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Preface

Mathematical epidemiology has a long history, going back to the smallpox
model of Daniel Bernoulli in 1760. Much of the basic theory was developed
between 1900 and 1935, and there has been steady progress since that time.
More recently, models to evaluate the effect of control measures have been
used to assist in the formulation of policy decisions, notably for the foot and
mouth disease outbreak in Great Britain in 2001. The SARS (Severe Acute
Respiratory Syndrome) epidemic of 2002-2003 aroused great interest in the
use of mathematical models to predict the course of an infectious disease and
to compare the effects of different control strategies. This revived interest has
been reinforced by the current threat of an influenza pandemic.

Mathematical epidemiology differs from most sciences as it does not lend
itself to experimental validation of models. Experiments are usually impossi-
ble and would probably be unethical. This gives great importance to mathe-
matical models as a possible tool for the comparison of strategies to plan for
an anticipated epidemic or pandemic, and to deal with a disease outbreak in
real time.

In response to the SARS epidemic, a team was formed by a Canadian cen-
ter, MITACS (Mathematics for Information Technology and Complex Sys-
tems) to work on models for the transmission dynamics of infectious diseases,
with a specific goal of evaluating possible management strategies. This team
soon recognized that for mathematical modeling to be of assistance in mak-
ing health policy decisions, it would be necessary to increase the number of
mathematical modelers in epidemiology and also to persuade decision makers
in the health sciences that mathematical modeling could be useful for them.
In pursuit of these goals, a summer school in mathematical epidemiology
was developed in 2004 for graduate students from mathematical and biolog-
ical sciences. This school consisted of a series of lectures on various topics
in mathematical epidemiology together with projects done by groups of stu-
dents, each group containing students from various disciplines and with dif-
ferent levels of experience. In the summer of 2006, another summer school was
held, again for a mixed group but this time including a substantial number
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of people from epidemiology and health sciences. The 2006 summer school
also included a few public lectures that covered a wide range of issues and
diseases of great interest to public health, illustrating the general framework
and abstract mathematical theory in an applied setting. The experience from
these courses was that the projects were an essential valuable component of
the school, and the mixing of students in the project groups had a very pos-
itive effect for communication between disciplines, but also that differences
in mathematical backgrounds caused some difficulties.

This book consists of lecture notes intended for such a school. They cover
the main aspects of mathematical modeling in epidemiology and contain more
than enough material for a concentrated course, giving students additional
resource material to pursue the subject further. Our goal is to persuade epi-
demiologists and public health workers that mathematical modeling can be
of use to them. Ideally, it would teach the art of mathematical modeling, but
we believe that this art is difficult to teach and is better learnt by doing.
For this reason, we have settled on the more modest goal of presenting the
main mathematical tools that will be useful in analyzing models and some
case studies as examples. We hope that understanding of the case studies will
give some insights into the process of mathematical modeling.

We could give a flow chart for the use of this volume but it would not
be very interesting, as there is very little interdependence between chapters.
Everyone should read the opening chapter as a gentle introduction to the sub-
ject, and Chap.2 on compartmental models is essential for all that follows.
Otherwise, the only real chapter dependence is that Chap. 10 requires an un-
derstanding of Chap. 3. The first four chapters are basic material, the next
six chapters are developments of the basic theory, and the last four chapters
are case studies on childhood diseases, influenza, and West Nile virus. The
two case studies on influenza deal with different aspects of the disease and
do not depend on each other. There are also some suggested projects, taken
in part from the recent book “A Course in Mathematical Biology: Quantita-
tive Modeling with Mathematical and Computational Methods” by Gerda de
Vries, Thomas Hillen, Mark Lewis, Johannes Miiller, and Birgit Schonfisch,
Mathematical Modeling and Computation 12, STAM, Philadelphia (2006).

The necessary mathematical background varies from chapter to chap-
ter but a knowledge of basic calculus, ordinary differential equations, and
some matrix algebra is essential for understanding this volume. In addition,
Chaps. 3, 4, and 10 require some background in probability. Review notes
on calculus, matrix algebra, differential equations, and probability have been
prepared and may be downloaded at the web site of the Center for Disease
Modelling (www.cdm.yorku.ca). Some chapters use more advanced mathe-
matical topics. Some topics in linear algebra beyond elementary matrix the-
ory are needed for Chaps. 6-8. Hopf bifurcations are used in Chaps. 5 and 13.
Some knowledge of partial differential equations is needed for Chapters 8, 9,
and 13. Preparation of review notes on these topics is in process.
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Students from epidemiology and health sciences would probably need some
review of basic mathematics, and a course for students with a meagre math-
ematical background should probably be restricted to the first two chapters
and the case studies in Chaps. 12 and 14. A course for students with a strong
mathematical background could include any of the chapters depending on
the interests of instructors and students. For example, a course emphasizing
stochastic ideas could consist of the first four chapters, Chap. 10, plus some
of the case studies in the last four chapters. We believe that every course
should include some case studies.

We plan to use this volume as text material for future courses of vari-
ous lengths and with a variety of audiences. One of the main goals of the
courses on which this volume is based was to include students from different
disciplines. Our experience suggests that a future course aimed at a mixed
group should include a variety of non-mathematical case study descriptions
and should probably begin with separate tracks for “calculus users” who are
comfortable with basic mathematics but have little or no experience with
epidemiology, and “calculus victims” who may have studied calculus but in a
form that did not persuade them of the value of applications of mathematics
to other sciences. The negative experiences that many students in the health
sciences may have had in the past are a substantial obstacle that needs to be
overcome.

The chapters of this book are independent units and have different levels
of difficulty, although there is some overlap. Tremendous efforts were made to
ensure that these lectures are coherent and complementary, but no attempt
has been made to achieve a unified writing style, or even a unified notation
for this book. Because mathematical epidemiology is a rapidly developing
field, one goal of any course should be to encourage students to go to the
current literature, and experience with different perspectives should be very
helpful in being able to assimilate current developments.

These lecture notes would have been impossible without the two summer
schools funded by MITACS, as well as the Banff International Research Sta-
tion for Mathematical Innovation and Discovery (BIRS), The Fields Institute
for Research in Mathematical Sciences, the Mathematical Sciences Research
Institute and the Pacific Institute for the Mathematical Sciences. We thank
these funding agencies for their support, as well as BIRS and York University
for supplying physical facilities. We thank Dr. Guojun Gan and Dr. Hongbin
Guo for help in assembling the book manuscript. Finally, we thank all the
lecturers as well as Dr. Julien Arino and Dr. Lin Wang for technical support
during the summer schools, and the summer school students who contributed
much useful feedback.

Vancouver, BC Fred Brauer
Victoria, BC P. van den Driessche
Toronto, ON Jianhong Wu

February 2008
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Chapter 1

A Light Introduction to Modelling
Recurrent Epidemics

David J.D. Earn

Abstract Epidemics of many infectious diseases occur periodically. Why?

1.1 Introduction

There are many excellent books that provide broad and deep introductions
to the mathematical theory of infectious disease epidemics, ranging from
monographs and textbooks [1-7] to collections of articles from workshops
and conferences [8-12]. My goal in this article is to spark an interest in
mathematical epidemiology that might inspire you to dig into the existing
literature (starting with the rest of this book [13]) and, perhaps, to engage
in some research yourself in this fascinating area of science.

I will discuss some famous epidemics that present challenging theoretical
questions, and — without getting bogged down in technical details you can
find elsewhere — I will try to convince you that you can fairly easily build
and analyze simple models that help us understand the complex patterns
evident in these data. Not wishing to give you a false impression of the field,
I will also briefly mention some epidemic patterns that do not appear to be
explicable in terms of simple models (at least, not in terms of simple models
we have thought of!).

Several of the following sections are based in part on an even lighter intro-
duction to the subject of mathematical epidemiology that I wrote for a high
school mathematics magazine [14]. Here, I do not limit myself to high school
mathematics, but I hope the bulk of the article will be easily accessible to
you if you have had an elementary course in ordinary differential equations.

Department of Mathematics and Statistics
McMaster University, Hamilton, ON, Canada L8S 4K1
earn@math.mcmaster.ca



4 D.J.D. Earn

1.2 Plague

One of the most famous examples of an epidemic of an infectious disease in a
human population is the Great Plague of London, which took place in 1665—
1666. We know quite a lot about the progression of the Great Plague because
weekly bills of mortality from that time have been retained. A photograph
of such a bill is shown in Fig.1.1. Note that the report indicates that the
number of deaths from plague (5,533) was more than 37 times the number
of births (146) in the week in question, and that wasn’t the worst week! (An
even worse plague occurred in the fourteenth century, but no detailed records
of that epidemic are available.)

Putting together the weekly counts of plague deaths from all the relevant
mortality bills, we can obtain the epidemic curve for the Great Plague, which
I've plotted in the top left panel of Fig.1.2. The characteristic exponential
rise, turnover and decline is precisely the pattern predicted by the classic
susceptible-infective-recovered (SIR) model of Kermack and McKendrick [15]
that I describe below. While this encourages us to think that mathematical
modelling can help us understand epidemics, some detailed features of the
epidemic curve are not predicted by the simple SIR model. For example,
the model does not explain the jagged features in the plotted curve (and
there would be many more small ups and downs if we had a record of daily
rather than weekly deaths). However, with some considerable mathematical
effort, these “fine details” can be accounted for by replacing the differential
equations of Kermack and McKendrick with equations that include stochas-
tic (i.e., random) processes [2]. We can then congratulate ourselves for our
modelling success. .. until we look at more data.

The bottom left panel of Fig. 1.2 shows weekly mortality from plague in
London over a period of 70years. The Great Plague is the rightmost (and
highest) peak in the plot. You can see that on a longer timescale, there was a
complex pattern of plague epidemics including extinctions and re-emergences.
This cannot be explained by the basic SIR model (even if we reformulate it
using stochastic processes). The trouble is likely that we have left out a key
biological fact: there is a reservoir of plague in rodents, so it can persist for
years, unnoticed by humans, and then re-emerge suddenly and explosively. By
including the rodents and aspects of spatial spread in a mathematical model,
it has recently been possible to make sense of the pattern of seventeenth
century plague epidemics in London [16]. Nevertheless, some debate continues
as to whether all those plagues were really caused by the same pathogenic
organism.
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Fig. 1.1 A bill of mortality for the city of London, England, for the week of 26 September
to 3 October 1665. This photograph was taken by Claire Lees at the Guildhall in London,
England, with the permission of the librarian

1.3 Measles

A less contentious example is given by epidemics of measles, which are def-
initely caused by a well-known virus that infects the respiratory tract in
humans and is transmitted by airborne particles [3]. Measles gives rise to
characteristic red spots that are easily identifiable by physicians who have
seen many cases, and parents are very likely to take their children to a doctor
when such spots are noticed. Consequently, the majority of measles cases in
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Fig. 1.2 Epidemic curves for plague in London (left panels) and measles in New York
City (right panels). For plague, the curves show the number of deaths reported each week.
For measles, the curves show the number of cases reported each month. In the top panels,
the small ticks on the time axis occur at monthly intervals

developed countries end up in the office of a doctor (who, in many countries,
is required to report observed measles cases to a central body). The result is
that the quality of reported measles case data is unusually good, and it has
therefore stimulated a lot of work in mathematical modelling of epidemics.

An epidemic curve for measles in New York City in 1962 is shown in the
top right panel of Fig. 1.2. The period shown is 17 months, exactly the same
length of time shown for the Great Plague of London in the top left panel. The
1962 measles epidemic in New York took off more slowly and lasted longer
than the Great Plague of 1665. Can mathematical models help us understand
what might have caused these differences?

1.4 The SIR Model

Most epidemic models are based on dividing the host population (humans in
the case of this article) into a small number of compartments, each containing
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individuals that are identical in terms of their status with respect to the
disease in question. In the SIR model, there are three compartments:

e Susceptible: individuals who have no immunity to the infectious agent, so
might become infected if exposed

e [Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact

e Removed: individuals who are immune to the infection, and consequently
do not affect the transmission dynamics in any way when they contact
other individuals

It is traditional to denote the number of individuals in each of these com-
partments as S, I and R, respectively. The total host population size is
N=S+1+R.

Having compartmentalized the host population, we now need a set of equa-
tions that specify how the sizes of the compartments change over time. Solu-
tions of these equations will yield, in particular, I(t), the size of the infectious
compartment at time t. A plot of I(¢) should bear a strong resemblance to
observed epidemic curves if this is a reasonable model.

The numbers of individuals in each compartment must be integers, of
course, but if the host population size NV is sufficiently large we can treat .S,
I and R as continuous variables and express our model for how they change
in terms of a system of differential equations,

as

— =8I, (1.1a)
‘C% = BSI —~I. (1.1b)

Here, the transmission rate (per capita) is § and the recovery rate is 7 (so
the mean infectious period is 1/+). Note that I have not written a differential
equation for the number of removed individuals. The appropriate equation is
dR/dt = vI (outflow from the I compartment goes into the R compartment)
but since R does not appear in (1.1a) and (1.1b) the equation for dR/dt
has no effect on the dynamics of S and I (formalizing the fact that removed
individuals cannot affect transmission). This basic STR model has a long
history [15] and is now so standard that you can even find it discussed in
some introductory calculus textbooks [17].

If everyone is initially susceptible (S(0) = N), then a newly introduced
infected individual can be expected to infect other people at the rate SN
during the expected infectious period 1/+. Thus, this first infective individual
can be expected to infect Rg = SN/~ individuals. The number Ry is called
the basic reproduction number and is unquestionably the most important
quantity to consider when analyzing any epidemic model for an infectious
disease. In particular, Ry determines whether an epidemic can occur at all;
to see this for the basic SIR model, note in (1.1a) and (1.1b) that I can never
increase unless Ry > 1. This makes intuitive sense, since if each individual
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transmits the infection to an average of less than one individual then the
number of cases must decrease with time.
So, how do we obtain I(¢) from the SIR model?

1.5 Solving the Basic SIR Equations

If we take the ratio of (1.1a) and (1.1b) we obtain

dI 1
- 14— 1.2
a5~ T Res” (1.2)
which we can integrate immediately to find
1
I:I(O)+S(O)fSJrRTln[S/S(O)]. (1.3)
0

This is an exact solution, but it gives I as a function of S, not as a function
of t. Plots of I(S) for various Ry show the phase portraits of solutions
(Fig. 1.3) but do not give any indication of the time taken to reach any par-
ticular points on the curves. While the exact expression for the phase portrait
may seem like great progress, it is unfortunately not possible to obtain an
exact expression for I(t), even for this extremely simple model.

In their landmark 1927 paper, Kermack and McKendrick [15] found an
approximate solution for I(¢) in the basic SIR model, but their approximation
is valid only at the very beginning of an epidemic (or for all time if Ry is
unrealistically close to unity) so it would not appear to be of much use for
understanding measles, which certainly has Ry > 10.

Computers come to our rescue. Rather than seeking an explicit formula
for I(t) we can instead obtain an accurate numerical approximation of the
solution. There are many ways to do this [18], but I will briefly mention
the simplest approach (Euler’s method), which you can implement in a few
minutes in any standard programming language, or even a spreadsheet.

Over a sufficiently small time interval At, we can make the approximation
dS/dt ~ AS/At, where AS = S(t+ At)—S(¢). If we now solve for the number
of susceptibles a time At in the future, we obtain

S(t+ At) = S(t) — BS(t)I(t)At. (1.4a)
Similarly, we can approximate the number of infectives at time ¢ + At as
I(t+ At) = 1(t) + BS(t)I(t) At — vI(t)At. (1.4b)

Equations (1.4a) and (1.4b) together provide a scheme for approximating
solutions of the basic SIR model. To implement this scheme on a computer,
you need to decide on a suitable small time step At. If you want to try
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Fig. 1.3 Phase portraits of solutions of the basic SIR model ((1.1a) and (1.1b)) for a newly
invading infectious disease. The curves are labelled by the value of the basic reproduction
number Rg (2, 4, 8 or 16). For each curve, the initial time is at the bottom right corner
of the graph (I(0) ~ 0, S(0) ~ N). All solutions end on the S axis (I — 0 as ¢ — 00).
A simple analytical formula for the phase portrait is easily derived (1.3); from this it is
easy to show that lim¢ oo S(t) > 0 regardless of the value of Ry (though, as is clear from
the phase portraits plotted for Rg = 8 and 16, nearly everyone is likely to be infected
eventually if Rg is high)

this, I suggest taking At to be one tenth of a day. I should point out that
I am being extremely cavalier in suggesting the above method. Do try this,
but be forewarned that you can easily generate garbage using this simple
approach if you're not careful. (To avoid potential confusion, include a line
in your program that checks that S(¢) > 0 and I(¢) > 0 at all times. Another
important check is to repeat your calculations using a much smaller At and
make sure your results don’t change.)

In order for your computer to carry out the calculations specified by (1.4a)
and (1.4b), you need to tell it the parameter values (8 and ~, or Ry, N and
v) and initial conditions (S(0) and I(0)). For measles, estimates that are
independent of the case report data that we're trying to explain indicate that
the mean infectious period is 1/y ~ 5 days and the basic reproduction number
is Rg ~ 18 [3]. The population of New York City in 1960 was N = 7,781, 984.
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If we now assume one infectious individual came to New York before the
epidemic of 1962 (I(0) = 1), and that everyone in the city was susceptible
(5(0) = N), then we have enough information to let the computer calculate
1(t). Doing so yields the epidemic curve shown in the top panel of Fig. 1.4,
which does not look much like the real data for the 1962 epidemic in New
York. So is there something wrong with our model?

6000000 SIR model for NYC measles assuming
4000000 no previous exposure: S(0) = N
2000000

0 . . 1 . . . . . . . . . . . 1

[
o
o
o

1962 1963
SIR model with previous

4000 exposure: S(0) = 0.065*N

2000

Infectives

1962 1963

SIR model with previous exposure and
10000 per capita birth/death rate u = 0.016 yr-!

5000

A A A | 1 . n . I f ) A . .
1930 1940 1950 1960

Time (years)

Fig. 1.4 Epidemic curves for measles in New York City, generated by the basic SIR model.
The curves show the number of infectives I(t) at time ¢. In the top two panels, the small ticks
on the time axis occur at monthly intervals. The parameter values and initial conditions are
discussed in the main text, except for the initial proportion susceptible used to generate
the bottom two panels (S(0)/N = 0.065). This initial condition was determined based
on the SIR model with vital dynamics, as specified by (1.5a) and (1.5b). The proportion
susceptible at equilibrium is S = 1/Rg = 1/18 ~ 0.056. At the start of each epidemic cycle
that occurs as the system approaches the equilibrium, the proportion susceptible must be
higher than S

No, but there is something very wrong with our initial conditions. The
bottom right panel of Fig.1.2 shows reported measles cases in New York
City for a 36-year period, the end of which includes the 1962 epidemic. Evi-
dently, measles epidemics had been occurring in New York for decades with no
sign of extinction of the virus. In late 1961, most of New York’s population
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had already had measles and was already immune, and the epidemic cer-
tainly didn’t start because one infectious individual came to the city. The
assumptions that I(0) = 1 and S(0) = N are ridiculous. If, instead, we
take I(0) = 123 % (5/30) (the number of reported cases in September 1961
times the infectious period as a proportion of the length of the month) and
S(0) = 0.065 * N, then we obtain the epidemic curve plotted in the middle
panel of Fig. 1.4, which is much more like the observed epidemic curve of
Fig. 1.2 (top right panel).

This is progress — we have a model that can explain a single measles
epidemic in New York City — but the model cannot explain the recurrent
epidemics observed in the bottom right panel of Fig. 1.2. This is not because
we still don’t have exactly the right parameter values and initial conditions:
no parameter values or initial conditions lead to recurrent epidemics in this
simple model. So, it would seem, there must be some essential biological
mechanism that we have not included in our model. What might that be?

Let’s think about why a second epidemic cannot occur in the model we’ve
discussed so far. The characteristic turnover and decline of an epidemic curve
occurs because the pathogen is running out of susceptible individuals to in-
fect. To stimulate a second epidemic, there must be a source of susceptible
individuals. For measles, that source cannot be previously infected people,
because recovered individuals retain lifelong immunity to the virus. So who
is it?

Newborns. They typically acquire immunity from their mothers, but this
wanes after a few months. A constant stream of births can provide the source
we’re looking for.

1.6 SIR with Vital Dynamics

If we expand the SIR model to include B births per unit time and a natural
mortality rate p (per capita) then our equations become

% =B - (351 —us, (1.5a)
% =pSI —~I —pul. (1.5b)

The timescale for substantial changes in birth rates (decades) is generally
much longer than a measles epidemic (a few months), so we’ll assume that
the population size is constant (thus B = uN, so there is really only one new
parameter in the above equations and we can take it to be B). As before,
we can use Euler’s trick to convert the equations above into a scheme that
enables a computer to generate approximate solutions. An example is shown
in the bottom panel of Fig. 1.4, where I have taken the birth rate to be
B = 126,372 per year (the number of births in New York City in 1928, the
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first year for which we have data). The rest of the parameters and initial
conditions are as in the middle panel of the figure.

Again we seem to be making progress. We are now getting recurrent epi-
demics, but the oscillations in the numbers of cases over time damp out, even-
tually reaching an equilibrium (.§', _f) Of course, the bottom plot in Fig. 1.4
shows what happens for only one set of possible initial conditions. Perhaps for
different initial conditions the oscillations don’t damp out? If you try a dif-
ferent set of initial conditions — or lots of different sets of initial conditions —
then I guarantee that you will see the same behaviour. The system will always
undergo damped oscillations and converge to (S ,f ). How can I be so sure,
you might ask?

First of all, by setting the derivatives in (1.5a) and (1.5b) to zero, you can
easily calculate (in terms of the model’s parameters) expressions for S and I
that are positive (hence meaningful) provided Ry > 1. Then, by linearizing
(1.5a) and (1.5b) about the equilibrium and computing the eigenvalues of the
Jacobian matrix for the system, you will find that the equilibrium is locally
stable (the eigenvalues have negative real parts) and approach to the equi-
librium is oscillatory (the eigenvalues have non-zero imaginary parts) [3,7].
But maybe if we are far enough from the equilibrium undamped oscillations
are possible?

No, we can prove rigorously that the equilibrium (S’ , I ) is globally asymp-
totically stable, i.e., all initial conditions with S(0) > 0 and I(0) > 0 yield
solutions that converge onto this equilibrium. One way to see this is to scale
the variables by population size (S — S/N, I — I/N) and consider the
function

V(8,1)=8—S8logS+1—1Ilogl, S,Ie(0,1). (1.6)

With a little work you can show that the time derivative of V' along solutions
of the model, i.e., VV - (dS/dt,dI/dt) with dS/dt and dI/dt taken from (1.1a)
and (1.1b), is strictly negative for each S, I € (0,1). V is therefore a Lyapunov
function [19] for the basic SIR model. The existence of such a V' ensures the
global asymptotic stability of the equilibrium (5’ v ) [19].

Finding a Lyapunov function is generally not straightforward, but func-
tions similar the one given in (1.6) have recently been used to prove global sta-
bility of equilibria in many epidemic models [20]. The upshot for our present
attempt to understand measles dynamics is that this rigorous argument al-
lows us to rule out the basic SIR model: it cannot explain the real oscillations
in measles incidence in New York City from 1928 to 1964, which showed no
evidence of damping out. Back to the drawing board?
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1.7 Demographic Stochasticity

One thing we have glossed over is the presence of noise. While it is true
that for sufficiently large population size N it is reasonable to treat S and
I as continuous variables, it is not true that the true discreteness of the
number of individuals in each compartment has no observable effect. This
was recognized by Bartlett [1] who found that a relatively small amount of
noise was sufficient to prevent the oscillations of the basic SIR model from
damping out. Whether we recast the SIR model as a stochastic process [2,21]
or simply add a small noise term to the deterministic equations, we can
sustain the oscillations that damp out in the bottom panel of Fig. 1.4.

Again, this is progress that has arisen from an important mechanistic
insight. But we are left with another puzzle. If you look carefully at the New
York City measles reports in the bottom right panel of Fig. 1.2 you’ll see that
before about 1945 the epidemics were fairly irregular, whereas after 1945
they followed an almost perfect 2-year cycle. Even with oscillations sustained
by noise, the SIR model cannot explain why the measles epidemic pattern
in New York City changed in this way. Have we missed another important
mechanism?

1.8 Seasonal Forcing

So far, we have been assuming implicitly that the transmission rate § (or,
equivalently, the basic reproduction number R) is simply a constant and,
in particular, that it does not change in time. Let’s think about that as-
sumption. The transmission rate is really the product of the rate of contact
among individuals and the probability that a susceptible individual who is
contacted by an infectious individual will become infected. But the contact
rate is not constant throughout the year. To see that, consider the fact that
in the absence of vaccination the average age at which a person is infected
with measles is about 5 years [3], hence most susceptibles are children. Chil-
dren are in closer contact when school is in session, so the transmission rate
must vary seasonally.
A crude approximation of this seasonality is to assume that 3 varies sinu-
soidally,
B(t) = Bo(1 + acos2mt). (1.7)

Here, [y is the mean transmission rate, « is the amplitude of seasonal varia-
tion and time ¢ is assumed to be measured in years. If, as above, (3 is assumed
to be a periodic function (with period 1year) then the SIR model is said to
be seasonally forced. We can still use Euler’s trick to solve the equations ap-
proximately, and I encourage you to do that using a computer for various
values of the seasonal amplitude o (0 < aw < 1).
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You might think that seasonal forcing is just a minor tweak of the model.
In fact, this forcing has an enormous impact on the epidemic dynamics that
the model predicts. If you've ever studied the forced pendulum then you
might already have some intuition for this. A pendulum with some friction
will exhibit damped oscillations and settle down to an equilibrium. But if
you tap the pendulum with a hammer periodically then it will never settle
down and it can exhibit quite an exotic range of behaviours including chaotic
dynamics [22,23] (oscillations that look random). Similarly complex dynamics
can occur in the seasonally forced SIR model.

Importantly, with seasonal forcing the SIR model displays undamped os-
cillations (and it does this, incidentally, even in the absence of stochasticity).
More than that, for different parameter values, the seasonally forced SIR
model can produce all the different types of oscillatory measles patterns I
have ever seen in real data. So are we done?

No. As noted in the previous section, the observed measles epidemics in
New York City show very clearly that the dynamical pattern changed over
time (bottom right panel of Fig. 1.2) and other significant qualitative changes
have been observed in measles case series in other places [24]. How can we
explain changes over time in the pattern of measles epidemics?

1.9 Slow Changes in Susceptible Recruitment

Once again, the missing ingredient in the model is a changing parameter
value. This time it is the birth rate B, which is not really constant. Birth
rates fluctuate seasonally, but to such a small extent that this effect is negli-
gible. What turns out to be more important is the much slower changes that
occur in the average birth rate over decades. For example, in New York City
the birth rate was much lower during the 1930s (the “Great Depression”)
than after 1945 (the “baby boom”) and this difference accounts for the very
different patterns of measles epidemics in New York City during these two
time periods [24].

A little more analysis of the SIR model is very useful. Intuitively, reduc-
ing the birth rate or increasing the proportion of children vaccinated both
affect the rate at which new susceptible individuals are recruited into the
population. In fact, it is possible to prove that changes in the birth rate have
exactly the same effect on disease dynamics as changes of the same relative
magnitude in the transmission rate or the proportion of the population that
is vaccinated [24]. This equivalence makes it possible to explain historical
case report data for a variety of infectious diseases in many different cities.

Interestingly, it turns out that while most aspects of the dynamics of
measles can be explained by employing seasonal forcing without noise, both
seasonal forcing and stochasticity are essential to explain the dynamics of
other childhood diseases [25].
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1.10 Not the Whole Story

I should emphasize that while the seasonally forced SIR model is adequate
to explain observed incidence patterns for childhood diseases, it is definitely
not adequate for many other diseases that display recurrent epidemics. An
important example is influenza (Fig.1.5). Influenza viruses evolve in ways
that evade the human immune system within a few years, making it possible
for each of us to be infected by influenza many times. Influenza models must
take into account the simultaneous presence in the population of many dif-
ferent strains that interact immunologically and compete for human hosts.
The epidemic pattern shown in Fig. 1.5 bears some similarities to the measles
pattern shown in Fig. 1.2, and the effects of seasonal forcing help explain this
and other influenza patterns to some extent [26]. But we are far from having
a simple model that can account for both the annual incidence patterns of
influenza in humans and the evolution of the virus [27].
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Fig. 1.5 Monthly mortality attributed to pneumonia and influenza (P&I deaths) in the
USA in the twentieth century. The inset plot shows the period 1910-1930 on a much larger
scale, revealing the magnitude of the three peaks that extend beyond the top of the main
panel: 1918-1919, 1919-1920 and 1928-1929. Mortality before 1934 is underestimated. It
is traditional to combine pneumonia and influenza because many deaths categorized as
having pneumonia as the underlying cause are triggered by an influenza infection



16 D.J.D. Earn

1.11 Take Home Message

One thing that you may have picked up from this article is that successful
mathematical modelling of biological systems tends to proceed in steps. We
begin with the simplest sensible model and try to discover everything we can
about it. If the simplest model cannot explain the phenomenon we're trying
to understand then we add more biological detail to the model, and it’s best
to do this in steps because we are then more likely to be able to determine
which biological features have the greatest impact on the behaviour of the
model.

In the particular case of mathematical epidemiology, we are lucky that
medical and public health personnel have painstakingly conducted surveil-
lance of infectious diseases for centuries. This has created an enormous wealth
of valuable data [28] with which to test hypotheses about disease spread using
mathematical models, making this a very exciting subject for research.
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Chapter 2

Compartmental Models
in Epidemiology

Fred Brauer

Abstract We describe and analyze compartmental models for disease trans-
mission. We begin with models for epidemics, showing how to calculate the
basic reproduction number and the final size of the epidemic. We also study
models with multiple compartments, including treatment or isolation of in-
fectives. We then consider models including births and deaths in which there
may be an endemic equilibrium and study the asymptotic stability of equi-
libria. We conclude by studying age of infection models which give a unifying
framework for more complicated compartmental models.

2.1 Introduction

Communicable diseases such as measles, influenza, or tuberculosis, are a fact
of modern life. The mechanism of transmission of infections is now known
for most diseases. Generally, diseases transmitted by viral agents, such as
influenza, measles, rubella (German measles), and chicken pox, confer im-
munity against reinfection, while diseases transmitted by bacteria, such as
tuberculosis, meningitis, and gonorrhea, confer no immunity against rein-
fection. Other diseases, such as malaria, are transmitted not directly from
human to human but by vectors, which are agents (usually insects) who are
infected by humans and who then transmit the disease to humans. The West
Nile virus involves two vectors, mosquitoes and birds. For sexually transmit-
ted diseases with heterosexual transmission each sex acts as a vector and
disease is transmitted back and forth between the sexes.

Department of Mathematics, University of British Columbia, 1984, Mathematics Road,
Vancouver BC, Canada V6T 1Z2 brauer@math.ubc.ca
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We will be concerned both with epidemics which are sudden outbreaks
of a disease, and endemic situations, in which a disease is always present.
Epidemics such as the 2002 outbreak of SARS, the Ebola virus and avian
flu outbreaks are events of concern and interest to many people. The 1918
Spanish flu epidemic caused millions of deaths, and a recurrence of a major
influenza epidemic is a dangerous possibility. An introduction of smallpox is
of considerable concern to government officials dealing with terrorism threats.

An endemic situation is one in which a disease is always present. The preva-
lence and effects of many diseases in less developed countries are probably
less well-known but may be of even more importance. Every year millions of
people die of measles, respiratory infections, diarrhea and other diseases that
are easily treated and not considered dangerous in the Western world. Dis-
eases such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness
are endemic in many parts of the world. The effects of high disease mortality
on mean life span and of disease debilitation and mortality on the economy
in afflicted countries are considerable.

Our goal is to provide an introduction to mathematical epidemiology, in-
cluding the development of mathematical models for the spread of disease
as well as tools for their analysis. Scientific experiments usually are designed
to obtain information and to test hypotheses. Experiments in epidemiology
with controls are often difficult or impossible to design and even if it is pos-
sible to arrange an experiment there are serious ethical questions involved
in withholding treatment from a control group. Sometimes data may be ob-
tained after the fact from reports of epidemics or of endemic disease levels,
but the data may be incomplete or inaccurate. In addition, data may con-
tain enough irregularities to raise serious questions of interpretation, such as
whether there is evidence of chaotic behaviour [12]. Hence, parameter esti-
mation and model fitting are very difficult. These issues raise the question of
whether mathematical modeling in epidemiology is of value.

Our response is that mathematical modeling in epidemiology provides un-
derstanding of the underlying mechanisms that influence the spread of disease
and, in the process, it suggests control strategies. In fact, models often iden-
tify behaviours that are unclear in experimental data — often because data
are non-reproducible and the number of data points is limited and subject to
errors in measurement. For example, one of the fundamental results in math-
ematical epidemiology is that most mathematical epidemic models, including
those that include a high degree of heterogeneity, usually exhibit “threshold”
behaviour. In epidemiological terms this can be stated as follows: If the av-
erage number of secondary infections caused by an average infective, called
the basic reproduction number, is less than one a disease will die out, while
if it exceeds one there will be an epidemic. This broad principle, consistent
with observations and quantified via epidemiological models, has been con-
sistently used to estimate the effectiveness of vaccination policies and the
likelihood that a disease may be eliminated or eradicated. Hence, even if it
is not possible to verify hypotheses accurately, agreement with hypotheses of



2 Compartmental Models 21

a qualitative nature is often valuable. Expressions for the basic reproduction
number for HIV in various populations have been used to test the possible
effectiveness of vaccines that may provide temporary protection by reducing
either HIV-infectiousness or susceptibility to HIV. Models are used to esti-
mate how widespread a vaccination plan must be to prevent or reduce the
spread of HIV.

In the mathematical modeling of disease transmission, as in most other
areas of mathematical modeling, there is always a trade-off between simple
models, which omit most details and are designed only to highlight general
qualitative behaviour, and detailed models, usually designed for specific sit-
uations including short-term quantitative predictions. Detailed models are
generally difficult or impossible to solve analytically and hence their useful-
ness for theoretical purposes is limited, although their strategic value may
be high. In these notes we describe simple models in order to establish broad
principles. Furthermore, these simple models have additional value as they
are the building blocks of models that include more detailed structure.

Many of the early developments in the mathematical modeling of commu-
nicable diseases are due to public health physicians. The first known result in
mathematical epidemiology is a defense of the practice of inoculation against
smallpox in 1760 by Daniel Bernoulli, a member of a famous family of math-
ematicians (eight spread over three generations) who had been trained as a
physician. The first contributions to modern mathematical epidemiology are
due to P.D. En’ko between 1873 and 1894 [11], and the foundations of the
entire approach to epidemiology based on compartmental models were laid
by public health physicians such as Sir Ross, R.A., W.H. Hamer, A.G. McK-
endrick and W.O. Kermack between 1900 and 1935, along with important
contributions from a statistical perspective by J. Brownlee. A particularly
instructive example is the work of Ross on malaria. Dr. Ross was awarded
the second Nobel Prize in Medicine for his demonstration of the dynamics of
the transmission of malaria between mosquitoes and humans. Although his
work received immediate acceptance in the medical community, his conclu-
sion that malaria could be controlled by controlling mosquitoes was dismissed
on the grounds that it would be impossible to rid a region of mosquitoes com-
pletely and that in any case mosquitoes would soon reinvade the region. After
Ross formulated a mathematical model that predicted that malaria outbreaks
could be avoided if the mosquito population could be reduced below a critical
threshold level, field trials supported his conclusions and led to sometimes
brilliant successes in malaria control. However, the Garki project provides a
dramatic counterexample. This project worked to eradicate malaria from a
region temporarily. However, people who have recovered from an attack of
malaria have a temporary immunity against reinfection. Thus elimination of
malaria from a region leaves the inhabitants of this region without immunity
when the campaign ends, and the result can be a serious outbreak of malaria.

We will begin with an introduction to epidemic models. Next, we will
incorporate demographic effects into the models to explore endemic states,
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and finally we will describe models with infectivity depending on the age
of infection. Our approach will be qualitative. By this we mean that rather
than attempting to find explicit solutions of the systems of differential equa-
tions which will form our models we will be concerned with the asymptotic
behaviour, that is, the behaviour as ¢t — oo of solutions.

This material is meant to be an introduction to the study of compartmental
models in mathematical epidemiology. More advanced material may be found
in many other sources, including Chaps. 5-9 of this volume, the case studies
in Chaps. 11-14, and [2,4-6,9,17,29, 35].

2.1.1 Simple Epidemic Models

An epidemic, which acts on a short temporal scale, may be described as a
sudden outbreak of a disease that infects a substantial portion of the popula-
tion in a region before it disappears. Epidemics usually leave many members
untouched. Often these attacks recur with intervals of several years between
outbreaks, possibly diminishing in severity as populations develop some im-
munity. This is an important aspect of the connection between epidemics and
disease evolution.

The Book of Exodus describes the plagues that Moses brought down upon
Egypt, and there are several other biblical descriptions of epidemic outbreaks.
Descriptions of epidemics in ancient and medieval times frequently used the
term “plague” because of a general belief that epidemics represented divine
retribution for sinful living. More recently some have described AIDS as pun-
ishment for sinful activities. Such views have often hampered or delayed at-
tempts to control this modern epidemic .

There are many biblical references to diseases as historical influences, such
as the decision of Sennacherib, the king of Assyria, to abandon his attempt to
capture Jerusalem about 700 BC because of the illness of his soldiers (Isaiah
37, 36-38). The fall of empires has been attributed directly or indirectly to
epidemic diseases. In the second century AD the so-called Antonine plagues
(possibly measles and smallpox) invaded the Roman Empire, causing drastic
population reductions and economic hardships. These led to disintegration
of the empire because of disorganization, which facilitated invasions of bar-
barians. The Han empire in China collapsed in the third century AD after
a very similar sequence of events. The defeat of a population of millions of
Aztecs by Cortez and his 600 followers can be explained in part by a small-
pox epidemic that devastated the Aztecs but had almost no effect on the
invading Spaniards thanks to their built-in immunities. The Aztecs were not
only weakened by disease but also confounded by what they interpreted as
a divine force favoring the invaders. Smallpox then spread southward to the
Incas in Peru and was an important factor in the success of Pizarro’s invasion
a few years later. Smallpox was followed by other diseases such as measles
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and diphtheria imported from Europe to North America. In some regions,
the indigenous populations were reduced to one tenth of their previous levels
by these diseases. Between 1519 and 1530 the Indian population of Mexico
was reduced from 30 million to 3 million.

The Black Death spread from Asia throughout Europe in several waves
during the fourteenth century, beginning in 1346, and is estimated to have
caused the death of as much as one third of the population of Europe between
1346 and 1350. The disease recurred regularly in various parts of Europe
for more than 300 years, notably as the Great Plague of London of 1665—
1666. It then gradually withdrew from Europe. As the plague struck some
regions harshly while avoiding others, it had a profound effect on political
and economic developments in medieval times. In the last bubonic plague
epidemic in France (1720-1722), half the population of Marseilles, 60% of
the population in nearby Toulon, 44% of the population of Arles and 30%
of the population of Aix and Avignon died, but the epidemic did not spread
beyond Provence.

The historian W.H. McNeill argues, especially in his book [26], that the
spread of communicable diseases has frequently been an important influence
in history. For example, there was a sharp population increase throughout the
world in the eighteenth century; the population of China increased from 150
million in 1760 to 313 million in 1794 and the population of Europe increased
from 118 million in 1700 to 187 million in 1800. There were many factors in-
volved in this increase, including changes in marriage age and technological
improvements leading to increased food supplies, but these factors are not
sufficient to explain the increase. Demographic studies indicate that a satis-
factory explanation requires recognition of a decrease in the mortality caused
by periodic epidemic infections. This decrease came about partly through
improvements in medicine, but a more important influence was probably the
fact that more people developed immunities against infection as increased
travel intensified the circulation and co-circulation of diseases.

Perhaps the first epidemic to be examined from a modeling point of view
was the Great Plague in London (1665-1666). The plague was one of a se-
quence of attacks beginning in the year 1346 of what came to be known as
the Black Death. It is now identified as the bubonic plague, which had ac-
tually invaded Europe as early as the sixth century during the reign of the
Emperor Justinian of the Roman Empire and continued for more than three
centuries after the Black Death. The Great Plague killed about one sixth of
the population of London. One of the few “benefits” of the plague was that it
caused Cambridge University to be closed for two years. Isaac Newton, who
was a student at Cambridge at the time, was sent to his home and while “in
exile” he had one of the most productive scientific periods of any human in
history. He discovered his law of gravitation, among other things, during this
period.

The characteristic features of the Great Plague were that it appeared
quite suddenly, grew in intensity, and then disappeared, leaving part of the
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population untouched. The same features have been observed in many other
epidemics, both of fatal diseases and of diseases whose victims recovered with
immunity against reinfection.

In the nineteenth century recurrent invasions of cholera killed millions in
India. The influenza epidemic of 1918-1919 killed more than 20 million people
overall, more than half a million in the United States. One of the questions
that first attracted the attention of scientists interested in the study of the
spread of communicable diseases was why diseases would suddenly develop in
a community and then disappear just as suddenly without infecting the entire
community. One of the early triumphs of mathematical epidemiology [21] was
the formulation of a simple model that predicted behaviour very similar to
the behaviour observed in countless epidemics. The Kermack—McKendrick
model is a compartmental model based on relatively simple assumptions on
the rates of flow between different classes of members of the population.

There are many questions of interest to public health physicians confronted
with a possible epidemic. For example, how severe will an epidemic be? This
question may be interpreted in a variety of ways. For example, how many
individuals will be affected altogether and thus require treatment? What is
the maximum number of people needing care at any particular time? How
long will the epidemic last? How much good would quarantine or isolation of
victims do in reducing the severity of the epidemic? These are some of the
questions we would like to study with the aid of models.

2.1.2 The Kermack—McKendrick Model

We formulate our descriptions as compartmental models, with the population
under study being divided into compartments and with assumptions about
the nature and time rate of transfer from one compartment to another. Dis-
eases that confer immunity have a different compartmental structure from
diseases without immunity. We will use the terminology SIR to describe a
disease which confers immunity against re-infection, to indicate that the pas-
sage of individuals is from the susceptible class S to the infective class I to
the removed class R. On the other hand, we will use the terminology SIS
to describe a disease with no immunity against re-infection, to indicate that
the passage of individuals is from the susceptible class to the infective class
and then back to the susceptible class. Other possibilities include SETR and
SFEIS models, with an exposed period between being infected and becom-
ing infective, and STR.S models, with temporary immunity on recovery from
infection.

The independent variable in our compartmental models is the time ¢ and
the rates of transfer between compartments are expressed mathematically as
derivatives with respect to time of the sizes of the compartments, and as a
result our models are formulated initially as differential equations. Possible
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generalizations, which we shall not explore in these notes, include models in
which the rates of transfer depend on the sizes of compartments over the past
as well as at the instant of transfer, leading to more general types of func-
tional equations, such as differential-difference equations, integral equations,
or integro-differential equations.

In order to model such an epidemic we divide the population being studied
into three classes labeled S, I, and R. We let S(¢) denote the number of indi-
viduals who are susceptible to the disease, that is, who are not (yet) infected
at time ¢. I(t) denotes the number of infected individuals, assumed infectious
and able to spread the disease by contact with susceptibles. R(t) denotes the
number of individuals who have been infected and then removed from the
possibility of being infected again or of spreading infection. Removal is car-
ried out either through isolation from the rest of the population or through
immunization against infection or through recovery from the disease with full
immunity against reinfection or through death caused by the disease. These
characterizations of removed members are different from an epidemiological
perspective but are often equivalent from a modeling point of view which
takes into account only the state of an individual with respect to the disease.

In formulating models in terms of the derivatives of the sizes of each com-
partment we are assuming that the number of members in a compartment
is a differentiable function of time. This may be a reasonable approximation
if there are many members in a compartment, but it is certainly suspect
otherwise. In formulating models as differential equations, we are assuming
that the epidemic process is deterministic, that is, that the behaviour of a
population is determined completely by its history and by the rules which
describe the model. In other chapters of this volume Linda Allen and Ping
Yan describe the study of stochastic models in which probabilistic concepts
are used and in which there is a distribution of possible behaviours. The de-
veloping study of network science, introduced in Chap.4 of this volume and
described in [28,30,33], is another approach.

The basic compartmental models to describe the transmission of commu-
nicable diseases are contained in a sequence of three papers by W.0O. Ker-
mack and A.G. McKendrick in 1927, 1932, and 1933 [21-23]. The first of
these papers described epidemic models. What is often called the Kermack—
McKendrick epidemic model is actually a special case of the general model
introduced in this paper. The general model included dependence on age of
infection, that is, the time since becoming infected. Curiously, Kermack and
McKendrick did not explore this situation further in their later models which
included demographic effects. Age of infection models have become important
in the study of HIV/AIDS, and we will return to them in the last section of
this chapter.

The special case of the model proposed by Kermack and McKendrick in
1927 which is the starting point for our study of epidemic models is
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S’ = —pSI
I' = BSI —al
R =al.

A flow chart is shown in Fig. 2.1. It is based on the following assumptions:

Fig. 2.1 Flow chart for the STR model

(1) An average member of the population makes contact sufficient to trans-
mit infection with SN others per unit time, where N represents total
population size (mass action incidence) .

(2) Infectives leave the infective class at rate a per unit time.

(3) There is no entry into or departure from the population, except possibly
through death from the disease.

According to (1), since the probability that a random contact by an in-
fective is with a susceptible, who can then transmit infection, is S/N, the
number of new infections in unit time per infective is (8N)(S/N), giving
a rate of new infections (BN)(S/N)I = [SI. Alternately, we may argue
that for a contact by a susceptible the probability that this contact is with
an infective is I/N and thus the rate of new infections per susceptible is
(BN)(I/N), giving a rate of new infections (8N)(I/N)S = SSI. Note that
both approaches give the same rate of new infections; there are situations
which we shall encounter where one is more appropriate than the other. We
need not give an algebraic expression for N since it cancels out of the final
model, but we should note that for a disease that is fatal to all who are in-
fected N = S+1; while, for a disease from which all infected members recover
with immunity, N = S+ I + R. Later, we will allow the possibility that some
infectives recover while others die of the disease. The hypothesis (3) really
says that the time scale of the disease is much faster than the time scale
of births and deaths so that demographic effects on the population may be
ignored. An alternative view is that we are only interested in studying the
dynamics of a single epidemic outbreak. In later sections we shall consider
models that are the same as those considered in this first section except for
the incorporation of demographic effects (births and deaths) along with the
corresponding epidemiological assumptions.



2 Compartmental Models 27

The assumption (2) requires a fuller mathematical explanation, since the
assumption of a recovery rate proportional to the number of infectives has
no clear epidemiological meaning. We consider the “cohort” of members who
were all infected at one time and let u(s) denote the number of these who
are still infective s time units after having been infected. If a fraction « of
these leave the infective class in unit time then

/
u = —au,

and the solution of this elementary differential equation is

Thus, the fraction of infectives remaining infective s time units after having
become infective is e~ %, so that the length of the infective period is dis-
tributed exponentially with mean fooo e *%ds = 1/a, and this is what (2)
really assumes.

The assumptions of a rate of contacts proportional to population size IV
with constant of proportionality 3, and of an exponentially distributed recov-
ery rate are unrealistically simple. More general models can be constructed
and analyzed, but our goal here is to show what may be deduced from ex-
tremely simple models. It will turn out that many more realistic models
exhibit very similar qualitative behaviours.

In our model R is determined once S and I are known, and we can drop
the R equation from our model, leaving the system of two equations

S = -B3SI (2.1)
I'=(BS—a)l.

We are unable to solve this system analytically but we learn a great deal
about the behaviour of its solutions by the following qualitative approach.
To begin, we remark that the model makes sense only so long as S(t) and I(t)
remain non-negative. Thus if either S(¢) or I(t) reaches zero we consider the
system to have terminated. We observe that S’ < 0 for all ¢ and I’ > 0 if and
only if S > /8. Thus [ increases so long as S > «//3 but since S decreases for
all ¢, I ultimately decreases and approaches zero. If S(0) < o/, I decreases
to zero (no epidemic), while if S(0) > «/g8, I first increases to a maximum
attained when S = a/f and then decreases to zero (epidemic). We think of
introducing a small number of infectives into a population of susceptibles and
ask whether there will be an epidemic. The quantity 55(0)/« is a threshold
quantity, called the basic reproduction number and denoted by Ry, which
determines whether there is an epidemic or not. If Rg < 1 the infection dies
out, while if Ry > 1 there is an epidemic.

The definition of the basic reproduction number Rq is that the basic re-
production number is the number of secondary infections caused by a single
infective introduced into a wholly susceptible population of size K ~ S(0)
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over the course of the infection of this single infective. In this situation, an
infective makes K contacts in unit time, all of which are with susceptibles
and thus produce new infections, and the mean infective period is 1/«; thus
the basic reproduction number is actually SK/« rather than 35(0)/a.
Instead of trying to solve for S and I as functions of ¢, we divide the two
equations of the model to give
I' dl  (BS—a)l o

____—:_1 -
S T dS T —BSI t 35

and integrate to find the orbits (curves in the (S, I)-plane, or phase plane)

I:fS+%logS+c, (2.2)

with ¢ an arbitrary constant of integration. Here, we are using log to denote
the natural logarithm. Another way to describe the orbits is to define the
function o

V(S,I)=8+1- BlogS

and note that each orbit is a curve given implicitly by the equation V' (S, I) = ¢
for some choice of the constant c. The constant ¢ is determined by the ini-
tial values S(0), I(0) of S and I, respectively, because ¢ = V(5(0),1(0)) =
S(0)+1(0)—alog S(0)/5. Note that the maximum value of I on each of these
orbits is attained when S = a/f. Note also that since none of these orbits
reaches the I - axis, S > 0 for all times. In particular, So, = lim;_.~, S(¢) > 0,
which implies that part of the population escapes infection.

Let us think of a population of size K into which a small number of
infectives is introduced, so that Sy ~ K, Iy ~ 0, and Ry = SK/a. If we use
the fact that lim; o I(¢t) = 0, and let Sy = lim;_ S(t), then the relation
V(So,In) = V(Se,0) gives

(0% (0%
K——logSy =5, — =logS ,
3 g 20 3 g

from which we obtain an expression for 3/« in terms of the measurable
quantities Sy and S, namely

B (logSy—logS)

« K — S,

We may rewrite this in terms of Ry as the final size relation

log Sy —log Soo = Ro [1 — S%] . (2.3)

In particular, since the right side of (2.3) is finite, the left side is also finite,
and this shows that So, > 0.
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It is generally difficult to estimate the contact rate § which depends on
the particular disease being studied but may also depend on social and be-
havioural factors. The quantities Sy and S, may be estimated by serological
studies (measurements of immune responses in blood samples) before and
after an epidemic, and from these data the basic reproduction number Ry
may be estimated by using (2.3). This estimate, however, is a retrospective
one which can be determined only after the epidemic has run its course.

Initially, the number of infectives grows exponentially because the equation
for I may be approximated by

I'=(BK — a)I
and the initial growth rate is
r=0K—-—a=a(Rg—1).

This initial growth rate » may be determined experimentally when an epi-
demic begins. Then since K and o may be measured § may be calculated as

4+«

g=""

However, because of incomplete data and under-reporting of cases this esti-
mate may not be very accurate. This inaccuracy is even more pronounced for
an outbreak of a previously unknown disease, where early cases are likely to
be misdiagnosed.

The maximum number of infectives at any time is the number of infectives
when the derivative of I is zero, that is, when S = «/f. This maximum is
given by
a a_ @
B g B
obtained by substituting S = «/3, I = Lyq, into (2.2).

Imam = SQ + I() — log SO — log (24)

a
ﬂ )

Example. (The Great Plague in Eyam) The village of Eyam near Sheffield,
England suffered an outbreak of bubonic plague in 16651666 the source of
which is generally believed to be the Great Plague of London. The Eyam
plague was survived by only 83 of an initial population of 350 persons. As
detailed records were preserved and as the community was persuaded to
quarantine itself to try to prevent the spread of disease to other communities,
the disease in Eyam has been used as a case study for modeling [31]. Detailed
examination of the data indicates that there were actually two outbreaks
of which the first was relatively mild. Thus we shall try to fit the model
(2.1) over the period from mid-May to mid-October 1666, measuring time in
months with an initial population of seven infectives and 254 susceptibles,
and a final population of 83. Values of susceptibles and infectives in Eyam are
given in [31] for various dates, beginning with S(0) = 254, 1(0) = 7, shown
in Table 2.1.
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Fig. 2.2 The S-I plane

Table 2.1 Eyam Plague data

Date (1666) |Susceptibles|Infectives
TJuly 3/4 235 145
July 19 201 22
August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 4/5 Unknown |Unknown
October 20 83 0

The relation (2.3) with Sy = 254, Iy = 7, Soo = 83 gives /a = 6.54 x
1073, a/ = 153. The infective period was 11 days, or 0.3667 month, so that
a = 2.73. Then 8 = 0.0178. The relation (2.4) gives an estimate of 30.4 for
the maximum number of infectives. We use the values obtained here for the
parameters § and « in the model (2.1) for simulations of both the phase
plane, the (S, I)-plane, and for graphs of S and I as functions of ¢ (Figs. 2.2,
2.3, and 2.4). Figure 2.5 plots these data points together with the phase
portrait given in Fig.2.2 for the model (2.1).

The actual data for the Eyam epidemic are remarkably close to the predic-
tions of this very simple model. However, the model is really too good to be
true. Our model assumes that infection is transmitted directly between peo-
ple. While this is possible, bubonic plague is transmitted mainly by rat fleas.
When an infected rat is bitten by a flea, the flea becomes extremely hungry
and bites the host rat repeatedly, spreading the infection in the rat. When
the host rat dies its fleas move on to other rats, spreading the disease further.
As the number of available rats decreases the fleas move to human hosts, and
this is how plague starts in a human population (although the second phase
of the epidemic may have been the pneumonic form of bubonic plague, which
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can be spread from person to person). One of the main reasons for the spread
of plague from Asia into Europe was the passage of many trading ships; in
medieval times ships were invariably infested with rats. An accurate model
of plague transmission would have to include flea and rat populations, as well
as movement in space. Such a model would be extremely complicated and
its predictions might well not be any closer to observations than our simple
unrealistic model. In [31] a stochastic model was also used to fit the data,
but the fit was rather poorer than the fit for the simple deterministic model
(2.1).
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Fig. 2.5 The S-I plane, model and data

In the village of Eyam the rector persuaded the entire community to quar-
antine itself to prevent the spread of disease to other communities. This policy
actually increased the infection rate in the village by keeping fleas, rats, and
people in close contact with one another, and the mortality rate from bubonic
plague was much higher in Eyam than in London. Further, the quarantine
could do nothing to prevent the travel of rats and thus did little to prevent the
spread of disease to other communities. One message this suggests to math-
ematical modelers is that control strategies based on false models may be
harmful, and it is essential to distinguish between assumptions that simplify
but do not alter the predicted effects substantially, and wrong assumptions
which make an important difference.

2.1.3 Kermack—McKendrick Models with General
Contact Rates

The assumption in the model (2.1) of a rate of contacts per infective which
is proportional to population size IV, called mass action incidence or bilinear
incidence, was used in all the early epidemic models. However, it is quite
unrealistic, except possibly in the early stages of an epidemic in a population
of moderate size. It is more realistic to assume a contact rate which is a
non-increasing function of total population size. For example, a situation in
which the number of contacts per infective in unit time is constant, called
standard incidence, is a more accurate description for sexually transmitted
diseases.
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We generalize the model (2.1) by replacing the assumption (1) by the
assumption that an average member of the population makes C'(N) contacts
in unit time with C’'(N) > 0 [7,10], and we define

It is reasonable to assume 3'(N) < 0 to express the idea of saturation in the
number of contacts. Then mass action incidence corresponds to the choice
C(N) = BN, and standard incidence corresponds to the choice C(N) = A.
The assumptions C(N) = NG(N),C’(N) > 0 imply that

B(N)+ NB'(N)>0. (2.5)

Some epidemic models [10] have used a Michaelis—Menten type of interac-

tion of the form
alN

C(N) = .

(W) 1+bN

Another form based on a mechanistic derivation for pair formation [14] leads
to an expression of the form

alN
" 14+bN++/1+20N

Data for diseases transmitted by contact in cities of moderate size [25] sug-
gests that data fits the assumption of a form

C(N)

C(N) = AN

with a = 0.05 quite well. All of these forms satisfy the conditions C'(N) >
0,8'(N) <0.

Because the total population size is now present in the model we must
include an equation for total population size in the model. This forces us
to make a distinction between members of the population who die of the
disease and members of the population who recover with immunity against
reinfection. We assume that a fraction f of the al members leaving the
infective class at time ¢ recover and the remaining fraction (1 — f) die of
disease. We use S, I, and N as variables, with N = S+ I + R. We now obtain
a three-dimensional model

S' = —B(N)SI

I' = B(N)SI — al (2.6)
N =—-(1- f)al .

We also have the equation R' = —fal, but we need not include it in the
model since R is determined when S, I, and N are known. We should note
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that if f =1 the total population size remains equal to the constant K, and
the model (2.6) reduces to the simpler model (2.1) with 3 replaced by the
constant G(K).

We wish to show that the model (2.6) has the same qualitative behaviour
as the model (2.1), namely that there is a basic reproduction number which
distinguishes between disappearance of the disease and an epidemic outbreak,
and that some members of the population are left untouched when the epi-
demic passes. These two properties are the central features of all epidemic
models.

For the model (2.6) the basic reproduction number is given by

_ KB(K)

Ro

because a single infective introduced into a wholly susceptible population
makes C(K) = KpB(K) contacts in unit time, all of which are with sus-
ceptibles and thus produce new infections, and the mean infective period is
1/a. In addition to the basic reproduction number Ry there is also a time-
dependent running reproduction number which we call R*, representing the
number of secondary infections caused by a single individual in the popula-
tion who becomes infective at time ¢. In this situation, an infective makes
C(N) = NB(N) contacts in unit time and a fraction S/N are with suscep-
tibles and thus produce new infections. Thus it is easy to see that for the
model (2.6) the running reproduction number is given by

e _ SBIY)
«

If R* < 1 for all large t, the epidemic will pass. We may calculate the rate of
change of the running reproduction number with respect to time, using (2.6)
and (2.5) to find that

i _ STRBIN) + S@B(N)N'(E) _ (=B(N))*SI — Sa(l - f)B'(N)
dt « a '
< BO0ST Ty (= fa

Thus £R* < 0if NB(N) > a(1—f),or R* > (1—f)S/N. This means that R*
decreases whenever R* > 1. Thus if R* < 1 for t =T then R* < 1 fort > T.
If Ro > 1 then I'(0) = a(Ro — 1)1(0) > 0, and an epidemic begins. However,
R* decreases until it is less than 1 and then remains less than 1. Thus the
epidemic will pass. If Ry < 1 then I'(0) = a(Ro — 1)I(0) < 0,R* < 1 for all
t, and there is no epidemic.

From (2.6) we obtain
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S'+1I' = —al
N = —a(l - f)I.

Integration of these equations from 0 to t gives
t

S(t)+I(t)—S(0)—1(0) = —a/ 1(s)ds (2.7)
0

N(t)— N(0) = —a(1 —f)/0 I(s)ds .

When we combine these two equations, eliminating the integral expression,
and use N(0) = S(0) 4+ 1(0) = K, we obtain

K—=N(t)=(1-f)[K=5) 1)

If we let t — oo, S(t) and N(t) decrease monotonically to limits So, and N
respectively and I(t) — 0. This gives the relation

K~ Noo = (1— f)IK — Sx] . (2.8)

In this equation, K — N, is the change in population size, which is the number
of disease deaths over the course of the epidemic, while K — S, is the change
in the number of susceptibles, which is the number of disease cases over the
course of the epidemic. In this model, (2.8) is obvious, but we shall see in
a more general setting how to derive an analogous equation from which we
can calculate an average disease mortality. Equation (2.8) generalizes to the
infection age epidemic model of Kermack and McKendrick.

If we use the same approach as was used for (2.1) to show that S, > 0,

we obtain

dI @

-
dsS SB(N)
and we are unable to proceed because of the dependence on N. However, we
may use a different approach to obtain the desired result. We assume that
(5(0) is finite, thus ruling out standard incidence. If we let ¢ — oo in the

second equation of (2.7) we obtain
a/ I(s)ds = S(0) + 1(0) — Sa = K — Sac.
0
The first equation of (2.6) may be written as

S() _
o), = PVENIE).

Since

B(N) < B(0),
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integration from 0 to oo gives
o 5 = [T sy
oo 0

< B(0) / 1)t

_ BO)K - Sx)
aK '

Since the right side of this inequality is finite, the left side is also finite and
this establishes that S, > 0.
In addition, if we use the same integration together with the inequality

B(N) = B(K),

we obtain a final size inequality
o 5 = [T syt
oo 0

> B(K) /OOO I(8)dt = Ry [1 - 5;?] .

If 6(N) — oo as N — 0 we must use a different approach to analyze the
limiting behaviour. It is possible to show that S, = 0 is possible only if
N — 0 and fOK B(N)dN diverges, and this is possible only if f = 0, that is,
only if all infectives ide of disease. The assumption that 3(IV) is unbounded
as N — 0 is biologically unreasonable. In particular, standard incidence is
not realistic for small population sizes. A more realistic assumption would
be that the number of contacts per infective in unit time is linear for small
population size and saturates for larger population sizes, which rules out the
possibility that the epidemic sweeps through the entire population.

2.1.4 Ezxposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before
these potential infectives can transmit infection. If the exposed period is short
it is often neglected in modeling. A longer exposed period could perhaps lead
to significantly different model predictions, and we need to show that this is
not the case. To incorporate an exponentially distributed exposed period with
mean exposed period 1/x we add an exposed class E and use compartments
S, E, I, R and total population size N = S+ E+1+ R to give a generalization
of the epidemic model (2.6).
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S" = —B(N)ST
E' = B3(N)SI — kE (2.9)
I' =kE —al

N =—(1- f)al.

We also have the equation R' = —fal, but we need not include it in the
model since R is determined when S,I, and N are known. A flow chart is
shown in Fig. 2.6.

Fig. 2.6 Flow chart for the SEIR model

The analysis of this model is the same as the analysis of (2.6), but with I
replaced by E + I. That is, instead of using the number of infectives as one
of the variables we use the total number of infected members, whether or not
they are capable of transmitting infection.

Some diseases have an asymptomatic stage in which there is some infec-
tivity rather than an exposed period. This may be modeled by assuming
infectivity reduced by a factor e during an exposed period. A calculation of
the rate of new infections per susceptible leads to a model

S' = —B(N)S(I +epE)
E'=B(N)S(I +egE) — kE (2.10)
I'=kE —al .

For this model

Ry — KBO((K) e, KﬂéK) .

There is a final size relation like (2.3) for the model (2.9). Integration of
the sum of the first two equations of (2.9) from 0 to oo gives

K-S« :n/ E(s)ds
0

and division of the first equation of (2.9) by S followed by integration from
0 to oo gives
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log Sp — log Soc = /OO B(N(s))[I(s) + erpE(s)ds
0

> B(K) / lU(s) + enE(s)ds

— e+ 5] [ Bs)ds
Soo
5]

The same integration using S(N) < [(0) < oo shows as in the previous
section that S, > 0.

2.1.5 Treatment Models

One form of treatment that is possible for some diseases is vaccination to
protect against infection before the beginning of an epidemic. For example,
this approach is commonly used for protection against annual influenza out-
breaks. A simple way to model this would be to reduce the total population
size by the fraction of the population protected against infection. However,
in reality such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. To model this, it would be necessary to divide the population into
two groups with different model parameters and to make some assumptions
about the mixing between the two groups. We will not explore such more
complicated models here.

If there is a treatment for infection once a person has been infected, we
model this by supposing that a fraction v per unit time of infectives is selected
for treatment, and that treatment reduces infectivity by a fraction J. Suppose
that the rate of removal from the treated class is 7. The SIT R model, where
T is the treatment class, is given by

S' = —B(N)S[I + 6T

I' = B(N)S[I +6T) — (a+ )1 (2.11)
T =~I —nT

N'=—(1 - f)al — (1 — fr)yl.

A flow chart is shown in Fig. 2.7.
It is not difficult to prove, much as was done for the model (2.1) that

Seo = tlim S(t) >0, tlim I(t) = tlim T(t) =0.
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)
()

Fig. 2.7 Flow chart for the SIT' R model

In order to calculate the basic reproduction number, we may argue that an
infective in a totally susceptible population causes K new infections in unit
time, and the mean time spent in the infective compartment is 1/(a+ ). In
addition, a fraction v/(a++) of infectives are treated. While in the treatment
stage the number of new infections caused in unit time is 6 5K, and the mean
time in the treatment class is 1/n. Thus Ry is

K SOK
Ro= DK, o 9K (2.12)
aty  aty 7

It is also possible to establish the final size relation (2.3) by means similar
to those used for the simple model (2.1). We integrate the first equation of
(2.11) to obtain

tog 520 = [ BN elate) + o eat
> B(K) / [1(t) + 0T (1)) dt.

Integration of the third equation of (2.11) gives

7/000 I(t)dt = n/ooo T(t)dt.

Integration of the sum of the first two equations of (2.11) gives

K-S = (a+7)/0001(t)dt.

Combination of these three equations and (2.12) gives
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S(0)

log 57

K

If 3 is constant, this relation is an equality, and is the same as (2.3).

2.

1.6 An Epidemic Management
(Quarantine-Isolation) Model

An actual epidemic differs considerably from the idealized models (2.1) or

(2.

6), as was shown by the SARS epidemic of 2002-3. Some notable differences

are:

1.

As we have seen in the preceding section, at the beginning of an epi-
demic the number of infectives is small and a deterministic model, which
presupposes enough infectives to allow homogeneous mixing, is inappro-
priate.

. When it is realized that an epidemic has begun, individuals are likely to

modify their behaviour by avoiding crowds to reduce their contacts and
by being more careful about hygiene to reduce the risk that a contact
will produce infection.

. If a vaccine is available for the disease which has broken out, public

health measures will include vaccination of part of the population. Various
vaccination strategies are possible, including vaccination of health care
workers and other first line responders to the epidemic, vaccination of
members of the population who have been in contact with diagnosed
infectives, or vaccination of members of the population who live in close
proximity to diagnosed infectives.

Diagnosed infectives may be hospitalized, both for treatment and to iso-
late them from the rest of the population.

. Contact tracing of diagnosed infectives may identify people at risk of

becoming infective, who may be quarantined (instructed to remain at
home and avoid contacts) and monitored so that they may be isolated
immediately if and when they become infective.

In some diseases, exposed members who have not yet developed symp-
toms may already be infective, and this would require inclusion in the
model of new infections caused by contacts between susceptibles and
asymptomatic infectives from the exposed class.

Isolation may be imperfect; in-hospital transmission of infection was a
major problem in the SARS epidemic.

In the SARS epidemic of 2002—2003 in-hospital transmission of disease

from patients to health care workers or visitors because of imperfect isolation
accounted for many of the cases. This points to an essential heterogeneity in
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disease transmission which must be included whenever there is any risk of
such transmission.

All these generalizations have been considered in studies of the SARS epi-
demic of 2002-3. While the ideas were suggested in SARS modelling, they are
in fact relevant to any epidemic. One beneficial effect of the SARS epidemic
has been to draw attention to epidemic modelling which may be of great
value in coping with future epidemics.

If a vaccine is available for a disease which threatens an epidemic outbreak,
a vaccinated class which is protected at least partially against infection should
be included in a model. While this is not relevant for an outbreak of a new
disease, it would be an important aspect to be considered in modelling an
influenza epidemic or a bioterrorist outbreak of smallpox.

For an outbreak of a new disease, where no vaccine is available, isolation
and quarantine are the only control measures available. Let us formulate a
model for an epidemic once control measures have been started. Thus, we
assume that an epidemic has started, but that the number of infectives is
small and almost all members of the population are still susceptible.

We formulate a model to describe the course of an epidemic when control
measures are begun under the assumptions:

1. Exposed members may be infective with infectivity reduced by a factor
€R, 0<ep<l1.

2. Exposed members who are not isolated become infective at rate k.

3. We introduce a class @ of quarantined members and a class J of isolated
members.

4. Exposed members are quarantined at a proportional rate 1 in unit time
(in practice, a quarantine will also be applied to many susceptibles, but
we ignore this in the model). Quarantine is not perfect, but reduces the
contact rate by a factor . The effect of this assumption is that some
susceptibles make fewer contacts than the model assumes.

5. There may be transmission of disease by isolated members, with an in-
fectivity factor of ;.

6. Infectives are diagnosed at a proportional rate v, per unit time and iso-
lated. In addition, quarantined members are monitored and when they
develop symptoms at rate ko they are isolated immediately.

7. Infectives leave the infective class at rate oy and a fraction f; of these
recover, and isolated members leave the isolated class at rate as with a
fraction f recovering.

These assumptions lead to the SEQIJR model [13]
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S"=—B(N)S[egE +ecpeqQ + 1 +¢e,J]

E' = B(N)S[egE 4+ epeqQ + I +e,J) — (k1 + )E

Q' =mE — r2Q (2.13)
I' =1 E — (o1 + 7)1

k@ + 2l — agJ

N =—(1— fi)ail — (1= fo)asJ .

S
|

Here, we have used an equation for N to replace the equation
R' = fiail + frasd .
The model before control measures are begun is the special case
Vi=m=ky=ay=fo=0, Q=J=0

of (2.13). It is the same as (2.10).

We define the control reproduction number R. to be the number of sec-
ondary infections caused by a single infective in a population consisting essen-
tially only of susceptibles with the control measures in place. It is analogous
to the basic reproduction number but instead of describing the very begin-
ning of the disease outbreak it describes the beginning of the recognition
of the epidemic. The basic reproduction number is the value of the control
reproduction number with

M=r=kr=a=fo=0.

In addition, there is a time-dependent effective reproduction number R*
which continues to track the number of secondary infections caused by a sin-
gle infective as the epidemic continues with control measures (quarantine of
asymptomatics and isolation of symptomatics) in place. It is not difficult to
show that if the inflow into the population from travellers and new births
is small (i.e., if the epidemiological time scale is much faster than the de-
mographic time scale), our model implies that R* will become and remain
less than unity, so that the epidemic will always pass. Even if R. > 1, the
epidemic will abate eventually when the effective reproduction number be-
comes less than unity. The effective reproduction number R* is essentially
R. multiplied by a factor S/N, but allows time-dependent parameter values
as well.

However, it should be remembered that if the epidemic takes so long to
pass that there are enough new births and travellers to keep R* > 1, there
will be an endemic equilibrium meaning that the disease will establish itself
and remain in the population.

We have already calculated R for (2.10) and we may calculate R, in the
same way but using the full model with quarantined and isolated classes. We
obtain
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esKB(K) n KB(K)k1 n ees KB(K)m . s KB(K)K172 n esKB(K)m

Re =
D1 D1D2 leig Ot2D1D2 a2D1
. S
R = RCN ,

where D1 =1 + k1, Ds =7+ ay.

Each term of R. has an epidemiological interpretation. The mean dura-
tion in E is 1/D; with contact rate eg(3, giving a contribution to R. of
epKB(K)/D;. A fraction k1/D; goes from E to I, with contact rate 8 and
mean duration 1/Ds, giving a contribution of K3(K)r,/D1Ds. A fraction
~1/D1 goes from E to @, with contact rate egeg and mean duration 1/ko,
giving a contribution of epeqKB(K)y1/Dike. A fraction k1y2/D1Ds goes
from F to I to J, with a contact rate of £;3 and a mean duration of 1/as,
giving a contribution of &;K((K)k17y2/asD1Ds. Finally, a fraction /Dy
goes from E to @ to J with a contact rate of ;0 and a mean duration of
1/az giving a contribution of € y K 3(K)vy1/Dyas. The sum of these individual
contributions gives R..

In the model (2.13) the parameters 1 and 9 are control parameters which
may be varied in the attempt to manage the epidemic. The parameters eq
and €; depend on the strictness of the quarantine and isolation processes and
are thus also control measures in a sense. The other parameters of the model
are specific to the disease being studied. While they are not variable, their
measurements are subject to experimental error.

The linearization of (2.13) at the disease-free equilibrium (K,0,0,0,0, K)
has matrix

epKB(K) = (k1 +m) epef(K) KB(K) e KG(K)

7 —kKa 0 0
K1 0 —(o1 +72) 0
0 K2 72 —Q2

The corresponding characteristic equation is a fourth degree polynomial equa-
tion whose leading coefficient is 1 and whose constant term is a positive con-
stant multiple of 1 — R, thus positive if R, < 1 and negative if R, > 1. If
Rc. > 1 there is a positive eigenvalue, corresponding to an initial exponen-
tial growth rate of solutions of (2.13). If R. < 1 it is possible to show that
all eigenvalues of the coefficient matrix have negative real part, and thus
solutions of (2.13) die out exponentially [38].

Next, we wish to show that analogues of the relation (2.8) and So, > 0
derived for the model (2.6) are valid for the management model (2.13). We
begin by integrating the equations for S + E,Q,I,J, and N of (2.13) with
respect to t from ¢ = 0 to t = oo, using the initial conditions

S(0)+ E(0) = NO0) =K,  Q(0)=1(0)=J(0)=0.

We obtain, since F,Q, I, and J all approach zero at t — oo,
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K — Soo*(’€1+71 / E

E(s ds—ng/ Q(s)ds

0

y
/-@1/0 ds = (aq —i—vg)/ I(s)ds
HQ/O

0

E(s)
h Q(s)ds = as /000 J(s)ds — 2 /000 I(s)ds
K— Ny =(1- fl)al/o I(s)ds+ (1 — fg)ag/o J(s)ds .

In order to relate (K — Sx) to (K — Ny ), we need to express [~ I(s)ds
and [~ J(s)ds in terms of [~ E(s)ds.
From the three above relations for integrals we obtain

(@t [ s =1 [ B

ag/ J(s)ds = Mo+ Nyt K172 / E(s)ds .
0 ar + 72 0

Thus we have

K~ Ny = (1 - fi)arks + (1 — fo)(rion + 7172 + K172) /OO E(s)ds
o1+ 72 0

(1= fi)aars + (1 = fa)(mia1 + 7172 + K172)

- K — S| .
(k1 +m) (o1 +72) [ ]
This has the form, analogous to (2.8),
K — Noo = ¢[K — Sa] (2.14)

with ¢, the disease death rate, given by

(1= fi)aaks + (1 = fa) (i1 + 7172 + K1y2) '

- (k1 +71) (a1 +72)

The mean disease death rate may be measured and this expression gives
information about some of the parameters in the model which can not be
measured directly. It is easy to see that 0 < ¢ < 1 with ¢ = 0 if and only if
f1 = fo =1, that is, if and only if there are no disease deaths, and ¢ = 1 if
and only if f1 = fo = 0, that is, if and only if the disease is universally fatal.

An argument similar to the one used for (2.6) but technically more com-
plicated may be used to show that S,, > 0 for the treatment model (2.13).
Thus the asymptotic behaviour of the management model (2.13) is the same
as that of the simpler model (2.6). If the control reproduction number R, is
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less than 1 the disease dies out and if R, > 1 there is an epidemic which will
pass leaving some members of the population untouched.

2.1.7 Stochastic Models for Disease Outbreaks

The underlying assumptions of the models of Kermack—McKendrick type
studied in this chapter are that the sizes of the compartments are large enough
that the mixing of members is homogeneous. While these assumptions are
probably reasonable once an epidemic is well underway, at the beginning of
a disease outbreak the situation may be quite different. At the beginning of
an epidemic most members of the population are susceptible, that is, not
(yet) infected, and the number of infectives (members of the population who
are infected and may transmit infection) is small. The transmission of infec-
tion depends strongly on the pattern of contacts between members of the
population, and a description should involve this pattern. Since the number
of infectives is small a description involving an assumption of mass action
should be replaced by a model which incorporates stochastic effects.

One approach would be a complete description of stochastic epidemic mod-
els, for which we refer the reader to the chapter on stochastic models in this
volume by Linda Allen. Another approach would be to consider a stochastic
model for an outbreak of a communicable disease to be applied so long as
the number of infectives remains small, distinguishing a (minor) disease out-
break confined to this initial stage from a (major) epidemic which occurs if
the number of infectives begins to grow at an exponential rate. Once an epi-
demic has started we may switch to a deterministic compartmental model.
This approach is described in Chap.4 on network models in this volume.
There is an important difference between the behaviour of network models
and the behaviour of models of Kermack-McKendrick type, namely that for
a stochastic disease outbreak model if Ry < 1 the probability that the in-
fection will die out is 1, while if Ry > 1 there is a positive probability that
the infection will persist, and will lead to an epidemic and a positive proba-
bility that the infection will increase initially but will produce only a minor
outbreak and will die out before triggering a major epidemic.

2.2 Models with Demographic Effects

2.2.1 The SIR Model

Epidemics which sweep through a population attract much attention and
arouse a great deal of concern. As we have mentioned in the introduction,
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the prevalence and effects of many diseases in less developed countries are
probably less well-known but may be of even more importance. There are dis-
eases which are endemic in many parts of the world and which cause millions
of deaths each year. We have omitted births and deaths in our description of
models because the time scale of an epidemic is generally much shorter than
the demographic time scale. In effect, we have used a time scale on which the
number of births and deaths in unit time is negligible. To model a disease
which may be endemic we need to think on a longer time scale and include
births and deaths.

For diseases that are endemic in some region public health physicians need
to be able to estimate the number of infectives at a given time as well as the
rate at which new infections arise. The effects of quarantine or vaccine in
reducing the number of victims are of importance, just as in the treatment of
epidemics. In addition, the possibility of defeating the endemic nature of the
disease and thus controlling or even eradicating the disease in a population
is worthy of study.

Measles is a disease for which endemic equilibria have been observed in
many places, frequently with sustained oscillations about the equilibrium.
The epidemic model of the first section assumes that the epidemic time scale
is so short relative to the demographic time scale that demographic effects
may be ignored. For measles, however, the reason for the endemic nature
of the disease is that there is a flow of new susceptible members into the
population, and in order to try to model this we must include births and
deaths in the model. The simplest way to incorporate births and deaths in
an infectious disease model is to assume a constant number of births and
an equal number of deaths per unit time so that the total population size
remains constant. This is, of course, feasible only if there are no deaths due to
the disease. In developed countries such an assumption is plausible because
there are few deaths from measles. In less developed countries there is often
a very high mortality rate for measles and therefore other assumptions are
necessary.

The first attempt to formulate an SIR model with births and deaths
to describe measles was given in 1929 by H.E. Soper [32], who assumed a
constant birth rate K in the susceptible class and a constant death rate K
in the removed class. His model is

S" = —BSI + uK
I' = BST —~I
R =~I — uK .

This model is unsatisfactory biologically because the linkage of births of sus-
ceptibles to deaths of removed members is unreasonable. It is also an im-
proper model mathematically because if R(0) and I(0) are sufficiently small
then R(t) will become negative. For any disease model to be plausible it is
essential that the problem be properly posed in the sense that the number of
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members in each class must remain non-negative. A model that does not sat-
isfy this requirement cannot be a proper description of a disease model and
therefore must contain some assumption that is biologically unreasonable. A
full analysis of a model should include verification of this property.

A model of Kermack and McKendrick [22] includes births in the suscep-
tible class proportional to total population size and a death rate in each
class proportional to the number of members in the class. This model allows
the total population size to grow exponentially or die out exponentially if
the birth and death rates are unequal. It is applicable to such questions as
whether a disease will control the size of a population that would otherwise
grow exponentially. We shall return to this topic, which is important in the
study of many diseases in less developed countries with high birth rates. To
formulate a model in which total population size remains bounded we could
follow the approach suggested by [15] in which the total population size is
held constant by making birth and death rates equal. Such a model is

S = —BSI+ u(K — )
I' = 3ST —~I — pul
R =~I - uR.

Because S+ I + R = K, we can view R as determined when S and I are
known and consider the two-dimensional system

S = —BSI+ u(K — )
I' = BSI —~I —ul .

We shall examine a slightly more general STR model with births and
deaths for a disease that may be fatal to some infectives. For such a disease
the class R of removed members should contain only recovered members, not
members removed by death from the disease. It is not possible to assume that
the total population size remain constant if there are deaths due to disease; a
plausible model for a disease that may be fatal to some infectives must allow
the total population to vary in time. The simplest assumption to allow this
is a constant birth rate A, but in fact the analysis is quite similar if the birth
rate is a function A(N) of total population size N.

Let us analyze the model

S"=A—pBSI—puS
I'=pBST —pul — ol (2.15)
N =A—(1- f)al —uN ,

where N = S + I + R, with a mass action contact rate, a constant number
of births A per unit time, a proportional natural death rate y in each class,
and a rate of recovery or disease death « of infectives with a fraction f of
infectives recovering with immunity against reinfection. In this model if f =1
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the total population size approaches a limit K = A/pu. Then K is the carrying
capacity of the population. If f < 1 the total population size is not constant
and K represents a carrying capacity or maximum possible population size,
rather than a population size. We view the first two equations as determining
S and I, and then consider the third equation as determining N once S and
I are known. This is possible because N does not enter into the first two
equations. Instead of using N as the third variable in this model we could
have used R, and the same reduction would have been possible.

If the birth or recruitment rate A(N) is a function of total population
size then in the absence of disease the total population size N satisfies the
differential equation

N’ = A(N) — uN .

The carrying capacity of population size is the limiting population size K,
satisfying
AK) = ukK, ANK)<u.

The condition A'(K) < p assures the asymptotic stability of the equilibrium
population size K. It is reasonable to assume that K is the only positive
equilibrium, so that

A(N) > uN

for 0 < N < K. For most population models,
A(0) =0, A"(N)<0.

However, if A(N) represents recruitment into a behavioural class, as would
be natural for models of sexually transmitted diseases, it would be plausible
to have A(0) > 0, or even to consider A(N) to be a constant function. If
A(0) = 0, we require A’(0) > p because if this requirement is not satisfied
there is no positive equilibrium and the population would die out even in the
absence of disease.

We have used a mass action contact rate for simplicity, even though a
more general contact rate would give a more accurate model, just as in the
epidemics considered in the preceding section. With a general contact rate
and a density-dependent birth rate we would have a model

S" = A(N) — B(N)ST — uS
I'=pB(N)SI — ul —al (2.16)
N' = A(N)— (1 - f)al — uN.

If f =1, so that there are no disease deaths, the equation for NN is
N’ = A(N) — uN

so that N(t) approaches a limiting population size K. The theory of asymp-
totically autonomous systems [8,24,34,37] implies that if N has a constant
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limit then the system is equivalent to the system in which N is replaced
by this limit. Then the system (2.16) is the same as the system (2.15) with
8 replaced by the constant S(K) and N by K, and A(N) replaced by the
constant A(K) = uK.

We shall analyze the model (2.15) qualitatively. In view of the remark
above, our analysis will also apply to the more general model (2.16) if there
are no disease deaths. Analysis of the system (2.16) with f < 1 is much more
difficult. We will confine our study of (2.16) to a description without details.

The first stage of the analysis is to note that the model (2.15) is a properly
posed problem. That is, since S" > 0if S =0 and I’ > 0 if I = 0, we have
S >0, >0fort>0andsince N <0if N = K we have N < K for
t > 0. Thus the solution always remains in the biologically realistic region
S>0,1>0,0<N <K ifit starts in this region. By rights, we should verify
such conditions whenever we analyze a mathematical model, but in practice
this step is frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then
to determine the asymptotic stability of each equilibrium. Asymptotic stabil-
ity of an equilibrium means that a solution starting sufficiently close to the
equilibrium remains close to the equilibrium and approaches the equilibrium
as t — oo >, while instability of the equilibrium means that there are solu-
tions starting arbitrarily close to the equilibrium which do not approach it.
To find equilibria (S, I~.) we set the right side of each of the two equations
equal to zero. The second of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I, = 0, which will give a disease-free
equilibrium, and the second alternative is 3S., = p + a, which will give an
endemic equilibrium, provided 58S, = p+a < SK. If I, = 0 the other equa-
tion gives Soo = K = A/u. For the endemic equilibrium the first equation
gives
U (2.17)

pt+a B
We linearize about an equilibrium (Se, I ) by letting y = S—Su, 2 = -1,
writing the system in terms of the new variables y and z and retaining only
the linear terms in a Taylor expansion. We obtain a system of two linear
differential equations,

I

y' = (Bl + )y — BSocz
2= Bloy + (BSe — pp — )z .

The coefficient matrix of this linear system is

Bl — —B35
6100 6500 —H— .

We then look for solutions whose components are constant multiples of
e this means that A must be an eigenvalue of the coefficient matrix. The
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condition that all solutions of the linearization at an equilibrium tend to zero
as t — oo is that the real part of every eigenvalue of this coefficient matrix
is negative. At the disease-free equilibrium the matrix is

—p —BK
0 OK—-—p—al’

which has eigenvalues —p and SK — p— . Thus, the disease-free equilibrium
is asymptotically stable if K < p + « and unstable if K > u + «. Note
that this condition for instability of the disease-free equilibrium is the same
as the condition for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2x2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the
diagonal elements) be negative. Since 35+ = pu+a at an endemic equilibrium,
the matrix of the linearization at an endemic equilibrium is

_ME}; H _56900 (2.18)

and this matrix has positive determinant and negative trace. Thus, the en-
demic equilibrium, if there is one, is always asymptotically stable. If the

quantity
OBK K

= a5 (2.19)
is less than one, the system has only the disease-free equilibrium and this
equilibrium is asymptotically stable. In fact, it is not difficult to prove that
this asymptotic stability is global, that is, that every solution approaches
the disease-free equilibrium. If the quantity Ry is greater than one then the
disease-free equilibrium is unstable, but there is an endemic equilibrium that
is asymptotically stable. Again, the quantity Rq is the basic reproduction
number. It depends on the particular disease (determining the parameter «)
and on the rate of contacts, which may depend on the population density
in the community being studied. The disease model exhibits a threshold be-
haviour: If the basic reproduction number is less than one the disease will
die out, but if the basic reproduction number is greater than one the disease
will be endemic. Just as for the epidemic models of the preceding section, the
basic reproduction number is the number of secondary infections caused by a
single infective introduced into a wholly susceptible population because the
number of contacts per infective in unit time is SK, and the mean infective
period (corrected for natural mortality) is 1/(u + «).

There are two aspects of the analysis of the model (2.16) which are more
complicated than the analysis of (2.15). The first is in the study of equilibria.
Because of the dependence of A(N) and B(N) on N, it is necessary to use
two of the equilibrium conditions to solve for S and I in terms of N and then
substitute into the third condition to obtain an equation for N. Then by

Ry
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comparing the two sides of this equation for N = 0 and N = K it is possible
to show that there must be an endemic equilibrium value of N between 0
and K.

The second complication is in the stability analysis. Since (2.16) is a three-
dimensional system which can not be reduced to a two-dimensional system,
the coefficient matrix of its linearization at an equilibrium is a 3 x 3 matrix
and the resulting characteristic equation is a cubic polynomial equation of
the form

/\3+a1/\2—|—a2)\+a3 =0.

The Routh—Hurwitz conditions
a; >0, aias > az >0

are necessary and sufficient conditions for all roots of the characteristic equa-
tion to have negative real part. A technically complicated calculation is
needed to verify that these conditions are satisfied at an endemic equilib-
rium for the model (2.16).

The asymptotic stability of the endemic equilibrium means that the com-
partment sizes approach a steady state. If the equilibrium had been unstable,
there would have been a possibility of sustained oscillations. Oscillations in a
disease model mean fluctuations in the number of cases to be expected, and if
the oscillations have long period could also mean that experimental data for a
short period would be quite unreliable as a predictor of the future. Epidemi-
ological models which incorporate additional factors may exhibit oscillations.
A variety of such situations is described in [18,19].

The epidemic models of the first section also exhibited a threshold be-
haviour but of a slightly different kind. For these models, which were SIR
models without births or natural deaths, the threshold distinguished between
a dying out of the disease and an epidemic, or short term spread of disease.

From the third equation of (2.15) we obtain

N =A—uN —(1— f)al,

where N = S + I + R. From this we see that at the endemic equilibrium
N = K — (1 — f)al/u, and the reduction in the population size from the
carrying capacity K is

« aK «
(1= NSl = - L -5

The parameter « in the STR model may be considered as describing the
pathogenicity of the disease. If a is large it is less likely that Ry > 1. If
is small then the total population size at the endemic equilibrium is close to
the carrying capacity K of the population. Thus, the maximum population
decrease caused by disease will be for diseases of intermediate pathogenicity.
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2.2.2 The SIS Model

In order to describe a model for a disease from which infectives recover with
immunity against reinfection and that includes births and deaths as in the
model (2.16), we may modify the model (2.16) by removing the equation for
R and moving the term fal describing the rate of recovery from infection to
the equation for S. This gives the model

S' = A(N) = B(N)ST — S + fal (2.20)
I' = B(N)ST — ol — ul

describing a population with a density-dependent birth rate A(N) per unit
time, a proportional death rate p in each class, and with a rate a of depar-
ture from the infective class through recovery or disease death and with a
fraction f of infectives recovering with no immunity against reinfection. In
this model, if f < 1 the total population size is not constant and K repre-
sents a carrying capacity, or maximum possible population size, rather than
a constant population size.

It is easy to verify that

KA(K)

R =
0 s et

If we add the two equations of (2.20), and use N = S + I we obtain
N' = A(N) —puN — (1= f)al .

For the STS model we are able to carry out the analysis with a general contact
rate. If f =1 the equation for N is

N' = A(N) — uN

and N approaches the limit K. The system (2.20) is asymptotically au-
tonomous and its asymptotic behaviour is the same as that of the single
differential equation

I'=BE)(K —I)— (a+p)l , (2.21)

where S has been replaced by K — I. But (2.21) is a logistic equation which
is easily solved analytically by separation of variables or qualitatively by an
equilibrium analysis. We find that I — 0if K3(K) < (u+«), or Rg < 1 and
I — I >0 with

w4+« 1

foe = K=y =K~ %)

it KB(K) > (p+ ) or Rg > 1.
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To analyze the SIS model if f < 1, it is convenient to use I and N as
variables instead of S and I, with S replaced by N — I. This gives the model

I'=3(N)IIN—-1I)— (u+a)l (2.22)
N' = A(N) — uN — (1 - fal .

Equilibria are found by setting the right sides of the two differential equations
equal to zero. The first of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I = 0, which will give a disease-free
equilibrium I = 0, N = K, and the second alternative is B(N)(N — I) =
1+ «, which may give an endemic equilibrium. For an endemic equilibrium
(Iso, Noo) the first equation gives

Substitution into the other equilibrium condition gives

pta
B(Noo)

A(Neo) = pNoo + (1 = f)a[Noo —

which can be simplified to

B(Noo)A(No) = iNoo S(Noo) + (1 = fla[NeoS(Neo) — (n+a)] . (2.23)

At N = 0 the left side of (2.23) is (5(0)A(0) > 0, while the right side is
—(1 = f)a(p + «), which is negative since f < 1. At N = K the left side of
(2.23) is

BIK)A(K) = pK[(K)

while the right side of (2.23) is

PEB(E) + (1= FalKB(K) ~ (u-+ 0]
Since
KB(K)
J et
if Rg > 1 the left side of (2.23) is less than the right side of (2.23), and
this implies that (2.23) has a solution for N,0 < N < K. Thus there is an
endemic equilibrium if Rg > 1. If Ry < 1 this reasoning may be used to show
that there is no endemic equilibrium.

The linearization of (2.22) at an equilibrium (I, Noo) has coefficient ma-
trix

B(Noo)(Noo —2Is0) = (p+ )  B(Noo)loo + ' (Neo
—(1=fla A (No) —

At the disease-free equilibrium the matrix is

Ro =

)

) (NOO_IOO)
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KB(K)— (u+a) 0
—(1-fla  A(K)—p)

which has eigenvalues A'(K) — p and KBK — (u + «). Thus, the disease-
free equilibrium is asymptotically stable if KG(K) < u+ «, or Ry < 1, and
unstable if KG(K) > pu+a, or Rg > 1. Note that the condition for instability
of the disease-free equilibrium is the same as the condition for the existence
of an endemic equilibrium.

At an endemic equilibrium, since 3(Noo)(Noow — Ino) = p + @, the matrix
is

—(1-fa A (Noo) —

Since #'(Ns) <0
ﬁ(NOO) + (Noo - Im)ﬁl(NOO) > 5(-]\700) + NOOB/(NOO) >0.

Thus if A'(Ns) < p the coefficient matrix has sign structure

-

It is clear that the coefficient matrix has negative trace and positive determi-
nant if A’(N) < p and this implies that the endemic equilibrium is asymp-
totically stable. Thus, the endemic equilibrium, which exists if Ry > 1, is
always asymptotically stable. If Ry < 1 the system has only the disease-free
equilibrium and this equilibrium is asymptotically stable. In the case f =1
the verification of these properties remains valid if there are no births and
deaths. This suggests that a requirement for the existence of an endemic
equilibrium is a flow of new susceptibles either through births, as in the STR
model or through recovery without immunity against reinfection, as in the
S1S model with or without births and deaths.

If the epidemiological and demographic time scales are very different, for
the STR model we observed that the approach to endemic equilibrium is like a
rapid and severe epidemic. The same happens in the SIS model, especially if
there is a significant number of deaths due to disease. If there are few disease
deaths the number of infectives at endemic equilibrium may be substantial,
and there may be damped oscillations of large amplitude about the endemic
equilibrium.

For both the STR and SIS models we may write the differential equation
for I as

I'=1TI[B(N)S = (n+a)] = BN)I[S — S« ,

which implies that whenever S exceeds its endemic equilibrium value S, I
is increasing and epidemic-like behaviour is possible. If Rg < 1 and S < K
it follows that I’ < 0, and thus I is decreasing. Thus, if Rg < 1, I cannot
increase and no epidemic can occur.
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Next, we will turn to some applications of STR and SIS models, taken
mainly from [3].

2.3 Some Applications

2.3.1 Herd Immunity

In order to prevent a disease from becoming endemic it is necessary to re-
duce the basic reproduction number Ry below one. This may sometimes be
achieved by immunization. If a fraction p of the A newborn members per unit
time of the population is successfully immunized, the effect is to replace K
by K(1—p), and thus to reduce the basic reproduction number to Ro(1 —p).
The requirement Ro(1 —p) < 1 gives 1 —p < 1/Ryg, or

1
p>1 Ro
A population is said to have herd immunity if a large enough fraction has
been immunized to assure that the disease cannot become endemic. The only
disease for which this has actually been achieved worldwide is smallpox for
which Rg is approximately 5, so that 80% immunization does provide herd
immunity.

For measles, epidemiological data in the United States indicate that R
for rural populations ranges from 5.4 to 6.3, requiring vaccination of 81.5—
84.1% of the population. In urban areas R ranges from 8.3 to 13.0, requiring
vaccination of 88.0-92.3% of the population. In Great Britain, Ry ranges
from 12.5 to 16.3, requiring vaccination of 92-94% of the population. The
measles vaccine is not always effective, and vaccination campaigns are never
able to reach everyone. As a result, herd immunity against measles has not
been achieved (and probably never can be). Since smallpox is viewed as more
serious and requires a lower percentage of the population be immunized, herd
immunity was attainable for smallpox. In fact, smallpox has been eliminated;
the last known case was in Somalia in 1977, and the virus is maintained now
only in laboratories (although there is currently some concern that it may
be reintroduced as a bioterrorism attack). The eradication of smallpox was
actually more difficult than expected because high vaccination rates were
achieved in some countries but not everywhere, and the disease persisted
in some countries. The eradication of smallpox was possible only after an
intensive campaign for worldwide vaccination [16].
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2.3.2 Age at Infection

In order to calculate the basic reproduction number Ry for a disease, we
need to know the values of the contact rate 5 and the parameters u, K,
and «. The parameters p, K, and « can usually be measured experimentally
but the contact rate 3 is difficult to determine directly. There is an indirect
means of estimating R in terms of the life expectancy and the mean age at
infection which enables us to avoid having to estimate the contact rate. In
this calculation, we will assume that § is constant, but we will also indicate
the modifications needed when g is a function of total population size N. The
calculation assumes exponentially distributed life spans and infective periods.
In fact, the result is valid so long as the life span is exponentially distributed.
Consider the “age cohort” of members of a population born at some time
to and let a be the age of members of this cohort. If y(a) represents the
fraction of members of the cohort who survive to age (at least) a, then the
assumption that a fraction p of the population dies per unit time means
that y'(a) = —py(a). Since y(0) = 1, we may solve this first order initial
value problem to obtain y(a) = e #%. The fraction dying at (exactly) age a
is —y/(a) = py(a). The mean life span is the average age at death, which is
fooc a[—y'(a)]da, and if we integrate by parts we find that this life expectancy
is
o0

/Om[—ay'(a)] da = [~ay(a)]5° +/O y(a)da = /OOO y(a)da .

Since y(a) = e #, this reduces to 1/u. The life expectancy is often denoted
by L, so that we may write
L=—.
i

The rate at which surviving susceptible members of the population become
infected at age a and time ¢y + a, is 81 (to+a). Thus, if z(a) is the fraction of
the age cohort alive and still susceptible at age a, z'(a) = —[u+F1(to+a)]z(a).
Solution of this first linear order differential equation gives

z(a) — e—[ua+f0a BI(to+b) db] e~ Jo! BI(to+b) db ]

= y(a)

The mean length of time in the susceptible class for members who may be-
come infected, as opposed to dying while still susceptible, is

oo n
/ e I ,BI(t0+b)dbda ,
0

and this is the mean age at which members become infected. If the system is
at an equilibrium I, this integral may be evaluated, and the mean age at
infection, denoted by A, is given by
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° 1
A:/ e Pl g = —.
0 ﬁloo

For our model the endemic equilibrium is

[e’e) ,Uz'i‘a 6 )
and this implies
L [l
—=——=Ro—1. 2.24
A= 0 (2.24)

This relation is very useful in estimating basic reproduction numbers. For
example, in some urban communities in England and Wales between 1956 and
1969 the average age of contracting measles was 4.8 years. If life expectancy
is assumed to be 70 years, this indicates Ry = 15.6.

If 3 is a function B(N) of total population size the relation (2.24) becomes

Ro= 200 [ 1]
B(N) A
If disease mortality does not have a large effect on total population size, in
particular if there is no disease mortality, this relation is very close to (2.24).
The relation between age at infection and basic reproduction number in-
dicates that measures such as inoculations, which reduce Rg, will increase
the average age at infection. For diseases such as rubella (German measles),
whose effects may be much more serious in adults than in children, this indi-
cates a danger that must be taken into account: While inoculation of children
will decrease the number of cases of illness, it will tend to increase the danger
to those who are not inoculated or for whom the inoculation is not success-
ful. Nevertheless, the number of infections in older people will be reduced,
although the fraction of cases which are in older people will increase.

2.3.3 The Interepidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken
pox, diphtheria, and rubella, exhibit variations from year to year in the num-
ber of cases. These fluctuations are frequently regular oscillations, suggesting
that the solutions of a model might be periodic. This does not agree with the
predictions of the model we have been using here; however, it would not be
inconsistent with solutions of the characteristic equation, which are complex
conjugate with small negative real part corresponding to lightly damped os-
cillations approaching the endemic equilibrium. Such behaviour would look
like recurring epidemics. If the eigenvalues of the matrix of the linearization at
an endemic equilibrium are —u = iv, where i2 = —1, then the solutions of the
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linearization are of the form Be™“! cos(vt + ¢), with decreasing “amplitude”
Be™"! and “period” 2Z.

For the model (2.15) we recall from (2.17) that at the endemic equilibrium
we have

Bloo + pp=pRo,  BSec=p+a

and from (2.18) the matrix of the linearization is

[ —pRo  —(p+a)
wWRo—1) 0

The eigenvalues are the roots of the quadratic equation
A+ RN+ p(Ro — 1) (4 @) = 0,

which are

R VIR — 4u(Ry — 1) (1 + o)
= 5 .
If the mean infective period 1/« is much shorter than the mean life span 1/pu,

we may neglect the terms that are quadratic in pu. Thus, the eigenvalues are
approximately

—uRo+ v/ —4u(Ry — 1o
2 )
and these are complex with imaginary part /u(Ro — 1)a. This indicates
oscillations with period approximately

2
Vi (Ro — Do

We use the relation (Ro—1) = pL/A and the mean infective period 7 = 1/«
to see that the interepidemic period 7T is approximately 2wv/Ar. Thus, for ex-
ample, for recurring outbreaks of measles with an infective period of 2 weeks
or 1/26year in a population with a life expectancy of 70 years with Rq esti-
mated as 15, we would expect outbreaks spaced 2.76 years apart. Also, as the
“amplitude” at time ¢ is e #®0¥/2_ the maximum displacement from equilib-
rium is multiplied by a factor e~(19)(2:76)/140 — (744 over each cycle. In fact,
many observations of measles outbreaks indicate less damping of the oscilla-
tions, suggesting that there may be additional influences that are not included
in our simple model. To explain oscillations about the endemic equilibrium
a more complicated model is needed. One possible generalization would be
to assume seasonal variations in the contact rate. This is a reasonable sup-
position for a childhood disease most commonly transmitted through school
contacts, especially in winter in cold climates. Note, however, that data from
observations are never as smooth as model predictions and models are in-
evitably gross simplifications of reality which cannot account for random
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variations in the variables. It may be difficult to judge from experimental
data whether an oscillation is damped or persistent.

2.3.4 “Epidemic” Approach to the Endemic
Equilibrium

In the model (2.15) the demographic time scale described by the birth and
natural death rates A and g and the epidemiological time scale described
by the rate a of departure from the infective class may differ substan-
tially. Think, for example, of a natural death rate u = 1/75, correspond-
ing to a human life expectancy of 75years, and epidemiological parameters
a=25,f = 1, describing a disease from which all infectives recover after a
mean infective period of 1/25 year, or two weeks. Suppose we consider a
carrying capacity K = 1,000 and take 0 = 0.1, indicating that an average
infective makes (0.1)(1,000) = 100 contacts per year. Then Ry = 4.00, and
at the endemic equilibrium we have So, = 250.13, I, = 0.40, R, = 749.47.
This equilibrium is globally asymptotically stable and is approached from
every initial state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the
introduction of a single infective into a susceptible population and solve the
system numerically we find that the number of infectives rises sharply to a
maximum of 400 and then decreases to almost zero in a period of 0.4 year,
or about 5 months. In this time interval the susceptible population decreases
to 22 and then begins to increase, while the removed (recovered and immune
against reinfection) population increases to almost 1,000 and then begins a
gradual decrease. The size of this initial “epidemic” could not have been
predicted from our qualitative analysis of the system (2.15). On the other
hand, since p is so small compared to the other parameters of the model,
we might consider neglecting p, replacing it by zero in the model. If we do
this, the model reduces to the simple Kermack—McKendrick epidemic model
(without births and deaths) of the first section.

If we follow the model (2.15) over a longer time interval we find that the
susceptible population grows to 450 after 46 years, then drops to 120 during a
small epidemic with a maximum of 18 infectives, and exhibits widely spaced
epidemics decreasing in size. It takes a very long time before the system
comes close to the endemic equilibrium and remains close to it. The large
initial epidemic conforms to what has often been observed in practice when
an infection is introduced into a population with no immunity, such as the
smallpox inflicted on the Aztecs by the invasion of Cortez.

If we use the model (2.15) with the same values of 8, K and p, but take
a = 25, f = 0 to describe a disease fatal to all infectives, we obtain very
similar results. Now the total population is S + I, which decreases from
an initial size of 1,000 to a minimum of 22 and then gradually increases and
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eventually approaches its equilibrium size of 250.53. Thus, the disease reduces
the total population size to one-fourth of its original value, suggesting that
infectious diseases may have large effects on population size. This is true even
for populations which would grow rapidly in the absence of infection, as we
shall see later.

2.3.5 Disease as Population Control

Many parts of the world experienced very rapid population growth in the
eighteenth century. The population of Europe increased from 118 million in
1700 to 187 million in 1800. In the same time period the population of Great
Britain increased from 5.8 million to 9.15 million, and the population of
China increased from 150 million to 313 million [27]. The population of En-
glish colonies in North America grew much more rapidly than this, aided by
substantial immigration from England, but the native population, which had
been reduced to one tenth of their previous size by disease following the early
encounters with Europeans and European diseases, grew even more rapidly.
While some of these population increases may be explained by improvements
in agriculture and food production, it appears that an even more important
factor was the decrease in the death rate due to diseases. Disease death rates
dropped sharply in the eighteenth century, partly from better understanding
of the links between illness and sanitation and partly because the recurring
invasions of bubonic plague subsided, perhaps due to reduced susceptibility.
One plausible explanation for these population increases is that the bubonic
plague invasions served to control the population size, and when this control
was removed the population size increased rapidly.

In developing countries it is quite common to have high birth rates and
high disease death rates. In fact, when disease death rates are reduced by
improvements in health care and sanitation it is common for birth rates to
decline as well, as families no longer need to have as many children to ensure
that enough children survive to take care of the older generations. Again, it
is plausible to assume that population size would grow exponentially in the
absence of disease but is controlled by disease mortality.

The STR model with births and deaths of Kermack and McKendrick [22]
includes births in the susceptible class proportional to population size and a
natural death rate in each class proportional to the size of the class. Let us
analyze a model of this type with birth rate r and a natural death rate p < r.
For simplicity we assume the disease is fatal to all infectives with disease
death rate «, so that there is no removed class and the total population size
is N =5 + I. Our model is

S"'=r(S+1)—pSI—uS (2.25)
I'=8ST—(u+a)l.
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From the second equation we see that equilibria are given by either I = 0 or
BS = p+a. If I =0 the first equilibrium equation is S = .S, which implies
S = 0 since r > p. It is easy to see that the equilibrium (0,0) is unstable.
What actually would happen if I = 0 is that the susceptible population
would grow exponentially with exponent r — > 0. If 35S = p + « the first
equilibrium condition gives

ru+a+rl—(u+a)I—M:0,
B B
which leads to
(OZJFH*T)IZW-

Thus, there is an endemic equilibrium provided r» < « + u, and it is possible
to show by linearizing about this equilibrium that it is asymptotically stable.
On the other hand, if r > « + p there is no positive equilibrium value for I.
In this case we may add the two differential equations of the model to give

N =(r—uN-al >(r—uN—-—aN=(—p—a)N

and from this we may deduce that N grows exponentially. For this model
either we have an asymptotically stable endemic equilibrium or population
size grows exponentially. In the case of exponential population growth we may
have either vanishing of the infection or an exponentially growing number of
infectives.

If only susceptibles contribute to the birth rate, as may be expected if
the disease is sufficiently debilitating, the behaviour of the model is quite
different. Let us consider the model

S'=rS —3SI—puS=S(r—pu-—p3I) (2.26)
I'=8STI—(p+a)I=1(8S — p—«)

which has the same form as the celebrated Lotka—Volterra predator—prey
model of population dynamics. This system has two equilibria, obtained by
setting the right sides of each of the equations equal to zero, namely (0,0) and
an endemic equilibrium ((1+ «)/8, (r — 1)/B3). It turns out that the qualita-
tive analysis approach we have been using is not helpful as the equilibrium
(0,0) is unstable and the eigenvalues of the coefficient matrix at the endemic
equilibrium have real part zero. In this case the behaviour of the linearization
does not necessarily carry over to the full system. However, we can obtain
information about the behaviour of the system by a method that begins with
the elementary approach of separation of variables for first order differential
equations. We begin by taking the quotient of the two differential equations
and using the relation
I dI

S’ ds
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to obtain the separable first order differential equation

dl I(BS —p—«a)
ds —  S(r—pI)

Separation of variables gives

/(;—5)&—/(5—“;“)(15.

Integration gives the relation

BS+1I)—rlogl — (n+a)logsS=c
where ¢ is a constant of integration. This relation shows that the quantity
V(S,I)=p(S+1)—rlogl —(u+a)logsS

is constant on each orbit (path of a solution in the (S,I— plane). Each of
these orbits is a closed curve corresponding to a periodic solution.

This model is the same as the simple epidemic model of the first section
except for the birth and death terms, and in many examples the time scale of
the disease is much faster than the time scale of the demographic process. We
may view the model as describing an epidemic initially, leaving a susceptible
population small enough that infection cannot establish itself. Then there is a
steady population growth until the number of susceptibles is large enough for
an epidemic to recur. During this growth stage the infective population is very
small and random effects may wipe out the infection, but the immigration of
a small number of infectives will eventually restart the process. As a result,
we would expect recurrent epidemics. In fact, bubonic plague epidemics did
recur in Europe for several hundred years. If we modify the demographic part
of the model to assume limited population growth rather than exponential
growth in the absence of disease, the effect would be to give behaviour like
that of the model studied in the previous section, with an endemic equilibrium
that is approached slowly in an oscillatory manner if Ry > 1.

Example. (Fox rabies) Rabies is a viral infection to which many animals,
especially foxes, coyotes, wolves, and rats, are highly susceptible. While dogs
are only moderately susceptible, they are the main source of rabies in hu-
mans. Although deaths of humans from rabies are few, the disease is still of
concern because it is invariably fatal. However, the disease is endemic in ani-
mals in many parts of the world. A European epidemic of fox rabies thought
to have begun in Poland in 1939 and spread through much of Europe has
been modeled. We present here a simplified version of a model due to R.M.
Anderson and coworkers [1].

We begin with the demographic assumptions that foxes have a birth
rate proportional to population size but that infected foxes do not produce
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offspring (because the disease is highly debilitating), and that there is a nat-
ural death rate proportional to population size. Experimental data indicate
a birth rate of approximately 1 per capita per year and a death rate of ap-
proximately 0.5 per capita per year, corresponding to a life expectancy of
2 years. The fox population is divided into susceptibles and infectives, and
the epidemiological assumptions are that the rate of acquisition of infection
is proportional to the number of encounters between susceptibles and infec-
tives. We will assume a contact parameter § = 80, in rough agreement with
observations of frequency of contact in regions where the fox density is ap-
proximately 1 fox/km?, and we assume that all infected foxes die with a mean
infective period of approximately 5 days or 1/73 year. These assumptions lead
to the model

S' = —BSI+1S — S
I'=03SI— (p+a)l

with 5 =80, r = 1.0, p = 0.5, « = 73. As this is of the form (2.26), we know
that the orbits are closed curves in the (S,7) plane, and that both S and
I are periodic functions of ¢. We illustrate with some simulations obtained
using Maple (Figs. 2.8, 2.9, and 2.10). It should be noted from the graphs of
I in terms of ¢ that the period of the oscillation depends on the amplitude,
and thus on the initial conditions, with larger amplitudes corresponding to
longer periods.

Fig. 2.8 The (S,I) plane

A warning is in order here. The model predicts that for long time intervals
the number of infected foxes is extremely small. With such small numbers,
the continuous deterministic models we have been using (which assume that
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population sizes are differentiable functions) are quite inappropriate. If the
density of foxes is extremely small an encounter between foxes is a random
event, and the number of contacts cannot be described properly by a func-
tion of population densities. To describe disease transmission properly when
population sizes are very small we would need to use a stochastic model.

Now let us modify the demographic assumptions by assuming that the
birth rate decreases as population size increases. We replace the birth rate
of r per susceptible per year by a birth rate of re=®% per susceptible per
year, with a a positive constant. Then, in the absence of infection, the fox
population is given by the first order differential equation

N' =N (reN —p)

and equilibria of this equation are given by N = 0 and re =%V

reduces to e*Y = r/u, or

= u, which

1
N:flogz.
a K

Fig. 2.9 I as a function of ¢ (larger amplitude)

We omit the verification that the equilibrium N = 0 is unstable while the
positive equilibrium N = (1/a)log(r/u) is asymptotically stable. Thus, the
population has a carrying capacity given by

1
K:flog‘z.
a  H

The model now becomes
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Fig. 2.10 I as a function of ¢ (smaller amplitude)

S =rSe — BSI — uS
I'=08SI— (p+a)l.

We examine this by looking for equilibria and analyzing their stability. From
the second equation, equilibria satisfy either I =0 or S =pu+a. If I =0
the first equilibrium condition reduces to the same equation that determined
the carrying capacity, and we have a disease-free equilibrium S = K, I = 0.
If 3S = u + « there is an endemic equilibrium with I + u = re= 5. A
straightforward computation, which we shall not carry out here shows, that
the disease-free equilibrium is asymptotically stable if Ry = 0K/(p+ o) < 1
and unstable if Ry > 1, while the endemic equilibrium, which exists if and
only if Ry > 1, is always asymptotically stable. Another way to express the
condition for an endemic equilibrium is to say that the fox population density
must exceed a threshold level Kp given by

Bt
7

With the parameter values we have been using, this gives a threshold fox den-
sity of 0.92 fox/km?. If the fox density is below this threshold value, the fox
population will approach its carrying capacity and the disease will die out.
Above the threshold density, rabies will persist and will regulate the fox pop-
ulation to a level below its carrying capacity. This level may be approached
in an oscillatory manner for large Ry.

Kt
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2.4 Age of Infection Models

2.4.1 The Basic SI*R Model

The 1927 epidemic model of Kermack and McKendrick is considerably more
general than what is usually called the Kermack—McKendrick model, which
was analyzed in the first section. The general model described by Kermack
and McKendrick included a dependence of infectivity on the time since be-
coming infected (age of infection). The 1932 and 1933 models of Kermack and
McKendrick, which incorporated births and deaths, did not include this de-
pendence. While age of infection models have not played a large role in studies
of epidemics, they are very important in studies of HIV/AIDS. HIV/AIDS
acts on a very long time scale and it is essential to include demographic effects
(recruitment into and departure from a population of sexually active individ-
uals). Also, the infectivity of HIV-positive people is high for a relatively short
time after becoming infected, then very low for a long period, possibly several
years, and then high shortly before developing into full-blown AIDS. Thus,
the age of infection models described by Kermack and McKendrick for epi-
demics but not for endemic situations, have become important in endemic
situations.

We will describe a general age of infection model and carry out a partial
analysis; there are many unsolved problems in the analysis. We continue to
let S(t) denote the number of susceptibles at time ¢ and R(¢) the number of
members recovered with immunity, but now we let I*(¢) denote the number
of infected (but not necessarily infective) members.

We make the following assumptions:

1. The population has a birth rate A(N), and a natural death rate p giving
a carrying capacity K such that A(K) = pK, A'(K) < p.

2. An average infected member makes C(N) contacts in unit time of which
S/N are with susceptibles. We define S(N) = C(N)/N and it is reason-
able to assume that 5'(N) <0,C’(N) > 0.

3. B(7) is the fraction of infecteds remaining infective if alive when infection
age is 7 and B, (T) = e #7 B(7) is the fraction of infecteds remaining alive
and infected when infection age is 7. Let B,,(0) = Jo° Bu(r)dr.

4. A fraction f of infected members recovers with immunity and a fraction
(1 — f) dies of disease.

5. m(7) with 0 < 7(7) < 1 is the infectivity at infection age 7; let A(7) =
#(r)B(7), Au(r) = 7(r)B(r), 4,(0) = [ Au(r)dr.

In previous sections we have used B(7) = e~ 7, which would give B, (1) =
e~ ()™ We let io(t) be the number of new infecteds at time ¢,%(¢, 7) be the
number of infecteds at time ¢ with infection age 7, and let ¢(t) be the total
infectivity at time ¢. Then
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i(t,7) =io(t —7)Bu(r), 0<71<t
io(t) = SB(N)(t

~—

and

() = /0 (t,7)dr
:/OC (t—T)B“(T)dT
0
- / BN(t — 7))S(t — 7)(t — 7)Bu(r)dr
o(t) = / T iolt — ) A (r)dr

/ﬁ (t = 7)S(t — 7)o(t — 7) A, (7)dr .

Differentiation of the equation for I* gives three terms, including the rate
of new infections and the rate of natural deaths. The third term gives the
rate of recovery plus the rate of disease death as

_/o B(N(t—71))S(t—T1)p(t —1)e " B'(1)dr
Thus the ST*R model is
§" = A(N) — nS — B(N)S¢

/ B(N({t—1))S(t—1)p(t —1)A,(T)dr (2.27)
N'( — uN

- /0 BIN(t — 7))S(t — T)(t — 7)e "7 B! (r)dr

Since I'* is determined when S, ¢, N are known we have dropped the equa-
tion for I'* from the model, but it will be convenient to recall

= /000 B(N(t—1))S(t— 1)t —7)B,(T)dr

If f = 1 then N(¢) approaches the limit K, the model is asymptotically
autonomous and its dimension may be reduced to two, replacing N by the
constant K. We note, for future use, that
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B,(0) = /0 e " B(r)dr < /0 e Mdr =1/p,

so that R
0<1—puB,(0)<1.

We define M = (1 — f)(1 — MEM(O), and 0 < M < 1. We note, however, that
if f =1 then M = 0. We also have, using integration by parts,

o0
—/ e B (r)dr = 1 — B, (0) > 0 .
0

If a single infective is introduced into a wholly susceptible population, making
K{(K) contacts in unit time, the fraction still infective at infection age 7
is B,(7) and the infectivity at infection age 7 is A, (7). Thus Ry, the total
number of secondary infections caused, is

/O - KB(K)Au(r)dr = KB(K)A,(0) .

Example. (Exposed periods) One common example of an age of infection
model is a model with an exposed period, during which individuals have been
infected but are not yet infected. Thus we may think of infected susceptibles
going into an exposed class (F), proceeding from the exposed class to the
infective class () at rate kE and out of the infective class at rate af. Exposed
members have infectivity 0 and infective members have infectivity 1. Thus
I"=FE+1Tand ¢ =1.

We let u(7) be the fraction of infected members with infection age 7 who
are not yet infective if alive and v(7) the fraction of infected members who
are infective if alive. Then the fraction becoming infective at infection age 7
if alive is ku(7), and we have

(1) = —ku(T), uw(0) =1 (2.28)
V(1) = ku(r) —av(r) v(0)=0.
The solution of the first of the equations of (2.28) is
u(t) =e"

and substitution of this into the second equation gives

—RT

V(1) = ke " — av(T) .
When we multiply this equation by the integrating factor e®” and integrate,
we obtain the solution

K —QaT 7/{7'}

v(T) = m[e —e

b
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and this is the term A, (7) in the general model. The term B(7) is u(7)+v(7).
Thus we have

K
A _ —aT _ —KT
()= o — e
B(r) = B emar & o-nr
K—a K—a
e HTB(1) = — X [e~rto)r _ o=(utn)r]
K—a

With these choices and the identifications
I =29, E=I"—¢
we may verify that the system (2.27) reduces to

S’ = A(N) — B(N)SI — uS

E' = B(N)SI — kE

I'=kE — (u+ o)l

N' = A(N) = (1 - f)al - uN |

which is a standard SETR model.

For some diseases there is an asymptomatic period during which individ-
uals have some infectivity rather than an exposed period. If the infectivity
during this period is reduced by a factor &, then the model can be described
by the system

S"= A(N) — B(N)S(I +€E) — uS
E' = B(N)S(I + ¢E) — kE
I'=kE - (p+a)I

N = A(N)— (1 - f)al —uN .

This may be considered as an age of infection model with the same iden-
tifications of the variables and the same choice of u(r),v(r) but with
A(1) = eu(r) + (7).

2.4.2 Equilibria

There is a disease-free equilibrium S = N = K,¢ = 0 of (2.27). Endemic
equilibria (S, N, ¢) are given by
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A(N) = pS + SoB(N)
SB(N)AL(0) =1
A(N) = pN + (1 = £)(1 — uB,(0))SB(N)¢ .

If f =1 the third condition gives A(N) = pN, which implies N = K. Then
the second condition may be solved for S, after which the first condition may
be solved for ¢. Thus, there is always an endemic equilibrium.

If f <1 the second of the equilibrium conditions gives

A,(0)

- AN) = uN].

o=

Now substitution of the first two equilibrium conditions into the third gives
an equilibrium condition for N, namely

N MM
(1 — M)A(N) = uN A (2.29)
= uN |} — LA
C(N)A,(0)
If Rog <1,
C(N)A,L(0) < C(K)A,(0) =R < 1
so that
M
C(N)A,(0)

Then we must have A(N) < uN. However, this would contradict the demo-
graphic condition A(N) > uN,0 < N < K imposed earlier. This shows that
if Ro < 1 there is no endemic equilibrium.

If Rg > 1 for N = 0 the left side of (2.29) is non-negative while the right
side is negative. For N = K the left side of (2.29) is puK (1 — M) while the
right side is

MuK
pk — =L
0

> uK(1—M).

This shows that there is an endemic equilibrium solution for N.

2.4.3 The Characteristic Equation

The linearization of (2.27) at an equilibrium (S, N, ¢) is
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a' = —[u+ ¢B(N)]z + [A(N) — S¢f'(N)]y — SB(N)=z
y' = [A'(N) — ply

+(1-f) /Ooo e M B (T)[¢B(N)z(t — ) + S¢B' (N)y(t — ) + SB(N)z(t — 7)]dr

2(t) = /0oo Au()[eB(N)z(t — ) + SpB' (N)y(t — 7) + SB(N)2(t — 7)]dr .

The condition that this linearization has solutions which are constant mul-

tiples of e~ *7 is that \ satisfies a characteristic equation. The characteristic
equation at an equilibrium (S, N, ¢) is
—[A+ p+ ¢B(N)] [A'(N) = S¢p'(N)] —SB(N)
det | —¢B(N)Q(N)  —[A—A'(N)+p] =SB/ (N)Q(N) —SoB(N)Q(N) | =0
PB(N)Au(X) SoB (N)Au(N) SBN)AL(A) —1

with

A (N = /000 e A, (T)dr

B,(\) = / e B, (r)dr
0
Q) = (1= N1 = A+ BN .
Here, the choice of Q()\) is motivated by the integration by parts formula

/ e~ AR (1Ydr = 1+ B,()) .
0

The characteristic equation then reduces to

SB(N)AL(N) + (1= [)oSB' (N)Bu(N)

JOBN) (= NOP B (2.30)

A+ p A+p—A(N)

where P = B(N) + SG/(N) > 0.

The characteristic equation for a model consisting of a system of ordinary
differential equations is a polynomial equation. Now we have a transcendental
characteristic equation, but there is a basic theorem that if all roots of the
characteristic equation at an equilibrium have negative real part then the
equilibrium is asymptotically stable [39, Chap. 4].

At the disease-free equilibrium S = N = K,¢ = 0 the characteristic
equation is .

KB(K)A,(A\)=1.

Since the absolute value of the left side of this equation is no greater than
KB(K)A,(0) if RA > 0 the disease-free equilibrium is asymptotically stable
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if and only if .
Ro=KB(K)A,(0) <1.

2.4.4 The Endemic Equilibrium

In the analysis of the characteristic equation (2.30) it is helpful to make use
of the following elementary result:

If I[PV < 1,Rg(A) > 0 for RXA > 0, then all roots of the characteristic
equation
P(A\)=1+g()\)

satisfy oA < 0.

To prove this result, we observe that if RA > 0 the left side of the charac-
teristic equation has absolute value at most 1 while the right side has absolute
value greater than 1.

If f =1, the characteristic equation reduces to

C oo g, PBN)
SB(N)A,(N) =1+ Nt
We have . .
ISBIN) A, (V)] < S5(N)4,(0) =1
The term
PB(N)
A+

in (2.30) has positive real part if RA > 0. It follows from the above elemen-
tary result that all roots satisfy ®A < 0, so that the endemic equilibrium
is asymptotically stable. Thus all roots of the characteristic equation (2.30)
have negative real part if f =1.

The analysis if f < 1 is more difficult. The roots of the characteristic
equation depend continuously on the parameters of the equation. In order to
have a root with ®\ > 0 there must be parameter values for which either
there is a root at “infinity”, or there is a root A = 0 or there is a pair of pure
imaginary roots A = +iy,y > 0. Since the left side of (2.30) approaches 0
while the right side approaches 1 as A — oo, R\ > 0, it is not possible for a
root to appear at “infinity”. For A\ = 0, since SB(N)A,(0) = 1 and #/(N) <0
the left side of (2.30) is less than 1 at A = 0, while the right side is greater
than 1 since

1— A (N)B,(0)>1— A'(N)/u>0

if A/(N) < p. This shows that A = 0 is not a root of (2.30), and therefore
that all roots satisfy :'A < 0 unless there is a pair of roots A = +iy,y > 0.
According to the Hopf bifurcation theorem [20] a pair of roots A = iy, y > 0
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indicates that the system (2.27) has an asymptotically stable periodic solution
and there are sustained oscillations of the system.

A somewhat complicated calculation using the fact that since B, (7) is
monotone non-increasing,

(oo}
/ B, (1)sinyrdy > 0
0
for 0 <y < oo shows that the term

(1- poP g
T L AOB)

in (2.30) has positive real part at least if
—pu<A(N)<p.

Thus if —u < A'(N) < p, instability of the endemic equilibrium is possible
only if the term R
(1= f)¢SB'(N)By(iy)

in (2.30) has negative real part for some y > 0. This is not possible with mass
action incidence, since 3'(N) = 0; thus with mass action incidence the en-
demic equilibrium of (2.27) is always asymptotically stable. Since 3'(N) <0,
instability requires

RB,(iy) = / B, (1) cosyrdr < 0
0

for some y > 0. If the function B(7) is non-increasing and convex, that is, if
B'(t) <0,B”(r) > 0, then it is easy to show using integration by parts that

oo
/ B, (1) cosyrdr >0
0

for 0 < y < oo. Thus if B(7) is convex, which is satisfied, for example, by the
choice
B(t)=e 97

the endemic equilibrium of (2.22) is asymptotically stable if —p < A'(N) < p.

There are certainly less restrictive conditions which guarantee asymptotic
stability. However, examples have been given [36,37] of instability, even with
f=0,4A(N) =0, where constant infectivity would have produced asymp-
totic stability. Their results indicate that concentration of infectivity early
in the infected period is conducive to such instability. In these examples,
the instability arises because a root of the characteristic equation crosses the
imaginary axis as parameters of the model change, giving a pure imaginary
root, of the characteristic equation. This translates into oscillatory solutions
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of the model. Thus infectivity which depends on infection age can cause in-
stability and sustained oscillations.

2.4.5 An ST*S Model

In order to formulate an SI*S age of infection model we need only take the
SI*R age of infection model (2.22) and move the recovery term from the
equation for R (which was not listed explicitly in the model) to the equation
for S. We obtain the model

S = A(N) — S — B(N)So (2.31)
—f/ B(N(t—71))S(t—71)o(t — T)eiﬂTB/(T)dT
0
o(t) :/O B(N(t—7))S(t —T1)p(t —7)Au(T)dr (2.32)
N'(£) = A(N)
FA-f) /0 BIN(t — )S(t — 1)b(t — 7)e= " B/ (r)dr .

— uN

Although we will not carry out any analysis of this model, it may be
attacked using the same approach as that used for (2.27). It may be shown
that if Rg = KG(K )Au (0) < 1 the disease-free equilibrium is asymptotically
stable. If Ry > 1 there is an endemic equilibrium and the characteristic

equation at this equilibrium is
SBN)ALN) + (1= )$SB (N)B,.(N)

L+ FoBN B0+ p O

L= A(NB,)] (2:33)
where P = B(N) + Sg'(N) > 0.

Many diseases, including most strains of influenza, impart only temporary
immunity against reinfection on recovery. Such disease may be described by
SIS age of infection models, thinking of the infected class I'* as comprised
of the infective class I together with the recovered and immune class R. In
this way, members of R neither spread or acquire infection. We assume that
immunity is lost at a proportional rate &.

We let u(7) be the fraction of infected members with infection age 7 who
are infective if alive and v(7) the fraction of infected members who are not
recovered and still immune if alive. Then the fraction becoming immune at
infection age 7 if alive is au(7), and we have
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(1) = —au(r), u(0) =1 (2.34)
V(1) = au(r) — ko(r) ©(0)=0.

These equations are the same as (2.28) obtained in formulating the SEIR
model with « and k interchanged. Thus we may solve to obtain

— a[e—orr o e—m’] )

We take B(1) = u(7)+v(7), A(T) = u(7). Then if we define I = ¢, R = I*—¢,
the model (2.31) is equivalent to the system

S" = A(N) — B(N)ST — uS + kR
I' = B(N)SI — (u+ o)l

R = faE — (u+®)R

N’ = A(N)— (1 - f)al — N,

which is a standard STRS model.

If we assume that, instead of an exponentially distributed immune period,
that there is an immune period of fixed length w we would again obtain
u(T) = e~ *7, but now we may calculate that

() =1—e" " (1 <w), v(r)=e (e —1),(t>w).
To obtain this, we note that
V(1) = au(r), (T <w), V(1) =au(r) - ault —w), (T >w).

From these we may calculate A(7), B(7) for an ST*S model. Since it is known
that the endemic equilibrium for an STRS model with a fixed removed period
can be unstable [19], this shows that (2.33) may have roots with non-negative
real part and the endemic equilibrium of an ST*S age of infection model is
not necessarily asymptotically stable.

The ST*R age of infection model is actually a special case of the SI*S
age of infection model. We could view the class R as still infected but having
no infectivity, so that v(7) = 0. The underlying idea is that in infection age
models we divide the population into members who may become infected
and members who can not become infected, either because they are already
infected or because they are immune.
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2.4.6 An Age of Infection Epidemic Model

We conclude by returning to the beginning, namely an infection age epi-
demic model closely related to the original Kermack—McKendrick epidemic
model [21]. We simply remove the birth and natural death terms from the
ST*R model (2.27). The result is

S = —B(N)So
o0 = [ BV(E=1)S(E - T)olt ~ AT
0
N0 = (1= 1) [ BN =S =)o =) B (e
which we may rewrite as
' = —B(N)S¢
o(t) = / [-S'(t — 7)]A(T)dT (2.35)
0
N'(t)y=(1- f)/O [-S'(t —7]B'(7)dT .
Then integration of the equation for N with respect to ¢ from 0 to oo gives
K—Ny=(1- f)/o [/0 [—S'(t — 7)|B'(1)drdt
—a-n [ 1f Fse-ran@an
= (=1) [ 15(=) = Sl B (r)ir

=1 =K =5),

which is the same relation (2.8) obtained for the model (2.6). In this calcu-
lation we use the initial data to give S(—7) = K and

/OOo B'()dr = B(oo) — B(0) = —1 .

The argument that S, > 0 for the model (2.35) is analogous to the argument
for (2.10). From (2.35) we have

S'(t)
- S()

=mN@»AmP§&—ﬂMhMT

and integration with respect to ¢ from 0 to oo gives
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50 _ [~ Yl — )]A(7)dr

tog 512 = / BN (1)) / = /(t — 7)) A(r)drdt

_ / A7) / BN (#)[-S' (¢ — 7)]dtdr
0 0

< B(0) /0 A7) /0 (8 (t — 7)]dtdr
= 5(0) [ A7) - SucJdsir
— BO)(K — 5a0) / A(r)dr

and this shows that S, > 0. We recall that we are assuming here that 5(0)
is finite; in other words we are ruling out standard incidence. It is possible to
show that S, can be zero only if N — 0 and fOK B(N)dN diverges. However,
from (2.8) we see that this is possible only if f = 0. If there are no disease
deaths, so that the total population size N is constant, or if 3 is constant
(mass action incidence), the above integration gives the final size relation

10g¥=720 |:1—S?OO:|

We may view the epidemic management model (2.13) as an age of infection
model. We define I* = F+Q + 1+ J, and we need only calculate the kernels
A(7), B(1). We let u(7) denote the number of members of infection age 7 in
E, v(7) the number of members of infection age 7 in @, w(7) the number
of members of infection age 7 in I, and z(7) the number of members of
infection age 7 in J. Then (u, v, w, z) satisfies the linear homogeneous system
with constant coefficient

Y
= r1u(7) — arw(r) — yaw(7)
Yow(T) + Kov(T) — a2z(T)
with initial conditions u(0) = 1,v(0) = 0,w(0) = 0,2(0) = 0. This system

is easily solved recursively, and then the system (2.13) is an age of infection
epidemic model with

A(T) = egu(r)+egequ(r)+w(r)+ey2(1), B(T) = u(t)+ (1) +w(r)+2(1) .

In particular, it now follows from the argument carried out just above that
Soo > 0 for the model (2.13). The proof is less complicated technically than
the proof obtained for the specific model (2.13). The generalization to age
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of infection models both unifies the theory and makes some calculations less
complicated.
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Chapter 3

An Introduction to Stochastic
Epidemic Models

Linda J.S. Allen

Abstract A brief introduction to the formulation of various types of stochas-
tic epidemic models is presented based on the well-known deterministic SIS
and SIR epidemic models. Three different types of stochastic model formu-
lations are discussed: discrete time Markov chain, continuous time Markov
chain and stochastic differential equations. Properties unique to the stochastic
models are presented: probability of disease extinction, probability of disease
outbreak, quasistationary probability distribution, final size distribution, and
expected duration of an epidemic. The chapter ends with a discussion of two
stochastic formulations that cannot be directly related to the SIS and SIR
epidemic models. They are discrete time Markov chain formulations applied
in the study of epidemics within households (chain binomial models) and in
the prediction of the initial spread of an epidemic (branching processes).

3.1 Introduction

The goals of this chapter are to provide an introduction to three different
methods for formulating stochastic epidemic models that relate directly to
their deterministic counterparts, to illustrate some of the techniques for ana-
lyzing them, and to show the similarities between the three methods. Three
types of stochastic modeling processes are described: (1) a discrete time
Markov chain (DTMC) model, (2) a continuous time Markov chain (CTMC)
model, and (3) a stochastic differential equation (SDE) model. These stochas-
tic processes differ in the underlying assumptions regarding the time and
the state variables. In a DTMC model, the time and the state variables are

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-
1042, USA
linda.j.allen@ttu.edu
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discrete. In a CTMC model, time is continuous, but the state variable is dis-
crete. Finally, the SDE model is based on a diffusion process, where both the
time and the state variables are continuous.

Stochastic models based on the well-known SIS and SIR epidemic mod-
els are formulated. For reference purposes, the dynamics of the SIS and SIR
deterministic epidemic models are reviewed in the next section. Then the
assumptions that lead to the three different stochastic models are described
in Sects. 3.3, 3.4, and 3.5. The deterministic and stochastic model dynamics
are illustrated through several numerical examples. Some of the MatLab pro-
grams used to compute numerical solutions are provided in the last section
of this chapter.

One of the most important differences between the deterministic and
stochastic epidemic models is their asymptotic dynamics. Eventually stochas-
tic solutions (sample paths) converge to the disease-free state even though
the corresponding deterministic solution converges to an endemic equilib-
rium. Other properties that are unique to the stochastic epidemic models
include the probability of an outbreak, the quasistationary probability distri-
bution, the final size distribution of an epidemic and the expected duration
of an epidemic. These properties are discussed in Sect.3.6. In Sect. 3.7, the
SIS epidemic model with constant population size is extended to one with a
variable population size and the corresponding SDE model is derived.

The chapter ends with a discussion of two well-known DTMC epidemic
processes that are not directly related to any deterministic epidemic model.
These two processes are chain binomial epidemic processes and branching
epidemic processes.

3.2 Review of Deterministic SIS and SIR Epidemic
Models

In SIS and SIR epidemic models, individuals in the population are classified
according to disease status, either susceptible, infectious, or immune. The
immune classification is also referred to as removed because individuals are
no longer spreading the disease when they are removed or isolated from the
infection process. These three classifications are denoted by the variables S, I,
and R, respectively.

In an SIS epidemic model, a susceptible individual, after a successful con-
tact with an infectious individual, becomes infected and infectious, but does
not develop immunity to the disease. Hence, after recovery, infected individu-
als return to the susceptible class. The SIS epidemic model has been applied
to sexually transmitted diseases. We make some additional simplifying as-
sumptions. There is no vertical transmission of the disease (all individuals are
born susceptible) and there are no disease-related deaths. A compartmental
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diagram in Fig. 3.1 illustrates the dynamics of the SIS epidemic model. Solid
arrows denote infection or recovery. Dotted arrows denote births or deaths.

‘..-"

C P o1
| S |e
v v

Fig. 3.1 SIS compartmental diagram

Differential equations describing the dynamics of an SIS epidemic model
based on the preceding assumptions have the following form:

is B
(3.1)

il 8

pri NSI b+ )1,

where 8 > 0 is the contact rate, v > 0 is the recovery rate, b > 0 is the
birth rate, and N = S(t) + I(t) is the total population size. The initial con-
ditions satisfy S(0) > 0, I(0) > 0, and S(0) 4+ I(0) = N. We assume that
the birth rate equals the death rate, so that the total population size is con-
stant, dN/dt = 0. The dynamics of model (3.1) are well-known [25]. They
are determined by the basic reproduction number. The basic reproduction
number is the number of secondary infections caused by one infected individ-
ual in an entirely susceptible population [10,26]. For model (3.1), the basic
reproduction number is defined as follows:

p

Rog=—o0-.
0 b+~

(3.2)

The fraction 1/(b + ) is the length of the infectious period, adjusted for
deaths. The asymptotic dynamics of model (3.1) are summarized in the fol-
lowing theorem.

Theorem 1. Let S(t) and I(t) be a solution to model (3.1).
(1)If Ry <1, then tlim (S(t),I(t)) = (N,0) (disease-free equilibrium,).

(2) If Ro > 1, then lim (S(t),1(t)) = (N,N (1 — 1)) (endemic equi-
t—oo Ro Ro

librium,).
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In an SIR epidemic model, individuals become infected, but then develop
immunity and enter the immune class R. The SIR epidemic model has been
applied to childhood diseases such as chickenpox, measles, and mumps. A
compartmental diagram in Fig. 3.2 illustrates the relationship between the
three classes.

v v v

Fig. 3.2 SIR compartmental diagram

Differential equations describing the dynamics of an SIR epidemic model
have the following form:

ds 8

2 Peryr

p NS +b(I+ R)

dI 3

= o Cgr- I .
= NS (b+7) (3.3)
dR

il Yy S

7 ¥ bR,

where 0 > 0, v > 0, b > 0, and the total population size satisfies N =
S(t)+1(t)+ R(t). The initial conditions satisfy S(0) > 0, I(0) > 0, R(0) > 0,
and S(0)+ I(0) + R(0) = N. We assume that the birth rate equals the death
rate so that the total population size is constant, dN/dt = 0.

The basic reproduction number (3.2) and the birth rate b determine the
dynamics of model (3.3). The dynamics are summarized in the following
theorem.

Theorem 2. Let S(t), I(t), and R(t) be a solution to model (3.3).
(1) If Rog <1, then tlim I(t) = 0 (disease-free equilibrium,).
(2)If Rg > 1, then

lim (S(1), 1(8), R(t)) = (f:o % (1 - 7io> % (1 - 7§0)>

(endemic equilibrium).
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5(0)

(3) Assume b = 0. If Ro—== > 1, then there is an initial increase in the

N
S(0
number of infected cases I(t) (epidemic), but if Ro% < 1, then I(t)
decreases monotonically to zero (disease-free equilibrium).

The quantity RyS(0)/N is referred to as the initial replacement number,
the average number of secondary infections produced by an infected individ-
ual during the period of infectiousness at the outset of the epidemic [25,26].
Since the infectious fraction changes during the course of the epidemic, the
replacement number is generally defined as R¢S(¢)/N [25,26]. In case (3) of
Theorem 2, the disease eventually disappears from the population but if the
initial replacement number is greater than one, the population experiences
an outbreak.

3.3 Formulation of DTMC Epidemic Models

Let S(t), Z(t), and R(t) denote discrete random variables for the number of
susceptible, infected, and immune individuals at time ¢, respectively. (Cal-
ligraphic letters denote random variables.) In a DTMC epidemic model,
t € {0, At,2A¢t, ...} and the discrete random variables satisfy

S(t), I(t), R(t) € {0,1,2,...,N}.

The term “chain” (letter C) in DTMC means that the random variables are
discrete. The term “Markov” (letter M) in DTMC is defined in the next
section.

3.3.1 SIS Epidemic Model

In an SIS epidemic model, there is only one independent random variable,
Z(t), because S(t) = N —ZI(t), where N is the constant total population size.
The stochastic process {Z(t)}:2, has an associated probability function,

pi(t) = Prob{Z(t) = i},

fori =0,1,2,...,N and t = 0, At,2A¢, ... where

Let p(t) = (po(t), p1(t),...,pn(t))T denote the probability vector associated
with Z(t). The stochastic process has the Markov property if
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Prob{Z(t + At)|Z(0),Z(At), ..., T(t)} = Prob{Z(t + At)|Z(t)}.

The Markov property means that the process at time ¢ + At only depends
on the process at the previous time step t.

To complete the formulation for a DTMC SIS epidemic model, the re-
lationship between the states Z(t) and Z (¢t + At) needs to be defined. This
relationship is determined by the underlying assumptions in the SIS epidemic
model and is defined by the transition matrix. The probability of a transition
from state Z(t) =i to state Z(t + At) = j, i — 7, in time At, is denoted as

pji(t + At,t) = Prob{Z(t + At) = j|Z(t) = i}.

When the transition probability pj;(t + At,t) does not depend on ¢, p;;(At),
the process is said to be time homogeneous. For the stochastic SIS epidemic
model, the process is time homogeneous because the deterministic model is
autonomous.

To reduce the number of transitions in time At, we make one more as-
sumption. The time step At is chosen sufficiently small such that the number
of infected individuals changes by at most one during the time interval At,
that is,

it—i1+1, i1—1i—1 or ©— 1.

Either there is a new infection, a birth, a death, or a recovery during the
time interval At. Of course, this latter assumption can be modified, if the
time step cannot be chosen arbitrarily small. In this latter case, transition
probabilities need to be defined for all possible transitions that may occur,
i — i+ 2,1 — 1+ 3, etc. In the simplest case, with only three transitions
possible, the transition probabilities are defined using the rates (multiplied by
At) in the deterministic SIS epidemic model. This latter assumption makes
the DTMC model a useful approximation to the CTMC model, described in
Sect. 3.4. The transition probabilities for the DTMC epidemic model satisfy

BN =) j=i+1

(b+)iAt, j=i—1
pji(At) = Bi(N — i) , o

0, JAi+ 10— 1.

The probability of a new infection, i — i + 1, is Si(N —i)At/N. The proba-
bility of a death or recovery, i — i — 1, is (b + )i At. Finally, the probability
of no change in state, i — 4, is 1 — [i(N — i)/N + (b + )i] At. Since a birth
of a susceptible must be accompanied by a death, to keep the population
size constant, this probability is not needed in either the deterministic or
stochastic formulations.

To simplify the notation and to relate the SIS epidemic process to a birth
and death process, the transition probability for a new infection is denoted
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as b(i) At and for a death or a recovery is denoted as d(i) At. Then

b(i) At j=i+1
o ) d@)Ae, j=i—1
PiilA) =0 1) + d(i)At, G =i

0, GAi+ 10— 1

The sum of the three transitions equals one because these transitions repre-
sent all possible changes in the state ¢ during the time interval At. To ensure
that these transition probabilities lie in the interval [0, 1], the time step At
must be chosen sufficiently small such that

e max {[b(i) +d(9)] A1) < 1.

Applying the Markov property and the preceding transition probabilities,
the probabilities p;(t + At) can be expressed in terms of the probabilities at
time t. At time t + At,

(3.4)
fori=1,2,...,N, where b(:) = Bi(N —i)/N and d(i) = (b+ 7)i.

A transition matrix is formed when the states are ordered from 0 to N.
For example, the (1,1) element in the transition matrix is the transition
probability from state zero to state zero, poo(At) = 1, and the (N +1, N+1)
element is the transition probability from state N to state N, pyn(At) =
1—[b++]NAt = 1—d(N)At. Denote the transition matrix as P(At). Matrix
P(At)isa (N +1) x (N 4 1) tridiagonal matrix given by

1 d(1) At 0 0 0
01— (b+d)(1)At d(2) At 0 0

0 b(1) At 1— (b+d)(2)At --- 0 0

0 0 b(2) At o 0 0

0 0 0 d(N — 1) At 0

0 0 0 1= (b+d)(N—1)At d(N)At

0 0 0 e b(N — 1) At 1—d(N)At

where the notation (b+d)(z) = [b(i) +d(i)] for i = 1,2,..., N. Matrix P(At)
is a stochastic matriz, i.e., the column sums equal one.

The DTMC SIS epidemic process {Z(¢)}2, is now completely formulated.
Given an initial probability vector p(0), it follows that p(At) = P(At)p(0).
The identity (3.4) expressed in matrix and vector notation is

p(t + At) = P(At)p(t) = P (At)p(0), (3.5)

where t = nAt.
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Difference equations for the mean and the higher order moments of the
epidemic process can be obtained directly from the difference equations in
(3.4). For example, the expected value for Z(t) is E(Z(t)) = Ef\io ip;i(t).
Multiplying (3.4) by ¢ and summing on i leads to

N
B(I(t+ At)) = > _ipi(t+ At)
Z;O N—-1
= ipi1(B)b(i — DAt + Y ipipa (£)d(i + 1) At
i=1 =0

N N N
+ Y ipi(t) = Y ipi(t)b(i) At — > ip;(t)d(i) At
=0 1=0 1=0

Simplifying and substituting the expressions 5i(N — ¢)/N and (b + )¢ for
b(i) and d(i), respectively, yields

E(Z(t+ At)) = +sz 1 Z_l)(JX[_ i 1D

_szJrl (b+)(i+1)At

=mam+w-w+MMMﬂm—§Ama%»

where E(Z2(t)) = YN, i%pi(t) (see, e.g., [8]). The difference equation for the
mean depends on the second moment. Difference equations for the second and
the higher order moments depend on even higher order moments. Therefore,
these equations cannot be solved unless some additional assumptions are
made regarding the higher order moments. However, because E(Z2(t)) >
E?(Z(t)), the mean satisfies the following inequality:

B(Z(t + At)) — E(Z(1))
At

< (8- (4] @) - LEATW).  (36)
As At — 0,

dE(Z(t))
dt

IN

6~ b+ BE() - 2 E2(2)
= DIV Bae Eae) - b+Eaw) 61

The right side of (3.7) is the same as the differential equation for I(¢) in
(3.1), if, in (3.1), I(t) and S(t) are replaced by E(Z(t)) and N — E(Z(t)),
respectively. The differential inequality implies that the mean of the random
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variable Z(t) in the stochastic SIS epidemic process is less than the solution
I(t) to the deterministic differential equation in (3.1).

Some properties of the DTMC SIS epidemic model follow easily from
Markov chain theory [6,47]. States are classified according to their connect-
edness in a directed graph or digraph. The digraph of the SIS Markov chain
model is illustrated in Fig. 3.3, where ¢ = 0,1,..., N are the infected states.

—> — —>
- <« +“— <
Fig. 3.3 Digraph of the stochastic SIS epidemic model

The states {0,1,...,N} can be divided into two sets consisting of the
recurrent state, {0}, and the transient states, {1,..., N}. The zero state is
an absorbing state. It is clear from the digraph that beginning from state 0
no other state can be reached; the set {0} is closed. In addition, any state in
the set {1,2,..., N} can be reached from any other state in the set, but the
set is not closed because po1(At) > 0. For transient states it can be shown
that elements of the transition matrix have the following property [6,47]: Let

P = (pgl)), where pgl) is the (4, j) element of the nth power of the transition
matrix, P™, then
. (n) _
Jim py? =0
for any state j and any transient state i. The limit of P™ as n — oo is a
stochastic matrix; all rows are zero except the first one which has all ones.

From the relationship (3.5) and Markov chain theory, it follows that

lim p(t) = (1,0,...,0)7,
t—oo
where t = nAt.

The preceding result implies, in the DTMC SIS epidemic model, that the
population approaches the disease-free equilibrium (probability of absorption
is one), regardless of the magnitude of the basic reproduction number. Com-
pare this stochastic result with the asymptotic dynamics of the deterministic
SIS epidemic model (Theorem 1). Because this stochastic result is asymptotic,
the rate of convergence to the disease-free equilibrium can be very slow. The
mean time until the disease-free equilibrium is reached (absorption) depends
on the initial conditions and the parameter values, but can be extremely
long (as shown in the numerical example in the next section). The expected
duration of an epidemic (mean time until absorption) and the probability
distribution conditioned on nonabsorption are discussed in Sect. 3.6.
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3.3.2 Numerical Example

A sample path or stochastic realization of the stochastic process {Z(t)}2, for
t € {0, At,2A¢,...} is an assignment of a possible value to Z(t) based on
the probability vector p(t). A sample path is a function of time, so that it
can be plotted against the solution of the deterministic model. For illustrative
purposes, we choose a population size of N = 100, At = 0.01, 5 =1, b = 0.25,
~v = 0.25 and an initial infected population size of 1(0) = 2. In terms of the
stochastic model,
Prob{Z(0) =2} =1.

In this example, the basic reproduction number is Ry = 2. The deterministic
solution approaches an endemic equilibrium given by I = 50.

Three sample paths of the stochastic model are compared to the deter-
ministic solution in Fig. 3.4. One of the sample paths is absorbed before 200
time steps (the population following this path becomes disease-free) but two
sample paths are not absorbed during 2,000 time steps. These latter sample
paths follow more closely the dynamics of the deterministic solution. The
horizontal axis is the number of time steps At. For At = 0.01 and 2,000 time
steps, the solutions in Fig. 3.4 are graphed over the time interval [0, 20]. Each
sample path is not continuous because at each time step, t = At,2A¢,.. .,
the sample path either stays constant (no change in state with probability
1 — [b(2) 4+ d(7)] At), jumps down one integer value (with probability d(i)At),
or jumps up one integer value (with probability b(i)At). For convenience,
these jumps are connected with vertical line segments. Each sample path is
continuous from the right but not from the left.

The entire probability distribution, p(t), t = 0, At, ..., associated with this
particular stochastic process can be obtained by applying (3.5). A MatLab
program is provided in the last section that generates the probability distri-
bution as a function of time (Fig. 3.5). Note that the probability distribution
is bimodal, part of the distribution is at zero and the remainder of the dis-
tribution follows a path similar to the deterministic solution. Eventually, the
probability distribution at zero approaches one. This bimodal distribution
is important; the part of the distribution that does not approach zero (at
time step 2,000) is known as the quasistationary probability distribution (see
Sect. 3.6.2).

3.3.3 SIR Epidemic Model

Let S(t), Z(t), and R(t) denote discrete random variables for the number
of susceptible, infected, and immune individuals at time ¢, respectively. The
DTMC SIR epidemic model is a bivariate process because there are two
independent random variables, S(t) and Z(t). The random variable R(t) =
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Fig. 3.4 Three sample paths of the DTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are A¢ = 0.01, N = 100,
B=1,b=0.25~v=0.25,and I(0) =2

N —S8(t)—Z(t). The bivariate process {(S(t),Z(t))};2, has a joint probability
function given by

P(s,i)(t) = Prob{S(t) = s,Z(t) = i}.

This bivariate process has the Markov property and is time-homogeneous.

Transition probabilities can be defined based on the assumptions in the SIR
deterministic formulation. First, assume that At can be chosen sufficiently
small such that at most one change in state occurs during the time interval
At. In particular, there can be either a new infection, a birth, a death, or a
recovery. The transition probabilities are denoted as follows:

P(sth,i+),(s,1) (At) = Prob{(A8, AT) = (k, j)|(8(t), Z(t)) = (s,9)},

where AS = S(t + At) — S(t). Hence,
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Fig. 3.5 Probability distribution of the DTMC SIS epidemic model. Parameter values are
the same as in Fig. 3.4

viAt, (k,j)=(0,-1)
P(s+k,it+g),(s,0) (At) = § BN — s — i) At, (k,j) = (1,0) (3.8)

1 — Bis/N At

0, otherwise.

The time step At must be chosen sufficiently small such that each of the tran-
sition probabilities lie in the interval [0, 1]. Because the states are now ordered
pairs, the transition matrix is more complex than for the SIS epidemic model
and its form depends on how the states (s,4) are ordered. However, apply-
ing the Markov property, the difference equation satisfied by the probability
P(s,i)(t + At) can be expressed in terms of the transition probabilities,

B (i~ 1) (s + 1)At + prasen (D100 + 1) At

P(s,i) (t+ At) = Prst1,i—1) (t)ﬁ
£)b(i + 1) At + ps—1,)(t)b(N — s +1 — i) At

+P(s—1,i41)(

e (£) (1 _ [%is i b(N — s)] At) . (3.9)

The digraph associated with the SIR Markov chain lies on a two-dimensional
lattice. It is easy to show that the state (V,0) is absorbing (p(n,0),(nv,0)
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(At)=1) and that all other states are transient. Thus, asymptotically, all
sample paths eventually are absorbed into the disease-free state (N, 0). Com-
pare this result to the deterministic SIR epidemic model (Theorem 2).
Difference equations for the mean and higher order moments can be de-
rived from (3.9) as was done for the SIS epidemic model, e.g., E(S(t)) =

Zivzo 5P(s,i)(t) and E(Z(t)) = Zf\io ip(s,iy(t). However, these difference equa-
tions cannot be solved directly because they depend on higher order moments.

3.3.4 Numerical Example

Three sample paths of the DTMC SIR model are compared to the solution
of the deterministic model in Fig. 3.6. In this example, At = 0.01, N = 100,
B=1,b=0,~=0.5, and (S(0),1(0)) = (98,2). In the stochastic model,

Prob{(S(0),Z(0)) = (98,2)} = 1.

The basic reproduction number and the initial replacement number are both
greater than one; Ry = 2 and RS(0)/N = 1.96. According to Theorem 2
part (3), there is an epidemic (an increase in the number of cases). The
epidemic is easily seen in the behavior of the deterministic solution. Each of
the three sample paths also illustrate an epidemic curve.

3.4 Formulation of CTMC Epidemic Models

The CTMC epidemic processes are defined on a continuous time scale, t €
[0,00), but the states S(t), Z(t), and R(t) are discrete random variables, i.e.,

S(t), I(t), R(t) € {0,1,2,..., N}.

3.4.1 SIS Epidemic Model

In the CTMC SIS epidemic model, the stochastic process depends on the
collection of discrete random variables {Z(¢)}, ¢ € [0, 00) and their associated
probability functions p(t) = (po(t),...,pn(t))T, where

p;i(t) = Prob{Z(¢t) = i}.
The stochastic process has the Markov property, that is,

Prob{Z(t+1)|Z(t0). Z(t1), - .. Z(tn)} = Prob{Z(tns 1) Z(ta)}
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Fig. 3.6 Three sample paths of the DTMC SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are A¢ = 0.01, N = 100,
B=1,b=0,v=0.5 5(0) =98, and I(0) =2

for any sequence of real numbers satisfying 0 < to < t; < -+ < t,, < tpy1.
The transition probability at time ¢,,+1 only depends on the most recent time
tn.

The transition probabilities are defined for a small time interval At. But
in a CTMC model, the transition probabilities are referred to as infinitesimal
transition probabilities because they are valid for sufficiently small At. There-
fore, the term o(At) is included in the definition [lim;_, o (0(At)/At) = 0].
The infinitesimal transition probabilities are defined as follows:

%z’(N—i)At—i—o(At), j=i+1

(b+ )i At + o( At), j=i-1
pji(At) = 8. , . o

1- Nz(N—z)—f—(b—ﬁ—v)z At + o(At), j=1

o(At), otherwise.

Because At is sufficiently small, there are only three possible changes in
states:

1—1+1, i —i—1, or 1 — 1.
Using the same notation as for the DTMC model, let b(i) denote a birth (new
infection) and d(i) denote a death or recovery. Then
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b(i) At + o At), j=itl

d(i) At + o( At), =i
pji(At) = 1 — [b(i) + d(i)] At + o( At), ; =1

o(At), otherwise.

Applying the Markov property and the infinitesimal transitional proba-
bilities, a continuous time analogue of the transition matrix can be defined.
Instead of a system of difference equations, a system of differential equations
is obtained. Assume Prob{Z(0) = i} = 1. Then p; ;,(At) = p;(At) and

pi(t + At) = pifl(t)b(i — 1)At +pi+1(t)d(7; + 1)At
+pi(t) (1 — [b(i) + d(i)] At) + o( At).

These equations are the same as the DTMC equations (3.4), except o(At) is
added to the right side. Subtracting p;(t), dividing by At, and letting At — 0,
leads to

dpi

dt
fori=1,2,...,N and dpo/dt = p1d(1). These latter equations are known as
the forward Kolmogorov differential equations [47]. In matrix notation, they
can be expressed as

=pi—1b(i = 1) + piy1d(i + 1) — p;[b(i) + d(4)] (3.10)

dp

where p(t) = (po(t),...,pn(t))T and matrix Q is defined as follows:

0 dQ) 0

0—[b(1)+d1)]  d?2) 0

0 1) —[b(2) + d(2)] 0
0=|0 0 b(2) 0 |

0 0 0 d(N)

0 0 0 o —d(N)

b(i) = Bi(N—i)/N and d(i) = (b+-y)i. Matrix @ is referred to as the infinites-
imal generator matriz or simply the generator matriz [6,47), More generally,
the differential equations dP/dt = QP are known as the forward Kolmogorov
differential equations, where P = (p;;(¢)) is the matrix of infinitesimal tran-
sition probabilities. It is interesting to note that the transition matrix P(At)
of the DTMC model and the generator matrix @) are related as follows:

The generator matrix @ has a zero eigenvalue with corresponding eigen-
vector (1,0,...,0)”. The remaining eigenvalues are negative or have negative
real part. This can be seen by applying Gershgorin’s circle theorem and the
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fact that the submatrix Q of @, where the first row and the first column
are deleted, is nonsingular [43]. Therefore, lim; ... p(t) = (1,0,0,...,0)7.
Eventual absorption occurs in the CTMC SIS epidemic model. Compare this
stochastic result with Theorem 1.

Differential equations for the mean and higher order moments of Z(t) can
be derived from the differential equations (3.11). As was shown for the DTMC
epidemic model, the differential equations (3.10) can be multiplied by ¢, then
summed over i. However, we present an alternate method for obtaining the
differential equations for the mean and higher order moments using generat-
ing functions. Either the probability generating function (pgf) or the moment
generating function (mgf) can be used to derive the equations. The pgf for
Z(t) is defined as

P0,t) = E(0*) = pi(t)0'
and the mgf as

M(97 t) = GI(t Z pz

We use the mgf to derive the equations because the method of derivation
is simpler than with the pgf. In addition, the moments of the distribution
corresponding to Z(t) can be easily calculated from the mgf,

OF M

205 = E(T*(t))

6=0

fork=1,...,n
First, we derive a differential equation satisfied by the mgf. Multiplying
the equations in (3.10) by € and summing on 4, leads to

OM _ S~ dpi g
ot dt

i=0

— 69 sz_le(z_l)gb(l _ —0 Z p (l+1 9d Z _|_ 1)
=1

N .
=3 pie[b(i) + d(i)].

Simplifying and substituting $i(N — ¢)/N and (b + 7)i for b(7) and d(7),
respectively, yields
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oM S S
e (G > ipie + b+ 1) ipie

i=1 i=1
ﬁ N
— N(ee _ 1) 27:2[)7;619.

The summations on the right side of the preceding equation can be replaced
with OM /06 or %M /36?. Then the following second order partial differential
equation is obtained for the mgf:

0?M
002~

oM

G A U B e

OM B, o _
A

(3.12)

Bailey [13] derives a general form for the partial differential equation satisfied
by the mgf and the pgf based on the infinitesimal transition probabilities for
the process.

The partial differential equation for the mgf, (3.12), is used to obtain an
ordinary differential equation satisfied by the mean of Z(¢). Differentiating
(3.12) with respect to 0 and evaluating at @ = 0 yields an ordinary differential
equation satisfied by the mean E(Z(t)),

dE(Z(t))
dt

= 18- b+ BE®) - L B@ ).

Because the differential equation for the mean depends on the second mo-
ment, it cannot be solved directly, but as was shown for the DTMC SIS
epidemic model in (3.7), the mean of the stochastic SIS epidemic model is
less than the deterministic solution. The differential equations for the second
moment and for the variance depend on higher order moments. These higher
order moments are often approximated by lower order moments by making
some assumptions regarding their distributions (e.g., normality or lognormal-
ity), referred to as moment closure techniques (see, e.g., [27,34]). Then these
differential equations can be solved to give approximations for the moments.

3.4.2 Numerical Example

To numerically compute a sample path of a CTMC model, we need to use
the fact that the interevent time has an exponential distribution. This follows
from the Markov property. The exponential distribution has what has been
called the “memoryless property.”

Assume Z(t) = i. Let T; denote the interevent time, a continuous random
variable for the time to the next event given the process is in state i. Let
H;(t) denote the probability the process remains in state ¢ for a period of
time ¢. Then H;(t) = Prob{T; > t}. It follows that
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Hi(t + At) = H;(t)pii (At) = H;(£)(1 — [b(3) + d(i)]At) + o( At).

Subtracting H;(t) and dividing by At, the following differential equation is
obtained: .
T o) + (i)
Since H;(0) = 1, the solution to the differential equation is H;(t) =
exp(—[b(i) + d(i)]t). Therefore, the interevent time T; is an exponential ran-
dom variable with parameter b(i) + d(i). The cumulative distribution of T;

1S

Fi(t) = Prob{T; <t} =1 —exp(—[b() + d(i)]t)

[6,47).
The uniform random variable on [0, 1] can be used to numerically compute
the interevent time. Let U be a uniform random variable on [0, 1]. Then

Prob{F; ' (U) < t} = Prob{F;(F; ' (U)) < F;(t)}
The interevent time T;, given Z(t) = i, satisfies

In(1 -0) In(U)

T=F ) = 3G ) = + )

using the properties of uniform distributions.

In Fig. 3.7, three sample paths for the CTMC SIS epidemic model are
compared to the deterministic solution. Parameter values are b = 0.25, v =
0.25, 6 =1, N =100, and I(0) = 2. For the stochastic model,

Prob{Z(0) =2} =1.

The basic reproduction number is Ry = 2. One sample path in Fig. 3.7 is ab-
sorbed rapidly (the population following this path becomes disease-free). The
sample paths for the CTMC model are not continuous for the same reasons
given for the DTMC model. With each change, the process either jumps up
one integer value (with probability b(7)/[b(i) + d()]) or jumps down one in-
teger value (with probability d(7)/[b(¢) + d()]). Sample paths are continuous
from the right but not from the left. Compare the sample paths in Fig. 3.7
with the three sample paths in the DTMC SIS epidemic model in Fig. 3.4.

3.4.3 SIR Epidemic Model

A derivation similar to the SIS epidemic model can be applied to the SIR
epidemic model. The difference, of course, is that the SIR epidemic process
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Fig. 3.7 Three samples paths of the CTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are b = 0.25, v = 0.25, 8 =1,
N =100, and I(0) = 2. Compare with Fig.3.4

is bivariate, {(S(t),Z(t))}, where R(t) = N — S(¢t) — Z(t). Assumptions sim-
ilar to those for the DTMC SIR epidemic model (3.8) apply to the CTMC
SIR epidemic model, except that o(At) is added to each of the infinitesimal
transition probabilities.

For the bivariate process, a joint probability function is associated with
each pair of random variables (S(t),Z(t)), p(s,(t) = Prob{(S(t),Z(t)) =
(s,7)}. A system of forward Kolmogorov differential equations can be derived,

dp(s,i)
dt

8. .
= p(s+1,i—1)ﬁ(l —1)(s+ 1) + p(s,ipgnyy(i + 1)
+D(s-1,i+1)0(0 + 1) + P(s—1,0b(N — s + 1 — 1)

—D(s,4) %is + i+ b(N —s)
These differential equations are the limiting equations (as At — 0) of the
difference equations in (3.9). Differential equations for the mean and higher
order moments can be derived. However, as was true for the other epidemic
processes, they do not form a closed system, i.e., each successive moment
depends on higher order moments. Moment closure techniques can be applied
to approximate the solutions to these moment equations [27,34].
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The SIR epidemic process is Markovian and time homogeneous. In addi-
tion, the disease-free state is an absorbing state. In Sect.3.6.3, we discuss
the final size of the epidemic, which is applicable to the deterministic and
stochastic SIR epidemic model in the case Rg > 1 and b = 0 (Theorem 2,

part (3)).

3.5 Formulation of SDE Epidemic Models

Assume the time variable is continuous, ¢ € [0,00) and the states S(t), Z(¢),
and R(t) are continuous random variables, that is,

S(t), Z(t), R(t) € [0, N].

3.5.1 SIS Epidemic Model

The stochastic SIS epidemic model depends on the number of infectives,
{Z(t)}, t € [0,00), where Z(¢) has an associated probability density function

(pdf), p(z, 1), \

Prob{a <Z(t) <b} = / p(z, t)dx.

a

The stochastic SIS epidemic model has the Markov property, i.e.,
Prob{Z(t,) < y|Z(to),Z(t1),...,Z(tn—1)} = Prob{Z(t,) < y|Z(tn-1)}

for any sequence of real numbers 0 < tg < t; < -+ < t,_1 < t,. Denote the
transition pdf for the stochastic process as

ply,t+ Aty x,t),

where at time ¢, Z(t) = z, and at time ¢t + At, Z(t + At) = y. The process is
time homogeneous if the transition pdf does not depend on ¢t but does depend
on the length of time, At. The stochastic process is referred to as a diffusion
process if it is a Markov process in which the infinitesimal mean and variance
exist. The stochastic SIS epidemic model is a time homogeneous, diffusion
process. The infinitesimal mean and variance are defined next.

For the stochastic SIS epidemic model, it can be shown that the pdf sat-
isfies a forward Kolmogorov differential equation. This equation is a second
order partial differential equation [6,21], a continuous analogue of the forward
Kolmogorov differential equations for the CTMC model in (3.10). Assume
Prob{Z(0) =ig} = 1 and let p(i,;49,0) = p(i,t) = p;(t). Then the system of
differential equations in (3.10) can be expressed as a finite difference scheme
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in the variable i with Ai =1,

CZ? = pi—1b(t — 1) + pig1d(i + 1) — pi[b(i) + d(3)]
_ApenlbG 1) — d(i+ D) = piab(i = 1) — di — 1]}
2Ai
1 {pit1[b(i + 1) 4+ d(i + 1)] — 2ps[b(3) + d(i)] + pi—1[b(i — 1) + d(i — 1)]}
"2 (4i)? :

Let i = z, Ai = Az and p;(t) = p(z,t). Then the limiting form of the pre-
ceding equation (as Az — 0) is the forward Kolmogorov differential equation
for p(z,t):

op(z,1) 0 102

5t = gy (@) — d@)lp(e, )} + 5o {[bx) + d(@)] p(=, 1)} -

Substituting b(x) = (N — x)/N and d(z) = (b + )z yields

i (-]

1 02 3
+ 3922 { [Nx(N —x)+ (b—|—'y)a:] p(x,t)} .
The coefficient of p(x,t) in the first term on the right side of the preceding
equation, [fx(N —x)/N — (b+ v)x], is the infinitesimal mean and the coeffi-
cient of p(z, t) in the second term, [fa(N —x)/N+(b—+)z], is the infinitesimal
variance. More generally, the forward Kolmogorov differential equations can
be expressed in terms of the transition probabilities, p(y, s; z,t). To solve the
differential equation requires boundary conditions for z = 0, N and initial
conditions for ¢ = 0. An explicit solution is not possible because of the non-
linearities. We derive a SDE that is much simpler to solve numerically and
whose solution is a sample path of the stochastic process.

A SDE for the SIS epidemic model can be derived from the CTMC SIS
epidemic model [5]. The assumptions in the CTMC SIS epidemic model are
restated in terms of AZ = Z(t + At) — Z(¢t). Assume

b(i) At + o( At), j=i+1
. dt)at+o(ad), i1
Prob{AT = JIZ(t) =it = § 1"V iy L (i + o(An), ] — i
o(At), JAI+Li— 1

In addition, assume that AZ has an approximate normal distribution for
small At. The expectation and the variance of AZ are computed.

B(AT) = b(T) At — d(T) At + o(At)
= [b(Z) — d(T)] At + o(At) = (T) At + o( At).
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Var(AT) = E(AT)? — [B(AT)]?
= b(Z) At + d(T) At + o At)
= [b(T) + d(T)] At + o( At) = 0*(T) At + o( At),

where the notation means b(Z) = Bi(N — i)/N and d(Z) = (b + 7)i given
that Z(t) = 4. Because the random variable AZ is approximately normally
distributed, AZ(t) ~ N(u(Z)At, 0%(T) At),

I(t+ At) = I(t) + AZ(t)
~ I(t) + p(I) At + o (T)V At,

where n ~ N (0, 1).
The difference equation Z(t + At) = Z(t) + u(Z) At + o(Z) v At n is Euler’s
method applied to the following It6 SDE:

dT aw
T W) + U(I)E,

where W is the Wiener process, W (t + At) — W (t) ~ N(0, At) [21,31,32].
Euler’s method converges to the Itd6 SDE provided the coefficients, p(Z) and
o(Z), satisfy certain smoothness and growth conditions [31,32]. The coef-
ficients for the stochastic SIS epidemic model are u(Z) = b(Z) — d(Z) and
o(Z) = /b(Z) + d(Z), where

b(T) = %I(N ~7) and d(T) = (b+)T.

Substituting these values into the It6 SDE gives the SDE SIS epidemic model,

Z—f = %I(N -I)—(b+v)Z + \/ffz(zv —-I)+ (b+ V)I%. (3.13)
From the Itd6 SDE, it can be seen that when Z(t) = 0, dZ/dt = 0. The
disease-free equilibrium is an absorbing state for the It6 SDE.

We digress briefly to discuss the Wiener process {W (t)}, t € [0,00). The
Wiener process depends continuously on ¢, W (t) € (—oo, 00). It is a diffusion
process, but has some additional nice properties. The Wiener process has
stationary, independent increments, that is, the increments AW depend only
on At. They are independent of ¢ and the value of W (¢):

AW = W(t + At) — W(t) ~ N(0, At).

Two sample paths of a Wiener process are graphed in Fig. 3.8.

The notation dW(t)/dt is only for convenience because sample paths of
W (t) are continuous but nowhere differentiable [12,21]. The Ité6 SDE (3.13)
should be expressed as a stochastic integral equation but the SDE notation
is standard.
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Fig. 3.8 Two sample paths of a Wiener process

3.5.2 Numerical Example

Three sample paths of the SDE SIS epidemic model are graphed in Fig. 3.9.
The parameter values are 5 =1, b = v = 0.25, and N = 100. The initial
condition is I(0) = 2. For the stochastic model the pdf for the initial condition
is p(x,0) = 20(z — 2), where §(x) is the Dirac delta function. The basic
reproduction number is Rg = 2, so that the deterministic solution approaches
the endemic equilibrium I = 50. The MatLab program which generated these
sample paths is given in the last section. Compare the sample paths of the
It6 SDE in Fig.3.9 with those for the DTMC and the CTMC models in
Figs. 3.4 and 3.7. The sample paths for the It6 SDE are continuous, whereas
the sample paths of the DTMC and the CTMC models are discontinuous.

3.5.3 SIR Epidemic Model

A derivation similar to the Itd SDE for the SIS epidemic model can be applied
to the bivariate process {(S(t),Z(t))} [5,6]. Similar assumptions are made
regarding the change in the random variables, AS and AZ, as in the transition
probabilities for the DTMC and CTMC models. In addition, we assume that
the change in these random variables is approximately normally distributed.
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Fig. 3.9 Three sample paths of the SDE SIS epidemic model are graphed with the de-
terministic solution (dashed curve). The parameter values are b = 0.25, v = 0.25, 8 =1,
N =100, I(0) = 2. Compare with Figs.3.4 and 3.7

To simplify the derivation, we assume there are no births, b = 0, in the SIR
epidemic model.
Let AX(t) = (AS, AZ)T. Then the expectation of AX(t) to order At is

B
=87
E(AX(M1) = | 4 N At.

The covariance matrix of AX(t) is V(AX(t) = E(AX(@)[AX(@)]T) —
E(AX(t)BE(AX(t))T =~ E(AX (t)[AX (t)]T) because the elements in the sec-
ond term are o([At]?). Then the covariance matrix of AX(¢) to order At is

ﬁSI —ﬁSI

V(AX (1)) = % 3 N At

[5,6]. The random vector X (¢t + At) can be approximated as follows:

X(t+ At) = X(t) + AX(t) ~ X(t) + B(AX () + /V(AX (1),  (3.14)
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Because the covariance matrix is symmetric and positive definite, it has a
unique square root Bv/At = /V [43]. The system of equations (3.14) are an
Euler approximation to a system of It6 SDEs. For sufficiently smooth coeffi-
cients, the solution X (t) of (3.14) converges to the solution of the following
system of It6 SDEs:

as B AW, AWy
a = NSI T Bu—g B

az p dW dWs
— = =87 —-~T+ B Boy——
a ~ NST A By By

where W; and W5 are two independent Wiener processes and B = (Bij)
[31,32].

3.5.4 Numerical Example

Three sample paths of the SDE SIR epidemic model are graphed with the de-
terministic solution in Fig. 3.10. The parameter values are At = 0.01, =1,
b=0,v = 0.5, and N = 100 with initial condition I(0) = 2. The ba-
sic reproduction number and initial replacement number are Ry = 2 and
RoS(0)/N = 1.96, respectively. Compare the sample paths in Fig. 3.10 with
the sample paths for the DTMC SIR epidemic model in Fig. 3.6.

3.6 Properties of Stochastic SIS and SIR Epidemic
Models

In the next subsections, we concentrate on some of the properties of these
well-known stochastic epidemic models that distinguish them from their de-
terministic counterparts. Four important properties of stochastic epidemic
models include the following: probability of an outbreak, quasistationary
probability distribution, final size distribution of an epidemic and expected
duration of an epidemic. Each of these properties depend on the stochastic
nature of the process.

3.6.1 Probability of an Outbreak

An outbreak occurs when the number of cases escalates. A simple random
walk model (DTMC) or a linear birth and death process (CTMC) on the
set {0,1,2,...} can be used to estimate the probability of an outbreak. For
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Fig. 3.10 Three sample paths of the SDE SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are At = 0.01, 5 =1, b =0,
v = 0.5, N =100, and I(0) = 2. Compare with Fig. 3.6

example, let X (¢) be the random variable for the position at time ¢ on the set
{0,1,2,...} in a random walk model. State 0 is absorbing and the remaining
states are transient. If X (¢) = z, then in the next time interval, there is
either a move to the right x — x + 1 with probability p or a move to the
left, x — x — 1 with probability ¢, with the exception of state 0, where there
is no movement (p + ¢ = 1). In the random walk model, either the process
approaches state 0 or approaches infinity. The probability of absorption into
state 0 depends on p, ¢, and the initial position. Let X (¢) = z¢ > 0, then it
can be shown that

L, ifp<gq
. _ o xo
tlirglo Prob{X (t) =0} = (q) fp>g (3.15)

(e.g., [6,13,45]).

The identity (3.15) is also valid for a linear birth and death process in a
DTMC or CTMC model, where b and d are replaced by A\i and pi, where 7 is
the position. In the linear birth and death process, the infinitesimal transition
probabilities satisfy
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NiAt + o(At), j=1
Pivyi(At) = § pidt + o(At), Jj=-1
1 — (A4 p)iAt+ o(At), j = 0.

The identity (3.15) holds with A replacing p and p replacing g. The probabil-
ity of absorption is one if A < p. But if A > p the probability of absorption
decreases to (u/A)*. In this latter case, the probability of population persis-
tence is 1 — (p/X)®0. This identity can be used to approximate the probability
of an outbreak in the DTMC and CTMC SIS and SIR epidemic models, where
population persistence can be interpreted as an outbreak. The approximation
improves the larger the population size N and the smaller the initial number
of infected individuals.

Suppose the initial number of infected individuals i is small and the pop-
ulation size N is large. Then the “birth” and “death” functions in an SIS
epidemic model are given by

Birth = b(i) = %L‘(N — i)~ Bi

and
Death = d(i) = (b+ 7)i.

Applying the identity (3.15) and the preceding approximations for the birth
and death functions leads to the approximation pu/A = (b+v)/8 = 1/Ry,
that is,
1, if Rp <1
Prob{Z(t) = 0} ~ 1Y)’
(%
Therefore, the probability of an outbreak is

ig
) Jif Rg > 1.

0, iRy <1

Probability of an Outbreak ~ 1_ (7;)20 Jif Rog> 1.
0

(3.16)

The estimates in (3.16) apply to the stochastic SIS and SIR epidemic
models only for a range of times, t € [T, T5]. In the stochastic epidemic
models, eventually lim;_, ., Prob{Z(¢) = 0} = 1 because zero is an absorbing
state. The range of times for which the estimate (3.16) holds can be quite
long when N is large and ig is small (see Fig.3.5). In Fig.3.5, N = 100,
Ro = 2, and ip = 2, so that applying (3.16) leads to the estimate for the
probability of no outbreak as (1/2)? = 1/4. The value 1/4 is very close to the
mass of the distribution concentrated at zero, Prob{Z(¢) = 0}. In Fig.3.11,
Prob{Z(t) = 0} for the DTMC SIS epidemic model is graphed for different
values of Rg. There is close agreement between the numerical values and the
estimate (1/Rg)% when i = 1,2,3 [(1/Ro)% = 0.5,0.25,0.125].
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Fig. 3.11 Graphs of Prob{Z(¢) = 0} for Rg = 2, N = 100, and Prob{Z(0) = io} = 1,
io=1,2,3

3.6.2 Quasistationary Probability Distribution

Because the zero state in the stochastic SIS epidemic models is absorbing, the
unique stationary distribution approached asymptotically by the stochastic
process is the disease-free equilibrium. However, as seen in the previous sec-
tion and in Fig. 3.5, prior to absorption, the process approaches what appears
to be a stationary distribution that is different from the disease-free equilib-
rium. This distribution is known as the quasistationary probability distri-
bution (first investigated in the 1960s [18]). The quasistationary probability
distribution can be obtained from the distribution conditioned on nonextinc-
tion (i.e., conditional on the disease-free equilibrium not being reached).

Let the distribution conditioned on nonextinction for the CTMC SIS epi-
demic model be denoted as q(t) = (q1(t),...,qn(t))T. Then g;(t) is the prob-
ability Z(t) = i given that Z(s) > 0 for ¢ > s (the disease-free equilibrium
has not been reached by time t), i.e.,

qi(t) = Prob{Z(t) = i|Z(s) >0, t > s},

i = 1,2,...,N. Because the zero state is absorbing, the probability
Prob{Z(s) >0, t > s} =1 — po(t). Therefore,
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pi(t)
qi(t)zm, =1,2...,

The forward Kolmogorov differential equations for p; given in (3.10) can be
used to derive a system of differential equations for the ¢;.

Differentiating the expression for ¢; in (3.17) with respect to ¢t and applying
the identity for dp;/dt in (3.10) leads to

N. (3.17)

dg;  dp;/dt Pi
ok b
i 1_p0+( +’Y)Q11_p0
for i = 1,2,..., N. In matrix notation, the system of differential equations
for ¢ = (q1,-..,qn)T are similar to the forward Kolmogorov differential equa-
tions,
dg ~
o = Qat b +ag,

where matrix Q is the same as matrix @ in (3.11) with the first row and
column deleted. Matrix @ is

b)) +d1)]  dE@) -0
b(1) =) +d2)]-- 0
0 b2) - 0
0 o )
0 0 -+ —d(N)

where b(i) = Bi(N —4)/N and d(i) = (b+ 7)i.

Now, the quasistationary probability distribution can be defined. The
quasistationary probability distribution is the stationary distribution (time-
independent solution) ¢* = (¢}, ...,q})" satisfying

Qa" = —(b+7)dq". (3.18)

Although ¢* cannot be solved directly from the system of equations (3.18),
it can be solved indirectly via an iterative scheme (see, e.g., [38,39]).

The quasistationary distribution is related to the eigenvalues of the orig-
inal matrix @, where dp/dt = Qp. The solution to the forward Kolmogorov
differential equations (3.11) satisfy

p(t) =1 + ’Ulerlt 4t UNerNt7
where vy = (1,0,0,...,0)T [28,38,39]. Since matrix Q is the same as Q, with

the first row and column deleted, the vector v; = (—1,q},q5,...,q%)T is an
eigenvector of @) corresponding to the eigenvalue m = —(b + 7)qj, that is,

Qui =111
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so that
p(t) = (170707 B 70)T + (713(]?7(];3 s aQTV)Terlt +o A+ UNeTNt~

Nasell discusses two approximations to the quasistationary probability dis-
tribution [38-40]. One approximation assumes d(1) = 0. For this approxima-
tion, the system of differential equations for ¢ simplify to

where
—b(1) d(2) 0
b(1) —[b(2) +d(2)] 0
0 b(2) 0
Q1= : : : :
0 0 - d)
0 0 -+« —d(N)

System (3.19) has a unique stable stationary distribution, p* = (pi,...,p%)7
where Qp' = 0. Because matrix Q; is tridiagonal, p! has an explicit solution

given by

)

i—1
L L (N=1)! (R ,
bl (2 =2,...,N
Pi=PaN =g (v VTS

N k—17"
p= 3 (N-=1! [Ro
P& RN RN
[8,38-40] A simple recursion formula can be easily applied to find this ap-
proximation:
b(i)
L 1
pz+1 - d(l+ 1)pz
with the property that sz\; pi = 1. The exact quasistationary distribution
and the first approximation (for the DTMC and the CTMC epidemic models)
are graphed for different values of Ry in Fig.3.12. Note that the agreement
between the exact quasistationary distribution and the approximation im-
proves as R increases. In addition, note that the mean values are close to
the stable endemic equilibrium of the deterministic SIS epidemic model.

The second approximation to the quasistationary probability distribution
replaces d(i) by d(i — 1). Then the differential equations for ¢ simplify to

dq

E = Q2q7

where
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Fig. 3.12 Exact quasistationary distribution and the first approximation to the quasista-

tionary distribution for Rg = 1.5,2, and 3 when N = 50

“b1)  d(1) 0

b(1) —[b(2) 4+ d(1)] 0

0 b(2) 0

Q2 = : : : :
0 0 o d(N - 1)
0 0 . —d(N)

The stable stationary solution is the unique solution p? to Qup®> = 0. An
explicit solution for p? is given by

N —1)! o
p=pri =L )<&) yi=2...,N,

(N—i) \ N
s [SD(N=1)! R\ B
P1= Lz::l (N —k)! (W) ]

(see [8,38-40)).



112 L.J.S. Allen

3.6.3 Final Size of an Epidemic

In the SIR epidemic model, eventually the epidemic ends. Of interest is the
total number of cases during the course of the epidemic, i.e., the final size
of the epidemic. If the epidemic is short term and involves a relatively small
population, it is reasonable to assume that there are no births nor deaths.
In addition, at the beginning of the epidemic, we assume all individuals are
either susceptible or infected, R(0) = 0. The initial population size is N =
S(0) + 1(0). Then the final size of the epidemic is the number of susceptible
individuals that become infected during the epidemic plus the initial number
infected.

In the deterministic model, the final size of the epidemic can be computed
directly from the differential equations (3.3) (see Chap. 2, this volume). Inte-
grating the differential equation dI/dS = —1 + N~/35, leads to

_ Ny, S(t)
I(t)+ S(t) = 1(0) + S(0) + 7ln 50)°

Letting ¢t — oo,

5(0)

N~
S(o0) =1(0)+S(0)+ —In :
(50) = 1(0) + S(0) + ! n -
The final size of the epidemic is

R(c0) = N — S(0).

The final sizes in the deterministic SIR epidemic model are summarized in
Table 3.1 when I(0) = 1 and y = 1 for various values of Ry and N.

Table 3.1 Final size of an epidemic when v = 1 and I(0) = 1 for the deterministic SIR
epidemic model

Ro N
20 100 1,000

0.5]| 1.87 1.97 2.00

1][5.74 13.52 44.07
2 ([16.26 80.02 797.15
5 [|19.87 99.31 993.03
10 {{20.00 100.00 999.95

In the stochastic SIR epidemic model there is a distribution associated with
the final size of the epidemic. Let (s,4) denote the ordered pairs of values for
the susceptible and infected individuals in the CTMC model. The epidemic
ends when Z(t) reaches zero. When the epidemic ends, the random variable
for the number of susceptible individuals ranges from 0 to N —=Z(0) = N —i.
In particular, the set {(s,0)}Y-* is absorbing,
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N—ig

Jim ; P(s,0)(t) = 1.

Daley and Gani [17] discuss two different methods to compute the probabil-
ity distribution associated with the final size. The simpler method, originally
developed by Foster [20], depends on the embedded Markov chain, that is, the
DTMC model associated with the CTMC model. To apply this method, the
transition matrix for the embedded Markov chain needs to be computed. This
requires computing the probability of a transition between the states (s, 1),
where the states lie in the set {(s,7): s =0,1,...,N;i=0,1,...,N —s}. In
the embedded Markov chain for the final size, the times between transitions
are not important, only the probabilities.

For example, suppose N = 3, then the states in the transition matrix are

(5.4) € {(3,0).(2,0), (1,0),(0,0), (2, 1), (1,1), (0, 1), (1,2), (0,2),(0,3)},
(3.20)
i.e., there are 10 ordered pairs of states. There are only two types of transi-
tions, either an infected individual recovers, (s,i) — (s,7— 1) or a susceptible
individual becomes infected, (s,7) — (s — 1,7+ 1). In the first type of tran-
sition, an infected individual recovers with probability

vi+ (B/N)is v+ (B/N)s’
In the second type of transition, a susceptible individual becomes infected
with probability 1 — ps. If the 10 states are ordered as in (3.20), then the

transition matrix for the embedded Markov chain is a 10 x 10 matrix with
the following form:

Ps 820,1,2.

1000 O 0 0 0 06O
0100 po 0 0 0 06O
0010 O pr 0 0 0O
0001 O 0 po 0 0O
0000 O 0 0 0 00
T=]10000 O 0 0 p 0O
0000 O 0 0 0 poO
00001I-p, O O O OO
0000 O 1-pr 0O 0 Opo
0000 O 0 01-p1 0O

The upper left 4 x 4 corner of matrix T is the identity matrix because these
are the four absorbing states. The first four rows are the transitions into
these four absorbing states. Matrix T is a stochastic matrix, whose column
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sums equal one (note that pg = 1). Given the initial distribution for the
states p(0), then the distribution for the final size can be found from the first
four entries of lim; .o, T'p(0) (the remaining entries are zero). However, it
is not necessary to compute the limit as ¢ — oo, since the limit converges
by time ¢ = 2N — 1. For this example, it is straightforward to compute the
final size distribution. The final size is either 1, 2, or 3 with corresponding
probabilities pa, p?(1 — p2) and (1 — p?)(1 — pg), respectively. In Fig. 3.13,
there are graphs of three final size distributions for different values of Ry

when v =1, Prob{Z(0) = 1} =1, and N = 20.

0.7 | |
0.6 R0 |
- I~ | |
- R0_2 :
0.5} : 3
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I
2 04f -
E 1
m ]
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0— _____________ - |
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Fig. 3.13 Distribution for the final size of an epidemic for three different values of Ro

when v =1, N = 20, and Prob{Z(0) =1} =1

When Ry is less than one or very close to one, then the final size distri-
bution is skewed to the right, but if Ry is much greater than one, then the
distribution is skewed to the left. The average final sizes for the stochastic
SIR when N = 20 and N = 100 are listed in Table 3.2. Compare the values in
Table 3.2 to those in Table 3.1. For values of R less than one or much greater
than one, the average final sizes for the stochastic SIR epidemic model are
closer to the values of the final sizes for the deterministic model.
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Table 3.2 Average final size of an epidemic when v =1, b = 0, and Prob{Z(0) =1} =1
for the stochastic SIR epidemic model

Ro N

20 100
0.5]| 1.76 1.93
1|/3.34 6.10
2 || 8.12 38.34
5 [[15.66 79.28
10 ({17.98 89.98

3.6.4 Expected Duration of an Epidemic

The duration of an epidemic corresponds to the time until absorption, i.e., the
time T until Z(T') = 0. For the stochastic SIS epidemic model, the probability
of absorption is one, regardless of the value of Ry. However, depending on
the initial number infected, ¢, the population size IV, and the value of Ry, the
time until absorption can be very short or very long. Here, we derive a system
of equations that can be solved to find the expected time until absorption for
a stochastic SIS epidemic model.
Let T; denote the random variable for the time until absorption and let

denote the expected time until absorption beginning from an initial infected
population size of i, ¢ = 0,1,..., N. Let the higher order moments for the
time until absorption be denoted as

7 = E(T}),

1=20,1,...,N. Note that 7o = 0 = 7. Then, considered as a birth and death
process, the mean time until absorption in the DTMC SIS epidemic model
satisfies the following difference equation:

T = b(i)At(Ti_;,_l + At) + d(i)At(Ti_l + At)
+ (1= (b)) + d@)A)(m + At), i=1,....N  (3.21)

The CTMC SIS epidemic model satisfies the same relationship as (3.21),
except that a term o(At) is added to the right side of each equation. Sim-
plifying the equations in (3.21) leads to a system of difference equations for
the expected duration of an epidemic (for both the CTMC and the DTMC
models),

d(’i)Ti_l — [b(Z) + d(Z)}TZ -+ b(i)TH_l = 71,

where b(i) = i(N —4)(B8i/N) and d(i) = (b + )i [7,33]. Similar difference
equations apply to the higher order moment 7 in the CTMC SIS epidemic
model,
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d(i)r]_y — [b(0) + d(@)]] +b(i) ]y = —rr "

[7,22,41,42].
The mean and higher order moments can be expressed in matrix form. Let
7= (1,72, ., 7N) T, 7" = (7,75, ..., )T and 7! = 7. Then

Dr=-1 and D77 = —r7" "L

where 1 = (1,...,1)T and

S +d1)] b(1) 0 0 0
d2) ) +d2)]b2) - 0 0
D= :
0 0 0 e d(N) —d(N)

Matrix D is nonsingular because it is irreducibly diagonally dominant [43].
Hence, the solutions 7 and 7" are unique.

A solution for the expected time until absorption, based on a system of
SDEs, can also be derived [7]. The relationship satisfied by 7 follows from the
backward Kolmogorov differential equations. Let 7(y) denote the expected
time until absorption beginning from an infected population size of y € (0, N).
Then it can be shown that 7(y) is the solution to the following boundary value

problem:
dr(y) | [bly) +d(y)] d*1(y)

) — ) T2+ PSS -1 )
where J
7(0) =0 and () =0,
dy |,—n

b(y) = (N—y)(By/N) and d(y) = (b+~)y in the SDE SIS epidemic model [7].

It is interesting to note that if the derivatives in the boundary value prob-
lem for 7(y) in (3.22) are approximated by finite difference formulas, then
the difference equations for 7;, given in (3.21), for the CTMC and DTMC
epidemic models are obtained [7]. For y € [,7 + 1], let

d’T(y) - Ti+1 — Ti—1
dy 2 ’

where 7; = 7(¢) and 7,41 = 7(i + 1). In addition, let

d*7(y)

Ty2 ~ Ti+1 — ZTi +Ti_1.

With these approximations, the boundary value problem for 7(y) in (3.22) is
approximated by the difference equations for 7; in (3.21).
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The expected duration of an SIS epidemic can be calculated from the
solution to (3.21) or (3.22). Allen and Allen [7] compare the mean and the
variance for the time until population extinction for the three different types
of stochastic formulations considered here. However, their stochastic models
were applied to a population with logistic growth (similar to the SIS epidemic
model).

As an example, consider the expected duration for an SIS epidemic, based
on the DTMC or CTMC model. Because the DTMC and CTMC models
satisfy the same set of equations for the expected duration, these results
apply to both models. With a population size of N = 25 and either Ry =
2 or Ry = 1.5. The solution 7 = —D~'1 is graphed in Fig.3.14. If the
population size is increased to N = 50 or N = 100 with the same value
for Rg = 1.5, the expected duration for large ¢ increases to 7; ~ 160 and
7; &~ 3,500, respectively. At population sizes of N = 50 and N = 100 but a
basic reproduction of Ry = 2, the expected duration for large 7 is much larger,
7; ~ 25,000 and 7; ~ 2.6 x 10%, respectively. Of course, the expected duration
depends on the particular time units of the model. For example, if the time
units are days, then 7; =~ 160 ~ 5.3 months and 7; ~ 25,000 ~ 68.5 years.
This latter estimate is much longer than a reasonable epidemiological time
frame, implying that the disease does not die out but persists. Hence, for
these examples, when N > 100 and Ry > 2, if the outbreak begins with a
sufficient number of infected individuals, then the results for the stochastic
SIS epidemic are in close agreement with the predictions of the deterministic
SIS epidemic model; the disease becomes endemic.

3.7 Epidemic Models with Variable Population Size

Suppose the population size N is not constant but varies according to some
population growth law. To formulate an epidemic model, an assumption must
be made concerning the population birth and death rates which depend on
the population size N. Here, we assume, for simplicity, that the birth rate
and death rates have a logistic form,

N2
respectively. Then the total population size satisfies the logistic differential

equation
dN N
— = AN)—pu(N)=>bN(1—- —
= AN) — (V) = b ( K),

where K > 0 is the carrying capacity. There are many functional forms that
can be chosen for the birth and death rates [7]. Their choice should depend
on the dynamics of the particular population being modeled. For example, in
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Fig. 3.14 Expected duration of an SIS epidemic with a population size of N = 25;
Ro=15(0b=1/3,y=1/3and f=1)and Ro =2 (b=1/4,y=1/4and B =1)

animal diseases (e.g., rabies in canine populations [37,46] and hantavirus in
rodent populations [2,3,9,44]), logistic growth is assumed, then the choice
of A(V) and p(N) depends on whether the births and deaths are density-
dependent. For human diseases, a logistic growth assumption may not be
very realistic.

A deterministic SIS epidemic model is formulated for a population satis-
fying the logistic differential equation. Again, for simplicity, we assume there
are no disease-related deaths and no vertical transmission of the disease; all
newborns are born susceptible. Then the deterministic SIS epidemic model
has the form:

as S B

B S0 w0 - Zsr w1

o , 5 (3.23)
i _N'U(N) + NSI—’VI,

where S(0) > 0 and I(0) > 0. It is straightforward to show that the solution
to this system of differential equations depends on the basic reproduction
number Rg = 3/(b+ 7).

Theorem 3. Let S(t) and 1(t) be a solution to model (3.23).
(1) If Ro < 1, then tlim (S(t),I(¥)) = (K,0).
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(2) If Ro > 1, then lim (S(),1(£)) = (K/Ro, K(1—1/R0)).

Stochastic epidemic models for each of the three types (CTMC, DTMC,
and SDE models) can be formulated. Because S(t)+ I(t) = N(t), the process
is bivariate. We derive an SDE model and compare the graph of a sample
path for the stochastic model to the solution of the deterministic model.

Let S(t) and Z(t) be continuous random variables for the number of sus-
ceptible and infected individuals at time ¢,

S(t), Z(t) € [0, 00).

Then, applying the same methods as for the SDE SIS and SIR epidemic
models [5, 6],

as 8§ B dWy dWs
a N()‘(N) —uWN)) - NSI+ (b+7)I+ BHW + Bl2w
. T I6; AWy dWs
E——NM(N)—i—NSI—’yI-i-BQl 7 + Bao prat
where B = (B;) is the square root of the following covariance matrix:

S B g

—(AN) +pWN)) + =ST+ (b+7v)T -=8T -~

N 5 N T N 5

—=87T —~1 — —ST +~1
oL NN + ST+

The variables W; and W, are two independent Wiener processes. The ab-
sorbing state for the bivariate process is total population extinction, N = 0.

3.7.1 Numerical Example

As might be anticipated, the variability in the population size results in
an increase in the variability in the number of infected individuals. As an
example, let 3 =1, 7= 0.25 = b, and K = 100. Then the basic reproduction
number is Ry = 2. The SDE SIS epidemic model with constant population
size, N = 100, is compared to the SDE SIS epidemic model with variable
population size, N (¢), in Fig.3.15. One sample path of the SDE epidemic
model is graphed against the deterministic solution.

More realistic stochastic epidemic models can be derived based on their de-
terministic formulations. Excellent references for a variety of recent determin-
istic epidemic models include the books by Anderson and May [10], Brauer
and Castillo-Chavez [15], Diekmann and Heesterbeek [19], and Thieme [48]
and the review articles by Hethcote [26] and Brauer and van den Driessche [16].
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Fig. 3.15 The SDE SIS epidemic model (a) with constant population size, N = 100 and
(b) with variable population size, N'(t). The parameter values are 3 = 1, v = 0.25 = b,
K =100, and Rg =2
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In this chapter, the simplest types of epidemic models were chosen as
an introduction to the methods of derivation for various types of stochas-
tic models (DTMC, CTMC, and SDE models). In many cases these three
stochastic formulations produce similar results, if the time step At is small [7].
There are advantages numerically in applying the discrete time approxima-
tions (DTMC model and the Euler approximation to the SDE model) in
that the discrete simulations generally have a shorter computational time
than the CTMC model. Mode and Sleeman [36] discuss some computational
methods in stochastic processes in epidemiology. The most important consid-
eration in modeling, however, is to choose a model that best represents the
demographics and epidemiology of the population being modeled.

We conclude this chapter with a discussion of some well-known stochastic
epidemic models that are not based on any deterministic epidemic model.

3.8 Other Types of DTMC Epidemic Models

Two other types of DTMC epidemic models are discussed briefly that are
not directly related to any deterministic epidemic model. These models are
chain binomial epidemic models and epidemic branching processes.

3.8.1 Chain Binomial Epidemic Models

Two well-known DTMC models are the Greenwood and the Reed—Frost mod-
els. These models were developed to help understand the spread of disease
within a small population such as a household. They are referred to as chain
binomial epidemic models because a binomial distribution is used to deter-
mine the number of new infectious individuals. The Greenwood model de-
veloped in 1931, was named after its developer [23]. The Reed—Frost model,
developed in 1928, was named for two medical researchers, who developed
the model for teaching purposes at Johns Hopkins University. It wasn’t until
1952 that the Reed-Frost model was published [1,17].

Let S; and Z; be discrete random variables for the number of susceptible
and infected individuals in the household at time t. Initially, the models as-
sume that there are Zy = iy > 1 infected individuals and Sy = s¢ susceptible
individuals. The progression of the disease is followed by keeping track of the
number of susceptible individuals over time. At time ¢, infected individuals
are in contact with all the susceptible members of the household to whom
they may spread the disease. However, it is not until time ¢+ 1 that suscepti-
ble individuals who have contracted the disease are infectious. The period of
time from ¢ to t+1 is the latent period and the infectious period is contracted
to a point. Only at time ¢ can the infectious individuals Z; infect susceptible
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members S;. After that time, they are no longer infectious. It follows that
the newly infectious individuals at time ¢ + 1 satisfy

Siv1+Ziy1 =S

These models are bivariate Markov chain models that depend on the two
random variables, S; and Zy, {(S¢, Z;) }.

The models of Greenwood and Reed—Frost differ in the assumption regard-
ing the probability of infection. Suppose there are a total of Z; = i infected in-
dividuals at time ¢. Let p; be the probability that a susceptible individual does
not become infected at time ¢. The Greenwood model assumes that p; = p is
a constant and the Reed-Frost model assumes that p; = p’. For each model,
the transition probability from state (s¢,4¢) to (S¢41,%¢+1) is assumed to have
a binomial distribution. Sample paths are denoted as {sg, $1,...,5t—1, St}
The epidemic stops at time ¢ when s;_; = s; because there are no more
infectious individuals to spread the disease, iy = s;_1 — s; = 0.

3.8.1.1 Greenwood Model

In the Greenwood model, the random variable S;y1 is a binomial random
variable that depends on S; and p, S;11 ~ b(Si,p). The probability of a
transition from (s¢,4;) to (S¢41,4:4+1) depends only on s¢, s¢i41, and p. It is
defined as follows:

S N g
Dsiirse = (Stil) p6t+1(1 _p)ét St41

The conditional mean and variance of ;11 and Zy41 are given by
E(Si41|8t) = pSt; E(Zi41|Si) = (1 = p)S,

and
Var(St+1|St) = p(l — p)St = Var(l't+1|5t).

Four sample paths of the Greenwood model when sy = 6 and ig = 1 are
illustrated in Fig.3.16. Applying the preceding transition probabilities, it is
clear that the sample path {6,6} occurs with probability pss = p® and the
sample path {6,5,5} occurs with probability pg 5ps 5 = 6p*°(1—p). The prob-
ability distributions associated with the size and the duration of epidemics
in the chain binomial models can be easily defined, once the probability dis-
tributions associated with each sample path are determined. The discrete
random variable W = Sy — S; is the size of the epidemic and the discrete
random variable T is the length of the path, e.g., if {so, $1,...,8t—1, 8¢}, then
T=t.

Table 3.3 summarizes the probabilities associated with the Greenwood and
Reed—Frost epidemic models when sy = 3 and i = 1 (see [17]).
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Fig. 3.16 Four sample paths for the Greenwood chain binomial model when sg = 6 and
io=1:{6,6}, {6,5,5}, {6,4,3,2,1,1}, and {6,2,1,0,0}

Table 3.3 Sample paths, size T', and duration W for the Greenwood and Reed-Frost
models when sg =3 and ig = 1

Sample paths |Duration|Size| Greenwood Reed—Frost
{805y 8t—1,5¢t} T w model model
33 1 0 p? p?
322 2 1 |3(1—p)p* 3(1 —p)pt
3211 3 2 16(1 —p)?p*|  6(1 — p)?p*
311 2 2 3(1 —p)?p?| 3(1—p)?p?
32100 4 3 |6(1—p)3p?| 6(1—p)3p3
3200 3 3 13(1 —p)3p3?|  3(1 - p)3p?
3100 3 3 |3(1—p)3p [3(1 —p)3p(1+p)
300 2 3| (1—-p)3 (1—-p)3

Total 1 1

3.8.1.2 Reed—Frost Model

In the Reed—Frost model, the random variable S;. 1 is binomially distributed
and satisfies Sy 11 ~ b(S;, p’t). The probability of a transition from (s, ;) to
(St41,1t+1) is defined as follows:

S ; PN g—
D(s,)es1s(ssi)e = <Sti1> (plt)8t+1(1 —plt)St Sttt



124 L.J.S. Allen

The conditional mean and variance associated with Sy, are
E(Si41|(S6,Th)) = Sip™, E(Tia|(Si, Th)) = Si(1 - p't)

and
Var(Se1[(Se, Ze)) = Si(1 — p™*)p™* = Var(Zy41|(Se, To)).

The Greenwood and Reed-Frost models differ when Z; > 1 for ¢ > 0 (see
Table 3.3). For additional information on the Greenwood and Reed-Frost

models, and epidemics among households consult Ackerman et al. [4], Ball
and Lyne [14], and Daley and Gani [17].

3.8.2 Epidemic Branching Processes

Branching processes can be applied to epidemics. We illustrate with a simple
example of a Galton-Watson branching processes. Let Z; be the number of
new cases at time ¢t. We assume during the time interval ¢ to ¢t + 1 that new
infectious individuals are generated by contacts between the new cases at
time ¢ and the susceptible population. Suppose each infected individual in-
fects on the average R susceptible individuals. In a Galton—Watson process,
the simplifying assumption is that each infected individual is independent
from all other infected individuals.

Let {pr}32, be the probabilities associated with the number of new infec-
tions per infected individual. Then the probability generating function (pgf)
for the number of new infections is

F@&) =" pit*
k=0

with mean f'(1) = Ry.

An important result from the theory of branching processes states that
the probability of extinction (probability the epidemic eventually ends),
lim; o Prob{Z; = 0}, depends on the pgf f(¢). If 0 < pg + p1 < 1 and
Ro > 1, then there exists a unique fixed point ¢ € [0,1) such that f(q) = q.
The assumption 0 < pg+ p1 < 1 guarantees that there is a positive probabil-
ity of infecting more than one individual. It is the value of ¢ and the initial
number of infected individuals in the population that determine the proba-
bility of extinction. The next theorem summarizes the main result concerning
the probability of extinction. For a proof of this result and extensions, please
consult the references [6,24, 29, 30, 35,45].

Theorem 4. Suppose the pgf f(t) satisfies 0 < f(0) + f'(0) < 1 and
Prob{Zy = io} = 1, where ig > 0.

(1) If Ry < 1, then tlim Prob{Z, =0} = 1.
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(2)If Ro > 1, then tlim Prob{Z; = 0} = ¢, where q is the unique fized
point in [0,1) such that f(q) = q.

As a consequence of this theorem, the probability the epidemic persists in
the population (the disease becomes endemic) is 1 — ¢, provided Ry > 1.

Antia et al. [11] assume that the number of cases Z; follows a Poisson
distribution with mean Ry. The pgf of a Poisson probability distribution
satisfies

S RS i
f(t) = Zexp(—Ro)Ft = exp(—Ro(1 - t)).
k=0 ’

Applying Theorem 4, we can estimate the probability the disease becomes
endemic. If Rg > 1, the fixed point of f satisfies

q = exp(—Ro(1 - q))-

For example, if Ry = 1.5 and Prob{Z, = 1} = 1, then 1 — ¢ = 0.583, but if
Prob{Zy = 2} = 1, then 1 — ¢2 = 0.826. If Ry = 2 and Prob{Z, = 2} = 1,
then 1 — ¢ = 0.959.

3.9 MatLab Programs

The following three MatLab programs were used to generate sample paths
and the probability distribution associated with the stochastic SIS epidemic
model. MatLab Program # 1 computes the probability distribution for the
DTMC SIS epidemic model. MatLab Programs # 2 and # 3 compute sample
paths associated with CTMC and SDE SIS epidemic models, respectively.

% MatLab Program # 1

% Discrete Time Markov Chain

% SIS Epidemic Model

% Transition Matrix and Graph of Probability Distribution
clear all

set(gca, ’FontSize’,18);

set (0, ’DefaultAxesFontSize’,18);

time=2000;

dtt=0.01; 7% Time step

beta=1*dtt;

b=0.25*dtt;

gama=0.25*dtt;

N=100; % Total population size

en=50; 7% plot every enth time interval

T=zeros(N+1,N+1); % T is the transition matrix, defined below
v=linspace(0,N,N+1);
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p=zeros(time+1,N+1);

p(1,3)=1; % Two individuals initially infected.

bt=betaxv.*x(N-v)/N;

dt=(b+gama) *v;

for i=2:N J, Define the transition matrix
T(i,i)=1-bt(i)-dt(i); % diagonal entries
T(i,i+1)=dt(i+1); % superdiagonal entries
T(i+1,i)=bt(i); % subdiagonal entries

end

T(1,1)=1;

T(1,2)=dt(2);

T(N+1,N+1)=1-dt (N+1) ;

for t=1:time
y=T*p(t,:)’;
p(t+1,:)=y’;

end

pm(1l,:)=p(1,:);

for t=1:time/en;
pn(t+1,:)=p(en*t,:);

end

ti=linspace(0,time,time/en+1);

st=linspace(0,N,N+1);

mesh(st,ti,pm);

xlabel (’Number of Infectives’);

ylabel(’Time Steps’);

zlabel (’Probability’);

view(140,30);

axis([0,N,0,time,0,1]);

% Matlab Program # 2
% Continuous Time Markov Chain
% SIS Epidemic Model
% Three Sample Paths and the Deterministic Solution
clear
set (0, ’DefaultAxesFontSize’, 18);
set(gca, ’fontsize’,18);
beta=1;
b=0.25;
gam=0.25;
N=100;
init=2;
time=25;
sim=3;
for k=1:sim
clear t s 1
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t(1)=0;
i(1)=init;
s(1)=N-init;
j=1;
while i(j)>0 & t(j)<time
ul=rand; % uniform random number
u2=rand; % uniform random number
a=(beta/N)*i(j)*s(j)+(b+gam)*i(j);
probi=(beta*s(j)/N)/(betaxs(j)/N+b+gam) ;
t(j+1)=t(j)-log(ul)/a;
if u2 <= probi
i(j+1)=1(j)+1;
s(j+1)=s(j)-1;
else
i+ =1(§)-1;
s(G+1)=s(j)+1;
end
j=j+1;
end
plot(t,i,’r-’,’LineWidth’,2)
hold on
end

% Matlab Program # 3
% Stochastic Differential Equation
% SIS Epidemic Model
% Three Sample Paths and the Deterministic Solution
clear
beta=1;
b=0.25;
gam=0.25;
N=100;
init=2;
dt=0.01;
time=25;
sim=3;
for k=1:sim
clear i, t
=1
i(j)=init;
t(j)=dt;
while 1(j)>0 & t(j)<25
mu=betaxi(j)*(N-1(j))/N-(b+gam)*i(j);
sigma=sqrt (beta*i(j)*(N-i(j))/N+(b+gam)*i(j));
rn=randn; ’% standard normal random number
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i(j+1)=1i(j)+mu*dt+sigma*sqrt (dt)*rn;
t(J+1)=t (j)+dt;
j=j+1;
end
plot(t,i,’r-’,’Linewidth’,2);
hold on
end
% Euler’s method applied to the deterministic SIS model.
y(1)=init;
for k=1:time/dt
y (k+1)=y (k) +dt* (betax (N-y (k) ) *y (k) /N- (b+gam) *y (k) ) ;
end
plot([0:dt:time],y, ’k--’,’LineWidth’,2);
axis([0,time,0,80]);
xlabel (’Time’);
ylabel (’Number of Infectives’);

hold off
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Heterogeneities



Chapter 4

An Introduction to Networks
in Epidemic Modeling

Fred Brauer

Abstract We use a stochastic branching process to describe the beginning
of a disease outbreak. Unlike compartmental models, if the basic reproduc-
tion number is greater than one there may be a minor outbreak or a major
epidemic with a probability depending on the nature of the contact network.
We use a network approach to determine the distribution of outbreak and
epidemic sizes.

4.1 Introduction

The Kermack—McKendrick compartmental epidemic model assumes that the
sizes of the compartments are large enough that the mixing of members is
homogeneous, or at least that there is homogeneous mixing in each subgroup
if the population is stratified by activity levels. However, at the beginning of
a disease outbreak, there is a very small number of infective individuals and
the transmission of infection is a stochastic event depending on the pattern
of contacts between members of the population; a description should take
this pattern into account.

It has often been observed in epidemics that there is a small number of
“superspreaders” who transmit infection to many other members of the pop-
ulation, while most infectives do not transmit infections at all or transmit
infections to very few others [17]. This suggests that homogeneous mixing at
the beginning of an epidemic may not be a good assumption. The SARS epi-
demic of 2002-2003 spread much more slowly than would have been expected
on the basis of the data on disease spread at the start of the epidemic. Early

Department of Mathematics, University of British Columbia, 1984, Mathematics Road,
Vancouver BC, Canada V6T 1Z2 brauer@math.ubc.ca

133



134 F. Brauer

in the SARS epidemic of 2002-2003 it was estimated that Rq had a value
between 2.2 and 3.6. At the beginning of an epidemic, the exponential rate
of growth of the number of infectives is approximately (Ro — 1)/a, where
1/« is the generation time of the epidemic, estimated to be approximately 10
days for SARS . This would have predicted at least 30,000 cases of SARS in
China during the first four months of the epidemic. In fact, there were fewer
than 800 cases reported in this time. An explanation for this discrepancy is
that the estimates were based on transmission data in hospitals and crowded
apartment complexes. It was observed that there was intense activity in some
locations and very little in others. This suggests that the actual reproduction
number (averaged over the whole population) was much lower, perhaps in the
range 1.2-1.6, and that heterogeneous mixing was a very important aspect
of the epidemic.

4.2 The Probability of a Disease Outbreak

Our approach will be to give a stochastic branching process description of
the beginning of a disease outbreak to be applied so long as the number of
infectives remains small, distinguishing a (minor) disease outbreak confined
to this stage from a (major) epidemic which occurs if the number of infec-
tives begins to grow at an exponential rate . Once an epidemic has started
we may switch to a deterministic compartmental model, arguing that in a
major epidemic contacts would tend to be more homogeneously distributed.
However, if we continue to follow the network model we would obtain a some-
what different estimate of the final size of the epidemic. Simulations suggest
that the assumption of homogeneous mixing in a compartmental model may
lead to a higher estimate of the final size of the epidemic than the prediction
of the network model.

We describe the network of contacts between individuals by a graph with
members of the population represented by vertices and with contacts between
individuals represented by edges. The study of graphs originated with the
abstract theory of Erdés and Rényi of the 1950s and 1960s [3-5], and has
become important more recently in many areas, including social contacts
and computer networks, as well as the spread of communicable diseases. We
will think of networks as bi-directional, with disease transmission possible in
either direction along an edge.

An edge is a contact between vertices that can transmit infection. The
number of edges of a graph at a vertex is called the degree of the vertex. The
degree distribution of a graph is {py}, where pj is the fraction of vertices
having degree k. The degree distribution is fundamental in the description of
the spread of disease. Initially, we assume that all contacts between an infec-
tive and a susceptible transmit infection, but we will relax this assumption
in Sect. 4.3.
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We think of a small number of infectives in a population of susceptibles
large enough that in the initial stage we may neglect the decrease in the size
of the susceptible population. Our development begins along the lines of that
of [7] and then develops along the lines of [6, 14, 16]. We assume that the
infectives make contacts independently of one another and let p; denote the
probability that the number of contacts by a randomly chosen individual is
exactly k, with >~ pr = 1. In other words, {p;} is the degree distribution
of the vertices of the graph corresponding to the population network.

For convenience, we define the generating function

Go(z) = Zpkzk.
k=0

Since Z;OZO pr = 1, this power series converges for 0 < z < 1, and may be
differentiated term by term. Thus

a0
pr = Ok'( >7 k=0,1,2,-- .

It is easy to verify that the generating function has the properties
Go(0) =po, Go(1)=1, Gy(z) >0, Gi(z)>0.

The mean degree, which we denote by < k >, is

<k>=>kpy=Gy(1).
k=1

More generally, we define the moments
<K >=>"kp, j=1,2,c0.
k=1

When a disease is introduced into a network, we think of it as starting at
a vertex (patient zero) who transmits infection to every individual to whom
this individual is connected, that is, along every edge of the graph from the
vertex corresponding to this individual. We assume that this initial vertex has
been infected by a contact outside the population (component of the network)
being studied. For transmission of disease after this initial contact we need to
use the excess degree of a vertex. If we follow an edge to a vertex, the excess
degree of this vertex is one less than the degree. We use the excess degree
because infection can not be transmitted back along the edge whence it came.
The probability of reaching a vertex of degree k, or excess degree (k — 1),
by following a random edge is proportional to k, and thus the probability
that a vertex at the end of a random edge has excess degree (k — 1) is a
constant multiple of kpg with the constant chosen to make the sum over k
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of the probabilities equal to 1. Then the probability that a vertex has excess
degree (k —1) is

q _ kpk
e A
This leads to a generating function G;(z) for the excess degree
Z Q12" = 3 e (2)
! — T k> 0

and the mean excess degree, which we denote by < k. >, is

</€e>=

Z
Z kak
k

< k%>
=== —1=Gi).

We let Ry = G’ (1), the mean excess degree. This is the mean number of
secondary cases infected by patient zero and is the basic reproduction number
as usually defined; the threshold for an epidemic is determined by Rg.

Our next goal is to calculate the probability that the infection will die
out and will not develop into a major epidemic. We begin by assuming that
patient zero is a vertex of degree k of the network. Suppose patient zero
transmits infection to a vertex of degree j. We let z,, denote the probability
that this infection dies out within the next n generations. For the infection
to die out in n generations each of these j secondary infections must die out
in (n — 1) generations. The probability of this is z,_1 for each secondary
infection, and the probability that all secondary infections will die out in
(n — 1) generations is 2! ;. Now z, is the sum over j of these probabilities,
weighted by the probability ¢; of j secondary infections. Thus

i .
Zn = quzi_l - Gl(zn—l)-
7=0

Since G1(z) is an increasing function, the sequence z, is an increasing
sequence and has a limit z.,, which is the probability that this infection will
die out eventually. Then z,, is the limit as n — oo of the solution of the
difference equation

Zn = Gl(zn—l)a zZ0 = 0

Thus 2z, must be an equilibrium of this difference equation, that is, a solution
of z = G1(2). Let w be the smallest positive solution of z = G1(z). Then,
because G1(z) is an increasing function of z, z < G1(z) < G1(w) = w for
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0 <z<w. Since zg =0 < w and z,_1 < w implies
zn = G1(zn-1) < G1(w) = w,
it follows by induction that
Zn <w,n=20,1,--- c0.

From this we deduce that
Zoo = W.

The equation G1(z) = z has a root z = 1 since G1(1) = 1. Because the
function G;(z) — z has a positive second derivative, its derivative G} (z) — 1
is increasing and can have at most one zero. This implies that the equation
G1(z) = z has at most two roots in 0 < z < 1. If Ryp < 1 the function
G1(z) — z has a negative first derivative

Gi(z)—1<G(1)=1=Ry —1<0

and the equation G1(z) = z has only one root, namely z = 1. On the other
hand, if Ry > 1 the function G1(z) — z is positive for z = 0 and negative near
z = 1 since it is zero at z = 1 and its derivative is positive for z < 1 and z
near 1. Thus in this case the equation G1(z) = z has a second root z < 1.

The probability that the disease outbreak will die out eventually is the sum
over k of the probabilities that the initial infection in a vertex of degree k
will die out, weighted by the degree distribution {p} of the original infection,
and this is

Zpszo = Go(200)-
k=0

To summarize this analysis, we see that if Ry < 1 the probability that the
infection will die out is 1. On the other hand, if Ry > 1 there is a solution
Zoo < 1 of

Gi(z) ==z

and there is a probability 1 — Go(zs) > 0 that the infection will persist, and
will lead to an epidemic. However, there is a positive probability G(z~) that
the infection will increase initially but will produce only a minor outbreak
and will die out before triggering a major epidemic. This distinction between
a minor outbreak and a major epidemic, and the result that if Rg > 1 there
may be only a minor outbreak and not a major epidemic are aspects of
stochastic models not reflected in deterministic models.
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4.3 Transmissibility

Contacts do not necessarily transmit infection. For each contact between in-
dividuals of whom one has been infected and the other is susceptible there
is a probability that infection will actually be transmitted. This probability
depends on such factors as the closeness of the contact, the infectivity of
the member who has been infected, and the susceptibility of the susceptible
member. We assume that there is a mean probability 7', called the trans-
missibility, of transmission of infection. The transmissibility depends on the
rate of contacts, the probability that a contact will transmit infection, the
duration time of the infection, and the susceptibility. The development in
Sect. 4.2 assumed that all contacts transmit infection, that is, that 7' = 1.

In this section, we will continue to assume that there is a network describ-
ing the contacts between members of the population whose degree distribu-
tion is given by the generating function Gy (z), but we will assume in addition
that there is a mean transmissibility 7.

When disease begins in a network, it spreads to some of the vertices of the
network. Edges that are infected during a disease outbreak are called occupied,
and the size of the disease outbreak is the cluster of vertices connected to the
initial vertex by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective

vertex of degree k is
k
(1 —T)F™.
(5)rma-m)

We define I'y(z,T) be the generating function for the distribution of the
number of occupied edges attached to a randomly chosen vertex, which is
the same as the distribution of the infections transmitted by a randomly
chosen individual for any (fixed) transmissibility 7. Then

1=y [i m()ma- T><k—m>] Z

m=0 Lk=m
[e's) k

— Zpk lz (::;) (ZT)m(l — T)(k—m)‘| (4.1)
k=0 m=0

=3 prleT+ (1 =) =Go(1+ (z — 1)T).
k=0
In this calculation we have used the binomial theorem to see that

k
(Z) (zT)™(1 —T)*=™) = [T + (1 — T)]*.
0

m=

Note that
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I(0,T) = Go(1-T), Io(1,T)=Go(1)=1, I}z, T)=TGH(1+(2—1)T).

For secondary infections we need the generating function I'(z,T) for the
distribution of occupied edges leaving a vertex reached by following a ran-
domly chosen edge. This is obtained from the excess degree distribution in
the same way,

INezT) =G0+ (z—1T)

and
o,7)=G(1-T7), In,T)=G:(1)=1, I(z,T)=TG,(1+(z=1)T).
The basic reproduction number is now

Ro =I7(1,T) = TG (1).

The calculation of the probability that the infect