff records the number
(ID) of the new message to display, sends a request to the email server and
displays the ‘loading’ message. The R state corresponds to the client waiting
for the server to respond; upon receipt of the body of the requested message,
the retr curr transition is taken to the I state and the message is displayed to a
user. The server may take time to respond and an impatient user may click again
on the same or a different message. In the first case, the sel same transition is
taken and the click is ignored; in the latter, a new request is sent to a server by
sel diff. If the server does not report an error in response to the new request, the
previous one is assumed to have been cancelled, and the server starts retrieving
the new message; when finished, the new message is returned by the server
causing retr curr to be taken from R to I. If an error is reported, the retr fail
transition is taken to the W state; this is the case when the client has to wait
until the server has finished fetching the old message before resubmitting the
request for the new one, once again. The client waits in the W state, recording
the number of the last message clicked upon by a (very impatient) user. Once
the server responds, one of the retr prev or the retr curr transitions is taken.
The former corresponds to the server responding with the previously-requested
message and the client responds by requesting the most recent message asked
for by a user to be retrieved; the latter corresponds to the situation where a user
clicked on the message he/she asked for before and the one the server fetched.

188 K. Bogdanov

RI

sel_same sel_diffsel_same

retr_fail
W

retr_unexp retr_prev

retr_curr

retr_unexp

sel_same

sel_ignoreretr_curr

sel_diff

Fig. 1. A simple email message retrieving system

It is theoretically possible for the server to return a failure in the I or W states,
which is a sign of some kind of internal problem with the server; the client reports
this error.

So far, the transitions in the model have only been described informally, with-
out any details of communication between the email client and the outside world,
as well as the kind of data the client should store. Now we turn to the formal
description of the behaviour. Let us assume that the input from a user is a mes-
sage number to retrieve and the client has to output the text of a message it
receives from the server; communication with the server is by sending a message
number and the response is either the body of the message or a failure report.
For this reason, commands sent to the server are outputs of the client and re-
sponses from the server are client’s inputs. It is assumed that a failure may only
be reported by the server if a request is submitted before the server had a chance
to respond to the previous request. Traditionally, a set of inputs (input alphabet)
of an X-machine is denoted by Σ and the set of outputs is denoted by Γ . For the
client Σ = (N ∪ {⊥}) × (TEXT× N ∪ {‘FAIL’, ⊥}) \ {(⊥, ⊥)}, where the first part
N ∪ {⊥} reflects the number of a message a user has clicked on and the second
part TEXT×N∪{‘FAIL’, ⊥} reflects a response from the server. The response can
either contain a body of a message retrieved together with its number or an error
flag received from the server. The number of the retrieved message is necessary in
the case when multiple requests are sent to the server by the repeated execution
of the sel diff transition from the R state, followed by the retr fail transition,
because in this case it is not known which of those requests have been honoured
by the server. ⊥-values are included to indicate that no data is received from
either a user or the email server. The value (⊥, ⊥) is excluded from the input al-
phabet because there is no need to consider the case when no input is received.
The only situation when this may be useful is when timeouts are considered,
but they seem best dealt with using special ‘timeout’ inputs. The set of possible
outputs (output alphabet) of the considered X-machine is Γ = TEXT× (N∪{⊥}),
describing text to display on the screen for a user to see and the request to the
email server. It is assumed that the email client always updates the screen, but

Testing from X-Machine Specifications 189

does not always send a request to the email server (indicated using the ⊥ value
in the second part of the output tuple). In the model of the client, the source of
an input (a user or the server) and the destination of an output corresponds to
a particular element in the input/output tuples.

The email system has to store the currently selected message and the total
number of messages in a user’s mailbox (the simple model considered does not
account for retrieving or updating the total number). This way, it can detect
when a user chose a different message to the one which was requested last.
As has been hinted above, transitions of an X-machine can perform non-trivial
computations; in practice they have to be both computable and easy to test
(described in Section 4.4). Data stored by an X-machine is called Memory; it
can be accessed and modified by all functions; for the email client, memory has
to contain a number of a message last selected by a user, text to be displayed
to the user and the total number of messages in the user’s mailbox. The type
for such a memory is M = N × TEXT × N. Text stored in memory is primarily
intended to store an email message shown to a user; in a more complex email
reader, there would be functions to perform a search within a message. When a
message is being retrieved, a user may be confused to see an old message when
the new one has been selected and sel same executes; for this reason, this text
is replaced with the ‘loading’ message by the sel diff function.

Both finite-state machines and X-machines are idle in states; when an input
is received from an environment, they instantly perform a computation and pro-
duce an output. In the actual fact, a computation may take time, but this should
be imperceptible to an environment, which should see a response arrive instantly.
Every transition can be described as a function Σ×M → M ×Γ , taking an input
and the current value of memory and producing an output and the new value of
memory. The set of functions used in a given X-machine is denoted by Φ and for
the email client Φ = {sel same, sel diff, sel ignore, retr curr, retr prev, retr fail,
retr unexp}. The same name can label more than one transition, as evidenced
by the sel same function. Given that transitions compute functions, the term
‘precondition’ used in the table can be replaced with ‘domain’ (denoted dom)
and a more mathematical treatment of X-machines later in this chapter will use
dom . In order to complete the X-machine model of the email client, one only
needs to define the initial value of memory, m0 = (0, ‘’, total), assuming that
total > 0 denotes the total number of messages in the mailbox. Formally, an
X-machine is defined as a tuple Z = (Σ, Γ, Q, M, Φ, F, q0). Most elements of
this tuple have been defined above, the rest are Q, denoting the set of states
Q = {I,R,W}, q0 = I denoting the initial state and F describing the next-state
function F : Q × Φ → Q. Function F is most commonly depicted graphically
as a transition diagram, and such a diagram is typically expected to contain
all states Q and the initial state q0, ∀q ∈ Q . ∃φ ∈ Φ . (q, φ) ∈ domF , q0 ∈ Q.
With these definitions, it is possible to express what it means for an X-machine
to take a transition from a state q ∈ Q with memory m ∈ M in response to
an input σ ∈ Σ: the transition taken will be labelled by some function φ ∈ Φ
from the current state such that a precondition of this function is satisfied,

190 K. Bogdanov

Table 1. Functions of the email client X-machine

function input Σ precondition on new memory output Γ
name (user, server) input and current value (user, server)

value of memory
(curr, msg, total)

sel same (n, ⊥) n = curr∨ (curr, msg, total) (msg,⊥)
n ≥ total

sel diff (n, ⊥) n �= curr∧ (n, ‘loading’, total) (‘loading’, n)
n < total

sel ignore (n, ⊥) n �= curr∧ (n, msg, total) (‘loading’, ⊥)
n < total

retr curr (⊥, (txt,m)) txt �= ‘FAIL’∧ (m, txt, total) (txt,⊥)
curr = m

retr prev (⊥, (txt,m)) txt �= ‘FAIL’∧ (curr, msg, total) (‘loading’, curr)
curr �= m

retr fail (⊥, ‘FAIL’) true (curr, msg, total) (‘loading’, ⊥)
retr unexp (⊥, ‘FAIL’) true (curr, ‘error’, total) (‘error’, ⊥)

(q, φ) ∈ domF ∧ (σ, m) ∈ domφ. The new state will be q′ = F (q, φ); the output
γ and the new memory m′ will satisfy (m′, γ) = φ(σ, m).

As has been mentioned above, every label of an X-machine computes a func-
tion; the transition diagram of an X-machine determines which sequences of
these functions can be executed. Execution of a sequence of functions is simi-
lar to a computation of a composition of these functions, because each of them
operates on the value of memory updated by the previous function; such a com-
position takes a sequence of input symbols (each from a set Σ) and computes a
sequence of outputs (each of which is from set Γ). For this reason, one may con-
sider an X-machine to compute a function Σ∗ → Γ ∗ (where A∗ is a Kleene
star, i.e., for some set A, A∗ denotes a set of all finite sequences with ele-
ments from set A; set A∗ contains an infinite number of elements). In order
to define this function, one has to start by defining possible paths through a
transition diagram: a path from a state q is a sequence of functions φ1 . . . φk

such that for every i ∈ 1..k . (qi, φi) ∈ domF ∧ qi+1 = F (qi, φi); q1 = q. Intu-
itively, it is a sequence of functions such that one can take a transition from q
labelled with φ1, from the target state of this transition, there is a transition
labelled with φ2 and so on. A function ‖φ1 . . . φk‖ computed by a sequence of
functions φ1 . . . φk can be defined inductively as follows. First, for an empty
input sequence ε, the result is an empty sequence of outputs and the starting
memory value ‖ε‖(ε, m) = (m, ε). Second, assume that for a sequence of in-
puts σ1 . . . σk, an X-machine executes a sequence φ1 . . . φk of functions such that
‖φ1 . . . φk‖(σ1 . . . σk, m) = (mk, γ1 . . . γk) (k = 0 corresponds to an empty se-
quence). In this case, ‖φ1 . . . φkφk+1‖(σ1 . . . σkσk+1, mk) = (mk+1, γ1 . . . γkγk+1)
where (σk+1, mk) ∈ domφk+1 and (mk+1, γk+1) = φk+1(mk, σk+1). Combining
the notion of paths with that of functions ‖φ1 . . . φk‖, it is possible to define a
function fZ : Σ∗ → Γ ∗ computed by an X-machine Z in the

Testing from X-Machine Specifications 191

following way: fZ(ε) = ε and for k > 0, fZ(σ1 . . . σk) = γ1 . . . γk if there is
a path φ1 . . . φk from state q0 such that (σ1 . . . σk, m0) ∈ dom ‖φ1 . . . φk‖ and
‖φ1 . . . φk‖(σ1 . . . σk, m0) = (m, γ1 . . . γk).

Since an X-machine computes a function, there is no reason why it cannot be
used as a function of another X-machine. The idea of X-machines as functions
has been developed in [Sta02, Sta06] where a behaviour of an X-machine is con-
sidered to be a union of compositions of its functions, over all paths through
its transition diagram (typically an infinite number of paths). In a sense, this is
how X-machines were originally introduced by Eilenberg [Eil74], where transi-
tion functions operated on a data structure called X , comprising a sequence of
inputs, a sequence of outputs and memory. Behaviour of X-machines was a com-
position of such functions along possible paths; this explains the reason why the
term ‘X-machines’ was introduced. The same idea can be expressed as a Kleene
algebra [Koz94] where · is interpreted as function composition and + as a union.
Many different types of X-machines were introduced in the literature, such as
those which may spontaneously take transitions without consuming an input or
those producing a sequence of output symbols rather than a single symbol. For
simplicity, this chapter focuses on ‘stream’ X-machines which consume exactly
one input per transition they take and produce exactly one output symbol.

Most of the work on testing from X-machines considers functions used on
transitions to be defined separately from a transition diagram and satisfy prop-
erties which are convenient for testing. Unlike extended finite-state machines
(EFSM) [CK93, PBG04], Harel statecharts [HN96] and UML [OMG03], there
is no specific language defined in order to describe the behaviour of such func-
tions in X-machines: any language is in principle good enough. Treatment of
transition functions as abstract entities satisfying specific properties is the key
difference between most papers on X-machines and papers on extended finite-
state machines: the latter tend to consider EFSM as a compact representation of
a corresponding FSM; for X-machines, the aim is not to delve into the structure
of functions.

3 Well-Formedness of X-Machines

3.1 Features of a Transition Diagram

If the diagram of the email client did not have a transition with retr fail label,
the state W would be unreachable and hence redundant. Another example of a
redundant state is shown in Figure 2. The X-machine on the left of the figure
has a redundant state, because states B and C are equivalent: from either of
them, the only possible sequence of functions is an infinite sequence of bs. By

A B C b A B b
aa b

Fig. 2. An example of a non-minimal X-machine

192 K. Bogdanov

associating every state with a set of paths which can be taken from it, it is
possible to remove redundant states; for example, an X-machine on the right of
Figure 2 is equivalent to the one on the left of that figure. A transition diagram
which does not have redundant states is further called minimal. It is also possi-
ble to have a nondeterministic X-machine, where there are two transitions with
the same label from a state, leading to two different states. Standard finite-state
automata minimisation approach [Coh96] can be used here to turn a nonde-
terministic X-machine into a behaviourally-equivalent deterministic one. The
described problems correspond to properties of F , encoding the transition dia-
gram; for instance, if F is a function (many-to-one), then the transition diagram
is necessarily deterministic.

At this point, it is necessary to mention that the above discussion only con-
sidered a transition diagram, with no attention paid to computations performed
by functions; in the situation where b has a condition which the value of mem-
ory produced by a violates, both machines in Figure 2 would have redundant
transitions. Unfortunately, it is not in general possible to determine if there is a
sequence of inputs such that a given sequence of arbitrary computations can be
followed; for this reason, it is assumed for testing that an arbitrary sequence of
functions can always be attempted. This can be accomplished if a system under
construction is built to be testable; a rather direct approach [IH97] to this prob-
lem is to introduce a special input per function, so that if that input arrives,
the precondition of the corresponding function will be true. In response to such
an input, a function may have no choice but do nothing at all since the value
of memory may be such that this function cannot perform its computation. The
described condition is called input-completeness and the details are provided
in Section 4.4. The described separation of computations of functions from a
transition diagram has both advantages and disadvantages; an advantage is that
methods developed for finite-state machines can be applied to X-machines, in-
cluding FSM testing methods and minimisation. The two main disadvantages
are that (1) the model may be harder to build since developers have to make a
decision what to hide in functions and what is to be included on the diagram,
and (2) for testing, it is necessary to ensure that an implementation can be mod-
elled as an X-machine with the same set of functions. Both of these problems
are described in the testing section (Section 4).

3.2 Nondeterminism Associated with Functions

X-machines can be nondeterministic not only in the FSM sense described above,
where there are multiple transitions with the same label from the same state.
First, transitions may actually compute relations rather than functions, hence
an output and a new memory value from such a relation may not be uniquely
determined by a current memory and an input. For example, the retr fail label
can be defined to either report an error (‘please wait’) or keep the ‘loading’
message. For the email system, either could be appropriate, hence an X-machine
specification can include both options, leaving it to an implementor to make the
final decision.

194 K. Bogdanov

the same time, in which case the input becomes (n, (txt, m)). No transitions
are defined for such an input from any state of the email client. In order to
ensure that there is a defined behaviour from the R state, the machine can
be improved by extending the definition of retr curr and introducing the new
retr sel diff function. The former will have to accept the (n, (txt, m)) input under
the condition that n = m∧txt �= ‘FAIL’ and if so behave as it is currently defined.
Function retr sel diff will have to accept such an input too, under the condition
the n �= m ∧ n < total ∧ txt �= ‘FAIL’ and in response output (‘loading’, n) and
make the new value of memory (n, ‘loading’, total); such a new function has to
label a transition from R to R, in a similar way to sel diff. Finally, retr fail can
be extended to respond to (n, ‘FAIL’) and store the newly-requested message
number as curr. In a similar way, one can extend functions on transitions from
the I and W states. Beyond these ideas, formal definitions of these functions are
not provided here since they are not important for the subsequent elaboration
of the ideas of testing from X-machines. It is expected that the email server will
never spontaneously report a failure, thus the retr unexp cannot realistically be
expected to be taken. Nevertheless, it has been included in the specification for
completeness. When the email server responds with a message body in the R
state, curr = m is always true if the server can be expected not to retrieve
messages it was not asked to and hence although there is no behaviour defined
from this state when curr �= m, this cannot occur in the course of operation of
the client.

One may argue that a specification has to be completely defined, i.e., defined
for arbitrary sequences of inputs. For this reason, it is typical to assume that
when an input arrives for which no behaviour is defined, the system will do
nothing in response; in terms of X-machines, this means that it has to remain
in the same state with the same value of memory. An alternative way to make a
system completely defined is to introduce a special error state which is entered
whenever an input is received when no transition can be taken in response.
These two cases are known as ‘implicitly defined’ transitions in protocol testing
[BP94]. Many specifications may be deliberately defined to be incomplete, to
offer freedom for an implementer to add arbitrary extra functionality, as long as
everything specified is properly implemented (‘undefined by default’ in protocol
testing [BP94]). This may or may not be desirable; there are ‘easter eggs’ in
some well-known programs such as the one in a spreadsheet application where
entering a specific number in a specific column eventually leads to portraits of
developers being displayed to a bemused user.

An implementation is often inherently complete, hence a possible way to im-
plement an incompletely-defined specification is to ignore all ‘unexpected’ inputs.
When an input arrives which cannot be ignored (such as when a method of an
object is unexpectedly called and has to return another object), an implementer
has to make decisions as to what behaviour to implement. Some of the choices
made by the implementer could be wrong. One of such errors has been discussed
above, where in a situation when a mouse click and a response from a server
arrive both at the same time, the two may be ignored and hence the email client

Testing from X-Machine Specifications 195

‘locks up’, indefinitely waiting for a response from the server. Such an error
could be rather hard to detect during developer testing since the probability of
this happening under test is rather low and the lock-up may be very hard to
reproduce using reports from users. For these reasons, it is important to develop
specifications which are complete; the problem here is that since functions of
X-machines are not constrained, checking for completeness is undecidable in the
general case.

In order to define completeness, it is not appropriate to simply state that for
every state and input there has to be a transition defined, because everything
depends on memory. There could be no transitions defined for some values of
it, but if such values are never reached in the course of execution of an X-
machine, it does not matter. Using the definition of computation performed
by a deterministic X-machine, one can define completeness by requiring ∀k ∈
N, (σ1 . . . σk) ∈ dom fZ where σi ∈ Σ.

3.4 All States Are Terminal States

It is assumed in this chapter that all states of X-machines are terminal states. For
finite-state machines, an output is only produced if an input sequence ends when
a machine is in a terminal state. Same applies to X-machines and makes testing in
the presence of non-terminal states rather more complex since state identification
can depend on whether a particular sequence of functions can be followed or
not. If a machine happens to enter a non-terminal state, no output will be
produced by it, even if a particular sequence of functions can be followed. This
is additionally complicated by the fact that a faulty implementation can have
any state in it implemented as a non-terminal one. For this reason, it is assumed
in this chapter that all states of both a specification and an implementation are
terminal; the case when this is not so is considered by [Sta02] where a machine
is expected to be modified so as to report (as an output) whether or not it has
reached a terminal state.

4 X-Machine Testing Method

4.1 The Strategy of X-Machine Testing Method

The X-machine testing method [HI98, IH97] has originally been developed to
test the transition diagram using the well-known FSM testing method, called
the W method [Vas73, Cho78]. The X-machine testing method aims to test for
the equivalence of the behaviour of an implementation, to a specification. This
work has been subsequently extended to conformance testing of a determin-
istic implementation to a nondeterministic specification [HH04] as well as for
equivalence testing of a nondeterministic implementation to a nondeterministic
specification [IH00]. The [HH04] is the adaptation of the FSM state-counting
method [PYB96] to X-machines; in the context of labelled-transition systems,
conformance testing methods include [Tre96, LMN04].

196 K. Bogdanov

The assumptions and the kinds of faults considered differ between different X-
machine testing methods, but the fundamental abstraction assumption remains:
it is assumed that an implementation can be modelled by an X-machine using the
same (or conforming) functions as those in a specification. It is this assumption
which makes it possible to use finite-state machine testing methods to check the
equivalence or conformance of transition diagrams (the q0 and F parts of the
definition of an X-machine) between a specification and an implementation. If
transition diagrams are equivalent and functions Φ behave the same, it essentially
follows that an implementation computes the same function fZ as a specification.

When the testing method was initially developed, it was assumed that func-
tions used by an implementation are accessible to a tester and hence can be
tested before testing a transition diagram. Testing of such functions can be done
using, for instance, the category-partition testing method [OB88]; if a function
on a transition is itself modelled by an X-machine, it can also be tested us-
ing the X-machine testing method. The condition that functions are available
for separate testing can be hard to satisfy, for instance, the email client could
be implemented as a single procedure, querying an operating system for events
and using if-then-else or switch statements to branch to different parts of the
procedure depending on an input and a state. This way, an implementation is
essentially monolithic and hence it is impossible to ‘extract’ functions such as
sel diff out of it to check if these functions operate correctly. For this reason,
an extension to the X-machine testing method was developed [Ipa04] in order to
test functions ‘together’ with testing a transition diagram. This is not a perfect
solution: functions are still required to satisfy a specific condition, but they no
longer have to be tested in isolation.

4.2 The Approach to Testing X-Machines Using the W Method

This section focuses on how X-machines can be tested using the W method,
for details refer to [HI98, IH97]; the same approach can be used to adapt other
finite-state machine testing methods such as Wp [FBK+91], HSI [LPB94] or
UIO and others, described in [RDT95]. As described above, the idea is to use
an FSM testing method to test that a transition diagram of an implementation
is equivalent to the one of a specification. One can start testing by attempting
to visit every state and checking that the correct state has been entered. For
instance, one would like to enter the W state and verify that such a state has
actually been implemented. Afterwards, it is necessary to check all transitions
from every state; for each function on a transition from it, this involves (1)
supplying an input satisfying a precondition of the function and (2) verifying
that the target state of the corresponding transition has been entered.

For the email client, testing of the retr curr transition from the R state to the I
one involves entering the R state by taking the sel diff transition, then attempt-
ing the retr curr transition and finally checking that the I state has been reached.
Starting from the initial state and initial memory value, for sel diff, the corre-
sponding input is a mouse-click on any message with a number above zero. When
sel diff is executed, a tester has to verify that the correct request has been sent to

Testing from X-Machine Specifications 197

an email server and the ‘loading’ message is displayed on a screen. For testing,
one may replace a server with a stub and a user with a driver [Pre94]. Transition
retr curr has to follow sel diff in this test, so an input which is a ‘success’ response
from a stub of a server has to be supplied; retr curr should display the message
provided by the stub, on a screen. If a different output is produced to each of these
two inputs, the implementation is considered to have failed the test. How to check
whether the correct state was entered is described below.

Finally, it is necessary to check that no unexpected transitions are present
from any states; for this type of testing to be carried out, one has to attempt
all other functions from every state. For instance, one would like to verify that
a transition with the retr fail label is not implemented from the I state.

4.3 State Verification

State verification involves checking that the system under test has entered the
expected state. There are two overall approaches to performing this task, at-
tempting to retrieve values of a system’s variables and by attempting further
transitions. For the email client, the current state may be stored in a variable
and a developer may add a special method to be used during testing to retrieve
a value of it. Identifying a state by taking further transitions involves attempt-
ing sequences of functions from each state and checking whether a particular
sequence can be followed or not, the same idea as state identification for a finite-
state acceptor. For every pair of states, one may identify a path which exists
from one of them but not from the other. For instance, a sequence consisting
of a singleton function retr unexp distinguishes between R and the other two
states. Likewise, retr prev distinguishes between W and all other states. In some
cases, more than a single sequence may have to be used to distinguish a state
from all other states. A W set is a set of such sequences for every pair of states.
It can only be generated if the transition diagram of an X-machine does not con-
tain behaviourally-equivalent states, which is the case for minimal X-machines
(Section 3.1). The algorithm for construction of the W set is described in [Gil62].

Identification of states by accessing variables requires access to the internal
data of a system under test, but produces fewer test sequences. The same prob-
lem exists in finite-state machine testing. Accessing system’s variables tends to
be used in testing of object-oriented software [MK94], where it is expected to
be easy to obtain values of member variables of objects. Taking sequences of
transitions is used in protocol testing, such as to check compatibility of some
vendor’s implementation of a protocol where internal data of such an imple-
mentation is not accessible. It is also possible to use a combination of the two,
where some state-related data of an implementation is available [Car00, BH02].
The X-machine testing has been originally developed as a pure black-box testing
method (verifying states by taking transitions); it has subsequently been used for
testing of VHDL designs where states were identified by observation of internal
data [Van02].

Having described the idea of the testing method, the formal definition of a
test set is T = C ∗ W ∪ C ∗ Φ ∗ W . Here the C set (called a state cover set) is a

198 K. Bogdanov

set of paths such that for every state Q, there is a path in C which leads from
q0 to that state. For two sets A and B, A ∗ B = {ab | a ∈ A, b ∈ B} is a set of
sequences where every sequence from A is concatenated with every sequence of
B. The idea of the C ∗ W part is to visit every state and verify it; C ∗ Φ ∗ W
attempts every function from every state and verifies the entered state. The test
set can be re-written as T = C ∗ ({ε}∪Φ) ∗W . Some functions are not expected
to be implemented from every state, in this case, it is enough to confirm this; for
this reason, it is not necessary to attempt elements of W after attempting every
function which is not expected to label a transition from a state under test.

Compared to the W method, there are FSM testing methods [FBK+91, LPB94]
which produce smaller test suites without weakening conclusions obtained by test-
ing. In order to reduce the number of test sequences, these methods use smaller
sets than W to identify states and can be used for testing of X-machines in a sim-
ilar way to the W method.

4.4 Design for Test Conditions

Regardless which testing method is used to produce test sequences from an X-
machine transition diagram, the result is a set of sequences of functions, not se-
quences of inputs. For instance, inputs necessary to follow sel diff retr curr were
described above. For each sequence φ1 . . . φk generated by an X-machine testing
method, one has to find σ1 . . . σk such that (σ1 . . . σk, m0) ∈ dom ‖φ1 . . . φk‖. It
is important to note that test sequences of functions are generated with the aim
to explore a transition diagram rather than explore the expected behaviour of
an implementation. As a result, such sequences could be difficult to follow, for
instance, a test method is likely to generate a sequence of sel diff retr fail from
the I state. Such a sequence cannot occur in practice because a server may only
report a failure if it is sent an unexpected request, and only if it cannot cope with
it. For the email client, retr fail can be attempted by getting a stub to send test
messages, including a ‘FAIL’ to the client. Preconditions of functions can make
certain paths difficult to follow and the problem whether an arbitrary sequence
of functions can be attempted is undecidable in general. There are three possible
ways to tackle this:

1. Assume that if a tester cannot find inputs to follow a particular sequence
of functions, such a sequence cannot be followed even in a faulty implemen-
tation. This assumption requires changes to the testing method since one
is no longer assuming that an implementation may contain an essentially
arbitrary transition diagram.

2. Attempt to take a longer sequence of transitions, so that memory is set to a
value such that the function of interest can be attempted. In this case, one
has to ensure that even in a faulty implementation both memory and a state
will be set to the expected values before a function of interest is attempted.
This is only easy to ensure if variables contributing to both memory and
state are easily accessible to a tester, as has been the case in [Van02].

3. Develop both a specification and an implementation in order to make it easy
to perform testing. This may require adding extra inputs to functions which

Testing from X-Machine Specifications 199

contain complex preconditions, so as to force those preconditions to become
true when such inputs are supplied under test. This circumvents the problem
of finding the appropriate inputs.

Testing of a transition diagram involves running sequences of functions
in much the same way as integration testing of multiple units of software
involves running these units. For this reason, testing of a transition diagram
can reveal defects in processing functions. This way of testing is substantially
less effective if extra test inputs are used because such inputs are going to be
used when preconditions of functions cannot be satisfied and hence functions
will have to perform dummy rather that real computations.

Formally, the input-completeness condition can be defined such that ∀φ ∈ Φ; m ∈
M . ∃σ ∈ Σ . (σ, m) ∈ domφ. This is a rather strict condition: most of the time,
values of memory attained during testing will not cover the whole of M ; one
may deliberately choose a set of inputs for testing so as to limit the set of
attained memory values to a value known to a tester (which can be conservatively
approximated). As a consequence, it is possible to limit the condition of input-
completeness only to values of memory which are going be reached during testing.
The result is called testing context, refer for instance to [BHI+06] for details.

There could be a number of functions which are attempted using the same
input, such as retr fail and retr unexp, so there has to be a way to determine
which of them has actually fired in an implementation in response to a common
input. The former function displays ‘loading’ on a screen while the latter dis-
plays ‘error’. Likewise, retr curr and retr prev are easy to tell apart by whether
any data is sent to the server stub. If instead of displaying the ‘loading’ text,
the old email message was displayed instead by sel ignore, it would be difficult to
tell the sel same function from sel ignore, because they would produce the same
output for the same input. To distinguish them, one could add test outputs
to these functions. The condition that every pair of functions can be distin-
guished based on their outputs is called output-distinguishability and is defined
by ∀φ1, φ2 ∈ Φ . ∃σ ∈ Σ; m, ma, mb ∈ M ; γ ∈ Γ . φ1(σ, m) = (γ, ma)∧φ2(σ, m) =
(γ, mb) ⇒ φ1 = φ2. It says that if for any input and memory two functions pro-
duce the same output then these two are actually the same function. The notion
of test context applies here too. For deterministic X-machines considered here,
ma = mb; in testing of nondeterministic X-machines with relations on transitions
[IH00, HH04], different values of memory may be produced.

Adding distinct test outputs may be impossible if multiple functions are sup-
posed to be implemented by the same piece of code, but in this case such func-
tions are not really distinct. Let a retr function be used instead of retr curr
on a transition from the R state to the I one. retr can be defined to be only
different from retr curr in the precondition, so that retr is taken upon a receipt
of (⊥, (txt, m)). In this case, function retr curr is a special case of retr with
a more complex precondition, hence the two are indistinguishable and mostly
implemented by the same code. In this case, testing whether each of the two is
implemented from each state has to focus on testing whether the common part
exists from every state and whether the extra part of retr curr is implemented.

200 K. Bogdanov

It is hence suggested that such functions be split, so that retr curr becomes retr
and retr the rest.

A possible way to automate checking if design for test conditions are satisfied
is to convert the whole X-machine into an FSM. This can be done using the
tool developed to analyse EFSM and perform test generation from them [IF06]
or the tool targeting X-machines [PKS03]. The downside is that the conversion
may yield too many states for a meaningful analysis.

As described above, testing involves attempting every function from every
state; this requires a way to enter those states after every test sequence. In a
faulty implementation, it may not be known where test sequences end and a
synchronising sequence [LY96] to enter a specific state may traverse untested
transitions and hence may fail to work in a faulty implementation. For this
reason, the testing method described requires a reliable reset to be implemented,
which is used to bring an implementation to an initial state with an initial value
of memory. It is then possible to use a sequence from the state cover set C to
re-enter a state of interest. In FSM testing, it is possible to perform testing even
when no reset is available [HU02, IU99], however this can produce relatively
long test sequences. An extension of the work on FSM testing without reset to
X-machines has not yet been done.

4.5 Extra States

An implementation may potentially contain more states than a specification.
This may be related to how a system is implemented, such as when some code
is copy-and-pasted. If an implementation is correct, every ‘extra’ state has to
be behaviourally-equivalent to some state in a specification. For instance, the
machine on the right of Figure 2 can be considered a specification and the one
on the left an implementation with one extra state. Checking that all the extra
states behave the same way as the corresponding states in a specification is also
the task of testing, but it is made rather more difficult by the fact that extra
states can be everywhere, in other words, any transition may potentially lead
to such an extra state. Without a known upper bound on the potential number
of such states, testing cannot find all faults in the transition diagram. For this
reason, it is typically assumed that such a number is known before test generation
commences; although it is possible to choose a higher number ‘just in case’, the
amount of testing grows exponentially with the increase in this number. Let
us assume that there could be only one extra state, but any transition from
every state may lead into it. In this case, one has to try every possible function
from every state in order to make sure that this state is entered. In order to
verify that the extra state is behaviourally-equivalent to one of the states in a
specification, it is necessary to attempt every function from it and verify that
for each transition which fires, the entered state is correct. If there are two extra
states, the only way to get to the second one could be from the first one, hence
one has to attempt every pair of functions from every state.

If a minimal specification contains n states and a tester assumes that an
implementation can have at most m states, the test set is

Testing from X-Machine Specifications 201

C ∗ ({ε} ∪ Φ ∪ Φ2 ∪ . . . ∪ Φm−n+1) ∗ W

where Φ0 = {ε} and Φp = Φ ∗ Φp−1. Compared to the test set from Section 4.3,
higher powers of Φ are used to attempt to enter and test the behaviour of po-
tential extra states. The described test set, when converted to sequences of in-
puts, is proven to be capable of detecting all faults [IH97], subject to the follow-
ing conditions: (1) a specification is a deterministic and completely defined X-
machine with a minimal transition diagram, satisfying input-completeness and
output-distinguishability; (2) an implementation can be modelled as a determinis-
tic X-machine with the same input and output alphabets, a known upper bound to
the number of states and the same initial memory as a specification; (3) for every
function of an implementation, there is a behaviourally-equivalent function in a
specification; (4) both a specification and implementation feature a reliable reset.

4.6 Testing of Functions

As mentioned above, functions can be tested separately from a transition di-
agram. In cases where this is not possible, one may still perform the testing
following [Ipa04]; it is assumed that functions are output-distinguishable.

Consider the problem of testing retr curr from the R state: not only one has
to attempt retr curr with various inputs in order to test it, but this also has to be
done from a specific state and with a predictable memory value. Indeed, for test-
ing of a function Σ × M → M × Γ , one has to control both memory and inputs.
In a faulty implementation, sel diff may be absent or lead to the wrong state.
This is a problem faced by a tester. The solution is to start by testing functions
from the initial state and initial memory value. Output-distinguishability guar-
antees that a tester will be confident that the right functions fire in response
to inputs, hence functions leaving the I state can be tested. Afterwards, it is
possible to attempt sel diff, which should enter the R state and then attempt
retr curr. If following sel diff, function retr curr can be executed (and this will
be known from output-distinguishability), then it can be tested, even if the state
entered by sel diff is wrong. Since sel diff has been tested in advance, the mem-
ory value used during testing of retr curr is known. With this, retr curr can be
tested. By repeating the process of testing functions further and further away
from the initial state, but entering states to exercise those functions using only
previously-tested functions, all functions of an implementation can be tested.
Subsequently, a transition diagram can be tested as described above. This is the
idea of the testing method. The problem of setting the memory value for test-
ing functions is not considered by [Ipa04]; testing of functions can be expected
to be performed entirely using inputs/outputs from a known memory value. If
access to elements of memory necessary for testing of functions is not available,
one may modify functions such that both an input and a representation of a
memory value are supplied to a function as a part of a test input.

The first part, testing of functions, is performed using a function cover set V
which is used to ‘access’ functions for testing of them, rather like sel diff was
used to access retr curr. Formally, V is sequence of paths v1 . . . vk, such that

202 K. Bogdanov

all of them can be followed from an initial state of a specification and one can
introduce an order φ1 . . . φk in which functions of an X-machine are tested, such
that (1) v1 = ε in order to access φ1 from the initial state and (2) every vi

accesses φi using previously tested functions, vi ∈ {φ1 . . . φi−1}∗ and viφi is a
path which can be followed.

4.7 Building X-Machine Specifications That Are Useful for Testing

Deciding what to include in functions and what has to be a part of a transition
diagram is precisely the problem of abstraction this chapter has started with. It
is worth considering a few extreme cases in order to illustrate what to strive for.

The number of states can be chosen to be small or large. In the former case, the
extreme situation is an X-machine with a single state and a number of transitions
looping in this state, perhaps even a single transition encompassing all possible
computations of a system. Since the X-machine testing method aims to test a
transition diagram, all it can tell one is whether all transitions of a specification
and no others are implemented, but since functions are expected to have been
tested in advance, this is likely to be already known. For this reason, testing such
a system using the X-machine testing method is unlikely to reveal anything new.
On the other extreme, when every combination of values of memory variables is
a part of a state, the end result is a huge finite-state machine, untestable due
to its size. By constraining ranges of values of variables, it may be possible to
reduce the number of states of the resulting automaton.

In general, the choice of what to include in a state and what in memory has
to be governed by factors such as what kind of control needs testing. Indeed, if a
subsystem under test only performs a simple computation, such as an addition,
one can expect a category-partition testing method [OB88] to be enough. For
this reason, one might wish to use a state-based testing method only where there
is a non-trivial control flow.

The number of functions can also affect the model and how easy it is to test.
On one extreme, there could be only one (or few) functions, packing a substantial
complexity; on the other, every path through code in an implementation could be
described by a separate function. The problem associated with testing from an
X-machine with few functions lies with a (1) (likely) a small state-transition di-
agram and (2) difficulty of following sequences of them prescribed by the testing
method, since given complex preconditions and data transformations performed
by functions, it may be hard to devise a sequence of inputs to force a system
to follow test sequences. Too many functions means a lot more testing, since
the method assumes that any of them can erroneously be implemented from
any state. For this reason, it may introduce substantially more test sequences
than a tester may consider reasonable; a way to combat this problem is to con-
strain possible faulty implementations to those where only some functions may
be erroneously implemented from some states.

Finally, one may attempt to decompose lengthy computations into sequences
of functions, triggered by tick -inputs. In this case, the X-machine starts to re-
semble a flow-chart, where each stage of a computation is separated by a state.

Testing from X-Machine Specifications 203

For instance, the retr curr label could be decomposed into decompose and format
functions, with decompose splitting an email message received into parts (html,
plain text parts and attachments) and decoding them; format could take html
and ‘simplify’ it by removing links or perhaps even removing all html tags. Such
flowchart models appear relatively artificial, in that even if an implementation
performs a computation in similar stages, it is not likely to wait in every state for
a tester to initiate the following stage of the computation. What’s more impor-
tant, is that from each state, it may be next to impossible to attempt functions
other than those which are present from such a state in a specification. With
design for test conditions consequently not satisfied, testing reduces to follow-
ing specific paths rather than verifying that from every state, those transitions
which are present in a specification, are actually implemented and there are no
other transitions leaving those states.

4.8 Testing of Incomplete Systems

A specification and/or an implementation may be incomplete, in other words
with no defined behaviour for specific combinations of states, memory values
and inputs. This can make testing substantially more complex.

One of the problems testing from an incomplete system has been described in
Section 3.3. Whoever decides to verify by testing that inputs in situations when
no behaviour has been specified, are ignored, faces a difficult task: there (1) could
be an infinite number of possible values of memory when certain inputs have to
be ignored and (2) there is no indication as to which combinations of memory and
input to choose and which not to. This is exactly the overall problem of software
testing, described in Section 1.1; the fact that X-machines consist of functions and
a transition diagram, makes it possible to test functions before testing a diagram
and assume that if a function is executed in response to an input, such a function
will fire in response to any other input in the domain of that function. There is no
such structure for inputs which are expected to be ignored; for this reason, one may
have to make an extra assumption that no functions beyond those specified may
be present in a potentially faulty implementation. Such an assumption means that
once one verifies that for every state, transitions with the expected functions are
present and transitions with other specification functions are absent, upon receipt
of an input for which no behaviour has been specified, an implementation will not
have a function it can fire, hence such an input will be ignored.

Test sequence execution can be performed step-by-step or a whole sequence at
a time. In the former case, one attempts and input and checks an output, then
the next input is attempted and so on. In the latter case, a whole sequence of
inputs is attempted and the output is compared with the expected one. In testing
of an incomplete system which ignores unexpected inputs, the latter approach
yields substantially less information: if inputs are applied one at a time, it is
known which of them are ignored, if the whole input sequence is attempted and
a shorter sequence of outputs is received, it is not known which inputs were
ignored. This is the reason why [BGIH03] includes an empty sequence in the W
set, to ensure that before checking that an implementation has entered a correct

204 K. Bogdanov

state, it is verified that the system under test has actually executed a path which
is supposed to lead to that state.

Both the W method and its improvements [FBK+91, LPB94] expect every
sequence from a state identification set to be attempted from every state to
be identified, with a subsequent reset. If an implementation ignores an attempt
to fire a transition with a particular label, it may be possible to assume that it
remained in the same state with the same memory value and hence another func-
tion be attempted, without having to reset a system and re-run a test sequence
to enter a state to be identified. This is the idea behind adaptive testing, where
every test input may depend on the history of outputs received from a system un-
der test. Nondeterministic systems may follow any of a number of different paths
in response to a specific sequence of inputs, because for every input received an
implementation may nondeterministically fire one of the available transitions.
For this reason, in testing of nondeterministic X-machines [IH00, HH04], it is
assumed that outputs provided by an implementation can be used to determine
both the function executed and the new memory value each time such a nonde-
terministic decision is made; as a consequence, one would expect such tests to
be adaptive. More recent work in the context of adaptive FSM testing [Hie04]
has not yet been adapted for testing of X-machines.

It is also possible that situations in which a specification does not have a
defined behaviour cannot occur in practice (this corresponds to ‘forbidden tran-
sitions’ in protocol testing [BP94]). For instance, if all events are collected in
some kind of a queue and hence multiple of them cannot arrive simultaneously,
it is not possible for both a button press and a server response to be received
by the considered email client at the same time. The observation that a par-
ticular input or a sequence of inputs cannot arrive in practice can be used to
reduce the amount of testing dramatically. For instance, one may assume that
in a system containing a number of concurrently-executing X-machines, most
functions of any of these X-machines cannot be used in any other X-machine.
In terms of the email client, this means that retr fail function cannot be used in
the server. Another assumption could be that in any path through a transition
diagram, specific labels can never follow others, even in a faulty implementation.
For example, retr prev cannot be immediately followed by retr fail.

The problem of testing a system embedded in an environment which never
supplies specific sequences of inputs and/or transforms output sequences from a
system under test is known in FSM testing as testing in context [PYBD96]. In
testing of timed input-output transition systems (TIOTS), the idea of context
is known as environment [LMN04].

Finally, specific inputs may be impossible to apply in some states and hence
states which would otherwise be distinguishable, will not be such. It is important
to note that the amount of testing for such an incomplete system can be immense:
in the context of FSM, testing of an implementation with a maximum of m states
against a specification with n states can require a test set of Σmn [LPB94]. In
the realm of finite-state machine testing, testing of incomplete systems has led
to the development of specific testing methods [PY05, LPB94].

Testing from X-Machine Specifications 205

5 Conclusion and Applications

X-machines permit one to specify complex systems and at the same time man-
age the complexity of testing since a transition diagram and operations executed
when transitions are taken can be tested separately. An adaptation of FSM test-
ing methods to X-machines allows one to ascertain by testing that an imple-
mentation behaves the same as a specification (or conforms to it), subject to a
number of assumptions described in this chapter.

Considering the ‘usefulness’ conditions of a testing method, mentioned in Sec-
tion 1.1, it seems reasonable to claim that X-machine testing method (1) can
be used to demonstrate equivalence/conformance of the behaviour of an imple-
mentation, to a specification; (2) is useful for testing software with a non-trivial
control behaviour, where it is possible to draw a parallel between functions in a
specification and those in an implementation. The conditions for applicability of
the method (3) may be more or less hard to satisfy, but they are clearly defined.
In practice, the X-machine testing method has been used for testing integrated
circuits from VHDL source, for six months in the context of a major embedded
microcontroller developer. As described in [BHI+06], not only X-machine tests
took rather less time to develop than tests used by the company, they also ex-
ecuted in a much shorter span of time and found many more mutants of the
source VHDL.

Compared to the one described here, a similar approach to abstraction has
been applied to Harel statecharts in [BH01, BH02]; it turned out that relatively
weak additional assumptions can reduce the amount of testing by many orders of
magnitude [BH04]. A complex system may consist of a number of communicat-
ing parts; in the context of X-machines, one can represent each communicating
subsystem with an X-machine, with a matrix holding the data being exchanged
between them. Every cell ij can represent data being passed from the ith X-
machine to the jth one. A system of communicating X-machines has a number
of constraints imposed on it, which makes testing easier and stops communi-
cating X-machines from engaging in an infinite sequence of communications. As
a consequence, such a system behaves as a nondeterministic X-machine with a
cross-product of states and transitions of the communicating X-machines. The
testing method has been extended to testing of such systems in [IH02]; the main
limitation is the size of the resulting test set.

References

[BGIH03] Bălănescu, T., Gheorghe, M., Ipate, F., Holcombe, M.: Formal black box
testing for partially specified deterministic finite state machines. Founda-
tions of Computing and Decision Systems 28(1) (2003)

[BH01] Bogdanov, K., Holcombe, M.: Statechart testing method for aircraft control
systems. Software Testing, Verification and Reliability 11(1), 39–54 (2001)

[BH02] Bogdanov, K., Holcombe, M.: Testing from statecharts using the Wp
method. In: CONCUR 2002 Satellite Workshop on Formal Approaches To
Testing (FATES), pp. 19–33 (2002)

206 K. Bogdanov

[BH04] Bogdanov, K., Holcombe, M.: Refinement in statechart testing. Software
Testing, Verification and Reliability 14, 189–211 (2004)

[BHI+06] Bogdanov, K., Holcombe, M., Ipate, F., Seed, L., Vanak, S.: Testing meth-
ods for X-machines, a review. Formal Aspects of Computing 18(1) (2006)

[BP94] Bochmann, G., Petrenko, A.: Protocol testing: review of methods and rel-
evance for software testing. In: 1994 ACM International Symposium on
Software Testing and Analysis (ISSTA 1994), pp. 109–124 (1994)

[Car00] Cardell-Oliver, R.: Conformance tests for real-time systems with timed au-
tomata specifications. Formal Aspects of Computing 12(5), 350–371 (2000)

[Cho78] Chow, T.: Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering SE-4(3), 178–187 (1978)

[CK93] Cheng, K., Krishnakumar, A.: Automatic functional test generation using
the extended finite state machine model. In: ACM-SIGDA; IEEE. Proceed-
ings of the 30th ACM/IEEE Design Automation Conference, Dallas, TX,
June 1993, pp. 86–91. ACM Press, New York (1993)

[Coh96] Cohen, D.: Introduction to Computer Theory, 2nd edn. John Wiley & Sons,
New York (1996)

[Eil74] Eilenberg, S.: Automata, languages and machines, vol. A. Academic Press,
London (1974)

[FBK+91] Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.:
Test selection based on finite state models. IEEE Transactions on Software
Engineering 17(6), 591–603 (1991)

[Gau95] Gaudel, M.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach,
M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995.
LNCS, vol. 915, pp. 82–96. Springer, Heidelberg (1995)

[Gil62] Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill,
New York (1962)

[GP05] Gunter, E., Peled, D.: Model checking, testing and verification working
together. Formal Aspects of Computing 17(2), 201–221 (2005)

[HH04] Hierons, R., Harman, M.: Testing conformance of a deterministic imple-
mentation against a non-deterministic stream X-machine. Theoretical Com-
puter Science 4, 191–233 (2004)

[HI98] Holcombe, M., Ipate, F.: Correct Systems: building a business process so-
lution. Springer, Heidelberg (1998)

[Hie04] Hierons, R.: Testing from a nondeterministic finite state machine using
adaptive state counting. IEEE Trans. Computers 53(10), 1330–1342 (2004)

[HN96] Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology 5(4), 293–333
(1996)

[HU02] Hierons, R., Ural, H.: Reduced length checking sequences. IEEETC: IEEE
Transactions on Computers 51, 1111–1117 (2002)

[IF06] IF tool (2006),
http://www-verimag.imag.fr/~async/IF/

[IH97] Ipate, F., Holcombe, M.: An integration testing method that is proved to
find all faults. International Journal of Computer Mathematics 63, 159–178
(1997)

[IH00] Ipate, F., Holcombe, M.: Generating test sequences from non-deterministic
generalized stream X-machines. Formal Aspects of Computing 12(6), 443–
458 (2000)

[IH02] Ipate, F., Holcombe, M.: Testing conditions for communicating stream X-
machine systems. Formal Aspects of Computing 13(6), 431–446 (2002)

Testing from X-Machine Specifications 207

[Ipa04] Ipate, F.: Complete deterministic stream X-machine testing. Formal As-
pects of Computing 16(4), 374–386 (2004)

[IU99] Inan, K., Ural, H.: Efficient checking sequences for testing finite state ma-
chines. Information and Software Technology 41, 799–812 (1999)

[Koz94] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of
regular events. Information and Computation 110(2), 366–390 (1994)

[LMN04] Larsen, K., Mikucionis, M., Nielsen, B.: Online testing of real-time systems
using Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS,
vol. 3395, pp. 79–94. Springer, Heidelberg (2005)

[LPB94] Luo, G., Petrenko, A., von Bochmann, G.: Selecting test sequences for par-
tially specified nondeterministic finite state machines. In: IFIP Seventh In-
ternational Workshop on Protocol Test Systems, Japan, pp. 95–110 (1994)

[LY96] Lee, D., Yannakakis, M.: Principles and methods of testing finite state
machines – A survey. In: Proceedings of the IEEE, August 1996, vol. 84,
pp. 1090–1123 (1996)

[MK94] McGregor, J.D., Korson, T.D.: Integrated object-oriented testing and de-
velopment processes. Communications of the ACM 37(9), 59–77 (1994)

[Mye79] Myers, G.: The art of software testing. John Wiley and Sons, Chichester
(1979)

[OB88] Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying
and generating functional tests. Communications of the ACM 31(6), 676–
686 (1988)

[OMG03] OMG. Unified Modeling Language specification, version 1.5 (March 2003),
http://www.omg.org/technology/documents/formal/uml.htm

[PBG04] Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM
testing. IEEE Transactions on Software Engineering 30(1), 29–42 (2004)

[Pet00] Petrenko, A.: Fault model-driven test derivation from finite state models:
Annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M.
(eds.) MOVEP 2000. LNCS, vol. 2067, pp. 19–23. Springer, Heidelberg
(2001)

[PKS03] Eleftherakis, G., Kefalas, P., Sotiriadou, A.: Developing tools for formal
methods. In: 9th Panhellenic Conference on Informatics, Thessaloniki,
Greece, November 2003, pp. 625–639 (2003)

[Pre94] Pressman, R.: Software Engineering, a practitioner’s approach, 3rd edn.
McGraw-Hill, London (1994)

[PY05] Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM
specifications. IEEE Transactions on Computers 54(9), 1154–1165 (2005)

[PYB96] Petrenko, A., Yevtushenko, N., von Bochmann, G.: Testing deterministic
implementations from nondeterministic FSM specifications. In: Proc. of 9th
International Workshop on Testing of Communicating Systems (IWTCS
1996), pp. 125–140 (1996)

[PYBD96] Petrenko, A., Yevtushenko, N., von Bochmann, G., Dssouli, R.: Testing
in context: framework and test derivation. Computer Communications 19,
1236–1249 (1996)

[RDT95] Ramalingam, T., Das, A., Thulasiraman, K.: On testing and diagnosis of
communication protocols based on the FSM model. Computer communica-
tions 18(5), 329–337 (1995)

[Sta02] Stannett, M.: Complete behavioural testing (two extensions to state-
machine testing. In: CONCUR 2002 Satellite Workshop on Formal Ap-
proaches To Testing (FATES), pp. 51–64 (2002)

208 K. Bogdanov

[Sta06] Stannett, M.: The theory of X-machines. Technical Report CS-05-09, The
University of Sheffield, UK (2006)

[Tre96] Tretmans, J.: Test generation with inputs, outputs and repetitive quies-
cence. Software – Concepts and Tools 17(3), 103–120 (1996)

[Van02] Vanak, S.: Complete functional testing of hardware descriptions. PhD the-
sis, The University of Sheffield, UK (2002)

[Vas73] Vasilevskii, M.: Failure diagnosis of automata, vol. 4, pp. 653–665. Cyber-
netics, Plenum Publ. Corporation, New York (1973)

[Woo96] Wood, A.: Predicting software reliability. Computer 29(11), 69–77 (1996)

Testing Data Types Implementations from
Algebraic Specifications

Marie-Claude Gaudel1 and Pascale Le Gall2

1 Université de Paris-Sud 11, LRI CNRS UMR 8623,
Bat. 490, F-91405 Orsay Cedex, France

mcg@lri.fr
2 Université d’Évry-Val d’Essonne, IBISC CNRS FRE 2873,

523 pl. des Terrasses F-91025 Évry Cedex, France
pascale.legall@ibisc.univ-evry.fr

Abstract. Algebraic specifications of data types provide a natural basis
for testing data types implementations. In this framework, the confor-
mance relation is based on the satisfaction of axioms. This makes it
possible to state formally the fundamental concepts of testing: exhaus-
tive test set, testability hypotheses, oracle. Various criteria for selecting
finite test sets have been proposed. They depend on the form of the
axioms, and on the possibilities of observation of the implementation
under test. This last point is related to the well-known oracle problem.
As the main interest of algebraic specifications is data type abstraction,
testing a concrete implementation raises the issue of the gap between
the abstract description and the concrete representation. The observa-
tional semantics of algebraic specifications bring solutions on the basis of
the so-called observable contexts. After a description of testing methods
based on algebraic specifications, the chapter gives a brief presentation
of some tools and case studies, and presents some applications to other
formal methods involving data types.

1 Introduction

Deriving test cases from some descriptions of the Implementation Under Test
(the IUT) is a very old and popular idea. In their pioneering paper [36], Good-
enough and Gerhart pointed out that the choice of test cases should be based
both on code coverage, and on specifications expressed by condition tables. One
of the first papers where software testing was based on some formal description of
the system under test, was by Chow [23]: software was modelled by finite state
machines. It has been very influential on all the subsequent works on testing
based on formal specifications.

Most approaches in this area are based on behavioural descriptions: for in-
stance the control graph of the program, or some finite state machine or labelled
transition system. In such cases, it is rather natural to base the selection of test
scenarios on some coverage criteria of the underlying graph.

Algebraic specifications are different: abstract data types are described in an
axiomatic way [5,14,57]. There is a signature Σ, composed of a finite set S of sorts

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 209–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 M.-C. Gaudel and P. Le Gall

and a finite set F of function names over the sorts in S, and there is a finite set
of axioms Ax. The correctness requirement is no more, as above, the ability (or
the impossibility) for the IUT to exhibit certain behaviours: what is required by
such specifications is the satisfaction of the axioms by the implementation of the
functions of F . As a consequence, a natural way for testing some IUT is to choose
some instantiations of the axioms (or of some consequences of them) and to check
that when computed by the IUT, the terms occurring in the instantiations yield
results that satisfy the corresponding axiom (or consequence). This approach
was first proposed by Gannon et al. [33], and Bougé et al. [15,16], and then
developed and implemented by Bernot et al. [10].

Since these foundational works, testing from algebraic specifications has been
investigated a lot. Numerous works have addressed different aspects.

Some authors as in [6] or [24] focus on a target programming language (Ada or
Haskell). Testing from algebraic specifications has also been successfully adapted
for testing object-oriented systems [22,31,55]. Besides, methods inspired from
algebraic testing have been applied to some other kinds of specifications like
model-based specifications, first by Dick et al. [28], and more recently in [25].
Some other works explore links between test and proof [7,18,32].

Some tools [18,24,49] based either on resolution procedures or on specialised
tactics in a proof engine, have been developed and used.

Extensions of algebraic specifications have also been studied, for instance,
bounded data types [4] or partial functions [3]. More recently, some contribu-
tions [30,46,47] have been done to take into account structured or modular spec-
ifications aiming at defining structured test cases and at modelling the activity
of both unit testing and integration testing.

Another special feature of algebraic specifications is the abstraction gap be-
tween the abstract specification level and the concrete implementation. This
raises problems for interpreting the results of test experiments with respect to
the specification. This characteristic is shared with other formal methods that
allow the description of complex data types in an abstract way, for instance
VDM, Z, and their object oriented extensions.

As a consequence, in the area of testing based on algebraic specifications, a
special emphasis has been put on the oracle problem [3,8,43,45,58]. The oracle
problem concerns the difficulty of defining reliable decision procedures to com-
pare values of terms computed by the IUT. Actually, implementations of abstract
data types may have subtle or complex representations, and the interface of the
concrete data types is not systematically equipped with an equality procedure
to compare values. In practice, only some basic data types provide a reliable
decision procedure to compare values. They are said to be observable. The only
way to define (partial) decision procedure for abstract data types is to observe
them by applying some (composition of) functions yielding an observable result:
they are called observable contexts. Observational approaches of algebraic spec-
ifications bring solutions to define an appropriate notion of correctness taking
into account observability issues.

Testing Data Types Implementations from Algebraic Specifications 211

The chapter is organised as follows: Section 2 presents some necessary basic
notions of algebraic specifications; Section 3 gives the basic definitions of test
and test experiment against an algebraic specification; Section 4 introduces in a
progressive way the notions of exhaustive test set and testability hypothesis in a
simple case. Then Section 5 addresses the issue of the selection of a finite test
set via the so-called uniformity and regularity selection hypotheses. Section 6
develops further the theory, addressing the case where there are observability
problems: this leads to a reformulation of the definitions mentioned above, and
to a careful examination of the notion of correctness. Section 7 presents some of
the most significant related pieces of work. The last section is devoted to brief
presentations of some case studies, and to the descriptions of some transpositions
of the framework to some other formal methods where it is possible to specify
complex data types.

2 Preliminaries on Algebraic Specifications

Algebraic specifications of data types, sometimes called axiomatic specifications,
provide a way of defining abstract data types by giving the properties (axioms)
of their operations. There is no explicit definition of each operation (no pre-
and post-condition, no algorithm) but a global set of properties that describes
the relationship between the operations. This idea comes from the late seventies
[35,37]. It has been the origin of numerous pieces of work that have converged
on the definition of Casl, the Common Algebraic Specification Language [14].

An example of an algebraic specification is given in Figure 1: it is a Casl

specification of containers of natural numbers, i.e., a data structure that contains
possibly duplicated numbers with no notion of order. This specification states
that there are three sorts of values, namely Natural Numbers, Booleans and
Containers. Among the operations, there is, for instance, a function named isin
which, given two values, resp. of sort natural number and container, returns a
boolean value. The operations must satisfy the axioms that are the formulas
itemised by big bullets.

The sorts, operation names, and profiles of the operations are part of the
signature of the specification. The signature gives the interface of the specified
data type. Moreover, it declares some sorted variables that are used for writing
the axioms.

An (algebraic) signature Σ = (S, F, V) consists of a set S of sorts, a set F of
function names each one equipped with an arity in S∗ × S and a set of variables
V , each of them being indexed by a sort. In the sequel, a function f with arity
(s1 . . . sn, s), where s1 . . . sn, s ∈ S, will be noted f : s1 × . . . × sn → s.

In Figure 1, the sorts of the signature are Nat and Bool (specified in some
Our/Numbers/with/Bools specification, not given here), and Container;
the functions are [] (the empty container), :: (addition of a number to a
container), isin that checks for the belonging of a number to a container, and
remove that takes away one occurrence of a number from a container; the vari-
ables are x, y of Nat sort, and c of Container sort.

212 M.-C. Gaudel and P. Le Gall

from Our/Numbers/with/Bools version 0.0 get Nat, Bool

spec Containers =
Nat, Bool

then
generated type Container ::= [] | :: (Nat ; Container)
op isin : Nat × Container → Bool
op remove : Nat × Container → Container
∀ x, y : Nat ; c: Container
• isin(x, []) = false %(isin empty)%
• eq(x, y) = true ⇒ isin(x, y :: c) = true %(isin 1)%
• eq(x, y) = false ⇒ isin(x, y :: c) = isin(x, c) %(isin 2)%
• remove(x, []) = [] %(remove empty)%
• eq(x, y) = true ⇒ remove(x, y :: c) = c %(remove 1)%
• eq(x, y) = false ⇒ remove(x, y :: c) = y :: remove(x, c) %(remove 2)%

end

Fig. 1. An Algebraic specification of containers of natural numbers

Given a signature Σ = (S, F, V), TΣ(V) is the set of terms with variables in
V freely generated from variables and functions in Σ and preserving arity of
functions. Such terms are indexed by the sort of their result. We note TΣ(V)s

the subset of TΣ(V) containing exactly those terms indexed by s.
TΣ is the set TΣ(∅) of the ground terms and we note TΣ,s the set of ground

terms of sort s.
Considering the Container specification, an example of a ground term t

of Container sort is 0 :: 0 :: []. An example of a term t′ with variables is
isin(x, 0 :: c) that is of Bool sort.

A substitution is any mapping ρ : V → TΣ(V) that preserves sorts. Substitu-
tions are naturally extended to terms with variables. The result of the application
of a substitution ρ to a term t is called an instantiation of t, and is noted tρ. In
the example, let us consider the substitution σ : {x → 0, y → 0, c → y :: []}, the
instantiation t′σ is the term with variable isin(0, 0 :: y :: []).

Σ-equations are formulae of the form t = t′ with t, t′ ∈ TΣ(V)s for s ∈ S. An
example of an equation on containers is remove(x, []) = [].

A positive conditional Σ-formula is any sentence of the form α1 ∧ . . . ∧ αn ⇒
αn+1 where each αi is a Σ-equation (1 ≤ i ≤ n + 1). Sen(Σ) is the set of all
positive conditional Σ-formulae.

A (positive conditional) specification SP = (Σ, Ax, C) consists of a signature
Σ, a set Ax of positive conditional formulae often called axioms, and some
constraints C, which may restrict the interpretations of the declared symbols
(some examples are given below). When C is empty, we note SP = (Σ, Ax)
instead of SP = (Σ, Ax, ∅).

Specifications can be structured as seen in the example: a specification SP can
use someother specificationsSP1, . . . , SPn. In suchcases, the signature is theunion
of signatures, and there are some hierarchical constraints that require the semantics
of the used specifications to be preserved (for more explanations see [57]).

Testing Data Types Implementations from Algebraic Specifications 213

In the Containers specification, there are six axioms, named isin empty,
isin 1, isin 2, remove empty, remove 1, and remove 2, and there is a so-called
generation constraint, expressed at the line beginning by generated type, that
all the containers are computable by composition of the functions [] and :: .
Such constraints are also called reachability constraints. The functions [] and
:: are called the constructors of the Container type.
In some algebraic specification languages, axioms can be formulae of first-

order logic, as in Casl. However, in this chapter we mainly consider positive
conditional specifications1.

A Σ-algebra A is a family of sets As, each of them being indexed by a sort;
these sets are equipped, for each f : s1 × . . . × sn → s ∈ F , with a mapping
fA : As1 × . . . × Asn → As. A Σ-morphism μ from a Σ-algebra A to a Σ-
algebra B is a mapping μ : A → B such that for all s ∈ S, μ(As) ⊆ Bs

and for all f : s1 × . . . × sn → s ∈ F and all (a1, . . . , an) ∈ As1 × . . . × Asn

μ(fA(a1, . . . , an)) = fB(μ(a1), . . . , μ(an)).
Alg(Σ) is the class of all Σ-algebras.
Intuitively speaking, an implementation of a specification with signature Σ is

a Σ-algebra: it means that it provides some sets of values named by the sorts,
and some way of computing the functions on these values without side effect.

The set of ground terms TΣ can be extended into a Σ-algebra by providing
each function name f : s1 × . . . × sn → s ∈ F with an application fTΣ :
(t1, . . . , tn) 	→ f(t1, . . . , tn). In this case, the function names of the signature are
simply interpreted as the syntactic constructions of the ground terms.

Given a Σ-algebra A, we note A : TΣ → A the unique Σ-morphism that
maps any f(t1, . . . , tn) to fA(tA1 , . . . , tAn). A Σ-algebra A is said reachable if A

is surjective.
A Σ-interpretation in A is any mapping ι : V → A. It is just an assignment

of some values of the Σ-algebra to the variables. Given such an interpretation,
it is extended to terms with variables: the value of the term is the result of its
computation using the values of the variables and the relevant fA.

A Σ-algebra A satisfies a Σ-formula ϕ : ∧1≤i≤n ti = t′i ⇒ t = t′, noted A |= ϕ,
if and only if for every Σ-interpretation ι in A, if for all i in 1..n, ι(ti) = ι(t′i)
then ι(t) = ι(t′). Given a specification SP = (Σ, Ax, C), a Σ-algebra A is a
SP -algebra if for every ϕ ∈ Ax, A |= ϕ and A fulfils the C constraint. Alg(SP)
is the subclass of Alg(Σ) exactly containing all the SP -algebras.

A Σ-formula ϕ is a semantic consequence of a specification SP = (Σ, Ax),
noted SP |= ϕ, if and only if for every SP -algebra A, we have A |= ϕ.

3 Testing Against an Algebraic Specification

Let SP be a positive conditional specification and IUT be an Implementa-
tion Under Test. In dynamic testing, we are interested in the properties of the
1 The reason is that most tools and case studies we present have been performed for

and with this kind of specifications. An extension of our approach to first order logic,
with some restrictions on quantifiers, was proposed by Machado in [46].

214 M.-C. Gaudel and P. Le Gall

computations by IUT of the functions specified in SP . IUT provides some pro-
cedures or methods for executing these functions. The question is whether they
satisfy the axioms of SP .

Given a ground Σ-term t, we note tIUT the result of its computation by IUT .
Now we define how to test IUT against a Σ-equation.

Definition 1 (: Test and Test Experiment). Given a Σ-equation ε, and
IUT which provides an implementation for every function name of Σ,

– a test for ε is any ground instantiation t = t′ of ε;
– a test experiment of IUT against t = t′ consists in the evaluation of tIUT

and t′IUT and the comparison of the resulting values.

Example 1. One test of the isin empty equation in the Containers specifica-
tion of Figure 1 is isin(0, []) = false.

The generalization of this definition to positive conditional axioms is straight-
forward.

In the following, we say that a test experiment is successful if it concludes
to the satisfaction of the test by the IUT , and we note it IUT passes τ where
τ is the test, i.e., a ground formula. We generalise this notation to test sets:
IUT passes TS means that ∀τ ∈ TS, IUT passes τ .

Deciding whether IUT passes τ is the oracle problem mentioned in the in-
troduction. In the above example it is just a comparison between two boolean
values. However, such a comparison may be difficult when the results to be com-
pared have complex data types. We postpone the discussion on the way it can
be realised in such cases to Section 6. Actually, we temporarily consider in the
two following sections that this decision is possible for all sorts, i.e., they are all
“observable”.

Remark 1. Strictly speaking, the definition above defines a tester rather than a
test data: a test t = t′ is nothing else than the abstract definition of a program
that evaluates t and t′ via the relevant calls to the IUT and compares the results;
a test experiment is an execution of this tester linked to the IUT.

We can now introduce a first definition of an exhaustive test of an implementa-
tion against an algebraic specification. A natural notion of correctness, when all
the data types of the specification are observable, is that the IUT satisfies the
axioms of the specification. Thus we start with a first notion of exhaustive test
inspired from the notion of satisfaction as defined in Section 2.

4 A First Presentation of Exhaustivity and Testability

Definition 2 (: Exhaustive Test Set, first version). Given a positive con-
ditional specification SP = (Σ, Ax), an exhaustive test set for SP , denoted as
ExhaustSP , is the set of all well-sorted ground instantiations of the axioms in
Ax:

ExhaustSP = {φρ | φ ∈ Ax, ρ ∈ V → TΣ}

Testing Data Types Implementations from Algebraic Specifications 215

An exhaustive test experiment of some IUT against SP is the set of all the test
experiments of the IUT against the formulas of ExhaustSP . As stated above,
this definition is very close to (and is derived from) the notion of satisfaction of
a set of Σ-axioms by a Σ-algebra. In particular, the fact that each axiom can
be tested independently comes from this notion.

However, an implementation’s passing once all the tests in the exhaustive
test set does not necessarily mean that it satisfies the specification: first, this
is true only if the IUT is deterministic; second, considering all the well-sorted
ground instantiations is, a priori, not the same thing as considering all the Σ-
interpretations in the values of the IUT. It may be the case that some values are
not expressible by ground terms of the specification.

In other words, the above test set is exhaustive with respect to the specifica-
tion, but may be not with respect to the values used by the program. Thus some
testability hypotheses on the implementation under test are necessary: the suc-
cess of the exhaustive test set ensures the satisfaction of the specification by the
implementation only if this implementation behaves as a reachable Σ-algebra
(cf. Section 2).

Practically, this means that:

– There is a realisation of every function of Σ that is supposed to be deter-
ministic; the results do not depend on some hidden, unspecified, internal
state.

– The implementation is assumed to be developed following good programming
practices; any computed value of a data type must always be a result of the
specified operations of this data type.

– There is a comparison procedure for the values of every sort of the signature.

Note that, explicitly or not, all testing methods make assumptions on IUT:
a totally erratic system, or a diabolic one, may pass some test set and fail later
on2. In our case these hypotheses are static properties of the program. Some
of them are (or could be) checkable by some preliminary static analysis of the
source code.

Definition 3 (: Σ-Testability). Given a signature Σ, an IUT is Σ-testable if
it defines a reachable Σ-algebra AIUT . Moreover, for each τ of the form t = t′,
there exists a way of deciding whether it passes or not.

The Σ-testability of the IUT is called the minimal hypothesis Hmin on the
IUT.

Let us note Correct(IUT, SP) the correctness property that a given IUT be-
haves as a reachable SP -algebra (i.e., the axioms are satisfied and all the values

2 Testing methods based on Finite State Machine descriptions rely on the assumption
that the IUT behaves as a FSM with the same number of states as the specification;
similarly, methods based on IO-automata or IO-Transition Systems assume that the
IUT behaves as an IO-automata: consequently, it is supposed input-enabled, i.e.,
always ready to accept any input.

216 M.-C. Gaudel and P. Le Gall

are specified). The fundamental link between exhaustivity and testability is given
by the following formula:

Hmin(IUT) ⇒ (∀τ ∈ ExhaustSP , IUT passes τ ⇔ Correct(IUT, SP))

ExhaustSP is obviously not usable in practice since it is generally infinite. Ac-
tually, the aim of the definitions of ExhaustSP and Hmin is to provide frame-
works for developing theories of black-box testing from algebraic specifications.
Practical test criteria (i.e., those which correspond to finite test sets) will be de-
scribed as stronger hypotheses on the implementation. This point is developed in
Sections 5 and 6.

Before addressing the issue of the selection of finite test sets, let us come back
to the definition of ExhaustSP . As it is defined, it may contain useless tests,
namely those instantiations of conditional axioms where the premises are false:
such tests are always successful, independently of the fact that their conclusion
is satisfied by the IUT or not. Thus they can be removed.

Example 2. Assuming that eq(0, 0) = true is a semantic consequence of the
Our/Numbers/with/Bools specification, we can derive an equational test
for the remove 1 conditional axiom in the Containers specification of Figure
1. This test is simply the ground equation:
remove(0, 0 :: 0 :: []) = 0 :: [].

In the example of Figure 1, we have distinguished a subset of functions as con-
structors of the Container type (namely [] and ::). Under some conditions, the
presence of constructors in a specification makes it possible to characterise an
equational exhaustive test set.

A signature with constructors is a signature Σ =< S, F, V > such that a subset
C of elements of F are distinguished as constructors. Let us note Ω =< S, C, V >
the corresponding sub-signature of Σ, and TΩ the corresponding ground terms.
A specification SP =< Σ, Ax > where Σ is a signature with constructors C is
complete with respect to its constructors if and only if both following conditions
hold:

– ∀t ∈ TΣ, ∃t′ ∈ TΩ such that SP |= t = t′

– ∀t, t′ ∈ TΩ, SP |= t = t′ ⇒ < Σ, ∅ >|= t = t′, i.e., t and t′ are syntactically
identical

Example 3. The Containers specification of Figure 1 is complete with respect
to the constructors C = {[], ::} of the Container sort: from the axioms, any
ground term of Container sort containing some occurrence of the (non construc-
tor) remove function is equal to some ground term containing only occurrences
of [] and ::. Moreover, there is only one such ground term.

For such specifications and under some new hypotheses on the IUT, it is possible
to demonstrate that the set of ground conclusions of the axioms is exhaustive.
When removing premises satisfied by the specification, we should be careful not
to remove some other premises that the IUT could interpret as true, even if they

Testing Data Types Implementations from Algebraic Specifications 217

are not consequences of the specification. A sufficient condition is to suppose
that the IUT correctly implements the constructors of all the sorts occurring in
the premises. Let us introduce the new testability hypothesis Hmin,C for that
purpose. Intuitively, Hmin,C means that the IUT implements data types with
a syntax very close to their abstract denotation. It may seem to be a strong
hypothesis, but in fact, it only applies to basic types, often those provided by
the implementation language. As soon as the data type implementation is subtle
or complex, the data type is then encapsulated and thus considered as non
observable for testing (cf. Section 6).

Definition 4. IUT satisfies Hmin,C iff IUT satisfies Hmin and :

∀s ∈ S, ∀u, v ∈ TΩ,s, IUT passes u = v ⇔ SP |= u = v

Definition 5

EqExhaustSP,C = { ερ | ∃α1 ∧ . . . ∧ αn ⇒ ε ∈ Ax,
ρ ∈ V → TΩ, SP |= (α1 ∧ . . . ∧ αn)ρ}

Under Hmin,C and for specifications complete with respect to their constructors
EqExhaustSP,C is an exhaustive test set. A proof can be found in [42] or in [1].
Its advantage over ExhaustSP is that it is made of equations. Thus the test
experiments are simpler.

Some other approaches for the definitions of exhaustivity and testability are
possible. For instance, as suggested in [11] and applied by Dong and Frankl in
the ASTOOT system [31], a different possibility is to consider the algebraic spec-
ification as a term rewriting system, following a “normal-form” operational se-
mantics. Under the condition that the specification defines a ground-convergent
rewriting system, it leads to an alternative definition of the exhaustive test set:

Exhaust′SP = {t = t ↓| t ∈ TΣ}

where t ↓ is the unique normal form of t. The testability hypothesis can be weak-
ened to the assumption that the IUT is deterministic (it does not need anymore
to be reachable). In [31], an even bigger exhaustive test set was mentioned (but
not used), which contained for every ground term the inequalities with other
normal forms, strictly following the definition of initial semantics.

Actually, this is an example of a case where the exhaustive test set is not
built from instantiations of the axioms, but more generally from an adequate
set of semantic consequences of the specification. Other examples are shown in
Section 6.

5 Selection Hypotheses: Uniformity, Regularity

5.1 Introduction to Selection Hypotheses

A black-box testing strategy can be formalised as the selection of a finite subset
of some exhaustive test set. In the sequel, we work with EqExhaustSP,C , but
what we say is general to the numerous possible variants of exhaustive test sets.

218 M.-C. Gaudel and P. Le Gall

Let us consider, for instance, the classical partition testing strategy3. It con-
sists in defining a finite collection of (possibly non-disjoint) subsets that covers
the exhaustive test set. Then one element of each subset is selected and submit-
ted to the implementation under test. The choice of such a strategy corresponds
to stronger hypotheses than Hmin on the implementation under test. We call
such hypotheses selection hypotheses. In the case of partition testing, they are
called uniformity hypothesis, since the implementation under test is assumed to
behave uniformly on some test subsets UTSi (as Uniformity Test Subset):

UTS1 ∪ . . . ∪ UTSp = EqExhaustSP,C , and

∀i = 1, . . . , p, (∀τ ∈ UTSi, IUT passes τ ⇒ IUT passes UTSi)

Various selection hypotheses can be formulated and combined depending on
some knowledge of the program, some coverage criteria of the specification and
ultimately cost considerations. Another type of selection hypothesis is regularity
hypothesis, which uses a size function on the tests and has the form “if the subset
of EqExhaustSP,C made up of all the tests of size less than or equal to a given
limit is passed, then EqExhaustSP,C also is”4.

All these hypotheses are important from a theoretical point of view because
they formalise common test practices and express the gap between the success
of a test strategy and correctness. They are also important in practice because
exposing them makes clear the assumptions made on the implementation. Thus,
they give some indication of complementary verifications, as used by Tse et al.
in [20]. Moreover, as pointed out by Hierons in [40], they provide formal bases
to express and compare test criteria and fault models.

5.2 How to Choose Selection Hypotheses

As said above, the choice of the selection hypotheses may depend on many fac-
tors. However, in the case of algebraic specifications, the text of the specification
provides useful guidelines. These guidelines rely on coverage of the axioms and
composition of the cases occurring in premise of the axioms via unfolding as
stated first in [10], and extended recently in [1].

We recall that axioms are of the form α1 ∧ . . . ∧ αn ⇒ αn+1 where each αi is
a Σ-equation ti = t′i, (1 ≤ i ≤ n + 1).

From the definition of EqExhaustSP,C , a test of such an axiom is some αn+1ρ
where ρ ∈ V → TΣ is a well-typed ground substitution of the variables of the
axiom such that the premise of the axiom, instantiated by ρ, is true: it is a
semantic consequence of the specification (SP |= (α1 ∧ . . . ∧ αn)ρ).

One natural basic testing strategy is to cover each axiom once, i.e., to choose
for every axiom one adequate substitution ρ only. The corresponding uniformity
hypothesis is
3 More exactly, it should be called sub-domain testing strategy.
4 As noticed by several authors, [31], [20], and from our own experience [53], such

hypotheses must be used with care. It is often necessary to choose this limit taking
in consideration some “white-box knowledge” on the implementation of the data
types: array bounds, etc.

Testing Data Types Implementations from Algebraic Specifications 219

∀ρ ∈ V → TΣ such that SP |= (α1 ∧ . . . ∧ αn)ρ, IUT passes αn+1ρ ⇒
(IUT passes αn+1ρ

′, ∀ρ′ ∈ V → TΣ such that SP |= (α1 ∧ . . . ∧ αn)ρ′)
It defines a so-called uniformity sub-domain for the variables of the axiom

that is the set of ground Σ-terms characterised by SP |= (α1 ∧ . . . ∧ αn).

Example 4. In the example of Figure 1, covering the six axioms requires six tests,
for instance the following six ground equations:

– isin(0, []) = false, with the whole Nat sort as uniformity sub-domain;
– isin(1, 1 :: 2 :: []) = true, with the pairs of Nat such that eq(x, y) = true

and the whole Container sort as uniformity sub-domain;
– isin(1, 0 :: 3 :: []) = false, with the pairs of Nat such that eq(x, y) = false

and the whole Container sort as uniformity sub-domain;
– remove(1, []) = [], with the Nat sort as uniformity sub-domain;
– remove(0, 0 :: 1 :: []) = 1 :: [], with the pairs of Nat such that eq(x, y) = true

and the Container sort as uniformity sub-domain;
– remove(1, 0 :: []) = 0 :: [], with the pairs of Nat such that eq(x, y) = false

and the Container sort as uniformity sub-domain.

Such uniformity hypotheses are often too strong. A method for weakening them,
and getting more test cases, is to compose the cases occurring in the axioms. In
the full general case, it may involve tricky pattern matching on the premises and
conclusions, and even some theorem proving. However, when the axioms are in
a suitable form one can use the classical unfolding technique defined by Burstall
and Darlington in [19]. It consists in replacing a function call by its definition.
Thus, for unfolding to be applicable, the axioms must be organised as a set of
functions definitions: every function is defined by a list of conditional equations
such as:

∧1≤i≤m αi ⇒ f(t1, . . . , tn) = t
where the domain of the function must be covered by the disjunction of the

premises of the list.

Example 5. In the example of Figure 1, the isin function is defined by:

• isin(x, []) = false %(isin empty)%
• eq(x, y) = true ⇒ isin(x, y :: c) = true %(isin 1)%
• eq(x, y) = false ⇒ isin(x, y :: c) = isin(x, c) %(isin 2)%

It means that every occurrence of isin(t1, t2) can correspond to the three
following sub-cases:

– t2 = []: in this case isin(t1, t2) can be replaced by false;
– t2 = y :: c and eq(t1, y) = true: in this case, it can be replaced by true;
– t2 = y :: c and eq(t1, y) = false: in this case, it can be replaced by y ::

isin(t1, c).

A way of partitioning the uniformity sub-domain induced by the coverage of
an axiom with some occurrence of f(t1, . . . , tn) = t is to introduce the sub-
cases stated by the definition of f , and, of course, to perform the corresponding
replacements in the conclusion equation to be tested. This leads to a weakening
of the uniformity hypotheses.

220 M.-C. Gaudel and P. Le Gall

Example 6. Let us consider the isin 2 axiom. Its coverage corresponds to the uni-
formity sub-domain “pairs of Nat such that eq(x, y) = false” × “the Container
sort”. Let us unfold in this axiom the second occurrence of isin, i.e., isin(x, c).
It leads to three sub-cases for this axiom:

– c = []:
eq(x, y) = false ∧ c = [] ⇒ isin(x, y :: []) = isin(x, []), i.e, false;

– c = y′ :: c′ and eq(x, y′) = true :
eq(x, y) = false ∧ c = y′ :: c′ ∧ eq(x, y′) = true ⇒ isin(x, y :: y′ :: c′) =
isin(x, y′ :: c′), i.e., true;

– c = y′ :: c′ and eq(x, y′) = false :
eq(x, y) = false ∧ c = y′ :: c′ ∧ eq(x, y′) = false ⇒ isin(x, y :: y′ :: c′) = y ::
isin(x, y′ :: c′), i.e., isin(x, c′).

The previous uniformity sub-domain is partitioned in three smaller sub-domains
characterised by the three premises above. Covering these sub-cases leads to test
bigger containers, and to check that isin correctly behaves independently of the
fact that the searched number was the last to be added to the container or not.
Applying the same technique to the remove 2 axiom leads to test that in case
of duplicates, one occurrence only is removed.

Of course, unfolding can be iterated: the last case above can be decomposed
again into three sub-cases. Unbounded unfolding leads generally to infinite test
sets5. Limiting the number of unfoldings is generally sufficient for ensuring the
finiteness of the test set. Experience has shown (see Section 8) that in practice
one or two levels of unfolding are sufficient for ensuring what test engineers
consider as a good coverage and a very good detection power. In some rare
cases, this limitation of unfolding does not suffice for getting a finite test set:
then, it must be combined with regularity hypotheses, i.e., limitation of the size
of the ground instantiations.

Unfolding has been implemented by Marre within the tool LOFT [10,48,49]
using logic programming. There are some conditions on the specifications ma-
nipulated by LOFT:

– they must be complete with respect to constructors;
– when transforming the specification into a conditional rewriting system (by

orienting each equation t = t′ occuring in an axiom from left to right t → t′),
the resulting conditional rewrite system must be confluent and terminating;

– each equation t = t′ that is the conclusion of an axiom must be such that t
may be decomposed as a function f , not belonging to the set of constructors,
applied to a tuple of terms built on constructors and variables only.

Under these conditions, the LOFT tool can decompose any uniformity domain
into a family of uniformity sub-domains. It can also compute some solutions into
5 Actually, as it is described here, unbounded unfolding yields an infinite set of equa-

tions very close to the exhaustive test set. The only remaining variables are those
that are operands of functions without definitions, namely, in our case, constructors.

Testing Data Types Implementations from Algebraic Specifications 221

a given uniformity sub-domain. These two steps correspond respectively to the
computation of the uniformity hypotheses based on unfolding subdomains and
to the generation of an arbitrary test case per each computed subdomain. The
unfolding procedure is based on an equational resolution procedure involving
some unification mechanisms. Under the conditions on the specifications given
above, the unfolding procedure computes test cases such that: sub-domains are
included in the domain they are issued from (soundness), and the decomposition
into subdomains covers the split domain (completeness).

In [1], Aiguier et al. have extended the unfolding procedure for positive condi-
tional specifications without restrictions. This procedure is also sound and com-
plete. However, the price to pay is that instead of unfolding a unique occurrence of
a defined function, the extended unfolding procedure requires to unfold all occur-
rences of the defined functions in a given equation among all the equations charac-
terising the domain under decomposition. This may result in numerous test cases.

We have seen that conditional tests can be simplified into equational ones
by solving their premises. It can be done in another way, replacing variables
occurring in the axiom by terms as many times as necessary to find good instan-
tiations. This method amounts to draw terms as long as the premises are not
satisfied. This is particularly adapted in a probabilistic setting. In [9], Bouaziz
et al. give some means to build some distributions on the sets of values.

6 Exhaustivity and Testability Versus Observability

Until now, we have supposed that a test experiment t = t′ of the IUT may be
successful or not depending on whether the evaluations of t and t′ yield the same
resulting values. Sometimes, comparing the test outputs may be a complex task
when some information is missing. It often corresponds to complex abstract data
types encapsulating some internal concrete data representations. Some abstract
data types (sets, stacks, containers, etc.) do not always provide an equality pro-
cedure within the implementation under test and we reasonably cannot suppose
the existence of a finite procedure, the oracle, to correctly interpret the test re-
sults as equalities or inequalities. The so-called oracle problem in the framework
of testing from algebraic specifications amounts to deal with equalities between
terms of non observable sorts.

In this section, we distinguish a subset SObs of observable sorts among the set
S of all sorts. For example, it may regroup all the sorts equipped with an equal-
ity predicate within the IUT environnement, for instance equality predicates
provided by the programming language and considered as reliable. The mini-
mal hypothesis Hmin is relaxed to the weaker hypothesis HObs

min expressing that
the the IUT still defines a reachable Σ-algebra but that the only remaining ele-
mentary tests which may be interpreted by the IUT as a verdict success/failure
are the ground equality t = t′ of observable sort. The set Obs of all observable
formulae is the subset of Sen(Σ) of all formulae built over observable ground
equalities. Any formula of Obs may be considered as a test experiment, and
reciprocally.

222 M.-C. Gaudel and P. Le Gall

The oracle problem in the case of non observable sorts may be tackled by two
distinct but related questions. How to turn non observable equalities under test
into test experiments tractable by an IUT only satisfying HObs

min? How far can
we still talk about correctness when dealing with observability issues? Roughly
speaking, the answers lie respectively in using observable contexts and in defining
correctness up to some observability notion. We present these two corresponding
key points in the following sections.

6.1 Observable Contexts

In practice, non observable abstract data types can be observed through succes-
sive applications of functions leading to an observable result. It means that
properties related to non observable sorts can be tested through observable
contexts:

Definition 6 (: Context and Observable context).
An observable context c for a sort s is a term of observable sort with a unique

occurrence of a special variable of sort s, generically denoted by z.
Such a context is often denoted c[z] or simply c[.] and c[t] denotes cσ where σ

is the substitution associating the term t to the variable z.
An observable context is said to be minimal if it does contain an observable

context as a strict subterm6.

Only minimal observable contexts are meaningful for testing. Indeed, if a context
c has an observable context c′ as a strict subterm, then c[z] may be decomposed
as c0[c′[z]]. It implies that for any terms t and t′, c[t] = c[t′] iff c′[t] = c′[t′].
Both equalities being observable, the simpler one, c′[t] = c′[t′], suffices to infer
whether c[t] = c[t′] holds or not. In the sequel, all the observable contexts will
be considered as minimal by default.

For example, we can use set cardinality and element membership to observe
some set data type as well as the height and the top of all successive popped
stacks for some stack data type. Thus, a non observable ground equality of the
form t = t′ is observed through all observable contexts c[.] applied to both t and
t′. From a testing point of view, it amounts to apply to both terms t and t′ the
same successive application of operations yielding an observable value, and to
compare the resulting values.

Example 7. With the Containers specification of Figure 1, we now consider
that the sort Container is no more an observable sort while Nat and Bool are
observable ones. Ground equalities of sort Container should be observed through
the observable sorts Nat and Bool. An abstract test like remove(3, []) = []
is now observed through observable contexts. Each observable context of sort
Container gives rise to a new (observable) test belonging by construction to
Obs. For example, the context isin(3, z) applied to the previous abstract test
leads to the test: isin(3, remove(3, [])) = isin(3, []).
6 A subterm of a term t is t itselt or any term occurring in it. In particular, if t is of

form f(t1, . . . , tn) then t1, . . . and tn are subterms of t. A strict subterm of t is any
subterm of t which differs from t.

Testing Data Types Implementations from Algebraic Specifications 223

In practice, there is often an infinity of such observable contexts. In the case of
the Containers specification, we can build the following observable contexts7

isin(x, x1 :: (x2 :: . . . (xn :: z))), isin(x, remove(x1, remove(x2, . . . , remove(xn, z))))

or more generally, any combination of the operations remove and :: surrounded
by the isin operation. As a consequence, we are facing a new kind of selection
problem: to test an equality t = t′ of Container sort, one has to select among
all these observable contexts a subset of finite or even reasonable size.

Bernot in [8] gives a counter-example based on the stack data type to assess
that without additional information on the IUT, all the contexts are a priori
necessary to test a non observable equality, even those involving constructors
such as ::. More precisely, a context of the form isin(x, x1 :: z) may appear useless
since it leads to build larger Container terms instead of observing the terms
replacing z. In [8], it is shown that those contexts may reveal some programming
errors depending on a bad use of state variables. From a theoretical point of
view, let us consider a specification reduced to one axiom a = b expressing that
two non observable constants are equal. Then for any given arbitrary minimal
context c0, one can design a program Pc0 making c[a] = c[b] true for all minimal
observable contexts except c0. This fact means that in general, any minimal
context is needed to “fully” test non observable equalities. This is a simplified
explanation of a proof given by Chen et al. in [20].

Let us point out that replacing an equation t = t′ by the (infinite) set of
c[t] = c[t′] with c an observable context is classical within the community of al-
gebraic specifications. Different observational approaches [13,54] have been pro-
posed to cope with refinement of specifications based on abstract data types.
They have introduced the so-called behavioural equalities, denoted by t ≈ t′.
The abstract equality is replaced by the (infinite) set of all observables contexts
applying to both terms. More precisely, an algebra A satisfies t ≈ t′ if and
only if for every Σ-interpretations ι in A, for all observable contexts c, we have
ι(c[t]) = ι(c[t′]). Behavioural equalities allow the specifier to refine abstract data
types with concrete data types that do not satisfy some properties required at
the abstract level. For example, the Set abstract data type with some axioms
stating the commutativity of the element insertion, can be refined into the List
abstract data type where the addition of an element by construction cannot be
commutative. The refinement of Set by List is ensured by requiring that equal-
ities on sets hold in the list specification only up to the behavioural equality. It
amounts to state that observable operations (here the membership operation)
behave in the same way at the abstract level of sets and at the implementation
level of lists and to ignore those properties of the implementation that are not
observable.

Considering an infinity of contexts is possible using context induction as de-
fined by Hennicker in [39]. This is useful to prove a refinement step, but is useless

7 For convenience, we use the variables x, x1, . . . , xn to denote arbitrary ground terms
of sort Nat in a concise way.

224 M.-C. Gaudel and P. Le Gall

in order to define an oracle. So, how can we select a finite set of observable con-
texts? Below we give some hints:

– The selection hypotheses presented in Section 5 to choose particular instan-
tiations of axiom variables can be transposed to choose observable contexts.
In particular, a rather natural way of selecting contexts consists in applying
a regularity hypothesis. The size of a context is often defined in relation with
the number of occurrences of non observable functions occurring in it.

– If one can characterise the equality predicate by means of a set of axioms,
then one can use this axiomatisation, as proposed by Bidoit and Hennicker
in [12], to define the test of non observable equalities. To give an intuition
of how such an axiomatisation looks like, we give below the most classical
one. It concerns the specification of abstract data types like sets, bags or
containers, for which two terms are equal if and only if they exactly contain
the same elements. Such an axiomatisation looks like:

c ≈ c′ iff ∀e, isin(e, c) = isin(e, c′)

where c and c′ are variables of the abstract data type to be axiomatised, and
e is a variable of element sort. c ≈ c′ denotes the behavioural equality that
is axiomatised. The axiomatisation simply expresses that the subset of con-
texts of the form isin(e, z) suffices to characterize the behavioural equality.
This particular subset of contexts can then be chosen as a suitable starting
point to select observable contexts to test non observable equalities. Such
an approach has two main drawbacks. First, such a finite aximatisation may
not exist8 or be difficult to guess. Second, selecting only from the subset
of observable contexts corresponding to a finite axiomatisation amounts to
make an additional hypothesis on the IUT, which has been called the ora-
cle hypothesis in [8]. In a few words, it consists in supposing that the IUT
correctly implements the data type with respect to the functions involved in
the axiomatisation. In the example of Containers, two containers are sup-
posed to be behaviourally equal if and only if the membership operation isin
applied on the containers always gives the same results. In other words, by
using axiomatisation to build oracles, we are exactly supposing what we are
supposed to test. Clearly, it may appear as a too strong hypothesis.

– Chen, Tse and others in [20] point out that some static analysis of the
IUT may help to choose an adequate subset of observable contexts. When
testing whether t = t′ holds or not, the authors compare their internal
representations r and r′ within the IUT. If r and r′ are equal, then they
can conclude9 that the IUT passes t = t′. Otherwise, if r and r′ are not
equal, then they study which data representation components are different
in r and r′ and which are the observations which may reveal the difference.
This makes it possible to build a subset of observable contexts which has

8 For example, the classical stack specification has no finite axiomatisation of stack
equality.

9 [45] is partially based on this same idea: if the concrete implementations are identical,
then necessarily their corresponding abstract denotations are equal terms.

Testing Data Types Implementations from Algebraic Specifications 225

a good chance to observationally distinguishes t and t′. The heuristic they
have proposed has been successfully applied in an industrial context [56].

6.2 Correctness with Observability Issues

We have seen in Section 6.1 that the test of a non observable equality may
be approached by a finite subset of observable contexts. More precisely, a non
observable ground equality t = t′ may be partially verified by submitting a finite
subset of the test set:

Obs(t = t′) = {c[t] = c[t′] | c is a minimal observable context}.

The next question concerns testability issues: can we adapt the notions of
correctness and exhaustivity when dealing with observability? For example, one
may wonder whether the set Obs(t = t′) may be considered as an exhaustive test
set for testing the non observable (ground) equality t = t′. More generally, by
taking inspiration from the presentation given in Section 4, we look for a general
property linking the notions of exhaustive test set and testability such as:

HObs
min(IUT) ⇒ (∀τ ∈ ExhaustObs

SP , IUT passes τ ⇔ CorrectObs(IUT, SP))

6.2.1 Equational Specifications
If SP is an equational specification10, then following Section 6.1, the test set

ExhaustObs
SP = { c[t]ρ = c[t′]ρ | t = t′ ∈ Ax, ρ ∈ V → TΣ ,

c minimal observable context}

is a good candidate11 since it simply extends the Obs(t = t′) sets to the case of
equations with variables. Actually, ExhaustObs

SP is an exhaustive test set provided
that we reconsider the definition of correctness taking into account observability.

By definition of observability, the IUT does not give access to any information
on non observable sorts. Considering a given IUT as correct with respect to
some specification SP should be defined up to all the possible observations and
by discarding properties directly expressed on non observable sorts. Actually,
observational correctness may be defined as: IUT is observationally correct with
respect to SP according to the set of observations Obs, if there exists an SP -
algebra A such that IUT and A exactly behave in the same way for all possible
observations.

To illustrate, let us consider the case of the Container specification enriched
by a new axiom of commutativity of element insertions:

x :: (y :: c) = y :: (x :: c)
10 Axioms of an equational specification are of the form t = t′ where t and t′ are terms

with variables and of the same sort.
11 Let us remark that if t and t′ are of observable sort s, then the only minimal ob-

servable context is zs such that tρ = t′ρ are the unique tests associated to the axiom
t = t′.

226 M.-C. Gaudel and P. Le Gall

The Container data type is classically implemented by the List data type. How-
ever, elements in lists are usually stored according to the order of their insertion.
In fact, the List data type is observationally equivalent to the Container data
type as soon as the membership element is correctly implemented in the List
specification. It is of little matter whether the List insertion function satisfies or
not the axioms concerning the addition of elements in Containers.

This is formalised by introducing equivalence relations between algebras de-
fined up to a set of Σ-formulae.

Definition 7. Let Ψ ⊂ Sen(Σ) and A and B be two Σ-algebras.
A is said to be Ψ -equivalent to B, denoted by A ≡Ψ B, if and only if we have

∀ϕ ∈ Ψ, A |= ϕ ⇐⇒ B |= ϕ.
A is said to be observationally equivalent to B if and if A ≡Obs B.

We can now define observational correctness:

Definition 8. Let IUT be an implementation under test satisfying HObs
min.

IUT is observationally correct with respect to SP and according to Obs, de-
noted by CorrectObs(IUT, SP) if and only if

∃A reachable SP -algebra, IUT ≡Obs A

Remark 2. This notion of observational correctness has been first recommended
for testing purpose by Le Gall and Arnould in [42,43] for a large classe of spec-
ifications and observations12. With respect to the observational approaches in
algebraic specifications [13], it corresponds to abstractor specifications for which
the set of algebras is defined as the set of all algebras equivalent to at least
an algebra of a kernel set, basically the set of all algebras satisfying the set of
axioms.

From a testing point of view, each reachable SP -specification is obviously obser-
vationally correct with respect to SP . Reciprocally, an implementation IUT is
observationally correct if it cannot be distinguished by observations from at least
a reachable SP -algebra, say IUTSP . So, nobody can say whether the implemen-
tation is the SP -algebra IUTSP , and thus intrinsically correct, or the IUT is just
an approximation of one reachable Σ-algebra up to the observations Obs. Thus,
under the hypothesis HObs

min, any observationally correct IUT should be kept.
Finally, CorrectObs(IUT, SP) captures exactly the set of all implementations
which look like SP -algebras up to the observations in Obs. With this appropri-
ate definition of CorrectObs(IUT, SP), the test set ExhaustObs

SP is exhaustive.
A sketch of the proof is the following. For each IUT passing ExhaustObs

SP , let us
consider the quotient algebra Q built from IUT with the axioms of SP . We can
then show that Q is a SP -algebra and is observationally equivalent to IUT .

12 For interested readers, [10,42,43] give a generic presentation of formal testing from
algebraic specifications in terms of institutions.

Testing Data Types Implementations from Algebraic Specifications 227

6.2.2 Positive Conditional Specifications with Observable Premises
We also get an exhaustive test set when considering axioms with observable
premises. For each axiom of the form α1 ∧ . . . ∧ αn ⇒ t = t′ with all αi of
observable sort, it suffices to put in the corresponding exhaustive test set all the
tests of the form α1ρ∧ . . .∧αnρ ⇒ c[t]ρ = c[t′]ρ for all substitutions ρ : V → TΣ

and for all minimal observable contexts c.
Moreover, if we want to have an exhaustive test set involving equations only, as

it has been done in Section 4, we should restrict to specifications with observable
premises and complete with respect to the set CObs of constructors of observable
sorts. As in Section 4, we also consider that the IUT correctly implements the
constructors of all the sorts occurring in the premise, here the observable sorts13.
That is to say, IUT satisfies Hmin,CObs

iff IUT satisfies Hmin and:

∀s ∈ SObs, ∀u, v ∈ TΩ,sIUT passes u = v ⇔ SP |= u = v

Under Hmin,CObs
and for the considered restricted class of specifications (i.e.,

observable premises and completeness with respect to CObs),

EqExhaustObs
SP = {c[t]ρ = c[t′]ρ | ∃α1 ∧ . . . ∧ αn ⇒ t = t′ ∈ Ax, ρ ∈ V → TΣ,

c min. obs. context, SP |= (α1 ∧ . . . ∧ αn)ρ}

is an exhaustive test set with respect to observational correctness.

6.2.3 Generalisation to Non-observable Premises
Is it possible to generalise such a construction of an exhaustive test set for speci-
fications with positive conditional formulas comprising non-observable premises?
A first naive solution would consist in replacing each non-observable equation
t = t′ occurring either in the premise or in the conclusion of the axioms by a
subset of Obs(t = t′). Unfortunately, such an idea cannot be applied, unless one
accepts to submit biased tests14. This fact has been reported by Bernot and
others in [8,10]. To give an intuition, let us consider a new axiom

x :: x :: l = x :: l ⇒ true = false

which means that if addition to a container is idempotent, then15 it would lead
to true = false. Let us try to test the ground instance 0 :: 0 :: [] = 0 :: [] ⇒
true = false by considering a test φ in Obs of the form

∧

ψi ∈ Obs(0 :: 0 :: [] = 0 :: [])
i ∈ I, I finite index

ψi ⇒ u = v

13 When observable sorts coincide with the basic data types of the programming lan-
guage, such an hypothesis is quite plausible. Thus, this is a weak hypothesis.

14 A test is said to be biased when it rejects at least a correct implementation.
15 This is no more than a positive conditional way of specifying x :: x :: l �= x :: l.

Actually, as the trivial algebra (with one element per sort) is satisfying all the con-
ditional positive specifications, the inconsistency of specifications is often expressed
by the possibility of deriving the boolean equation true = false.

228 M.-C. Gaudel and P. Le Gall

then the IUT may pass the premise

∧

ψi ∈ Obs(0 :: 0 :: [] = 0 :: [])
i ∈ I, I finite index

ψi

without 0 :: 0 :: [] = 0 :: 0 :: [] being a consequence of the specification. In
that case, the IUT passes the test φ by passing the conclusion true = false.
Thus, observing non observable premises through a finite set of contexts leads
to require an observable equality, here true = false, which in fact is not required
by the specification. This is clearly a bad idea.

It is now widely recognised that non-observable equations may be observed
through some subset of observable contexts only when their position in the test
is positive16. For example, the disjunctive normal form of 0 :: 0 :: [] = 0 :: [] ⇒
true = false is ¬(0 :: 0 :: [] = 0 :: []) ∨ true = false and thus 0 :: 0 :: [] = 0 :: []
has a negative position in the test. In particular, Machado in [45,46] considers any
first order formula whose Skolem form does not contain existential quantifiers.
Every non-observable equations in positive positions are observed by means of
observable contexts while those in negative positions are observed by using con-
crete equality in the implementation. In that sense, Machado’s approach is not a
pure black-box approach deriving test cases and oracles from specifications but
an approach mixing black-box and white-box where test cases are derived from
the specifications and the oracle procedure is built from both the specification
and the IUT.

We have shown that to deal with axioms with non-observable premises, it is
not possible to apply observable contexts. However, can we do something else to
handle such axioms? A tempting solution is to use the specification to recognise
some ground instances of the axiom for which the specification requires the non
observable premise to be true.

Let us come back to the axiom

x :: x :: l = x :: l ⇒ true = false

If it stands alone, nothing can be done to test it. Let us introduce a new axiom
stating the idempotence law on the element insertion:

eq(x, y) = true ⇒ x :: y :: l = y :: l

Any ground instance of x :: x :: l = x :: l is then a semantic consequence of the
specification such that true = false also becomes a semantic consequence. In
such a case, one would like to consider true = false as a test and even more, it
seems rather crucial to submit this test precisely! This small example illustrates
clearly why in this case, tests cannot be only ground instances of axioms but

16 Roughly speaking, an atom t = t′ is said to be in a positive position if by putting
the test into disjunctive normal form, then the t = t′ is not preceded by a negation.

Testing Data Types Implementations from Algebraic Specifications 229

shoud be selected among all the observable semantic consequences of the speci-
fication17 (see the end of Section 2 for the definition of semantic consequence.).
Let us remark that according to the form of the specifications, one can use the
unfolding technique described in Section 5 in order to solve the premise in the
specification. In [42], Le Gall has shown that when the specification is com-
plete with respect to the set CObs of constructors of observable sorts and under
Hmin,CObs

,

EqExhaustObs
SP = {c[t]ρ = c[t′]ρ | ∃α1 ∧ . . . ∧ αn ⇒ t = t′ ∈ Ax, ρ ∈ V → TΣ,

c min. obs. context, SP |= (α1 ∧ . . . ∧ αn)ρ}

is an exhaustive test set with respect to observational correctness. Curiously,
whether there are non-observable premises or not in the specification, the corre-
sponding equational exhaustive test set is not modified.

7 Related Work

7.1 Related Work on Selection

In [24], Claessen and Hughes propose the QuickCheck tool for randomly testing
Haskell programs from algebraic specifications. Axioms are encoded into exe-
cutable Haskell programs whose arguments denote axiom variables. Conditional
properties are tested by drawing data until finding a number, given as param-
eter, of cases which satisfy the premises. Of course, the procedure is stopped
when a too large number of values is reached. The QuickCheck tool provides the
user with test case generation functions for any arbitrary Haskell data type, and
in particular, also for functional types. The user can observe how the random
data are distributed over the data type carrier. When he considers that the dis-
tribution is not well balanced on the whole domain, for instance if the premises
are satisfied by data of small size only, it is possible to specialise the test case
generation functions to increase the likelihood to draw values ensuring a better
coverage of the domain of premise satisfaction. This last feature is very useful for
dealing with dependent data types. In [7], Berghofer and Nipkow use Quickcheck
to exhibit counter-examples for universally quantified formulae written in exe-
cutable Isabelle/HOL. This is a simple way to rapidly debug formalisation of
a theory. In [32], Dydjer et al. develop a similar approach of using functional
testing technics to help the proof construction by analysing counter-examples.

In [18], Brucker and Wolff use the full theorem proving environment Isabelle/
HOL to present a method and a tool HOL-TestGen for generating test cases. They
recommend to take benefit of the Isabelle/HOL proof engine equipped with tactics
to transform a test domain (denoted as some proof goal) into test subdomains (de-
noted as proof subgoals). Selection hypotheses are expressed as proof hypotheses
and the user can interact to guide the test data generation. Both the Quickcheck
17 Observable semantic consequences are just those semantic consequences that belong

to Obs. By construction, selecting a test outside this set would reject at least one
correct implementation.

230 M.-C. Gaudel and P. Le Gall

and TestGen tools present the advantage of offering an unified framework to deal
with the specification, the selection and the generation of test cases, and even the
submission of the test cases and the computation of the test verdict.

7.2 Related Work on Observability

We have given a brief account of observability considerations and their impor-
tant impact on testability issues. In particular, there does not always exist an
exhaustive test set, since such an existence depends on some properties of the
specification and the implementation: namely, restrictions on the specification
and hypotheses on the implementation.

The importance of observability issues for the oracle problem as been first
raised by Bougé [16] and then Bernot, Gaudel and Marre in [8,10]. It has been
studied later on by Le Gall and Arnould [43] and Machado [3,45]. Depending on
the hypotheses on the possible observations and on the form or the extensions
of the considered specifications, the oracle problem has been specialised. For
example, in [4], Arnould et al. define a framework for testing from specifications
of bounded data types. To some extent, bounds of data types limit the possible
observations: any data out of the scope of the bound description should not be
observed when testing against such specifications. The set of observable formulae
are formulae which are observable in the classical sense, where all terms are
computed as being under the specified bound.

As soon as partial function are considered in the specification, it must be ob-
servable whether a term is defined or not. In [3], Arnould and Le Gall consider
specifications with partial functions where definedness can be specified using an
unary predicate def . The specification of equalities are declined with two pred-
icates, strong equality = allowing two undefined terms to be equal; existential
equality e= for which only defined terms may be considered as equal. As the pred-
icate e= may be expressed in term of = and def , testing from specification with
partiality naturally introduces two kinds of elementary tests directly related to
the predicates def and =. Testing with partial functions requires to take into
account the definition predicate: intuitively, testing whether a term is defined
or not systematically precedes the following testing step, that is testing about
equality of terms. Some initial results about testability and exhaustive test sets
can be found in [3].

7.3 Variants of Exhaustivity

Most exhaustive test sets presented here are made of tests directly derived from
the axioms: tests are ground instances of (conclusions of) axioms, some equalities
being possibly surrounded by observable contexts. Such tests do not necessarily
reflect the practice of testing. Actually, the usual way of testing consists in
applying the operation under test to some tuples of ground constructor terms
and to compare the value computed by the IUT to a ground constructor term
denoting the expected result. This can be described by tests of the form:

Testing Data Types Implementations from Algebraic Specifications 231

f(u1, . . . , un) = v

with f the function to be tested, and u1, . . . , un, v ground constructor terms. The
underlying intuition is that the constructor terms can denote all the concrete
values manipulated by the implementation (reachability constraint). To illustrate
this point of view, in the case of the Containers specification and by considering
again that the sort Container is observable, for the axiom remove 2, instead of
testing remove(2, 3 :: []) = 3 :: remove(2, []) by solving the premise eq(2, 3) =
false, a test of the good form would be remove(2, 3 :: []) = 3 :: []. Such a test may
be obtained by applying the remove 1 axiom to the occurrence remove(2, []). In
particular, LOFT [48,49] computes tests of this reduced form. In [1,3,4], Arnould
et al. present some exhaustive tests built from such tests involving constructor
terms as much as possible.

7.4 The Case of Structured Specifications

Until now, we have considered flat specifications which consist of a signature, a
set of axioms, and possibly reachability constraints. Moreover, we have studied
the distinction between observable and non observable sorts. Observable sorts
often correspond to the basic types provided by the programming environment,
and non observable sorts to the type of interest for the specification. However,
algebraic specifications may be structured using various primitives allowing to
import, combine, enrich, rename or forget (pieces of) imported specifications.
Such constructions should be taken into account when testing.

As a first step to integration testing of systems described by structured al-
gebraic specifications, Machado in [46,47] shows how to build a test set whose
structure is guided by the structure of the specification. The main and signifi-
cant drawback of this approach is that hidden operations are ignored. As soon
as an axiom involves an hidden operation, the axiom is not tested. Depending
on the organisation of the specification, this can mean that a lot of properties
are removed from the set of properties to be tested.

In [30], Doche and Wiels define a framework for composing test cases accord-
ing to the structure of the specification. Their approach may be considered as
modular since the IUT should have the same structure as the specification and
the tests related to the sub-specifications are composed together. These authors
have established that correctness is preserved under some hypotheses18 and have
applied their approach to an industrial case study reported in [29].

8 Case Studies and Applications to Other Formal
Methods

This part of the paper briefly reports some case studies and experiments related
to the theory presented here. Some of them were performed at LRI, some of
18 For interested readers, the hypotheses aim at preserving properties along signature

morphisms and thus, are very close to the satisfaction condition of the institution
framework.

232 M.-C. Gaudel and P. Le Gall

them elsewhere. The first subsection is devoted to studies based on algebraic
specifications. The next one reports interesting attempts to transpose some as-
pects of the theory to other formal approaches, namely VDM, Lustre, extended
state machines and labelled transition systems. A special subsection presents
some applications to object-oriented descriptions.

8.1 First Case Studies with Algebraic Specifications

A first experiment, performed at LRI by Dauchy and Marre, was on the on-
board part of the driving system of an automatic subway19 in collaboration
with a certification agency. An algebraic specification was written [27]. Then
two critical modules of the specification were used for experiments with LOFT:
the overspeed controller and the door opening controller. These two modules
shared the use of eight other specification modules that described the state of
the on-board system. The number of axioms for the door controller was 25, with
rather complex premises. The number of axioms of the speed controller was
34. There where 108 function names and several hundred axioms in the shared
modules. Different choices of uniformity hypotheses were experienced for the
door controller: they led to 230, 95, and 47 tests. For the over-speed controller,
only one choice was sensible and led to 95 tests. The experiment is reported in
details in [26]. In a few words, these tests were used by the certification team as
a sort of checklist against the tests performed by the development team. This
approach led to the identification of a tricky combination of conditions that had
not been tested by the developers.

A second experiment is reported in [53] and was performed within a collabo-
ration between LRI and the LAAS laboratory in Toulouse. The experiment was
performed on a rather small piece of software written in C, which was extracted
from a nuclear safety shutdown system. The piece of software contained some
already known bugs that were discovered but one: it was related to some hidden
shared variable in the implementation, and required rather large instantiations,
larger than the bound chosen a priori for the regularity hypothesis. On a theoret-
ical point of view, this can be analysed as a case where the testability hypothesis
was not ensured. More practically, the fault was easy to detect by “white-box”
methods, either static analysis or structural testing with branch coverage. This
is coherent with the remark in Section 4 on the possibility of static checking of
the testability hypothesis, and with the footnote 4 in Section 5 on the difficulties
to determine adequate bounds for regularity hypotheses.

An experiment of “intensive” testing of the EPFL library of Ada components
was led by Buchs and Barbey in the Software Engineering Laboratory at EPFL
[6]. First an algebraic specification of the component was reengineered: the sig-
nature was derived from the package specifications of the family, and the axioms
were written manually. Then the LOFT system was used with a standard choice
of hypotheses.

LOFT has been also used for the validation of a transit node algebraic specifi-
cation [2]. Generating test cases was used for enumerating scenarios with a given
19 Precisely, the train controller on line D in Lyon that has been operating since 1991.

Testing Data Types Implementations from Algebraic Specifications 233

pattern. It led to the identification of one undesirable, and unexpected, scenario
in the formal specification.

It was also used for the test of the data types of an implementation of the
Two-Phase-Commit protocol [34] without finding any fault: this was probably
due to the fact that the implementation had been systematically derived from
a formal specification. Other aspects of this case study are reported in the next
subsection.

The specifications and test sets of these case studies are too large to be given
here. Details can be found in [27] and [26] for the first one, in [2] and [50] for
the transit node, and in [41] for the Two-Phase-Commit protocol.

8.2 Applications to Other Methods

Actually, the approach developed here for algebraic data types is rather generic
and presents a general framework for test data selection from formal specifica-
tions. It has been reused for, or has inspired, several test generation methods
from various specification formalisms: VDM, Lustre, full LOTOS.

The foundational paper by Jeremy Dick and Alain Faivre on test case gener-
ation from VDM specifications [28] makes numerous references to some of the
notions and techniques presented here, namely uniformity and regularity hy-
potheses, and unfolding. The formulae of VDM specifications are relations on
states described by operations (in the sense of VDM, i.e., state modifications).
They are expressed in first-order predicate calculus. These relations are reduced
to a disjunctive normal form (DNF), creating a set of disjoint sub-relations. Each
sub-relation yields a set of constraints which describe a single test domain. The
reduction to DNF is similar to axiom unfolding: uniformity and regularity hy-
potheses appear in relation with this partition analysis. As VDM is state-based,
it is not enough to partition the operations domains. Thus the authors give a
method of extracting a finite state automaton from a specification. This method
uses the results of the partition analysis of the operations to perform a partition
analysis of the states. This led to a set of disjoint classes of states, each of which
corresponds either to a precondition or a postcondition of one of the above sub-
relations. Thus, a finite state automaton can be defined, where the states are
some equivalence classes of states of the specifications. From this automaton,
some test suites are produced such that they ensure a certain coverage of the
automaton paths. The notion of test suites is strongly related to the state orien-
tation of the specification: it is necessary to test the state evolution in presence
of sequences of data, the order being important.

Test generation from Lustre descriptions has been first studied jointly at CEA
and LRI. The use of the LOFT system to assist the test of Lustre programs has
been investigated. Lustre is a description language for reactive systems which is
based on the synchronous approach [38]. An algebraic semantics of Lustre was
stated and entered as a specification in LOFT. Lustre programs were considered
as enrichments of this specification, just as some specific axiom to be tested. After
this first experience, GATEL, a specific tool for Lustre was developed by Marre

234 M.-C. Gaudel and P. Le Gall

at CEA (Commissariat à l’Énergie Atomique). In GATEL, a Lustre specification
of the IUT, and some Lustre descriptions of environment constraints and test
purpose are interpreted via Constraint Logic Programming. Unfolding is the
basic technique, coupled with a specific constraint solving library [51,52]. GATEL
is used at IRSN (Institut de Radioprotection et Sûreté Nucléaire) for identifying
those reachable classes of tests covering a given specification, according to some
required coverage criteria. The functional tests performed by the developers are
then compared to these classes in order to point out uncovered classes, i.e.,
insufficient testing. If it is the case, GATEL provides test scenarios for the missing
classes.

LOTOS is a well known formal specification language, mainly used in the
area of communication protocols. There are two variants: basic LOTOS makes
it possible to describe processes and their synchronisation, with no notion of
data type; full LOTOS, where it is possible to specify algebraic data types and
how their values can be communicated or shared between specified processes. In
the first case, the underlying semantics of a basic LOTOS specification is a finite
labelled transition system. There is an extremely rich corpus of testing methods
based on such finite models (see [17] for an annotated bibliography). However,
there are few results on extending them to infinite models, as it is the case when
non trivial data types are introduced. In [34], Gaudel and James have stated the
underlying notions of testability hypotheses, exhaustive test sets, and selection
hypotheses for full LOTOS.

This approach has been used by James for testing an implementation of the
Two-Phase-Commit Protocol developed from a LOTOS specification into Con-
cert/C. The results of this experiment are reported in [41]. As said in the pre-
vious sub-section, tests for the data types were obtained first with the LOFT
system. Then a set of testers was derived manually from the process part of the
specification. The submission of these tests, was preceded by a test campaign of
the implementations of the atomic actions of the specification by the Concert/C
library, i.e., the communication infrastructure (the set of gates connecting the
processes), which was developed step by step. It was motivated by the testability
hypothesis: it was a way of ensuring the fact that the actions in the implementa-
tion were the same as in the specification, and that they were atomic. No errors
were found in the data types implementations, but an undocumented error of the
Concert/C pre-processor was detected when testing them. Some errors were dis-
covered in the implementation of the main process. They were related to memory
management, and to the treatment of the time-outs. There are always questions
on the interest of testing pieces of software, which have been formally specified
and almost directly derived from the specification. But this experiment shows
that problems may arise: the first error-prone aspect, memory management, was
not expressed in the LOTOS specification because of its abstract nature; the
second one was specified in a tricky way due to the absence of explicit time
in classical LOTOS. Such unspecified aspects are unavoidable when developing
efficient implementation.

Testing Data Types Implementations from Algebraic Specifications 235

8.3 Applications to Object-Oriented Software

It is well known that there is a strong relationship between abstract data types
and object orientation. There is the same underlying idea of encapsulation of the
concrete implementation of data types. Thus it is not surprising that the testing
methods presented here for algebraic specifications has been adapted to the test
of object oriented systems. We present two examples of such adaptations.

The ASTOOT approach was developed by Dong and Frankl at the Poly-
technic University in New-York [31]. The addressed problem was the test of
object-oriented programs: classes are tested against algebraic specifications. A
set of tools had been developed. As mentioned at the end of Section 4, a dif-
ferent choice was made for the exhaustive test set, which is the set of equalities
of every ground term with its normal form, and it was also suggested to test
inequalities of ground terms As normal forms are central in the definition of
tests, there was a requirement that the axioms of the specification must define a
convergent term rewriting system. Moreover, there is a restriction to classes such
that their operations have no side effects on their parameters and functions have
no side effects: it corresponds to a notion of testability. The oracle problem was
addressed by introducing a notion of observational equivalence between objects
of user-defined classes, which is based on minimal observational contexts, and
by approximating it. Similarly to Section 5, the test case selection was guided
by an analysis of the conditions occurring in the axioms; the result was a set of
constraints that was solved manually. The theory presented here for algebraic
data types turned out to cope well with object-orientation, even when different
basic choices were made.

This had been confirmed by further developments by Tse and its group at the
university of Hong Kong [20,22,56]. In their approach, object-oriented systems
are described by algebraic specifications for classes and contract specification
for clusters of related classes: contracts specify interactions between objects via
message-passing rules. As in our approach, some tests are fundamental pairs
of equivalent ground terms obtained via instantiations of the axioms. As in
ASTOOT non equivalent pairs of terms are also considered. Some white-box
heuristic for selecting relevant observable contexts makes it possible to deter-
mine whether the objects resulting from executing such test cases are observa-
tionally equivalent. Moreover, message passing test sequences are derived from
the contract specification and the source code of the methods. This method has
been recently applied for testing object-oriented industrial software [56].

9 Conclusion

Algebraic specifications have proved to be an interesting basis for stating some
theory of black-box testing and for developing methods and tools. The under-
lying ideas have turned out to be rather general and applicable to specification
methods including data types, whatever the formalism used for their description.
It is the case of the notions of uniformity hypothesis, and regularity hypotheses
that have been reused in other contexts.

236 M.-C. Gaudel and P. Le Gall

In presence of abstraction and encapsulation, the oracle problem raises dif-
ficult issues due to the limitations on the way concrete implementations can
be observed and interpreted. This is not specific to algebraic specifications and
abstract data types: the same problems arise for embedded and/or distributed
systems. It is interesting to note the similarity between the observable contexts
presented here, and the various ways of distinguishing and identifying the state
reached after a test sequence in finite state machines [44], namely separating
families, distinguishing sequences, characterising sets, and their variants.

The methodology presented here has been applied, as such or with some ad-
justments, in a significant number of academic and industrial case studies. In
most cases, they have been used for some a posteriori certification of critical
systems that had already been intensively validated and verified, or for testing
implementations that have been developed from some formal specification. This
is not surprising: in the first case, the risks are such that certification agencies
are ready to explore sophisticated methods; in the second case, the availability
of the formal specification encourages its use for test generation. In both cir-
cumstances, it was rather unlikely to find errors. However, some were discovered
and missing test cases were identified. In some cases, the detection of these were
welcome and prevented serious problems. This is an indication of the interest in
test methods based on formal specifications and of the role they can play in the
validation and verification process.

References

1. Aiguier, M., Arnould, A., Boin, C., Le Gall, P., Marre, B.: Testing from algebraic
specifications: Test data set selection by unfolding axioms. In: Grieskamp, W.,
Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 203–217. Springer, Heidelberg
(2006)

2. Arnold, A., Gaudel, M., Marre, B.: An experiment on the validation of a speci-
fication by heterogeneous formal means: The transit node. In: 5th IFIP Working
Conference on Dependable Computing for Critical Applications (DCCA5), pp. 24–
34 (1995)

3. Arnould, A., Le Gall, P.: Test de conformité: une approche algébrique. Technique
et Science Informatiques, Test de logiciel 21(9), 1219–1242 (2002)

4. Arnould, A., Le Gall, P., Marre, B.: Dynamic testing from bounded data type
specifications. In: Hlawiczka, A., Simoncini, L., Silva, J.G.S. (eds.) EDCC 1996.
LNCS, vol. 1150, pp. 285–302. Springer, Heidelberg (1996)

5. Astesiano, E., Kreowski, H.-J., Krieg-Bruckner, B.: Algebraic Foundations of Sys-
tems Specification. In: IFIP State-of-the-Art Reports, Springer, Heidelberg (1999)

6. Barbey, S., Buchs, D.: Testing Ada abstract data types using formal specifica-
tions. In: 1st Int. Eurospace-Ada-Europe Symposium. LNCS, vol. 887, pp. 76–89.
Springer, Heidelberg (1994)

7. Berghofer, S., Nipkow, T.: Random testing in isabelle/hol. In: SEFM, pp. 230–239
(2004)

8. Bernot, G.: Testing against formal specifications: A theoretical view. In: Abramsky,
S. (ed.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494, pp.
99–119. Springer, Heidelberg (1991)

Testing Data Types Implementations from Algebraic Specifications 237

9. Bernot, G., Bouaziz, L., Le Gall, P.: A theory of probabilistic functional testing.
In: ICSE 1997: Proceedings of the 19th international conference on Software engi-
neering, pp. 216–226. ACM Press, New York (1997)

10. Bernot, G., Gaudel, M.-C., Marre, B.: Software testing based on formal specifica-
tions: A theory and a tool. Software Engineering Journal 6(6), 387–405 (1991)

11. Bernot, G., Gaudel, M.-C., Marre, B.: A formal approach to software testing. In:
2nd International Conference on Algebraic Methodology and Software Technol-
ogy (AMAST). Worshops in Computing Series, vol. 670, pp. 243–253. Springer,
Heidelberg (1992)

12. Bidoit, M., Hennicker, R.: Behavioural theories and the proof of behavioural prop-
erties. Theoretical Computer Science 165(1), 3–55 (1996)

13. Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications.
Science of Computer Programming 25(2-3), 149–186 (1995)

14. Bidoit, M., Mosses, P.D.: CASL user manual. LNCS, vol. 2900. Springer, Heidelberg
(1998)

15. Bougé, L.: Modélisation de la notion de test de programmes, application à la pro-
duction de jeux de test. Ph. D. thesis, Université de Paris 6 (1982)

16. Bougé, L., Choquet, N., Fribourg, L., Gaudel, M.-C.: Test set generation from alge-
braic specifications using logic programming. Journal of Systems and Software 6(4),
343–360 (1986)

17. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

18. Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive
functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
16–32. Springer, Heidelberg (2005)

19. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the Association for Computing Machinery 24(1), 44–67 (1977)

20. Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y.: In black and white: an integrated
approach to class-level testing of object-oriented programs. ACM transactions on
Software Engineering and Methodology 7(3), 250–295 (1998)

21. Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y.: In black and white: an integrated
approach to class-level testing of object-oriented programs. ACM transactions on
Software Engineering and Methodology 7(3), 250–295 (1998)

22. Chen, H.Y., Tse, T.H., Chen, T.Y.: TACCLE: A methodology for object-oriented
software testing at the class and cluster levels. ACM Transactions on Software
Engineering and Methodology 10(1), 56–109 (2001)

23. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4(3), 178–187 (1978)

24. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: International Conference on Functional Programming, pp.
268–279 (2000)

25. Dan, L., Aichernig, B.K.: Combining algebraic and model-based test case genera-
tion. In: ICTAC 2004 (2004)

26. Dauchy, P., Gaudel, M.-C., Marre, B.: Using algebraic specifications in software
testing: A case study on the software of an automatic subway. Journal of Systems
and Software 21(3), 229–244 (1993)

27. Dauchy, P., Ozello, P.: Experiments with formal specifications on MAGGALY.
In: Second International Conference on Applications of Advanced Technologies in
Transportation Engineering, Mineapolis (1991)

238 M.-C. Gaudel and P. Le Gall

28. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Formal Methods Europe 1993. LNCS, vol. 670, pp.
268–284. Springer, Heidelberg (1993)

29. Doche, M., Seguin, C., Wiels, V.: A modular approach to specify and test an
electrical flight control system. In: FMICS-4 (1999)

30. Doche, M., Wiels, V.: Extended institutions for testing. In: Rus, T. (ed.) AMAST
2000. LNCS, vol. 1816, pp. 514–528. Springer, Heidelberg (2000)

31. Dong, R.K., Frankl, Ph.G.: The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology 3(2), 103–
130 (1994)

32. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent
type theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp.
188–203. Springer, Heidelberg (2003)

33. Gannon, J., McMullin, P., Hamlet, R.: Data abstraction implementation, specifica-
tion and testing. ACM Transactions on Programming Languages and Systems 3(3),
211–223 (1981)

34. Gaudel, M.-C., James, P.J.: Testing algebraic data types and processes: A unifying
theory. Formal Aspects of Computing 10(5-6), 436–451 (1998)

35. Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the
specification, correctness and implementation of abstract data types. In: Current
Trends in Programming Methodology IV: Data structuring, pp. 80–144. Prentice
Hall, Englewood Cliffs (1978)

36. Goodenough, J.B., Gerhart, S.: Toward a theory of test data selection. IEEE Trans-
actions on Software Engineering SE-1(2), 156–173 (1975)

37. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10(1), 27–52 (1978)

38. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

39. Hennicker, R.: Context induction: a proof principle for behavioural abstractions
and algebraic implementations. Formal Aspects of Computing 3(4), 326–345 (1991)

40. Hierons, R.M.: Comparing test sets and criteria in the presence of test hypotheses
and fault domains. ACM Trans. Softw. Eng. Methodol. 11(4), 427–448 (2002)

41. James, P.R., Endler, M., Gaudel, M.-C.: Development of an atomic broadcast pro-
tocol using LOTOS. Software Practice and Experience 29(8), 699–719 (1999)

42. Le Gall, P.: Les algèbres étiquetées : une sémantique pour les spécifications
algébriques fondée sur une utilisation systématique des termes. Application au
test de logiciel avec traitement d’exceptions. PhD thesis, Université de Paris XI,
Orsay (1993)

43. Le Gall, P., Arnould, A.: Formal specification and test: correctness and oracle. In:
11th WADT joint with the 9th general COMPASS workshop, Oslo, Norway. LNCS,
vol. 1130, pp. 342–358. Springer, Heidelberg (1996)

44. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. Proceedings of the IEEE 84, 1090–1126 (1996)

45. Machado, P.: On oracles for interpreting test results against algebraic specifications.
In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, Springer, Heidelberg
(1998)

46. Machado, P.: Testing from structured algebraic specifications. In: Rus, T. (ed.)
AMAST 2000. LNCS, vol. 1816, pp. 529–544. Springer, Heidelberg (2000)

47. Machado, P., Sannella, D.: Unit testing for CASL architectural specifications. In:
Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 506–518. Springer,
Heidelberg (2002)

Testing Data Types Implementations from Algebraic Specifications 239

48. Marre, B.: Toward an automatic test data set selection using algebraic specifica-
tions and logic programming. In: Furukawa, K. (ed.) Eight International Conference
on Logic Programming (ICLP 1991), pp. 25–28. MIT Press, Cambridge (1991)

49. Marre, B.: Loft: a tool for assisting selection of test data sets from algebraic spec-
ifications. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995,
FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 799–800. Springer, Heidel-
berg (1995)

50. Marre, B., Arnold, A., Gaudel, M.C.: Validation d’une spécification par des for-
malismes différents: le noeud de transit. Revue Technique et Science Informa-
tiques 16(6), 677–699 (1997)

51. Marre, B., Arnould, A.: Test sequences generation from LUSTRE descriptions:
GATEL. In: 15h I.E.E.E. International Conference on Automated Software Engi-
neering, pp. 229–237 (2000)

52. Marre, B., Blanc, B.: Test selection strategies for lustre descriptions in gatel. In:
MBT 2004 joint to ETAPS 2004. ENTCS, vol. 111, pp. 93–111 (2004)

53. Marre, B., Thévenod-Fosse, P., Waeselink, H., Le Gall, P., Crouzet, Y.: An exper-
imental evaluation of formal testing and statistical testing. In: SAFECOMP 1992,
pp. 311–316 (1992)

54. Orejas, F., Navarro, M., Sanchez, A.: Implementation and behavioural equivalence:
A survey. In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types 1991 and COM-
PASS 1991. LNCS, vol. 655, pp. 144–163. Springer, Heidelberg (1993)

55. Péraire, C., Barbey, S., Buchs, D.: Test selection for object-oriented software based
on formal specifications. In: IFIP Working Conference on Programming Concepts
and Methods (PROCOMET 1998), Shelter Island, New York, USA, June 1998, pp.
385–403. Chapman Hall, Boca Raton (1998)

56. Tse, T.H., Lau, F.C.M., Chan, W.K., Liu, P.C.K., Luk, C.K.F.: Testing object-
oriented industrial software without precise oracles or results. Communications of
the ACM (accepted, 2006)

57. Wirsing, M.: Handbook of Theoretical Computer Science. In: Formal models and
semantics, chapter Algebraic Specification, vol. B, Elsevier, Amsterdam (1990)

58. Zhu, H.: A note on test oracles and semantics of algebraic specifications. In: QSIC
2003, pp. 91–99. IEEE Computer Society, Los Alamitos (2003)

From MC/DC to RC/DC: Formalization and
Analysis of Control-Flow Testing Criteria�

Sergiy A. Vilkomir1 and Jonathan P. Bowen2

1 Software Quality Research Laboratory (SQRL)
Department of Electrical Engineering and Computer Science

The University of Tennessee, 203 Claxton Complex, Knoxville, TN 37996-3450, USA
vilkomir@cs.utk.edu

2 Centre for Research on Evolution, Search and Testing (CREST)
Department of Computer Science, Kings College London

Strand, London WC2R 2LS, UK
jpbowen@gmail.com

http://www.jpbowen.com

Abstract. This chapter describes an approach to the formalization of
existing criteria used in computer systems software testing and proposes
a Reinforced Condition/Decision Coverage (RC/DC) criterion. This cri-
terion has been developed from the well-known Modified Condition/Dec-
ision Coverage (MC/DC) criterion and is more suitable for the testing of
safety-critical software where MC/DC may not provide adequate assur-
ance. As a formal language for describing the criteria, the Z notation has
been selected. Formal definitions in the Z notation for RC/DC, as well
as MC/DC and other criteria, are presented. Specific examples of us-
ing these criteria for specification-based testing are considered and some
features are formally proved. This characterization is helpful in the un-
derstanding of different types of testing and also the correct application
of a desired testing regime.

1 Introduction

Software testing criteria (or alternatively, test data adequacy criteria or coverage
criteria) play an important role in the whole testing process. These criteria are
used as [65]:

– stopping rules that determine whether sufficient testing has been done;
– measurements of test quality, when a degree of adequacy is associated with

each test set;
– generators, for test data selection. Test sets are considered as equivalent if

they satisfy the same criterion.

The use of testing criteria as regulatory requirements during software certifica-
tion and licensing also has its own specific features and benefits. At the time of
� This chapter was previously published as [55] and is reproduced here in a slightly

modified form with permission.

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 240–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From MC/DC to RC/DC 241

regulatory assessment, the stage of testing assessment is one of the most impor-
tant where efforts of experts should be concentrated [58].

The methods and criteria of testing are traditionally divided into structural
(or white-box) and functional (or black-box) aspects [41,47]. Structural testing
criteria (i.e., criteria that take into account an internal structure of the program)
are in turn divided into data-flow and control-flow criteria, although the com-
bination of the two has been considered [44,51]. Data-flow criteria are based on
the investigation of the ways in which values are associated with variables and
how these associations can affect the execution of the program [65]. Control-
flow criteria, in particular, examine logical expressions, which determine the
branch and loop structure of the program. This group of criteria is considered
in this chapter. The aim of these criteria is to help in testing decisions (the
program points at which the control flow can divide into various paths) and
conditions (atomic predicates which form component parts of decisions) in a
program.

If software is developed based on formal (mathematical) specifications,
control-flow criteria might be used to examine logical expressions from speci-
fications. In other words, the same criteria might be used for code-based and
specification-based testing. Both applications have their own specific features.
The use of control-flow criteria for code-based testing has been studied in detail.
In this chapter, we consider using these criteria mainly from the specification-
based point of view.

In the scientific literature, criteria definitions are typically informal (in natural
language). Sometimes these definitions are not clear enough and this can lead
to inaccurate understanding. However, formal methods [10] can be helpful both
in clarifying testing criteria and also aiding in the testing process itself [8]. In
this chapter, the task of producing formal criteria definitions is considered. As
a formal language for describing the criteria, the Z notation [30,49] has been
selected, which is used not only in an academic context but also for industrial
development of high-integrity systems such as safety-critical software [9].

This chapter is based on our previous results [52,53] and is structured as
follows. Section 2 presents a brief review and then formal definitions of var-
ious control-flow criteria. Criteria such as statement coverage (SC), decision
coverage (DC), condition coverage (CC), decision/condition coverage (D/CC),
multiple-condition coverage (MCC) and full predicate coverage (FPC) are
addressed.

Section 3 presents a detailed analysis of the Modified Condition/Decision
Coverage (MC/DC) criterion. A definition in the Z notation is proposed and an
explanation of how this formal approach can eliminate the ambiguity of informal
definitions is given. A specific example using MC/DC is considered, illustrating
the interdependence of the conditions and decisions. We analyze a major short-
coming of the MC/DC criterion, namely the deficiency of requirements for the
testing of the “false operation” type of failures. Examples of situations when
failures of this type are present are considered, to illustrate the problem. These
have an especially vital importance for safety-critical applications.

242 S.A. Vilkomir and J.P. Bowen

To eliminate the shortcoming of MC/DC, we propose a Reinforced Condi-
tion/Decision Coverage (RC/DC) criterion, which is considered in Section 4.
The central idea is that the MC/DC criterion can be improved if it is extended
to require that each condition in a decision is shown to be varied without chang-
ing the outcome of the decision (RC/DC). Z schemas for the formal definition of
RC/DC and examples of its application are provided. Some features of RC/DC
as well as MC/DC are formally proved. An example when RC/DC reveals faults
that are not revealed by MC/DC is considered. General conclusions and direc-
tions for future work are addressed in Section 5.

2 Control-Flow Criteria

2.1 General Definitions of Control-Flow Criteria

In the testing of control-flow criteria, the concepts of ‘decision’ and ‘condition’
are important. A decision is a program point at which the control flow can
divide into various paths. An example of a decision is the if. . . then. . . else
construct in typical imperative programming languages. A decision is a Boolean
expression consisting of one or more conditions, combined by logical connectives.
A condition is an elementary Boolean expression (atomic predicate) that cannot
be divided into further Boolean expressions.

The simplest control-flow criteria were formulated in the 1960s and 1970s.
The following are based on the well-known book by G. Myers [41]:

– SC: every statement in the program has been executed at least once;
– DC: every statement in the program has been executed at least once, and

every decision in the program has taken all possible outcomes at least once;
– CC: every statement in the program has been executed at least once, and

every condition in each decision has taken all possible outcomes at least once;
– D/CC: every statement in the program has been executed at least once,

every decision in the program has taken all possible outcomes at least once,
and every condition in each decision has taken all possible outcomes at least
once;

– MCC: every statement in the program has been executed at least once, and
all possible combinations of condition outcomes in each decision have been
invoked at least once.

All the above-mentioned definitions involve the SC criterion as a component.
However, this inclusion is slightly artificial because pure decision or condition
coverage is not connected with SC. The purpose of this inclusion is to establish
the following partial ordering of the control flow criteria: criterion A is stronger
(subsumes) criterion B if every test set that satisfies A also satisfies B . Other
relations between testing criteria have been also considered [23].

The MCC criterion is the strongest and requires the use of various combi-
nations of conditions values. However, an excessive number of test cases can be
required. If the number of conditions in a decision is equal to n, then the number

From MC/DC to RC/DC 243

of test cases to satisfy this criterion is at most 2n ; the use of so many test cases
is not normally possible in practice even for relatively moderate values of n. The
other criteria mentioned above are weaker and require considerably fewer test
patterns. Thus, CC requires two tests for each condition and the total number
of tests is at most 2n. However, in this connection, the testing of combinations
of condition values is missing and a resultant test suite may not be sufficient for
safety-critical software [21].

The FPC criterion [43] is based on the use of specifications. The original def-
inition uses different terms (for example, ‘clause’ instead ‘condition’). However,
it is possible to reformulate it in a manner that is consistent with the previous
definitions. FPC requires that the value of a decision is directly correlated with
the value of a condition.

The hierarchy of the above-mentioned control-flow criteria is given in Figure 1.
The definitions and analysis of these criteria are considered in [41,43,47,52,65].

statement coverage

decision coverage condition coverage

decision/condition coverage

full predicate coverage

multiple condition coverage

�

�

�������

�������

�������

�������

Fig. 1. The hierarchy of control-flow criteria

Traditionally, control-flow criteria are considered as code-based (program-
based). In this case, decisions and conditions are considered as a part of the code
(program). However, we can also consider decisions and conditions more gener-
ally as logical expressions. Similar logical expressions might be used in software
specifications as well as in the software itself. In this case, the control-flow criteria
can be regarded as being specification-based. Examples of using some criteria for
specification-based testing are addressed later in Section 2.2, 3.4 and 4.3.

In addition to those mentioned above, other control-flow criteria have been
introduced (for example, LCSAJ [64], DD-path [45] and Object Level [25] cov-
erage criteria). Diagrams, which show the interrelationship between control-flow
and data-flow criteria, are considered in [25,42,46,65].

The most complicated control-flow criterion is MC/DC. Thus, detailed con-
sideration of MC/DC is addressed later in Section 3.

244 S.A. Vilkomir and J.P. Bowen

2.2 An Example for the Criteria Application

The following example illustrates the application of the testing criteria for a de-
cision, containing three conditions and implementing the principle of the logical
majorization ‘2 from 3’: the decision is true if and only if any two conditions
are true. This principle is widely used for data processing in many safety-critical
systems [60]. Note that this example of the use of the testing criteria is given
only to provide a simple explanation. It is of no great practical value because
the number of conditions is small and thus it is feasible to use all combinations.

Let d be the decision and A, B and C be conditions. Then

d = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C)

The values of conditions are 1 (TRUE) or 0 (FALSE). Eight combinations of
the values of the conditions exist. The combinations, which satisfy the criteria,
are given in Table 1.

Table 1. Combinations satisfied the criteria

combination values CC, D/CC, MCC

number A B C d DC +
1 1 1 1 1 +
2 1 1 0 1 +
3 1 0 1 1 + +
4 0 1 1 1 +
5 1 0 0 0 +
6 0 1 0 0 + +
7 0 0 1 0 +
8 0 0 0 0 +

For MCC, the set containing all eight combinations is required. For DC, CC,
and D/CC, two combinations are sufficient (for example, numbers 3 and 6).
Other variants are also possible. Pairs (1, 8), (2, 7) and (4, 5) also satisfy these
criteria. At the same time, pair (2, 6) satisfies DC criterion but is not sufficient
for CC and D/CC, as conditions B and C do not vary their values.

It is necessary to remember that values of conditions depend on values of input
variables. Further (in Section 3.3) we consider an example where condition A
depends on variable x ; A = 1 when x > 20 and A = 0 when x ≤ 20.

2.3 Formalization of Control-Flow Criteria in Z

The criteria such as FPC and MC/DC are quite complicated and require addi-
tional explanation. Various interpretations of these definitions are possible giving
rise to ambiguity. To help alleviate this situation, formal definitions of testing
criteria are presented here.

Formalization of various testing criteria (mainly, the simple ones: SC, DC,
CC) has been carried out using, for example, set theory [23], graph theory [44],

From MC/DC to RC/DC 245

predicate logic [37,51] and temporal logic [2]. In this chpater, the Z notation
[30,49] is used for the formal definition of the simple criteria above as well as
more complicated ones (MC/DC and RC/DC).

Some reasons for choosing the Z notation are as follows. Z has been used for
a number of digital systems in a variety of ways to improve the specification of
computer-based systems [6]. Advantages of Z are the existence of software tools
that can automatically perform checking to eliminate certain types of errors and
well-defined semantics of the language that reduces ambiguity and inaccuracy.
Many textbooks on Z are now available (e.g., [31]) and Z is taught on many
university computer science courses [7]. Concerning software testing, the Z no-
tation has been used to derive tests from model-based specifications [13,50], for
the testing of abstract data types (modules, classes, package, clusters) [26], auto-
matic test case generation [11,12], and the selection of test cases and evaluation
of test results [29]. So, when Z is used for software development and testing, it
is expedient to use testing criteria that have also been formulated in Z.

We considered the formal definitions in the Z notation for some control-flow
criteria in [52]. In this chapter, a slightly different approach is proposed. Within
the framework of this approach, we distinguish between input variables for a
whole program and input variables for an individual decision. It allows us to
consider possible changes of values of input variables and the repeated execution
of a decision in a loop. A more precise definition of the notion of a decision is
introduced gradually and used in the next section for the formulation of a formal
definition for MC/DC and RC/DC.

For defining the criteria, the given sets STATEMENT and INPUT are used:

[STATEMENT , INPUT]

The STATEMENT set contains all separately identifiable statements from a
given program to be tested. The term ‘statement’ is understood here in the
broad sense, as an explicit statement, a control statement (branch point), or an
entry/exit point. An accurate definition depends on the programming language
used. For our purpose, further details are not needed and it is sufficient to model
STATEMENT as a given set. Lists of all statements that are covered by MC/DC
for the C, C++ and Ada’83 programming languages are given in [17].

The INPUT set corresponds to all the possible states of the program during
its execution. For example, we could define INPUT = Variable �→ Value, where
Variable is the set of all input, output and internal variables of the program and
Value is the set of all possible values of those variables. However, the formaliza-
tion used throughout this chapter does not rely on the structure of INPUT , so
we prefer to leave it abstract. Note that we sometimes use an element of INPUT
to represent a test case (the initial value of all the input variables), while other
times we use an element of INPUT to represent an intermediate state of the
program just before a particular decision or condition is executed. We use the
name INPUT to emphasize the fact that the members of this set are the input
data of decisions and conditions in the program.

246 S.A. Vilkomir and J.P. Bowen

Now we can create the Z schema1 StatementCoverage for the SC criterion,
which is a component of all other control-flow criteria including MC/DC and
RC/DC. Since we want to analyse the internal behaviour of the program (deci-
sions and conditions, etc.), it is not sufficient to record only the input states and
output states of each execution – we also record snapshots of the internal state
of the program before the execution of each statement.

The set startinput is the set of all possible input states of the program (values
of the input variables). That is, it corresponds to the precondition of the program.
The starttest variable models all the test cases that were actually executed using
the program. Since each test case must satisfy the precondition of the program,
starttest is a subset of startinput .

The statementinput function describes the internal state of the program in a
concise form that is useful for analysis of coverage criteria. For each statement
in the program and each possible input to the program, it gives all the possible
states of the program just before that statement is executed. The result can be
not only one specific element of INPUT but several different elements (a subset)
of INPUT because of potential repeated execution of the statement in a loop.
For example, if we have the statement x := x+1 within a loop, and the initial
state with x = 3 causes this loop to be executed three times, then we might
have

statementinput = {(x:=x+1, {x �→ 3}) �→ { {x �→ 3}, {x �→ 4}, {x �→ 5} }

Another reason for having multiple states in the output of statementinput would
be when the program is non-deterministic.

StatementCoverage
startinput , starttest : P INPUT
statementinput : STATEMENT × INPUT �→ P INPUT

starttest ⊆ startinput
dom statementinput = STATEMENT × startinput
∀ st : STATEMENT •

⋃
{i : starttest • statementinput(st , i)} 	= ∅

An alternative type for statementinput could be STATEMENT → (INPUT ↔
INPUT). This is a more typical formulation in Z specifications, but the (isomor-
phic) encoding we have chosen is nearer to the intuition of most testers.

If, for some statement st , the value of statementinput is the empty set for all
testing data, this means that this statement is never executed during test runs
of a program; i.e., the testing data does not satisfy the SC criterion. As the SC
criterion is a component part of all other criteria, its schema is in the signature
of all other schemas used for defining testing criteria.

We now introduce some definitions. The Bool set contains values for logical
variables: 1 (TRUE) and 0 (FALSE):

1 All schemas in this chapter have been checked using the ZTC type-checker package
[33].

From MC/DC to RC/DC 247

Bool == {0, 1}

We encode this as numbers since this is a standard nomenclature used by many
testers. We use the elements of this set as values of cond , a set of partial logical
functions on INPUT :

cond == INPUT �→ Bool

Another equivalent encoding more attuned to the way Z is often used could have
been cond == P INPUT , but again we use a formulation more familiar to those
involved with testing.

The relation InputPairs describes pairs of data from INPUT . It is convenient
to use this type because we always apply a pair of test cases for testing when
varying each condition or decision.

InputPairs == INPUT ↔ INPUT

The following schema describes a decision. According to our broad under-
standing of the notion of a ‘statement’, we consider a decision as a program
statement (decst). This means that the decision can be executed (i.e., be cov-
ered during a program execution). The decision can be considered as a logical
function (value) and is presented as a logical expression where arguments are
conditions (argdec).

Dec
StatementCoverage
decst : STATEMENT
value : cond
decinput , decinput0, decinput1, testset : P1 INPUT
argdec : P1 cond
changedec : cond �→ InputPairs

decinput = dom value =
⋃

{i : startinput • statementinput(decst , i)}
decinput0 = {i : decinput | value i = 0}
decinput1 = {i : decinput | value i = 1}
〈decinput0, decinput1〉partitions decinput
testset =

⋃
{i : starttest • statementinput(decst , i)}

argdec ⊆ {c : cond | dom c = decinput ∧ ran c = Bool}
dom changedec = argdec
ran changedec ⊆ decinput ↔ decinput
∀ c : cond | c ∈ argdec •
changedec c = {i0, i1 : decinput | value i0 	= value i1 ∧ c i0 	= c i1}

The decinput set contains data (values of input, output and internal variables),
which activates the given decision.

The argdec set contains all conditions (atomic predicates), which make a de-
cision. For example, if a decision is A1 ∨ B1, then the A1 and B1 conditions form

248 S.A. Vilkomir and J.P. Bowen

the decision and argdec is {A1,B1} (see also an example in Section 3.3). These
conditions are the arguments of the logical formula; this formula determines the
decision value function uniquely. A condition may have multiple occurrences in
a decision and such occurrences are treated as one condition.

The testset set contains data from INPUT , which activating the given decision
during testing of a program. The testset set is the only field that depends upon
the actual test cases (that is, upon starttest). It gives the set of all the program
states (immediately before the given decision was executed) that occurred during
the actual test runs. So the members of testset are testing data for the decision.
If a decision statement is executed multiple times inside a loop, one test case for
the whole program from starttest (one test run) may generate several test cases
for the decision from testset .

The set changedec c is a set of pairs of data that simultaneously vary the
decision and condition c (i.e., condition c equals 0 for one element of the pair
and equals 1 for another element). Consider again the decision d = A1 ∨ B1,
but now with conditions A1 and B1 depending on the input variable x ; A1 = 1
when x < 5 and B1 = 1 when x > 10. Then the pair of input values (4, 6) is
a member of the range of changedec(A1); d = 1 and A1 = 1 when x = 4 and
d = 0 and A1 = 0 when x = 6 (i.e., d and A1 are simultaneously varied).

The following schema determines a formal definition of the DC criterion based
on the fact that for any specific decision, the set testset should contains a pair of
data that vary this decision (i.e., for which this decision takes different values,
both 0 and 1).

DecisionCoverage
StatementCoverage

∀Dec • (testset × testset) ∩ {i0, i1 : decinput | value i0 	= value i1} 	= ∅

The following schema determines the CC criterion and is analogous with the
previous schema. It claims that a pair of input data from the testing set should
exist, for which the condition takes different values.

ConditionCoverage
StatementCoverage

∀Dec; c : cond | c ∈ argdec •
(testset × testset) ∩ {i0, i1 : decinput | c i0 	= c i1} 	= ∅

The formal description of the D/CC criterion uses the fact that this criterion
is the union of the decision criterion and the condition criterion. Therefore,
the schema of this criterion contains only references to two previous schemas,
effectively conjoined using schema inclusion:

DecisionConditionCoverage
DecisionCoverage
ConditionCoverage

From MC/DC to RC/DC 249

The last scheme determines the MCC criterion:

MultipleConditionCoverage
StatementCoverage

∀Dec; condset : P cond | condset ∈ P argdec •
(∃ comb : P1 decinput • (∀ i : comb • (∀ c : condset • c i = 1) ∧
(∀ c : argdec | c 	∈ condset • c i = 0))) ⇒ (testset ∩ comb 	= ∅)

The definition claims that the testing data set (testset) should contain the
data for testing every combination of the values of conditions in a decision, if
such a combination is possible in principle (i.e., if there are input data for which
the value of conditions make up the given combination). In the schema given
above, each combination of the values of the conditions is clearly defined by the
subset condset of the conditions, which equal 1 for this combination. Accordingly,
the other conditions from argdec, which are not members of condset , equal 0 for
this combination.

The subset of input data, which display this combination, is denoted as comb.
If such a non-empty subset comb exists, then at least one of its elements should
be a member of the test set.

3 MC/DC

3.1 General Definition of MC/DC

The definition of the MC/DC criterion, according to [48], is the following:

Every point of entry and exit in the program has been invoked at least
once, every condition in a decision in the program has taken on all pos-
sible outcomes at least once, every decision in the program has taken
all possible outcomes at least once, and each condition in a decision has
been shown to affect the decision’s outcome independently. A condition is
shown to affect a decision’s outcome independently by varying just that
condition while holding fixed all other possible conditions.

The maximum number of required tests for a decision with n conditions is 2n.
The first part of the MC/DC definition (every point of entry and exit in the pro-
gram has been invoked at least once) is just the standard SC criterion. This part
is traditionally added to all control-flow criteria and is not directly connected
with the main point of MC/DC.

The second and the third parts of the definition are just the CC and DC
criteria. The inclusion of these parts in the definition of MC/DC could be con-
sidered excessive because satisfiability of CC and DC results from the main part
of the MC/DC definition: each condition has been shown to affect the decision’s
outcome independently.

250 S.A. Vilkomir and J.P. Bowen

The key word in this definition is ‘independently’; i.e., the aim of MC/DC is
the elimination during testing of the mutual influence of the individual conditions
and the testing of the correctness of each condition separately.

Investigation of MC/DC has initially been considered in [15,16,32]. Detailed
consideration of the different aspects of this criterion was carried out more re-
cently in [5,20,24,27,28,57,63]. The successful practical application of MC/DC
for satellite control software has been evaluated [21] though the difficulties dur-
ing the analysis of this type of coverage (e.g., it is extremely expensive to carry
out and can affect staff morale and time) were also addressed [14]. The appli-
cation of this criterion in the testing of digital circuits was considered in [40],
test-suite reduction and prioritization algorithms for MC/DC – in [34]. A num-
ber of software tools (CodeTEST [4], DACS-Object Coverage Tools [19], LDRA
Testbed [39], etc.) support the MC/DC criterion.

However, it should be noted that the original definition of the MC/DC cri-
terion allows different interpretations and understanding during the application
of the criterion. The informal definition gives no precise answer to the following
practical questions (some possible answers are considered in Section 3.2):

– How to handle the situation when it is impossible to vary a condition and
a decision while holding fixed all other conditions (see Section 3.3 for an
example of such a situation). To assume that such a condition does not
satisfy the MC/DC criterion is probably a poor way of dealing with this
situation. In any case, such conditions should be checked during testing.

– How to understand multiple occurrences of a condition in a decision. For
example, for a decision of the form (A ∧ B) ∨ (¬ A ∧ C), should we assume
three conditions (A, B and C) or four (the first A, B , C and the second A)
conditions? Both approaches have been used [15,27] but the last one seems
unnatural for many situations.

– How to treat degenerate conditions and decisions, which are either always 0
or always 1. Of course, the appearance of such conditions should attract the
attention of the tester and be justified. But if it is valid for some reason, does
it mean that in this case MC/DC is not satisfied because such conditions
cannot be varied?

– How to consider coupled conditions (i.e., conditions that cannot be varied
independently). According to [15], two or more conditions are strongly cou-
pled if varying one always varies the other, and weakly coupled if varying
one sometimes, but not always, varies the others. However, it is questionable
whether strongly coupled conditions logically differ.

Imperfection in the original definition of MC/DC caused the appearance of
different forms of this criterion (e.g., Masking MC/DC) that try to solve the
above-mentioned problems [17,18]. For eliminating inaccuracies and answering
the above questions, a more precise formal definition of the MC/DC criterion
is essential. Mathematical definitions in terms of the Boolean Difference were

From MC/DC to RC/DC 251

considered in [17,38]. Here, we propose a formal definition of MC/DC using the
Z notation.

3.2 Formal Definition of MC/DC

Consider DecModified , an extended version of the Dec schema. A new set change
decfix c of pairs of data are considered for each condition.

DecModified
Dec
changedecfix : cond �→ InputPairs

dom changedecfix = argdec
ran changedecfix ⊆ decinput ↔ decinput
∀ c : cond | c ∈ argdec •
changedecfix c = {i0, i1 : decinput | (i0, i1) ∈ changedec c ∧
(∀ othercond : argdec | othercond 	= c • othercond i0 = othercond i1)}

The changedecfix c set contains pairs of data that vary the decision and given
condition c (i.e., for all other conditions from the decision), the condition value
for the first element of the pair coincides with the condition value for the second
element. Obviously, changedecfix c ⊆ changedec c.

For the definition of MC/DC (and, later, RC/DC), the choice function is used.

choice : InputPairs × InputPairs → InputPairs

∀ a, b : InputPairs •
(a 	= ∅ ⇒ choice(a, b) = a) ∧ (a = ∅ ⇒ choice(a, b) = b)

The arguments are two sets. If the first one is not empty, the function just returns
that set; otherwise, the second set is returned.

Now it is possible to create a formal definition of MC/DC. For each condition
in each decision, the aim of this criterion is to have, as a part of the testing data,
pairs of input data that vary this condition simultaneously with the decision
while, if it is possible, fixing all other conditions. The following Z schema captures
MC/DC:

MC DC
StatementCoverage

∀DecModified ; c : cond | c ∈ argdec •
(testset × testset) ∩ choice(changedecfix c, changedec c) 	= ∅

Let us prove that it is always possible to choose testing data to satisfy MC/DC
(i.e., that choice(changedecfix c, changedec c) 	= ∅), using the method of the
proof by contradiction.

252 S.A. Vilkomir and J.P. Bowen

Lemma 1
MC DC ; c : cond � choice(changedecfix c, changedec c) 	= ∅

Proof
choice(changedecfix c, changedec c) = ∅ [assumption]
⇔ changedec c = ∅ [definition of choice]
⇔ ¬ (∃ i0, i1 : decinput | c i0 	= c i1 • [definition of changedec]

value i0 	= value i1)
⇔ ∀ i0, i1 : decinput | c i0 = 0 ∧ c i1 = 1 • [logic]

value i0 = value i1
⇒ ∀ i0, i1 : decinput | [decinput0, decinput1 : P1 INPUT]

c i0 = 0 ∧ c i1 = 1 • ∃ i2 : decinput •
value i2 	= value i0 ∧ value i2 	= value i1

⇒ ∀ i0, i1 : decinput | c i0 = 0 ∧ c i1 = 1 • [c i2 = 0 ∨ c i2 = 1]
∃ i2 : decinput • (c i2 = 0 ∧ value i2 	= value i1) ∨
(c i2 = 1 ∧ value i2 	= value i0)

⇒ ∃ i0, i1, i2 : decinput • [c i1 = 1 ∧ c i0 = 0]
(c i2 	= c i1 ∧ value i2 	= value i1) ∨
(c i2 	= c i0 ∧ value i2 	= value i0)

⇒ ∃n,m : decinput • [n = i2 ∧ (m = i0 ∨ m = i1)]
c n 	= c m ∧ value n 	= value m

⇔ changedec c 	= ∅ [definition of changedec]
⇔ choice(changedecfix c, changedec c) 	= ∅ [definition of choice]
⇒ false [contradiction]�

Let us consider how the proposed formal definition of MC/DC answers the
questions formulated in Section 3.1:

– How to handle the situation when it is impossible to vary a condition and a
decision while holding fixed all other conditions. The main point here is how
to understand “while holding fixed all other possible conditions” from the
original definition of MC/DC. One could attempt to hold fixed the maximum
number of other conditions but finding such test cases could be a nontrivial
optimisation task. Another approach is Masking MC/DC, to assure that
no other condition influences the outcome, even if some conditions change
values [22]. Both approaches significantly impede using MC/DC. According
to our formal definition of MC/DC, if it is impossible to find such testing
data (i.e., changedecfix c = ∅), we can vary the condition and the decision
without fixing other conditions (i.e., take testing data from changedec c).

– How to understand multiple occurrences of a condition in a decision. In the
original MC/DC paper [15] and the definition in the Federal Aviation Admin-
istration standard DO-178B [48], multiple occurrences of the same condition

From MC/DC to RC/DC 253

are intentionally considered as different conditions. One of the reasons for
this is that MC/DC was designed to be a source-code level criterion, ensuring
a proper level of object code coverage. However, this controversial approach
considerably complicates using MC/DC and makes no sense for specification-
based testing. That is why, according to our definition of a decision (in the
Dec schema), we consider a set (argdec) of conditions that make a decision.
This means that each condition is considered only once. This approach is
more mathematically valid and corresponds with understanding a decision
as a function of conditions.

– How to treat degenerate conditions and decisions. According to the defini-
tion of a decision (again in the Dec schema), both of the sets decinput0 and
decinput1 are non-empty. This means that every decision should take the
value of both 0 and 1 and the degenerate decisions are excluded from con-
sideration. The Dec schema also ensures that the range of every condition is
equal to Bool ; i.e., every condition should take both 0 and 1 values and thus
degenerate conditions are excluded from consideration. The reason for this
approach is that degenerate conditions and decisions are always covered by
any testing data. So, we consider them as satisfying MC/DC because it does
not make demands on such decisions and conditions. In this aspect our ap-
proach is similar to [17] where only ‘non-constant’ conditions and decisions
are applied in the Masking MC/DC definition.

– How to consider the coupled conditions. The coupled conditions [15] cause
problems in selecting the testing data satisfying the MC/DC criterion. How-
ever, these problems exist only for weakly coupled conditions. As we show
below (see Lemma 2), if one condition, A, always varies another condition,
B , then A = B ∨ A = ¬ B , where ¬ is formally defined as follows:

¬ : cond �→ cond

∀ c : cond • ¬ c = c o
9 {0 �→ 1, 1 �→ 0}

Thus we can consider A and B as entering the same condition in a decision. In
other words, strongly coupled conditions as mentioned in [15] do not logically
differ. Any two strongly coupled conditions can by syntactically different as
expressions but must be logically equivalent or negated as logical functions.

Lemma 2
MC DC ; A,B : cond �
(∀ i0, i1 : decinput • A i0 	= A i1 ⇒ B i0 	= B i1) ⇒ (A = B ∨ A = ¬ B)

Proof
¬ ((∀ i0, i1 : decinput • [assumption]

A i0 	= A i1 ⇒ B i0 	= B i1) ⇒ (A = B ∨ A = ¬ B))
⇔ (∀ i0, i1 : decinput • [logic]

A i0 	= A i1 ⇒ B i0 	= B i1) ∧ (A 	= B ∧ A 	= ¬ B)
⇒ (∃ i0, i1 : decinput •

254 S.A. Vilkomir and J.P. Bowen

A i0 = 0 ∧ A i1 = 1 ∧ B i0 	= B i1) ∧ [ranA = Bool]
(A 	= B ∧ A 	= ¬ B)

[CASE 1 : B i0 = 1, B i1 = 0]
⇒ A 	= ¬ B [logic]
⇔ ∃ i2 : decinput • A i2 = B i2 [logic]
[CASE 1.1 : A i2 = 0, B i2 = 0]
⇒ A i2 	= A i1 [A i1 = 1]
⇒ B i2 	= B i1 [A i2 	= A i1 ⇒ B i2 	= B i1]
⇒ B i2 = 1 [B i1 = 0]
⇒ false [contradiction with CASE 1.1]
[CASE 1.2 : A i2 = 1, B i2 = 1]
⇒ A i2 	= A i0 [A i0 = 0]
⇒ B i2 	= B i0 [A i2 	= A i0 ⇒ B i2 	= B i0]
⇒ B i2 = 0 [B i0 = 1]
⇒ false [contradiction with CASE 1.2]
[CASE 2 : B i0 = 0, B i1 = 1]
⇒ A 	= B [logic]
⇔ ∃ i2 : decinput • A i2 	= B i2 [logic]
[CASE 2.1 : A i2 = 0, B i2 = 1]
⇒ A i2 	= A i1 [A i1 = 1]
⇒ B i2 	= B i1 [A i2 	= A i1 ⇒ B i2 	= B i1]
⇒ B i2 = 0 [B i1 = 1]
⇒ false [contradiction with CASE 2.1]
[CASE 2.2 : A i2 = 1, B i2 = 0]
⇒ A i2 	= A i0 [A i0 = 0]
⇒ B i2 	= B i0 [A i2 	= A i0 ⇒ B i2 	= B i0]
⇒ B i2 = 1 [B i0 = 0]
⇒ false [contradiction with CASE 2.2]�

3.3 An Example for MC/DC

The contents of the proposed formal definitions are considered below. Different
examples of MC/DC use that have been presented previously (for example, see
[15]) have often considered only simple decisions containing two or three con-
ditions. Using MC/DC for such decisions has no great practical use since it is
feasible to achieve full multiple condition coverage. Furthermore, such examples
do not reflect complicated situations, which are typical in realistic practical ex-
amples of use of this criterion. We consider a more complex example (but one

From MC/DC to RC/DC 255

that is still far from a real practical problem because of space considerations),
which takes into account the following factors:

– Dependence of the values of the conditions and decisions on input data;
– Dependence of the specific decision on its place in the computer program,

i.e., on the values of other decisions in the program;
– Dependence of the conditions in the specific decision on each other (i.e., the

possibility that one condition takes a value depending on the value of other
conditions in this decision).

This example uses a computer program fragment, whose graph is given in
Figure 2.

��

��
1 READ x , y

�

��

��
2 d1

�������

�������
FALSETRUE

��

��
3 f1

��

��
4 f2

�

��

��
5 d2

�������

�������
FALSETRUE

��

��
6 f3

��

��
7 f4

� �

Fig. 2. Flow graph of a program fragment

In this fragment, the input data x and y are read; let the value of both x and
y be between 0 and 100. For this simple example, we could consider INPUT as
just pairs of values:

INPUT == (0 . . 100) × (0 . . 100)

Then, depending on the values of x and y, the computation by one from four
formulae f1 – f4 is implemented.

The control flow of this program is determined by two decisions: d1 and d2.
Let d1 depend on conditions A1 and B1 and d2 depend on conditions A, B , C
and D , as it is shown below:

256 S.A. Vilkomir and J.P. Bowen

d1, d2 : DecModified
A,B ,C ,D ,A1,B1 : cond
x , y : 0 . . 100

A (x , y) = 1 ⇔ x > 20
B (x , y) = 1 ⇔ y < 60
C (x , y) = 1 ⇔ x > 40
D (x , y) = 1 ⇔ y < 80
A1 (x , y) = 1 ⇔ x > 20
B1 (x , y) = 1 ⇔ y > 60
d1.decinput = INPUT
d2.decinput = {x , y : 0 . . 100 | x > 20 ∨ y > 60}
d1.argdec = {A1,B1}
d2.argdec = {A,B ,C ,D}
d1.value (x , y) = 1 ⇔ A1 (x , y) = 1 ∨ B1 (x , y) = 1
d2.value (x , y) = 1 ⇔
((A (x , y) = 1 ∧ B (x , y) = 1) ∨ (C (x , y) = 1 ∧ D (x , y) = 1))

For the d1 decision, d1.decinput is all possible INPUT s and both conditions A1
and B1 are independent. The examples of the testing data satisfy the MC/DC
criterion for d1 are given in Table 2.

Table 2. Testing data satisfied the MC/DC criterion for d1

num values testing data variations MC/DC

A1 B1 d1.value (x , y) A1 B1

1 1 1 1 (50, 70)
2 1 0 1 (50, 50) ∗ +
3 0 1 1 (10, 70) ∗ +
4 0 0 0 (10, 50) ∗ ∗ +

For the d2 decision, the set d2.decinput is more restrictive than the full set of
possible INPUT s because of the interdependency of d1 and d2. The members of
d2.decinput are only the input data for which d1 equals 1 (i.e., is TRUE).

The conditions in d2 are interdependent in pairs. For conditions A and C
the situation (A = 0 ∧ C = 1) is impossible because (C = 1) ⇒ (A = 1).
For conditions B and D the situation (B = 1 ∧ D = 0) is impossible because
(B = 1) ⇒ (D = 1).

As it is shown in Table 3, only 8 of the 16 combinations of condition values
are possible.

The combinations (0, 1, 1, 1), (0, 1, 1, 0), (0, 0, 1, 1) and (0, 0, 1, 0) are impossi-
ble because of the value of the condition A. Combinations (1, 1, 1, 0), (1, 1, 0, 0)
and (0, 1, 0, 0) are impossible because of the value of the condition D . The com-
bination (0, 1, 0, 1) is impossible because of the value of the decision d1.

Testing data satisfying the MC/DC criterion for the conditions B , C and D
are shown in Table 3 marked as ‘∗’.

From MC/DC to RC/DC 257

Table 3. Testing data satisfied the MC/DC criterion for d2

num values testing data variations MC/DC

A B C D d2.value (x , y) A B C D
1 1 1 1 1 1 (50, 50)
2 1 1 1 0 - impossible
3 1 1 0 1 1 (30, 50) • ∗ +
4 1 0 1 1 1 (50, 70) ∗ ∗ +
5 0 1 1 1 - impossible
6 1 1 0 0 - impossible
7 1 0 1 0 0 (50, 90) ∗ +
8 1 0 0 1 0 (30, 70) ∗ ∗ +
9 0 1 1 0 - impossible
10 0 1 0 1 - impossible
11 0 0 1 1 - impossible
12 1 0 0 0 0 (30, 90)
13 0 1 0 0 - impossible
14 0 0 1 0 - impossible
15 0 0 0 1 0 (10, 70) • +
16 0 0 0 0 0 (10, 90)

For the condition A it is impossible to choose similar combinations, i.e., com-
binations for which the values of A and d2 are changed and the values of B ,
C and D are fixed. So, following the formal definition of MC/DC, in this case
for the condition A it is sufficient to take any combinations that vary A and d2
without fixing other conditions. For example, it is possible to take combinations
(1, 1, 0, 1) and (0, 0, 0, 1), for which the values of A and d2 vary simultaneously
(marked ‘•’ in Table 3). The test set satisfying the MC/DC criterion for the
decision d2 consists of five pairs of the input data (marked ‘+’ in Table 3).

3.4 The Main Shortcoming of MC/DC

As already mentioned earlier, the MC/DC criterion is used mainly for testing of
safety-critical avionics software [48]. The main aim of MC/DC is testing situa-
tions when changing a condition implies a change in a decision. Often a decision
can be associated with some safety-critical operation of a system. In such cases,
MC/DC requires the testing of situations when changing one condition has some
consequence on the operation of the system. A software error in such situations
could involve non-operation (inability to operate on demand) type of failures.
Such situations are extremely important and the MC/DC requirements are en-
tirely reasonable.

However, as we show below, this criterion has one substantial shortcoming,
not previously mentioned in the literature, namely deficiency of requirements for
testing of the false actuation (operation without demand) type of failures. This
could make this criterion insufficient for many safety-critical applications.

258 S.A. Vilkomir and J.P. Bowen

� �
�

�

c1 = 0

c2 = 0

�
�	

�
�

�
��

�
�

�
��

d = 0

main
track

reserved
track

Fig. 3. Railway points: The initial situation

The false actuation of a system could be invoked by a software error in situa-
tions when changing a condition should not imply changing a decision. We now
consider several examples, mainly from the specification-based point of view.

Railway points. Consider a computer control system for a railway that is
responsible for switching over the points by which trains can be routed in one
direction to another.

Let there be two tracks (main and reserved); conditions c1 and c2 determine
track states (which may be either occupied or clear) and decision d determines
changing the route from the main track to the reserved track and vice versa.
Decision d may depend on many other conditions (not shown here), not only
on c1 and c2, i.e., d = f (c1, c2, . . .). The logical function f may be quite com-
plicated and using MC/DC is advisable. We consider using MC/DC only for c1
and c2.

The initial situation is shown in Figure 3. In this situation the main (upper)
track is clear (c1 = 0), the reserved (lower) track is clear (c2 = 0), the points are
set for the main track (d = 0). Consider two situations; the first one is tested
by MC/DC and the second one is not.

The first situation (Figure 4) is when the main track becomes occupied (vary-
ing the condition c1 from 0 to 1) and, therefore, it is necessary to switch over
the points to the reserved track (varying the decision d from 0 to 1).

� �
�

� �

� �
�

d = 1

c1 = 1

c2 = 0

Fig. 4. Railway points: The situation that is tested by MC/DC (normal operation)

From MC/DC to RC/DC 259

� �
� �

�	

�

�
�

�
��

�
�

�
��

� �
�

d = 0

c1 = 1

c2 = 0

Fig. 5. Railway points: The situation that is tested by MC/DC (non-operating failure)

� �
� �

�	

�

�
�

�
��

�
�

�
��

� �
�

d = 0

c1 = 0

c2 = 1

Fig. 6. Railway points: The situation that is not tested by MC/DC (normal operation)

� �
�

� �

 � �

�
d = 1

c1 = 0

c2 = 1

Fig. 7. Railway points: The situation that is not tested by MC/DC (false actuation
failure)

Such a situation must be tested by MC/DC. To understand its importance,
consider what will happen if a failure occurs. The failure in this situation (Fig-
ure 5) involves keeping the value of the decision (d = 0) instead of varying it;
this means non-operation of the system, leaving the points positioned for the
occupied track, and could result in a possible crash. So testing this situation is
very important.

The second situation (Figure 6) is when the reserved track becomes occupied
(varying the condition c2 from 0 to 1) and, therefore, it is necessary to keep the
main track as a route (keeping the decision d equal 0).

This situation need not be tested by MC/DC but let us again examine conse-
quences of a failure. The failure in this situation (Figure 7) involves varying the
value of the decision d from 0 to 1 instead of keeping it fixed at 0. This means

260 S.A. Vilkomir and J.P. Bowen

false operation of the system, switching the points towards the occupied track
and the possibility of a crash. So testing this situation is also very important.

Thus, from the safety point of view, these situations are symmetrical and both
can lead to a crash. Therefore, both types of failures should be considered and
both situations should be tested with the same degree of importance.

Protection system for a nuclear reactor. Consider a decision that is re-
sponsible for actuating a reactor protection system at a nuclear power plant
(i.e., the reactor shutdown) and a condition that describes some criterion for the
actuation (e.g., excessive pressure over some specified level). Varying this deci-
sion because of variation of the condition should be tested since failure in this
situation means the non-operation of the system in case of emergency conditions
and can lead to the nuclear accident.

Nevertheless, keeping the value of the decision is also important. The failure
in this situation means the false actuation of the system during normal operating
and can lead to non-forced reactor shutdown, the deterioration of the physical
equipment, and the underproduction of electricity.

The typical architecture of nuclear reactor protection systems (three channels
with ‘2 from 3’ logical voting) takes into account this particular problem. The use
of three identical channels decreases the probability of the system not operating
correctly. However, if it is only required to consider this factor, the ‘1 from 3’
logic is more reliable. The aim of using ‘2 from 3’ voting is to provide protection
against false actuation of a system as in this case the false signal from one channel
does not lead to system actuation.

Thus, during software testing for the reactor protection system, it is necessary
to include test cases for both varying and keeping a decision’s outcomes.

Planned halt of a computer control system. Sometimes specific situa-
tions are possible, when keeping a decision is much more important for safety
than varying a decision. Consider a decision that is responsible for a planned
(non-emergency) halt of a continuous process control system, e.g., for planned
maintenance. Conditions describe when this process is in a safe state allowing
the control system to be switched off. Again consider two situations.

The first situation is when the state of the process becomes safe (because of
varying the condition) and it is possible to switch the system off (varying the
decision). The failure in this situation does not have grave consequences and
means only a delay of the system halt.

The second situation is when the state of the process remains unsafe (despite
varying the condition) and the control system should continue in operation (keep-
ing the decision). The failure in this situation means that the system is erroneously
switched off. Such a fault leads to loss of control and this is important with respect
to safety. So it is important to test the keeping of the value of this decision.

The examples considered above demonstrate that for many cases testing only
varying a decision when varying a condition (i.e., using MC/DC) is insufficient
from the safety point of view. To eliminate this shortcoming, we propose the use
of a new RC/DC criterion in critical applications.

From MC/DC to RC/DC 261

4 RC/DC

4.1 General Definition of RC/DC

As we have shown in Section 3, MC/DC does not require testing some situa-
tion, which can be important for safety. The main idea of RC/DC is for future
development of MC/DC with the purpose of making it more effective. Testing
according to RC/DC should include test cases required by MC/DC and addi-
tional test cases for testing important situations when a false actuation of a
system is possible. In that way, all requirements of MC/DC are valid and a new
requirement for keeping the value of a decision when varying a condition is added
to the testing regime.

With the objective of ensuring compatibility and continuity with the MC/DC
definition, we define RC/DC as follows:

Every point of entry and exit in the program has been invoked at least
once, each condition in a decision has been shown to affect the decision’s
outcome independently, and each condition in a decision has been shown
to keep the decision’s outcome independently. A condition is shown to
affect and keep a decision’s outcome independently by varying just that
condition while holding fixed (if it is possible) all other conditions.

The reservation “if it is possible” is used because it may not be possible to affect
or keep the value of a decision independently. For more accurate consideration
and analysis of all possible situations, we propose the formal definition of RC/DC
using the Z notation in the next section.

4.2 Formal Definition of RC/DC

For elaboration of the formal definition of RC/DC, we carry out further develop-
ment of the Z schema, describing the notion of the decision. The DecReinforced
schema below differs from the DecModified schema by adding four new functions:
keep0, keep1, keep0fix and keep1fix . Each of these functions connects conditions
with pairs of input data.

DecReinforced
DecModified
keep0, keep1, keep0fix , keep1fix : cond �→ InputPairs

dom keep0 = dom keep1 = dom keep0fix = dom keep1fix = argdec
ran keep0 ∪ ran keep1 ∪ ran keep0fix ∪ ran keep1fix ⊆ decinput ↔ decinput
∀ c : cond | c ∈ argdec •
keep0 c = {i0, i1 : decinput | value i0 = value i1 = 0 ∧ c i0 	= c i1} ∧
keep1 c = {i0, i1 : decinput | value i0 = value i1 = 1 ∧ c i0 	= c i1} ∧
keep0fix c = {i0, i1 : decinput | (i0, i1) ∈ keep0 c ∧
(∀ othercond : argdec | othercond 	= c • othercond i0 = othercond i1)} ∧

keep1fix c = {i0, i1 : decinput | (i0, i1) ∈ keep1 c ∧
(∀ othercond : argdec | othercond 	= c • othercond i0 = othercond i1)}

262 S.A. Vilkomir and J.P. Bowen

The functions keep0 and keep1 assign for each condition the subset of pairs of
input data that vary the condition but keep the value of the decision equal to 0
(for keep0) or 1 (for keep1). The difference between the keep0fix/keep1fix func-
tions and the keep0/keep1 functions is that, for the keep0fix/keep1fix functions,
all the other conditions are kept fixed. This is similar to the difference between
changedecfix and changedec in the DecModified schema.

The introduced functions allow formulation of the formal definition of the
RC/DC criterion:

RC DC
MC DC

∀DecReinforced ; c : cond | c ∈ argdec •
(let target0 == choice(keep0fix c, keep0 c);
target1 == choice(keep1fix c, keep1 c) •
(target0 	= ∅ ⇒ (testset × testset) ∩ target0 	= ∅) ∧
(target1 	= ∅ ⇒ (testset × testset) ∩ target1 	= ∅))

This criterion contains MC/DC as a component and in addition includes the
requirements for testing of invariability of the decision when a condition varies.
In this way, the set of test cases should contain pairs of input data from two
sets target0 and target1, which keep (if it is possible) the value of the decision
and fix (if it is possible) all other conditions. If holding other conditions is not
possible, the test cases that keep the value of the decision without fixing other
conditions should be used.

Let us prove that if the decision does not coincide with the condition or the
condition’s negation, it is always possible to choose testing data that satisfies
RC/DC; i.e., (target0 	= ∅) ∨ (target1 	= ∅).

Lemma 3
RC DC ; c, value : cond �
(value 	= c ∧ value 	= ¬ c) ⇒ (target0 	= ∅ ∨ target1 	= ∅)
Proof
¬ ((value 	= c ∧ value 	= ¬ c) ⇒ [assumption]

(target0 	= ∅ ∨ target1 	= ∅))
⇔ value 	= c ∧ value 	= ¬ c ∧ target0 = ∅ ∧ target1 = ∅ [logic]
⇒ choice(keep0fix c, keep0 c) = ∅ ∧ [definition of target0 and target1]

choice(keep1fix c, keep1 c) = ∅

⇔ keep0 c = ∅ ∧ keep1 c = ∅ [definition of choice]
⇔ ¬ (∃ i0, i1 : decinput • [definition of keep0 and keep1]

c i0 	= c i0 ∧ value i0 = value i1)
⇔ ∀ i0, i1 : decinput • c i0 	= c i1 ⇒ value i0 	= value i1 [logic]
⇒ c = value ∨ c = ¬ value [Lemma 2]
⇒ false [contradiction]�

From MC/DC to RC/DC 263

It should be noted that there are decisions that do not keep one of the values (0
or 1) when varying a condition. For example, A ∨ B does not keep 0 and A ∧ B
does not keep 1.

4.3 Examples for RC/DC

Example 1. Consider the following rule for the actuation of the protection sys-
tem of the VVER-1000 type [61] nuclear reactor: the system should shut down
a reactor in the case of decrease of the pressure in the first circuit to less than
150 kg/cm2 under the coolant temperature of more than 260◦ centigrade and
reactor capacity equal or more than 75% of the rated capacity or decrease of
the pressure in the first circuit to less than 140 kg/cm2 under the coolant tem-
perature more than 280◦ centigrade. For measurement of each input parameter
(pressure p and temperature t), three sensors are used (inputs p1, p2, p3 and
t1, t2, t3) with majority voting of inputs.

Hence, 13 conditions are used for determination of necessity of the system
actuation:

P11 = p1 < 150 P21 = p2 < 150
P31 = p3 < 150 P12 = p1 < 140
P22 = p2 < 140 P32 = p3 < 140
T11 = t1 > 260 T21 = t2 > 260
T31 = t3 > 260 T12 = t1 > 280
T22 = t2 > 280 T32 = t3 > 280
NR = N ≥ 0.75Nr

The decision that is responsible for this actuation criterion is:

(((P11 ∧ P21) ∨ (P11 ∧ P31) ∨ (P21 ∧ P31)) ∧
((T11 ∧ T21) ∨ (T11 ∧ T31) ∨ (T21 ∧ T31)) ∧ NR) ∨
(((P12 ∧ P22) ∨ (P12 ∧ P32) ∨ (P22 ∧ P32)) ∧
((T12 ∧ T22) ∨ (T12 ∧ T32) ∨ (T22 ∧ T32)))

The number of all possible combinations of values of the 13 conditions equals
213 = 8192. Not all combinations are possible because of coupled conditions.
Thus, it is impossible to have Pi1 = 0 ∧ Pi2 = 1 and also Ti1 = 1 ∧ Ti2 = 0,
i = 1, 2, 3. This means that there are three possible outcomes for the every pair
of conditions (Pi1, Pi2) and (Ti1, Ti2). The maximum number of possible tests
is 36 (for these six pairs of conditions) times 2 (for possible values of NR) that
equals 1458. However, this number of possible combinations is still too large to
be completely checked during practical testing.

The RC/DC criterion requires a maximum of 6 test cases for each condition
(two for varying the decision, two for keeping it 0 and two for keeping it 1).
Therefore, not more than 78 combinations are required for this decision. How-
ever, this number is overestimated since the same combinations can be used for
testing different conditions. The minimization of the number of test cases for

264 S.A. Vilkomir and J.P. Bowen

RC/DC could demand special analysis and be a hard task. The cost of this anal-
ysis could exceed the obtained benefit from the minimization. Nevertheless, if
further reduction of test cases is not very important, the selection of test cases
presents no difficulty. For testing maintaining the value 0 for the decision during
variation of the condition P11, it is sufficient to select combinations of input
data, for which T11 = 0 and T21 = 0. This ensures that the decision equals 0;
therefore, any possible values of the other conditions could be fixed. For testing
maintaining the value 1 for the decision during variation of the condition P11,
it is sufficient to fix, for example, P12 = P22 = T12 = T22 = 1 and any allowed
values of the other conditions.

Example 2. Using RC/DC could be expedient during specification-based test-
ing. For this type of testing, the basis for test generation is software specifications
and data for testing results analysis (oracle data) are also drawn from specifica-
tions. Then a computer program is tested as a black box and testing results are
compared with the oracle data.

Using RC/DC during specification-based testing might allow revealing not
only accidental single errors in logical expressions (like Operator Reference Fault,
Variable Negation Fault, etc. [62]) but also more general errors. One of the possi-
ble examples is mistakenly using a different specification when the specification
for one mode of a computer system is used by mistake for another mode. Con-
sider an example when RC/DC reveals such error while MC/DC fails to do it.

Let the correct specification d3 be A ∧ B ∧ C ∧ D . The test cases in Table 4
satisfy the MC/DC criterion (the only one possible test set).

Table 4. Testing data satisfied the MC/DC criterion for d3

num values variations

A B C D d3.value A B C D
1 1 1 1 1 1 ∗ ∗ ∗ ∗
2 0 1 1 1 0 ∗
3 1 0 1 1 0 ∗
4 1 1 0 1 0 ∗
5 1 1 1 0 0 ∗

The test cases in Table 5 could be added to satisfy the RC/DC criterion (one
from the several possibilities). All these test cases keep d3 value equal to 0; it is
not possible to keep 1 for this decision.

Let us suppose that the following incorrect specification d4 has been used by
mistake instead d3 in the program: A ∧ B ∧ C ∧ D ∨ (¬A ∧ ¬B) ∨ (¬C ∧ ¬D).
Consider how test cases according MC/DC and RC/DC can reveal this fault.

Results of all test combinations for d3 and d4 are given in Table 6.
As is shown in Table 6, the values of d3 and d4 coincide for test combinations

1–5. This means that this test set, created according MC/DC, does not reveal
the fault. On the other hand, d3.value 	= d4.value for combinations 6–10. Thus,

From MC/DC to RC/DC 265

Table 5. Testing data satisfied the RC/DC criterion for d3

num values variations

A B C D d3.value A B C D
6 1 0 0 0 0 ∗
7 0 1 0 0 0 ∗
8 0 0 1 0 0 ∗
9 0 0 0 1 0 ∗
10 0 0 0 0 0 ∗ ∗ ∗ ∗

Table 6. Testing results for d3 and d4

num values

A B C D d3.value d4.value
1 1 1 1 1 1 1
2 0 1 1 1 0 0
3 1 0 1 1 0 0
4 1 1 0 1 0 0
5 1 1 1 0 0 0
6 1 0 0 0 0 1
7 0 1 0 0 0 1
8 0 0 1 0 0 1
9 0 0 0 1 0 1
10 0 0 0 0 0 1

the test cases, created according RC/DC, detect the difference between correct
and incorrect specifications (i.e., reveal this fault).

5 Conclusions and Future Work

The subject of this chapter has been the formalization of criteria for software
testing. Control-flow criteria (i.e., criteria using logical expressions), which re-
late to the branch and loop structure of the program, have been considered. If
mathematical (logical) specifications of software are used, these criteria can be
applied for specification-based testing as well. The Z notation [6,30,49] has been
utilized for the formal definition of the criteria. Z schemas formally describing
all the major control-flow testing criteria have been presented. These definitions
help to eliminate the possibility of ambiguities, which is likely for definitions in
natural language.

The Modified Condition/Decision Coverage (MC/DC) criterion [48] has been
analyzed in detail. The formal definition in the Z notation allows us not only to
make some problems regarding MC/DC clearer, but also to prove some features
of this criterion formally. In particular, we have considered situations when it is
impossible to vary a condition and a decision while holding all other conditions
fixed and have proposed to vary the condition without fixing others for these

266 S.A. Vilkomir and J.P. Bowen

cases. Then we formally proved that, in the framework of the proposed approach,
it is always possible to choose testing data to satisfy MC/DC.

In this chapter, we have also proposed and formalized the Reinforced Condi-
tion/Decision Coverage (RC/DC) criterion for software testing, which strength-
ens the requirements of the MC/DC criterion. The MC/DC criterion does not
include requirements for testing of ‘false operation’ type failures. Such failures,
as we have shown in several examples, can be highly important in safety-critical
computer systems.

The proposed RC/DC criterion aims to eliminate this shortcoming and re-
quires the consideration of situations when varying a condition keeps the value
of a decision constant. Using RC/DC gives an advantage for specification-based
testing since it requires testing safety-important situations when a false actua-
tion of a system is possible. Although the number of required test cases rises, the
growth remains linear compared to the number of conditions in a decision, mak-
ing the approach practicable. We have illustrated the application of the RC/DC
criterion in the testing of nuclear reactor protection system software. An impor-
tant area of application of the RC/DC criterion could be using it as a regulatory
requirement in standards, especially in safety-related areas [56,54,59].

The further application of the main idea of RC/DC was suggested by Am-
mann, Offutt and Huang [3]. They introduced Inactive Clause Coverage criteria
(ICC). These criteria consider situations when changing a condition does not
affect the decision. Thus, RC/DC is one of the possible realizations of ICC.

The basis of many testing criteria, including MC/DC and RC/DC, is an em-
pirical understanding of testing aims. That is why an experimental investigation
is important and we consider it as a major direction for further work in studying
the effectiveness of testing criteria [35,36]. A set of software tools is envisaged, for
insertion of different types of faults into decisions, and then to apply test cases
according to different testing criteria. Experimental results of the detection of
faults could be used for the comparison of the effectiveness of testing criteria
and for practical recommendations of employment of MC/DC and RC/DC in
industry.

Other possibilities for future investigation include:

– using RC/DC for specification-based testing;
– using RC/DC for integration testing of a whole computer system;
– automated generation of test inputs in line with the RC/DC criterion;
– formalization of other testing criteria (e.g., data-flow control criteria).

In summary, we have developed and formalized the RC/DC testing criterion,
building on the existing MC/DC criterion, which we believe could be important
in the testing of safety-critical application, as illustrated by a number of examples
here. The role of formal methods in aiding testing still has great potential and
it is hoped that the research in this chapter goes some way to demonstrating
the beneficial relationship between these two complementary aspects of software
engineering.

From MC/DC to RC/DC 267

References

1. Abdurazik, A., Amman, P., Ding, W., Offutt, J.: Evaluation of Three Specification-
based Testing Criteria. In: 6th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2000), Tokyo, Japan (September 2000)

2. Ammann, P.E., Black, P.E.: Test Generation and Recognition with Formal Meth-
ods. In: The First International Workshop on Automated Program Analysis, Test-
ing and Verification, Limerick, Ireland (June 2000)

3. Ammann, P., Offutt, J., Huang, H.: Coverage Criteria for Logical Expressions. In:
Proceedings of the 14th International Symposium on Software Reliability Engi-
neering (ISSRE 2003), Denver, Colorado, USA, November 17–20, 2003, pp. 99–107
(2003)

4. Applied Microsystems Corporation. DO-178B & ED-12B Software Verification us-
ing CodeTEST, http://www.amc.com/news/

5. Bishop, P.G.: MC/DC based estimation and detection of residual faults in PLC
logic networks. In: Supplementary Proceedings 14th International Symposium on
Software Reliability Engineering (ISSRE 2003, Fast Abstracts, Denver, Colorado,
USA, November 17–20, 2003, pp. 297–298 (2003)

6. Bowen, J.P.: Formal Specification and Documentation using Z: A Case Study Ap-
proach. International Thomson Computer Press (1996)

7. Bowen, J.P.: Experience Teaching Z with Tool and Web Support. ACM SIGSOFT
Software Engineering Notes 26(2), 69–75 (2001)

8. Bowen, J.P., Bogdanov, K., Clark, J., Harman, M., Hierons, R.: FORTEST: Formal
Methods and Testing. In: Proceedings of 26th Annual International Computer
Software and Applications Conference (COMPSAC 2002), Oxford, UK, August
26–29, 2002, pp. 91–101. IEEE Computer Society Press, Los Alamitos (2002)

9. Bowen, J.P., Hinchey, M.G.: Industrial-Strength Formal Methods in Practice.
FACIT series. Springer, Heidelberg (1999)

10. Bowen, J.P., Hinchey, M.G.: Formal Methods. In: Tucker, A.B. (ed.) Computer
Science Handbook, 2nd edn., Ch. 106, pp. 1–25. Chapman & Hall/CRC, Boca
Raton (2004)

11. Burton, S., Clark, J., Galloway, A., McDermid, J.: Automated V&V for High In-
tegrity Systems, A Target Formal Methods Approach. In: Proceedings of the 5th
NASA Langley Formal Methods Workshop (June 2000)

12. Burton, S., Clark, J., McDermid, J.: Proof and Automation: An Integrated Ap-
proach. In: Proceedings of the 1st International Workshop of Automated Program
Analysis, Testing and Verification (June 2000)

13. Carrington, D., Stocks, P.: A Tale of Two Paradigms: Formal Methods and Software
Testing. In: Bowen, J.P., Hall, J.A. (eds.) Z User Workshop, Cambridge, 1994,
Workshops in Computing, pp. 51–68. Springer, Heidelberg (1994)

14. Chapman, R.: Industrial Experience with SPARK. In: Proceedings of ACM
SIGAda Annual International Conference (SIGAda 2000), Johns Hopkins Univer-
sity/Applied Physics Laboratory, Laurel, Maryland, USA November 12–16 (2000)

15. Chilenski, J., Miller, S.: Applicability of Modified Condition/Decision Coverage to
Software Testing. Software Engineering Journal, 193–200 (September 1994)

16. Chilenski, J., Newcomb, P.H.: Formal Specification Tool for Test Coverage Anal-
ysis. In: Proceedings of the Ninth Knowledge-Based Software Engineering Confer-
ence, September 20–23, 1994, pp. 59–68 (1994)

17. Chilenski, J., Richey, L.: Definition for a Masking form of Modified Condition
Decision Coverage (MCDC), Boeing Report (December 1997)

http://www.amc.com/news/

268 S.A. Vilkomir and J.P. Bowen

18. Chilenski, J.: An Investigation of Three Forms of the Modified Condition Decision
Coverage (MCDC) Criterion, Report DOT/FAA/AR-01/18 (April 2001)

19. DDC-I, Inc. The DACS-Object Coverage tools. MC/DC and the DACS-Object
Coverage Tools, http://www.ddci.com/

20. DeWalt, M.: MCDC: A Blistering Love/Hate Relationship. In: FAA National Soft-
ware Conference, Long Beach, California, USA, April 6–9(1999)

21. Dupuy, A., Leveson, N.: An Empirical Evaluation of the MC/DC Coverage Cri-
terion on the HETE-2 Satellite Software. In: Proceedings of the Digital Aviation
Systems Conference (DASC), Philadelphia, USA (October 2000)

22. FAA Certification Authorities Software Team (CAST). Position Paper CAST-6,
Rationale for Accepting Masking MC/DC in Certification Projects (August 2001)

23. Frankl, P.G., Weyuker, E.J.: A Formal Analysis of the Fault-Detecting Ability
of Testing Methods. IEEE Transactions on Software Engineering 19(3), 202–213
(1993)

24. Galloway, A., Paige, R.F., Tudor, N.J., Weaver, R.A., Toyn, I., McDermid, J.: Proof
vs testing in the context of safety standards. In: Proceedings of the 24th Digital
Avionics Systems Conference (DASC 2005), Washington DC, USA, October 30 –
November 3, vol. 2 (2005)

25. Haworth, B.: Adequacy Criteria for Object Testing. In: Proceedings of the 2nd
International Software Quality Week Europe 1998, Brussels, Belgium (November
1998)

26. Hayes, I.J.: Specification Directed Module Testing. IEEE Transactions on Software
Engineering SE-12(1), 124–133 (1986)

27. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A Practical Tu-
torial on Modified Condition/Decision Coverage, Report NASA/TM-2001-210876,
NASA, USA (May 2001)

28. Hayhurst, K.J., Veerhusen, D.S.: A Practical Approach to Modified Condi-
tion/Decision Coverage. In: 20th Digital Avionics Systems Conference (DASC),
Daytona Beach, Florida, USA, October 14–18, 2001, pp. 1B2/1–1B2/10 (2001)

29. Hörcher, H.-M.: Improving Software Tests using Z Specifications. In: P. Bowen, J.,
Hinchey, M.G. (eds.) ZUM 1995. LNCS, vol. 967, pp. 152–166. Springer, Heidelberg
(1995)

30. ISO/IEC. Information technology – Z formal specification notation – Syntax, type
system and semantics. ISO/IEC 13568, International Organization for Standard-
ization (2002)

31. Jacky, J.: The Way of Z: Practical Programming with Formal Methods. Cambridge
University Press, Cambridge (1997)

32. Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman, D.: Test Data
Generation and Feasible Path Analysis. In: Proceedings of 1994 International Sym-
posium on Software Testing and Analysis, Seattle, Washington, USA, August 17–
19, 1994, pp. 95–107 (1994)

33. Jia, X.: ZTC: A Type Checker for Z Notation. User’s Guide. Version 2.03, August
1998. Division of Software Engineering, School of Computer Science, Telecommu-
nication and Information Systems, DePaul University, USA (1998)

34. Jones, J., Harrold, M.: Test-Suite Reduction and Prioritization for Modified Con-
dition/Decision Coverage. In: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 2001), Florence, Italy, November 7–9, 2001, pp.
92–101 (2001)

http://www.ddci.com/

From MC/DC to RC/DC 269

35. Kapoor, K., Bowen, J.P.: Experimental Evaluation of the Variation in Effective-
ness for DC, FPC and MC/DC Test Criteria. In: Proceedings of ACM-IEEE 2003
International Symposium on Empirical Software Engineering (ISESE 2003), Rome,
Italy, September 30 – October 1, 2003, pp. 185–194. IEEE Computer Society Press,
Los Alamitos (2003)

36. Kapoor, K., Bowen, J.P.: A Formal Analysis of MCDC and RCDC Test Criteria.
Software Testing, Verification and Reliability 15(1), 21–40 (2005)

37. Kaufman, A.V., Chernonozhkin, S.K.: Testing Criteria and a System for Evaluation
of the Completeness of a Test Set. Programming and Computer Software 6, 301–
311 (1998)

38. Kuhn, D.: Fault Classes and Error Detection Capability of Specification-Based
Testing. ACM Transactions On Software Engineering and Methodology 8(4), 411–
424 (1999)

39. LDRA Ltd. Modified Condition/Decision Coverage with LDRA Testbed,
http://www.ldra.co.uk/pages/mcdc.asp

40. Li, Y.Y.: Structural Test Cases Analysis and Implementation. 42nd Midwest Sym-
posium on Circuits and Systems 2(8–11), 882–885 (1999)

41. Myers, G.: The Art of Software Testing. Wiley-Interscience, Chichester (1979)
42. Ntafos, S.: A Comparison of Some Structural Testing Strategies. IEEE Transactions

on Software Engineering 14(6), 868–874 (1988)
43. Offutt, A.J., Xiong, Y., Liu, S.: Criteria for Generating Specification-Based Tests.

In: Proceedings of Fifth IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 1999), Las Vegas, Nevada, USA, October 18–21, 1999,
pp. 119–129 (1999)

44. Podgurski, P., Clarke, L.: A Formal Model of Program Dependences and its Impli-
cations for Software Testing, Debugging and Maintenance. IEEE Transactions on
Software Engineering 16(9), 965–979 (1990)

45. Prather, R.E.: Theory of Program Testing – An Overview. Bell System Technical
Journal 62(10), 3073–3105 (1984)

46. Rapps, S., Weyuker, E.J.: Selecting Software Test Data Using Data Flow Informa-
tion. IEEE Transactions on Software Engineering SE-11(4), 367–375 (1985)

47. Roper, M.: Software Testing. McGraw-Hill, New York (1994)
48. RTCA. Software Considerations in Airborne Systems and Equipment Certification.

DO-178B, RTCA, Washington DC, USA (1992)
49. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. International Series

in Computer Science. Prentice-Hall, Englewood Cliffs (1992)
50. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE

Transactions on Software Engineering 22(11), 777–793 (1996)
51. Tai, K.-C.: Theory of Fault-Based Predicate Testing for Computer Programs. IEEE

Transactions on Software Engineering 22(8), 552–562 (1996)
52. Vilkomir, S.A., Bowen, J.P.: Formalization of Software Testing Criteria Using the

Z Notation. In: Proceedings of COMPSAC 2001: 25th IEEE Annual International
Computer Software and Applications Conference, Chicago, Illinois, USA, October
8–12, 2001, pp. 351–356. IEEE Computer Society Press, Los Alamitos (2001)

53. Vilkomir, S.A., Bowen, J.P.: Reinforced Condition/Decision Coverage (RC/DC):
A New Criterion for Software Testing. In: Bert, D., Bowen, J.P., C. Henson, M.,
Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, Springer, Heidelberg
(2002)

http://www.ldra.co.uk/pages/mcdc.asp

270 S.A. Vilkomir and J.P. Bowen

54. Vilkomir, S.A., Bowen, J.P.: Establishing Formal Regulatory Requirements for
Safety-Critical Software Certification. In: Proceedings of AQuIS 2002: 5th Interna-
tional Conference on Achieving Quality In Software and SPICE 2002: 2nd Interna-
tional Conference on Software Process Improvement and Capability Determination,
Venice, Italy, March 13–15, 2002, pp. 7–18 (2002)

55. Vilkomir, S.A., Bowen, J.P.: From MC/DC to RC/DC: Formalization and Analysis
of Control-Flow Testing Criteria. Formal Aspects of Computing, Vol. 18 (2006),
DOI: 10.1007/s00165-005-0084-7

56. Vilkomir, S.A., Ghose, A.: Development of a normative package for safety-critical
software using formal regulatory requirements. In: Bomarius, F., Iida, H. (eds.)
PROFES 2004. LNCS, vol. 3009, pp. 523–537. Springer, Heidelberg (2004)

57. Vilkomir, S.A., Kapoor, K., Bowen, J.P.: Tolerance of Control-Flow Testing Cri-
teria. In: Proceedings of 27th IEEE Annual International Computer Software and
Applications Conference (COMPSAC 2003), Dallas, Texas, USA, November 3–6,
2003, pp. 182–187. IEEE Computer Society Press, Los Alamitos (2003)

58. Vilkomir, S.A., Kharchenko, V.S.: An ‘Asymmetric’ Approach to the Assessment
of Safety-Critical Software during Certification and Licensing. In: Project Control:
The Human Factor, Proceedings of ESCOM–SCOPE 2000 Conference, Munich,
Germany, April 18–20, 2000, pp. 467–475 (2000)

59. Vilkomir, S.A., Kharchenko, V.S.: Methodology of the Review of Software for
Safety Important Systems. In: Safety and Reliability. Proceedings of ESREL 1999
– The Tenth European Conference on Safety and Reliability, Munich-Garching,
Germany, September 13–17, 1999, vol. 1, pp. 593–596 (1999)

60. Voas, J., Ghosh, A., Charron, F., Kassab, L.: Reducing Uncertainty About
Common-Mode Failures. In: Proceedings of the Eighth International Symposium
on Software Reliability Engineering (ISSRE 1997), Albuquerque, New Mexico, USA
(November 1997)

61. Voznessensky, V., Berkovich, V.: VVER 440 and VVER-1000: Design Features
in Comparison with Western PWRS. In: International Conference on Design and
Safety of Advanced Nuclear Power Plants, vol. 4 (October 1992)

62. Weyuker, E., Goradia, T., Singh, A.: Automatically Generating Test Data from a
Boolean Specification. IEEE Transactions on Software Engineering 20(5), 353–363
(1994)

63. White, A.L.: Comments on Modified Condition/Decision Coverage for Software
Testing. In: 2001 IEEE Aerospace Conference Proceedings, Big Sky, Montana,
USA, March 10–17, 2001, vol. 6, pp. 2821–2828 (2001)

64. Woodward, M.R., Hedley, D., Hennell, M.A.: Experience with Path Analysis and
Testing of Programs. IEEE Transactions on Software Engineering SE-6(3), 278–286
(1980)

65. Zhu, H., Hall, P.A., May, H.R.: Software Unit Test Coverage and Adequacy. ACM
Computing Surveys 29(4), 336–427 (1997)

Comparing the Effectiveness of
Testing Techniques

Elaine J. Weyuker

AT&T Labs – Research
180 Park Avenue, Florham Park, NJ 07932, USA

weyuker@research.att.com

Abstract. Testing software systems requires practitioners to decide how
to select test data. This chapter discusses what it means for one test data
selection criterion to be more effective than another. Several proposed
comparison relations are discussed, highlighting the strengths and weak-
nesses of each. Also included is a discussion of how these relations evolved
and argue that large scale empirical studies are needed.

1 Introduction

When we speak about someone or something being better than something else, we
all have an intuitive sense of what is meant. For example, when we say that Mary
is a better singer than John, it means that she sings more sweetly or is better able
to stay on tune, has a better sense of rhythm or is more dynamic and connects bet-
ter with the audience. Of course, in some cases the basis for comparison is clear,
but in other cases the ranking might be highly subjective and very much a matter
of personal taste. Thus when I say that this is the best book I have ever read, or
even the best book on a particular subject, you might reasonably disagree even if
you have read exactly the same books as I have, and have equal expertise in the
subject matter. Again, there may be a significant component of subjectivity and
reasonable people might disagree. One reason is that these comparisons might be
made using different implicit assumptions about what the most important dimen-
sions are. For me, the better book is the one that is clearer and more concise; for
you, the most important criteria are plot and character development. Even when
we clearly articulate and agree on the characteristics that we are using to make
the comparison, we might reasonably disagree because we simply have different
aesthetic tastes. I like purple, you like green.

When it comes to making comparisons about technical issues such as which is
the better operating system or programming language, we might again see some
of the issues alluded to above arising. These might include such things as the
intended use, one’s previous experience, available tools, and again, subjective
likes and dislikes. For some things it probably does not matter which program-
ming language is selected. If the programmer is proficient in Java but not C++,
then in many cases the decision is clear: use the language that the programmer is
most proficient in, and that should increase the chances that the software will be

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 271–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 E.J. Weyuker

produced quickly and correctly. Of course there might be interoperability issues
relating to other system components which have to be taken into account, or
organizational standards.

Now what about software testing methods? It is important to use a method
that is effective. But what exactly does “effective” mean? Presumably it means
that if the tester uses the method to select test cases, then “most” of the “impor-
tant” or “critical” ‘faults will be exposed, allowing them to be removed, yielding
highly dependable software. Since the ultimate goal of testing is to improve or
assess the dependability of the software under test, the testing strategy that does
this most successfully should be considered best. But as we will see, even this is
not entirely straight-forward since different testers using the same testing strat-
egy might select different test sets and therefore expose different faults. This
might lead to different degrees of dependability while using the same testing
strategy properly.

Much of the literature on comparing testing methods is predicated on an
underlying assumption that we all know what it means for one test selection
criterion to be more effective than another, and the definitions proposed and
relations suggested try to codify the underlying intuition about just what “more
effective” should mean.

But do we really have a single dimension on which we can all agree that
if one test case selection method A is more effective than another test case
selection method B in this dimension, then A is a better way to test programs
than B? There are many testing stages: unit, feature, integration, system, load,
stress, performance, end-to-end, operations readiness to name just some of the
levels. Would it matter whether the testing strategy is intended for unit testing
or system testing, for example? What if the intended level is not specified? Are
there testing methods that are appropriate for all development stages? Can there
be a universally most effective testing method? Can we even say that method A
is always more effective than method B? These are some of the issues that we
will investigate in this chapter.

For many people, the first and most critical issue when assessing testing cri-
teria is finding faults, by which we mean a mistake in the software which, when
executed, may cause the software to fail or behave incorrectly. If strategy A is
guaranteed to find all the faults that strategy B does plus some additional ones,
then many people would agree that A is a more effective testing method than
B. But what if, using that criterion, it is not the case that A is more effective
than B nor that B is more effective than A? Does that mean that we ca not
say anything about their relative goodness? What if it is possible that A will
find all the faults that B does with particular test sets selected to satisfy the
two criteria for a given program, but that other test sets that satisfy A and B
do not have that property? In that case the effectiveness of a testing strategy
might be dependent on how it was being used, or the tester who was using the
strategy. Is it possible that A will find all the faults that B does in program
P1, but the reverse is true for program P2, so that the effectiveness of a testing
method varies with the program?

Comparing the Effectiveness of Testing Techniques 273

What if A and B find all the same faults in a set X , and in addition, A also
finds faults F1, F2, . . . , FN for some large number N , while B finds fault FN+1
in addition to the faults in X . A finds almost all the same faults as B, plus many
more, but it does not find FN+1. Is one of the criteria more effective than the
other? Strategy A finds many more faults than strategy B, but suppose FN+1
is a really critical fault, while all of the faults F1, F2, . . . , FN are in some sense
trivial? Is there a clear winner? Given that the goal of testing is to improve the
dependability of the software, the mere number of faults uncovered may be less
important than the severity of the faults uncovered.

Another dimension to consider is how frequently a particular fault will be
triggered when used in the environment in which it will be deployed, with a
given workload or input distribution. If fault FN+1 will be triggered repeatedly,
while faults F1, F2, . . . , FN are never triggered, does this affect our perception
of which testing strategy is more effective?

Although it is not clear that there is a single correct answer to these ques-
tions, I will nonetheless consider them and discuss the degree to which they are
important or unimportant. Again, much may be subjective and I will try to state
when that is the case.

In this chapter I will focus on how to compare the effectiveness of testing
strategies to help us determine which is the best approach for a given program,
or for all programs in general. I will describe various false attempts at defining
comparison relations, and describe where we are now. I will discuss why many
of the proposed relations were not satisfactory. I hope this will challenge some
readers to think about this important issue in new ways, and lead to a renewed
interest in the problem, and some exciting new insights.

2 Comparison Relations

Probably the first suggestion for how to compare software testing strategies
used the subsumption relation. Intuitively, subsumption is a very natural way to
compare strategies. It really seems like it captures the essence of what we mean
when we say that one testing strategy is more effective or more comprehensive
than another.

Formally, test selection criterion C1 subsumes test selection criterion C2 if for
every program P , every test suite that satisfies C1 also satisfies C2.

In [23] and [24], Rapps and Weyuker introduced a new family of data flow-
based test case selection strategies, and several control flow-based and data flow-
based criteria were compared using the subsumption relation. It was firmly be-
lieved that this relation indicated that the subsumed relations were less good
than the subsuming relations because it was harder to satisfy the subsuming
relation.

However, it was later recognized that subsumption had definite deficiencies
when used to compare testing strategies. The first deficiency was recognized and
pointed out by Rapps and Weyuker in [23], namely that many testing criteria are
incomparable using subsumption, in the sense that neither subsumes the other.

274 E.J. Weyuker

An even more serious limitation associated with subsumption is that it can be
misleading. It is easy to come up with examples of testing strategies such that
C1 subsumes C2 but there are test suites that satisfy C2, the “less effective”
testing strategy, that expose faults, while test suites that satisfy C1, the “more
effective” strategy, do not expose any faults. The problem arises because there
are typically many different test suites that satisfy a given strategy and generally
there is little or no guidance as to which of these test suites to choose. Therefore,
the tester may be lucky when selecting the test suite for C2 and unlucky when
selecting the C1 test suite, or it may even be that the “natural” test suite to
select for C2 is more effective at uncovering faults than the “natural” test suite
that one would select to satisfy C1. This issue was pointed out in a number of
papers including Hamlet’s discussion in [15].

With the weaknesses associated with subsumption in mind, Gourlay [13] in-
troduced the power relation. A test selection criterion is said to detect a failure if
every test set that satisfies that criterion contains an input that causes program
P to fail, and there is at least one test set satisfying the criterion for P . Then,
criterion C1 is at least as powerful as criterion C2 if for every program P , if C2
detects a failure in P , then so does C1. In the sequel I will refer to an input for
which the output produced by P on that input does not agree with the specified
output, as a failure-causing input.

While subsumption is purely a set inclusion relation (and Rapps and Weyuker
initially discussed the relationship between their data flow and control flow cri-
teria in terms of inclusion) and does not associate the “more effective” criterion
with fault identification, Gourlay specifically tied the notion of a more powerful
criterion to its ability to identify faults. Although intuitively this did make a
positive step towards addressing the weaknesses associated with subsumption,
it also wound up introducing a new set of problems without entirely eliminating
subsumption’s deficiencies.

In particular, the incomparability problem remains an issue for Gourlay’s
power relation since many criteria are still incomparable under the power rela-
tion. In addition, the power relation does not entirely eliminate the situation in
which the “less effective” relation exposes faults while the “more effective” one
does not. The central problem here is that the power relation is based on the
definition of “detecting” a failure which is a very demanding one. If C1 is at least
as powerful as C2, there can still be failures that will more often be exposed by
C2 than C1 even though neither criterion (always) detects them in the formal
sense. And it may also be the case that the ones more frequently exposed by the
“less effective” criterion are in some sense “more important” or “more critical”
than the ones frequently exposed by the “more effective” criterion, and hence the
use of the “less effective” criterion will often lead to more dependable programs
than the use of the more powerful criterion.

It may also happen that P contains faults but neither C1 nor C2 detects any
failures in this formal sense because of the stringent requirements associated
with the notion of detection. As discussed relative to the subsumption relation,
most test selection criteria do not require the selection of specific test cases, so a

Comparing the Effectiveness of Testing Techniques 275

criterion will be satisfied by many different test sets, some of which will include
inputs that fail, while others will not include any inputs that fail. Since this is
the case, it is possible that the test set selected for the criterion deemed less
effective by the power relation will expose more faults than the one selected for
the criterion deemed more effective by the power relation.

In addition, most criteria are monotonic as defined in [26]. This means that
for most criteria, adding additional test cases to a test suite does not prevent the
test suite from continuing to satisfy a given test selection criterion. The minimal
set that satisfies a criterion might not include a test case that fails, but when
some additional test cases are added, the test set does include a failing input. In
a sense, Gourlay’s notion of detecting a failure, and therefore the power relation,
tried to deal with this problem explicitly by only considering faults for which
every test set satisfying the criterion must include an input that will exercise
the fault and cause a failure. However, by so doing, it makes it very difficult,
if not impossible, to identify faults that will be detected by a criterion, and
consequently to show that one criterion is more powerful than another. I will
discuss this issue further when other comparison relations are considered since
this is a fundamental problem shared by other proposed comparison relations.

In [32], Weyuker, Weiss, and Hamlet introduced the BETTER relation in an
attempt to address the weaknesses associated with both the subsumption and
power relations. They first defined the notion of a test case being required by a
criterion C to test a program P , if every test set that satisfies C for that program
must include that test case. This addressed the issue of monotonicity mentioned
above so that the authors only considered the relevant test suites, rather than
ones created by adding additional (non-essential) test cases.

They next introduced the BETTER relation, and said criterion C1 is BET-
TER than criterion C2 if for every program P , any failure-causing input required
by C2 is also required by C1.

They showed that:

(C1 subsumes C2) ⇒ (C1 BETTER C2) ⇒ (C1 at least as powerful as C2)

They also proved that the converse did not hold. It therefore follows that
these three relations are all distinct relations.

Again the newly-defined relation that was designed to solve the previously-
defined relations’ problems, had its own problems. As before, the incomparability
problem had not been solved, and very few criteria actually require the selection
of specific test cases. This means that the set of failure-causing inputs required by
a criterion will typically be empty, even though P contains faults. It is also very
difficult to show that one criterion is BETTER than another criterion directly.
Often the easiest or only way to show this is to show that the subsumption
relation holds, and hence by the above theorem, that the BETTER and power
relations hold too.

So we see that although several formal ways of comparing software testing
strategies have been proposed and used to do the comparison, reflection indicates
that they do not really tell us what we would like them to tell us about the
relative effectiveness of different strategies.

276 E.J. Weyuker

There is another way of noticing that the above-cited types of comparison
relations fall short of ideal, and this helped us focus our attention in a different
direction. Consider the following simple example. Calling the set of possible
inputs to a program, the input domain, let P be a program with domain D =
{0,1,2,3,4}. Assume there is only one failure-causing input in the domain, namely
0; all of the other possible inputs are treated correctly by P . The domain may
be divided into subsets called subdomains.

Assume that C1 requires the selection of one test case from the subdomain
{0,1,2} and one test case from the subdomain {3,4}, while C2 requires the se-
lection of one test case from the subdomain {0,1,2} and one test case from the
subdomain {0,3,4}. Then six test sets satisfy criterion C1: {0,3}, {0,4}, {1,3},
{1,4}, {2,3}, and {2,4}, of which two, ({0,3} and {0,4}), or one-third of the
test sets expose the fault. Nine test sets satisfy criterion C2: {0,0}, {0,3}, {0,4},
{1,0}, {1,3}, {1,4}, {2,0}, {2,3}, and {2,4}, of which five expose the fault, or
more than one-half of the possible test sets expose the fault. Therefore, if each
test set determined by a criterion is equally likely to be selected, C1 subsumes
C2 but the probability that a test set selected using C2 will expose a fault is
higher than that for a test set selected by C1. That is, if the tester is just as
likely to select the test set {1,3} to satisfy C2 as they are to select test set {0,4},
then we have this sort of problem.

The reason that this counter-intuitive situation occurred was that 0, the only
input that failed, was a member of both of C2’s subdomains, but was in only one
of C1’s subdomains. This meant that 0 could be selected as the representative of
either or both of C2’s subdomains, but as the representative of only one of C1’s
subdomains. Therefore, although C1 subsumes C2, and is therefore intuitively
a more demanding criterion, in practice using C2 is more likely to do what we
hope to do when testing: expose the problem in the software, so that it can be
removed thereby making the software more dependable.

What we have seen so far is that for each of the formal relations that were
proposed for comparing testing strategies, there were fundamental flaws that
prevented them from allowing testers to use them to make meaningful compar-
isons. The example discussed above for which a subsumed selection criterion was
more likely to expose a fault than the subsuming criterion, led us to consider
using probabilities as the basis for comparing testing strategies. This will be
discussed in the next section.

3 Using Probabilistic Measures

The observation described in the previous section that it was possible for C1
to subsume C2 but the probability that C2 exposes faults is higher than the
probability that C1 does, led Frankl and Weyuker to consider defining relations
that would address problems of this nature. Several researchers had previously
used a probabilistic measure M to assess the ability of a testing approach to
expose faults and determine whether one criterion was more effective at finding
faults than another, including [4,16,30]. In [9], Frankl and Weyuker introduced

Comparing the Effectiveness of Testing Techniques 277

the covers and universally covers relations and used M as a way of assessing
whether testing strategies related by these relations were guaranteed to be more
effective at detecting faults. M was formally defined for program P whose sub-
domains are {D1, D2, . . . , Dn}, specification S and test selection criterion C as
follows: Denoting the size of subdomain Di by di, and letting mi be the number
of failure-causing inputs in Di, then

M(C, P, S) = 1 −
n∏

i=1

(1 − mi

di
).

Assuming the independent selection of one test case from each subdomain using
a uniform distribution, M is the probability that a test suite will expose at least
one fault.

Frankl and Weyuker formally defined the covers relation as follows: Let C1
and C2 be criteria, and let SDC(P, S) denote the nonempty multiset of subdo-
mains from which test cases are selected to satisfy criterion C for program P and
specification S. C1 covers C2 for (P, S) if for every subdomain D ∈ SDC2(P, S)
there is a collection {D1, . . . , Dn} of subdomains belonging to SDC1(P, S) such
that D1 ∪ . . . ∪ Dn = D. C1 universally covers C2 if for every program, speci-
fication pair (P, S), C1 covers C2 for (P, S). Thus, the covers relation attempts
to determine which criterion is more appropriate for a particular program and
specification pair, while the universally covers relation aims at classifying the
quality of a testing strategy in general.

Frankl and Weyuker showed in [9], that a number of well-known criteria are
related by the covers relation, but that even if C1 covers C2 for (P, S), it is
possible for M(C1, P, S) < M(C2, P, S). This is similar to the situation described
in the last section for subsumption. For the covers relation, they showed that
this sort of inversion can happen when a subdomain of the covering criterion is
used to cover more than one subdomain of the covered criterion.

This led Frankl and Weyuker to define a new relation, the properly covers
relation, in [9]. To solve the problem observed for the covers relation, this new
relation requires that this sort of “inversion” cannot happen. Formally we have:

Let SDC1(P, S) = {D1
1, . . . , D

1
m}, and SDC2(P, S) = {D2

1, . . . , D
2
n}. C1 prop-

erly covers C2 for (P,S) if there is a multi-set

M = {D1
1,1, . . . , D

1
1,k1

, . . . , D1
n,1, . . . , D

1
n,kn

}

such that M is a sub-multi-set of SDC1(P, S) and

D2
1 = D1

1,1 ∪ . . . ∪ D1
1,k1

...
D2

n = D1
n,1 ∪ . . . ∪ D1

n,kn

Informally this says that if C1 properly covers C2 then each of C2’s subdo-
mains can be “covered” by C1 subdomains (expressed as a union of some C1
subdomains). In addition, it must be done in such a way that none of C1’s

278 E.J. Weyuker

subdomains occurs more often in the covering than it does in SDC1, thereby
preventing the sort of misleading view of the criteria’s effectiveness that we saw
in the earlier example.

C1 universally properly covers C2 if for every program P and specification S,
C1 properly covers C2 for (P, S).

It was proved in [9] that if C1 properly covers C2 for program P and speci-
fication S, then M(C1, P, S) ≥ M(C2, P, S). Again, just as the covers relation
considered the effectiveness of criteria for a specific program while the univer-
sally covers relations assessed them relative to all programs, the properly covers
relation is also program-specific while the universally properly covers relation
assesses criteria relative to any program.

The above-cited theorem allowed Frankl and Weyuker to say in a concrete
way that criterion C1 is more effective at finding faults than criterion C2, for a
specific program P . Generalizing this theorem by using the universally properly
covers relation, Frankl and Weyuker also showed that there were many well-
known test selection criteria that were related by the universally properly covers
relation, and hence these criteria could in a sense be ranked.

In a follow-up paper [10], Frankl and Weyuker investigated whether there were
other appropriate ways of assessing the fault-detecting ability of a criterion, and
therefore considered E, the expected number of failures detected. Again, letting
SDC(P, S) = {D1, . . .Dn}, and assuming independent random selection of one
test case from each subdomain using a uniform distribution, E was defined to
be:

E(C, P, S) =
n∑

i=1

mi

di
.

Frankl and Weyuker proved that it is also true that if C1 properly covers C2
for program P and specification S, then E(C1, P, S) ≥ E(C2, P, S). In addition
they provided examples that showed that in the case in which C1 subsumes C2,
but does not properly cover C2, this is not necessarily the case.

Thus, by using the universally properly covers relation, Frankl and Weyuker
were able to rank testing criteria using both the probability of detecting at least
one fault and the expected number of faults exposed, and did so for roughly a
dozen well-known testing criteria. This is shown in Figure 1 which is reproduced
from [10].

It is important to notice, however, that they clearly pointed out that the fact
criterion C1 universally properly covers criterion C2 does not guarantee that
C1 will find more faults than criterion C2. However it is true that a testing
practitioner is guaranteed to be more likely to detect a fault using C1 than
C2 provided that test cases are selected using a somewhat artificial selection
method. On the other hand, if C1 does not universally properly cover criterion
C2 then even if C1 requires substantially more test cases than C2, it may still
be less likely to detect a fault.

Although these papers are of theoretical interest, and provide an interesting
way of ranking testing strategies, the primary weaknesses of these papers become
apparent if they are to be used pragmatically. As alluded to above, the method

Comparing the Effectiveness of Testing Techniques 279

decision coverage

limited mutation

all-p-uses

all-uses

required-k-tuples+

context coverage

ordered
context coverage

condition coverage

multiple condition
coverage

decision-condition
coverage

minimized
decision-condition

coverage

Fig. 1. Summary of Relations between criteria. A solid arrow from C1 to C2 indicates
that C1 universally properly covers C2, a dotted arrow from C1 to C2 indicates that C1

subsumes but does not universally properly cover C2; any relation that is not explicitly
shown in the figure and that does not follow from transitivity along with the fact that
universally properly covers implies subsumption, does not hold.

of test case selection is artificial, as are the criteria definitions used. As discussed
in earlier sections, testing practitioners tend to use test selection criteria in very
personalized ways, relying on intuition and experience to help select test cases
even when using a particular test case selection strategy. The Frankl/Weyuker
results assume instead that random selection from within the subdomains defined
by the selection criterion is done.

In [6], a different approach was taken to comparing testing criteria. First, in-
stead of comparing specific testing strategies, the authors analytically compared
what they refer to as debug testing and operational testing. In debug testing, the
tester aims at selecting test cases that will cause failures to occur. Operational
testing, on the other hand, subjects the software to a statistical distribution of
inputs that is intended to be representative of the inputs that the software is
expected to be subjected to during operation.

The goal of this research was to see whether higher software dependability
could be achieved using debug testing, which they equated to looking for failures,
or by selecting test cases based on the expected field usage (operational testing).
Therefore, instead of basing the comparison on the probability of finding one or
more faults or failures, or the number of faults detected, their goal is to base
their assessment of a testing criterion on the reliability of the program under test

280 E.J. Weyuker

after it has been tested using a given strategy. Although the intuition on which
this assessment is based is interesting, and adds to the overall picture provided
by this sort of analytic research, there are limitations to the applicability of the
authors’ observations to real development projects.

In order to facilitate the assessment, the authors made simplifying assump-
tions. For example, they assumed that all testers will respond to a given failure
with modifications that will have exactly the same effect, regardless of the type
of testing being done. In addition, they assumed that such fixes are always suc-
cessful. Based on my experience working with production programs, these seem
to be highly unrealistic assumptions. Another assumption made is that when a
failure occurs, all testers will recognize it, which also is not consistent with my
experience working with professional testers. Other assumptions include that all
software have single inputs (rather than complex vectors) and when the software
is run on the input, a single result is produced. Furthermore, it is assumed that
the software’s response to the input in no way affects later runs of the soft-
ware. This implies that whenever a program is run on a given input, exactly the
same output will be produced regardless of earlier runs. Again this is not at all
consistent with software problems that testing groups I have worked with have
encountered. In many cases, it is only after the software has run for significant
periods of time that a given input will trigger a failure. This is particularly true
for performance-related problems such as memory leaks, which tend to account
for significant percentages of field faults.

The stated goal of operational testing, is primarily to assess the dependability
of the software, according to the authors, and faults are found only incidentally
as part of this assessment. The authors note that during debug testing, test cases
are generally selected without regard to the severity of the failure that a test
case is likely to expose or the frequency with which the failure is likely to occur
in the field. In other words, that testers generally do not perform any sort of
risk analysis when selecting test cases for debug testing. My experience working
with many industrial testing organizations is that it is absolutely standard for
testing practitioners to assign a severity to every fault uncovered which is used
as the basis for prioritizing debugging efforts. A brief relevant discussion of risk
analysis as it relates to testing is included in Section 5 of this chapter.

One further point: I have found that it is not uncommon in some production
environments to base debug testing on an operational distribution [1] blurring
the distinction between debug and operational testing.

Hierons [17] introduced the use of test hypotheses and fault domains to facil-
itate the comparison of testing strategies. A test hypothesis describes a property
that the software tester believes holds for the software that is being tested. Hi-
erons gives the example of the situation when the tester believes that if the
software behaves correctly on one positive integer, then it will also work cor-
rectly when any positive integer is used as input. Clearly then, if the tester is
correct, there is no need to test the software on more than one positive integer
since no additional information about the software’s correctness will be gleaned
from additional positive integer inputs. This is often described as partitioning the

Comparing the Effectiveness of Testing Techniques 281

input domain into subdomains, such that all of the elements of a given subdomain
are related in some way. In this case the basis for being in a given subdomain
is whether or not the tester believes the elements will fail or succeed similarly.
There are many different testing techniques described in the literature that fall
into this category of division into subdomains. [16,30,31].

Hierons also defined a fault domain to be a set F of functional behaviors
such that the tester believes that the functional behavior of the software being
tested is equivalent to some member of F , and notes that there is a relationship
between fault domains and test hypotheses. After introducing test hypotheses
and fault domains, Hierons then explored the types of statements that can be
made regarding the fault detecting ability of different testing techniques if one
is willing to assume the existence of fault domains and fault hypotheses. In
particular he defined what it means for a test set T1 to be at least as strong as
another test set T2 in the presence of a test hypothesis H . If for every incorrect
program implementation P satisfying H , if whenever P fails on T2, P also fails
on T1, then T1 is at least as strong as T2. Therefore this definition compares the
ability of test sets to expose faults regardless of how the test sets were selected,
rather than comparing the fault detecting ability of different test set selection
methods.

He then extended the use of test hypotheses to compare testing criteria rather
than just test sets. Because of the monotonicity issue discussed earlier, he defined
a non-reducible test set T relative to a criterion C, program P , and specification
s to be one such that T satisfies C and no proper subset of T satisfies C. Then
criterion C1 is at least as strong as criterion C2 if and only if for every faulty
program for which hypothesis H holds, if there is a non-reducible test set T2
that satisfies C2 that can show that P is faulty, then every test set that satisfies
C1 can show that P is faulty.

Again this work is highly interesting theoretically, but has definite limitations
when trying to apply the ideas in a real production setting. First, how will the
assumptions regarding fault domains and test hypotheses made and how will test
cases be generated using the assumptions? Again it is not clear what this formal
analysis tells us about how practitioners can use these ideas to assess testing
criteria and decide which one is most appropriate for testing their systems.

4 Limitations of Formal Analysis

Although the universally properly covers relation seemed like a very natural and
promising way of assessing the effectiveness of testing strategies proposed to
date, there are still a number of limitations associated with any such analysis
that should be recognized.

One important problem that was not considered by Frankl and Weyuker is
that all of these relations were applied to compare idealized versions of testing
strategies which are virtually never used in practice. In a sense, that is the chronic
problem associated with formal approaches to software processes. The ultimate
goal of comparing testing methods is to be able to tell testing practitioners how

282 E.J. Weyuker

best to test their software and what to expect if it is tested using some particular
strategy. But if the testing strategies that we are able to compare are not the
ones that practitioners use, are we really telling them anything useful at all?

When we determine that a theoretical version of criterion C1 is more effective
that a theoretical version of criterion C2, does it tell us anything about how
the real similarly-named versions of these criteria that are used by practitioners,
relate?

Similar types of issues are associated with all of the comparison relations that
I have discussed above. For example, one commonly considered testing criterion
is branch testing, also known as decision coverage. Informally, branch testing
requires that sufficient test cases be included so that every branch or outcome
of a decision statement in the program under test be exercised at least once.
No mention is made of how those test cases are to be selected. More formally,
in order to prove the sorts of theorems that we have discussed above, it was
necessary to make the process more precise. For this reason, the formal definition
of branch testing assumes that the domain is first divided into subdomains, each
containing exactly those members of the input domain that cause a given branch
in the program to be exercised. Then it is assumed that one element of each
subdomain is randomly selected using a uniform distribution.

It is difficult to imagine that this process would ever be followed in practice.
Pragmatically, branch testing tends to be used more often as a way of assessing
the thoroughness of testing, rather than as a basis for selecting test cases. A
tester typically selects test cases based on intuition and experience until they
believe they have done a comprehensive job. They might then use a branch cov-
erage tool that determines the percentage of the branches of the program that
have been exercised by the test suite they have assembled so far. If the percent-
age is high, the tester might then see which branches had not been covered and
try to determine an input that would cause each of the uncovered branches to
be exercised. If the percentage was low, then the tester would likely continue
to use ad hoc methods of selecting test cases and then reassess the branch cov-
erage achieved, iterating until the percentage of branches covered exceeded a
prescribed level or the tester believed that they had done enough.

If branch testing is used in that manner, then we know nothing whatsoever
about how its effectiveness compares to other testing strategies, because we did
not assess that version of branch testing, we assessed an entirely different testing
method that we are calling branch testing. The same is true for all of the testing
strategies compared – they were not the real strategies that testers use to select
test cases, they were idealized versions. So we are left with the question: Does
knowing that idealized test case selection method A is superior to idealized test
case selection method B, tell us anything about the relative effectiveness of
“real” methods A and B? And given that the real methods A and B are not
formally defined, is there in fact a single “real” method A or B, or do different
practitioners each have their own ways of using them?

Another limitation of the work described above is that there is no provi-
sion for human variability. Each tester comes to the table with their own set of

Comparing the Effectiveness of Testing Techniques 283

experiences, expertises, and acquired intuition, and so two different testers using
exactly the same approach to test a given software system will generally select
different sets of test cases. This is not because of the variability due to random
selection – it is because of individualized human behavior and the latitude pro-
vided by the testing criteria in the selection of elements of a subdomain. How
can we codify this behavior so that we can say meaningful things about the
effectiveness of using different testing methods?

There are similar pragmatic issues associated with Hierons’ work, particularly
how the assumptions underlying fault domains and test hypotheses are made
and how test cases will be generated using the assumptions. Once again we have
the situation in which it is not clear what this formal analysis tells us about
reality or how the concepts introduced in these research papers can be used by
practitioners.

A different kind of issue is related to the appropriateness of relying on the
measures M and E as a basis for feeling confident that one testing strategy does
a more effective job than another. Neither of these measures differentiates at
all between high consequence faults and trivial faults. Therefore, if criterion C1,
the criterion that properly covers criterion C2, exposes trivial faults while C2
exposes catastrophic faults, then the fact that the program was tested using C1
does not really indicate that it is more dependable than it would have been if it
had been tested using C2. This is true in spite of the fact that more faults were
uncovered using C1, and there was a higher likelihood of exposing faults, since
the ones that were being exposed were of little consequence.

And what about the cost of doing the testing itself? Suppose C1 does do a
somewhat more effective job of testing than C2, and exposes more faults of equiv-
alent or higher severity than C2 does. But what if C1 costs orders of magnitude
more to use than C2? Is the added benefit worth the added cost?

Perhaps the biggest problem is that when we are done testing the software
using a given criterion, even if it really is the most effective of the ones being
considered, what do we know about the dependability of the tested software?
Do we know anything about how many faults remain in software or whether
the resulting software is dependable enough for the given application? These
problems have not been addressed at all by this research. Are there concrete
ways that we can determine that information? Without such an assessment is
the theoretical research comparing testing techniques of any practical value?

5 Other Issues

The relations that I considered viewed effectiveness from the perspective of the
test selection criterion’s ability to find faults. That is certainly one important
dimension of effectiveness. Of course, a testing criterion that uncovers many
faults but also leaves many faults undetected is less desirable than one that
uncovers almost all faults, provided the ones left behind are not the critical ones.
Similarly, criteria that lead to higher dependability are more desirable than ones
that do not consider the overall dependability of the system.

284 E.J. Weyuker

Thus, a good measure of effectiveness would rely not only on the number
of faults a test suite uncovers, but also the percentage of faults that remain
undetected. Of course, pragmatically, one can count how many faults were un-
covered, although there may be technical difficulties determining exactly how to
count such faults, but we generally do not know what faults are in a system,
and hence we ca not determine, in practice, what percentage were left unde-
tected. Therefore, we may have to settle for comparing the numbers of faults
found by different criteria. Alternatively, we could base our assessments on the
degree to which the system reliability has been improved assuming that there is
an agreed-upon definition of reliability.

Another issue already alluded to is that not all faults were created equal.
That is, some faults have disastrous results, while others are barely a nuisance.
If a fault causes an airplane to crash or large amounts of money to be diverted
from one account to another, then the fault has substantial consequences. On
the other hand, if the desired shade of the background of a website is slightly off,
it may be aesthetically less pleasing to some, but obviously far less catastrophic
than one of the faults mentioned above. If we are able to associate a cost of failure
with potential faults, and a probability of that fault’s occurrence, then we could
do a risk analysis. [28] This might allow us to compare testing strategies based
on how many high risk faults they uncover or the amount of risk reduction they
guarantee. But, of course, that is inherently a system-specific sort of comparison
and therefore just because the strategy will do a more effective job for this
system, we are not able to extrapolate to other systems.

In an attempt to address this sort of issue, Frankl and Weyuker [11] extended
their earlier work on comparing testing strategies discussed in Section 3 [10]. First
they generalized the test selection strategies considered to make them somewhat
less artificial. They also introduced two new measures of test effectiveness that
were related to risk. The first compared strategies based on the expected risk
detected, while the second considered the expected risk reduction. They then
investigated whether it was possible to compare testing strategies using either
of these new measures. Again they used the properly covers relation and showed
that if C1 properly covers C2 then under very constrained circumstances, C1 was
guaranteed to perform at least as well as C2 by both of these measures. This
seems to be a positive step on the road to more realistic comparisons, but still
involves the use of not entirely realistic definitions of testing strategies.

6 Comparing Criteria Empirically

So far I have discussed formal analytic ways of comparing software testing cri-
teria. It is also possible to compare these criteria empirically, and, in fact, there
are two distinct sorts of empirical studies that could be performed. The first
involves doing a formal scientific experiment, while the second involves a far less
formal case study.

Formal experiments generally involve applying the technique under consid-
eration to a substantial population of software systems and observing various

Comparing the Effectiveness of Testing Techniques 285

characteristics of this application, such as cost, effectiveness, or ease of use. For-
mal experiments have the advantage that you can extrapolate from the results
observed during the experiment to other systems, because the subjects of the ex-
periment were supposedly representative of the larger population which is your
universe.

But true scientific experiments are rarely if ever done in this area for several
reasons. First, it would require that there be a clear understanding of what
is meant by a “typical” program containing “typical” faults, and we generally
do not have that sort of information, even in limited domains such as medical
or telecommunications applications. In addition, the cost of doing a significant
experiment on multiple large systems would generally be completely prohibitive,
as would be the time to complete such an experiment.

Several papers describing small “experiments” that aim to compare the effec-
tiveness of different testing strategies have been published. However, there has
generally been no validation or even plausible arguments made that the sub-
ject software are in any way representative of software systems in use. Similarly
there has been no evidence that the faults, which have frequently been seeded or
deliberately inserted, are in any way representative of real faults that occur in
large software systems. For these reasons, even when the authors have referred
to these empirical studies as experiments, I do not believe that they meet the
standards used in most scientific fields of being a scientific experiment. I will
therefore refer to them in this section simply as empirical studies.

Examples of published empirical studies comparing two or more testing strate-
gies include [4,5,7,8,12,14,18,19,20,21,25] These studies have generally used small
programs, specifically written for experimentation, which have not been shown to
be representative of any particular system, or program type. In addition, for most
of these studies, the faults are synthetic and have been seeded into the software.
Even for the few studies that did use large systems and/or naturally-occurring
faults, they failed to satisfy the “representative” criterion for being considered
a true scientific experiment that would allow us to extrapolate widely from ob-
servations made for the subject faults and software in terms of the effectiveness
of the studied testing strategies.

Although a second type of empirical study involves the use of one or more
large industrial software system, containing real faults, it is still sometimes of
limited value for other software projects because it is necessary to model the
system. This involves designing a simplified version of the system which is close
enough to reality that the observations made about the model are believed to be
valid for the full system, yet simple enough to make the mathematics tractable.
Our experience has been that most software testers find modeling very difficult
or impossible to do. In addition, when the study is completed for the simplified
system or systems, one does not necessarily have an accurate picture of how
effective the testing strategies considered for the system model will be for real
systems.

In general, case studies examine the application of one or more testing strat-
egy or characteristics of testing strategies for one or a few specific systems. They

286 E.J. Weyuker

acknowledge that these systems and the faults they contain may not be represen-
tative of a wider class of programs. By recognizing the importance of replicating
case studies on many different large systems, with many different characteristics,
we are able to build up a significant amount of evidence, that individually may
not be persuasive, that some testing strategy is more effective than another. By
showing similar experiences with many different software systems, we are able
to draw conclusions about the effectiveness of one or more testing strategy. For
the purposes of this chapter, when I refer to a case study, I am referring to one
performed on a “real” system, produced by professional programmers to accom-
plish a real task in a production environment. I am also referring to the situation
in which whatever faults occur in the system occurred naturally, as opposed to
the case in which they were seeded, or synthetically inserted into the software.

Although it is difficult to perform case studies well, and expensive to design
and perform these studies, it is nonetheless typically much more feasible to per-
form carefully crafted case studies than formal experiments using real deployed
software systems. Of course, it is generally impossible to directly extrapolate
from results observed for one or two specific systems that served as subjects of a
case study to systems in general since the subjects were typically not selected be-
cause they were especially representative, but rather because there were project
personnel who were willing to participate in the study, or management support,
or because the project itself initiated the study to find out information about
their project.

Nonetheless, by repeating similar case studies we build up a body of knowl-
edge that can allow us to conclude that because of the similarity of results for
different sorts of systems, developed in different languages, with different devel-
opment and test personnel, and different development environments, we can in
fact deduce that the observations made for the specific systems, can in fact be
applied to other types of systems. By carefully replicating case studies, with dif-
ferent specific systems and different types of systems, we see more pieces of the
puzzle, and therefore we can be more convinced that we have a general solution
of the puzzle.

Besides the limitation that case study results might not be generalizable, there
are other problems that may be similar to those associated with the formal
analytic comparison relations. For example, case studies may also involve the
use of idealized ways of using the criterion or other behavior that does not
reflect how the development project normally behaves. That is one of the reasons
that I restrict attention to real production systems, developed by professionals
to perform a real, mission-critical task. My assumption further, is that testing
strategies under consideration are also being used as intended.

Nonetheless, for some testing strategies, there may not be any provision to
account for individualized behavior. Therefore, one professional tester might
correctly use a strategy and select test suite X while another professional tester
might correctly use the same strategy and select test suite Y , where X and Y
are entirely disjoint. For that reason, the testing strategy might perform very
well in a case study done using the first tester, yet poorly in a case study using

Comparing the Effectiveness of Testing Techniques 287

the second tester. For that reason, it is even more essential that case studies be
replicated. If we see large amounts of variability in the success of using certain
testing strategies, that might point us in the direction of removing this variability
by in some way codifying what the more successful tester is doing.

Furthermore, if the case study is just intended to assess the effectiveness of
different test case selection strategies, then cost may not have been evaluated
during the case study and no cost-benefit analysis may have been performed.
This might mean that the pragmatic usefulness of the strategies studied might
not have been assessed. Similarly, since the severity of faults uncovered by testing
strategies is generally not an integral part of test case selection criteria, a case
study designed to compare the effectiveness of different strategies might not
even consider the fault severity dimension or the degree to which the removal of
detected faults improves the overall system dependability.

In addition, an assessment of the overall state of the software may not have
been made at the end of the case study, so although the case study may have
indicated that testing strategy A was more effective for a given system or systems
than testing strategy B, it may still be the case that neither strategy is really
acceptable because the required level of dependability may not have been met.

But even small or limited case studies do have some real positive character-
istics too. They can provide a “proof of concept” which may be sufficient to
encourage practitioners to try the technique being investigated, in the field. It
may be considered too big a risk to try a new testing technique or other software
development strategy on a large production software project because of time and
reliability constraints. However, if it can be shown in a case study that other
similar production projects have used the technique and gotten better results
than the currently-used process that the project or organization has been using,
that might be sufficient to convince management of the usefulness of the new
approach.

Additionally, case studies can provide an estimate of the difficulty of using the
test selection criterion. Often it may seem to project personnel that the learning
curve will be too steep to make the adoption of the new technique worthwhile. By
showing how other projects have adopted the use of the criterion, and including
a description of the experience of testers, it might be possible to convince a
project to try using it too. I have found that to be the case for other validation
and dependability-related activities.

For example, once production projects saw the way we used operational dis-
tributions describing the expected workload of the system once it is operational
in the field, as the basis for selection of test cases for several large industrial
software projects, as documented in case studies described in [1], they were will-
ing or even eager to try basing their test case selection strategies on operational
distributions.

Other examples in which large-scale case studies were used to help convince
projects to move a strategy or approach to some software development stage
from a research environment into production use include a performance testing
strategy described in [2], the use of architecture reviews as a means of predicting

288 E.J. Weyuker

likely project success [3], the use of a technique designed to predict system
scalability [29], and the use of a statistical model that predicts which files of
a large software system are likely to contain the largest number of faults in the
next release of the system [22].

Another issue that may serve as a roadblock to the adoption of a new test case
selection criterion is the perceived or actual cost of using it. Estimates of this
cost can be essential in convincing management of the practicality or feasibility
of using the strategy. Thus, one test case selection strategy may find 10% more
faults than another, but if it costs one hundred times more, or it is feared that
it will cost much more to use, then it might be dismissed out of hand. I have
found that a comprehensive case study that includes an accurate assessment of
its cost to use on one or more real projects may be sufficient to win acceptance
for the strategy.

One other useful potential payoff of doing a large industrial case study to de-
termine the effectiveness of a software test selection criterion relates to modeling.
It is often difficult to determine an effective granularity for modeling the soft-
ware. When it is necessary to model a system, particularly when the system is
very large, the task can sometimes seem overwhelming to practitioners. In these
situations, case studies that include a description of the level of granularity at
which the modeling was done can be extremely helpful, serving as a sort of a
template.

Our personal experience has been that large industrial case studies are difficult
and expensive but very valuable for the reasons mentioned above, and therefore
well worth the time and effort. In many cases they provide information that
cannot be determined any other way.

7 Conclusions

We have studied a variety of proposed ways of comparing software testing cri-
teria, and found that many of the formal comparison relations had profound
problems associated with them, even though they initially appeared to be intu-
itively reasonable.

Of central importance was the fact that all of the testing criteria that were
compared by the relations were idealized versions of the way practitioners actu-
ally test software. So, even though we know precisely how these idealized criteria
are related based on the expected number of faults detected and the probability
of finding faults, we are not able to state conclusively how the versions of these
strategies actually used in practice stack up.

Also, none of the proposed comparison relations took the cost into account. If
we knew that one criterion was a little bit more effective at finding faults than
another but that it cost many times as much, would the more effective strategy
still be attractive or even feasible to use? That would likely depend heavily on
the application and its reliability requirements. And if criterion C1 was deemed
more effective than criterion C2 by some relation, but all the faults that were
being detected by C1 were trivial faults, while C2 found profound and potentially

Comparing the Effectiveness of Testing Techniques 289

catastrophic faults, would we still consider C1 a more effective criterion? By all
the relations we investigated, C1 might be considered in some way stronger, since
there is no way to factor in the severity or consequence of the faults.

Perhaps most important is that there is no indication whatsoever of how
dependable the software will be when it has been thoroughly tested according to
some criterion. Even knowing that criterion C1 always does a more effective job
of testing than criterion C2, does not imply that C1 does a good job of testing.

So what are the implications of all this? First, this is a call for new thought
and more important, new types of thought to be put into attacking this problem.
We saw that the initial proposals for comparison relations seemed reasonable at
first glance, but turned out to be flawed because they really did not properly
capture the essence of what it means for one testing strategy to be more effective
at finding faults than another.

Then there was the insight that using probabilistic measures would be more
appropriate, and in fact they are more appropriate in certain ways. But there
are still serious flaws. It is very difficult to imagine how to formalize what is in
practice a very individualized process. Testing practitioners often develop their
own versions of the test selection criteria introduced in textbooks or develop
ways of testing software based on their experience, intuition, available tools,
application domains, project norms, project deadlines, and many other factors.

I believe that the research performed so far provides us with insights and al-
though I have described serious flaws associated with these analytic assessments,
I nonetheless firmly believe that they are valuable. Each time a new perspec-
tive is proposed, especially if designed to address weaknesses identified in earlier
proposals, I believe that we, as a community move closer to greater understand-
ing. Perhaps instead of comparing testing strategies in general, we may need
to relativize the comparisons to particular domains, programming languages, or
environments.

There is also a very important role for empirical studies. They can tell us
things that all the theorems in the world cannot tell us – how something really
works in practice. Comparing and assessing software testing strategies is a very
important and essential problem that must be solved in order to elevate the
practice of testing. I think the best hope for a solution will be the combination
of carefully thought out theory, done by people who understand both theory and
practice, along with carefully thought out case studies.

In closing I note that in earlier papers, I tried to identify properties of soft-
ware test data adequacy criteria [26] and software complexity measures [27] as
a way of evaluating the effectiveness of proposed criteria. An important future
direction of research in the area of comparing testing strategies might involve
the identification and codification of the characteristics that make comparison
relations either appropriate or inappropriate. In this way we can try to make
progress in defining good comparison relations. If we knew what properties a
comparison relation should possess and which ones they definitely should not
have, we might be able to say in concrete terms whether the comparisons they
make were important.

290 E.J. Weyuker

For example, one might argue that it should be possible to compare all or
most testing strategies using a proposed relation. We saw, however, that this
was not true for relations such as subsumption and power. Another requirement
might be that the relation should never give misleading results. Again, this was
not true for the subsumption and power relations. As outlined above, we have
already identified several other properties that proposed comparison relations
should have but do not. Perhaps we can come to some agreement about these
desirable properties and that will point us in exciting new directions.

Fundamentally, progress in this area will involve a great deal of ingenuity,
some essential insights, and a great deal of effort, but hopefully it will all be
worth the trouble. Perhaps some day in the future we will be able to tell testing
practitioners how to test their software and we will know in concrete ways, the
state of the resulting software. But I think that is still a while off.

References

1. Avritzer, A., Weyuker, E.J.: The automatic generation of load test suites and the
assessment of the resulting software. IEEE Transactions on Software Engineering,
705–716 (September 1995)

2. Avritzer, A., Weyuker, E.J.: Deriving workloads for performance testing. Software
Practice and Experience 26(6), 613–633 (1996)

3. Avritzer, A., Weyuker, E.J.: Metrics to assess the likelihood of project success
based on architecture reviews. Empirical Software Engineering Journal 4(3), 197–
213 (1999)

4. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Transactions
on Software Engineering 10(7), 438–444 (1984)

5. Thévenod-Fosse, P., Waeselynck, H., Crouzet, Y.: An Experimental Study on Soft-
ware Structural Testing: Deterministic Versus Random Input Generation. In: IEEE
Fault-Tolerant Computing: The Twenty-First International Symposium, Montreal,
Canada, June 1991, pp. 410–417 (1991)

6. Frankl, P.G., Hamlet, D., Littlewood, B., Strigini, L.: Evaluating testing methods
by delivered reliability. IEEE Transactions on Software Engineering 24(8), 586–601
(1998)

7. Frankl, P.G., Weiss, S.N.: An Experimental Comparison of the Effectiveness of
Branch Testing and Data Flow Testing. IEEE Transactions on Software Engineer-
ing 19(8), 774–787 (1993)

8. Frankl, P.G., Weiss, S.N., Hu, C.: All-Uses versus Mutation Testing: An Experimen-
tal Comparison of Effectiveness. Journal of Systems and Software 38(3), 235–253
(1997)

9. Frankl, P.G., Weyuker, E.J.: A formal analysis of the fault detecting ability of
testing methods. IEEE Transactions on Software Engineering, 202–213 (March
1993)

10. Frankl, P.G., Weyuker, E.J.: Provable improvements on branch testing. IEEE
Transactions on Software Engineering 19(10), 962–975 (1993)

11. Frankl, P.G., Weyuker, E.J.: Testing Software to Detect and Reduce Risk. Journal
of Systems and Software 53(3), 275–286 (2000)

12. Girgis, M.R., Woodward, M.R.: An Experimental Comparison of the Error Expos-
ing Ability of Program Testing Criteria. In: Proceedings of the IEEE Workshop on
Software Testing, July 1986, pp. 64–73 (1986)

Comparing the Effectiveness of Testing Techniques 291

13. Gourlay, J.S.: A mathematical framework for the investigation of testing. IEEE
Transactions on Software Engineering SE-9(6), 686–709 (1983)

14. Grindal, M., Lindström, B., Offutt, J., Andler, S.F.: An Evaluation of Combination
Testing Strategies. Empirical Software Engineering 11(4), 583–611 (2006)

15. Hamlet, D.: Theoretical comparison of testing methods. In: Proceedings Third
Symposium on Testing, Analysis and Verification, Key West, pp. 28–37 (1989)

16. Hamlet, D., Taylor, R.: Partition testing does not inspire confidence. IEEE Trans-
actions on Software Engineering 16(12), 1402–1411 (1990)

17. Hierons, R.M.: Comparing test sets and criteria in the presence of test hypotheses
and fault domains. ACM Transactions of Software Engineering and Methodol-
ogy 11(4), 427–448 (2002)

18. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In: Proceedings of
the 16th International Conference on Software Engineering, May 1994, pp. 191–200
(1994)

19. Kuhn, D.R.: An Investigation of the Applicability of Design of Experiments to
Software Testing. In: Proceedings of the 27th NASA/IEEE Software Engineering
Workshop (December 2002)

20. Ntafos, S.: A comparison of some structural testing strategies. IEEE Transactions
on Software Engineering 14(6), 868–874 (1988)

21. Offutt, A.J., Pan, J., Tewary, K., Zhang, T.: An Experimental Evaluation of Data
Flow and Mutation Testing. Software-Practice and Experience 26(2), 165–176
(1996)

22. Ostrand, T., Weyuker, E., Bell, R.: Predicting the location and number of faults in
large software systems. IEEE Transactions on Software Engineering 31(4) (April
2005)

23. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for program test data
selection. In: Proceedings Sixth International Conference on Software Engineering,
Tokyo, Japan, pp. 272–278 (September 1982)

24. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering SE-14(4), 367–375 (1985)

25. Pizza, M., Strigini, L.: Comparing the effectiveness of testing methods in improv-
ing programs: the effect of variations in program quality. In: Proc. 9th Interna-
tional Symp. on Software Reliability Engineering, ISSRE 1998, Paderborn, Ger-
many (November 1998)

26. Weyuker, E.J.: Axiomatizing software test data adequacy. IEEE Transactions on
Software Engineering SE-12(12), 1128–1138 (1986)

27. Weyuker, E.J.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering 14(9), 1357–1365 (1988)

28. Weyuker, E.J.: Using failure cost information for testing and reliability assessment.
ACM Transactions on Software Engineering and Methodology 5(2), 87–98 (1996)

29. Weyuker, E.J., Avritzer, A.: A metric to predict software scalability. In: Proc. 8th
IEEE Symposium on Metrics (METRICS 2002), June 2002, pp. 152–158 (2002)

30. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions
on Software Engineering 17(7), 703–711 (1991)

31. Weyuker, E.J., Ostrand, T.J.: Theories of Program Testing and the Application
of Revealing Subdomains. IEEE Transactions on Software Engineering, 236–245
(May 1980)

32. Weyuker, E.J., Weiss, S.N., Hamlet, D.: Comparison of program testing strategies.
In: Proceedings Fourth Symposium on Software Testing, Analysis, and Verification,
October 1991, pp. 1–10. ACM Press, New York (1991)

The Test Technology TTCN-3

Ina Schieferdecker1, Jens Grabowski2, Theofanis Vassiliou-Gioles3,
and George Din4

1 Technical University Berlin/Fraunhofer FOKUS
ina@cs.tu-berlin.de

2 University of Goettingen
grabowski@informatik.uni-goettingen.de

3 Testing Technologies
vassiliou@testingtech.de

4 Fraunhofer FOKUS
din@fokus.fraunhofer.de

Abstract. The Testing and Test Control Notation (TTCN-3) is a widely
established test technology traditionally used in the telecommunication
domain. In its new version, TTCN-3 has a wider scope and applicability.
It can be applied not only for testing the conformance and interoperability
of communication protocols but also for testing the functionality, interop-
eration and performance of software-based systems in general. Therefore,
TTCN-3 is nowadays used in other domains such as automotive, railways,
avionics, or security systems. This chapter introduces the concepts of the
TTCN-3 language and provides examples of its practical use.

1 Overview

Despite of automated on-the fly test generation as, for example, advocated in [3],
the explicit specification of tests is needed as the majority of tests is still devel-
oped manually [16,20,22]. For that, the use of a standardized and well-defined
test notation is recommended as the tests can be defined in a precise, well-
understood and widely accepted format. Furthermore, automatically generated
tests are often extended and adapted manually as current test generation tech-
niques still bear several limitations. In order to keep track of those adaptations,
the resulting tests should be explicitly denoted as well. Another advantage of
standardized test specifications is the ability to provide test platforms for auto-
mated test execution, which could be used across domains – provided that there
are domain-specific adapters for the different target technologies.

TTCN-3 is the successor language of the Tree and Tabular Combined No-
tation (TTCN) [14,17] which was developed due to the imperative necessity to
have a universally understood test (specification and implementation) language
able to describe test data and test behaviours with sophisticated test concepts.
TTCN-3 [15] is a powerful test technology which allows to specify and execute

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 292–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Test Technology TTCN-3 293

detailed test descriptions for several kinds of testing on different levels of ab-
straction including, for example, component level, integration level, and system
level testing.

TTCN-3 has been specifically developed for the design and definition of test
systems. The syntax and operational semantics of TTCN-3 tests is commonly
understood and not related to a particular programming language or technology
of systems to be tested. TTCN-3 tests concentrate on the purpose of the test
and abstract from particular test system details. Off the shelf tools for TTCN-3
and TTCN-3-based test systems are readily available [34]. Many successful test
solutions and applications have been realised with TTCN-3 also beyond the
traditional telecommunication domain [2,13,31].

The development of TTCN-3 was driven by industry and academia with the ob-
jective to obtain one test notation for black-box and grey-box testing. In contrast
to earlier test technologies, TTCN-3 encourages the use of a common methodol-
ogy and style which leads to a simpler maintenance of test suites and increases
their reuse. When using TTCN-3, a test designer develops test cases at an ab-
stract level. She can focus on the test logic for checking a system against given
test purposes. She does not have to deal with test system specifics and test exe-
cution details. A standardized test notation provides a lot of advantages to test
solution providers, testers and other users of test specifications and test results:
the use of a standardized test notation reduces the costs for education and train-
ing as a large amount of documentation, examples, and predefined test suites is
available. In 2007, a TTCN-3 certification procedures has been established, so that
people’s TTCN-3 knowledge can be examined and certified along internationally
agreed rules [4]. It is obviously preferred to use wherever possible the same no-
tation for testing than learning different technologies for different test projects.
The constant use and collaboration between TTCN-3 vendors and users ensure a
continuous maintenance and further development of the base technology.

TTCN-3 enables systematic, specification-based testing for functional, inter-
operability, robustness, regression, scalability, and load testing on component,
integration and system level. It supports the definition of test procedures for local
and distributed test configurations via homogeneous or heterogeneous interfaces
(so called ports) to the system under test (the SUT). It allows the definition
of simple and complex test behaviours in terms of sequences, alternatives, and
loops of system stimuli and observations. Test behaviours can be executed in
parallel on a number of test components. Configurations of test components can
be fixed or can vary during test execution, i.e. test components may be created
dynamically depending on the conditions along a test run.

The interaction with the SUT can be realised either by asynchronous,
message-based or synchronous, procedure-based communication. The test
system provides stimuli to the SUT and receives and checks the SUT reactions.
The observed SUT reactions are checked against expected reactions by using
templates. Templates are defined in terms of matching mechanisms which allow
to define expected responses in a detailed manner by concrete values, by ranges
or sets of values, or by logical properties of value sets. Based on the comparison

294 I. Schieferdecker et al.

between expected and observed reaction, the SUT is assessed and test verdicts
are assigned. Basically, all test data and test behaviours can be parameterized,
even parameters for complete test suites can be defined.

The concepts of TTCN-3 outlined above are defined by a well-defined syn-
tax and operational semantics, which provide a precise meaning and execution
semantics to TTCN-3. Figure 1 presents the architecture of the TTCN-3 tech-
nology. TTCN-3 is based on a core language which has a look and feel similar to
a general purpose programming language like C, C++ or Java. The predefined
tabular and graphical presentation formats address users preferring a tabular
or Message Sequence Chart (MSC) [19] like presentation of test specifications.
TTCN-3 allows to import data types and data values specified in the Abstract
Syntax Notation One (ASN.1) [18], the Interface Definition Language (IDL) [23]
or the Extended Markup Language (XML) [38]. Further presentation formats
like, e.g. a state machine-based presentation format, and interfaces to data type
and data value notations like, e.g. defining the import of C and C++ data types
and data values are under discussion or even under development. They may be
standardized in future version of the TTCN-3 standard.

Fig. 1. The TTCN-3 Language Architecture

The rest of the chapter is structured as follows: Section 2 reviews the history
of TTCN-3 and enumerates the different parts of the TTCN-3 standard series.
In Section 3, the main concepts of TTCN-3 such as test case, test behaviour,
verdict, or alt statement are described. The presentation formats are explained
in Section 4. Section 5 introduces a web-server test example to demonstrate
the application of the TTCN-3 concepts. Section 6 presents the execution in-
terfaces of TTCN-3 and explains how TTCN-3 test systems can be realized by
use of these interfaces. The import and usage of external data into TTCN-3
test suites is explained in Section 7. A comparison with the UML Testing Pro-
file [24] is given in Section 8. Finally, a summary and an outlook conclude
the chapter.

The Test Technology TTCN-3 295

2 The Standard and Its History

TTCN-3 has been developed by the European Telecommunication Standards In-
stitute (ETSI). The TTCN-3 standard comprises currently seven parts and two
additional technical reports. The technical reports will become the parts 7 and 9
of the TTCN-3 standard and specify the use of ASN.1 and XML in TTCN-3.
The already standardized seven parts of the TTCN-3 standard [6,7,8,9,10,11,12]
contain the following information:

Part 1: TTCN-3 Core Language. This document specifies the textual syntax of
TTCN-3.

Part 2: Tabular Presentation Format. The tabular presentation format presents
a TTCN-3 specification within a collection of tables.

Part 3: Graphical Presentation Format. The graphical presentation format is
used to represent TTCN-3 tests as interactions between the SUT and the test
system. This presentation format is based on the Message Sequence Chart
(MSC) [19] language.

Part 4: Operational semantics. The operational semantics describes the mean-
ing of TTCN-3 behaviour by providing a state oriented view on the execution
of TTCN-3 tests.

Part 5: TTCN-3 Runtime Interfaces (TRI). A complete test system implemen-
tation requires a platform specific adaptation layer. TRI contains the speci-
fication of a common Application Programming Interface (API) interface to
adapt TTCN-3 test systems to an SUT.

Part 6: TTCN-3 Control Interfaces (TCI). This part of the TTCN-3 standard
contains the specification of the APIs, which a TTCN-3 execution environ-
ment should implement for the encoding and decoding of test data, test
management, component handling, external data control and logging.

Part 8: Use of IDL in TTCN-3. This document provides guidelines and map-
pings rules for the combined use of IDL and TTCN-3.

TTCN-3 evolved from the Tree and Tabular Combined Notation (TTCN)
which was developed for conformance testing of telecommunication protocols.
TTCN was first published in 1992 as part 3 of the international ISO/IEC stan-
dard 9646 "OSI Conformance Testing Methodology and Framework" [17]. Since
then, TTCN has been intensively used to specify tests for different technologies
like Global System for Mobile Communication (GSM), Digital Enhanced Cord-
less Technologies (DECT), Intelligent Network Application Protocol (INAP),
and Integrated Services Digital Network (N-ISDN, B-ISDN). Small extensions
of TTCN [14] addressed test modules, parallel test setups and the use of ASN.1
in TTCN. Although TTCN was improved, it implements the concepts of OSI
conformance testing and is therefore only of limited usability for other kinds of
testing such as interoperability, robustness, regression, or system testing. Since
TTCN was designed for testing OSI protocols, it is also difficult to apply TTCN
to other technologies like for mobile systems or CORBA-based applications.

296 I. Schieferdecker et al.

In 1998, ETSI was asked by its members to develop a new test language,
namely TTCN-3, addressing current and upcoming test requirements. The de-
velopment of TTCN-3 was encouraged by key players of the telecommunication
industry and by researchers to overcome the limitations of TTCN. The stan-
dardization process, lead by the ETSI Protocol and Testing Competence Center
(PTCC), completed in 2000 the first version of TTCN-3. Since then TTCN-3 is a
continuously maintained test technology. For this, ETSI provides a well-defined
change request procedure (see http://www.ttcn-3.org/TTCN3cr.htm), to which
everybody can contribute. This allows corrections and extensions to TTCN-3
resulting in revised versions of the standard. In February 2007 TTCN-3 v3.2.1
has been approved by ETSI. From its first version in 2000 until its latest version
in 2007, TTCN-3 has evolved to a powerful basis for test development and can
serve as a target for test generation and other means of efficient test develop-
ment [27,37].

3 The Concepts of TTCN-3

The TTCN-3 core language is a modular language which has a similar look
and feel to a typical programming language like, e.g. C or C++. In addition to
the typical programming language constructs, it contains all important features
necessary to specify test procedures and campaigns like test verdicts to assess
test runs, matching mechanisms to compare the reactions of the SUT with the
expected outputs, timer handling to specify time restrictions, the handling of
test components to support distributed testing, the ability to specify encoding
information, support for different kinds of communication (i.e. synchronous and
asynchronous communication) and the possibility to log test information during
a test run.

3.1 TTCN-3 Module

A TTCN-3 test specification is defined by a set of modules. As shown in Figure 2,
a module typically contains imports from other modules; data type definitions,
test data descriptions, definitions for test configuration, test behaviour specifica-
tions and a module control part to specify the ordering, selection and execution
of test cases.

The top-level building-block of TTCN-3 is the module. A module cannot con-
tain sub-modules, but may import partially or completely definitions from other
modules and contains further definitions necessary for a test. A module definition
starts with the keyword module. A module can be parameterized; a parameter
is a data value that is supplied by the test environment at runtime. It is possible
to initialize a parameter with a default value.

A TTCN-3 module has two parts: the module definitions part and the module
control part. The module definitions part contains definitions specified by that
module. These definitions can be used everywhere in the module and may be
imported from other modules. The module control part is the main program

The Test Technology TTCN-3 297

Fig. 2. The TTCN-3 Module Structure

of a module. It describes the execution sequence of the test cases. The control
part can use the verdicts delivered by test cases to select the next test case to
be executed. The control part of a module can call any test case known in the
module, i.e. locally defined in the module or imported from another module.

3.2 TTCN-3 Test System and Test Cases

A test case (TTCN-3 keyword testcase) is executed by a test system. TTCN-3
allows the specification of local and distributed test systems with static and dy-
namic test configurations. A test system may consist of a single test component
or of a set of interconnected test components. It has well-defined communication
ports and an explicit test system interface, which defines the boundaries to the
test system. The set of test components together with their connections to the
SUT and to other test components constitute the test configuration.

Within every test system, there is one Main Test Component (MTC). All
other test components are called Parallel Test Components (PTCs). The MTC
is created and started automatically at the beginning of each test case execution.
The behaviour of the MTC is specified in the body of the test case definition.
A test case terminates when the MTC terminates. This implies also the termi-
nation of all PTCs. During the execution of a test case, PTCs can be created,
started and stopped dynamically. A test component may stop itself or can be
stopped by another test component.

For communication purposes, each test component owns a set of local com-
munication ports. Each port has an in- and an out-direction. The in-direction is
modelled as an infinite FIFO queue, which stores the incoming information until
it is processed by the test component owning the port. The out-direction is di-
rectly linked to the communication partner which can be another test component
or the SUT. This means that that outgoing information is not buffered.

During test execution, TTCN-3 distinguishes between connected and mapped
ports. Connected ports are used for the communication with other test

298 I. Schieferdecker et al.

components. If two ports are connected, the in-direction of one port is linked
to the out-direction of the other, and vice versa. A mapped port is used for
the communication with the SUT. In TTCN-3, connections and mappings can
be created and destroyed dynamically at runtime. There are no restrictions on
the number of connections and mappings a component may have. A component
may be connected to itself. One-to-many connections are allowed. For the
communication among test components and between test components and the
SUT, TTCN-3 supports message-based and procedure-based communication.
Message-based communication is based on an asynchronous message exchange.
The principle of procedure-based communication is to call procedures in remote
entities. This allows a test component to emulate the client or server side during
a test. Furthermore, unicast, multicast and broadcast communication are also
supported by TTCN-3.

Test cases define test behaviours which can be executed to check whether the
SUT passes the test or not. A test case is considered to be a self-contained and
complete specification of a test procedure that checks a given test purpose. The
result of a test case execution is a test verdict.

TTCN-3 provides a special test verdict mechanism for the interpretation of
test runs. This mechanism is implemented by a set of predefined verdicts, local
and global test verdicts and operations for reading and setting local test verdicts.
The predefined verdicts are pass, inconc, fail, error and none. They can be used
for the judgment of complete and partial test runs. A pass verdict denotes that
the SUT behaves according to the test purpose, a fail indicates that the SUT
violates its specification. An inconc (inconclusive) describes a situation where
neither a pass nor a fail can be assigned. The verdict error indicates an error in
the test devices. The verdict none is the initial value for local and global test
verdicts, i.e. no other verdict has been assigned yet.

During test execution, each test component maintains its own local test ver-
dict. A local test verdict is an object that is instantiated automatically for each
test component at the time of component creation. A test component can re-
trieve and set its local verdict. The verdict error is not allowed to be set by a
test component. It is set automatically by the TTCN-3 run-time environment,
if an error in the test equipment occurs. When changing the value of a local test
verdict, special overwriting rules apply. The overwriting rules only allow that a
test verdict becomes worse. For example, a pass may change to inconc or fail,
but a fail cannot change to a pass or inconc. All local test verdicts contribute
to the final global test verdict of the test case. For this, the overwriting rules
explained above are also used, i.e. the worst local verdict will become the final
global verdict of the test case.

3.3 Test Behaviour

TTCN-3 allows an easy and efficient description of simple and complex, sequen-
tial and parallel test behaviours in terms of sequences, alternatives, loops, stimuli
and responses. Stimuli and responses are exchanged at the interfaces of the SUT,
which are defined as a collection of ports. The test system can use a single test

The Test Technology TTCN-3 299

component for sequential test procedures or a number of test components to
perform test procedures in parallel. Likewise to the interfaces of the SUT, the
interfaces of the test components are described as ports.

An alt statement describes an ordered set of alternatives, i.e. an ordered set of
alternative branches of behaviour. Each alternative has a guard. A guard consists
of several preconditions, which may refer to the values of variables, the status of
timers, the contents of port queues and the identifiers of components, ports and
timers. The same precondition can be used in different guards. An alternative
becomes executable, if the corresponding guard is fulfilled. If several alterna-
tives are executable, the first executable alternative in the list of alternatives
will be executed. If no alternative becomes executable, the alt statement will be
executed as a loop until one of the guards will permit entering an alternative.

In TTCN-3, a default mechanism can be used to handle communication events
which may occur, but which do not contribute to the test objective. A default
behaviour can be specified by an altstep which then can be activated as a de-
fault behaviour. It is possible to define complex default behaviour by having
activated several altsteps at the same time. For each test component, the de-
faults, i.e. activated altsteps, are stored in a list of defaults in the order of their
activation. The default behaviours can be activated or deactivated through the
TTCN-3 operations activate and deactivate. These operations operate on the
list of defaults. An activate operation appends a new default to the beginning
of the list and a deactivate operation removes a default from that list.

The default mechanism is invoked at the end of each alt statement, if the
default list is not empty and if due to the current state none of the alternatives
is executable. The default mechanism invokes the first altstep in the list of de-
faults, i.e. the altstep which has been lastly activated, and waits for the result of
its termination. The termination can be successful or unsuccessful. Unsuccessful
means that none of the alternatives of the altstep defining the default behaviour
is executable, successful means that one of the alternatives has been executed.

In case of an unsuccessful termination, the default mechanism invokes the
next default in the list. If the last default in the list has terminated unsuccess-
fully, the default mechanism will return to the alt statement and indicate an
unsuccessful default execution. An unsuccessful default execution causes the alt
statement to be executed again.

In case of a successful termination, the default may either stop the test compo-
nent by means of a stop statement, the main control flow of the test component
will continue immediately after the alt statement from which the default mecha-
nism was called or the test component will execute the alt statement again. The
latter has to be specified explicitly by means of a repeat statement.

3.4 TTCN-3 Communication and Test Data

For the communication among test components and between test components and
the SUT, TTCN-3 supports message-based and procedure-based communication.

300 I. Schieferdecker et al.

Message-based communication is based on the exchange of messages via buffers.
This kind of communication is often called asynchronous communication, because
the sending and receiving of a message are decoupled. A sender continues its exe-
cution after sending the message without waiting for an answer. Procedure-based
communication uses remote procedure calls for communication. This kind of com-
munication is often also called synchronous communication, because the caller of
a remote procedure is normally blocked during the treatment of the call, i.e. caller
and callee are synchronized via the call.

TTCN-3 offers the following operations for procedure-based communication:

• call: to invoke a remote procedure;
• getcall: to accept a call from remote;
• reply: to reply to a previously received call;
• getreply: to accept a reply;
• raise: to report an exception to a previously received call;
• catch: to collect an exception reported by a remote procedure invocation.

For message-based communication, TTCN-3 offers the following operations:

• send: to send a message;
• receive: to receive a message;
• trigger: to discard all messages until the specified message is received.

TTCN-3 offers different possibilities to specify test data. The structure of test
data can be described by means of pre- and user-defined data types and sig-
natures (for procedure-based communication. Data values, value sets and value
ranges can be specified by means of constants, variables, data templates and
signature templates. Besides this, TTCN-3 offers also the possibility to import
data described in other languages like, for example, ASN.1, IDL or XML.

Most of the predefined data types of TTCN-3 are similar to the basic data
types known from programming languages like C, C++ or Java. However, some
of them are special to TTCN-3:

• Port types define the characteristics communication ports, i.e. kind of com-
munication, communication direction, data to be exchanged via a port of
this type.

• Component types define the properties of test components, i.e. ports and
local variables, timers and constants owned by a component of that type.

• The verdicttype is an enumeration type which defines the possible test ver-
dicts, i.e. pass, fail, inconc, error and none.

• The anytype is a union of all known TTCN-3 types of a TTCN-3 module;
an instance of anytype is used as a generic object which is evaluated when
the value is known.

• The default type is used for default handling. A value of this type is a ref-
erence to a default.

The Test Technology TTCN-3 301

For the definition of structured data types, TTCN-3 supports ordered and un-
ordered structured types such as record (ordered structure), record of (ordered
list), set (unordered structure), set of (unordered list), enumerated and union.
Furthermore, for procedure-based communication, TTCN-3 offers the possibil-
ity to define procedure signatures. Signatures are characterized by their name,
an optional list of parameters, an optional return value and an optional list of
exceptions.

Templates are the main means to represent test data in TTCN-3. A template
is a data structures used to define a pattern for a data item sent or received
over a port. A template may describe a distinct value, a range of values or a
set of values. Distinct values may be transmitted over a port, whereas templates
describing ranges or sets of values may be matched with data received from
the SUT or other test components. Such a match is successful, if the received
data is an element of the data values described by the template. Templates can
be specified for arbitrary data types (data templates) and for signatures (signa-
ture templates). Furthermore, they can be parameterized, extended and in other
template definitions.

4 TTCN-3 Presentation Formats

TTCN-3 offers its core language and two standardized presentation formats
to serve the needs of different application domains and users. The textual
core language suits best to persons familiar with a general purpose program-
ming language. A core language based test development allows using a text
editor of the users’ choice and, thus, enables an easy integration into a test
environment.

The tabular presentation format for TTCN-3 (TFT) is defined in part 2 of
the TTCN-3 standard series. It is designed for users that prefer to use tables
for test specification. TFT presents a TTCN-3 module as a collection of tables.
TFT highlights the structural aspects of a TTCN-3 module – in particular type
and template structures.

Part 3 of the TTCN-3 standard series defines the graphical presentation for-
mat for TTCN-3 (GFT) [29]. GFT provides a visualization of TTCN-3 behaviour
definitions in an MSC-like manner [19]. It eases the reading, documentation and
discussion of test procedures. It is also well suited to describe of test traces and
for analyzing of the test results. For each kind of TTCN-3 behaviour definition,
GFT provides a special diagram type, i.e. function diagrams for representing
functions, altstep diagrams for the visualization of altsteps, test case diagrams
for showing test cases and control diagrams for showing the control part of a
module.

However, the work on presentation formats is not finished. Where needed,
additional presentation formats to represent specific aspects of TTCN-3 test
suites can be defined and seamlessly integrated into a TTCN-3 development
environment.

302 I. Schieferdecker et al.

5 TTCN-3 Example

The use of TTCN-3 is demonstrated by a small example to test a web server’s
functionality. A single request represented by a Uniform Resource Locator (URL)
is sent to the web server. After receiving the request, the web server should re-
spond by sending an XML file back containing a list of dinosaurs. We expect
that the list must contain a dinosaur whose name is Brachiosaurus. If there is
such a dinosaur in the list, the test verdict is pass.

5.1 Core Language Example

In the following, we present the TTCN-3 module for testing the Web server de-
scribed above. The module is split into several parts. We first present a part and
describe its contents afterwards.

Listing 1.

1module d i n o l i s tT e s t {
modulepar integer NUMBER_OF_PTCS := 1
with {

4extension (NUMBER_OF_PTCS)
" Desc r ip t ion : Defau lt number of PTCs" ;
}

7type record urlType {
charstring protoco l ,
charstring host ,

10charstring f i l e
}
template urlType urlTemplate := {

13p ro t o co l := "http : // " ,
host := "www. t e s t i n g t e c h . de " ,
f i l e := "/TTCN−3_Example/ d i n o l i s t . xml"

16}
:

In the lines 7 to 11 of Listing 1, we specify the structure of a URL by def-
ining the record urlType. The urlType consists of fields for a protocol
(line 8), a host (line 9), and a file (line 10). All fields are of type charstring
since the request to a Web server also is a string. Until now, we speci-
fied only which fields a URL is composed of. We did not specify the val-
ues of the fields. This is done within the template declaration with name
urlTemplate (lines 12 to 16). In this template, the protocol field is set to
http://, the host field is set to www.testingtech.de and the file is set
/TTCN-3_Example/dinolist.xml. Thismeans, the completeURL sent to theWeb
server is URL http://www.testingtech.de/TTCN-3_Example/dinolist.xml.

The Test Technology TTCN-3 303

Listing 2.

:
2type set of dinosaurType d ino l i s tType ;

type record dinosaurType {
charstring name ,

5charstring len ,
charstring mass ,
charstring time ,

8charstring p lace
}
template dinosaurType BrachiosaurusTemplate := {

11name := " Brach iosaurus " ,
l en := ? ,
mass := ? ,

14time := ? ,
p lace := ?

}
17template d ino l i s tType DinoListTemplate := {

? ,
? ,

20BrachiosaurusTemplate ,
? ,
? ,

23? ,
?

}
26:

In the next step, we define the answer that we expect from the Web server
during the test. As already mentioned, we expect a list of dinosaurs, where one
of them must have the name Brachiosaurus. As we don’t know at which po-
sition of the list our expected dinosaur is, we define a type dinolistType (line
2), which is a set of dinosaurs.

A dinosaur represented by the record type dinosaurType (lines 3 to 9). It
consists of the fields name (line 4) which specifies the name of the dinosaur,
len (line 5) which specifies the length (length is a keyword in TTCN-3 and can
therefore not used as field name), mass specifying the weight (line 6), time de-
scribing when the dinosaur lived (line 7) and place specifying the place where
the dinosaur lived (line 8).

A template for dinosaurs with the name BrachiosaurusTemplate is defined
in the lines 10 to 16. As it is not important which length and mass the dinosaur
had or when and where it lived, these fields were filled with a ? wildcard meaning
any value is accepted as valid, i.e. these fields must be filled with a charstring
but the concrete values do not matter.

For the list of dinosaurs, the template DinoListTemplate is defined (lines 17
to 25). During the test we expect to receive a list of seven dinosaurs from the Web

304 I. Schieferdecker et al.

server. The third dinosaurs in the list must be a Brachiosaurus. For this, the
template BrachiosaurusTemplate is reference in the DinoListTemplate tem-
plate (line 20). The other fields of DinoListTemplate must be valid dinosaurs,
but their kind is is irrelevant. This is specified again by using the matching for
any value symbol ?.

Listing 3.

:
2type component ptcType {

port httpPortType httpPort ;
timer loca lTimer := 3 . 0 ;

5
}
type port httpPortType message {

8out urlType ;
in d ino l i s tType ;

}
11type component mtcType {}

type component systemType {
port httpPortType httpPortArray [NUMBER_OF_PTCS] ;

14
}
:

After defining the messages that will be exchanged, test components have to
be specified (Listing 3). We start with the type for the PTCs that will send
requests to the Web server and check the received messages (lines 2 to 6). This
component type has the name ptcType and owns a port and a timer. The port
is named httpPort (line 3) and of type httpPortType. The timer has the name
localTimer and its default expiration time is set to 3.0 seconds (line 4). The
port type definition httpPortType of httpPort can be found in the lines 7
to 10. It is a port for message-based communication (keyword message) and it
allowed to send messages of type urlType (line 8) and to receive messages of
type dinolistType (line 9).

In a next step, we define the component type mtcType (line 11). This com-
ponent type describes the type of the MTC. The MTC is created by the test
system automatically at the start of each test case execution. The behaviour
of an MTC is the body of a test case definition. As in the example test case,
presented afterwards, the whole communication with the SUT is done only via
PTCs, there is no need to define ports, variables or timers for the MTC. Hence,
the component type mtcType is empty.

Finally, a test component is needed that represents the interfaces to the SUT
(lines 12 to 15). It is necessary to define the interfaces where the ports of the
PTCs can be mapped to, so that communication can take place. Therefore, an ar-
ray of ports is created with a size of the given module parameter NUMBER_OF_PTCS
(Listing 1, lines 2 to 5). Module parameters give the possibility to change

The Test Technology TTCN-3 305

parameter settings during a test campaign, without the need to change the
TTCN-3 module definitions and to recompile it. Every module parameter can
have a default value; in our case it is set to 1.

Listing 4.

:
testcase DinoListTest_1 ()

3runs on mtcType system systemType {
var ptcType ptcArray [NUMBER_OF_PTCS] ;
var integer i := 0 ;

6for (i := 0 ; i < NUMBER_OF_PTCS; i := i + 1) {
ptcArray [i] := ptcType . create ;
map (ptcArray [i] : httpPort , system : httpPortArray [i]) ;

9}
for (i := 0 ; i < NUMBER_OF_PTCS; i := i + 1) {
ptcArray [i] . start (ptcBehaviour ()) ;

12}
a l l component .done ;

}
15:

Now, the testcase itself and by that the behaviour of the MTC has to be spec-
ified (Listing 4, lines 2 to 14). The name of the test case is DinoListTest_1.
The test case body starts with the definition of an array of components of type
ptcType (line 4). The size of this array is defined by the module parameter
NUMBER_OF_PTCS.

Then, the PTCs are created within a for loop (lines 6 to 9). In each cycle
of the loop, a test component is created and its reference is stored in the array
of PTCs (line 7). Furthermore, the port of the newly created test component is
mapped to the system port in the system array of ports httpPortArray.

Once the test configuration is set up in a second for statement (lines 10 to 12),
the behaviour of each PTC is started with the function ptcBehaviour().

With the all component.done statement (line 13), the termination of all
parallel test components is awaited. This ensures that every test component
contributes to the overall test case verdict.

Listing 5.

1:
function ptcBehaviour () runs on ptcType {
httpPort . send (urlTemplate) ;

4loca lTimer . start ;
alt {

[] httpPort . receive (DinoListTemplate) {
7loca lTimer . stop ;

setverdict (pass) ;
}

306 I. Schieferdecker et al.

10[] httpPort . receive {
loca lTimer . stop ;
setverdict (f a i l) ;

13}
[] loca lTimer . timeout {
setverdict (f a i l) ;

16}
}

}
19:

The behaviour of a PTC is described by the function ptcBehaviour() shown
in the lines 2 to 18 of Listing 5. Firstly, a request (the template urlTemplate
defined in Listing 1) is sent via httpPort (line 3). The httpPort is the port of
a PTC and has been mapped to a port of the SUT by the MTC in the test case
definition. This means that messages send on port httpPort are forwarded to
the SUT.

Immediately after sending the request, a localTimer is started (line 4) as a
watch dog to avoid infinite waiting for responses. The timer will run 3.0 sec-
onds as this is the default value of localTimer in the ptcType type definition
(Listing 3).

After the start of the timer, an alt statement is used to describe the potential
reactions of the SUT:

1. The expected dinosaur list that matches the DinoListTemplate is received
(line 6). Then the timer is stopped (line 7) and the verdict is set to pass
(line 8).

2. Something else is received that does not match the expected response. This
is specified by using a receive operation without a parameter (line 10). In
this case, the timer will also be stopped (line 11), but the verdict will be set
to fail (line 12) as the SUT responded incorrectly.

3. If nothing is received within 3.0 seconds, a timeout message from the
timer localTimer occurs (line 14). Then, the verdict will also be set to
fail (line 15).

After that, the PTC terminates. If during test case execution no further PTCs
are running, the MTC terminates also. The final verdict of the test case is the
accumulated test verdicts of all PTCs.

Listing 6.

:
control {

3execute (DinoListTest_1 ()) ;
}

}

The Test Technology TTCN-3 307

In the lines 2 to 4 of Listing 6, the module control part for our example module
is specified. If the control part is called from the test management, the testcase
DinoListTest_1 will be executed (line 3).

5.2 GFT Example

The test behaviour definitions of the TTCN-3 module described in the previous
section can be visualized by means of the Graphical Presentation Format for
TTCN-3 (GFT). Figure 3 visualizes the test case DinoListTest_1. A compari-
son with the textual description provided in Listing 4 shows that the information
in both presentations is identical.

Fig. 3. A GFT Testcase

The GFT diagram in Figure 4 presents the behaviour of the PTCs. It shows
that after sending the URL request the positive case when receiving the expected
answer and the two negative cases when receiving a wrong or no response.

308 I. Schieferdecker et al.

Fig. 4. A GFT Function

6 TTCN-3 Based Test Execution

TTCN-3 standardizes not only the language but also the architecture of an exe-
cution environment for TTCN-3 test suites. The standard architecture of a test
system consists of several entities which communicate mutually through prede-
fined interfaces. The ETSI specification of the test system architecture is given in
two documents: the TTCN-3 Runtime Interfaces (TRI) which is the fifth part of
the standard and the TTCN-3 Control Interfaces (TCI) which is the sixth part
of the standard. The TRI and TCO provide with a defined set of APIs a unified
model to realise the TTCN-3 based test systems. Further extension beyond a
pure TTCN-3 based test system are possible [36].

The general structure of a TTCN-3 test system is depicted in Figure 5. A
TTCN-3 test system is built-up of a set of interacting entities which manage
the test execution (by interpreting or executing the TTCN-3 code), realise the
communication with the SUT, implement external functions and handle timer
operations.

The TTCN-3 Executable (TE) contains the executable code produced by
the compilation of TTCN-3 modules and the TTCN-3 run-time itself. The TE

The Test Technology TTCN-3 309

Fig. 5. TTCN-3 Test System Architecture

communicates with the Test Management (TM), the Component Handling (CH)
and the Codec (CD) via TCI. The communication with the SUT is realised by
using the TRI which defines the interfaces between the TE, the System Adapter
(SA) and the Platform Adapter (PA). The different components of a test system
have the following functions:

• The TE interprets or executes the compiled TTCN-3 code. It manages the
different TTCN-3 entities like test control, test behaviour, test components,
types, values and queues.

• The CH handles the communication between components. The CH API con-
tains operations to create, start, stop test components, to establish the con-
nection between test components, to handle the communication operations
and to manage the verdicts. The information about the created components
and their physical locations is stored in a repository within the test execution
environment.

• The TM manages the test execution. It implements operations to execute
tests, to provide and set module parameters and external constants. The
TTCN-3 logging mechanismis also realised by this component.

• The CD encodes and decodes values according to their types. The TTCN-3
values are encoded into bit strings which are sent to the SUT. The received
data is decoded back into TTCN-3 values.

• The SA realises the communication with the SUT. The TTCN-3 commu-
nication operations used to interact with the SUT, are implemented by
the SA.

• The PA implements timers and external functions. Timers are platform spe-
cific elements and have to be implemented outside the pure TTCN-3 test
system. The PA provides operations in to handle timers by means of create,
start and stop operations. External functions are only declared in a TTCN-3
module. They are implemented in the PA.

310 I. Schieferdecker et al.

The TCI and TRI operations are defined in IDL [23]. They are mapped to
the test system specific technology. Particularly, TRI and TCI handle aspects
like inter-component communication and timer handling which need to be im-
plemented out-side the TE. This approach allows the use of different test sys-
tem implementations, e.g. the CH may be implemented with CORBA, Remote
Method Invocation (RMI) or another technology. The implementation of the CH
is transparent to TE. The TE calls the operations provided by CH which finally
handle the requests.

TTCN-3 tests can run on a single test device or be distributed over several
test devices and executed in a parallel and coordinated manner [28,33].

Figure 6 provides a distributed view of the test system architecture. The TE
is instantiated on each test device. The handling of test components, which may
be created on different nodes, is realised by the CH.

Fig. 6. Realisation of Distributed TTCN-3 Test Systems

The TM is executed the test device from which the test runs are being man-
aged by the user. It is responsible for the user control of the test execution,
for the logging of the distributed tests and for the presentation of the results
to the user. The CD, SA and PA entities are instantiated on each device be-
cause their implementation may differ depending on the underlying, potentially
heterogeneous test devices.

7 TTCN-3 External Data

As illustrated in Figure 1, TTCN-3 supports the import of foreign data objects,
i.e. defined in other languages than TTCN-3, into TTCN-3 modules. Such for-
eign data objects can only be used in TTCN-3 modules, if they have a TTCN-3
meaning.

The Test Technology TTCN-3 311

The term TTCN-3 view can be best explained by considering a case where
the definition of a TTCN-3 object refers to another TTCN-3 object; the infor-
mation content of the referenced object shall be available and is used for the
new definition. For example, when a template is defined based on a structured
type, the identifiers and types of fields of the base type shall be accessible and
are used for the template definition. In a similar way, when the referenced type
is a foreign object, it shall provide the same information content as if it has been
declared as TTCN-3 type. A foreign object, may contain more information than
required by TTCN-3. In such a case, the additional information has no meaning
in TTCN-3 and is therefore not accessible.

The use of foreign objects in TTCN-3 modules is supported by two concepts:
Firstly, the language allows to import and use them like TTCN-3 definitions. Sec-
ondly, special attribute strings are defined which assure that a TTCN-3 module
referring to foreign objects will be portable to any tool supporting the external
language.

To make declarations of foreign object visible in TTCN-3 modules, their names
shall be imported just like declarations from other TTCN-3 modules. When im-
ported, only the TTCN-3 meaning of the object will be seen in the importing
TTCN-3 module. There are two main differences between importing TTCN-3
items and objects defined in other languages:

– When importing non-TTCN-3 definitions, the import statement shall con-
tain an appropriate language identifier.

– Only foreign objects with a TTCN-3 meaning can be imported into a
TTCN-3 module.

Importing can be done automatically using the all directive, in which case all
importable objects are automatically imported, or done manually by listing the
names of items to be imported.

In several important application domains that are amongst the first users of
TTCN-3, ASN.1 is used to describe the data structure of messages. For this
reason, TTCN-3 provides sophisticated support to use ASN.1 together with
TTCN-3. It allows the reference to ASN.1 definitions from within TTCN-3 mod-
ules and the specification of encoding rules for imported ASN.1 definitions in-
cluding the dynamic control of encoding options.

An increasing number of distributed applications use the XML to exchange
data These data exchanges follow very precise rules for data format description
in the form of Document Type Descriptions (DTDs) or XML Schemas. There
are also XML based communication protocols like, for example, the Simple Ob-
ject Access Protocol (SOAP), that are based on XML Schemas. Like any other
communication system, XML based systems are also candidates for testing using
TTCN-3. The XML mapping rules provide a definition for the use of XML with
TTCN-3. It enables the combined use of XML types defining XML based pro-
tocols, interfaces, Web services, applications or documents with TTCN-3 based
testing [32].

Last but not least, object-based technologies such as CORBA, the Distributed
Component Object Model (DCOM), or the Distributed Computing Environment

312 I. Schieferdecker et al.

(DCE) and component-based technologies such as the CORBA Component Model
(CCM), the Enterprise Java Beans (EJB), or the .Net framework use interface
specifications to describe the structure of object- and component-based systems
including operations and capabilities to interact with the environment. These in-
terface specifications support interoperability and reusability of objects and com-
ponents. The techniques used for interface specifications are often IDL-based, for
example, CORBA IDL, Microsoft IDL or DCE IDL. These languages are compara-
ble in their abilities to define system interfaces, operations at system interfaces and
system structures. They only differ in details of the object or component model.
When considering the testof object- and component-based systems with TTCN-3,
one is faced with the problem of accessing the systems to be tested via the system
interfaces described in form of an IDL specification. TTCN-3 supports the im-
port of IDL definitions into TTCN-3 modules by providing standardized IDL to
TTCN-3 mapping rules.

8 U2TP and TTCN-3

The OMG (Object Management Group) has initiated the development of a UML
2.x testing profile (U2TP) to make the Unified Modelling Language (UML) also
applicable for the design of test systems. It addresses typical testing concepts
in model-based system development and for integrated system and test develop-
ment processes [1]. Compared with TTCN-3, U2TP also addresses test design
and can be mapped to TTCN-3 [16,25,39].

U2TP defines a language for designing, visualizing, specifying, analyzing, con-
structing and documenting the artefacts of test systems. It is a test modelling
language that can be used with all major object and component technologies
and be applied to test systems in various application domains. U2TP can be
used stand alone for test artefacts only or in an integrated manner with UML
for handling system and test artefacts together.

U2TP extends UML 2.x with test specific concepts like test components, ver-
dicts, defaults, etc. These concepts are grouped into concepts for test architec-
ture, test data, test behaviour and time. As a UML profile, U2TP seamlessly
integrates into UML. It is based on the UML 2.x meta-model and reuses UML
2.x syntax. The U2TP test concepts are structured into

• Test architecture concepts defining concepts related to test structure and
test configuration, i.e. the elements and their relationships involved in a
test;

• Test behaviour concepts defining concepts related to the dynamic aspects of
test procedures and addressing stimuli, observations and activities during a
test;

• Test data concepts defining concepts for test data used in test procedures,
i.e. the structures and meaning of values to be processed in a test;

• Time concepts defining concepts for a time quantified definition of test pro-
cedures, i.e. the time constraints and time observation for test execution.

The Test Technology TTCN-3 313

Architecture concepts Behaviour concepts Data concepts Time Concepts
SUT Test objective Wildcards Timer
Test components Test case Data pools Time zone
Test context Defaults Data partitions
Test configuration Verdicts Data selectors
Arbiter Test control Coding rules
Scheduler

Fig. 7. Overview of Basic Testing Profile Concepts

Fig. 8. Comparison of U2TP and TTCN-3

U2TP was an ideal opportunity to bring TTCN-3 in form of GFT to the at-
tention of the UML world [26]. In fact, GFT is the archetype for U2TP. U2TP
uses several concepts being developed in GFT. Still, TTCN-3 and U2TP differ
in several respects: U2TP is based on the object oriented paradigm of UML
where behaviours are bound to objects only, while TTCN-3 is based on the
TTCN-3 test behaviour concept of functions and binding of functions to test
components. U2TP uses additional diagrams to define, e.g. the test architec-
ture, test configuration and test deployment. Test behaviour can be defined as
interaction diagrams (as in TTCN-3) but also as state machines or activity dia-
grams. While TTCN-3 supports dynamic test configurations, U2TP uses static
configurations where only the number of test components may vary but not the
structure of the connections between test components. In addition, U2TP has
only one FIFO queue per test component, while TTCN-3 uses a FIFO queue per
test component port. New concepts in U2TP as compared to TTCN-3 are the
arbiter, the validation action, the test trace and the data pool, data partition
and data selector.

314 I. Schieferdecker et al.

However, above all, U2TP and TTCN-3 address different phases in test devel-
opment as shown in Figure 8. U2TP addresses primarily test design and test
specification, while TTCN-3 addresses test specification and test execution.
U2TP can also support test execution, but this needs still to be worked out
along the approaches towards executable UML.

Test design is out of scope for TTCN-3. U2TP has by definition a meta-model
(as an extension of the UML 2.0 meta-model). For TTCN-3, proprietary meta-
models exist only. Both have graphical presentation formats, while TTCN-3 has
also a textual notation.

The transformation from TTCN-3 to U2TP is always possible; the other way
works only, if the U2TP specifies implementable and executable tests. Mapping
rules have been defined accordingly. Currently, TTCN-3 is widely supported by
tools and test solutions. For U2TP, first tools e.g. [35] exist, further tools are
under development.

9 Summary

In this chapter, a detailed introduction into TTCN-3 is provided. The chapter
explains the concepts behind TTCN-3, the TTCN-3 core language as well as the
implementation and execution of TTCN-3 test systems. It also discusses how
TTCN-3 can be integrated with other technologies such as by reusing external
data or mappings to and from U2TP.

TTCN-3 has been designed especially for testing purposes and provides pow-
erful testing constructs. These make it the technology of choice for a wide variety
of testing needs. Over the last years, the TTCN-3 technology has been used in
different areas of testing including telecommunication or data communication as
well as automotive, railways, avionics or security systems.

One of the most important characteristics of TTCN-3 is its technology and
platform independence. This allows testers to concentrate on the test logic, while
the complexity of the test realization on a given test device (e.g. operating sys-
tem, hardware configuration, etc.) is moved to the TTCN-3 platform. Complex
test behaviours which involve multiple interacting test entities are easier to spec-
ify in TTCN-3 than in other test frameworks such as JUnit [21] since technical
aspects are hidden behind the abstract language artefacts.

Typical applications of TTCN-3 include functional, conformance, and inter-
operability testing of various systems on component, integration and system
level. There is also an increasing interest in applying TTCN-3 to performance,
load and scalability testing — one example is the application of TTCN-3 for
IMS (IP Multimedia Subsystem) benchmarking [5]. TTCN-3 has gained also
special attention in the context of testing embedded systems [30]. Future work
on TTCN-3 will include specializations of TTCN-3 in further application areas
such as financial or medical systems.

The Test Technology TTCN-3 315

References

1. Baker, P., Dai, Z.R., Grabowski, J., Haugen, O., Lucio, S., Samuelsson, E., Schiefer-
decker, I., Williams, C.: The UML 2.0 Testing Profile. In: Proceedings by ASQF
Press, Nuremberg, Germany (September 2004) (conquest 2004)

2. Burton, S., Baresel, A., Schieferdecker, I.: Automated testing of automotive telem-
atics systems using TTCN-3. In: Proceedings by Fraunhofer IRB Verlag, 3rd Work-
shop on System Testing and Validation (SV 2004), Paris, France (December 2004)

3. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 2(4), 382–393
(2000)

4. Schieferdecker, I., et al. The TTCN-3 Certificate: An ETSI/GTB Certification
Scheme for TTCN-3 (2007), http://www.german-testing-board.info

5. ETSI TISPAN. IMS/NGN Performance Benchmark, Technical Standard (TS) 186
008, Sophia-Antipolis, France (February 2007)

6. ETSI Standard (ES) 201 873-1 V3.2.1 (2007–02): Methods for Testing and Speci-
fication (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-
3 Core Language. European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis France (February 2007)

7. ETSI Standard (ES) 201 873-2 V3.2.1 (2007–02): Methods for Testing and Specifi-
cation (MTS); The Testing and Test Control Notation version 3; Part 2: TTCN-3
Tabular presentation Format (TFT). European Telecommunications Standards In-
stitute (ETSI), Sophia-Antipolis France (February 2007)

8. ETSI Standard (ES) 201 873-3 V3.2.1 (2007–02): Methods for Testing and Specifi-
cation (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3
Graphical presentation Format (GFT). European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis France (February 2007)

9. ETSI Standard (ES) 201 873-4 V3.2.1 (2007–02): Methods for Testing and Specifi-
cation (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3
Operational Semantics. European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis France (February 2007)

10. ETSI Standard (ES) 201 873-5 V3.2.1 (2007–02): Methods for Testing and Speci-
fication (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-
3 Runtime Interface (TRI). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis France (February 2007)

11. ETSI Standard (ES) 201 873-6 V3.2.1 (2007–02): Methods for Testing and Speci-
fication (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-
3 Control Interface (TCI). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis France (February 2007)

12. ETSI Standard (ES) 201 873-8 V3.2.1 (2007–02): Methods for Testing and Spec-
ification (MTS); The Testing and Test Control Notation version 3; Part 8: Using
IDL with TTCN-3. European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis France (February 2007)

13. TTCN-3 User Conference Series (2004-2007), http://www.ttcn-3.org
14. ETSI Technical Report (TR) 101 666 (1999–2005): Information Technology —

Open Systems Interconnection Conformance testing methodology and framework;
The Tree and Tabular Combined Notation (TTCN) (Ed. 2++). European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis France (May 1999)

15. Grabowski, J., Hogrefe, D., Rethy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An Introduction into the Testing and Test Control Notation (TTCN-3). Computer
Networks Journal (2003)

http://www.german-testing-board.info
http://www.ttcn-3.org

316 I. Schieferdecker et al.

16. Gross, H.-G., Schieferdecker, I., Din, G.: Model-Based Built-In Tests. In: ITM
2004, International workshop on Model Based Testing, co-located with ETAPS
2004, Barcelona, Spain, January 2004. Electronic Notes in Theoretical Computer
Science, vol. 111 (2004)

17. ISO/IEC IS 9646. Information Technology - OSI Conformance Testing Methodol-
ogy and Framework. International Multipart Standard 9646, Geneva, Switzerland
(February 1992-1996)

18. ITU-T Recommendations X.680-683 (2002): Information Technology — Abstract
Syntax Notation One (ASN.1):
– X.680: Specification of Basic Notation
– X.681: Information Object Specification
– X.682: Constraint Specification
– X.683: Parameterization of ASN.1 Specifications.
ITU Telecommunication Standards Sector, Geneva Switzerland (2002)

19. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU Telecommu-
nication Standards Sector, Geneva Switzerland (1999)

20. Kaner, C., Falk, J., Nguyen, H.Q.: Testing Computer Software, 2nd edn. John
Wiley & Sons, Ltd, Chichester (1999)

21. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices,
Upper Saddle River, NJ, USA. Prentice Hall PTR, Englewood Cliffs (2003)

22. Myers, G.J. (Revised by C. Sandler, T. Badgett, and T.M. Thomas): The Art of
Software Testing, 2nd edn. John Wiley & Sons, Ltd, Chichester (2004)

23. Object Management Group (OMG). Common Object Request Broker Architecture
(CORBA): Core Specification, Version 3.0.3 (16.08.2005) (March 2004),
http://www.omg.org/docs/formal/04-03-01.pdf

24. Object Management Group (OMG). UML 2.0 Testing Profile (April 2004),
http://www.omg.org/cgi-bin/doc?ptc/2004-04-02

25. Schieferdecker, I.: The UML 2.0 Test Profile as a Basis for Integrated System and
Test Development. In: Proceedings by Köllen Druck+Verlag GmbH, Jahrestagung
der Gesellschaft für Informatik, Bonn, Germany, vol. 35 (September 2005)

26. Schieferdecker, I., Dai, Z.R., Grabowski, J., Rennoch, A.: The UML 2.0 Testing
Profile and its Relation to TTCN-3. In: Hogrefe, D., Wiles, A. (eds.) TestCom
2003. LNCS, vol. 2644, Springer, Heidelberg (2003)

27. Schieferdecker, I., Din, G.: A Metamodel for TTCN-3. In: Núñez, M., Maamar,
Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236,
Springer, Heidelberg (2004)

28. Schieferdecker, I., Din, G., Apostolidis, D.: Distributed Functional and Load tests
for Web services. International Journal on Software Tools for Technology Transfer
(STTT) (2004)

29. Schieferdecker, I., Grabowski, J.: The Graphical Format of TTCN-3 and its Rela-
tion to UML and MSC. In: Sherratt, E. (ed.) SAM 2002. LNCS, vol. 2599, Springer,
Heidelberg (2003)

30. Schieferdecker, I., Grossmann, J.: Testing Embedded Control Systems with TTCN-
3. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) SEUS 2007.
LNCS, vol. 4761, pp. 7–9. Springer, Heidelberg (2007)

31. Schieferdecker, I., Rennoch, A., Hoefig, E.: TTCN-3 — A Test Technology for the
Automotive Domain. In: Proceedings by expert Verlag. Simulation und Test in der
Funktions- und Softwareentwicklung für die Automobilelektronik, Berlin, Germany
(March 2005)

http://www.omg.org/docs/formal/04-03-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/2004-04-02

The Test Technology TTCN-3 317

32. Schieferdecker, I., Stepien, B.: Automated Testing of XML/SOAP based Web Ser-
vices. In: Informatik Aktuell, Fachkonferenz der Gesellschaft für Informatik (GI)
Fachgruppe Kommunikation in verteilten Systemen (KiVS), Leipzig, vol. 13 (Febru-
ary 2003)

33. Schieferdecker, I., Vassiliou-Gioles, T.: Realizing distributed TTCN-3 test sys-
tems with TCI. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644,
Springer, Heidelberg (2003)

34. Schieferdecker, I., Vassiliou-Gioles, T.: Tool Supported Test Frameworks in TTCN-
3. In: ENTCS (80). 8th Intern. Workshop in Formal Methods in Industrial Critical
Systems, Røros, Norway (June 2003)

35. Eclipse Test & Performance Tools Platform Project (2004-2007),
http://www.eclipse.org/tptp/

36. Vassiliou-Gioles, T., Din, G., Schieferdecker, I.: Execution of External Applications
using TTCN-3. In: Groz, R., Hierons, R.M. (eds.) TestCom 2004. LNCS, vol. 2978,
Springer, Heidelberg (2004)

37. Vouffo-Feudjio, A., Schieferdecker, I.: Test Pattern with TTCN-3. In: Grabowski,
J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, Springer, Heidelberg (2005)

38. World Wide Web Consortium (W3C) Recommendation: Extensible Markup Lan-
guage (XML) 1.1 (2004), http://www.w3.org/TR/2004/REC-xml11-20040204/

39. Zander, J., Dai, Z.R., Schieferdecker, I., Din, G.: From U2TP Models to Executable
Tests with TTCN-3 — An Approach to Model Driven Testing. In: Khendek, F.,
Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, Springer, Heidelberg (2005)

http://www.eclipse.org/tptp/
http://www.w3.org/TR/2004/REC-xml11-20040204/

318 I. Schieferdecker et al.

Glossary

Acronym Explanation
ASN.1 http://www.asn1.org/)

Abstract Syntax Notation One: an ITU standardized data type speci-
fication and coding language, which is used particularly in telecommu-
nications

ATS Abstract Test Suite: a collection of abstractly defined, thus system-,
test system-, and implementation-independent test cases, typically de-
scribed in TTCN-3, U2TP or other proprietary test notations

ETS Executable Test Suite: a collection of executable test cases, which are
typically generated automatically from abstract test cases

ETSI http://www.etsi.org)
European Telecommunication Standards Institute: an independent,
non-profit organization, whose mission is to produce telecommunica-
tions standards

FIFO Queuing Discipline First-In-First-Out
GFT Graphical Presentation Format of TTCN-3: the graphical format of

TTCN-3, especially for the visualization, development and documenta-
tion of test behaviours

IDL http://www.omg.org/gettingstarted/omg_idl.htm)
Interface Definition Language: IDL is an OMG standardized specifica-
tion language for object interfaces

ISO http://www.iso.org
International Organization for Standardization: the world’s largest de-
veloper of standards with its principal activity being the development
of technical standards

ITU http://www.itu.ch
International Telecommunication Union: an international organization
within the United Nations System where governments and the private
sector coordinate global telecom networks and services

MSC http://www.sdl-forum.org/MSC/
Message Sequence Charts: a language standardized by ITU for the de-
scription and specification of the interactions between system compo-
nents based on sequence diagrams, which is adopted to a big extend in
UML 2.0

MTC Main Test Component: the main test component of a TTCN-3 test
case, which steers and controls the test configuration and test run

OMG http://www.omg.org
Object Management Group: an open membership, not-for-profit con-
sortium that produces and maintains computer industry specifications
for interoperable enterprise applications

PTC Parallel Test Component: a parallel test component of a TTCN-3 test
case, which performs test behaviour in parallel to other test components
and which determines its own, local verdict about the correctness of the
tested system

SUT System Under Test: the system to be tested - in dependence of the test-
ing level a system component, a set of system components, a subsystem,
a system or a composition of systems, which is/are to be tested

TCI TTCN-3 Control Interfaces: the control interfaces of TTCN-3, which
support the test management, the handling of test components and the
coding/decoding of test data

The Test Technology TTCN-3 319

Acronym Explanation
TFT Graphical Presentation Format of TTCN-3: the graphical format of

TTCN-3, especially for the visualization, development and documenta-
tion of test data and type structures

TRI TTCN-3 Runtime Interfaces: the run time interfaces of TTCN-3, which
support the communication with the SUT, the time handling during
test execution and the integration of external functionalities

TSI Test System Interface: the interface to the SUT, which is taken as
black box or grey box when testing with TTCN-3, and over that the
interaction with the test system for the evaluation of functionality, the
efficiency, the scaling, etc. of the SUT is performed

TTCN-3 http://www.ttcn-3.org)
Testing and Test Control Notation: standardized test specification and
implementation technology by ETSI (ES 201 873 series) and by ITU
(Z.140 series). TTCN-3 is a technology for the development, specifica-
tion, visualization and documentation of detailed test specifications

UML http://www.uml.org/
Unified Modelling Language: UML is a non-proprietary modelling and
specification language. The use of UML is not restricted to software
modelling. It can, for example, be used for modelling hardware and is
commonly used for business process modelling and organizational struc-
ture modelling. The UML is an open method used to specify, visualize,
construct and document the system artefacts. The current version is
UML 2.0

U2TP http://www.fokus.fraunhofer.de/u2tp
UML 2.0 Testing Profile: the standardized testing profile of UML 2.0 by
OMG. U2TP defines a language for designing, visualizing, specifying,
analyzing, constructing and documenting the artefacts of test systems.
It is a test modelling language that can be used with all major object
and component technologies and applied to testing systems in various
application domains. U2TP can be used stand alone for the handling
of test artefacts or in an integrated manner with UML for a handling
of system and test artefacts together

XML http://www.w3.org/XML/
Extended Markup Language: XML is a standardized markup language
for documents containing structured information by the World Wide
Web Consortium

Testability Transformation – Program
Transformation to Improve Testability

Mark Harman1, André Baresel2, David Binkley3, Robert Hierons4, Lin Hu1,
Bogdan Korel5, Phil McMinn6, and Marc Roper7

1 King’s College London, Strand, London WC2R 2LS, UK
Mark.Harman@kcl.ac.uk

2 DaimlerChrysler, Alt Moabit 96a, Berlin, Germany
3 Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699, USA

4 Brunel University, Uxbridge, Middlesex UB8 3PH, UK
5 Illinois Institute of Technology, 10 W. 31st Street, Chicago, IL 60616, USA

6 University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK
7 Strathclyde University, 26 Richmond Street, Glasgow G1 1XH, UK

Abstract. Testability transformation is a new form of program transfor-
mation in which the goal is not to preserve the standard semantics of the
program, but to preserve test sets that are adequate with respect to some
chosen test adequacy criterion. The goal is to improve the testing process
by transforming a program to one that is more amenable to testing while
remaining within the same equivalence class of programs defined by the
adequacy criterion. The approach to testing and the adequacy criterion
are parameters to the overall approach. The transformations required are
typically neither more abstract nor are they more concrete than standard
“meaning preserving transformations”. This leads to interesting theoreti-
cal questions. but also has interesting practical implications. This chapter
provides an introduction to testability transformation and a brief survey
of existing results.

1 Introduction

A testability transformation (TeTra) is a source-to-source program transforma-
tion that seeks to improve the performance of a previously chosen test data
generation technique [28]. Testability transformation uses the familiar notion of
program transformation in a novel context (testing) that requires the develop-
ment of novel transformation definitions, novel transformation rules and algo-
rithms, and novel formulations of programming language semantics, in order to
reason about testability transformation.

This chapter presents an overview of the definitions that underpin the con-
cept of testability transformation and several areas of recent work in testability
transformation, concluding with a set of open problems. The hope is that the
chapter will serve to encourage further interest in this new area and to stimulate
research into the important formalizations of test-adequacy oriented semantics,
required in order to reason about it.

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 320–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Testability Transformation – Program Transformation to Improve Testability 321

As with traditional program transformation [12,36,43], TeTra is an automated
technique that alters a program’s syntax. However, TeTra differs from traditional
transformations in two important ways:

1. The transformed program is merely a “means to an end”, rather than an ‘end’
in itself. The transformed program can be discarded once it has served its
role as a vehicle for adequate test data generation. By contrast, in traditional
transformation, it is the original program that is discarded and replaced by
the transformed version.

2. The transformation process need not preserve the traditional meaning of a
program. For example in order to cover a chosen branch, it is only required
that the transformation preserves the set of test-adequate inputs for the
branch. That is, the transformed program must be guaranteed to execute
the desired branch under the same initial conditions. By contrast, traditional
transformation preserves functional equivalence, a much more demanding
requirement.

These two observations have three important implications:

1. There is no psychological barrier to transformation. Tradition trans-
formation requires the developer to replace familiar code with machine-
generated, structurally altered equivalents. It is part of the fokelore of the
program transformation community that developers are highly resistant to
the replacement of the familiar by the unfamiliar. There is no such psycholog-
ical barrier for testability transformation: the developer submits a program
to the system and receives test data. There is no replacement requirement;
the developer need not even be aware that transformation has taken place.

2. Considerably more flexibility is available in the choice of trans-
formations to apply. Guaranteeing functional equivalence is demanding,
particularly in the presence of side effects, goto statements, pointer aliasing
and other complex language features. By contrast, merely ensuring that a
particular branch is executed for an identical set of inputs is comparatively
less demanding.

3. Transformation algorithm correctness is less important. Traditional
transformation replaces the original program with the transformed version,
so correctness is paramount. The cost of ‘incorrectness’ for testability trans-
formation is much lower; the test data generator may fail to generate ade-
quate test data. This situation is one of degree and can be detected, trivially,
using coverage metrics. By contrast, functional equivalence is undecidable.

2 Testability Transformation

Testability transformation seeks to transform a program to make it easier to
generate test data (i.e., it seeks to improve the original program’s ‘testabil-
ity’). There is an apparent paradox at the heart of this notion of testability
transformation:

322 M. Harman et al.

Structural testing is based upon structurally defined test adequacy crite-
ria. The automated generation of test data to satisfy these criteria can be
impeded by properties of the software (for example, flag variables, side
effects, and unstructured control flow). Testability transformation seeks
to remove the problem by transforming the program so that it becomes
easier to generate adequate test data. However, transformation alters the
structure of the program. Since the program’s structure is altered and
the adequacy criterion is structurally defined, it would appear that the
original test adequacy criterion may no longer apply.

The solution to this apparent paradox is to allow a testability transformation
to co-transform the adequacy criterion. The transformation of the adequacy cri-
terion ensures that adequacy for the transformed program with the transformed
criterion implies adequacy of the original program with the original criterion.
These remarks are made more precise in the following three definitions.

First, a test adequacy criterion is any set of syntactic constructs to be covered
during testing. Typical examples include a set of nodes, a set of branches, a set of
paths, etc. For example, to achieve “100% branch coverage”, this set would be the
set of all branches of the program. Observe that the definition also allows more
fine grained criteria, such as testing to cover a particular branch or statement.

Second, a testing-oriented transformation is a partial function that maps a
program and test adequacy criteria to an updated program and updated test
adequacy criteria [20]. (In general, a program transformation is a partial function
from programs to programs.) Finally, a testability transformation is a testing-
oriented transformation, τ such that for all programs p and criteria c, τ(p, c) =
(p′, c′) implies that for all test sets T , T is adequate for p according to c if T is
adequate for p′ according to c′ [20].

A simple example of a testability-transformation is the removal of code that
does not impact a target statement or branch. One approach to such a removal
is program slicing [46,6]. Removing code allows existing techniques to better
focus on the statement of branch of interest. A more involved example is given
in Section 4.3.

3 Test Data Generation

One of the most pressing problems in the field of software testing revolves around
the issue of automation. Managers implementing a testing strategy are soon con-
fronted with the observation that large parts of the process need to be automated
in order to develop a test process that has a chance to scale to meet the demands
of existing testing standards and requirements [8,39].

Test data must be generated to achieve a variety of coverage criteria to assist
with rigorous and systematic testing. Various standards [8,39] either require or
recommend branch coverage adequate testing, and so testing to achieve this is
a mission-critical activity for applications where these standards apply. Because
generating test data by hand is tedious, expensive, and error-prone, automated

Testability Transformation – Program Transformation to Improve Testability 323

test data generation has remained a topic of interest for the past three decades
[9,16,24].

Several techniques for automated test data generation have been proposed, in-
cluding symbolic execution [9,23], constraint solving [13,34], the chaining method
[16], and evolutionary testing [40,22,32,33,35,37,42]. This section briefly reviews
two currently used techniques for automating the process of test data generation,
in order to make the work presented on testability transformation for automated
test data generation in this chapter self contained.

3.1 Evolutionary Testing

The general approach to evolutionary test data generation is depicted in Fig-
ure 11. The outer circle in Figure 1 provides an overview of a typical procedure
for an evolutionary algorithm. First, an initial population of solution guesses is
created, usually at random. Each individual within the population is evaluated
by calculating its fitness: a measure of how close the individual comes to being
a solution (fitness is formalized later in this section). The result is a spread of
solutions ranging in fitness.

Fitness evaluation

Mutation

Survival

Recombination

Selection

Individuals

Test data

Test
execution

Monitoring
data

Fitness values

Initial Population

Test Results

Fig. 1. Evolutionary Algorithm for Testing

In the first iteration all individuals survive. Pairs of individuals are selected
from the population, according to a pre-defined selection strategy, and combined
to produce new solutions. At this point mutation is applied. This models the role
of mutation in genetics, introducing new information into the population. The
evolutionary process ensures that productive mutations have a greater chance of
survival than less productive ones.

The new individuals are evaluated for fitness. Survivors into the next genera-
tion are chosen from parents and offspring with regard to fitness. The algorithm
1 This style of evolutionary test data generation is based on the DaimlerChrysler

Evolutionary Testing System [44].

324 M. Harman et al.

is iterated until the optimum is achieved or some other stopping condition is
satisfied.

In order to automate software test data generation using evolutionary algo-
rithms, the problem must first be transformed into an optimization task. This
is the role of the inner circle of the architecture depicted in Figure 1. Each gen-
erated individual represents a test datum for the system under test. Depending
on which test aim is pursued, different fitness functions emerge for test data
evaluation.

If, for example, the temporal behaviour of an application is being tested, the
fitness evaluation of the individuals is based on the execution times measured
for the test data [38,45]. For safety tests, the fitness values are derived from pre-
and post-conditions of modules [41], and for robustness tests of fault-tolerance
mechanisms, the number of controlled errors forms the starting point for the
fitness evaluation [40].

For structural criteria, such as those upon which this chapter focuses, a fitness
function is typically defined in terms of the program’s predicates [4,7,22,32,35,44].
It determines the fitness of candidate test data, which in turn determines the di-
rection taken by the search. The fitness function essentially measures how close
a candidate test input drives execution to traversing the desired (target) path or
branch.

Typically, the test-data generation tool first instruments each predicate to
capture fitness information, which guides the search to the required test data.
For example if a branching condition a == b needs to be executed as true,
the values of a and b are used to compute a fitness value using abs(a-b). The
closer this “branch distance” value is to zero, the closer the condition is to being
evaluated as true, and the closer the search is to finding the required test data.

As a simple example, consider trying to test the true branch of the predicate
a > b. While typical execution of a genetic algorithm might include an initial
population of hundreds of test inputs, for the purposes of this example, consider
two such individuals, i1 and i2. Suppose that, when executed on the input i1,
a equals b, and when run on i2, a is much less than b, then i1 would have a
greater chance of being selected for the next generation. It would also have a
better chance of being involved in (perhaps multiple) crossover operations with
other potential solutions to create the children that form the next generation.

3.2 The Chaining Method

The chaining approach uses data flow information derived from a program to
guide the search when problem statements (conditional statements in which a
different result is required) are encountered [16]. The chaining approach is based
on the concept of an event sequence (a sequence of program nodes) that needs
to be executed prior to the target. The nodes that affect problem statements are
added to the event sequence using data flow analysis.

The alternating variable method [25] is employed to execute an event sequence.
It is based on the idea of ‘local’ search. An arbitrary input vector is chosen at
random, and each individual input variable is probed by changing its value by

Testability Transformation – Program Transformation to Improve Testability 325

a small amount, and then monitoring the effects of this on the branches of the
program.

The first stage of manipulating an input variable is called the exploratory
phase. This probes the neighbourhood of the variable by increasing and decreas-
ing its original value. If either move leads to an improved objective value, a
pattern phase is entered. In the pattern phase, a larger move is made in the di-
rection of the improvement. A series of similar moves is made until a minimum
for the objective function is found for the variable. If the target structure is not
executed, the next input variable is selected for an exploratory phase.

For example, consider again, the predicate a > b. Assuming a is initially less
than b, a few small increases in a improves the objective value (the difference
between a and b). Thus, the pattern phase is entered, during which the iteration
of ever-larger increases to the value of a finally produce a value of a that is greater
than b, satisfying the desired predicate and locating an input that achieves
coverage of the desired branch.

4 Three Application Areas for Testability Transformation

The effectiveness of test data generation methods, such as the evolutionary
method and the chaining method, can be improved through the use of testability
transformation (TeTra). This section presents three case studies that illustrate
the wide range of testability transformation’s applicability. The first two subsec-
tions concern applications to evolutionary testing, while the third concerns the
chaining method.

4.1 TeTra to Remove Flags for Evolutionary Testing

Testability Transformation was first applied to the flag problem [19]. This section
considers the particularly difficult variant of the flag problem where the flag
variable is assigned within a loop. Several authors have also considered this
problem [7,4]; however, at present, testability transformation offers the most
generally applicable solution. Furthermore, this solution is applicable to other
techniques such as the chaining method and symbolic execution [11], which are
known to perform poorly in the presence of loop assigned flags.

A flag variable is any boolean variable used in a predicate. Where the flag
only has relatively few input values (from some set S) that make it adopt one
of its two possible values, it will be hard for any testing technique to uncover a
value from S. This problem typically occurs with internal flag variables, where
the input state space is reduced, with relatively few “special values” (those in
S) being mapped to one of the two possible outcomes and all others (those not
in S) being mapped to the other.

The fitness function for a predicate that tests a flag yields either maximal
fitness (for the “special values”) or minimal fitness (for any other value). In the
landscape induced by the fitness function, there is no guidance from lower fitness
to higher fitness. This is illustrated by the landscape at the right of Figure 2.

326 M. Harman et al.

Best case Acceptable case Worst case
Smooth landscape Rugged landscape Dual plateau
with ubiquitous with some landscape with no
guidance toward guidance toward guidance toward
global optimum. global optimum. global optimum.

Fig. 2. The flag landscape: the needle in a haystack problem. The y-axis measures
fitness while each x-axis represents the input space.

A similar problem is observed with any k-valued enumeration type, whose
fitness landscape is determined by k discrete values. As k becomes larger the
program becomes progressively more testable; provided there is an ordering on
the k elements, the landscape becomes progressively more smooth as k increases.
The landscapes in the centre and then left of Figure 2 illustrate the effect of
increasing k.

The problem of flag variables is particularly acute where the flag is assigned
a value in a loop and then used later outside the loop. For example, consider the
variable flag in the upper left of Figure 3. In this situation, the fitness function
computed at the test outside the loop may depend upon values of “partial fitness”
computed at each and every iteration of the loop. Many previous approaches to
the flag problem breakdown in the presence of loop-assigned flags [4,7,20]. These
simpler techniques are effective with non-loop-assigned flags.

The aim of the loop-assigned flag removal algorithm is to replace the use of
a flag variable with an expression that provides better guidance. The algorithm
has two steps. The first adds two variables: a new induction variable, counter, is
added to the loop to count the number of iterations that take place. The second
new variable, fitness, is a real-valued variable that collects a cumulative fitness
score for the assignments that take place during the loop. When applied to code
from the upper left of Figure 3, the result of the first step is shown in the
upper right of Figure 3. Where “if (flag)” has been replaced with “if (counter
== fitness)”.

The variable counter measures the number of times the loop passes down
the desired path (the one which executes the assignment to flag in a way that
gives the desired final value for flag). This gives rise to the improved but coarse
grained landscape as shown in the centre of Figure 2 [2]. The coarseness comes
because loop iteration is deemed either to traverse the desired path (with a
consequent increase in accumulated fitness) or to miss this path (with no change
in accumulated fitness).

Testability Transformation – Program Transformation to Improve Testability 327

void f(char a[ELEMCOUNT]) void f(char a[ELEMCOUNT])
{ {

int i; int i;
int flag = 1; int flag = 1;

int counter = 0;
double fitness = 0.0;

for (i=0; i<ELEMCOUNT; i++) for (i=0; i<ELEMCOUNT; i++)
{ {

if (a[i] != 0) if (a[i] != 0)
{ {

flag = 0; flag = 0;

} }
else

fitness += 1.0;
counter++;

} }
if (flag) if (counter == fitness)

/* target */ /* target */
} }

Original Untransformed Program Coarse-Grained Transformation
void f(char a[ELEMCOUNT])
{

int i;
int flag = 1;
int counter = 0;
double fitness = 0.0;
for (i=0; i<ELEMCOUNT; i++)
{

if (a[i] != 0)
{

flag = 0;
fitness = fitness + local(a[i] != 0);

}
else

fitness += 1.0;
counter++;

}
if (counter == fitness)

/* target */
}

Fine-Grained Transformation

Fig. 3. Illustration of the coarse and fine grain loop-flag removal transformation

A further improvement is possible using an additional transformation that
instruments the program to compute, for iterations that fail to traverse the de-
scribed path, how close the iteration comes to traversing the desired path. The
transformed code, shown it the lower section of Figure 3, employs the computa-
tion of a “local fitness calculation” (the function local), which captures the prox-
imity of each loop iteration to the desired branch. This produces the smoothest
fitness landscape (shown at the left of Figure 2).

The function local is a macro expansion that implements a different ‘local’
or ‘branch’ fitness [28]. The particular expansion applied depends upon the

328 M. Harman et al.

predicate to be optimized and can, as such, be viewed as a parameter to the
overall approach.

Once the transformation has added these variables, the algorithm’s second
step slices [46,6] the resulting program with respect to the transformed predicate.
Slicing removes parts of the program that do not influence the predicate. The
result is a program specialized to the calculation of a smooth fitness function
targeting the single branch of interest. In this way, the algorithm has essentially
transformed the original program into a fitness function, tailor-made to have a
smooth fitness landscape with a global optimum at the point where the variable
flag has the desired value.

To provide empirical data as to the impact of loop assigned flag removal, the
three programs depicted in Figure 3 were studied. (The effect of the slicing step is
not shown in the figure to facilitate comparisons between the three versions of the
program.) because it distills the worst possible case. That is, test data generation
needs to find a single value (all array elements set to zero) in order to execute
the branch marked /* target */. This single value must be found in a search
space which is governed by the size of the array. The program is thus a template
and 20 different versions were experimented with for each technique. In each
successive version, the array size is increased, from an initial value of 1, through
to a maximum size of 40. As the size of the array increases, the difficultly of the
search problem increases; the needle is sought in an increasingly large haystack.

The DaimlerChrysler Evolutionary Testing system was used to obtain the
results [5,44]. This system generates test data for C programs using a variety of
white box criteria. It is a proprietary system, developed in-house and provided
to DaimlerChrysler developers through a web portal.

For each technique, the evolutionary algorithm was run ten times to ensure
robustness of the results reported and to allow comparison of the variations
between the runs for each of the three techniques. An upper limit was set on
the number of possible fitness evaluations allowed; thus, some runs failed to find
any solution.

The ten-run averages for each of the three approaches are depicted in Figure 4.
As can be seen, the fine-grained technique outperforms the coarse-grained tech-
nique. The coarse-grained technique achieves some success, but the test effort
is noticeably worse than for the fine-grained technique. Both do considerably
better than the no transformation approach which fails to find suitable test data
on most runs.

The data from all 10 runs of each program are depicted in Figure 5. The no
transformation approach fails to find any test data to cover the branch in all
but two situations. The first is where the array is of size one. In this instance
there is a high chance of finding the “special value” by random search, and all
ten runs achieve this. At array size two, the chances of hitting the right value
at random have diminished dramatically; only one of the ten runs manages to
find a solution. For all other runs, no solution is found. In all cases, without
transformation, the evolutionary search degenerates to a random search. Such a
random search has a minuscule chance of finding the “needle in the haystack”.

Testability Transformation – Program Transformation to Improve Testability 329

Fig. 4. Ten-run averages of the evolutionary search for each of the three approaches

The data for the course grained approach shows success for all runs with
a steady increase in effort required. Perhaps more importantly, as seen in the
middle graph of Figure 5, there is an increase in variability (the height difference
from fewest to most fitness evaluations is growing as the problem becomes more
difficult). This is a tell-tale sign of the partially random nature of search. That is,
where the landscape provides guidance, the evolutionary algorithm can exploit
it, but when it does not, the search becomes a locally random search until a way
of moving off the local plateau is found.

Finally, the only interesting aspect of the data for the fine-grained transfor-
mation are two spikes (at array size 10 and 40). These are essentially the mirror
image of the “good luck” the untransformed algorithm had finding a solution
randomly. Here, the algorithm gets to test data in which all but one array entry
is zero, but then through random “bad luck” takes longer to find the solution.
In this case it only serves to slow the search. It does not prevent the search from
finding the desired test data.

Statistically, the claim that the fine-grained approach is better than the coarse-
grained approach, which in turn, is better than the no transformation approach
was confirmed using a Mann-Whitney test [1]. This test is a non-parametric test
for statistical significance in the differences between two data sets. Because the
test is non-parametric, the data is not required to be normally distributed for
the test to be applicable. Both comparisons report high statistically significant
difference (p < 0.0001).

4.2 TeTra for Nested Predicates to Assist Evolutionary Testing

The second example considers the problem that predicate nesting causes evo-
lutionary test data generation. Evolutionary techniques face two key problems
when encountering nested predicates: first, constraints on the input are only
revealed as each individual predicate is satisfied, and second, the information
guiding the search is treated locally at each predicate. For example, consider the

330 M. Harman et al.

(a) With No Transformation

(b) With Coarse-Grained Transformation

(c) With Fine-Grained Transformation

Fig. 5. The ten runs of the evolutionary search for each of the three approaches. For
a given array size, each chart shows the total number of fitness evaluation required to
find a solution or reaching the fixed limit.

Testability Transformation – Program Transformation to Improve Testability 331

code shown in Figure 6a. Here the condition c == 0 is not encountered until
after a equals b. Thus, the search does not find out that c is important until
a == b is satisfied. Furthermore, while attempting to make c == 0 true, the
search must operate in the smaller search space defined by the predicate a ==
b. Any adjustment in the values of a or b could potentially put the search back
at ‘square one’. Thus, once test data has been found to execute a conditional
in a certain way, the outcome at that condition must be maintained so that the
path to the current condition is also maintained.

The latter problem causes problems for the search when predicates are not
mutually exclusive. For example, in Figure 6a, variable c must be made zero
without changing the values of a and b. However c is actually b+1 (Statement
2). Therefore b needs to be -1 for Statement 3 to be executed as true. If values
other than -1 have been selected for a and b, the search has no chance of making
the condition at Statement 3 true. That is unless of course it backtracks to
reselect values of a and b. However, if it were to do this, the fact that c needs to
be zero at Statement 3 will be ‘forgotten,’ as Statement 3 is no longer reached,
and its fitness is not computed.

This phenomenon is captured in a plot of the fitness landscape (Figure 6c).
The shift from satisfying the predicate of Statement 1 to the secondary satis-
faction of the predicate of Statement 2 is characterized by a sudden drop in the
landscape down to spikes of local optima. Any move to input values where a is
not equal to b yanks the search up out of the optima and back to the area where
Statement 1 is evaluated as false again.

McMinn et al. proposed a solution to the nested predicate problem based on
testability transformation [31]. In essence, their approach evaluates all the con-
ditions leading to the target at the same time. This is done by flattening the
nesting structure in which the target lies and is non-trivial when code intervenes
between conditionals (for example, it could contain a loop). The transformation
takes the original program and removes decision statements on which the target
is control dependent. In this way, when the program is executed, it is free to pro-
ceed into originally nested regions, regardless of whether the original branching
predicate would have allowed that to happen.

In place of each predicate an assignment to a new variable dist is added.
These assignments compute the branch distance based on the original predicate.
At the end of the program, the value of dist reflects the summation of each
of the individual branch distances. This value may then be used as the fitness
value for the test data input. This inline accumulation of fitness information
within the program body is not unlike the fine-grained transformation method
employed by Baresel et al. [2] for collecting information in loop bodies involving
assignments to flags.

Figure 6 shows an example of this transformation where the original program,
shown in Figure 6a, is transformed into the program seen in Figure 6b. The
benefit of the transformation is seen by comparing the fitness landscapes shown
in Figures 6c and 6d where the sharp drop into local minima of the original
landscape is replaced with smooth planes sloping down to the global minimum.

332 M. Harman et al.

void original{double a,
double b)

{
(1) if (a == b)

{
(2) double c = b + 1;
(3) if (c == 0)

{
(4) // target

}
}

}

void transformed(double a,
double b)

{
double _dist = 0;

_dist += branch_distance(a == b);

double c = b + 1;

_dist += branch_distance(c == 0);

if (_dist == 0.0)
{

// target
}

}
(a) Original program (b) Transformed version

(c) Landscape for original program

(d) Landscape for transformed program

Fig. 6. Case study showing (a) the original and (b) the transformed versions of the
code. The transformation removes the sharp drop into points of local minima preva-
lent in the fitness landscape of the original program seen in part (c), with the more
directional landscape of the transformed program, seen in part (d).

Testability Transformation – Program Transformation to Improve Testability 333

The improvement comes because the search can concentrate on both conditionals
at the same time and is in possession of all the facts required to make them both
true at the very beginning of the search.

The solution is not free of challenges, as the transformed program can poten-
tially have issues with the removal of certain types of predicates that prevent the
occurrence of run-time errors. One example of this is a predicate that tests and
then references heap allocated storage. For example, transformation of the con-
ditional if (p != NULL) { if (p->x > 0) · · · } would include, in the computation
of dist, the dereferencing of the potentially NULL pointer p.

Therefore the transformed test object must be evaluated in its own ‘sandbox’
to prevent any potential abnormal termination from affecting the rest of the
test data generation system. The fitness function is calculated using all fitness
information that was successfully accumulated. In this way, search performance
is unlikely to be worse than if the original version of the program were being
used. Improving the treatment of such predicates forms one area for future work,
while the issue of nesting within a loop body forms another.

In their study of nested if statements McMinn et al. provide two key empirical
results from a collection of forty real-world programs [31]. The first result shows
the prevalence of nested predicates in real-world code (on average 3 nested pred-
icate pairs per 100 lines of non-comment non-blank code). Over 80% of these
include intervening code two-thirds of which affected the second predicate and
thus cannot simply be reordered out of the way. The second result compares
finding test data for the original and transformed versions of two programs.
The first program is that of Figure 6. TeTra allowed the evolutionary search to
find test data using half the effort (test data evaluations) of the untransformed
program. The second program studied included three levels of nesting. For the
original version of this program, the evolutionary algorithm failed to find test
data, while it succeeded every time using the transformed version.

4.3 TeTra for Data Dependence Transformation to Assist the
Chaining Method

The third case study, considers the speculative application of testability transfor-
mation to the chaining method [16]. Existing test data generation methods use
different types of information about a program in order to guide the search pro-
cess (e.g., a control flow graph, control dependencies, data flows, etc). Although
existing methods work well for many programs, complex logic and intricate de-
pendence relationships between program elements can pose a challenge to test
generators. Thus, without transformation, test data is hard for a data-flow tech-
nique to generate. Transformation is used in this case is to remove the barrier
created by control dependencies in discovering a good ‘chain’.

This third case study, exploits the fact that testability transformation need
not preserve the standard semantics. In this more radical form of testability
transformation, the transformations may yield programs for which it is known
that the wrong test data will be produced. However, this technique can be used
to speculatively generate test data. As a result, the search can find the solution

334 M. Harman et al.

where other techniques fail. This approach is more expensive and thus typically
applied only after existing cheaper methods fail to find the required test data.
If the transformation fails, then nothing additional is lost, so the method need
only improve test data generation in some cases in order to be valuable [27].

The goal of the transformation is to produce a program that contains only the
statements responsible for the computation of the fitness function. The major
advantage of the transformed program is that it is easy to execute any state-
ment that affects the fitness function. As a result, the transformed program
allows efficient exploration of different paths in order to identify paths that lead
to the target value of the fitness function. The technique has five steps. First
a data-dependence subgraph is built. This is then used to generate the trans-
formed program. In the next step, paths in the data-dependence subgraph are
selected for exploration. For each selected path test data is generated using the
transformed program to identify promising paths (i.e., paths that lead to the
target value of the fitness function). Finally, promising paths are used to guide
the search for test data using the original program. A good data-flow analysis
tool is only well suited to handle the first step [27].

The technique is data-dependence based and thus stands in contrast with ex-
isting techniques that are strongly tied to program control flow [26]. To motivate
this choice, the authors note that finding test data can frequently require execut-
ing parts of the program that are (from the control flow perspective) unrelated.
Data dependence analysis, however, ties these regions together as it captures
the situation in which one statement assigns a value to a variable that another
statement uses. For example, in the function of Figure 7 there exists a data de-
pendence between Statements 13 and 20 because Statement 13 assigns a value
to variable top, Statement 20 uses variable top, and there exists a the control
path (13, 14, 15, 19, 23, 6, 7, 8, 9, 15, 19, 20) from 13 to 20 along which variable
top is not modified.

The technique’s first step builds a data dependence graph and then extracts
the subgraph for a particular statement. In a data dependence graph nodes rep-
resent statements from the program, and directed arcs represent data dependen-
cies [17]. For a chosen node, the extracted data-dependence subgraph includes
all the nodes for which there exists a path to the selected node. These represent
the statements that may influence the chosen statement. For example, Figure 8
shows the data dependence subgraph for the node corresponding to Statement
20 from Figure 7.

This statement is referred to as a problem statement because Statement 21 is
difficult for other test-data generation techniques to generate test data for (its
execution requires Statement 13 to be executed 101 times before reaching State-
ment 20). The next step uses the subgraph extracted for a problem statement
to guide the construction of the transformed program. Each statement that be-
longs to the subgraph is included in the transformed program as the case of a
switch-statement. This program includes the statements whose nodes appear in
the extracted subgraph (e.g., see Figure 9).

Testability Transformation – Program Transformation to Improve Testability 335

1 void F(int A[], int C[])
{

int AR[100];
int a, i, j, cmd, top, f exit;

2 i=1;
3 j = 1;
4 top = 0;
5 f exit=0;
6 while (f exit==0)

{
7 cmd = C[j];
8 j = j + 1;
9 if (cmd == 1)

{
10 a = A[i];
11 i = i + 1;
12 if (a > 0)

{
13 top++;
14 AR[top] = a;

}
}

15 else if (cmd == 2)
{

16 if (top>0)
{

17 write(AR[top]);
18 top--;

}
}

19 else if (cmd==3)
{

20 if (top>100)
21 write(1);
22 else write(0);

}
23 else if (cmd>=5)
24 f exit=1;

}
25 }

Fig. 7. A sample C function

In addition, to the input parameters from the original program, the trans-
formed program includes two new input parameters, S and R. The array S
represents data dependence paths from the extracted subgraph. Only paths that
begin with a node that has no incoming arcs and end at the problem node are
considered. For example, 4, 13, 18, 20 is a data dependence path in the subgraph
shown in Figure 8. Array S indicates the sequence of statements from the data
dependence path that are to be executed. The transformed program contains
a while-loop with a switch-statement inside it. These combine to execute the
statements as indicated by S.

336 M. Harman et al.

4

13 18

20

Fig. 8. Data Dependence Subgraph

Some nodes in the data dependence subgraph have self-loops (statements such
as i++ within a loop depened on themselves). In order to explore the influence
of such data dependences on the fitness function, the corresponding nodes need
to be repeatedly executed. This is the purpose of the input array, R; thus, S[i]
indicates the particular statement to be executed and R[i] indicates a number

1 float transformed(int S[], int R[])
{

int i, j, top;
2 i=1;
3 while (i <= length(S))

{
4 switch (S[i])

{
5 case 4: top = 0;
6 break;
7 case 13: top++;
8 for (j=1; j<R[i]; j++)

top++;
9 break;

10 case 18: top--;
11 for (j=1; j<R[i]; j++)

top--;
12 break;
13 }
14 i++;
15 }
16 return 100-top;

}

Fig. 9. Transformed version of the code from Figure 7 for the data dependence sub-
graph of Figure 8. The result value is the fitness function for Statement 20 of Figure 7.

Testability Transformation – Program Transformation to Improve Testability 337

of repetitions of this statement. In essence, the transformation has produced a
function from the inputs S and R to the value of the fitness function for the
problem node.

For example, a transformed version of the function from Figure 7 for prob-
lem Statement 20 is shown in Figure 9. The transformed function contains the
statements that are part of the data dependence subgraph from Figure 8 (state-
ments 4, 13, and 18). The end point is omitted because it does not modify the
state. These statements affect the computation of the fitness function associated
with problem Statement 20. For statements 13 and 18, for- loops are included
because these statements have self-looping data dependences in the data depen-
dence subgraph.

After transformation, a search generates different data dependence paths for
exploration. A path is represented by S. For each S, the goal is to find values for
R such that the fitness function evaluates to the target value. The search uses
the existing test generation techniques [16,32,44] to find an input on which the
fitness function evaluates to the target value in the transformed function. If the
target value is achieved, the path is considered a promising path. Otherwise, the
path is considered to be unpromising and it is rejected. Finally, promising paths
in the transformed program are used to guide the search in the untransformed
program.

For example, the transformed program for problem Statement 20 from Fig-
ure 7, shown in Figure 9, captures the five acyclic paths in the data dependence
subgraph of Figure 8. The following table shows these paths and their corre-
sponding inputs

path corresponding input
P1: 4, 20 S[1] = 4
P2: 4, 18, 20 S[1] = 4, S[2] = 18
P3: 4, 13, 20 S[1] = 4, S[2] = 13
P4: 4, 13, 18, 20 S[1] = 4, S[2] = 13, S[3] = 18
P5: 4, 18, 13, 20 S[1] = 4, S[2] = 18, S[3] = 13

For each path, the goal is to find values for array R such that the value of the
fitness function returned by the transformed function is negative. The search fails
for paths P1 and P2 and these paths are rejected. When path P3 is explored,
the search finds the values R[1] = 1; R[2] = 101 for which the fitness function
evaluates to the negative value in the transformed function. Therefore, path P3
with 101 repetitions of Statement 13 is considered as a promising path. When this
path is used to guide the search of the function of Figure 7, an input is easily
identified for which target Statement 21 is executed. Using the transformed
function of Figure 9, it is possible to find a solution although only five data
dependence paths need be considered as opposed to over one hundred path
explorations when the transformed function is not used.

338 M. Harman et al.

5 A Road Map for Future Work on Testability
Transformation

This chapter has surveyed the current state-of-the-art of testability transforma-
tion. There remain many open problems. This section sets out a road map for
future work on TeTra.

1. Algorithms
Currently there are several algorithms for test-data generation using testabil-
ity transformation. These tackle a variety of problems such as flag variables
[2], nesting [31], and unstructured control flow [21]. The existence of these
algorithms demonstrates the potential and wide applicability of testability
transformation. However, there remain many open problems in test data
generation for which algorithms have yet to be developed. For example, the
problems of internal state [29], continuous input [3], and the loop problem
for symbolic execution [11].

2. Semantics
As shown in Section 2 the ideas behind testability transformation require
a new notion of semantic correctness since the transformations are neither
more abstract nor more concrete than the standard semantics. There are a
number of open problems in testability transformation work, relating to the
semantic foundations of the approach. Initial work has explored the proof
obligations for testability transformation [21]. This work considers a trans-
formation that reduces multi-exit loops to single exits loops and illustrates
the need for different kinds of proof obligation in reasoning about testability
transformation. Specifically, the proof obligations are not that the transfor-
mations preserve the behaviour of the program, rather that any test suite
that provides 100% branch coverage for the transformed program is guaran-
teed to provide 100% coverage for the original program. However, no seman-
tic investigation of correctness has yet been performed for other testability
transformation algorithms. Such a proof would be relatively uncomplicated
for the work on flag removal reported in Section 4.1 (because this algorithm
aims to preserve standard semantics). However, for the other two algorithms,
described in Sections 4.2 and 4.3, the proof obligations require the formula-
tion of an alternate semantics. This result is a more challenging and enticing
problem as both transformations preserve only aspects of the semantics.

3. Raising the Abstraction Level
Existing work in testability transformation has considered the problem of ap-
plying standard and non-standard code level transformation rules and tactics
to improve testability at the source code level of abstraction. However, there
is a general movement in testing and design away from the code level to the
model level, and so there may be a case for the application of testability
transformation at higher levels of abstraction, such as the design and speci-
fication level. There is a particularly strong current interest in model driven
development, with a consequent interest in development of approaches for
testing at the model level. It is likely that there will be many problems for

Testability Transformation – Program Transformation to Improve Testability 339

test data generation at the model level and this suggests the possibility of
applying testability transformation at the model level of abstraction.

There has also been much work on development of techniques for testing
from formal specifications. Here too, it may be possible to use testability
transformation to transform specifications into a format more amenable to
testing.

4. Other Kinds of Testability Transformation
The focus of this chapter has been upon testability transformations that
transform programs (and possibly the adequacy criterion). However, it is
not hard to imagine scenarios in which the criterion is transformed while the
program remains unchanged. For example, one could imagine a testability
transformation, that takes a program, p, and a test adequacy criterion, c, and
returns the test adequacy criterion, c′ that is the ‘lowest’ possible criterion
below c in the subsumes relationship for which all adequate test sets are
identical to those for p and c. This would make it possible to capture the
way in which certain programs are constructed in such a way that weaker test
data generation methods will suffice for achieving stronger testing results.
Such an approach complements cost reduction techniques considered in the
existing literature such as test-set minimization [18].

For example, consider the program fragment

if (E) x=1; else x=2;

In this simple example, covering all statements will also cover all branches of
E. However, in general this is not the case. The problem is to compute the
weakest adequacy criterion (in the subsumes lattice [47]) that is sufficient to
meet a given adequacy criterion c for a given program p. This general problem
is more challenging and can be formulated as a testability transformation.
Such a formulation would have useful practical ramifications. Where, for
example, it can be determined that a weaker test data generation technique
can be used, then it is possible to employ a test data generation tool with
performance advantages that accrue from its attempt to satisfy only the
weaker criterion. This is particularly advantageous when the original, more
demanding adequacy criteria, has no tool capable of generating test data.

5. Other Testing Oriented Transformation
The definition of Testability transformation (in Section 2) is couched in
terms of a “Testing Oriented Transformation.” This is a transformation that
takes and returns a pair containing the program under test and the adequacy
criterion under consideration. It may be that there are other forms of testing-
oriented transformation that may turn out to be useful. There may also be
other interesting relations on programs, test data, and test adequacy criteria
that remain to be explored.

6 Related Work

Testability transformation is a novel application of program transformation that
does not require the preservation of functional equivalence. This is a departure

340 M. Harman et al.

from most work on program transformation, but it is not the first instance of
non-traditional meaning-preserving transformation. Previous examples include
Weiser’s slicing [46] and the “evolution transforms” of Dershowitz and Manna
[14] and Feather [15]. However, both slices and evolution transforms do preserve
some projection of traditional meaning. Testability transformation as introduced
here does not. Rather it preserves an entirely new form of meaning, derived from
the need to improve test data generation rather than the need to improved the
program itself.

There has only been non-transformation based previous work on the first of
the three application areas considered in Section 4. For the other two applications
of testability transformation (to the nested predicate problem and the chaining
method), testability transformation is currently the only method to have been
applied. The first application, to the problem of evolutionary testing in the
presence of flags, has been considered in three previous papers [7,4,20]. Bottaci
[7] introduces an approach which aims to correct the instrumentation of the
fitness function. Baresel and Sthamer [4] used a similar approach to Bottaci [7].
Whereas Bottaci’s approach is to store the values of fitness as the flag is assigned,
Baresel and Sthamer use static data flow analysis to locate the assignments in
the code that have an influence on the flag condition at the point of use.

The paper that introduced testability transformation by Harman et al. [20]
presented a testability transformation approach to the flag problem, based upon
substituting a flag variable with its computation. The approach could not handle
loop-assigned flags. Work since then, summarised in this chapter, has improved
the technique in terms of its generality, applicability, and effectiveness.

7 Conclusion

Testability transformation is a new application for program transformation. It
concerns the application to aid testing rather than the more familiar application
areas of optimization, comprehension, re-engineering, or program development
through refinement. However, testability transformation is more than merely a
novel application area of a long-standing area of research and practice; the fun-
damental nature of the transformations takes a different form than conventional
transformation.

Testability transformations are applied in order to improve testing. The equiv-
alence that needs to be preserved is not functional equivalence (as with almost all
prior work on transformation). Rather, it is the set of adequate test sets. This
has been shown to be neither more abstract nor more concrete than normal
transformation, with the result that testability transformation is not simply an
instance of abstract interpretation [10]. Rather, it includes novel transformation
rules and algorithms and suggests the need for novel formulations of program-
ming language semantics in order to reason about testability transformations.

Furthermore, testability transformation is a means to an end and not an end
result in itself. This has important practical ramifications, such as a reduced
importance for correctness of transformations and a lower psychological barrier

Testability Transformation – Program Transformation to Improve Testability 341

to acceptance of transformation. If a transformation rule is incorrect, the conse-
quence is not an errant program, it is merely the (possible) failure to find desired
test data. This is both a less critical consequence and it is also an easily com-
putable outcome. That is, should a conventional transformation be incorrect,
the problem of determining whether there has been an impact upon the trans-
formed program is undecidable, whereas the problem of determining whether
test adequacy has been satisfied is usually trivial as it simply requires running
the program. With the continued need for extensive unit testing and the growing
available of ‘spare’ processor cycles, techniques such as testability transformation
should continue to see increased interest and application.

Acknowledgments

The work summarized in this chapter has been largely conducted as a result of the
UK EPSRC funded projectTeTra – Testability Transformation (GR/R98938) and
by the project’s collaborators.David Binkley is funded, in part by US National Sci-
ence Foundation grant CCR0305330. More details concerning the TeTra project
are available on the TeTra website at

http://www.dcs.kcl.ac.uk/staff/linhu/TeTra

References

1. Altman, D.G.: Practical Statistics for Medical Research. Chapman and Hall, Boca
Raton (1997)

2. Baresel, A., Binkley, D., Harman, M., Korel, B.: Evolutionary testing in the pres-
ence of loop-assigned flags: A testability transformation approach. In: Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA 2004),
Boston, Massachusetts, USA, pp. 43–52. ACM, New York (2004)

3. Baresel, A., Pohlheim, H., Sadeghipour, S.: Structural and functional sequence test
of dynamic and state-based software with evolutionary algorithms. In: Cantú-Paz,
E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall,
G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz,
A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003.
LNCS, vol. 2724, pp. 2428–2441. Springer, Heidelberg (2003)

4. Baresel, A., Sthamer, H.: Evolutionary testing of flag conditions. In: Cantú-Paz, E.,
Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall,
G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz,
A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003.
LNCS, vol. 2724, pp. 2442–2454. Springer, Heidelberg (2003)

5. Baresel, A., Sthamer, H., Schmidt, M., 2002, J.: Fitness function design to improve
evolutionary structural testing. In: GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, San Francisco, CA, July 9–13, 2002, pp.
1329–1336. Morgan Kaufmann Publishers, San Francisco (2002)

6. Binkley, D.W., Gallagher, K.B.: Program slicing. In: Zelkowitz, M. (ed.) Advances
in Computing, 43th edn., pp. 1–50. Academic Press, London (1996)

342 M. Harman et al.

7. Bottaci, L.: Instrumenting programs with flag variables for test data search by
genetic algorithms. In: GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, New York, July 9–13, 2002, pp. 1337–1342. Morgan
Kaufmann, San Francisco (2002)

8. British Standards Institute. BS 7925-1 vocabulary of terms in software testing
(1998)

9. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering 2(3), 215–222 (1976)

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

11. Coward, P.D.: Symbolic execution systems – a review. Software Engineering Jour-
nal 3(6), 229–239 (1988)

12. Darlington, J., Burstall, R.M.: A tranformation system for developing recursive
programs. Journal of the ACM 24(1), 44–67 (1977)

13. Richard A DeMillo and A.J. Offutt. Experimental results from an automatic test
generator. ACM Transactions of Software Engineering and Methodology, 2(2):109–
127, March 1993.

14. Dershowitz, N., Manna, Z.: The evolution of programs: A system for automatic
program modification. In: Conference Record of the Fourth Annual Symposium on
Principles of Programming Languages. ACM SIGACT and SIGPLAN, pp. 144–
154. ACM Press, New York (1977)

15. Feather, M.S.: A system for assisting program transformation. ACM Transactions
on Programming Languages and Systems 4(1), 1–20 (1982)

16. Ferguson, R., KorelThe, B.: The chaining approach for software test data gener-
ation. ACM Transactions on Software Engineering and Methodology 5(1), 63–86
(1996)

17. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

18. Graves, T., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An empirical
study of regression test selection techniques. In: Proceedings of the 20th In-
ternational Conference on Software Engineering, April 1998, pp. 188–197. IEEE
Computer Society Press, Los Alamitos (1998)

19. Harman, M., Hu, L., Hierons, R., Baresel, A., Sthamer, H.: Improving evolution-
ary testing by flag removal (‘best at GECCO’ award winner). In: GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, July 9–13,
2002, pp. 1359–1366. Kaufmann Publishers, San Francisco (2002)

20. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Transactions on Software Engineering 30(1),
3–16 (2004)

21. Hierons, R., Harman, M., Fox, C.: Branch-coverage testability transformation for
unstructured programs. The Computer Journal 48(4), 421–436 (2005)

22. Jones, B.F., Sthamer, H.-H., Eyres, D.E.: Automatic structural testing using ge-
netic algorithms. The Software Engineering Journal 11, 299–306 (1996)

23. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

24. King, K.N., Offutt, A.J.: A FORTRAN language system for mutation-based soft-
ware testing. Software Practice and Experience 21, 686–718 (1991)

25. Korel, B.: Automated software test data generation. IEEE Transactions on Soft-
ware Engineering 16(8), 870–879 (1990)

Testability Transformation – Program Transformation to Improve Testability 343

26. Korel, B., Chung, S., Apirukvorapinit, P.: Data dependence analysis in automated
test generation. In: Proceedings: 7th IASTED International Conference on Software
Engineering and Applications, pp. 476–481 (2003)

27. Korel, B., Harman, M., Chung, S., Apirukvorapinit, P., Gupta, R.: Data depen-
dence based testability transformation in automated test generation. In: 16th Inter-
national Symposium on Software Reliability Engineering (ISSRE 2005), Chicago,
Illinios, USA, pp. 245–254, November 2005 (2005)

28. McMinn, P.: Search-based software test data generation: A survey. Software Test-
ing, Verification and Reliability 14(2), 105–156 (2004)

29. McMinn, P., Holcombe, M.: The state problem for evolutionary testing. In: Cantú-
Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G.,
Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A.,
Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO
2003. LNCS, vol. 2724, pp. 2488–2497. Springer, Heidelberg (2003)

30. McMinn, P., Holcombe, M.: Evolutionary testing of state-based programs. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005),
Washington DC, USA, pp. 1013–1020. ACM Press, New York (2005)

31. McMinn, P., Binkley, D., Harman, M.: Testability transformation for efficient au-
tomated test data search in the presence of nesting. In: UK Software Testing Work-
shop (UK Test 2005), Sheffield, UK (September 2005)

32. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evo-
lution. IEEE Transactions on Software Engineering 12, 1085–1110 (2001)

33. Mueller, F., Wegener, J.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. In: 4th IEEE Real-Time Technology and
Applications Symposium RTAS 1998, Washington, Brussels, Tokyo, June 1998, pp.
144–154. IEEE, Los Alamitos (1998)

34. Offutt, A.J.: An integrated system for automatically generating test data. In: Ray-
mond, T.N., Peter, A., Ramamoorthy, C.V., Seifert, L.C., Yeh (eds.) Proceedings of
the First International Conference on Systems Integration, Morristown, NJ, April
1990, pp. 694–701. IEEE Computer Society Press, Los Alamitos (1990)

35. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algo-
rithms. The Journal of Software Testing, Verification and Reliability 9, 263–282
(1999)

36. Partsch, H.A.: The Specification and Transformation of Programs: A Formal Ap-
proach to Software Development. Springer, Heidelberg (1990)

37. Pohlheim, H., Wegener, J.: Testing the temporal behavior of real-time software
modules using extended evolutionary algorithms. In: Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, July 13–17, 1999, vol. 2,
p. 1795. Morgan Kaufmann, San Francisco (1999)

38. Puschner, P., Nossal, R.: Testing the results of static worst–case execution-time
analysis. In: 19th IEEE Real-Time Systems Symposium (RTSS 1998), pp. 134–
143. IEEE Computer Society Press, Los Alamitos (1998)

39. Radio Technical Commission for Aeronautics. RTCA DO178-B Software consider-
ations in airborne systems and equipment certification (1992)

40. Schultz, A., Grefenstette, J., Jong, K.: Test and evaluation by genetic algorithms.
IEEE Expert 8(5), 9–14 (1993)

41. Tracey, N., Clark, J., Mander, K.: Automated program flaw finding using simulated
annealing. In: International Symposium on Software Testing and Analysis, March
1998, pp. 73–81. ACM/SIGSOFT, New York (1998)

344 M. Harman et al.

42. Tracey, N., Clark, J., Mander, K.: The way forward for unifying dynamic test-
case generation: The optimisation-based approach. In: International Workshop on
Dependable Computing and Its Applications (DCIA), IFIP, January 1998, pp.
169–180 (1998)

43. Ward, M.: Reverse engineering through formal transformation. The Computer
Journal 37(5) (1994)

44. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Information and Software Technology Special Issue on Software
Engineering using Metaheuristic Innovative Algorithms 43(14), 841–854 (2001)

45. Wegener, J., Mueller, F.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Systems 21(3), 241–268 (2001)

46. Weiser, M.: Program slices: Formal, psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, University of Michigan,
Ann Arbor, MI (1979)

47. Zhu, H.: A formal analysis of the subsume relation between software test adequacy
criteria. IEEE Transactions on Software Engineering 22(4), 248–255 (1996)

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 345–366, 2008.
© 2000 IEEE. Reprinted, with permission, from IEEE Trans. Software Engineering, vol. 26(12), pp. 1157–1167, 2000

Modelling the Effects of Combining Diverse Software
Fault Detection Techniques

Bev Littlewood1, Peter Popov1, Lorenzo Strigini1, and Nick Shryane2,*

1 Centre for Software Reliability, City University,
Northampton Square, London EC1V 0HB, UK

{b.littlewood,ptp,strigini}@csr.city.ac.uk
http://www.csr.city.ac.uk

2 School of Psychological Sciences,
University of Manchester, Manchester M13 9PL, UK

N.Shryane@manchester.ac.uk

Abstract. The software engineering literature contains many studies of the efficacy
of fault finding techniques. Few of these, however, consider what happens when
several different techniques are used together. We show that the effectiveness of
such multi-technique approaches depends upon quite subtle interplay between their
individual efficacies and dependence between them. The modelling tool we use to
study this problem is closely related to earlier work on software design diversity.
The earliest of these results showed that, under quite plausible assumptions, it
would be unreasonable even to expect software versions that were developed ‘truly
independently’ to fail independently of one another. The key idea here was a ‘diffi-
culty function’ over the input space. Later work extended these ideas to introduce a
notion of ‘forced’ diversity, in which it became possible to obtain system failure
behaviour better even than could be expected if the versions failed independently.
In this paper we show that many of these results for design diversity have counter-
parts in diverse fault detection in a single software version. We define measures of
fault finding effectiveness, and of diversity, and show how these might be used to
give guidance for the optimal application of different fault finding procedures to a
particular program. We show that the effects upon reliability of repeated applica-
tions of a particular fault finding procedure are not statistically independent – in
fact such an incorrect assumption of independence will always give results that are
too optimistic. For diverse fault finding procedures, on the other hand, things are
different: here it is possible for effectiveness to be even greater than it would be
under an assumption of statistical independence. We show that diversity of fault
finding procedures is, in a precisely defined way, ‘a good thing’, and should be ap-
plied as widely as possible. The new model and its results are illustrated using
some data from an experimental investigation into diverse fault finding on a rail-
way signalling application.

1 Introduction

Diversity is ubiquitous in human activity. In quite mundane contexts it is common to
use diversity to improve confidence: for example, I might ask a colleague to check my

* Work performed while this author was at the Department of Psychology, University of Hull,

Hull HU6 7RX, UK.

346 B. Littlewood et al.

arithmetic in a complex calculation. The informal idea is that the mistakes he might
make will differ from those that I might make, and our arriving at the same answer
suggests that neither of us has made a mistake, thus increasing my confidence that the
answer is correct.

The key to the approach is, of course, the presence of intellectual differences in the
two procedures. Note that this notion of diversity differs fundamentally from that of
redundancy in which there is simply replication (e.g. of a component to increase
hardware reliability) of exactly similar items: I would have less trust in my own exact
replication of the calculation than in the different calculation of my colleague.

In software, design diversity has been proposed as a means of achieving higher re-
liability than could be achieved (for the same outlay of effort) from a single version.
Such design diverse software architectures have seen fairly widespread industrial use
[1]. In the early days, it seems that the motivation for the approach owed a great deal
to the hardware redundancy metaphor, to the extent that independence of failures of
the versions was seen as the goal (albeit recognised as difficult to achieve). Later,
several experiments [2, 3] showed that such a goal was probably unrealistic: version
failures tended to be highly dependent. Thus, whilst considerable improvement in
reliability could be expected from a multi-version architecture compared with the
reliabilities of the single versions, this nevertheless fell far short of what would have
been achieved if these versions failed independently.

An insight into the nature of the dependence came from a probabilistic model de-
veloped by Eckhardt and Lee (EL) [4], and later generalised by Littlewood and Miller
(LM) [5]. The basic idea here is that different inputs have different ‘difficulty’ –
roughly, the difficulty (and thus proneness to failure) faced by the designer of the
software in providing a correct way of processing them. As an example, consider an
aircraft flight control system: we might think of the set of inputs corresponding to
landing in turbulent wind-shear as ‘more difficult’ than those corresponding to
straight and level flight in calm conditions. It is shown in EL that this variation of
difficulty induces dependence upon the version failures, even though these might fail
conditionally independently. The intuition here is simple. If there are two versions, A
and B, and for a particular input we see that A has failed, we infer that the input was
‘probably difficult’, and that B is therefore more likely to fail. This is true even
though, for every input, the versions fail (conditionally) independently – and it is this
conditional independence that is the difficult goal to which the systems designers
aspire.1

The LM model generalises EL by introducing the possibility that the procedures
used by the A and B teams may be different (‘forced diversity’), and thus that what the
A team finds difficult may be different from what the B team finds difficult. It
introduces the possibility that diversity can be forced so that the versions will fail in

1 In more precise mathematical terms, we say that A and B fail conditionally independently if,

for every possible input, x,)|fails ()|fails ()|fail both and (xBPxAPxBAP = . They fail

unconditionally independently, on the other hand, if for a randomly chosen (i.e. unknown)
input)fails ()fails ()fail both and (BPAPBAP = . The point is that, in general, condi-

tional independence does not imply unconditional independence.

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 347

negatively correlated ways – thus giving better system reliability even than from
independence. It has to be admitted, however, that such an outcome may be unlikely
in practice.

A major conclusion to be drawn from these models is that there are traps for the
unwary in simple reliability models of multi-version software. In particular, assump-
tions of conditional independence generally do not carry through to justify claims of
unconditional independence.

Although the models are quite subtle, their intuitive underpinnings are quite sim-
ple. What is surprising is their very wide applicability. In this paper we shall show
that similar results apply to diversity in the fault detection processes that are applied
to a single software version. Once again, the benefits that we get from the application
of diverse fault detection procedures may sometimes be less than we could expect
under naïve assumptions of independence. However, the possibility of obtaining real
benefits from forced diversity, and predicting the extent of these benefits, seems more
plausible here than it does in the case of design diversity.

2 A Model of Diverse Fault Detection

Consider a single program that is going to be subjected to two different (‘diverse’)
fault detection procedures, A and B. For simplicity we shall assume that the program
is demand-based (e.g. a nuclear reactor protection system). As an example, one of the
fault detection procedures might be testing, in which the program is subjected to a
particular number of demands; another might be some form of static analysis, for
which a certain amount of staff effort is allocated.

The practical intuition here is that each fault detection procedure varies in its effi-
cacy from one fault to another, and that the different procedures may target different
faults most effectively. That is, procedure A may be stronger on those faults for which
B is weaker. This is a kind of forced diversity – applied to fault detection – similar to
the forced diversity of design and development methods in the LM model. The differ-
ence here is that the diverse fault detection is being applied to a single program. We
shall try to keep the notation here as close as possible to that of LM, so that readers
familiar with this model can see the similarities.

We shall assume that there is at most one fault associated with each input. One way
of thinking of a fault in a program is as the set of all inputs that change from being
‘faulty’ (i.e. cause a failure when executed) to ‘non-faulty’ (i.e. do not cause a failure
when executed) when the program is changed ‘in order to remove a fault’ [6].

It is now possible to imagine all possible faults that might be in a program. We
shall label these with the natural numbers: {i: i=1,2,3,...}. Clearly, some of these
faults will be more likely to be present in a particular program than others. Let

()programselectedrandomlyainpresentisfault iPpi = (1)

This notion of randomly selected program is exactly the same as that used in EL
and LM. There is a set of all programs that could be written, and the act of writing a

348 B. Littlewood et al.

program is modelled as an act of selection, via some probability distribution over this
set of all programs. Thus, the single program that we are dealing with can be regarded
as having been randomly selected from this set of possible programs.

Of particular interest is the probability distribution *}{ ip where

()iP
p

p
p

i
i

i
i faultisfaultselectedrandomly* ==
∑

 (2)

For any particular fault, i, we define)(iAθ to be the probability that a (randomly
chosen) application of the fault detection procedure A fails to find this fault. The key
idea, as in EL, is that this function varies from one fault to another. For a particular
fault it can be thought of as the ‘difficulty’ of finding that fault using procedure A,
similar to the ‘difficulty’ of inputs in the EL and LM models.

If, as an example, we think of A as being the execution of n operational test cases –
i.e. chosen at random using the operational profile over the input space – then clearly
each such ‘test’ will either reveal the fault i or it will not. If we were to repeat this
procedure many times, generating many sequences, each of n inputs, from the opera-
tional profile,)(iAθ can be thought of as the proportion in which the procedure fails
to detect the fault i.

The difficulty functions determine the efficacy of the fault detection procedures.
For example, we can define a measure of A’s fault-detection efficacy as the chance
that an ‘average’ or ‘typical’ fault is found in a (randomly chosen) application of A. In
order to keep our notation in step with that of the EL and LM models we shall gener-
ally express the results here in terms of ineffectiveness (cf. unreliability in the earlier
models) of the fault detection procedure A:

()
() ()()∑ ==

i
ApAi iEip

P

θθ *
*

faultchosenrandomlyadetecttofailsA

(3)

where the notation *pE indicates a mean obtained with respect to the probability

distribution p*. We have the following:

Result 1

()
()() ()Aofnapplicatiotheprograminfaultsofnumber

Aofnapplicatiotheafterundetectedprograminfaultsofnumber

* beforeEiE

E

Ap
θ= (4)

and

()
()()() ()programinpresentfaultsofnumber1

Aofnapplicatiothebydetectedfaultsofnumber

* EiE

E

AP
θ−=

 (5)

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 349

Proof

()
()

() ()

()() ()Aofnapplicatiotheprograminfaultsofnumber

Aofnapplicatiothebydetectednotisandpresentfault

Aofnapplicatiotheafterundetectedprograminfaultsofnumber

*

*

beforeEiE

ippip

iP

E

Ap

i
Ai

i
i

i
Ai

i

θ

θθ

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

=

∑∑∑

∑

The second part of the result follows trivially.

QED

We shall define the effectiveness of A to be

()()()iEenessineffectiv Ap
θ*11 −−

which is simply the probability that A successfully detects a randomly chosen fault.
For a different fault removal procedure, B, we could define similarly ()iBθ and

()()iE Bp
θ* . If ()()iE Ap

θ* were greater than ()()iE Bp
θ* we would say that A is less

effective at finding faults than B, in the sense that it would be expected to detect fewer
faults.

We shall now show that, corresponding to the EL result in design diversity, we
have here a lack of independence in the effects of successive applications of the same
fault detection procedure, and that this implies a law of diminishing returns. Consider
again, as an example, the situation where A is operational testing. An interesting ques-
tion is how the effectiveness of this kind of testing changes as we apply more ran-
domly chosen operational inputs. Consider the case where we carry out two such fault
detection procedures, independently, A1 and A2. Each comprises n independently
randomly chosen inputs, and the two sequences of n inputs are independent of one
another. In general, in such a case of a double application of a procedure we have:

Result 2

()
()

()faultchosenrandomlyadetecttofailsA

faultchosenrandomlyadetecttofailsA

faultchosenrandomlyadetecttofailAandA

2

1

21

P

P

P

×≥

(6)

or, equivalently,

()
().faultchosenrandomlyadetecttofailsA

failedA|faultchosenrandomlyadetecttofailsA

2

12

P

P

≥
 (7)

Proof
Clearly, for each fault i

() ()iiP A
2

21 faultadetecttofailAandA θ=

350 B. Littlewood et al.

i.e. failures of the two applications of the fault detection procedure are conditionally
independent, for every fault.

For a randomly selected fault, on the other hand

()
() ()() ()()[]222*

21

**

faultchosenrandomlyadetecttofailAandA

∑ ≥==

=

i
ApApAi iEiEip

P

θθθ

(8)

since ()() ()()[] ()() 022
** ≥=− iVariEiE AApAp

θθθ (Var(X) stands for the variance of

the random variable X).

QED

It is easy to show (cf. the EL and LM models) that there is equality in these expres-
sions if and only if () θθ =iA identically for all faults. Clearly, it seems certain that no
real fault finding procedures have the property of completely constant difficulty with
respect to all faults.

Another way to think of these expressions is in terms of the number of faults
you would expect to detect in a program by applying a particular fault finding
procedure. Clearly, if you apply the procedure twice you would not expect to find
twice as many faults as applying it just once – informally, there is a chance that
some of the faults that could have been found in the second application would
already have been found in the first application. This would be true even if there
were complete independence in the two applications (i.e., in the terminology of the
model, () θθ =iA identically for all faults). What the result above says is that
things are even worse than this independence case when there is variation of diffi-
culty: i.e. you would expect to find even fewer faults with two applications than
you would if you could assume independence.

These results depend on the fact that, even though the two applications of the fault
detection procedure are conditionally independent for all faults, they are not uncondi-
tionally independent. Informally, the failure of the first application of A to find the
fault suggests that it is a ‘difficult’ fault for A, and thus that a second application of A
will also be likely to fail to find it. If the first application of operational testing has
revealed only a few faults, for example, we should tend to lose confidence in the
likely effectiveness of a second application of the procedure.

This result corresponds to our intuition. Most people would not persevere with put-
ting all their fault detection effort into a single procedure, such as, for example, in-
spection or operational testing. Rather they would tend to expect there to be a law of
diminishing returns operating, whereby most of the faults that can easily be detected
by a procedure, are eventually detected. At some point, therefore, it would seem sen-
sible to cease one fault detection activity and switch to another, which it is hoped will
target a different class of faults. We now examine this case of diverse fault removal:
the reader familiar with the earlier models of design diversity will see that the follow-
ing is similar to the LM model, as the former was similar to EL.

Consider now, therefore, two different fault detection procedures A and B:

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 351

Result 3

()
() ()failsBfailsA

faultselectedrandomlyadetecttofailBandA

PP

P

>
 (9)

and

()
()faultselectedrandomlyadetecttofailsB

failedA|faultselectedrandomlyadetecttofailsB

P

P

>
 (10)

if and only if

() ()() 0,* >iiCov BAp
θθ (11)

where Cov(X) stands for the covariance of the random variable X.

Proof
We assume conditional independence in the following obvious way:

() () ()iiiiP BA θθ=present|faultdetecttofailBandA (12)

for every fault i.
For a randomly selected fault, on the other hand:

()
() () () ()()iiEiip

P

BAp
i

BAi θθθθ *
*

faultselectedrandomlyadetecttofailBandA

==∑
(13)

which, in general

()() ()() ()
()

() ()() 0,ifonlyandif

faultselectedrandomlyaremovetofailsB

faultselectedrandomlyaremovetofailsA

*

**

>

×=>

iiCov

P

PiEiE

BAp

BpAp

θθ

θθ

QED

In other words, you would expect to find fewer faults by applying A and B when
() ()() 0,* >iiCov BAp

θθ than you would if you could assume independence (and, of

course, this latter expected number will be smaller2 than the sum of the numbers you
would expect from a single application of A and a single application of B).

There is an intriguing possibility of better than independent behaviour of the two
procedures if the covariance is negative. Such negative covariance would be possible
whenever the different fault detection procedures targeted different types of faults, i.e.
whenever the ‘difficult’ faults for one procedure are the ‘easy’ ones for the other, and
vice versa.

2 Strictly ‘less than or equal to’. There can be equality here if there is a kind of ‘complete dis-

jointness’ in the difficulty functions of the two procedures, i.e. if for every fault i one of the
difficulty functions takes the value 1 - for every fault one of the procedures is completely in-
effective. Such a case does not seem to have any practical relevance.

352 B. Littlewood et al.

An expectation of something like negative covariance does seem to lie behind the
intuition of those people involved in software verification and validation, for whom
an eclectic mix of different fault finding procedures is preferred to the extensive ap-
plication of a single one. What is novel in the work reported here is that we introduce
the possibility of measures that characterise this desirable diversity between different
procedures. Interestingly, the measures seem more amenable to statistical estimation
than the corresponding ones in design diversity, as we shall see in a preliminary ex-
ample in Section 6.

3 Effects on Reliability

The results of the previous section concern the efficacy of different procedures at
finding faults. Of course, knowing that a procedure is good at finding faults is not the
same as knowing that it is good at improving reliability (when the faults that are de-
tected are removed). It is well-known that in real programs different faults can have
very different impacts on a program’s unreliability [7]: a fault-finding procedure that
was very efficient at finding ‘small’ faults could be very inefficient at finding ‘large’
ones, and thus at improving reliability. A ‘good’ fault finding (and removal) proce-
dure is one that tends to improve reliability most efficiently [6]. We now show that
similar results to those above also apply to the efficacy of fault finding procedures in
improving reliability. Throughout this section we shall assume that when a fault is
detected it is removed with certainty.

Let

selectedrandomlyabyactivatedisfault(iPi =π
)fixedanddetectedisandinput

(14)

The unreliability of the program is then

() ∑=
i

iP πinputselectedrandomlyonfailsprogram (15)

and

()iP

i
i

i
i faultbycausedfailureselectedrandomly* ==
∑π

ππ (16)

Consider now the effect of applying the fault removal procedure A on the program
unreliability, i.e. on the probability that it fails on a randomly selected input.

Result 4

()
()() ()Aapplyinginputselectedrandomlyaonfailsprogram

Aofnapplicatiofollowinginputselectedrandomlyaonfailsprogram

* beforePiE

P

Aθπ=
 (17)

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 353

Proof

()
()

()

() ()

()() ()Aapplyinginputselectedrandomlyonfailsprogram

activatedisitfaultremovednothasA

Aofnapplicatiofollowingactivatedfault

Aofnapplicatiofollowinginputselectedrandomlyaonfailsprogram

*

*

beforePiE

ii

andiP

iP

P

A

i
Ai

i
i

i
Ai

i

i

θ

θππθπ

π=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

=

=

∑∑∑

∑
∑

QED

Thus, the factor ()()iE Aθπ * can be seen as a measure of the ineffectiveness of proce-

dure A in improving reliability: the smaller this is, the better. Similarly, its comple-
ment can be thought of as the effectiveness.

Consider now the application of fault removal procedure A twice, A1, A2. We have
a result similar to Result 2:

Result 5
The ineffectiveness of A1 and A2 together is greater than or equal to the product of the
ineffectiveness of A1 and the ineffectiveness of A2.

Proof

()
()

()

() ()

()() ()
()()() ()21

2

21
2

2*2

21

21

21

AandAapplyingbeforeinputrandomaonfailsprogram

AandAapplyingbeforeinputrandomaonfailsprogram

activatedisitfaultremovednothaveAandA

AandAofnapplicatiofollowingactivatedfault

AandAofnapplicatiofollowinginputrandomaonfailsprogram

*

*

PiE

PiE

ii

andiP

iP

P

A

A

i i
Aii

i
Ai

i

i

θ

θ

θππθπ

π

π

≥

=

==

=

=

∑ ∑∑
∑
∑

QED

As before, there will be equality here if and only if () θθ ≡iA for some constant θ ,

identically for all faults.
The effectiveness of applying A1 and A2 together in reducing the probability of fail-

ure of the program on a randomly selected input is always less than the result we

would expect under independence, since ()()iE A
2

* θπ is always less than ()()2
* iE Aθπ .

This is, again, the analogue of the EL result.

354 B. Littlewood et al.

If, on the other hand, we apply diverse fault removal procedures, A and B, we find,
as before, that we can do better than this:

Result 6
The ineffectiveness of applying A and B together is greater than the product of
the ineffectiveness of A and the ineffectiveness of B if and only if

() 0)(),(* >iiCov BA θθπ .

Proof

()
()

()

()
() ()

() () () () 0)()()()()(),(ifonly and if

) and applying input randoma on fails program()()(

) and applying input randoma on failsprogram()()(

)()(*)()(

activatedisitfaultremovednothaveBandA

BandAofnapplicatiofollowingactivatedfault

BandAofnapplicatiofollowinginputrandomaonfailsprogram

**

*

i

>−=
>
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

=

=

∑∑ ∑

∑
∑

iEiEiiEiiCov

BAbeforePiEiE

BAbeforePiiE

iiii

andiP

iP

P

BABABA

BA

BA

BA
i

i
i i

iBA

i

i

θθθθθθ
θθ

θθ

θθππθθπ

ππππ

ππ

π

QED

Thus the factor () ()()iiE BA θθπ * , which determines the reduction in unreliability (im-

provement in reliability) coming from the successive applications of A and B, can be
either smaller or larger than the equivalent expression that assumes independence,

()() ()()iEiE BA θθ ππ ** , according to whether the covariance () ()()iiCov BA θθπ ,* is

positive or negative. We would like it to be smaller, i.e. the covariance to be negative.

4 Optimal Allocation of Fault Detection Procedures

The results of the previous two sections show that, in a limited sense, negative corre-
lation between the difficulty functions of two fault finding procedures is ‘a good
thing’. In practice, of course, this does not tell us how to deploy A and B when we
have a fixed amount of effort available. There will be a trade-off between the effica-
cies of the individual fault finding procedures and their dependence, and it may be
that it will be most effective to use only A (or only B). In this section we provide some
tentative advice for optimal allocation of procedures, by showing that, when we be-
lieve that there is nothing to choose between the different procedures in terms of their
individual efficacies, their most diverse application is always best.

Consider the case where we have two fault finding procedures, A and B. For exam-
ple, let A, as before, be operational testing; let B be a form of static analysis. Assume
that we are indifferent between a randomly chosen application of A (i.e. a randomly

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 355

chosen set of operational inputs), and a randomly chosen application of B (i.e. a par-
ticular application of the static analysis procedure). That is, if we were to apply only
one of these procedures to our program we would have no preference between them.
Then we can show that it is always better to apply A once and B once rather than
either of them twice; more precisely:

Result 7
If () ())()(2

*
2

* iEiE BA θθ ππ = then

) and of napplicatio followinginput randoma on fails program(

) and of napplicatio followinginput randoma on fails program(

and

) and of napplicatio followinginput randoma on fails program(

) and of napplicatio followinginput randoma on fails program(

21

21

BBP

BAP

AAP

BAP

<

<

Proof
By the Cauchy-Schwarz inequality

() ()() ()() () ())()()()()()(2
*

2
*

2
*

2
**

2
1

2
1

iEiEiEiEiiE BABABA θθθθθθ πππππ ==<

so

()
()

)andofnapplicatiofollowinginput randomaonfailsprogram(

)findingfaultbeforeinputrandomaon fails program()(

)findingfault beforeinput randomaon fails program()()(

)andofnapplicatiofollowinginput randomaon fails program(

21

2
*

*

AAP

PiE

PiiE

BAP

A

BA

=
<

=

θ

θθ

π

π

and similarly for B1 and B2.

QED

A similar result holds for efficacy defined in terms of the expected numbers of faults
removed: we would expect more faults to be removed by an application of A and B than
by two applications of A or two of B (subject to a similar indifference assumption3). The
similarity of this result to that just proved is a generalisation of the parallelism that we
have seen between the results involving efficacy of fault removal (results 1-3) and those
involving improvement in reliability (results 4-6). The proof follows simply and will not
be given here: similar comments apply to all the results of this section.

This result can be generalised to more than two fault finding procedures. Thus for
three procedures A, B and C, we have a choice between the following applications (in
an obvious notation): AAA, BBB, CCC, AAB, AAC, ABB, . . . , BCC, ABC. If we are
indifferent between all the single fault finding procedures

() () ())()()(3
*

3
*

3
* iEiEiE CBA θθθ πππ == (18)

and between all those using two procedures

3 Note, however, that indifference with respect to fault finding ability does not generally imply

indifference with respect to reliability improvement, nor vice versa.

356 B. Littlewood et al.

() () ())()()()()()(2
*

2
*

2
* iiEiiEiiE BACABA θθθθθθ πππ == (19)

it can be shown that ())()()(* iiiE CBA θθθπ is smaller than all these other inefficiency

factors, and so the greatest improvement in reliability will come by applying ABC.
More generally, when k different fault finding procedures are available, subject to

certain indifference assumptions between them, it is best to use all of them and to
spread their use as evenly as possible. Thus, for example, if we are prepared to apply
5 randomly chosen fault finding procedures, but only have 3 different types, then
AABCC is better than AAABC, etc. This can be expressed in general as:

Result 8
Let),...,(21 knnn represent the allocation of ni randomly chosen applications of fault

finding procedure i (i=1,2,...k),

∑
=

=
k

i
i nn

1

.

Assuming indifference between allocations that merely involve permutations of
procedures, the best allocations (there will generally be more than one) are those for
which

[] [] kik
nnk

n
i ≤≤+≤≤ 1 ,1 (20)

where [x] denotes the greatest integer not greater than x.

Proof
See [5].

The importance of this result lies in its potential for optimally allocating a given
amount of effort among several fault finding procedures. The key to its practical ap-
plication lies in the notion of ‘indifference’: we need to define a unit of fault finding
effort which is meaningful for all the different types and which is such that there is
indifference in the terms required by the result. The simplest way that this could be
done would be for indifference between a single application of A and B to imply indif-
ference between double applications, between triple applications, etc. In such a case,
defining the initial ‘unit’ of each kind of fault finding effort is sufficient to ensure that
the conditions of the result apply, and the best allocation(s) are those that ‘spread
effort as equally as possible’ among different procedures.

If A were, as before, operational testing, and B were a type of static analysis, we
would need to select a number of test cases for the ‘unit’ of operational testing, and an
‘amount’ of static analysis (e.g. the time for an analyst of a particular competence) so
that we would be indifferent between (randomly chosen) single applications of each
of the two4. It seems likely that in practice there is usually some appropriate ‘cost’
variable that will allow us to define units of different fault finding procedures that we

4 Notice that indifference does not mean that we believe the effects will be the same. On the

contrary, we know that the effects of the testing and analysis will be different in their fault
finding - they will target different types of faults differently. The point is that we do not prefer
one to another in their ability to improve reliability.

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 357

think are equivalent in their likely impact upon reliability. This result can be seen as a
formalisation of the kind of informal allocation between different procedures that is
carried out on a day-to-day basis during real system verification and validation.

5 Degrees of Diversity

It seems intuitively plausible that, if diversity is ‘a good thing’, then more diversity is
better than less. In this section we present a measure of diversity between pairs of
fault finding procedures that gives meaning to the notion of ‘more diverse’.

Consider the two procedures A and B. Since a procedure is completely character-
ised by its difficulty function over faults, θ, we can define a distance between the two
procedures in this function space:

()()2
*

2
)()(iiE BABA θθθθ π −=− (21)

Clearly,)()(unless 0
2

ii BABA θθθθ ≡>− . It follows trivially that

() () ())()()()(2
*

2
** iEiEiiE BABA θθθθ πππ =<

if we assume indifference between the procedures when applied singly. This is pre-
cisely Result 7, which says that the improvement in reliability by applying A and B is
better than that obtained by applying either twice.

Consider now the case where three procedures are available, A, B and C, but it is
only feasible (e.g. on cost grounds) to apply two of them. Suppose further that we
believe that A and B are more diverse, in the sense of (21), than are A and C, or B and
C. This is shown schematically in Figure 1:

A

B

C

Fig. 1.

Result 9
If A and B are more diverse than B and C, i.e.

CBBA θθθθ −>− ,

and we are indifferent between two-fold applications of each of the three procedures,
i.e.

358 B. Littlewood et al.

() () ())()()(2
*

2
*

2
* iEiEiE CBA θθθ πππ == ,

then
() ())()()()(** iiEiiE CBBA θθθθ ππ <

[The proof is trivial]
In other words, if we have a choice of two procedures that are more diverse than

another pair, we should prefer the former, all things being equal.

6 Example

Data to illustrate parts of the new model were obtained from a study into the verifica-
tion of safety-critical computer programs used in railway signalling systems: this
experiment pre-dated the development of the model described here.

Observational fieldwork conducted on-site at a number of railway signalling con-
tractors had revealed qualitative differences between faults typically found by diverse
verification methods, in this case static code checking and functional testing. How-
ever, variability in the complexity of work and personnel expertise found at different
contractors’ sites, and most importantly the lack of independence between the fault-
finding methods as practised in situ, could have been confounding this result.

Computer-aided simulations of the checking and testing tasks were therefore de-
veloped to allow controlled laboratory experiments to be conducted and 88 university
computer science students were recruited for these experiments. After a period of
‘core’ instruction in railway signalling principles common to all participants, half
were then given specific training for the code checking task and half were trained for
the testing task.

Table 1. Proportions of testers and checkers unsuccessful in finding each of eight seeded faults
in two programs

Program 1 Program 2

Fault id Proportion
in checking

Proportion
in testing

Fault id Proportion
in checking

Proportion
in testing

F11 .7778 .4168 F21 .2222 .0833

F12 .0000 .1389 F22 .8148 .2778

F13 .2593 .5556 F23 .5926 .5000

F14 .4815 .4722 F24 .1481 .9444

F15 .7778 .1944 F25 .4444 .2778

F16 .3704 .7222 F26 .2963 .7778

F17 .1852 .3611 F27 .2222 .8056

F18 .4444 .9167 F28 .7778 .2778

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 359

Participants were then required to verify two simulated railway signalling programs,
either by code checking or functional testing as appropriate. Each program was seeded
with eight faults (taken from those found during the fieldwork), each of the faults being
potentially detectable with either verification method. The dependent variable was thus
the proportion of the total faults detected by each participant, the independent variable
being whether the participant was a checker or a tester. For reasons that are beyond the
scope of the present paper, some participants were excluded from the experiment, leav-
ing a total of twenty-seven checkers and thirty-six testers (Further information on this
issue, and on the experimental task in general, can be found in [8, 9]; for more informa-
tion on the railway signalling task on which it is based, see [10]).

The raw data are shown in Table 1. Here the entries in the table are, for each fault,
the proportion of the individuals in that part of the experiment who were unsuccessful
in finding the fault: for fault i and procedure A we take this to be an estimate of ()iAθ

in the notation of the model. If we treat each program separately, we have pi*=1/8 for
each of the eight faults in each program. If we let A represent checking and B repre-
sent testing, it is then easy to show that for Program 1 (estimates of) the relevant pa-
rameters of the model are:

() ()
() ()
() () ()

() 0040.0)(),(

194.0)()(,199.0)()(

282.0)(,235.0)(

472.0)(,412.0)(

*

2
*

2
*

**

=

==

==

==

iiCov

iEiEiiE

iEiE

iEiE

BAp

BpApBAp

BpAp

BpAp

θθ
θθθθ

θθ

θθ

(22)

and for Program 2:

() ()
() ()
() () ()

() 0381.0)(),(

 217.0)()(,179.0)()(

329.0)(,253.0)(

493.0)(,440.0)(

*

2
*

2
*

**

−=

==

==

==

iiCov

iEiEiiE

iEiE

iEiE

BAp

BpApBAp

BpAp

BpAp

θθ
θθθθ

θθ

θθ

(23)

Notice that the efficacies of A and B are roughly similar between the two programs,
but that B seems to be consistently worse than A. Also, there seems to be ‘more diver-
sity’ between A and B in their application to Program 2 than to Program 1: there is
negative correlation between the difficulty functions in the case of Program 2, but
small positive correlation for Program 1.

After two applications of A to Program 2, we would expect 25.3%5 of faults to be
undetected; after two applications of B, 32.9% of faults to be undetected; but after an
application of each of A and B, we would expect only 17.9% of faults to be
undetected. Thus, in this case we would expect the application of A and B to be more

5 A word of warning about the number of significant figures here and in later expressions.

Essentially, we are computing finite-sample estimates of parameters, which can be regarded
as exact, and then truncating the decimal expressions for convenience. If we regard these as
estimates of infinite populations, of course, the number of significant figures here may be too
optimistic. This observation does not affect the general reasoning of the paper.

360 B. Littlewood et al.

effective than a double application of A or of B. This is so even though we are not
indifferent between A and B here: in fact A seems significantly better than B (and AA
than BB). Here the naïve ‘independence’ argument would seriously underestimate the
efficacy of AB, suggesting that it would leave 21.7% of faults undetected, rather than
the correct figure of 17.9%.

For Program 1, the corresponding figures are: after two applications of A, we ex-
pect 23.5% of the faults to be undetected; after two applications of B, 28.2%; and
after one application of A and one of B, 19.9%. Once again, the diverse application of
AB is better than either AA or BB, even though the difficulty functions show slight
positive correlation – but this superiority is less dramatic than in Program 2, where the
procedures have negatively correlated difficulty functions. In this case the naïve ‘in-
dependence’ assumption would slightly overestimate the efficacy of AB, suggesting it
would leave 19.4% of faults undetected rather than the correct figure of 19.9%.

The differences in the examples above, (22) and (23), suggest how we might use
this model in practice. If we believe that the effectiveness of successive applications
of particular diverse fault finding procedures will vary from one class of problem to
another (e.g. real-time versus non-real-time), but are constant within each problem
class, then we should strive to estimate the parameters of the model for each problem
class. Thus if we had two sets of data, like those for Programs 1 and 2, corresponding
to two different types of program, we could estimate the parameters relating to their
different behaviours.

If, on the other hand, we have no reason to believe that there are such differences,
we should regard data from all programs as being evidence to be used for obtaining a
single set of parameter estimates for the model. If we aggregate the above data in this
way, treating each program as having been sampled with constant probability from a
population of programs, we find that the model parameters are estimated as follows:

() ()
() ()
() () ()

() 0168.0)(),(

 206.0)()(,189.0)()(

306.0)(,244.0)(

483.0)(,426.0)(

*

2
*

2
*

**

−=

==

==

==

iiCov

iEiEiiE

iEiE

iEiE

BAp

BpApBAp

BpAp

BpAp

θθ
θθθθ

θθ

θθ

(24)

Now, after a double application of A we would expect 24.4% of faults to be unde-
tected; after a double application of B, 30.6%; and after application of a single A and a
single B, 18.9%. Once again, rather informally, the strong diversity of the procedures,
indicated by their negative correlation, means that an application of each of A and B is
best, even though A is clearly superior to B (and AA to BB). Once again, because of
the negative correlation of the difficulty functions, the naïve independence estimate
gives an underestimate of the efficacy of AB: it suggests that this will leave behind
20.6% of faults undetected whereas the true figure is 18.9%.

These results illustrate the quite subtle interplay that there can be between the effi-
cacies of the individual procedures and their ‘degree of diverseness’: in general we
need to know all first and second moments of the (random variable) difficulty func-
tions before we can determine the most effective mix of procedures. We have been
able to show earlier that by imposing certain indifference constraints it is possible to
know that AB will be better than AA or BB whenever there is negative correlation.

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 361

When we cannot make such assumptions, however, mere diverseness, as represented
by negative correlation between the difficulty functions, is not sufficient to ensure that
it will be best to apply both procedures. It is easy to show that when there is negative
correlation AB will always be better than the worst of AA and BB, but it could be
either better or worse than the better of these. Equally, negative correlation is not
necessary for AB to be superior to AA and BB: there can be benefit in diversity even
when the procedures are positively correlated, as in the case of Program 1.

These comments notwithstanding, the results of Section 3 (and similarly those of
Section 4) do seem like a promising way of giving designers advice about the best fault
finding approach when, as is sometimes the case, we are in a position to balance the
efficacies of different procedures by applying one of them ‘more’ or ‘less’ extensively.
Thus, in the example here we might require the testers to spend more time – examining
more test cases – so as to make () ())()(** iEiE ApBp θθ = in (24). Whenever we can do

this, we shall have a guarantee that AB will be superior to AA or BB, even when we do
not have the detailed extra information about the parameters of the model that we have
from this controlled experiment.

So far, the model described here has been predictive – e.g. predicting the best fault
finding combination of procedures for a novel program – only if we can assume that
the program about which we wish to make a prediction is ‘similar’ to the ones used
for the estimation of the model parameters. Clearly it would be desirable to lift this
restriction, and in some cases this may be possible. The idea here is to deal with
classes of faults, rather than with the faults themselves, and it can be illustrated again
by the railway data example.

The psychologists who devised this experiment were interested in investigating dif-
ferences in diverse fault finding between different types of fault; details can be found
in [8-10]), but the following is a brief account. As part of the signalling system design
task, engineers must translate information contained in track layout plans, regarding
permitted directions of movement of trains over track sections, into a machine-
readable label. Configurations of track sections are variable, and so a rule is used to
specify the mapping between the label and the route of the train. Engineers made
mistakes when generating the labels, and more importantly when performing an inde-
pendent check of others’ work, a vital part of the rigorous verification and validation
process to which safety critical systems must be subjected. Faults in Programs 1 and 2
varied as to whether the code involved the use of such train subroutes (S) or not (N).
There were thus two classes of fault, S and N: in Table 1, faults F11, F15, F22, F25
were of type S and the remaining 12 faults were of type N.

We can now easily compute a table similar to Table 1, but involving classes of
faults rather than the individual faults themselves:

Table 2. Estimates of the probabilities that a randomly chosen fault of type S (N) will fail to be
detected by an application of procedure A (B), obtained from the data of Table 1 aggregated
over the two programs

Fault class id Probability in checking (A) Probability in testing (B)

S .704 .292

N .333 .546

362 B. Littlewood et al.

In an obvious notation, the entries of Table 2 can be thought of as estimates of
)(sAθ , etc. We can now perform calculations similar to those carried out earlier,

using 75.0* ,25.0* == NS pp , to obtain:

() ()
() ()
() () ()

() 0178.0)(),(

206.0)()(,188.0)()(

245.0)(,207.0)(

483.0)(,426.0)(

*

2
*

2
*

**

−=

==

==

==

iiCov

iEiEiiE

iEiE

iEiE

BAp

BpApBAp

BpAp

BpAp

classes

classesclassesclasses

classesclasses

classesclasses

θθ
θθθθ

θθ

θθ

(25)

Clearly, the estimates of the efficacy of multiple procedures obtained from this
class-based treatment will generally be in error compared with the ‘correct’ results
obtained in (24) from the full fault-based data. It is therefore interesting to compare
the results of (24) and (25). The first moments, representing the single application
efficacies, are completely identical, as is to be expected. The ineffectiveness estimates
for AA and BB, on the other hand, are significantly underestimated in (25) in compari-
son with (24). The reason, of course, is that values in (25) ignore the variation in the
difficulty functions of A and B within each class of faults (see the appropriate entries
in Table 1): essentially they assume that all faults within a class have the same value
of the difficulty function for a particular fault finding procedure (in Table 2 such a
value has been computed as the average, over the different faults in the class, of the
actual difficulty functions from Table 1). Thus, for example (in an obvious notation),
the ineffectiveness of AA based on the full fault data can be expressed as:

()() ()() ()()
()() ()() ()() ()()

()()() ()()()iVarEiEE

iVariEpiVariEp

iEpiEpiE

AclasseswithinclassesbetweenAclasseswithinclassesbetween

ANiANiNASiASiS

ANiNASiSAp

θθ

θθθθ

θθθ

+=

+++=

+=

∈∈∈∈

∈∈

2

2*2*

2*2*2

)()()()(

*

(26)

and similarly for B.

That is, the first term – which we have called ())(2
* iE Ap classes

θ in the condensed no-

tation of (25), and which takes the value 0.207 – underestimates the true value by an
amount ()())(iVarE Aclasseswithinclassesbetween θ =0.037. This agrees with (24), since

0.244 = 0.207+0.037.
What is interesting and surprising, though, is the closeness between the ineffec-

tiveness estimates of AB in (24) and (25). We would expect these to differ since the
expression in (24) can be expressed:

() () ()
() () ()
() () ()

()() ()()()
() ()()()iiCovE

iEiEE

iiCoviEiEp

iiCoviEiEp

iiEpiiEpiiE

BAclasseswithinclassesbetween

BclasseswithinAclasseswithinclassesbetween

BANiBNiANiN

BASiBSiASiS

BANiNBASiSBAp

θθ
θθ

θθθθ

θθθθ

θθθθθθ

,

)(),()()(

)(),()()(

)().()().()()(

*

*

**
*

+

=
++

+=

+=

∈∈∈

∈∈∈

∈∈

(27)

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 363

The first term here is the approximation using aggregated fault class data from
(25), which in the condensed notation used there is () 188.0)()(* =iiE BAp classes

θθ . The

second term is the weighted average, using 25.0* =Sp and 75.0* =Np respectively,

of the covariances of the A and B difficulty functions for the different fault classes,
which take the values 0.000 and 0.001 respectively (to 3 decimal places). The small-
ness of these is the reason for the closeness of the estimate of AB effectiveness based
on the aggregated fault class data to the correct figure based on the full fault data.

The surprise here is that the devisors of the experiment have managed to arrive at
fault classes, S and N, for each of which the difficulty functions of A and B are almost
independent. It would be worth investigating whether this can be done in other cir-
cumstances: if it can, we shall be able to obtain accurate estimates of AB ineffective-
ness even from aggregated fault class data.

The practical advantage of the treatment via classes of faults, rather than the indi-
vidual faults themselves, is as follows. Individual faults are likely to be ‘sparse’. If we
collect our data from only a few real programs, we are likely to see each fault in no
more than one program, in contrast to the artificially seeded programs, which are used
repeatedly in the experiment. There will thus be no opportunity to estimate the prob-

abilities *
ip . If, on the other hand, we can identify meaningful and interesting fault

classes the associated probabilities may be estimable. Most importantly, we would be
able to predict the efficacy of diverse fault finding, as in (25), for an entirely novel
program if we can estimate the classesp * values for this new program.

An especially desirable situation would be achieved if the fault classes identified
had the special property that was fortuitously obtained in this experiment, i.e., that the
difficulty functions for different fault detection methods have zero covariance over
the different fault classes. Then, estimating the mean of the θ functions for each
{fault class, fault detection method} combination – which is much simpler than esti-
mating complete distributions – would be sufficient to allow useful predictions in
many cases. As can be seen from (26), the predictions would be exact for combina-
tions of diverse methods, and optimistic for repeated applications of one method:
when the methods are ‘diverse’ enough, these estimates would provide sufficient
conditions for a project manager to decide in favour of combining two diverse
methods.

Essentially this approach reuses the hard-won data such as that of Table 2, gained
from past experience of other projects or from experiments, by applying it to predic-
tion in a new context. Whilst this does require that we know, or are prepared to esti-
mate, the new classesp * values, this is a feasible task in contrast to attempting to do so

for the set of all faults. As an example, if we believe that for the new program

50.0 ,50.0 ** == NS pp , we obtain:

() ()
() ()
() () ()

() 0235.0)(),(

 217.0)()(,194.0)()(

192.0)(,303.0)(

419.0)(,519.0)(

*

2
*

2
*

**

−=

==

==

==

iiCov

iEiEiiE

iEiE

iEiE

BAp

BpApBAp

BpAp

BpAp

classes

classesclassesclasses

classesclasses

classesclasses

θθ
θθθθ

θθ

θθ

(28)

364 B. Littlewood et al.

For a new program with these classesp * , B is superior to A, and BB to AA. More

interestingly, BB is now slightly better than AB, even though there is negative correla-
tion between the difficulty functions.

7 Discussion and Conclusions

Most work in the software engineering literature on the efficacy of fault finding pro-
cedures has concentrated upon assessing and comparing their individual efficacies.
Whilst this is important, the reality is that in practice several of these techniques will
be employed together. There are some well-known intuitions about how such combi-
nations of procedures will work: we all know, for example, that it is best to use fault
finding procedures that are effective in some general way; but we equally know that
any single such procedure may miss a whole class of faults even when applied most
extensively. Many experimental comparisons for alternative fault-finding methods
have been reported, e.g. [11-16]. Those experimenters that looked at the effectiveness
of the methods on individual faults (e.g. [15]) corroborated the intuitive belief that
different methods were most effective at discovering different faults. Thus, even when
we know that procedure A is better at fault finding than B, we would be wary of using
only A because it may have little chance of finding certain faults that B may find quite
easily. The work described here is an attempt to formalise intuitions of this kind. The
ultimate aim is to provide advice to practitioners on the best way of combining differ-
ent approaches to fault finding on a single program.

An example of these arguments about fault finding efficacy has long raged in the
testing community between advocates of operational testing, and those of other test-
ing practices [6]. It is known that operational testing has the useful property that its
chances of finding faults (for a given outlay of effort) are in direct proportion to the
impact of these faults on the unreliability of the software – the greater the occurrence
rate of a fault, the greater its chance of being discovered in an operational test. How-
ever, this is not the same as saying that operational testing is more efficient at finding
faults than other testing procedures, and advocates of these alternatives often claim
that it is very inefficient. Essentially they argue that it takes no account of any knowl-
edge that the software designer may have about the possible location of faults. With
such knowledge it may be possible to find certain faults more effectively by actively
seeking them, than by allowing them to occur purely randomly. In our terminology,
the two testing procedures have different ‘difficulty’ functions over the set of faults:
the optimal allocation of testing to the two types would depend upon the diversity
between them as well as upon their individual efficacies.

The model presented here shows that the key to understanding how best to apply
different fault finding procedures lies in understanding the interplay between, on the
one hand, the efficacies of the individual procedures (in single and multiple applica-
tions), and on the other the dependence between their ‘difficulty functions’. Probably
the most important results are those of Sections 3 and 4. There we show that the ef-
fects upon reliability of repeated applications of a particular procedure are not statisti-
cally independent – in fact such an incorrect assumption of independence will always
give results that are too optimistic. When we have diverse fault finding procedures,
however, things are different: here it is possible for effectiveness to be even greater

 Modelling the Effects of Combining Diverse Software Fault Detection Techniques 365

than it would be under an assumption of statistical independence. We show in Result
8 that diversity of fault finding procedures is ‘a good thing’, and should be applied as
widely as possible. However, this result relies upon assumptions of indifference be-
tween the different procedures. As we have seen in the example of Section 6, it is
likely in practice that such an assumption of indifference would be unreasonable
unless it had been deliberately contrived. We believe that for some procedures it may
be possible to contrive it: in our own example it may be possible to increase the
amount of testing to make the checking and testing equally effective (in both single
and double applications).

When we compare this model with its mathematically similar equivalent in software
design diversity, it is striking how much easier it is to obtain estimates of the key model
parameters here. Thus in the example of Section 6, although the experiment pre-dates
the model, we were able to find estimates of the parameters representing procedure
effectiveness and diversity. When we look at classes of faults, the estimation problem
becomes a tractable one even for real life applications where the experimental replica-
tions of our experiment are infeasible. What is needed now is a systematic investigation
of these parameters for different fault-finding procedures - and different classes of soft-
ware application domains – in industrially realistic situations.

Intuitive notions of diversity in fault finding have been around for a long time, and
are used informally quite extensively, but they have lacked a rigorous formal basis. In
particular, it has not been clear what were the important factors to measure. The work
reported here is the start of such a formal measurement-based understanding. We
hope that it will lead to a theory of fault detection – and removal – that allocates dif-
ferent fault finding procedures optimally to each problem, taking account of the likely
distribution of fault types for that problem.

Finally, we are grateful to a reviewer for pointing out that these results might have
application to hardware as well as software. Whilst we have not had the opportunity
to analyse any hardware data, we agree that the models are formulated in a very gen-
eral way and could find use outside software engineering.

Acknowledgements

This work was supported partially by Scottish Nuclear under the DISPO project, by
EPSRC under the DISCS project and by the ESPRIT Long Term Research Project
20072, ‘Design for Validation’ (DeVa).

References

1. Rouquet, J.C., Traverse, P.J.: Safe and reliable computing on board of Airbus and ATR
aircraft. In: 5th International Workshop on Safety of Computer Control Systems
(SAFECOMP 1986), Sarlat, France, pp. 93–97. Pergamon Press, Oxford (1986)

2. Eckhardt, D.E., Caglayan, A.K., et al.: An experimental evaluation of software redun-
dancy as a strategy for improving reliability. IEEE Transactions on Software Engineer-
ing 17(7), 692–702 (1991)

3. Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of inde-
pendence in multi-version programming. IEEE Transactions on Software Engineering SE-
12(1), 96–109 (1986)

366 B. Littlewood et al.

4. Eckhardt, D.E., Lee, L.D.: A theoretical basis for the analysis of multiversion software
subject to coincident errors. IEEE Transactions on Software Engineering SE-11(12),
1511–1517 (1985)

5. Littlewood, B., Miller, D.R.: Conceptual modelling of coincident failures in multi-version
software. IEEE Transactions on Software Engineering SE-15(12), 1596–1614 (1989)

6. Frankl, P., Hamlet, D., et al.: Choosing a testing method to deliver reliability. In: 19th In-
ternational Conference on Software Engineering (ICSE 1997), pp. 68–78 (1997)

7. Adams, E.N.: Optimizing preventive service of software products. IBM Journal of Re-
search and Development 28(1), 2–14 (1984)

8. Westermann, S.J., Shryane, N.M., et al.: Engineering Cognitive Diversity. In: Redmill, F.,
Anderson, T. (eds.) Safer Systems: Proceedings of the Fifth Safety-critical Systems Sym-
posium, p. 111. Springer, Heidelberg (1997)

9. Westerman, S.J., Shryane, N.M., et al.: Cognitive diversity: A structured approach to trap-
ping human error. In: SAFECOMP 1995: 14th International Conference on Computer
Safety, Reliability and Security, Belgirate, Italy, pp. 142–155. Springer, Heidelberg (1995)

10. Shryane, N.M., Westerman, S.J., et al.: Task analysis for the investigation of human error
in safety-critical software design: a convergent methods approach. Ergonomics 41(11),
1719–1736 (1998)

11. Basili, V., Green, S.: Software process evolution at the SEL. IEEE Software 11(4), 58–66
(1994)

12. Basili, V.R., Selby, R.: Comparing the effectiveness of software testing strategies. IEEE
Transactions on Software Engineering 13(12), 1278–1296 (1987)

13. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of branch test-
ing and data flow testing. IEEE Transactions on Software Engineering 19(8), 774–787
(1993)

14. Grady, R.B.: Practical Software Metrics for Project Management and Process Improve-
ment, p. 282. Prentice-Hall, Englewood Cliffs (1992)

15. Shimeall, T.J., Leveson, N.G.: An empirical comparison of software fault tolerance and
fault elimination. IEEE Transactions on Software Engineering 17, 173–182 (1991)

16. So, S.S., Cha, S.D., et al.: An empirical evaluation of six methods to detect faults in soft-
ware. Software Testing, Verification & Reliability 12(3), 155–171 (2002)

Author Index

Ammann, Paul 118

Baresel, André 320
Binkley, David 320
Bogdanov, Kirill 184
Bowen, Jonathan P. 240

Campbell, Colin 39
Chen, Jessica 157

Din, George 292

Gaudel, Marie-Claude 209
Grabowski, Jens 292
Grieskamp, Wolfgang 39

Harman, Mark 320
Hessel, Anders 77
Hierons, Robert M. 157, 320
Hu, Lin 320

Korel, Bogdan 320

Larsen, Kim G. 77
Le Gall, Pascale 209
Littlewood, Bev 345

McMinn, Phil 320
Mikucionis, Marius 77

Nachmanson, Lev 39
Nielsen, Brian 77

Offutt, Jeff 118

Pettersson, Paul 77
Popov, Peter 345

Roper, Marc 320

Schieferdecker, Ina 292
Schulte, Wolfram 39
Shryane, Nick 345
Skou, Arne 77
Strigini, Lorenzo 345

Tillmann, Nikolai 39
Tretmans, Jan 1

Ural, Hasan 157

Vassiliou-Gioles, Theofanis 292
Veanes, Margus 39
Vilkomir, Sergiy A. 240

Weyuker, Elaine J. 271

Xu, Wuzhi 118

	Title Page
	Preface
	Table of Contents
	Model Based Testing with Labelled Transition Systems
	Introduction
	Formal Testing
	Models
	Labelled Transition Systems
	Representing Labelled Transition Systems
	Inputs and Outputs
	Input-Output Transition Systems
	Test Cases
	Some Bibliographic Notes

	The Implementation Relation
	The Implementation Relation $ioco$
	Some Variations and Properties of $ioco$
	Some Bibliographic Notes

	Testing with Labelled Transition Systems
	Test Execution
	Test Generation
	Completeness of Test Generation
	Bibliographic Notes

	Concluding Remarks

	Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer
	Introduction
	A Sample: Chat
	Model Programs and Model Automata
	States
	Model Automata
	Model Programs
	State Exploration
	Controllable and Observable Actions
	Accepting States
	State Invariants

	Techniques for Scenario Control
	Parameter Selection
	Method Restriction
	State Filtering
	Directed Search
	State Grouping

	Test Generation
	Test Suites and Test Cases
	Traversal Algorithms
	Online Test Generation

	Test Execution
	Observational Completeness of Implementation under Test
	Object Bindings
	Refinement of Model Automata
	Checking Enabledness of Actions
	Conformance Automaton

	Related Work
	Conclusion

	Testing Real-Time Systems Using UPPAAL
	Introduction
	Approach and Chapter Outline
	Offline Test Generation
	Online Testing

	Specification of Real-Time Systems
	Environment and System Modelling
	Timed I/O Transition Systems
	Timed Automata

	Relativized Timed Conformance
	Offline Test Generation
	Test-Case Generation by Model-Checking
	Coverage-Based Test Case Generation
	Test Case Generation Using Observers
	Test Case Generation with Observers
	Tool Implementation

	Online Testing
	Non-determinism and Time
	A Real-Time Online Testing Algorithm
	Soundness and Completeness
	Tool Implementation
	Testing = Environment Emulation + Implementation Monitoring

	Discussion and Future Work
	Conformance Relations
	Specification of Tests
	Test Generation Algorithms
	Real-Time Test Execution and Diagnostics

	Conclusions

	Coverage Criteria for State Based Specifications
	Overview
	Graphs and Test Paths
	Logic Predicates and Clauses

	Graph Coverage
	Graph Coverage Criteria
	Graph Coverage for Specification

	Logic Coverage
	Logic Expression Coverage Criteria
	Logic Coverage for Specifications

	Summary
	Bibliographic Notes
	Graph Coverage Criteria
	Logic Coverage Criteria

	Testing in the Distributed Test Architecture
	Introduction
	An n-Port FSM and Its Graphical Representation
	Controllability Problems
	Observability Problems
	Identifying Observability Problems
	Verifiability of Outputs
	Finding an Absolute Verifying Path Upon θ
	Condition
	Algorithm

	Finding an Absolute Verifying Path Upon a Set v
	Constructing Absolute Verifying Path Upon Set v
	Algorithm

	Comparison
	Conclusion

	Testing from X-Machine Specifications
	Introduction
	Software Testing
	The Problem of Abstraction

	Introduction to X-Machines
	Well-Formedness of X-Machines
	Features of a Transition Diagram
	Nondeterminism Associated with Functions
	Completeness Associated with Computations of Labels of Transitions
	All States Are Terminal States

	X-Machine Testing Method
	The Strategy of X-Machine Testing Method
	The Approach to Testing X-Machines Using the W Method
	State Verification
	Design for Test Conditions
	Extra States
	Testing of Functions
	Building X-Machine Specifications That Are Useful for Testing
	Testing of Incomplete Systems

	Conclusion and Applications

	Testing Data Types Implementations from Algebraic Specifications
	Introduction
	Preliminaries on Algebraic Specifications
	Testing Against an Algebraic Specification
	A First Presentation of Exhaustivity and Testability
	Selection Hypotheses: Uniformity, Regularity
	Introduction to Selection Hypotheses
	How to Choose Selection Hypotheses

	Exhaustivity and Testability Versus Observability
	Observable Contexts
	Correctness with Observability Issues

	Related Work
	Related Work on Selection
	Related Work on Observability
	Variants of Exhaustivity
	The Case of Structured Specifications

	Case Studies and Applications to Other Formal Methods
	First Case Studies with Algebraic Specifications
	Applications to Other Methods
	Applications to Object-Oriented Software

	Conclusion

	From MC/DC to RC/DC: Formalization and Analysis of Control-Flow Testing Criteria
	Introduction
	Control-Flow Criteria
	General Definitions of Control-Flow Criteria
	An Example for the Criteria Application
	Formalization of Control-Flow Criteria in Z

	MC/DC
	General Definition of MC/DC
	Formal Definition of MC/DC
	An Example for MC/DC
	The Main Shortcoming of MC/DC

	RC/DC
	General Definition of RC/DC
	Formal Definition of RC/DC
	Examples for RC/DC

	Conclusions and Future Work

	Comparing the Effectiveness of Testing Techniques
	Introduction
	Comparison Relations
	Using Probabilistic Measures
	Limitations of Formal Analysis
	Other Issues
	Comparing Criteria Empirically
	Conclusions

	The Test Technology TTCN-3
	Overview
	The Standard and Its History
	The Concepts of TTCN-3
	TTCN-3 Module
	TTCN-3 Test System and Test Cases
	Test Behaviour
	TTCN-3 Communication and Test Data

	TTCN-3 Presentation Formats
	TTCN-3 Example
	Core Language Example
	GFT Example

	TTCN-3 Based Test Execution
	TTCN-3 External Data
	U2TP and TTCN-3
	Summary
	References

	Testability Transformation – Program Transformation to Improve Testability
	Introduction
	Testability Transformation
	Test Data Generation
	Evolutionary Testing
	The Chaining Method

	Three Application Areas for Testability Transformation
	TeTra to Remove Flags for Evolutionary Testing
	TeTra for Nested Predicates to Assist Evolutionary Testing
	TeTra for Data Dependence Transformation to Assist the Chaining Method

	A Road Map for Future Work on Testability Transformation
	Related Work
	Conclusion

	Modelling the Effects of Combining Diverse Software Fault Detection Techniques
	Introduction
	A Model of Diverse Fault Detection
	Effects on Reliability
	Optimal Allocation of Fault Detection Procedures
	Degrees of Diversity
	Example
	Discussion and Conclusions
	References

	Author Index

