

Lecture Notes in Artificial Intelligence 4946
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Iyad Rahwan Simon Parsons Chris Reed (Eds.)

Argumentation
in Multi-Agent
Systems

4th International Workshop, ArgMAS 2007
Honolulu, HI, USA, May 15, 2007
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Iyad Rahwan
British University in Dubai, Faculty of Informatics
P.O. Box 502216, Dubai, UAE
E-mail: irahwan@acm.org

Simon Parsons
City University of New York, Brooklyn College
Department of Computer and Information Science
2900 Bedford Avenue, Brooklyn, NY 11210, USA
E-mail: parsons@sci.brooklyn.cuny.edu

Chris Reed
University of Dundee, Department of Applied Computing
Dundee DD1 4HN, UK
E-mail: chris.reed@computing.dundee.ac.uk

Library of Congress Control Number: 2008923358

CR Subject Classification (1998): I.2.11, I.2, C.2.4, H.5.2-3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-78914-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78914-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12249947 06/3180 5 4 3 2 1 0

Preface

This volume presents the latest developments in the growing area of research
at the interface of argumentation theory and multiagent systems. This area has
grown tremendously with many papers appearing in the recent special issue of
the Artificial Intelligence Journal on “Argumentation” and the special issue of
IEEE Intelligent Systems on “Argumentation Technologies.”

Over the last few years, argumentation has been gaining increasing impor-
tance in multiagent systems, mainly as a vehicle for facilitating rational inter-
action (i.e., interaction which involves the giving and receiving of reasons). This
is because argumentation provides tools for designing, implementing, and ana-
lyzing sophisticated forms of interaction among rational agents. Argumentation
has made solid contributions to the practice of multiagent dialogues. Application
domains include: legal disputes, business negotiation, labor disputes, team for-
mation, scientific inquiry, deliberative democracy, ontology reconciliation, risk
analysis, scheduling, and logistics. A single agent may also use argumentation
techniques to perform its individual reasoning because it needs to make decisions
under complex preferences policies, in a highly dynamic environment.

Most papers in this volume appeared in the proceedings of the 4th Inter-
national Workshop on Argumentation in Multiagent Systems (ArgMAS 2007),
which took place in Honolulu, USA, in conjunction with the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). This
continues the success of the ArgMAS workshop series, which took place in tan-
dem with AAMAS in New York in 2004, Utrecht in 2005, and Hakodate in 2006.

Often we have invited papers on the topic of argumentation in multiagent
systems from the main AAMAS conference as well as other major conferences
for the given year, in order to bring together the very best of the year’s work on
argumentation in MAS into a single volume. This time, we invited revised papers
on argumentation in MAS from both AAMAS 2007 and AAAI 2007. These
additional contributions were selected on the basis of their scientific quality
and relevance to the topics emphasized here. Our objective has been to offer a
comprehensive and up-to-date overview of this rapidly evolving landscape, as we
did in the previous volumes of this series which were all published by Springer
(LNAI 3366, LNAI 4049, and LNAI 4766).

The book is organized into three parts, each addressing an important problem
in argumentation and multiagent systems. Part I focuses on issues pertaining to
dialogue. This part opens with an invited paper from AAMAS 2007 by Leila
Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. This paper attempts to gen-
eralize and unify various models of argument-based negotiation (ABN) found
in the literature. The second paper, by Iyad Rahwan, Philippe Pasquier, Liz
Sonenberg, and Frank Dignum, formally explores some intuitions behind the
usefulness of ABN models. Most work on argumentation addresses two-party
dialogues. To address dialogues involving more than two agents, in an agent so-

VI Preface

ciety, Enrico Oliva, Peter McBurney, and Andrea Omicini present a framework
based on the notion of co-argumentation artifact.

The fourth paper in Part I is an invited paper by Simon Parsons, Peter
McBurney, Elizabeth Sklar, and Michael Wooldridge, which addresses the ques-
tion of relevance in dialogues. The authors show how relevance can help agents
decide which arguments to present (i.e., how to carry out a dialogue according
to a given protocol). The following paper, by Laurent Perrussel, Sylvie Doutre,
Jean-Marc Thévenin, and Peter McBurney, presents a protocol that allows agents
to argue about the right to access information in a given context.

Recently, an argument interchange format (AIF) has been proposed by the
“argumentation in AI” community. However, while the AIF is quite mature in
its representation of static argument structures, its ability to capture argument-
based dialogues is still underdeveloped. Part I concludes with a paper by Sanjay
Modgil and Jarred McGinnis that addresses this issue.

Part II focuses on using argumentation to automate or support various single-
agent reasoning tasks. This part opens with an invited AAAI 2007 paper by
Nicolás D. Rotstein, Alejandro J. Garćıa, and Guillermo R. Simari. This paper
describes how argumentation can be used to mechanize reasoning in belief desire
intention (BDI) agents. In a multiagent system, such BDI agents are faced with
possibly conflicting social norms. To address the conflict between norms, beliefs,
desires, and intentions, the following paper, by Dorian Gaertner and Francesca
Toni, presents a framework grounded in assumption-based argumentation.

In the third paper in this part, Maxime Morge presents a framework for
practical reasoning based on argumentation. Part II then closes with a paper,
by Cássia Trojahn, Paulo Quaresma, Renata Vieira, on using argumentation as
a model for mapping multiple conflicting ontologies.

Part III addresses an exciting new area in argumentation research, namely,
the relationship between models of argumentation and models of learning. The
section opens with an invited paper from AAMAS 2007, by Leila Amgoud and
Mathieu Serrurier, on using argumentation to perform classification tasks nor-
mally found in the machine learning literature. This is followed by another AA-
MAS 2007 invited paper, by Santi Ontañón and Enric Plaza, which explores the
use of argumentation to facilitate dialogue among cased-based reasoning agents
who want to learn jointly from past cases. This part is wrapped up by two pa-
pers by Wataru Makiguchi and Hajime Sawamura on the relationship between
symbolic and neural network-based models of argumentation.

We conclude this preface by extending our gratitude to the members of the
Steering Committee and members of the Program Committee, who together
helped make the ArgMAS workshop a success. We also thank the authors for
their enthusiasm to submit papers to the workshop, and for revising their papers
on time for inclusion in this book.

December 2007 Iyad Rahwan
Simon Parsons

Chris Reed

Organization

Program Chairs

Simon Parsons City University of New York, USA
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Chris Reed University of Dundee, UK

ArgMAS Steering Committee

Antonis Kakas University of Cyprus, Cyprus
Nicolas Maudet Université Paris Dauphine, France
Peter McBurney University of Liverpool, UK
Pavlos Moraitis Paris Descartes University, France
Simon Parsons City University of New York, USA
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Chris Reed University of Dundee, UK

Program Committee

Leila Amgoud IRIT, France
Katie Atkinson University of Liverpool, UK
Jamal Bentahar Laval University, Canada
Guido Boella Università di Torino, Italy
Brahim Chaib-draa Laval University, Canada
Carlos Chesnevar Universitat de Lleida, Spain
Frank Dignum Utrecht University, The Netherlands
Rogier van Eijk Utrecht University, The Netherlands
Frank Guerin University of Aberdeen, UK
Joris Hulstijn Utrecht University, The Netherlands
Anthony Hunter University College, London, UK
Antonis Kakas University of Cyprus, Cyprus
Nikos Karacapilidis University of Patras, Greece
Nishan Karunatillake University of Southampton, UK
Nicolas Maudet Université Paris Dauphine, France
Peter McBurney University of Liverpool, UK
Jarred McGinnis Royal Holloway, University of London, UK
Sanjay Modgil Cancer Research UK
Pavlos Moraitis Paris Descartes University, France

VIII Organization

Bernard Moulin Laval University, Canada
Søren Holbech Nielsen Aalborg University, Denmark
Tim Norman University of Aberdeen, UK
Nir Oren University of Aberdeen, UK
Fabio Paglieri ISTC-CNR, Rome, Italy
Xavier Parent King’s College, UK
Simon Parsons City University of New York, USA
Philippe Pasquier University of Melbourne, Australia
Enric Plaza Spanish Scientific Research Council, Spain
Henri Prade IRIT, Toulouse, France
Henry Prakken Utrecht University, The Netherlands
Alun Preece University of Aberdeen, UK
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Sarvapali Ramchurn University of Southampton, UK
Chris Reed University of Dundee, UK
Michael Rovatsos University of Edinburgh, UK
Hajime Sawamura Niigata University, Japan
Sandip Sen University of Tulsa, USA
Guillermo Simari Universidad Nacional del Sur, Argentina
Elizabeth Sklar City University of New York, USA
Katia Sycara Carnegie Mellon University, USA
Francesca Toni Imperial College, London, UK
Leon van der Torre University of Luxembourg, Luxembourg
Paolo Torroni Università di Bologna, Italy
Bart Verheij Maastricht University, The Netherlands
Gerard Vreeswijk Utrecht University, The Netherlands
Doug Walton University of Winnipeg, Canada
Simon Wells University of Dundee, UK
Steven Willmott Universitat Politécnica de Catalunya, Spain
Mike Wooldridge University of Liverpool, UK

Table of Contents

Part I: Argumentation and Dialogue

A General Framework for Argumentation-Based Negotiation 1
Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis

On the Benefits of Exploiting Hierarchical Goals in Bilateral Automated
Negotiation . 18

Iyad Rahwan, Philippe Pasquier, Liz Sonenberg, and Frank Dignum

Co-argumentation Artifact for Agent Societies . 31
Enrico Oliva, Peter McBurney, and Andrea Omicini

On the Relevance of Utterances in Formal Inter-agent Dialogues 47
Simon Parsons, Peter McBurney, Elizabeth Sklar, and
Michael Wooldridge

A Persuasion Dialog for Gaining Access to Information 63
Laurent Perrussel, Sylvie Doutre, Jean-Marc Thévenin, and
Peter McBurney

Towards Characterising Argumentation Based Dialogue in the
Argument Interchange Format . 80

Sanjay Modgil and Jarred McGinnis

Part II: Argument-Based Reasoning

Preferences and Assumption-Based Argumentation for Conflict-Free
Normative Agents . 94

Dorian Gaertner and Francesca Toni

The Hedgehog and the Fox: An Argumentation-Based Decision Support
System . 114

Maxime Morge

An Extended Value-Based Argumentation Framework for Ontology
Mapping with Confidence Degrees . 132

Cássia Trojahn, Paulo Quaresma, and Renata Vieira

Defeasible Argumentation Support for an Extended BDI
Architecture . 145

Nicolás D. Rotstein, Alejandro J. Garćıa, and Guillermo R. Simari

X Table of Contents

Part III: Argumentation and Learning

Arguing and Explaining Classifications . 164
Leila Amgoud and Mathieu Serrurier

An Argumentation-Based Framework for Deliberation in Multi-agent
Systems . 178

Santi Ontañón and Enric Plaza

A Hybrid Argumentation of Symbolic and Neural Net Argumentation
(Part I) . 197

Wataru Makiguchi and Hajime Sawamura

A Hybrid Argumentation of Symbolic and Neural Net Argumentation
(Part II) . 216

Wataru Makiguchi and Hajime Sawamura

Author Index . 235

A General Framework for Argumentation-Based

Negotiation

Leila Amgoud1, Yannis Dimopoulos2, and Pavlos Moraitis3

1 IRIT – CNRS, 118, route de Narbonne, 31062 Toulouse, France
amgoud@irit.fr

2 University of Cyprus, 75 Kallipoleos Str. PO Box 20537, Cyprus
yannis@cs.ucy.ac.cy

3 Paris-Descartes University, 45 rue des Saints-Peres, 75270 Paris, France
pavlos@math-info.univ-paris5.fr

Abstract. This paper proposes a unified and general framework for
argumentation-based negotiation, in which the role of argumentation is
formally analyzed. The framework makes it possible to study the out-
comes of an argumentation-based negotiation. It shows what an agree-
ment is, how it is related to the theories of the agents, when it is possible,
and how this can be attained by the negotiating agents in this case. It
defines also the notion of concession, and shows in which situation an
agent will make one, as well as how it influences the evolution of the
dialogue.

Keywords: Argumentation, Negotiation.

1 Introduction

Roughly speaking, negotiation is a process aiming at finding some compromise
or consensus between two or several agents about some matters of collective
agreement, such as pricing products, allocating resources, or choosing candidates.
Negotiation models have been proposed for the design of systems able to bargain
in an optimal way with other agents for example, buying or selling products in
e-commerce.

Different approaches to automated negotiation have been investigated, in-
cluding game-theoretic approaches (which usually assume complete informa-
tion and unlimited computation capabilities) [11], heuristic-based approaches
which try to cope with these limitations [6], and argumentation-based approaches
[2,3,7,8,9,12,13] which emphasize the importance of exchanging information and
explanations between negotiating agents in order to mutually influence their
behaviors (e.g. an agent may concede a goal having a small priority), and con-
sequently the outcome of the dialogue. Indeed, the two first types of settings do
not allow for the addition of information or for exchanging opinions about offers.
Integrating argumentation theory in negotiation provides a good means for sup-
plying additional information and also helps agents to convince each other by
adequate arguments during a negotiation dialogue. Indeed, an offer supported

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. Amgoud, Y. Dimopoulos, and P. Moraitis

by a good argument has a better chance to be accepted by an agent, and can
also make him reveal his goals or give up some of them. The basic idea behind
an argumentation-based approach is that by exchanging arguments, the theories
of the agents (i.e. their mental states) may evolve, and consequently, the status
of offers may change. For instance, an agent may reject an offer because it is not
acceptable for it. However, the agent may change its mind if it receives a strong
argument in favor of this offer.

Several proposals have been made in the literature for modeling such an ap-
proach. However, the work is still preliminary. Some researchers have mainly
focused on relating argumentation with protocols. They have shown how and
when arguments in favor of offers can be computed and exchanged. Others have
emphasized on the decision making problem. In [3,7], the authors argued that
selecting an offer to propose at a given step of the dialogue is a decision making
problem. They have thus proposed an argumentation-based decision model, and
have shown how such a model can be related to the dialogue protocol.

In most existing works, there is no deep formal analysis of the role of argumen-
tation in negotiation dialogues. It is not clear how argumentation can influence
the outcome of the dialogue. Moreover, basic concepts in negotiation such as
agreement (i.e. optimal solutions, or compromise) and concession are neither
defined nor studied.

This paper aims to propose a unified and general framework for argumentation-
based negotiation, in which the role of argumentation is formally analyzed, and
where the existing systems can be restated. In this framework, a negotiation dia-
logue takes place between two agents on a set O of offers, whose structure is not
known. The goal of a negotiation is to find among elements of O, an offer that
satisfies more or less the preferences of both agents. Each agent is supposed to
have a theory represented in an abstract way. A theory consists of a set A of ar-
guments whose structure and origin are not known, a function specifying for each
possible offer in O, the arguments of A that support it, a non specified conflict
relation among the arguments, and finally a preference relation between the ar-
guments. The status of each argument is defined using Dung’s acceptability se-
mantics. Consequently, the set of offers is partitioned into four subsets: acceptable,
rejected, negotiable and non-supported offers. We show how an agent’s theory may
evolve during a negotiation dialogue. We define formally the notions of concession,
compromise, and optimal solution. Then, we propose a protocol that allows agents
i) to exchange offers and arguments, and ii) to make concessions when necessary.
We show that dialogues generated under such a protocol terminate, and even reach
optimal solutions when they exist.

This paper is organized as follows: Section 2 introduces the logical language
that is used in the rest of the paper. Section 3 defines the agents as well as
their theories. In section 4, we study the properties of these agents’ theories.
Section 5 defines formally an argumentation-based negotiation, shows how the
theories of agents may evolve during a dialogue, and how this evolution may
influence the outcome of the dialogue. Two kinds of outcomes: optimal solution
and compromise are defined, and we show when such outcomes are reached.

A General Framework for Argumentation-Based Negotiation 3

Section 6 illustrates our general framework through some examples. Section 7
compares our formalism with existing ones. Section 8 concludes and presents
some perspectives. Due to lack of space, the proofs are not included. These last
are in a technical report that we will make available online at some later time.

2 The Logical Language

In what follows, L will denote a logical language, and ≡ is an equivalence relation
associated with it.

From L, a set O = {o1, . . . , on} of n offers is identified, such that �oi, oj ∈ O
such that oi ≡ oj . This means that the offers are different. Offers correspond to
the different alternatives that can be exchanged during a negotiation dialogue.
For instance, if the agents try to decide the place of their next meeting, then the
set O will contain different towns.

Different arguments can be built from L. The set Args(L) will contain all those
arguments. By argument, we mean a reason in believing or of doing something.

In [3], it has been argued that the selection of the best offer to propose at a
given step of the dialogue is a decision problem. In [4], it has been shown that in
an argumentation-based approach for decision making, two kinds of arguments
are distinguished: arguments supporting choices (or decisions), and arguments
supporting beliefs. Moreover, it has been acknowledged that the two categories
of arguments are formally defined in different ways, and they play different roles.
Indeed, an argument in favor of a decision, built both on an agent’s beliefs and
goals, tries to justify the choice; whereas an argument in favor of a belief, built
only from beliefs, tries to destroy the decision arguments, in particular the beliefs
part of those decision arguments. Consequently, in a negotiation dialogue, those
two kinds of arguments are generally exchanged between agents. In what follows,
the set Args(L) is then divided into two subsets: a subset Argso(L) of arguments
supporting offers, and a subset Argsb(L) of arguments supporting beliefs. Thus,
Args(L) = Argso(L) ∪ Argsb(L). As in [5], in what follows, we consider that the
structure of the arguments is not known.

Since the knowledge bases from which arguments are built may be inconsis-
tent, the arguments may be conflicting too. In what follows, those conflicts will
be captured by the relation RL, thus RL ⊆ Args(L) × Args(L). Three assump-
tions are made on this relation: First the arguments supporting different offers
are conflicting. The idea behind this assumption is that since offers are exclusive,
an agent has to choose only one at a given step of the dialogue. Note that, the
relation RL is not necessarily symmetric between the arguments of Argsb(L).
The second hypothesis says that arguments supporting the same offer are also
conflicting. The idea here is to return the strongest argument among these ar-
guments. The third condition does not allow an argument in favor of an offer to
attack an argument supporting a belief. This avoids wishful thinking. Formally:

Definition 1. RL ⊆ Args(L) × Args(L) is a conflict relation among arguments
such that:

4 L. Amgoud, Y. Dimopoulos, and P. Moraitis

– ∀a, a′ ∈ Argso(L), s.t. a �= a′, a RL a′

– � a ∈ Argso(L) and a′ ∈ Argsb(L) such that a RL a′

Note that the relation RL is not symmetric. This is due to the fact that argu-
ments of Argsb(L) may be conflicting but not necessarily in a symmetric way.
In what follows, we assume that the set Args(L) of arguments is finite, and each
argument is attacked by a finite number of arguments.

3 Negotiating Agents Theories and Reasoning Models

In this section we define formally the negotiating agents, i.e. their theories, as
well as the reasoning model used by those agents in a negotiation dialogue.

3.1 Negotiating Agents Theories

Agents involved in a negotiation dialogue, called negotiating agents, are supposed
to have theories. In this paper, the theory of an agent will not refer, as usual,
to its mental states (i.e. its beliefs, desires and intentions). However, it will be
encoded in a more abstract way in terms of the arguments owned by the agent,
a conflict relation among those arguments, a preference relation between the
arguments, and a function that specifies which arguments support offers of the
set O. We assume that an agent is aware of all the arguments of the set Args(L).
The agent is even able to express a preference between any pair of arguments.
This does not mean that the agent will use all the arguments of Args(L), but it
encodes the fact that when an agent receives an argument from another agent,
it can interpret it correctly, and it can also compare it with its own arguments.
Similarly, each agent is supposed to be aware of the conflicts between arguments.
This also allows us to encode the fact that an agent can recognize whether the
received argument is in conflict or not with its arguments. However, in its theory,
only the conflicts between its own arguments are considered.

Definition 2 (Negotiating agent theory). Let O be a set of n offers. A
negotiating agent theory is a tuple 〈A, F , 	, R, Def〉 such that:

– A ⊆ Args(L).
– F : O → 2A s.t ∀i, j with i �= j, F(oi) ∩ F(oj) = ∅. Let AO = ∪F(oi) with

i = 1, . . . , n.
– 	 ⊆ Args(L) × Args(L) is a partial preorder denoting a preference relation

between arguments.
– R ⊆ RL such that R ⊆ A × A
– Def ⊆ A × A such that ∀ a, b ∈ A, a defeats b, denoted a Def b iff:

• a R b, and
• not (b 	 a)

The function F returns the arguments supporting offers in O. In [4], it has been
argued that any decision may have arguments supporting it, called arguments
PRO, and arguments against it, called arguments CONS. Moreover, these two

A General Framework for Argumentation-Based Negotiation 5

types of arguments are not necessarily conflicting. For simplicity reasons, in this
paper we consider only arguments PRO. Moreover, we assume that an argument
cannot support two distinct offers. However, it may be the case that an offer is
not supported at all by arguments, thus F(oi) may be empty.

Example 1. Let O = {o1, o2, o3} be a set of offers. The following theory is the
theory of agent i:

– A = {a1, a2, a3, a4}
– F(o1) = {a1}, F(o2) = {a2}, F(o3) = ∅. Thus, Ao = {a1, a2}
– 	 = {(a1, a2), (a2, a1), (a3, a2), (a4, a3)}
– R = {a1, a2), (a2, a1), (a3, a2), (a4, a3)}
– Def = {(a4, a3), (a3, a2)}

From the above definition of agent theory, the following hold:

Property 1
– Def ⊆ R
– ∀a, a′ ∈ F(oi), a R a′.

3.2 The Reasoning Model

From the theory of an agent, one can define the argumentation system used by
that agent for reasoning about the offers and the arguments, i.e. for computing
the status of the different offers and arguments.

Definition 3 (Argumentation system). Let 〈A, F , 	, R, Def〉 be the theory
of an agent. The argumentation system of that agent is the pair 〈A, Def〉.

In [5], different acceptability semantics have been introduced for computing the
status of arguments. These are based on two basic concepts, defence and conflict-
free, defined as follows:

Definition 4 (Defence/conflict-free). Let S ⊆ A.

– S defends an argument a iff each argument that defeats a is defeated by some
argument in S.

– S is conflict-free iff there exist no a, a′ in S such that a Def a′.

Definition 5 (Acceptability semantics). Let S be a conflict-free set of ar-
guments, and let T : 2A → 2A be a function such that T (S) = {a | a is defended
by S}.

– S is a complete extension iff S = T (S).
– S is a preferred extension iff S is a maximal (w.r.t set ⊆) complete extension.
– S is a grounded extension iff it is the smallest (w.r.t set ⊆) complete exten-

sion.

Let E1, . . . , Ex denote the different extensions under a given semantics.

6 L. Amgoud, Y. Dimopoulos, and P. Moraitis

Note that there is only one grounded extension. It contains all the arguments that
are not defeated, and those arguments that are defended directly or indirectly
by non-defeated arguments.

Theorem 1. Let 〈A, Def〉 the argumentation system defined as shown above.

1. It may have x ≥ 1 preferred extensions.
2. The grounded extensions is S =

⋃i≥1 T (∅).

Note that when the grounded extension (or the preferred extension) is empty,
this means that there is no acceptable offer for the negotiating agent.

Example 2. In example 1, there is one preferred extension, E = {a1, a2, a4}.

Now that the acceptability semantics is defined, we are ready to define the status
of any argument.

Definition 6 (Argument status). Let 〈A, Def〉 be an argumentation system,
and E1, . . . , Ex its extensions under a given semantics. Let a ∈ A.

1. a is accepted iff a ∈ Ei, ∀Ei with i = 1, . . . , x.
2. a is rejected iff �Ei such that a ∈ Ei.
3. a is undecided iff a is neither accepted nor rejected. This means that a is in

some extensions and not in others.

Note that A = {a|a is accepted} ∪ {a|a is rejected} ∪ {a|a is undecided}.

Example 3. In example 1, the arguments a1, a2 and a4 are accepted, whereas
the argument a3 is rejected.

As said before, agents use argumentation systems for reasoning about offers. In
a negotiation dialogue, agents propose and accept offers that are acceptable for
them, and reject bad ones. In what follows, we will define the status of an offer.
According to the status of arguments, one can define four statuses of the offers
as follows:

Definition 7 (Offers status). Let o ∈ O.

– The offer o is acceptable for the negotiating agent iff ∃ a ∈ F(o) such that
a is accepted. Oa = {oi ∈ O, such that oi is acceptable}.

– The offer o is rejected for the negotiating agent iff ∀ a ∈ F(o), a is rejected.
Or = {oi ∈ O, such that oi is rejected}.

– The offer o is negotiable iff ∀ a ∈ F(o), a is undecided. On = {oi ∈ O, such
that oi is negotiable}.

– The offer o is non-supported iff it is neither acceptable, nor rejected or
negotiable. Ons = {oi ∈ O, such that oi is non-supported offers}.

Example 4. In example 1, the two offers o1 and o2 are acceptable since they
are supported by accepted arguments, whereas the offer o3 is non-supported since
it has no argument in its favor.

From the above definitions, the following results hold:

A General Framework for Argumentation-Based Negotiation 7

Property 2. Let o ∈ O.

– O = Oa ∪ Or ∪ On ∪ Ons.
– The set Oa may contain more than one offer.

From the above partition of the set O of offers, a preference relation between
offers is defined. Let Ox and Oy be two subsets of O. Ox � Oy means that any
offer in Ox is preferred to any offer in the set Oy. We can write also for two
offers oi, oj , oi � oj iff oi ∈ Ox, oj ∈ Oy and Ox � Oy.

Definition 8 (Preference between offers). Let O be a set of offers, and Oa,
Or, On, Ons its partition. Oa � On � Ons � Or.

Example 5. In example 1, we have o1 � o3, and o2 � o3. However, o1 and o2
are indifferent.

4 The Structure of Negotiation Theories

In this section, we study the properties of the system developed above. We first
show that in the particular case where A = AO (ie. all of the agent’s arguments
refer to offers), the corresponding argumentation system will return at least one
non-empty preferred extension.

Theorem 2. Let 〈A, Def〉 an argumentation system such that A = AO. Then
the system returns at least one extension E, such that |E| ≥ 1.

We now present some results that demonstrate the importance of indifference in
negotiating agents, and more specifically its relation to acceptable outcomes. We
first show that the set Oa may contain several offers when their corresponding
accepted arguments are indifferent w.r.t the preference relation 	.

Theorem 3. Let o1, o2 ∈ O. o1, o2 ∈ Oa iff ∃ a1 ∈ F(o1), ∃ a2 ∈ F(o2), such
that a1 and a2 are accepted and are indifferent w.r.t 	 (i.e. a 	 b and b 	 a).

We now study acyclic preference relations that are defined formally as follows.

Definition 9 (Acyclic relation). A relation R on a set A is acyclic if there
is no sequence a1, a2, . . . , an ∈ A, with n > 1, such that (ai, ai+1) ∈ R and
(an, a1) ∈ R, with 1 ≤ i < n.

Note that acyclicity prohibits pairs of arguments a, b such that a 	 b and b 	 a,
ie., an acyclic preference relation disallows indifference.

Theorem 4. Let A be a set of arguments, R the attacking relation of A defined
as R ⊆ A × A, and 	 an acyclic relation on A. Then for any pair of arguments
a, b ∈ A, such that (a, b) ∈ R, either (a, b) ∈ Def or (b, a) ∈ Def (or both).

The previous result is used in the proof of the following theorem that states that
acyclic preference relations sanction extensions that support exactly one offer.

8 L. Amgoud, Y. Dimopoulos, and P. Moraitis

Theorem 5. Let A be a set of arguments, and 	 an acyclic relation on A. If E
is an extension of <A, Def>, then |E ∩ AO| = 1.

An immediate consequence of the above is the following.

Property 3. Let A be a set of arguments such that A = AO. If the relation 	
on A is acyclic, then each extension Ei of <A, Def>, |Ei| = 1.

Another direct consequence of the above theorem is that in acyclic preference
relations, arguments that support offers can participate in only one preferred
extension.

Theorem 6. Let A be a set of arguments, and 	 an acyclic relation on A. Then
the preferred extensions of 〈A, Def〉 are pairwise disjoint w.r.t arguments of AO.

Using the above results we can prove the main theorem of this section that states
that negotiating agents with acyclic preference relations do not have acceptable
offers.

Theorem 7. Let 〈A, F , R, 	, Def〉 be a negotiating agent such that A = AO
and 	 is an acyclic relation. Then the set of accepted arguments w.r.t 〈A, Def〉
is emtpy. Consequently, the set of acceptable offers, Oa is empty as well.

5 Argumentation-Based Negotiation

In this section, we define formally a protocol that generates argumentation-based
negotiation dialogues between two negotiating agents P and C. The two agents
negotiate about an object whose possible values belong to a set O. This set O
is supposed to be known and the same for both agents. For simplicity reasons,
we assume that this set does not change during the dialogue. The agents are
equipped with theories denoted respectively 〈AP , FP , 	P , RP , DefP 〉, and 〈AC ,
FC , 	C , RC , DefC〉. Note that the two theories may be different in the sense
that the agents may have different sets of arguments, and different preference
relations. Worst yet, they may have different arguments in favor of the same
offers. Moreover, these theories may evolve during the dialogue.

5.1 Evolution of the Theories

Before defining formally the evolution of an agent’s theory, let us first introduce
the notion of dialogue moves, or moves for short.

Definition 10 (Move). A move is a tuple mi = 〈pi, ai, oi, ti〉 such that:

– pi ∈ {P, C}
– ai ∈ Args(L) ∪ θ1

– oi ∈ O ∪ θ
– ti ∈ N ∗ is the target of the move, such that ti < i

1 In what follows θ denotes the fact that no argument, or no offer is given.

A General Framework for Argumentation-Based Negotiation 9

The function Player (resp. Argument, Offer, Target) returns the player of the
move (i.e. pi) (resp. the argument of a move, i.e ai, the offer oi, and the target
of the move, ti). Let M denote the set of all the moves that can be built from
〈{P, C}, Arg(L), O〉.

Note that the set M is finite since Arg(L) and O are assumed to be finite. Let
us now see how an agent’s theory evolves and why. The idea is that if an agent
receives an argument from another agent, it will add the new argument to its
theory. Moreover, since an argument may bring new information for the agent,
thus new arguments can emerge. Let us take the following example:

Example 6. Suppose that an agent P has the following propositional knowledge
base: ΣP = {x, y → z}. From this base one cannot deduce z. Let’s assume that
this agent receives the following argument {a, a → y} that justifies y. It is clear
that now P can build an argument, say {a, a → y, y → z} in favor of z.

In a similar way, if a received argument is in conflict with the arguments of
the agent i, then those conflicts are also added to its relation Ri. Note that new
conflicts may arise between the original arguments of the agent and the ones that
emerge after adding the received arguments to its theory. Those new conflicts
should also be considered. As a direct consequence of the evolution of the sets
Ai and Ri, the defeat relation Defi is also updated.

The initial theory of an agent i, (i.e. its theory before the dialogue starts), is
denoted by 〈Ai

0, F i
0, 	i

0, Ri
0, Def

i
0〉, with i ∈ {P, C}. Besides, in this paper, we

suppose that the preference relation 	i of an agent does not change during the
dialogue.

Definition 11 (Theory evolution). Let m1, . . ., mt, . . ., mj be a sequence of
moves. The theory of an agent i at a step t > 0 is: 〈Ai

t, F i
t , 	i

t, Ri
t, Def

i
t〉 such

that:

– Ai
t = Ai

0 ∪ {ai, i = 1, . . . , t, ai = Argument(mi)} ∪ A′ with A′ ⊆ Args(L)
– F i

t = O → 2A
i
t

– 	i
t = 	i

0
– Ri

t = Ri
0 ∪ {(ai, aj) | ai = Argument(mi),

aj = Argument(mj), i, j ≤ t, and ai RL aj} ∪ R′ with R′ ⊆ RL
– Defi

t ⊆ Ai
t × Ai

t

The above definition captures the monotonic aspect of an argument. Indeed,
an argument cannot be removed. However, its status may change. An argument
that is accepted at step t of the dialogue by an agent may become rejected at
step t + i. Consequently, the status of offers also change. Thus, the sets Oa, Or,
On, and Ons may change from one step of the dialogue to another. That means
for example that some offers could move from the set Oa to the set Or and
vice-versa. Note that in the definition of Rt, the relation RL is used to denote a
conflict between exchanged arguments. The reason is that, such a conflict may
not be in the set Ri of the agent i. Thus, in order to recognize such conflicts, we
have supposed that the set RL is known to the agents. This allows us to capture

10 L. Amgoud, Y. Dimopoulos, and P. Moraitis

the situation where an agent is able to prove an argument that it was unable to
prove before, by incorporating in its beliefs some information conveyed through
the exchange of arguments with another agent. This, unknown at the beginning
of the dialogue argument, could give to this agent the possibility to defeat an
argument that it could not by using its initial arguments. This could even lead
to a change of the status of these initial arguments and this change would lead
to the one of the associated offers’ status.

In what follows, Oi
t,x denotes the set of offers of type x, where x ∈ {a, n, r, ns},

of the agent i at step t of the dialogue. In some places, we can use for short the
notation Oi

t to denote the partition of the set O at step t for agent i. Note that
we have: not(Oi

t,x ⊆ Oi
t+1,x).

5.2 The Notion of Agreement

As said in the introduction, negotiation is a process aiming at finding an agree-
ment about some matters. By agreement, one means a solution that satisfies to
the largest possible extent the preferences of both agents. In case there is no
such solution, we say that the negotiation fails. In what follows, we will discuss
the different kinds of solutions that may be reached in a negotiation. The first
one is the optimal solution. An optimal solution is the best offer for both agents.
Formally:

Definition 12 (Optimal solution). Let O be a set of offers, and o ∈ O. The
offer o is an optimal solution at a step t ≥ 0 iff o ∈ OP

t,a ∩ OC
t,a

Such a solution does not always exist since agents may have conflicting pref-
erences. Thus, agents make concessions by proposing/accepting less preferred
offers.

Definition 13 (Concession). Let o ∈ O be an offer. The offer o is a conces-
sion for an agent i iff o ∈ Oi

x such that ∃Oi
y �= ∅, and Oi

y � Oi
x.

During a negotiation dialogue, agents exchange first their most preferred offers,
and if these last are rejected, they make concessions. In this case, we say that
their best offers are no longer defendable. In an argumentation setting, this means
that the agent has already presented all its arguments supporting its best offers,
and it has no counter argument against the ones presented by the other agent.
Formally:

Definition 14 (Defendable offer). Let 〈Ai
t, F i

t , 	i
t, Ri

t, Defi
t〉 be the theory

of agent i at a step t > 0 of the dialogue. Let o ∈ O such that ∃j ≤ t with
Player(mj) = i and offer(mj) = o. The offer o is defendable by the agent i
iff:

– ∃a ∈ F i
t (o), and �k ≤ t s.t. Argument(mk) = a, or

– ∃a ∈ At\F i
t (o) s.t. a Defi

t b with
• Argument(mk) = b, k ≤ t, and Player(mk) �= i
• �l ≤ t, Argument(ml) = a

The offer o is said non-defendable otherwise and NDi
t is the set of non-defendable

offers of agent i at a step t.

A General Framework for Argumentation-Based Negotiation 11

5.3 Negotiation Dialogue

Now that we have shown how the theories of the agents evolve during a dialogue,
we are ready to define formally an argumentation-based negotiation dialogue. For
that purpose, we need to define first the notion of a legal continuation.

Definition 15 (Legal move). A move m is a legal continuation of a sequence
of moves m1, . . . , ml iff �j, k < l, such that:

– Offer(mj) = Offer(mk), and
– Player(mj) �= Player(mk)

The idea here is that if the two agents present the same offer, then the dialogue
should terminate, and there is no longer possible continuation of the dialogue.

Definition 16 (Argumentation-based negotiation). An argumentation-
based negotiation dialogue d between two agents P and C is a non-empty se-
quence of moves m1, . . . , ml such that:

– pi = P iff i is even, and pi = C iff i is odd
– Player(m1) = P , Argument(m1) = θ, Offer(m1) �= θ, and Target(m1) =

02

– ∀ mi, if Offer(mi) �= θ, then Offer(mi) � oj, ∀ oj ∈ O\(OPlayer(mi)
i,r ∪

ND
Player(mi)
i)

– ∀i = 1, . . . , l, mi is a legal continuation of m1, . . . , mi−1
– Target(mi) = mj such that j < i and Player(mi) �= Player(mj)
– If Argument(mi) �= θ, then:

• if Offer(mi) �= θ then Argument(mi) ∈ F(Offer(mi))
• if Offer(mi)=θ then Argument(mi) Def

Player(mi)
i Argument(Target(mi))

– � i, j ≤ l such that mi = mj

– � m ∈ M such that m is a legal continuation of m1, . . . , ml

Let D be the set of all possible dialogues.

The first condition says that the two agents take turn. The second condition says
that agent P starts the negotiation dialogue by presenting an offer. Note that,
in the first turn, we suppose that the agent does not present an argument. This
assumption is made for strategical purposes. Indeed, arguments are exchanged
as soon as a conflict appears. The third condition ensures that agents exchange
their best offers, but never the rejected ones. This condition takes also into
account the concessions that an agent will have to make if it was established
that a concession is the only option for it at the current state of the dialogue.
Of course, as we have shown in a previous section, an agent may have several
good or acceptable offers. In this case, the agent chooses one of them randomly.
The fourth condition ensures that the moves are legal. This condition allows to
terminate the dialogue as soon as an offer is presented by both agents. The fifth
condition allows agents to backtrack. The sixth condition says that an agent may
2 The first move has no target.

12 L. Amgoud, Y. Dimopoulos, and P. Moraitis

send arguments in favor of offers, and in this case the offer should be stated in
the same move. An agent can also send arguments in order to defeat arguments
of the other agent. The next condition prevents repeating the same move. This
is useful for avoiding loops. The last condition ensures that all the possible legal
moves have been presented.

The outcome of a negotiation dialogue is computed as follows:

Definition 17 (Dialogue outcome). Let d = m1, . . ., ml be a argumentation-
based negotiation dialogue. The outcome of this dialogue, denoted Outcome, is
Outcome(d) = Offer(ml) iff ∃j < l s.t. Offer(ml) = Offer(mj), and Player
(ml) �= Player(mj). Otherwise, Outcome(d) = θ.

Note that when Outcome(d) = θ, the negotiation fails, and no agreement is
reached by the two agents. However, if Outcome(d) �= θ, the negotiation succeeds,
and a solution that is either optimal or a compromise is found.

Theorem 8. ∀di ∈ D, the argumentation-based negotiation di terminates.

The above result is of great importance, since it shows that the proposed protocol
avoids loops, and dialogues terminate. Another important result shows that the
proposed protocol ensures to reach an optimal solution if it exists. Formally:

Theorem 9 (Completeness). Let d = m1, . . . , ml be a argumentation-based
negotiation dialogue. If ∃t ≤ l such that OP

t,a ∩ OC
t,a �= ∅, then Outcome(d) ∈

OP
t,a ∩ OC

t,a.

We show also that the proposed dialogue protocol is sound in the sense that, if a
dialogue returns a solution, then that solution is for sure a compromise. In other
words, that solution is a “common agreement” at a given step of the dialogue.
We show also that if the negotiation fails, then there is no possible solution.

Theorem 10 (Soundness). Let d = m1, . . . , ml be a argumentation-based ne-
gotiation dialogue.

1. If Outcome(d) = o, (o �= θ), then ∃t ≤ l such that o ∈ OP
t,x ∩ OC

t,y, with
x, y ∈ {a, n, ns}.

2. If Outcome(d) = θ, then ∀t ≤ l, OP
t,x ∩ OC

t,y = ∅, ∀ x, y ∈ {a, n, ns}.

A direct consequence of the above theorem is the following:

Property 4. Let d = m1, . . . , ml be a argumentation-based negotiation dialogue.
If Outcome(d) = θ, then ∀t ≤ l,

– OP
t,r = OC

t,a ∪ OC
t,n ∪ OC

t,ns, and
– OC

t,r = OP
t,a ∪ OP

t,n ∪ OP
t,ns.

6 Illustrative Examples

In this section we will present some examples in order to illustrate our general
framework.

A General Framework for Argumentation-Based Negotiation 13

Example 7 (No argumentation). Let O = {o1, o2} be the set of all possible
offers. Let P and C be two agents, equipped with the same theory: 〈A, F , 	,
R, Def〉 such that A = ∅, F(o1) = F(o2) = ∅, 	 = ∅, R = ∅, Def = ∅. In this
case, it is clear that the two offers o1 and o2 are non-supported. The proposed
protocol (see Definition 16) will generate one of the following dialogues:

P: m1 = 〈P, θ, o1, 0〉
C: m2 = 〈C, θ, o1, 1〉

This dialogue ends with o1 as a compromise. Note that this solution is not con-
sidered as optimal since it is not an acceptable offer for the agents.

P: m1 = 〈P, θ, o1, 0〉
C: m2 = 〈C, θ, o2, 1〉
P: m3 = 〈P, θ, o2, 2〉

This dialogue ends with o2 as a compromise.

P: m1 = 〈P, θ, o2, 0〉
C: m2 = 〈C, θ, o2, 1〉

This dialogue also ends with o2 as a compromise. The last possible dialgue is the
following that ends with o1 as a compromise.

P: m1 = 〈P, θ, o2, 0〉
C: m2 = 〈C, θ, o1, 1〉
P: m3 = 〈P, θ, o1, 2〉

Note that in the above example, since there is no exchange of arguments, the
theories of both agents do not change. Let us now consider the following example.

Example 8 (Static theories). Let O = {o1, o2} be the set of all possible offers.
The theory of agent P is 〈AP , FP , 	P , RP , DefP 〉 such that: AP = {a1, a2},
FP (o1) = {a1}, FP (o2) = {a2}, 	P = {(a1, a2)}, RP = {(a1, a2), (a2, a1)},
DefP = {a1, a2}. The argumentation system 〈AP , DefP 〉 of this agent will return
a1 as an accepted argument, and a2 as a rejected one. Consequently, the offer o1
is acceptable and o2 is rejected.

The theory of agent C is 〈AC , FC , 	C, RC , DefC〉 such that: AC = {a1, a2},
FC(o1) = {a1}, FC(o2) = {a2}, 	C = {(a2, a1)}, RC = {(a1, a2), (a2, a1)},
DefC = {a2, a1}. The argumentation system 〈AC , DefC〉 of this agent will return
a2 as an accepted argument, and a1 as a rejected one. Consequently, the offer o2
is acceptable and o1 is rejected.

The only possible dialogues that may take place between the two agents are the
following:

P: m1 = 〈P, θ, o1, 0〉
C: m2 = 〈C, θ, o2, 1〉
P: m3 = 〈P, a1, o1, 2〉
C: m4 = 〈C, a2, o2, 3〉

14 L. Amgoud, Y. Dimopoulos, and P. Moraitis

The second possible dialogue is the following:

P: m1 = 〈P, θ, o1, 0〉
C: m2 = 〈C, a2, o2, 1〉
P: m3 = 〈P, a1, o1, 2〉
C: m4 = 〈C, θ, o2, 3〉

Both dialogues end with failure. Note that in both dialogues, the theories of both
agents do not change. The reason is that the exchanged arguments are already
known to both agents. The negotiation fails because the agents have conflicting
preferences.

Let us now consider an example in which argumentation will allow agents to
reach an agreement.

Example 9 (Dynamic theories). Let O = {o1, o2} be the set of all possi-
ble offers. The theory of agent P is 〈AP , FP , 	P , RP , DefP 〉 such that: AP

= {a1, a2}, FP (o1) = {a1}, FP (o2) = {a2}, 	P = {(a1, a2), (a3, a1)}, RP =
{(a1, a2), (a2, a1)}, DefP = {(a1, a2)}. The argumentation system 〈AP , DefP 〉
of this agent will return a1 as an accepted argument, and a2 as a rejected one.
Consequently, the offer o1 is acceptable and o2 is rejected.

The theory of agent C is 〈AC , FC , 	C, RC , DefC〉 such that: AC = {a1, a2,
a3}, FC(o1) = {a1}, FC(o2) = {a2}, 	C = {(a1, a2), (a3, a1)}, RC = {(a1, a2),
(a2, a1), (a3, a1)}, DefC = {(a1, a2), (a3, a1)}. The argumentation system
〈AC , DefC〉 of this agent will return a3 and a2 as accepted arguments, and a1 as
a rejected one. Consequently, the offer o2 is acceptable and o1 is rejected.

The following dialogue may take place between the two agents:

P: m1 = 〈P, θ, o1, 0〉
C: m2 = 〈C, θ, o2, 1〉
P: m3 = 〈P, a1, o1, 2〉
C: m4 = 〈C, a3, θ, 3〉
C: m5 = 〈P, θ, o2, 4〉

At step 4 of the dialogue, the agent P receives the argument a3 from P . Thus, its
theory evolves as follows: AP = {a1, a2, a3}, RP = {(a1, a2), (a2, a1), (a3, a1)},
DefP = {(a1, a2), (a3, a1)}. At this step, the argument a1 which was accepted will
become rejected, and the argument a2 which was at the beginning of the dialogue
rejected will become accepted. Thus, the offer o2 will be acceptable for the agent,
whereas o1 will become rejected. At this step 4, the offer o2 is acceptable for both
agents, thus it is an optimal solution. The dialogue ends by returning this offer
as an outcome.

7 Related Work

Argumentation has been integrated in negotiation dialogues at the early nineties
by Sycara [12]. In that work, the author has emphasized the advantages of using

A General Framework for Argumentation-Based Negotiation 15

argumentation in negotiation dialogues, and a specific framework has been in-
troduced. In [8], the different types of arguments that are used in a negotiation
dialogue, such as threats and rewards, have been discussed. Moreover, a par-
ticular framework for negotiation have been proposed. In [9,13], different other
frameworks have been proposed. Even if all these frameworks are based on dif-
ferent logics, and use different definitions of arguments, they all have at their
heart an exchange of offers and arguments. However, none of those proposals
explain when arguments can be used within a negotiation, and how they should
be dealt with by the agent that receives them. Thus the protocol for handling
arguments was missing. Another limitation of the above frameworks is the fact
that the argumentation frameworks they use are quite poor, since they use a
very simple acceptability semantics. In [2] a negotiation framework that fills the
gap has been suggested. A protocol that handles the arguments was proposed.
However, the notion of concession is not modeled in that framework, and it is
not clear what is the status of the outcome of the dialogue. Moreover, it is not
clear how an agent chooses the offer to propose at a given step of the dialogue.
In [1,7], the authors have focused mainly on this decision problem. They have
proposed an argumentation-based decision framework that is used by agents in
order to choose the offer to propose or to accept during the dialogue. In that
work, agents are supposed to have a beliefs base and a goals base.

Our framework is more general since it does not impose any specific structure
for the arguments, the offers, or the beliefs. The negotiation protocol is general
as well. Thus this framework can be instantiated in different ways by creating,
in such manner, different specific argumentation-based negotiation frameworks,
all of them respecting the same properties. Our framework is also a unified one
because frameworks like the ones presented above can be represented within
this framework. For example the decision making mechanism proposed in [7]
for the evaluation of arguments and therefore of offers, which is based on a
priority relation between mutually attacked arguments, can be captured by the
relation defeat proposed in our framework. This relation takes simultaneously
into account the attacking and preference relations that may exist between two
arguments.

8 Conclusions and Future Work

In this paperwehavepresentedaunifiedandgeneral framework for argumentation-
based negotiation. Like any other argumentation-based negotiation framework, as
it is evoked in (e.g. [10]), our frameworkhas all the advantages that argumentation-
based negotiation approaches present when related to the negotiation approaches
based either on game theoretic models (see e.g. [11]) or heuristics ([6]). This work
is a first attempt to formally define the role of argumentation in the negotiation
process. More precisely, for the first time, it formally establishes the link that ex-
ists between the status of the arguments and the offers they support, it defines the
notion of concession and shows how it influences the evolution of the negotiation,
it determines how the theories of agents evolve during the dialogue and performs

16 L. Amgoud, Y. Dimopoulos, and P. Moraitis

an analysis of the negotiation outcomes. It is also the first time where a study of
the formal properties of the negotiation theories of the agents as well as of an ar-
gumentative negotiation dialogue is presented.

Our future work concerns several points. A first point is to relax the assump-
tion that the set of possible offers is the same to both agents. Indeed, it is more
natural to assume that agents may have different sets of offers. During a negoti-
ation dialogue, these sets will evolve. Arguments in favor of the new offers may
be built from the agent theory. Thus, the set of offers will be part of the agent
theory. Another possible extension of this work would be to allow agents to han-
dle both arguments PRO and CONS offers. This is more akin to the way human
take decisions. Considering both types of arguments will refine the evaluation of
the offers status. In the proposed model, a preference relation between offers is
defined on the basis of the partition of the set of offers. This preference relation
can be refined. For instance, among the acceptable offers, one may prefer the
offer that is supported by the strongest argument. In [4], different criteria have
been proposed for comparing decisions. Our framework can thus be extended
by integrating those criteria. Another interesting point to investigate is that of
considering negotiation dialogues between two agents with different profiles. By
profile, we mean the criterion used by an agent to compare its offers.

References

1. Amgoud, L., Belabbes, S., Prade, H.: Towards a formal framework for the search of
a consensus between autonomous agents. In: Proceedings of the 4th International
Joint Conference on Autonomous Agents and Multi-Agents systems, pp. 537–543
(2005)

2. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In:
Proceedings of the 14th European Conference on Artificial Intelligence (2000)

3. Amgoud, L., Prade, H.: Reaching agreement through argumentation: A possibilis-
tic approach. In: 9 th International Conference on the Principles of Knowledge
Representation and Reasoning, KR 2004 (2004)

4. Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by ar-
gumentation. In: 21st National Conference on Artificial Intelligence, AAAI 2006,
pp. 16–20 (2006)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

6. Jennings, N.R., Faratin, P., Lumuscio, A.R., Parsons, S., Sierra, C.: Automated
negotiation: Prospects, methods and challenges. International Journal of Group
Decision and Negotiation (2001)

7. Kakas, A., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Pro-
ceedings of the 5th International Joint Conference on Autonomous Agents and
Multi-Agents systems, pp. 384–391 (2006)

8. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation:
A logical model and implementation. Artificial Intelligence 104, 1–69 (1998)

9. Parsons, S., Jennings, N.R.: Negotiation through argumentation—a preliminary re-
port. In: Proceedings of the 2nd International Conference on Multi Agent Systems,
pp. 267–274 (1996)

A General Framework for Argumentation-Based Negotiation 17

10. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg,
E.: Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343–
375 (2003)

11. Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Auto-
mated Negotiation Among Computers. MIT Press, Cambridge (1994)

12. Sycara, K.: Persuasive argumentation in negotiation. Theory and Decision 28, 203–
242 (1990)

13. Tohmé, F.: Negotiation and defeasible reasons for choice. In: Proceedings of the
Stanford Spring Symposium on Qualitative Preferences in Deliberation and Prac-
tical Reasoning, pp. 95–102 (1997)

On the Benefits of Exploiting Hierarchical Goals

in Bilateral Automated Negotiation

Iyad Rahwan1,2, Philippe Pasquier3, Liz Sonenberg3, and Frank Dignum4

1 Institute of Informatics, The British University in Dubai,
P.O. Box 502216, Dubai, UAE

2 (Fellow) School of Informatics, University of Edinburgh
Edinburgh, EH8 9LE, UK

3 Dept. of Information Systems, University of Melbourne
Parkville, VIC 3010 Australia

4 Dept. of Information & Computing Sciences
Utrecht University, Utrecht, The Netherlands

Abstract. Interest-based negotiation (IBN) is a form of negotiation in
which agents exchange information about their underlying goals, with a
view to improving the likelihood and quality of a deal. While this in-
tuition has been stated informally in much previous literature, there is
no formal analysis of the types of deals that can be reached through
IBN and how they differ from those reachable using (classical) alternat-
ing offer bargaining. This paper bridges this gap by providing a formal
framework for analysing the outcomes of IBN dialogues, and begins by
analysing a specific IBN protocol.

1 Introduction

Negotiation is a form of interaction in which a group of agents, with conflicting
interests, try to come to a mutually acceptable agreement on the division of
scarce resources. Approaches to automated negotiation can be classified to those
based on (1) auctions; (2) bargaining; and (3) argumentation. A common aspect
of auction and bilateral bargaining approaches is that they are proposal-based.
That is, agents exchange proposed agreements –in the form of bids or offers– and
when proposed deals are not accepted, the possible response is either a counter-
proposal or withdrawal. Argumentation-based negotiation (ABN) approaches,
on the other hand, enable agents to exchange additional meta-information (i.e.
arguments) during negotiation [6]. This paper is concerned with a particular
style of argument-based negotiation, namely interest-based negotiation (IBN) [7],
a form of ABN in which agents explore and discuss their underlying interests.
Information about other agents’ goals may be used in a variety of ways, such as
discovering and exploiting common goals.

Most existing literature supports the claim that ABN is useful by presenting
specific examples that show how ABN can lead to agreement where a more basic
exchange of proposals cannot (e.g. the mirror/picture example in [5]). The focus
is usually on underlying semantics of arguments and argument acceptability.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 18–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Benefits of Exploiting Hierarchical Goals 19

However, no formal analysis exists of how agent preferences, and the range of
possible negotiation outcomes, change as a result of exchanging arguments.

Our aim here is to explore how exchanging meta-information about the agent’s
underlying goals can help improve the negotiation process. To this end, we ex-
plore situations where agents generate their preferences using a deliberation
procedure that results in hierarchies of goals.1 We abstract away from the un-
derlying argumentation logic. We use this simplified framework to characterise
precisely how agent preferences and the set of possible negotiation outcomes
change as a result of exchanging information about agents’ goals. To our knowl-
edge, this constitutes the first formal analysis of the outcomes of interest-based
negotiation, and how they may differ from proposal-based approaches, namely
alternating-offer bargaining. We then present a simple IBN protocol and show
that under certain conditions (e.g. that agents’ goals do not interfere with each
other), revealing underlying goals always leads to an expansion of the set of pos-
sible deals. As such, the paper bridges the gap between the theory and practice
of ABN, and provides a key first step towards understanding the dynamics of
more complex IBN dialogues.

2 Preliminaries

Our negotiation framework consists of a set of two agents A and a finite set of
resources R, which are indivisible and non-sharable. An allocation of resources
is a partitioning of R among agents in A [2].

Definition 1. (Allocation) An allocation of resources R to a set of agents A
is a function Λ : A → 2R such that Λ(i)∩Λ(j) = {} for i �= j and

⋃
i∈A Λ(i) = R

Agents may have different preferences over sets of resources, defined in the form
of utility functions. At this stage, we do not make any assumptions about the
properties of preferences/utility functions (e.g. being additive, monotonic, etc.).

Definition 2. (Utility functions) Every agent i ∈ A has a utility function
ui : 2R → R.

Given their preferences, agents may be able to benefit from reallocating (i.e.
exchanging) resources. Such reallocation is referred to as a deal. A rational self-
interested agent should not accept deals that result in loss of utility. However,
we will make use of side payments in order to enable agents to compensate each
other for accepting deals that result in loss of utility [2].

Definition 3. (Payment) A payment is a function p : A → R such that∑
i∈A p(i) = 0,

Note that the definition ensures that the total amount of money is constant. If
p(i) > 0, the agent pays the amount p(i), while p(i) < 0 means the agent receives
the amount −p(i). We can now define the notion of ‘deal’ formally.
1 This abstraction is common and has been used in the context of automated planning

[3] and multi-agent coordination [1].

20 I. Rahwan et al.

Definition 4. (Deal) Let Λ be the current resource allocation. A deal with
money is a tuple δ = (Λ, Λ′, p) where Λ′ is the suggested allocation, Λ′ �= Λ, and
p is a payment.

Let Δ be the set of all possible deals. By overloading the notion of utility, we
will also refer to the utility of a deal (as opposed to the utility of an allocation)
defined as follows.

Definition 5. (Utility of a Deal for an Agent) The utility of deal δ =
(Λ, Λ′, p) for agent i is:

ui(δ) = ui(Λ′(i)) − ui(Λ(i)) − p(i)

A deal is rational for an agent only if it results in positive utility for that agent,
since otherwise, the agent would prefer to stick with its initial resources.

Definition 6. (Rational Deals for an Agent) A deal δ is rational for agent
i if and only if ui(δ) > 0

If a deal is rational for each individual agent given some payment function p, it
is called individual rational.

Definition 7. (Individual Rational Deals) A deal δ is individual rational
if and only if ∀i ∈ A we have ui(δ) ≥ 0 and ∃j ∈ A such that uj(δ) > 0.

In other words, no agent becomes worse off, while at least one agent becomes
better off.2 We denote by Δ∗ ⊆ Δ the set of individual rational deals.

3 Bargaining Protocol

An offer (or proposal) is a deal presented by one agent which, if accepted by the
other agents, would result in a new allocation of resources. In the alternative-offer
protocol, agents exchange proposals until one is found acceptable or negotiation
terminates (e.g. because a deadline was reached or the set of all possible proposals
were exhausted without agreement). In this paper, we will restrict our analysis
to two agents. The bargaining protocol initiated by agent i with agent j is shown
in Table 1.

Bargaining can be seen as a search through possible allocations of resources.
In the brute force method, agents would have to exchange every possible offer
before a deal is reached or disagreement is acknowledged. The number of possible
allocations of resources to agents is |A||R|, which is exponential in the number
of resources. The number of possible offers is even larger, since agents would
have to consider not only every possible allocation of resources, but also every
possible payment. Various computational frameworks for bargaining have been
proposed in order to enable agents to reach deals quickly. For example, Faratin

2 This is equivalent to saying that the new allocation Pareto dominates the initial
allocation, given the payment.

On the Benefits of Exploiting Hierarchical Goals 21

Table 1. Basic bargaining protocol

Bargaining Protocol 1 (BP1):
Agents start with resource allocation Λ0 at time t = 0
At each time t > 0:

1. propose(i, δt): Agent i proposes to j deal δt = (Λ0, Λt, pt) which has not
been proposed before;

2. Agent j either:
(a) accept(j, δt): accepts, and negotiation terminates with allocation Λt

and payment pt; or
(b) reject(j, δt): rejects, and negotiation terminates with allocation Λ0

and no payment; or
(c) makes a counter proposal by going to step 1 at the time step t + 1

with the roles of agents i and j swapped.

et al [4] use a heuristic for generating counter proposals that are as similar as
possible to the previous offer they rejected.

We characterise the set of deals that are reachable using any given protocol.
The set of reachable deals can be conveniently characterised in terms of the
history of offers made (thus, omitting, for now, other details of the protocol).3

Definition 8. (Dialogue History) A dialogue history of protocol P between
agents i and j is an ordered sequence h of tuples consisting of a proposal and a
utility function (over allocations) for each agent

h = 〈(δ1, u1
i , u

1
j), . . . , (δ

n, un
i , un

j)〉

where t = 1, . . . , n represents time.

Definition 9. (Protocol-Reachable Deal) Let P be a protocol. A deal δt is
P -reachable if and only if there exists two agents i and j which can generate a
dialogue history according to P such that δt is offered by some agent at time t
and δt is individual rational given ut

i, u
t
j.

4 Underlying Interests

In most existing alternating-offer bargaining negotiation frameworks, agents’
utility functions are assumed to be pre-determined (e.g. as weighted sums) and
fixed throughout the interaction. That is, throughout the dialogue history, u1

i =
· · · = un

i for any agent i.
We now present a framework for capturing the interdependencies between

goals at different levels of abstraction.4

3 To enable studying changes in the utility function later in the paper, we will super-
script utility functions with time-stamps.

4 Although this framework is simpler than those in the planning literature, its level of
abstraction is sufficient for our purpose.

22 I. Rahwan et al.

Let G = {g1, . . . , gm} be the set of all possible goals. And let sub : G×2G∪R be
a relationship between a goal and the sub-goals or resources needed to achieve
it. Intuitively, sub(g, {g1, . . . , gn}) means that achieving all the goals g1, . . . , gn

results in achieving the higher-level goal g. Each sub-goal in the set {g1, . . . , gn}
may itself be achievable using another set of sub-goals, thus resulting in a goal
hierarchy. We assume that this hierarchy takes the form of a tree (called goal
tree or plan). This condition is reasonable since the sub-goal relation captures
specialisation of abstract goals into more concrete goals.

Definition 10. (Partial plan) A partial plan for achieving goal g0 is a tree
T such that:

– g0 is the root;
– Each non-leaf node is a goal g ∈ G with children x1, . . . , xn ∈ G ∪ R such

that sub(g, {x1, . . . , xn});5

– Each leaf node is xi ∈ (R ∪ G);

A complete plan is a goal tree in which all leaf nodes are resources.

Definition 11. (Complete plan) A complete plan for achieving goal g0 is a
partial plan T in which each leaf node ri ∈ R.

Example 1. Suppose we have goals G = {g1, . . . , g4} and R = {r1, . . . , r6} such
that sub(g1, {g2, g3}), sub(g1, {g2, g4}), sub(g2, {r1, r2}), sub(g3, {r3, r4}), sub(g4,
{r5, r6}). Suppose also that the agent’s main goal is g1. Figure 1 shows three plans
that can be generated. Tree T1 is a partial plan (since goal g3 is a leaf node), while
T2 and T3 are (the only possible) complete plans for achieving g1.

1

2 3

1 2

1

2 3

3 41 2

1 2
1

2 4

5 61 2

3

Fig. 1. Partial plans (T1) and complete plans (T2, T3)

Let gnodes(T) ⊆ G be the set of goal nodes in tree T . And let leaves(T) ⊆ R∪G
be the set of leaf nodes in tree T . Let rleaves(T) = leaves(T) ∩ R be the set of
resource leaves. And similarly, let gleaves(T) = leaves(T) ∩ G be the set of goal
leaves. Note that for a complete plan T , leaves(T) = rleaves(T), that is, leaf
nodes contain resources only.

Note that sub is a relation, not a function, to allow us to express goals that
have multiple sets of alternative sub-goals/resources. Hence, there may be mul-
tiple possible plans for achieving a goal.
5 I.e. among alternatives for achieving g, only one is selected.

On the Benefits of Exploiting Hierarchical Goals 23

Let T be the set of all (partial or complete) plans that can be generated in
the system, and let T (g) be the set of all plans that have g as a root.

Definition 12 (Individual Capability)
An agent i ∈ A with resources Λ(i) is individually capable of achieving goal
g ∈ G if and only if there is a complete plan T ∈ T such that leaves(T) ⊆ Λ(i)

We assume that each agent i is assigned a single goal G(i) ∈ G that it needs to
achieve, and we refer to it as the agent’s main goal.6 We further assume that
agent i assigns a worth to this goal worthi(G(i)) ∈ R.

Example 2. Following on Example 1, suppose agent i with goal G(i) = g1 has
resources Λ(i) = {r1, r2, r3, r4, r5}. Agent i is individually capable of achieving
g1 through complete plan T2, since leaves(T2) ⊆ Λ(i).

Note that the agent also has the option of retaining its resources and not using
it to achieve its goal (e.g. they are worth more than the goal). Here, we say that
the agent has selected the null plan, denoted T̆ . We can characterise the set of
all complete plans that an agent can choose from.

Definition 13. (Individually Achievable Plans) The set of plans that can
be achieved by agent i individually using allocation Λ(i) is:

TΛ(i) = {T ∈ T : leaves(T) ⊆ Λ(i)} ∪ {T̆}

We now want to provide a new definition of the utility of an allocation, which
takes into account the agent’s underlying goal. Therefore, we differentiate be-
tween the intrinsic value of the resource and its potential contribution to a goal.
So, if the agent’s resources cannot be used to achieve its goals, then the utility
of these resources will be the sum of their intrinsic values, as above. If, on the
other hand, the agent is able to achieve its goal using some of its resources, then
the utility calculation must take into account the difference between the utility
gained by achieving the goal and the utility lost by consuming the resources.

The agent must select the best plan, i.e. the plan that minimizes the cost of
the resources used. To capture this, let vi : R → R be a valuation function such
that vi(r) is agent i’s private valuation of resource r. Then we can define the
cost incurred by agent i in executing plan T as: cost i(T) =

∑
r∈rleaves(T) vi(r).

Then, we can define the utility of plan as follows.7

Definition 14. (Utility of a Plan) Let i be an agent with goal G(i) and
resources Λ(i). And let T ∗

i be the set of available alternative plans i can choose
from. The utility of plan T ∈ T ∗

i for agent i is a function ũi : T ∗
i → R is

defined as follows:

ũi(T) =

{
0 if T = T̆ ,
worthi(G(i)) − cost i(T) otherwise

6 Multiple goals can be expressed by a single goal that has one possible decomposition.
7 Note that so far, we have different notions of utility: the utility of an allocation, the

utility of a plan, and the utility of a deal.

24 I. Rahwan et al.

Note that for agent i with allocation Λ(i) and goal G(i), the set of available al-
ternatives (not considering other agents in the system) is T ∗

i = (TΛ(i)∩T (G(i))).
Since the null plan does not achieve a goal and does not incur any cost, the

agent retains all its initial resources, and therefore the utility of the null plan is
simply the sum of the values of those resources.

Example 3. Following on Example 1, suppose agent i with goal G(i) = g1 has
resources Λ(i) = {r1, r2, r3, r4, r5, r6}. Suppose also that worthi(g1) = 85 and
resource valuations vi(r1) = 20, vi(r2) = 10, vi(r3) = 6, vi(r4) = 5, vi(r5) = 8,
vi(r6) = 7. Then, we have:
ũi(T2) = 85 − (20 + 10 + 6 + 5) = 44
ũi(T3) = 85 − (20 + 10 + 8 + 7) = 40
ũi(T̆) = 0

We now define the utility of an allocation for an agent. Note that this is a special-
isation of the general utility function in Definition 2. Note also that underlying
our framework is the assumption that resources are consumable, at least for the
period in question, in the sense that a single resource cannot be used simultane-
ously in multiple plans. An example of a consumable resource is “fuel” consumed
to run an engine.

Definition 15. (Utility) The utility of agent i ∈ A is defined as a function
ui : 2R → R such that:

ui(Λ(i)) = max
T∈T ∗

i

ũi(T)

The utility of a deal remains defined as above.

Example 4. Following Example 3, the utility of the resources is ui(Λ(i)) = 44,
and the best plan is T2.

5 Mutual Interests

One of the main premises of IBN is that agents may benefit from exploring each
other’s underlying interests. For example, agents may avoid making irrelevant
offers given each others’ goals. Knowledge of common8 goals may help agents
reach better agreements, since they may discover that they can benefit from
goals achieved by one another. In this paper, we focus on the case of common
goals.

We first formalise the idea that an agent may benefit from a goal (or sub-
goal) achieved by another. Suppose an agent j is committed to some plan Tj ,
written Ij(Tj). Then, another agent i, with Ii(Ti), may benefit from the goals
in gnodes(Tj) if one or more of these goals is part of Ti. Note, however, that not
every goal in gnodes(Tj) is useful to i, but rather those goals for which j has a
complete goal (sub-)tree. Thus, we define the notion of committed goals.
8 Note that common goals are different from individual goals of the same kind. Two

agents may both want to hang the same picture, or may each want to hang a different
picture.

On the Benefits of Exploiting Hierarchical Goals 25

Definition 16. (Committed Goals) Let i ∈ A be an agent with resources Λ(i)
with Ii(Ti) at time t. The committed goals of i at time t is denoted cgoals t

i and
defined as:
cgoals t

i = {g ∈ gnodes(Ti) : g has a plan T ∈ TΛ(i) where T is a sub-tree of Ti}

When there is no ambiguity, we shall drop the superscript t that denotes time.
For the time being, we assume no negative interaction among goals.9 In other

words, the achievement of one goal does not hinder the achievement of another.

Definition 17. (Achievable Plans) The set of partial plans that can be achieved
by agent i using allocation Λ(i) given agent j’s committed goals cgoals t

i at time t is:

TΛ(i),cgoalst
j

= {T ∈ T : leaves(T) ⊆ Λ(i) ∪ cgoalst
j} ∪ T̆

Example 5. Figure 2 shows agent i and j with goals g1 and g5 respectively, with
all possible plans, the resources owned by every agents and, under every resource,
the agent’s private valuation. Note that T2 is possible but not achievable by i
with Λ(i). Now, suppose plan Ij(T4). This means that g3 ∈ cgoalsj . While T1 is
not individually-achievable, it is now a viable alternative for agent i to achieve
g1 since agent j is committed to goal g3.

1020 61020 5 1020 789122217

1

23

1 2

1

2 3

3 41 2

1 2
1

2 4

5 61 2

3
5

6 3

3 47 5

4

7 3 4 1 2 5 6

i 1j 5

Fig. 2. Agent i can benefit from j’s committed goal

The following lemma follows immediately.

Lemma 1. At any time t, TΛ(i) ⊆ TΛ(i),cgoalst
j

Proof. Let T ∈ TΛ(i). By definition 13, leaves(T) ⊆ Λ(i), from which it follows
that leaves(T) ⊆ Λ(i) ∪
cgoalst

j. By definition 17, we have T ∈ TΛ(i),cgoalst
j
.

9 In this paper, negative interaction among goals is only captured through the overlap
of resources needed by two goals. We do not address explicit interference among
goals.

26 I. Rahwan et al.

From the lemma, it follows that when agents take into account goals committed
by other agents, the set of available plans expands, since agents are no longer
restricted to considering complete plans. Formally, for agent i with goal G(i) and
resources Λ(i), the set of available options at time t is now T ∗

i = (TΛ(i),cgoalst
j
∩

T (G(i)). Agents can now consider partial plans, as long as the missing parts
of these plans are committed j. From this, it also follows that the utility of an
allocation may increase. The example below calculates agent i’s utility for partial
plan T1, which was previously not considered.

Example 6. Continuing on Example 5 and Figure 2. We now have ũi(T1) =
85 − (20 + 10) = 55, ũi(T3) = 40 and ũi(T̆) = 0 (recall that T2 /∈ T ∗

i for now).
Therefore, ui(Λ(i)) = 70. This contrasts with the calculation that does not take
j’s goal into account, in which case ui(Λ(i)) = 40.

6 Case Study: An IBN Protocol

We showed how agents’ utilities of allocations may increase if agents have knowl-
edge of each other’s underlying goals. However, full awareness of other agents’
goals is rarely achievable, especially when agents are self-interested. Agents may
progressively (and selectively) reveal information about their goals using a va-
riety of interaction protocols. For example, agents could reveal their entire goal
trees at once, or may do so in a specific order. Moreover, agents may reveal their
underling goals symmetrically (e.g. simultaneously) or asymmetrically, etc. We
now look at a specific IBN protocol and analyse it using the above concepts.

We assume that agents have no prior knowledge of each other’s main goals or
preferences; and that prior to negotiation, each agent i considers all individually-
achievable plans, for its main goal, using Λ(i), as well as potential rational deals.
An IBN protocol is presented Table 2. Note that this protocol is asymmetric,
since during the IBN sub-dialogue, the agent being questioned is assumed to fix
its intended plans, while the questioning agent may accept the deal in question
by discovering new viable plans that take into account the questionee’s goals.

Let us now consider an extension of the previous example.

Example 7. Suppose agent i’s initial situation is as described in Figure 3. Here, i
begins with two achievable plans: T3 and T̆ . As shown in Example 6, ui(Λ0(i)) =
40. Suppose i considers acquiring resources {r3, r4} to enable possible plan T2.
With {r3, r4}, ũi(T2) = 85 − (20 + 10 + 6 + 5) = 44, so i would be willing to
pay up to 44 − 40 = 4 units for {r3, r4}, since he would still be better-off than
working solo. Agent j on the other hand only has one possible plan, which is
T4 with utility ũj(T4) = 125 − 60 = 65, but is unable to execute it because it
needs r5. Now, agent i initiates negotiation with j. The following is a possible
sequence of proposals:

1. propose(i, (Λ0, Λ1, p1)), where Λ1(i) = {r1, r2, r3, r4, r5, r6}, Λ1(j) = {r7},
p1(i) = 3, p1(j) = −3

2. propose(j, (Λ0, Λ2, p2)), where Λ2(i) = {r1, r2, r6}, Λ2(j) = {r3, r4, r5, r7},
p2(i) = 9, p2(j) = −9

On the Benefits of Exploiting Hierarchical Goals 27

Table 2. A simple IBN protocol

IBN Protocol 1 (IBNP1):
Agents start with resource allocation Λ0 at time t = 0

At each time t > 0

1. propose(i, δt): Agent i proposes to j deal δt = (Λ0, Λt, pt) which has not been
proposed before;

2. Agent j either:
(a) accept(j, δt): accepts, and negotiation terminates with allocation Λt and pay-

ment pt; or
(b) reject(j, δt): rejects, and negotiation terminates with allocation Λ0 and no pay-

ment; or
(c) makes a counter proposal by going to step 1 at the next time step with the

roles of agents i and j swapped; or
(d) switches to interest-based dialogue on δt. Let dgoalst

i = ∅ for all i ∈ A be each
agents’ declared goals.

i. why(j, x): j asks i for underlying goal for a resource or declared goal x ∈
Λt(i) ∪ dgoalst

i;
ii. i either:

A. assert(i, Ii(g)): i responds by stating a goal, which is added to
dgoals(i); or

B. decline(i): declines giving the information;
iii. j either:

A. accept(j, g): j accepts δt, if now more favourable; or
B. seeks more information by going to step 2.d.i; or
C. pass(j): j skips its turn, moving the protocol to step 2 with i taking

the role of deciding what to do next.

At this point, agent i may attempt to know why j needs some resource, say r3,
and the following follows:

4. why(i, r3)
5. assert(j, Ii(g3))

At this point, i would be willing to give up r3 and r4, since plan T1 now becomes
a viable option for i. Moreover, recall that ũi(T1) = 55, so i can now give up
resource r5 for payment 9 in a deal.

8. accept(i, (Λ0, Λ2, p2))

In summary, i gives up r5 in exchange for getting g3 and a payment of 5. While
j pays 5 for r5 and achieves its goal (which was not possible before). Both agents
gain utility, and the utilities of the deal δ are as follows:

ui(δ) = ui(Λ2(i)) − ui(Λ0(i)) − p2(i) = (55 − 8) − 40 + 9 = 16

uj(δ) = uj(Λ2(j)) − uj(Λ0(j)) − p2(j) = 65 − 0 − 9 = 56

28 I. Rahwan et al.

Note that in calculating the utility of i’s new allocation, we subtracted 8 since i
has given up r5 in the deal, which it values as 8.

Let us now analyse IBNP1.

Proposition 1. Every bargaining-reachable deal is also IBN-reachable.

Proof. If in IBNP1, no agent ever switches to an interest-based dialogues –step
(d), then the two algorithms BP1 and IBNP1 become identical. Hence, any deal
reachable through bargaining is also reachable through IBN.

61020 5 1020 78

1

2 3

3 41 2

2
1

2 4

5 61 2

3

0
1 2 5 6

i 1

1020 61020 5 1020 789122217

1

23

1 2

1

2 3

3 41 2

1 2
1

2 4

5 61 2

3
5

6 3

3 47 5

4

0
7 3 4

0
1 2 5 6

i 1j 5

i 2 i 3 i

i i 2

i 2 i 3 i

i i 1

i 1

Fig. 3. Different stages of an IBN dialogue

We are mainly interested in how agents’ perceptions of the utility of allocations
changes over time. Let dgoals : A → 2G be a function that returns the set of
goals declared by an agent. We assume that agents do not lie about their goals,
in the sense that they do not declare goals they are not committed to. Formally,
dgoals t

i ⊆ cgoals t
i for any agent i at any given time t. Let TΛt(i),dgoalst

j
⊆ T be

the set of goal trees that can be achieved by agent i using allocation Λt(i) given
j’s declared goals dgoals t

j , i.e.

TΛt(i),dgoalst
j

= {T ∈ T : leaves(T) ⊆ Λt(i) ∪ dgoals t
j}

The below proposition then follows:

Proposition 2. At any time t, TΛt(i) ⊆ TΛt(i),dgoalst
j

⊆ TΛt(i),cgoalst
j

On the Benefits of Exploiting Hierarchical Goals 29

Proof. Proof of TΛt(i) ⊆ TΛt(i),dgoalst
j
is similar to proof of Lemma 1. The fact that

TΛt(i),dgoalst
j

⊆ TΛt(i),cgoalst
j
follows from the assumption that dgoals t

i ⊆ cgoals t
i.

This proposition shows that by using protocol IBNP1, the set of available plans
for the inquiring agent expands, but never goes beyond the set of plans that
take into account all of the counterpart’s actual goals. Formally, for agent i
with goal G(i) and resources Λ(i), the set of available options at time t is now
T ∗

i = TΛ(i),dgoalst
j
∩ T (G(i)).

Proposition 3. Using the protocol IBNP1, at any time t, it is possible for any
agent j to obtain complete knowledge of the entire goal structure of the intended
plan by the other agent i, provided i does not decline to answer questions.

Proof. At any given round t, suppose agent i intends arbitrary complete plan
T t

i ∈ T , and proposes δt (Step 1). By definition, leaves(T t
i) ⊆ Λt(i), i.e. i

must obtain through δt every resource needed for achieving T t
i . After this request

(Step 2.d), j could ask why(r) for each r ∈ leaves(T t
i). This would be done over

|leaves(T t
i)| iterations of Step 2.d. As a result, dgoals t

i will contain the set of
goals that are immediate parents of resources r ∈ leaves(T t

i). Similarly, Step 2.d
could be repeated to obtain the immediate parents of those goals, until the main
goal is revealed. Thus, every intended goal of i will eventually be in dgoals t

i.

The following proposition states that as the negotiation counterpart declares
more of its goals, the inquirer’s utility of any plan may increase, but can never
decline. This is because the inquirer is increasingly able to account for the posi-
tive side effects of other agents’ goals.

Proposition 4. At any given time t, if the protocol is in stage 2.d initiated by
agent i, as the set dgoals t

j increases, the utility ui(δt) of the current proposal
may only increase.

Proof. Recall that the set of available alternative plans i can choose from is
T ∗

i = TΛ(i),dgoalst
j

∩ T (G(i)), and that TΛt(i) ⊆ TΛt(i),dgoalst
j
. It follows that as

dgoals t
j increases, the set T ∗

i also grows monotonically. Recall that ui(Λt(i)) =
maxT∈T ∗

i
ũi(T). Hence, as ui(Λt(i)) is applied to maximise over a monotonically

increasing set, its value can increase but not decrease. Consequently, ui(δt) is
non-decreasing.

It follows that at any time t where agent j intends plan T t
j and i is inquiring j’s

goals, as dgoals t
j converges towards cgoals t

j , then ui(Λt(i)) will reach the objective
utility, that is the utility that reflects the true utility of Λt(i).

7 Conclusion

While much has been said about the intuitive advantage of argument-based
negotiation over other forms of negotiation, very little has been done on making
these intuitions precise. We began bridging this gap by characterising exactly

30 I. Rahwan et al.

how the set of reachable deals expands as agents progressively explore each
other’s underlying goals. We also presented one specific protocol and showed
how it provides one useful way to exchange information about goals.

This paper opens many future possibilities. Although the protocol analysedhere
is simple, the paper presents a step towards more elaborate analysis of a variety of
other IBN protocols (e.g. symmetric ones). Another direction of future research is
exploring the case of negative interaction (i.e. interference) among agents’ goals.
In such cases, agents may not wish to disclose their goals, since this could reduce
the likelihood or quality of deals. One would have to explore the trade-off between
the potential benefit and potential loss in revealing goals. Finally, the possibility
of agents lying about their goals opens up many game-theoretic questions.

It is worth noting that our work differs from multi-agent hierarchical plan merg-
ing [1], which assume agents are fully aware of each other’s goals. We depart from
a position where agents have no knowledge of each other’s goals. And while the
objective of hierarchical coordination research is on finding optimal ways to max-
imise positive interaction among the goals of cooperative agents, our aim is to ex-
plore interaction among self-interested agents who may not be willing to share
information about their goals, unless sharing such information benefits them.

Acknowledgement

This work is partially supported by the Australian Research Council, Discovery
Grant DP0557487.

References

1. Cox, J.S., Durfee, E.: Discovering and exploiting synergy between hierarchical plan-
ning agents. In: Rosenschein, J., Sandholm, T., Wooldridge, M.J., Yokoo, M. (eds.)
Proceedings of the 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2003), pp. 281–288. ACM Press, New York (2003)

2. Endris, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal allocations
of resources. Journal of artificial intelligence research 25, 315–348 (2006)

3. Erol, K., Hendler, J., Nau, D.: Semantics for hierarchical task network planning.
Technical Report CS-TR-3239, UMIACS-TR-94-31, Department of Computer Sci-
ence, University of Maryland (1994)

4. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make trade-offs
in automated negotiations. Artificial Intelligence 142(2), 205–237 (2002)

5. Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing.
Journal of Logic and Computation 8(3), 261–292 (1998)

6. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg,
L.: Argumentation based negotiation. Knowledge Engineering Review 18(4), 343–
375 (2003)

7. Rahwan, I., Sonenberg, L., Dignum, F.: Towards interest-based negotiation. In:
Rosenschein, J., Sandholm, T., Wooldridge, M.J., Yokoo, M. (eds.) Proceedings
of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2003), pp. 773–780. ACM Press, New York (2003)

Co-argumentation Artifact for Agent Societies

Enrico Oliva1, Peter McBurney2, and Andrea Omicini1

1
Alma Mater Studiorum–Università di Bologna, Cesena, Italy

2 University of Liverpool, Liverpool L69 3BX UK

Abstract. In a social context, people have only partial knowledge about
the world and use arguments in order to solve problems, to reduce con-
flicts, or to exchange information.

Argumentation is a dialogic process, and could occur through direct
interaction, or through supports of some sorts—like blackboards, or elec-
tronic fora. The same holds for intelligent agents in a multi-agent system
(MAS); here, however, it is not clear what could act as a support for ar-
gumentation between agents, external to the agents themselves. To this
end, this work exploits the agents and artifacts (A&A) meta-model for
MAS, exploring the use of artifacts for agent argumentation within a
MAS. Along this line, the first aim of this work is to design an argu-
mentation component based on Dung’s preferred semantics, combining
it with artifact abstraction in order to realise a social support for argu-
mentation in MAS. Using argumentation within the A&A meta-model,
we introduce here the notion of Co-Argumentation Artifact (CAA) as an
artifact specialised in managing arguments and providing a coordination
service for argumentation process in a MAS. In order to give concreteness
to our proposal, we also discuss a first CAA deployment based on logic
programming and tuple centres exploiting the TuCSoN infrastructure.

1 Introduction

A society mainly evolves through interaction and communication among par-
ticipating entities. Within a society, people argue in order to solve problems,
to reduce conflicts, to exchange information, and to inform each other of some
pertinent facts. Argumentation is a useful feature of human intelligence that
enables us to deal with incomplete and inconsistent information. People usually
have only partial knowledge about the world (they are not omniscient) and often
they have to manage conflicting information.

In the same way, the entities that compose an artificial society should be able
to deal with partial and conflicting knowledge. Correspondingly, an agent-based
model for an artificial society should provide an adequate definition of knowledge
with the purpose of providing a realistic reflection of a society. Also, it may be
useful to share information in order to successfully deal with partial knowledge.

A novel approach to the design of agent-based artificial societies is based on
the notion of coordination artifact [1], which takes inspiration from Activity
Theory [2] where any human activity within a society is enabled, constrained or
mediated by artifacts.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 31–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 E. Oliva, P. McBurney, and A. Omicini

Coordination artifacts are social constructs shared by agents of a MAS (multi-
agent system), and are necessary to mediate interaction among agents, and be-
tween agents and their environment. A traffic light, for instance, is a sort of
coordination artifact: drivers watching the signal know what they have to do to
avoid accidents at an intersection, without any need for direct communication
with one another.

Argumentation is an important feature of human intelligence: the ability to
understand and manipulate arguments is fundamental to understand a new prob-
lem, to reason about actions, and to perform scientific research. An argument
is a sequence of inferences leading to a valid conclusion: a set of arguments is
managed by an argumentation component that is particularly useful in the case
of conflicting information.

In this paper we elaborate on the idea of social support for argumentation in a
MAS, by coupling the agents and artifacts (A&A) meta-model for MAS with ar-
gumentation theory. In particular, we introduce the notion of Co-Argumentation
Artifact (CAA), as a social support based on argumentation theory able to man-
age conflicting information exchange during the social argumentation processes
in a MAS. Agents use a CAA to be guided during the discussion or to find some
new information in agreement with their internal goals. A CAA would be useful,
for example, to identify subsets of arguments agreeable to all participants in the
society.

In this paper, we first introduce our reference notion of Argumentation Sys-
tem (Section 2), then (Section 3) we discuss the properties of an Argumentation
Component. In Section 4 the new Co-Argumentation Artifacts abstraction is
defined and explained, and a simple example built on top of the TuCSoN coordi-
nation infrastructure is discussed.

2 Argumentation System

In this section we introduce the system of argumentation that is the reference for
our approach. An argument, in classic logic, is a sequence of inferences that leads
to a conclusion. It has three components: beliefs, inference rules and conclusions.

– beliefs are facts and rules that represent premises
– inference rules are labels that represent inference processes such as deduc-

tion or induction
– conclusions are facts that represent results of the inference process applied

to the beliefs

In our system, we express the argument in predicate logic using the logic tuple
notation. We take inspiration from Dung’s framework [3], and we also define the
structure inside the arguments. In [4] an argumentation system formalized in
propositional logic is presented. Whereas we follow such an approach, we also try
to extend it using predicative logic, which suits a logic programming framework.
We assume that Σ contains formulas of a predicate language L distinct in F
facts and R rules. The symbol � denotes classical inference process for deduction,
induction and abduction, and ≡ denote logical equivalent.

Co-argumentation Artifact for Agent Societies 33

Definition 1. Anargument is a tripleA=〈B, I, C〉whereB=b1, . . . , bn, r1, . . . , rn

with bi ∈ F and ri ∈ R, I = {�d Deduction, �i Induction, �a Abduction} and
C = c1, . . . , cn, r1, . . . , rn with ci ∈ F and rn ∈ R such that:

1. B is consistent
2. B �I C
3. B is minimal, so no subset of B satisfying both 1 and 2 exists

For instance, a classical example of argument like all men are mortal, Socrates
is a man, Socrates is mortal, in our representation becomes:

– B = human(Socrates), human(X) → mortal(X)
– I = �MP Modus Ponens
– C � mortal(Socrates)

Our formalization of the ‘Socrates argument’ can be easily mapped in a logic
tuple. In the process of mapping, we add a the predicate argument with the
function name and other predicates such as beliefs, infer and conclusions to
represent the triple A = 〈B, I, C〉.

argument(name, beliefs([human(Socrates)], [clause(mortal(X), [human(X)])]),
infer(MP), conclusions([mortal(Socrates)])).

A declarative representation of arguments could be useful to store and collect
the arguments during the argumentation process. The formula argument in our
system is the basic unit to represent an argument.

The inference rules we consider for deduction are Modus Ponens (MP), Multi-
Modus Ponens (MPP) and Modus Tollens (MT).

B B → C

C
(MP)

B1 B2 B3 (B1 ∧ B2 ∧ B3) → C

C
(MPP)

The MP is a particular case of MMP with only one premise. Socrates argument
is a example of MP deductive argument. Also, MT formula expresses a deductive
inference.

¬A B → A

¬B
(MT)

For example, all human are mortal but Eraclito is not mortal than Eraclito is
not human, in tuple form is:

argument(name, beliefs([non(mortal(eraclito))], [clause(mortal(X),
[human(X)])]), infer(MT), conclusions([non(human(eraclito))])).

The inference rule that we use for induction is θ-subsumption, as shown in (θ-su).

B

R
where Rθ ⊆ B (θ-su)

34 E. Oliva, P. McBurney, and A. Omicini

For example, mortal(X) ← human(X), θ-subsumes mortal(socrates) ←
human(socrates) with θ = 〈X = socrates〉, in tuple form looks like

argument(name, beliefs([mortal(socrates), human(socrates)]),
infer(Su), conclusions([clause(mortal(X), [human(X))])])).

This process derives a general rule R from specific beliefs B, but is not a legal
inference in a strict sense. Currently, we do not consider a probability value that
could be associated to the result of an induction process. Finally the abductive
reasoning is expressed with the inference rule shown in (Ab).

B A → B

A
(Ab)

For example, all humans are mortal, Parmenide is a mortal, then Parmenide is
a human, in tuple form looks like

argument(name, beliefs([mortal(parmenide)], [clause(mortal(X),
[human(X)])]), infer(Ab), conclusions([human(parmenide)]).

The definition of contrast is not trivial because there are different type of attack
well defined in [4]. Following those definitions, two possible types of attack are
‘conclusions against conclusions’ – called rebuttals – and ‘conclusions against
beliefs’—called undercuts.

Definition 2. Let A1 = 〈B1, I1, C1〉 and A2 = 〈B2, I2, C2〉 are two distinct
arguments, A1 is an undercut for A2 iff ∃h ∈ C1 such that h ≡ ¬bi where
bi ∈ B2

Definition 3. Let A1 = 〈B1, I1, C1〉 and A2 = 〈B2, I2, C2〉 are two distinct
arguments, A1 is a rebuttal for A2 iff ∃h ∈ C1 such that h ≡ ¬ci where ci ∈ C2

From the algorithmic point of view it is necessary to identify the oppo-
site predicate: α defeats ¬α in order to find the contrast argument. In our
framework we introduce non/1 operator that identifies the opposite predicate:
non(mortal(Socrates)) is opposite to mortal(Socrates). Also we introduce an-
other notion of undercut based on the principle of refutation. To find an attack
to the rule, a counterexample is required that disproves its truth. An argument
A1 is attacked through a counterexample contained in the conclusion of an-
other argument. In formula, we consider an implication with only one premise
A → B ≡ ¬A∨B the contrary is: A¬(¬A∨B) ≡ A∧¬B. An expression with A
and the negation of B is a counterexample of the implication. For instance, the
following argument undercuts the Socrates example by refuting the implication
mortal(X) → human(X):

argument(name, beliefs([human(Eraclito),non(mortal(Eraclito))]),
infer (T), conclusions([human(Eraclito), non(mortal(Eraclito))])).

This type of attack is possible only with an explicit representation of the rules.

Co-argumentation Artifact for Agent Societies 35

Finally inside the component there are the main algorithms to manipulate the
conflict knowledge in order to decide the admissible subset of a set of arguments
and to determine whether a new argument is acceptable or not. The definitions
of acceptability and admissibility used in our framework are in agreement with
[3]. The following definitions are the basic ones in our argumentation system and
take inspiration from Dung’s framework.

Definition 4. An argument set S is a conflict free set iff there exist no
Ai, Aj ∈ S such that Ai attacks Aj.

Definition 5. An argument set S defends collectively all its elements if ∀
argument B /∈ S where B attacks A ∈ S ∃ C ∈ S : C attacks B.

Definition 6. An argument set S is a admissible set iff S is conflict free and
S defends collectively all its elements.

Definition 7. An argument set S is a preferred extension iff S is a maximal
set among the admissible set of A.

We consider also important argument extensions such as acceptability in order
to determine whether a new argument is acceptable or not. In the context of
preferred semantics the acceptance problem is divided in credulous acceptance
or sceptical acceptance, if an argument is in some/all preferred extension.

Definition 8. An argument A is credulous acceptable if A ∈ at least one
preferred extension.

Definition 9. An argument A is sceptical acceptable if A ∈ all preferred
extensions.

3 Argumentation Component

The argumentation component is a system that should be useful in principle in
order to control a set of conflicting arguments. An argumentation component is
formed by: (1) the concrete representation of arguments and (2) the deployment
of algorithms that work over the arguments set. The main functions of this com-
ponent are to calculate the preferred extensions of a set of arguments and to
determine whether a new argument is valid and acceptable. Also, our goals are
the deployment of these algorithms within each of the agents of an agent society,
and within artifacts embodying the social argumentation processes. This would
be useful, for example, to identify subsets of arguments agreeable to all partici-
pants in a MAS. We adopt the argumentation system presented in the previous
section with a tuple-based notation and the Prolog logic language to implement
the algorithms. Prolog is very useful because of the uniform representation of
code and data, both represented as first-order logic clauses, which makes writing
(meta-)interpreters quite easy [5].

36 E. Oliva, P. McBurney, and A. Omicini

3.1 Computational Model

From a practical point of view computational model is based on predicative
logic and logic programming. Each argument has its own context, where the
argument is true. The context is provided in the argument and is composed
only by the set of beliefs – facts and rules – directly declared in the tuple. The
connection between the premises and the conclusion is expressed in terms of the
corresponding inference process, which is specified in the argument too.

The programs to manage, verify and compare arguments are meta-interpreters
written in Prolog. We have created a library composed of interpreters for each
type of inference rules supported: MP, MT, Su and Ab. When the component
has to evaluates an argument, the program looks for the correct interpreter and
checks if the conclusion is a consequence of the premises.

3.2 Meta-interpreter for Argument Check

The following interpreter for argument check (1) has the argument name as
its input parameter, (2) asserts all of its facts and rules, and (3) verifies its
correctness for the different sorts of inference.

check_argument(Name):-
argument(Name,_,beliefs(facts(F),rules(R)),infer(I),conclusion(C)),
assert_list(F),
assert_list(R),
check_conclusion(I,C).

check_conclusion(mt,[T|C]):-proveMT(T).
check_conclusion(mp,[T|C]):-proveMP(T).
contrary(non(P),P):-!.
contrary(P,non(P)).

The contrary term is a support to find opposite predicate. We also add spe-
cific relation of opposition like old vs. young that in predicate form looks like
contrary(old(X),young(X)) and vice versa; or add the definition of contrary
for the subset like a number.

% Meta-interpreter for Modus-Ponens
proveMP([]):-!.
proveMP([Goal1|Goal2]):-
!,
proveMP(Goal1),
proveMP(Goal2).

proveMP(Goal):-
write(’call:’),write(Goal),nl,
(my_clause(Goal,Body);call(Goal)),!,
proveMP(Body).

% Meta-interpreter for Modus-Tollens
proveMT([]):-!.
proveMT([Goal1|Goal2]):-

Co-argumentation Artifact for Agent Societies 37

!,
proveMT(Goal1),
proveMT(Goal2).

proveMT(Goal):-
write(’call:’),write(Goal),nl,
contrary(Goal,NegGoal),
my_clause(Head ,[NegGoal|T]),contrary(Head,NegHead),NegHead.

Example 1. Check of argument in Modus Ponens and execution trace

argument(arg1,1,beliefs(facts([man(john),age(90,john)]),
rules([my_clause(old(X),[human(X),age(A,X),A>80]),

my_clause(human(X),[man(X)])])),
infer(mp),conclusion([old(john)])).

?- check_argument(arg1).

assert:man(john)
assert:age(90, john)
assert:my_clause(old(_G385), [human(_G385), age(_G395, _G385), _G395>80])
assert:my_clause(human(_G385), [man(_G385)])
prove:old(john)
call:old(john)
call:human(john)
call:man(john)
call:age(_G430, john)
call:90>80
Yes

Example 2. Check of argument in Modus Tollens

argument(arg3,1,beliefs(facts([non(mortal(eraclito))]),
rules([my_clause(mortal(X),[human(X)])])),
infer(mt),
conclusion([non(human(eraclito))])).

?- check_argument(arg3).
Yes

3.3 Meta-interpreter for Argument Management

Managing the argument set requires in particular an ability to calculate: (1) the
relations of undercut and attack between argument; (2) the conflict-free sets;
and (3) the preferred extensions. Undercut and attack relations are found by
comparing the ‘conclusion vs. conclusion’ and ‘conclusion vs. beliefs’ (and vice
versa) between two different arguments. The operation of comparison is done in
the argumentation component with the check/4 predicate. Each argument has
to be compared with the others to find all the relations; if we have N arguments
we have to do ≈

∑N
i=0 N2 comparisons. At the end of this process, tracing the

attack(from,to) and undercut(from,to) we obtain a defeat graph where the
relations are the arcs and the arguments are the nodes, according to Dung [3].

The core of the argumentation component is represented by the interpreters
that manage the arguments in order to find the conflict free sets, the admissible
sets, and the preferred extensions.

38 E. Oliva, P. McBurney, and A. Omicini

a

b-[ab]

c-[abc]

d-[abcd]

d-[abd]

c

d

d

b

c

d

d

c

d

d

Fig. 1. Search trees generated for 4 arguments

Conflict Free Set. The problem of a conflict free set is already known in
graph theory with the name of stable set or independent set. It is in the class of
NP-hard problem, for which is very unlikely to find an efficient algorithm. Our
idea is to build an algorithm that works incrementally, so to try to avoid the
complexity of a growing amount of information—and also, because we foresee
a dynamic and distributed scenario where agents share their own arguments at
different times.

To solve the conflict free problem, we adopt a constraint-based approach.
Our algorithm is based over a standard backtracking strategy. The constraint
is the absence of conflicts among arguments (undercut, rebuttal). A solution is
consistent if the set of arguments satisfies the constraints. In order to limit the
degree of backtracking, consistency is checked before each argument is added to
the solution. When the consistency check fails, the algorithm stores partial re-
sults, and starts backtracking. Then, it recursively tries to add all the remaining
arguments.

In order to limit the size of the search space a branching strategy is used in
the phase of set instantiation. The logic program constructs search trees with
decreasing depth for all input elements. So, the algorithm tries to find all pos-
sible solutions around each argument. After such a search process, the selected
argument is removed from the next search space. For example, if we consider a
list of four input arguments [a,b,c,d], the resulting search trees are shown in
figure 1. There, the possible partial solutions are denoted in square brackets.

The algorithm can also be used in a dynamic context with inputs in succession.
To find a new solution, after each update we have to insert new arguments in each
existing conflict free set, and run the algorithm again. The following Prolog code
has been tested in tuProlog 1.3.0 [6] and shows the main predicates implementing
the conflict free set division.

selection(X,[X|Rest],Rest).
selection(X,[Head|List],Rest) :-

selection(X,List,Rest).

turn(ArgumentSet):-
selection(Name,ArgumentSet,RestArgumentSet),
argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),
newconflictfree(RestArgumentSet,[Name],F,C,[Name]).

Co-argumentation Artifact for Agent Societies 39

newconflictfree(Arguments,Result,Facts,Conclusions,ConflictFree):-
selection(Name,Arguments,RestArguments),
argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),
check(Facts,F,Conclusions,C),
append1(Facts,F,NewFacts),
append1(Conclusions,C,NewConclusions),
add2end(Name,ConflictFree,NewConflictFree),
newconflictfree(RestArguments,NewConflictFree,NewFacts,

NewConclusions,NewConflictFree).

check(FL,F,CL,C):-
not(control(FL,C)),
not(control(F,CL)),
not(control(CL,C)).

newconflictfree(_,[],_,_,_):-!,fail.
newconflictfree(_,R,_,_,_):-

mem(P),
notsubsetset(R,P),
retract(mem(P)),
assert(mem([R|P])),!,
mem(P1),
fail.

Admissible Set and Preferred Extension. An admissible set of arguments
is a conflict free set that defeats collectively all its elements, referring back to
definition 6. The notion of ‘collectively defends’ is useful to find a subset of argu-
ment that is more consistent than the conflict free set. The Preferred Extension
is the largest set among the admissible sets.

We have to find a conflict free set where if an argument is attacked then there
exists another argument in the same set that attacks the attacker. This is an
indirect form of defense, which we call collective defense.

Our algorithm to resolve the admissible set problem directly uses the conflict
free set calculated in the previous section. Also, the algorithm looks only for
undercut relations because each argument defends itself from a rebuttal attack
but not from an undercut. In a graph representation, the rebuttal relation is a
bidirectional arc; on the contrary the undercut relation is a one-direction arc.

The algorithm basically works by subtracting from each conflict free set the
arguments attacked but not defended by elements of the same set. The remaining
sets represent the solution called admissible sets. The three basic steps that the
algorithm does for each conflict free set are: (1) to find defeat arguments with
respect to the general set, (2) to find defenders from attackers in the general
set, and (3) to remove defeat arguments without defender. Following, the Prolog
code that calculates the admissible sets, again tested in tuProlog 1.3.0.

admissible(_,[],[]).
admissible(TotalArguments,[ConflictFreeSet|Rest],Solution):-

%to find set of attacker to conflict free

40 E. Oliva, P. McBurney, and A. Omicini

findundercat(TotalArguments,ConflictFreeSet,Attacker,Defeat),
%it find the defend argument that block the attack
findundercat(ConflictFreeSet,Attacker,AttackerFromCF,DefeatOut),
removelist(DefeatOut,Attacker,AttackerNotDefeat),
findundercat(AttackerNotDefeat,Defeat,AF,DF),
removelist(DF,ConflictFreeSet,Sol),
Solution=[Sol|Result],
admissible(TotalArguments,Rest,Result).

findundercat([],_,[],[]):-!.
findundercat([H|T],CF,A,D):-

argument(H,_,beliefs(facts(F),rules(R)),infer(_),conclusion([C])),
contrary(C,P),!,

(argument(Element,_,beliefs(facts([P]),rules(_)),infer(_),conclusion(_))->
(member(Element,CF)->(A=[H|R1],D=[Element|R2]);(A=R1,D=R2));(A=R1,D=R2)),

findundercat(T,CF,R1,R2).

The predicate findundercut(+General,+Reference,-Attackers,-Defeats) is used
to find the undercut relation among two sets: (1) general (the set with all argu-
ments) and (2) reference (a conflict free set).

The next step is to find the preferred extensions. We use the previous results,
and find the preferred extensions by looking for the maximal admissible set, in
accordance with the previous definition 7.

4 Co-argumentation Artifact

The main contribution of the paper is the combination of multi-agent argumen-
tation with the A&A meta-model, exploiting agents and artifacts as the two
fundamental abstractions for MAS. In a MAS, argumentation has a central role
that allows agents to argue, to justify positions, and to try to persuade another
agent to endorse some statement. All these features are quite common in a real-
world society, and enable complex global behaviours. Argumentation can be used
to model the communication among agents in a MAS, in particular to model the
dialog between two entities. A set of six primary dialogue types is identified by
[7], that are: persuasion, inquiry, negotiation, information seeking, deliberation
and eristic. All these dialogues can be captured in a argumentation framework
[8], and they are developed strictly among two entities. In [9] an implementation
of information-seeking dialog based on tuple centre architecture is presented.
However, a definition for a dialogue says that a dialogue is a mutual conversa-
tion between two or more people. In a society there are forms of communication
among multiple entities that enable humans to work together and achieve their
goals. Following that definition, we can naturally extend the dialogue concept
in MAS from two agents to N agents. For instance, the argumentation-based
dialogues listed above could be transformed in social discussions among agents.

In a social context any action and activity are mediated through artifacts, in
accord with Activity Theory (AT) [2]. Mediation is useful to achieve cooperation
between the entities and the coordination of the global system. In particular in

Co-argumentation Artifact for Agent Societies 41

a MAS, mediation among agents has a central role to coordinate activities, to
achieve social goals, and to support interaction. Moreover, in a system there are
social properties that need to be expressed outside agents. Knowledge too, also
according to Distributed Cognition [10], is not bounded inside each individual
agent, but is instead distributed across agents and artifacts in the environment.

An artifact is a computational entity used by agents, possibly featuring useful
properties such as controllability, malleability, linkability, and situation [11]. The
artifact abstraction is introduced in the A&A meta-model for MAS, where agents
and artifacts are two basic building block to design the system, more generally to
engineering software systems: (1) agents represent task-oriented or goal-oriented
components that act pro-actively according to their task or goal; (2) artifacts
represent resources or tools that are used by agents during their activities.

In this work, we define a Co-Argumentation Artifact (CAA) as an artifact
specialized in managing arguments and providing coordination services for ar-
gumentation process in a MAS. The CAA is a mediator of agent interaction
and supports a simplified implementation of multi-agent argumentation system.
It provides functionality that permits agents to exploit social commitment, en-
abling them to share, store and exchange arguments.

A simple example of social use of CAA is to fix social acceptance of the argu-
ments: the goal is to determine whether an argument is acceptable with respect
to the global knowledge of the community. The CAA applies an argumentation
semantics over the shared arguments, which provides for the acceptance criteria.
Another interesting example is the use of CAA as a commitment store during the
dialog process. Tracing the commitments is fundamental for the next step of the
discussion. Also, from the arguments stored during the dialog process the CAA
could deduce or induce new knowledge. The introduction of the CAA model
provides new support to design communications that involve more entities in a
social context.

A similar type of artifact is the co-ordination artifact [1], specialised to provide
a coordination service in MAS [12]. A typical use of a co-ordination artifact is
enabling the exchange of information among agents in an open and dynamic
environment—like a mailbox or a blackboard. Another interesting example is the
use of the co-ordination artifact for knowledge mediation where the information
can be manipulated by the artifact by either aggregation or induction process.

In this work, we developed a hybrid distributed system combining the argu-
mentation component with a multi-agent co-ordination artifact, which is what we
call CAA. Our current implementation of the CAA follows a preferred semantic,
providing service to calculate preferred extensions and admissible sets.

The technological support to build co-ordination artifacts is provided here by
TuCSoN, a coordination infrastructure for MAS introduced in [13]. TuCSoN pro-
vides programmable tuple spaces called tuple centres where agents write, read and
consume logic tuples via simple communication operations (out, rd, in, inp, rdp).
Tuple centres can play the role of agent coordinators, where coordination rules are
expressed in terms of tuples. In particular, coordination in TuCSoN is expressed
through the ReSpecT specification language [14]: there, coordination laws are

42 E. Oliva, P. McBurney, and A. Omicini

encapsulated in the coordination media, with obvious benefits for the engineering
of open and dynamic system like MAS. As a coordination artifact, a tuple centre is
also a container of knowledge declaratively represented through logic tuples, and
is equipped with Turing-equivalent computational power through the ReSpecT
specification language. There, MAS coordination is obtained by governing the ex-
change of logic tuples through the tuple centres by properly programming their
reactive behaviour.

So, in order to realize a CAA, an obvious choice is to exploit a TuCSoN logic
tuple centre as a co-ordination artifact. In fact, on the one hand a typical argu-
mentation process is composed of two parts: (1) knowledge representation; and
(2) computation over the set of arguments. On the other hand, the tuple centre
architecture is also composed of two parts: an ordinary tuple space where the in-
formation are stored in form of tuples, and a behaviour specification that defines
the computation over the tuple set. Thus, a TuCSoN tuple centre could support
the argumentation process by representing knowledge declaratively in terms of
logic-tuple arguments, and by specifying the computation over argument set in
term of ReSpecT specification tuples. So, our first experimental implementation
of a CAA is built as a TuCSoN tuple centre programmed with an argumenta-
tion component algorithm (Section 3), and with arguments represented by logic
tuples (Section 2). Agents use the CAA and whenever a new argument is added
to the tuple centre as a logic tuple the CAA reacts and re-calculates the conflict
free sets, the admissible sets, and the preferred extensions, representing them
too in terms of logic tuples in the tuple centre.

4.1 Example: Argument Acceptance

We present an application of CAA in a multi-agent context where agents have to
decide whether their arguments are socially acceptable. We use the argumenta-
tion system presented in Section 2 with preferred semantics, and either credulous
or sceptical acceptance. An argument is considered as accepted in the credulous
definition if it is contained at least in one preferred extension, and in the sceptical
definition if it is contained in every preferred extension. In [15] an algorithm is
presented that resolves the credulous and the sceptical decision problems based
on an argumentation game formalised with a dialog between two entities. The
algorithm could be applied either inside each agent simulating a dialog game, or
between two agents. In order to extend the solution to N agents, we propose to
use the A&A meta-model by adopting the CAA abstraction.

We foresee a scenario where a group of agents argue about what to do on Sat-
urday night. For instance, the agents are conditioned from the past history of the
place where to go, or the possible company. Each agent has its arguments about
whether to go or not to go to, say, the El Farol Bar. In order to make a personal
evaluation the agents may have some benefit from social information that could
retrieve by asking other agents. Besides, when the agents share their arguments,
a form of social knowledge is implicitly generated, which provides agents with a
social point of view over the Saturday night problem. Also, sharing knowledge and
arguments gives the group more chances to take congruent decisions.

Co-argumentation Artifact for Agent Societies 43

More generally, social contexts typically introduce the need to represent and
store social knowledge. Since shared, social knowledge belongs in principle to
every agent, so to no agent in particular, it should be stored and maintained
outside agents: in short, this is what makes it useful to introduce in this scenario
the notion of artifact, as an abstraction that agents can use to share, compare
and store information.

Here, we consider agents with different knowledge bases composed only of
arguments, and an empty CAA only containing the algorithms proposed in the
argumentation component. The arguments acceptance is driven generally by a
system process divides in three sequential steps. Firstly, the agents share own
arguments writing the arguments in the CAA. Secondly, the CAA reacts and
calculates the conflict free and preferred extension over the shared arguments.
Thirdly and finally, the agents evaluate credulous or sceptical acceptability based
on common sets calculated in the CAA. Then, each agent can consult the CAA
to undestand the “social acceptability” of its own arguments, but also the other
agent’s arguments, and possibly deliberate its course of actions based on a shared
view of arguments. Also, the CAA keeps track of the overall argumentation
process, and could be exploited by an external observe to understand the social
behaviour of agents sharing arguments and behaving accordingly.

In particular, in our example the CAA is implemented as a TuCSoN tuple cen-
tre called saturdayNight, which processes and combines knowledge expressed
by arguments from various agents. In Table 1 the arguments possessed and
shared by the three agents are shown. Some arguments are in favor to go out
if the conclusion is play(1), or vice versa is play(-1). The support of con-
clusions should contain the motivation to do the choice, for instance: a favorite
kind of music music(rock), a previous nice night result(1) or a good company
willgo(susan). Different sets of arguments represent different opinions and mo-
tivations that bring an agent to make a decision. The sharing of the arguments
enables the composition and completion of the information.

The sets calculated in CAA are expressed with the tuples conflictfreeset,
admissibleset and preferredset and calculated using the algorithm explained
in section 3. An external observer can look inside the CAA through the Inspector
utility provide by TuCSoN, and consult the argument sets. In the following we
show the sets computed after the last argument insertion. The sets contains the
argument names.

conflicfreeset([[argB,argC,argD,musicB,companyB,dayA,dayB,typemusic],
[argB,argC,argD,musicB,companyB,day,dayA,typemusic],
[argB,argC,argD,music,companyB,dayA,dayB],
[argB,argC,argD,music,companyB,day,dayA],
[argA,companyA,day,typemusic],
[argA,music,musicA,companyA,day]])

admissibleset([[argB,argC,argD,companyB,dayA,typemusic],
[argB,argC,argD,companyB,day,dayA,typemusic],
[argB,argC,argD,music,companyB,dayA],
[argB,argC,argD,music,companyB,day,dayA],

44 E. Oliva, P. McBurney, and A. Omicini

Table 1. Arguments by Agent1, Agent2, and Agent3

Agent1
argument(argB,1,beliefs(facts([result(-1)])),infer(t),conclusion([play(-1)])).

argument(argC,1,beliefs(facts([result(1)])),infer(t),conclusion([play(-1)])).

argument(day,1,beliefs(facts([today(sunday)])),infer(t),conclusion([today(sunday)])).

argument(musicB,1,beliefs(facts([non(music(rock))])),infer(t),conclusion([play(-1)])).

argument(dayB,1,beliefs(facts([non(today(sunday))])),infer(t),conclusion([play(-1)])).

. . .

Agent2
argument(music,1,beliefs(facts([music(rock)])),infer(t),conclusion([music(rock)])).

argument(argD,1,beliefs(facts([result(-1)])),infer(t),conclusion([play(-1)])).

argument(companyA,2,beliefs(facts([willgo(susan)])),infer(t),conclusion([play(1)])).

argument(companyB,2,beliefs(facts([non(willgo(susan))])),infer(t),conclusion([play(-1)])).

argument(musicA,1,beliefs(facts([music(rock)])),infer(t),conclusion([play(1)])).

. . .

Agent3
argument(argA,1,beliefs(facts([result(1)])),infer(t),conclusion([play(1)])).

argument(typemusic,1,beliefs(facts([imtired(yes)])),infer(t),conclusion([non(music(rock))])).

argument(dayA,1,beliefs(facts([today(sunday)])),infer(t),conclusion([play(-1)])).

argument(company,1,beliefs(facts([willgo(susan)])),infer(t),conclusion([willgo(susan)])).

. . .

[argA,companyA,day,typemusic],
[argA,music,companyA,day]])

preferredset([[argA,music,companyA,day],
[argA,companyA,day,typemusic],
[argB,argC,argD,music,companyB,day,dayA],
[argB,argC,argD,companyB,day,dayA,typemusic]])

One should observe that the global preferred sets are different from the ones that
each agent could calculate based on its own arguments only. Agents could then
read the preferredset tuple, and verify in which set its own arguments occur.
For instance, agent1 may want to consider the social acceptability of argument
musicB that in its own knowledge is accepted, because the argument belong to
its own preferred set ([argB,argC,day,musicB]). Vice versa, when considering
the common preferred extension, the argument is no longer (socially) acceptable
because it does not belong to a common set. These sets are calculated from more
information than it is available to each individual agent, and in some context
they could be considered as more reliable. In any case, agents can autonomously
decide what to do with such information—either to use or to ignore it.

In general, the use of a component external to agents to support argumen-
tation within a social agent-based context, like the CAA, easily provides MAS
designers with a tool for encapsulating and consistently handling the evolution
of social knowledge, and provides agents with an instrument to enhance their
ability to deal with their own partial and incomplete knowledge.

Co-argumentation Artifact for Agent Societies 45

Acknowledgments. The authors are grateful for financial assistance received
from the EC’s Information Society Technologies programme, through the Argu-
mentation Service Platform with Integrated Components (ASPIC) Project (IST-
FP6-002307); and from the Italian PRIN 2006 through the Project Extensible
Object Systems DUE: Dynamic and Unpredictable Environments (EOS DUE).
We are also grateful for assistance received from Trevor Bench-Capon, and com-
ments received from the anonymous reviewers and participants at the ArgMAS
2007 Workshop. Some of this work was undertaken while the first author was
visiting the Department of Computer Science at the University of Liverpool,
UK, and we are grateful to the Department for the support provided.

References

1. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), 19–23 July, 2004,
vol. 1, pp. 286–293. ACM, New York (2004)

2. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press, Cambridge (1996)

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

4. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gab-
bay, D.M., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4,
pp. 219–318. Kluwer Academic, Dordrecht (2002)

5. Sterling, L., Shapiro, E.: The art of Prolog: Advanced programming techniques.
MIT Press, Cambridge (1994)

6. aliCE Research Group: Tuprolog home page. http://tuprolog.alice.unibo.it/
7. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of In-

terpersonal Reasoning. SUNY Press (1996)
8. Parsons, S., McBurney, P.: Argumentation-based communication between agents.

In: Huget, M.-P. (ed.) Communication in Multiagent Systems. LNCS (LNAI),
vol. 2650, pp. 164–178. Springer, Heidelberg (2003)

9. Doutre, S., McBurney, P., Wooldridge, M.: Law-governed Linda as a semantics for
agent dialogue protocols. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh,
M.P., Wooldridge, M. (eds.) 4rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2005), 25–29 July, 2005. pp. 1257–1258.
ACM Press, New York

10. Kirsh, D.: Distributed cognition, coordination and environment design. In: Euro-
pean Conference on Cognitive Science, pp. 1–11 (1999)

11. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Sciences 150(3), 21–36 (May 29,
2006); In: Proceedings of 1st International Workshop “Coordination and Organi-
zation” (CoOrg 2005), COORDINATION 2005, Namur, Belgium (April 22, 2005)

12. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4),
507–534 (2006) (Special Issue: Best papers of FOCLASA 2002)

http://tuprolog.alice.unibo.it/

46 E. Oliva, P. McBurney, and A. Omicini

13. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

14. Omicini, A., Denti, E.: Formal ReSpecT. Electronic Notes in Theoretical Computer
Science 48, 179–196 (2001)

15. Cayrol, C., Doutre, S., Mengin, J.: On decision problems related to the preferred
semantics for argumentation frameworks. Journal of Logic and Computation 13(3),
377–403 (2003)

On the Relevance of Utterances in Formal Inter-agent
Dialogues�

Simon Parsons1, Peter McBurney2, Elizabeth Sklar1, and Michael Wooldridge2

1 Department of Computer and Information Science, Brooklyn College,
City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA

{parsons,sklar}@sci.brooklyn.cuny.edu
2 Department of Computer Science, University of Liverpool,

Ashton Building, Ashton Street, Liverpool L69, 3BX
{mcburney,mjw}@liverpool.ac.uk

Abstract. Work on argumentation-based dialogue has defined frameworks
within which dialogues can be carried out, established protocols that govern di-
alogues, and studied different properties of dialogues. This work has established
the space in which agents are permitted to interact through dialogues. Recently,
there has been increasing interest in the mechanisms agents might use to choose
how to act — the rhetorical maneuvering that they use to navigate through the
space defined by the rules of the dialogue. Key in such considerations is the idea
of relevance, since a usual requirement is that agents stay focussed on the subject
of the dialogue and only make relevant remarks. Here we study several notions
of relevance, showing how they can be related to both the rules for carrying out
dialogues and to rhetorical maneuvering.

1 Introduction

Finding ways for agents to reach agreements in multiagent systems is an area of active
research. One mechanism for achieving agreement is through the use of argumentation
— where one agent tries to convince another agent of something during the course
of some dialogue. Early examples of argumentation-based approaches to multiagent
agreement include the work of Dignum et al. [8], Kraus [15], Parsons and Jennings
[17], Reed [26], Schroeder et al. [28] and Sycara [29].

The work of Walton and Krabbe [30], popularized in the multiagent systems commu-
nity by Reed [26], has been particularly influential in the field of argumentation-based
dialogue. This work influenced the field in a number of ways, perhaps most deeply in
framing multi-agent interactions as dialogue games in the tradition of Hamblin [14].
Viewing dialogues in this way, as in [2,24], provides a powerful framework for ana-
lyzing the formal properties of dialogues, and for identifying suitable protocols under
which dialogues can be conducted [20,22]. The dialogue game view overlaps with work
on conversation policies (see, for example, [7,11]), but differs in considering the entire
dialogue rather than dialogue segments.

In this paper, we extend the work of [20] by considering the role of relevance — the
relationship between utterances in a dialogue. Relevance is a topic of increasing interest

� This paper is a minor reworking of [18].

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 47–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{parsons,sklar}@sci.brooklyn.cuny.edu
{mcburney,mjw}@liverpool.ac.uk

48 S. Parsons et al.

in argumentation-based dialogue because it relates to the scope that an agent has for
applying strategic maneuvering to obtain the outcomes that it requires [21,25,27]. Our
work identifies the limits on such rhetorical maneuvering, showing when it can and
cannot have an effect.

The rest of the paper is structured as follows. Section 2 provides the technical back-
ground, Section 3 develops a general model of dialogue, Section 4 introduces and
compares notions of relevance, and Section 5 shows how relevance impacts dialogues.
Finally, Section 6 summarizes and identifies future work.

2 Background

We begin by introducing the formal system of argumentation that underpins our ap-
proach, as well as the corresponding terminology and notation, all taken from [2,9,19].
A more complete description may be found in those papers.

A dialogue is a sequence of messages passed between two or more members of a
set of agents A. An agent α maintains a knowledge base, Σα, containing formulas of
a propositional language L and having no deductive closure. Agent α also maintains
the set of its past utterances, called the “commitment store”, CSα. We refer to this as
an agent’s “public knowledge”, since it contains information that is shared with other
agents. In contrast, the contents of Σα are “private” to α.

Note that in the description that follows, we assume that � is the classical infer-
ence relation, that ≡ stands for logical equivalence, and we use Δ to denote all the
information available to an agent. Thus in a dialogue between two agents α and β,
Δα = Σα ∪ CSα ∪ CSβ , so the commitment store CSα can be loosely thought of as a
subset of Δα consisting of the assertions that have been made public. In some dialogue
games, such as those in [20] anything in CSα is either in Σα or can be derived from it.
In other dialogue games, such as those in [2], CSα may contain things that cannot be
derived from Σα.

Definition 1. An argument A is a pair (S, p) where p is a formula of L and S a subset
of Δ such that:

1. S is consistent;
2. S � p; and
3. S is minimal, so no proper subset of S satisfying both 1. and 2. exists.

S is called the support of A, written S = Support(A) and p is the conclusion of A,
written p = Conclusion(A). Thus we talk of p being supported by the argument (S, p).

In general, since Δ may be inconsistent, arguments in A(Δ), the set of all arguments
which can be made from Δ, may conflict, and we make this idea precise with the notion
of undercutting:

Definition 2. Let A1 and A2 be arguments in A(Δ). A1 undercuts A2 iff ∃¬p ∈
Support(A2) such that p ≡ Conclusion(A1).

In other words, an argument is undercut if and only if there is another argument which
has as its conclusion the negation of an element of the support for the first argument.

On the Relevance of Utterances in Formal Inter-agent Dialogues 49

To capture the fact that some beliefs are more strongly held than others, we assume
that any set of beliefs has a preference order over it. We consider all information avail-
able to an agent, Δ, to be stratified into non-overlapping subsets Δ1, . . . , Δn such that
beliefs in Δi are all equally preferred and are preferred over elements in Δj where
i > j. The preference level of a nonempty subset S ⊂ Δ, where different elements
s ∈ S may belong to different layers Δi, is valued at the lowest numbered layer which
has a member in S and is referred to as level(S). In other words, S is only as strong
as its weakest member. Note that the strength of a belief as used in this context is a
separate concept from the notion of support discussed earlier.

Definition 3. Let A1 and A2 be arguments in A(Δ). A1 is preferred to A2 accord-
ing to Pref , A1 �Pref A2, iff level(Support(A1)) > level(Support(A2)). If A1 is
preferred to A2, we say that A1 is stronger than A2.

We can now define the argumentation system we will use:

Definition 4. An argumentation system is a triple:

〈A(Δ),Undercut ,Pref 〉

such that:

– A(Δ) is a set of the arguments built from Δ,
– Undercut is a binary relation representing the defeat relationship between argu-

ments, Undercut ⊆ A(Δ) × A(Δ), and
– Pref is a pre-ordering on A(Δ) × A(Δ).

The preference order makes it possible to distinguish different types of relations be-
tween arguments:

Definition 5. Let A1, A2 be two arguments of A(Δ).

– If A2 undercuts A1 then A1 defends itself against A2 iff A1 �Pref A2. Otherwise,
A1 does not defend itself.

– A set of arguments A defends A1 iff for every A2 that undercuts A1, where A1 does
not defend itself against A2, then there is some A3 ∈ A such that A3 undercuts A2
and A2 does not defend itself against A3.

We write AUndercut,Pref to denote the set of all non-undercut arguments and arguments
defending themselves against all their undercutting arguments. The set A(Δ) of accept-
able arguments of the argumentation system

〈A(Δ),Undercut ,Pref 〉

is [1] the least fixpoint of a function F :

A ⊆ A(Δ)
F(A) = {(S, p) ∈ A(Δ) | (S, p) is defended by A}

50 S. Parsons et al.

Definition 6. The set of acceptable arguments for an argumentation system 〈A(Δ),
Undercut ,Pref 〉 is recursively defined as:

A(Δ) =
⋃

Fi≥0(∅)

= AUndercut,Pref ∪
[⋃

Fi≥1(AUndercut,Pref)
]

An argument is acceptable if it is a member of the acceptable set, and a proposition is
acceptable if it is the conclusion of an acceptable argument.

An acceptable argument is one which is, in some sense, proven since all the arguments
that might undermine it are themselves undermined.

Definition 7. If there is an acceptable argument for a proposition p, then the status of
p is accepted, while if there is not an acceptable argument for p, the status of p is not
accepted.

Argument A is said to affect the status of another argument A′ if changing the status of
A will change the status of A′.

3 Dialogues

Systems like those described in [2,20], lay down sets of locutions that agents can make
to put forward propositions and the arguments that support them, and protocols that
define precisely which locutions can be made at which points in the dialogue. We are
not concerned with such a level of detail here. Instead we are interested in the interplay
between arguments that agents put forth. As a result, we will consider only that agents
are allowed to put forward arguments. We do not discuss the detail of the mechanism
that is used to put these arguments forward — we just assume that arguments of the
form (S, p) are inserted into an agent’s commitment store where they are then visible
to other agents.

We then have a typical definition of a dialogue:

Definition 8. A dialogue D is a sequence of moves:

m1, m2, . . . , mn.

A given move mi is a pair 〈α, Ai〉 where Ai is an argument that α places into its
commitment store CSα.

Moves in an argumentation-based dialogue typically attack moves that have been made
previously. While, in general, a dialogue can include moves that undercut several ar-
guments, in the remainder of this paper, we will only consider dialogues that put for-
ward moves which undercut at most one argument. For now, we place no additional
constraints on the moves that make up a dialogue. Later we will see how different re-
strictions on moves lead to different kinds of dialogue.

The sequence of arguments put forward in the dialogue is determined by the agents
that are taking part in the dialogue, but they are usually not completely free to choose
what arguments they make. As indicated earlier, their choice is typically limited by a
protocol. If we write the sequence of n moves m1, m2, . . . , mn as m̃n, and denote the
empty sequence as m̃0, then we can define a protocol in the following way:

On the Relevance of Utterances in Formal Inter-agent Dialogues 51

Definition 9. A protocol P is a function on a sequence of moves m̃i in a dialogue D
that, for all i ≥ 0, identifies a set of possible moves Mi+1 from which the mi+1th move
may be drawn:

P : m̃i �→ Mi+1

In other words, for our purposes here, at every point in a dialogue, a protocol determines
a set of possible moves that agents may make as part of the dialogue. If a dialogue D
always picks its move mi+1 from the set Mi+1 identified by protocol P given the set
of moves m̃i, then D is said to conform to P .

Even if a dialogue conforms to a protocol, it is typically the case that the agent
engaging in the dialogue has to make a choice of move — it has to choose which of
the moves in M to make. This exercise of choice is what we refer to as an agent’s
use of rhetoric (in its oratorical sense of “influencing the thought and conduct of an
audience”). Some of our results will give a sense of how much scope an agent has to
exercise rhetoric under different protocols.

As arguments are placed into commitment stores, and hence become public, agents
can determine the relationships between them. In general, after several moves in a
dialogue, some arguments will undercut others. We will denote the set of arguments
{A1, A2, . . . , Aj} asserted after moves m1, m2, . . . , mj of a dialogue to be Aj — the
relationship of the arguments in Aj can be described as an argumentation graph, similar
to those described in, for example, [3,4,10]:

Definition 10. An argumentation graph AG over a set of arguments A is a directed
graph (V, E) such that every vertex v ∈ V denotes one argument A ∈ A, every argu-
ment A is denoted by one vertex v, and every directed edge e ∈ E from v to v′ ∈ V
denotes that v undercuts v′.

We will use the term argument graph as a synonym for “argumentation graph”.
Note that we do not require that the argumentation graph is connected. In other words

the notion of an argumentation graph allows for the representation of arguments that do
not relate, by undercutting or being undercut, to any other arguments (we will come
back to this point very shortly).

We adapt some standard graph theoretic notions in order to describe various aspects
of the argumentation graph. If there is an edge e from vertex v to vertex v′, then v is
said to be the parent of v′ and v′ is said to be the child of v. In a reversal of the usual
notion, we define a root of an argumentation graph1 as follows:

Definition 11. A root of an argumentation graph AG = (V, E) is a node v ∈ V that
has no children.

Thus a root of a graph is a node to which directed edges may be connected, but from
which no directed edges connect to other nodes. Thus a root is a node representing an
argument that is undercut, but which itself does no undercutting. Similarly:

Definition 12. A leaf of an argumentation graph AG = (V, E) is a node v ∈ V that
has no parents.

1 Note that we talk of “a root” rather than “the root” — as defined, an argumentation graph need
not be a tree.

52 S. Parsons et al.

v v’

Fig. 1. An example argument graph

Thus a leaf in an argumentation graph represents an argument that undercuts another
argument, but is itself not undercut. Thus in Figure 1, v is a root, and v′ is a leaf. The
reason for the reversal of the usual notions of root and leaf is that, as we shall see, we
will consider dialogues to construct argumentation graphs from the roots (in our sense)
to the leaves. The reversal of the terminology means that it matches the natural process
of tree construction.

Since, as described above, argumentation graphs are allowed to not be connected (in
the usual graph theory sense), it is helpful to distinguish nodes that are connected to
other nodes, in particular to the root of the tree. We say that node v is connected to node
v′ if and only if there is a path from v to v′. Since edges represent undercut relations,
the notion of connectedness between nodes captures the influence that one argument
may have on another:

Proposition 1. Given an argumentation graph AG = (V, E), if there is any argument
A, denoted by node v ∈ V that affects the status of another argument A′, denoted by
v′ ∈ V , then v is connected to v′. The converse does not hold.

Proof. Given Definitions 5 and 6, the only ways in which A can affect the status of A′

is if A either undercuts A′, or if A undercuts some argument A′′ that undercuts A′, or
if A undercuts some A′′′ that undercuts some A′′ that undercuts A′, and so on. In all
such cases, a sequence of undercut relations relates the two arguments, and if they are
both in an argumentation graph, this means that they are connected. This proves the
first part of the result.

Since the notion of path ignores the direction of the directed arcs, nodes v and v′ are
connected whether the edge between them runs from v to v′ or vice versa. Since A only
undercuts A′ if the edge runs from v to v′, we cannot infer that A will affect the status
of A′ from information about whether or not they are connected. This proves the second
part of the result.

The reason that we need the concept of the argumentation graph is that the properties
of the argumentation graph tell us something about the set of arguments A the graph
represents. When that set of arguments is constructed through a dialogue, there is a
relationship between the structure of the argumentation graph and the protocol that
governs the dialogue. It is the extent of the relationship between structure and protocol
that is the main subject of this paper. To study this relationship, we need to establish a
correspondence between a dialogue and an argumentation graph. Given the definitions
we have so far, this is simple:

Definition 13. A dialogue D, consisting of a sequence of moves m̃n, and an argument
graph AG = (V, E) correspond to one another iff ∀m ∈ m̃n, the argument Ai that
is advanced at move mi is represented by exactly one node v ∈ V , and ∀v ∈ V , v
represents exactly one argument Ai that has been advanced by a move m ∈ m̃n.

On the Relevance of Utterances in Formal Inter-agent Dialogues 53

Thus a dialogue corresponds to an argumentation graph if and only if every argument
made in the dialogue corresponds to a node in the graph, and every node in the graph
corresponds to an argument made in the dialogue. This one-to-one correspondence al-
lows us to consider each node v in the graph to have an index i which is the index of the
move in the dialogue that put forward the argument which that node represents. Thus
we can, for example, refer to the “third node” in the argumentation graph, meaning the
node that represents the argument put forward in the third move of the dialogue.

4 Relevance

Most work on dialogues is concerned with what we might call coherent dialogues, that
is dialogues in which the participants are, as in the work of Walton and Krabbe [30],
focused on resolving some question through the dialogue2. To capture this coherence, it
seems we need a notion of relevance to constrain the statements made by agents. Here
we study three notions of relevance:

Definition 14. Consider a dialogue D, consisting of a sequence of moves m̃i, with a
corresponding argument graph AG. The move mi+1, i > 1, is said to be relevant if one
or more of the following hold:

R1 Making mi+1 will change the status of the argument denoted by the first node of
AG.

R2 Making mi+1 will add a node vi+1 that is connected to the first node of AG.
R3 Making mi+1 will add a node vi+1 that is connected to the last node to be added

to AG.

R2-relevance is the form of relevance defined by Bentahar et al. [3] in their study of
strategic and tactical reasoning3, and by Black in her analysis of inquiry dialogues [5].
R1-relevance was suggested by the notion used by Oren et al. [16] — though the two
notions differ somewhat — and is close to that used by Prakken [21,22,23].

Note that we only define relevance for the second move of the dialogue onwards
because the first move is taken to identify the subject of the dialogue, that is, the central
question that the dialogue is intended to answer, and hence it must be relevant to the
dialogue, no matter what it is. In assuming this, we focus our attention on the same kind
of dialogues as [20].

We can think of relevance as enforcing a form of parsimony on a dialogue — it
prevents agents from making statements that do not bear on the current state of the
dialogue. This promotes efficiency, in the sense of limiting the number of moves in the
dialogue, and, as in [16], prevents agents revealing information that they might better
keep hidden. Another form of parsimony is to insist that agents are not allowed to put
forward arguments that will be undercut by arguments that have already been made
during the dialogue. We therefore distinguish such arguments.

2 See [12,13] for examples of dialogues where this is not the case.
3 We consider such reasoning sub-types of rhetoric.

54 S. Parsons et al.

Definition 15. Consider a dialogue D, consisting of a sequence of moves m̃i, with a
corresponding argument graph AG. The move mi+1 and the argument it puts forward,
Ai+1, are both said to be pre-empted, if Ai+1 is undercut by some A ∈ Ai.

We use the term “pre-empted” because if such an argument is put forward, it can seem
as though another agent anticipated the argument being made, and already made an
argument that would render it useless. In the rest of this paper, we will only deal with
protocols that permit moves that are relevant, in any of the senses introduced above, and
are not allowed to be pre-empted. We call such protocols basic protocols, and we call
dialogues carried out under such protocols basic dialogues.

The argument graph of a basic dialogue is somewhat restricted.

Proposition 2. Consider a basic dialogue D. The argumentation graph AG that cor-
responds to D is a tree with a single root.

Proof. Recall that Definition 10 requires only that AG be a directed graph. To show
that it is a tree, we have to show that it is acyclic and connected.

That the graph is connected follows from the construction of the graph under a pro-
tocol that enforces relevance. If the notion of relevance is R3, each move adds a node
that is connected to the previous node. If the notion of relevance is R2, then every move
adds a node that is connected to the root, and thus is connected to some node in the
graph. If the notion of relevance is R1, then every move has to change the status of the
argument denoted by the root. Proposition 1 tells us that to affect the status of an argu-
ment A′, the node v representing the argument A that is effecting the change has to be
connected to v′, the node representing A′, and so it follows that every new node added
as a result of an R1-relevant move will be connected to the argumentation graph. Thus
AG is connected.

Since a basic dialogue does not allow moves that are pre-empted, every edge that
is added during construction is directed from the node that is added to one already in
the graph (thus denoting that the argument A denoted by the added node, v, undercuts
the argument A′ denoted by the node to which the connection is made, v′, rather than
the other way around). Since every edge that is added is directed from the new node to
the rest of the graph, there can be no cycles. Thus AG is a tree.

To show that AG has a single root, consider its construction from the initial node.
After m1 the graph has one node, v1 that is both a root and a leaf. After m2, the graph
is two nodes connected by an edge, and v1 is now a root and not a leaf. v2 is a leaf
and not a root. However the third node is added, the argument earlier in this proof
demonstrates that there will be a directed edge from it to some other node, making it a
leaf. Thus v1 will always be the only root. The ruling out of pre-empted moves means
that v1 will never cease to be a root, and so the argumentation graph will always have
one root.

Since every argumentation graph constructed by a basic dialogue is a tree with a single
root, this means that the first node of every argumentation graph is the root.

Although these results are straightforward to obtain, they allow us to show how the
notions of relevance are related.

Proposition 3. Consider a basic dialogue D, consisting of a sequence of moves m̃i,
with a corresponding argument graph AG.

On the Relevance of Utterances in Formal Inter-agent Dialogues 55

1. Every move mi+1 that is R1-relevant is R2-relevant. The converse does not hold.
2. Every move mi+1 that is R3-relevant is R2-relevant. The converse does not hold.
3. Not every move mi+1 that is R1-relevant is R3-relevant, and not every move mi+1

that is R3-relevant is R1-relevant

Proof. For 1, consider how move mi+1 can satisfy R1. Proposition 1 tells us that if
Ai+1 can change the status of the argument denoted by the root v1 (which, as observed
above, is the first node) of AG, then vi+1 must be connected to the root. This is precisely
what is required to satisfy R2, and the relationship is proved to hold.

To see that the converse does not hold, we have to consider what it takes to change
the status of r (since Proposition 1 tells us that connectedness is not enough to ensure
a change of status — if it did, R1 and R2 relevance would coincide). For mi+1 to
change the status of the root, it will have to (1) make the argument A represented by r
either unacceptable, if it were acceptable before the move, or (2) acceptable if it were
unacceptable before the move. Given the definition of acceptability, it can achieve (1)
either by directly undercutting the argument represented by r, in which case vi+1 will
be directly connected to r by some edge, or by undercutting some argument A′ that is
part of the set of non-undercut arguments defending A. In the latter case, vi+1 will be
directly connected to the node representing A′ and by Proposition 2 to r. To achieve (2),
vi+1 will have to undercut an argument A′′ that is either currently undercutting A, or
is undercutting an argument that would otherwise defend A. Now, further consider that
mi+1 puts forward an argument Ai+1 that undercuts the argument denoted by some
node v′, but this latter argument defends itself against Ai+1. In such a case, the set of
acceptable arguments will not change, and so the status of Ar will not change. Thus a
move that is R2-relevant need not be R1-relevant.

For 2, consider that mi+1 can satisfy R3 simply by adding a node that is connected
to vi, the last node to be added to AG. By Proposition 2, it is connected to r and so is
R2-relevant.

To see that the converse does not hold, consider that an R2-relevant move can con-
nect to any node in AG.

The first part of 3 follows by a similar argument to that we just used — an R1-
relevant move does not have to connect to vi, just to some v that is part of the graph —
and the second part follows since a move that is R3-relevant may introduce an argument
Ai+1 that undercuts the argument Ai put forward by the previous move (and so vi+1 is
connected to vi), but finds that Ai defends itself against Ai+1, preventing a change of
status at the root.

What is most interesting is not so much the results but why they hold, since this reveals
some aspects of the interplay between relevance and the structure of argument graphs.
For example, to restate a case from the proof of Proposition 3, a move that is R3-
relevant by definition has to add a node to the argument graph that is connected to the
last node that was added. Since a move that is R2-relevant can add a node that connects
anywhere on an argument graph, any move that is R3-relevant will be R2-relevant, but
the converse does not hold.

It turns out that we can exploit the interplay between structure and relevance that
Propositions 2 and 3 have started to illuminate to establish relationships between the

56 S. Parsons et al.

protocols that govern dialogues and the argument graphs constructed during such di-
alogues. To do this we need to define protocols in such a way that they refer to the
structure of the graph. We have:

Definition 16. A protocol is single-path if all dialogues that conform to it construct
argument graphs that have only one branch.

This gives us the following correspondance:

Proposition 4. A basic protocol P is single-path if, for all i, the set of permitted moves
Mi at move i are all R3-relevant. The converse does not hold.

Proof. R3-relevance requires that every node added to the argument graph be con-
nected to the previous node. Starting from the first node this recursively constructs a
tree with just one branch, and the relationship holds. The converse does not hold be-
cause even if one or more moves in the protocol are R1- or R2-relevant, it may be the
case that, because of an agent’s rhetorical choice or because of its knowledge, every
argument that is chosen to be put forward will undercut the previous argument and so
the argument graph is a one-branch tree.

Looking for more complex kinds of protocol that construct more complex kinds of
argument graph, it is an obvious move to turn to:

Definition 17. A basic protocol is multi-path if all dialogues that conform to it can
construct argument graphs that are trees.

But, on reflection, since any graph with only one branch is also a tree:

Proposition 5. Any single-path protocol is a multi-path protocol.

and, furthermore:

Proposition 6. Any basic protocol P is a multi-path protocol.

Proof. Immediate from Proposition 2.

So the notion of a multi-path protocol does not have much traction. As a result we
distinguish multi-path protocols that permit dialogues that can construct trees that have
more than one branch as bushy protocols. We then have:

Proposition 7. A basic protocol P is bushy if, for some i, the set of permitted moves
Mi at move i are all R1- or R2-relevant.

Proof. From Proposition 4 we know that if all moves are R3-relevant then we’ll get a
tree with one branch, and from Proposition 2 we know that all basic protocols will build
an argument graph that is a tree, so providing we exclude R3-relevant moves, we will
get protocols that can build multi-branch trees.

Of course, since, by Proposition 3, any move that is R3-relevant is R2-relevant and can
quite possibly be R1-relevant (all that Proposition 3 tells us is that there is no guarantee
that it will be), all that Proposition 7 tells us is that dialogues that conform to bushy
protocols may have more than one branch. All we can do is to identify a bound on the
number of branches:

On the Relevance of Utterances in Formal Inter-agent Dialogues 57

Proposition 8. Consider a basic dialogue D that includes m moves that are not R3-
relevant, and has a corresponding argumentation graph AG. The number of branches
in AG is less than or equal to m + 1.

Proof. Since it must connect a node to the last node added to AG, an R3-relevant move
can only extend an existing branch. Since they do not have the same restriction, R1
and R2-relevant moves may create a new branch by connecting to a node that is not
the last node added. Every such move could create a new branch, and if they do, we
will have m branches. If there were R3-relevant moves before any of these new-branch-
creating moves, then these m branches are in addition to the initial branch created by
the R3-relevant moves, and we have a maximum of m + 1 possible branches.

We distinguish bushy protocols from multi-path protocols, and hence R1- and R2-
relevance from R3-relevance, because of the kinds of dialogue that R3-relevance en-
forces. In a dialogue in which all moves must be R3-relevant, the argumentation graph
has a single branch — the dialogue consists of a sequence of arguments each of which
undercuts the previous one and the last move to be made is the one that settles the dia-
logue. This, as we will see next, means that such a dialogue only allows a subset of all
the moves that would otherwise be possible.

5 Completeness

The above discussion of the difference between dialogues carried out under single-path
and bushy protocols brings us to the consideration of what in [20] we called “prede-
terminism”, but we now prefer to describe using the term “completeness”. The idea
of predeterminism, as described in [20], captures the notion that, under some circum-
stances, the result of a dialogue can be established without actually having the dialogue
— the agents have sufficiently little room for rhetorical maneuver that were one able to
see the contents of all the Σi of all the αi ∈ A, one would be able to identify the out-
come of any dialogue on a given subject4. We develop this idea by considering how the
argument graphs constructed by dialogues under different protocols compare to bench-
mark complete dialogues. We start by developing ideas of what “complete” might mean.
One reasonable definition is that:

Definition 18. A basic dialogue D between the set of agents A with a corresponding
argumentation graph AG is topic-complete if no agent can construct an argument A
that undercuts any argument A′ represented by a node in AG.

The argumentation graph constructed by a topic-complete dialogue is called a topic-
complete argument graph and is denoted AG(D)T .

A dialogue is topic-complete when no agent can add anything that is directly con-
nected to the subject of the dialogue. In other words, every agent has said everything that
might change the status of the subject. Some protocols will prevent agents from making
moves even though the dialogue is not topic-complete. To distinguish such cases we
have:

4 Assuming that the Σi do not change during the dialogue, which is the usual assumption in this
kind of dialogue.

58 S. Parsons et al.

Definition 19. A basic dialogue D between the set of agents A with a corresponding
argumentation graph AG is protocol-complete under a protocol P if no agent can make
a move that adds a node to the argumentation graph and which is permitted by P .

The argument graph constructed by a protocol-complete dialogue is called a protocol-
complete argumentation graph and is denoted AG(D)P . Clearly:

Proposition 9. Any dialogue D under a basic protocol P is protocol-complete if it is
topic-complete. The converse does not hold in general.

Proof. If D is topic-complete, no agent can make a move that will extend the argumen-
tation graph. This means that no agent can make a move that is permitted by a basic
protocol, and so D is also protocol complete.

The converse does not hold since some basic dialogues (under a protocol that only
permits R3-relevant moves, for example) will not permit certain moves (like the addition
of a node that connects to the root of the argumentation graph after more than two
moves) that would be allowed in a topic-complete dialogue.

which immediately gives us:

Corollary 1. For a basic dialogue D, AG(D)P is a sub-graph of AG(D)T .

Obviously, from the definition of a sub-graph, the converse of Corollary 1 does not hold
in general.

The important distinction between topic- and protocol-completeness is that the for-
mer is determined purely by the state of the dialogue — as captured by the argumenta-
tion graph — and is thus independent of the protocol, while the latter is determined en-
tirely by the protocol. Any time that a dialogue ends in a state of protocol-completeness
rather than topic completeness, it is ending when agents still have things to say but can’t
because the protocol won’t allow them to.

With these definitions of completeness, our task is to relate topic-completeness —
the property that ensures that agents can say everything that they have to say in a dia-
logue that is, in some sense, important — to the notions of relevance we have developed
— which determine what agents are allowed to say. When we need very specific con-
ditions to make protocol-complete dialogues topic-complete, it means that agents have
lots of room for rhetorical maneuver when those conditions are not in force. That is
there are many ways they can bring dialogues to a close before everything that can be
said has been said. Where few conditions are required, or conditions are absent, then
dialogues between agents with the same knowledge will always play out the same way,
and rhetoric has no place. We have:

Proposition 10. A protocol-complete basic dialogue D under a protocol which only al-
lows R3-relevant moves will be topic-complete only when AG(D)T has a single branch
in which the nodes are labelled in increasing order from the root.

Proof. Given what we know about R3-relevance, the condition on AG(D)P having a
single branch is obvious. This is not a sufficient condition on its own because certain
protocols may prevent — through additional restrictions, like strict turn-taking in a
multi-party dialogue — all the nodes in AG(D)T , which is not subject to such restric-
tions, being added to the graph. Only when AG(D)T includes the nodes in the exact

On the Relevance of Utterances in Formal Inter-agent Dialogues 59

order that the corresponding arguments are put forward is it necessary that a topic-
complete argumentation graph be constructed.

Given Proposition 9, these are the conditions under which dialogues conducted under
the notion of R3-relevance will always be predetermined, and given how restrictive the
conditions are, such dialogues seem to have plenty of room for rhetoric to play a part.

To find similar conditions for dialogues composed of R1- and R2-relevant moves,
we first need to distinguish between them. We can do this in terms of the structure of
the argumentation graph:

Proposition 11. Consider a basic dialogue D, with argumentation graph AG which
has root r denoting an argument A. If argument A′, denoted by node v is an R2-relevant
move m, m is not R1-relevant if and only if:

1. there are two nodes v′ and v′′ on the path between v and r, and the argument
denoted by v′ defends itself against the argument denoted by v′′; or

2. there is an argument A′′, denoted by node v′′, that affects the status of A, and the
path from v′′ to r has one or more nodes in common with the path from v to r.

Proof. For the first condition, consider that since AG is a tree, v is connected to r. Thus
there is a series of undercut relations between A and A′, and this corresponds to a path
through AG. If this path is the only branch in the tree, then A will affect the status of
A′ unless the chain of “affect” is broken by an undercut that can’t change the status of
the undercut argument because the latter defends itself.

For the second condition, as for the first, the only way that A′ cannot affect the status
of A is if something is blocking its influence. If this is not due to “defending against”,
it must be because there is some node u on the path that represents an argument whose
status is fixed somehow, and that must mean that there is another chain of undercut
relations, another branch of the tree, that is incident at u. Since this second branch
denotes another chain of arguments, and these affect the status of the argument denoted
by u, they must also affect the status of A. Any of these are the A′′ in the condition.

So an R2-relevant move m is not R1-relevant if either its effect is blocked because an
argument upstream is not strong enough, or because there is another line of argument
that is currently determining the status of the argument at the root. This, in turn, means
that if the effect is not due to “defending against”, then there is an alternative move that
is R1-relevant — a move that undercuts A′′ in the second condition above5. With the
distinction between R1- and R2-relevance clarified, we can immediately show that:

Proposition 12. A protocol-complete basic dialogue D will always be topic-complete
under a protocol which only includes R2-relevant moves and allows every R2-relevant
move to be made.

The restriction on R2-relevant rules is exactly that for topic-completeness, so a dialogue
that has only R2-relevant moves will continue until every argument that any agent can
make has been put forward. Given this, and what we revealed about R1-relevance in
Proposition 11, we can see that:

5 Though whether the agent in question can make such a move is another question.

60 S. Parsons et al.

Proposition 13. A protocol-complete basic dialogue D under a protocol which only
includes R1-relevant moves will be topic-complete if AG(D)T :

1. includes no path with adjacent nodes v, denoting A, and v′, denoting A′, such that
A undercuts A′ and A′ is stronger than A; and

2. is such that the nodes in every branch have consecutive indices and no node with
degree greater than two is an odd number of arcs from a leaf node.

Proof. The first condition rules out the first condition in Proposition 11, and the sec-
ond deals with the situation that leads to the second condition in Proposition 11. The
second condition ensures that each branch is constructed in full before any new branch
is added, and when a new branch is added, the argument that is undercut as part of the
addition will be acceptable, and so the addition will change the status of the argument
denoted by that node, and hence the root. With these conditions, every move required to
construct AG(D)T will be permitted and so the dialogue will be topic-complete when
every move has been completed.

The second part of this result only identifies one possible way to ensure that the second
condition in Proposition 11 is met, so the converse of this result does not hold.

However, what we have is sufficient to answer the question about “predetermination”
that we started with. For dialogues to be predetermined, every move that is R2-relevant
must be made. In such cases every dialogue is topic complete. If we do not require
that all R2-relevant moves are made, then there is some room for rhetoric — the way
in which alternative lines of argument are presented becomes an issue. If moves are
required to be R3-relevant, then there is considerable room for rhetorical play.

6 Summary

This paper has studied the different ideas of relevance in argumentation-based dialogue,
identifying the relationship between these ideas, and showing how they can impact the
way that agents choose moves in a dialogue — what some authors have called the strat-
egy and tactics of a dialogue. This extends existing work on relevance, such as [3,16]
by showing how different notions of relevance can have an effect on the outcome of
a dialogue, in particular when they render the outcome predetermined. This connec-
tion extends the work of [20], which considered dialogue outcome, but stopped short of
identifying the conditions under which it is predetermined. It also attempts to generalize
existing work on the completeness of protocols, such as that in [5,22,23] by obtaining
results that are not tied to specific protocols (though they are somewhat weaker than the
results that can be obtained when considering specific protocols.)

There are two ways in which we are currently trying to extend this work, both of
which will generalize the results and extend its applicability. First, we want to relax the
restrictions that we have imposed, the exclusion of moves that attack several arguments
(without which the argument graph can be multiply-connected) and the exclusion of
pre-empted moves, without which the argument graph can have cycles. Second, we want
to extend the ideas of relevance to cope with moves that do not only add undercutting
arguments, but also supporting arguments, thus taking account of bipolar argumentation
frameworks [6].

On the Relevance of Utterances in Formal Inter-agent Dialogues 61

Acknowledgments

This work was partially supported by the EC, under grant IST-FP6-002307, and by
the NSF under grants REC-02-19347 and IIS-0329037. The authors are grateful to Liz
Black and Henry Prakken for their comments on the paper, and to Peter Stone for a
question, now several years old, which this paper has finally allowed us to answer.

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumenta-
tion framework. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelli-
gence, pp. 1–7 (1998)

2. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In: Horn, W.
(ed.) Proceedings of the Fourteenth European Conference on Artificial Intelligence, pp. 338–
342. IOS Press, Berlin, Germany (2000)

3. Bentahar, J., Mbarki, M., Moulin, B.: Strategic and tactic reasoning for communicating
agents. In: Maudet, N., Rahwan, I., Parsons, S. (eds.) Proceedings of the Third Workshop
on Argumentation in Muliagent Systems, Berlin, Germany (2007)

4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelli-
gence 128, 203–235 (2001)

5. Black, E.: A generative framework for argumentation-based inquiry dialogues. PhD thesis,
University of London (2006)

6. Cayrol, C., Devred, C., Lagasquie-Schiex, M.-C.: Handling controversial arguments in bipo-
lar argumentation frameworks. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Computational
Models of Argument: Proceedings of COMMA 2006, pp. 261–272. IOS Press, Amsterdam
(2006)

7. Chaib-Draa, B., Dignum, F.: Trends in agent communication language. Computational Intel-
ligence 18(2), 89–101 (2002)

8. Dignum, F., Dunin-Kȩplicz, B., Verbrugge, R.: Agent theory for team formation by dialogue.
In: Castelfranchi, C., Lespérance, Y. (eds.) Seventh Workshop on Agent Theories, Architec-
tures, and Languages, Boston, USA, pp. 141–156 (2000)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

10. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, ad-
missable argumentation. Artificial Intelligence 170(2), 114–159 (2006)

11. Flores, R.A., Kremer, R.C.: To commit or not to commit. Computational Intelligence 18(2),
120–173 (2002)

12. Gabbay, D.M., Woods, J.: More on non-cooperation in Dialogue Logic. Logic Journal of the
IGPL 9(2), 321–339 (2001)

13. Gabbay, D.M., Woods, J.: Non-cooperation in Dialogue Logic. Synthese 127(1-2), 161–186
(2001)

14. Hamblin, C.L.: Mathematical models of dialogue. Theoria 37, 130–155 (1971)
15. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation: A logical

model and implementation. Artificial Intelligence 104(1–2), 1–69 (1998)
16. Oren, N., Norman, T.J., Preece, A.: Loose lips sink ships: A heuristic for argumentation. In:

Maudet, N., Rahwan, I., Parsons, S. (eds.) Proceedings of the Third Workshop on Argumen-
tation in Muliagent Systems, Berlin, Germany (2007)

17. Parsons, S., Jennings, N.R.: Negotiation through argumentation — a preliminary report.
In: Proceedings of Second International Conference on Multi-Agent Systems, pp. 267–274
(1996)

62 S. Parsons et al.

18. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utterances in formal
inter-agent dialogues. In: Durfee, E., Huhns, M., Shehory, O., Yakoo, M. (eds.) 6th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems. IFAAMAS, Richland,
SC (2007)

19. Parsons, S., Wooldridge, M., Amgoud, L.: An analysis of formal inter-agent dialogues. In:
Castelfranchi, C., Gini, M., Ishida, T., Johnson, W.L. (eds.) 1st International Conference on
Autonomous Agents and Multi-Agent Systems, ACM Press, New York (2002)

20. Parsons, S., Wooldridge, M., Amgoud, L.: On the outcomes of formal inter-agent dialogues.
In: Rosenschein, J.S., Sandholm, T., Wooldridge, M., Yakoo, M. (eds.) 2nd International
Conference on Autonomous Agents and Multi-Agent Systems, ACM Press, New York (2003)

21. Prakken, H.: On dialogue systems with speech acts, arguments, and counterarguments. In:
Proceedings of the Seventh European Workshop on Logic in Artificial Intelligence, Berlin,
Germany, Springer, Heidelberg (2000)

22. Prakken, H.: Relating protocols for dynamic dispute with logics for defeasible argumenta-
tion. Synthese 127, 187–219 (2001)

23. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15, 1009–1040 (2005)

24. Prakken, H., Sartor, G.: Modelling reasoning with precedents in a formal dialogue game.
Artificial Intelligence and Law 6, 231–287 (1998)

25. Rahwan, I., McBurney, P., Sonenberg, E.: Towards a theory of negotiation strategy. In: Rah-
wan, I., Moraitis, P., Reed, C. (eds.) Proceedings of the 1st International Workshop on Argu-
mentation in Multiagent Systems, Berlin, Germany, Springer, Heidelberg (2004)

26. Reed, C.: Dialogue frames in agent communications. In: Demazeau, Y. (ed.) Proceedings of
the Third International Conference on Multi-Agent Systems, pp. 246–253. IEEE Press, Los
Alamitos (1998)

27. Rovatsos, M., Rahwan, I., Fisher, F., Weiss, G.: Adaptive strategies for practical argument-
based negotiation. In: Parsons, S., Rahwan, I., Moraitis, P., Reed, C. (eds.) Proceedings of
the 2nd International Workshop on Argumentation in Multiagent Systems, Berlin, Germany,
Springer, Heidelberg (2006)

28. Schroeder, M., Plewe, D.A., Raab, A.: Ultima ratio: Should Hamlet kill Claudius. In: Pro-
ceedings of the 2nd International Conference on Autonomous Agents, pp. 467–468 (1998)

29. Sycara, K.: Argumentation: Planning other agents’ plans. In: Proceedings of the Eleventh
Joint Conference on Artificial Intelligence, pp. 517–523 (1989)

30. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State University of New York Press, Albany, NY, USA (1995)

A Persuasion Dialog for Gaining Access to Information

Laurent Perrussel1, Sylvie Doutre1, Jean-Marc Thévenin1, and Peter McBurney2

1 IRIT - Université Toulouse I
2 rue du doyen Gabriel Marty

F-31042 - Toulouse Cedex 9 - France
{laurent.perrussel,sylvie.doutre,
jean-marc.thevenin}@univ-tlse1.fr

2 Dpt. of Computer Science - University of Liverpool
Liverpool L69 3BX - United Kingdom
p.j.mcburney@csc.liv.ac.uk

Abstract. This paper presents a formal protocol for agents engaged in argumen-
tation over access to information sources. Obtaining relevant information is es-
sential for agents engaged in autonomous, goal-directed behavior, but access to
such information is usually controlled by other autonomous agents having their
own goals. Because these various goals may be in conflict with one another, ratio-
nal interactions between the two agents may take the form of a dialog, in which
requests for information are successively issued, considered, justified and criti-
cized. Even when the agents involved in such discussions agree on all the argu-
ments for and the arguments against granting access to some information source,
they may still disagree on their preferences between these arguments.

To represent such situations, we design a protocol for dialogs between two
autonomous agents for seeking and granting authorization to access some infor-
mation source. This protocol is based on an argumentation dialog where agents
handle specific preferences and acceptability over arguments. We show how this
argumentation framework provides a semantics to the protocol dedicated to the
exchange of arguments, and we illustrate the proposed framework with an exam-
ple in medicine.

1 Introduction

This paper presents a formal protocol for agents engaged in argumentation over access
to information sources. We show how two agents, a client and a server, may dialog so
that the client tries to get access to information held by the server while the server tries to
convince the client that it cannot give it the access. In that context, gaining access to in-
formation can be viewed as an argumentation dialog [20,19,18] where agents exchange
arguments and counter-arguments in order to set common agreements about authoriza-
tions. Agents present arguments which represent their own point of view, i.e. argu-
ments they consider as the more persuasive. Multi-agent dialog based on argumentation
[18,17,22,16] for information-seeking [5,23] as well as preference-based argumenta-
tion systems [3,2,1,6] have already been studied. These preferences over arguments
help agents to characterize their own acceptable arguments which represent the founda-
tion on which agents accept or not to change authorizations: that is, agents controlling

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 63–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 L. Perrussel et al.

access to information consider to be persuaded as long as their acceptable arguments
against giving permission have not been sufficient to persuade their opponent.

There are very few papers dealing with the problem of how agents may control the
access [8,9,11] in the context of an argument-based persuasion framework. None of
them describe this process in the context of an explicit link between permissions and
arguments for and against these permissions. This explicit link enables agents to justify
why they provide or do not provide information and thus gives an explicit semantics of
the persuasion dialog in terms of arguments about permissions. In [13,12], we present in
an informal way a persuasion protocol that embeds this explicit link between arguments
and permissions. This paper formalizes this informal protocol.

In this paper, we propose a persuasion protocol based on FIPA-ACL oriented perfor-
matives [15] which are widely accepted for describing agents dialogs. This protocol is
defined in a formal way. A key issue is that the client and the server select and evaluate
the received arguments according to their own notion of acceptability: for instance if
the server handles preferences over arguments, it evaluates if the received argument is
more convincing than the arguments that backed the refusal of access. The contribution
brought by this formalization is twofold: a formal description of the different steps that
may occur in the persuasion dialog and a semantics of the protocol in terms of multiple
preference-based argumentation systems.

The paper is organized as follows. In section 2 we present a motivating example.
In section 3 we present the formal framework for representing argumentation-based
dialog. In section 4 we describe the protocol that rules the dialog, its characteristics
and properties. In section 5 we revisit the initial motivating example and express it in a
formal way. We conclude the paper in section 6.

2 A Motivating Example

Robert is a British businessman visiting Brussels for a meeting. During his visit he be-
comes ill and is taken unconscious into hospital. The staff of the hospital suspect Robert
has had a heart attack and seek to prescribe appropriate drugs for his condition. Unfor-
tunately the safe choice of drugs depends upon various factors, including prior medical
conditions that Robert might have and other drugs he may be taking. The hospital’s
agent is given the goal of finding out the required information about Robert, from the
agent representing his London doctor.

In order to gain access to information about Robert, the agent of Brussels Hospital
establishes the following dialog with the London agent:

Agent of Brussels Hospital: I would like to dialog with the agent of Robert’s British
doctor; I request Robert’s health record.

London agent: I cannot provide you Robert’s health record because Robert has only
given his British doctor limited consent to pass on his personal information (argu-
ment A1).

Brussels agent: This record could possibly include information that could affect the
treatment of Robert’s heart failure. I request it, Robert’s life may be at stake (argu-
ment A2)!

A Persuasion Dialog for Gaining Access to Information 65

London agent: I cannot divulge this information, because British law prohibits passing
on information without the consent of the provider of the information (argument A3).

Brussels agent: EC law takes precedence over British law when it would be in the
interests of the owner to divulge the information (argument A4). You should allow
me to access the record.

London agent: Only Robert could decide what would be in his interests (argument
A5).

Brussels agent: Robert’s doctor owes a duty of care to Robert and, should he die, the
doctor might be sued by his family, or the Brussels hospital, or both (argument A6).

London agent: OK. I provide you the requested record: Robert’s history of diabetes
is...

As we can see, there are numerous key issues in this dialog. First the Brussels and
London agents set an agreement about information that is considered: setting/getting ac-
cess to some information. Second, London agent interacts with Brussels agent because
it controls information about Robert’s health record. Next London agent presents an
argument A1 which attacks the Brussels agent’s request: argument A1 is an argument
against giving permission to Brussels agent; in other words permissions are argued.
Then Brussels and London agents exchange counter-arguments (A2...). It follows that
they both share the same set of arguments (they understand each other) and they also
share the notion of attack. Indeed they agree in an implicit way that the proposed ar-
gument by the opponent attacks the previously proposed argument. At the end of the
dialog, London agent accepts the final Brussels’ argument A6. It follows that in an
implicit way, London agent agrees that argument A6 is an acceptable argument which
supports the permission in favor of Brussels. Consequently, London agent changes the
permission and provides the requested information to Brussels agent.

In the following we describe a formal system that embed this kind of dialog.

3 Formal Framework

In this section we describe in a formal way the main concepts that have been previously
introduced: access rights, primitives of dialogs and arguments which help us to specify
the persuasion process.

First we give some preliminaries. Let Ag be the set of agent identifiers (id). In the
following an agent id is represented by a lower case Roman letter (x, y, ...). We assume
the information requested is identified by lower case Greek letters (φ, ψ...). Let Inf be
the set of all possible information ids. This information may be any of: a data record
(e.g., one patient’s record); a database (e.g., records of many patients); or even the
protocol for another dialog (e.g., a client may first request a server to enter into a second
dialog, which requires authorization to engage in). The actual content corresponding to
information φ is denoted by 〈content φ〉.

3.1 Access to Information

The permission a participant x has to access the content of information φ is denoted
by a function perm(y, x, φ): perm(y, x, φ) = 1 (respectively 0) stands for agent y can
give (respectively cannot give) to agent x the content of information φ. Formally,

66 L. Perrussel et al.

perm : Ag × Ag × Inf �→ {0, 1}

Permission is closely linked to the notion of control. An agent can define permissions
about information φ only if it actually controls the access to φ. In the following we
represent this notion of control through a function control which associates agents and
pieces of information:

control : Ag �→ 2Inf

By splitting control and permission we avoid the problem that an agent gives itself
permissions to all pieces of information. For instance, if we consider the motivating
example, the agent of Brussels Hospital should not give itself a permission for accessing
Robert’s file; the permission should be given by the agent of Robert’s London Doctor
since it is this agent that control the access to the file.

Example 1. Let us consider the initial intuitive example. Let Ag = {b, l} s.t. b is Brus-
sels agent id and l is London agent id; let ρ stands for “Robert’s health record” and thus
Inf = {ρ}. London’s control and permission are defined as follows:

ρ ∈ control(l) perm(l, b, ρ) = 0

3.2 Primitives of Dialogs

This is the syntax of a persuasion dialog system for information-seeking which requires
permission to access the information.

Participants. There are two participants, a Client (requesting information), and a Server
(controlling access to some information, which it may or may not agree to provide).

Dialog goal. The Client has the following goal prior to the start of the interaction: to
obtain from the Server all the information it needs, using persuasion if necessary.
The Server has the following goal prior to the start of the interaction: To provide
information to the Client according to the level of access permission the Client has.

Context. Client and Server may have disjoint knowledge bases. The knowledge base
of the Server includes information about the access permissions which each Client
has, which may differ by the information concerned.

Arguments. We assume the arguments exchanged by agents are represented by upper
Roman letters (A, B,...). The internal structure of an argument is left abstract.

Communication language. The primitives of the dialogs presented hereafter are mainly
based on [15]. The minimum locutions needed for a dialog between Client x and
Server y are:

OpenDialogue(x, y). Client x indicates to Server y that it wants to enter into a
dialog.

Ask(x, y, φ). Client x asks Server y to provide it with some information φ.
Tell(y, x, 〈content φ〉) Server y provides Client x with the actual content of in-

formation φ.
DontTell(y, x, φ). Server y indicates to Client y that it cannot provide x with

information φ.
EndDialogue(x, y). Agent x indicates to Agent y that it wants to leave the dialog.

A Persuasion Dialog for Gaining Access to Information 67

In case Client x would not have the permission to access information φ, an ar-
gumentation dialog about the addition of this permission in Server y’s knowledge
base is engaged. In this case, a locution for arguing about the permission related to
requested information φ may be uttered:

Argue(z, t, ι, A, φ). Agent z gives to agent t an argument A stating why the per-
mission should be equal to value ι. In the following, Argue(x, y, 1, A, φ)
stands for Client x gives an argument A to Server y as to why it should have the
permission (to access φ) while Argue(y, x, 0, A, φ) stands for Server y gives
to Client x an argument A as to why x cannot have access (to information φ).

3.3 Argumentation Framework

In our proposal we require an argumentation framework that enables agents to share
the same set of arguments and the same defeat relation between arguments. In addition,
each agent should be able to determine its own set of acceptable arguments. It means
that even if each agent is able to determine if an argument or a counter-argument is ac-
ceptable, it has to share with its opponent the same notion of counter-argument; that is
they share the same notion of defeat. Arguments and defeat relation can be represented
using the system proposed by [14]. Handling preferences over arguments is one of the
simplest way for representing different points of view over the same set of arguments.
[1] has presented an extension of [14] that takes into account a unique preference re-
lation. [6] has presented another extension where values are associated to arguments
and each agent defines its own set of preferences over these values, and thus over ar-
guments. At this stage, we do not need to enforce the usage of a specific notion of
acceptability. Hence each agent evaluates the set of arguments with respect to its own
notion of acceptability and its own set of preferences. Formally, we obtain the following
definition:

Definition 1 (MPAF). A Multiple preference-based argumentation framework (MPAF)
is a tuple

〈Arg, �,
⋃

x∈Ag

�x, acceptable〉

where:

– Arg is a set of arguments,
– � is a defeat relation: � ⊆ Arg × Arg,
–

⋃
x∈Ag �x is a set of preference relations s.t. �x stands for the preference relation

over arguments associated with agent x and each relation �x is a partial pre-order.
– acceptable is a function which maps agent ids to a subset of Arg which character-

izes acceptability, acceptable : Ag �→ 2Arg. acceptable(x) stands for the accept-
able set of arguments associated to agent x. Each set acceptable(x) is a subset of
Arg defined w.r.t. the defeat relation � and preference relation �x.

The strict order associated with �x is denoted by >x. A >x B means that agent x
strictly prefers argument A to B. The sets of acceptable arguments may be defined by
using semantics which characterize the policy of the access control. For instance, in

68 L. Perrussel et al.

a context where information is sensitive the notion of acceptability will be restrictive,
whereas a standard notion of acceptability such as the semantics of [14] or [1] may be
considered in a context where information has not a high level of confidentiality.

In this paper, we focus on a usage of an acceptability based on the sets of arguments
which are conflict-free [14,1]. Let us stress that the usage of some specific notion of
acceptability does not prevent the general aspect of the framework.

We rephrase the notion of defence and admissible arguments in the context of multi-
ple preferences. An argument A is x-defended by a set of arguments S w.r.t. a preference
relation �x iff (i) A defends itself (it is preferred to all its counter-argument) or (ii) for
every counter-argument B, there exists an argument C which belongs to S such that C
defeats B and B is not preferred to C:

Definition 2 (x-defense). Let S ⊆ Arg be a set of arguments and A ∈ Arg be an
argument. A is x-defended by S iff ∀B ∈ Arg s.t. (B, A) ∈ � then: (i) A >x B or (ii)
∃C ∈ S s.t. (C, B) ∈ � and B ≯x C.

The next step is to rephrase the notion of conflict-free set of arguments: all the arguments
belonging to an x-conflict-free set of arguments are preferred to their counter arguments
w.r.t. a preference relation �x:

Definition 3 (x-conflict-free). A set S is said to be x-conflict-free iff ∀A, B ∈ S, if
(B, A) ∈ � then A �x B.

The next step is to characterize the admissible arguments.

Definition 4 (x-admissible). A set S of arguments is said to be x-admissible iff S is
x-conflict-free and S x-defends all its elements.

The set of acceptable arguments for an agent x is calculated w.r.t. the set of x-admissible
arguments. In a classical way we have the skeptical and the credulous methods for
characterizing the set of acceptable argument.

Definition 5 (Credulous and Skeptical acceptability). Let Arg be a set of arguments,
� be a defeat relation and �x be a preference relation. The credulous set of acceptable
arguments Cr(x) defined w.r.t. x is:

Cr(x) = {A ∈ Arg|∃S s.t. S is x-admissible and A ∈ S}

and the skeptical set of acceptable arguments Sk(x) defined w.r.t. x is equal to:

Sk(x) = {A ∈ Arg|∀S s.t. S is x-admissible and maximal w.r.t. ⊆, A ∈ S}

Example 2. Let us pursue our review of the intuitive example. The associated MPAF is
defined as:

– set Arg is equal to {A1, A2, A3, A4, A5, A6};
– relation � is defined as shown on figure 1.

An arrow between two arguments represents a defeat. That is, argument A1 is de-
feated by arguments A2 and A6; argument A2 is defeated by argument A3. All
these defeats are defined in the two directions. Finally argument A3 is defeated by
argument A4 and argument A5 defeats A4.

A Persuasion Dialog for Gaining Access to Information 69

A3

A4

A1

A2

A6

A5

Fig. 1. Defeat Relation over arguments set Arg

– Preference relations for Brussels and London agents are defined as follows (respec-
tively �b and �l):

�b := A2 >b A1, A2 >b A3, A6 >b A1, A6 >b A3

�l := A3 >l A2, A1 >l A2

– Function acceptable is defined as follows. We suppose that both London and Brus-
sels agents use a credulous acceptability. In order to define what arguments are ac-
ceptable for each of them, we first calculate the maximal sets which are b-admissible
and l-admissible:

b-admissible set = {A2, A5, A6}
l-admissible sets = {A1, A3, A5} and {A5, A6}

Second, we associate acceptable arguments to each agent

acceptable(b) := Cr(b) = {A2, A5, A6}
acceptable(l) := Cr(l) = {A1, A3, A5, A6}

3.4 Linking Arguments and Permissions

As shown in the intuitive example, arguments proposed by the Client and the Server are
closely connected to their goals. The goal of the Client is to obtain information φ while
the Server aims at not telling φ. In our framework, goals can be rewritten as changing
the permission or not. It leads us to the idea that we have to connect permissions and
arguments; we represent this link by introducing a relation between permissions and ar-
guments which characterizes the notion of argued permission. The argued permissions
are defined in the knowledge base of the Server and characterize its attitude toward the
clients.

Definition 6 (argued permission). An argued permission is a tuple 〈A, y, x, φ, ι〉 s.t.
A is an argument, y and x are Server and Client agent ids, φ is an information and ι
is the value of the permission (ι ∈ {0, 1}). 〈A, y, x, φ, ι〉 stands for: Server y has the
argument A in favor (ι = 1) or against (ι = 0) giving permission to Client x to obtain
information φ.

70 L. Perrussel et al.

In fact, it is possible for Server y to consider arguments in favor of giving permission
to x about φ and at the same time arguments against the same permission. For instance,
an agent should not give access to its password for security reason (argument against
the permission) and at the same time it may provide it in emergency (argument in fa-
vor of the permission). It follows that there is no redundancy to consider a function
that describes permissions and arguments in favor or against permissions. However we
have to enforce some constraints on permissions by introducing the notion of consistent
permission. Let us consider Client x, Server y and information φ. We claim that a per-
mission defined by y about x and φ is consistent with a set of argued permissions if (i)
y has the control of φ (ii) arguments for and against permissions respect the defeat rela-
tion and (iii) this permission is “supported” by at least one argument that is acceptable
w.r.t. acceptable(y).

Definition 7 (Consistent permission). Let AP be a set of argued permissions and let
P = {〈A, y, x, φ, ι〉} be the set of argued permission supporting permission perm(y, x,
φ) = ι and C = {〈A, y, x, φ, 1−ι〉} be the set of argued permissions against perm(y,x,
φ) = ι. Permission perm(y, x, φ) = ι is said to be consistent iff:

1. φ ∈ control(y);
2. argued permissions are constrained by the defeat relation: ∀〈A, y, x, φ, ι〉 ∈ P such

that for any y-admissible set S where A ∈ S, if C �= ∅ then �〈B, y, x, φ, 1− ι〉 ∈ C,
B ∈ S;

3. the following constraint holds between the permission and acceptable arguments:

perm(y, x, φ) = ι ⇐⇒ ∃〈A, y, x, φ, ι〉 ∈ AP s.t. A ∈ acceptable(y)

The main consequence is that if Server y has adopted a skeptical acceptability relation,
then there are no two arguments that belong to the set acceptable(y) which support
opposite permissions.

Proposition 1. Let perm(y, x, φ) = ι be a permission. Let C = {〈A, y, x, φ, 1 − ι〉}
be the set of argued permissions against perm(y, x, φ) = ι. Let Sk(y) be the set of
acceptable arguments. No element of C belongs to Sk(y): C ∩ Sk(y) = ∅.

Notice that the credulous notion of acceptability may entail that acceptable arguments
can be in favor and or against a permission at the same time and thus the previous
proposition does not hold.

Example 3. Let us pursue our intuitive example. London agent informs that it cannot
provide information about Robert because Robert has only given a limited consent (ar-
gument A1). It follows that A1 is an argument against the request of Brussels agent and
that tuple 〈A1, l, b, ρ, 0〉 is an argued permission. However, this argument is not the only
one against giving access to Brussels agent. Argument A3 is also against the authoriza-
tion while arguments A2 and A6 are in favor of the authorization. We get the following
set of argued permissions:

AP = {〈A1, l, b, ρ, 0〉, 〈A3, l, b, ρ, 0〉, 〈A2, l, b, ρ, 1〉, 〈A6, l, b, ρ, 1〉}

Notice that permission perm(l, b, ρ) = 0 is consistent: first agent l has control of ρ
(see example 1); second, all arguments in favor of permission do not appear at the same

A Persuasion Dialog for Gaining Access to Information 71

time in a same l-admissible set (e.g. A1 ∈ {A1, A3, A5} but A2 and A6 do not belong
to {A1, A3, A5} and third, there exists an argument involved in an argued permission
that is acceptable (e.g. A3 ∈ acceptable(l)).

4 The Protocol of Persuasion

In this section, we present a protocol of dialog for information-seeking dialog with per-
missions. The protocol specifies which locutions may be uttered at different points in a
dialog, and so defines the rules governing the use of the locutions previously presented.
Now we formally define the concept of dialog. A dialog is a structure that combines
access authorizations, a multiple preferences argumentation framework, a set of argued
permissions, and a sequence of locution utterances.

Definition 8 (Dialog). Let D = 〈control, perm, MPAF, AP, σ〉 be a dialog such that
control is a function associating agents and information, perm is an authorization
function, MPAF is a multiple preferences argumentation framework, AP is a set of
argued permissions and σ is a sequence of locutions.

Let length be a function characterizing the number of elements of a finite sequence of
locutions σ and σ[i] (s.t. 1 � i � length(σ)) represents one element of σ. Now we
can express in a formal way the protocol: how the permissions and the arguments are
interwoven in order to rule the dialog.

4.1 Requesting Information

First we specify that Client x and Server y have to initiate the dialog. Let D = 〈control,
perm, MPAF, AP, σ〉 be a dialog s.t. σ is a finite sequence: ∃n s.t. n = length(σ). In
all the following formulas, logical connectors are used w.r.t. their usual meaning. After
opening the dialog, the Client requests some information φ (formula (R1)):

σ[1] = OpenDialogue(x, y) =⇒ σ[2] = Ask(x, y, φ) (R1)

Formula (R2) states that the Server should provide φ if the Server control φ and the
Client has the authorization to access information φ:

σ[2] = Ask(x, y, φ) ∧ φ ∈ control(y) ∧ perm(y, x, φ) = 1 =⇒
σ[3] = Tell(y, x, 〈content φ〉) (R2)

Formula (R3) states that if the Server has no control over φ then it should close the
dialog:

σ[2] = Ask(x, y, φ) ∧ φ �∈ control(y) =⇒ σ[3] = EndDialogue(y, x) (R3)

Formula (R4) specifies that if the Server has actually provided information φ then
the dialog is closed by the Server:

σ[i] = Tell(y, x, 〈content φ〉) =⇒ σ[i + 1] = EndDialogue(y, x) (R4)

72 L. Perrussel et al.

Now let us focus on the case which will lead us to the argumentation part of the dialog;
that is, where the Server cannot provide information φ to the Client. Formula (R5)
formally specifies the condition where a DontTell locution can be uttered.

σ[2] = Ask(x, y, φ) ∧ φ ∈ control(y) ∧ perm(y, x, φ) = 0 ⇐⇒
σ[3] = DontTell(y, x, φ) (R5)

4.2 Arguing for Getting Permission

In this section we describe the rules that characterize the persuasion stage. Formula (G1)
states that argumentation occurs only if the Server does not want to provide information
to the Client:

∀i > 3 (σ[i] = Argue(y, x, 0, A, φ) ∨ σ[i] = Argue(x, y, 1, A, φ)
=⇒ σ[3] = DontTell(y, x, φ)) (G1)

If the Server refuses to answer the Client the argumentation stage is initiated. In this
paper, for the sake of conciseness we assume that this stage is initiated by the Server.
Formula (G2) specifies that the Server has to motivate its refusal.

σ[3] = DontTell(y, x, φ) ∧ ∃A s.t. 〈A, y, x, φ, 0〉 ∈ AP =⇒
σ[4] = Argue(y, x, 0, A, φ) (G2)

As the Server has given a rationale to the Client, the Client should reply to the Server.
Formulas (G3) state that both agents should present acceptable arguments:

σ[i] = Argue(y, x, 0, A, φ) =⇒ A ∈ acceptable(y)
σ[i] = Argue(x, y, 1, A, φ) =⇒ A ∈ acceptable(x)

(G3)

Agents are thoughtful according to [18]’s assertion attitudes. Now both Client and
Server should present arguments in order to counter the opponent. Let us first focus
on the Client. When Client x evaluates the argument proposed by Server y it may face
two cases whether it can reply or not to the Server:

The client can reply. Whether the received argument is acceptable or not, Client x
argues as long as it can. In such a configuration, Client x considers all of its accept-
able arguments that defeat the received argument and presents them to the Server.
Formula (G4) specifies this counter-argumentation as follows:

σ[i] = Argue(y, x, 0, A, φ) ∧ A �∈ acceptable(x) =⇒
(
∃B ∈ acceptable(x) ∧ (B, A) ∈ �

) ((
�j < i(σ[j] = Argue(x, y, 1, B, φ))

)

=⇒
(
∃k > i(σ[k] = Argue(x, y, 1, B, φ))

))
(G4)

Notice that client x may optimize the counter-argumentation stage by selecting only
a subset of counter-arguments among all the possible ones and present them to the
server. In this paper, we do not explore this opportunity since it is out of the scope
of this paper to evaluate the rationales that support the selection process.

A Persuasion Dialog for Gaining Access to Information 73

The client cannot reply. The dialog is over if Client x can no longer present a counter-
argument to Server y, counter-argument which is acceptable for x. Formula (G5)
specifies in a formal way the closure of the dialog: the first line states that Client
x has received an argument and second, third and fourth lines of formula (G5)
state that x has presented all counter-arguments to y; more precisely the second
line states for every argument presented against the permission sent by the Server,
Client x has presented (line 4) all the possible counter-arguments (line 3).

σ[i] = Argue(y, x, 0, A, φ)∧
(∀B, ∃j � i (σ[j] = Argue(y, x, 0, B, φ) =⇒

∀C ∈ acceptable(x) s.t. (C, B) ∈ �
∃k < i (σ[k] = Argue(x, y, 1, C, φ)))

=⇒ σ[i + 1] = EndDialogue(x, y) (G5)

Now, let us focus on the Server side. The formulas are similar to formulas (G5) and
(G4): as long as the Server can present arguments to the Client to persuade it to not
change the authorization, the Server presents the counter-arguments to the Client. In
order to write formulas (G5) and (G7) which specify the structure of the dialog, we first
characterize the condition Ψ(i) which holds if at time i all arguments which appear in
argued permissions have been sent (lines 1 and 2) and all arguments presented by x
have been countered (lines 3, 4 and 5).

∀〈A, y, x, φ, 0〉 ∈ AP

∃j((j < i) ∧ (σ[j] = Argue(y, x, 0, A, φ))) ∧
∀B, ∃k (k < i) ∧ (σ[k] = Argue(x, y, 1, B, φ) =⇒

∀C ∈ acceptable(y) s.t. (C, B) ∈ �
∃l((l < i) ∧ (σ[l] = Argue(y, x, 0, C, φ)))) (Ψ(i))

The Server can reply. Formula (G6) is similar to formula (G4) and specifies that Server
y presents all possible counter-argument to an argument presented by x:

σ[i] = Argue(x, y, 1, A, φ) ∧ ¬Ψ(i) =⇒
(
∃B ∈ acceptable(y) ∧ (B, A) ∈ �

)((
�j < i(σ[j] = Argue(y, x, 0, B, φ))

)
∧

(
∃k > i(σ[k] = Argue(y, x, 0, B, φ))

))
(G6)

The Server cannot reply. Server y has received an argument and condition Ψ(i) holds
(line 1), it entails that Server y should evaluate the whole set of arguments sent
by x so that it may change the permission and provide information φ, otherwise the
dialog is closed:

σ[i] = Argue(x, y, 1, A, φ) ∧ Ψ(i) =⇒
(σ[i + 1] = Tell(y, x, 〈content φ〉)∨

σ[i + 1] = EndDialogue(y, x)) (G7)

All these constraints enable to characterize the persuasion dialogs about permissions.

74 L. Perrussel et al.

Definition 9 (Permission Persuasion-Dialog). Let D = 〈control, perm, MPAF, AP,
σ〉 be a dialog. D is a permission persuasion-dialog iff (i) all permissions are consistent,
(ii) σ is finite and (iii) all formulas (R1)–(R5) and (G1)–(G7) hold.

A permission persuasion-dialog does not specify how the Server may change the per-
mission, it just specifies how arguments may be exchanged and how information may be
provided. The key characteristic is that the dialog is finite (definition of D) and “well-
defined”, i.e. the constraints ensures that at the end of the dialog all possible relevant
arguments have been exchanged:

Proposition 2. For any dialog D = 〈control, perm, MPAF, AP, σ〉 s.t. be a permis-
sion persuasion-dialog, Ψ(length(σ)) = 1

The final step is the evaluation of the Client’s arguments by the Server in order to
determine if permission has to be changed.

4.3 Changing the Permission

Server y changes permission related to x and φ with respect to a set of rules which
characterize principles of cautiousness (the server still has a reason not to change the
permission) or trustfulness (the server has at least one reason to change the permission):

cautiousness. One of the argument presented by the Server has not been defeated by
the Client. In other words, the Server has at least one reason for not changing per-
mission. Let (C-Caut) be a formula which represents this condition. (C-Caut) spe-
cifies that the Server has send an argument (line 1) so that the Client has no reply
to this argument (lines 2 and 3) with an argument involved in an argued permission
that prevents to give permission (line 3):

∃A, ∃i(σ[i] = Argue(y, x, 0, A, φ) ∧
�B ∈ acceptable(y) s.t.(B, A) ∈ � ∧

∃j(σ[j] = Argue(x, y, 1, B, φ) ∧ 〈B, y, x, φ, 0〉 �∈ AP)) (C-Caut)

Formula (C1) specifies that if all arguments have been exchanged (represented by
condition (Ψ(length(σ)−1)) and if condition (C-Caut) does not holds (i.e. Client
x has countered all the arguments presented by Server y), then server y has to
provide φ:

Ψ(length(σ) − 1)) ∧ ¬(C-Caut) =⇒
(σ[length(σ − 1)] = Tell(y, x, 〈content φ〉)) (C1)

Once φ has been provided, the dialog is closed (see formula (R4)). It follows that
permission has to be updated so that it reflects that Client x can access φ. Formula
(C2) states that if φ has been provided w.r.t. the cautiousness principle then the
permission is updated (perm′ represents the new permission):

perm′(y, x, φ) := 1 ⇐⇒ Ψ(length(σ) − 1) ∧ ¬(C-Caut) (C2)

A Persuasion Dialog for Gaining Access to Information 75

trustfulness. One of the argument presented by the Client is acceptable for Server y.
In other words, the Server has at least one reason to change permission. Formula
(C-Trust) specifies the condition corresponding to this attitude as follows: lines
1 and 2 state that there exists at least one acceptable argument that is not against
permission (according to Server point of view):

∃A, i(σ[i] = Argue(x, y, 1, A, φ) ∧
A ∈ acceptable(y) ∧ 〈A, y, x, 0, φ〉 �∈ AP))) (C-Trust)

Formula (C3) specifies that if condition (C-Trust) holds then information φ is pro-
vided.

(Ψ(length(σ) − 1) ∧ (C-Trust) =⇒
(σ[length(σ − 1)] = Tell(y, x, 〈content φ〉) (C3)

As previously, we now state permission change in a trustfulness context:

perm′(y, x, φ) := 1 ⇐⇒ (Ψ(length(σ) − 1) ∧ (C-Trust) (C4)

Since the permission has changed, the set of argued permissions has also to be changed
so that the new permission is consistent. That is every argument sent by the Client that
is acceptable from the point of view of the Server has to be added to the list of argued
permissions AP. Formula (C5) states that all argument received by y and acceptable by
y extend the initial list of argued permissions.

AP′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AP if �i(σ[i] = Tell(y, x, 〈content φ〉))
AP ∪ {〈A, y, x, φ, 1〉 |

∃i(σ[i] = Argue(x, y, 1, A, φ)∧
A ∈ acceptable(y))} otherwise

(C5)

The first consequence entails by formulas (C1)–(C5) is that the updated permission is
still consistent.

Proposition 3. Let D be a permission persuasion-dialog. Let perm′(y, x, φ) and AP′

be the updated set of permissions defined w.r.t. formulas (C1) and (C2), or formulas
(C3) and (C4); let AP′ be the updated set of argued permissions calculated w.r.t. for-
mula (C5). perm′(y, x, φ) is consistent with respect to the set AP′.

The second consequence is an entailment relation between the two policies: a permis-
sion that has been given w.r.t. the cautiousness principle entails that the permission
should also have been given w.r.t. the trustfulness principle (but not vice-versa). This
is due to the fact that whenever condition (C-Caut) does not hold, condition (C-Trust)
holds.

Proposition 4. ¬(C-Caut) =⇒ (C-Trust)

Notice that trustfulness corresponds to the skeptical acceptance attitude of [18]; cau-
tiousness is an acceptance attitude not taken into account by [18].

We conclude the section by assessing the principle of cautiousness and trustfulness
whether Server y uses a skeptical or credulous notion of acceptability. As long as Server
y uses a credulous acceptability permissions may change:

76 L. Perrussel et al.

Proposition 5. For all permission persuasion-dialog D s.t. acceptable(y) = Cr(y), it
holds that

¬((φ ∈ control(y) ∧ perm(y, x, φ) = 0) =⇒ �i(σ[i] = Tell(y, x, 〈content φ〉))

As long as Server y uses a skeptical notion of acceptability, Server y never changes its
initial permissions and thus will never provide information when initial permission is
equal to 0.

Proposition 6. For all permission persuasion-dialog D such that acceptable(y) =
Sk(y), it holds that:

(φ ∈ control(y) ∧ perm(y, x, φ) = 0) =⇒ �i(σ[i] = Tell(y, x, 〈content φ〉)

It follows from the previous propositions that an agent which gives to the other agents
the ability to persuade itself about permissions should not adopt a too restrictive notion
of acceptability. That is, acceptability should be credulous based.

5 Revisiting the Initial Example

In this section we reformulate the dialog between the agent of Brussels Hospital and
the London agent as a permission persuasion-dialog D = 〈control, perm, MPAF, AP,
σ〉 such that control and perm are defined as in example 1, MPAF is defined as in
example 2 and AP is defined as shown in example 3. Server y may change permissions
w.r.t. trustfulness principle. We have the following sequence σ of locutions (relevant
constraints that hold are mentioned on the right part of the locution):

Agent of Brussels Hospital: I would like to dialog with the agent of Robert’s British
doctor; I request Robert’s health record (information ρ).

σ[1] = OpenDialogue(b, l)
σ[2] = Ask(b, l, ρ) (R1)

London agent: I cannot provide you Robert’s health record because Robert has only
given his British doctor limited consent to pass on his personal information (argu-
ment A1).

σ[3] = DontTell(l, b, ρ) (R5)

σ[4] = Argue(l, b, 0, A1, ρ) (G2)

Brussels agent: This record could possibly include information that could affect the
treatment of Robert’s heart failure. I request it, Robert’s life may be at stake (argu-
ment A2)!

σ[5] = Argue(b, l, 1, A2, ρ) (G1, G3, G4)

London agent: I cannot divulge this information, because British law prohibits pass-
ing on information without the consent of the provider of the information (argument
A3).

σ[6] = Argue(l, b, 0, A3, ρ) (G3, G6)

A Persuasion Dialog for Gaining Access to Information 77

Brussels agent: EC law takes precedence over British law when it would be in the
interests of the owner to divulge the information (argument A4). You should allow
me to access the record.

σ[7] = Argue(b, l, 1, A4, ρ) (G1, G3, G4)

London agent: Only Robert could decide what would be in his interests (argument
A5).

σ[8] = Argue(l, b, 0, A5, ρ) (G1, G3, G6)

Brussels agent: Robert’s doctor owes a duty of care to Robert and, should he die, the
doctor might be sued by his family, or the Brussels hospital, or both (argument A6).

σ[9] = Argue(b, l, 1, A6, ρ) (G3, G4, G7)

London agent: OK. I will provide you with the requested record: Robert’s history of
diabetes is...

σ[10] = Tell(l, b, 〈content ρ〉) (C3, G7)

σ[11] = EndDialogue(b, l) (C3)

According to the trustfulness principle (formula (C4)), London agent changes the per-
mission, perm′(l, b, ρ) = 1, because there is an l-acceptable argument A6 that makes
condition (C-Trust) true. The set of argued permissions is also updated:

AP′ = AP ∪ {〈A2, l, b, ρ, 1〉, 〈A6, l, b, ρ, 1〉} = AP

6 Conclusion

In this paper, we have presented a formal framework for handling persuasion dialogs
about permissions. Our contribution is two fold: first we represent through an explicit
link between arguments and permissions why agents accept or refuse to provide infor-
mation. The agents can thus justify their behavior. Second, we exhibit a specific class
of dialogs, permission persuasion-dialog, which helps to characterize two policies for
handling permission change (cautiousness and trustfulness). We have shown that en-
abling permission change entails the evaluation of arguments in a credulous way. The
proposed protocol has been shown in the context of multiple preferences argumentation
framework; however this protocol of persuasion is sufficiently general so that it can be
used with other argumentation frameworks.

Our work is closely related to [11] which proposes in a semi-formal way a general
framework for persuasion and negotiation dialog for gaining access to sensitive infor-
mation. A drawback of this work is that permissions are not considered as first-class
objects but are rather viewed with the help of the notion of interest. But interest and
permission are different notions and thus it could not be established in a clear way why
agents propose arguments in the persuasion dialog. Moreover, even if our work is less
general than the proposed in [11], we have been able to exhibit interesting characteris-
tics by focusing on a more specific problem: we have shown that persuasion is closely

78 L. Perrussel et al.

linked to the acceptability notion and we propose a clear definition of persuasion dia-
log about permission. G. Boella et al. show in [8] how access control can be handled
by using plan argument and an argumentation game. A plan argument is close to our
notion of argued permission and an argument game describes the protocol of interac-
tion between the Client and the Server. The main drawback is that the protocol is a one
shot protocol: it is not shown how the Client and the Server change their initial set of
plan arguments so that they exploit the result of the interaction. In [7] J. Bentahar et
al. show a persuasion dialog framework where trust aspects have been integrated in a
persuasion dialog. The main difference with our proposal is the underlying concept of
persuasion. In our proposal, the Server is convinced by the Client as long as the Client
has proposed some convincing arguments. The persuasion is a two agent process. In
[7], persuasion is based on a preliminary step which helps to evaluate the reputation of
the Client. We believe that this approach is not suitable for our context. Indeed, even
if trust aspects have to be handled in this kind of problem, we believe that the dialog
between the Server and the Client has to be self-contained and thus trust aspects have
to be handle by means other than reputation systems.

As future work, we plan to extend the protocol to a family of protocols. That is, in this
paper we focus on specific acceptability definitions; our aim is to consider the notions
of conflict and acceptability at a more general level and to evaluate the impact on the
proposed persuasion protocol. The work made by K. Atkinson et al [4] on dialog game
for evaluating actions has shown numerous kind of attacks on action proposal. An first
work should consist on the rewritten of these different kinds of attacks in our context:
that is does the counter-argumentation stage for the Client has the same meaning for the
Server? We plan to explore the interest of bipolar argumentation systems [10]. In those
systems, a dual relation of the defeat relation is represented which helps to characterize
the notion of support in an explicit way. This framework is close to our proposal for
representing argued permissions. Our aim is to compare similarities and differences
between these two frameworks. We also plan to refine the protocol in order to handled
trust issues. That is if a Client has been able to persuade a Server to get permission to
access some information, then this result may play the role of an argument in favor of
the Client for gaining access to some other information, i.e. the persuasion dialog may
be viewed as a trust proof.

Acknowledgments. Peter McBurney is grateful for support from the EC project Argu-
mentation Service Platform with Integrated Components (ASPIC) (IST-FP6-002307).
Laurent Perrussel is grateful for support from the ANR project Social trust analy-
sis and formalization (ForTrust). Thanks to the anonymous reviewers for their helpful
comments.

References

1. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. International Journal of Automated Reasoning 29(2), 125–169 (2002)

2. Amgoud, L., Parsons, S., Perrussel, L.: An Argumentation Framework based on contextual
Preferences. In: Proc. of FAPR 2000, London, pp. 59–67 (January 2000)

A Persuasion Dialog for Gaining Access to Information 79

3. Andreka, H., Ryan, M., Schobbens, P.: Operators and Laws for Combining Preference Rela-
tions. In: Wieringa, R., Feenstra, R. (eds.) Information Systems: Correctness and Reusability
(Selected Papers), World Scientific Publishing Co, Singapore (1995)

4. Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: A dialogue game protocol for multi-agent
argument over proposals for action. In: Rahwan, et al. (eds.), [21], pp. 149–161

5. Bench-Capon, T.: Specifying the interaction between information sources. In: Quirchmayr,
G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 425–
434. Springer, Heidelberg (1998)

6. Bench-Capon, T.: Persuasion in practical argument using value-based argumentation frame-
works. J. Log. Comput. 13(3), 429–448 (2003)

7. Bentahar, J., Moulin, B., Chaib-draa, B.: Specifying and implementing a persuasion dialogue
game using commitments and arguments. In: Rahwan, et al. (eds.), [21], pp. 130–148.

8. Boella, G., Hulstijn, J., van der Torre, L.: Argument games for interactive access control. In:
Proc. of WI 2005, pp. 751–754. IEEE CS, Los Alamitos (2005)

9. Boella, G., Hulstijn, J., van der Torre, L.: Argumentation for access control. In: Proc. AIIA
2005, pp. 86–97 (2005)

10. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumenta-
tion frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389.
Springer, Heidelberg (2005)

11. Dijkstra, P., Bex, F., Prakken, H., de Vey Mestdagh, K.: Towards a multi-agent system for
regulated information exchange in crime investigations. In: Artificial Intelligence and Law,
pp. 133–151 (2005)

12. Doutre, S., McBurney, P., Perrussel, L., Thévenin, J.M.: Arguing for gaining access to infor-
mation. In: Proc. of AAMAS 2007, ACM, New York (2007)

13. Doutre, S., McBurney, P., Wooldridge, M., Barden, W.: Information-seeking agent dialogs
with permissionsand arguments. Technical Report ULCS-05-010, Department of Computer
Science, University of Liverpool, Liverpool, UK (2005)

14. Dung, P.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming, and N-Person games. Artificial Intelligence 77(32), 321–
357 (1995)

15. FIPA.: Communicative Act Library Specification. Standard SC00037J, Foundation for Intel-
ligent Physical Agents, 3 (December 2002)

16. Kakas, A., Moraitis, P.: Adaptative agent negotiation via argumentation. In: Proc. of AAMAS
2006 (2006)

17. Parsons, S., McBurney, P., Wooldridge, M.: The mechanics of some formal inter-agent di-
alogues. In: Dignum, F. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 329–348. Springer,
Heidelberg (2004)

18. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-
agent dialogues. J. Log. Comput. 13(3), 347–376 (2003)

19. Prakken, H.: On dialogue systems with speech acts, arguments, and counterarguments. In:
Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS
(LNAI), vol. 1919, pp. 224–238. Springer, Heidelberg (2000)

20. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal rea-
soning. Artificial Intelligence and Law 4, 331–368 (1996)

21. Rahwan, I., Moraitis, P., Reed, C. (eds.): ArgMAS 2004. LNCS (LNAI), vol. 3366. Springer,
Heidelberg (2005)

22. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review 18, 343–375 (2003)

23. Walton, D., Krabbe, E.: Commitments in Dialogue: Basic Concepts of Interpersonal Reason-
ing. SUNY Press (1995)

Towards Characterising Argumentation Based Dialogue
in the Argument Interchange Format

Sanjay Modgil1 and Jarred McGinnis2

1 Advanced Computation Lab, Cancer Research UK, London
2 Department of Computer Science Royal Holloway, University of London

Abstract. To facilitate development and practical deployment of argumentation
systems, a recent shared notation, or Argument Interchange Format (AIF), has
been proposed for representation and communication of argumentation knowl-
edge amongst agents. The AIF is described as an abstract model, or “ontology”,
characterising the core concepts and their relationships. Concrete reifications or
syntaxes instantiating these concepts have also been described. Thus far the focus
has been on representation of argument entities and networks, i.e., arguments and
sub-arguments and relations of inference, preference and attack amongst these
entities. Requirements were envisaged for a separate core ontology for items re-
lating to the interchange of arguments, such as locutions and protocols. In this
paper we propose that the core argument entity and network ontology can be ex-
tended to characterise communication in argumentation based dialogues between
agents. We also propose a declarative specification of these communicative con-
cepts that is of sufficient generality to serve as an operational semantics. Specifi-
cally, we propose use of the Lightweight Coordination Calculus (LCC). We then
illustrate our proposal with a use case multi-agent scenario. In presenting this
work, our aim is to stimulate further discussion and work on development of the
AIF in order to characterise communication in multi-agent dialogues.

1 Introduction

Significant progress has been made in establishing theoretical foundations for argu-
mentation based reasoning and dialogue, and development of these models for agent
reasoning and communication. More recently, progress has been made on development
of software implementations of these models. In particular, the ASPIC project (Argu-
mentation Services Platform with Integrated Components - www.argumentation.org)
is currently developing components implementing state of the art theoretical models
for argumentation based inference, decision making and dialogue. The objective is to
make these components available for deployment in agent and multi-agent applications
in both the commercial and research sectors. An example of the latter is the recently
started ARGUGRID project (www.argugrid.org) that aims at associating argumenta-
tion enabled agents with service/resource requestors and service/resource providers on
the Grid. Argumentation technology will be used to support rational decision making,
internal to agents, as well as negotiation, amongst agents.

To facilitate deployment of argumentation technology in multi-agent systems, a re-
cent shared notation, or Argument Interchange Format (AIF) [4], has been proposed for

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 80–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Characterising Argumentation 81

representation, and communication of argumentation knowledge amongst agents. The
aim has been to provide an ontology that can be populated to provide an operational
semantics, which, in contrast with existing argumentation mark up languages (e.g.,
[13]), would enable exchange and sophisticated automated processing of argumentation
knowledge in open multi-agent systems. The AIF is described as an abstract model, or
“ontology”, characterising the core concepts and their relationships. Concrete XML and
RDF reifications or syntaxes instantiating these concepts have also been described and
are currently being utilised for representation of arguments and their interactions [4,11].
Thus far the focus has been on representation of argument entities and networks, i.e.,
arguments and sub-arguments and relations of inference, preference and attack amongst
these entities. In section 2 we summarise the current state of the AIF as detailed in [4].
This work envisages requirements for a separate core ontology for items relating to the
communication of argumentation knowledge, such as locutions and protocols. In sec-
tion 3 we propose that the core argument entity and network ontology can be extended
to model communication between agents engaged in argumentation based dialogues. In
particular, we motivate representation of declarative specifications of interaction pro-
tocols that are of sufficient generality to serve as an operational semantics. In section
4 we describe how these representational requirements can be met by the Lightweight
Coordination Calculus [12]. In section 5 we then illustrate our proposal by referring
to multi-agent dialogue scenarios being developed as part of the ASPIC project. In pre-
senting this work, our aim is to stimulate further discussion and work on development
of the AIF in order to characterise communication in multi-agent dialogues.

2 The Argument Interchange Format

The AIF is currently specified as a core ontology that can be specialised to capture
the representational requirements of a variety of argumentation formalisms. Argument
entities are represented as nodes in a directed graph, informally called an argument
network (AN). There are two types of nodes, namely Information nodes (I-nodes) and
scheme application nodes (S-nodes). I-nodes relate to declarative content specific to
the domain of discourse, such as claims, propositions, data e.t.c. S-nodes relate to do-
main independent patterns of reasoning. The present ontology deals with three different
types of schemes nodes, namely rule application (RA) nodes, preference application
(PA) nodes and conflict application (CA) nodes. RA-nodes can be seen as applications
of (possibly non-deductive) rules of inference. For example, in fig.1 RA-node 1 rep-
resents application of defeasible modus ponens to the premises in its child I-nodes,
resulting in the inference flies(opus) in RA-node 1’s parent I-node. CA nodes can
be seen as applications of criteria (declarative specifications) defining conflict, which
may be logical or non-logical. In fig.1 the argument for flies(opus) mutually conflicts
with (bi-directionally attacks) the argument for ∼ flies(opus) since the arguments’
conclusions logically contradict as specified in CA-node 1. PA-nodes are applications
of (possibly abstract) criteria of preference among evaluated nodes. In fig.1 the argu-
ment for ∼ flies(opus) is preferred to the argument for flies(opus) since the former
has a greater degree of support as specified in PA-node 1. Note that nodes may possess

82 S. Modgil and J. McGinnis

Table 1. Semantics of support for node-to-node relationships in an argument network

to I-node to RA-node to PA-node to CA-node
from I-node I-node data used

in applying an
inference

I-node data used in
applying a
preference

I-node data in conflict
with information in node
supported by CA-node

from RA-node inferring a
conclusion
in the form
of a claim

inferring a
conclusion in the
form of an
inference
application

inferring a
conclusion in the
form of a
preference
application

inferring a conclusion in
the form of a conflict
definition application

from PA-node applying a
preference
over data in
I-node

applying a
preference over
inference
application in
RA-node

meta-preferences:
applying a
preference over
preference
application in
supported PA-node

preference application in
supporting PA-node in
conflict with preference
application in PA-node
supported by CA-node

from CA-node applying
conflict
definition to
data in
I-node

applying conflict
definition to
inference
application in
RA-node

applying conflict
definition to
preference
application in
PA-node

showing a conflict holds
between a conflict def-
inition and some other
piece of information

different attributes such as title, text, type (e.g. decision, action, goal, belief. . .), creation
date, strength (e.g., degree of support), acceptability, e.t.c. These attributes may vary
and are not part of the core ontology.

In the context of an argument network, a node A is said to support node B if and only
if there is an edge running from A to B. Edge types can be inferred from the nodes they
connect. Basically there are two types of edges, namely scheme edges and data edges.
Scheme edges emanate from S-nodes and are meant to support conclusions that fol-
low from the S-node. These conclusions may either be I-nodes or S-nodes. Data edges
emanating from I-nodes, on the other hand, necessarily end in S-nodes, and are meant
to supply data, or information to scheme applications. Table 1 summarises the relations
associated with the semantics of support. Notice that I-to-I edges are forbidden, because
I-nodes cannot be connected without an explanation for why that connection is being
made.

Thus far, the AIF concepts populating argument networks facilitate representation
of arguments their constitutive structure, and interactions between arguments. Syntac-
tic XML and RDF instantiations of the AIF’s semantic concepts are currently in use
[4,11]. For example, the ASPIC project has developed an argument inference engine
that implements algorithms [15] for computing the acceptability of arguments under
Dung’s grounded and admissible semantics [5]. The engine outputs a machine con-
sumable XML document that represents the constructed arguments and their attack and
preference relations that define the dialectical proof graph for the acceptability of an
argument. In [4], a second group of concepts is envisaged for communication in the
context of argumentation. Three main subgroups are identified:

Towards Characterising Argumentation 83

Fig. 1. A concrete example of an argument network

1. Locutions: Individual words, phrases or expressions uttered by an agent.
2. Interaction Protocols: Rules governing the legality of moves at each point in a

dialogue, the effects of locutions on the participants’ commitments, and outcome
rules defining the outcome of a dialogue.

3. Communication Context: Including the communication language defining the set of
possible speech acts, the topic language defining the set of possible wff exchanged
in locutions, the ids of the dialogue participants, their roles in the dialogue, the
dialogue topic and type (e.g., persuasion, negotiation etc), background theory rules,
commitment stores, and so on.

In the following section we motivate and discuss how locutions and interaction proto-
cols can be characterised in the AIF’s existing argument network ontology. The basic
idea is that locutions can be represented as content in I-nodes and interaction protocols
can be represented by an additional scheme node type, viz. a. vie: protocol interaction
application (PIA) nodes.

3 Characterising Locutions and Interaction Protocols in the
Argument Interchange Format

The current AIF provides an abstract model, or semantics, that allows for multiple syn-
tactic reifications. In particular, specific instances of S-nodes provide a kind of opera-
tional semantics that distinguishes the AIF from argument mark up languages: the AIF
not only provides for visualisation and inspection of argument structures, but also a se-
mantic model enabling automatic processing of argument structures by software agents.
For example, consider the ASPIC inference engine’s AIF export of a graph of attacking
arguments. A receiving agent can submit an additional attacking argument for linking
into the graph, provided that it complies with a conflict application node’s declarative
specification of what constitutes a valid attack. The scheme nodes thus both ‘describe’
and ‘prescribe’ the rationale relating the incoming I-nodes to the supported I-nodes.
Similarly, consider the output of a ‘dialogue manager’ that regulates an argumentation
based dialogue between participating agents P and Q. The locutions can be represented
as the content of I-nodes. P submits a locution l1 represented in I-node 1 (see fig.2).

84 S. Modgil and J. McGinnis

P
I-node 1

l1

Q
I-node 2

l2

I-node n
ln

PIA-
node1

Fig. 2. Protocol Interaction Application node linking I-nodes containing locutions

The interaction protocol that licenses valid replies by Q can be represented by a proto-
col interaction application (PIA) node - PIA-node 1 - linking Q’s incoming replies to
I-node 1.
In the context of communication, I-node attributes will, amongst others, include:

– The locution consisting of the speech act and its content (speech act(content)),
e.g., claim(φ), argue(A), why(φ), concede(φ), offer(φ), reject(φ), e.t.c.

– The ‘dialogical status’ of a locution [10].
– The ids of the sending and recipient agents.
– The language for the locution’s content, and ontologies which define elements of

the content.
– Message management elements such as the message-identifier.

From hereon, we may refer to locutions submitted by agents in a dialogue as ‘moves’.
In order that a protocol interaction application node encode the rationale for relating
Q’s replying move(s) to P ’s move, it may specify:

1. The protocol’s legal move function indicating the range of possible speech acts that
Q can select from in its reply. For example, in conflict resolution and persuasion
dialogues, legal replies to claim(φ) include why(φ) and concede(φ) [10].

2. For each possible speech act, the preconditions that must be satisfied for a locution
to contain the speech act. The preconditions may refer exclusively (if the protocol
has a social semantics) to Q’s commitment store, or additionally to Q’s internal
reasoning state. The preconditions can also encode strategic considerations that
determine the choice of a particular speech act from amongst those licensed by
the legal move function, and for any given speech act, the choice of content. For
example, if the move being replied to is offer(O) in a negotiation dialogue, then the
preconditions for a replying move of the form accept(O) can be that there is no O′

preferred to O according to the decision making mechanism of the replying agent
Q [1].

3. For each locution, the post-conditions that must be effected. For example, the ef-
fects of a locution on the commitment store of agents Q and P .

Towards Characterising Argumentation 85

4. Whether Q can make a single replying move (unique move protocols) or more than
one move (multiple move protocols) to a move by agent P , and whether Q can reply
to a move by P that Q has already replied to (multi-reply protocols) or whether Q
can reply only once to each of P ’s moves (single-reply protocols).

The majority of existing implementations of argumentation based dialogue systems
(see [2] for a review) deploy dialogue managers that enforce the rules of a protocol so
as to: 1) constrain participating agents to submitting legal moves, and; 2) define the out-
come of a dialogue. In a multi-agent context, one can envisage a mediator agent playing
the same role by communicating an AIF representation of the dialogue to participating
agents P and Q, in order that P and Q can apply their own constraint solvers to what are
effectively semantic constraints encoded in the PIA nodes. Consider figure 3 in which
a mediator agent (MA) mediates a persuasion dialogue between P and Q. Each agent
submits a move in accordance with the constraints encoded in the PIA-nodes that the
MA ‘attaches’ to the growing dialogue graph. Note that pre and postconditions for lo-
cutions are not shown. Their representation will be discussed in sections 4 and 5. Note
also that I-nodes may have an attribute indicating the move’s ‘dialogical status’ (in or
out). This allows for an ’any time’ definition of the outcome of a dialogue, whereby the
status of the initial move indicates that the proponent of the move is currently winning
(in) or losing (out) [10].

1. P moves claim(c) in I-node I1.
2. MA attaches PIA node 1 that has attributes indicating that Q can make multiple

moves in response to claim(c) (n > 1) since the protocol is a multi-move protocol.
PIA node 1 also specifies Q’s legal replies: why(c) and concede(c).

3. Q moves why(c). Note that MA maintains the ‘reply status’ attribute of PIA node
1 as <open>, so specifying that Q may backtrack and submit an alternative reply
to P ’s first move, i.e., the protocol is a multi-reply protocol.

4. MA attaches PIA node 2, specifying the legal replies argue(A) where A’s conclu-
sion is c, or retract(c)

5. P moves argue(A) in I-node I3. Note that I3 could be linked to the corresponding
argument represented as an argument network as described in section 2. This would
then expose the A’s premises for inspection and challenge by Q.

6. MA attaches PIA node 3, specifying that Q can reply with why(φ) where φ is a
premise in the argument A, or concede(φ) where φ is a premise in A or the con-
clusion of A, or an argument B that defeats A. Again, one could also explicitly
represent relations between arguments submitted in locutions. For example, if Q
submits B, then the linked argument network representations of A and B could be
bi-directionally linked by a conflict application node, and unidirectionally linked
from B to A by a preference application node (B defeats A is then a derived rela-
tion). Finally, note that Q can submit a move specified by PIA node 3, or backtrack
to PIA node 1 and move concede(c). If PIA node 1’s ‘reply status’ was <closed>
(indicating a unique-reply protocol) then Q would not be able to backtrack. Note
that once the dialogue is terminated, any PIA nodes without incoming I-nodes will
be removed.

We can now augment table 2 to include a row and column for PIA nodes. So, it
may be that a protocol interaction specification may itself be derived by applying rules,

86 S. Modgil and J. McGinnis

P MA Q

claim(c)

claim(c) - in

n > 1
why(c)

concede(c)
- open -

n > 1
- why(c)

- concede(c)
 <open>

I 1

PIA 1

 why(c)
I 2

I 1

PIA 1

I 1

claim(c) - out

n > 1
- why(c)

- concede(c)
 <open>

I 1

PIA 1

 why(c) - in
I 2

n > 1
- argue(A)

(conc(A) = c)
- retract(c)
 <open>

PIA 2

n > 1
- why(c)

- concede(c)
 <open>

I 1

PIA 1

I 2

n > 1
- argue(A)

(conc(A) = c)
- retract(c)
 <open>

PIA 2

argue(A)

I3

n > 1
- why(c)

 - concede(c)
 <open>

I 1

PIA 1

I 2

n > 1
- argue(A)

(conc(A) = c)
- retract(c)
 <open>

PIA 2

argue(A) - in

I3

n > 1

- why(φ)
φ in prem(A)

- argue(B), B defeats A
- concede(φ) (φ in premA

or φ = conc(A))

<open>

PIA 3

1)

2)

3)

4)

5)

6)

claim(c) - in

claim(c) - out

 why(c) - in

claim(c) - in

 why(c) - out

Fig. 3. A mediator agent directs construction of a dialogue graph represented in the AIF

and be in conflict with, or preferred to, other protocol interaction specifications. This
is consistent with the view that these specifications can exist independently of a given
dialogue instance, and recent works in which the protocol rules that apply during com-
municative interactions may themselves be part of the domain of discourse and subject

Towards Characterising Argumentation 87

to debate. This has been done using the Lightweight Coordination Calculus (LCC) [12],
dialogue games and adjacency pairs to create run-time protocol synthesis [7]. This work
builds a synthesis engine on top of a traditional LCC expansion engine. Another ap-
proach, RASA, is a language specifically designed for the inspection, validation, com-
position and execution of agent interaction protocols [8]

Thus far we have informally described the role of protocol interaction nodes in ef-
fectively specifying semantic constraints that relate replying locutions in a dialogue. In
the following section we propose the use of a lightweight coordination calculus that
provides an abstract declarative protocol language with a representation of constraints
that does not commit users to a particular logic or constraint satisfaction mechanism.
The operational semantics of the protocol language are common for the coordination of
distributed processes and are defined more fully in [12].

4 The Lightweight Coordination Calculus - A Declarative
Operational Semantics

Figure 4 defines the syntax of a protocol language. For those readers unfamiliar with
the LCC, it may be helpful to note that the LCC is a declarative logic programming
language in the style of Prolog, augmented with CCS (a process calculus for commu-
nicating systems). The protocol consists of a set of agent clauses, A{n}. The protocol
will contain a set of at least two clauses because LCC protocols are defined locally (i.e.
from the perspective of the participating agent roles). An agent clause is the series of
communicative actions expected to be performed by an agent adopting the role defined
by the agent definition. This agent definition consists of a role (R) and unique identifier
(Id). A role is defined in a similar way as Electronic Institutions [6]: a way of defining
communicative activity for a group of agents rather than individuals. The roles act as a
bounding box for a set of states and transitions. LCC is based on a process calculus and
is therefore well suited to express the concurrency found in multiagent systems.

P ∈ Protocol ::= 〈S,A{n},K〉
A ∈ Agent Clause ::= θ :: op.
θ ∈ Agent Definition ::= agent(R,Id)
op ∈ Operation ::= no op

| θ
| (op) (Precedence)
| M ⇒ θ (Send)
| M ⇐ θ (Receive)
| op1 then op2 (Sequence)
| op1 par op2 (Parallelization)
| op1 or op2 (Choice)
| (M ⇒ θ) ← ψ (Prerequisite)
| ψ ← (M ⇐ θ) (Consequence)

M ∈ message ::= 〈m,P〉

Fig. 4. An Abstract Syntax of the Protocol Language

88 S. Modgil and J. McGinnis

The agent definition is expanded by a number of operations. Operations can be clas-
sified in three ways: actions, control flow, and conditionals. Actions are the sending or
receiving of messages, a no op, or the adoption of a role. Control flow operations tem-
porally order the individual actions. Actions can be sequentially ordered, performed
simultaneously without regard to order, or given a choice point. The definition of the
double arrows, ‘⇒’ and ‘⇐’, denote messages M being sent and received. On the left-
hand side of the double arrow is the message and on the right-hand side is the other
agent involved in the interaction.

Constraints can fortify or clarify semantics of the protocols. Those occurring on the
left of the ‘←’ are post-conditions and those occurring on the right are preconditions.
The symbol ψ represents a first order proposition. For example, an agent receiving a
protocol with the constraint to believe a proposition s upon being informed of s can infer
that the agent sending the protocol has a particular semantic interpretation of the act of
informing other agents of propositions. The operation (M ⇒ θ) ← ψ is understood to
mean that message M is being sent to the agent defined as θ on the condition that ψ is
satisfiable. The operation ψ ← (M ⇐ θ) means that once M is received from agent θ,
ψ holds.

For example, in figure 3, the first move made is claim(c). The mediator agent could
prompt agent P to make this move by sending the following LCC protocol:

a(, p)::=
claim(φ) ⇒ a(, q).

This is read as: “agent p with any role (represented by the underscore) can send
claim(φ) to the agent q. Depending on the scenario, there are a number of ways this
protocol can be modified. If the mediating agent wanted to allow the agent more free-
dom to choose, subject to satisfaction of a constraint, a protocol such as the following
can be imagined:

a(, p)::=
claim(T) ⇒ a(, OtherAgent)

← findpartner(OtherAgent) and findtopic(T).

This constraint states that if p can find some OtherAgent and topic T then it can
send claim(T) to that OtherAgent. How and by what means the constraint is satisfied
is left to the discretion of the individual agent.

5 A Use Case Scenario: Argumentation Based Dialogues in
Medical Multi-agent Systems

In this section we describe an ASPIC use case scenario and outline the use of LCC pro-
tocols in this scenario. ASPIC has proposed a general model for argumentation based
deliberative reasoning amongst agents deployed in a medical multi-agent system. This
involves the use of argumentation to resolve conflicts of opinion as to what is the case
(e.g., diagnosis) and what to do (e.g., treatment planning). Agents equipped with the
ASPIC inference component for constructing acceptable arguments will engage in dia-
logues mediated by a mediator agent, as illustrated in fig.3. Two of the key requirements
informing the general model were:

Towards Characterising Argumentation 89

1. The need to accommodate heterogenous agents (e.g. human and automated agents)
with different knowledge representing languages, models of reasoning, and levels
of automation.

2. The need to account for the safety critical nature of the medical domain by ensuring
that agents are able to explore all possible lines of reasoning with respect to the
issue under deliberation.

These requirements are partially fulfilled by the combined use of schemes and criti-
cal questions [16], and a mediator agent implementing protocols in a recently proposed
framework for a class of persuasion and conflict resolution dialogues [10]. ASPIC
is currently engineering a dialogue component that mediates protocols defined in the
framework, and that is based on a prototype implementation described in [3]. A large
scale demonstrator [14] is also being built to demonstrate a mediator agent’s use of the
dialogue component to regulate dialogues between human physicians and automated
agents deployed with the ASPIC inference engine. Here, we focus on LCC represen-
tations of interaction protocols that the mediator agent can communicate in order to
enable agent participation in a dialogue.

We first describe the basic features of the framework described in [10]. This frame-
work imposes an ‘explicit reply’ structure on dialogues, whereby moves either attack
or surrender to a previous move of another participant. The dialogue graph built dur-
ing a dialogue thus relates each move by a binary relation of ‘attack’ or ‘surrender’
to the move it replies to. Given a graph of dialogical moves, [10] defines a procedure
for assigning a move’s dialogical status. In particular, it is the dialogical status of the
initial move that is at issue. For example, in fig.3 MA assigns the status in to P ’s initial
move claim(c). Q’s move why(c) is an attacking reply to claim(c). P ’s move is now
assigned out and Q’s move assigned in. Intuitively, P ’s claim is under challenge and so
the burden of proof now resides with P . For P to win the dialogue it must submit an
argument for c in a reply that attacks why(c). Thus, at stage 6 in the dialogue argue(A)
is assigned in, why(c) out and claim(c) in. Notice that if Q had moved concede(c) at
stage 3 (or after stage 6), then this would be a surrendering reply to claim(c) (respec-
tively argue(A)) and claim(c)’s dialogical status would remain in.

A primary motivation for development of the framework in [10] was to make as few
assumptions as possible about participating agents. In abstracting to the level of an ex-
plicit reply structure, the framework allows for different sets of speech acts, and differ-
ent underlying argumentation based logics, thus allowing for participation by heteroge-
nous agents. Furthermore, the framework allows for flexible dialogues (multi-move and
multi-reply). Allowing agents to backtrack to their opponents’ previous moves ensures
that all possible lines of reasoning / argument can be explored. However, liberal pro-
tocols with unconstrained backtracking can lead to ‘irrelevant’ moves. If backtracking
is to be permitted, then some control mechanism is required to restrict backtracking to
replies that will affect the outcome in favour of the replying agent. This is where the
’any time’ definition of the dialogue outcome discussed in section 3 applies. Various
notion of ‘relevance’ are defined, where, for example, an attacking move is relevant
only if it changes the dialogical status of the initial move. Thus, the mediator agent can
not only direct a participating agent as to its valid replies, but also which of its oppo-
nent’s moves can be relevantly replied to. In fig.3, the MA can indicate that a move can

90 S. Modgil and J. McGinnis

/ cannot be relevantly backtracked to by assigning <open>, respectively <closed>, to
the PIA node’s ‘reply status’ attribute.

We conclude with examples of LCC representations of interaction protocols cur-
rently being developed for the ASPIC multi-agent demonstrator. The architecture in-
cludes a mediator agent (MA) and thus does not use the full strength of the LCC
language that was originally intended for peer-to-peer coordination. So, much of the
coordination is delegated to this MA rather than the protocols themselves. Later in this
section, we give an example of LCC flexing its coordination muscles and allowing
agents to communicate directly without the mediator.

We restrict ourselves to representation of legal attacking replies and their precondi-
tions and postconditions as defined by protocol rules in [9] that conform to the frame-
work in [10]. The dialogue begins with a claim sent by an agent instantiating Id to
an agent instantiating Pid with the consequence that Id updates its commitment store
(CS) with the claim. In LCC, this step of the dialogue can be specified as:

(1)
a(, Id)::=

claim(φ) ⇒ a(, P id) ← update(Id, CS, φ).

The MA can now include the following in a PIA node, indicating that the replying
agent can challenge (attack) a claim with a why locution, provided that its commitment
store cannot justify (there is no acceptable argument for) that claim.

(2)
a(, Id)::=
why(φ) ⇒ a(, P id) ← not(justified(Id, CS, φ)).

The legal attacking reply to why(φ) is argue(Φ, φ). This is conditional on previous
why moves of the form why(γ) where γ ∈ Φ (γ is a premise in Φ). The MA could send
this LCC clause:

(3)
a(, Id)::=
argue(Φ, φ) ⇒ a(, P id) ← calculate protected Arg(Φ, φ).

In practice, the agent instantiating Id could satisfy constraint
calculate protected Arg(Φ, φ) by checking the argument network for (Φ, φ)
and ensuring that if there is a premise γ ∈ Φ which is challenged (attacked) by a why
locution in the dialogue graph, then that challenge has been been appropriately dealt
with by Id (the why locution has been assigned the status out by MA).

The rules have thus far only specified a single attacking reply to a particular locution.
However there are two possible attacking replies to argue. An agent can either respond
to argue(Φ, φ) with a why(γ) where γ is a premise in Φ, or an argue(Ω, μ) that defeats
argue(Φ, φ).

(4)
a(, Id)::=
why(γ) ⇒ a(, P id) ← calculate Arg premise(Φ, γ), not(justified(Id, CS, γ))
or
argue(Ω, μ) ⇒ a(, P id) ← calculate defeat(Φ, φ, Ω, μ).

Towards Characterising Argumentation 91

calculate defeat could be evaluated by checking that the argument network repre-
sentations of (Ω, μ) and (Φ, φ) can be linked as specified by conflict and preference
application nodes. 1

The mediator agent parcels out appropriate protocols for the agents to execute and
is responsible for ensuring that appropriate variables for the protocols are used and the
agents receive the messages intended for them. However, LCC enables encoding of the
coordinating mechanisms in the protocol itself so that agents can communicate directly
without relying on an intermediary. For example, consider clauses 1 and 2 above. These
can now be represented by the pairs:

(1a)
1: a(claims([CSid], CSpid, φ), Id)::=
2: claim(φ) ⇒ a(claimh(CSid, CSpid, φ), P id)
3: then a(whyh([φ|CSid], CSpid), Id).

(1b)
4: a(claimh([CSid], CSpid, φ), P id)::=
5: claim(φ) ⇐ a(claims(CSid, CSpid, φ), Id)
6: then a(whys([φ|CSid], CSpid), P id).

(2a)
7: a(whys(CSid, CSpid), Id)::=
8: why(φ) ⇒ a(whyh(CSid, CSpid), P id) ← not(justified(φ, CSid)).

(2b)
9: a(whyh(CSid, CSpid), P id)::=
10: why(φ) ⇐ a(whys(CSid, CSpid), Id).

In 1a the agent, whose identification will unify with Id, in the role of claims (line 1,
s denotes ‘speaker’) sends claim(φ) (line 2) to some agent (Pid) in the role of claimh

(h denotes ‘hearer’), after which the agent adopts the role whyh (line 3) and φ is added
to Id’s commitment store CSid. Previously, the mediator agent coordinated the legal
replies, and their pre and post-conditions. This coordinating role is now subsumed in
the protocol language. In 1b the agent playing the role of hearer (line 4) after receiving
the claim (line 5) can then adopt the role of the speaker of why (line 6). In 2a and
2b we again see how the sending and receiving of messages coordinates the dialogues
between the two agents (lines 7 - 10).

1 LCC assumes that the predicate of the constraint is defined by a mutually understood ontology.
One can verify that a constraint has been satisfied, but the actual mechanism for verification is
not prescribed and is assumed to be implemented internally by the agent. There is a delicate
balance to be achieved here between reliability and autonomy. Constraints are needed to create
reliable interaction models but should not infringe upon how the agent achieves this. The
inclusion of constraints in the protocol helps elucidate the meaning of an agent sending that
message. However whether the agent satisfies the constraint by executing a prolog rule, or
sends a message to a human who clicks yes or no is a private matter.

92 S. Modgil and J. McGinnis

6 Conclusions and Future Work

In this paper we have proposed that the AIF’s existing core ontology can be used to
characterise argumentation based dialogues. Specifically, locutions can be represented
as content in I-nodes and interaction protocols can be declaratively specified in a new
scheme node type: protocol interaction application nodes. In this way, the AIF repre-
sentation of argumentation knowledge communicated during the course of a dialogue,
i.e. arguments and their premises, and inferential, conflict and preference relations, can
be linked to the AIF representation of the dialogue graph. The AIF is intended to pro-
vide a formal semantics enabling exchange and automated processing of argumentation
knowledge in multi-agent systems. Hence, a PIA node will provide an operational se-
mantics for relating replying locutions in a dialogue. We have therefore proposed an
abstract declarative protocol language - the Lightweight Coordination Calculus - for
representing interaction protocols. We illustrated the envisaged use of the AIF and LCC
representation in the context of an ASPIC multi-agent dialogue scenario currently un-
der development. The scenario illustrated use of the LCC in mediated dialogues. We
also showed how the LCC can encode interaction protocols for direct agent to agent
communication. In proposing the use of LCC, and PIA nodes as one amongst a number
of scheme node types, we believe that our proposal is consistent with recent works in
which protocol rules may themselves be part of the domain of discourse, and subject to
run time composition. In conclusion, our aim has been to provide a starting point for
further discussion and work on development of the AIF in order to characterise com-
munication in multi-agent dialogues. For example, representation of the communication
context remains to be addressed. We also suggest that requirements arising from other
use case scenarios will usefully inform further development, and possibly revisions, of
the proposal described in this paper.

Acknowledgements. This work was funded by the EU FP6 ASPIC and ARGUGRID
projects. The authors would also like to acknowledge the authors of [4], including
Steven Willmott who was the prime mover in setting up the first AgentLink 3 spon-
sored AIF meeting, and John Fox who was the first to propose the AIF initiative.

References

1. Amgoud, L., Prade, H., Belabbes, S.: Towards a formal framework for the search of a consen-
sus between autonomous agents. In: Dignum, F., Wooldridge, M., Koenig, S., Kraus, S. (eds.)
Proc. 4th International joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS 2005, pp. 537–543. ACM Press, New York (2005)

2. ASPIC. Deliverable d1.1 - review on argumentation technology: State of the art, technical
and user requirements (June 2004),
http://www.argumentation.org/Public Deliverables.htm

3. Bodenstaff, L., Prakken, H., Vreeswijk, G.: On formalising dialogue systems for argumen-
tation in the event calculus. In: Proc. Eleventh International Workshop on Nonmonotonic
Reasoning, Windermere (UK), pp. 374–382 (2006)

4. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, Reed, C., Simari, G., South, M.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. The Knowledge En-
gineering Review 21(4), 293–316 (2007)

http://www.argumentation.org/Public_Deliverables.htm

Towards Characterising Argumentation 93

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

6. Estava, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal specifications
of electronic institutions. LNAI, 126–147 (2001)

7. McGinis, J., Robertson, D., Walton, C.: Protocol synthesis with dialogue structure theory.
In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS (LNAI),
vol. 4049, Springer, Heidelberg (2006)

8. Miller, T., McBurney, P.: Towards a lightweight formal language for first-class agent interac-
tion protocols. In: O’Hare, G., Ricci, A., O’Grady, M., Dikenelli, O. (eds.) Workshop Notes
of Engineering Societies in the Agents World, pp. 153–168 (2006)

9. Prakken, H.: On dialogue systems with speech acts, arguments, and counterarguments. In:
Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS
(LNAI), vol. 1919, pp. 224–238. Springer, Heidelberg (2000)

10. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of logic
and computation 15, 1009–1040 (2005)

11. Rahwan, I., Sakeer, P.V.: Towards representing and querying arguments on the semantic web.
In: Proc. 1st International Conference on Computational Models of Argument, Liverpool,
UK, pp. 3–14. IOS Press, Amsterdam (2006)

12. Robertson, D.: Multi-agent coordination as distributed logic programming. In: Proceedings
for International Conference on Logic Programming (2004)

13. Rowe, G.W.A., Reed, C., Katzav, J.: Araucaria: Marking up argument. European Conference
on Computing and Philosophy (2003)

14. Tolchinsky, P., Cortés, U., Modgil, S., Caballero, F., Lopez-Navidad, A.: Increasing the avail-
ability of human organs for transplantation through argumentation based deliberation among
agents. IEEE Special Issue on Intelligent Agents in Healthcare 21(6), 30–37 (2006)

15. Vreeswijk, G.A.W.: An algorithm to compute minimally grounded and admissible defence
sets in argument systems. In: Proc. 1st International Conference on Computational Models
of Argument, Liverpool, UK, pp. 109–120. IOS Press, Amsterdam (2006)

16. Walton, D.N.: Argument Schemes for Presumptive Reasoning. Lawrence Erlbaum Asso-
ciates, Mahwah (1996)

Preferences and Assumption-Based

Argumentation for Conflict-Free Normative
Agents

Dorian Gaertner and Francesca Toni

Department of Computing
Imperial College London, UK
{dg00,ft}@doc.ic.ac.uk

Abstract. Argumentation can serve as an effective computational tool
and as a useful abstraction for various agent activities and in particu-
lar for agent reasoning. In this paper we further support this claim by
mapping a form of normative BDI agents onto assumption-based argu-
mentation. By way of this mapping we equip our agents with the capabil-
ity of resolving conflicts amongst norms, beliefs, desires and intentions.
This conflict resolution is achieved by using a variety of agents’ prefer-
ences, ranging from total to partial orderings over norms, beliefs, desires
and intentions, to entirely dynamic preferences defined in terms of rules.
We define one mapping for each preference representation. We illustrate
the mappings with examples and use an existing computational tool for
assumption-based argumentation, the CaSAPI system, to animate con-
flict resolution within our agents. Finally, we study how the different
mappings relate to one another.

Keywords: norms, BDI agents, conflicts, argumentation.

1 Introduction

Normative agents, namely agents that are governed by social norms (see for
example [5,7,28]), may be subject to conflicts amongst their individual desires,
or beliefs, or intentions. Such conflicts can be resolved by rendering informa-
tion (such as norms, beliefs, desires and intentions) defeasible and by enforcing
preferences [30]. In turn, argumentation has proved to be a useful technique for
reasoning with defeasible information and preferences (e.g. see [21,23,25]) when
conflicts may arise.

In this paper we adopt a model for normative agents, whereby agents hold
beliefs, desires and intentions, as in a conventional BDI model, but these mental
attitudes are seen as contexts and the relationships amongst them are given
by means of bridge rules (as in [24]). We adopt a norm representation that
builds upon and extends the one given for the BDI+C agent model of [15] and
refer to our agents as BDI+N agents. In this work, norms are internalised as
bridge rules. This representation is a natural one, in that norms typically concern
different mental attitudes. Bridge rules afford a specific kind of rule-based norm

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 94–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Preferences and Assumption-Based Argumentation 95

representation that lends itself to a mapping onto argumentation frameworks,
as we show in this paper.

Furthermore, we assume that preferences over bridge rules and mental atti-
tudes are explicitly given, to be used to resolve (potentially arising) conflicts.
We consider three kinds of representations for preferences:

– by means of total orders over conflicting information;
– by means of partial orders over conflicting information;
– by dynamic rules that provide partial, domain-dependent definitions of pref-

erences, e.g. as in [21,23,25].

For the detection and resolution of conflicts arising from choosing to adopt so-
cial norms, and for each form of preference representation, we use a specific form
of argumentation, known as assumption-based argumentation [4,10,12,17,23].
This has been proven to be a powerful mechanism to understand commonalities
and differences amongst many existing frameworks for non-monotonic reasoning
[4], for legal reasoning [23], for practical and epistemic reasoning [17], for service
selection and composition [32] and for defeasible reasoning [31]. Whereas abstract
argumentation [9] focuses on arguments seen as primitive and atomic and at-
tacks as generic relations between arguments, assumption-based argumentation
sees arguments as deductions from “assumptions” in an underlying “deductive
system” and defines attacks against arguments as deductions for the “contrary”
of assumptions supporting those arguments.

Assumption-based argumentation frameworks can be coupled with a number
of different semantics, all defined in dialectical terms and borrowed from abstract
argumentation, some credulous and some sceptical, of various degrees. Different
computational mechanisms can be defined to match the semantics, defined in
terms of dialectical proof procedures, in particular, GB-dispute derivations [11]
(computing the sceptical “grounded” semantics), AB-dispute derivations [10,11]
(computing the credulous “admissible” semantics) and IB-dispute derivations
[11,12] (computing the sceptical “ideal” semantics). All these procedures have
been implemented within the CaSAPI system [17].

In this paper we provide a mapping from BDI+N agents onto assumption-
based argumentation, and make use of the CaSAPI system to animate the agents
and provide conflict-free beliefs, desires and intentions, upon which the commit-
ments of the agents are based. The different procedures that CaSAPI implements
provide a useful means to characterise different approaches that BDI+N agents
may want to adopt in order to build these commitment stores.

The paper is organised as follows. Section 2 gives some background for and
a preliminary definition of our BDI+N agents, focusing on the representation of
norms. Section 3 gives some background on the form of argumentation we adopt
and show how it can be used to detect and avoid conflicts. Section 4 presents our
approach to modelling the agents’ preferences (in terms of total orderings, partial
orderings and dynamic preference definitions) and using these preferences to
resolve conflicts in the assumption-based argumentation counterparts of BDI+N
agents. Section 5 presents some formal correspondence results between the three
translations. Finally, Section 6 discusses related and future work and concludes.

96 D. Gaertner and F. Toni

This paper is a revised and extended version of our previous work in [16]. In
particular, Section 2 has been restructured and Section 5 has been added.

2 BDI+N Agents: Preliminaries

In this section we briefly present the notion of BDI+N agent, discuss how norms
can be represented for such agents and how they are internalised. We also present
an example of a normative conflict for such agents.

2.1 Background

Our BDI+N agents are an adaptation and extension of the agent model in [15],
which in turn builds upon the work in [24]. The agentmodel of [15] adapts an archi-
tecturebasedonmulti-contextsystemsthathavefirstbeenproposedbyGiunchiglia
and Serafini in [19]. Individual theoretical components of an agent are modelled as
separate contexts, each of which contains a set of statements in a language Li to-
gether with the axioms Ai and inference rules Δi of a (modal) logic. A context i is
hence a triple of the form: 〈Li, Ai, Δi〉. Not only can sentences be deduced in each
context using the deduction machinery of the associated logic, but these contexts
are also inter-related via bridge rules that allow the deduction of a sentence in one
context based on the presence of certain sentences in other, linked contexts.

An agent is then defined as a set of context indices I, a function that maps
these indices to contexts, another function that maps these indices to theories
Ti (providing the initial set of formulae in each context), together with a set
of bridge rules BR, namely rules of inference which relate formulae in different
contexts. Thus, an agent can be given as follows:

Agent = 〈I, I → 〈Li, Ai, Δi〉, I → Ti, BR〉
The normative agents we are investigating are all extensions of the well-known

BDI architecture of Rao and Georgeff [27] and hence the set of context indices
I is {B, D, I}. Bridge rules are inference rules that may be ground, non-ground,
or partially instantiated axioms or norm schemata.

2.2 BDI+N Agents

For BDI+N agents, bridge rules have the following syntax:

BridgeRule ::=
ϕ

ψ
ϕ ::= SeqLiterals

SeqLiterals ::= MLiteral | MLiteral, SeqLiterals
ψ ::= MLiteral

MLiteral ::= MentalAtom | ¬MentalAtom
MentalAtom ::= B(stateterm)

| B(Eitherterm → Eitherterm)
| D(Eitherterm) | I(actionterm)

Eitherterm ::= actionterm | stateterm

Preferences and Assumption-Based Argumentation 97

and norms are internalised simply as bridge rules, independently of how they
are represented in their corresponding norm representation language:

Norm ::= BridgeRule

Note that we distinguish between two kinds of terms: actions that an agent can
execute are called action terms ; properties that cannot be executed are called
state terms. State terms can be brought about by executing actions represented
by action terms.

This representation of norms is an adaptation of the one proposed for the
BDI+C agent model of [15]. However, in [15] norms are meant to feed into a
commitment store, where commitments are associated with an agent/institution
component which identifies the protagonist and the subject of a commitment.
Moreover, in [15], mental atoms are simply defined as follows:

MentalAtom ::= B(term) | D(term) | I(term)

Our distinction between action and state terms leads to a refinement of the
original BNF definition for a mental atom, so that executable actions are distin-
guished from properties. Moreover, we allow beliefs within mental atoms to be
in implicative form. We restrict intentions to only concern action terms, since,
intuitively, an intention is always about some future behaviour. For example,
the Bible’s Commandment “You shall not covet your neighbour’s wife” is repre-
sented in BDI+N agents as 1:

B(correct(bible))

¬D(have(neighbours wife))

Indeed, a man cannot intend to have his neighbour’s wife: he can desire it, and
this may eventually result in an intention (e.g. to leave his wife which in turn
is an action). Here, both correct(bible) and have(neighbours wife) are state
terms.

Simple beliefs are restricted to concern state terms, since one cannot believe
an action. Implicative beliefs may have either state or action terms both as
antecedent and consequent. Examples of implicative beliefs are: B(sunny →
stays dry(grass)) or B(goto(mecca) → goto(heaven)).

Finally, note that we do not allow negative terms of either kind. So, for exam-
ple, we cannot represent directly B(rainy → ¬stays dry(grass)). However, this
belief can be expressed equivalently as B(raining → not stays dry(grass)). 2

1 In this paper we adopt a Prolog-like convention: ground terms and predicates begin
with a lower-case letter and variables begin with an upper-case letter.

2 The relationship between not stays dry(X) and stays dry(X) can be easily ex-
pressed in assumption-based argumentation by setting appropriate definitions of
the notion of contrary, as will see later.

98 D. Gaertner and F. Toni

The bridge rule given earlier is ground. An examples of a non-ground bridge rule
(also referred to as a schema) is:

B(X → Y), D(Y)

I(X)

expressing that, for any X and Y , if an agent believes that X → Y and it desires
Y , then the agent should intend X . An example of a partially instantiated bridge
rule (schema) is:

B(immediately(armageddon))

¬D(X)

namely, if one believes that Armageddon will strike immediately, then one should
not desire anything. Note that the first bridge rule given earlier, as well as the
bridge rule:

B(correct(quran))

¬I(goto(mecca))

are intuitively norms, whereas the other example bridge rules given earlier are
not. A detailed analysis of what makes a rule a norm is a complex problem be-
yond the scope of this paper. Here, we simply assume that agents are equipped
with bridge rules including norms, and focus on dealing with conflicts that may
arise amongst bridge rules/norms and theories, inference rules and axioms asso-
ciated to the B, D and I mental attitudes. These conflicts may not arise when
agents are created. However, agents communicate with one another (and poten-
tially sense their environment) and by doing so update their beliefs. New beliefs
can trigger a norm (possibly by instantiating a norm schema) and subsequently,
a new belief, desire or intention could be adopted by the agent. This may be in
conflict with existing beliefs, desires or intentions, and thus commitments may
be inconsistent. Equipping BDI+N agents with preferences and argumentative
abilities, provides a solution to the problem of resolving these conflicts.

2.3 Example

For illustrative purposes, throughout the remainder of this paper we use an
example employing agents from the ballroom scenario described in [14]. We
consider a single dancer agent at a traditional ballroom. This dancer can be
represented as an agent

〈I = {B, D, I}, I → 〈Li, Ai, Δi〉, I → Ti, BR〉

with BR consisting (amongst others) of the following bridge rules:

B(X → Y), D(Y)
I(X)

(if X is an actionterm) (1)

Preferences and Assumption-Based Argumentation 99

B(X → Y), D(Y)
D(X)

(if X is a stateterm) (2)

D(X)
I(X)

(if X is an actionterm) (3)

and inference rules in ΔB:

B(X → Y) ∧ B(X)
B(Y)

(modus ponens for B) (4)

Note, that axiom (4) corresponds to modal logic schema K for beliefs, but is
not present for desires and intentions since implications can be believed but
neither desired nor intended. Furthermore, we do not have positive or negative
introspection (modal logic schemata 4 and 5) since we exclude nested beliefs,
desires and intentions for simplicity’s sake. Moreover, the bridge rules BR include
also ground norms using the domain language of the ballroom. We describe a
selection of these norms here:

B(attractive(X))

D(danceWith(X))
(5)

B(sameSex(X, self))
¬I(danceWith(X))

(6)

B(thirsty(self))
I(goto(bar))

(7)

Finally, one needs to define the theories Ti of the agent, detailing his initial
beliefs, desires and intentions. Our dancer in question is male, not thirsty and
considers his friend and fellow dancer Bob to be attractive. Hence TB contains
B(attractive(bob)), B(sameSex(bob, self)), B(not thirsty(self)). From the first
belief, norm (5) and an instance of bridge rule schema (3), one can derive that
our dancer should intend to dance with Bob. However, from the second belief
and norm (6) one can derive the exact opposite, namely that our dancer should
not intend to dance with Bob. We believe that this inconsistency is undesirable
and intend to address this problem.

3 Conflict Avoidance

In this section we provide some background on assumption-based argumentation
(ABA) and show how it can be used to avoid conflicts, in the absence of any
additional (preference) information that might help to resolve them.

3.1 Background

An ABA framework is a tuple 〈L, R, A, 〉 where

100 D. Gaertner and F. Toni

– (L, R) is a deductive system, with a language L and a set R of inference
rules,

– A ⊆ L, is referred to as the assumption set,
– a (total) mapping from A into L, where α is referred to as the contrary

of α.

We will assume that the inference rules in R have the syntax c0 ← c1, . . . cn.
(for n ≥ 0), where ci ∈ L. We will represent c ← . simply as c0.. As in [10], we
will restrict attention to flat ABA frameworks, such that if c ∈ A, then there
exists no inference rule of the form c ← c1, . . . , cn ∈ R for any n ≥ 0.

Example 1. L = {p, a, ¬a, b, ¬b}, R = {p ← a. ¬a ← b. ¬b ← a.}, A = {a, b}
and a = ¬a, b = ¬b.

An argument in favour of a sentence x in L supported by a set of assumptions
X is a backward deduction from x to X , obtained by applying backwards the
rules in R. For the simple ABA framework above, an argument in favour of p
supported by {a} may be obtained by applying p ← a. backwards.

In order to determine whether a conclusion (set of sentences) is to be sanc-
tioned, a set of assumptions needs to be identified that would provide an “ac-
ceptable” support for the conclusion, namely a “consistent” set of assumptions
including a “core” support as well as assumptions that defend it. This informal
definition can be formalised in many ways, using a notion of “attack” amongst
sets of assumptions whereby X attacks Y iff there is an argument in favour of
some x supported by (a subset of) X where x is in Y . In Example 1 above, {b}
attacks {a}.

Possible formalisations of “acceptable” support are: a set of assumptions is

– admissible, iff it does not attack itself and it counter-attacks every set of
assumptions attacking it;

– complete, iff it is admissible and it contains all assumptions it can defend,
by counter-attacking all attacks against them;

– grounded, iff it is minimally (wrt set inclusion) complete;
– ideal, iff it is admissible and contained in all maximally (wrt set inclusion)

admissible sets.

These formalisations are matched by computational mechanisms [10,11,12],
defined as disputes between two fictional players: a proponent and an opponent,
trying to establish the acceptability of a given conclusion with respect to the
chosen semantics. The three mechanisms are GB-dispute derivations, for the
grounded semantics, AB-dispute derivations, for the admissible semantics, and
IB-derivations, for the ideal semantics. Like the formalisations they implement,
these mechanisms differ in the level of scepticism of the proponent player:

– in GB-dispute derivations the proponent is prepared to take no chance and
is completely sceptical in the presence of alternatives;

– in AB-dispute derivations the proponent would adopt any alternative that
is capable of counter-attacking all attacks without attacking itself;

Preferences and Assumption-Based Argumentation 101

– in IB-dispute derivations, the proponent is wary of alternatives, but is pre-
pared to accept common ground between them.

The three procedures are implemented within the CaSAPI system for argu-
mentation [17].

In order to employ ABA to avoid (and resolve) conflicts, one has to provide a
mapping from the agent representation introduced in Section 2 onto an appro-
priate ABA framework and choose a suitable semantics. Given such a mapping,
one can then run CaSAPI, the argumentation tool, and hence reason on demand
about a given conclusion.

3.2 Naive Translation into Assumption-Based Argumentation

In our proposed translation, one can see all bridge rules BR, theories Ti, axioms
Ai and inference rules Δi as inference rules in an appropriate ABA framework
(given below). The language L holds all mental atoms that make up the norms
and initial theories. The R component holds the bridge rules, the inference rules
in all theories Ti and the axioms in all Ai. Concretely, we map each norm from
the set of bridge rules BR and each element of each of the theories Ti to a fact
(and hence to a rule) to an inference rule in R.

The assumption set A is set to ∅ in the naive translation. Thus, a definition
for is not required.

Therefore, a naive translation of the ballroom example in Section 2.3 into an
ABA framework gives 〈L, R, A, 〉 3:

L = LB ∪ LD ∪ LI

A = ∅

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(X) ← B(X → Y), D(Y), actionterm(X).
D(X) ← B(X → Y), D(Y), stateterm(X).
B(Y) ← B(X → Y), B(X).
I(X) ← D(X).
D(danceWith(X)) ← B(attractive(X)).
¬I(danceWith(X)) ← B(sameSex(X, self)).
B(attactive(bob)).
B(sameSex(bob, self).
actionterm(danceWith(X)).
stateterm(attractive(X)).
stateterm(sameSex(X, Y)).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Having constructed an instance of an ABA framework in this way, one can now
use the CaSAPI system [17] to determine (for any semantics supported by CaS-
API) whether a given conclusion holds, and, if so, by which arguments it is

3 All inference rules in R stand semantically for the set of all their ground instances.
However, note that CaSAPI can often handle variables in rules.

102 D. Gaertner and F. Toni

supported. In particular, CaSAPI would allow to support the conflicting conclu-
sions

I(danceWith(bob)) and ¬I(danceWith(bob))

simultaneously, under any semantics. These conslusions are supported by a triv-
ial argument with an empty set of assumptions as support. This unwanted be-
haviour is due to the naivity of the translation

3.3 Avoiding Conflicts Using Assumption-Based Argumentation

The conflict between I(danceWith(bob)) and ¬I(danceWith(bob)) above can be
avoided by rendering the application of the two rules supporting them mutu-
ally exclusive. This can be achieved by attaching assumptions to these rules and
setting the contrary of the assumption associated to any rule to be the conclu-
sion of the other rule. This would correspond to rendering the corresponding
norms/bridge rules defeasible [31,32].

In the ballroom example, the fourth and sixth rules of the naive translation
above are replaced by

I(X) ← D(X), α(X).

¬I(danceWith(X)) ← B(sameSex(X, self)), β(danceWith(X)).

with A = {α(t), β(t)|t is ground} and α(t) = ¬I(t) and β(t) = I(t).

Within the revised argumentation framework, the conflicting conclusions
I(danceWith(bob)) and ¬I(danceWith(bob)) cannot be justified simultaneously.
However, adopting the admissibility semantics (implemented as AB-derivations
in CaSAPI), I(danceWith(bob)) and ¬I(danceWith(bob)) can be justified sepa-
rately, in a credulous manner. On the other hand, adopting the grounded or
ideal semantics (and GB- or IB-derivations), neither I(danceWith(bob)) nor
¬I(danceWith(bob)) can be justified, sceptically. Thus, the conflict is avoided,
but not resolved. Below, we show how to resolve conflicts in the presence of
additional information, in the form of preferences over norms, elements of the
theories Ti, and inference rules and axioms for the different mental attitudes.

4 Conflict Resolution Using Preferences

In this section we show how to use ABA in order to reason normatively and
resolve conflicts (by means of preferences) that come about by accepting or
committing to certain norms, beliefs, desires or intentions. Using these prefer-
ences, we can, for example, prioritise certain beliefs over a norm or certain norms
over desires. Thus, one can think of preferences as the normative personality of
an agent. We also need to make norms and mental atoms defeasible, by using as-
sumptions as we have done in the earlier section. For the example in Section 2.3,
an agent who values norm (3) and (5) more than norm (6) will indeed intend to

Preferences and Assumption-Based Argumentation 103

dance with Bob, whereas another agent who values social conformance, such as
norm (6), higher, will not have such an intention. No agent should be allowed to
both intend and not intend the same thing. Similarly, simultaneously believing
and not believing or desiring and not desiring the same thing is not allowed. We
will adopt the following revised agent model:

Agent = 〈I, I → 〈Li, Ai, Δi〉, I → Ti, BR, P〉
where the new component P expresses the agent’s preferences over norms and
mental attitudes. We will consider various representations for P below, and
provide a way to use them to resolve conflicts by means of ABA. Concretely, we
start with a total ordering and a cluster-based translation for conflict-resolution.
Then we add more flexibility by allowing the order to be partial. Finally, we
suggest a way of defining preferences using meta-rules, e.g. as done by [21,25],
and following the approach proposed in [23].

In the remainder of the paper, we will refer to an agent

〈I, I → 〈Li, Ai, Δi〉, I → Ti, BR, P〉
as Agent(P), and to the ABA framework resulting from applying the naive trans-
lation to 〈I, I → 〈Li, Ai, Δi〉, I → Ti, BR〉 as ABAN = 〈LN , RN , ∅, N 〉.

4.1 Preferences as a Total Ordering

The preference information P can be expressed as a total function that provides
a mapping from bridge rules and elements of theories/axioms/inference rules to
rational numbers. For now, let us assume that P provides a total ordering and
that the type of P is

BR ∪ AB ∪ AD ∪ AI ∪ ΔB ∪ ΔD ∪ ΔI ∪ TB ∪ TD ∪ TI → Q.

We stipulate that lower numbers indicate a higher preference for the piece of
information in question. In order to translate Agent(P) into a form that ABA
can suitably handle, we propose the following mechanism. First, we generate
ABAN . Then, all rules in RN are clustered according to their conclusion. Rules
in the same cluster all have the same mental atom in their conclusion literal (so
that fellow cluster members have either exactly the same or exactly the opposite
conclusion). Next, each cluster of rules is considered in turn. All elements of
each cluster are sorted in descending order π1, . . . , πn by decreasing preference
of their corresponding norm, belief etc. Here and in the remainder of the paper,
we assume a naming convention for rules whereby πi is the name of rule li ← ri.,
where l1 is the literal on the left-hand side of the most important rule and rn

represents the right-hand side of the least important rule.

l1 ← r1. l2 ← r2. l3 ← r3. l4 ← r4. . . . ln ← rn.

Then, we employ a trick suggested in [23,10] and add a new assumption pi to
the right-hand side of each rule:

l1 ← r1, p1. l2 ← r2, p2. l3 ← r3, p3. l4 ← r4, p4. . . . ln ← rn, pn.

104 D. Gaertner and F. Toni

By introducing additional assumptions into rules we make these rules defeasi-
ble and, by appropriately defining contraries, we can render conflicts impossible.
We further add rules for new terms qi of the form:

q2 ← r1 q3 ← r2, p2 q4 ← r3, p3 . . . qn ← rn−1, pn−1
q3 ← q2 q4 ← q3 . . . qn ← qn−1

q4 ← q2 . . . qn ← qn−2
.

qn ← q2

Intuitively, qi+1 holds if πi is “selected” (by assuming pi) and applicable (by ri

holding). Alternatively, qi+1 also holds if any of the other more important rules
is selected and applicable. Note that there is no definition for q1, since, as we
will see below, the first rule is not intended to be defeasible.

We can now define the contraries of each of the assumptions pi in such a way
as to allow norms with a smaller subscript (higher preference) to override norms
with higher subscripts (lower preference). Concretely, by setting pi = qi for all
i ≥ 1, a rule πi is only applicable if assumption pi can be made and this is only
the case if qi cannot be shown. The only way for qi to hold is when both ri−1 and
pi−1 hold (this would also make rule πi−1 applicable) or any of the other more
important rules is applicable. Hence πi is only applicable if πj is not applicable
for any j < i. Moreover, if r1 holds, then π1 is always applicable, as there is no
way for q1 to hold and thus p1 can always be assumed.

After applying this procedure to all clusters, none of the clusters of rules can
give rise to conflicts and since rules in different clusters have different conclusions,
there cannot be any inter-cluster conflicts either. Hence, in the case of a single
cluster, the resulting ABA framework 〈L, R, A, 〉 with:

L = LN ∪
⋃

i=1...n{pi, qi}
R = {li ← ri, pi. | (li ← ri.) ∈ RN} ∪ {qi+1 ← ri, pi. | (li ← ri.) ∈ RN}

∪ {qi ← qj | 1 < j < i}
A =

⋃
i=1...n{pi}

∀pi ∈ A : pi = qi

is conflict-free. Let us consider the ballroom example from Section 2.3 again.

Assume that the most important norm is (5) -
B(attractive(X))
D(danceWith(X))

followed by

norm (6) -
B(sameSex(X, self))
¬I(danceWith(X))

and norm schema (4) -
D(X)
I(X)

. Assume further

that the premises of both norms (5) and (6) are fulfilled, unifying X with bob. 4

Using norm (5) we derive D(danceWith(bob)). Now, only norm (6) and norm
schema (4) have conflicting conclusions and are grouped together for the pur-
pose of conflict resolution. In this example, we assumed that norm (6) is more
important than norm schema (4) and hence we get a cluster:

4 Norm schemata are instantiated at this stage.

Preferences and Assumption-Based Argumentation 105

¬I(danceWith(bob)) ← B(sameSex(bob, self)), p1.
I(danceWith(bob)) ← D(danceWith(bob)), p2.
q2 ← B(sameSex(bob, self)).

and contraries: pi = qi.
Now the mental literal ¬I(danceWith(X)) will be justified, but its comple-

mentary literal will not. Note that norm (7) stating that thirsty dancers should
go to the bar, does not play a part in resolving the present conflict. One may
therefore argue that the requirement of having a total preference order of rules
is an unnatural one. For example, one may want to be able to avoid expressing a
preference between certain rules that are unrelated (i.e. concerned with different,
non-conflicting conclusions).

Note further, that we are adopting the last-link principle [25] in using pref-
erences for resolving conflicts, which uses the strength of the last rule used to
derive the argument’s claim for comparison. According to this principle, the fact
that norm schema (4) is based on a desire derived using the most important
norm is irrelevant.

Once the mapping has been formulated, reasoning with the original framework
is mapped onto reasoning with an ABA framework. Alternative semantics are
available (in CaSAPI) to compute whether a given claim is supported.

4.2 Preferences as a Partial Ordering

We propose a different representation for preferences if the ordering of norms,
beliefs, desires and intentions is not total. We replace the function P with a set
P which holds facts of the form pref (μi, μj) that intuitively express the agent’s
preference for norm/belief/etc. named μi over the one named μj . Note that we
assume here a naming for elements of

BR ∪ AB ∪ AD ∪ AI ∪ ΔB ∪ ΔD ∪ ΔI ∪ TB ∪ TD ∪ TI .

We further stipulate that P contains only facts about pairs of norms, beliefs, etc
whose conclusions are conflicting. We deem it unnecessary to express preferences
between rules that do not conflict since they will never be part of the same
cluster. We will assume that this relation pref is irreflexive and asymmetric. It
may also be appropriate to assume that pref is not cyclic. The asymmetry and
irreflexivity requirements can be expressed as follows 5:

⊥ ← pref (μi, μj) ∧ pref (μj , μi) ∧ μi �= μj

⊥ ← pref (μi, μi)

We define a new mapping into ABA as follows. As before, we first generate
ABAN and cluster rules in RN according to their conclusion. But now elements
of clusters are no longer sorted by their quantitative preference, given by the
total order, but instead are considered one at a time. Moreover, each rule in RN

5 We refrain in this paper from axiomatising the pref relation and will assume instead
that P is given so that these requirements hold.

106 D. Gaertner and F. Toni

is implicitly assumed to have the same name as the corresponding norm, belief,
desire or intention.

Within the new mapping, if for a given rule we find a conflicting rule, but there
is no appropriate fact in the pref relation, we apply the mechanism of Section 3.3
that guarantees mutual exclusion. For example, let us consider two rules πi and
πj in the same cluster, of the form li ← ri. and lj ← rj ., named μi and μj

respectively, where li and lj are in conflict (i.e. opposite mental literals) but
neither pref (μi, μj) nor pref (μj , μi) belongs to P . We follow the same mechanism
as in Section 3.3, adding two assumptions to the rules, yielding:

li ← ri, pi. lj ← rj , pj .

and directly setting: pi = lj and pj = li. In this way, each rule is only applicable
if the other one is not.

If, however, jn facts exist in P (jn ≥ 1) expressing the agent’s preference of
rules named μj1 , . . . , μjn over some rule named μi:

pref (μj1 , μi), . . . , pref (μjn , μi)

where μi : li ← ri. and μj1 : l′ ← rj1μjn : l′ ← rjn . are such that l′ is the
complement of li, then the mechanism illustrated below is employed, ensuring
that the lower priority rule is only applied in case none of the “more important”
ones are applicable. The rules named μi, μj1 , . . . μjn are rewritten as

li ← ri, pi.
l′ ← rj1 , pj1 l′ ← rjn , pjn .
qi ← rj1 , pref (μj1 , μi).
. . .
qi ← rjn , pref (μjn , μi).
qj1 ← ri, pref (μi, μj1).
. . .
qjn ← ri, pref (μi, μjn).

where pi, pj1 , . . . , pjn are new assumptions. Finally, we set pi = qi and pj1 = qj1 ,
. . . , pjn = qjn , and add all facts in P to the set of inference rules. For a more
formal definition of this mapping see [32]. The resulting ABA is conflict-free.

In order to illustrate this mapping, consider again the ballroom example,
where rules are named μ1, . . . μ11 following the order in which they are presented
in Section 3.2. If pref (μ6, μ4) ∈ P then in the resulting ABA framework, a subset
of the set of inference rules is:

I(X) ← D(X), p4(X).
q4(X) ← B(sameSex(X, self)), pref (μ6, μ4).

¬I(danceWith(X)) ← B(sameSex(X, self)), p6(X).
q6(X) ← D(X), pref (μ4, μ6).

pref (μ6, μ4).

Preferences and Assumption-Based Argumentation 107

The first rule applies, only if D(X) and p4(X) both hold. However, it is defeated
by the fact that the contrary of p4(X) holds. This contrary (q4(X)) is depen-
dent on pref (μ6, μ4), which is true in this example. Similarly, the rule with
the conclusion ¬I(danceWith(X)) applies, only if both B(sameSex(X, self))
and p6(X) hold. In our example, this rule is not defeated, since the contrary of
p6(X) cannot be shown. This contrary depends on pref (μ4, μ6), which does not
hold. It can hence be seen how the content of P influences the applicability of
rules.

4.3 Defining Dynamic Preferences Via Meta-rules

The relation P described in the previous subsection held simple facts. One can eas-
ily extend these facts into rules 6 by adding extra conditions. As an example, one
could replace the fact pref (μ1, μ2) with two meta-rules one stating pref (μ1, μ2) ←
sunny and another one stating pref (μ2, μ1) ← rainy. This allows the agent to
change the preference between two norms, beliefs etc depending on the weather.

The addition of conditions makes the applicability of a certain norm dependent
on the fulfilment of the condition and hence allows more fine-grained control over
arguments. The transformation defined in the previous subsection still applies
here.

Note that one can view these meta-rules themselves as norms in the sense
of “one should prefer norm 1 over norm 2 whenever the sun shines”. We are
currently considering another kind of conflict, that contrasts goto(bar) with
danceWith(X) since nobody can go to the bar and be on the dance-floor at
the same time. Imagine the possibility of such a conflict. Then norm (7), refer-
ring to thirsty dancers, conflicts with an instance of norm schemata (4), that
refers to dance intentions. A dancer that considers himself a gentleman then
prefers μ4 over μ7, resisting the temptation to go for a drink. A selfish dancer on
the other hand prefers μ7 over μ4. Considering yourself as a gentleman is itself
a dynamic notion, that can change once the dancer has been to the bar a few
times. Considering the meta-rules for preferences themselves as norms opens up
many potential future investigations that we are looking forward to conduct.

5 Theoretical Considerations

In this section we show that each of the translation mechanisms proposed in the
previous section is a conservative extension of the earlier mechanism, if any. For
simplicity we will always assume a single cluster of preferences.

The following result, stating that given a partial order, the tranformations
given in Sections 4.2 and 4.3 are equivalent, is trivial, since the two mappings
return the same outcome given a partial order:

6 Note, that these meta-rules here only concern the pref predicate and should not be
confused with the object-level rules that act as arguments to these preference predi-
cates.

108 D. Gaertner and F. Toni

Theorem 1. Consider an Agent(P) such that P is a partial order as in sec-
tion 4.2. Let ABAPO = 〈LPO, RPO, APO, PO〉 be the ABA framework re-
sulting from applying the transformation in Section 4.2 to Agent(P) and let
ABAD = 〈LD, RD, AD, D〉 be the ABA framework resulting from apply-
ing the transformation in Section 4.3 to Agent(P). Then, for any sentence
s ∈ LB ∪ LD ∪ LI :

– there is an acceptable support for s wrt ABAPO iff there is an acceptable
support for s wrt ABAD

for any notion of acceptable support given in section 3.1.

The analogous result linking the mapping for total orders and partial order,
given a total order as input, is easy to prove. Below, since trivially every total
order is a partial order, we will use the same symbol (P) to stand for a total
order as represented in Section 4.1 and as represented in Section 4.2. Indeed,
given a total order as in Section 4.1, this can be automatically mapped onto the
representation in Section 4.2, by creating an element pref (πi, πj) for every pair
of elements of the cluster such that i < j. For a cluster with n elements, we thus
obtain n2−n

2 facts in the pref predicate.

Theorem 2. Consider an Agent(P) such that P is a total order as in sec-
tion 4.1. Let ABATO = 〈LTO, RTO, ATO, TO〉 be the ABA framework re-
sulting from applying the transformation in Section 4.1 to Agent(P) and let
ABAPO = 〈LPO, RPO, APO, PO〉 be the ABA framework resulting from ap-
plying the transformation in Section 4.2 to Agent(P). Then, for any sentence
s ∈ LB ∪ LD ∪ LI :

– there is an acceptable support for s wrt ABATO iff there is an acceptable
support for s wrt ABAPO

for any notion of acceptable support given in Section 3.1.

This theorem can be proven as follows. First, note that, trivially, the underlying
languages of the deductive systems in the two ABAs differ only in the abducibles,
their contraries, and the pref facts, namely:

LTO − (ATO ∪ {x|x = a for some a ∈ ATO}) =
LPO − (APO ∪ {x|x = a for some a ∈ APO} ∪ P) =
LB ∪ LD ∪ LI .

Moreover, there is a one-to-one correspondence between assumptions in the two
ABAs and contraries in the two ABAs, as follows.

Suppose we have a cluster of three conflicting rules named μ1, μ2 and μ3 such
that each μi is of the form li ← ri., l1 = l3 and l2 is the complement of l1 and l3.
Let us further assume that μ1 is preferred to μ2 which in turn is preferred to μ3.
This total order can be expressed in terms of the representation of Section 4.2
by the facts pref (μ1, μ2), pref (μ2, μ3) and pref (μ1, μ3). In ABATO, the relevant
part of the RTO component for this cluster is:

Preferences and Assumption-Based Argumentation 109

l1 ← r1, p1. l2 ← r2, p2. l3 ← r3, p3.
q2 ← r1. q3 ← r2, p2.

q3 ← q2.

The corresponding part of RPO in ABAPO is:

l1 ← r1, p
′
1. l2 ← r2, p

′
2. l3 ← r3, p

′
3.

q′1 ← r2, pref (μ2, μ1). q′2 ← r1, pref (μ1, μ2). q′3 ← r2, pref (μ2, μ3).
q′2 ← r3, pref (μ3, μ2).

pref (μ1, μ2). pref (μ2, μ3). pref (μ1, μ3)

By partially evaluating the pref conditions, this set of inference rules can be
seen to be equivalent to

l1 ← r1, p
′
1. l2 ← r2, p

′
2. l3 ← r3, p

′
3.

q′2 ← r1. q′3 ← r2.

Clearly there is a one-to-one correspondence between each pi in ATO and p′i in
APO. Furthermore, there is a one-to-one correspondence between each qi in LTO

and q′i in LPO.
Formally, we define two mappings αTO−PO and αPO−TO between the lan-

guages of the two frameworks as follows:

– let pi, p′i be the assumptions associated with rule named μi in RTO and
RPO, respectively; then:

• αTO−PO(pi) = p′i
• αPO−TO(p′i) = pi

– let qi, q′i be the contraries of assumptions pi, p′i associated with rule named
μi in RTO and RPO, respectively; then:

• αTO−PO(qi) = q′i
• αPO−TO(q′i) = qi

let s be any non-assumption, non-contrary, non-preference sentences in LTO

and LPO; then αTO−PO(s) = αPO−TO(s) = s

This mappings can be easily extended to sets of sentences.

Lemma 1. Given any sentence s ∈ LTO,

– there is a deduction for s wrt ABATO iff there is a deduction for αTO−PO(s)
wrt ABAPO.

Given any sentence s ∈ LPO − P,

– there is a deduction for s wrt ABATO iff there is a deduction for αPO−TO(s)
wrt ABAPO.

As a consequence, it is easy to see that, by definition of attack:
Lemma 2. Given any sets of assumptions S1, S2 ⊆ ATO,
– S1 attacks S2 wrt ABATO iff αTO−PO(S1) attacks αTO−PO(S2) wrtABAPO.

Given any sets of assumptions S1, S2 ⊆ APO,

– S1 attacks S2 wrt ABAPO iff αPO−TO(S1) attacks αPO−TO(S2) wrtABATO.

Theorem 2 is a straightforward consequence of this lemma, since all definitions
of “acceptable” support are solely defined in terms of the notion of attack.

110 D. Gaertner and F. Toni

6 Conclusions

In this paper we have proposed to use assumption-based argumentation to solve
conflicts that a normative agent can encounter, arising from applying conflicting
norms but also due to conflicting beliefs, desires and intentions. We employ
qualitative preferences over an agent’s beliefs, desires and intentions and over
the norms it is subjected to in order to resolve conflicts.

We provided a translation from the agent definition to an assumption-based
argumentation framework that can be executed using a working prototype imple-
mentation of the query-oriented argumentation system CaSAPI. After manually
applying the translation described in this paper (from the contexts, theories
and preferences of a normative BDI+N agent to an argumentation framework
〈L, R, A, 〉), one can execute CaSAPI and obtain a defence set containing
all assumptions employed in the argument for a given claim. From these, one
can derive which rules (norms or mental atoms) have been relied upon during
the argumentation process. It would be useful to embed the implementation of
this translation into the CaSAPI system or develop a wrapper that does the
translation and employs CaSAPI.

We have considered three different notions of preference with different de-
grees of flexibility and expressiveness. Some theoretical considerations allowed
us to show how these notions are related. Notice how our preference model (that
ranks individual rules and mental attitudes) is different from the one chosen by
Amgoud and Cayrol in [2], who have a preference relation over arguments such
that an attack between arguments is only relevant if the attackee is not pre-
ferred to the attacker. A related approach, based on Bench-Capon’s value-based
argumentation framework [3] is that of Dunne et al. who developed a preference
model which takes audiences into account (see [8] and [13]).

Normative conflicts have previously been addressed from a legal reasoning
perspective by Sartor [30] and from a practical reasoning point of view by
Kollingbaum and Norman [22]. It is traditional in the legal domain to order
laws hierarchically, using criteria such as source, chronology and speciality. One
such system by Garcia-Camino et al. [18] employs these criteria and a meta-
order over them to solve conflicts in compound activities. As far as we know,
argumentation and in particular assumption-based argumentation, has received
little attention in the agent community with respect to normative conflicts.

Argumentation-based negotiation (see for example [26]) is a field of artificial
intelligence that concerns itself with resolving conflicts in a multi-agent society.
However, to the best of our knowledge it has hardly been used to resolve norma-
tive conflicts of the kind we study in this paper. To the best of our knowledge,
the only architecture for individual agents that uses argumentation is the KGP
model [20] that follows the approach of [21] to support its control component
and its goal decision capability. The KGP model has been extended to support
normative reasoning [29] but no conflict resolution amongst the outcomes of
norm enforcement and beliefs is performed in this extension.

Preferences and Assumption-Based Argumentation 111

We have adopted a “last-link” approach to dealing with preferences in deriv-
ing conflicting conclusions along the lines of [25]. This principle employs of the
strength of the last rule used to derive the argument’s claim for comparison;
other (potentially stronger) rules uses earlier in the derivation process are irrel-
evant for determining preferences. An alternative from the standard literature
is the principle of the “weakest link” [1] which compares the minimum strength
of the sentences used in each argument.

In the near future, we plan to research the effects of splitting the preference
function into four separate ones for beliefs, desires, intentions and norms. One
may be able to draw conclusions about the kind of normative personality an
agent possesses depending on how these individual preference functions relate.
Such relationships have been used quantitatively by Casali et al. [6] in their work
on graded BDI agents.

Acknowledgements

This research was partially funded by the Sixth Framework IST programme of
the EC, under the 035200 ARGUGRID project. The first author is partially sup-
ported by a PhD bursary from the Engineering and Physical Sciences Research
Council (EPSRC) of the United Kingdom. The second author has also been
supported by a UK Royal Academy of Engineering/Leverhulme Trust senior
fellowship.

References

1. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumen-
tation frameworks. J. Autom. Reason. 29(2), 125–169 (2002)

2. Amgoud, L., Cayrol, C.: A reasoning model based on the production of accept-
able arguments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215
(2002)

3. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

4. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-
theoretic framework for default reasoning. Artificial Intelligence 93(1-2), 63–101
(1997)

5. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture: Conflicts between beliefs, obligations, intentions and desires. In: Pro-
ceedings of AGENTS 2001, pp. 9–16. ACM Press, New York (2001)

6. Casali, A., Godo, L., Sierra, C.: Graded BDI models for agent architectures. In:
Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web.
LNCS (LNAI), vol. 3847, pp. 126–143. Springer, Heidelberg (2006)

7. Dignum, F., Morley, D., Sonenberg, E., Cavendon, L.: Towards socially sophisti-
cated BDI agents. In: Proceedings of ICMAS 2000, pp. 111–118. IEEE Computer
Society, Los Alamitos (2000)

8. Doutre, S., Bench-Capon, T.J.M., Dunne, P.E.: Explaining preferences with ar-
gument positions. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 1560–1561.
Professional Book Center (2005)

112 D. Gaertner and F. Toni

9. Dung, P.: The acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person game. Artificial Intelli-
gence 77 (1995)

10. Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence 170, 114–159 (2006)

11. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Tech-
nical report, Imperial College London (2006)

12. Dung, P., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-
based argumentation. In: Proceedings of COMMA (2006)

13. Dunne, P.E., Bench-Capon, T.J.M.: Identifying audience preferences in legal and
social domains. In: Proceedings of the 15th International Conference on Database
and Expert Systems Applications, Zaragoza, Spain, pp. 518–527 (September 2004)

14. Gaertner, D., Clark, K., Sergot, M.: Ballroom etiquette: A case study for norm-
governed multi-agent systems. In: Proceedings of the 1st International Workshop
on Coordination, Organisation, Institutions and Norms (2006)

15. Gaertner, D., Noriega, P., Sierra, C.: Extending the BDI architecture with com-
mitments. In: Proceedings of the 9th International Conference of the Catalan As-
sociation of Artificial Intelligence (2006)

16. Gaertner, D., Toni, F.: Conflict-free normative agents using assumption-based ar-
gumentation. In: Proceedings of the Fourth International Workshop on Argumen-
tation in Multi-Agent Systems (2007)

17. Gaertner, D., Toni, F.: A credulous and sceptical argumentation system. In: Pro-
ceedings of ArgNMR (2007), www.doc.ic.ac.uk/∼dg00/casapi.html

18. Garćıa, A., Noriega, P., Rodŕıguez-Aguilar, J.-A.: An Algorithm for Conflict Res-
olution in Regulated Compound Activities. In: ESAW workshop (2006)

19. Giunchiglia, F., Serafini, L.: Multi-language hierarchical logics or: How we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

20. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of
agency. In: Proceedings of the European Conference on Artificial Intelligence, pp.
33–37 (August 2004)

21. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: Proceedings of AAMAS 2003, pp. 883–890 (2003)

22. Kollingbaum, M., Norman, T.: Strategies for resolving norm conflict in practical
reasoning. In: ECAI Workshop Coordination in Emergent Agent Societies (2004)

23. Kowalski, R.A., Toni, F.: Abstract argumentation. Journal of AI and Law, Special
Issue on Logical Models of Argumentation 4(3-4), 275–296 (1996)

24. Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing.
Journal of Logic and Computation 8(3), 261–292 (1998)

25. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7(1), 25–75 (1997)

26. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. Knowledge Engineering Review (2004)

27. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First International Conference on Multiagent Systems, San Francisco (1995)

28. Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Computational and Math-
ematical Organization Theory 12(2/3), 101–126 (2006)

29. Sadri, F., Stathis, K., Toni, F.: Normative kgp agents. Computational & Mathe-
matical Organization Theory 12(2-3) (October 2006)

www.doc.ic.ac.uk/~dg00/casapi.html

Preferences and Assumption-Based Argumentation 113

30. Sartor, G.: Normative conflicts in legal reasoning. Artificial Intelligence and
Law 1(2-3), 209–235 (1992)

31. Toni, F.: Assumption-based argumentation for closed and consistent defeasible
reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007.
LNCS (LNAI), vol. 4914, Springer, Heidelberg (2007)

32. Toni, F.: Assumption-based argumentation for selection and composition of ser-
vices. In: Proceedings of the 8th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA VIII) (2007)

The Hedgehog and the Fox�

An Argumentation-Based Decision Support System

Maxime Morge

Dipartimento di Informatica, Università di Pisa
via F. Buonarroti, 2 I-56127 Pisa, Italy

morge@di.unipi.it
http://maxime.morge.org

Abstract. In this paper, we present a decision support system which
is built upon an argumentation framework for practical reasoning. A
logic language is used as a concrete data structure for holding state-
ments representing knowledge, goals, and decisions. Different priorities
are attached to these items, corresponding to the probability of the
knowledge, the preferences between goals, and the expected utilities of
decisions. These concrete data structures consist of information provid-
ing the backbone of arguments. Due to the abductive nature of practical
reasoning, arguments are built by reasoning backwards, and possibly by
making suppositions over missing information. Moreover, arguments are
defined as tree-like structures. In this way, our computer system, imple-
mented in Prolog, suggests some solutions and provides an interactive
and intelligible explanation of this choice.

1 Introduction

Decision making is the cognitive process leading to the selection of a course of
action among alternatives based on estimates of the values of those alternatives.
Indeed, when a human identifies her needs and specifies them with high-level and
abstract terms, there should be a possibility to select some existing solutions. De-
cision Support Systems (DSS) are computer-based systems that support decision
making activities including expert systems and multi-criteria decision analysis.
However, these approaches are not suitable when the decision maker has par-
tial and conflicting information. Further, standard decision theory provides little
support in giving intelligible explanation of the choice made.

Since a decision can be resolved by confronting and evaluating the justifica-
tions of different positions, argumentation can support such a process. This is
the reason why many works in the area of Artificial Intelligence focus on compu-
tational models of argumentation. In particular, nonmonotonic logic techniques
have been used as a model with hierarchies of possibly conflicting rules (see [1]

� The author would like to thank Paolo Mancarella for his contribution on a previous
version of this paper. This work is supported by the Sixth Framework IST programme
of the EC, under the 035200 ARGUGRID project.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 114–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Hedgehog and the Fox 115

for a survey). However, even if modern techniques are used, this logical approach
is still limited to the epistemic reasoning and do not encompass practical rea-
soning. The point is that a decision is not limited to draw conclusions but must
suggest a solution, i.e. take a decision.

In this paper, we present a Decision Support System (DSS) with the help of
an example for selecting a business location. This system is built upon an Argu-
mentation Framework (AF) for practical reasoning. A logic language is used as
a concrete data structure for holding statements representing knowledge, goals,
and decisions. Different priorities are attached to these items corresponding to
the uncertainty of the knowledge about the circumstances, the preferences be-
tween goals, and the expected utilities of decisions. These concrete data struc-
tures consist of information providing the backbone of arguments. Due to the
abductive nature of practical reasoning, arguments are built by reasoning back-
wards, and possibly by making suppositions over missing information. Moreover,
arguments are defined as tree-like structures. In this way, our DSS, implemented
in Prolog, suggests some solutions and provides an interactive and intelligible
explanation of this choice.

Section 2 presents the principle of our DSS. Section 3 introduces the walk-
through example. In order to present our Argumentation Framework (AF) for
practical reasoning, we will browse the following fundamental notions. First, we
define the object language (cf Section 4) and the priorities (cf Section 5). Second,
we will focus on the internal structure of arguments (cf Section 6). We present
in Section 7 the interactions amongst them. These relations allow us to give a
declarative model-theoretic semantics to this framework (cf section 8) and we
adopt a dialectical proof procedure to implement it (cf Section 9). Section 10 dis-
cusses some related works. Section 11 concludes with some directions for future
work.

2 Principle

Basically, decision makers are categorized as either “hedgehogs”, which know
one big thing, or “foxes”, which know many little things [2]. While most of the
DSS are addressed to “hedgehogs”, we want to provide one for both.

An “hedgehog” is an expert of a particular domain, who has intuitions and
strong convictions. A “fox” is not an expert but she knows many different things
in different domains. She decides by interacting with others and she is able to
change her mind. Most of the DSS are addressed to “hedgehogs”. These computer
systems provide a way to express qualitative and/or quantitative judgements and
show how to synthesize them in order to suggest some solutions. A decision taken
with the help of a hedgehog could be great, but a full decision of hedgehogs could
be a disaster. Since executives do not want to hear that a problem is complex and
uncertain, decision makers need many hedgehog qualities. However the analytic
skills needed for good judgments are those of foxes. We want to provide a DSS
for the effective management of teams including both hedgehogs and foxes.

116 M. Morge

Figure 1 represents the principle of our DSS based upon an assistant agent.
The mind of the agent relies upon MARGO (Multiattribute ARGumentation
framework for Opinion explanation), i.e. our argumentative engine. The hedge-
hog informs the assistant agent in order to structure and evaluate the decision
making problem, by considering the different needs, by identify the alternative
actions (alternatives, for short), and by gathering the required knowledge. As we
will see in the next section, the agent uses concrete data structures for holding
the hedgehog’s knowledge, goals, and decisions. These concrete data structures
consist of information providing the backbone of arguments used to interact with
the fox. The latter can ask for a possible solutions (challenge). MARGO suggests
some solutions (argue). The reasons supporting these admissible solutions can
be interactively explored (challenge/argue).

HedgehogFox

Body

Mind

– Knowledge
– Goals
– DecisionsP

rio
rit

ie
s

MARGO

challenge

argue

inform

Fig. 1. Principle of the decision support system

3 Walk-Through Example

Inspired by [3], we consider here the decision making problem for selecting a
suitable business location. An investment requires a proper understanding of all
relevant aspects. Detailed needs for the business location such as the govern-
ment regulation, taxes, and so on as well as the knowledge about the quality
of infrastructures and services, such as the availability of sea transports, is also
of vital importance. The assistant agent is responsible for suggesting some suit-
able locations, based on the explicit users’needs and on their knowledge. The
main goal, that consists in selecting the location (Location), is addressed by
a decision, i.e. a choice amongst some alternatives, i.e. Hochiminh or Hanoi
(hochiminh, hanoi). The main goal (suitable) is split into independent sub-
goals and independent sub-goals of these sub-goals. The location must offer a
“good” regulation (regulation) and a “great” accessibility (accessibility).
These high-level goals, which are abstract, reveal the user’s needs. The location

The Hedgehog and the Fox 117

offers a “good” regulation, if the taxes are low (taxes), the permit can be eas-
ily obtained (permit) and an assistance is available (assistance). In the same
way, the location offers a “good” accessibility, if the sewage is good (sewage) and
transport are available (transport). These low-level goals are concrete, i.e. some
criteria for evaluating different alternatives. The knowledge about the location
is expressed with predicates such as: Sea(x) (the location x is accessible by sea
transports), or Road(x) (the location x is accessible by road transports).

Figure 2 provides a simple graphical representation of the decision problem
called influence diagram [4]. The elements of the decision problem, i.e. values
(represented by rectangles with rounded corners), decisions (represented by rect-
angles) and knowledge (represented by ovals), are connected by arcs where pre-
decessors affect successors. We consider here a multiattribute decision problem
captured by a hierarchy of values where the abstract value (represented by rect-
angles with rounded corner and double line) aggregates the independent values in
the lower level. When the structure of the decision is built, the alternatives must
be identified, the preferences must be expressed and the knowledge gathered.

suitable

regulation accessibility

taxes permit assistance sewage transport

Location

Sea Road

Fig. 2. Influence diagramm to structure the decision

While the influence diagram displays the structure of the decision, the object
language and the priorities reveal the hidden details of the decision making
informed by the hedgehog.

4 The Object Language

Sincewewanttoprovideacomputationalmodelofargumentation fordecisionmak-
ing and we want to instantiate it for our example, we need to specify a particular

118 M. Morge

logic allowing the hedgehog to express statements representing knowledge, goals,
and decisions.

The object language expresses rules and facts in logic-programming style. In
order to address a decision making problem, we distinguish:

– a set of abstract goals, i.e. some propositional symbols which represent the
abstract features that the decisions must exhibit (in the example suitable,
regulation, and accessibility);

– a set of concrete goals, i.e. some propositional symbols which represent the
concrete features that the decisions must exhibit (in the example taxes,
permit, assistance, sewage and transport);

– a set of decisions, i.e. some predicate symbols which represent the actions
which must be performed or not (in the example Location is the only one);

– a set of alternatives, i.e. some constants symbols which represent the mu-
tually exclusive solutions for each decision (in the example hochiminh, or
hanoi);

– a set of beliefs, i.e. some predicate symbols which represent epistemic state-
ments of the hedgehog (in the example Sea, Road). In the language, we
explicitly distinguish assumable beliefs (resp. non-assumable) beliefs, which
can (resp. cannot) be taken for granted. Since the hedgehog can make the
supposition that Hanoi is accessible by road, Road(hanoi) is assumable. Ob-
viously, some beliefs are non-assumable. For instance, the hedgehog cannot
make the supposition that Vienna is accessible by Sea.

Since we want to consider conflicts in this object language, we need some forms
of negation. For this purpose, we consider strong negation, also called explicit or
classical negation, and weak negation, also called negation as failure. A strong
literal is an atomic first-order formula, possible preceded by strong negation ¬. A
weak literal is a literal of the form ∼ L, where L is a strong literal. ¬L says “L is
definitely not the case”, while ∼ L says “There is no evidence that L is the case”.
In order to express in a compact way the mutual exclusion between statements,
such as the different alternatives for a decision, we define the incompatibility
relation (denoted by I) as a binary relation over atomic formulas which is
asymmetric. Whatever the atom L is a belief or a goal, we have L I ¬L and
¬L I L, while we have L I ∼ L but we do not have ∼ L I L. Obviously,
D1(a1) I D1(a2) and D1(a2) I D1(a1), D1 being a decision predicate, a1 and
a2 being different1 alternatives for D. We say that two sets of sentences Φ1 and
Φ2 are incompatible (Φ1 I Φ2) iff there is a sentence φ1 in Φ1 and a sentence φ2
in Φ2 such as φ1 I φ2. A theory gathers the statements of the hedgehog about
the decision making problem.

Definition 1 (Theory). A theory T is an extended logic program, i.e a finite
set of rules such as R : L0 ← L1, . . . , Lj, ∼ Lj+1, . . . , ∼ Ln with n ≥ 0, each
Li being a strong literal. The literal L0, called the head of the rule, is denoted
head(R). The finite set {L1, . . . , ∼ Ln}, called the body of the rule, is denoted

1 Notice that in general a decision can be addressed by more than two alternatives.

The Hedgehog and the Fox 119

body(R). The body of a rule can be empty. In this case, the rule, called a fact,
is an unconditional statement. R, called the name of the rule, is an atomic
formula. All variables occurring in a rule are implicitly universally quantified
over the whole rule. A rule with variables is a scheme standing for all its ground
instances.

Considering a decision making problem, we distinguish:

– goal rules of the form R : G0 ← G1, . . . , Gn with n > 0. Each Gi is a goal
literal. The head of the rule is an abstract goal (or its strong negation).
According to this rule, the abstract goal is promoted (or demoted) by the
combination of goal literals in the body;

– epistemic rules of the form R : B0 ← B1, . . . , Bn with n ≥ 0. Each Bi is a
belief literal. According to this rule, the belief B0 is true if the conditions
B1, . . . , Bn are satisfied;

– decision rules of the form R : G ← D(a), B1, . . . , Bn with n ≥ 0. The head
of the rule is a concrete goal (or its strong negation). The body includes a
decision literal (D(a)) and a possible empty set of belief literals. According
to this rule, the concrete goal is promoted (or demoted) by the decision D(a),
provided that conditions B1, . . . , Bn are satisfied.

Considering statements in the theory is not sufficient to take a decision.

5 Priority

In order to evaluate the previous hedgehog’s statements, all relevant pieces of
information should be taken into account, such as the likelihood of beliefs, the
preferences between goals, or the expected utilities of the decisions.

In Mathematics, order relations are binary relations on a set. Since these
relations classify the elements from the ’best’ to the ’worst’, with or without ex
æquo, they are qualitative. For this purpose, we can consider either a preorder,
i.e. a reflexive and transitive relation considering possible ex æquo, or an order,
i.e. an antisymmetric preorder relation. The preorder (resp. the order) is total
iff all elements are comparable. In this way, we consider that the priority P
is a (partial or total) preorder on the rules in T . R1 P R2 can be read “R1
has priority over R2”. R1\PR2 can be read “R1 has no priority over R2”, either
because R1 and R2 are ex æquo (denoted R1 ∼ R2), i.e. R1 P R2 and R2 P R1,
or because R1 and R2 are not comparable, i.e. ¬(R1 P R2) and ¬(R2 P R1).

In this work, we consider that all rules are potentially defeasible and that
the priorities are extra-logical and domain-specific features. The priority over
concurrent rules depends of the nature of rules. Rules are concurrent if their
heads are identical or incompatible. We define three priority relations:

– the priority over goal rules comes from the preferences overs goals. The pri-
ority of such rules corresponds to the relative importance of the combination
of (sub)goals in the body as far as reaching the goal in the head is concerned;

120 M. Morge

– the priority over epistemic rules comes from the uncertainty of knowledge.
The prior the rule is, the more likely the rule holds;

– the priority over decision rules comes from the expected utility of decisions.
The priority of such rules corresponds to the expectation of the conditional
decision in promoting/demoting the goal literal.

In order to illustrate the notions introduced previously, let us go back to
the example. The goal theory, the epistemic theory, and the decision theory
are represented in Table 1. A rule above another one has priority over it. To
simplify the graphical representation of the theories, they are stratified in non-
overlapping subsets, i.e. different levels. The ex æquo rules are grouped in the
same level. Non-comparable rules are arbitrarily assigned to a level.

Table 1. The goal theory (upper),the epistemic theory (lower left), and the decision
theory (lower right)

r012 : suitable ← regulation, accessibility
r1345 : regulation ← taxes, permit, assistance
r267 : accessibility ← sewage, transport
r145 : regulation ← permit, assistance
r01 : suitable ← regulation
r13 : regulation ← taxes
r26 : accessibility ← sewage
r02 : suitable ← accessibility
r14 : regulation ← permit
r27 : accessibility ← transport
r15 : regulation ← assistance

f1 : Road(hochiminh) ←
f2 : Sea(hochiminh) ←
f3 : ¬Road(hochiminh) ←

r31 : taxes ← D(hanoi)
r42 : permit ← D(hochiminh)
r52 : assistance ← D(hochiminh)
r71(x) : transport ← D(x), Sea(x)
r32 : taxes ← D(hochiminh)
r41 : permit ← D(hanoi)
r51 : assistance ← D(hanoi)
r61 : sewage ← D(hanoi)
r62 : sewage ← D(hochiminh)
r72(x) : transport ← D(x), Road(x)

According to the decision theory, both alternatives are relevant for the con-
crete goals taxes (r31 and r32), permit (r41 and r42), assistance (r51 and r52),
sewage (r61 and r62), and transport (r71(x) and r72(x)). Actually, taxes are lower
in Hanoi (r31 P r32). The permit and the assistance are easier to obtain in Hochim-
inh (r42 P r41 and r52 P r51). We do not know if the sewage is better in Hochiminh
or in Hanoi (r61 ∼ r62). Moreover, the utilities of these alternatives with respect
to transport depends on the surrounding circumstances. Sea accessible locations
have a better utility than road accessible locations (r71(x) P r72(x)). Our formal-
ism allows to capture the mutual influence of decisions over the independent goals.

The Hedgehog and the Fox 121

Accordingtothegoaltheory,achievingthegoalsregulation,andaccessibility
is required to reach suitable (cf. r012). However, these constraints can be relaxed.
The achievement of accessibility (resp. regulation) can be relaxed, r012 P r01
(resp.r012 P r02).Moreover, theachievementofregulationismore importantthan
accessibility(r01P r02).Ourformalismallowstocapturecomplexandincomplete
informationabout thepreferences amongst goals.

According to the epistemic theory, Hochiminh is accessible by sea transports
(cf. f2). Due to conflicting sources of information, the agent has conflicting beliefs
about the road accessibility of Hochiminh (f1 and f3). The sources of informa-
tion can be more or less reliable. For instance, we have f1 P f3. We can notice
that no information about the accessibility of Hanoi is available. Our formalism
allows to capture complex (and incomplete) information about the likelihood of
the surrounding circumstances. We will build now arguments upon these (in-
complete) statements in order to compare the alternatives.

6 Arguments

Due to the abductive nature of the practical reasoning, we define and construct
arguments by reasoning backwards, and possibly by making suppositions over
missing information. Since we adopt a tree-like structure of arguments, our
framework not only suggests some solutions but also provides an intelligible
explanation of them for the fox.

The simplest way to define an argument is by a pair 〈 premises, conclusion 〉 as
in [5]. This definition leaves implicit that the underlying logic validates a proof
of the conclusion from the premises. When the argumentation framework is built
upon an extended logic program, an argument is often defined as a sequence of
rules [6]. These definitions ignore the recursive nature of arguments: arguments
are composed of subarguments, subarguments for these subarguments, and so
on. For this purpose, we adopt the tree-like structure for arguments proposed
in [7] and we extend it with suppositions on the missing information.

Definition 2 (Argument). An argument is composed by a conclusion, a top
rule, some premises, some suppositions, and some sentences. These elements are
abbreviated by the corresponding prefixes. An argument A is:

1. a hypothetical argument built upon an unconditional ground statement.
If L is a assumable belief literal, then the argument built upon this ground
and assumable literal is defined as follows:

conc(A) = L, top(A)=∅, premise(A) = ∅, supp(A) = {L}, sent(A) = {L}.

or
2. a built argument built upon a rule such that all the literals in the body are

the conclusion of subarguments.
If R is a rule in T , we define the argument A built upon this rule as follows.
Let body(R) = {L1, . . . , Ln} and sbarg(A) = {A1, . . . , An} be a collection

122 M. Morge

of arguments such that, for each Li ∈ body(R), conc(Ai) = Li (each Ai

is called a subargument of A). Then: conc(A) = head(R), top(A) = R,
premise(A) = body(R), supp(A) = ∪A′∈sbarg(A)supp(A

′), sent(A) =
∪A′∈sbarg(A)sent(A

′) ∪ body(R) ∪ head(R).

As in [7], we consider composite arguments and atomic arguments where the top
rule is a fact. Contrary to the other definitions of arguments (pair of premises -
conclusion, sequence of rules), our definition considers that the different premises
can be challenged and can be supported by subarguments. In this way, arguments
are intelligible explanations. Moreover, we distinguish hypothetical arguments (1)
and built arguments (2). While the latters are built upon a top rule which is a
rule (or a fact) of the theory, the formers are built upon missing information. In
this way, our framework allows to reason further by making suppositions related
to the unknow beliefs and over possible decisions under which arguments can
be built. Due to the abductive nature of practical reasoning, we define and con-
struct arguments by reasoning backwards. Therefore, arguments do not include
irrelevant information such as sentences not used to derive the conclusion.

Let us consider the previous example. Some of the arguments concluding
transport are depicted in Figure 3. According to the argument B1

7 (resp. B2
7),

Hochiminh promotes the transport since this location is accessible by sea (resp.
road). According to the argument A1

7 (resp. A2
7), Hanoi promotes the transport

if we suppose that this location is accessible by sea (resp. by road). An argu-
ment can be represented as tree where the root is the conclusion (represented
by a triangle) directly connected to the premises (represented by losanges) if
they exist, and where leefs are either some suppositions (represented by circles)
or θ2. Each plain arrow corresponds to a rule (or a fact) where the head node
corresponds to the head of the rule and the tall nodes are in the body of the
rule. While the tree argument B1

7 (resp. B2
7) is built upon two subarguments: one

hypothetical argument supporting Location(hochiminh) and one trivial argu-
ment supporting Sea(hochiminh) (resp. Road(hochiminh)), the tree argument
A1

7 (resp. A2
7) is built upon two subarguments which are hypothetical: one sup-

porting Location(hanoi) and one supporting Sea(hanoi) (resp. Road(hanoi)).
Neither trivial arguments nor hypothetical arguments contain subarguments.
Due to their structures and their natures, arguments interact with one another.

7 Interactions between Arguments

The interactions between arguments may come from the incompatibility of their
sentences, from their nature (hypothetical or built) and from the priority over
rules. We examine in turn these different sources of interaction.

Since their sentences are conflicting, arguments interact with one another. For
this purpose, we define the attack relation.

Definition 3 (Attack relation). Let A and B be two arguments. A attacks
B (denoted by attacks (A, B)) iff sent(A) I sent(B).
2 θ denotes that no literal is required.

The Hedgehog and the Fox 123

B1
7

transport

Location(hochiminh)

r71(hochiminh)

Location(hochiminh)

Sea(hochiminh)

θ

f2

B2
7

transport

Location(hochiminh)

r72(hochiminh)

Location(hochiminh)

Road(hochiminh)

θ

f1

A1
7

transport

Location(hanoi)

r71(hanoi)

Location(hanoi)

Sea(hanoi)

Sea(hanoi)

A2
7

transport

Location(hanoi)

r72(hanoi)

Location(hochiminh)

Road(hochiminh)

Road(hochiminh)

Fig. 3. Some arguments concluding transport

This relation encompasses both the direct (often called rebuttal) attack due to
the incompatibility of the conclusions, and the indirect (often called undermin-
ing) attack, i.e. directed to a “subconclusion”. According to this definition, if an
argument attacks a subargument, the whole argument is attacked. The attack
relation is useful to build arguments which are homogeneous explanations for
the fox.

Due to the nature of argument, arguments are more or less hypothetical. This
is the reason why we define the size of their suppositions.

Definition 4 (Supposition size). Let A be an arguments. The size of suppo-
sitions for A, denoted suppsize(A), is defined such that:

1. if A is a hypothetical argument, then suppsize(A) = 1;
2. if A is a built argument and sbarg(A) = {A1, . . . , An} is the collection of

subarguments of A, then suppsize(A) = ΣA′∈sbarg(A)suppsize(A
′).

The size of suppositions for an argument does not only count the number of
hypothetical subarguments which compose the argument but also counts the
number of hypothetical subarguments of these subarguments, and so on.

Since arguments have different natures (hypothetical or built) and the top
rules of built arguments are more or less strong, they interact with one another.
For this purpose, we define the strength relation.

124 M. Morge

Definition 5 (Strength relation). Let A1 be a hypothetical argument, and
A2, A3 be two built arguments.

1. A2 is stronger than A1 (denoted A2 P A A1);
2. If (top(A2) P top(A3)) ∧ ¬(top(A3) P top(A2)), then A2 P A A3;
3. If (top(A2)∼top(A3))∧(suppsize(A2)<suppsize(A3)) , then A2 P A A3;

Since P is a preorder on T , P A is a preorder on A(T). Built arguments
are preferred to hypothetical arguments. An argument is stronger than another
argument if the top rule of the first argument has a proper higher priority that
the top rule of the second argument or if the top rules have the same priority
but the number of suppositions made in the first argument is properly smaller
than the number of suppositions made in the second argument. The strength
relation is useful to choose (when it is possible) between homogeneous concurrent
explanations for the fox, i.e. non conflicting arguments with the same conclusions.

The two previous relations can be combined to choose (if possible) between
non-homogeneous concurrent explanations for the fox, i.e. conflicting arguments
with the same conclusions.

Definition 6 (Defeats). Let A and B be two arguments. A defeats B (written
defeats (A, B)) iff:

1. attacks (A, B);
2. ¬(B P A A).

Similarly, we say that a set S of arguments defeats an argument A if A is defeated
by one argument in S.

Let us consider our previous example. The arguments in favor of Hochiminh (B1
7

and B2
7) and the arguments in favor of Hanoi (A1

7 and A2
7) attack each other.

Since the top rule of B1
7 and A1

7 (i.e. r71(x)) is stronger than the top rule of B2
7

and A2
7 (i.e. r72(x)), B1

7 (resp. A1
7) defeats A2

7 (resp. B2
7). Moreover, B1

7 which
includes one hypothetical argument is stronger than A1

7, which includes two
hypothetical arguments. Determining whether a suggestion and an explanation
are ultimately suggested to the fox requires a complete analysis of all arguments
and subarguments. In this section, we have defined the interactions between
arguments in order to give them a status.

8 Semantics

We can consider our AF abstracting away from the logical structures of argu-
ments. This abstract AF consists of a set of arguments associated with a binary
defeat relation.

Given an AF, [8] and [9] define the following notions of “acceptable” sets of
arguments:

Definition 7 (Semantics). An AF is a pair 〈A, defeats 〉 where A is a set of
arguments and defeats ⊆ A × A is the defeat relationship3 for AF. For A ∈ A
an argument and S ⊆ A a set of arguments, we say that:
3 Actually,the defeat relation is called attack in [8] and in [9].

The Hedgehog and the Fox 125

– A is acceptable with respect to S (denoted A ∈ SS
A) iff ∀B ∈ A, defeats

(B, A) ∃C ∈ S such that defeats (C, B);
– S is conflict-free iff ∀A, B ∈ S ¬ defeats (A, B);
– S is admissible iff S is conflict-free and ∀A ∈ S, A ∈ SS

A;
– S is preferred iff S is maximally admissible;
– S is complete iff S is admissible and S contains all arguments A such that

S defeats all defeaters against A;
– S is grounded iff S is minimally complete;
– S is ideal iff S is admissible and it is contained in every preferred sets.

The semantics of an admissible (or preferred) set of arguments is credulous, in
that it sanctions a set of arguments as acceptable if it can successfully dispute
every arguments against it, without disputing itself. However, there might be sev-
eral conflicting admissible sets. Various sceptical semantics have been proposed
for AF, notably the grounded semantics, the ideal semantics, and the sceptically
preferred semantics, whereby an argument is accepted if it is a member of all
maximally admissible sets of arguments.

Since some ultimate choices amongst various admissible sets of alternatives
are not always possible, we consider in this paper only the credulous semantics.
Let us focus on the goal sewage in the previous example. Since the arguments
supporting Hanoi and Hochiminh are admissible, both alternatives can be sug-
gested to reach this goal. If we consider now the whole problem, the argument
depicted in Figure 4 is the only one reaching suitable which is admissible.

B0

suitable

regulation

r012

permit

r145

Location(hochiminh)

r42

Location(hochiminh)

assistance

Location(hochiminh)

r52

Location(hochiminh)

accessibility

sewage

r267

Location(hochiminh)

r62

Location(hochiminh)

transport

Location(hochiminh)

r71(hochiminh)

Location(hochiminh)

Sea(hochiminh)

θ

f2

Fig. 4. An argument concluding suitable

126 M. Morge

In our example, there is only one admissible argument deriving the main goal.
However, in the general case, a decision D1(a1) is suggested iff D1(a1) is a sup-
position of one argument in an admissible set deriving the main goal. Therefore,
our AF involves some ultimate choices of the fox between various admissible sets
of alternatives. In this section, we have given a status to the arguments.

9 Procedure

A dialectical proof procedure is required to compute the model-theoretic seman-
tics of our argumentation framework. The procedures proposed in [9,10] compute
the credulous semantics. Since our practical application requires to specify the
internal structure of arguments, we adopt the procedure proposed in [9].

In order to compute admissible arguments in our AF, we have translated
our AF in an Assumption-based AF (ABF for short). This general framework
considers a deductive system (L, R) (with a language L and a set R of infer-
ence rules) augmented by a non-empty set of assumptions A ⊆ L and a (total)
mapping Con : A → L from assumptions to their contrary. In this framework,
an argument for a conclusion is a deduction of its conclusion supported by a
set of assumptions. An argument attacks another argument iff the first argu-
ment supports a conclusion that is the contrary of one assumption of the second
argument. The ABF corresponding to our AF is defined in the following way:

– L is the language described in section 4 including the names of rules and the
predicate symbols deleted to represent when a rule does not hold;

– R comes from the theories and the priorities over them. If R is a
goal/decision/epistemic rule then the rule r defined such as head(r) = head
(R) and body(r) = body(R) ∪ {∼ deleted(R)} is included in R. If R1 and
R2 are concurrent and R1 P R2, then the rule r defined such as head(r) =
deleted(R2) and body(r) = {∼ deleted(R1)} is also included in R4;

– A includes the inference rules and the the decision literals;
– Con comes from the incompatibility relation I over atomic formulas in L.

CaSAPI5 [12] computes the admissible semantics in the ABF by implement-
ing the procedure originally proposed in [13]. Moreover, we have developed a
CaSAPI meta-interpreter to relax the goals achievements in the priority order
and to make suppositions in order to compute the admissible semantics in our
concrete AF6. Suppose we wish to investigate whether an argument is preferred,
i.e. it belongs to a preferred set. We know that it suffices to check that this ar-
gument is in an admissible set, since, by definition, a preferred set is a maximal
admissible set and obviously all admissible sets are contained in a maximal ad-
missible set. If the procedure succeeds, we know that the argument is contained
in a preferred set. We can easily extend it to compute the competing semantics

4 Our treatment of priority is inspired by [11].
5 http://www.doc.ic.ac.uk/˜dg00/casapi.html
6 For brevity, we do not describe this mechanism in the paper.

The Hedgehog and the Fox 127

which have been proposed in [9]. The implementation of our framework, called
MARGO (Multiattribute ARGumentation framework for Opinion explanation),
is written in Prolog and available in GPL (GNU General Public License) at
http://margo.sourceforge.net/.

In order to be computed by MARGO, the problem description must contain:

– a set of decisions, i.e. some lists which contain the alternatives courses of
actions (in the example,
decisions([location(hochiminh), location(hanoi)]));

– a set of incompatibilities, i.e. some couples which contain incompatible lit-
erals (in the example,
incompatibility(noroad(hochiminh),road(hochiminh)));

– a set of goal rules, i.e. some triples of name - head - body which are sim-
ple Prolog representations of the goal rules in our AF (in the example,
goalrule(r012, suitable, [regulation, accesibility]), . . .);

– a set of decisions rules, i.e. some triples of name - head - body which are
simple Prolog representations of the decision rules in our AF (in the example,
decisionrule(r31, taxes, [location(hanoi)]), . . .);

– a set of epistemic rules, i.e. some triples of name - head - body which are sim-
ple Prolog representations of the epistemic rules in our AF (in the example,
epistemicrule(f1,road(hochiminh),[]), . . .);

– a set of goal priorities, i.e. some ordered lists of sublists of goal rules where the
rules in a previous sublists have priorities and the rules in the same sublists
are ex æquo (in the example, goalpriority([[r267], [r27], [r26]]),
since r267 P r27 P r26, . . .);

– a set of decision priorities, i.e. some couples of decision rules such that the
former have priority over the latter (in the example,
decisionpriority(r31,r32), . . .);

– a set of epistemic priorities, i.e. some couples of decision rules such that the
former have priority over the latter (in the example,
epistemicpriority(f1,f2));

– a set of possible suppositions, i.e. some couples such that the former is the
name of the supposition and the latter is an assumable belief literal (in the
example, supposition(a12,road(hanoi)), . . .).

The main predicate for argument manipulation
admissibleArgument(+C, ?P, ?S) succeeds when P are the premises and S
are the suppositions of an admissible argument deriving the conclusion C. For
instance, admissibleArgument(suitable,P,S) returns:

SUPPOSITIONS = [location(hochiminh),sea(hochiminh)],
PREMISES = [regulation,accesibility].

These sub-goals can be challenged. For instance,
admissibleArgument(regulation,P,S) returns:

SUPPOSITIONS = [location(hochiminh)],
PREMISES = [permit,assistance].

128 M. Morge

The top rule of this argument is r145, which is no the strongest goal rule. However,
P is the strongest combination of (sub)goals which can be reach by a course of
actions. In this section, we have shown how to compute admissible arguments
in our AF in order to provide an interactive and intelligible explanation of the
suggestion to the fox.

10 Related Works

Argumentation has been put forward as a promising approach to support de-
cision making [14]. While influence diagrams and belief networks [15] require
that all the factors relevant for a decision are identified a priori, arguments
are defeasible or reinstantiated in the light of new information not previously
available.

Contrary to the theoretical reasoning, practical reasoning is not only about
whether some beliefs are true, but also about whether some actions should or
should not be performed. The practical reasoning [16] follows three main steps:
i) deliberation, i.e. the generation of goals; ii) means-end reasoning, i.e. the gen-
eration of plans; iii) decision-making, i.e. the selection of plans that will be per-
formed to reach the selected goals. For instance, [17] proposes an AF focusing
on the deliberation (closed to the principle of [18] where argumentation is im-
plicit) and [19,20] have provided formal models for deliberation and means-end
reasoning. While some frameworks are based upon defeasible logic programming
(e.g. [21,22]), most of them instantiate the abstract argumentation framework of
Dung [8]. Since the latter abstracts away from the internal structure of arguments
in order to focus on the manner in which arguments interact, [23] instantiates
an argument scheme in the context of practical reasoning in order to capture
the interaction in terms of internal structure.

In this work, we have proposed an AF for decision-making. In this perspective,
[24] proposes a critical survey of some computational models of argumentation
over actions. For this purpose, [25,26] have considered several principles accord-
ing to the different types of arguments which are considered (PROS/CONS,
strong/weak, related to a positive/negative goal) are aggregated. However, con-
trary to our approach, the potential interaction amongst arguments, as studied
in the seminal work of Dung [8] is not considered. Moreover, we allow the epis-
temic theory and the goal theory to be inconsistent. In this paper we have
considered the example borrowed from [3] and we have adopted like [27] an ab-
ductive approach to the practical reasoning which is directly modelled within in
our framework.

Finally, to the best of our knowledge, few implementation of argumentation
over actions exist. CaSAPI and DeLP 7 are restricted to the theoretical reason-
ing. PARMENIDES8 is a software to structure the debate over actions by adopting
a particular argumentation scheme. GORGIAS 9 implements an argumentation
7 http://lidia.cs.uns.edu.ar/DeLP
8 http://cgi.csc.liv.ac.uk/˜katie/Parmenides.html
9 http://www.cs.ucy.ac.cy/˜nkd/gorgias/

The Hedgehog and the Fox 129

based framework to support the decision making of an agent within a modular
architecture. Like the latter, MARGO incorporate abduction on missing informa-
tion. Moreover, we can easily extend it to compute the competing semantics which
have been proposed in [9] since we have instantiated the abstract argumentation
framework of Dung.

11 Conclusions

In this paper we have presented a DSS based upon a concrete and implemented
AF for practical reasoning which suggests different alternative courses of actions
and provides an interactive and intelligible explanation of the choices. A logic lan-
guage is used as a concrete data structure for holding statements representing
knowledge, goals, and decisions. Different priorities are attached to these items
corresponding to the uncertainty of the knowledge about the circumstances, the
preferences between goals, and the expected utilities of decisions. These concrete
data structures consist of information providing the backbone of arguments. Due
to the abductive nature of practical reasoning, arguments are built by reason-
ing backwards, and possibly by making suppositions over missing information. To
be intelligible, arguments are defined as tree-like structures. The interactions be-
tween arguments may come from the incompatibility of their sentences, from their
nature (hypothetical or built) and from the priority over rules. Since an ultimate
choice amongst various admissible sets of alternatives is not always possible, we
have adopted a credulous semantics. In order to compute it, we have implemented
our AF in Prolog.

In future works, we wants to incorporate decision-theoretic techniques within
the model. Standard decision theory weighs the cost and benefits of possible out-
comes with their probabilities to produce a preference on the expected utilities
of the alternatives. However in many practical applications, it is not natural to
give a quantitative representation of many objectives, or it could not deal with
the cases of decision makers that only have partial information. Further standard
decision theory provides little support in giving intelligible explanation of the
choices. For this purpose, it would be best to have a hybrid approach combining
both quantitative and qualitative decision theory. Argumentation provides a nat-
ural framework for these hybrid systems by providing a link between qualitative
objectives and its quantitative representation.

References

1. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Hand-
book of Philosophical Logic, vol. 4, pp. 219–318. Kluwer Academic Publishers,
Dordrecht (2002)

2. Berlin, S.I.: The Hedgehog and the Fox. Simon & Schuster (1953)
3. Stournaras, T. (ed.): Concrete scenarios identification & simple use cases. Deliv-

rable document D1.1 ARGUGRID (2007)
4. Clemen, R.T.: Making Hard Decisions. Duxbury. Press (1996)

130 M. Morge

5. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. Annals of Maths and AI 34(1-3), 197–215 (2002)

6. Ralf Schweimeier, M.S.: Notions of attack and justified arguments for extended
logic programs. In: van Harmelen, F. (ed.) Proc. of the 15th European Confer-
ence on Artificial Intelligence (ECAI 2002), Amsterdam, pp. 536–540. IOS Press,
Amsterdam (2002)

7. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90, 225–279
(1997)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

9. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Ar-
tificial Intelligence, Special Issue on Argumentation in Artificial Intelligence 171(10-
15), 642–674 (2007)

10. Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred
semantics. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P.
(eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 239–253. Springer, Heidelberg
(2000)

11. Kowalski, R., Toni, F.: Abstract argumentation. Artificial Intelligence and Law
Journal Special Issue on Logical Models of Argumentation 4(3-4), 275–296 (1996)

12. Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumen-
tation. In: Simari, G., Torroni, P. (eds.) Proc. Workshop on Argumentation for
Non-monotonic Reasoning, pp. 80–95 (2007)

13. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-
based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)

14. Fox, J., Parsons, S.: On using arguments for reasoning about actions and values.
In: Doyle, J., Thomason, R.H. (eds.) Proceedings of the Working Papers of the
AAAI Spring Symposium on Qualitative Preferences in Deliberation and Practical
Reasoning, Standford, pp. 55–63 (1997)

15. Oliver, R.M., Smith, J.Q. (eds.): Influence Diagrams, Belief Nets and Decision
Analysis. John Wiley and Sons, Chichester (1988)

16. Raz, J. (ed.): Practical Reasoning. Oxford University Press, Oxford (1978)
17. Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based

negotiation. In: Rahwan, I., Moräıtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS
(LNAI), vol. 3366, pp. 192–207. Springer, Heidelberg (2005)

18. Thomason, R.H.: Desires and defaults: A framework for planning with inferred
goals. In: Proc. of the seventh International Confenrence on Principle of Knowledge
Representation and Reasoning (KR), pp. 702–713 (2000)

19. Hulstijn, J., van der Torre, L.W.N.: Combining goal generation and planning in
an argumentation framework. In: Proc. of the 9h International Workshop on Non-
Monotonic Reasoning (NMR 2004), pp. 212–218 (2004)

20. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning.
In: Proc. of the 5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 347–354. ACM Press, New York (2006)

21. Simari, G.R., Garćıa, A.J., C., M.: Actions, planning and defeasible reasoning. In:
Proc. of the 10th International Workshop on Non-Monotonic Reasoning, Whistler
BC, Canada, pp. 377–384 (2004)

22. Kakas, A., Moraitis, P.: Argumentative-based decision-making for autonomous
agents. In: Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pp. 883–890. ACM Press, New York
(2003)

The Hedgehog and the Fox 131

23. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of
practical argument. Synthese, special issue on Knowledge, Rationality and Ac-
tion 152(2), 157–206 (2006)

24. Ouerdane, W., Maudet, N., Tsoukias, A.: Arguing over actions that involve multi-
ple criteria: A critical review. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI),
vol. 4724, Springer, Heidelberg (2007)

25. Amgoud, L., Prade, H.: Comparing decisions in an argumentation-based setting.
In: Proc. of the 11th International Workshop on Non-Monotonic Reasoning (NMR
2006), Session on Argumentation, Dialogue, and Decision Making, Lake District,
UK, pp. 426–432 (2006)

26. Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by ar-
gumentation. In: Proc. of the 21st National Conference on Artificial Intelligence
(AAAI 2006), Boston, Boston, pp. 16–20 (2006)

27. Bench-Capon, T., Prakken, H.: Justifying actions by accruing arguments. In: Proc.
of the 1st International Conference on Computational Models of Argument, pp.
247–258. IOS Press, Amsterdam (2006)

An Extended Value-Based Argumentation

Framework for Ontology Mapping with
Confidence Degrees

Cássia Trojahn1, Paulo Quaresma1, and Renata Vieira2

1 Departamento de Informática, Universidade de Évora, Portugal
2 Pós-Graduacão em Computacão Aplicada,

Universidade do Vale do Rio dos Sinos, Brazil
cassia@di.uevora.pt, pq@di.uevora.pt, renatav@unisinos.br

Abstract. Heuristics to combine different approaches for ontology map-
ping have been proposed in the literature. This paper proposes to use
abstract argumentation frameworks to combine such approaches. We ex-
tend the Value-based Argumentation Framework (VAF)[2], in order to
represent arguments with confidence degrees. Our agents apply individ-
ual mapping algorithms and cooperate in order to exchange their local
results (arguments). Next, based on their preferences and confidence of
the arguments, the agents compute their preferred mapping sets. The ar-
guments in such preferred sets are viewed as the set of globally acceptable
arguments.

1 Introduction

Ontology mapping is the process of linking corresponding terms from different
ontologies. The mapping result can be used for ontology merging, agent commu-
nication, query answering, or for navigation on the Semantic Web.

Well-known approaches to the problem can be grouped into lexical, semantic,
and structural ones, as terms may be mapped by a measure of lexical similarity,
or they can be evaluated semantically, usually on the basis of semantic oriented
linguistic resources, or considering the term positions in the ontology hierar-
chy. It is assumed that the approaches are complementary to each other and
combining different ones reflect better solutions when compared to the solutions
of the individual approaches. Heuristics to combine such approaches have been
proposed [18][14][9][15].

This paper proposes to use abstract argumentation frameworks [6] to com-
bine approaches for ontology mapping. We extend a state of art argumentation
framework, namely Value-based Argumentation Framework (VAF)[2], in order
to represent arguments with confidence degrees. The VAF allows to determine
which arguments are acceptable, with respect to the different audiences rep-
resented by different agents. We then associate to each argument a confidence
degree, representing how confident an agent is in the similarity of two ontology
terms.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 132–144, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Extended Value-Based Argumentation Framework 133

Our agents apply different mapping approaches and cooperate in order to
exchange their local results (arguments). Next, based on their preferences and
confidence of the arguments, the agents compute their preferred mapping sets.
The arguments in such preferred sets are viewed as the set of globally acceptable
arguments. Our approach is able to give a formal motivation for the composite
mapping approaches.

This paper is structured as follows. Section 2 comments on argumentation
framework. Section 3 introduces the ontology mapping approaches. Section 4
presents our agent argumentation model. Section 5 presents a walk through
example. Section 6 comments on related work. Finally, section 7 presents the
final remarks and the future work.

2 Argumentation Framework

Our argumentation model is based on the Value-based Argumentation Frame-
works (VAF)[2], a development of the classical argument system of Dung [6].
First, we present the Dung’s framework, upon which the VAF rely. Next, we
present the VAF and our extended framework.

2.1 Classical Argumentation Framework

Dung [6] defines an argumentation framework as follows.

Definition 2.1.1. An Argumentation Framework is a pair AF = (AR, attacks),
where AR is a set of arguments and attacks is a binary relation on AR, i.e.,
attacks ⊆ AR × AR. An attack(A,B) means that the argument A attacks
the argument B. A set of arguments S attacks an argument B if B is attacked
by an argument in S.

The key question about the framework is whether a given argument A, A ∈ AR,
should be accepted. One reasonable view is that an argument should be accepted
only if every attack on it is rebutted by an accepted argument [6]. This notion
produces the following definitions:

Definition 2.1.2. An argument A ∈ AR is acceptable with respect to set argu-
ments S(acceptable(A,S)), if (∀ x)(x ∈ AR) & (attacks(x,A)) −→ (∃ y)(y ∈
S) & attacks(y,x)

Definition 2.1.3. A set S of arguments is conflict-free if ¬(∃ x)(∃ y)((x ∈
S)&(y ∈ S) & attacks(x,y))

Definition 2.1.4. A conflict-free set of arguments S is admissible if (∀x)(x ∈
S) −→ acceptable(x,S)

Definition 2.1.5. A set of arguments S is a preferred extension if it is a maxi-
mal (with respect to inclusion set) admissible set of AR.

134 C. Trojahn, P. Quaresma, and R. Vieira

A preferred extension represent a consistent position within AF, which can de-
fend itself against all attacks and which cannot be further extended without
introducing a conflict.

The purpose of [2] in extending the AF is to allow associate arguments with
the social values they advance. Then, the attack of one argument on another is
evaluated to say whether or not it succeeds by comparing the strengths of the
values advanced by the arguments concerned.

2.2 Value-Based Argumentation Framework

In Dung’s frameworks, attacks always succeed. However, in many domains, in-
cluding the one under consideration, arguments lack this coercive force: they
provide reasons which may be more or less persuasive [11]. Moreover, their per-
suasiveness may vary according to their audience.

The VAF is able to distinguish attacks from successful attacks, those which
defeat the attacked argument, with respect to an ordering on the values that are
associated with the arguments. It allows accommodate different audiences with
different interests and preferences.

Definition 2.2.1. A Value-based Argumentation Framework (VAF) is a 5-tuple
VAF = (AR,attacks,V,val,P) where (AR,attacks) is an argumentation frame-
work, V is a nonempty set of values, val is a function which maps from ele-
ments of AR to elements of V and P is a set of possible audiences. For each
A ∈ AR, val(A) ∈ V.

Definition 2.2.2. An Audience-specific Value Based Argumentation Frame-
work (AVAF) is a 5-tuple VAFa = (AR,attacks,V,val,valprefa) where AR,
attacks,V and val are as for a VAF, a is an audience and valprefa is a pref-
erence relation (transitive, irreflexive and asymmetric) valprefa ⊆ V × V,
reflecting the value preferences of audience a. valpref(v1,v2) means v1 is pre-
ferred to v2.

Definition 2.2.3. An argument A ∈ AR defeatsa (or successful attacks) an
argument B ∈ AR for audience a if and only if both attacks(A,B) and not
valpref(val(B), val(A)).

An attack succeeds if both arguments relate to the same value, or if no preference
value between the values has been defined.

Definition 2.2.4. An argument A∈AR is acceptable to audience a (acceptablea)
with respect to set of arguments S, acceptablea(A,S)) if (∀ x) ((x ∈ AR &
defeatsa (x,A)) −→ (∃y)((y ∈ S) & defeatsa(y,x))).

Definition 2.2.5. A set S of arguments is conflict-free for audience a if (∀ x)(∀
y)((x ∈ S & y ∈ S) −→ (¬attacks(x,y) ∨ valpref(val(y),val(x)) ∈ valprefa)).

Definition 2.2.6. A conflict-free set of argument S for audience a is admissible
for an audience a if (∀x)(x ∈ S −→ acceptablea(x,S)).

An Extended Value-Based Argumentation Framework 135

Definition 2.2.7. A set of argument S in the VAF is a preferred extension for
audience a (preferreda) if it is a maximal (with respect to set inclusion)
admissible for audience a of AR.

In order to determine the preferred extension with respect to a value order-
ing promoted by distinct audiences, [2] introduces the notion of objective and
subjective acceptance.

Definition 2.2.8. An argument x ∈ AR is subjectively acceptable if and only
if x appears in the preferred extension for some specific audiences but not
all. An argument x ∈ AR is objectively acceptable if and only if, x appears
in the preferred extension for every specific audience. An argument which is
neither objectively nor subjectively acceptable is said to be indefensible.

2.3 An Extended Value-Based Argumentation Framework

We extend the VAF in order to represent arguments with confidence degrees.
Two elements have been added to the VAF: a set with confidence degrees and a
function which maps from arguments to confidence degrees. The confidence value
represents the confidence that an individual agent has in some argument. We
assumed that the confidence degrees is a criteria which is necessary to represent
the ontology mapping domain.

Definition 2.3.1. An Extended Value-based Argumentation Framework (E-
VAF) is a 7-tuple E-VAF = (AR, attacks,V,val,P,C,valC) where (AR,
attacks,V,val,P) is a value-based argumentation framework, C is a nonempty
set of values representing the confidence degrees, valC is a function which
maps from elements of AR to elements of C. valC ⊆ C × C and valprefC(c1,
c2) means c1 is preferred to c2.

Definition 2.3.2. An argument x ∈ AR defeatsa (or successful attacks) an ar-
gument y ∈ AR for audience a if and only if attacks(x,y) ∧ (valprefC(valC(x),
valC(y)) ∨ (¬ valpref(val(y),val(x)) ∧ ¬ valprefC(valC(y), valC(x)))).

An attack succeeds if (a) the confidence degree of the attacking argument is
greater than the confidence degree of the argument being attacked; or if (b) the
argument being attacked does not have greater preference value than attack-
ing argument (or if both arguments relate to the same preference values) and
the confidence degree of the argument being attacked is not greater than the
attacking argument.

Definition 2.3.3. A set S of arguments is conflict-free for audience a if (∀x)(∀y)
((x ∈ S & y ∈ S) −→ (¬attacks(x, y) ∨ (¬valprefC(valC(x),valC(y)) ∧ (val-
pref(val(y), val(x)) ∨ valprefC(valC(y),valC(x))))).

136 C. Trojahn, P. Quaresma, and R. Vieira

3 Ontology Mapping

The approaches for ontology mapping vary from lexical (see [18][14]) to semantic
and structural levels (see [9]). In the lexical level, metrics to compare string sim-
ilarity are adopted. One well-known measure is the Levenshtein distance or edit
distance [12], which is given by the minimum number of operations (insertion,
deletion, or substitution of a single character) needed to transform one string
into another. Other common metrics can be found in [14], [17], and [7].

The semantic level considers the semantic relations between concepts to mea-
sure the similarity between them, usually on the basis of semantic oriented
linguistic resources. The well-known WordNet1 database, a large repository of
English semantically related items, has been used to provide these relations.
This kind of mapping is complementary to the pure string similarity metrics. It
is common that string metrics yield high similarity between strings that repre-
sent completely different concepts (i.e, the words “score” and “store”). Moreover,
semantic-structural approaches have been explored [3][9]. In this case, the po-
sitions of the terms in the ontology hierarchy are considered, i.e, terms more
generals and terms more specifics are also considered as input to the mapping
process.

Heuristics to combine different approaches for ontology mapping have been
proposed in the literature. It is assumed that the approaches are complemen-
tary to each other and combining different ones reflect better solutions when
compared to the solutions of the individual approaches.

We propose to use the E-VAF to combine such approaches. Our agents ap-
ply different mapping algorithms and cooperate in order to exchange their local
results (arguments). Next, based on their preferences and confidence of the argu-
ments, the agents compute their preferred mapping sets. The arguments in such
preferred sets are viewed as the set of arguments globally acceptable (objectively
or subjectively).

4 E-VAF for Ontology Mapping

In our model, dedicated agents encapsulate different mapping approaches. Each
approach represents a different audience in an E-VAF, i.e, the agents’ preferences
are based on specific approach used by the agent. In this paper we consider three
audiences: lexical (L), semantic (S), and structural (E) (i.e. P = {L, S, E}, where
P ∈ E-VAF). We point out that our model is extensible to other audiences.

4.1 Argumentation Generation

First, the agents work in an independent manner, applying the mapping ap-
proaches and generating mapping sets. The mapping result will consist of a set
of all possible correspondences between terms of two ontologies. A mapping m
can be described as a 3-tuple m = (t1,t2,R), where t1 corresponds to a term
1 http://www.wordnet.princeton.edu

An Extended Value-Based Argumentation Framework 137

in the ontology 1, t2 corresponds to a term in the ontology 2, and R is the
mapping relation resulting from the mapping between these two terms. The lex-
ical and semantic agents are able to return equivalence value to R, while the
structural agents return sub-class or super-class values to R. Each mapping m
is represented as a argument. Now, we can define arguments as follows:

Definition 4.1. An argument ∈ AR is a 4-tuple x = (m,a,c,h), where m is a
mapping; a ∈ P is the agent’s audience generating that argument (agent’s
preference, i.e, lexical, semantic or structural); c ∈ C is the confidence degree
associated to that mapping (certainty or uncertainty, as it will be commented
below); h is one of {-,+} depending on whether the argument is that m does
or does not hold.

The confidence degree is defined by the agent when applying the specific mapping
approach. Here, we assumed C = {certainty, uncertainty}, where C ∈ E-VAF.
Table 1 shows the possible values to h and c, according to the agent’s audiences.
The agents generate their arguments based on rules from Table 1.

Table 1. h and c to audiences

Audiences

h c Lexical Semantic

+ certainty 1 synonym
+ uncertainty 1 > r > t related
- certainty 0 < r <= t
- uncertainty 0 unknown

Lexical Agent. The output of lexical agents (r) is a value from the interval
[0,1], where 1 indicates high similarity between two terms. This way, if the output
is 1, the lexical agent generates an argument x = (m,L,certainty,+), where m
= (t1,t2,equivalence). If the output is 0, the agent generates an argument x =
(m,L,certainty,-), where m = (t1,t2, equivalence). A threshold (t) is used to
classify the output in uncertain categories. The threshold value can be specified
by the user.

Semantic Agent. The semantic agents consider semantic relations between
terms, such as synonym, antonym, holonym, meronym, hyponym, and hyper-
nym (i.e., such as in WordNet database). When the terms being mapped are
synonymous, the agent generates an argument x = (m,S,certainty,+), where
m= (t1,t2, equivalence). The terms related by holonym, meronym, hyponym, or
hypernym are considered related and an argument x = (m,S, uncertainty,+) is
generated, where m =(t1,t2, equivalence); when the terms can not be related by
the WordNet (the terms are unknown for the WordNet database), an argument
x = (m,L,uncertainty, -), where m = (t1,t2,equivalence), is then generated.

138 C. Trojahn, P. Quaresma, and R. Vieira

Structural Agent. The structural agents consider the super-classes (or sub-
classes) intuition to verify if the terms can be mapped. First, it is verified if the
super-classes of the compared terms are lexically similar. If not, the semantic
similarity between they is used. If the super-classes of the terms are lexically
or semantically similar, the terms are considered equivalent to each other. The
argument is generated according to the lexical or semantic comparison. For in-
stance, if the super-classes of the terms are not lexically similar, but they are
synonymous (semantic similarity), an argument x = (m,E,certainty,+), where
m = (t1,t2, super-class), is generated.

4.2 Preferred Extension Generation

After generating their set of arguments, the agents exchange with each other
their arguments. Following a specific protocol, an agent asks (ask sign) the others
about their arguments. The other agents then, send their arguments to the first
agent. An ack sign is then sent to requesting agents, in order to indicate that
the arguments have been correctly received. Otherwise, an error sign is sent.

When all agents have received the set of argument of the each other, they
generate their attacks set. An attack (or counter-argument) will arise when we
have arguments for the mapping between the same terms, but with conflicting
values of h. For instance, an argument x = (m1,L,certainty,+) have as an attack
an argument y = (m2,E,certainty,-), where m1 and m2 refer to the same terms
in the ontologies. The argument y also represents an attack to the argument x.

As an example, consider the mapping between the terms “Reference/ Disser-
tation” and “Citation/Thesis” and the lexical and structural agents. The lexical
agent generates an argument x = (m,L,uncertainty,-), where m = (disserta-
tion,thesis,equivalence); and the structural agent generates an argument y =
(m,E,certainty,+), where m = (dissertation,thesis, super-class). For both lexical
and structural audiences, the set of arguments is AR= {x,y} and the attacks =
{(x,y),(y,x)}. However, the relations of successful attacks will be defined accord-
ing to specific audience (see Definition 2.3.2), as it is commented below.

When the set of arguments and attacks have been produced, the agents need
to define which of them must be accepted. To do this, the agents compute their
preferred extension, according to the audiences and confidence degrees. A set
of arguments is globally subjectively acceptable if each element appears in the
preferred extension for some agent. A set of arguments is globally objectively
acceptable if each element appears in the preferred extension for every agent.
The arguments which are neither objectively nor subjectively acceptable are
considered indefensible.

In the example above, considering the lexical(L) and structural(E) audiences,
where L 	 E and E 	 L, respectively. For the lexical audience, the argument
y successful attacks the argument x, while the argument x does not successful
attack the argument y for the structural audience. Then, the preferred extension
of both lexical and structural agents is composed by the argument y, which
can be seen as globally objectively acceptable. The mapping between the terms
“Reference/ Dissertation” and “Citation/Thesis”, indicated by y is correct.

An Extended Value-Based Argumentation Framework 139

5 A Walk through Example

Let us consider that three agents need to obtain a consensus about mappings
that link corresponding class names in two different ontologies.

First, we used part of the ontology of Google and Yahoo web directories2, and
the argumentation model output has been compared with manual matches3.

We considered lexical (L), semantic (S), and structural (E) audiences (map-
ping approaches) in order to verify the behavior of our argumentation model.
The lexical agent was implemented using the edit distance measure (Levenshtein
measure). We used the algorithm available in the API for ontology alignment
(INRIA)4 (EditDistNameAlignment). The semantic agent has used the JWord-
Net API5, which is an interface to the WordNet database. For each WordNet
synset, we retrieved the synonymous terms and considered the hypernym, hy-
ponym, member-holonym, member-meronym, part-holonym, and part-meronym
as related terms. The structural agent was based on super-classes similarity. The
threshold used to classify the matcher agents output was 0.6. This value was de-
fined based on previous analysis of the edit distance values between the terms
of the ontologies used in the experiments. The terms with edit distance values
greater than 0.6 have presented lexical similarity.

We have selected three possible mappings between terms of the ontologies:
“Music/History” and “Architecture/History”, “Art/ArtHistory” and “ArtHu-
manity/ArtHistory”, and “Art” and “ArtHumanity”. Table 2 shows arguments
and attacks (counter-arguments) generated for each audience. The mappings be-
tween these terms have been selected because they were identified as conflicting
cases when using our previous cooperative negotiation model [20][21], which is
based on voting mechanism.

Table 2. Arguments and attacks

ID Argument Attacks

1 (history,history,equivalence,L,certainty,+) 3
2 (history,history,equivalence,S,certainty,+) 3
3 (history,history,super-class,E,certainty,-) 1,2

4 (art-history,art-history,equivalence,L,certainty,+) -
5 (art-history,art-history,equivalence,S,certainty,+) -
6 (art-history,art-history,super-class,E,certainty,+) -

7 (art,art-humanity,L,equivalence,uncertainty,-) 8,9
8 (art,art-humanity,S,equivalence,certainty,+) 7
9 (art,art-humanity,E,super-class,uncertainty,+) 7

2 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 3)
3 http://dit.unitn.it/ accord/Experimentaldesign.html
4 http://alignapi.gforce.inria.fr
5 http://jwn.sourceforge.net (using WordNet 2.1)

140 C. Trojahn, P. Quaresma, and R. Vieira

For the mapping between the terms “Music/History” and “Architecture/ His-
tory”, each agent has as arguments AR = {1,2,3} and as relations of attack
attacks = {(3,1), (3,2), (1,3), (2,3)}. These sets are generated by each agent,
after receiving the arguments of other agents. Next, the arguments that defeat
each other are computed, according to the agent’s audience. For the lexical au-
dience, where L 	 S and L 	 E, there is no argument that successfully attacks
another, because all agents have certainty in the mappings. The same occurs for
the semantic (S 	 L and S 	 E) and structural (E 	 L and E 	 S) audiences.

The preferred extensions of the agents are composed by the arguments gen-
erated by the corresponding audience (i.e, the preferred extension of the lexical
agent is {1}; the preferred extension of the semantic agent is {2}; and the pre-
ferred extension of the structural agent is {3}). This way, there is no argument
globally objectively acceptable. Then, we can consider that the mapping between
the terms is not possible, what is correct according to the manual mapping.

Using our cooperative negotiation model, the final mapping between the “Mu-
sic/History” and “Architecture/ History” terms was incorrect. The semantic and
lexical agents returned mappings with certainty, while the structural agent re-
turned a non mapping with certainty. By voting, a mapping with certainty was
obtained. This conflict is then resolved by our argumentation model.

For the mapping between the terms “Art/ArtHistory” and “ArtHumanity/
ArtHistory”, each agent has as arguments AR = {4,5,6}, but there are not rela-
tions of attack. Then, all agents accept the mapping with certainty between these
terms. This mapping is considered a correct mapping by the manual mapping.

Finally, for the mapping between the terms “Art” and “ArtHumanity”, each
agent has as arguments AR = {7,8,9} and as relations of attack attacks = {(8,7),
(9,7), (7,8), (7,9)}. For the lexical audience, the argument 8 successfully attacks
the argument 7. Then, the preferred extension has the argument 8. For the
semantic audience, the argument 8 also successful attacks the argument 7, and
for structural audience, the arguments 8 and 9 successful attack theirs counter-
arguments. Then, the preferred extension of the structural agent is {8,9}. The
argument 8 is present in all preferred extension, then it is globally objectively
acceptable, confirming the mapping indicated by manual mapping.

We have used different agents’ output which use distinct mapping algorithms
in order to verify the behavior of our model. Our argumentation model has
identified correctly the three mappings defined by expert mappings, being two
mapping positives (h is +) and one negative (h is -).

Second, we compared the argumentation output with the results obtained by
the cooperative negotiation model. Table 3 shows the comparative results. Al-
though the negotiation model having obtained better precision than argumenta-
tion model, the F-measure of the argumentation model is better than negotiation
model. The negotiation model identified 7 true positive mappings and it did not
classify correctly 4 true positive mappings. The argumentation model identified
8 true positive, returning 1 false positive mapping not identifying 3 true positives
mappings.

An Extended Value-Based Argumentation Framework 141

Table 3. Argumentation vs. negotiation

Argumentation Negotiation
Ontology P R F P R F

Company profiles (160) 0.88 0.72 0.79 1 0.63 0.77

Third, we compared our argumentation model with three state of the art
schema-based matching systems: Cupid [10], COMA [5], and S-Match [8]. We
consider the class and the attribute names of the ontologies in the comparison.
Table 4 shows the results. Our argumentation model had better F-measures than
all others systems.

Table 4. Comparative mapping results – argumentation model

Arg Cupid COMA S-Match
Ontology P R F P R F P R F P R F

Company profiles (160) 0.88 0.72 0.79 0.50 0.60 0.54 0.80 0.70 0.74 1.0 0.65 0.78

6 Related Work

In the field of ontology negotiation we find distinct proposals. [19] presents an
ontology to serve as the basis for agent negotiation, the ontology itself is not the
object being negotiated. A similar approach is proposed by [4], where ontologies
are integrated to support the communication among heterogeneous agents.

[1] presents an ontology negotiation model which aims to arrive at a com-
mon ontology which the agents can use in their particular interaction. We, on
the other hand, are concerned with delivering mapping pairs found by a group
of agents using abstract argumentation frameworks. The links between related
concepts are the result of the preferred mappings of each agent, instead of an
integrated ontology upon which the agents will be able to communicate for a spe-
cific purpose. We do not consider negotiation steps such as the ones presented
in [1], namely clarification and explanation. But we consider different mapping
methods represented by different audiences selecting by argumentation the best
solution for the mapping problem.

[16] describes an approach for ontology mapping negotiation, where the map-
ping is composed by a set of semantic bridges and their inter-relations, as pro-
posed in [13]. The agents are able to achieve a consensus about the mapping
through the evaluation of a confidence value that is obtained by utility func-
tions. According to the confidence value the mapping rule is accepted, rejected
or negotiated. Differently from [16], we do not use utility functions. Our model is
based on cooperation and argumentation, where the agents exchange their argu-
ments and by argumentation they select the preferred mapping. The arguments
in each preferred set are considered globally acceptable.

142 C. Trojahn, P. Quaresma, and R. Vieira

[11] proposes to use an argument framework to deal with arguments that
support or oppose candidate correspondences between ontologies. The mapping
candidates are provided by a single service. The accepted mappings resulting
from argumentation are used for agent communication. Differently from [11],
the mappings are obtained by different agents specialized on different mapping
algorithms and not only in a single service. In [11], the mappings are assumed
to be correct, and we are interested in how to obtain mapping sets by combining
different approaches for ontology mapping. Moreover, in [11] it is assumed that
arguments being negotiated have the same confidence. We are proposing to as-
sociate to each argument a confidence degree. This way, in order to compute the
preferred mapping, the audiences and confidence degrees must be considered.

7 Final Remarks and Future Work

This paper proposed to use abstract argumentation frameworks to combine ap-
proaches for ontology mapping. We extended a state of art argumentation frame-
work, namelyValue-basedArgumentationFramework (VAF), in order to represent
argumentswith confidence degrees.TheVAFallows to determinewhich arguments
are acceptable, with respect to the different preferences represented by different
agents. Our extension associates to each argument a confidence degree, represent-
ing the confidence that a specific agent has in that argument. We assumed that the
confidencedegrees is a criteriawhich is necessary to represent the ontologymapping
domain.

We have used different agents’ output which use distinct mapping algorithms
in order to verify the behavior of our model. The terms presented here were iden-
tified as conflicting cases in our previous negotiation model. Our argumentation
model has identified correctly the three mapping defined by expert mappings,
being two mapping positives (h is +) and one negative (h is -). This model
has obtained better results for the conflicting cases when compared with our
previous model. When comparing our model with the three state of the art
matching systems, our model obtained better F-measure than all other systems.
The results, although preliminary, are promising especially for what concerns
F-measure values.

In the future, we intend to develop further tests considering also agents using
constraint-based mapping approaches; and use the ontology’s application context
in our matching approach. Next, we will use the mapping result as input to an
ontology merge process in the question answering domain.

Acknowledgments

The first author is supported by the Programme Alban, the European Union Pro-
gramme of High Level Scholarships for Latin America, scholarship no.E05D05-
9374BR.

An Extended Value-Based Argumentation Framework 143

References

1. Bailin, S., Truszkowski, W.: Ontology negotiation between intelligent information
agents. The Knowledge Engineering Review 17(1), 7–19 (2002)

2. Bench-Capon, T.: Persuasion in practical argument using value-based argumenta-
tion frameworks. Journal of Logic and Computation 13, 429–448 (2003)

3. Chaves, M.: Mapeamento e comparacao de similaridade entre estruturas ontologi-
cas. Master’s thesis, Pontificia Universidade Catolica do Rio Grande do Sul (2002)

4. Diggelen, J.v., Beun, R., Dignum, F., Eijk, v.R., Meyer, J.C.: Anemone: An effec-
tive minimal ontology negotiation environment. In: Proceedings of the V Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems, pp. 899–906
(2006)

5. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema match-
ing approaches. In: Proceedings of the 28th Conference on Very Large Databases
(VLDB) (2002)

6. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n–person games. Artificial Intelligence 77,
321–358 (1995)

7. Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., De Bo, J., Dieng-Kuntz, R.,
Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou,
G., Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Van Acker, S., Zaihrayeu, I.: State
of the art on ontology alignment. Technical report (2004)

8. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: An algorithm and an im-
plementation of semantic matching. In: First European Semantic Web Symposium
(2004)

9. Hakimpour, F., Geppert, A.: Resolving semantic heterogeneity in schema integra-
tion: An ontology approach. In: Proceedings of the International Conference on
Formal Ontology in Informational Systems (2001)

10. Madhavan, P.B.J., Rahm, E.: Generic schema matching with cupid. In: Proceedings
of the Very Large Data Bases Conference (VLDB), p. 49 (2001)

11. Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T., Payne, T.R.: Reaching agree-
ment over ontology alignments. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, Springer, Heidelberg (2006)

12. Levenshtein, I.: Binary codes capable of correcting deletions, insertions an reversals.
In: Cybernetics and Control Theory (1966)

13. Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra - a mapping framework for dis-
tributed ontologies. In: 13th International Conference on Knowledge Engineering
and Knowledge Management, pp. 235–250 (2002)

14. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of
the European Conference on Knowledge Acquisition and Management, pp. 251–263
(2002)

15. Rodriguez, A., Egenhofer, M.: Determining semantic similarity among entity
classes from different ontologies. IEEE Transactions on Knowledge and Data En-
gineering 15(2), 442

16. Silva, N., Maio, P., Rocha, J.: An approach to ontology mapping negotiation. In:
Proceedings of the K-CAP Workshop on Integrating Ontologies

17. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147, 195–197 (1981)

144 C. Trojahn, P. Quaresma, and R. Vieira

18. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 624–637. Springer, Heidelberg (2005)

19. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach
to automated negotiation. In: Proceedings of the IV Workshop on Agent Mediated
Electronic Commerce, pp. 219–237 (2002)

20. Trojahn, C., Moraes, M., Quaresma, P., Vieira, R.: A negotiation model for ontol-
ogy mapping. In: Proceedings of the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (2006)

21. Trojahn, C., Moraes, M., Quaresma, P., Vieira, R.: Using cooperative agent nego-
tiation for ontology mapping. In: Proceedings of Fourth European Workshop on
Multi-Agent Systems (EUMAS) (2006)

Defeasible Argumentation Support for an Extended BDI
Architecture�

Nicolás D. Rotstein, Alejandro J. Garcı́a, and Guillermo R. Simari

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory

Department of Computer Science and Engineering
Universidad Nacional del Sur, Bahı́a Blanca, Argentina

{ndr,ajg,grs}@cs.uns.edu.ar

Abstract. In this work, an agent architecture that combines defeasible argumen-
tation and the BDI model is described. Argumentation will be used as a mech-
anism for reasoning about beliefs, for filtering desires considering the agent’s
current environment, and for selecting proper intentions. The approach allows to
define different types of agents and this will affect the way in which desires are fil-
tered and hence, which intention is selected. For performing defeasible reasoning,
the approach uses a concrete framework based on a working defeasible argumen-
tation system: Defeasible Logic Programming (DeLP). A set of filtering rules,
represented as a defeasible logic program, will be used to represent reasons for
and against adopting desires. Thus, based on its perceived or derived beliefs, the
agent will argue about which of its desires are achievable in the current situation.
To clarify the ideas two applications will be introduced to show two significantly
different types of agent that can be implemented using this approach.

1 Introduction and Motivation

In this work, an agent architecture that combines defeasible argumentation and the BDI
model is described. Argumentation will be used for reasoning about beliefs, for filtering
desires considering the agent’s current environment, and for selecting proper intentions.
The approach allows to define different types of agents and this will affect the way in
which desires are filtered and hence, which intention is selected. For performing defea-
sible reasoning, the approach uses a concrete framework based on a working defeasible
argumentation system: Defeasible Logic Programming (DeLP).

This work is an extension of the article “Reasoning from Desires to Intentions: A
Dialectical Framework” published in AAAI 2007 by the same authors [1]. Here, besides
presenting the approach, we focus on two types of applications: a security system and
robotic soccer. They were chosen because they represent two significantly different
kinds of agents that can be implemented using our approach. As explained below, the
security-system agent will have the goal of handling unexpected problematic situations,
whereas the soccer agent will control the behavior of a robot in order to play somehow
successfully.

� Partially supported by CONICET, ANPCyT, and UNSur.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 145–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

In the first application domain, we consider a security system agent supervising a
building with several rooms (e.g., a museum). The agent’s goal will be to act in case
of unexpected problems (e.g., fire or intruders) and to decide which is the best ac-
tion to take in each case. The agent will have sources of information from which to
gather beliefs: video cameras and smoke, motion and temperature sensors. These sen-
sors can be thought as coupled and thus work as two mutual backup subsystems: the
smoke/temperature sensors pair would detect fire and the camera/motion sensor pair,
intruders. As it will be explained in detail in Section 7, agent’s intentions could be:
“send a guard to a room”, “call the police” or “call the firemen”.

The security system agent perceives information from the environment through the
mentioned sensors and this information represents its perceived belief. (e.g., “there is
motion in room 2” or “ there is no smoke in room 3”). Besides perceived beliefs the
agent may have more knowledge represented as a defeasible logic program (Section 2)
that will be used for warranting derived beliefs.

Our approach provides a defeasible reasoning mechanism for filtering agent’s desires
in order to obtain a set of current desires, i.e., those that are achievable in the current
situation. A set of filtering rules, represented as a defeasible logic program, will be
used to represent reasons for and against adopting desires. For example, the defeasible
rule call(firemen) –≺smoke(R) means “if there is smoke in a room R then there
are reasons for calling the firemen”. Thus, the security system agent will be provided
with a set of filtering rules that will represent reasons for and against adopting one of
its desires, i.e., call the firemen, call the police or send a guard. Thus, based on its
perceived or derived beliefs, the agent will debate which of its desires are achievable
in the current situation. For example, if the agent perceive that there is smoke in one
room then “call firemen” could be one of its current desires. Since the approach allows
to define different agent types, in the case of the security system application we will
develop a cautious agent, that is, an agent that only selects warranted desires. Once the
set of current desires is obtained, then the agent will be able to select one intention. The
security system agent will be explained in detail in Section 7.

The other application domain that we will consider in this work is robotic soccer.
Our robotic soccer agent senses its environment through a video camera that takes the
whole playing field, and from that perception it can build its set of perceived beliefs
(e.g., it is marked, a mate has the ball). Our proposed agent will have rules in order to
derived other beliefs, for instance, the defeasible rule “if a mate has the ball then the
agent may receive the ball” will allow the agent to build an argument for the belief that
it may receive the ball, based on the perception that a mate has the ball. However, as
we will show in detail in the next section, other rule like “if the agent is marked and a
mate has the ball then it will not receive the ball” can be used for building a counter-
argument for the previous one. The set of desires of the soccer agent could be shoot,
carry, pass and move, i.e., shoot to goal, carry the ball, pass the ball to a teammate and
move to a different position in the field.

A significant difference between the two application domains is how they select
intentions. The security-system agent is allowed to select and fulfill possibly many
intentions at the same time, because it would have to deal with multiple hazardous

Defeasible Argumentation Support for an Extended BDI Architecture 147

situations simultaneously. In opposition to this, a robotic-soccer agent can pursue just
one intention at a time, since, for instance, it cannot shoot on goal and pass the ball to
a teammate at once.

2 The Proposed Architecture

An outline of this architecture appears in Fig. 1 [1]. Briefly, the main input is the per-
ception from the environment, which is part of the set of belief rules (ΠB,ΔB) that,
through an argumentation process, leads to the set B of warranted beliefs. For example,
suppose that a soccer agent perceives that it is marked and a teammate has the ball,
then it can warrant the belief “I will not receive the ball”.

As shown in the figure, the set of filtering rules, along with a set D of desires and the
specification of a filtering function are the input to a dialectical filtering process, whose
output is the set Dc of the agent’s current desires. Following our example, consider that
our soccer agent has the filtering rule “if I will not receive the ball then there is a reason
to move to a different place”. Since there is a warrant for “I will not receive the ball”,
then move will be a current desire. The final stage of the agent behavior loop shown in
the figure involves the usage of a set of intention rules, embedded in an intention policy
that will determine the preferred rule. The current desire in the head of this rule will be
the selected intention.

As shown in Fig. 1, there are three main processes. They use defeasible argumenta-
tion based on Defeasible Logic Programming (DeLP). Next, we give a brief summary
of DeLP (for more details see [2]). In DeLP, knowledge is represented using facts, strict
rules, and defeasible rules:

E
N
V
I
R
O
N
M
E
N
T

Perception
(φ)

Action

BELIEF
RULES
(ΠB,ΔB)

FILTERING
RULES
(ΠF,ΔF)

DESIRES
(D)

FILTERING
FUNCTION

(Agent type)

argumentationprocess dialecticalfiltering process

BELIEFS
(B)

CURRENT
DESIRES

(DC)

+

argumentation-based
selection process

SELECTED
INTENTIONS

(I)

INTENTION
RULES
(Policy)

Fig. 1. DeLP-based BDI architecture

148 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

– Facts are ground literals representing atomic information or the negation of atomic
information using strong negation “∼” (e.g., hasBall(opponent)).

– Strict Rules are denotedL0← L1, . . . , Ln, where L0 is a ground literal and {Li}i>0
is a set of ground literals (e.g., ∼hasBall(myTeam)← hasBall(opponent)).

– Defeasible Rules are denoted L0 –≺L1, . . . , Ln, where L0 is a ground literal and
{Li}i>0 is a set of ground literals. (e.g., ∼pass(mate1) –≺marked(mate1)).

Rules are distinguished by the type of arrows, and a defeasible rule “Head –≺Body”
expresses that “reasons to believe in the antecedent Body give reasons to believe in the
consequent Head” representing tentative information that may be used if nothing could
be posed against it.

A Defeasible Logic Program (de.l.p.) P is a set of facts, strict rules and defeasible
rules. When required, P is denoted (Π, Δ) distinguishing the subset Π of facts and
strict rules, and the subset Δ of defeasible rules. Strict and defeasible rules are ground,
however, following the usual convention [3], some examples will use “schematic rules”
with variables.

Strong negation could appear in the head of program rules, and can be used to rep-
resent contradictory knowledge. From a program (Π, Δ) contradictory literals could
be derived, however, the set Π (used to represent non-defeasible information) must be
non-contradictory, i.e., no pair of contradictory literals can be derived from Π . Given
a literal L, L represents the complement with respect to strong negation. If contradic-
tory literals are derived from (Π, Δ), a dialectical process is used for deciding which
literal prevails. In short, an argument for a literal L, denoted 〈A, L〉, is a minimal set of
defeasible rules A⊆Δ, such that A∪Π is non-contradictory, and there is a derivation
for L from A∪Π . A literal L is warranted from (Π, Δ) if there exists a non-defeated
argument A supporting L. To establish if 〈A, L〉 is a non-defeated argument, argument
rebuttals or counter-arguments that could be defeaters for 〈A, L〉 are considered, i.e.,
counter-arguments that by some criterion are preferred to 〈A, L〉. A defeater A1 for
an argument A2 can be proper (A1 stronger than A2) or blocking (same strength). In
the examples that follow we assume generalized specificity as the comparison criterion,
however, as explained in [2] the criterion could be easily changed.

Since defeaters are arguments, there may exist defeaters for them, and defeaters for
these defeaters, and so on. Thus, a sequence of arguments called argumentation line
is constructed, where each argument defeats its predecessor in the line (for a detailed
explanation of this dialectical process see [2]). In DeLP, a query Q could have four
possible answers: YES, if Q is warranted; NO, if the complement of Q is warranted;
UNDECIDED, if neither Q nor its complement is warranted; and UNKNOWN, if Q is not
in the signature of the program.

3 Warranting Beliefs

Following [4], agent’s beliefs correspond to the semantics1 of a defeasible logic pro-
gram PB = (ΠB,ΔB). In ΠB two disjoint subsets will be distinguished: Φ of perceived
beliefs that will be updated dynamically (see Fig. 1), and Σ of strict rules and facts that

1 Since the semantics of DeLP is skeptical, there is only one.

Defeasible Argumentation Support for an Extended BDI Architecture 149

will represent static knowledge, ΠB= Φ ∪ Σ. Besides the perceived beliefs, the agent
may use strict and defeasible rules from PB to obtain a warrant for its derived beliefs
(see Definition 1).

We require ΠB to be non-contradictory, and also assume that perception is correct
in the sense that it will never give a pair of contradictory literals. The next definition
introduces the different types of belief that an agent will obtain from a defeasible logic
program (ΠB,ΔB).

Definition 1 (Belief types). A Perceived belief is a fact in Φ that the agent has per-
ceived directly from its environment. A Strict belief is a literal that is not a perceived
belief, and it is derived from ΠB = Φ ∪ Σ (i.e., no defeasible rules are used for its
derivation). A Defeasible belief is a warranted literal L supported by an non-empty ar-
gument A (i.e., it uses at least one defeasible rule). Finally, a Derived belief is a strict
or a defeasible belief. We will denote with Bs the set of strict beliefs, and with Bd the
set of defeasible beliefs. Therefore, in any given situation, the beliefs of an agent will be
B = Φ ∪ Bs ∪ Bd.

Example 1. Consider a robotic-soccer agent with the following program (ΠB,ΔB),
where ΠB was divided distinguishing the set Φ={hasBall(t1), marked(t1)} of per-
ceived facts representing “player t1 has the ball”, and “teammate t1 is marked”, the
set Σ of non-perceived information, and the set ΔB of defeasible knowledge:

Σ =

⎧
⎨

⎩

mate(t1), opponent(o1),
(∼mate(X)← opponent(X)),
(∼receive(self)← hasBall(self))

⎫
⎬

⎭

ΔB =

⎧
⎨

⎩

(receive(self) –≺hasBall(X), mate(X)),
(∼receive(self) –≺marked(self)),
(∼receive(self) –≺hasBall(X), ∼mate(X))

⎫
⎬

⎭

From (ΠB,ΔB) the agent can infer the strict belief: ∼mate(o1). The argument built
from (ΠB,ΔB) for receive(self): {receive(self) –≺hasBall(t1), mate(t1)}, has no
defeaters, and therefore, there is a warrant for one defeasible belief: receive(self) (the
agent may receive a pass).

The sets Φ, Bs and Bd are disjoint sets. It can be shown that the set B of beliefs of an
agent is a non-contradictory set of warranted literals. Although perceived beliefs are
facts in ΠB, there could be other facts in ΠB which are not perceived, for instance, facts
that represent agent’s features, roles, etc. These facts that do not represent perceived
information are persistent in the sense that they cannot change with perception, like
myRole(defender), or mate(t1).

We assume a perception function that provides the agent with information about its
environment. This function will be invoked by the agent to update its perceived beliefs
set Φ. When this happens the new information overrides the old one following some
criterion. Updating a set of literals is a well-known problem and many proposals exist
in the literature [5,6]. Since we require ΠB to be non-contradictory,when Φ is updated, a
revision function will ensure that ΠB remains a non-contradictory set. The specification
of a proper revision operator is out of the scope of this paper.

150 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

Example 2. In the context of Ex. 1, with the perception that the agent is now marked,
the set Φ becomes {hasBall(t1), marked(t1), marked(self)}. Now the argument for
receive(self) has a “blocking defeater”, which means that the DeLP answer for both
receive(self) and ∼receive(self) will be UNDECIDED.

Consider a different situation, where the perception is Φ= {hasBall(o1)}. Here, the
answer for receive(self) is NO, since there is a warrant for ∼receive(self) supported
by the non-defeated argument {∼receive(self) –≺hasBall(o1), ∼mate(o1)}.

4 Filtering Desires

Agents desires will be represented by a given set D of literals that will contain a literal
representing each desire the agent might want to achieve. Clearly, D may be contradic-
tory, that is, both a literal L and its complement L might belong to D. We will assume
that beliefs and desires are represented with separate names, i.e., D ∩ B = ∅. Hence, a
desire cannot be perceived or derived as a belief.

Set D represents all the desires that the agent may want to achieve. However, de-
pending on the situation in which it is involved, there could be some desires impossible
to be carried out. For example, if the agent does not have the ball and the ball is in a
place p, then, the desire shoot could not be effected, whereas goto(p) is a plausible
option. Therefore, agents should reason about their desires to select the ones that could
be actually realized. Following the spirit of the BDI model, once appropriate desires
are detected, the agent may select (and commit to) a specific intention (goal), and then
select appropriate actions to fulfill that intention (see Figure 1).

In [4] a reasoning formalism was introduced for selecting from D those desires that
are suitable to be brought about. To perform this selection, the agent uses its beliefs
(representing the current situation) and a defeasible logic program (ΠF ,ΔF) composed
by filtering rules. The filtering rules represent reasons for and against adopting desires.
In other words, filtering rules eliminate those desires that cannot be effected in the
situation at hand. Once the set of achievable desires is obtained, the agent can adopt
one of them as an intention.

Definition 2 (Filtering rule). Let D be the set of desires of an agent, a filtering rule is
a strict or defeasible rule that has a literal L ∈ D in its head and a non-empty body.

Observe that a filtering rule can be either strict or defeasible and, as will be explained
below, that will influence the filtering process. Note also that a filtering rule cannot be
a single literal (i.e., a fact). Below we will explain how to use filtering rules in order to
select desires, but first we will introduce an example to provide some motivation.

Example 3. A robotic-soccer agent Ar could have the following sets of desires and
filtering rules:

D =

⎧
⎪⎪⎨

⎪⎪⎩

shoot
carry
pass
move

⎫
⎪⎪⎬

⎪⎪⎭

ΠF =

⎧
⎨

⎩

∼carry← ∼ball
∼shoot← ∼ball
∼pass← ∼ball

⎫
⎬

⎭

Defeasible Argumentation Support for an Extended BDI Architecture 151

ΔF =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
pass –≺freeT eammate
∼shoot –≺farFromGoal
∼carry –≺shoot
move –≺∼ball

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Consider a particular situation in which an agent does not have the ball (i.e., ∼ball ∈
Φ). If the agent has ΔB = ∅, ΠB = Φ and the filtering rules (ΠF ,ΔF) from Ex. 3,
then, there are warrants for ∼carry, ∼pass and ∼shoot from this information. Hence,
in this particular situation, the agent should not consider selecting the desires carry,
pass, and shoot, because there are justified reasons against them. Observe that these
reasons are not defeasible.

Consider now a different situation with a new set of perceived beliefs: B = Φ =
{ball, theirGoalieAway, farFromGoal}, that is, a situation in which the agent has
the ball and the opponent goalie is away from its position, but the agent is far from the
goal. Then, from the agent’s beliefs and the filtering rules (ΠF ,ΔF) of Ex. 3, there are
arguments for both shoot and ∼shoot. Since these two arguments defeat each other,
a blocking situation occurs and the answer for both literals is UNDECIDED. In our ap-
proach (as will be explained later) an undecided desire could be eligible.

In this formalism, beliefs and filtering rules should be used in combination. Hence,
we need to explain how two defeasible logic programs can be properly combined.
Agents will have a de.l.p. (ΠB,ΔB) containing rules and facts for deriving beliefs, and
a de.l.p. (ΠF ,ΔF) with filtering rules for selecting desires. We need to combine these
two de.l.p., but the union of them might not be a de.l.p., because the union of the sets
of strict rules could be contradictory. To overcome this issue, we use a merge revision
operator “◦” [6]. Hence, in our case, the join of (ΠB,ΔB) and (ΠF ,ΔF) will be a pro-
gram (Π ,Δ), where Π = ΠB◦ΠF and Δ = ΔB ∪ ΔF ∪ ΔX . A set X is introduced,
containing those strict rules ri that derive complementary literals. This set is eliminated
when merging ΠB and ΠF , then every ri is transformed into a defeasible rule, and the
set ΔX is generated, carrying the resulting defeasible rules (see [4] for more details).

Definition 3 (Agent’s Knowledge Base)
Let (ΠB,ΔB) be the set containing rules and facts for deriving beliefs; (ΠF ,ΔF), the
set of filtering rules; and ΔX = {(α –≺γ) | (α← γ) ∈ (ΠB ∪ ΠF) and (ΠB ∪ ΠF) �
{α, α}}. Then KAg = (ΠB◦ΠF , ΔB∪ΔF ∪ΔX) will be the agent’s knowledge base.

The next definition introduces a mechanism for filtering D obtaining only those desires
that are achievable in the current situation. We allow the representation of different
agent types, each of which will specify a different filtering process.

Definition 4 (Current desires). Let T be a boolean function representing a selection
criterion. The set Dc of Current Desires is defined as:

Dc = filter(T, D) = {δ ∈ D | T (δ, KAg) = true}.

Observe that the filtering function can be defined in a modular way. Methodologically,
it would be important to make this function related to the KAg, in order to obtain a

152 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

rational filtering. Implementing a sensible filtering function is not a trivial task, as it
is domain-dependent, and a general criterion cannot be stated. Different agent types
or personalities can be obtained depending on the chosen selection criterion T . The
following are interesting alternatives:

– CAUTIOUS AGENT: T (δ, KAg) is true when there is a warrant for δ from KAg.
– BOLD AGENT: T (δ, KAg) is true when there is no warrant for δ from KAg.

Notice that when neither δ nor δ has a warrant built from KAg, then both literals will
be included into the set Dc of a bold agent. Therefore, the agent will consider these two
options (among others), albeit in contradiction.

The way a bold agent selects its current desires (see Ex. 4) becomes clearer consider-
ing the relation of warrant states with DeLP answers. In DeLP, given a literal Q, there
are four possible answers for the query Q: YES, NO, UNDECIDED, and UNKNOWN.
Thus, agent types using DeLP can be defined as follows:

– CAUTIOUS AGENT: T (δ, KAg) is true when the answer for δ from KAg is YES.
– BOLD AGENT: T (δ, KAg) is true when the answer for δ from KAg is YES, UNDE-

CIDED or UNKNOWN.

Example 4. Extending Ex. 3, if we consider a bold agent as defined above and the set
of beliefs:

B = Φ =
{

farFromGoal, noOneAhead, ball
}

the agent will generate the following set of current desires:
Dc = {carry, pass}
In this case, we have KAg = (Φ ◦ ΠF , ∅ ∪ ΔF ∪ ∅). Regarding Dc, DeLP’s answer

for shoot is NO, for carry is YES, and for pass is UNDECIDED. Finally, note that a
cautious agent would choose carry as the only current desire.

As stated above, it is required that B and D be two separate sets to avoid the confusion
when joining the (ΠB,ΔB) and (ΠF ,ΔF) programs. This is not a strong restriction, be-
cause a literal being both a belief and a desire brings about well-known representational
issues, e.g., symbol overload.

5 Selecting Intentions

In our approach, an intention will be a current desire d ∈ Dc that the agent can commit.
To specify under what conditions the intention could be achieved, the agent will be
provided with a set of intention rules. Next, these concepts and the formal notion of
applicable intention rule are introduced.

Definition 5 (Intention Rule)
An intention rule is a device used to specify under what conditions an intention could
be effected. It will be denoted as (d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}), where
d is a literal representing a desire that could be selected as an intention, p1, . . . , pn

(n ≥ 0) are literals representing preconditions, and c1, . . . , cm (m ≥ 0) are literals
representing constraints.

Defeasible Argumentation Support for an Extended BDI Architecture 153

Example 5. The robotic-soccer agent Ar might have the following set of intention
rules:

IR1 : (carry ⇐ {ball}, {})
IR2 : (pass ⇐ {ball}, {not shoot})
IR3 : (shoot ⇐ {ball}, {not marked})
IR4 : (carry ⇐ {winning}, {})
IR5 : (move ⇐ {}, {})

Now we describe how an intention becomes applicable.

Definition 6 (Applicable Intention Rule)
Let KAg= (ΠB◦ΠF , ΔB∪ΔF ∪ΔX) be the knowledge base of an agent, and Dc, its set
of current desires. Let B be the set of beliefs obtained from (ΠB,ΔB). An intention rule
(d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}) is applicable iff

1. d ∈ Dc,
2. for each precondition pi (0 ≤ i ≤ n) it holds pi ∈ (B ∪ Dc)
3. for each constraint ci (0 ≤ i ≤ m) it holds cj �∈ (B ∪ Dc).

Thus, in every applicable intention rule it holds:

1. the head d is a current desire of the agent selected by the filtering function,
2. every precondition pi that is a belief is warranted from KAg,
3. every precondition pi that is a desire belongs to set Dc,
4. every belief constraint ci has no warrant from KAg, and
5. every ci that is a desire does not belong to Dc.

Example 6. Consider a bold agent, and K , B and Dc as given in Example 4. Now it
is possible to determine which of the intention rules of Example 5 are applicable. Rule
IR1 is applicable because carry ∈ Dc. Rule IR2 is applicable because pass ∈ Dc,
ball ∈ B, and shoot �∈ Dc. Rule IR3 is not applicable because shoot �∈ Dc. Rule IR4
is not applicable because the precondition is not a literal from K . Finally, IR5 is not
applicable because move �∈ Dc. Thus, {IR1, IR2} is the set of applicable rules.

Intention rules’ goal is to select the final set of intentions. In general, this selection
among current desires cannot be done by using filtering rules. For instance, if we have
to select just one intention, and there are two warranted current desires, how can we
choose one? There is a need for an external mechanism to make that decision.

Intention rules and filtering rules (Definition 2) have different semantics and usage:

– Filtering rules are used to build arguments for and against desires (thus, they are
the basis of the dialectical process for warranting a desire), whereas intention rules
are used on top of the dialectical process.

– Intention rules do not interact, whereas filtering rules do interact because they can
be in conflict or can be used for deriving a literal in the body of another filtering
rule.

154 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

– Applicable intention rules depend on the result of the filtering process over desires
and warranted beliefs, whereas a filtering rule is “applicable” when its body literals
are supported by perceived beliefs, or by other defeasible or strict rules.

The set of all applicable intention rules contains rules whose heads represent ap-
plicable intentions achievable in the current situation. Depending on the application
domain, there are many possible policies to select from the set of applicable intentions.
For example, the agent could try to pursue some of them simultaneously, or it might be
forced to commit to one. Furthermore, each of these two options has, in turn, several
solutions. The idea behind having intention rules and policies is to give a more flex-
ible mechanism than plain priorities. Next, we define how to obtain a set of selected
intentions.

Definition 7 (Set of Selected Intentions)
Let IR be the set of intention rules, and App ⊆ IR be the set of all the applicable
intention rules. Let p : IR → D be a given selection policy. Then, the set of selected
intentions I will be p(App).

The policy p(App) could be defined in many ways. For instance, p(App) could be “re-
turn all the heads of rules in App”. However, depending on the application domain,
more restrictive definitions for p(App) could be necessary. For example, in our robotic
soccer domain, agents must select a single applicable intention at a time (i.e., an agent
cannot shoot and pass the ball at the same time). One possibility for defining a pol-
icy that returns a single intention is to provide a sequence with all the intention rules
[IR1,...,IRn] that represents a preference order among them. Then, the policy p(App)
selects the first rule IRk (1 ≤ k ≤ n) in the sequence that belongs to App, returning
the head of IRk.

Example 7. Continuing with Ex. 6. The set of applicable intention rules is App =
{IR1, IR2, IR5}, and suppose that the policy p is the one introduced above. Then, if
the preference order is [IR1, IR2, IR3, IR4, IR5], the selected intention will be the
head of IR1, i.e., p(App) = {carry}.

Now we can formally define the structure of an agent.

Definition 8 (DeLP-Based BDI Agent)
An agent A is a tuple 〈D, (ΠB,ΔB), (ΠF ,ΔF), T, IR, p〉, where: D is the set of de-
sires of the agent, (ΠB,ΔB) is the agent knowledge (that will include perceived beliefs),
(ΠF ,ΔF) are filtering rules, T is an agent type, IR is a set of intention rules, and p(·)
is a policy for selecting intentions.

6 Application Example: Robotic Soccer

In this section a robotic-soccer agent Ar will be introduced and then we will show, using
different examples, how Ar selects appropriate intentions when faced with different
scenarios. In each example, the difference of defining a bold or a cautious agent will be
made clear.

Defeasible Argumentation Support for an Extended BDI Architecture 155

o2

o1

self
o2

o1

self

(a) (b)

Fig. 2. Two scenarios for a robotic soccer agent

The robotic-soccer agent will be Ar=〈D, (ΠB,ΔB), (ΠF ,ΔF), T, IR, p〉 where the
set D and (ΠF ,ΔF) are the ones from Ex. 3, the set IR is the one defined in Ex. 5, the
policy p was defined in Ex. 7, and the set ΔB = ∅.

Example 8. Consider the agent Ar and the situation depicted in Fig. 2(a) where “o1”
and “o2” represent the positions of two opponents and “self” is the position of the
agent Ar who has the ball (small circle).
Here, the perception of Ar is Φ1 = {ball, noOneAhead, theirGoalieAway} . In this
situation, Ar can build the following arguments:

A1 : {shoot –≺theirGoalieAway},
A2 : {carry –≺noOneAhead},
A3 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, shoot is warranted, whereas carry, ∼carry, pass and ∼pass are not. As stated
above the filter function will determine the type of agent (e.g., bold or cautious), which
could affect the set of selected intentions. For example:

– for a cautious agent, Dc
C1 = {shoot}, intention rule IR3 is applicable, and IC1 =

{shoot};
– for a bold agent, Dc

B1 = {shoot, carry, pass}, intention rules IR1 and IR3 are
applicable, and IB1 = {carry}.

Note that the cautious agent obtains only one current desire that is its selected intention.
On the other hand, since the bold agent includes “undecided” literals in its current
desires, Dc

B1 has more elements than Dc
C1, there are two applicable intention rules,

and the policy “p” has to be used.

Example 9. Consider the agent Ar but in a different scenario (depicted in Fig. 2(b)).
The perception of the agent is here Φ2 = {ball, noOneAhead, farFromGoal}. In
this situation, Ar can build the following arguments:

A4 : {∼shoot –≺farFromGoal},
A5 : {carry –≺noOneAhead}.

Hence, ∼shoot and carry are warranted, whereas pass and ∼pass are not, and:

– for a cautious agent, Dc
C2 = {carry}, intention rule IR1 is applicable, and IC2 =

{carry};

156 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

o2

o1

self
t1

o2

o1

self

t1

(a) (b)

Fig. 3. Two scenarios for a robotic soccer agent

– for a bold agent, Dc
B2 = {carry, pass}, intention rules IR1 and IR2 are applica-

ble, and IB2 = {carry}.

Example 10. Consider now that Ar is in the situation depicted in Fig. 3(a), where
“t1” represents the position of a teammate of Ar. The perception of Ar is Φ3 =
{ball, freeT eammate, farFromGoal}. In this situation, Ar can build the following
arguments:

A6 : {∼shoot –≺farFromGoal},
A7 : {pass –≺freeT eammate},

Hence, we have that pass and ∼shoot are warranted, whereas carry and ∼carry are
not, and:

– for a cautious agent, Dc
C3 = {pass}, intention rule IR2 is applicable, and IC3 =

{pass};
– for a bold agent, Dc

B3 = {carry, pass}, intention rules IR1 and IR2 are applica-
ble, and IB3 = {carry};

Example 11. Consider finally that Ar is in the situation of (Fig. 3(b)). The perception
of Ar will be Φ4 = {ball, freeT eammate, theirGoalieAway}, and we can build the
following arguments:

A8 : {shoot –≺theirGoalieAway},
A9 : {pass –≺freeT eammate},
A10 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, pass, shoot and ∼carry are warranted, and:

– for a cautious agent, Dc
C4 = {shoot}, intention rule IR3 is applicable, and IC4 =

{shoot};
– for a bold agent, Dc

B4 = {shoot}, intention rules IR3 is applicable, and IB4 =
{shoot}.

7 Application Example: Security System

In this section, we present an example consisting of a security-system agent. The system
will be simplified in order to keep it easy to understand.

Defeasible Argumentation Support for an Extended BDI Architecture 157

The security-system agent senses rooms of a building from four different sources:
temperature, smoke, motion sensors, and video cameras. Whenever a temperature or
smoke sensor is on, the agent will have a reason to call the firemen; analogously, if
a motion sensor or a camera tells that an intruder might have entered to a room, the
police should be called. These are not strict rules, but defeasible, as will be clear next
(see Figure 4). The idea behind this setting is to have pairs of sensors acting as mutual
backup, that is, we have smoke sensors as the backup for temperature sensors (and vice
versa), and motion sensors as the backup for cameras (and vice versa).

Although sensor pairs provide robustness, they also bring about a few shortcomings,
e.g., a motion sensor in a room might detect that something is moving, while the cor-
responding camera is not showing any change in the image. Images coming from a
camera may remain static for several reasons: perhaps someone attached a photograph
to it, or the device could be simply malfunctioning. An analogous situation occurs when
a room is signaled as having smoke but the temperature sensor placed there shows no
activity. This generally means that one of the two sensors is not working properly. The
filtering rules modelling abnormal situations like these are shown in Figure 4.

Abnormal situations within a room are handled by the agent, who will send a guard
to that room (rules in ΠF , Figure 4). If the guard confirms that an intruder has entered
to the room or that the room is on fire, it will manually trigger the corresponding alarm,
providing a reason to the agent for calling the firemen or the police (last rule in Fig-
ure 4). Thus, once an alarm is fired, it will stop when a call (either to the police or
firemen) is made, or when a guard arrives to a room and finds that everything is normal.

In this section, we will define an agent As= 〈Ds, (Πs
B,Δs

B), (Πs
F ,Δs

F), Ts, IRs, ps〉.
We start the description of the agent with its set of desires:

Ds = {send guard(R), call(firemen, R), call(police, R)}

Desire send guard(R) means that a guard could be sent to room R, and desires
call(firemen, R) and call(police, R) give the possibility of calling the firemen and
police because room R is on fire or an intruder entered to R, respectively.

In this case, there is no need to include negated literals in the set of desires, since, for
instance, the security agent will never intend to fulfill the desire ∼call(firemen, R).
The system just will not make a call or send a guard to a room if there are no justified
reasons to do it. This can be seen as just a design decision, but it turned to be a sensible
representation.

A fundamental difference with the soccer domain examples is that the security-
system agent does not require the selection of just one intention. This agent will select
an arbitrary amount of intentions; it may even select no current desire as an intention
(i.e., Is = ∅). For instance, the agent could send several guards to certain rooms while
making calls to both police and firemen regarding other rooms.

The security system will be managed by a cautious agent, i.e., agent As will put in
its set of current desires only the desires that are warranted from the DeLP-program
(Πs

B ◦ Πs
F , Δs

B ∪ Δs
F ∪ Δs

X). This choice will be justified at the end of this section.
The beliefs program Ps

B has no rules, it will just consist of the set of perceived facts.
The program (Πs

F ,Δs
F) of strict and defeasible filtering rules is shown in Figure 4.

158 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

Πs
F =

⎧
⎪⎪⎨

⎪⎪⎩

send guard(R)← hi temp(R), ∼smoke(R)
send guard(R)← ∼hi temp(R), smoke(R)
send guard(R)← motion(R), ∼camera(R)
send guard(R)← ∼motion(R), camera(R)

⎫
⎪⎪⎬

⎪⎪⎭

Δs
F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

call(firemen, R) –≺hi temp(R)
call(firemen, R) –≺smoke(R)
∼call(firemen, R) –≺hi temp(R), ∼smoke(R)
∼call(firemen, R) –≺∼hi temp(R), smoke(R)
call(police, R) –≺motion(R)
call(police, R) –≺camera(R)
∼call(police, R) –≺motion(R), ∼camera(R)
∼call(police, R) –≺∼motion(R), camera(R)
call(Who, R) –≺manual alarm(Who, R)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 4. Filtering rules for the security agent As

The set Πs
F of strict rules models situations in which a couple of sensor differs and

a guard has to be sent to a room, e.g., when a camera detects no change, but the motion
sensor placed in the same room says that something has moved.

Defeasible rules in Δs
F model reasons for and against making a call to police or

firemen; for instance, if the temperature sensor signals heat in a certain room, the agent
has a reason to call the firemen. However, if the corresponding smoke sensor has not
fired, the agent will prefer not to make that call, but send a guard instead (modelled via
strict rules). Regarding the last rule, if the manual alarm is fired by that guard, the call
should be made immediately.

Note also that the filtering rules supporting calls to firemen or police refer to the
room in which the danger was detected through variable R. This is important for the
dialectical analysis to be performed over the same “situation”. That is, if an argument
for calling the police is posed and is under attack, it must be attacked by a counter-
argument that speaks of the same room. This parameter also tells where firemen or
police must go to.

The set IRs of intention rules for the security agent are:

IR1 : (send guard(R) ⇐ {}, {not manual alarm(W, R)})
IR2 : (call(firemen, R) ⇐ {}, {})
IR3 : (call(police, R) ⇐ {}, {})

Observe that intention rule IR1 has a constraint: a guard will not be sent to a room
R in which a manual alarm has been triggered (variable W refers to whom should
be called: police or firemen). This is because a guard is already there: the one who
sounded the alarm. As will be clear below, this is best written as a constraint, rather
than included into the filtering rules. Intention rules IR2 and IR3 specify that firemen
and police should be called to go to room R whenever the head of the rule is a current
desire.

Defeasible Argumentation Support for an Extended BDI Architecture 159

It is important to note that, if the manual-alarm constraint of IR1 is coded in the
strict filtering rules, we should add this constraint in the body of each of the four rules.
Keeping this constraint at intention-rules level allows us to write simpler filtering rules.
For the agent As the policy ps for selecting intentions will be simple, taking the set App
of applicable intention rules and returning the set containing their heads:

ps(App) = {h | (h ⇐ P, C) ∈ App}

Next, we introduce a series of sets of beliefs (B0 through B3) describing different
scenarios. For each of them, the set of selected intentions will be calculated. In order to
keep the example small and simple, we place our security agent in a building with two
rooms: r1 and r2. The initial set of beliefs is:

B0 =

⎧
⎪⎪⎨

⎪⎪⎩

hi temp(r1), smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), ∼motion(r2)

⎫
⎪⎪⎬

⎪⎪⎭

Where positive literals represent a sensor that has fired, whereas negative literals
mean the opposite. These beliefs, along with the filtering rules, give us two undefeated
arguments for call(firemen, r1):

〈{call(firemen, r1) –≺hi temp(r1)}, call(firemen, r1)〉,
〈{call(firemen, r1) –≺smoke(r1)}, call(firemen, r1)〉.

Then, the set of current desires is Dc
0 = {call(firemen, r1)}, which means that the

only applicable intention rule is IR2, and the set of selected intentions consists of the
head of IR2, that is Is0 = Dc

0 = {call(firemen, r1)}.

Observation: To avoid the system to keep sending guards to a room, we will assume
that queries about desires are performed only when the set of beliefs has changed.

Suppose now a different situation, in which not only the temperature and smoke
sensors in room r1 had fired, but also did the motion sensor in room r2. The new set of
beliefs is:

B1 =

⎧
⎪⎪⎨

⎪⎪⎩

hi temp(r1), smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), motion(r2)

⎫
⎪⎪⎬

⎪⎪⎭

As before, call(firemen, r1) has two undefeated arguments. In addition, now there
is one argument for calling the police:

〈{call(police, r2) –≺motion(r2)}, call(police, r2)〉,

which is attacked by:

〈{∼call(police, r2) –≺motion(r2), ∼camera(r2)}, ∼call(police, r2)〉.

160 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

Since the argument for not calling the police is more specific than the other, the ar-
gument supporting call(police, r2) is defeated and does not belong to Dc

1 (note that
∼call(police, r2) is warranted). In addition to this, there is an empty argument for
send guard(r2) from the strict rule (send guard(R)← motion(R), ∼camera(R)).
Thus, we have Dc

1 = {call(firemen, r1), send guard(r2)}. Intention rule IR1 is ap-
plicable, because its precondition holds: send guard(r2) ∈ Dc

1, and its constraint is
satisfied: manual alarm(W, r2) �∈ B1. Intention rule IR2 is also applicable, because
call(firemen, r1) ∈ Dc

1. Hence, again we have that the current set of selected inten-
tions equals the set of current desires, i.e., Is1 = Dc

1. This will happen whenever the
manual alarm is not triggered, since the set of intention rules IRs is quite simple (rules
have no preconditions nor constraints, excepting IR1), and so is the policy (to take the
head of every applicable intention rule as a selected intention).

Now suppose that the situation in room r1 is now normal, but the motion sensor
in room r2 fired, and a guard has been sent to that room to check if an intruder has
effectively entered there. Let us assume that the guard finds a thief in room r2. Then,
the guard triggers the manual alarm, which changes the set of beliefs of the security-
system agent:

B2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∼hi temp(r1), ∼smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), motion(r2),
manual alarm(police, r2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The following arguments for and against call(police, r2) are built:

As
1 = 〈{call(police, r2) –≺motion(r2)}, call(police, r2)〉,

As
2 = 〈{∼call(police, r2) –≺motion(r2), ∼camera(r2)}, ∼call(police, r2)〉,

As
3 = 〈{call(police, r2) –≺manual alarm(police, r2)}, call(police, r2)〉.

ArgumentAs
1 hasAs

2 asproperdefeater, since the latter ismorespecific than the former.
In turn, As

2 is blocked by defeater As
3, reinstating As

1. Thus, the desire call(police, r2) is
now warranted, and belongs to Dc

2. Desire send guard(r2) is also in Dc
2 from the strict

rule (send guard(R)← motion(R), ∼camera(R)). Therefore, Dc
2 = {call(police,

r2), send guard(r2)}. Note that now intention rule IR1 is not applicable, because its
constraint (not manual alarm(police, r2)) does not hold. Here, the only applicable in-
tention rule is IR3. Thus, the set of selected intentions is Is2 = {call(police, r2)}, which
differs from Dc

2. It is a sensible decision not to send a guard to a room when the police is
already being sent there by a guard in that room.

Finally, consider that sensors do not detect anything abnormal, then:

B3 =

⎧
⎪⎪⎨

⎪⎪⎩

∼hi temp(r1), ∼smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), ∼motion(r2),

⎫
⎪⎪⎬

⎪⎪⎭

This set of beliefs builds no arguments for any desire from the filtering rules. Then,
the set of current desires is empty, and so is the set of selected intentions, i.e., Dc

3 =
Is3 = ∅. The system will remain in this state until a sensor is fired.

Defeasible Argumentation Support for an Extended BDI Architecture 161

The choice of a cautious agent instead of a bold one is clear when analyzing the
latter case. A bold agent would select every desire as a current desire, since there are no
arguments for nor against any of them:

D′c
3 =

⎧
⎨

⎩

send guard(r1), send guard(r2),
call(firemen, r1), call(firemen, r2),
call(police, r1), call(police, r2)

⎫
⎬

⎭

Regarding intention rules, all of them will be applicable, and therefore I′s3 = D′c
3 .

This means that guards will be sent to rooms r1 and r2, and both the police and firemen
will be called to check on both rooms. Clearly, this is not the intended behavior for the
security-system agent.

8 Related Work

The use of defeasible argumentation in BDI architectures is not new and it was origi-
nally suggested in [7], and more recently in [8]. Also in [9] and [10] a formalism for
reasoning about beliefs and desires is given, but they do not use argumentation.

Recently, Rahwan and Amgoud [11] have proposed an argumentation-based ap-
proach for practical reasoning that extends [12] and [13], introducing three different
instantiations of Dung’s framework to reason about beliefs, desires and plans, respec-
tively. This work is, in our view, the one most related to ours. Both approaches use
defeasible argumentation for reasoning about beliefs and desires (in their work, they
also reason about plans, but this is out of the scope of our presentation). Like us, they
separate in the language those rules for reasoning about belief from those rules for rea-
soning about desires; and, in both approaches, it is possible to represent contradictory
information about beliefs and desires. Both approaches construct arguments supporting
competing desires, and they are compared and evaluated to decide which one prevails.
Their notion of desire rule is similar to our filtering rules.

In their approach, two different argumentation frameworks are needed to reason
about desires: one framework for beliefs rules and another framework for desires rules.
The last one depends directly on the first one, and since there are two kinds of ar-
guments, a policy for comparing mixed arguments is given. In our case, only one ar-
gumentation formalism is used for reasoning with both types of rules. In their object
language, beliefs and desires include a certainty factor for every formula, and no ex-
plicit mention of perceived information is given. In our case, uncertainty is represented
by defeasible rules [2] and perceived beliefs are explicitly treated by the model. Besides,
the argumentation formalism used in their approach differs from ours: their comparison
of arguments relies on the certainty factor given to each formula, and they do not dis-
tinguish between proper and blocking defeaters. Another fundamental difference is that
we permit the definition of different types of agents. This feature adds great flexibility
in the construction of an agent.

9 Conclusions

We have shown how a deliberative agent can represent its perception and beliefs using
a defeasible logic program. The information perceived directly from the environment

162 N.D. Rotstein, A.J. Garcı́a, and G.R. Simari

is represented with a subset of perceived beliefs that is dynamically updated, and a set
formed with strict rules and facts represent other static knowledge of the agent. In addi-
tion to this, defeasible argumentation is used to warrant agents (derived) beliefs. Strict
and defeasible filtering rules have been introduced to represent knowledge regarding
desires. Defeasible argumentation is used for selecting a proper desire that fits in the
particular situation the agent is involved. With this formalism, agents can reason about
its desires and select the appropriate ones.

We allow the representation of different agent types, each of which will specify a
different way to perform the filtering process. In our approach, an intention is a current
desire that the agent can commit to pursue. The agent is provided with a set of intention
rules that specify under what conditions an intention could be achieved. If there is more
than one applicable intention rule, then a policy is used to define a preference criterion
among them. Thus, intention policies give the agent a mechanism for deciding which
intentions should be selected in the current situation.

In this work, we have shown how to implement two rather different kinds of agents
using our model. We discussed their similarities and differences, stressing the point of
the selection of the set of intentions, which is bound to be a singleton in one application,
whereas is unrestricted in the other. Another difference regards to the way each of these
agents perceive and gather beliefs. Regarding the sets of desires of both applications,
they do not have any important structural difference; in fact, they coincide in not having
complementary literals. However, it is difficult to conceive an application domain with
a set of desires containing complementary literals. Usually, an argument concluding the
complement of a desire has the purpose of “stopping” the justification (in the sense of
warrant) of that desire, rather than supporting the opposite desire.

As future work, further research will be directed towards the improvement of the
implementation of the proposed architecture. We plan to use a DeLP-Server [14], which
provides a Defeasible Logic Programming reasoning service and allows client-agents
to perform contextual queries.

References

1. Rotstein, N., Garcı́a, A., Simari, G.: Reasoning from desires to intentions: A dialectical
framework. In: Proceedings of the 22nd. AAAI Conference on Artificial Intelligence, pp.
136–141 (2007)

2. Garcı́a, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory
Practice of Logic Programming 4(1), 95–138 (2004)

3. Lifschitz, V.: Foundations of logic programming. In: Brewka, G. (ed.) Principles of Knowl-
edge Representation. CSLI, pp. 69–127 (1996)

4. Rotstein, N., Garcı́a, A.: Defeasible reasoning about beliefs and desires. In: Proc. of the 11th
NMR, pp. 429–436 (2006)

5. Falappa, M., Kern-Isberner, G., Simari, G.: Belief revision, explanations and defeasible rea-
soning. Artificial Intelligence Journal 141, 1–28 (2002)

6. Fuhrmann, A.: An Essay on Contraction. In: Studies in Logic, Language and Information,
CSLI Publications, Stanford, CA (1997)

7. Bratman, M.E., Israel, D., Pollack, M.: Plans and resource-bounded practical reasoning. In:
Cummins, R., Pollock, J.L. (eds.) Philosophy and AI: Essays at the Interface, pp. 1–22. MIT
Press, Cambridge (1991)

Defeasible Argumentation Support for an Extended BDI Architecture 163

8. Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing. Journal of
Logic and Computation 8(3), 261–292 (1998)

9. Thomason, R.: Desires and defaults: A framework for planning with inferred goals. In: Proc.
of the seventh KR, pp. 702–713 (2000)

10. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The boid architecture:
conficts between beliefs, obligations, intentions and desires. In: Proc. of 5th Int. Conf. on
Autonomous Agents, pp. 9–16. ACM Press, New York (2001)

11. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning. In: Proc.
of the 5th AAMAS (2006)

12. Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen, T.D., Zhang,
N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 552–563. Springer, Heidelberg
(2003)

13. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215 (2002)

14. Garcı́a, A., Rotstein, N., Tucat, M., Simari, G.: An Argumentative Reasoning Service for
Deliberative Agents. In: Zhang, Z., Siekmann, J.H. (eds.) KSEM 2007. LNCS (LNAI),
vol. 4798, Springer, Heidelberg (2007)

Arguing and Explaining Classifications

Leila Amgoud and Mathieu Serrurier

Institut de Recherche en Informatique de Toulouse (IRIT)
118, route de Narbonne,

31062 Toulouse Cedex 4 France
{amgoud,serrurier}@irit.fr

Abstract. Argumentation is a promising approach used by autonomous
agents for reasoning about inconsistent knowledge, based on the con-
struction and the comparison of arguments. In this paper, we apply this
approach to the classification problem, whose purpose is to construct
from a set of training examples a model (or hypothesis) that assigns a
class to any new example.

We propose a general formal argumentation-based model that con-
structs arguments for/against each possible classification of an example,
evaluates them, and determines among the conflicting arguments the
acceptable ones. Finally, a “valid” classification of the example is sug-
gested. Thus, not only the class of the example is given, but also the
reasons behind that classification are provided to the user as well in a
form that is easy to grasp.

We show that such an argumentation-based approach for classification
offers other advantages, like for instance classifying examples even when
the set of training examples is inconsistent, and considering more general
preference relations between hypotheses. Moreover, we show that in the
particular case of concept learning, the results of version space theory
are retrieved in an elegant way in our argumentation framework.

Keywords: Argumentation, Classification.

1 Introduction

Argumentation has become an Artificial Intelligence keyword for the last fifteen
years, especially in sub-fields such as non monotonic reasoning, inconsistency-
tolerant reasoning, multiple-source information systems [1,7,9,3]. Argumentation
follows basically three steps: i) to construct arguments and counter-arguments
for a statement, ii) to select the “acceptable” ones and, finally, iii) to determine
whether the statement can be accepted or not.

This paper claims that argumentation can also be used as an alternative
approach for the problem of classification. Classification aims at building models
that describe a concept from a set of training examples. The models are intended
to be sufficiently general in order to be reused on new examples. When the
concept to learn is binary, i.e. examples of that concept can be either true or
false, the problem is called concept learning.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 164–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Arguing and Explaining Classifications 165

In our argumentation-based approach, the classification problem is reformu-
lated as follows: given a set of examples (the training ones, and/or additional
examples) and a set of hypotheses, what should be the class of a given example?
To answer this question, arguments are constructed in favor of all the possible
classifications of that example. A classification can come either from an hypoth-
esis, or from a training example. The obtained arguments may be conflicting
since it may be the case that the same example is affected to different classes.
Finally, a “valid” classification of the example is suggested. Thus, not only the
class of the example is given, but also the reasons behind that classification are
provided to the user as well in a form that is easy to grasp.

We show that such an argumentation-based approach for classification offers
other advantages, like for instance classifying examples even when the set of
training examples is inconsistent, and considering more general preference re-
lations between hypotheses. Moreover, we show that in the particular case of
concept learning, the results of the version space theory developed by Mitchell
in [4] are retrieved in an elegant way in our argumentation framework. We show
that the acceptability semantics defined in [2] allow us to identify and character-
ize the version space as well as its lower and upper bounds. In sum, this paper
proposes a formal theoretical framework for handling, analysing and explaining
the problem of classification. The framework presents the following features that
make it original and flexible:

1. it handles i) the case of a consistent set of training examples; ii) the case of
an inconsistent set of training examples; and iii) the case of an empty set of
training examples;

2. it allows one to reason directly on the set of hypotheses;
3. examples are classified on the basis of the whole set of hypotheses rather

than only one hypothesis as it is the case in standard classification models.
Indeed, in the standard approach, a unique hypothesis is chosen, and all the
examples are classified on the basis of that hypothesis.

4. it presents several original and intuitive decision criteria for choosing the
class of an example.

The paper is organized as follows. We first present the classification problem,
then we introduce the basic argumentation framework of Dung [2]. The third
section introduces our argumentation-based framework for classification as well
as its properties.

2 Classification Problem

The aim of this section is to introduce the classification problem. Let X denote
a feature space used for describing examples. Elements of X may then be pairs
(attribute, value), first order facts, etc. This set X is supposed to be equipped
with an equivalence relation ≡. Let C = {c1, . . . , cn} be a concept space, or a set
of possible distinct classes.

166 L. Amgoud and M. Serrurier

A classification problem takes as input a hypothesis space H, and a set S of
m training examples.

S = {(xi, ci)i=1,...,m s.t xi ∈ X and ci ∈ C}

An important notion in classification is that of consistency. In fact, a set of
examples is said to be consistent if it does not contain two logically equivalent
examples with two different classes. Formally:

Definition 1 (Consistency). Let T = {(xi, ci)i=1,...,n s.t xi ∈ X and ci ∈
C} be a set of examples. T is consistent iff � (x1, c1), (x2, c2) ∈ T such that x1
≡ x2 and c1 �= c2. Otherwise, T is said to be inconsistent.

Regarding the hypothesis space H, it may be, for instance, decision trees, propo-
sitional sets of rules, neural nets, etc. An hypothesis h is a mapping from X
to C (i.e. h: X �→ C). Before defining the output of the framework, let us first
introduce a key notion, that of soundness.

Definition 2 (Soundness). Let h ∈ H. An hypothesis h is sound with respect
to a training example (x, c) ∈ S iff h(x) = c. If ∀(xi, ci) ∈ S, h is sound w.r.t
(xi, ci), then h is said to be sound with S.

The general task of classification is to identify an h ∈ H that is sound with
respect to the training examples. This hypothesis will be next used for classifying
new examples. The most common approach for identifying this hypothesis is to
use a greedy exploration of the hypothesis space, guided by a preference relation
on hypothesis. This preference relation may be encoded by a utility function or
by a syntactic or a semantic relation. Utility functions are generally based on the
accuracy of the hypothesis (proportion of well classified examples) weighted by
some complexity criteria (number of rules, etc.). Utility functions encode usually
a total order. Syntactic relations may be for instance entailment or subsumption
in the logical case. In this case it encodes a partial preorder on H.

Example 1 (Learning the concept sunny day). In this example, the feature space
is a pair (attribute, value). Three attributes are considered: pressure, temper-
ature, and humidity. The concept to learn is supposed to be binary, thus C =
{0, 1}. Four training examples are given, and are summarized in the Table below.
For instance (pressure, low), (temperature, medium), and (humidity, high) is a
negative example for the concept a sunny day, whereas the (pressure, medium),
(temperature, medium), and (humidity, low) is a positive one.

pressure temperature humidity sunny
low medium high 0

medium medium low 1
low medium medium 0

medium high medium 1

Let us suppose that the hypothesis space H is the space of constraints on the
values of each attribute. Indeed, the constraints are conjunctions of accepted

Arguing and Explaining Classifications 167

values of attributes. The special constraint ∅ (resp. ?) means that no (resp. all)
values of attributes are accepted. If a vector of values of attributes match all
the constraints, then it is considered as a positive example, otherwise it is a
negative one. The hypotheses 〈∅, ∅, ∅〉 and 〈?, ?, ?〉 are respectively the lower and
the upper bound of the hypothesis space H.

3 Abstract Argumentation Framework

Argumentation is a reasoning model that follows the following steps:

1. Constructing arguments and counter-arguments.
2. Defining the strengths of those arguments.
3. Evaluating the acceptability of the different arguments.
4. Concluding or defining the justified conclusions.

In [2], an argumentation system is defined as follows:

Definition 3 (Argumentation system). An argumentation system (AS) is
a pair 〈A, R〉. A is a set of arguments and R ⊆ A × A is a defeat relation. We
say that an argument A defeats an argument B iff (A, B) ∈ R (or A R B).

Note that to each argumentation system is associated an oriented graph whose
nodes are the different arguments, and the edges represent the defeasibility rela-
tionship between them. Among all the conflicting arguments, it is important to
know which arguments to keep for inferring conclusions or for making decisions.
In [2], different semantics for the notion of acceptability have been proposed. Let
us recall them here.

Definition 4 (Conflict-free, Defence). Let B ⊆ A.

– B is conflict-free iff there exist no Ai, Aj ∈ B such that Ai R Aj.
– B defends an argument Ai iff for each argument Aj ∈ A, if Aj R Ai, then

there exists Ak ∈ B such that Ak R Aj .

Definition 5 (Acceptability semantics). Let B be a conflict-free set of argu-
ments, and let F : 2A �→ 2A be a function such that F(B) = {A | B defends A}.
– B is a complete extension iff B = F(B).
– B is a grounded extension iff it is the minimal (w.r.t. set-inclusion) complete

extension.
– B is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete

extension.
– B is a stable extension iff it is a preferred extension that defeats all argu-

ments in A\B.

Let {E1, . . ., En} be the set of all possible extensions under a given semantics.

Note that there is only one grounded extension which may be empty. It con-
tains all the arguments that are not defeated, and also the arguments which are
defended directly or indirectly by non-defeated arguments.

The last step of an argumentation process consists of determining, among
all the conclusions of the different arguments, the “good” ones, called justified
conclusions.

168 L. Amgoud and M. Serrurier

4 An Argumentation Framework for Classification

The aim of this section is to propose an instantiation of the general and abstract
framework of Dung that allows the classification of examples. Throughout this
section, we will consider a features space X , a concept space C = {c1, . . . , cn},
a (maybe inconsistent) set S of m > 0 training examples, a hypotheses space
H that is equipped with an arbitrary preference relation �. Thus, � ⊆ H × H,
and H is supposed to be a partial preorder.

In order to instantiate the abstract framework of Dung, one needs to define
the set A of arguments as well as the defeat relation between those arguments.

In our particular application, one needs to argue about particular classifica-
tions, thus arguments are constructed in favor of assigning particular classes
from C to an example in X . Indeed, an argument in favor of the pair (x, c) rep-
resents the reason for assigning the class c to the example x. Two reasons can
be distinguished:

1. (x, c) is a training example in S,
2. there exists a hypothesis h ∈ H that classifies x in c.

Definition 6 (Argument). An argument is a triplet A = 〈h, x, c〉 such that:

1. h ∈ H, x ∈ X , c ∈ C
2. If h �= ∅, then c = h(x)
3. If h = ∅, then (x, c) ∈ S

h is called the support of the argument, and (x, c) its conclusion. Let Example(A)
= x, and Class(A) = c.
Let A be the set of arguments built from (H, X , C).

Note that from the above definition, for any training example (xi, ci) ∈ S,
∃〈∅, xi, ci〉 ∈ A. Let AS = {〈∅, x, c〉 ∈ A} (i.e. the set of arguments coming
from the training examples). Since the set S of training examples is not empty,
then AS is not empty as well.

Property 1. Let S be a set of training examples.

– |S| = |AS |1.
– AS �= ∅.

Proof. The first point follows from the above definition, and from the fact that
an hypothesis h cannot be empty. The second point follows directly from the
first property, i.e. |S| = |AS |, and the assumption that S �= ∅.

Let us illustrate the notion of argument through example 1.

Example 2. In example 1, there are exactly four arguments with an empty sup-
port, and they correspond to the training examples: A∅ = {a1 = 〈∅, (pressure,
low) ∧ (temperature, medium) ∧ (humidity,high), 0〉,
1 || denotes the cardinal of a given set.

Arguing and Explaining Classifications 169

a2 = 〈∅, (pressure, medium) ∧ (temperature, medium) ∧ (humidity, low), 1〉,
a3 = 〈∅, (pressure, low) ∧ (temperature, medium) ∧ (humidity, medium), 0〉,
a4 = 〈∅, (pressure, medium) ∧ (temperature, high) ∧ (humidity, medium), 1〉}.
There are also arguments with a non-empty support such as:
〈a5 = 〈 ? , medium ∨ high, ?〉, (pressure, low) ∧ (temperature, high) ∧ (humid-
ity, high), 1〉},
a6 = 〈〈 medium∨ high, ?, ?〉, (pressure, low) ∧ (temperature, high) ∧ (humidity,
high), 0〉,
a7 = 〈〈 medium, medium∨ high, ?〉, (pressure, low) ∧ (temperature, high) ∧
(humidity, high), 0〉.

In [1,7,9], it has been argued that arguments may have different strengths de-
pending on the quality of information used to construct them. In [9], for instance,
arguments built from specific information are stronger than arguments built from
more general ones. In our particular application, it is clear that arguments with
an empty support are stronger than arguments with a non-empty one. This
reflects the fact that classifications given by training examples take precedence
over ones given by hypotheses in H. It is also natural to consider that arguments
using most preferred hypothesis are stronger than arguments with less preferred
ones.

Definition 7 (Comparing arguments). Let 〈h, x, c〉, 〈h′, x′, c′〉 be two argu-
ments of A. 〈h, x, c〉 is preferred to 〈h′, x′, c′〉, denoted by 〈h, x, c〉 Pref 〈h′, x′, c′〉,
iff:

– h = ∅ and h′ �= ∅, or
– h � h′.

Property 2. The relation Pref is a partial preorder.

Proof. This is due to the fact that the relation � is a partial preorder.

Now that the set of arguments is defined, it is possible to define the defeasibility
relation R between arguments in A. Here again, there are two ways in which an
argument A can attack another argument B:

1. by rebutting its conclusion. This situation occurs when the two arguments
have contradictory conclusions, i.e. the same example is classified in different
ways.

2. by undercutting its support. This occurs when the support of B classifies in
a different way the example of the conclusion of A. However, this relation
is only restricted to training examples. Indeed, only arguments built from
training examples are allowed to undercut other arguments. The idea behind
this is that training examples are the only, in some sense, certain information
one has, and thus cannot be defeated by hypothesis. However, hypothesis
have controversial status.

Definition 8 (Rebutting). Let 〈h, x, c〉, 〈h′, x′, c′〉 be two arguments of A.
〈h, x, c〉 rebuts 〈h′, x′, c′〉 iff x ≡ x′, c �= c′.

170 L. Amgoud and M. Serrurier

Example 3. In example 2, we have for instance :
a5 rebuts a6, a5 rebuts a7, a6 rebuts a5, and a7 rebuts a5.

Definition 9 (Undercutting). Let 〈h, x, c〉, 〈h′, x′, c′〉 be two arguments of A.
〈h, x, c〉 undercuts 〈h′, x′, c′〉 iff h = ∅ and h′(x) �= c.

Example 4. In example 2, we have for instance :
a1 undercuts a5, a2 undercuts a5, a3 undercuts a5, and a4 undercuts a5.

Note that the rebutting and undercutting relations are used in most argumen-
tation systems that handle inconsistency in knowledge bases.

Property 3. If S is consistent, then � A, B ∈ AS such that A rebuts B, or A
undercuts B.

Proof. Let A = 〈∅, x, u〉, B = 〈∅, x′, u′〉 ∈ S such that A rebuts B. According to
Definition 8, x ≡ x′ and u �= u′. This contradicts the fact that S is consistent.

The two above conflict relations are brought together in a unique relation, called
“Defeat”.

Definition 10 (Defeat). Let A = 〈h, x, c〉, B = 〈h′, x′, c′〉 be two arguments
of A. A defeats B iff:

1. A rebuts (resp. undercuts) B, and
2. (A Pref B), or (not(A Pref B) and not(B Pref A))

Example 5. With the argument defined in ex. 2 we have for instance : a1 defeats
a5, a2 defeats a5, a3 defeats a5, a4 defeats a5, a5 defeats a6, a5 defeats a7 and
a6 defeats a5.

From the above definition, it is easy to check that an argument with an empty-
support cannot be defeated by an argument with a non-empty support.

Property 4. ∀ A ∈ AS , � B ∈ A\AS s.t B defeats A.

Proof. Let A ∈ AS and B ∈ A\AS such that B defeats A. This means that
B rebuts A (because according to Definition 9, an argument with a non-empty
support cannot undercut an argument with an empty one. Moreover, according
to Definition 10, we have either B Pref A, or (not(B Pref A) and not(A Pref
B)). This is impossible because according to Definition 7, arguments in AS are
always preferred to arguments with a non-empty support.

The argumentation system for classification is then the following:

Definition 11 (Argumentation system). An argumentation system for
classification (ASC) is a pair 〈A, defeat〉, where A is the set of arguments (see
Definition 6) and defeat is the relation defined in Definition 10.

Let us now identify the acceptable arguments of the above ASC. It is clear that
the arguments that are not defeated at all will be acceptable. Let U denote that
set of undefeated arguments.

Arguing and Explaining Classifications 171

Proposition 1. If S is consistent, then AS ⊆ U .

Proof. Let A ∈ AS . Let us assume that ∃B ∈ A such that B defeats A. According
to Property 4, B /∈ A\AS . Thus, B ∈ AS . Moreover, B defeats A means that
B rebuts A. This means then that A classifies a training example in u, and B
classifies an equivalent example in u′ �= u. This contradicts the fact that the set
S is consistent.

As said in Section 3, one of the acceptability semantics is the so-called ‘grounded
extension’. Such an extension is unique and maybe empty. However, we show that
when the set S of training examples is consistent, this grounded extension is not
empty.

Proposition 2 (Grounded extension). If S is consistent, then the argumen-
tation system 〈A, defeat〉 has a non empty grounded extension E.

Proof. This is due to the fact that AS �= ∅ and AS ⊆ U .

Note that the system 〈A, defeat〉 is not always finite. By finite we mean that
each argument is defeated by a finite number of arguments. This is due to the
fact that H and X are not always finite.

Proposition 3. If H and X are finite, then the system 〈A, defeat〉 is finite.

When an argumentation system is finite, its characteristic function F is contin-
uous. Consequently, the least fixed point of this function can be defined by an
iterative application of F to the empty set.

Proposition 4. If the argumentation system 〈A, defeat〉 is finite, then the
grounded extension E is:

E =
⋃

F i≥0(∅) = U ∪ [
⋃

i≥1

F i(U)].

Let us now analyze the other acceptability semantics, namely preferred and
stable ones. In general, the ASC has at least one preferred extension that may
be empty. However, as for the case of grounded extension, we can show that in
the particular case of a consistent set of training examples, the ASC has at least
one non-empty preferred extension.

Proposition 5. If S is consistent, then the ASC 〈A, defeat〉 has n ≥ 1 non-
empty preferred extensions.

Proof. In [2], it has been shown that the grounded extension is included in very
preferred extension. Since the grounded extension is not empty (according to
Proposition 2, then there exists at least one non-empty preferred extension).

In general, the preferred extensions of an argumentation system are not stable.
However, we can show that when the set C contains only two possible classes,
this means that the concept to learn is binary, these extensions coincide. This
result is due to the fact that the oriented graph associated to the above ASC
has no odd length circuits in this case. However, it may contain circuits of even
length.

172 L. Amgoud and M. Serrurier

Proposition 6. If C = {c1, c2} with c1 �= c2, then:

– The graph associated with the system 〈A, defeat〉 has no odd length circuits.
– The preferred extensions and stable extensions of the system 〈A, defeat〉

coincide.

Proof (Sketch). Part 1: Let A, B, C be three arguments such that A defeats B,
B defeats C, and C defeats A.

Case 1: Let us suppose that A ∈ AS .
According to Property 3, B ∈ A\AS . According to Property 4, C should be
in A\AS . Contradiction because according to Property 4, C cannot defeat
A, which is in AS .

Case 2: LetussupposethatA, B, C ∈ A\AS .ThismeansthatArebutsB,B rebuts
C, and C rebuts A (according to Definition 9). Consequently, Example(A) ≡
Example(B)≡Example(C),andValue(A) �=Value(B),Value(B) �=Value(C).
Due to the fact thatU ={0, 1},wehaveValue(A)=Value(C).This contradicts
the assumption that C rebuts A.

Part 2: This is a consequence of the fact that there is no odd circuits in the
system.

Moreover, in this case the intersection of all the preferred (stable) extensions
coincides with the grounded extension.

Proposition 7. Let 〈A, defeat〉 be an ASC. Let E be its grounded extension,
and E1, . . . , En its preferred (stable) extensions. If C = {c1, c2} with c1 �= c2,
then E =

⋂
i=1,...,n Ei.

The last step of an argumentation process consists of defining the status of the
conclusions, in our case, the classification of examples. In what follows we present
two decision criteria: The first one, called universal vote, consists of accepting
those classifications that are in any extension. However, it is clear that this kind
of voting may not classify all the examples. Thus, we propose a second criterion,
called majority vote, that allows to associate a class with each example. The
conclusions here are the ones that are supported by a majority of arguments
that appear in the different extensions. Formally:

Definition 12. Let 〈A, defeat〉 be a ASC, and E1, . . . , En its extensions under
a given semantics. Let x ∈ X and c ∈ C.

Universal vote: x is universally classified in c iff ∀Ei, ∃ <h, x, c> ∈ Ei. UV
denotes the set of all (x, c), such that x is universally classified in c.

Majority vote: x is majoritarily classified in c iff |{< h, x, c > |∃Ei,<h, x, c>
∈ Ei}| ≥ |{< h, x, c′ > |c′ �= c, ∃Ei, < h, x, c′ >∈ Ei}|. MV denotes the set of
all (x, c), such that x is majoritarily classified in c.

The universally classified examples are those that are supported by arguments
in all the extensions. From a classification point of view, these correspond to
examples classified by the most preferred hypotheses. It is easy to check that
the set of universally classified examples is included in the set of majoritarily
classified ones.

Arguing and Explaining Classifications 173

Property 5. Let 〈A, defeat〉 be a ASC, and E1, . . . , En its extensions under a
given semantics :

UV ⊆ MV

We can show that the above argumentation framework delivers “safe” results,
since its sets of conclusions UV , MV are consistent. Formally:

Proposition 8. Let 〈A, defeat〉 be a ASC, and UV , MV its sets of conclusions.
The sets UV and MV are consistent.

5 Retrieving Version Space Theory

As said before, concept learning is a particular case of classification, where the
concept to learn is binary. In [4], Mitchell has proposed the famous general and
abstract framework, called version space learning, for concept learning. That
framework takes as input a consistent set of training examples on the concept
to learn. C contains only two classes, denoted respectively by 0 and 1. Thus,
C = {0, 1}. The set H is supposed to be equipped with a “particular” partial
preorder � that reflects the idea that some hypothesis are more general than
others in the sense that they classify positively more examples. This preorder
defines a lattice on the hypothesis space. Formally:

Definition 13 (Generality order on hypothesis). Let h1, h2 ∈ H. h1 is
more general than h2, denoted by h1 � h2, iff {x ∈ X|h1(x) = 1} ⊇ {x ∈
X|h2(x) = 1}.
The framework identifies the version space, which is the set V of all the hypoth-
esis of H that are sound with S. The idea is that a “good” hypothesis should at
least classify the training examples correctly.

Definition 14 (Version space)

V = {h ∈ H| h is sound with S}

Version space learning aims at identifying the upper and the lower bounds of
this version space V . The upper bound will contain the most general hypothesis,
i.e the ones that classify more examples, whereas the lower bound will contain
the most specific ones, i.e the hypothesis that classify less examples.

Definition 15 (General hypotheses). The set of general hypothesis is VG

= {h ∈ H | h is sound with S and � h′ ∈ H with h′ sound with S, and h′ � h}.

Definition 16 (Specific hypotheses). The set of specific hypothesis is VS =
{h ∈ H | h is sound with S and � h′ ∈ H with h′ sound with S, and h � h′}.

From the above definition, we have the following simple property characterizing
the elements of V .

Property 6. [4]

V = {h ∈ H|∃h1 ∈ VS , ∃h2 ∈ VG, h2 � h � h1}

174 L. Amgoud and M. Serrurier

In [4], an algorithm that computes the version space V by identifying its upper
and lower bounds VS and VG has been proposed.

The above framework has some limits. First, finding the version space is not
sufficient for classifying examples out of the training set. This is due to possible
conflicts between hypothesis. Second, it has been shown that the complexity
of the algorithm that identifies VS and VG is very high. In order to palliate
that limit, learning algorithms try in general to reach only one hypothesis in
the version space by using heuristical exploration of H (from general to specific
exploration, for instance FOIL [8], or from specific to general exploration, for
instance PROGOL [6]). That hypothesis is then used for classifying new objects.
Moreover, it is obvious that this framework does not support inconsistent set of
examples:

Property 7. [4] If the set S is inconsistent, then the version space V = ∅.

A consequence of the above result is that no concept can be learned. This problem
may appear in the case of noisy training data set.
Let us now show how the above ASC can retrieve the results of the version space
learning, namely the version space and its lower and upper bounds. Before doing
that, we start first by introducing some useful notations.
Let Hyp be a function that returns for a given set of arguments, their non empty
supports. In other words, this function returns all the hypothesis used to build
arguments:

Definition 17. Let T ⊆ A.

Hyp(T) = {h | ∃ 〈h, x, u〉 ∈ T and h �= ∅}

Now we will show that the argumentation-based model for concept learning
computes in an elegant way the version space V .

Proposition 9. Let 〈A, defeat〉 be a ASC. Let E be its grounded extension, and
E1, . . . , En its preferred (stable) extensions. If the set S is consistent then:

Hyp(E) = Hyp(E1) = . . . = Hyp(En) = V

where V is the version space.

Proof. Let Ei be an extension under a given semantics.

Hyp(Ei) ⊆ V: Let h ∈ Hyp(Ei), then ∃ 〈h, x, u〉 ∈ Ei.
Let us assume that ∃(xi, ui) ∈ S such that h(xi) �= ui. This means 〈∅, xi, ui〉
undercuts 〈h, x, u〉 (according to Definition 9). Consequently, 〈∅, xi, ui〉 de-
feats 〈h, x, u〉. However, according to Property 1, 〈∅, xi, ui〉 ∈ AS , thus
〈∅, xi, ui〉 ∈ Ei. Contradiction because Ei is an extension, thus by definition
it is conflict-free.

V ⊆ Hyp(Ei): Let h ∈ V , and let us assume that h /∈ Hyp(Ei). Since h ∈ V , then
∀(xi, ui) ∈ S, h(xi) = ui (1)
Let (x, u) ∈ S, thus h(x) = u and consequently 〈h, x, u〉 ∈ A. Moreover, since
h /∈ Hyp(E), then 〈h, x, u〉 /∈ E. Thus, ∃ 〈h′, x′, u′〉 that defeats 〈h, x, u〉.

Arguing and Explaining Classifications 175

– Case 1: h′ = ∅. This means that 〈∅, x′, u′〉 undercuts 〈h, x, u〉 and h(x′) �=
u′ Contradiction with (1).

– Case 2: h′ �= ∅. This means that 〈h′, x′, u′〉 rebuts 〈h, x, u〉. Consequently,
x ≡ x′ and u �= u′. However, since h ∈ V , then h is sound with S. Thus,
〈∅, x, u〉 defeats 〈h′, x′, u′〉, then 〈∅, x, u〉 defeats 〈h, x, u〉. Since 〈∅, x, u〉
∈ S, then 〈h, x, u〉 ∈ F(C) and consequently, 〈h, x, u〉 ∈ Ei. Contradiction.

The above result is of great importance. It shows that to get the version space,
one only needs to compute the grounded extension.

We can also show that if a given argument is in an extension Ei, then any
argument based on an hypothesis from the version space that supports the same
conclusion is in that extension. Formally:

Proposition 10. Let 〈A, defeat〉 be a ASC, and E1, . . . , En its extensions under
a given semantics. If < h, x, u >∈ Ei, then ∀h′ ∈ V s.t. h′ �= h if h′(x) = u then
< h′, x, u >∈ Ei.

Using the grounded extension, one can characterize the upper and the lower
bounds of the version space. The upper bound corresponds to the most preferred
arguments (w.r.t Pref) of the grounded extension, whereas the lower bound
corresponds to the less preferred ones.

Proposition 11. Let 〈A, defeat〉 be a ASC, and E its grounded extension.

– VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E, not (<h′, x′, u′> Pref
<h, x, u>)}.

– VS = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E, not (<h, x, u> Pref
<h′, x′, u′>)}.

Proof.
VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not (<h′, x′, u′> Pref

<h, x, u>)}.
– Let h ∈ VG, thus h ∈ V , and ∀h′ ∈ V , h � h′. Since h ∈ V , thus,

h ∈ Hyp(E), with E an extension. Then, ∃〈h, x, u〉 ∈ E . Since h � h′

for any h′ ∈ V , then h � h′ for any h′ ∈ Hyp(E). Thus, 〈h, x, u〉 Pref
〈h′, x′, u′〉, ∀ 〈h′, x′, u′〉 ∈ E .

– Let 〈h, x, u〉 ∈ E such that ∀ 〈h′, x′, u′〉 ∈ E , and not(〈h′, x′, u′〉Pref
〈h, x, u〉). Thus, h ∈ Hyp(E), and ∀ h′ ∈ Hyp(E), not(h′ � h), thus
h ∈ VG.

VS ={h | ∃ <h, x, u>∈E s.t ∀ <h′, x′, u′> ∈ E , not (<h, x, u> Pref <h′, x′, u′>)}.
– Let h ∈ VS , thus �h′ ∈ V such that h � h′. Since h ∈ VS , then h ∈ V and

consequently, h ∈ Hyp(E). This means that ∃〈h, x, u〉 ∈ E . Let us assume
that ∃〈h′, x′, u′〉 ∈ E such that 〈h, x, u〉 Pref 〈h′, x′, u′〉, thus h � h′.
Contradiction with the fact that h ∈ VS .

– Let 〈h, x, u〉 ∈ E such that ∀ 〈h′, x′, u′〉 ∈ E , and not(〈h, x, u〉Pref〈h′, x′,
u′〉), thus not(h � h′). Since h ∈ V , and ∀h′ ∈ V , not(h � h′), then
h ∈ VS .

176 L. Amgoud and M. Serrurier

6 Conclusion

Recently, some researchers have tried to use argumentation techniques in ma-
chine learning [10,5]. The basic idea behind their work is to improve existing
algorithms in learning by providing arguments. However, they don’t exploit
the whole power of argumentation theory. This paper has proposed, to the
best of our knowledge, the first framework for classification that is completely
argumentation-based, and that uses Dung’s semantics.

This framework considers the classification problem as a process that follows
four main steps: it first constructs arguments in favor of classifications of exam-
ples from a set of training examples, and a set of hypothesis. Conflicts between
arguments may appear when two arguments classify the same example in dif-
ferent classes. Once the arguments identified, it is possible to compare them on
the basis of their strengths. The idea is that arguments coming from the set of
training examples are stronger than arguments built from the set of hypothesis.
Similarly, arguments based on most preferred hypothesis are stronger than ar-
guments built from less preferred hypothesis. We have shown that acceptability
semantics of the ASC retrieves and even characterizes the version space and
its upper and lower bounds. Thus, the argumentation-based approach gives an-
other interpretation of the version space as well as its two bounds in terms of
arguments. We have also shown that when the set of training examples is incon-
sistent, it is still possible to classify examples. Indeed, in this particular case, the
version space is empty as it is the case in the version space learning framework.
A last and not least feature of our framework consists of defining the class of
each example on the basis of all the hypothesis and not only one, and also to
suggest four intuitive decision criteria for that purpose.
A first extension of this framework would be to explore the proof theories in
argumentation that test directly whether a given argument is in the grounded
extension without computing this last. This means that one may know the class
of an example without exploring the whole hypothesis space.

References

1. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumen-
tation frameworks. Int. Journal of Automated Reasoning 29(2), 125–169 (2002)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

3. Gómez, S.A., Chesñevar, C.I.: Integrating defeasible argumentation with fuzzy art
neural networks for pattern classification. In: Lavrač, N., Gamberger, D., Todor-
ovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, Springer, Hei-
delberg (2003)

4. Mitchell, T.: Generalization as search. Artificial intelligence 18, 203–226 (1982)
5. Mozina, M., Zabkar, J., Bratko, I.: Argument based rule learning. In: Proc. of the

In 17th European Conference on Artificial Intelligence, ECAI 2006
6. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13,

245–286 (1995)

Arguing and Explaining Classifications 177

7. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

8. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

9. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence and Law 53, 125–157 (1992)

10. Zabkar, J., Mozina, M., Videcnik, J., Bratko, I.: Argument based machine learning
in a medical domain. In: Press, I. (ed.) Proc. of the 1st International Conference
on Computational Models of Argument, pp. 59–70 (2006)

An Argumentation-Based Framework for Deliberation
in Multi-agent Systems

Santi Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab,
Georgia Institute of Technology

Atlanta, GA 30332/0280
santi@cc.gatech.edu

2 IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
enric@iiia.csic.es

Abstract. This paper focuses of the group judgments obtained from a committee
of agents that use deliberation. The deliberative process is realized by an argu-
mentation framework called AMAL. The AMAL framework is completely based
on learning from examples: the argument preference relation, the argument gen-
eration policy, and the counterargument generation policy are case-based tech-
niques. For join deliberation, learning agents share their experience by forming
a committee to decide upon some joint decision. We experimentally show that
the deliberation in committees of agents improves the accuracy of group judg-
ments. We also show that a voting scheme based on assessing the confidence of
arguments improves the accuracy of group judgments than majority voting.

1 Introduction

Argumentation frameworks for multi-agent systems can be used for different purposes
like joint deliberation, persuasion, negotiation, and conflict resolution. In this paper
we focus on committees of agents that use deliberation to achieve more informed and
accurate group judgments. Since most work on multi-agents systems is oriented towards
bargain-based decision-making (like negotiation or persuasion) it is important to remark
the following difference: while bargain-based decision-making assumes that individual
preferences are “given” (i.e. preferences preexisting and/or fixed), deliberation-based
decision-making preferences are formed [15].

Argumentation-based joint deliberation involves discussion over the outcome of a
particular situation or the appropriate course of action for a particular situation. Learn-
ing agents are capable of learning from experience, in the sense that past examples
(situations and their outcomes) are used to predict the outcome for the situation at hand.
However, since individual agents experience may be limited, individual knowledge and
prediction accuracy is also limited. Thus, learning agents that are capable of arguing
their individual predictions with other agents may reach better prediction accuracy after
such an argumentation process.

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 178–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 179

Most existing argumentation frameworks for multi-agent systems are based on de-
ductive logic or some other deductive logic formalism specifically designed to support
argumentation, such as default logic [3]. Usually, an argument is seen as a logical state-
ment, while a counterargument is an argument offered in opposition to another argu-
ment [4,14]; agents use a preference relation to resolve conflicting arguments. However,
logic-based argumentation frameworks assume agents with preexisting knowledge and
preference relations. This is similar to the difference in assumptions between bargain-
based decision-making and deliberation-based decision-making: our interest is in an
adaptive and dynamic approach for deliberation processes where agents are responsive
to external arguments or factual statements and, by integrating them, being able chang-
ing their minds.

In this paper, we focus on an Argumentation-based Multi-Agent Learning (AMAL)
framework where both knowledge and preference relation are learned from experience.
Thus, we consider a scenario with agents that (1) work in the same domain using a
shared ontology, (2) are capable of learning from examples, and (3) communicate using
an argumentative framework. Having learning capabilities allows agents effectively use
a specific form of counterargument, namely the use of counterexamples. Counterexam-
ples offer the possibility of agents learning during the argumentation process. Moreover,
learning agents allow techniques that use learnt experience to generate adequate argu-
ments and counterarguments. Specifically, we will need to address two issues: (1) how
to define a technique to generate arguments and counterarguments by generalizing from
examples, and (2) how to define a preference relation over two conflicting arguments
that have been generalized from examples.

This paper presents a case-based approach to address both issues. The agents use
case-based reasoning (CBR) [1] to learn from past cases (where a case is a situation
and its outcome) in order to predict the outcome of a new situation. We propose an
argumentation protocol inside the AMAL framework at supports agents in reaching a
joint prediction over a specific situation or problem — moreover, the reasoning needed
to support the argumentation process will also be based on cases. In particular, we
present two case-based measures, one for generating the arguments and counterargu-
ments adequate to a particular situation and another for determining preference relation
among arguments. Finally, we experimentally show that the deliberation in commit-
tees of agents improves the accuracy of group judgments compared to voting without
deliberation. We also show that a voting scheme based on assessing the confidence of
arguments improves the accuracy of group judgments compared to majority voting.

The paper is structured as follows. Section 2 discusses the relation among commit-
tees, deliberation and social choice. Then Section 3 introduces our multi-agent CBR
framework and the notion of justified prediction. After that, Section 4 formally de-
fines our argumentation framework. Sections 5 and 6 present our case-based preference
relation and argument generation policies respectively. Later, Section 7 presents the
argumentation protocol in our AMAL framework. After that, Section 8 presents an ex-
emplification of the argumentation framework. Finally, Section 9 presents an empirical
evaluation of our apparoach. The paper closes with related work and conclusions sec-
tions.

180 S. Ontañón and E. Plaza

Issue(s)
Selection

Members
Selection

Commitee

Deliberation

Voting

Joint
Judgement

Fig. 1. The main aspects of a deliberative committees of agents

2 Deliberation, Committees and Social Choice

While there is ample research work on multi-agent systems concerning teams (agents
associated in some joint action) and coalitions (agents that temporarily combine their
action for a specific purpose), this paper focuses on committees. A common defini-
tion of committee is “A group of people officially delegated (elected or appointed) to
perform a function, such as investigating, considering, reporting, or acting on a mat-
ter.” Considered as an institution, the committee is a widespread form of coordination,
deliberation, and joint decision-making. Philip Pettit in Republicanism says that “the
committee is the enzyme of the body politic” (page 239, [9]) because committees are
ubiquitous and because of the importance of their proper functioning to sustain a reli-
able working of the whole body politic.

In our approach, a committee of agents is a form of electronic institution designed to
perform group judgments. The issue of group judgments, following Cass Sunstein [16],
is answering the following question: How can groups obtain or use the information
that their members have? The author then studies three approaches: deliberation, sta-
tistical means, and information markets. In our previous work on committees of agents
[11] we focused on statistical means, in the sense of using voting schemes as the ag-
gregation function to achieve group judgments. These approaches are based on what
is called the ensemble effect [11] in Machine Learning and the Condorcet Jury Theo-
rem [16] in social choice theory — stating succinctly that the accuracy of the group
judgement is higher than that of the best individual member when some properties are
satisfied by the members and an adequate aggregation function (e.g. majority voting) is
used.

Since human committees also employ deliberation, we focus on this paper on de-
veloping a framework for deliberative committees of agents. Figure 1 shows the main
aspects of a committee of agents: a way to select the members of the committee, the
selection of the issues to be addressed by that committee, a deliberation stage and (if a
consensual agreement is not achieved) a voting stage. Notice that if the committee ad-
dresses not a single issue but several related issues the stages of deliberation and voting
can be iterated. In this paper we focus on single-issue committees of agents and on the
deliberation and voting stages. We offer no contribution to the problems of selecting
relevant issues and member selection, focusing on the internal workings of a committee
proposing an argumentation-based approach to deliberation and new confidence-based
voting mechanism.

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 181

The argumentation-based framework assumes agents capable of learning — in par-
ticular in agents capable of reasoning with (and learning from) cases. This approach
gives an empirical grounding to several important issues of argumentation frameworks,
like generation and selection of arguments and counterarguments. In our approach, the
agents using case-based reasoning (CBR) will argue based on what they have learnt, and
they will accept or reject counterarguments posited by other agents based on what they
have learnt. Finally, since deliberation is only useful if agents are capable of changing
their mind as a result of their argumentation with others, learning offers a basis from
which individual changes in judgment are integrated with (and based on) the acquisition
of new information from communicating with other agents. The next section introduces
CBR agents and the requirements for sustaining an argumentation framework.

3 Multi-agent CBR Systems

A Multi-Agent Case Based Reasoning System (MAC) M = {(A1, C1), ..., (An, Cn)}
is a multi-agent system composed of A = {Ai, ..., An}, a set of CBR agents, where
each agent Ai ∈ A possesses an individual case base Ci. Each individual agent Ai in
a MAC is completely autonomous and each agent Ai has access only to its individual
and private case base Ci. A case base Ci = {c1, ..., cm} is a collection of cases. Agents
in a MAC system are able to individually solve problems, but they can also collaborate
with other agents to solve problems.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks like classi-
fication, where the solution of a problem is achieved by selecting a solution class from
an enumerated set of solution classes. In the following we will note the set of all the
solution classes by S = {S1, ..., SK}. Therefore, a case c = 〈P, S〉 is a tuple contain-
ing a case description P and a solution class S ∈ S. In the following, we will use the
terms problem and case description indistinctly. Moreover, we will use the dot notation
to refer to elements inside a tuple; e.g., to refer to the solution class of a case c, we will
write c.S.

Therefore, we say a group of agents perform joint deliberation, when they collabo-
rate to find a joint solution by means of an argumentation process. However, in order to
do so, an agent has to be able to justify its prediction to the other agents (i.e. generate
an argument for its predicted solution that can be examined and critiqued by the other
agents). The next section addresses this issue.

3.1 Justified Predictions

Both expert systems and CBR systems may have an explanation component [17] in
charge of justifying why the system has provided a specific answer to the user. The line
of reasoning of the system can then be examined by a human expert, thus increasing the
reliability of the system.

Most of the existing work on explanation generation focuses on generating expla-
nations to be provided to the user. However, in our approach we use explanations (or
justifications) as a tool for improving communication and coordination among agents.

182 S. Ontañón and E. Plaza

Problem

Traffic_light: red

Cars_passing: no

Case 1

Traffic_light: red

Cars_passing: no

Solution: wait

Case 3

Traffic_light: red

Cars_passing: yes

Solution: wait

Case 4

Traffic_light: green

Cars_passing: yes

Solution: wait

Case 2

Traffic_light: green

Cars_passing: no

Solution: cross

Retrieved

cases

Solution: wait

Justification

Traffic_light: red

Fig. 2. An example of justification generation in a CBR system. Notice that, since the only rel-
evant feature to decide is Traffic_light (the only one used to retrieve cases), it is the only one
appearing in the justification.

We are interested in justifications since they can be used as arguments. For that pur-
pose, we will benefit from the ability of some machine learning methods to provide
justifications.

A justification built by a CBR method after determining that the solution of a partic-
ular problem P was Sk is a description that contains the relevant information from the
problem P that the CBR method has considered to predict Sk as the solution of P . In
particular, CBR methods work by retrieving similar cases to the problem at hand, and
then reusing their solutions for the current problem, expecting that since the problem
and the cases are similar, the solutions will also be similar. Thus, if a CBR method has
retrieved a set of cases C1, ..., Cn to solve a particular problem P the justification built
will contain the relevant information from the problem P that made the CBR system
retrieve that particular set of cases, i.e. it will contain the relevant information that P
and C1, ..., Cn have in common.

For example, Figure 2 shows a justification build by a CBR system for a toy problem
(in the following sections we will show justifications for real problems). In the figure,
a problem has two attributes (Traffic_light, and Cars_passing), the retrieval mechanism
of the CBR system notices that by considering only the attribute Traffic_light, it can
retrieve two cases that predict the same solution: wait. Thus, since only this attribute
has been used, it is the only one appearing in the justification. The values of the rest of
attributes are irrelevant, since whatever their value the solution class would have been
the same.

In general, the meaning of a justification is that all (or most of) the cases in the case
base of an agent that satisfy the justification (i.e. all the cases that are subsumed by
the justification) belong to the predicted solution class. In the rest of the paper, we will
use � to denote the subsumption relation. In our work, we use LID [2], a CBR method
capable of building symbolic justifications such as the one exemplified in Figure 2.
When an agent provides a justification for a prediction, the agent generates a justified
prediction:

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 183

Definition 1. A Justified Prediction is a tuple J = 〈A, P, S, D〉 where agent A con-
siders S the correct solution for problem P , and that prediction is justified a symbolic
description D such that J.D � J.P .

Justifications can have many uses for CBR systems [8,10]. In this paper, we are go-
ing to use justifications as arguments, in order to allow learning agents to engage in
argumentation processes.

4 Arguments and Counterarguments

For our purposes an argument α generated by an agent A is composed of a statement
S and some evidence D supporting S as correct. In the remainder of this section we
will see how this general definition of argument can be instantiated in specific kind
of arguments that the agents can generate. In the context of MAC systems, agents
argue about predictions for new problems and can provide two kinds of information: a)
specific cases 〈P, S〉, and b) justified predictions: 〈A, P, S, D〉. Using this information,
we can define three types of arguments: justified predictions, counterarguments, and
counterexamples.

A justified prediction α is generated by an agent Ai to argue that Ai believes that
the correct solution for a given problem P is α.S, and the evidence provided is the
justification α.D. In the example depicted in Figure 2, an agent Ai may generate the
argument α = 〈Ai, P, Wait, (Traffic_light = red)〉, meaning that the agent Ai believes
that the correct solution for P is Wait because the attribute Traffic_light equals red.

A counterargument β is an argument offered in opposition to another argument α.
In our framework, a counterargument consists of a justified prediction 〈Aj , P, S′, D′〉
generated by an agent Aj with the intention to rebut an argument α generated by an-
other agent Ai, that endorses a solution class S′ different from that of α.S for the
problem at hand and justifies this with a justification D′. In the example in Figure 2,
if an agent generates the argument α = 〈Ai, P, Walk, (Cars_passing = no)〉, an agent
that thinks that the correct solution is Wait might answer with the counterargument
β = 〈Aj , P, Wait, (Cars_passing = no ∧ Traffic_light = red)〉, meaning that, although
there are no cars passing, the traffic light is red, and the street cannot be crossed.

A counterexample c is a case that contradicts an argument α. Thus a counterexample
is also a counterargument, one that states that a specific argument α is not always true,
and the evidence provided is the case c. Specifically, for a case c to be a counterexample
of an argument α, the following conditions have to be met: α.D � c and α.S �= c.S,
i.e. the case must satisfy the justification α.D and the solution of c must be different
than the predicted by α.

By exchanging arguments and counterarguments (including counterexamples),
agents can argue about the correct solution of a given problem, i.e. they can engage
a joint deliberation process. However, in order to do so, they need a specific interaction
protocol, a preference relation between contradicting arguments, and a decision policy
to generate counterarguments (including counterexamples). In the following sections
we will present these elements.

184 S. Ontañón and E. Plaza

+ +
+

+

+

+

-

- -

-

-
+

= hAi, P,+,Di

Case base of agent Ai

CAi
() = 3

3+1+1
= 0.6.D

Fig. 3. Confidence of arguments is evaluated by contrasting them against the case bases of the
agents

5 Preference Relation

A specific argument provided by an agent might not be consistent with the information
known to other agents (or even to some of the information known by the agent that
has generated the justification due to noise in training data). For that reason, we are
going to define a preference relation over contradicting justified predictions based on
cases. Basically, we will define a confidence measure for each justified prediction (that
takes into account the cases owned by each agent), and the justified prediction with the
highest confidence will be the preferred one.

The idea behind case-based confidence is to count how many of the cases in an in-
dividual case base endorse a justified prediction, and how many of them are counterex-
amples of it. The more the endorsing cases, the higher the confidence; and the more the
counterexamples, the lower the confidence. Specifically, to assess the confidence of a
justified prediction α, an agent obtains the set of cases in its individual case base that
are subsumed by α.D. With them, an agent Ai obtains the Y (aye) and N (nay) values:

– Y Ai
α = |{c ∈ Ci| α.D � c.P ∧ α.S = c.S}| is the number of cases in the agent’s

case base subsumed by the justification α.D that belong to the solution class α.S,
– NAi

α = |{c ∈ Ci| α.D � c.P ∧ α.S �= c.S}| is the number of cases in the agent’s
case base subsumed by justification α.D that do not belong to that solution class.

An agent estimates the confidence of an argument as:

CAi(α) =
Y Ai

α

1 + Y Ai
α + NAi

α

i.e. the confidence on a justified prediction is the number of endorsing cases divided by
the number of endorsing cases plus counterexamples. Notice that we add 1 to the de-
nominator, this is to avoid giving excessively high confidences to justified predictions
whose confidence has been computed using a small number of cases. Notice that this
correction follows the same idea than the Laplace correction to estimate probabilities.
Figure 3 illustrates the individual evaluation of the confidence of an argument, in partic-
ular, three endorsing cases and one counterexample are found in the case base of agents
Ai, giving an estimated confidence of 0.6

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 185

Solution: hadromerida

Justification: D
1

Sponge

Spikulate

skeleton

External

features
External features

Gemmules: no

Spikulate Skeleton

Megascleres

Uniform length: no

Megascleres

Smooth form: tylostyle

Case Base

of A
1

LID
New

sponge

P

Fig. 4. Example of a real justification generated by LID in the marine Sponges data set

Moreover, we can also define the joint confidence of an argument α as the confidence
computed using the cases present in the case bases of all the agents in the group:

C(α) =
∑

i Y Ai
α

1 +
∑

i

(
Y Ai

α + NAi
α

)

Notice that, to collaboratively compute the joint confidence, the agents only have to
make public the aye and nay values locally computed for a given argument.

In our framework, agents use this joint confidence as the preference relation: a justi-
fied prediction α is preferred over another one β if C(α) ≥ C(β).

6 Generation of Arguments

In our framework, arguments are generated by the agents from cases, using learning meth-
ods. Any learning method able to provide a justified prediction can be used to generate
arguments. For instance, decision trees and LID [2] are suitable learning methods. Specif-
ically, in the experiments reported in this paper agents use LID. Thus, when an agent wants
to generate an argument endorsing that a specific solution class is the correct solution for
a problem P , it generates a justified prediction as explained in Section 3.1.

For instance, Figure 4 shows a real justification generated by LID after solving a
problem P in the domain of marine Sponges identification. In particular, Figure 4 shows
how when an agent receives a new problem to solve (in this case, a new sponge to de-
termine its order), the agent uses LID to generate an argument (consisting on a justified
prediction) using the cases in the case base of the agent. The justification shown in
Figure 4 can be interpreted saying that “the predicted solution is hadromerida because
the smooth form of the megascleres of the spiculate skeleton of the sponge is of type
tylostyle, the spikulate skeleton of the sponge has no uniform length, and there is no
gemmules in the external features of the sponge”. Thus, the argument generated will be
α = 〈A1, P, hadromerida, D1〉.

186 S. Ontañón and E. Plaza

6.1 Generation of Counterarguments

As previously stated, agents may try to rebut arguments by generating counterargument
or by finding counterexamples. Let us explain how they can be generated.

An agent Ai wants to generate a counterargumentβ to rebut an argument α when α is
in contradiction with the local case base of Ai. Moreover, while generating such coun-
terargument β, Ai expects that β is preferred over α. For that purpose, we will present a
specific policy to generate counterarguments based on the specificity criterion [12].

The specificity criterion is widely used in deductive frameworks for argumentation,
and states that between two conflicting arguments, the most specific should be preferred
since it is, in principle, more informed. Thus, counterarguments generated based on the
specificity criterion are expected to be preferable (since they are more informed) to the
arguments they try to rebut. However, there is no guarantee that such counterarguments
will always win, since, as we have stated in Section 5, agents in our framework use a
preference relation based on joint confidence. Moreover, one may think that it would
be better that the agents generate counterarguments based on the joint confidence pref-
erence relation; however it is not obvious how to generate counterarguments based on
joint confidence in an efficient way, since collaboration is required in order to evalu-
ate joint confidence. Thus, the agent generating the counterargument should constantly
communicate with the other agents at each step of the induction algorithm used to gen-
erate counterarguments (presently one of our future research lines).

Thus, in our framework, when an agent wants to generate a counterargument β to an
argument α, β has to be more specific than α (i.e. α.D � β.D).

The generation of counterarguments using the specificity criterion imposes some
restrictions over the learning method, although LID or ID3 can be easily adapted for
this task. For instance, LID is an algorithm that generates a description starting from
scratch and heuristically adding features to that term. Thus, at every step, the descrip-
tion is made more specific than in the previous step, and the number of cases that are
subsumed by that description is reduced. When the description covers only (or almost
only) cases of a single solution class LID terminates and predicts that solution class.
To generate a counterargument to an argument α LID just has to use as starting point
the description α.D instead of starting from scratch. In this way, the justification pro-
vided by LID will always be subsumed by α.D, and thus the resulting counterargument
will be more specific than α. However, notice that LID may sometimes not be able
to generate counterarguments, since LID may not be able to specialize the description
α.D any further, or because the agent Ai has no case inCi that is subsumed by α.D.
Figure 5 shows how an agent A2 that disagreed with the argument shown in Figure 4,
generates a counterargument using LID. Moreover, Figure 5 shows the generation of a
counterargument β1

2 for the argument α0
1 (in Figure 4) that is a specialization of α0

1.
Specifically, in our experiments, when an agent Ai wants to rebut an argument α,

uses the following policy:

1. Agent Ai uses LID to try to find a counterargumentβ more specific than α; if found,
β is sent to the other agent as a counterargument of α.

2. If not found, then Ai searches for a counterexample c ∈ Ci of α. If a case c is
found, then c is sent to the other agent as a counterexample of α.

3. If no counterexamples are found, then Ai cannot rebut the argument α.

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 187

Sponge

Spikulate

skeleton

External

features
External features

Gemmules: no

Growing:

Spikulate Skeleton

Megascleres

Uniform length: no

Megascleres

Smooth form: tylostyle

Growing

Grow: massive

Case Base

of A
2

LID

Solution: astrophorida

Justification: D
2

Fig. 5. Generation of a counterargument using LID in the Sponges data set

7 Argumentation-Based Multi-agent Learning

The interaction protocol of AMAL allows a group of agents A1, ..., An to deliberate
about the correct solution of a problem P by means of an argumentation process. If
the argumentation process arrives to a consensual solution, the joint deliberation ends;
otherwise a weighted vote is used to determine the joint solution. Moreover, AMAL also
allows the agents to learn from the counterexamples received from other agents.

The AMAL protocol consists on a series of rounds. In the initial round, each agent
states which is its individual prediction for P . Then, at each round an agent can try to
rebut the prediction made by any of the other agents. The protocol uses a token passing
mechanism so that agents (one at a time) can send counterarguments or counterexam-
ples if they disagree with the prediction made by any other agent. Specifically, each
agent is allowed to send one counterargument or counterexample each time he gets the
token (notice that this restriction is just to simplify the protocol, and that it does not
restrict the number of counterargument an agent can sent, since they can be delayed for
subsequent rounds). When an agent receives a counterargument or counterexample, it
informs the other agents if it accepts the counterargument (and changes its prediction)
or not. Moreover, agents have also the opportunity to answer to counterarguments when
they receive the token, by trying to generate a counterargument to the counterargument.

When all the agents have had the token once, the token returns to the first agent, and
so on. If at any time in the protocol, all the agents agree or during the last n rounds no
agent has generated any counterargument, the protocol ends. Moreover, if at the end of
the argumentation the agents have not reached an agreement, then a voting mechanism
that uses the confidence of each prediction as weights is used to decide the final solution
(Thus, AMAL follows the same mechanism as human committees, first each individual
member of a committee exposes his arguments and discuses those of the other mem-
bers (joint deliberation), and if no consensus is reached, then a voting mechanism is
required).

At each iteration, agents can use the following performatives:

188 S. Ontañón and E. Plaza

Agents
assert

t All Agree? Joint
SolutionYES

Generates
CA

NO

Agent+token

Generates
CE

Agent'+CE

New arg

DELIBERATION at Round t
with Agent Ai possessing the token

Nobody
new args Voting

α

Better CA
than ?α

Agent
asserts CA

YES

Rebut CA
to Agent'NO

CA better
than

argument
of AA?

Agent'
asserts CA

YES
NO

Ai

Aj

Ai

Aj

Aj

Aj

Fig. 6. Graphical representation of the argumentation protocol at round t with the token in pos-
session of agent Ai

– assert(α): the justified prediction held during the next round will be α. An agent
can only hold a single prediction at each round, thus is multiple asserts are send,
only the last one is considered as the currently held prediction.

– rebut(β, α): the agent has found a counterargument β to the prediction α.

We will define Ht = 〈αt
1, ..., α

t
n〉 as the predictions that each of the n agents hold at

a round t. Moreover, we will also define contradict(αt
i) = {α ∈ Ht|α.S �= αt

i.S} as
the set of contradicting arguments for an agent Ai in a round t, i.e. the set of arguments
at round t that support a different solution class than αt

i .
The protocol is initiated because one of the agents receives a problem P to be solved.

After that, the agent informs all the other agents about the problem P to solve, and the
protocol starts:

1. At round t = 0, each one of the agents individually solves P , and builds a justified
prediction using its own CBR method. Then, each agent Ai sends the performative
assert(α0

i) to the other agents. Thus, the agents know H0 = 〈α0
i , ..., α

0
n〉. Once all

the predictions have been sent the token is given to the first agent A1.
2. At each round t (other than 0), the agents check whether their arguments in Ht agree.

If they do, the protocol moves to step 5. Moreover, if during the last n rounds no agent
has sent any counterexample or counterargument, the protocol also moves to step 5.
Otherwise, the agent Ai owner of the token tries to generate a counterargument for
each of the opposing arguments in contradict(αt

i) ⊆ Ht (see Section 6.1). Then,
the counterargument βt

i against the prediction αt
j with the lowest confidence C(αt

j)
is selected (since αt

j is the prediction more likely to be successfully rebutted).

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 189

– If βt
i is a counterargument, then, Ai locally compares αt

i with βt
i by assessing

their confidence against its individual case base Ci (see Section 5) (notice that
Ai is comparing its previous argument with the counterargument that Ai itself
has just generated and that is about to send to Aj). If CAi(βt

i) > CAi(αt
i), then

Ai considers that βt
i is stronger than its previous argument, changes its argument

to βt
i by sending assert(βt

i) to the rest of the agents (the intuition behind this is
that since a counterargument is also an argument, Ai checks if the newly coun-
terargument is a better argument than the one he was previously holding) and
rebut(βt

i , α
t
j) to Aj . Otherwise (i.e. CAi(βt

i) ≤ CAi(αt
i)), Ai will send only

rebut(βt
i , α

t
j) to Aj . In any of the two situations the protocol moves to step 3.

– If βt
i is a counterexample c, then Ai sends rebut(c, αt

j) to Aj . The protocol
moves to step 4.

– If Ai cannot generate any counterargument or counterexample, the token is sent
to the next agent, a new round t + 1 starts, and the protocol moves to state 2.

3. The agent Aj that has received the counterargument βt
i , locally compares it against

its own argument, αt
j , by locally assessing their confidence. If CAj (βt

i)>CAj (αt
j),

then Aj will accept the counterargument as stronger than its own argument, and it
will send assert(βt

i) to the other agents. Otherwise (i.e. CAj (β
t
i) ≤ CAj (α

t
j)), Aj

will not accept the counterargument, and will inform the other agents accordingly.
Any of the two situations start a new round t + 1, Ai sends the token to the next
agent, and the protocol moves back to state 2.

4. The agent Aj that has received the counterexample c retains it into its case base
and generates a new argument αt+1

j that takes into account c, and informs the rest

of the agents by sending assert(αt+1
j) to all of them. Then, Ai sends the token to

the next agent, a new round t + 1 starts, and the protocol moves back to step 2.
5. The protocol ends yielding a joint prediction, as follows: if the arguments in Ht

agree then their prediction is the joint prediction, otherwise a voting mechanism is
used to decide the joint prediction. The voting mechanism uses the joint confidence
measure as the voting weights, as follows:

S = arg max
Sk∈S

∑

αi∈Ht|αi.S=Sk

C(αi)

Moreover, in order to avoid infinite iterations, if an agent sends twice the same argu-
ment or counterargument to the same agent, the message is not considered.

Figure 6 graphically illustrates this process. Where the greyed area is the loop formed
by steps 2, 3, and 4.

8 Exemplification

Let us consider a system composed of three agents A1, A2 and A3. One of the agents,
A1 receives a problem P to solve, and decides to use AMAL to solve it. For that reason,
invites A2 and A3 to take part in the argumentation process. They accept the invitation,
and the argumentation protocol starts.

190 S. Ontañón and E. Plaza

Initially, each agent generates its individual prediction for P , and broadcasts it to the
other agents. Thus, all of them can compute H0 = 〈α0

1, α
0
2, α

0
3〉. In particular, in this

example:

– α0
1 = 〈A1, P, hadromerida, D1〉

– α0
2 = 〈A2, P, astrophorida, D2〉

– α0
3 = 〈A3, P, axinellida, D3〉

A1 starts (Round 0) owning the token and tries to generate counterarguments for α0
2

and α0
3, but does not succeed, however it has one counterexample c13 for α0

3. Thus, A1
sends the the messagerebut(c13, α

0
3) toA3.A3 incorporates c13 into its case base and tries

to solve the problem P again, now taking c13 into consideration. A3 comes up with the
justified prediction α1

3 = 〈A3, P, hadromerida, D4〉, and broadcasts it to the rest of the
agents with the message assert(α1

3). Thus, all of them know the new H1 = 〈α0
1, α

0
2, α

1
3〉.

Round 1 starts and A2 gets the token. A2 tries to generate counterarguments for α0
1

and α1
3 and only succeeds to generate a counterargument β1

2 = 〈A2, P, astrophorida,
D5〉 against α1

3. The counterargument is sent to A3 with the message rebut(β1
2 , α1

3).
AgentA3 receives the counterargument and assesses its local confidence.The result is that
the individual confidence of the counterargument β1

2 is lower than the local confidence
of α1

3. Therefore, A3 does not accept the counterargument, and thus H2 = 〈α0
1, α

0
2, α

1
3〉.

Round 2 starts and A3 gets the token. A3 generates a counterargument β2
3 = 〈A3, P,

hadromerida, D6〉 for α0
2 and sends it to A2 with the message rebut(β2

3 , α0
2). Agent

A2 receives the counterargument and assesses its local confidence. The result is that the
local confidence of the counterargument β2

3 is higher than the local confidence of α0
2.

Therefore, A2 accepts the counterargument and informs the rest of the agents with the
message assert(β2

3). After that, H3 = 〈α0
1, β

2
3 , α1

3〉.
At Round 3, since all the agents agree (all the justified predictions in H3 predict

hadromerida as the solution class) The protocol ends, and A1 (the agent that received
the problem) considers hadromerida as the joint solution for the problem P .

9 Experimental Evaluation

In this section we empirically evaluate the AMAL argumentation framework for deliber-
ative committees. We have made experiments in two different data sets: Soybean (from
the UCI machine learning repository) and Sponges (a relational data set). The Soybean
data set has 307 examples and 19 solution classes, while the Sponges data set has 280
examples and 3 solution classes. In an experimental run, the data set is divided in 2
sets: the training set and the test set. The training set examples are distributed among
5 different agents without replication, i.e. there is no example shared by two agents. In
the testing stage, problems in the test set arrive randomly to one of the agents, and their
goal is to predict the correct solution.

The experiments are designed to test the hypothesis that argumentation-baseddeliber-
ation is useful for group judgment and improves over other typical methods such as major-
ity voting. Moreover, we also expect that the improvement achieved from argumentation
will increase as the number of agents participating in the argumentation increases (since
more information will be taken into account). For this purpose, we ran four experiments,

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 191

Fig. 7. Accuracy in Sponges data set for committees of 2 to 5 agents where predictions are
achieved individually, by majority voting, by justification-based voting, and by the full AMAL
argumentation framework

using committees of 2, 3, 4, and 5 agents respectively (in all experiments each agent has
a 20% of the training data, since the training is always distributed among 5 agents).

Figures 7 and 8 show the result of those experiments in the Sponges and Soybean
data sets. Classification accuracy is plotted in the vertical axis, and in the horizontal
axis the number of agents that took part in the argumentation processes is shown. For
each number of agents, four bars are shown: Individual, Voting, JV, and AMAL. The in-
dividual bar shows the average accuracy of individual agents predictions; the Voting bar
shows the average accuracy of the agents using a majority voting system to aggregate
their predictions (i.e. without deliberation); the last AMAL bar shows the average accu-
racy of the joint prediction using argumentation and (if need be) the confidence-based
voting explained in the step 5 of the protocol. Therefore, since the AMAL framework
has in fact to phases, namely deliberation and voting, then it is fair to ask how much
contributes each phase to the final result. For this purpose, we have included the JV bar
in Figures 7 and 8 that correspond to an experiment performed where the deliberation
phase is skipped. More specifically, the agents simply present their justified predictions
once (i.e. H0 is generated) and then a confidence-based voting is performed immedi-
ately (i.e. without sending any counterargument or counterexample). The results shown
are the average of 5 10-fold cross validation runs.

Figures 7 and 8 show that collaboration (Voting, JV, and AMAL) outperforms in-
dividual problem solving. Moreover, as we expected, the accuracy improves as more
agents collaborate, since more information is taken into account. Since AMAL always
outperforms Majority Voting, it is clear that having deliberation is better than not having
it. Moreover, AMAL always outperforms JV, indicating that having a confidence-based
voting stage after the deliberation stage is better than skipping deliberation and use
a confidence-based voting stage before. Thus, we conclude that joint predictions are
based on better information that has been provided by the deliberation stage.

Moreover, Figures 7 and 8 show that the magnitude of the improvement obtained due
to the argumentation process depends on the data set. For instance, the joint accuracy for
2 agents in the Sponges data set is of 88.64% for AMAL, 88.42% for JV, and 82.21% for

192 S. Ontañón and E. Plaza

Fig. 8. Accuracy in Soybean data set for committees of 2 to 5 agents where predictions are
achieved individually, by majority voting, by justification-based voting, and by the full AMAL
argumentation framework

majority voting (while individual accuracy is just 81.28%). Moreover, the improvement
achieved by AMAL over voting is larger in the Soybean data set. The reason is that the
Soybean data set is more “difficult” (in the sense that agents need a higher percentage of
the data set to achieve a reasonably good accuracy level). These experimental results show
that AMAL effectively exploits the opportunity for improvement: the accuracy is higher
only because more agents have changed their prediction during argumentation (otherwise
they would achieve the same result as Voting). For instance, the joint accuracy for 2 agents
in the Soybean data set is of 70.62% for AMAL, 66.77% for JV, and 61.04% for majority
voting (while individual accuracy is just 60.59%)

Figure 9 shows the frequency in which the agent committee was able to reach con-
sensus or needed a final voting stage for committees with 2, 3, 4, and 5 agents in the
Sponges and Soybean data set. The first bar (Unanimity) shows the percentage in which
the agents predictions on Round 0 of the protocol are equal (and no deliberation in
needed), the second bar (Consensus) shows the percentage in which all the agents agree
on a joint prediction after deliberation, and the third bar (Voting) shows the remaining
percentage in which the agents vote to determine the joint prediction. A first difference
is between data sets: Soybean, being more “difficult” (average error is higher than in
Sponges) has as expected higher disagreement and the percentage of times a vote is
needed is higher than in the Sponges data set. We can also observe that larger commit-
tees have less unanimity (as expected), but since smaller committees also have larger
errors, the additional deliberation and voting needed is also to be expected. Concerning
deliberation, we see the committees can use the information exchanged using AMAL
to reach a consensual solution in a fairly large number of occasions (more often in
Sponges, since in Soybean the higher error rate makes consensus more difficult).

Table 1 shows the average number rounds of argumentation performed (and also the
maximum number rounds in one deliberation) for committees of 2, 3, 4, and 5 agents.
The difficulty of the Soybean data set is reflected in the higher number of argumentation

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 193

Fig. 9. Percentage of times that agents agree before the deliberation, after deliberation, and times
when final voting is needed

rounds performed compared to the Sponges data set, as well as in the higher maximum
number of rounds some deliberation stages achieve.

Let us analyze in more detail the difference in accuracy obtained by the AMAL argu-
mentation process versus Voting and JV in the scenario with 5 agents. This improvement
is only possible if agents change their mind about the correct prediction during the de-
liberation phase due to the argumentation process. Figure 10 shows as percentage the
average number of times that an agent changes its prediction during the deliberation
phase, according too three possible mechanisms:

Counterargument (CA). when a counterargument received by the agent is accepted
(since it has higher individual confidence than the previously held argument)

Counterexample (CE). when a counterexample is received and since added to the in-
dividual case base the agent finds that now another argument has higher individual
confidence (this may be due to this single counterexample or to a number of previ-
ously received counterexamples in addition to this one)

Self-Argument (SA). when an agent changes its mind because, while trying to gener-
ate a counterargument for another agent, it explores a different region of the hy-
pothesis space and finds an argument with higher individual confidence than the
one currently holding.

Table 1. Average and maximum rounds of argumentation

Sponges Soybean
2 Agents 3 Agents 4 Agents 5 Agents 2 Agents 3 Agents 4 Agents 5 Agents

Average rounds 1.32 1.68 2.07 2.51 1.76 2.80 4.19 5.27
Maximum rounds 5 15 25 20 16 16 179 141

194 S. Ontañón and E. Plaza

Sponge

Soybean

0 12.5 25.0 37.5 50.0

16.77

10.06

15.13

2.34

15.09

7.26

CA CE SA

19.66%

46.98%

Fig. 10. Percentage of prediction change due to a counterargument (CA), a counterexample (CE),
or to the finding a better argument (SA)

In the Sponges data set, an agent changes its mind 19.66% of the times due to the
argumentation process: 7.26% of the times due to the reception of a counterargument,
2.34% of the times due to the reception of a counterexample, and the remaining 10.06%
is due to a self-argument. If we look at the same numbers in the Soybean data set, agents
change their minds a 46.98% of the times due to argumentation: 15.09% of the times
due to counterarguments, 15.13% of the times due to counterexamples, and the remaining
16.77% is due to a self-argument. Clearly, we can establish a relation between the number
of times an agent changes its mind with the increase in classification accuracy. In the
Sponges data set, agents change their minds less times, and thus the increase in accuracy
(from Voting to AMAL) is lower, while in the Soybean data set they change their minds
more often, and thus the increase (from Voting to AMAL) of accuracy is higher.

Moreover, we can further analyze these numbers. In the Sponges data set, agents re-
ceive a counterexample to their arguments a 35.23% of the times, but they only change
their minds due to them a 2.34% of the times due to them (i.e. only 1 out of 15 counterex-
amples makes an agent change its mind). That means that the extra information that an
agent receives with one counterexample is small, and may need several counterexamples
before effectively making the agent change its prediction. However, in the Soybean data
set, agents receive a counterexample to their arguments a 31.49% of the times, and they
change their minds due to them a 15.13% of the times (i.e. 1 out of 2 counterexamples
makes an agent change its mind). Therefore, we can see that the amount of information
that an agent receives with one counterexample is larger in the Soybean data set (in the
sense that 1 or 2 examples may suffice to change an agent’s prediction).

Finally, notice that an agent can change its mind due to only two different reasons:
due to learning new information (i.e. learning new cases), or due to seeing the informa-
tion it already had from a different point of view. When an agent changes its mind due
to a counterexample, it is changing its mind due to learning new information. When an
agent changes its mind due to a counterargument or due to a self-argument (searching
through a new area in the generalizations space while trying to find a counterargument),
the reason is that the agent sees its cases from a new point of view. The agents in our ex-
periments use LID as their method to generate predictions that uses a heuristic method to
explore the generalizations space. The heuristic approach avoids exploring the whole

An Argumentation-Based Framework for Deliberation in Multi-agent Systems 195

space of generalizations but does not assure that the part of the space effectively ex-
plored is always the one with the best generalization. Thus, from a generalizations space
point of view, the argumentation process is useful for the agents in two respects: it pro-
vides new information (by means of counterexamples) an it provides new points of view
to analyze data (i.e. it forces the agents to explore parts of the generalizations space that
they have not explored following their heuristics).

10 Related Work

Our work on multi-agent case-based learning started in 1999 [6]; later Mc Ginty and
Smyth [7] presented a multi-agent collaborative CBR approach (CCBR) for planning.
Finally, another interesting approach is multi-case-base reasoning (MCBR) [5], that
deals with distributed systems where there are several case bases available for the same
task and addresses the problems of cross-case base adaptation. The main difference is
that our MAC approach is a way to distribute the Reuse process of CBR (using a voting
system) while Retrieve is performed individually by each agent; the other multi-agent
CBR approaches, however, focus on distributing the Retrieve process.

Research on MAS argumentation focus on several issues like a) logics, protocols
and languages that support argumentation, b) argument selection and c) argument in-
terpretation. Approaches for logic and languages that support argumentation include
defeasible logic [4] and BDI models [14]. Although argument selection is a key as-
pect of automated argumentation (see [13] and [14]), most research has been focused
on preference relations among arguments. In our framework we have addressed both
argument selection and preference relations using a case-based approach.

11 Conclusions and Future Work

In this paper we have presented an argumentation-based framework for multiagent de-
liberation. Specifically, we have presented AMAL, a framework that allows a committee
of agents to argue about the solution of a given problem and we have shown how the
learning capabilities can be used to generate arguments and counterarguments. The ex-
perimental evaluation shows that the increased amount of information provided to the
agents during the deliberation stage increases the predictive accuracy of group judg-
ments, and specially when an adequate number of agents take part in the argumentation.

The main contributions of this work are: a) an argumentation framework for learn-
ing agents; b) a case-based preference relation over arguments, based on computing an
overall confidence estimation of arguments; c) a case-based policy to generate coun-
terarguments and select counterexamples, and d) a voting scheme based on assessing
the confidence of arguments (instead of assessing the trust on agents). Although we
introduced justification-based voting (JV) in a previous paper [8], the full capability
of this approach has not been established until now. JV is as good as the arguments
provided, and we show here that the arguments sustained by the agents are refined
and improved during deliberation; thus JV is better used not as a technique per se (as
proposed in [8]) but as the later stage of a deliberation process where the arguments
have been challenged and improved.

196 S. Ontañón and E. Plaza

Future work will focus on extending this approach from single-issue to multiple-
issue deliberation and group judgment. Social choice theory calls this the task of ag-
gregating sets of judgments, and there is an impossibility theorem similar to Arrow’s.
The problems arise from the fact that the interdependencies between different judg-
ments may cause logical paradoxes (e.g. logical contradiction between the votes on
the premises and the votes on the conclusion). However, relaxing some properties of
aggregation strategies may be feasible for specific application purposes.

Acknowledgments. This research is partially supported by the MID-CBR (TIN2006-
15140-C03-01) project and the Agreement Technologies (CONSOLIDER CSD2007-
0022, INGENIO 2010) project.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. Artificial Intelligence Communications 7(1), 39–59 (1994)

2. Armengol, E., Plaza, E.: Lazy induction of descriptions for relational case-based learning. In:
Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 13–24. Springer,
Heidelberg (2001)

3. Brewka, G.: Dynamic argument systems: A formal model of argumentation processes based
on situation calculus. Journal of Logic and Computation 11(2), 257–282 (2001)

4. Chesñevar, C.I., Simari, G.R.: Formalizing Defeasible Argumentation using Labelled De-
ductive Systems. Journal of Computer Science & Technology 1(4), 18–33 (2000)

5. Leake, D., Sooriamurthi, R.: Automatically selecting strategies for multi-case-base reason-
ing. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 204–219.
Springer, Heidelberg (2002)

6. Martín, F.J., Plaza, E., Arcos, J.-L.: Knowledge and experience reuse through communi-
cations among competent (peer) agents. International Journal of Software Engineering and
Knowledge Engineering 9(3), 319–341 (1999)

7. McGinty, L., Smyth, B.: Collaborative case-based reasoning: Applications in personalized
route planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp.
362–376. Springer, Heidelberg (2001)

8. Ontañón, S., Plaza, E.: Justification-based multiagent learning. In: ICML 2003, pp. 576–583.
Morgan Kaufmann, San Francisco (2003)

9. Pettit, P.: Republicanism. Oxford University Press, Oxford (1997)
10. Plaza, E., Armengol, E., Ontañón, S.: The explanatory power of symbolic similarity in case-

based reasoning. Artificial Intelligence Review 24(2), 145–161 (2005)
11. Plaza, E., Ontañón, S.: Learning collaboration strategies for committees of learning agents.

Journal of Autonomous Agents and Multi-Agent Systems 13, 429–461 (2006)
12. Poole, D.: On the comparison of theories: Preferring the most specific explanation. In: IJCAI

1985, pp. 144–147 (1985)
13. Sycara, K., Kraus, S., Evenchik, A.: Reaching agreements through argumentation: a logical

model and implementation. Artificial Intelligence Journal 104, 1–69 (1998)
14. Jennings, N.R., Parsons, S., Sierra, C.: Agents that reason and negotiate by arguing. Journal

of Logic and Computation 8, 261–292 (1998)
15. Sunstein, C.R. (ed.): The partial Constitution. Harvard University Press (1993)
16. Sunstein, C.R.: Group judgments: Deliberation, statistical means, and information markets.

New York University Law Review 80, 962–1049 (2005)
17. Bruce, A.: Wooley. Explanation component of software systems. ACM CrossRoads, 5.1 (1998)

A Hybrid Argumentation of Symbolic and

Neural Net Argumentation (Part I)

Wataru Makiguchi1 and Hajime Sawamura2

1 Graduate School of Science and Technology, Niigata University
8050, 2-cho, Ikarashi, Niigata, 950-2181 Japan

makiguti@cs.ie.niigata-u.ac.jp
2 Institute of Natural Science and Technology

Academic Assembly, Niigata University
8050 2-cho Ikarashi, Niigata, 950-2181 Japan

sawamura@ie.niigata-u.ac.jp

Abstract. A novel approach to argumentation has been started by A.
Garcez et al. Inspired by their work, we further go on investigating it, but
turn to a more syncretic direction such as the interplay between neural net
argumentation and symbolic argumentation. More specifically, we address
ourselves to the following basic questions that can not be overlooked.
1. Can the neural argumentation algorithm deal with self-defeating or

other pathological arguments?
2. Can the argument status of the neural net argumentation correspond

to the well-known argument status?
Consequently, we give the positive answers to them. They are beneficial
for understanding or characterizing the computation power and outcome
of the neural net argumentation from the perspective of the symbolic
argumentation. We also exemplify these results.

1 Introduction

Much attention and effort have been devoted to the symbolic argumentation so
far [1] [2], and its application to agent-oriented computing in which societal view
on computation is emphasized.

On the other hand, it is a long time since connectionism appeared as an
alternative movement in cognitive science or computing science which hopes to
explain human intelligence or soft information processing. It has been a matter
of hot debate how and to what extent the connectionism paradigm constitutes
a challenge to classicism or symbolic AI [3].

Recently, quite a novel approach to argumentation has been started by A.
Garcez et al., aiming to provide a model in which the learning of arguments can
be combined with reasoning capabilities within the same framework. On account,
they presented a neural argumentation algorithm that is responsible for trans-
lating argumentation networks into standard neural networks, and showed that
the translated neural network executes a sound computation of the prevailing
arguments in the original argumentation network [4].

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 197–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 W. Makiguchi and H. Sawamura

Inspired by their work, we further go on investigating it, but turn to a more
syncretic direction such as the interplay between neural net argumentation and
symbolic argumentation. More specifically, in this paper we address ourselves to
the former two questions of the following basic ones that can not be overlooked.
For the latter two, we will deal with them in the consecutive paper (Part II) [5]
since space is not enough to cover all of them in a single paper.

1. Can the neural argumentation algorithm deal with self-defeating or other
pathological arguments?
A. Garcez et al. dissolve such an anomaly as circular arguments (odd circle)
through the use of neural network argumentation. We are further concerned
with self-defeating arguments and other pathological arguments that are
stated in the paper “Logics for defeasible argumentation” by Prakken and
Vreeswijk [6], and show that their neural argumentation network yields a
sound computation for them as well although self-defeating arguments tend
to be ruled out in presenting the argumentation frameworks. Of course, self-
defeating arguments and pathological arguments are not entitled to rebutting
others in our daily life. However, we think we do not need to exclude them
from the definition of the underlying argumentation framework (in fact, A.
Garcez et al. employ Bench-Capon’s value-based argumentation framework
[7]).

2. Can the argument status of the neural net argumentation correspond to the
well-known status?
A. Garcez et al. classified the argument status into three: prevailing, fail to
prevail and defeated. But it is not clear how they correspond to those of
other symbolic argumentation frameworks. Having in mind the well-known
argumentation framework by Prakken and Vreeswijk[6], we give an appro-
priately devised neural net with specially tailored computation so that the
neural network yields the same argumentation status as the original argu-
mentation. That is, we show that the notions of prevailing, fail to prevail
and defeated correspond to the notions of justified, overruled and defensible
respectively.

3. Can the neural net argumentation compute the fixpoint semantics for argu-
mentation?
The fixpoint semantics for formal argumentation frameworks is now standard
since the influential work on argumentation by Dung [8]. We are concerned
with what kind of neural net argumentation and how it can compute the
fixpoint semantics. For this we give a correspondence theorem and its induc-
tive proof under an appropriately devised neural net with specially tailored
computation.

4. Can argumentative dialogues be extracted from the neural net argumentation?
Here we are interested in returning to symbolic dialogues from the neural net
computing. We illustrate a method of transforming neural net computations
into symbolic dialogue processes. The symbolic presentation of arguments
would be much better for us since it makes the neural net argumentation
process verbally understandable.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 199

We think the solutions to them would be helpful for us to understand and further
promote the syncretic approach of symbolism and connectionism in the field of
computational argumentation. In this paper, we are mainly concerned only with
analyzing and characterizing the relationship between symbolic and neural net
argumentation. In the next section, we present some preliminaries for the neural
net argumentation by A. Garcez et al. Then the remaining part of the paper
will be spent on describing in detail the former two questions described above
and their solutions, giving one section to each of them. This paper does not
have a section for related work since there is no directly related work on our
topics and purposes except the work of Garcez et al. as far as we know. The
final section summarizes contributions of this paper, and discusses some future
works on another intriguing interplay of symbolism and connectionism in the
field of computational argumentation.

2 Preliminaries to Neural Net Argumentation

In this section, we describe some preliminaries to the neural net argumentation
that originated from the work by A. S. D. Garcez at al [4].

2.1 Argumentation Network

We start by introducing a definition of argumentation network, following Dung’s
argumentation framework[8].

Definition 1. (Argumentation network)
An argumentation network has the form AN =< α, attack >, where α is a set
of arguments, and attack ⊆ α2 is a relation indicating which arguments attack
which other arguments.

2.2 Neural Argumentation Algorithm

We assume readers are familiar with basic notions of neural network. The neural
argumentation algorithm [4] is one that translates an argumentation network
into a neural network. We describe its version adjusted to our purposes of this
paper below.

Neural Argumentation Algorithm: For an argumentation network AN with
arguments α1, α2, · · · , αn,

1. Number each argument of AN from 1 to n, and create the input and out-
put layers of a neural network N such that ith neuron represents the ith
argument of AN .

2. For each argument αl of AN (1 ≤ l ≤ n):
(a) add neuron Nl to the hidden layer of N ;
(b) connect neuron αl in the input layer of N to hidden neuron Nl and set

the connection weight to W = 1;

200 W. Makiguchi and H. Sawamura

(c) connect hidden neuron Nl to neuron αl in the output layer of N and set
the connection weight to W = 1.

3. For each (αi, αj) ∈ attack:
(a) connect hidden neuron Nl to output neuron αj ;
(b) set the connection weight to W ′ = −1

4. Set the threshold of each neuron in N to 0.
5. Set g(x) = x as the activation function of the neurons in the input layer of

N .
6. Set h(x) = 1 if x ≥ 1, h(x) = −1 if x ≤ −1, and h(x) = x for −1 < x < 1 as

the activation function of the neurons in hidden and output layers of N .

2.3 Neural Net Computation

The neural network obtained by the neural net algorithm in the previous subsec-
tion is a very simple recurrent neural network in which recurrence occurs only
in the connections from output neurons to input neurons. In this subsection, we
specify how and what the neural net argumentation under such a neural network
computes.

One of the three argument’s statuses (prevailing, failure to prevail, defeated)
is given to an argument by the following neural net computation in N .

Step 1. Give 1 to every input neuron of N , go to Step 2.
Step 2. Obtaining an output vector:

(a) if the output vector is the same as the input vector, go to Step 3.
(b) if the output vector is different from the input vector, provide the output

vector as a new input to N and repeat Step 2 again.
Step 3. For each neuron:

(a) if neuron αl outputs 1 in Step 2 (a), let argument αl be prevailing.
(b) if neuron αl outputs 0 in Step 2 (a), let argument αl be failure to prevail.
(c) if neuron αl outputs −1 in Step 2 (a), let argument αl be defeated.

It is noted that it does not contain any learning mechanism in it, but is
powerful enough to deal with notorious or puzzling pathological arguments that
are to be considered in Sect. 3. In other words, it is a primitive one that has no
mechanism for adaptation of weights based on, for example, back propagation,
and neither supervised learning mechanism nor unsupervised one. Garcez et al.
introduces the so-called back propagation to his neural net argumentation in
dealing with such problems as circular arguments like one introduced in Sect.
4.3 or a situation in which we have to decide prevailing arguments in the Nixon
diamond problem. In the next section, we show that we do not need any learning
mechanism for dealing with only pathological arguments.

We illustrate a neural net computation that follows the above steps 1-3.

Example 1. Consider six arguments A, B, C, D, E and F in an argumentation
network AN such that B attacks A, D attacks A, C attacks B and D, E attacks

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 201

ABCF

DE

Fig. 1. Example of an argumentation
network[4]

A B C D E F

A B C D E F

hA hB hC hD hE hF

Fig. 2. Neural network translated from
Fig. 1

Table 1. Outputs of the neural net computation in Fig. 2

A B C D E F

1st input 1 1 1 1 1 1
1st output −1 0 0 −1 1 1
2nd output 0 0 −1 −1 1 1
3rd output 1 1 −1 −1 1 1
4th output 1 1 −1 −1 1 1

D and F attacks C (See Fig. 1.1) Then, we have a neural network N translated
from AN by the neural argumentation algorithm in Fig. 2.2

For the neural net computation, we start with the input vector [1, 1, 1, 1, 1, 1]
(Step1), andobtainanoutputvector [−1, 0, 1, −1, 1, 1].Wethenuse [−1, 0, 1, −1, 1,
1] as input to obtain output [−1, 0, −1, −1, 1, 1](Step 2). Let us use �→ to denote
the above mapping from input to output vectors, so that we have: [1, 1, 1, 1, 1, 1] �→
[−1, 0, 1, −1, 1, 1] �→ [0, 0, −1, −1, 1, 1] �→ [1, 1, −1, −1, 1, 1] �→ [1, 1, −1, −1, 1, 1].
This computation reaches to a stable state [1, 1, −1, −1, 1, 1].From the stable state
[1, 1, −1, −1, 1, 1],we can decide each argument’s status as follows: A is prevailing,
B is prevailing, C is defeated, D is defeated, E is prevailing, F is prevailing (Step
3). We give an output table of this neural net computation in Table 1. Amore visual
computation flow of Fig. 2 is given in Appendix A.

In Sect. 4, we introduce a new neural net argumentation with specially tailored
computation, which has a special mechanism for changing the weights and the
thresholds for neurons without relying upon the back propagation.

3 Can the Neural Argumentation Algorithm Deal with
Self-defeating or other Pathological Arguments?

In this section, we show that the neural argumentation algorithm yields a sound
computation for the self-defeating or other pathological arguments as well. In
1 Each arrow in Fig. 1 represents which argument attacks which other arguments.
2 Solid arrows represent positive weights (1) and dotted arrows represent negative

weights (−1).

202 W. Makiguchi and H. Sawamura

A B

Fig. 3. Even cycle

A

Fig. 4. Self-defeat

A1 A2 A3 A4

Fig. 5. Infinite defeat chain

A B C

Fig. 6. Zombie arguments

A B

Fig. 7. Hoop snake

A

B

C D

Fig. 8. Floating arguments

A B

C

Fig. 9. Odd loop

A_

A

B C

Fig. 10. Zombie arguments 2

A_

A

B_

B

Fig. 11. Crossover defeat

doing so, we compare our computational results with Prakken and Vreeswijk’s
remarks on them [6]. The pathological arguments which we deal with in this
section are as follows: Even cycle, Self-defeat, Infinite defeat chain, Zombie ar-
guments, Hoop snake,3 Floating arguments, Odd loop, Zombie arguments 2 and
Crossover defeat. Their argumentation networks are given in Fig. 3 · · · Fig. 11.
We verify correspondences between the results of the neural net argumentation
and Prakken and Vreeswijk’s remarks about these pathological arguments. We
take Even cycle, Self-defeat, Zombie arguments 2 as examples in the succeeding
subsections, results of other pathological arguments are given in Table 5 and
Table 6.

3.1 Even Cycle

Consider the arguments A and B such that A attacks B and B attacks A.4

The argumentation network for these network is given in Fig. 3 and the neural

3 “Hoop snake” is a name we gave for convenience since this pathological argument
has no name in [6].

4 Note that Prakken and Vreeswijk use the term ‘defeat’ instead of ‘attack’ in [6].

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 203

A B

A B

hA hB

Fig. 12. Neural network translated from
Even cycle

Table 2. Outputs of Fig. 12

A B

1st input 1 1
1st output 0 0
2nd output 0 0

networktranslatedfromit isgiven inFig.12.Thevaluesoftheoutputneuronvectors
from the neural network of Fig. 12 is tabulated every time round in Table 2.

Now, we can know that both of the two arguments A and B fail to prevail in
the neural net argumentation [4] since the network converges to a stable state
[0, 0] as can be seen in Table 2. Prakken and Vreeswijk analyze this even cycle
argument as “Both of the conflicting arguments receive the status ‘not justified’.”
[6] Both of them can be said to be defensible if the argument status notions of
‘overruled’ and ‘defensible’ to be used at this point. Consequently, we here can
see a rough coincidence of the neural argumentation results with Prakken and
Vreeswijk’s interpretation on Even cycle.

3.2 Self-defeat

Consider an argument A such that it attacks itself. The argumentation network
for it is given in Fig. 4. The neural argumentation algorithm by A. Garcez does
not permit such a reflexive attack relation in the argumentation networks.

In order to make it possible to translate the self-defeating argumentation
network with the reflexive attack relation into an appropriate neural network,
we slightly modify the original neural argumentation algorithm by A. Garcez.
We then associate not only a positive weight arrow from a hidden neuron hA

with an output neuron A, but also another negative weight arrow from the hA

with it. The resulting neural net is shown in Fig. 13. The outputs from the neural
network is tabulated in Table 3.

Now, we can know that argument A fails to prevail in the neural net argu-
mentation since the network converges to [0]. Prakken and Vreeswijk analyze
this as “It is hard to find generally applicable solutions to this problem.” [6],
and he rules out the self-defeating arguments in presenting the argumentation
framework from the beginning. So we will not compare our computational result
by the neural net with Prakken and Vreeswijk’s remark for Self-defeating argu-
mentation. Instead we verify that this neural argumentation brings us a good
result for an pathological argument including a self-defeating argument in Table 6
(Hoop snake).

204 W. Makiguchi and H. Sawamura

A

A

hA

Fig. 13. Argumentation network of Self-
defeat

Table 3. Outputs of Fig. 4

A

1st input 1
1st output 0
2nd output 0

3.3 Zombie Arguments 2

Consider the arguments A−, A, B and C such that A− and B attack each other
and A attacks C. A− is a proper subargument of A. The argumentation network
for it is given in Fig. 10. The neural net is not available from the argumentation
network since the neural argumentation algorithm by A. Garcez can not deal
with argumentation networks including subarguments.

In order to allow the algorithm to translate subarguments, we modify the
neural argumentation algorithm as follows. If an argument A has a subargument
A− that is attacked by other arguments, we translate not only A but also A− into
the neural network as an extra neuron. And if an argument B attacks A−, the
hidden neuron hB is connected by two negative arrows to not only output neuron
A− but also output neuron A respectively. This is due to the fact that B’s attack
against A− should cause B to attack A at the same time, and prevent A from
being prevailed. Thus we can translate the argumentation network including
subarguments into a relevant neural network. The translated neural network in
this way is given in Fig. 14. The table of outputs is Table 4.

Now, we can know that all arguments fail to prevail in the neural net argumen-
tation since the network converges to [0, 0, 0, 0]. Prakken and Vreeswijk analyze
it as “All arguments are defensible.” [6] Consequently, we can see a coincidence
of the neural argumentation results with Prakken and Vreeswijk’s interpretation
on Zombie arguments 2.

The results of the neural net argumentation for other pathological arguments
(Infinite defeat chain, Zombie arguments, Hoop snake, Floating arguments, Odd
loop are Crossover defeat) and Prakken and Vreeswijk’s remarks for them are
also tabulated in Table 5. The coincidences between the results and the remarks
are in Table 6.

For the other kinds of pathological arguments and their solutions, readers
should refer to [9]. We so far have had much concern with how and to what ex-
tent the neural argumentation algorithm can deal with self-defeating arguments
and many pathological arguments that are well-known but tend to be hated or
excluded very often in almost all the symbolic argumentation frameworks [6]. For
those arguments, we have seen that the argument status almost coincides with

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 205

A A_ B C

hChBhA_hA

A A_ B C

Fig. 14. Neural network translated
from Zombie arguments 2

Table 4. Outputs of Fig. 10

A A− B C

1st input 1 1 1 1
1st output 0 0 0 0
2nd output 0 0 0 0

each other in both symbolic and neural argumentation. It, however, has been
examined and verified based on the hypotheses that three notions for argument
status by ‘prevailing’, ‘fail to prevail’ and ‘defeated’ by A. Garcez et al. would
correspond to ‘justified’, ‘defensible’ and ‘overruled’ by Prakken and Vreeswijk
respectively. In fact, A. Garcez et al. do not discuss such a correspondence.

In the next section, we will examine those coincidences between symbolic argu-
mentation and neural net argumentation in a mathematical rigor. For example,
we are interested in these questions: Is the notion of ‘prevailing’ equivalent to
the notion of ‘justified’? Is there an appropriate neural net that computes the
original symbolic argumentation? We will address ourselves to these questions
and give positive answers to them.

4 Can the Argument Status of the Neural Net
Argumentation correspond to the Well-Known Status?

We begin with observing an example in which the two statuses do not coincide
with each other and analyzing the reason why they don’t. Then, we propose an
appropriately devised neural net with specially tailored computation so that the
neural network yields the same argumentation status as the original argumenta-
tion. First of all, we fix a naive definition of the well-known argument status by
Prakken and Vreeswijk, which in fact is a mixture of Definition 1 and 14 in [6].

Definition 2. (Arguments’ status[6])

1. An argument is justified iff all arguments attacking it (if any) are overruled.
2. An argument is overruled iff it is not justified, and attacked by a justified

argument.
3. An argument is defensible iff it is not justified and not overruled.

A. Garcez et al., on the other hand, classified the argument status into three:
prevailing, fail to prevail and defeated [4]. In the following example, we will show
that Prakken and Vreeswijk’s status and Garcez’s one do not coincide with each
other.

206 W. Makiguchi and H. Sawamura

Table 5. Results of the neural net argumentation and Prakken and Vreeswijk’s remarks
for pathological arguments

Argument types Result of the neural Prakken and Vreeswijk’s
net argumentation remark

Even cycle A and B fail to prevail. A and B are not justified
(they are defensible).

Self-defeat A fails to prevail. This argument is ruled out.

Infinite defeat chain All arguments fail to prevail. All arguments are defensible.

Zombie arguments A, B and C fail to prevail. A, B and C are defensible.

Hoop snake A and B fail to prevail. A and B are defensible.

Floating arguments A and B fail to prevail, One remark is that all
C is defeated and D is arguments are defensible.
prevailing. Another remark is that A

and B are defensible, C is
overruled and D is justified.

Odd loop A, B and C fail to prevail. A, B and C are defensible.

Zombie arguments 2 A, A−, B and C fail to prevail. A, A−, B and C are defensible.

Crossover defeat A, A−, B and B− fail to prevail. One remark is that all
arguments are defensible.
Another remark is that
one in which only A− and
A are justified, or one in
which only B− and B
are justified.

Example 2. Consider the six arguments A, B, C1, C2, D1 and D2 such that
B, C1 and C2 attack A, D1 attacks C1, D2 attacks C2 (See Fig. 15). In this
argumentation network, A is directly attacked by B, and indirectly supported
by D1 and D2, via C1 and C2 respectively.5 The neural network translated from
the argumentation network is Fig. 16. The input-output table of the neural
network of Fig. 16 in each time round is Table 7.

The table shows that the arguments A, B, D1 and D2 are prevailing, C1 and
C2 are defeated in the neural net argumentation since the network converges to
[1, 1, −1, −1, 1, 1].

Let us consider these arguments’ status according to Definition 2. The ar-
guments B, D1 and D2 are justified since they are unattacked arguments. The
arguments A, C1 and C2 are overruled since they are attacked by the justified
argument B, D1 and D1 respectively. Thus, the status ‘prevailing’ and ‘justified’
do not agree with each other with respect to the argument A in this example.
This is because an argument can be prevailing even if it is attacked by prevailing
arguments in the neural net argumentation, whereas an argument can not be
justified if it is attacked by justified arguments (Definition 2). Additionally, in
the neural net argumentation, an argument can be prevailing in the situation

5 If argument A is attacked by argument B and B is attacked by argument C, we say
that C indirectly supports A.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 207

Table 6. Correspondences between the results of the neural net argumentation and
Prakken and Vreeswijk’s remarks

Argument types Coincident?

Even cycle Yes
Self-defeat N/A
Infinite defeat chain Yes
Zombie arguments Yes
Hoop snake Yes
Floating arguments Prakken and Vreeswijk have two interpretations.

Neural net argumentation coincides with one of them.
Odd loop Yes
Zombie arguments 2 Yes
Crossover defeat Prakken and Vreeswijk have two interpretations.

Neural net argumentation coincides with one of them.

A B

C1

C2

D1

D2

Fig. 15. An argumentation network

hA

A B

hB

C1

hC2

C2

hD1

D1

hD2

D2

A B C1 C2 D1 D2

hC1

Fig. 16. The neural network for Fig. 15

in which it is indirectly supported by arguments whose number is more than or
equal to the number of arguments directly attacking it, even if it is attacked by
prevailing arguments. In Fig. 15, A has one argument which directly attacks it
and two arguments which indirectly support A. Thus, A is entitled to be given
the status ‘prevailing’ in the neural argumentation.

4.1 A Neural Net Computation that Yields the Same
Argumentation Status

We tailor the neural net computation towards removing the difference of argu-
mentation status, so that it yields the same argumentation status as Definition
2.The translation algorithm is the same as that of [4]. For the new neural net
computation, we first prepare notational conventions. In what follows, AN de-
notes an argumentation network, and N a neural network translated from AN
by the neural argumentation algorithm.

Definition 3. (Time round) In the neural argumentation with a neural net-
work N , the passage of time till the output vector are read off at the output

208 W. Makiguchi and H. Sawamura

Table 7. The input-output table of the neural network of Fig. 16

A B C1 C2 D1 D2

1st input 1 1 1 1 1 1
1st output −1 1 0 0 1 1
2nd output −1 1 −1 −1 1 1
3rd output 0 1 −1 −1 1 1
4nd output 1 1 −1 −1 1 1
5nd output 1 1 −1 −1 1 1

neurons since the input neurons are given an input vector is called time round,
symbolically denoted by τ . It has 0 as an initial value, and is incremented by 1
every time an input vector is repeatedly given to N .

So for example, we give the first input vector to N and read off the first output
vector at τ = 0, give the second input vector and get the second output vector
at τ = 1, and so on.

Definition 4 (Justified, overruled and undecided neuron)
Let Ai, Ah and Ao be an input neuron, a hidden neuron and an output neuron in
AN which are translated from an argument A in AN respectively. The neurons
in N are classified into three categories: justified, overruled and undecided as
follows:

1. Given an input vector at τ = 0, let every neuron be ‘undecided neuron’ (the
initial classification of every neuron is an undecided neuron).

2. If Ao outputs 1 at even τ , let the three neurons Ai, Ah and Ao be ‘justified
neurons’.

3. If Ao outputs −1 at odd τ , let the three neurons Ai, Ah and Ao be ‘overruled
neurons’.

In the Garcez’s computation, the output vector is repeatedly given as the next
input vector. But, the way of giving input vectors is defined in a different way
as follows:

Definition 5 (Input vector in the neural net computation)
The inputs to N are given for all input neurons every time round as follows:

1. At τ = 0, 1 is input to every input neuron in N .
2. For τ ≥ 1,

(a) 1 is given to every justified neuron in the input layer of N
(b) −1 is given to every overruled neuron in the input layer of N
(c) 0 is given to every undecided neuron in the input layer of N .

Taking Definition 2 into account, to let an argument which is attacked by only
overruled arguments in AN be a justified neuron in N , we introduce the fol-
lowing Definitions 6 and 7 with the special conditions for changing weights and
thresholds during the neural net computation. They play an important role in

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 209

tailoring the neural net computation that was originally specified in the subsec-
tion 2.3 so as to reflect Definition 2. It should be noted that in the Garcez’s
neural computation in N , the weight and the threshold of each neuron is not
changed during the computation, but it is changed only when the learning rule
is applied to N [4].

Definition 6 (Condition for changing thresholds)
Let Ai, Ah and Ao be as in Definition 4. Let the number of the negative weight
connections from any hidden neurons to Ao be n, and the threshold of Ao be θ. If
Ai, Ah and Ao is undecided neuron, the threshold of Ao is changed to θ = n − 1
only when τ ≥ 2 and τ is even.

This definition allows an argument attacked by the overruled neurons in the
output layer to be active at even τ . At τ = 0, and when τ is odd, the threshold
of every neuron is set to zero.

To let an argument attacked by the justified arguments in AN be an overruled
neuron in N , we introduce the condition for changing weights as follows.

Definition 7 (Condition for changing weights)
If the hidden neuron Ah for a neuron A in N is a justified neuron, then the
negative weights on the connections from Ah to the output neurons in N are set
to −∞.

This definition allows every output neuron which has the negative weight con-
nections to it from justified neurons to be an overruled neuron.

In the Garcez’s computation, if an output vector is identical with the corre-
sponding input vector, then the computation is said to be in a stable state. But,
here we redefine a stable state from the viewpoint of the neurons’ classification
in Definition 4 as follows.

Definition 8 (Stable state)
If all neurons in N do not change their categories of Definition 4 during any
two contiguous τ , then the computation of N is said to be in a stable state.

In the Garcez’s computation, arguments’ status are to be decided from the out-
put vector only in a stable state. But, for the argument status judgement in
our neural net computation, we introduce a slightly complicated definition to
provide relevant arguments’ status as follows.

Definition 9 (Justified, overruled, defensible at a stable state)
When an iterative computation in N reaches to a stable state, the arguments’
status are given to each argument as follows:

1. If Ai, Ah and Ao are justified neurons in N , argument A is justified in N .
2. If Ai, Ah and Ao are overruled neurons in N , argument A is overruled in

N .
3. If Ai, Ah and Ao are undecided neurons in N , argument A is defensible in

N .

210 W. Makiguchi and H. Sawamura

4.2 An Augmented Neural Net Computation

In this subsection, we give a neural net computation that yields the same ar-
gument status as those by the argumentation network derived by Prakken and
Vreeswijk’s argumentation framework [6], based on the definitions prepared in
the previous subsection.

Step 1: Let τ = 0, the threshold of every neuron be 0, and every neuron be an
undecided neuron. The initial value 1 is given to every input neuron of the
neural network N . Go to Step 2.

Step 2: Check whether τ is even or odd.
– If a neuron Ao outputs 1 at even τ , then let Ai, Ah and Ao be justified

neurons, and let every weight of the negative weight connections from
these justified neurons be −∞.

– If a neuron Ao outputs −1 at odd τ , then let Ai, Ah and Ao be overruled
neurons.

Go to Step 3.
Step 3: If τ 	= 0, check whether the classifications at τ and τ − 1 changed or

not.
– If they changed, increment τ and go to Step 4.
– If they do not change, go to Step 6.

If τ = 0, increment τ go to Step 6.
Step 4: Check whether τ is even or odd.

– If τ is even, set the threshold for every undecided neuron in output layer
to θ = n − 1.

– If τ is odd, set the threshold of every neuron to θ = 0.
Go to Step 5.

Step 5: Give the input vector to N as follows:
– Give 1 to each justified neuron in the input layer as input
– Give −1 to each overruled neuron in the input layer as input
– Give 0 to each undecided neuron in the input layer as input

Go to Step 2.
Step 6: Now that the computation of N is in a stable state, the arguments’

status in N are given following Definition 9 as follows:
– An argument A is justified in N if Ai, Ah and Ao is all justified neurons

in N .
– An argument A is overruled in N if Ai, Ah and Ao is all overruled

neurons in N .
– An argument A is defensible in N if Ai, Ah and Ao is all undecided

neurons in N .

The following theorem states that this augmented neural net computation
provides a sound computation in the sense that it yields the same argument
status as those by the argumentation network AN derived by Prakken and
Vreeswijk’s argumentation framework [6].

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 211

Theorem 1. (Soundness of the augmented neural net computation)
Given an argumentation network AN and its translated neural net N . Then, we
have,

1. A justified argument in N is a justified argument in AN .
2. An overruled argument in N is an overruled argument in AN .
3. A defensible argument in N is a defensible argument in AN .

Proof. Refer to [9] for the proof.

4.3 Traced Examples

Let us consider Example 2 again, but this time following the computation steps in
the previous subsection. The computation proceeds every time round as follows.

τ = 0
Input: According to Step 1, set the threshold of every neuron to θ = 0 and

give the input vector [1, 1, 1, 1, 1, 1].
Output: We get an output vector [−1, 1, 0, 0, 1, 1]. The neurons that output 1

are Bo, D1o and D2o. According to Step 2, B, D1 and D2 are justified
neurons since τ is 0 (even). Change the weights of the connections
from Bh to Ao, from D1h to C1o and D2h to C2o into −∞ respectively.
Other neurons that output 0 or −1 are undecided neurons, that is, their
status categories don’t change. According to Step 3, τ is incremented
to 1 from 0.

τ = 1
Input: According to Step 4, set the threshold of every undecided neuron in

the output layer to θ = 0 since τ is 1 (odd). According to Step 5, the
input vector is [0, 1, 0, 0, 1, 1].

Output: We get an output vector [−1, 1, −1, −1, 1, 1]. Neurons that output −1
are A, C1 and C2. According to Step 2, A, C1 and C2 are overruled
neurons since τ is 1 (odd). Now, B, D1 and D2 are justified neurons,
A, C1 and C2 are overruled neurons. According to Step 3, both at
τ = 1 and τ = 0, the categories of neurons status changed. Thus τ is
incremented to 2 from 1.

τ = 2
Input: According to Step 4, set the threshold for every undecided neuron in

the output layer to θ = n − 1 since τ is 2 (even). But, the threshold of
every neuron is 0 since there is no undecided neurons. And according
to Step 5, the input vector is [−1, 1, −1, −1, 1, 1].

Output: We get an output vector [−1, 1, −1, −1, 1, 1]. Neurons that output 1 are
B, D1 and D2. According to Step 2, B, D1 and D2 are justified neurons.
But these neurons are already justified neurons. Now, B, D1 and D2
are justified neurons, A, C1 and C2 are overruled neurons. According
to Step 3, although at τ = 2 the categories of neurons didn’t change,
but at τ = 1 they changed, thus τ is incremented to 3 from 2.

212 W. Makiguchi and H. Sawamura

Table 8. Outputs of the neural network of Fig. 16

A B C1 C2 D1 D2

τ = 0 input 1 1 1 1 1 1
output −1 1 0 0 1 1

τ = 1 input 0 1 0 0 1 1
output −1 1 −1 −1 1 1

τ = 2 input −1 1 −1 −1 1 1
output −1 1 −1 −1 1 1

τ = 3 input −1 1 −1 −1 1 1
output −1 1 −1 −1 1 1

τ = 3
Input: According to Step 4, set the threshold for every undecided neuron input

layer to θ = 0 since τ is 3 (odd). But, the threshold of every neuron is
zero since there is no undecided arguments. And, according to Step 5,
the input vector is [−1, 1, −1, −1, 1, 1].

Output: We get an output vector [−1, 1, −1, −1, 1, 1]. Neurons that output −1
are A, C1 and C2. According to Step 2, A, C1 and C2 are overruled
neurons since τ is 3 (odd). But these neurons are already overruled
neurons. Now, B, D1 and D2 are justified neurons, A, C1 and C2 are
overruled neurons. According to Step 3, both at τ = 3 and τ = 2, the
categories of neurons didn’t change. So, stop the computation and go
to Step 6.

Stable state. In this stable state, B, D1 and D2 are justified neurons, A,
C1 and C2 are overruled neurons. According to Step 6, B, D1 and D2 are
justified arguments, A, C1 and C2 are overruled arguments in Fig. 15.

The table of input and output every time round is shown in Table 8. It shows
that the computation results of the augmented neural network argumentation
coincides with those of the argumentation network induced from Prakken and
Vreeswijk’s argumentation framework.

Example 3. (A baffling argument [4]) Consider the arguments A, B, C and
D such that A attacks B and C, B attacks D, C attacks D and D attacks A. The
argumentation network is given in Fig. 17. It is a baffling argumentation network
brought up in [4], which leads to infinite loop in the computation as follows:
[1, 1, 1, 1] �→ [0, 0, 0, −1] �→ [1, 0, 0, −1] �→ [1, −1, −1, −1] �→ [1, −1, −1, 1] �→
[0, −1, −1, 1] �→ [−1, −1, −1, 1] �→ [−1, 0, 0, 1] �→ [−1, 1, 1, 1] �→ [−1, 1, 1, −1] �→
[0, 1, 1, −1] �→ [1, 1, 1, −1] �→ [1, 0, 0, −1] �→ · · · �→ [1, 0, 0, −1] · · ·. To untangle
such an infinite loop, A. Garcez applies a learning rule of a neural network.
But we do not need the learning rule to obtain a stable result if we apply to it
our augmented neural net computation devised in this section. Below we list the
neural network translated by the neural argumentation algorithm in Fig. 18, and
the output table in Table 9. The table shows that our neural net computation
can halt at time round 2 and all arguments are defensible. We believe it is
comparatively a good outcome of argumentation.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 213

A

B

D

C

Fig. 17. A baffling argumentation net-
work [4]

A

hA

A

B

hB

B

C

hC

C

D

hD

D

Fig. 18. The neural network translated
from Fig. 17

Table 9. Outputs of the neural network of Fig. 18

A B C D

τ = 0 input 1 1 1 1
output 0 0 0 −1

τ = 1 input 0 0 0 0
output 0 0 0 0

τ = 2 input 0 0 0 0
output 0 0 0 −1

5 Concluding Remark and Future Work

The neural net argumentation has a great potential for computing argumenta-
tion from the perspective of neural network computation. In particular, it enables
us to hybridize symbolic argumentation with neural net one, resolving anoma-
lies such as self-defeating arguments and pathological arguments appearing in
argumentation. The contributions of this paper are twofold. We have shown that

1. The neural argumentation algorithm can deal with self-defeating or other
pathological arguments.

2. The argument status of the neural net argumentation can be corresponded to
the well-known argument status under the appropriately chosen neural net.

Self-defeating arguments or pathological arguments have been ruled out from
almost all argumentation frameworks developed so far. The first result guaran-
tees that the neural net argumentation makes it possible for us to accept those
kinds of arguments without causing any difficulty and problem. Therefore we
could say there is no rationale for ruling them out from the standpoint of the
neural net argumentation. It is also a reification of, as it were, Occam’s Razor. It
is not so obvious what the neural net argumentation first proposed by Garcez et
al. actually computes. Our second result has made it clear by characterizing their
argumentation status from the perspective of the symbolic argumentation. Over-
all, these results provide a significant mechanism to better integrate symbolic
and neural net argumentation.

In this paper, we have obtained these results, paying much attention to
Prakken and Vreeswijk’s argumentation framework. This, however, is not a must.

214 W. Makiguchi and H. Sawamura

We could apply our results to other argumentation models as well since the
symbolic argumentation networks are derived from the abstract notion of attack
relations among arguments.

In the succeeding paper [5], we further continue to addressing ourselves to the
following remaining questions of interest:

3. Can the neural argumentation algorithm compute the fixpoint semantics for
formal argumentation?

4. Can argumentative dialogues be extracted from the neural net argumenta-
tion reciprocally?

From the arrival point of the paper, we further deepen the syncretic relations of
symbolic and neural net argumentation, in particular by employing our Logic of
Multiple-valued Argumentation (LMA) for uncertain argumentation as a fleged
value-based argumentation model [10]. We expect that other soft computing tech-
niques such as fuzzy theory, genetic algorithm, rough set theory, etc. could have
something to do with argumentation as well via considerations and results ob-
tained in this paper. Finally, it is planned to incorporate the neural net argumen-
tation based on the results of this paper in our symbolic argumentation system
[11]. It would help to augment or enrich the dialectical proof theory of LMA.

Furthermore, we are going to explore its applicability to agent-oriented com-
puting since neural nets and argumentation have close relationship with agents’
capabilities such as environment-sensitivity and perceptibility. It is expected that
the hybridization of symbolic and neural net argumentation could enhance those
capabilities further in agent-oriented computing. We will deal with these issues
separately in our future paper.

Acknowledgments. We are grateful to Dr. Artur d’Avila Garcez for giving us
his comments on our initial results on the topics of this paper.

References

1. Chesñevar, C.I., Maguitman, G., Loui, R.P.: Logical models of argument. ACM
Computing Surveys 32, 337–383 (2000)

2. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. J. of Applied Non-Classical Logics 7(1), 25–75 (1997)

3. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture. A critical
analysis, Cognition 28(1-2), 3–71 (1988)

4. d’Avila Garcez, A.S., Gabbay, D.M., Lamb, L.C.: Value-based argumentation
frameworks as neural-symbolic learning systems. Journal of Logic and Compu-
tation 15(6), 1041–1058 (2005)

5. Makiguchi, W., Sawamura, H.: A Hybrid Argumentation of Symbolic and Neu-
ral Net Argumentation (Part II). In: Proc. of Fourth International Workshop on
Argumentation in Multi-Agent Systems, pp. 104–121 (2007)

6. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 219–318. Kluwer
Academic, Dordrecht (2002)

A Hybrid Argumentation of Symbolic and Neural Net Argumentation I 215

7. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

9. Makiguchi, W.: A hybrid argumentation of symbolic and neural net argumentation.
In: Graduation Thesis for Bachelor’s degree (in Japanese, 2007),
http://www.cs.ie.niigata-u.ac.jp/∼makiguti/HA gt.pdf

10. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: Pro-
ceedings of the third international joint conference on Autonomous Agents and
Multi Agent Systems (AAMAS 2004), pp. 800–807. ACM, New York (2004)

11. Isogai,T.,Fukumoto,T.,Sawamura,H.:Anintegratedargumentationenvironmentfor
arguing agents. In: 2006 IEEE/WIC/ACMInternationalConference onWeb Intelli-
gence(WI 2006), pp. 1077–1078. IEEE Computer Society Press, Los Alamitos (2006)

A An Untangled Computation Flow of Fig. 2

A B C D

A B

hA hB

1 1 1 1 1 1

-1 0 0 -1 1 1

0 0 -1 -1 1 1

1 1 -1 -1 1 1

1 1 -1 -1 1 1

A B C D E F

hA hB hC hD hF

D E FA

A B C DD E FA

A D

hE

hA hB hC hD hFhE

DD E F

E F

hFhE

E F

E F

hFhE

E F

A B C D

DDC D

DDhC hD

DDC DA B

DDC D

DDhC hD

DDC D

A B

hA hB

A B

: activation state is 1

: activation state is 0

A : activation state is -1

: weight is 1

: weight is -1

1st input

1st output
(2nd input)

2nd output
(3rd input)

3nd output
(4th input)

4th output
(5th input)

Stable

Threshold of each neuron is 0

http://www.cs.ie.niigata-u.ac.jp/~makiguti/HA_gt.pdf

A Hybrid Argumentation of Symbolic and

Neural Net Argumentation (Part II)

Wataru Makiguchi1 and Hajime Sawamura2

1 Graduate School of Science and Technology, Niigata University
8050, 2-cho, Ikarashi, Niigata, 950-2181 Japan

makiguti@cs.ie.niigata-u.ac.jp
2 Institute of Natural Science and Technology

Academic Assembly, Niigata University
8050 2-cho Ikarashi, Niigata, 950-2181 Japan

sawamura@ie.niigata-u.ac.jp

Abstract. A novel approach to argumentation has been started by A.
Garcez et al. Inspired by their work, we further go on investigating it, but
turn to a more syncretic direction such as the interplay between neural
net argumentation and symbolic argumentation. This paper is a sequel
to our former one (Part I) [1]. In this paper we address ourselves to the
following basic questions that can not be overlooked.
1. Can the neural argumentation algorithm compute the fixpoint se-

mantics for formal argumentation?
2. Can argumentative dialogues be extracted from the neural net ar-

gumentation?
Consequently, we give the positive answers to them. They are beneficial
for understanding or characterizing the computation power and outcome
of the neural net argumentation from the perspective of the symbolic
argumentation. We also exemplify these results.

1 Introduction

Much attention and effort have been devoted to the symbolic argumentation so
far [2] [3], and its application to agent-oriented computing in which societal view
on computation is emphasized.

On the other hand, it is a long time since connectionism appeared as an
alternative movement in cognitive science or computing science which hopes to
explain human intelligence or soft information processing. It has been a matter
of hot debate how and to what extent the connectionism paradigm constitutes
a challenge to classicism or symbolic AI [4].

Recently, quite a novel approach to argumentation has been started by A.
Garcez et al., aiming to provide a model in which the learning of arguments can
be combined with reasoning capabilities within the same framework. On account,
they presented a neural argumentation algorithm that is responsible for trans-
lating argumentation networks into standard neural networks, and showed that
the translated neural network executes a sound computation of the prevailing
arguments in the original argumentation network [5].

I. Rahwan, S. Parsons, and C. Reed (Eds.): ArgMAS 2007, LNAI 4946, pp. 216–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 217

Inspired by their work, we further go on investigating it, but turn to a more
syncretic direction such as the interplay between neural net argumentation and
symbolic argumentation. More specifically, in this paper we address ourselves to
the latter two questions of the following basic ones that can not be overlooked.
For the former two, we dealt with them in the paper (Part I) [1].

1. Can the neural argumentation algorithm deal with self-defeating or other
pathological arguments?
A. Garcez et al. dissolve such an anomaly as circular arguments (odd cir-
cle) through the use of neural network argumentation. We are further con-
cerned with self-defeating arguments and other pathological arguments that
are stated in the paper “Logics for defeasible argumentation” by Prakken
and Vreeswijk [6], and show that their neural argumentation network yields
a sound computation for them as well although self-defeating arguments
tend to be ruled out in presenting the argumentation frameworks. Of course,
self-defeating arguments and pathological arguments are not entitled to re-
butting others in our daily life. However, we think we do not need to ex-
clude them from the definition of the underlying argumentation framework
(in fact, A. Garcez et al. employ Bench-Capon’s value-based argumentation
framework [7]).

2. Can the argument status of the neural net argumentation correspond to the
well-known status?
A. Garcez et al. classified the argument status into three: prevailing, fail to
prevail and defeated. But it is not clear how they correspond to those of
other symbolic argumentation frameworks. Having in mind the well-known
argumentation framework by Prakken and Vreeswijk[6], we give an appro-
priately devised neural net with specially tailored computation so that the
neural network yields the same argumentation status as the original argu-
mentation. That is, we show that the notions of prevailing, fail to prevail
and defeated correspond to the notions of justified, overruled and defensible
respectively.

3. Can the neural net argumentation compute the fixpoint semantics for argu-
mentation?
The fixpoint semantics for formal argumentation frameworks is now standard
since the influential work on argumentation by Dung [8]. We are concerned
with what kind of neural net argumentation and how it can compute the
fixpoint semantics. For this we give a correspondence theorem and its induc-
tive proof under an appropriately devised neural net with specially tailored
computation.

4. Can argumentative dialogues be extracted from the neural net argumentation ?
Here we are interested in returning to symbolic dialogues from the neural net
computing. We illustrate a method of transforming neural net computations
into symbolic dialogue processes. The symbolic presentation of arguments
would be much better for us since it makes the neural net argumentation
process verbally understandable.

218 W. Makiguchi and H. Sawamura

We think the solutions to them would be helpful for us to understand and
further promote the syncretic approach of symbolism and connectionism in the
field of computational argumentation. In this paper, we are mainly concerned
only with analyzing and characterizing the relationship between symbolic and
neural net argumentation. In the next section, we present some preliminaries for
the neural net argumentation by A. Garcez et al. Then the remaining part of
the paper will be spent on describing in detail the latter two questions described
above and their solutions, giving one section to each of them. This paper does
not have a section for related work since there is no directly related work on our
topics and purposes except the work of Garcez et al. as far as we know. The final
section summarizes contributions of this paper, and discusses some future works
on another intriguing interplay of symbolism and connectionism in the field of
computational argumentation.

2 Preliminaries to Neural Net Argumentation

In this section, we describe some preliminaries to the neural net argumentation
that originated from the work by A. S. D. Garcez at al [5].

2.1 Argumentation Network

We start by introducing a definition of argumentation network, following Dung’s
argumentation framework[8].

Definition 1 (Argumentation network)
An argumentation network has the form AN =< α, attack >, where α is a set
of arguments, and attack ⊆ α2 is a relation indicating which arguments attack
which other arguments.

2.2 Neural Argumentation Algorithm

We assume readers are familiar with basic notions of neural network. The neural
argumentation algorithm [5] is one that translates an argumentation network
into a neural network. We describe its version adjusted to our purposes of this
paper below.

Neural Argumentation Algorithm: For an argumentation network AN with
arguments α1, α2, · · · , αn,

1. Number each argument of AN from 1 to n, and create the input and out-
put layers of a neural network N such that ith neuron represents the ith
argument of AN .

2. For each argument αl of AN (1 ≤ l ≤ n):
(a) add neuron Nl to the hidden layer of N ;
(b) connect neuron αl in the input layer of N to hidden neuron Nl and set

the connection weight to W = 1;

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 219

(c) connect hidden neuron Nl to neuron αl in the output layer of N and set
the connection weight to W = 1.

3. For each (αi, αj) ∈ attack:
(a) connect hidden neuron Nl to output neuron αj ;
(b) set the connection weight to W ′ = −1

4. Set the threshold of each neuron in N to 0.
5. Set g(x) = x as the activation function of the neurons in the input layer of

N .
6. Set h(x) = 1 if x ≥ 1, h(x) = −1 if x ≤ −1, and h(x) = x for −1 < x < 1 as

the activation function of the neurons in hidden and output layers of N .

2.3 Neural Net Computation

The neural network obtained by the neural net algorithm in the previous subsec-
tion is a very simple recurrent neural network in which recurrence occurs only
in the connections from output neurons to input neurons. In this subsection, we
specify how and what the neural net argumentation under such a neural network
computes.

One of the three argument’s statuses (prevailing, failure to prevail, defeated)
is given to an argument by the following neural net computation in N .

Step 1. Give 1 to every input neuron of N , go to Step 2.
Step 2. Obtaining an output vector:

(a) if the output vector is the same as the input vector, go to Step 3.
(b) if the output vector is different from the input vector, provide the output

vector as a new input to N and repeat Step 2 again.
Step 3. For each neuron:

(a) if neuron αl outputs 1 in Step 2 (a), let argument αl be prevailing.
(b) if neuron αl outputs 0 in Step 2 (a), let argument αl be failure to prevail.
(c) if neuron αl outputs −1 in Step 2 (a), let argument αl be defeated.

We illustrate a neural net computation that follows the above steps 1-3.

Example 1. Consider six arguments A, B, C, D, E and F in an argumentation
network AN such that B attacks A, D attacks A, C attacks B and D, E attacks
D and F attacks C. (See Fig. 1.1) Then, we have a neural network N translated
from AN by the neural argumentation algorithm in Fig. 2.2

For the neural net computation, we start with the input vector [1, 1, 1, 1, 1, 1]
(Step 1), and obtain an output vector [−1, 0, 1, −1, 1, 1]. We then use [−1, 0, 1,
−1, 1, 1] as input to obtain output [−1, 0, −1, −1, 1, 1](Step 2). Let us use �→
to denote the above mapping from input to output vectors, so that we have:
[1, 1, 1, 1, 1, 1] �→ [−1, 0, 1, −1, 1, 1] �→ [0, 0, −1, −1, 1, 1] �→ [1, 1, −1, −1, 1, 1] �→
[1, 1, −1, −1, 1, 1]. This computation reaches to a stable state [1, 1, −1, −1, 1, 1].

1 Each arrow in Fig. 1 represents which argument attacks which other arguments.
2 Solid arrows represent positive weights (1) and dotted arrows represent negative

weights (−1).

220 W. Makiguchi and H. Sawamura

ABCF

DE

Fig. 1. Example of an argumentation
network[5]

A B C D E F

A B C D E F

hA hB hC hD hE hF

Fig. 2. Neural network translated from
Fig. 1

Table 1. Outputs of the neural net computation in Fig. 2

A B C D E F

1st input 1 1 1 1 1 1
1st output −1 0 0 −1 1 1
2nd output 0 0 −1 −1 1 1
3rd output 1 1 −1 −1 1 1
4th output 1 1 −1 −1 1 1

From the stable state [1, 1, −1, −1, 1, 1], we can decide each argument’s status
as follows: A is prevailing, B is prevailing, C is defeated, D is defeated, E is
prevailing, F is prevailing (Step 3). We give an output table of this neural net
computation in Table 1.

The neural net computation does not contain any learning mechanism in it and
hence is a primitive one that has no mechanism for adaptation of weights based
on, for example, back propagation, and neither supervised learning mechanism
nor unsupervised one. Garcez et al. introduce the so-called back propagation to
his neural net argumentation in dealing with such problems as semantic circular
arguments. In the next section, we provide a neural net with specially tailored
computation so that it can compute the fixpoint semantics for argumentation. It
has a special mechanism for changing the thresholds for neurons without relying
upon the back propagation.

3 Can the Neural Argumentation compute the Fixpoint
Semantics for Argumentation?

Arguably, the fixpoint semantics for argumentation (specified in [8][3]) is one of
the most influential approaches to argumentation semantics for formal argumen-
tation frameworks. We are concerned with the use of neural net argumentation
that coincides with the fixpoint semantics, more specifically a question of how
the neural net argumentation can compute the fixpoint semantics.

In this section, we employ the definition of the arguments’ status discussed
by Prakken and Vreeswijk[6], and give a main theorem that guarantees the

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 221

coincidence of the neural net argumentation with the fixpoint of symbolic argu-
mentation under Prakken and Vreeswijk’s definition. For this aim, we introduce
a neural net with specially tailored computation. First of all, we outline the
fixpoint semantics for argumentation in the next section.

3.1 The Fixpoint Semantics for Argumentation

The core of the fixed point semantics for argumentation by Dung is undoubtedly
the notion of acceptability.

Definition 2 (Acceptability of arguments[8])
An argument A is acceptable with respect to a set S of arguments iff each argu-
ment attacking A is attacked by an argument in S.

Definition 3 (Operator F [6])
Let Args be a set of arguments ordered by a binary relation of attack, and let
S ⊆ Args. Then the operator F is defined as follow:

– F (S) = {A ∈ Args | A is acceptable with respect to S}

It is well known that the operator has a least fixed point since F is monotonic.

Definition 4 (Argument status: justified, overruled, and defensible [6])
Let A be an argument.

– A is justified with respect to Args iff A is a member of the least fixed point
of F.

– A is overruled with respect to Args iff A is not justified and attacked by
justified arguments.

– A is defensible with respect to Args iff A is not justified and not overruled.

Proposition 1. [6] Consider the following sequence of arguments.

– F 0 = ∅
– F i+1 = {A ∈ Args | A is acceptable with respect to F i}

The following observations hold [8].

1. All arguments in ∪∞
i=0(F

i) are justified.
2. If each argument is attacked by at most a finite number of arguments, then

an argument is justified iff it is in ∪∞
i=0(F

i).

3.2 Definitions for Tailoring the Neural Net Computation to the
Fixpoint Semantics

We tailor the neural net computation so as to be able to compute the fixpoint
semantics. For this, we introduce definitions for the new computation in this
subsection. The translation algorithm is the same as that of [5]. In what follows,
AN denotes an argumentation network, and N a neural network translated from
AN by the neural argumentation algorithm.

222 W. Makiguchi and H. Sawamura

Definition 5 (Time round)
In the neural argumentation with a neural network N , the passage of time till
the output vector is read off at the output neurons since the input neurons are
given an input vector is called time round, symbolically denoted by τ . It has 0 as
an initial value, and is incremented by 1 every time an input vector is repeatedly
given to N .

So for example, we give the first input vector to N and read off the first output
vector at τ = 0, give the second input vector and get the second output vector
at τ = 1, and so on.

Definition 6 (Acceptable, strictly defeated and undecided neuron)
Let Ai, Ah and Ao be an input neuron, a hidden neuron and an output neuron
in AN which are translated from an argument A in AN respectively. The neu-
rons in N are classified into three categories: acceptable, strictly defeated and
undecided as follows:

1. Given an input vector at τ = 0, let every neuron be ‘undecided neuron’ (the
initial classification of every neuron is undecided neuron).

2. If Ao outputs 1 at even τ , let the three neurons Ai, Ah and Ao be ‘acceptable
neuron’.

3. If Ao outputs −1 at odd τ , let the three neurons Ai, Ah and Ao be ‘strictly
defeated neuron’.

When we start the computation, all neurons are undecided neurons. At even τ ,
we decide which neurons are acceptable neurons. And at odd τ , we decide which
neurons are strictly defeated neurons.

In the Garcez’s computation, the output vector is repeatedly given as the next
input vector. But, the way of giving input vectors is defined in a different way
for our purpose as follows:

Definition 7 (Input vector in the neural net computation)
The inputs to N are given for all input neurons every time round as follows:

1. At τ = 0, the value 1 is input to every input neuron in N .
2. For τ ≥ 1,

(a) 1 is given to every acceptable neuron in the input layer of N
(b) −1 is given to every strictly defeated neuron in the input layer of N
(c) 0 is given to every undecided neuron in the input layer of N .

Taking Definition 2 into account, to let an argument which is an acceptable in
AN be an acceptable neuron in N , we introduce the following Definition 8 with
the special condition for changing thresholds during the neural net computation.
It plays an important role in tailoring the neural net computation that was
originally specified in the Sect. 2.3 so as to reflect Definition 2 and to relate
the neural net argumentation to the fixpoint semantics. It should be noted that
in the Garcezs neural computation in N , the threshold of each neuron is not
changed during the computation, but it is changed only when the learning rule
is applied to N [5].

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 223

Definition 8 (Condition for changing thresholds)
Let Ai, Ah and Ao be as in Definition 6. Let the threshold of Ao be θ. If Ai, Ah

and Ao are undecided neurons, the threshold of Ao is changed as follows:

1. Let the number of the negative weight connections from any hidden neurons
to Ao be n, and only when τ ≥ 2 and τ is even, the threshold of Ao is changed
to θ = n − 1.

2. Only when τ is odd, first check if either of two following conditions are
satisfied on Ao or not.
(a) If output neuron Bo is an undecided neuron and is given a negative

weight connection by Ah, and Ao is given a negative connection by hidden
neuron Bh, then Bo has no negative weight connection from other hidden
neurons except Ah.

(b) If output neuron Bo is an undecided neuron and is given a negative
weight connection by Ah, and Ao is given a negative connection by hidden
neuron Bh, then every hidden neuron which gives a negative connection
to Bo except Ah is given a negative connection by only strictly defeated
neurons.

Then, letting n be the number of the negative weight connections to Ao from
Bh which does not satisfy the two conditions above, the threshold of Ao is
changed to θ = 1 − n.

This definition allows every output neuron Ao which is given any negative weight
connections from only the strictly defeated neurons in the hidden layer to be ac-
tive at even τ . And it allows every output neuron Ao which is given any negative
weight connections from only the acceptable neurons except from neurons Bh

which satisfies the conditions of (a) or (b) in Definition 8 to deactivate at odd
τ . At τ = 0, the threshold of every neuron is set to zero.

In the Garcez’s computation, if an output vector is identical to the corre-
sponding input vector, then the computation is said to be in a stable state. But,
here we redefine a stable state from the viewpoint of the neurons’ classification
in Definition 6 as follows:

Definition 9 (Stable state)
If all neurons in N do not change their categories of Definition 6 during any
two contiguous τ , then the computation of N is said to be in a stable state.

In our computation, we want to decide the argument status with acceptable
neurons in N . We introduce a special step for deciding each argument status in
N after the stable state in following definition. In this step, we give inputs to
N such as every acceptable neuron in output layer outputs 1, every neuron in
output layer which has a negative weight connection with any acceptable neurons
outputs −1 and every neuron in output layer which is neither an acceptable
neuron nor a neuron which has a negative weight connection with any acceptable
neurons outputs 0.

Definition 10 (Justified, overruled, defensible at a stable state)
When an iterative computation in N reaches to a stable state, we reset the thresh-
old of every neuron to 0, and then, give the inputs to N again as follows:

224 W. Makiguchi and H. Sawamura

– 1 is given to every acceptable neuron in the input layer of N .
– 0 is given to every strictly defeated neuron and every undecided one in the

input layer of N .

From each output for this input, we define the argument status of each argument
as follows:

1. If Ao outputs 1 in N , argument A is justified in N .
2. If Ao outputs −1 in N , argument A is overruled in N .
3. If Ao outputs 0 in N , argument A is defensible in N .

3.3 Yet another Augmented Neural Net Computation

In this subsection, we describe the neural net computation steps that yield the
same argument status as those by the argumentation network derived by Prakken
and Vreeswijk’s argumentation framework[6], based on the definitions prepared
in the Sect. 3.1.

Step 1: Let τ = 0, the threshold of every neuron be 0, and every neuron be an
undecided neuron. The initial value 1 is given to every input neuron of the
neural network N . Go to Step 2.

Step 2: Check whether τ is even or odd.
– If Ao outputs 1 at even τ , then let Ai, Ah and Ao be acceptable neurons.
– If Ao outputs −1 at odd τ , then let Ai, Ah and Ao be strictly defeated

neurons.
Go to Step 3.

Step 3: If τ
= 0, check whether the classifications at τ and τ − 1 changed or
not.
– If they change, increment τ by 1 and go to Step 4.
– If they do not change, increment τ by 1 and go to Step 6.

If τ = 0, increment τ by 1 and go to Step 6.
Step 4: Check whether τ is even or odd.

– If τ is even, set the threshold for every undecided neuron in the output
layer to θ = n − 1.3

– If τ is odd, set the threshold for every undecided neuron in the output
layer to θ = 1 − n.

Go to Step 5.
Step 5: Give the input vector as follows:

– Give 1 to each acceptable neuron in the input layer as input.
– Give −1 to each strictly defeated neuron in the input layer as input.
– Give 0 to each undecided neuron in the input layer as input.

Go to Step 2.
Step 6: Now that the computation of N is in a stable state, the arguments’

status in N are given following Definition 10. Set the threshold for every
output neuron to θ = 0. The inputs are given as follows:

3 n is the number defined in Definition 8.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 225

A B

C1

C2

D1

D2

Fig. 3. An argumentation network

hA

A B

hB

C1

hC2

C2

hD1

D1

hD2

D2

A B C1 C2 D1 D2

hC1

Fig. 4. The neural network for Fig. 3

– Give 1 to each acceptable neuron in the input layer as input.
– Give 0 to each strictly defeated neuron in the input and undecided neuron

in input layer as input.
Then, each output neuron Ao determines its argument status in N as follows:
– If Ao outputs 1, an argument A is justified in N .
– If Ao outputs −1, an argument A is overruled in N .
– If Ao outputs 0, an argument A is defensible in N .

3.4 A Traced Example

Let us consider an example of the argumentation network in Fig. 3 and the
neural network in Fig. 4, following the computation steps in the Sect. 3.3.

τ = 0
Input According to Step 1, set 0 to the threshold of every neuron, give the

input vector [1, 1, 1, 1, 1, 1].
Output We get an output vector [−1, 1, 0, 0, 1, 1]. The Neurons that output 1

are B, D1 and D2. According to Step 2, They are acceptable neurons
since τ is zero (even). Other neurons that output 0 or −1 are undecided
neurons, that is, their status categories do not change. According to
Step 3, τ is incremented to 1 from 0.

τ = 1
Input According to Step 4, set the threshold of every undecided neuron in

the output layer to θ = 1−m since τ is 1 (odd). That is, the threshold
of Ao is −2, C1o and C2o are −1, D1o and D2o are 0. According to Step
5, the input vector is [0, 1, 0, 0, 1, 1].

Output We get output vector [1, 1, −1, −1, 1, 1]. Neurons that output −1 are
C1o and C2o. According to Step 2, C1 and C2 are strictly defeated
neurons since τ is 1 (odd). Now, B, D1 and D2 are acceptable neurons,
C1 and C2 are strictly defeated neurons, and A is undecided neuron.
According to Step 3, both at τ = 1 and τ = 0, the categories of neurons
changed. Thus τ is incremented to 2 from 1.

226 W. Makiguchi and H. Sawamura

τ = 2
Input According to Step 4, set the threshold of every undecided neurons in

the output layer to θ = n − 1 since τ is 2 (even). Thus, the threshold
of Ao is 2, and other neurons are zero. And according to Step 5, the
input vector is [0, 1, −1, −1, 1, 1].

Output We get an output vector [−1, 1, −1, −1, 1, 1]. Neurons that output 1 are
Bo, D1o and D2o. According to Step 2, B, D1 and D2 are acceptable
neurons. But these neurons are already acceptable neurons. Now, B,
D1 and D2 are acceptable neurons, C1 and C2 are strictly defeated
neurons, and A is undecided neuron. According to Step 3, although
at τ = 2 the categories of neurons did not change, but at τ = 1 they
changed, thus τ is incremented to 3 from 2.

τ = 3
Input According to Step 4, set the threshold of every undecided neuron in

output layer to θ = 1−m since τ is 3 (odd). Thus, the threshold of Ao

is −2, and the other neurons are 0. And according to Step 5, the input
vector is [0, 1, −1, −1, 1, 1].

Output We get an output vector [1, 1, −1, −1, 1, 1]. Neurons that output −1
are C1o and C2o. According to Step 2, C1 and C2 are strictly defeated
neurons since τ is 3 (odd). But these neurons are already strictly de-
feated neurons. Now, B, D1 and D2 are acceptable neurons, C1 and C2
are strictly defeated neurons, and A is undecided neuron. According
to Step 3, both at τ = 3 and τ = 2, the categories of neurons did not
change. So, τ is incremented to 4 from 3, and go to Step 6.

τ = 4
Input According to Step 6, set the threshold of every neuron θ = 0. And the

input vector is [0, 1, 0, 0, 1, 1].
Output We get an output vector [−1, 1, −1, −1, 1, 1]. Neurons that output 1 are

B, D1o and D2o. According to Step 6, argument B, argument D1 and
argument D2 are justified in N . Neurons that output −1 are A, C1 and
C2. According to Step 6, argument A, argument C1 and argument C2
are overruled in N . Neurons that output 0 do not exist. According to
Step 6, there is no defensible argument in N .

These steps every time round are tabulated in Table 2.

3.5 Correspondence Theorem

In this subsection, we give a correspondence theorem and its inductive proof un-
der the neural net computation introduced in this section. We also give a sound-
ness theorem that the neural net computation provides a sound computation in
the sense that it yields the same argument status as those by an argumentation
network derived by Prakken and Vreeswijk’s argumentation framework with the
fixed point semantics.

In what follows, the phrase “argument A in N” represents these three: “input
neuron Ai, hidden neuron Ah and output neuron Ao in N” together, and the

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 227

Table 2. Input and output table of the neural net computation in Fig. 4

.

A B C1 C2 D1 D2

τ = 0 input 1 1 1 1 1 1
output −1 1 0 0 1 1

τ = 1 input 0 1 0 0 1 1
output 1 1 −1 −1 1 1

τ = 2 input 0 1 −1 −1 1 1
output −1 1 −1 −1 1 1

τ = 3 input 0 1 −1 −1 1 1
output 1 1 −1 −1 1 1

τ = 4 input 0 1 0 0 1 1
output −1 1 −1 −1 1 1

phrase “acceptable argument A in N” represents these three: “acceptable neuron
Ai, acceptable neuron Ah and acceptable neuron Ao in N” together. And sim-
ilarly, the phrases “strictly defeated argument A in N” represents these three:
“strictly defeated neuron Ai, strictly defeated neuron Ah and strictly defeated
neuron Ao in N” together, and the phrases “undecided argument A in N” rep-
resents these three: “overruled neuron Ai, overruled neuron Ah and overruled
neuron Ao in N” together.

Theorem 1 (Correspondence between the computation of neural net
and the fixed point semantics)

– The set of acceptable arguments in N is identical with the set of F 0 in
Definition 3 before getting outputs from N at τ = 0.

– The set of acceptable arguments in N is identical with the set of F i in Def-
inition 3 after getting outputs from N at τ = 2(i − 1) (i is integer and
i ≥ 1).

We first prepare the following lemma that is convenient to shorten the proof. In
what follows, “argument X attacks argument Y in N” denotes “hidden neuron
Xh gives a negative weight connection to output neuron Yo”.

Lemma 1 (Conditions of strictly defeated arguments and acceptable
arguments in N)

– If B is an argument which attacks an acceptable argument A in N after
getting outputs at even τ (τ ≥ 2), then argument B is a strictly defeated
argument in N after getting outputs at τ − 1.

– If B is an argument which attack a strictly defeated argument A in Nafter
getting outputs at odd τ (τ ≥ 1), then argument B is an acceptable argument
in N after getting outputs at τ − 1 or τ + 1.

Proof of Lemma 1. Refer [9] for the proof.
Now we are in a position to prove the main theorem. We prove it inductively

as follows.

228 W. Makiguchi and H. Sawamura

Proof (Proof of Theorem 1).

– Before getting outputs at τ = 0, a set of acceptable argument in N is ∅
since every neuron is an undecided neuron according to Definition 6. This
set coincides with a argument set of F 0 = ∅ in AN of Definition 3.

– Assume that argument A in N is an acceptable argument after getting out-
puts at τ = 0. At τ = 0, the value 1 is given to every input neuron according
to Definition 7. Thus, UAo = W + n · W = 1 − n. Hence Ao must output 1
at τ = 0, n = 0. It means Ao has no negative weight connection from other
hidden neurons, that is, argument A is an unattacked argument in N . So,
after getting outputs at τ = 0, the set of acceptable argument in N is the
set of unattacked arguments in N . It is obvious that a set of unattacked
arguments in N is a set of unattacked arguments in AN . Moreover, a set
of unattacked arguments in AN is F 1 = F (∅). Hence, the set of acceptable
argument in N after getting outputs at τ = 0 coincides with F 1.

– Assume that the set of acceptable arguments in N after getting outputs at
τ = 2(k − 1) (k is an integer and k ≥ 1) As coincides with the argument
set of F k in AN . The set of acceptable arguments after getting outputs at
τ = 2k in N As′ is the sum of the following two sets:

• the set of acceptable arguments that are undecided arguments before
getting outputs at τ = 2k in N As′′

• the set of acceptable arguments which have been acceptable arguments
after getting outputs τ = 2(k − 1) in N , that is As

Every argument in As′′ after getting outputs at τ = 2k is attacked by some
argument in the strictly defeated argument set Bs after getting outputs at
τ = 2k − 1 according to Lemma 1. And, every argument in Bs after getting
outputs at τ = 2k − 1 is attacked by some argument in the acceptable
argumentation set As after getting outputs at τ = 2(k − 1) according to
Lemma 1. Every argument in As′′ after getting outputs at τ = 2k is in F k+1

according to Definition 2 and 3. Hence, the set of acceptable arguments in
N after getting outputs at τ = 2k coincides with F k+1. ��

Theorem 2 (Soundness of the neural net computation augmented for
the fixpoint semantics).
Let N be the the neural net with the neural net computation augmented for
the fixpoint semantics, and the argument status in AN be the one defined in
Definition 4. Then, we have

– A justified argument in N is a justified argument in AN .
– An overruled argument in N is an overruled argument in AN .
– A defensible argument in N is a defensible argument in AN .

Proof

– Assume argument A is a justified argument in N . Then the output neuron Ao

must output 1 in a stable state of N on the condition of Definition 10. Since

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 229

UAo = 1 · W + x · W ′ = 1 − x = 1, we know that x = 0. So, only acceptable
neurons in the output layer can output 1 on the condition of Definition 10
and the acceptable argument A in N is a justified argument in N . The
set of acceptable arguments in N of a stable state coincides with the set
of acceptable arguments in AN according to Theorem 1. Every acceptable
argument in AN is a justified argument in AN according to Definition 3 and
Definition 4. Consequently, a justified argument in N is a justified argument
in AN .

– Assume argument A is an overruled argument in N . Then the output neuron
Ao must output −1 in a stable state of N on the condition of Definition 10.
UAo = 0 · W + x · W ′ = −x ≤ −1. Thus, we obtain x ≥ 1 as a solution. It
means argument A is attacked by acceptable arguments (justified arguments)
in N . It is obvious that argument A is attacked by justified arguments AN .
So, argument A is overruled in AN according to Definition 4. Consequently,
an overruled argument in N is an overruled argument in AN .

– Assume argument A is a defensible argument in N . Then the output neuron
Ao must output 0 in a stable state of N on the condition of Definition 10. It
is obvious that argument A is not a justified argument and not an overruled
argument in N . Moreover it is obvious that argument A is also in AN . So,
argument A is defensible in AN according to Definition 4. Consequently, a
defensible argument in N is an defensible argument in AN . ��

4 Can Argumentative Dialogues be Extracted from the
Neural Net Argumentation?

In this section, we are interested in returning to symbolic argumentative dia-
logues from the neural net argumentation. The symbolic presentation of argu-
ments would be much better for us since it makes the neural net argumentation
process verbally understandable. The notorious criticism is that connectionism
usually does not have explanatory reasoning capability. We would say our at-
tempt here is one that can turn such criticism in the area of argumentative
reasoning.

We already have the following theorem that suggests its possibility.

Theorem 3. If an argument is prevailing in the neural net argumentation, then
it is dialectically justified.

Proof. This is easily observed by the two results: Theorem 2 and the complete-
ness and soundness of Prakken and Vreeswijk’s argumentation framework [3].

��
In what follows, we here give a more direct method of extracting an argumen-
tative dialogue from the given neural net argumentation.

4.1 Extracting Dialogue Trees

Let an argumentation network be AN . Let a neural network translated from AN
by the neural argumentation algorithm be N . The following extraction algorithm

230 W. Makiguchi and H. Sawamura

A BDE C

Fig. 5. An argumentation network

Ao Bo Co Do Eo

Ai Bi Ci Di Ei

Ah Bh Ch Dh Eh

Fig. 6. The neural network translated
from Fig. 5

add nodes and branches to a dialogue tree d-tree, referring to N . Note that the
initial d-tree is empty, i.e., it has no nodes and branches.

Step 1: Choose one output neuron Ao from N . Then, add argument A to d-tree
as the first proponent in a dialogue.4 And let the ‘focused neuron Fo’ be the
output neuron. Go to Step 2.

Step 2: Check if Fo has any negative connections from any hidden neurons or not.
– If Fo has any negative connections, then go to Step 3.
– If Fo has no negative connection, close the branch extension.5

Step 3: Let the hidden neurons giving the negative connections to Fo be Xhs.
Check if every Xh is a parent node of Fo in d-tree or not.
– If Xh is a parent node, change the connection X −→ F to X ←→ F in

d-tree.6

– If Xh is not a parent node, add the argument X as a child of argument
F to d-tree. Then the branch between X and F is X −→ F . Let the
focused neuron Fo be Xo, and go Step 2.

4.2 An Illustrative Example

Example 2. As an illustrating example, let us consider the following argumenta-
tion network from which a dialogue tree is to be extracted: argument A attacks
argument D and argument B, B attacks A, argument C attacks B, D attacks A,
argument E attacks D. The argumentation network and neural network trans-
lated from it are depicted in Fig. 5 and Fig. 6 respectively.

We here assume that we are concerned with the argument A. Therefore, it is
one that should be set to the root node of a dialogue tree to be constructed.
According to Step 1, we take Ao in Fig. 6 from and add the argument A to d-
tree as the root node (Fig. 7). Set Ao to the focused neuron. According to Step
2, we check if the focused neuron Ao has any negative connections. We know
4 This node is the root of d-tree.
5 Then argument F is a leaf in the d-tree.
6 X −→ F represents there exists an arrow directing from node X to node F . X ←→ F

represents there exists a bidirectional arrow between node X and node F . It, actually,
is an attack relation between argument X and argument F , which is an even cycle.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 231

that it has two connections from Bh and Dh. According to Step 3, check if each
B and D is a parent node of A in d-tree. Since neither B nor D is a parent node,
add B andD to d-tree as the child nodes of A as in Fig. 8. The branches for
those arguments then are B −→ A and D −→ A respectively. Next, Bo and Do

become the focused neuron and repeat the extraction steps for them. According
to Step 2, we check if the focused neuron Bo has any negative connections. We
know that it has two connections from Ah and Ch. According to Step 3, check
if each A and C is a parent node of B in d-tree. Since A is the parent node of
B, change the connection B −→ A to B ←→ A as in Fig. 9. Since C is not
the parent node, add C to d-tree as the child node of B as in Fig. 10. Then Co

becomes the focused neuron and repeat the extraction steps for it. According to
Step 2, we check if the focused neuron Co has any negative connections. Since
Co has no negative connection, do nothing for this branch. According to Step 2,
we check if the focused neuron Do has any negative connections. We know that
it has two connections from Ah and Eh. According to Step 3, check if each A
and E is a parent node of D in d-tree. Since A is the parent node of D, change
the connection D −→ A to D ←→ A as in Fig. 11. Since E is not the parent
node, add E to d-tree as the child nodes of D as in Fig. 12. Then Eo becomes
the focused neuron and repeat the extraction steps for it. According to Step 2,
we check if the focused neuron Eo has any negative connections. Since Eo has no
negative connection, do nothing for this branch. At this point, we have nothing
to do any more for this d-tree, finishing extracting a dialogue tree.

From the extracted dialogue tree, we now can see that the argument A is
dialectically justified from the perspective of the dialectical proof theory [3]. Of
course, we can understand why it is justified through the dialogue process more
easily than through its counterpart by the neural net computation.

Theorem 4 (Correctness of the extraction algorithm)

(1) For a justified argument in N , the algorithm outputs a dialogue tree with
height odd (called a winning dialogue tree).

(2) For an overruled argument in N , the algorithm outputs a dialogue tree in
which at least one node is attacked by a justified argument.

Proof. Refer to [9] for the proof.

5 Concluding Remark and Future Work

Neural net argumentation has a great potential for computing argumentation
from the perspective of neural network computation. In particular, it enables us
to hybridize symbolic argumentation with neural net one. The contributions of
this paper are twofold. We have shown that

1. The neural argumentation algorithm can compute the fixpoint semantics for
formal argumentation.

2. Argumentative dialogues can be extracted from the neural net argumenta-
tion.

232 W. Makiguchi and H. Sawamura

A

Fig. 7. Add argument A as
the root node

A

B D

Fig. 8. Add argument B and
D as the child nodes of A

A

B D

Fig. 9. Change a connec-
tion between A and B

A

B D

C

Fig. 10. Add argument C
as child node of B

A

B D

C

Fig. 11. Change a connec-
tion between A and D

A

B D

C E

Fig. 12. Add argument E
as child node of D

The first result helps us understand what the neural net argumentation is do-
ing from the semantical point of argumentation. As a matter of fact, we have
been fascinated with such a beautiful correspondence between the neural net
computation step and the fixpoint computation step. The significance of the
second result is obvious since we wish to understand argument processes and
results verbally. Overall, these results provide a significant mechanism to better
integrate symbolic and neural net argumentation.

In this paper, we have obtained those results, paying much attention to
Prakken and Vreeswijk’s argumentation framework. This, however, is not a must.
We could apply our results to other argumentation models as well since the
symbolic argumentation networks are derived from the abstract notion of attack
relations among arguments.

From the arrival point of the paper, we will further develop the syncretic
relations of symbolic and neural net argumentation, in particular by employing
our Logic of Multiple-valued Argumentation (LMA) for uncertain argumentation
as a fledged value-based argumentation model [10]. We expect that other soft
computing techniques such as fuzzy theory, genetic algorithm, rough set theory,
etc. could have something to do with argumentation as well via considerations
and results obtained in this paper. It is planned to incorporate the neural net
argumentation based on the results of this paper in our symbolic argumentation
system [11]. It would help to augment or enrich the dialectical proof theory of
LMA.

Furthermore, we are going to explore its applicability to agent-oriented com-
puting since neural nets and argumentation have close relationship with agents’
capabilities such as environment-sensitivity and perceptibility. It is expected that
the hybridization of symbolic and neural net argumentation could enhance those
capabilities further in agent-oriented computing. We will deal with these issues
separately in our future paper.

A Hybrid Argumentation of Symbolic and Neural Net Argumentation II 233

Acknowledgments. We are grateful to Dr. Artur d’Avila Garcez for giving us
his comments on our initial results on the topics of this paper.

References

1. Makiguchi, W., Sawamura, H.: A hybrid argumentation of symbolic and neural net
argumentation (part I). In: Proc. of Fourth International Workshop on Argumen-
tation in Multi-Agent Systems, pp. 82–101 (2007)

2. Chesñevar, C.I., Maguitman, G., Loui, R.P.: Logical models of argument. ACM
Computing Surveys 32, 337–383 (2000)

3. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. J. of Applied Non-Classical Logics 7(1), 25–75 (1997)

4. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture. A critical
analysis, Cognition 28(1-2), 3–71 (1988)

5. d’Avila Garcez, A.S., Gabbay, D.M., Lamb, L.C.: Value-based argumentation
frameworks as neural-symbolic learning systems. Journal of Logic and Compu-
tation 15(6), 1041–1058 (2005)

6. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 219–318. Kluwer
Academic, Dordrecht (2002)

7. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

9. Makiguchi, W.: A hybrid argumentation of symbolic and neural net argumentation.
Graduation Thesis for Bachelor’s degree, (in Japanese, 2007)
http://www.cs.ie.niigata-u.ac.jp/∼makiguti/HA gt.pdf

10. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: AA-
MAS 2004, pp. 800–807. ACM, New York (2005)

11. Isogai, T., Fukumoto, T., Sawamura, H.: An integrated argumentation environment
for arguing agents. In: 2006 IEEE / WIC / ACM International Conference on
Web Intelligence(WI 2006), pp. 1077–1078. IEEE Computer Society, Los Alamitos
(2006)

http://www.cs.ie.niigata-u.ac.jp/~makiguti/HA_gt.pdf

Author Index

Amgoud, Leila 1, 164

Dignum, Frank 18
Dimopoulos, Yannis 1
Doutre, Sylvie 63

Gaertner, Dorian 94
Garćıa, Alejandro J. 145

Makiguchi, Wataru 197, 216
McBurney, Peter 31, 47, 63
McGinnis, Jarred 80
Modgil, Sanjay 80
Moraitis, Pavlos 1
Morge, Maxime 114

Oliva, Enrico 31
Omicini, Andrea 31
Ontañón, Santi 178

Parsons, Simon 47
Pasquier, Philippe 18

Perrussel, Laurent 63
Plaza, Enric 178

Quaresma, Paulo 132

Rahwan, Iyad 18
Rotstein, Nicolás D. 145

Sawamura, Hajime 197, 216
Serrurier, Mathieu 164
Simari, Guillermo R. 145
Sklar, Elizabeth 47
Sonenberg, Liz 18

Thévenin, Jean-Marc 63
Toni, Francesca 94
Trojahn, Cássia 132

Vieira, Renata 132

Wooldridge, Michael 47

	Title Page
	Preface
	Organization
	Table of Contents
	A General Framework for Argumentation-Based Negotiation
	Introduction
	The Logical Language
	Negotiating Agents Theories and Reasoning Models
	Negotiating Agents Theories
	The Reasoning Model

	The Structure of Negotiation Theories
	Argumentation-Based Negotiation
	Evolution of the Theories
	The Notion of Agreement
	Negotiation Dialogue

	Illustrative Examples
	Related Work
	Conclusions and Future Work

	On the Benefits of Exploiting Hierarchical Goals in Bilateral Automated Negotiation
	Introduction
	Preliminaries
	Bargaining Protocol
	Underlying Interests
	Mutual Interests
	Case Study: An IBN Protocol
	Conclusion

	Co-argumentation Artifact for Agent Societies
	Introduction
	Argumentation System
	Argumentation Component
	Computational Model
	Meta-interpreter for Argument Check
	Meta-interpreter for Argument Management

	Co-argumentation Artifact
	Example: Argument Acceptance

	On the Relevance of Utterances in Formal Inter-agent Dialogues
	Introduction
	Background
	Dialogues
	Relevance
	Completeness
	Summary

	A Persuasion Dialog for Gaining Access to Information
	Introduction
	A Motivating Example
	Formal Framework
	Access to Information
	Primitives of Dialogs
	Argumentation Framework
	Linking Arguments and Permissions

	The Protocol of Persuasion
	Requesting Information
	Arguing for Getting Permission
	Changing the Permission

	Revisiting the Initial Example
	Conclusion

	Towards Characterising Argumentation Based Dialogue in the Argument Interchange Format
	Introduction
	The Argument Interchange Format
	Characterising Locutions and Interaction Protocols in the Argument Interchange Format
	The Lightweight Coordination Calculus - A Declarative Operational Semantics
	A Use Case Scenario: Argumentation Based Dialogues in Medical Multi-agent Systems
	Conclusions and Future Work

	Preferences and Assumption-Based Argumentation for Conflict-Free Normative Agents
	Introduction
	BDI+N Agents: Preliminaries
	Background
	 BDI+N Agents
	Example

	Conflict Avoidance
	Background
	Naive Translation into Assumption-Based Argumentation
	Avoiding Conflicts Using Assumption-Based Argumentation

	Conflict Resolution Using Preferences
	Preferences as a Total Ordering
	Preferences as a Partial Ordering
	Defining Dynamic Preferences Via Meta-rules

	Theoretical Considerations
	Conclusions

	The Hedgehog and the Fox
	Introduction
	Principle
	Walk-Through Example
	The Object Language
	Priority
	Arguments
	Interactions between Arguments
	Semantics
	Procedure
	Related Works
	Conclusions

	An Extended Value-Based Argumentation Framework for Ontology Mapping with Confidence Degrees
	Introduction
	Argumentation Framework
	Classical Argumentation Framework
	Value-Based Argumentation Framework
	An Extended Value-Based Argumentation Framework

	Ontology Mapping
	E-VAF for Ontology Mapping
	Argumentation Generation
	Preferred Extension Generation

	A Walk through Example
	Related Work
	Final Remarks and Future Work

	Defeasible Argumentation Support for an Extended BDI Architecture
	Introduction and Motivation
	The Proposed Architecture
	Warranting Beliefs
	Filtering Desires
	Selecting Intentions
	Application Example: Robotic Soccer
	Application Example: Security System
	Related Work
	Conclusions

	Arguing and Explaining Classifications
	Introduction
	Classification Problem
	Abstract Argumentation Framework
	An Argumentation Framework for Classification
	Retrieving Version Space Theory
	Conclusion

	An Argumentation-Based Framework for Deliberation in Multi-agent Systems
	Introduction
	Deliberation, Committees and Social Choice
	Multi-agent CBR Systems
	Justified Predictions

	Arguments and Counterarguments
	Preference Relation
	Generation of Arguments
	Generation of Counterarguments

	Argumentation-Based Multi-agent Learning
	Exemplification
	Experimental Evaluation
	Related Work
	Conclusions and Future Work

	A Hybrid Argumentation of Symbolic and Neural Net Argumentation (Part I)
	Introduction
	Preliminaries to Neural Net Argumentation
	Argumentation Network
	Neural Argumentation Algorithm
	Neural Net Computation

	Can the Neural Argumentation Algorithm Deal with Self-defeating or other Pathological Arguments?
	Even Cycle
	Self-defeat
	Zombie Arguments 2

	Can the Argument Status of the Neural Net Argumentation correspond to the Well-Known Status?
	A Neural Net Computation that Yields the Same Argumentation Status
	An Augmented Neural Net Computation
	Traced Examples

	Concluding Remark and Future Work
	An Untangled Computation Flow of Fig. 2

	A Hybrid Argumentation of Symbolic and Neural Net Argumentation (Part II)
	Introduction
	Preliminaries to Neural Net Argumentation
	Argumentation Network
	Neural Argumentation Algorithm
	Neural Argumentation Algorithm:

	Neural Net Computation

	Can the Neural Argumentation compute the Fixpoint Semantics for Argumentation?
	The Fixpoint Semantics for Argumentation
	Definitions for Tailoring the Neural Net Computation to the Fixpoint Semantics
	Yet another Augmented Neural Net Computation
	A Traced Example
	Correspondence Theorem

	Can Argumentative Dialogues be Extracted from the Neural Net Argumentation?
	Extracting Dialogue Trees
	An Illustrative Example

	Concluding Remark and Future Work

	Author Index

