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Preface

Mathematical epidemiology has a long history, going back to the smallpox
model of Daniel Bernoulli in 1760. Much of the basic theory was developed
between 1900 and 1935, and there has been steady progress since that time.
More recently, models to evaluate the effect of control measures have been
used to assist in the formulation of policy decisions, notably for the foot and
mouth disease outbreak in Great Britain in 2001. The SARS (Severe Acute
Respiratory Syndrome) epidemic of 2002–2003 aroused great interest in the
use of mathematical models to predict the course of an infectious disease and
to compare the effects of different control strategies. This revived interest has
been reinforced by the current threat of an influenza pandemic.

Mathematical epidemiology differs from most sciences as it does not lend
itself to experimental validation of models. Experiments are usually impossi-
ble and would probably be unethical. This gives great importance to mathe-
matical models as a possible tool for the comparison of strategies to plan for
an anticipated epidemic or pandemic, and to deal with a disease outbreak in
real time.

In response to the SARS epidemic, a team was formed by a Canadian cen-
ter, MITACS (Mathematics for Information Technology and Complex Sys-
tems) to work on models for the transmission dynamics of infectious diseases,
with a specific goal of evaluating possible management strategies. This team
soon recognized that for mathematical modeling to be of assistance in mak-
ing health policy decisions, it would be necessary to increase the number of
mathematical modelers in epidemiology and also to persuade decision makers
in the health sciences that mathematical modeling could be useful for them.
In pursuit of these goals, a summer school in mathematical epidemiology
was developed in 2004 for graduate students from mathematical and biolog-
ical sciences. This school consisted of a series of lectures on various topics
in mathematical epidemiology together with projects done by groups of stu-
dents, each group containing students from various disciplines and with dif-
ferent levels of experience. In the summer of 2006, another summer school was
held, again for a mixed group but this time including a substantial number
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vi Preface

of people from epidemiology and health sciences. The 2006 summer school
also included a few public lectures that covered a wide range of issues and
diseases of great interest to public health, illustrating the general framework
and abstract mathematical theory in an applied setting. The experience from
these courses was that the projects were an essential valuable component of
the school, and the mixing of students in the project groups had a very pos-
itive effect for communication between disciplines, but also that differences
in mathematical backgrounds caused some difficulties.

This book consists of lecture notes intended for such a school. They cover
the main aspects of mathematical modeling in epidemiology and contain more
than enough material for a concentrated course, giving students additional
resource material to pursue the subject further. Our goal is to persuade epi-
demiologists and public health workers that mathematical modeling can be
of use to them. Ideally, it would teach the art of mathematical modeling, but
we believe that this art is difficult to teach and is better learnt by doing.
For this reason, we have settled on the more modest goal of presenting the
main mathematical tools that will be useful in analyzing models and some
case studies as examples. We hope that understanding of the case studies will
give some insights into the process of mathematical modeling.

We could give a flow chart for the use of this volume but it would not
be very interesting, as there is very little interdependence between chapters.
Everyone should read the opening chapter as a gentle introduction to the sub-
ject, and Chap. 2 on compartmental models is essential for all that follows.
Otherwise, the only real chapter dependence is that Chap. 10 requires an un-
derstanding of Chap. 3. The first four chapters are basic material, the next
six chapters are developments of the basic theory, and the last four chapters
are case studies on childhood diseases, influenza, and West Nile virus. The
two case studies on influenza deal with different aspects of the disease and
do not depend on each other. There are also some suggested projects, taken
in part from the recent book “A Course in Mathematical Biology: Quantita-
tive Modeling with Mathematical and Computational Methods” by Gerda de
Vries, Thomas Hillen, Mark Lewis, Johannes Müller, and Birgit Schönfisch,
Mathematical Modeling and Computation 12, SIAM, Philadelphia (2006).

The necessary mathematical background varies from chapter to chap-
ter but a knowledge of basic calculus, ordinary differential equations, and
some matrix algebra is essential for understanding this volume. In addition,
Chaps. 3, 4, and 10 require some background in probability. Review notes
on calculus, matrix algebra, differential equations, and probability have been
prepared and may be downloaded at the web site of the Center for Disease
Modelling (www.cdm.yorku.ca). Some chapters use more advanced mathe-
matical topics. Some topics in linear algebra beyond elementary matrix the-
ory are needed for Chaps. 6–8. Hopf bifurcations are used in Chaps. 5 and 13.
Some knowledge of partial differential equations is needed for Chapters 8, 9,
and 13. Preparation of review notes on these topics is in process.
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Students from epidemiology and health sciences would probably need some
review of basic mathematics, and a course for students with a meagre math-
ematical background should probably be restricted to the first two chapters
and the case studies in Chaps. 12 and 14. A course for students with a strong
mathematical background could include any of the chapters depending on
the interests of instructors and students. For example, a course emphasizing
stochastic ideas could consist of the first four chapters, Chap. 10, plus some
of the case studies in the last four chapters. We believe that every course
should include some case studies.

We plan to use this volume as text material for future courses of vari-
ous lengths and with a variety of audiences. One of the main goals of the
courses on which this volume is based was to include students from different
disciplines. Our experience suggests that a future course aimed at a mixed
group should include a variety of non-mathematical case study descriptions
and should probably begin with separate tracks for “calculus users” who are
comfortable with basic mathematics but have little or no experience with
epidemiology, and “calculus victims” who may have studied calculus but in a
form that did not persuade them of the value of applications of mathematics
to other sciences. The negative experiences that many students in the health
sciences may have had in the past are a substantial obstacle that needs to be
overcome.

The chapters of this book are independent units and have different levels
of difficulty, although there is some overlap. Tremendous efforts were made to
ensure that these lectures are coherent and complementary, but no attempt
has been made to achieve a unified writing style, or even a unified notation
for this book. Because mathematical epidemiology is a rapidly developing
field, one goal of any course should be to encourage students to go to the
current literature, and experience with different perspectives should be very
helpful in being able to assimilate current developments.

These lecture notes would have been impossible without the two summer
schools funded by MITACS, as well as the Banff International Research Sta-
tion for Mathematical Innovation and Discovery (BIRS), The Fields Institute
for Research in Mathematical Sciences, the Mathematical Sciences Research
Institute and the Pacific Institute for the Mathematical Sciences. We thank
these funding agencies for their support, as well as BIRS and York University
for supplying physical facilities. We thank Dr. Guojun Gan and Dr. Hongbin
Guo for help in assembling the book manuscript. Finally, we thank all the
lecturers as well as Dr. Julien Arino and Dr. Lin Wang for technical support
during the summer schools, and the summer school students who contributed
much useful feedback.

Vancouver, BC Fred Brauer
Victoria, BC P. van den Driessche
Toronto, ON Jianhong Wu
February 2008
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Chapter 1

A Light Introduction to Modelling
Recurrent Epidemics

David J.D. Earn

Abstract Epidemics of many infectious diseases occur periodically. Why?

1.1 Introduction

There are many excellent books that provide broad and deep introductions
to the mathematical theory of infectious disease epidemics, ranging from
monographs and textbooks [1–7] to collections of articles from workshops
and conferences [8–12]. My goal in this article is to spark an interest in
mathematical epidemiology that might inspire you to dig into the existing
literature (starting with the rest of this book [13]) and, perhaps, to engage
in some research yourself in this fascinating area of science.

I will discuss some famous epidemics that present challenging theoretical
questions, and – without getting bogged down in technical details you can
find elsewhere – I will try to convince you that you can fairly easily build
and analyze simple models that help us understand the complex patterns
evident in these data. Not wishing to give you a false impression of the field,
I will also briefly mention some epidemic patterns that do not appear to be
explicable in terms of simple models (at least, not in terms of simple models
we have thought of!).

Several of the following sections are based in part on an even lighter intro-
duction to the subject of mathematical epidemiology that I wrote for a high
school mathematics magazine [14]. Here, I do not limit myself to high school
mathematics, but I hope the bulk of the article will be easily accessible to
you if you have had an elementary course in ordinary differential equations.

Department of Mathematics and Statistics
McMaster University, Hamilton, ON, Canada L8S 4K1
earn@math.mcmaster.ca
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1.2 Plague

One of the most famous examples of an epidemic of an infectious disease in a
human population is the Great Plague of London, which took place in 1665–
1666. We know quite a lot about the progression of the Great Plague because
weekly bills of mortality from that time have been retained. A photograph
of such a bill is shown in Fig. 1.1. Note that the report indicates that the
number of deaths from plague (5,533) was more than 37 times the number
of births (146) in the week in question, and that wasn’t the worst week! (An
even worse plague occurred in the fourteenth century, but no detailed records
of that epidemic are available.)

Putting together the weekly counts of plague deaths from all the relevant
mortality bills, we can obtain the epidemic curve for the Great Plague, which
I’ve plotted in the top left panel of Fig. 1.2. The characteristic exponential
rise, turnover and decline is precisely the pattern predicted by the classic
susceptible-infective-recovered (SIR) model of Kermack and McKendrick [15]
that I describe below. While this encourages us to think that mathematical
modelling can help us understand epidemics, some detailed features of the
epidemic curve are not predicted by the simple SIR model. For example,
the model does not explain the jagged features in the plotted curve (and
there would be many more small ups and downs if we had a record of daily
rather than weekly deaths). However, with some considerable mathematical
effort, these “fine details” can be accounted for by replacing the differential
equations of Kermack and McKendrick with equations that include stochas-
tic (i.e., random) processes [2]. We can then congratulate ourselves for our
modelling success. . . until we look at more data.

The bottom left panel of Fig. 1.2 shows weekly mortality from plague in
London over a period of 70 years. The Great Plague is the rightmost (and
highest) peak in the plot. You can see that on a longer timescale, there was a
complex pattern of plague epidemics including extinctions and re-emergences.
This cannot be explained by the basic SIR model (even if we reformulate it
using stochastic processes). The trouble is likely that we have left out a key
biological fact: there is a reservoir of plague in rodents, so it can persist for
years, unnoticed by humans, and then re-emerge suddenly and explosively. By
including the rodents and aspects of spatial spread in a mathematical model,
it has recently been possible to make sense of the pattern of seventeenth
century plague epidemics in London [16]. Nevertheless, some debate continues
as to whether all those plagues were really caused by the same pathogenic
organism.
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Fig. 1.1 A bill of mortality for the city of London, England, for the week of 26 September
to 3 October 1665. This photograph was taken by Claire Lees at the Guildhall in London,
England, with the permission of the librarian

1.3 Measles

A less contentious example is given by epidemics of measles, which are def-
initely caused by a well-known virus that infects the respiratory tract in
humans and is transmitted by airborne particles [3]. Measles gives rise to
characteristic red spots that are easily identifiable by physicians who have
seen many cases, and parents are very likely to take their children to a doctor
when such spots are noticed. Consequently, the majority of measles cases in



6 D.J.D. Earn

Fig. 1.2 Epidemic curves for plague in London (left panels) and measles in New York
City (right panels). For plague, the curves show the number of deaths reported each week.
For measles, the curves show the number of cases reported each month. In the top panels,
the small ticks on the time axis occur at monthly intervals

developed countries end up in the office of a doctor (who, in many countries,
is required to report observed measles cases to a central body). The result is
that the quality of reported measles case data is unusually good, and it has
therefore stimulated a lot of work in mathematical modelling of epidemics.

An epidemic curve for measles in New York City in 1962 is shown in the
top right panel of Fig. 1.2. The period shown is 17 months, exactly the same
length of time shown for the Great Plague of London in the top left panel. The
1962 measles epidemic in New York took off more slowly and lasted longer
than the Great Plague of 1665. Can mathematical models help us understand
what might have caused these differences?

1.4 The SIR Model

Most epidemic models are based on dividing the host population (humans in
the case of this article) into a small number of compartments, each containing
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individuals that are identical in terms of their status with respect to the
disease in question. In the SIR model, there are three compartments:

• Susceptible: individuals who have no immunity to the infectious agent, so
might become infected if exposed

• Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact

• Removed : individuals who are immune to the infection, and consequently
do not affect the transmission dynamics in any way when they contact
other individuals

It is traditional to denote the number of individuals in each of these com-
partments as S, I and R, respectively. The total host population size is
N = S + I + R.

Having compartmentalized the host population, we now need a set of equa-
tions that specify how the sizes of the compartments change over time. Solu-
tions of these equations will yield, in particular, I(t), the size of the infectious
compartment at time t. A plot of I(t) should bear a strong resemblance to
observed epidemic curves if this is a reasonable model.

The numbers of individuals in each compartment must be integers, of
course, but if the host population size N is sufficiently large we can treat S,
I and R as continuous variables and express our model for how they change
in terms of a system of differential equations,

dS

dt
= −βSI , (1.1a)

dI

dt
= βSI − γI . (1.1b)

Here, the transmission rate (per capita) is β and the recovery rate is γ (so
the mean infectious period is 1/γ). Note that I have not written a differential
equation for the number of removed individuals. The appropriate equation is
dR/dt = γI (outflow from the I compartment goes into the R compartment)
but since R does not appear in (1.1a) and (1.1b) the equation for dR/dt
has no effect on the dynamics of S and I (formalizing the fact that removed
individuals cannot affect transmission). This basic SIR model has a long
history [15] and is now so standard that you can even find it discussed in
some introductory calculus textbooks [17].

If everyone is initially susceptible (S(0) = N), then a newly introduced
infected individual can be expected to infect other people at the rate βN
during the expected infectious period 1/γ. Thus, this first infective individual
can be expected to infect R0 = βN/γ individuals. The number R0 is called
the basic reproduction number and is unquestionably the most important
quantity to consider when analyzing any epidemic model for an infectious
disease. In particular, R0 determines whether an epidemic can occur at all;
to see this for the basic SIR model, note in (1.1a) and (1.1b) that I can never
increase unless R0 > 1. This makes intuitive sense, since if each individual
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transmits the infection to an average of less than one individual then the
number of cases must decrease with time.

So, how do we obtain I(t) from the SIR model?

1.5 Solving the Basic SIR Equations

If we take the ratio of (1.1a) and (1.1b) we obtain

dI

dS
= −1 +

1
R0S

, (1.2)

which we can integrate immediately to find

I = I(0) + S(0) − S +
1

R0
ln [S/S(0)] . (1.3)

This is an exact solution, but it gives I as a function of S, not as a function
of t. Plots of I(S) for various R0 show the phase portraits of solutions
(Fig. 1.3) but do not give any indication of the time taken to reach any par-
ticular points on the curves. While the exact expression for the phase portrait
may seem like great progress, it is unfortunately not possible to obtain an
exact expression for I(t), even for this extremely simple model.

In their landmark 1927 paper, Kermack and McKendrick [15] found an
approximate solution for I(t) in the basic SIR model, but their approximation
is valid only at the very beginning of an epidemic (or for all time if R0 is
unrealistically close to unity) so it would not appear to be of much use for
understanding measles, which certainly has R0 > 10.

Computers come to our rescue. Rather than seeking an explicit formula
for I(t) we can instead obtain an accurate numerical approximation of the
solution. There are many ways to do this [18], but I will briefly mention
the simplest approach (Euler’s method), which you can implement in a few
minutes in any standard programming language, or even a spreadsheet.

Over a sufficiently small time interval ∆t, we can make the approximation
dS/dt � ∆S/∆t, where ∆S = S(t+∆t)−S(t). If we now solve for the number
of susceptibles a time ∆t in the future, we obtain

S(t + ∆t) = S(t) − βS(t)I(t)∆t . (1.4a)

Similarly, we can approximate the number of infectives at time t + ∆t as

I(t + ∆t) = I(t) + βS(t)I(t)∆t − γI(t)∆t . (1.4b)

Equations (1.4a) and (1.4b) together provide a scheme for approximating
solutions of the basic SIR model. To implement this scheme on a computer,
you need to decide on a suitable small time step ∆t. If you want to try
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Fig. 1.3 Phase portraits of solutions of the basic SIR model ((1.1a) and (1.1b)) for a newly
invading infectious disease. The curves are labelled by the value of the basic reproduction
number R0 (2, 4, 8 or 16). For each curve, the initial time is at the bottom right corner
of the graph (I(0) � 0, S(0) � N). All solutions end on the S axis (I → 0 as t → ∞).
A simple analytical formula for the phase portrait is easily derived (1.3); from this it is
easy to show that limt→∞ S(t) > 0 regardless of the value of R0 (though, as is clear from
the phase portraits plotted for R0 = 8 and 16, nearly everyone is likely to be infected
eventually if R0 is high)

this, I suggest taking ∆t to be one tenth of a day. I should point out that
I am being extremely cavalier in suggesting the above method. Do try this,
but be forewarned that you can easily generate garbage using this simple
approach if you’re not careful. (To avoid potential confusion, include a line
in your program that checks that S(t) ≥ 0 and I(t) ≥ 0 at all times. Another
important check is to repeat your calculations using a much smaller ∆t and
make sure your results don’t change.)

In order for your computer to carry out the calculations specified by (1.4a)
and (1.4b), you need to tell it the parameter values (β and γ, or R0, N and
γ) and initial conditions (S(0) and I(0)). For measles, estimates that are
independent of the case report data that we’re trying to explain indicate that
the mean infectious period is 1/γ ∼ 5 days and the basic reproduction number
is R0 ∼ 18 [3]. The population of New York City in 1960 was N = 7, 781, 984.
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If we now assume one infectious individual came to New York before the
epidemic of 1962 (I(0) = 1), and that everyone in the city was susceptible
(S(0) = N), then we have enough information to let the computer calculate
I(t). Doing so yields the epidemic curve shown in the top panel of Fig. 1.4,
which does not look much like the real data for the 1962 epidemic in New
York. So is there something wrong with our model?

Fig. 1.4 Epidemic curves for measles in New York City, generated by the basic SIR model.
The curves show the number of infectives I(t) at time t. In the top two panels, the small ticks
on the time axis occur at monthly intervals. The parameter values and initial conditions are
discussed in the main text, except for the initial proportion susceptible used to generate
the bottom two panels (S(0)/N = 0.065). This initial condition was determined based
on the SIR model with vital dynamics, as specified by (1.5a) and (1.5b). The proportion
susceptible at equilibrium is Ŝ = 1/R0 = 1/18 � 0.056. At the start of each epidemic cycle
that occurs as the system approaches the equilibrium, the proportion susceptible must be
higher than Ŝ

No, but there is something very wrong with our initial conditions. The
bottom right panel of Fig. 1.2 shows reported measles cases in New York
City for a 36-year period, the end of which includes the 1962 epidemic. Evi-
dently, measles epidemics had been occurring in New York for decades with no
sign of extinction of the virus. In late 1961, most of New York’s population
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had already had measles and was already immune, and the epidemic cer-
tainly didn’t start because one infectious individual came to the city. The
assumptions that I(0) = 1 and S(0) = N are ridiculous. If, instead, we
take I(0) = 123 ∗ (5/30) (the number of reported cases in September 1961
times the infectious period as a proportion of the length of the month) and
S(0) = 0.065 ∗ N , then we obtain the epidemic curve plotted in the middle
panel of Fig. 1.4, which is much more like the observed epidemic curve of
Fig. 1.2 (top right panel).

This is progress – we have a model that can explain a single measles
epidemic in New York City – but the model cannot explain the recurrent
epidemics observed in the bottom right panel of Fig. 1.2. This is not because
we still don’t have exactly the right parameter values and initial conditions:
no parameter values or initial conditions lead to recurrent epidemics in this
simple model. So, it would seem, there must be some essential biological
mechanism that we have not included in our model. What might that be?

Let’s think about why a second epidemic cannot occur in the model we’ve
discussed so far. The characteristic turnover and decline of an epidemic curve
occurs because the pathogen is running out of susceptible individuals to in-
fect. To stimulate a second epidemic, there must be a source of susceptible
individuals. For measles, that source cannot be previously infected people,
because recovered individuals retain lifelong immunity to the virus. So who
is it?

Newborns. They typically acquire immunity from their mothers, but this
wanes after a few months. A constant stream of births can provide the source
we’re looking for.

1.6 SIR with Vital Dynamics

If we expand the SIR model to include B births per unit time and a natural
mortality rate µ (per capita) then our equations become

dS

dt
= B − βSI − µS , (1.5a)

dI

dt
= βSI − γI − µI . (1.5b)

The timescale for substantial changes in birth rates (decades) is generally
much longer than a measles epidemic (a few months), so we’ll assume that
the population size is constant (thus B = µN , so there is really only one new
parameter in the above equations and we can take it to be B). As before,
we can use Euler’s trick to convert the equations above into a scheme that
enables a computer to generate approximate solutions. An example is shown
in the bottom panel of Fig. 1.4, where I have taken the birth rate to be
B = 126, 372 per year (the number of births in New York City in 1928, the
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first year for which we have data). The rest of the parameters and initial
conditions are as in the middle panel of the figure.

Again we seem to be making progress. We are now getting recurrent epi-
demics, but the oscillations in the numbers of cases over time damp out, even-
tually reaching an equilibrium (Ŝ, Î). Of course, the bottom plot in Fig. 1.4
shows what happens for only one set of possible initial conditions. Perhaps for
different initial conditions the oscillations don’t damp out? If you try a dif-
ferent set of initial conditions – or lots of different sets of initial conditions –
then I guarantee that you will see the same behaviour. The system will always
undergo damped oscillations and converge to (Ŝ, Î). How can I be so sure,
you might ask?

First of all, by setting the derivatives in (1.5a) and (1.5b) to zero, you can
easily calculate (in terms of the model’s parameters) expressions for Ŝ and Î
that are positive (hence meaningful) provided R0 > 1. Then, by linearizing
(1.5a) and (1.5b) about the equilibrium and computing the eigenvalues of the
Jacobian matrix for the system, you will find that the equilibrium is locally
stable (the eigenvalues have negative real parts) and approach to the equi-
librium is oscillatory (the eigenvalues have non-zero imaginary parts) [3, 7].
But maybe if we are far enough from the equilibrium undamped oscillations
are possible?

No, we can prove rigorously that the equilibrium (Ŝ, Î) is globally asymp-
totically stable, i.e., all initial conditions with S(0) > 0 and I(0) > 0 yield
solutions that converge onto this equilibrium. One way to see this is to scale
the variables by population size (S → S/N , I → I/N) and consider the
function

V (S, I) = S − Ŝ log S + I − Î log I , S, I ∈ (0, 1). (1.6)

With a little work you can show that the time derivative of V along solutions
of the model, i.e., ∇V ·(dS/dt, dI/dt) with dS/dt and dI/dt taken from (1.1a)
and (1.1b), is strictly negative for each S, I ∈ (0, 1). V is therefore a Lyapunov
function [19] for the basic SIR model. The existence of such a V ensures the
global asymptotic stability of the equilibrium (Ŝ, Î) [19].

Finding a Lyapunov function is generally not straightforward, but func-
tions similar the one given in (1.6) have recently been used to prove global sta-
bility of equilibria in many epidemic models [20]. The upshot for our present
attempt to understand measles dynamics is that this rigorous argument al-
lows us to rule out the basic SIR model: it cannot explain the real oscillations
in measles incidence in New York City from 1928 to 1964, which showed no
evidence of damping out. Back to the drawing board?
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1.7 Demographic Stochasticity

One thing we have glossed over is the presence of noise. While it is true
that for sufficiently large population size N it is reasonable to treat S and
I as continuous variables, it is not true that the true discreteness of the
number of individuals in each compartment has no observable effect. This
was recognized by Bartlett [1] who found that a relatively small amount of
noise was sufficient to prevent the oscillations of the basic SIR model from
damping out. Whether we recast the SIR model as a stochastic process [2,21]
or simply add a small noise term to the deterministic equations, we can
sustain the oscillations that damp out in the bottom panel of Fig. 1.4.

Again, this is progress that has arisen from an important mechanistic
insight. But we are left with another puzzle. If you look carefully at the New
York City measles reports in the bottom right panel of Fig. 1.2 you’ll see that
before about 1945 the epidemics were fairly irregular, whereas after 1945
they followed an almost perfect 2-year cycle. Even with oscillations sustained
by noise, the SIR model cannot explain why the measles epidemic pattern
in New York City changed in this way. Have we missed another important
mechanism?

1.8 Seasonal Forcing

So far, we have been assuming implicitly that the transmission rate β (or,
equivalently, the basic reproduction number R0) is simply a constant and,
in particular, that it does not change in time. Let’s think about that as-
sumption. The transmission rate is really the product of the rate of contact
among individuals and the probability that a susceptible individual who is
contacted by an infectious individual will become infected. But the contact
rate is not constant throughout the year. To see that, consider the fact that
in the absence of vaccination the average age at which a person is infected
with measles is about 5 years [3], hence most susceptibles are children. Chil-
dren are in closer contact when school is in session, so the transmission rate
must vary seasonally.

A crude approximation of this seasonality is to assume that β varies sinu-
soidally,

β(t) = β0(1 + α cos 2πt) . (1.7)

Here, β0 is the mean transmission rate, α is the amplitude of seasonal varia-
tion and time t is assumed to be measured in years. If, as above, β is assumed
to be a periodic function (with period 1 year) then the SIR model is said to
be seasonally forced. We can still use Euler’s trick to solve the equations ap-
proximately, and I encourage you to do that using a computer for various
values of the seasonal amplitude α (0 ≤ α ≤ 1).
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You might think that seasonal forcing is just a minor tweak of the model.
In fact, this forcing has an enormous impact on the epidemic dynamics that
the model predicts. If you’ve ever studied the forced pendulum then you
might already have some intuition for this. A pendulum with some friction
will exhibit damped oscillations and settle down to an equilibrium. But if
you tap the pendulum with a hammer periodically then it will never settle
down and it can exhibit quite an exotic range of behaviours including chaotic
dynamics [22,23] (oscillations that look random). Similarly complex dynamics
can occur in the seasonally forced SIR model.

Importantly, with seasonal forcing the SIR model displays undamped os-
cillations (and it does this, incidentally, even in the absence of stochasticity).
More than that, for different parameter values, the seasonally forced SIR
model can produce all the different types of oscillatory measles patterns I
have ever seen in real data. So are we done?

No. As noted in the previous section, the observed measles epidemics in
New York City show very clearly that the dynamical pattern changed over
time (bottom right panel of Fig. 1.2) and other significant qualitative changes
have been observed in measles case series in other places [24]. How can we
explain changes over time in the pattern of measles epidemics?

1.9 Slow Changes in Susceptible Recruitment

Once again, the missing ingredient in the model is a changing parameter
value. This time it is the birth rate B, which is not really constant. Birth
rates fluctuate seasonally, but to such a small extent that this effect is negli-
gible. What turns out to be more important is the much slower changes that
occur in the average birth rate over decades. For example, in New York City
the birth rate was much lower during the 1930s (the “Great Depression”)
than after 1945 (the “baby boom”) and this difference accounts for the very
different patterns of measles epidemics in New York City during these two
time periods [24].

A little more analysis of the SIR model is very useful. Intuitively, reduc-
ing the birth rate or increasing the proportion of children vaccinated both
affect the rate at which new susceptible individuals are recruited into the
population. In fact, it is possible to prove that changes in the birth rate have
exactly the same effect on disease dynamics as changes of the same relative
magnitude in the transmission rate or the proportion of the population that
is vaccinated [24]. This equivalence makes it possible to explain historical
case report data for a variety of infectious diseases in many different cities.

Interestingly, it turns out that while most aspects of the dynamics of
measles can be explained by employing seasonal forcing without noise, both
seasonal forcing and stochasticity are essential to explain the dynamics of
other childhood diseases [25].
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1.10 Not the Whole Story

I should emphasize that while the seasonally forced SIR model is adequate
to explain observed incidence patterns for childhood diseases, it is definitely
not adequate for many other diseases that display recurrent epidemics. An
important example is influenza (Fig. 1.5). Influenza viruses evolve in ways
that evade the human immune system within a few years, making it possible
for each of us to be infected by influenza many times. Influenza models must
take into account the simultaneous presence in the population of many dif-
ferent strains that interact immunologically and compete for human hosts.
The epidemic pattern shown in Fig. 1.5 bears some similarities to the measles
pattern shown in Fig. 1.2, and the effects of seasonal forcing help explain this
and other influenza patterns to some extent [26]. But we are far from having
a simple model that can account for both the annual incidence patterns of
influenza in humans and the evolution of the virus [27].

Fig. 1.5 Monthly mortality attributed to pneumonia and influenza (P&I deaths) in the
USA in the twentieth century. The inset plot shows the period 1910–1930 on a much larger
scale, revealing the magnitude of the three peaks that extend beyond the top of the main
panel: 1918–1919, 1919–1920 and 1928–1929. Mortality before 1934 is underestimated. It
is traditional to combine pneumonia and influenza because many deaths categorized as
having pneumonia as the underlying cause are triggered by an influenza infection
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1.11 Take Home Message

One thing that you may have picked up from this article is that successful
mathematical modelling of biological systems tends to proceed in steps. We
begin with the simplest sensible model and try to discover everything we can
about it. If the simplest model cannot explain the phenomenon we’re trying
to understand then we add more biological detail to the model, and it’s best
to do this in steps because we are then more likely to be able to determine
which biological features have the greatest impact on the behaviour of the
model.

In the particular case of mathematical epidemiology, we are lucky that
medical and public health personnel have painstakingly conducted surveil-
lance of infectious diseases for centuries. This has created an enormous wealth
of valuable data [28] with which to test hypotheses about disease spread using
mathematical models, making this a very exciting subject for research.
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Chapter 2

Compartmental Models
in Epidemiology

Fred Brauer

Abstract We describe and analyze compartmental models for disease trans-
mission. We begin with models for epidemics, showing how to calculate the
basic reproduction number and the final size of the epidemic. We also study
models with multiple compartments, including treatment or isolation of in-
fectives. We then consider models including births and deaths in which there
may be an endemic equilibrium and study the asymptotic stability of equi-
libria. We conclude by studying age of infection models which give a unifying
framework for more complicated compartmental models.

2.1 Introduction

Communicable diseases such as measles, influenza, or tuberculosis, are a fact
of modern life. The mechanism of transmission of infections is now known
for most diseases. Generally, diseases transmitted by viral agents, such as
influenza, measles, rubella (German measles), and chicken pox, confer im-
munity against reinfection, while diseases transmitted by bacteria, such as
tuberculosis, meningitis, and gonorrhea, confer no immunity against rein-
fection. Other diseases, such as malaria, are transmitted not directly from
human to human but by vectors, which are agents (usually insects) who are
infected by humans and who then transmit the disease to humans. The West
Nile virus involves two vectors, mosquitoes and birds. For sexually transmit-
ted diseases with heterosexual transmission each sex acts as a vector and
disease is transmitted back and forth between the sexes.

Department of Mathematics, University of British Columbia, 1984, Mathematics Road,
Vancouver BC, Canada V6T 1Z2 brauer@math.ubc.ca
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We will be concerned both with epidemics which are sudden outbreaks
of a disease, and endemic situations, in which a disease is always present.
Epidemics such as the 2002 outbreak of SARS, the Ebola virus and avian
flu outbreaks are events of concern and interest to many people. The 1918
Spanish flu epidemic caused millions of deaths, and a recurrence of a major
influenza epidemic is a dangerous possibility. An introduction of smallpox is
of considerable concern to government officials dealing with terrorism threats.

An endemic situation is one in which a disease is always present. The preva-
lence and effects of many diseases in less developed countries are probably
less well-known but may be of even more importance. Every year millions of
people die of measles, respiratory infections, diarrhea and other diseases that
are easily treated and not considered dangerous in the Western world. Dis-
eases such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness
are endemic in many parts of the world. The effects of high disease mortality
on mean life span and of disease debilitation and mortality on the economy
in afflicted countries are considerable.

Our goal is to provide an introduction to mathematical epidemiology, in-
cluding the development of mathematical models for the spread of disease
as well as tools for their analysis. Scientific experiments usually are designed
to obtain information and to test hypotheses. Experiments in epidemiology
with controls are often difficult or impossible to design and even if it is pos-
sible to arrange an experiment there are serious ethical questions involved
in withholding treatment from a control group. Sometimes data may be ob-
tained after the fact from reports of epidemics or of endemic disease levels,
but the data may be incomplete or inaccurate. In addition, data may con-
tain enough irregularities to raise serious questions of interpretation, such as
whether there is evidence of chaotic behaviour [12]. Hence, parameter esti-
mation and model fitting are very difficult. These issues raise the question of
whether mathematical modeling in epidemiology is of value.

Our response is that mathematical modeling in epidemiology provides un-
derstanding of the underlying mechanisms that influence the spread of disease
and, in the process, it suggests control strategies. In fact, models often iden-
tify behaviours that are unclear in experimental data – often because data
are non-reproducible and the number of data points is limited and subject to
errors in measurement. For example, one of the fundamental results in math-
ematical epidemiology is that most mathematical epidemic models, including
those that include a high degree of heterogeneity, usually exhibit “threshold”
behaviour. In epidemiological terms this can be stated as follows: If the av-
erage number of secondary infections caused by an average infective, called
the basic reproduction number, is less than one a disease will die out, while
if it exceeds one there will be an epidemic. This broad principle, consistent
with observations and quantified via epidemiological models, has been con-
sistently used to estimate the effectiveness of vaccination policies and the
likelihood that a disease may be eliminated or eradicated. Hence, even if it
is not possible to verify hypotheses accurately, agreement with hypotheses of
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a qualitative nature is often valuable. Expressions for the basic reproduction
number for HIV in various populations have been used to test the possible
effectiveness of vaccines that may provide temporary protection by reducing
either HIV-infectiousness or susceptibility to HIV. Models are used to esti-
mate how widespread a vaccination plan must be to prevent or reduce the
spread of HIV.

In the mathematical modeling of disease transmission, as in most other
areas of mathematical modeling, there is always a trade-off between simple
models, which omit most details and are designed only to highlight general
qualitative behaviour, and detailed models, usually designed for specific sit-
uations including short-term quantitative predictions. Detailed models are
generally difficult or impossible to solve analytically and hence their useful-
ness for theoretical purposes is limited, although their strategic value may
be high. In these notes we describe simple models in order to establish broad
principles. Furthermore, these simple models have additional value as they
are the building blocks of models that include more detailed structure.

Many of the early developments in the mathematical modeling of commu-
nicable diseases are due to public health physicians. The first known result in
mathematical epidemiology is a defense of the practice of inoculation against
smallpox in 1760 by Daniel Bernoulli, a member of a famous family of math-
ematicians (eight spread over three generations) who had been trained as a
physician. The first contributions to modern mathematical epidemiology are
due to P.D. En’ko between 1873 and 1894 [11], and the foundations of the
entire approach to epidemiology based on compartmental models were laid
by public health physicians such as Sir Ross, R.A., W.H. Hamer, A.G. McK-
endrick and W.O. Kermack between 1900 and 1935, along with important
contributions from a statistical perspective by J. Brownlee. A particularly
instructive example is the work of Ross on malaria. Dr. Ross was awarded
the second Nobel Prize in Medicine for his demonstration of the dynamics of
the transmission of malaria between mosquitoes and humans. Although his
work received immediate acceptance in the medical community, his conclu-
sion that malaria could be controlled by controlling mosquitoes was dismissed
on the grounds that it would be impossible to rid a region of mosquitoes com-
pletely and that in any case mosquitoes would soon reinvade the region. After
Ross formulated a mathematical model that predicted that malaria outbreaks
could be avoided if the mosquito population could be reduced below a critical
threshold level, field trials supported his conclusions and led to sometimes
brilliant successes in malaria control. However, the Garki project provides a
dramatic counterexample. This project worked to eradicate malaria from a
region temporarily. However, people who have recovered from an attack of
malaria have a temporary immunity against reinfection. Thus elimination of
malaria from a region leaves the inhabitants of this region without immunity
when the campaign ends, and the result can be a serious outbreak of malaria.

We will begin with an introduction to epidemic models. Next, we will
incorporate demographic effects into the models to explore endemic states,
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and finally we will describe models with infectivity depending on the age
of infection. Our approach will be qualitative. By this we mean that rather
than attempting to find explicit solutions of the systems of differential equa-
tions which will form our models we will be concerned with the asymptotic
behaviour, that is, the behaviour as t → ∞ of solutions.

This material is meant to be an introduction to the study of compartmental
models in mathematical epidemiology. More advanced material may be found
in many other sources, including Chaps. 5–9 of this volume, the case studies
in Chaps. 11–14, and [2, 4–6,9, 17,29,35].

2.1.1 Simple Epidemic Models

An epidemic, which acts on a short temporal scale, may be described as a
sudden outbreak of a disease that infects a substantial portion of the popula-
tion in a region before it disappears. Epidemics usually leave many members
untouched. Often these attacks recur with intervals of several years between
outbreaks, possibly diminishing in severity as populations develop some im-
munity. This is an important aspect of the connection between epidemics and
disease evolution.

The Book of Exodus describes the plagues that Moses brought down upon
Egypt, and there are several other biblical descriptions of epidemic outbreaks.
Descriptions of epidemics in ancient and medieval times frequently used the
term “plague” because of a general belief that epidemics represented divine
retribution for sinful living. More recently some have described AIDS as pun-
ishment for sinful activities. Such views have often hampered or delayed at-
tempts to control this modern epidemic .

There are many biblical references to diseases as historical influences, such
as the decision of Sennacherib, the king of Assyria, to abandon his attempt to
capture Jerusalem about 700 BC because of the illness of his soldiers (Isaiah
37, 36–38). The fall of empires has been attributed directly or indirectly to
epidemic diseases. In the second century AD the so-called Antonine plagues
(possibly measles and smallpox) invaded the Roman Empire, causing drastic
population reductions and economic hardships. These led to disintegration
of the empire because of disorganization, which facilitated invasions of bar-
barians. The Han empire in China collapsed in the third century AD after
a very similar sequence of events. The defeat of a population of millions of
Aztecs by Cortez and his 600 followers can be explained in part by a small-
pox epidemic that devastated the Aztecs but had almost no effect on the
invading Spaniards thanks to their built-in immunities. The Aztecs were not
only weakened by disease but also confounded by what they interpreted as
a divine force favoring the invaders. Smallpox then spread southward to the
Incas in Peru and was an important factor in the success of Pizarro’s invasion
a few years later. Smallpox was followed by other diseases such as measles
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and diphtheria imported from Europe to North America. In some regions,
the indigenous populations were reduced to one tenth of their previous levels
by these diseases. Between 1519 and 1530 the Indian population of Mexico
was reduced from 30 million to 3 million.

The Black Death spread from Asia throughout Europe in several waves
during the fourteenth century, beginning in 1346, and is estimated to have
caused the death of as much as one third of the population of Europe between
1346 and 1350. The disease recurred regularly in various parts of Europe
for more than 300 years, notably as the Great Plague of London of 1665–
1666. It then gradually withdrew from Europe. As the plague struck some
regions harshly while avoiding others, it had a profound effect on political
and economic developments in medieval times. In the last bubonic plague
epidemic in France (1720–1722), half the population of Marseilles, 60% of
the population in nearby Toulon, 44% of the population of Arles and 30%
of the population of Aix and Avignon died, but the epidemic did not spread
beyond Provence.

The historian W.H. McNeill argues, especially in his book [26], that the
spread of communicable diseases has frequently been an important influence
in history. For example, there was a sharp population increase throughout the
world in the eighteenth century; the population of China increased from 150
million in 1760 to 313 million in 1794 and the population of Europe increased
from 118 million in 1700 to 187 million in 1800. There were many factors in-
volved in this increase, including changes in marriage age and technological
improvements leading to increased food supplies, but these factors are not
sufficient to explain the increase. Demographic studies indicate that a satis-
factory explanation requires recognition of a decrease in the mortality caused
by periodic epidemic infections. This decrease came about partly through
improvements in medicine, but a more important influence was probably the
fact that more people developed immunities against infection as increased
travel intensified the circulation and co-circulation of diseases.

Perhaps the first epidemic to be examined from a modeling point of view
was the Great Plague in London (1665–1666). The plague was one of a se-
quence of attacks beginning in the year 1346 of what came to be known as
the Black Death. It is now identified as the bubonic plague, which had ac-
tually invaded Europe as early as the sixth century during the reign of the
Emperor Justinian of the Roman Empire and continued for more than three
centuries after the Black Death. The Great Plague killed about one sixth of
the population of London. One of the few “benefits” of the plague was that it
caused Cambridge University to be closed for two years. Isaac Newton, who
was a student at Cambridge at the time, was sent to his home and while “in
exile” he had one of the most productive scientific periods of any human in
history. He discovered his law of gravitation, among other things, during this
period.

The characteristic features of the Great Plague were that it appeared
quite suddenly, grew in intensity, and then disappeared, leaving part of the
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population untouched. The same features have been observed in many other
epidemics, both of fatal diseases and of diseases whose victims recovered with
immunity against reinfection.

In the nineteenth century recurrent invasions of cholera killed millions in
India. The influenza epidemic of 1918–1919 killed more than 20 million people
overall, more than half a million in the United States. One of the questions
that first attracted the attention of scientists interested in the study of the
spread of communicable diseases was why diseases would suddenly develop in
a community and then disappear just as suddenly without infecting the entire
community. One of the early triumphs of mathematical epidemiology [21] was
the formulation of a simple model that predicted behaviour very similar to
the behaviour observed in countless epidemics. The Kermack–McKendrick
model is a compartmental model based on relatively simple assumptions on
the rates of flow between different classes of members of the population.

There are many questions of interest to public health physicians confronted
with a possible epidemic. For example, how severe will an epidemic be? This
question may be interpreted in a variety of ways. For example, how many
individuals will be affected altogether and thus require treatment? What is
the maximum number of people needing care at any particular time? How
long will the epidemic last? How much good would quarantine or isolation of
victims do in reducing the severity of the epidemic? These are some of the
questions we would like to study with the aid of models.

2.1.2 The Kermack–McKendrick Model

We formulate our descriptions as compartmental models, with the population
under study being divided into compartments and with assumptions about
the nature and time rate of transfer from one compartment to another. Dis-
eases that confer immunity have a different compartmental structure from
diseases without immunity. We will use the terminology SIR to describe a
disease which confers immunity against re-infection, to indicate that the pas-
sage of individuals is from the susceptible class S to the infective class I to
the removed class R. On the other hand, we will use the terminology SIS
to describe a disease with no immunity against re-infection, to indicate that
the passage of individuals is from the susceptible class to the infective class
and then back to the susceptible class. Other possibilities include SEIR and
SEIS models, with an exposed period between being infected and becom-
ing infective, and SIRS models, with temporary immunity on recovery from
infection.

The independent variable in our compartmental models is the time t and
the rates of transfer between compartments are expressed mathematically as
derivatives with respect to time of the sizes of the compartments, and as a
result our models are formulated initially as differential equations. Possible
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generalizations, which we shall not explore in these notes, include models in
which the rates of transfer depend on the sizes of compartments over the past
as well as at the instant of transfer, leading to more general types of func-
tional equations, such as differential-difference equations, integral equations,
or integro-differential equations.

In order to model such an epidemic we divide the population being studied
into three classes labeled S, I, and R. We let S(t) denote the number of indi-
viduals who are susceptible to the disease, that is, who are not (yet) infected
at time t. I(t) denotes the number of infected individuals, assumed infectious
and able to spread the disease by contact with susceptibles. R(t) denotes the
number of individuals who have been infected and then removed from the
possibility of being infected again or of spreading infection. Removal is car-
ried out either through isolation from the rest of the population or through
immunization against infection or through recovery from the disease with full
immunity against reinfection or through death caused by the disease. These
characterizations of removed members are different from an epidemiological
perspective but are often equivalent from a modeling point of view which
takes into account only the state of an individual with respect to the disease.

In formulating models in terms of the derivatives of the sizes of each com-
partment we are assuming that the number of members in a compartment
is a differentiable function of time. This may be a reasonable approximation
if there are many members in a compartment, but it is certainly suspect
otherwise. In formulating models as differential equations, we are assuming
that the epidemic process is deterministic, that is, that the behaviour of a
population is determined completely by its history and by the rules which
describe the model. In other chapters of this volume Linda Allen and Ping
Yan describe the study of stochastic models in which probabilistic concepts
are used and in which there is a distribution of possible behaviours. The de-
veloping study of network science, introduced in Chap. 4 of this volume and
described in [28,30,33], is another approach.

The basic compartmental models to describe the transmission of commu-
nicable diseases are contained in a sequence of three papers by W.O. Ker-
mack and A.G. McKendrick in 1927, 1932, and 1933 [21–23]. The first of
these papers described epidemic models. What is often called the Kermack–
McKendrick epidemic model is actually a special case of the general model
introduced in this paper. The general model included dependence on age of
infection, that is, the time since becoming infected. Curiously, Kermack and
McKendrick did not explore this situation further in their later models which
included demographic effects. Age of infection models have become important
in the study of HIV/AIDS, and we will return to them in the last section of
this chapter.

The special case of the model proposed by Kermack and McKendrick in
1927 which is the starting point for our study of epidemic models is



26 F. Brauer

S′ = −βSI

I ′ = βSI − αI

R′ = αI .

A flow chart is shown in Fig. 2.1. It is based on the following assumptions:

S I R

Fig. 2.1 Flow chart for the SIR model

(1) An average member of the population makes contact sufficient to trans-
mit infection with βN others per unit time, where N represents total
population size (mass action incidence) .

(2) Infectives leave the infective class at rate αI per unit time.
(3) There is no entry into or departure from the population, except possibly

through death from the disease.

According to (1), since the probability that a random contact by an in-
fective is with a susceptible, who can then transmit infection, is S/N , the
number of new infections in unit time per infective is (βN)(S/N), giving
a rate of new infections (βN)(S/N)I = βSI. Alternately, we may argue
that for a contact by a susceptible the probability that this contact is with
an infective is I/N and thus the rate of new infections per susceptible is
(βN)(I/N), giving a rate of new infections (βN)(I/N)S = βSI. Note that
both approaches give the same rate of new infections; there are situations
which we shall encounter where one is more appropriate than the other. We
need not give an algebraic expression for N since it cancels out of the final
model, but we should note that for a disease that is fatal to all who are in-
fected N = S+I; while, for a disease from which all infected members recover
with immunity, N = S + I +R. Later, we will allow the possibility that some
infectives recover while others die of the disease. The hypothesis (3) really
says that the time scale of the disease is much faster than the time scale
of births and deaths so that demographic effects on the population may be
ignored. An alternative view is that we are only interested in studying the
dynamics of a single epidemic outbreak. In later sections we shall consider
models that are the same as those considered in this first section except for
the incorporation of demographic effects (births and deaths) along with the
corresponding epidemiological assumptions.
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The assumption (2) requires a fuller mathematical explanation, since the
assumption of a recovery rate proportional to the number of infectives has
no clear epidemiological meaning. We consider the “cohort” of members who
were all infected at one time and let u(s) denote the number of these who
are still infective s time units after having been infected. If a fraction α of
these leave the infective class in unit time then

u′ = −αu ,

and the solution of this elementary differential equation is

u(s) = u(0) e−αs .

Thus, the fraction of infectives remaining infective s time units after having
become infective is e−αs, so that the length of the infective period is dis-
tributed exponentially with mean

∫∞
0

e−αsds = 1/α, and this is what (2)
really assumes.

The assumptions of a rate of contacts proportional to population size N
with constant of proportionality β, and of an exponentially distributed recov-
ery rate are unrealistically simple. More general models can be constructed
and analyzed, but our goal here is to show what may be deduced from ex-
tremely simple models. It will turn out that many more realistic models
exhibit very similar qualitative behaviours.

In our model R is determined once S and I are known, and we can drop
the R equation from our model, leaving the system of two equations

S′ = −βSI (2.1)
I ′ = (βS − α)I .

We are unable to solve this system analytically but we learn a great deal
about the behaviour of its solutions by the following qualitative approach.
To begin, we remark that the model makes sense only so long as S(t) and I(t)
remain non-negative. Thus if either S(t) or I(t) reaches zero we consider the
system to have terminated. We observe that S′ < 0 for all t and I ′ > 0 if and
only if S > α/β. Thus I increases so long as S > α/β but since S decreases for
all t, I ultimately decreases and approaches zero. If S(0) < α/β, I decreases
to zero (no epidemic), while if S(0) > α/β, I first increases to a maximum
attained when S = α/β and then decreases to zero (epidemic). We think of
introducing a small number of infectives into a population of susceptibles and
ask whether there will be an epidemic. The quantity βS(0)/α is a threshold
quantity, called the basic reproduction number and denoted by R0, which
determines whether there is an epidemic or not. If R0 < 1 the infection dies
out, while if R0 > 1 there is an epidemic.

The definition of the basic reproduction number R0 is that the basic re-
production number is the number of secondary infections caused by a single
infective introduced into a wholly susceptible population of size K ≈ S(0)
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over the course of the infection of this single infective. In this situation, an
infective makes βK contacts in unit time, all of which are with susceptibles
and thus produce new infections, and the mean infective period is 1/α; thus
the basic reproduction number is actually βK/α rather than βS(0)/α.

Instead of trying to solve for S and I as functions of t, we divide the two
equations of the model to give

I ′

S′ =
dI

dS
=

(βS − α)I
−βSI

= −1 +
α

βS
,

and integrate to find the orbits (curves in the (S, I)-plane, or phase plane)

I = −S +
α

β
logS + c , (2.2)

with c an arbitrary constant of integration. Here, we are using log to denote
the natural logarithm. Another way to describe the orbits is to define the
function

V (S, I) = S + I − α

β
log S

and note that each orbit is a curve given implicitly by the equation V (S, I) = c
for some choice of the constant c. The constant c is determined by the ini-
tial values S(0), I(0) of S and I, respectively, because c = V (S(0), I(0)) =
S(0)+I(0)−α log S(0)/β. Note that the maximum value of I on each of these
orbits is attained when S = α/β. Note also that since none of these orbits
reaches the I - axis, S > 0 for all times. In particular, S∞ = limt→∞ S(t) > 0,
which implies that part of the population escapes infection.

Let us think of a population of size K into which a small number of
infectives is introduced, so that S0 ≈ K, I0 ≈ 0, and R0 = βK/α. If we use
the fact that limt→∞ I(t) = 0, and let S∞ = limt→∞ S(t), then the relation
V (S0, I0) = V (S∞, 0) gives

K − α

β
log S0 = S∞ − α

β
log S∞ ,

from which we obtain an expression for β/α in terms of the measurable
quantities S0 and S∞, namely

β

α
=

(log S0 − log S∞)
K − S∞

.

We may rewrite this in terms of R0 as the final size relation

log S0 − log S∞ = R0

[

1 − S∞
K

]

. (2.3)

In particular, since the right side of (2.3) is finite, the left side is also finite,
and this shows that S∞ > 0.
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It is generally difficult to estimate the contact rate β which depends on
the particular disease being studied but may also depend on social and be-
havioural factors. The quantities S0 and S∞ may be estimated by serological
studies (measurements of immune responses in blood samples) before and
after an epidemic, and from these data the basic reproduction number R0

may be estimated by using (2.3). This estimate, however, is a retrospective
one which can be determined only after the epidemic has run its course.

Initially, the number of infectives grows exponentially because the equation
for I may be approximated by

I ′ = (βK − α)I

and the initial growth rate is

r = βK − α = α(R0 − 1) .

This initial growth rate r may be determined experimentally when an epi-
demic begins. Then since K and α may be measured β may be calculated as

β =
r + α

K
.

However, because of incomplete data and under-reporting of cases this esti-
mate may not be very accurate. This inaccuracy is even more pronounced for
an outbreak of a previously unknown disease, where early cases are likely to
be misdiagnosed.

The maximum number of infectives at any time is the number of infectives
when the derivative of I is zero, that is, when S = α/β. This maximum is
given by

Imax = S0 + I0 −
α

β
log S0 −

α

β
+

α

β
log

α

β
, (2.4)

obtained by substituting S = α/β, I = Imax into (2.2).

Example. (The Great Plague in Eyam) The village of Eyam near Sheffield,
England suffered an outbreak of bubonic plague in 1665–1666 the source of
which is generally believed to be the Great Plague of London. The Eyam
plague was survived by only 83 of an initial population of 350 persons. As
detailed records were preserved and as the community was persuaded to
quarantine itself to try to prevent the spread of disease to other communities,
the disease in Eyam has been used as a case study for modeling [31]. Detailed
examination of the data indicates that there were actually two outbreaks
of which the first was relatively mild. Thus we shall try to fit the model
(2.1) over the period from mid-May to mid-October 1666, measuring time in
months with an initial population of seven infectives and 254 susceptibles,
and a final population of 83. Values of susceptibles and infectives in Eyam are
given in [31] for various dates, beginning with S(0) = 254, I(0) = 7, shown
in Table 2.1.
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Fig. 2.2 The S–I plane

Table 2.1 Eyam Plague data

Date (1666) Susceptibles Infectives

July 3/4 235 14.5

July 19 201 22

August 3/4 153.5 29

August 19 121 21

September 3/4 108 8

September 19 97 8

October 4/5 Unknown Unknown

October 20 83 0

The relation (2.3) with S0 = 254, I0 = 7, S∞ = 83 gives β/α = 6.54 ×
10−3, α/β = 153. The infective period was 11 days, or 0.3667 month, so that
α = 2.73. Then β = 0.0178. The relation (2.4) gives an estimate of 30.4 for
the maximum number of infectives. We use the values obtained here for the
parameters β and α in the model (2.1) for simulations of both the phase
plane, the (S, I)-plane, and for graphs of S and I as functions of t (Figs. 2.2,
2.3, and 2.4). Figure 2.5 plots these data points together with the phase
portrait given in Fig. 2.2 for the model (2.1).

The actual data for the Eyam epidemic are remarkably close to the predic-
tions of this very simple model. However, the model is really too good to be
true. Our model assumes that infection is transmitted directly between peo-
ple. While this is possible, bubonic plague is transmitted mainly by rat fleas.
When an infected rat is bitten by a flea, the flea becomes extremely hungry
and bites the host rat repeatedly, spreading the infection in the rat. When
the host rat dies its fleas move on to other rats, spreading the disease further.
As the number of available rats decreases the fleas move to human hosts, and
this is how plague starts in a human population (although the second phase
of the epidemic may have been the pneumonic form of bubonic plague, which
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can be spread from person to person). One of the main reasons for the spread
of plague from Asia into Europe was the passage of many trading ships; in
medieval times ships were invariably infested with rats. An accurate model
of plague transmission would have to include flea and rat populations, as well
as movement in space. Such a model would be extremely complicated and
its predictions might well not be any closer to observations than our simple
unrealistic model. In [31] a stochastic model was also used to fit the data,
but the fit was rather poorer than the fit for the simple deterministic model
(2.1).
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In the village of Eyam the rector persuaded the entire community to quar-
antine itself to prevent the spread of disease to other communities. This policy
actually increased the infection rate in the village by keeping fleas, rats, and
people in close contact with one another, and the mortality rate from bubonic
plague was much higher in Eyam than in London. Further, the quarantine
could do nothing to prevent the travel of rats and thus did little to prevent the
spread of disease to other communities. One message this suggests to math-
ematical modelers is that control strategies based on false models may be
harmful, and it is essential to distinguish between assumptions that simplify
but do not alter the predicted effects substantially, and wrong assumptions
which make an important difference.

2.1.3 Kermack–McKendrick Models with General
Contact Rates

The assumption in the model (2.1) of a rate of contacts per infective which
is proportional to population size N , called mass action incidence or bilinear
incidence, was used in all the early epidemic models. However, it is quite
unrealistic, except possibly in the early stages of an epidemic in a population
of moderate size. It is more realistic to assume a contact rate which is a
non-increasing function of total population size. For example, a situation in
which the number of contacts per infective in unit time is constant, called
standard incidence, is a more accurate description for sexually transmitted
diseases.
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We generalize the model (2.1) by replacing the assumption (1) by the
assumption that an average member of the population makes C(N) contacts
in unit time with C ′(N) ≥ 0 [7, 10], and we define

β(N) =
C(N)

N
.

It is reasonable to assume β′(N) ≤ 0 to express the idea of saturation in the
number of contacts. Then mass action incidence corresponds to the choice
C(N) = βN , and standard incidence corresponds to the choice C(N) = λ.
The assumptions C(N) = Nβ(N), C ′(N) ≥ 0 imply that

β(N) + Nβ′(N) ≥ 0 . (2.5)

Some epidemic models [10] have used a Michaelis–Menten type of interac-
tion of the form

C(N) =
aN

1 + bN
.

Another form based on a mechanistic derivation for pair formation [14] leads
to an expression of the form

C(N) =
aN

1 + bN +
√

1 + 2bN
.

Data for diseases transmitted by contact in cities of moderate size [25] sug-
gests that data fits the assumption of a form

C(N) = λNa

with a = 0.05 quite well. All of these forms satisfy the conditions C ′(N) ≥
0, β′(N) ≤ 0.

Because the total population size is now present in the model we must
include an equation for total population size in the model. This forces us
to make a distinction between members of the population who die of the
disease and members of the population who recover with immunity against
reinfection. We assume that a fraction f of the αI members leaving the
infective class at time t recover and the remaining fraction (1 − f) die of
disease. We use S, I, and N as variables, with N = S +I +R. We now obtain
a three-dimensional model

S′ = −β(N)SI

I ′ = β(N)SI − αI (2.6)
N ′ = −(1 − f)αI .

We also have the equation R′ = −fαI, but we need not include it in the
model since R is determined when S, I, and N are known. We should note
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that if f = 1 the total population size remains equal to the constant K, and
the model (2.6) reduces to the simpler model (2.1) with β replaced by the
constant β(K).

We wish to show that the model (2.6) has the same qualitative behaviour
as the model (2.1), namely that there is a basic reproduction number which
distinguishes between disappearance of the disease and an epidemic outbreak,
and that some members of the population are left untouched when the epi-
demic passes. These two properties are the central features of all epidemic
models.

For the model (2.6) the basic reproduction number is given by

R0 =
Kβ(K)

α

because a single infective introduced into a wholly susceptible population
makes C(K) = Kβ(K) contacts in unit time, all of which are with sus-
ceptibles and thus produce new infections, and the mean infective period is
1/α. In addition to the basic reproduction number R0 there is also a time-
dependent running reproduction number which we call R∗, representing the
number of secondary infections caused by a single individual in the popula-
tion who becomes infective at time t. In this situation, an infective makes
C(N) = Nβ(N) contacts in unit time and a fraction S/N are with suscep-
tibles and thus produce new infections. Thus it is easy to see that for the
model (2.6) the running reproduction number is given by

R∗ =
Sβ(N)

α
.

If R∗ < 1 for all large t, the epidemic will pass. We may calculate the rate of
change of the running reproduction number with respect to time, using (2.6)
and (2.5) to find that

d

dt
R∗ =

S′(t)β(N) + S(t)β′(N)N ′(t)
α

=
(−β(N))2SI − Sα(1 − f)β′(N)

α
.

≤ β(N)SI

α
·
[

β(N) − (1 − f)α
N

]

.

Thus d
dtR∗ < 0 if Nβ(N) > α(1−f), or R∗ > (1−f)S/N. This means that R∗

decreases whenever R∗ > 1. Thus if R∗ < 1 for t = T then R∗ < 1 for t > T .
If R0 > 1 then I ′(0) = α(R0 − 1)I(0) > 0, and an epidemic begins. However,
R∗ decreases until it is less than 1 and then remains less than 1. Thus the
epidemic will pass. If R0 < 1 then I ′(0) = α(R0 − 1)I(0) < 0,R∗ < 1 for all
t, and there is no epidemic.

From (2.6) we obtain
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S′ + I ′ = −αI

N ′ = −α(1 − f)I .

Integration of these equations from 0 to t gives

S(t) + I(t) − S(0) − I(0) = −α

∫ t

0

I(s)ds (2.7)

N(t) − N(0) = −α(1 − f)
∫ t

0

I(s)ds .

When we combine these two equations, eliminating the integral expression,
and use N(0) = S(0) + I(0) = K, we obtain

K − N(t) = (1 − f)[K − S(t) − I(t)] .

If we let t → ∞, S(t) and N(t) decrease monotonically to limits S∞ and N∞
respectively and I(t) → 0. This gives the relation

K − N∞ = (1 − f)[K − S∞] . (2.8)

In this equation, K−N∞ is the change in population size, which is the number
of disease deaths over the course of the epidemic, while K−S∞ is the change
in the number of susceptibles, which is the number of disease cases over the
course of the epidemic. In this model, (2.8) is obvious, but we shall see in
a more general setting how to derive an analogous equation from which we
can calculate an average disease mortality. Equation (2.8) generalizes to the
infection age epidemic model of Kermack and McKendrick.

If we use the same approach as was used for (2.1) to show that S∞ > 0,
we obtain

dI

dS
= −1 +

α

Sβ(N)

and we are unable to proceed because of the dependence on N . However, we
may use a different approach to obtain the desired result. We assume that
β(0) is finite, thus ruling out standard incidence. If we let t → ∞ in the
second equation of (2.7) we obtain

α

∫ ∞

0

I(s)ds = S(0) + I(0) − S∞ = K − S∞.

The first equation of (2.6) may be written as

−S′(t)
S(t)

= β(N(t))I(t).

Since
β(N) ≤ β(0),
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integration from 0 to ∞ gives

log
S(0)
S∞

=
∫ ∞

0

β(N(t))I(t)dt

≤ β(0)
∫ ∞

0

I(t)dt

=
β(0)(K − S∞)

αK
.

Since the right side of this inequality is finite, the left side is also finite and
this establishes that S∞ > 0.

In addition, if we use the same integration together with the inequality

β(N) ≥ β(K),

we obtain a final size inequality

log
S(0)
S∞

=
∫ ∞

0

β(N(t))I(t)dt

≥ β(K)
∫ ∞

0

I(t)dt = R0

[

1 − S∞
K

]

.

If β(N) → ∞ as N → 0 we must use a different approach to analyze the
limiting behaviour. It is possible to show that S∞ = 0 is possible only if
N → 0 and

∫K

0
β(N)dN diverges, and this is possible only if f = 0, that is,

only if all infectives ide of disease. The assumption that β(N) is unbounded
as N → 0 is biologically unreasonable. In particular, standard incidence is
not realistic for small population sizes. A more realistic assumption would
be that the number of contacts per infective in unit time is linear for small
population size and saturates for larger population sizes, which rules out the
possibility that the epidemic sweeps through the entire population.

2.1.4 Exposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before
these potential infectives can transmit infection. If the exposed period is short
it is often neglected in modeling. A longer exposed period could perhaps lead
to significantly different model predictions, and we need to show that this is
not the case. To incorporate an exponentially distributed exposed period with
mean exposed period 1/κ we add an exposed class E and use compartments
S,E, I,R and total population size N = S+E+I+R to give a generalization
of the epidemic model (2.6).
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S′ = −β(N)SI

E′ = β(N)SI − κE (2.9)
I ′ = κE − αI

N ′ = −(1 − f)αI .

We also have the equation R′ = −fαI, but we need not include it in the
model since R is determined when S, I, and N are known. A flow chart is
shown in Fig. 2.6.

S E I R

Fig. 2.6 Flow chart for the SEIR model

The analysis of this model is the same as the analysis of (2.6), but with I
replaced by E + I. That is, instead of using the number of infectives as one
of the variables we use the total number of infected members, whether or not
they are capable of transmitting infection.

Some diseases have an asymptomatic stage in which there is some infec-
tivity rather than an exposed period. This may be modeled by assuming
infectivity reduced by a factor εE during an exposed period. A calculation of
the rate of new infections per susceptible leads to a model

S′ = −β(N)S(I + εEE)
E′ = β(N)S(I + εEE) − κE (2.10)
I ′ = κE − αI .

For this model

R0 =
Kβ(K)

α
+ εE

Kβ(K)
κ

.

There is a final size relation like (2.3) for the model (2.9). Integration of
the sum of the first two equations of (2.9) from 0 to ∞ gives

K − S∞ = κ

∫ ∞

0

E(s)ds

and division of the first equation of (2.9) by S followed by integration from
0 to ∞ gives
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log S0 − log S∞ =
∫ ∞

0

β(N(s))[I(s) + εEE(s)ds

≥ β(K)
∫ ∞

0

[I(s) + εEE(s)ds

= β(K)[εE +
κ

α
]
∫ ∞

0

E(s)ds

= R0

[

1 − S∞
K

]

.

The same integration using β(N) ≤ β(0) < ∞ shows as in the previous
section that S∞ > 0.

2.1.5 Treatment Models

One form of treatment that is possible for some diseases is vaccination to
protect against infection before the beginning of an epidemic. For example,
this approach is commonly used for protection against annual influenza out-
breaks. A simple way to model this would be to reduce the total population
size by the fraction of the population protected against infection. However,
in reality such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. To model this, it would be necessary to divide the population into
two groups with different model parameters and to make some assumptions
about the mixing between the two groups. We will not explore such more
complicated models here.

If there is a treatment for infection once a person has been infected, we
model this by supposing that a fraction γ per unit time of infectives is selected
for treatment, and that treatment reduces infectivity by a fraction δ. Suppose
that the rate of removal from the treated class is η. The SITR model, where
T is the treatment class, is given by

S′ = −β(N)S[I + δT ]
I ′ = β(N)S[I + δT ] − (α + γ)I (2.11)
T ′ = γI − ηT

N ′ = −(1 − f)αI − (1 − fT )ηT.

A flow chart is shown in Fig. 2.7.
It is not difficult to prove, much as was done for the model (2.1) that

S∞ = lim
t→∞

S(t) > 0, lim
t→∞

I(t) = lim
t→∞

T (t) = 0.
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S I

T

R

Fig. 2.7 Flow chart for the SITR model

In order to calculate the basic reproduction number, we may argue that an
infective in a totally susceptible population causes βK new infections in unit
time, and the mean time spent in the infective compartment is 1/(α + γ). In
addition, a fraction γ/(α+γ) of infectives are treated. While in the treatment
stage the number of new infections caused in unit time is δβK, and the mean
time in the treatment class is 1/η. Thus R0 is

R0 =
βK

α + γ
+

γ

α + γ

δβK

η
. (2.12)

It is also possible to establish the final size relation (2.3) by means similar
to those used for the simple model (2.1). We integrate the first equation of
(2.11) to obtain

log
S(0)
S∞

=
∫ ∞

0

β(N(t))[I(t) + δT (t)]dt

≥ β(K)
∫ ∞

0

[I(t) + δT (t)]dt.

Integration of the third equation of (2.11) gives

γ

∫ ∞

0

I(t)dt = η

∫ ∞

0

T (t)dt.

Integration of the sum of the first two equations of (2.11) gives

K − S∞ = (α + γ)
∫ ∞

0

I(t)dt.

Combination of these three equations and (2.12) gives



40 F. Brauer

log
S(0)
S∞

≥ R0

[
K − S∞

K

]

.

If β is constant, this relation is an equality, and is the same as (2.3).

2.1.6 An Epidemic Management
(Quarantine-Isolation) Model

An actual epidemic differs considerably from the idealized models (2.1) or
(2.6), as was shown by the SARS epidemic of 2002–3. Some notable differences
are:

1. As we have seen in the preceding section, at the beginning of an epi-
demic the number of infectives is small and a deterministic model, which
presupposes enough infectives to allow homogeneous mixing, is inappro-
priate.

2. When it is realized that an epidemic has begun, individuals are likely to
modify their behaviour by avoiding crowds to reduce their contacts and
by being more careful about hygiene to reduce the risk that a contact
will produce infection.

3. If a vaccine is available for the disease which has broken out, public
health measures will include vaccination of part of the population. Various
vaccination strategies are possible, including vaccination of health care
workers and other first line responders to the epidemic, vaccination of
members of the population who have been in contact with diagnosed
infectives, or vaccination of members of the population who live in close
proximity to diagnosed infectives.

4. Diagnosed infectives may be hospitalized, both for treatment and to iso-
late them from the rest of the population.

5. Contact tracing of diagnosed infectives may identify people at risk of
becoming infective, who may be quarantined (instructed to remain at
home and avoid contacts) and monitored so that they may be isolated
immediately if and when they become infective.

6. In some diseases, exposed members who have not yet developed symp-
toms may already be infective, and this would require inclusion in the
model of new infections caused by contacts between susceptibles and
asymptomatic infectives from the exposed class.

7. Isolation may be imperfect; in-hospital transmission of infection was a
major problem in the SARS epidemic.

In the SARS epidemic of 2002–2003 in-hospital transmission of disease
from patients to health care workers or visitors because of imperfect isolation
accounted for many of the cases. This points to an essential heterogeneity in
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disease transmission which must be included whenever there is any risk of
such transmission.

All these generalizations have been considered in studies of the SARS epi-
demic of 2002–3. While the ideas were suggested in SARS modelling, they are
in fact relevant to any epidemic. One beneficial effect of the SARS epidemic
has been to draw attention to epidemic modelling which may be of great
value in coping with future epidemics.

If a vaccine is available for a disease which threatens an epidemic outbreak,
a vaccinated class which is protected at least partially against infection should
be included in a model. While this is not relevant for an outbreak of a new
disease, it would be an important aspect to be considered in modelling an
influenza epidemic or a bioterrorist outbreak of smallpox.

For an outbreak of a new disease, where no vaccine is available, isolation
and quarantine are the only control measures available. Let us formulate a
model for an epidemic once control measures have been started. Thus, we
assume that an epidemic has started, but that the number of infectives is
small and almost all members of the population are still susceptible.

We formulate a model to describe the course of an epidemic when control
measures are begun under the assumptions:

1. Exposed members may be infective with infectivity reduced by a factor
εE , 0 ≤ εE < 1.

2. Exposed members who are not isolated become infective at rate κ1.
3. We introduce a class Q of quarantined members and a class J of isolated

members.
4. Exposed members are quarantined at a proportional rate γ1 in unit time

(in practice, a quarantine will also be applied to many susceptibles, but
we ignore this in the model). Quarantine is not perfect, but reduces the
contact rate by a factor εQ. The effect of this assumption is that some
susceptibles make fewer contacts than the model assumes.

5. There may be transmission of disease by isolated members, with an in-
fectivity factor of εJ .

6. Infectives are diagnosed at a proportional rate γ2 per unit time and iso-
lated. In addition, quarantined members are monitored and when they
develop symptoms at rate κ2 they are isolated immediately.

7. Infectives leave the infective class at rate α1 and a fraction f1 of these
recover, and isolated members leave the isolated class at rate α2 with a
fraction f2 recovering.

These assumptions lead to the SEQIJR model [13]
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S′ = −β(N)S[εEE + εEεQQ + I + εJJ ]
E′ = β(N)S[εEE + εEεQQ + I + εJJ ] − (κ1 + γ1)E
Q′ = γ1E − κ2Q (2.13)
I ′ = κ1E − (α1 + γ2)I
J ′ = κ2Q + γ2I − α2J

N ′ = −(1 − f1)α1I − (1 − f2)α2J .

Here, we have used an equation for N to replace the equation

R′ = f1α1I + f2α2J .

The model before control measures are begun is the special case

γ1 = γ2 = κ2 = α2 = f2 = 0, Q = J = 0

of (2.13). It is the same as (2.10).
We define the control reproduction number Rc to be the number of sec-

ondary infections caused by a single infective in a population consisting essen-
tially only of susceptibles with the control measures in place. It is analogous
to the basic reproduction number but instead of describing the very begin-
ning of the disease outbreak it describes the beginning of the recognition
of the epidemic. The basic reproduction number is the value of the control
reproduction number with

γ1 = γ2 = κ2 = α2 = f2 = 0 .

In addition, there is a time-dependent effective reproduction number R∗

which continues to track the number of secondary infections caused by a sin-
gle infective as the epidemic continues with control measures (quarantine of
asymptomatics and isolation of symptomatics) in place. It is not difficult to
show that if the inflow into the population from travellers and new births
is small (i.e., if the epidemiological time scale is much faster than the de-
mographic time scale), our model implies that R∗ will become and remain
less than unity, so that the epidemic will always pass. Even if Rc > 1, the
epidemic will abate eventually when the effective reproduction number be-
comes less than unity. The effective reproduction number R∗ is essentially
Rc multiplied by a factor S/N , but allows time-dependent parameter values
as well.

However, it should be remembered that if the epidemic takes so long to
pass that there are enough new births and travellers to keep R∗ > 1, there
will be an endemic equilibrium meaning that the disease will establish itself
and remain in the population.

We have already calculated R0 for (2.10) and we may calculate Rc in the
same way but using the full model with quarantined and isolated classes. We
obtain
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Rc =
εEKβ(K)

D1
+

Kβ(K)κ1

D1D2
+

εQεEKβ(K)γ1

D1κ2
+

εJKβ(K)κ1γ2

α2D1D2
+

εJKβ(K)γ1

α2D1

R∗ = Rc
S

N
,

where D1 = γ1 + κ1, D2 = γ2 + α1.
Each term of Rc has an epidemiological interpretation. The mean dura-

tion in E is 1/D1 with contact rate εEβ, giving a contribution to Rc of
εEKβ(K)/D1. A fraction κ1/D1 goes from E to I, with contact rate β and
mean duration 1/D2, giving a contribution of Kβ(K)κ1/D1D2. A fraction
γ1/D1 goes from E to Q, with contact rate εEεQβ and mean duration 1/κ2,
giving a contribution of εEεQKβ(K)γ1/D1κ2. A fraction κ1γ2/D1D2 goes
from E to I to J , with a contact rate of εJβ and a mean duration of 1/α2,
giving a contribution of εJKβ(K)κ1γ2/α2D1D2. Finally, a fraction γ1/D1

goes from E to Q to J with a contact rate of εJβ and a mean duration of
1/α2 giving a contribution of εJKβ(K)γ1/D1α2. The sum of these individual
contributions gives Rc.

In the model (2.13) the parameters γ1 and γ2 are control parameters which
may be varied in the attempt to manage the epidemic. The parameters εQ

and εJ depend on the strictness of the quarantine and isolation processes and
are thus also control measures in a sense. The other parameters of the model
are specific to the disease being studied. While they are not variable, their
measurements are subject to experimental error.

The linearization of (2.13) at the disease-free equilibrium (K, 0, 0, 0, 0,K)
has matrix

⎡

⎢
⎢
⎣

εEKβ(K) − (κ1 + γ1) εEεQβ(K) Kβ(K) εJKβ(K)
γ1 −κ2 0 0
κ1 0 −(α1 + γ2) 0
0 κ2 γ2 −α2

⎤

⎥
⎥
⎦ .

The corresponding characteristic equation is a fourth degree polynomial equa-
tion whose leading coefficient is 1 and whose constant term is a positive con-
stant multiple of 1 − Rc, thus positive if Rc < 1 and negative if Rc > 1. If
Rc > 1 there is a positive eigenvalue, corresponding to an initial exponen-
tial growth rate of solutions of (2.13). If Rc < 1 it is possible to show that
all eigenvalues of the coefficient matrix have negative real part, and thus
solutions of (2.13) die out exponentially [38].

Next, we wish to show that analogues of the relation (2.8) and S∞ > 0
derived for the model (2.6) are valid for the management model (2.13). We
begin by integrating the equations for S + E,Q, I, J, and N of (2.13) with
respect to t from t = 0 to t = ∞, using the initial conditions

S(0) + E(0) = N(0) = K, Q(0) = I(0) = J(0) = 0 .

We obtain, since E,Q, I, and J all approach zero at t → ∞,
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K − S∞ = (κ1 + γ1)
∫ ∞

0

E(s)ds

γ1

∫ ∞

0

E(s)ds = κ2

∫ ∞

0

Q(s)ds

κ1

∫ ∞

0

E(s)ds = (α1 + γ2)
∫ ∞

0

I(s)ds

κ2

∫ ∞

0

Q(s)ds = α2

∫ ∞

0

J(s)ds − γ2

∫ ∞

0

I(s)ds

K − N∞ = (1 − f1)α1

∫ ∞

0

I(s)ds + (1 − f2)α2

∫ ∞

0

J(s)ds .

In order to relate (K − S∞) to (K − N∞), we need to express
∫∞
0

I(s)ds

and
∫∞
0

J(s)ds in terms of
∫∞
0

E(s)ds.
From the three above relations for integrals we obtain

(α1 + γ2)
∫ ∞

0

I(s)ds = κ1

∫ ∞

0

E(s)ds

α2

∫ ∞

0

J(s)ds =
γ1α1 + γ1γ2 + κ1γ2

α1 + γ2

∫ ∞

0

E(s)ds .

Thus we have

K − N∞ =
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

α1 + γ2

∫ ∞

0

E(s)ds

=
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
[K − S∞] .

This has the form, analogous to (2.8),

K − N∞ = c[K − S∞] (2.14)

with c, the disease death rate, given by

c =
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
.

The mean disease death rate may be measured and this expression gives
information about some of the parameters in the model which can not be
measured directly. It is easy to see that 0 ≤ c ≤ 1 with c = 0 if and only if
f1 = f2 = 1, that is, if and only if there are no disease deaths, and c = 1 if
and only if f1 = f2 = 0, that is, if and only if the disease is universally fatal.

An argument similar to the one used for (2.6) but technically more com-
plicated may be used to show that S∞ > 0 for the treatment model (2.13).
Thus the asymptotic behaviour of the management model (2.13) is the same
as that of the simpler model (2.6). If the control reproduction number Rc is
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less than 1 the disease dies out and if Rc > 1 there is an epidemic which will
pass leaving some members of the population untouched.

2.1.7 Stochastic Models for Disease Outbreaks

The underlying assumptions of the models of Kermack–McKendrick type
studied in this chapter are that the sizes of the compartments are large enough
that the mixing of members is homogeneous. While these assumptions are
probably reasonable once an epidemic is well underway, at the beginning of
a disease outbreak the situation may be quite different. At the beginning of
an epidemic most members of the population are susceptible, that is, not
(yet) infected, and the number of infectives (members of the population who
are infected and may transmit infection) is small. The transmission of infec-
tion depends strongly on the pattern of contacts between members of the
population, and a description should involve this pattern. Since the number
of infectives is small a description involving an assumption of mass action
should be replaced by a model which incorporates stochastic effects.

One approach would be a complete description of stochastic epidemic mod-
els, for which we refer the reader to the chapter on stochastic models in this
volume by Linda Allen. Another approach would be to consider a stochastic
model for an outbreak of a communicable disease to be applied so long as
the number of infectives remains small, distinguishing a (minor) disease out-
break confined to this initial stage from a (major) epidemic which occurs if
the number of infectives begins to grow at an exponential rate. Once an epi-
demic has started we may switch to a deterministic compartmental model.
This approach is described in Chap. 4 on network models in this volume.
There is an important difference between the behaviour of network models
and the behaviour of models of Kermack–McKendrick type, namely that for
a stochastic disease outbreak model if R0 < 1 the probability that the in-
fection will die out is 1, while if R0 > 1 there is a positive probability that
the infection will persist, and will lead to an epidemic and a positive proba-
bility that the infection will increase initially but will produce only a minor
outbreak and will die out before triggering a major epidemic.

2.2 Models with Demographic Effects

2.2.1 The SIR Model

Epidemics which sweep through a population attract much attention and
arouse a great deal of concern. As we have mentioned in the introduction,
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the prevalence and effects of many diseases in less developed countries are
probably less well-known but may be of even more importance. There are dis-
eases which are endemic in many parts of the world and which cause millions
of deaths each year. We have omitted births and deaths in our description of
models because the time scale of an epidemic is generally much shorter than
the demographic time scale. In effect, we have used a time scale on which the
number of births and deaths in unit time is negligible. To model a disease
which may be endemic we need to think on a longer time scale and include
births and deaths.

For diseases that are endemic in some region public health physicians need
to be able to estimate the number of infectives at a given time as well as the
rate at which new infections arise. The effects of quarantine or vaccine in
reducing the number of victims are of importance, just as in the treatment of
epidemics. In addition, the possibility of defeating the endemic nature of the
disease and thus controlling or even eradicating the disease in a population
is worthy of study.

Measles is a disease for which endemic equilibria have been observed in
many places, frequently with sustained oscillations about the equilibrium.
The epidemic model of the first section assumes that the epidemic time scale
is so short relative to the demographic time scale that demographic effects
may be ignored. For measles, however, the reason for the endemic nature
of the disease is that there is a flow of new susceptible members into the
population, and in order to try to model this we must include births and
deaths in the model. The simplest way to incorporate births and deaths in
an infectious disease model is to assume a constant number of births and
an equal number of deaths per unit time so that the total population size
remains constant. This is, of course, feasible only if there are no deaths due to
the disease. In developed countries such an assumption is plausible because
there are few deaths from measles. In less developed countries there is often
a very high mortality rate for measles and therefore other assumptions are
necessary.

The first attempt to formulate an SIR model with births and deaths
to describe measles was given in 1929 by H.E. Soper [32], who assumed a
constant birth rate µK in the susceptible class and a constant death rate µK
in the removed class. His model is

S′ = −βSI + µK

I ′ = βSI − γI

R′ = γI − µK .

This model is unsatisfactory biologically because the linkage of births of sus-
ceptibles to deaths of removed members is unreasonable. It is also an im-
proper model mathematically because if R(0) and I(0) are sufficiently small
then R(t) will become negative. For any disease model to be plausible it is
essential that the problem be properly posed in the sense that the number of
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members in each class must remain non-negative. A model that does not sat-
isfy this requirement cannot be a proper description of a disease model and
therefore must contain some assumption that is biologically unreasonable. A
full analysis of a model should include verification of this property.

A model of Kermack and McKendrick [22] includes births in the suscep-
tible class proportional to total population size and a death rate in each
class proportional to the number of members in the class. This model allows
the total population size to grow exponentially or die out exponentially if
the birth and death rates are unequal. It is applicable to such questions as
whether a disease will control the size of a population that would otherwise
grow exponentially. We shall return to this topic, which is important in the
study of many diseases in less developed countries with high birth rates. To
formulate a model in which total population size remains bounded we could
follow the approach suggested by [15] in which the total population size is
held constant by making birth and death rates equal. Such a model is

S′ = −βSI + µ(K − S)
I ′ = βSI − γI − µI

R′ = γI − µR .

Because S + I + R = K, we can view R as determined when S and I are
known and consider the two-dimensional system

S′ = −βSI + µ(K − S)
I ′ = βSI − γI − µI .

We shall examine a slightly more general SIR model with births and
deaths for a disease that may be fatal to some infectives. For such a disease
the class R of removed members should contain only recovered members, not
members removed by death from the disease. It is not possible to assume that
the total population size remain constant if there are deaths due to disease; a
plausible model for a disease that may be fatal to some infectives must allow
the total population to vary in time. The simplest assumption to allow this
is a constant birth rate Λ, but in fact the analysis is quite similar if the birth
rate is a function Λ(N) of total population size N .

Let us analyze the model

S′ = Λ − βSI − µS

I ′ = βSI − µI − αI (2.15)
N ′ = Λ − (1 − f)αI − µN ,

where N = S + I + R, with a mass action contact rate, a constant number
of births Λ per unit time, a proportional natural death rate µ in each class,
and a rate of recovery or disease death α of infectives with a fraction f of
infectives recovering with immunity against reinfection. In this model if f = 1
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the total population size approaches a limit K = Λ/µ. Then K is the carrying
capacity of the population. If f < 1 the total population size is not constant
and K represents a carrying capacity or maximum possible population size,
rather than a population size. We view the first two equations as determining
S and I, and then consider the third equation as determining N once S and
I are known. This is possible because N does not enter into the first two
equations. Instead of using N as the third variable in this model we could
have used R, and the same reduction would have been possible.

If the birth or recruitment rate Λ(N) is a function of total population
size then in the absence of disease the total population size N satisfies the
differential equation

N ′ = Λ(N) − µN .

The carrying capacity of population size is the limiting population size K,
satisfying

Λ(K) = µK, Λ′(K) < µ .

The condition Λ′(K) < µ assures the asymptotic stability of the equilibrium
population size K. It is reasonable to assume that K is the only positive
equilibrium, so that

Λ(N) > µN

for 0 ≤ N ≤ K. For most population models,

Λ(0) = 0, Λ′′(N) ≤ 0 .

However, if Λ(N) represents recruitment into a behavioural class, as would
be natural for models of sexually transmitted diseases, it would be plausible
to have Λ(0) > 0, or even to consider Λ(N) to be a constant function. If
Λ(0) = 0, we require Λ′(0) > µ because if this requirement is not satisfied
there is no positive equilibrium and the population would die out even in the
absence of disease.

We have used a mass action contact rate for simplicity, even though a
more general contact rate would give a more accurate model, just as in the
epidemics considered in the preceding section. With a general contact rate
and a density-dependent birth rate we would have a model

S′ = Λ(N) − β(N)SI − µS

I ′ = β(N)SI − µI − αI (2.16)
N ′ = Λ(N) − (1 − f)αI − µN.

If f = 1, so that there are no disease deaths, the equation for N is

N ′ = Λ(N) − µN ,

so that N(t) approaches a limiting population size K. The theory of asymp-
totically autonomous systems [8, 24, 34, 37] implies that if N has a constant
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limit then the system is equivalent to the system in which N is replaced
by this limit. Then the system (2.16) is the same as the system (2.15) with
β replaced by the constant β(K) and N by K, and Λ(N) replaced by the
constant Λ(K) = µK.

We shall analyze the model (2.15) qualitatively. In view of the remark
above, our analysis will also apply to the more general model (2.16) if there
are no disease deaths. Analysis of the system (2.16) with f < 1 is much more
difficult. We will confine our study of (2.16) to a description without details.

The first stage of the analysis is to note that the model (2.15) is a properly
posed problem. That is, since S′ ≥ 0 if S = 0 and I ′ ≥ 0 if I = 0, we have
S ≥ 0, I ≥ 0 for t ≥ 0 and since N ′ ≤ 0 if N = K we have N ≤ K for
t ≥ 0. Thus the solution always remains in the biologically realistic region
S ≥ 0, I ≥ 0, 0 ≤ N ≤ K if it starts in this region. By rights, we should verify
such conditions whenever we analyze a mathematical model, but in practice
this step is frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then
to determine the asymptotic stability of each equilibrium. Asymptotic stabil-
ity of an equilibrium means that a solution starting sufficiently close to the
equilibrium remains close to the equilibrium and approaches the equilibrium
as t → ∞ >, while instability of the equilibrium means that there are solu-
tions starting arbitrarily close to the equilibrium which do not approach it.
To find equilibria (S∞, I∞) we set the right side of each of the two equations
equal to zero. The second of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I∞ = 0, which will give a disease-free
equilibrium, and the second alternative is βS∞ = µ + α, which will give an
endemic equilibrium, provided βS∞ = µ+α < βK. If I∞ = 0 the other equa-
tion gives S∞ = K = Λ/µ. For the endemic equilibrium the first equation
gives

I∞ =
Λ

µ + α
− µ

β
. (2.17)

We linearize about an equilibrium (S∞, I∞) by letting y = S−S∞, z = I−I∞,
writing the system in terms of the new variables y and z and retaining only
the linear terms in a Taylor expansion. We obtain a system of two linear
differential equations,

y′ = −(βI∞ + µ)y − βS∞z

z′ = βI∞y + (βS∞ − µ − α)z .

The coefficient matrix of this linear system is
[
−βI∞ − µ −βS∞

βI∞ βS∞ − µ − α

]

.

We then look for solutions whose components are constant multiples of
eλt; this means that λ must be an eigenvalue of the coefficient matrix. The
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condition that all solutions of the linearization at an equilibrium tend to zero
as t → ∞ is that the real part of every eigenvalue of this coefficient matrix
is negative. At the disease-free equilibrium the matrix is

[
−µ −βK

0 βK − µ − α

]

,

which has eigenvalues −µ and βK−µ−α. Thus, the disease-free equilibrium
is asymptotically stable if βK < µ + α and unstable if βK > µ + α. Note
that this condition for instability of the disease-free equilibrium is the same
as the condition for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2×2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the
diagonal elements) be negative. Since βS∞ = µ+α at an endemic equilibrium,
the matrix of the linearization at an endemic equilibrium is

[
−βI∞ − µ −βS∞

βI∞ 0

]

(2.18)

and this matrix has positive determinant and negative trace. Thus, the en-
demic equilibrium, if there is one, is always asymptotically stable. If the
quantity

R0 =
βK

µ + α
=

K

S∞
(2.19)

is less than one, the system has only the disease-free equilibrium and this
equilibrium is asymptotically stable. In fact, it is not difficult to prove that
this asymptotic stability is global, that is, that every solution approaches
the disease-free equilibrium. If the quantity R0 is greater than one then the
disease-free equilibrium is unstable, but there is an endemic equilibrium that
is asymptotically stable. Again, the quantity R0 is the basic reproduction
number. It depends on the particular disease (determining the parameter α)
and on the rate of contacts, which may depend on the population density
in the community being studied. The disease model exhibits a threshold be-
haviour: If the basic reproduction number is less than one the disease will
die out, but if the basic reproduction number is greater than one the disease
will be endemic. Just as for the epidemic models of the preceding section, the
basic reproduction number is the number of secondary infections caused by a
single infective introduced into a wholly susceptible population because the
number of contacts per infective in unit time is βK, and the mean infective
period (corrected for natural mortality) is 1/(µ + α).

There are two aspects of the analysis of the model (2.16) which are more
complicated than the analysis of (2.15). The first is in the study of equilibria.
Because of the dependence of Λ(N) and β(N) on N , it is necessary to use
two of the equilibrium conditions to solve for S and I in terms of N and then
substitute into the third condition to obtain an equation for N . Then by
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comparing the two sides of this equation for N = 0 and N = K it is possible
to show that there must be an endemic equilibrium value of N between 0
and K.

The second complication is in the stability analysis. Since (2.16) is a three-
dimensional system which can not be reduced to a two-dimensional system,
the coefficient matrix of its linearization at an equilibrium is a 3 × 3 matrix
and the resulting characteristic equation is a cubic polynomial equation of
the form

λ3 + a1λ
2 + a2λ + a3 = 0 .

The Routh–Hurwitz conditions

a1 > 0, a1a2 > a3 > 0

are necessary and sufficient conditions for all roots of the characteristic equa-
tion to have negative real part. A technically complicated calculation is
needed to verify that these conditions are satisfied at an endemic equilib-
rium for the model (2.16).

The asymptotic stability of the endemic equilibrium means that the com-
partment sizes approach a steady state. If the equilibrium had been unstable,
there would have been a possibility of sustained oscillations. Oscillations in a
disease model mean fluctuations in the number of cases to be expected, and if
the oscillations have long period could also mean that experimental data for a
short period would be quite unreliable as a predictor of the future. Epidemi-
ological models which incorporate additional factors may exhibit oscillations.
A variety of such situations is described in [18,19].

The epidemic models of the first section also exhibited a threshold be-
haviour but of a slightly different kind. For these models, which were SIR
models without births or natural deaths, the threshold distinguished between
a dying out of the disease and an epidemic, or short term spread of disease.

From the third equation of (2.15) we obtain

N ′ = Λ − µN − (1 − f)αI ,

where N = S + I + R. From this we see that at the endemic equilibrium
N = K − (1 − f)αI/µ, and the reduction in the population size from the
carrying capacity K is

(1 − f)
α

µ
I∞ = (1 − f)[

αK

µ + α
− α

β
] .

The parameter α in the SIR model may be considered as describing the
pathogenicity of the disease. If α is large it is less likely that R0 > 1. If α
is small then the total population size at the endemic equilibrium is close to
the carrying capacity K of the population. Thus, the maximum population
decrease caused by disease will be for diseases of intermediate pathogenicity.
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2.2.2 The SIS Model

In order to describe a model for a disease from which infectives recover with
immunity against reinfection and that includes births and deaths as in the
model (2.16), we may modify the model (2.16) by removing the equation for
R and moving the term fαI describing the rate of recovery from infection to
the equation for S. This gives the model

S′ = Λ(N) − β(N)SI − µS + fαI (2.20)
I ′ = β(N)SI − αI − µI

describing a population with a density-dependent birth rate Λ(N) per unit
time, a proportional death rate µ in each class, and with a rate α of depar-
ture from the infective class through recovery or disease death and with a
fraction f of infectives recovering with no immunity against reinfection. In
this model, if f < 1 the total population size is not constant and K repre-
sents a carrying capacity, or maximum possible population size, rather than
a constant population size.

It is easy to verify that

R0 =
Kβ(K)
µ + α

.

If we add the two equations of (2.20), and use N = S + I we obtain

N ′ = Λ(N) − µN − (1 − f)αI .

For the SIS model we are able to carry out the analysis with a general contact
rate. If f = 1 the equation for N is

N ′ = Λ(N) − µN

and N approaches the limit K. The system (2.20) is asymptotically au-
tonomous and its asymptotic behaviour is the same as that of the single
differential equation

I ′ = β(K)I(K − I) − (α + µ)I , (2.21)

where S has been replaced by K − I. But (2.21) is a logistic equation which
is easily solved analytically by separation of variables or qualitatively by an
equilibrium analysis. We find that I → 0 if Kβ(K) < (µ+α), or R0 < 1 and
I → I∞ > 0 with

I∞ = K − µ + α

β(K)
= K(1 − 1

R0
)

if Kβ(K) > (µ + α) or R0 > 1.
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To analyze the SIS model if f < 1, it is convenient to use I and N as
variables instead of S and I, with S replaced by N − I. This gives the model

I ′ = β(N)I(N − I) − (µ + α)I (2.22)
N ′ = Λ(N) − µN − (1 − f)αI .

Equilibria are found by setting the right sides of the two differential equations
equal to zero. The first of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I = 0, which will give a disease-free
equilibrium I = 0, N = K, and the second alternative is β(N)(N − I) =
µ + α, which may give an endemic equilibrium. For an endemic equilibrium
(I∞, N∞) the first equation gives

I∞β(N∞) = N∞β(N∞) − (µ + α) .

Substitution into the other equilibrium condition gives

Λ(N∞) = µN∞ + (1 − f)α[N∞ − µ + α

β(N∞)
] ,

which can be simplified to

β(N∞)Λ(N∞) = µN∞β(N∞) + (1 − f)α [N∞β(N∞) − (µ + α)] . (2.23)

At N = 0 the left side of (2.23) is β(0)Λ(0) ≥ 0, while the right side is
−(1 − f)α(µ + α), which is negative since f < 1. At N = K the left side of
(2.23) is

β(K)Λ(K) = µKβ(K)

while the right side of (2.23) is

µKβ(K) + (1 − f)α[Kβ(K) − (µ + α)] .

Since

R0 =
Kβ(K)
µ + α

,

if R0 > 1 the left side of (2.23) is less than the right side of (2.23), and
this implies that (2.23) has a solution for N, 0 < N < K. Thus there is an
endemic equilibrium if R0 > 1. If R0 < 1 this reasoning may be used to show
that there is no endemic equilibrium.

The linearization of (2.22) at an equilibrium (I∞, N∞) has coefficient ma-
trix
[
β(N∞)(N∞ − 2I∞) − (µ + α) β(N∞)I∞ + β′(N∞)I∞(N∞ − I∞)

−(1 − f)α Λ′(N∞) − µ.

]

At the disease-free equilibrium the matrix is
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[
Kβ(K) − (µ + α) 0

−(1 − f)α Λ′(K) − µ

]

,

which has eigenvalues Λ′(K) − µ and KβK − (µ + α). Thus, the disease-
free equilibrium is asymptotically stable if Kβ(K) < µ + α, or R0 < 1, and
unstable if Kβ(K) > µ+α, or R0 > 1. Note that the condition for instability
of the disease-free equilibrium is the same as the condition for the existence
of an endemic equilibrium.

At an endemic equilibrium, since β(N∞)(N∞ − I∞) = µ + α, the matrix
is [

−Iβ(N∞) I∞β(N∞) + I∞(N∞ − I∞)β′(N∞)
−(1 − f)α Λ′(N∞) − µ

]

.

Since β′(N∞) ≤ 0

β(N∞) + (N∞ − I∞)β′(N∞) ≥ β(N∞) + N∞β′(N∞) ≥ 0 .

Thus if Λ′(N∞) < µ the coefficient matrix has sign structure
[
− +
− −

]

.

It is clear that the coefficient matrix has negative trace and positive determi-
nant if Λ′(N) < µ and this implies that the endemic equilibrium is asymp-
totically stable. Thus, the endemic equilibrium, which exists if R0 > 1, is
always asymptotically stable. If R0 < 1 the system has only the disease-free
equilibrium and this equilibrium is asymptotically stable. In the case f = 1
the verification of these properties remains valid if there are no births and
deaths. This suggests that a requirement for the existence of an endemic
equilibrium is a flow of new susceptibles either through births, as in the SIR
model or through recovery without immunity against reinfection, as in the
SIS model with or without births and deaths.

If the epidemiological and demographic time scales are very different, for
the SIR model we observed that the approach to endemic equilibrium is like a
rapid and severe epidemic. The same happens in the SIS model, especially if
there is a significant number of deaths due to disease. If there are few disease
deaths the number of infectives at endemic equilibrium may be substantial,
and there may be damped oscillations of large amplitude about the endemic
equilibrium.

For both the SIR and SIS models we may write the differential equation
for I as

I ′ = I[β(N)S − (µ + α)] = β(N)I[S − S∞] ,

which implies that whenever S exceeds its endemic equilibrium value S∞, I
is increasing and epidemic-like behaviour is possible. If R0 < 1 and S < K
it follows that I ′ < 0, and thus I is decreasing. Thus, if R0 < 1, I cannot
increase and no epidemic can occur.
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Next, we will turn to some applications of SIR and SIS models, taken
mainly from [3].

2.3 Some Applications

2.3.1 Herd Immunity

In order to prevent a disease from becoming endemic it is necessary to re-
duce the basic reproduction number R0 below one. This may sometimes be
achieved by immunization. If a fraction p of the Λ newborn members per unit
time of the population is successfully immunized, the effect is to replace K
by K(1−p), and thus to reduce the basic reproduction number to R0(1−p).
The requirement R0(1 − p) < 1 gives 1 − p < 1/R0, or

p > 1 − 1
R0

.

A population is said to have herd immunity if a large enough fraction has
been immunized to assure that the disease cannot become endemic. The only
disease for which this has actually been achieved worldwide is smallpox for
which R0 is approximately 5, so that 80% immunization does provide herd
immunity.

For measles, epidemiological data in the United States indicate that R0

for rural populations ranges from 5.4 to 6.3, requiring vaccination of 81.5–
84.1% of the population. In urban areas R0 ranges from 8.3 to 13.0, requiring
vaccination of 88.0–92.3% of the population. In Great Britain, R0 ranges
from 12.5 to 16.3, requiring vaccination of 92–94% of the population. The
measles vaccine is not always effective, and vaccination campaigns are never
able to reach everyone. As a result, herd immunity against measles has not
been achieved (and probably never can be). Since smallpox is viewed as more
serious and requires a lower percentage of the population be immunized, herd
immunity was attainable for smallpox. In fact, smallpox has been eliminated;
the last known case was in Somalia in 1977, and the virus is maintained now
only in laboratories (although there is currently some concern that it may
be reintroduced as a bioterrorism attack). The eradication of smallpox was
actually more difficult than expected because high vaccination rates were
achieved in some countries but not everywhere, and the disease persisted
in some countries. The eradication of smallpox was possible only after an
intensive campaign for worldwide vaccination [16].



56 F. Brauer

2.3.2 Age at Infection

In order to calculate the basic reproduction number R0 for a disease, we
need to know the values of the contact rate β and the parameters µ,K,
and α. The parameters µ,K, and α can usually be measured experimentally
but the contact rate β is difficult to determine directly. There is an indirect
means of estimating R0 in terms of the life expectancy and the mean age at
infection which enables us to avoid having to estimate the contact rate. In
this calculation, we will assume that β is constant, but we will also indicate
the modifications needed when β is a function of total population size N . The
calculation assumes exponentially distributed life spans and infective periods.
In fact, the result is valid so long as the life span is exponentially distributed.

Consider the “age cohort” of members of a population born at some time
t0 and let a be the age of members of this cohort. If y(a) represents the
fraction of members of the cohort who survive to age (at least) a, then the
assumption that a fraction µ of the population dies per unit time means
that y′(a) = −µy(a). Since y(0) = 1, we may solve this first order initial
value problem to obtain y(a) = e−µa. The fraction dying at (exactly) age a
is −y′(a) = µy(a). The mean life span is the average age at death, which is∫∞
0

a[−y′(a)]da, and if we integrate by parts we find that this life expectancy
is ∫ ∞

0

[−ay′(a)] da = [−ay(a)]∞0 +
∫ ∞

0

y(a) da =
∫ ∞

0

y(a) da .

Since y(a) = e−µa, this reduces to 1/µ. The life expectancy is often denoted
by L, so that we may write

L =
1
µ

.

The rate at which surviving susceptible members of the population become
infected at age a and time t0 +a, is βI(t0 +a). Thus, if z(a) is the fraction of
the age cohort alive and still susceptible at age a, z′(a) = −[µ+βI(t0+a)]z(a).
Solution of this first linear order differential equation gives

z(a) = e−[µa+
∫ a
0 βI(t0+b) db] = y(a)e−

∫ a
0 βI(t0+b) db .

The mean length of time in the susceptible class for members who may be-
come infected, as opposed to dying while still susceptible, is

∫ ∞

0

e−
∫ a
0 βI(t0+b)dbda ,

and this is the mean age at which members become infected. If the system is
at an equilibrium I∞, this integral may be evaluated, and the mean age at
infection, denoted by A, is given by
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A =
∫ ∞

0

e−βI∞a da =
1

βI∞
.

For our model the endemic equilibrium is

I∞ =
µK

µ + α
− µ

β
,

and this implies
L

A
=

βI∞
µ

= R0 − 1 . (2.24)

This relation is very useful in estimating basic reproduction numbers. For
example, in some urban communities in England and Wales between 1956 and
1969 the average age of contracting measles was 4.8 years. If life expectancy
is assumed to be 70 years, this indicates R0 = 15.6.

If β is a function β(N) of total population size the relation (2.24) becomes

R0 =
β(K)
β(N)

[

1 +
L

A

]

.

If disease mortality does not have a large effect on total population size, in
particular if there is no disease mortality, this relation is very close to (2.24).

The relation between age at infection and basic reproduction number in-
dicates that measures such as inoculations, which reduce R0, will increase
the average age at infection. For diseases such as rubella (German measles),
whose effects may be much more serious in adults than in children, this indi-
cates a danger that must be taken into account: While inoculation of children
will decrease the number of cases of illness, it will tend to increase the danger
to those who are not inoculated or for whom the inoculation is not success-
ful. Nevertheless, the number of infections in older people will be reduced,
although the fraction of cases which are in older people will increase.

2.3.3 The Interepidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken
pox, diphtheria, and rubella, exhibit variations from year to year in the num-
ber of cases. These fluctuations are frequently regular oscillations, suggesting
that the solutions of a model might be periodic. This does not agree with the
predictions of the model we have been using here; however, it would not be
inconsistent with solutions of the characteristic equation, which are complex
conjugate with small negative real part corresponding to lightly damped os-
cillations approaching the endemic equilibrium. Such behaviour would look
like recurring epidemics. If the eigenvalues of the matrix of the linearization at
an endemic equilibrium are −u± iv, where i2 = −1, then the solutions of the
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linearization are of the form Be−ut cos(vt + c), with decreasing “amplitude”
Be−ut and “period” 2π

v .
For the model (2.15) we recall from (2.17) that at the endemic equilibrium

we have
βI∞ + µ = µR0, βS∞ = µ + α

and from (2.18) the matrix of the linearization is
[

−µR0 −(µ + α)
µ(R0 − 1) 0

]

The eigenvalues are the roots of the quadratic equation

λ2 + µR0λ + µ(R0 − 1)(µ + α) = 0,

which are

λ =
−µR0 ±

√
µ2R0

2 − 4µ(R0 − 1)(µ + α)

2
.

If the mean infective period 1/α is much shorter than the mean life span 1/µ,
we may neglect the terms that are quadratic in µ. Thus, the eigenvalues are
approximately

−µR0 ±
√

−4µ(R0 − 1)α
2

,

and these are complex with imaginary part
√

µ(R0 − 1)α. This indicates
oscillations with period approximately

2π
√

µ(R0 − 1)α
.

We use the relation µ(R0−1) = µL/A and the mean infective period τ = 1/α
to see that the interepidemic period T is approximately 2π

√
Aτ . Thus, for ex-

ample, for recurring outbreaks of measles with an infective period of 2 weeks
or 1/26 year in a population with a life expectancy of 70 years with R0 esti-
mated as 15, we would expect outbreaks spaced 2.76 years apart. Also, as the
“amplitude” at time t is e−µR0t/2, the maximum displacement from equilib-
rium is multiplied by a factor e−(15)(2.76)/140 = 0.744 over each cycle. In fact,
many observations of measles outbreaks indicate less damping of the oscilla-
tions, suggesting that there may be additional influences that are not included
in our simple model. To explain oscillations about the endemic equilibrium
a more complicated model is needed. One possible generalization would be
to assume seasonal variations in the contact rate. This is a reasonable sup-
position for a childhood disease most commonly transmitted through school
contacts, especially in winter in cold climates. Note, however, that data from
observations are never as smooth as model predictions and models are in-
evitably gross simplifications of reality which cannot account for random
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variations in the variables. It may be difficult to judge from experimental
data whether an oscillation is damped or persistent.

2.3.4 “Epidemic” Approach to the Endemic
Equilibrium

In the model (2.15) the demographic time scale described by the birth and
natural death rates Λ and µ and the epidemiological time scale described
by the rate α of departure from the infective class may differ substan-
tially. Think, for example, of a natural death rate µ = 1/75, correspond-
ing to a human life expectancy of 75 years, and epidemiological parameters
α = 25, f = 1, describing a disease from which all infectives recover after a
mean infective period of 1/25 year, or two weeks. Suppose we consider a
carrying capacity K = 1, 000 and take β = 0.1, indicating that an average
infective makes (0.1)(1, 000) = 100 contacts per year. Then R0 = 4.00, and
at the endemic equilibrium we have S∞ = 250.13, I∞ = 0.40, R∞ = 749.47.
This equilibrium is globally asymptotically stable and is approached from
every initial state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the
introduction of a single infective into a susceptible population and solve the
system numerically we find that the number of infectives rises sharply to a
maximum of 400 and then decreases to almost zero in a period of 0.4 year,
or about 5 months. In this time interval the susceptible population decreases
to 22 and then begins to increase, while the removed (recovered and immune
against reinfection) population increases to almost 1,000 and then begins a
gradual decrease. The size of this initial “epidemic” could not have been
predicted from our qualitative analysis of the system (2.15). On the other
hand, since µ is so small compared to the other parameters of the model,
we might consider neglecting µ, replacing it by zero in the model. If we do
this, the model reduces to the simple Kermack–McKendrick epidemic model
(without births and deaths) of the first section.

If we follow the model (2.15) over a longer time interval we find that the
susceptible population grows to 450 after 46 years, then drops to 120 during a
small epidemic with a maximum of 18 infectives, and exhibits widely spaced
epidemics decreasing in size. It takes a very long time before the system
comes close to the endemic equilibrium and remains close to it. The large
initial epidemic conforms to what has often been observed in practice when
an infection is introduced into a population with no immunity, such as the
smallpox inflicted on the Aztecs by the invasion of Cortez.

If we use the model (2.15) with the same values of β, K and µ, but take
α = 25, f = 0 to describe a disease fatal to all infectives, we obtain very
similar results. Now the total population is S + I, which decreases from
an initial size of 1,000 to a minimum of 22 and then gradually increases and
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eventually approaches its equilibrium size of 250.53. Thus, the disease reduces
the total population size to one-fourth of its original value, suggesting that
infectious diseases may have large effects on population size. This is true even
for populations which would grow rapidly in the absence of infection, as we
shall see later.

2.3.5 Disease as Population Control

Many parts of the world experienced very rapid population growth in the
eighteenth century. The population of Europe increased from 118 million in
1700 to 187 million in 1800. In the same time period the population of Great
Britain increased from 5.8 million to 9.15 million, and the population of
China increased from 150 million to 313 million [27]. The population of En-
glish colonies in North America grew much more rapidly than this, aided by
substantial immigration from England, but the native population, which had
been reduced to one tenth of their previous size by disease following the early
encounters with Europeans and European diseases, grew even more rapidly.
While some of these population increases may be explained by improvements
in agriculture and food production, it appears that an even more important
factor was the decrease in the death rate due to diseases. Disease death rates
dropped sharply in the eighteenth century, partly from better understanding
of the links between illness and sanitation and partly because the recurring
invasions of bubonic plague subsided, perhaps due to reduced susceptibility.
One plausible explanation for these population increases is that the bubonic
plague invasions served to control the population size, and when this control
was removed the population size increased rapidly.

In developing countries it is quite common to have high birth rates and
high disease death rates. In fact, when disease death rates are reduced by
improvements in health care and sanitation it is common for birth rates to
decline as well, as families no longer need to have as many children to ensure
that enough children survive to take care of the older generations. Again, it
is plausible to assume that population size would grow exponentially in the
absence of disease but is controlled by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick [22]
includes births in the susceptible class proportional to population size and a
natural death rate in each class proportional to the size of the class. Let us
analyze a model of this type with birth rate r and a natural death rate µ < r.
For simplicity we assume the disease is fatal to all infectives with disease
death rate α, so that there is no removed class and the total population size
is N = S + I. Our model is

S′ = r(S + I) − βSI − µS (2.25)
I ′ = βSI − (µ + α)I .
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From the second equation we see that equilibria are given by either I = 0 or
βS = µ+α. If I = 0 the first equilibrium equation is rS = µS, which implies
S = 0 since r > µ. It is easy to see that the equilibrium (0,0) is unstable.
What actually would happen if I = 0 is that the susceptible population
would grow exponentially with exponent r − µ > 0. If βS = µ + α the first
equilibrium condition gives

r
µ + α

β
+ rI − (µ + α)I − µ(µ + α)

β
= 0 ,

which leads to

(α + µ − r)I =
(r − µ)(µ + α)

β
.

Thus, there is an endemic equilibrium provided r < α + µ, and it is possible
to show by linearizing about this equilibrium that it is asymptotically stable.
On the other hand, if r > α + µ there is no positive equilibrium value for I.
In this case we may add the two differential equations of the model to give

N ′ = (r − µ)N − αI ≥ (r − µ)N − αN = (r − µ − α)N

and from this we may deduce that N grows exponentially. For this model
either we have an asymptotically stable endemic equilibrium or population
size grows exponentially. In the case of exponential population growth we may
have either vanishing of the infection or an exponentially growing number of
infectives.

If only susceptibles contribute to the birth rate, as may be expected if
the disease is sufficiently debilitating, the behaviour of the model is quite
different. Let us consider the model

S′ = rS − βSI − µS = S(r − µ − βI) (2.26)
I ′ = βSI − (µ + α)I = I(βS − µ − α)

which has the same form as the celebrated Lotka–Volterra predator–prey
model of population dynamics. This system has two equilibria, obtained by
setting the right sides of each of the equations equal to zero, namely (0,0) and
an endemic equilibrium ((µ + α)/β, (r−µ)/β). It turns out that the qualita-
tive analysis approach we have been using is not helpful as the equilibrium
(0,0) is unstable and the eigenvalues of the coefficient matrix at the endemic
equilibrium have real part zero. In this case the behaviour of the linearization
does not necessarily carry over to the full system. However, we can obtain
information about the behaviour of the system by a method that begins with
the elementary approach of separation of variables for first order differential
equations. We begin by taking the quotient of the two differential equations
and using the relation

I ′

S′ =
dI

dS
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to obtain the separable first order differential equation

dI

dS
=

I(βS − µ − α)
S(r − βI)

.

Separation of variables gives
∫ ( r

I
− β
)
dI =

∫ (

β − µ + α

S

)

dS .

Integration gives the relation

β(S + I) − r log I − (µ + α) log S = c

where c is a constant of integration. This relation shows that the quantity

V (S, I) = β(S + I) − r log I − (µ + α) log S

is constant on each orbit (path of a solution in the (S, I− plane). Each of
these orbits is a closed curve corresponding to a periodic solution.

This model is the same as the simple epidemic model of the first section
except for the birth and death terms, and in many examples the time scale of
the disease is much faster than the time scale of the demographic process. We
may view the model as describing an epidemic initially, leaving a susceptible
population small enough that infection cannot establish itself. Then there is a
steady population growth until the number of susceptibles is large enough for
an epidemic to recur. During this growth stage the infective population is very
small and random effects may wipe out the infection, but the immigration of
a small number of infectives will eventually restart the process. As a result,
we would expect recurrent epidemics. In fact, bubonic plague epidemics did
recur in Europe for several hundred years. If we modify the demographic part
of the model to assume limited population growth rather than exponential
growth in the absence of disease, the effect would be to give behaviour like
that of the model studied in the previous section, with an endemic equilibrium
that is approached slowly in an oscillatory manner if R0 > 1.

Example. (Fox rabies) Rabies is a viral infection to which many animals,
especially foxes, coyotes, wolves, and rats, are highly susceptible. While dogs
are only moderately susceptible, they are the main source of rabies in hu-
mans. Although deaths of humans from rabies are few, the disease is still of
concern because it is invariably fatal. However, the disease is endemic in ani-
mals in many parts of the world. A European epidemic of fox rabies thought
to have begun in Poland in 1939 and spread through much of Europe has
been modeled. We present here a simplified version of a model due to R.M.
Anderson and coworkers [1].

We begin with the demographic assumptions that foxes have a birth
rate proportional to population size but that infected foxes do not produce
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offspring (because the disease is highly debilitating), and that there is a nat-
ural death rate proportional to population size. Experimental data indicate
a birth rate of approximately 1 per capita per year and a death rate of ap-
proximately 0.5 per capita per year, corresponding to a life expectancy of
2 years. The fox population is divided into susceptibles and infectives, and
the epidemiological assumptions are that the rate of acquisition of infection
is proportional to the number of encounters between susceptibles and infec-
tives. We will assume a contact parameter β = 80, in rough agreement with
observations of frequency of contact in regions where the fox density is ap-
proximately 1 fox/km2, and we assume that all infected foxes die with a mean
infective period of approximately 5 days or 1/73 year. These assumptions lead
to the model

S′ = −βSI + rS − µS

I ′ = βSI − (µ + α)I

with β = 80, r = 1.0, µ = 0.5, α = 73. As this is of the form (2.26), we know
that the orbits are closed curves in the (S, I) plane, and that both S and
I are periodic functions of t. We illustrate with some simulations obtained
using Maple (Figs. 2.8, 2.9, and 2.10). It should be noted from the graphs of
I in terms of t that the period of the oscillation depends on the amplitude,
and thus on the initial conditions, with larger amplitudes corresponding to
longer periods.

Fig. 2.8 The (S, I) plane

A warning is in order here. The model predicts that for long time intervals
the number of infected foxes is extremely small. With such small numbers,
the continuous deterministic models we have been using (which assume that
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population sizes are differentiable functions) are quite inappropriate. If the
density of foxes is extremely small an encounter between foxes is a random
event, and the number of contacts cannot be described properly by a func-
tion of population densities. To describe disease transmission properly when
population sizes are very small we would need to use a stochastic model.

Now let us modify the demographic assumptions by assuming that the
birth rate decreases as population size increases. We replace the birth rate
of r per susceptible per year by a birth rate of re−aS per susceptible per
year, with a a positive constant. Then, in the absence of infection, the fox
population is given by the first order differential equation

N ′ = N
(
re−aN − µ

)

and equilibria of this equation are given by N = 0 and re−aN = µ, which
reduces to eaN = r/µ, or

N =
1
a

log
r

µ
.

Fig. 2.9 I as a function of t (larger amplitude)

We omit the verification that the equilibrium N = 0 is unstable while the
positive equilibrium N = (1/a) log(r/µ) is asymptotically stable. Thus, the
population has a carrying capacity given by

K =
1
a
log

r

µ
.

The model now becomes
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Fig. 2.10 I as a function of t (smaller amplitude)

S′ = rSe−aS − βSI − µS

I ′ = βSI − (µ + α)I .

We examine this by looking for equilibria and analyzing their stability. From
the second equation, equilibria satisfy either I = 0 or βS = µ + α. If I = 0
the first equilibrium condition reduces to the same equation that determined
the carrying capacity, and we have a disease-free equilibrium S = K, I = 0.
If βS = µ + α there is an endemic equilibrium with βI + µ = re−aS . A
straightforward computation, which we shall not carry out here shows, that
the disease-free equilibrium is asymptotically stable if R0 = βK/(µ + α) < 1
and unstable if R0 > 1, while the endemic equilibrium, which exists if and
only if R0 > 1, is always asymptotically stable. Another way to express the
condition for an endemic equilibrium is to say that the fox population density
must exceed a threshold level KT given by

KT =
µ + α

β
.

With the parameter values we have been using, this gives a threshold fox den-
sity of 0.92 fox/km2. If the fox density is below this threshold value, the fox
population will approach its carrying capacity and the disease will die out.
Above the threshold density, rabies will persist and will regulate the fox pop-
ulation to a level below its carrying capacity. This level may be approached
in an oscillatory manner for large R0.
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2.4 Age of Infection Models

2.4.1 The Basic SI∗R Model

The 1927 epidemic model of Kermack and McKendrick is considerably more
general than what is usually called the Kermack–McKendrick model, which
was analyzed in the first section. The general model described by Kermack
and McKendrick included a dependence of infectivity on the time since be-
coming infected (age of infection). The 1932 and 1933 models of Kermack and
McKendrick, which incorporated births and deaths, did not include this de-
pendence. While age of infection models have not played a large role in studies
of epidemics, they are very important in studies of HIV/AIDS. HIV/AIDS
acts on a very long time scale and it is essential to include demographic effects
(recruitment into and departure from a population of sexually active individ-
uals). Also, the infectivity of HIV-positive people is high for a relatively short
time after becoming infected, then very low for a long period, possibly several
years, and then high shortly before developing into full-blown AIDS. Thus,
the age of infection models described by Kermack and McKendrick for epi-
demics but not for endemic situations, have become important in endemic
situations.

We will describe a general age of infection model and carry out a partial
analysis; there are many unsolved problems in the analysis. We continue to
let S(t) denote the number of susceptibles at time t and R(t) the number of
members recovered with immunity, but now we let I∗(t) denote the number
of infected (but not necessarily infective) members.

We make the following assumptions:

1. The population has a birth rate Λ(N), and a natural death rate µ giving
a carrying capacity K such that Λ(K) = µK,Λ′(K) < µ.

2. An average infected member makes C(N) contacts in unit time of which
S/N are with susceptibles. We define β(N) = C(N)/N and it is reason-
able to assume that β′(N) ≤ 0, C ′(N) ≥ 0.

3. B(τ) is the fraction of infecteds remaining infective if alive when infection
age is τ and Bµ(τ) = e−µτB(τ) is the fraction of infecteds remaining alive
and infected when infection age is τ . Let B̂µ(0) =

∫∞
0

Bµ(τ)dτ.
4. A fraction f of infected members recovers with immunity and a fraction

(1 − f) dies of disease.
5. π(τ) with 0 ≤ π(τ) ≤ 1 is the infectivity at infection age τ ; let A(τ) =

π(τ)B(τ), Aµ(τ) = π(τ)Bµ(τ), Âµ(0) =
∫∞
0

Aµ(τ)dτ .

In previous sections we have used B(τ) = e−ατ , which would give Bµ(τ) =
e−(µ+α)τ . We let i0(t) be the number of new infecteds at time t, i(t, τ) be the
number of infecteds at time t with infection age τ , and let φ(t) be the total
infectivity at time t. Then
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i(t, τ) = i0(t − τ)Bµ(τ), 0 ≤ τ ≤ t

i0(t) = Sβ(N)φ(t)

and

S′ = Λ(N) − µS − β(N)Sφ

I∗(t) =
∫ ∞

0

i(t, τ)dτ

=
∫ ∞

0

i0(t − τ)Bµ(τ)dτ

=
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Bµ(τ)dτ

φ(t) =
∫ ∞

0

i0(t − τ)Aµ(τ)dτ

=
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ .

Differentiation of the equation for I∗ gives three terms, including the rate
of new infections and the rate of natural deaths. The third term gives the
rate of recovery plus the rate of disease death as

−
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Thus the SI∗R model is

S′ = Λ(N) − µS − β(N)Sφ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ (2.27)

N ′(t) = Λ(N) − µN

+ (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Since I∗ is determined when S, φ,N are known we have dropped the equa-
tion for I∗ from the model, but it will be convenient to recall

I∗(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Bµ(τ)dτ .

If f = 1 then N(t) approaches the limit K, the model is asymptotically
autonomous and its dimension may be reduced to two, replacing N by the
constant K. We note, for future use, that
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B̂µ(0) =
∫ ∞

0

e−µτB(τ)dτ ≤
∫ ∞

0

e−µτdτ = 1/µ ,

so that
0 ≤ 1 − µB̂µ(0) ≤ 1 .

We define M = (1− f)(1− µB̂µ(0), and 0 ≤ M ≤ 1. We note, however, that
if f = 1 then M = 0. We also have, using integration by parts,

−
∫ ∞

0

e−µτB′(τ)dτ = 1 − µB̂µ(0) ≥ 0 .

If a single infective is introduced into a wholly susceptible population, making
Kβ(K) contacts in unit time, the fraction still infective at infection age τ
is Bµ(τ) and the infectivity at infection age τ is Aµ(τ). Thus R0, the total
number of secondary infections caused, is

∫ ∞

0

Kβ(K)Aµ(τ)dτ = Kβ(K)Âµ(0) .

Example. (Exposed periods) One common example of an age of infection
model is a model with an exposed period, during which individuals have been
infected but are not yet infected. Thus we may think of infected susceptibles
going into an exposed class (E), proceeding from the exposed class to the
infective class (I) at rate κE and out of the infective class at rate αI. Exposed
members have infectivity 0 and infective members have infectivity 1. Thus
I∗ = E + I and φ = I.

We let u(τ) be the fraction of infected members with infection age τ who
are not yet infective if alive and v(τ) the fraction of infected members who
are infective if alive. Then the fraction becoming infective at infection age τ
if alive is κu(τ), and we have

u′(τ) = −κu(τ), u(0) = 1 (2.28)
v′(τ) = κu(τ) − αv(τ) v(0) = 0 .

The solution of the first of the equations of (2.28) is

u(τ) = e−κτ

and substitution of this into the second equation gives

v′(τ) = κe−κτ − αv(τ) .

When we multiply this equation by the integrating factor eατ and integrate,
we obtain the solution

v(τ) =
κ

κ − α
[e−ατ − e−κτ ],
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and this is the term Aµ(τ) in the general model. The term B(τ) is u(τ)+v(τ).
Thus we have

A(τ) =
κ

κ − α
[e−ατ − e−κτ ]

B(τ) =
κ

κ − α
e−ατ − α

κ − α
e−κτ

e−µτB′(τ) = − ακ

κ − α
[e−(µ+α)τ − e−(µ+κ)τ ] .

With these choices and the identifications

I = φ, E = I∗ − φ

we may verify that the system (2.27) reduces to

S′ = Λ(N) − β(N)SI − µS

E′ = β(N)SI − κE

I ′ = κE − (µ + α)I
N ′ = Λ(N) − (1 − f)αI − µN ,

which is a standard SEIR model.
For some diseases there is an asymptomatic period during which individ-

uals have some infectivity rather than an exposed period. If the infectivity
during this period is reduced by a factor ε, then the model can be described
by the system

S′ = Λ(N) − β(N)S(I + εE) − µS

E′ = β(N)S(I + εE) − κE

I ′ = κE − (µ + α)I
N ′ = Λ(N) − (1 − f)αI − µN .

This may be considered as an age of infection model with the same iden-
tifications of the variables and the same choice of u(τ), v(τ) but with
A(τ) = εu(τ) + v(τ).

2.4.2 Equilibria

There is a disease-free equilibrium S = N = K,φ = 0 of (2.27). Endemic
equilibria (S,N, φ) are given by
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Λ(N) = µS + Sφβ(N)
Sβ(N)Âµ(0) = 1

Λ(N) = µN + (1 − f)(1 − µB̂µ(0))Sβ(N)φ .

If f = 1 the third condition gives Λ(N) = µN , which implies N = K. Then
the second condition may be solved for S, after which the first condition may
be solved for φ. Thus, there is always an endemic equilibrium.

If f < 1 the second of the equilibrium conditions gives

φ =
Âµ(0)

M
[Λ(N) − µN ].

Now substitution of the first two equilibrium conditions into the third gives
an equilibrium condition for N , namely

(1 − M)Λ(N) = µN − µM

β(N)Âµ(0)
(2.29)

= µN

[

1 − M

C(N)Âµ(0)

]

.

If R0 < 1,
C(N)Âµ(0) ≤ C(K)Âµ(0) = R0 < 1

so that
1 − M

C(N)Âµ(0)
< 1 − M .

Then we must have Λ(N) < µN . However, this would contradict the demo-
graphic condition Λ(N) > µN, 0 < N < K imposed earlier. This shows that
if R0 < 1 there is no endemic equilibrium.

If R0 > 1 for N = 0 the left side of (2.29) is non-negative while the right
side is negative. For N = K the left side of (2.29) is µK(1 − M) while the
right side is

µK − MµK

R0
> µK(1 − M) .

This shows that there is an endemic equilibrium solution for N .

2.4.3 The Characteristic Equation

The linearization of (2.27) at an equilibrium (S,N, φ) is
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x′ = −[µ + φβ(N)]x + [Λ′(N) − Sφβ′(N)]y − Sβ(N)z

y′ = [Λ′(N) − µ]y

+(1 − f)

∫ ∞

0
e−µτ B′(τ)[φβ(N)x(t − τ) + Sφβ′(N)y(t − τ) + Sβ(N)z(t − τ)]dτ

z(t) =

∫ ∞

0
Aµ(τ)[φβ(N)x(t − τ) + Sφβ′(N)y(t − τ) + Sβ(N)z(t − τ)]dτ .

The condition that this linearization has solutions which are constant mul-
tiples of e−λτ is that λ satisfies a characteristic equation. The characteristic
equation at an equilibrium (S,N, φ) is

det

⎡

⎣
−[λ + µ + φβ(N)] [Λ′(N) − Sφβ′(N)] −Sβ(N)

−φβ(N)Q(λ) −[λ − Λ′(N) + µ] − Sφβ′(N)Q(λ) −Sφβ(N)Q(λ)

φβ(N)Âµ(λ) Sφβ′(N)Âµ(λ) Sβ(N)Âµ(λ) − 1

⎤

⎦ = 0

with

Âµ(λ) =
∫ ∞

0

e−λτAµ(τ)dτ

B̂µ(λ) =
∫ ∞

0

e−λτBµ(τ)dτ

Q(λ) = (1 − f)[1 − (λ + µ)B̂µ(λ)] .

Here, the choice of Q(λ) is motivated by the integration by parts formula
∫ ∞

0

e−(λ+µ)τB′(τ)dτ = −1 + B̂µ(λ) .

The characteristic equation then reduces to

Sβ(N)Âµ(λ) + (1 − f)φSβ′(N)B̂µ(λ)

= 1 +
fφβ(N)
λ + µ

+
(1 − f)φP

λ + µ − Λ′(N)
[1 − Λ′(N)B̂µ(λ)] , (2.30)

where P = β(N) + Sβ′(N) ≥ 0.
The characteristic equation for a model consisting of a system of ordinary

differential equations is a polynomial equation. Now we have a transcendental
characteristic equation, but there is a basic theorem that if all roots of the
characteristic equation at an equilibrium have negative real part then the
equilibrium is asymptotically stable [39, Chap. 4].

At the disease-free equilibrium S = N = K,φ = 0 the characteristic
equation is

Kβ(K)Âµ(λ) = 1 .

Since the absolute value of the left side of this equation is no greater than
Kβ(K)Âµ(0) if �λ ≥ 0 the disease-free equilibrium is asymptotically stable
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if and only if
R0 = Kβ(K)Âµ(0) < 1 .

2.4.4 The Endemic Equilibrium

In the analysis of the characteristic equation (2.30) it is helpful to make use
of the following elementary result:

If |P (λ)| ≤ 1,�g(λ) > 0 for �λ ≥ 0, then all roots of the characteristic
equation

P (λ) = 1 + g(λ)

satisfy �λ < 0.

To prove this result, we observe that if �λ ≥ 0 the left side of the charac-
teristic equation has absolute value at most 1 while the right side has absolute
value greater than 1.

If f = 1, the characteristic equation reduces to

Sβ(N)Âµ(λ) = 1 +
φβ(N)
λ + µ

.

We have
|Sβ(N)Âµ(λ)| ≤ Sβ(N)Âµ(0) = 1

The term
φβ(N)
λ + µ

in (2.30) has positive real part if �λ ≥ 0. It follows from the above elemen-
tary result that all roots satisfy �λ < 0, so that the endemic equilibrium
is asymptotically stable. Thus all roots of the characteristic equation (2.30)
have negative real part if f = 1.

The analysis if f < 1 is more difficult. The roots of the characteristic
equation depend continuously on the parameters of the equation. In order to
have a root with �λ ≥ 0 there must be parameter values for which either
there is a root at “infinity”, or there is a root λ = 0 or there is a pair of pure
imaginary roots λ = ±iy, y > 0. Since the left side of (2.30) approaches 0
while the right side approaches 1 as λ → ∞,�λ ≥ 0, it is not possible for a
root to appear at “infinity”. For λ = 0, since Sβ(N)Âµ(0) = 1 and β′(N) ≤ 0
the left side of (2.30) is less than 1 at λ = 0, while the right side is greater
than 1 since

1 − Λ′(N)B̂µ(0) > 1 − Λ′(N)/µ > 0

if Λ′(N) < µ. This shows that λ = 0 is not a root of (2.30), and therefore
that all roots satisfy �λ < 0 unless there is a pair of roots λ = ±iy, y > 0.
According to the Hopf bifurcation theorem [20] a pair of roots λ = ±iy, y > 0
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indicates that the system (2.27) has an asymptotically stable periodic solution
and there are sustained oscillations of the system.

A somewhat complicated calculation using the fact that since Bµ(τ) is
monotone non-increasing,

∫ ∞

0

Bµ(τ) sin yτdy ≥ 0

for 0 ≤ y < ∞ shows that the term

(1 − f)φP

λ + µ − Λ′(N)
· [1 − Λ′(N)B̂µ(λ)]

in (2.30) has positive real part at least if

−µ ≤ Λ′(N) ≤ µ .

Thus if −µ ≤ Λ′(N) ≤ µ, instability of the endemic equilibrium is possible
only if the term

(1 − f)φSβ′(N)B̂µ(iy)

in (2.30) has negative real part for some y > 0. This is not possible with mass
action incidence, since β′(N) = 0; thus with mass action incidence the en-
demic equilibrium of (2.27) is always asymptotically stable. Since β′(N)≤ 0,
instability requires

�B̂µ(iy) =
∫ ∞

0

Bµ(τ) cos yτdτ < 0

for some y > 0. If the function B(τ) is non-increasing and convex, that is, if
B′(τ) ≤ 0, B′′(τ) ≥ 0, then it is easy to show using integration by parts that

∫ ∞

0

Bµ(τ) cos yτdτ ≥ 0

for 0 < y < ∞. Thus if B(τ) is convex, which is satisfied, for example, by the
choice

B(τ) = e−ατ

the endemic equilibrium of (2.22) is asymptotically stable if −µ ≤ Λ′(N) ≤ µ.
There are certainly less restrictive conditions which guarantee asymptotic

stability. However, examples have been given [36,37] of instability, even with
f = 0, Λ′(N) = 0, where constant infectivity would have produced asymp-
totic stability. Their results indicate that concentration of infectivity early
in the infected period is conducive to such instability. In these examples,
the instability arises because a root of the characteristic equation crosses the
imaginary axis as parameters of the model change, giving a pure imaginary
root of the characteristic equation. This translates into oscillatory solutions
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of the model. Thus infectivity which depends on infection age can cause in-
stability and sustained oscillations.

2.4.5 An SI∗S Model

In order to formulate an SI∗S age of infection model we need only take the
SI∗R age of infection model (2.22) and move the recovery term from the
equation for R (which was not listed explicitly in the model) to the equation
for S. We obtain the model

S′ = Λ(N) − µS − β(N)Sφ (2.31)

−f

∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ (2.32)

N ′(t) = Λ(N) − µN

+ (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Although we will not carry out any analysis of this model, it may be
attacked using the same approach as that used for (2.27). It may be shown
that if R0 = Kβ(K)Âµ(0) < 1 the disease-free equilibrium is asymptotically
stable. If R0 > 1 there is an endemic equilibrium and the characteristic
equation at this equilibrium is

Sβ(N)Âµ(λ) + (1 − f)φSβ′(N)B̂µ(λ)

= 1 + fφβ(N)B̂µ(λ) +
(1 − f)φP

λ + µ − Λ′(N)
· [1 − Λ′(N)B̂µ(λ)] (2.33)

where P = β(N) + Sβ′(N) ≥ 0.
Many diseases, including most strains of influenza, impart only temporary

immunity against reinfection on recovery. Such disease may be described by
SIS age of infection models, thinking of the infected class I∗ as comprised
of the infective class I together with the recovered and immune class R. In
this way, members of R neither spread or acquire infection. We assume that
immunity is lost at a proportional rate κ.

We let u(τ) be the fraction of infected members with infection age τ who
are infective if alive and v(τ) the fraction of infected members who are not
recovered and still immune if alive. Then the fraction becoming immune at
infection age τ if alive is αu(τ), and we have
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u′(τ) = −αu(τ), u(0) = 1 (2.34)
v′(τ) = αu(τ) − κv(τ) v(0) = 0 .

These equations are the same as (2.28) obtained in formulating the SEIR
model with α and κ interchanged. Thus we may solve to obtain

u(τ) = e−ατ

v(τ) =
α

κ − α
[e−ατ − e−κτ ] .

We take B(τ) = u(τ)+v(τ), A(τ) = u(τ). Then if we define I = φ,R = I∗−φ,
the model (2.31) is equivalent to the system

S′ = Λ(N) − β(N)SI − µS + κR

I ′ = β(N)SI − (µ + α)I
R′ = fαE − (µ + κ)R
N ′ = Λ(N) − (1 − f)αI − µN,

which is a standard SIRS model.
If we assume that, instead of an exponentially distributed immune period,

that there is an immune period of fixed length ω we would again obtain
u(τ) = e−ατ , but now we may calculate that

v(τ) = 1 − e−ατ , (τ ≤ ω), v(τ) = e−ατ (eαω − 1), (τ > ω) .

To obtain this, we note that

v′(τ) = αu(τ), (τ ≤ ω), v′(τ) = αu(τ) − αu(τ − ω), (τ > ω) .

From these we may calculate A(τ), B(τ) for an SI∗S model. Since it is known
that the endemic equilibrium for an SIRS model with a fixed removed period
can be unstable [19], this shows that (2.33) may have roots with non-negative
real part and the endemic equilibrium of an SI∗S age of infection model is
not necessarily asymptotically stable.

The SI∗R age of infection model is actually a special case of the SI∗S
age of infection model. We could view the class R as still infected but having
no infectivity, so that v(τ) = 0. The underlying idea is that in infection age
models we divide the population into members who may become infected
and members who can not become infected, either because they are already
infected or because they are immune.
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2.4.6 An Age of Infection Epidemic Model

We conclude by returning to the beginning, namely an infection age epi-
demic model closely related to the original Kermack–McKendrick epidemic
model [21]. We simply remove the birth and natural death terms from the
SI∗R model (2.27). The result is

S′ = −β(N)Sφ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)A(τ)dτ

N ′(t) = (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)B′(τ)dτ

which we may rewrite as

S′ = −β(N)Sφ

φ(t) =
∫ ∞

0

[−S′(t − τ)]A(τ)dτ (2.35)

N ′(t) = (1 − f)
∫ ∞

0

[−S′(t − τ ]B′(τ)dτ .

Then integration of the equation for N with respect to t from 0 to ∞ gives

K − N∞ = (1 − f)
∫ ∞

0

[
∫ ∞

0

[−S′(t − τ)]B′(τ)dτdt

= (1 − f)
∫ ∞

0

[
∫ ∞

0

[−S′(t − τ)]dtB′(τ)dτ

= (1 − f)
∫ ∞

0

[S(−τ) − S∞]B′(τ)dτ

= (1 − f)(K − S∞) ,

which is the same relation (2.8) obtained for the model (2.6). In this calcu-
lation we use the initial data to give S(−τ) = K and

∫ ∞

0

B′(τ)dτ = B(∞) − B(0) = −1 .

The argument that S∞ > 0 for the model (2.35) is analogous to the argument
for (2.10). From (2.35) we have

−S′(t)
S(t)

= β(N(t))
∫ ∞

0

[−S′(t − τ)]A(τ)dτ

and integration with respect to t from 0 to ∞ gives
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log
S(0)
S∞

=
∫ ∞

0

β(N(t))
∫ ∞

0

[−S′(t − τ)]A(τ)dτdt

=
∫ ∞

0

A(τ)
∫ ∞

0

β(N(t))[−S′(t − τ)]dtdτ

≤ β(0)
∫ ∞

0

A(τ)
∫ ∞

0

[−S′(t − τ)]dtdτ

= β(0)
∫ ∞

0

A(τ)[S(−τ) − S∞]dsdτ

= β(0)(K − S∞)
∫ ∞

0

A(τ)dτ

and this shows that S∞ > 0. We recall that we are assuming here that β(0)
is finite; in other words we are ruling out standard incidence. It is possible to
show that S∞ can be zero only if N → 0 and

∫K

0
β(N)dN diverges. However,

from (2.8) we see that this is possible only if f = 0. If there are no disease
deaths, so that the total population size N is constant, or if β is constant
(mass action incidence), the above integration gives the final size relation

log
S(0)
S∞

= R0

[

1 − S∞
K

]

.

We may view the epidemic management model (2.13) as an age of infection
model. We define I∗ = E +Q+ I +J , and we need only calculate the kernels
A(τ), B(τ). We let u(τ) denote the number of members of infection age τ in
E, v(τ) the number of members of infection age τ in Q, w(τ) the number
of members of infection age τ in I, and z(τ) the number of members of
infection age τ in J . Then (u, v, w, z) satisfies the linear homogeneous system
with constant coefficient

u′(τ) = −(κ1 + γ1)u(τ)
v′(τ) = γ1u(τ) − κ2v(τ)
w′(τ) = κ1u(τ) − α1w(τ) − γ2w(τ)
z′(τ) = γ2w(τ) + κ2v(τ) − α2z(τ)

with initial conditions u(0) = 1, v(0) = 0, w(0) = 0, z(0) = 0. This system
is easily solved recursively, and then the system (2.13) is an age of infection
epidemic model with

A(τ) = εEu(τ)+εEεQv(τ)+w(τ)+εJz(τ), B(τ) = u(τ)+v(τ)+w(τ)+z(τ) .

In particular, it now follows from the argument carried out just above that
S∞ > 0 for the model (2.13). The proof is less complicated technically than
the proof obtained for the specific model (2.13). The generalization to age
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of infection models both unifies the theory and makes some calculations less
complicated.
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Chapter 3

An Introduction to Stochastic
Epidemic Models

Linda J.S. Allen

Abstract A brief introduction to the formulation of various types of stochas-
tic epidemic models is presented based on the well-known deterministic SIS
and SIR epidemic models. Three different types of stochastic model formu-
lations are discussed: discrete time Markov chain, continuous time Markov
chain and stochastic differential equations. Properties unique to the stochastic
models are presented: probability of disease extinction, probability of disease
outbreak, quasistationary probability distribution, final size distribution, and
expected duration of an epidemic. The chapter ends with a discussion of two
stochastic formulations that cannot be directly related to the SIS and SIR
epidemic models. They are discrete time Markov chain formulations applied
in the study of epidemics within households (chain binomial models) and in
the prediction of the initial spread of an epidemic (branching processes).

3.1 Introduction

The goals of this chapter are to provide an introduction to three different
methods for formulating stochastic epidemic models that relate directly to
their deterministic counterparts, to illustrate some of the techniques for ana-
lyzing them, and to show the similarities between the three methods. Three
types of stochastic modeling processes are described: (1) a discrete time
Markov chain (DTMC) model, (2) a continuous time Markov chain (CTMC)
model, and (3) a stochastic differential equation (SDE) model. These stochas-
tic processes differ in the underlying assumptions regarding the time and
the state variables. In a DTMC model, the time and the state variables are

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-
1042, USA
linda.j.allen@ttu.edu
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discrete. In a CTMC model, time is continuous, but the state variable is dis-
crete. Finally, the SDE model is based on a diffusion process, where both the
time and the state variables are continuous.

Stochastic models based on the well-known SIS and SIR epidemic mod-
els are formulated. For reference purposes, the dynamics of the SIS and SIR
deterministic epidemic models are reviewed in the next section. Then the
assumptions that lead to the three different stochastic models are described
in Sects. 3.3, 3.4, and 3.5. The deterministic and stochastic model dynamics
are illustrated through several numerical examples. Some of the MatLab pro-
grams used to compute numerical solutions are provided in the last section
of this chapter.

One of the most important differences between the deterministic and
stochastic epidemic models is their asymptotic dynamics. Eventually stochas-
tic solutions (sample paths) converge to the disease-free state even though
the corresponding deterministic solution converges to an endemic equilib-
rium. Other properties that are unique to the stochastic epidemic models
include the probability of an outbreak, the quasistationary probability distri-
bution, the final size distribution of an epidemic and the expected duration
of an epidemic. These properties are discussed in Sect. 3.6. In Sect. 3.7, the
SIS epidemic model with constant population size is extended to one with a
variable population size and the corresponding SDE model is derived.

The chapter ends with a discussion of two well-known DTMC epidemic
processes that are not directly related to any deterministic epidemic model.
These two processes are chain binomial epidemic processes and branching
epidemic processes.

3.2 Review of Deterministic SIS and SIR Epidemic
Models

In SIS and SIR epidemic models, individuals in the population are classified
according to disease status, either susceptible, infectious, or immune. The
immune classification is also referred to as removed because individuals are
no longer spreading the disease when they are removed or isolated from the
infection process. These three classifications are denoted by the variables S, I,
and R, respectively.

In an SIS epidemic model, a susceptible individual, after a successful con-
tact with an infectious individual, becomes infected and infectious, but does
not develop immunity to the disease. Hence, after recovery, infected individu-
als return to the susceptible class. The SIS epidemic model has been applied
to sexually transmitted diseases. We make some additional simplifying as-
sumptions. There is no vertical transmission of the disease (all individuals are
born susceptible) and there are no disease-related deaths. A compartmental
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diagram in Fig. 3.1 illustrates the dynamics of the SIS epidemic model. Solid
arrows denote infection or recovery. Dotted arrows denote births or deaths.

Fig. 3.1 SIS compartmental diagram

Differential equations describing the dynamics of an SIS epidemic model
based on the preceding assumptions have the following form:

dS

dt
= − β

N
SI + (b + γ)I

dI

dt
=

β

N
SI − (b + γ)I,

(3.1)

where β > 0 is the contact rate, γ > 0 is the recovery rate, b ≥ 0 is the
birth rate, and N = S(t) + I(t) is the total population size. The initial con-
ditions satisfy S(0) > 0, I(0) > 0, and S(0) + I(0) = N . We assume that
the birth rate equals the death rate, so that the total population size is con-
stant, dN/dt = 0. The dynamics of model (3.1) are well-known [25]. They
are determined by the basic reproduction number. The basic reproduction
number is the number of secondary infections caused by one infected individ-
ual in an entirely susceptible population [10, 26]. For model (3.1), the basic
reproduction number is defined as follows:

R0 =
β

b + γ
. (3.2)

The fraction 1/(b + γ) is the length of the infectious period, adjusted for
deaths. The asymptotic dynamics of model (3.1) are summarized in the fol-
lowing theorem.

Theorem 1. Let S(t) and I(t) be a solution to model (3.1).

(1) If R0 ≤ 1, then lim
t→∞

(S(t), I(t)) = (N, 0) (disease-free equilibrium).

(2) If R0 > 1, then lim
t→∞

(S(t), I(t)) =
(

N

R0
, N

(

1 − 1
R0

))

(endemic equi-

librium).
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In an SIR epidemic model, individuals become infected, but then develop
immunity and enter the immune class R. The SIR epidemic model has been
applied to childhood diseases such as chickenpox, measles, and mumps. A
compartmental diagram in Fig. 3.2 illustrates the relationship between the
three classes.

Fig. 3.2 SIR compartmental diagram

Differential equations describing the dynamics of an SIR epidemic model
have the following form:

dS

dt
= − β

N
SI + b(I + R)

dI

dt
=

β

N
SI − (b + γ)I (3.3)

dR

dt
= γI − bR,

where β > 0, γ > 0, b ≥ 0, and the total population size satisfies N =
S(t)+I(t)+R(t). The initial conditions satisfy S(0) > 0, I(0) > 0, R(0) ≥ 0,
and S(0)+ I(0)+R(0) = N . We assume that the birth rate equals the death
rate so that the total population size is constant, dN/dt = 0.

The basic reproduction number (3.2) and the birth rate b determine the
dynamics of model (3.3). The dynamics are summarized in the following
theorem.

Theorem 2. Let S(t), I(t), and R(t) be a solution to model (3.3).

(1) If R0 ≤ 1, then lim
t→∞

I(t) = 0 (disease-free equilibrium).

(2) If R0 > 1, then

lim
t→∞

(S(t), I(t), R(t)) =
(

N

R0
,

bN

b + γ

(

1 − 1
R0

)

,
γN

b + γ

(

1 − 1
R0

))

(endemic equilibrium).
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(3) Assume b = 0. If R0
S(0)
N

> 1, then there is an initial increase in the

number of infected cases I(t) (epidemic), but if R0
S(0)
N

≤ 1, then I(t)

decreases monotonically to zero (disease-free equilibrium).

The quantity R0S(0)/N is referred to as the initial replacement number,
the average number of secondary infections produced by an infected individ-
ual during the period of infectiousness at the outset of the epidemic [25,26].
Since the infectious fraction changes during the course of the epidemic, the
replacement number is generally defined as R0S(t)/N [25,26]. In case (3) of
Theorem 2, the disease eventually disappears from the population but if the
initial replacement number is greater than one, the population experiences
an outbreak.

3.3 Formulation of DTMC Epidemic Models

Let S(t), I(t), and R(t) denote discrete random variables for the number of
susceptible, infected, and immune individuals at time t, respectively. (Cal-
ligraphic letters denote random variables.) In a DTMC epidemic model,
t ∈ {0,∆t, 2∆t, . . .} and the discrete random variables satisfy

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N}.

The term “chain” (letter C) in DTMC means that the random variables are
discrete. The term “Markov” (letter M) in DTMC is defined in the next
section.

3.3.1 SIS Epidemic Model

In an SIS epidemic model, there is only one independent random variable,
I(t), because S(t) = N −I(t), where N is the constant total population size.
The stochastic process {I(t)}∞t=0 has an associated probability function,

pi(t) = Prob{I(t) = i},

for i = 0, 1, 2, . . . , N and t = 0,∆t, 2∆t, . . . ,where

N∑

i=0

pi(t) = 1.

Let p(t) = (p0(t), p1(t), . . . , pN (t))T denote the probability vector associated
with I(t). The stochastic process has the Markov property if
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Prob{I(t + ∆t)|I(0), I(∆t), . . . , I(t)} = Prob{I(t + ∆t)|I(t)}.

The Markov property means that the process at time t + ∆t only depends
on the process at the previous time step t.

To complete the formulation for a DTMC SIS epidemic model, the re-
lationship between the states I(t) and I(t + ∆t) needs to be defined. This
relationship is determined by the underlying assumptions in the SIS epidemic
model and is defined by the transition matrix. The probability of a transition
from state I(t) = i to state I(t + ∆t) = j, i → j, in time ∆t, is denoted as

pji(t + ∆t, t) = Prob{I(t + ∆t) = j|I(t) = i}.

When the transition probability pji(t + ∆t, t) does not depend on t, pji(∆t),
the process is said to be time homogeneous. For the stochastic SIS epidemic
model, the process is time homogeneous because the deterministic model is
autonomous.

To reduce the number of transitions in time ∆t, we make one more as-
sumption. The time step ∆t is chosen sufficiently small such that the number
of infected individuals changes by at most one during the time interval ∆t,
that is,

i → i + 1, i → i − 1 or i → i.

Either there is a new infection, a birth, a death, or a recovery during the
time interval ∆t. Of course, this latter assumption can be modified, if the
time step cannot be chosen arbitrarily small. In this latter case, transition
probabilities need to be defined for all possible transitions that may occur,
i → i + 2, i → i + 3, etc. In the simplest case, with only three transitions
possible, the transition probabilities are defined using the rates (multiplied by
∆t) in the deterministic SIS epidemic model. This latter assumption makes
the DTMC model a useful approximation to the CTMC model, described in
Sect. 3.4. The transition probabilities for the DTMC epidemic model satisfy

pji(∆t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βi(N − i)
N

∆t, j = i + 1

(b + γ)i∆t, j = i − 1

1 −
[
βi(N − i)

N
+ (b + γ)i

]

∆t, j = i

0, j 
= i + 1, i, i − 1.

The probability of a new infection, i → i + 1, is βi(N − i)∆t/N. The proba-
bility of a death or recovery, i → i− 1, is (b + γ)i∆t. Finally, the probability
of no change in state, i → i, is 1− [βi(N − i)/N + (b + γ)i] ∆t. Since a birth
of a susceptible must be accompanied by a death, to keep the population
size constant, this probability is not needed in either the deterministic or
stochastic formulations.

To simplify the notation and to relate the SIS epidemic process to a birth
and death process, the transition probability for a new infection is denoted



3 An Introduction to Stochastic Epidemic Models 87

as b(i)∆t and for a death or a recovery is denoted as d(i)∆t. Then

pji(∆t) =

⎧
⎪⎪⎨

⎪⎪⎩

b(i)∆t, j = i + 1
d(i)∆t, j = i − 1
1 − [b(i) + d(i)]∆t, j = i
0, j 
= i + 1, i, i − 1.

The sum of the three transitions equals one because these transitions repre-
sent all possible changes in the state i during the time interval ∆t. To ensure
that these transition probabilities lie in the interval [0, 1], the time step ∆t
must be chosen sufficiently small such that

max
i∈{1,...,N}

{[b(i) + d(i)]∆t} ≤ 1.

Applying the Markov property and the preceding transition probabilities,
the probabilities pi(t + ∆t) can be expressed in terms of the probabilities at
time t. At time t + ∆t,

pi(t + ∆t) = pi−1(t)b(i− 1)∆t + pi+1(t)d(i + 1)∆t + pi(t)(1− [b(i) + d(i)]∆t)
(3.4)

for i = 1, 2, . . . , N , where b(i) = βi(N − i)/N and d(i) = (b + γ)i.
A transition matrix is formed when the states are ordered from 0 to N .

For example, the (1, 1) element in the transition matrix is the transition
probability from state zero to state zero, p00(∆t) = 1, and the (N +1, N +1)
element is the transition probability from state N to state N , pNN (∆t) =
1− [b+γ]N∆t = 1−d(N)∆t. Denote the transition matrix as P (∆t). Matrix
P (∆t) is a (N + 1) × (N + 1) tridiagonal matrix given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 d(1)∆t 0 · · · 0 0
0 1 − (b + d)(1)∆t d(2)∆t · · · 0 0
0 b(1)∆t 1 − (b + d)(2)∆t · · · 0 0
0 0 b(2)∆t · · · 0 0
..
.

..

.
..
.

. . .
..
.

..

.
0 0 0 · · · d(N − 1)∆t 0
0 0 0 · · · 1 − (b + d)(N − 1)∆t d(N)∆t
0 0 0 · · · b(N − 1)∆t 1 − d(N)∆t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the notation (b+d)(i) = [b(i)+d(i)] for i = 1, 2, . . . , N . Matrix P (∆t)
is a stochastic matrix, i.e., the column sums equal one.

The DTMC SIS epidemic process {I(t)}∞t=0 is now completely formulated.
Given an initial probability vector p(0), it follows that p(∆t) = P (∆t)p(0).
The identity (3.4) expressed in matrix and vector notation is

p(t + ∆t) = P (∆t)p(t) = Pn+1(∆t)p(0), (3.5)

where t = n∆t.
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Difference equations for the mean and the higher order moments of the
epidemic process can be obtained directly from the difference equations in
(3.4). For example, the expected value for I(t) is E(I(t)) =

∑N
i=0 ipi(t).

Multiplying (3.4) by i and summing on i leads to

E(I(t + ∆t)) =
N∑

i=0

ipi(t + ∆t)

=
N∑

i=1

ipi−1(t)b(i − 1)∆t +
N−1∑

i=0

ipi+1(t)d(i + 1)∆t

+
N∑

i=0

ipi(t) −
N∑

i=0

ipi(t)b(i)∆t −
N∑

i=0

ipi(t)d(i)∆t.

Simplifying and substituting the expressions βi(N − i)/N and (b + γ)i for
b(i) and d(i), respectively, yields

E(I(t + ∆t)) = E(I(t)) +
N∑

i=1

pi−1(t)
β(i − 1)(N − [i − 1])

N
∆t

−
N−1∑

i=0

pi+1(t)(b + γ)(i + 1)∆t

= E(I(t)) + [β − (b + γ)]∆tE(I(t)) − β

N
∆tE(I2(t)),

where E(I2(t)) =
∑N

i=0 i2pi(t) (see, e.g., [8]). The difference equation for the
mean depends on the second moment. Difference equations for the second and
the higher order moments depend on even higher order moments. Therefore,
these equations cannot be solved unless some additional assumptions are
made regarding the higher order moments. However, because E(I2(t)) ≥
E2(I(t)), the mean satisfies the following inequality:

E(I(t + ∆t)) − E(I(t))
∆t

≤ [β − (b + γ)] E(I(t)) − β

N
E2(I(t)). (3.6)

As ∆t → 0,

dE(I(t))
dt

≤ [β − (b + γ)] E(I(t)) − β

N
E2(I(t))

=
β

N
[N − E(I(t))] E(I(t)) − (b + γ)E(I(t)) (3.7)

The right side of (3.7) is the same as the differential equation for I(t) in
(3.1), if, in (3.1), I(t) and S(t) are replaced by E(I(t)) and N − E(I(t)),
respectively. The differential inequality implies that the mean of the random
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variable I(t) in the stochastic SIS epidemic process is less than the solution
I(t) to the deterministic differential equation in (3.1).

Some properties of the DTMC SIS epidemic model follow easily from
Markov chain theory [6, 47]. States are classified according to their connect-
edness in a directed graph or digraph. The digraph of the SIS Markov chain
model is illustrated in Fig. 3.3, where i = 0, 1, . . . , N are the infected states.

Fig. 3.3 Digraph of the stochastic SIS epidemic model

The states {0, 1, . . . , N} can be divided into two sets consisting of the
recurrent state, {0}, and the transient states, {1, . . . , N}. The zero state is
an absorbing state. It is clear from the digraph that beginning from state 0
no other state can be reached; the set {0} is closed. In addition, any state in
the set {1, 2, . . . , N} can be reached from any other state in the set, but the
set is not closed because p01(∆t) > 0. For transient states it can be shown
that elements of the transition matrix have the following property [6,47]: Let
Pn = (p(n)

ij ), where p
(n)
ij is the (i, j) element of the nth power of the transition

matrix, Pn, then
lim

n→∞
p
(n)
ij = 0

for any state j and any transient state i. The limit of Pn as n → ∞ is a
stochastic matrix; all rows are zero except the first one which has all ones.
From the relationship (3.5) and Markov chain theory, it follows that

lim
t→∞

p(t) = (1, 0, . . . , 0)T ,

where t = n∆t.
The preceding result implies, in the DTMC SIS epidemic model, that the

population approaches the disease-free equilibrium (probability of absorption
is one), regardless of the magnitude of the basic reproduction number. Com-
pare this stochastic result with the asymptotic dynamics of the deterministic
SIS epidemic model (Theorem 1). Because this stochastic result is asymptotic,
the rate of convergence to the disease-free equilibrium can be very slow. The
mean time until the disease-free equilibrium is reached (absorption) depends
on the initial conditions and the parameter values, but can be extremely
long (as shown in the numerical example in the next section). The expected
duration of an epidemic (mean time until absorption) and the probability
distribution conditioned on nonabsorption are discussed in Sect. 3.6.
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3.3.2 Numerical Example

A sample path or stochastic realization of the stochastic process {I(t)}∞t=0 for
t ∈ {0,∆t, 2∆t, . . .} is an assignment of a possible value to I(t) based on
the probability vector p(t). A sample path is a function of time, so that it
can be plotted against the solution of the deterministic model. For illustrative
purposes, we choose a population size of N = 100, ∆t = 0.01, β = 1, b = 0.25,
γ = 0.25 and an initial infected population size of I(0) = 2. In terms of the
stochastic model,

Prob{I(0) = 2} = 1.

In this example, the basic reproduction number is R0 = 2. The deterministic
solution approaches an endemic equilibrium given by Ī = 50.

Three sample paths of the stochastic model are compared to the deter-
ministic solution in Fig. 3.4. One of the sample paths is absorbed before 200
time steps (the population following this path becomes disease-free) but two
sample paths are not absorbed during 2,000 time steps. These latter sample
paths follow more closely the dynamics of the deterministic solution. The
horizontal axis is the number of time steps ∆t. For ∆t = 0.01 and 2,000 time
steps, the solutions in Fig. 3.4 are graphed over the time interval [0, 20]. Each
sample path is not continuous because at each time step, t = ∆t, 2∆t, . . . ,
the sample path either stays constant (no change in state with probability
1− [b(i) + d(i)]∆t), jumps down one integer value (with probability d(i)∆t),
or jumps up one integer value (with probability b(i)∆t). For convenience,
these jumps are connected with vertical line segments. Each sample path is
continuous from the right but not from the left.

The entire probability distribution, p(t), t = 0,∆t, . . ., associated with this
particular stochastic process can be obtained by applying (3.5). A MatLab
program is provided in the last section that generates the probability distri-
bution as a function of time (Fig. 3.5). Note that the probability distribution
is bimodal, part of the distribution is at zero and the remainder of the dis-
tribution follows a path similar to the deterministic solution. Eventually, the
probability distribution at zero approaches one. This bimodal distribution
is important; the part of the distribution that does not approach zero (at
time step 2,000) is known as the quasistationary probability distribution (see
Sect. 3.6.2).

3.3.3 SIR Epidemic Model

Let S(t), I(t), and R(t) denote discrete random variables for the number
of susceptible, infected, and immune individuals at time t, respectively. The
DTMC SIR epidemic model is a bivariate process because there are two
independent random variables, S(t) and I(t). The random variable R(t) =
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Fig. 3.4 Three sample paths of the DTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, N = 100,
β = 1, b = 0.25, γ = 0.25, and I(0) = 2

N−S(t)−I(t). The bivariate process {(S(t), I(t))}∞t=0 has a joint probability
function given by

p(s,i)(t) = Prob{S(t) = s, I(t) = i}.

This bivariate process has the Markov property and is time-homogeneous.
Transition probabilities can be defined based on the assumptions in the SIR

deterministic formulation. First, assume that ∆t can be chosen sufficiently
small such that at most one change in state occurs during the time interval
∆t. In particular, there can be either a new infection, a birth, a death, or a
recovery. The transition probabilities are denoted as follows:

p(s+k,i+j),(s,i)(∆t) = Prob{(∆S,∆I) = (k, j)|(S(t), I(t)) = (s, i)},

where ∆S = S(t + ∆t) − S(t). Hence,
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Fig. 3.5 Probability distribution of the DTMC SIS epidemic model. Parameter values are
the same as in Fig. 3.4

p(s+k,i+j),(s,i)(∆t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

βis/N∆t, (k, j) = (−1, 1)
γi∆t, (k, j) = (0,−1)
bi∆t, (k, j) = (1,−1)
b(N − s − i)∆t, (k, j) = (1, 0)
1 − βis/N∆t
− [γi + b(N − s)]∆t, (k, j) = (0, 0)

0, otherwise.

(3.8)

The time step ∆t must be chosen sufficiently small such that each of the tran-
sition probabilities lie in the interval [0, 1]. Because the states are now ordered
pairs, the transition matrix is more complex than for the SIS epidemic model
and its form depends on how the states (s, i) are ordered. However, apply-
ing the Markov property, the difference equation satisfied by the probability
p(s,i)(t + ∆t) can be expressed in terms of the transition probabilities,

p(s,i)(t + ∆t) = p(s+1,i−1)(t)
β

N
(i − 1)(s + 1)∆t + p(s,i+1)(t)γ(i + 1)∆t

+p(s−1,i+1)(t)b(i + 1)∆t + p(s−1,i)(t)b(N − s + 1 − i)∆t

+p(s,i)(t)
(

1 −
[

β

N
is + γi + b(N − s)

]

∆t

)

. (3.9)

The digraph associated with the SIR Markov chain lies on a two-dimensional
lattice. It is easy to show that the state (N, 0) is absorbing (p(N,0),(N,0)
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(∆t)= 1) and that all other states are transient. Thus, asymptotically, all
sample paths eventually are absorbed into the disease-free state (N, 0). Com-
pare this result to the deterministic SIR epidemic model (Theorem 2).

Difference equations for the mean and higher order moments can be de-
rived from (3.9) as was done for the SIS epidemic model, e.g., E(S(t)) =
∑N

s=0 sp(s,i)(t) and E(I(t)) =
∑N

i=0 ip(s,i)(t). However, these difference equa-
tions cannot be solved directly because they depend on higher order moments.

3.3.4 Numerical Example

Three sample paths of the DTMC SIR model are compared to the solution
of the deterministic model in Fig. 3.6. In this example, ∆t = 0.01, N = 100,
β = 1, b = 0, γ = 0.5, and (S(0), I(0)) = (98, 2). In the stochastic model,

Prob{(S(0), I(0)) = (98, 2)} = 1.

The basic reproduction number and the initial replacement number are both
greater than one; R0 = 2 and R0S(0)/N = 1.96. According to Theorem 2
part (3), there is an epidemic (an increase in the number of cases). The
epidemic is easily seen in the behavior of the deterministic solution. Each of
the three sample paths also illustrate an epidemic curve.

3.4 Formulation of CTMC Epidemic Models

The CTMC epidemic processes are defined on a continuous time scale, t ∈
[0,∞), but the states S(t), I(t), and R(t) are discrete random variables, i.e.,

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N}.

3.4.1 SIS Epidemic Model

In the CTMC SIS epidemic model, the stochastic process depends on the
collection of discrete random variables {I(t)}, t ∈ [0,∞) and their associated
probability functions p(t) = (p0(t), . . . , pN (t))T , where

pi(t) = Prob{I(t) = i}.

The stochastic process has the Markov property, that is,

Prob{I(tn+1)|I(t0), I(t1), . . . , I(tn)} = Prob{I(tn+1)|I(tn)}
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Fig. 3.6 Three sample paths of the DTMC SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, N = 100,
β = 1, b = 0, γ = 0.5, S(0) = 98, and I(0) = 2

for any sequence of real numbers satisfying 0 ≤ t0 < t1 < · · · < tn < tn+1.
The transition probability at time tn+1 only depends on the most recent time
tn.

The transition probabilities are defined for a small time interval ∆t. But
in a CTMC model, the transition probabilities are referred to as infinitesimal
transition probabilities because they are valid for sufficiently small ∆t. There-
fore, the term o(∆t) is included in the definition [limt→∞(o(∆t)/∆t) = 0].
The infinitesimal transition probabilities are defined as follows:

pji(∆t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β

N
i(N − i)∆t + o(∆t), j = i + 1

(b + γ)i∆t + o(∆t), j = i − 1

1 −
[

β

N
i(N − i) + (b + γ)i

]

∆t + o(∆t), j = i

o(∆t), otherwise.

Because ∆t is sufficiently small, there are only three possible changes in
states:

i → i + 1, i → i − 1, or i → i.

Using the same notation as for the DTMC model, let b(i) denote a birth (new
infection) and d(i) denote a death or recovery. Then
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pji(∆t) =

⎧
⎪⎪⎨

⎪⎪⎩

b(i)∆t + o(∆t), j = i + 1
d(i)∆t + o(∆t), j = i − 1
1 − [b(i) + d(i)]∆t + o(∆t), j = i
o(∆t), otherwise.

Applying the Markov property and the infinitesimal transitional proba-
bilities, a continuous time analogue of the transition matrix can be defined.
Instead of a system of difference equations, a system of differential equations
is obtained. Assume Prob{I(0) = i0} = 1. Then pi,i0(∆t) = pi(∆t) and

pi(t + ∆t) = pi−1(t)b(i − 1)∆t + pi+1(t)d(i + 1)∆t

+ pi(t)(1 − [b(i) + d(i)]∆t) + o(∆t).

These equations are the same as the DTMC equations (3.4), except o(∆t) is
added to the right side. Subtracting pi(t), dividing by ∆t, and letting ∆t → 0,
leads to

dpi

dt
= pi−1b(i − 1) + pi+1d(i + 1) − pi[b(i) + d(i)] (3.10)

for i = 1, 2, . . . , N and dp0/dt = p1d(1). These latter equations are known as
the forward Kolmogorov differential equations [47]. In matrix notation, they
can be expressed as

dp

dt
= Qp, (3.11)

where p(t) = (p0(t), . . . , pN (t))T and matrix Q is defined as follows:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 d(1) 0 · · · 0
0 −[b(1) + d(1)] d(2) · · · 0
0 b(1) −[b(2) + d(2)] · · · 0
0 0 b(2) · · · 0
...

...
...

...
...

0 0 0 · · · d(N)
0 0 0 · · · −d(N)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b(i) = βi(N−i)/N and d(i) = (b+γ)i. Matrix Q is referred to as the infinites-
imal generator matrix or simply the generator matrix [6,47], More generally,
the differential equations dP/dt = QP are known as the forward Kolmogorov
differential equations, where P ≡ (pji(t)) is the matrix of infinitesimal tran-
sition probabilities. It is interesting to note that the transition matrix P (∆t)
of the DTMC model and the generator matrix Q are related as follows:

Q = lim
∆t→0

P (∆t) − I

∆t
.

The generator matrix Q has a zero eigenvalue with corresponding eigen-
vector (1, 0, . . . , 0)T . The remaining eigenvalues are negative or have negative
real part. This can be seen by applying Gershgorin’s circle theorem and the
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fact that the submatrix Q̃ of Q, where the first row and the first column
are deleted, is nonsingular [43]. Therefore, limt→∞ p(t) = (1, 0, 0, . . . , 0)T .
Eventual absorption occurs in the CTMC SIS epidemic model. Compare this
stochastic result with Theorem 1.

Differential equations for the mean and higher order moments of I(t) can
be derived from the differential equations (3.11). As was shown for the DTMC
epidemic model, the differential equations (3.10) can be multiplied by i, then
summed over i. However, we present an alternate method for obtaining the
differential equations for the mean and higher order moments using generat-
ing functions. Either the probability generating function (pgf) or the moment
generating function (mgf) can be used to derive the equations. The pgf for
I(t) is defined as

P(θ, t) = E(θI(t)) =
N∑

i=0

pi(t)θi

and the mgf as

M(θ, t) = E(eθI(t)) =
N∑

i=0

pi(t)eiθ.

We use the mgf to derive the equations because the method of derivation
is simpler than with the pgf. In addition, the moments of the distribution
corresponding to I(t) can be easily calculated from the mgf,

∂kM

∂θk

∣
∣
∣
∣
θ=0

= E(Ik(t))

for k = 1, . . . , n.
First, we derive a differential equation satisfied by the mgf. Multiplying

the equations in (3.10) by eiθ and summing on i, leads to

∂M

∂t
=

N∑

i=0

dpi

dt
eiθ

= eθ
N∑

i=1

pi−1e
(i−1)θb(i − 1) + e−θ

N−1∑

i=0

pi+1e
(i+1)θd(i + 1)

−
N∑

i=0

pie
iθ[b(i) + d(i)].

Simplifying and substituting βi(N − i)/N and (b + γ)i for b(i) and d(i),
respectively, yields
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∂M

∂t
= β(eθ − 1)

N∑

i=1

ipie
iθ + (b + γ)(e−θ − 1)

N∑

i=1

ipie
iθ

− β

N
(eθ − 1)

N∑

i=1

i2pie
iθ.

The summations on the right side of the preceding equation can be replaced
with ∂M/∂θ or ∂2M/∂θ2. Then the following second order partial differential
equation is obtained for the mgf:

∂M

∂t
= [β(eθ − 1) + (b + γ)(e−θ − 1)]

∂M

∂θ
− β

N
(eθ − 1)

∂2M

∂θ2
. (3.12)

Bailey [13] derives a general form for the partial differential equation satisfied
by the mgf and the pgf based on the infinitesimal transition probabilities for
the process.

The partial differential equation for the mgf, (3.12), is used to obtain an
ordinary differential equation satisfied by the mean of I(t). Differentiating
(3.12) with respect to θ and evaluating at θ = 0 yields an ordinary differential
equation satisfied by the mean E(I(t)),

dE(I(t))
dt

= [β − (b + γ)]E(I(t)) − β

N
E(I2(t)).

Because the differential equation for the mean depends on the second mo-
ment, it cannot be solved directly, but as was shown for the DTMC SIS
epidemic model in (3.7), the mean of the stochastic SIS epidemic model is
less than the deterministic solution. The differential equations for the second
moment and for the variance depend on higher order moments. These higher
order moments are often approximated by lower order moments by making
some assumptions regarding their distributions (e.g., normality or lognormal-
ity), referred to as moment closure techniques (see, e.g., [27,34]). Then these
differential equations can be solved to give approximations for the moments.

3.4.2 Numerical Example

To numerically compute a sample path of a CTMC model, we need to use
the fact that the interevent time has an exponential distribution. This follows
from the Markov property. The exponential distribution has what has been
called the “memoryless property.”

Assume I(t) = i. Let Ti denote the interevent time, a continuous random
variable for the time to the next event given the process is in state i. Let
Hi(t) denote the probability the process remains in state i for a period of
time t. Then Hi(t) = Prob{Ti > t}. It follows that
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Hi(t + ∆t) = Hi(t)pii(∆t) = Hi(t)(1 − [b(i) + d(i)]∆t) + o(∆t).

Subtracting Hi(t) and dividing by ∆t, the following differential equation is
obtained:

dHi

dt
= −[b(i) + d(i)]Hi.

Since Hi(0) = 1, the solution to the differential equation is Hi(t) =
exp(−[b(i) + d(i)]t). Therefore, the interevent time Ti is an exponential ran-
dom variable with parameter b(i) + d(i). The cumulative distribution of Ti

is
Fi(t) = Prob{Ti ≤ t} = 1 − exp(−[b(i) + d(i)]t)

[6, 47].
The uniform random variable on [0, 1] can be used to numerically compute

the interevent time. Let U be a uniform random variable on [0, 1]. Then

Prob{F−1
i (U) ≤ t} = Prob{Fi(F−1

i (U)) ≤ Fi(t)}
= Prob{U ≤ Fi(t)} = Fi(t)

The interevent time Ti, given I(t) = i, satisfies

Ti = F−1
i (U) = − ln(1 − U)

b(i) + d(i)
= − ln(U)

b(i) + d(i)
,

using the properties of uniform distributions.
In Fig. 3.7, three sample paths for the CTMC SIS epidemic model are

compared to the deterministic solution. Parameter values are b = 0.25, γ =
0.25, β = 1, N = 100, and I(0) = 2. For the stochastic model,

Prob{I(0) = 2} = 1.

The basic reproduction number is R0 = 2. One sample path in Fig. 3.7 is ab-
sorbed rapidly (the population following this path becomes disease-free). The
sample paths for the CTMC model are not continuous for the same reasons
given for the DTMC model. With each change, the process either jumps up
one integer value (with probability b(i)/[b(i) + d(i)]) or jumps down one in-
teger value (with probability d(i)/[b(i) + d(i)]). Sample paths are continuous
from the right but not from the left. Compare the sample paths in Fig. 3.7
with the three sample paths in the DTMC SIS epidemic model in Fig. 3.4.

3.4.3 SIR Epidemic Model

A derivation similar to the SIS epidemic model can be applied to the SIR
epidemic model. The difference, of course, is that the SIR epidemic process
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Fig. 3.7 Three samples paths of the CTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are b = 0.25, γ = 0.25, β = 1,
N = 100, and I(0) = 2. Compare with Fig. 3.4

is bivariate, {(S(t), I(t))}, where R(t) = N − S(t) − I(t). Assumptions sim-
ilar to those for the DTMC SIR epidemic model (3.8) apply to the CTMC
SIR epidemic model, except that o(∆t) is added to each of the infinitesimal
transition probabilities.

For the bivariate process, a joint probability function is associated with
each pair of random variables (S(t), I(t)), p(s,i)(t) = Prob{(S(t), I(t)) =
(s, i)}. A system of forward Kolmogorov differential equations can be derived,

dp(s,i)

dt
= p(s+1,i−1)

β

N
(i − 1)(s + 1) + p(s,i+1)γ(i + 1)

+p(s−1,i+1)b(i + 1) + p(s−1,i)b(N − s + 1 − i)

−p(s,i)

[
β

N
is + γi + b(N − s)

]

.

These differential equations are the limiting equations (as ∆t → 0) of the
difference equations in (3.9). Differential equations for the mean and higher
order moments can be derived. However, as was true for the other epidemic
processes, they do not form a closed system, i.e., each successive moment
depends on higher order moments. Moment closure techniques can be applied
to approximate the solutions to these moment equations [27,34].
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The SIR epidemic process is Markovian and time homogeneous. In addi-
tion, the disease-free state is an absorbing state. In Sect. 3.6.3, we discuss
the final size of the epidemic, which is applicable to the deterministic and
stochastic SIR epidemic model in the case R0 > 1 and b = 0 (Theorem 2,
part (3)).

3.5 Formulation of SDE Epidemic Models

Assume the time variable is continuous, t ∈ [0,∞) and the states S(t), I(t),
and R(t) are continuous random variables, that is,

S(t), I(t),R(t) ∈ [0, N ].

3.5.1 SIS Epidemic Model

The stochastic SIS epidemic model depends on the number of infectives,
{I(t)}, t ∈ [0,∞), where I(t) has an associated probability density function
(pdf), p(x, t),

Prob{a ≤ I(t) ≤ b} =
∫ b

a

p(x, t)dx.

The stochastic SIS epidemic model has the Markov property, i.e.,

Prob{I(tn) ≤ y|I(t0), I(t1), . . . , I(tn−1)} = Prob{I(tn) ≤ y|I(tn−1)}

for any sequence of real numbers 0 ≤ t0 < t1 < · · · < tn−1 < tn. Denote the
transition pdf for the stochastic process as

p(y, t + ∆t;x, t),

where at time t, I(t) = x, and at time t + ∆t, I(t + ∆t) = y. The process is
time homogeneous if the transition pdf does not depend on t but does depend
on the length of time, ∆t. The stochastic process is referred to as a diffusion
process if it is a Markov process in which the infinitesimal mean and variance
exist. The stochastic SIS epidemic model is a time homogeneous, diffusion
process. The infinitesimal mean and variance are defined next.

For the stochastic SIS epidemic model, it can be shown that the pdf sat-
isfies a forward Kolmogorov differential equation. This equation is a second
order partial differential equation [6,21], a continuous analogue of the forward
Kolmogorov differential equations for the CTMC model in (3.10). Assume
Prob{I(0) = i0} = 1 and let p(i, t; i0, 0) = p(i, t) = pi(t). Then the system of
differential equations in (3.10) can be expressed as a finite difference scheme



3 An Introduction to Stochastic Epidemic Models 101

in the variable i with ∆i = 1,

dpi

dt
= pi−1b(i − 1) + pi+1d(i + 1) − pi[b(i) + d(i)]

= −{pi+1[b(i + 1) − d(i + 1)] − pi−1[b(i − 1) − d(i − 1)]}
2∆i

+
1

2

{pi+1[b(i + 1) + d(i + 1)] − 2pi[b(i) + d(i)] + pi−1[b(i − 1) + d(i − 1)]}
(∆i)2

.

Let i = x, ∆i = ∆x and pi(t) = p(x, t). Then the limiting form of the pre-
ceding equation (as ∆x → 0) is the forward Kolmogorov differential equation
for p(x, t):

∂p(x, t)
∂t

=
∂

∂x
{[b(x) − d(x)]p(x, t)} +

1
2

∂2

∂x2
{[b(x) + d(x)] p(x, t)} .

Substituting b(x) = βx(N − x)/N and d(x) = (b + γ)x yields

∂p(x, t)
∂t

=
∂

∂x

{[
β

N
x(N − x) − (b + γ)x

]

p(x, t)
}

+
1
2

∂2

∂x2

{[
β

N
x(N − x) + (b + γ)x

]

p(x, t)
}

.

The coefficient of p(x, t) in the first term on the right side of the preceding
equation, [βx(N − x)/N − (b + γ)x], is the infinitesimal mean and the coeffi-
cient of p(x, t) in the second term, [βx(N−x)/N+(b+γ)x], is the infinitesimal
variance. More generally, the forward Kolmogorov differential equations can
be expressed in terms of the transition probabilities, p(y, s;x, t). To solve the
differential equation requires boundary conditions for x = 0, N and initial
conditions for t = 0. An explicit solution is not possible because of the non-
linearities. We derive a SDE that is much simpler to solve numerically and
whose solution is a sample path of the stochastic process.

A SDE for the SIS epidemic model can be derived from the CTMC SIS
epidemic model [5]. The assumptions in the CTMC SIS epidemic model are
restated in terms of ∆I = I(t + ∆t) − I(t). Assume

Prob{∆I = j|I(t) = i} =

⎧
⎪⎪⎨

⎪⎪⎩

b(i)∆t + o(∆t), j = i + 1
d(i)∆t + o(∆t), j = i − 1
1 − [b(i) + d(i)]∆t + o(∆t), j = i
o(∆t), j 
= i + 1, i − 1, i

In addition, assume that ∆I has an approximate normal distribution for
small ∆t. The expectation and the variance of ∆I are computed.

E(∆I) = b(I)∆t − d(I)∆t + o(∆t)
= [b(I) − d(I)]∆t + o(∆t) = µ(I)∆t + o(∆t).
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V ar(∆I) = E(∆I)2 − [E(∆I)]2

= b(I)∆t + d(I)∆t + o(∆t)
= [b(I) + d(I)]∆t + o(∆t) = σ2(I)∆t + o(∆t),

where the notation means b(I) = βi(N − i)/N and d(I) = (b + γ)i given
that I(t) = i. Because the random variable ∆I is approximately normally
distributed, ∆I(t) ∼ N(µ(I)∆t, σ2(I)∆t),

I(t + ∆t) = I(t) + ∆I(t)

≈ I(t) + µ(I)∆t + σ(I)
√

∆t η,

where η ∼ N(0, 1).
The difference equation I(t+∆t) = I(t)+µ(I)∆t+σ(I)

√
∆t η is Euler’s

method applied to the following Itô SDE:

dI
dt

= µ(I) + σ(I)
dW

dt
,

where W is the Wiener process, W (t + ∆t) − W (t) ∼ N(0,∆t) [21, 31, 32].
Euler’s method converges to the Itô SDE provided the coefficients, µ(I) and
σ(I), satisfy certain smoothness and growth conditions [31, 32]. The coef-
ficients for the stochastic SIS epidemic model are µ(I) = b(I) − d(I) and
σ(I) =

√
b(I) + d(I), where

b(I) =
β

N
I(N − I) and d(I) = (b + γ)I.

Substituting these values into the Itô SDE gives the SDE SIS epidemic model,

dI
dt

=
β

N
I(N − I) − (b + γ)I +

√
β

N
I(N − I) + (b + γ)I dW

dt
. (3.13)

From the Itô SDE, it can be seen that when I(t) = 0, dI/dt = 0. The
disease-free equilibrium is an absorbing state for the Itô SDE.

We digress briefly to discuss the Wiener process {W (t)}, t ∈ [0,∞). The
Wiener process depends continuously on t, W (t) ∈ (−∞,∞). It is a diffusion
process, but has some additional nice properties. The Wiener process has
stationary, independent increments, that is, the increments ∆W depend only
on ∆t. They are independent of t and the value of W (t):

∆W = W (t + ∆t) − W (t) ∼ N(0,∆t).

Two sample paths of a Wiener process are graphed in Fig. 3.8.
The notation dW (t)/dt is only for convenience because sample paths of

W (t) are continuous but nowhere differentiable [12, 21]. The Itô SDE (3.13)
should be expressed as a stochastic integral equation but the SDE notation
is standard.
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Fig. 3.8 Two sample paths of a Wiener process

3.5.2 Numerical Example

Three sample paths of the SDE SIS epidemic model are graphed in Fig. 3.9.
The parameter values are β = 1, b = γ = 0.25, and N = 100. The initial
condition is I(0) = 2. For the stochastic model the pdf for the initial condition
is p(x, 0) = 2δ(x − 2), where δ(x) is the Dirac delta function. The basic
reproduction number is R0 = 2, so that the deterministic solution approaches
the endemic equilibrium Ī = 50. The MatLab program which generated these
sample paths is given in the last section. Compare the sample paths of the
Itô SDE in Fig. 3.9 with those for the DTMC and the CTMC models in
Figs. 3.4 and 3.7. The sample paths for the Itô SDE are continuous, whereas
the sample paths of the DTMC and the CTMC models are discontinuous.

3.5.3 SIR Epidemic Model

A derivation similar to the Itô SDE for the SIS epidemic model can be applied
to the bivariate process {(S(t), I(t))} [5, 6]. Similar assumptions are made
regarding the change in the random variables, ∆S and ∆I, as in the transition
probabilities for the DTMC and CTMC models. In addition, we assume that
the change in these random variables is approximately normally distributed.
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Fig. 3.9 Three sample paths of the SDE SIS epidemic model are graphed with the de-
terministic solution (dashed curve). The parameter values are b = 0.25, γ = 0.25, β = 1,
N = 100, I(0) = 2. Compare with Figs. 3.4 and 3.7

To simplify the derivation, we assume there are no births, b = 0, in the SIR
epidemic model.

Let ∆X(t) = (∆S,∆I)T . Then the expectation of ∆X(t) to order ∆t is

E(∆X(t)) =

⎛

⎜
⎝

− β

N
SI

β

N
SI − γI

⎞

⎟
⎠∆t.

The covariance matrix of ∆X(t) is V (∆X(t)) = E(∆X(t)[∆X(t)]T ) −
E(∆X(t))E(∆X(t))T ≈ E(∆X(t)[∆X(t)]T ) because the elements in the sec-
ond term are o([∆t]2). Then the covariance matrix of ∆X(t) to order ∆t is

V (∆X(t)) =

⎛

⎜
⎝

β

N
SI − β

N
SI

− β

N
SI β

N
SI + γI

⎞

⎟
⎠∆t

[5, 6]. The random vector X(t + ∆t) can be approximated as follows:

X(t + ∆t) = X(t) + ∆X(t) ≈ X(t) + E(∆X(t)) +
√

V (∆X(t)). (3.14)
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Because the covariance matrix is symmetric and positive definite, it has a
unique square root B

√
∆t =

√
V [43]. The system of equations (3.14) are an

Euler approximation to a system of Itô SDEs. For sufficiently smooth coeffi-
cients, the solution X(t) of (3.14) converges to the solution of the following
system of Itô SDEs:

dS
dt

= − β

N
SI + B11

dW1

dt
+ B12

dW2

dt

dI
dt

=
β

N
SI − γI + B21

dW1

dt
+ B22

dW2

dt

where W1 and W2 are two independent Wiener processes and B = (Bij)
[31,32].

3.5.4 Numerical Example

Three sample paths of the SDE SIR epidemic model are graphed with the de-
terministic solution in Fig. 3.10. The parameter values are ∆t = 0.01, β = 1,
b = 0, γ = 0.5, and N = 100 with initial condition I(0) = 2. The ba-
sic reproduction number and initial replacement number are R0 = 2 and
R0S(0)/N = 1.96, respectively. Compare the sample paths in Fig. 3.10 with
the sample paths for the DTMC SIR epidemic model in Fig. 3.6.

3.6 Properties of Stochastic SIS and SIR Epidemic
Models

In the next subsections, we concentrate on some of the properties of these
well-known stochastic epidemic models that distinguish them from their de-
terministic counterparts. Four important properties of stochastic epidemic
models include the following: probability of an outbreak, quasistationary
probability distribution, final size distribution of an epidemic and expected
duration of an epidemic. Each of these properties depend on the stochastic
nature of the process.

3.6.1 Probability of an Outbreak

An outbreak occurs when the number of cases escalates. A simple random
walk model (DTMC) or a linear birth and death process (CTMC) on the
set {0, 1, 2, . . .} can be used to estimate the probability of an outbreak. For
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Fig. 3.10 Three sample paths of the SDE SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, β = 1, b = 0,
γ = 0.5, N = 100, and I(0) = 2. Compare with Fig. 3.6

example, let X(t) be the random variable for the position at time t on the set
{0, 1, 2, . . .} in a random walk model. State 0 is absorbing and the remaining
states are transient. If X(t) = x, then in the next time interval, there is
either a move to the right x → x + 1 with probability p or a move to the
left, x → x− 1 with probability q, with the exception of state 0, where there
is no movement (p + q = 1). In the random walk model, either the process
approaches state 0 or approaches infinity. The probability of absorption into
state 0 depends on p, q, and the initial position. Let X(t) = x0 > 0, then it
can be shown that

lim
t→∞

Prob{X(t) = 0} =

⎧
⎨

⎩

1, if p ≤ q(
q

p

)x0

, if p > q
(3.15)

(e.g., [6, 13,45]).
The identity (3.15) is also valid for a linear birth and death process in a

DTMC or CTMC model, where b and d are replaced by λi and µi, where i is
the position. In the linear birth and death process, the infinitesimal transition
probabilities satisfy
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pi+j,i(∆t) =

⎧
⎨

⎩

λi∆t + o(∆t), j = 1
µi∆t + o(∆t), j = −1
1 − (λ + µ)i∆t + o(∆t), j = 0.

The identity (3.15) holds with λ replacing p and µ replacing q. The probabil-
ity of absorption is one if λ ≤ µ. But if λ > µ the probability of absorption
decreases to (µ/λ)x0 . In this latter case, the probability of population persis-
tence is 1−(µ/λ)x0 . This identity can be used to approximate the probability
of an outbreak in the DTMC and CTMC SIS and SIR epidemic models, where
population persistence can be interpreted as an outbreak. The approximation
improves the larger the population size N and the smaller the initial number
of infected individuals.

Suppose the initial number of infected individuals i0 is small and the pop-
ulation size N is large. Then the “birth” and “death” functions in an SIS
epidemic model are given by

Birth = b(i) =
β

N
i(N − i) ≈ βi

and
Death = d(i) = (b + γ)i.

Applying the identity (3.15) and the preceding approximations for the birth
and death functions leads to the approximation µ/λ = (b + γ)/β = 1/R0,
that is,

Prob{I(t) = 0} ≈

⎧
⎨

⎩

1, if R0 ≤ 1
(

1
R0

)i0

, if R0 > 1.

Therefore, the probability of an outbreak is

Probability of an Outbreak ≈

⎧
⎨

⎩

0, if R0 ≤ 1

1 −
(

1
R0

)i0

, if R0 > 1 .
(3.16)

The estimates in (3.16) apply to the stochastic SIS and SIR epidemic
models only for a range of times, t ∈ [T1, T2]. In the stochastic epidemic
models, eventually limt→∞ Prob{I(t) = 0} = 1 because zero is an absorbing
state. The range of times for which the estimate (3.16) holds can be quite
long when N is large and i0 is small (see Fig. 3.5). In Fig. 3.5, N = 100,
R0 = 2, and i0 = 2, so that applying (3.16) leads to the estimate for the
probability of no outbreak as (1/2)2 = 1/4. The value 1/4 is very close to the
mass of the distribution concentrated at zero, Prob{I(t) = 0}. In Fig. 3.11,
Prob{I(t) = 0} for the DTMC SIS epidemic model is graphed for different
values of R0. There is close agreement between the numerical values and the
estimate (1/R0)i0 when i0 = 1, 2, 3 [(1/R0)i0 = 0.5, 0.25, 0.125].
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Fig. 3.11 Graphs of Prob{I(t) = 0} for R0 = 2, N = 100, and Prob{I(0) = i0} = 1,
i0 = 1, 2, 3

3.6.2 Quasistationary Probability Distribution

Because the zero state in the stochastic SIS epidemic models is absorbing, the
unique stationary distribution approached asymptotically by the stochastic
process is the disease-free equilibrium. However, as seen in the previous sec-
tion and in Fig. 3.5, prior to absorption, the process approaches what appears
to be a stationary distribution that is different from the disease-free equilib-
rium. This distribution is known as the quasistationary probability distri-
bution (first investigated in the 1960s [18]). The quasistationary probability
distribution can be obtained from the distribution conditioned on nonextinc-
tion (i.e., conditional on the disease-free equilibrium not being reached).

Let the distribution conditioned on nonextinction for the CTMC SIS epi-
demic model be denoted as q(t) = (q1(t), . . . , qN (t))T . Then qi(t) is the prob-
ability I(t) = i given that I(s) > 0 for t > s (the disease-free equilibrium
has not been reached by time t), i.e.,

qi(t) = Prob{I(t) = i|I(s) > 0, t > s},

i = 1, 2, . . . , N . Because the zero state is absorbing, the probability
Prob{I(s) > 0, t > s} = 1 − p0(t). Therefore,
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qi(t) =
pi(t)

1 − p0(t)
, i = 1, 2, . . . , N. (3.17)

The forward Kolmogorov differential equations for pi given in (3.10) can be
used to derive a system of differential equations for the qi.

Differentiating the expression for qi in (3.17) with respect to t and applying
the identity for dpi/dt in (3.10) leads to

dqi

dt
=

dpi/dt

1 − p0
+ (b + γ)q1

pi

1 − p0

for i = 1, 2, . . . , N . In matrix notation, the system of differential equations
for q = (q1, . . . , qN )T are similar to the forward Kolmogorov differential equa-
tions,

dq

dt
= Q̃q + (b + γ)q1q,

where matrix Q̃ is the same as matrix Q in (3.11) with the first row and
column deleted. Matrix Q̃ is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−[b(1) + d(1)] d(2) · · · 0
b(1) −[b(2) + d(2)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N)
0 0 · · · −d(N)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where b(i) = βi(N − i)/N and d(i) = (b + γ)i.
Now, the quasistationary probability distribution can be defined. The

quasistationary probability distribution is the stationary distribution (time-
independent solution) q∗ = (q∗1 , . . . , q∗N )T satisfying

Q̃q∗ = −(b + γ)q∗1q∗. (3.18)

Although q∗ cannot be solved directly from the system of equations (3.18),
it can be solved indirectly via an iterative scheme (see, e.g., [38, 39]).

The quasistationary distribution is related to the eigenvalues of the orig-
inal matrix Q, where dp/dt = Qp. The solution to the forward Kolmogorov
differential equations (3.11) satisfy

p(t) = v0 + v1e
r1t + · · · + vNerN t,

where v0 = (1, 0, 0, . . . , 0)T [28,38,39]. Since matrix Q is the same as Q̃, with
the first row and column deleted, the vector v1 = (−1, q∗1 , q∗2 , . . . , q∗N )T is an
eigenvector of Q corresponding to the eigenvalue r1 = −(b + γ)q∗1 , that is,

Qv1 = r1v1
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so that

p(t) = (1, 0, 0, . . . , 0)T + (−1, q∗1 , q∗2 , . . . , q∗N )T er1t + · · · + vNerN t.

Nasell discusses two approximations to the quasistationary probability dis-
tribution [38–40]. One approximation assumes d(1) = 0. For this approxima-
tion, the system of differential equations for q simplify to

dq

dt
= Q1q, (3.19)

where

Q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−b(1) d(2) · · · 0
b(1) −[b(2) + d(2)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N)
0 0 · · · −d(N)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

System (3.19) has a unique stable stationary distribution, p1 = (p1
1, . . . , p

1
N )T ,

where Q1p
1 = 0. Because matrix Q1 is tridiagonal, p1 has an explicit solution

given by

p1
i = p1

1

(N − 1)!
i(N − i)!

(
R0

N

)i−1

, i = 2, . . . , N,

p1
1 =

[
N∑

k=1

(N − 1)!
k(N − k)!

(
R0

N

)k−1
]−1

.

[8, 38–40] A simple recursion formula can be easily applied to find this ap-
proximation:

p1
i+1 =

b(i)
d(i + 1)

p1
i

with the property that
∑N

i=1 p1
i = 1. The exact quasistationary distribution

and the first approximation (for the DTMC and the CTMC epidemic models)
are graphed for different values of R0 in Fig. 3.12. Note that the agreement
between the exact quasistationary distribution and the approximation im-
proves as R0 increases. In addition, note that the mean values are close to
the stable endemic equilibrium of the deterministic SIS epidemic model.

The second approximation to the quasistationary probability distribution
replaces d(i) by d(i − 1). Then the differential equations for q simplify to

dq

dt
= Q2q,

where
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Fig. 3.12 Exact quasistationary distribution and the first approximation to the quasista-
tionary distribution for R0 = 1.5, 2, and 3 when N = 50

Q2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−b(1) d(1) · · · 0
b(1) −[b(2) + d(1)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N − 1)
0 0 · · · −d(N)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The stable stationary solution is the unique solution p2 to Q2p
2 = 0. An

explicit solution for p2 is given by

p2
i = p2

1

(N − 1)!
(N − i)!

(
R0

N

)i−1

, i = 2, . . . , N,

p2
1 =

[
N∑

k=1

(N − 1)!
(N − k)!

(
R0

N

)k−1
]−1

(see [8, 38–40]).
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3.6.3 Final Size of an Epidemic

In the SIR epidemic model, eventually the epidemic ends. Of interest is the
total number of cases during the course of the epidemic, i.e., the final size
of the epidemic. If the epidemic is short term and involves a relatively small
population, it is reasonable to assume that there are no births nor deaths.
In addition, at the beginning of the epidemic, we assume all individuals are
either susceptible or infected, R(0) = 0. The initial population size is N =
S(0) + I(0). Then the final size of the epidemic is the number of susceptible
individuals that become infected during the epidemic plus the initial number
infected.

In the deterministic model, the final size of the epidemic can be computed
directly from the differential equations (3.3) (see Chap. 2, this volume). Inte-
grating the differential equation dI/dS = −1 + Nγ/βS, leads to

I(t) + S(t) = I(0) + S(0) +
Nγ

β
ln

S(t)
S(0)

.

Letting t → ∞,

S(∞) = I(0) + S(0) +
Nγ

β
ln

S(∞)
S(0)

.

The final size of the epidemic is

R(∞) = N − S(∞).

The final sizes in the deterministic SIR epidemic model are summarized in
Table 3.1 when I(0) = 1 and γ = 1 for various values of R0 and N .

Table 3.1 Final size of an epidemic when γ = 1 and I(0) = 1 for the deterministic SIR
epidemic model

R0 N
20 100 1,000

0.5 1.87 1.97 2.00

1 5.74 13.52 44.07

2 16.26 80.02 797.15
5 19.87 99.31 993.03

10 20.00 100.00 999.95

In the stochastic SIR epidemic model there is a distribution associated with
the final size of the epidemic. Let (s, i) denote the ordered pairs of values for
the susceptible and infected individuals in the CTMC model. The epidemic
ends when I(t) reaches zero. When the epidemic ends, the random variable
for the number of susceptible individuals ranges from 0 to N −I(0) = N − i0.
In particular, the set {(s, 0)}N−i0

s=0 is absorbing,
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lim
t→∞

N−i0∑

s=0

p(s,0)(t) = 1.

Daley and Gani [17] discuss two different methods to compute the probabil-
ity distribution associated with the final size. The simpler method, originally
developed by Foster [20], depends on the embedded Markov chain, that is, the
DTMC model associated with the CTMC model. To apply this method, the
transition matrix for the embedded Markov chain needs to be computed. This
requires computing the probability of a transition between the states (s, i),
where the states lie in the set {(s, i) : s = 0, 1, . . . , N ; i = 0, 1, . . . , N − s}. In
the embedded Markov chain for the final size, the times between transitions
are not important, only the probabilities.

For example, suppose N = 3, then the states in the transition matrix are

(s, i) ∈ {(3, 0), (2, 0), (1, 0), (0, 0), (2, 1), (1, 1), (0, 1), (1, 2), (0, 2), (0, 3)},
(3.20)

i.e., there are 10 ordered pairs of states. There are only two types of transi-
tions, either an infected individual recovers, (s, i) → (s, i−1) or a susceptible
individual becomes infected, (s, i) → (s − 1, i + 1). In the first type of tran-
sition, an infected individual recovers with probability

ps =
γi

γi + (β/N)is
=

γ

γ + (β/N)s
, s = 0, 1, 2.

In the second type of transition, a susceptible individual becomes infected
with probability 1 − ps. If the 10 states are ordered as in (3.20), then the
transition matrix for the embedded Markov chain is a 10 × 10 matrix with
the following form:

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 p2 0 0 0 0 0
0 0 1 0 0 p1 0 0 0 0
0 0 0 1 0 0 p0 0 0 0
− − − − − − − − − −
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0 p0 0
− − − − − − − − − −
0 0 0 0 1 − p2 0 0 0 0 0
0 0 0 0 0 1 − p1 0 0 0 p0

− − − − − − − − − −
0 0 0 0 0 0 0 1 − p1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The upper left 4 × 4 corner of matrix T is the identity matrix because these
are the four absorbing states. The first four rows are the transitions into
these four absorbing states. Matrix T is a stochastic matrix, whose column
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sums equal one (note that p0 = 1). Given the initial distribution for the
states p(0), then the distribution for the final size can be found from the first
four entries of limt→∞ T tp(0) (the remaining entries are zero). However, it
is not necessary to compute the limit as t → ∞, since the limit converges
by time t = 2N − 1. For this example, it is straightforward to compute the
final size distribution. The final size is either 1, 2, or 3 with corresponding
probabilities p2, p2

1(1 − p2) and (1 − p2
1)(1 − p2), respectively. In Fig. 3.13,

there are graphs of three final size distributions for different values of R0

when γ = 1, Prob{I(0) = 1} = 1, and N = 20.

Fig. 3.13 Distribution for the final size of an epidemic for three different values of R0

when γ = 1, N = 20, and Prob{I(0) = 1} = 1

When R0 is less than one or very close to one, then the final size distri-
bution is skewed to the right, but if R0 is much greater than one, then the
distribution is skewed to the left. The average final sizes for the stochastic
SIR when N = 20 and N = 100 are listed in Table 3.2. Compare the values in
Table 3.2 to those in Table 3.1. For values of R0 less than one or much greater
than one, the average final sizes for the stochastic SIR epidemic model are
closer to the values of the final sizes for the deterministic model.
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Table 3.2 Average final size of an epidemic when γ = 1, b = 0, and Prob{I(0) = 1} = 1
for the stochastic SIR epidemic model

R0 N

20 100

0.5 1.76 1.93
1 3.34 6.10

2 8.12 38.34

5 15.66 79.28
10 17.98 89.98

3.6.4 Expected Duration of an Epidemic

The duration of an epidemic corresponds to the time until absorption, i.e., the
time T until I(T ) = 0. For the stochastic SIS epidemic model, the probability
of absorption is one, regardless of the value of R0. However, depending on
the initial number infected, i, the population size N , and the value of R0, the
time until absorption can be very short or very long. Here, we derive a system
of equations that can be solved to find the expected time until absorption for
a stochastic SIS epidemic model.

Let Ti denote the random variable for the time until absorption and let

τi = E(Ti)

denote the expected time until absorption beginning from an initial infected
population size of i, i = 0, 1, . . . , N . Let the higher order moments for the
time until absorption be denoted as

τ r
i = E(T r

i ),

i = 0, 1, . . . , N . Note that τ0 = 0 = τ r
0 . Then, considered as a birth and death

process, the mean time until absorption in the DTMC SIS epidemic model
satisfies the following difference equation:

τi = b(i)∆t(τi+1 + ∆t) + d(i)∆t(τi−1 + ∆t)
+ (1 − [b(i) + d(i)]∆t)(τi + ∆t), i = 1, . . . , N (3.21)

The CTMC SIS epidemic model satisfies the same relationship as (3.21),
except that a term o(∆t) is added to the right side of each equation. Sim-
plifying the equations in (3.21) leads to a system of difference equations for
the expected duration of an epidemic (for both the CTMC and the DTMC
models),

d(i)τi−1 − [b(i) + d(i)]τi + b(i)τi+1 = −1,

where b(i) = i(N − i)(βi/N) and d(i) = (b + γ)i [7, 33]. Similar difference
equations apply to the higher order moment τ r

i in the CTMC SIS epidemic
model,
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d(i)τ r
i−1 − [b(i) + d(i)]τ r

i + b(i)τ r
i+1 = −rτ r−1

i

[7, 22,41,42].
The mean and higher order moments can be expressed in matrix form. Let

τ = (τ1, τ2, . . . , τN )T , τ r = (τ r
1 , τ r

2 , . . . , τ r
N )T and τ1 = τ . Then

Dτ = −1 and Dτ r = −rτ r−1.

where 1 = (1, . . . , 1)T and

D =

⎛

⎜
⎜
⎜
⎝

−[b(1) + d(1)] b(1) 0 · · · 0 0
d(2) −[b(2) + d(2)] b(2) · · · 0 0

...
...

...
...

...
...

0 0 0 · · · d(N) −d(N)

⎞

⎟
⎟
⎟
⎠

.

Matrix D is nonsingular because it is irreducibly diagonally dominant [43].
Hence, the solutions τ and τ r are unique.

A solution for the expected time until absorption, based on a system of
SDEs, can also be derived [7]. The relationship satisfied by τ follows from the
backward Kolmogorov differential equations. Let τ(y) denote the expected
time until absorption beginning from an infected population size of y ∈ (0, N).
Then it can be shown that τ(y) is the solution to the following boundary value
problem:

[b(y) − d(y)]
dτ(y)
dy

+
[b(y) + d(y)]

2
d2τ(y)
dy2

= −1, (3.22)

where

τ(0) = 0 and
dτ(y)
dy

∣
∣
∣
∣
y=N

= 0,

b(y) = (N−y)(βy/N) and d(y) = (b+γ)y in the SDE SIS epidemic model [7].
It is interesting to note that if the derivatives in the boundary value prob-

lem for τ(y) in (3.22) are approximated by finite difference formulas, then
the difference equations for τi, given in (3.21), for the CTMC and DTMC
epidemic models are obtained [7]. For y ∈ [i, i + 1], let

dτ(y)
dy

≈ τi+1 − τi−1

2
,

where τi = τ(i) and τi+1 = τ(i + 1). In addition, let

d2τ(y)
dy2

≈ τi+1 − 2τi + τi−1.

With these approximations, the boundary value problem for τ(y) in (3.22) is
approximated by the difference equations for τi in (3.21).
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The expected duration of an SIS epidemic can be calculated from the
solution to (3.21) or (3.22). Allen and Allen [7] compare the mean and the
variance for the time until population extinction for the three different types
of stochastic formulations considered here. However, their stochastic models
were applied to a population with logistic growth (similar to the SIS epidemic
model).

As an example, consider the expected duration for an SIS epidemic, based
on the DTMC or CTMC model. Because the DTMC and CTMC models
satisfy the same set of equations for the expected duration, these results
apply to both models. With a population size of N = 25 and either R0 =
2 or R0 = 1.5. The solution τ = −D−11 is graphed in Fig. 3.14. If the
population size is increased to N = 50 or N = 100 with the same value
for R0 = 1.5, the expected duration for large i increases to τi ≈ 160 and
τi ≈ 3, 500, respectively. At population sizes of N = 50 and N = 100 but a
basic reproduction of R0 = 2, the expected duration for large i is much larger,
τi ≈ 25, 000 and τi ≈ 2.6×108, respectively. Of course, the expected duration
depends on the particular time units of the model. For example, if the time
units are days, then τi ≈ 160 ≈ 5.3 months and τi ≈ 25, 000 ≈ 68.5 years.
This latter estimate is much longer than a reasonable epidemiological time
frame, implying that the disease does not die out but persists. Hence, for
these examples, when N ≥ 100 and R0 ≥ 2, if the outbreak begins with a
sufficient number of infected individuals, then the results for the stochastic
SIS epidemic are in close agreement with the predictions of the deterministic
SIS epidemic model; the disease becomes endemic.

3.7 Epidemic Models with Variable Population Size

Suppose the population size N is not constant but varies according to some
population growth law. To formulate an epidemic model, an assumption must
be made concerning the population birth and death rates which depend on
the population size N . Here, we assume, for simplicity, that the birth rate
and death rates have a logistic form,

λ(N) = bN and µ(N) = b
N2

K
,

respectively. Then the total population size satisfies the logistic differential
equation

dN

dt
= λ(N) − µ(N) = bN

(

1 − N

K

)

,

where K > 0 is the carrying capacity. There are many functional forms that
can be chosen for the birth and death rates [7]. Their choice should depend
on the dynamics of the particular population being modeled. For example, in
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Fig. 3.14 Expected duration of an SIS epidemic with a population size of N = 25;
R0 = 1.5 (b = 1/3, γ = 1/3 and β = 1) and R0 = 2 (b = 1/4, γ = 1/4 and β = 1)

animal diseases (e.g., rabies in canine populations [37, 46] and hantavirus in
rodent populations [2, 3, 9, 44]), logistic growth is assumed, then the choice
of λ(N) and µ(N) depends on whether the births and deaths are density-
dependent. For human diseases, a logistic growth assumption may not be
very realistic.

A deterministic SIS epidemic model is formulated for a population satis-
fying the logistic differential equation. Again, for simplicity, we assume there
are no disease-related deaths and no vertical transmission of the disease; all
newborns are born susceptible. Then the deterministic SIS epidemic model
has the form:

dS

dt
=

S

N
(λ(N) − µ(N)) − β

N
SI + (b + γ)I

dI

dt
= − I

N
µ(N) +

β

N
SI − γI,

(3.23)

where S(0) > 0 and I(0) > 0. It is straightforward to show that the solution
to this system of differential equations depends on the basic reproduction
number R0 = β/(b + γ).

Theorem 3. Let S(t) and I(t) be a solution to model (3.23).

(1) If R0 ≤ 1, then lim
t→∞

(S(t), I(t)) = (K, 0).
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(2) If R0 > 1, then lim
t→∞

(S(t), I(t)) = (K/R0,K(1 − 1/R0)).

Stochastic epidemic models for each of the three types (CTMC, DTMC,
and SDE models) can be formulated. Because S(t)+I(t) = N(t), the process
is bivariate. We derive an SDE model and compare the graph of a sample
path for the stochastic model to the solution of the deterministic model.

Let S(t) and I(t) be continuous random variables for the number of sus-
ceptible and infected individuals at time t,

S(t), I(t) ∈ [0,∞).

Then, applying the same methods as for the SDE SIS and SIR epidemic
models [5, 6],

dS
dt

=
S
N (λ(N ) − µ(N )) − β

N SI + (b + γ)I + B11
dW1

dt
+ B12

dW2

dt

dI
dt

= − I
N µ(N ) +

β

N SI − γI + B21
dW1

dt
+ B22

dW2

dt
,

where B = (Bij) is the square root of the following covariance matrix:
⎛

⎜
⎝

S
N (λ(N ) + µ(N )) +

β

N SI + (b + γ)I − β

N SI − γI

− β

N SI − γI I
N µ(N ) +

β

N SI + γI

⎞

⎟
⎠ .

The variables W1 and W2 are two independent Wiener processes. The ab-
sorbing state for the bivariate process is total population extinction, N = 0.

3.7.1 Numerical Example

As might be anticipated, the variability in the population size results in
an increase in the variability in the number of infected individuals. As an
example, let β = 1, γ = 0.25 = b, and K = 100. Then the basic reproduction
number is R0 = 2. The SDE SIS epidemic model with constant population
size, N = 100, is compared to the SDE SIS epidemic model with variable
population size, N (t), in Fig. 3.15. One sample path of the SDE epidemic
model is graphed against the deterministic solution.

More realistic stochastic epidemic models can be derived based on their de-
terministic formulations. Excellent references for a variety of recent determin-
istic epidemic models include the books by Anderson and May [10], Brauer
and Castillo-Chavez [15], Diekmann and Heesterbeek [19], and Thieme [48]
and the review articles by Hethcote [26] and Brauer and van den Driessche [16].
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Fig. 3.15 The SDE SIS epidemic model (a) with constant population size, N = 100 and

(b) with variable population size, N (t). The parameter values are β = 1, γ = 0.25 = b,
K = 100, and R0 = 2
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In this chapter, the simplest types of epidemic models were chosen as
an introduction to the methods of derivation for various types of stochas-
tic models (DTMC, CTMC, and SDE models). In many cases these three
stochastic formulations produce similar results, if the time step ∆t is small [7].
There are advantages numerically in applying the discrete time approxima-
tions (DTMC model and the Euler approximation to the SDE model) in
that the discrete simulations generally have a shorter computational time
than the CTMC model. Mode and Sleeman [36] discuss some computational
methods in stochastic processes in epidemiology. The most important consid-
eration in modeling, however, is to choose a model that best represents the
demographics and epidemiology of the population being modeled.

We conclude this chapter with a discussion of some well-known stochastic
epidemic models that are not based on any deterministic epidemic model.

3.8 Other Types of DTMC Epidemic Models

Two other types of DTMC epidemic models are discussed briefly that are
not directly related to any deterministic epidemic model. These models are
chain binomial epidemic models and epidemic branching processes.

3.8.1 Chain Binomial Epidemic Models

Two well-known DTMC models are the Greenwood and the Reed–Frost mod-
els. These models were developed to help understand the spread of disease
within a small population such as a household. They are referred to as chain
binomial epidemic models because a binomial distribution is used to deter-
mine the number of new infectious individuals. The Greenwood model de-
veloped in 1931, was named after its developer [23]. The Reed–Frost model,
developed in 1928, was named for two medical researchers, who developed
the model for teaching purposes at Johns Hopkins University. It wasn’t until
1952 that the Reed–Frost model was published [1, 17].

Let St and It be discrete random variables for the number of susceptible
and infected individuals in the household at time t. Initially, the models as-
sume that there are I0 = i0 ≥ 1 infected individuals and S0 = s0 susceptible
individuals. The progression of the disease is followed by keeping track of the
number of susceptible individuals over time. At time t, infected individuals
are in contact with all the susceptible members of the household to whom
they may spread the disease. However, it is not until time t+1 that suscepti-
ble individuals who have contracted the disease are infectious. The period of
time from t to t+1 is the latent period and the infectious period is contracted
to a point. Only at time t can the infectious individuals It infect susceptible
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members St. After that time, they are no longer infectious. It follows that
the newly infectious individuals at time t + 1 satisfy

St+1 + It+1 = St.

These models are bivariate Markov chain models that depend on the two
random variables, St and It, {(St, It)}.

The models of Greenwood and Reed–Frost differ in the assumption regard-
ing the probability of infection. Suppose there are a total of It = i infected in-
dividuals at time t. Let pi be the probability that a susceptible individual does
not become infected at time t. The Greenwood model assumes that pi = p is
a constant and the Reed–Frost model assumes that pi = pi. For each model,
the transition probability from state (st, it) to (st+1, it+1) is assumed to have
a binomial distribution. Sample paths are denoted as {s0, s1, . . . , st−1, st}.
The epidemic stops at time t when st−1 = st because there are no more
infectious individuals to spread the disease, it = st−1 − st = 0.

3.8.1.1 Greenwood Model

In the Greenwood model, the random variable St+1 is a binomial random
variable that depends on St and p, St+1 ∼ b(St, p). The probability of a
transition from (st, it) to (st+1, it+1) depends only on st, st+1, and p. It is
defined as follows:

pst+1,st
=
(

st

st+1

)

pst+1(1 − p)st−st+1 .

The conditional mean and variance of St+1 and It+1 are given by

E(St+1|St) = pSt, E(It+1|St) = (1 − p)St

and
Var(St+1|St) = p(1 − p)St = Var(It+1|St).

Four sample paths of the Greenwood model when s0 = 6 and i0 = 1 are
illustrated in Fig. 3.16. Applying the preceding transition probabilities, it is
clear that the sample path {6, 6} occurs with probability p6,6 = p6 and the
sample path {6, 5, 5} occurs with probability p6,5p5,5 = 6p10(1−p). The prob-
ability distributions associated with the size and the duration of epidemics
in the chain binomial models can be easily defined, once the probability dis-
tributions associated with each sample path are determined. The discrete
random variable W = S0 − St is the size of the epidemic and the discrete
random variable T is the length of the path, e.g., if {s0, s1, . . . , st−1, st}, then
T = t.

Table 3.3 summarizes the probabilities associated with the Greenwood and
Reed–Frost epidemic models when s0 = 3 and i0 = 1 (see [17]).
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Fig. 3.16 Four sample paths for the Greenwood chain binomial model when s0 = 6 and
i0 = 1 : {6, 6}, {6, 5, 5}, {6, 4, 3, 2, 1, 1}, and {6, 2, 1, 0, 0}

Table 3.3 Sample paths, size T , and duration W for the Greenwood and Reed–Frost
models when s0 = 3 and i0 = 1

Sample paths Duration Size Greenwood Reed–Frost
{s0, . . . , st−1, st} T W model model

3 3 1 0 p3 p3

3 2 2 2 1 3(1 − p)p4 3(1 − p)p4

3 2 1 1 3 2 6(1 − p)2p4 6(1 − p)2p4

3 1 1 2 2 3(1 − p)2p2 3(1 − p)2p3

3 2 1 0 0 4 3 6(1 − p)3p3 6(1 − p)3p3

3 2 0 0 3 3 3(1 − p)3p2 3(1 − p)3p2

3 1 0 0 3 3 3(1 − p)3p 3(1 − p)3p(1 + p)
3 0 0 2 3 (1 − p)3 (1 − p)3

Total 1 1

3.8.1.2 Reed–Frost Model

In the Reed–Frost model, the random variable St+1 is binomially distributed
and satisfies St+1 ∼ b(St, p

It). The probability of a transition from (st, it) to
(st+1, it+1) is defined as follows:

p(s,i)t+1,(s,i)t
=
(

st

st+1

)

(pit)st+1(1 − pit)st−st+1 .



124 L.J.S. Allen

The conditional mean and variance associated with St+1 are

E(St+1|(St, It)) = Stp
It , E(It+1|(St, It)) = St(1 − pIt)

and
Var(St+1|(St, It)) = St(1 − pIt)pIt = Var(It+1|(St, It)).

The Greenwood and Reed–Frost models differ when It > 1 for t > 0 (see
Table 3.3). For additional information on the Greenwood and Reed–Frost
models, and epidemics among households consult Ackerman et al. [4], Ball
and Lyne [14], and Daley and Gani [17].

3.8.2 Epidemic Branching Processes

Branching processes can be applied to epidemics. We illustrate with a simple
example of a Galton–Watson branching processes. Let It be the number of
new cases at time t. We assume during the time interval t to t + 1 that new
infectious individuals are generated by contacts between the new cases at
time t and the susceptible population. Suppose each infected individual in-
fects on the average R0 susceptible individuals. In a Galton–Watson process,
the simplifying assumption is that each infected individual is independent
from all other infected individuals.

Let {pk}∞k=0 be the probabilities associated with the number of new infec-
tions per infected individual. Then the probability generating function (pgf)
for the number of new infections is

f(t) =
∞∑

k=0

pktk

with mean f ′(1) = R0.
An important result from the theory of branching processes states that

the probability of extinction (probability the epidemic eventually ends),
limt→∞ Prob{It = 0}, depends on the pgf f(t). If 0 ≤ p0 + p1 < 1 and
R0 > 1, then there exists a unique fixed point q ∈ [0, 1) such that f(q) = q.
The assumption 0 ≤ p0 + p1 < 1 guarantees that there is a positive probabil-
ity of infecting more than one individual. It is the value of q and the initial
number of infected individuals in the population that determine the proba-
bility of extinction. The next theorem summarizes the main result concerning
the probability of extinction. For a proof of this result and extensions, please
consult the references [6, 24,29,30,35,45].

Theorem 4. Suppose the pgf f(t) satisfies 0 ≤ f(0) + f ′(0) < 1 and
Prob{I0 = i0} = 1, where i0 > 0.

(1) If R0 ≤ 1, then lim
t→∞

Prob{It = 0} = 1.
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(2) If R0 > 1, then lim
t→∞

Prob{It = 0} = qi0 , where q is the unique fixed

point in [0, 1) such that f(q) = q.

As a consequence of this theorem, the probability the epidemic persists in
the population (the disease becomes endemic) is 1 − qi0 , provided R0 > 1.

Antia et al. [11] assume that the number of cases It follows a Poisson
distribution with mean R0. The pgf of a Poisson probability distribution
satisfies

f(t) =
∞∑

k=0

exp(−R0)
Rk

0

k!
tk = exp(−R0(1 − t)).

Applying Theorem 4, we can estimate the probability the disease becomes
endemic. If R0 > 1, the fixed point of f satisfies

q = exp(−R0(1 − q)).

For example, if R0 = 1.5 and Prob{I0 = 1} = 1, then 1 − q = 0.583, but if
Prob{I0 = 2} = 1, then 1 − q2 = 0.826. If R0 = 2 and Prob{I0 = 2} = 1,
then 1 − q2 = 0.959.

3.9 MatLab Programs

The following three MatLab programs were used to generate sample paths
and the probability distribution associated with the stochastic SIS epidemic
model. MatLab Program # 1 computes the probability distribution for the
DTMC SIS epidemic model. MatLab Programs # 2 and # 3 compute sample
paths associated with CTMC and SDE SIS epidemic models, respectively.

% MatLab Program # 1
% Discrete Time Markov Chain
% SIS Epidemic Model
% Transition Matrix and Graph of Probability Distribution
clear all
set(gca,’FontSize’,18);
set(0,’DefaultAxesFontSize’,18);
time=2000;
dtt=0.01; % Time step
beta=1*dtt;
b=0.25*dtt;
gama=0.25*dtt;
N=100; % Total population size
en=50; % plot every enth time interval
T=zeros(N+1,N+1); % T is the transition matrix, defined below
v=linspace(0,N,N+1);
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p=zeros(time+1,N+1);
p(1,3)=1; % Two individuals initially infected.
bt=beta*v.*(N-v)/N;
dt=(b+gama)*v;
for i=2:N % Define the transition matrix

T(i,i)=1-bt(i)-dt(i); % diagonal entries
T(i,i+1)=dt(i+1); % superdiagonal entries
T(i+1,i)=bt(i); % subdiagonal entries

end
T(1,1)=1;
T(1,2)=dt(2);
T(N+1,N+1)=1-dt(N+1);
for t=1:time

y=T*p(t,:)’;
p(t+1,:)=y’;

end
pm(1,:)=p(1,:);
for t=1:time/en;

pm(t+1,:)=p(en*t,:);
end
ti=linspace(0,time,time/en+1);
st=linspace(0,N,N+1);
mesh(st,ti,pm);
xlabel(’Number of Infectives’);
ylabel(’Time Steps’);
zlabel(’Probability’);
view(140,30);
axis([0,N,0,time,0,1]);

% Matlab Program # 2
% Continuous Time Markov Chain
% SIS Epidemic Model
% Three Sample Paths and the Deterministic Solution
clear
set(0,’DefaultAxesFontSize’, 18);
set(gca,’fontsize’,18);
beta=1;
b=0.25;
gam=0.25;
N=100;
init=2;
time=25;
sim=3;
for k=1:sim

clear t s i
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t(1)=0;
i(1)=init;
s(1)=N-init;
j=1;
while i(j)>0 & t(j)<time

u1=rand; % uniform random number
u2=rand; % uniform random number
a=(beta/N)*i(j)*s(j)+(b+gam)*i(j);
probi=(beta*s(j)/N)/(beta*s(j)/N+b+gam);
t(j+1)=t(j)-log(u1)/a;
if u2 <= probi

i(j+1)=i(j)+1;
s(j+1)=s(j)-1;

else
i(j+1)=i(j)-1;
s(j+1)=s(j)+1;

end
j=j+1;

end
plot(t,i,’r-’,’LineWidth’,2)
hold on

end

% Matlab Program # 3
% Stochastic Differential Equation
% SIS Epidemic Model
% Three Sample Paths and the Deterministic Solution
clear
beta=1;
b=0.25;
gam=0.25;
N=100;
init=2;
dt=0.01;
time=25;
sim=3;
for k=1:sim

clear i, t
j=1;
i(j)=init;
t(j)=dt;
while i(j)>0 & t(j)<25

mu=beta*i(j)*(N-i(j))/N-(b+gam)*i(j);
sigma=sqrt(beta*i(j)*(N-i(j))/N+(b+gam)*i(j));
rn=randn; % standard normal random number
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i(j+1)=i(j)+mu*dt+sigma*sqrt(dt)*rn;
t(j+1)=t(j)+dt;
j=j+1;

end
plot(t,i,’r-’,’Linewidth’,2);
hold on

end
% Euler’s method applied to the deterministic SIS model.
y(1)=init;
for k=1:time/dt

y(k+1)=y(k)+dt*(beta*(N-y(k))*y(k)/N-(b+gam)*y(k));
end
plot([0:dt:time],y,’k--’,’LineWidth’,2);
axis([0,time,0,80]);
xlabel(’Time’);
ylabel(’Number of Infectives’);
hold off
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Part II

Advanced Modeling and
Heterogeneities



Chapter 4

An Introduction to Networks
in Epidemic Modeling

Fred Brauer

Abstract We use a stochastic branching process to describe the beginning
of a disease outbreak. Unlike compartmental models, if the basic reproduc-
tion number is greater than one there may be a minor outbreak or a major
epidemic with a probability depending on the nature of the contact network.
We use a network approach to determine the distribution of outbreak and
epidemic sizes.

4.1 Introduction

The Kermack–McKendrick compartmental epidemic model assumes that the
sizes of the compartments are large enough that the mixing of members is
homogeneous, or at least that there is homogeneous mixing in each subgroup
if the population is stratified by activity levels. However, at the beginning of
a disease outbreak, there is a very small number of infective individuals and
the transmission of infection is a stochastic event depending on the pattern
of contacts between members of the population; a description should take
this pattern into account.

It has often been observed in epidemics that there is a small number of
“superspreaders” who transmit infection to many other members of the pop-
ulation, while most infectives do not transmit infections at all or transmit
infections to very few others [17]. This suggests that homogeneous mixing at
the beginning of an epidemic may not be a good assumption. The SARS epi-
demic of 2002–2003 spread much more slowly than would have been expected
on the basis of the data on disease spread at the start of the epidemic. Early
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in the SARS epidemic of 2002–2003 it was estimated that R0 had a value
between 2.2 and 3.6. At the beginning of an epidemic, the exponential rate
of growth of the number of infectives is approximately (R0 − 1)/α, where
1/α is the generation time of the epidemic, estimated to be approximately 10
days for SARS . This would have predicted at least 30, 000 cases of SARS in
China during the first four months of the epidemic. In fact, there were fewer
than 800 cases reported in this time. An explanation for this discrepancy is
that the estimates were based on transmission data in hospitals and crowded
apartment complexes. It was observed that there was intense activity in some
locations and very little in others. This suggests that the actual reproduction
number (averaged over the whole population) was much lower, perhaps in the
range 1.2–1.6, and that heterogeneous mixing was a very important aspect
of the epidemic.

4.2 The Probability of a Disease Outbreak

Our approach will be to give a stochastic branching process description of
the beginning of a disease outbreak to be applied so long as the number of
infectives remains small, distinguishing a (minor) disease outbreak confined
to this stage from a (major) epidemic which occurs if the number of infec-
tives begins to grow at an exponential rate . Once an epidemic has started
we may switch to a deterministic compartmental model, arguing that in a
major epidemic contacts would tend to be more homogeneously distributed.
However, if we continue to follow the network model we would obtain a some-
what different estimate of the final size of the epidemic. Simulations suggest
that the assumption of homogeneous mixing in a compartmental model may
lead to a higher estimate of the final size of the epidemic than the prediction
of the network model.

We describe the network of contacts between individuals by a graph with
members of the population represented by vertices and with contacts between
individuals represented by edges. The study of graphs originated with the
abstract theory of Erdös and Rényi of the 1950s and 1960s [3–5], and has
become important more recently in many areas, including social contacts
and computer networks, as well as the spread of communicable diseases. We
will think of networks as bi-directional, with disease transmission possible in
either direction along an edge.

An edge is a contact between vertices that can transmit infection. The
number of edges of a graph at a vertex is called the degree of the vertex. The
degree distribution of a graph is {pk}, where pk is the fraction of vertices
having degree k. The degree distribution is fundamental in the description of
the spread of disease. Initially, we assume that all contacts between an infec-
tive and a susceptible transmit infection, but we will relax this assumption
in Sect. 4.3.
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We think of a small number of infectives in a population of susceptibles
large enough that in the initial stage we may neglect the decrease in the size
of the susceptible population. Our development begins along the lines of that
of [7] and then develops along the lines of [6, 14, 16]. We assume that the
infectives make contacts independently of one another and let pk denote the
probability that the number of contacts by a randomly chosen individual is
exactly k, with

∑∞
k=0 pk = 1. In other words, {pk} is the degree distribution

of the vertices of the graph corresponding to the population network.
For convenience, we define the generating function

G0(z) =
∞∑

k=0

pkzk.

Since
∑∞

k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be
differentiated term by term. Thus

pk =
G

(k)
0 (0)
k!

, k = 0, 1, 2, · · · .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z) > 0, G′′

0(z) > 0.

The mean degree, which we denote by < k >, is

< k >=
∞∑

k=1

kpk = G′
0(1).

More generally, we define the moments

< kj >=
∞∑

k=1

kjpk, j = 1, 2, · · ·∞.

When a disease is introduced into a network, we think of it as starting at
a vertex (patient zero) who transmits infection to every individual to whom
this individual is connected, that is, along every edge of the graph from the
vertex corresponding to this individual. We assume that this initial vertex has
been infected by a contact outside the population (component of the network)
being studied. For transmission of disease after this initial contact we need to
use the excess degree of a vertex. If we follow an edge to a vertex, the excess
degree of this vertex is one less than the degree. We use the excess degree
because infection can not be transmitted back along the edge whence it came.
The probability of reaching a vertex of degree k, or excess degree (k − 1),
by following a random edge is proportional to k, and thus the probability
that a vertex at the end of a random edge has excess degree (k − 1) is a
constant multiple of kpk with the constant chosen to make the sum over k
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of the probabilities equal to 1. Then the probability that a vertex has excess
degree (k − 1) is

qk−1 =
kpk

< k >
.

This leads to a generating function G1(z) for the excess degree

G1(z) =
∞∑

k=1

qk−1z
k−1 =

∞∑

k=1

kpk

< k >
zk−1 =

1
< k >

G′
0(z),

and the mean excess degree, which we denote by < ke >, is

< ke > =
1

< k >

∞∑

k=1

k(k − 1)pk

=
1

< k >

∞∑

k=1

k2pk − 1
< k >

∞∑

k=1

kpk

=
< k2 >

< k >
− 1 = G′

1(1).

We let R0 = G′
1(1), the mean excess degree. This is the mean number of

secondary cases infected by patient zero and is the basic reproduction number
as usually defined; the threshold for an epidemic is determined by R0.

Our next goal is to calculate the probability that the infection will die
out and will not develop into a major epidemic. We begin by assuming that
patient zero is a vertex of degree k of the network. Suppose patient zero
transmits infection to a vertex of degree j. We let zn denote the probability
that this infection dies out within the next n generations. For the infection
to die out in n generations each of these j secondary infections must die out
in (n − 1) generations. The probability of this is zn−1 for each secondary
infection, and the probability that all secondary infections will die out in
(n − 1) generations is zj

n−1. Now zn is the sum over j of these probabilities,
weighted by the probability qj of j secondary infections. Thus

zn =
∞∑

j=0

qjz
j
n−1 = G1(zn−1).

Since G1(z) is an increasing function, the sequence zn is an increasing
sequence and has a limit z∞, which is the probability that this infection will
die out eventually. Then z∞ is the limit as n → ∞ of the solution of the
difference equation

zn = G1(zn−1), z0 = 0.

Thus z∞ must be an equilibrium of this difference equation, that is, a solution
of z = G1(z). Let w be the smallest positive solution of z = G1(z). Then,
because G1(z) is an increasing function of z, z ≤ G1(z) ≤ G1(w) = w for
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0 ≤ z ≤ w. Since z0 = 0 < w and zn−1 ≤ w implies

zn = G1(zn−1) ≤ G1(w) = w,

it follows by induction that

zn ≤ w, n = 0, 1, · · · ∞.

From this we deduce that
z∞ = w.

The equation G1(z) = z has a root z = 1 since G1(1) = 1. Because the
function G1(z) − z has a positive second derivative, its derivative G′

1(z) − 1
is increasing and can have at most one zero. This implies that the equation
G1(z) = z has at most two roots in 0 ≤ z ≤ 1. If R0 < 1 the function
G1(z) − z has a negative first derivative

G′
1(z) − 1 ≤ G′

1(1) − 1 = R1 − 1 < 0

and the equation G1(z) = z has only one root, namely z = 1. On the other
hand, if R0 > 1 the function G1(z)−z is positive for z = 0 and negative near
z = 1 since it is zero at z = 1 and its derivative is positive for z < 1 and z
near 1. Thus in this case the equation G1(z) = z has a second root z∞ < 1.

The probability that the disease outbreak will die out eventually is the sum
over k of the probabilities that the initial infection in a vertex of degree k
will die out, weighted by the degree distribution {pk} of the original infection,
and this is ∞∑

k=0

pkzk
∞ = G0(z∞).

To summarize this analysis, we see that if R0 < 1 the probability that the
infection will die out is 1. On the other hand, if R0 > 1 there is a solution
z∞ < 1 of

G1(z) = z

and there is a probability 1−G0(z∞) > 0 that the infection will persist, and
will lead to an epidemic. However, there is a positive probability G0(z∞) that
the infection will increase initially but will produce only a minor outbreak
and will die out before triggering a major epidemic. This distinction between
a minor outbreak and a major epidemic, and the result that if R0 > 1 there
may be only a minor outbreak and not a major epidemic are aspects of
stochastic models not reflected in deterministic models.
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4.3 Transmissibility

Contacts do not necessarily transmit infection. For each contact between in-
dividuals of whom one has been infected and the other is susceptible there
is a probability that infection will actually be transmitted. This probability
depends on such factors as the closeness of the contact, the infectivity of
the member who has been infected, and the susceptibility of the susceptible
member. We assume that there is a mean probability T , called the trans-
missibility, of transmission of infection. The transmissibility depends on the
rate of contacts, the probability that a contact will transmit infection, the
duration time of the infection, and the susceptibility. The development in
Sect. 4.2 assumed that all contacts transmit infection, that is, that T = 1.

In this section, we will continue to assume that there is a network describ-
ing the contacts between members of the population whose degree distribu-
tion is given by the generating function G0(z), but we will assume in addition
that there is a mean transmissibility T .

When disease begins in a network, it spreads to some of the vertices of the
network. Edges that are infected during a disease outbreak are called occupied,
and the size of the disease outbreak is the cluster of vertices connected to the
initial vertex by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective
vertex of degree k is (

k

m

)

Tm(1 − T )k−m.

We define Γ0(z, T ) be the generating function for the distribution of the
number of occupied edges attached to a randomly chosen vertex, which is
the same as the distribution of the infections transmitted by a randomly
chosen individual for any (fixed) transmissibility T . Then

Γ0(z, T ) =
∞∑

m=0

[ ∞∑

k=m

pk

(
k

m

)

Tm(1 − T )(k−m)

]

zm

=
∞∑

k=0

pk

[
k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m)

]

(4.1)

=
∞∑

k=0

pk[zT + (1 − T )]k = G0(1 + (z − 1)T ).

In this calculation we have used the binomial theorem to see that

k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m) = [zT + (1 − T )]k.

Note that
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Γ0(0, T ) = G0(1−T ), Γ0(1, T ) = G0(1) = 1, Γ ′
0(z, T ) = TG′

0(1+(z−1)T ).

For secondary infections we need the generating function Γ1(z, T ) for the
distribution of occupied edges leaving a vertex reached by following a ran-
domly chosen edge. This is obtained from the excess degree distribution in
the same way,

Γ1(z, T ) = G1(1 + (z − 1)T )

and

Γ1(0, T ) = G1(1−T ), Γ1(1, T ) = G1(1) = 1, Γ ′
1(z, T ) = TG′

1(1+(z−1)T ).

The basic reproduction number is now

R0 = Γ ′
1(1, T ) = TG′

1(1).

The calculation of the probability that the infection will die out and will
not develop into a major epidemic follows the same lines as the argument in
Sect. 4.2 for T = 1. The result is that if R0 = TG′

1(1) < 1 the probability
that the infection will die out is 1. If R0 > 1 there is a solution z∞(T ) < 1 of

Γ1(z, T ) = z,

and a probability 1−Γ0(z∞(T ), T ) > 0 that the infection will persist, and will
lead to an epidemic. However, there is a positive probability Γ1(z∞(T ), T )
that the infection will increase initially but will produce only a minor out-
break and will die out before triggering a major epidemic.

Another interpretation of the basic reproduction number is that there is
a critical transmissibility Tc defined by

TcG
′
1(1) = 1.

In other words, the critical transmissibility is the transmissibility that makes
the basic reproduction number equal to 1. If the mean transmissibility can
be decreased below the critical transmissibility, then an epidemic can be
prevented.

The measures used to try to control an epidemic may include contact
interventions, that is, measures affecting the network such as avoidance of
public gatherings and rearrangement of the patterns of interaction between
caregivers and patients in a hospital, and transmission interventions such as
careful hand washing or face masks to decrease the probability that a contact
will lead to disease transmission.
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4.4 The Distribution of Disease Outbreak
and Epidemic Sizes

We define H0(z, T ) to be the generating function for the distribution of out-
break sizes corresponding to a randomly chosen vertex. In a corresponding
way, we define H1(z, T ) to be the generating function for the sizes of the
clusters of connected vertices reached by following a randomly chosen edge.

For the generating function H1(z, T ), it is easy to verify that [H1(z, T )]2

represents the distribution function for the sum of the infected cluster sizes
for two vertices, and similarly for higher powers. If we begin on a randomly
chosen edge, the probability that the vertex at the end of this edge has degree
k is qk, and each of the k vertices connected to it has a distribution of infected
cluster sizes given by H1(z, T ). Then

H1(z, T ) = z

∞∑

m=0

[ ∞∑

k=m

qk

(
k

m

)

Tm(1 − T )(k−m)

]

z(H1(z, T ))m

= z
∞∑

k=0

qk

[
k∑

m=0

(
k

m

)

(TH1(z, T ))m(1 − T )(k−m)

]

= z

∞∑

k=0

qk[TH1(z, T ) + (1 − T )]k = zG1(1 + (H1(z, T ) − 1)T ).

Thus
H1(z, T ) = zΓ1(H1(z, T ), T ). (4.2)

Similarly, the size of the cluster reachable from a randomly chosen vertex is
distributed according to

H0(z, T ) = zΓ0(H1(z, T ), T ). (4.3)

The mean size of the disease outbreak is H ′
0(1, T ). We calculate this by

implicit differentiation of (4.2) after using implicit differentiation of (4.3) to
calculate H ′

1(z, t).
Implicit differentiation of (4.2) gives

H ′
1(z, T ) = Γ1(H1(z, T ), T ) + zΓ ′

1(H1(z, T ), T )H ′
1(z, T )

=
Γ1(H1(z, T ), T )

1 − zΓ ′
1(H1(z, T ), T )

(4.4)

H ′
1(1, T ) =

Γ1(H1(1, T ), T )
1 − Γ ′

1(H1(1, T ), T )
.

Then implicit differentiation of (4.3) using (4.4) gives
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H ′
0(z, T ) = Γ0(H1(z, T ), T ) + zΓ ′

0(H1(z, T ), T )H ′
1(z, T ) (4.5)

= Γ0(H1(z, T ), T ) + zΓ ′
0(H1(z, T ), T )

Γ1(H1(z, T ), T )
1 − zΓ ′

1(H1(z, T ), T )
.

Because
H1(1, T ) = 1, Γ1(H1(1, T ), T ) = Γ1(1, T ) = 1,

this reduces to

H ′
0(1, T ) = 1 +

Γ ′
0(1, T )

1 − Γ ′
1(1, T )

= 1 +
TG′

0(1)
1 − TG′

1(1)
= 1 +

TG′
0(1)

1 −R0
.

This expression for the mean outbreak size is valid if R0 = TG′
1(1) < 1.

There is a phase transition at R0 = 1. A “giant” component of the graph
appears, and there is a major epidemic. If R0 ≥ 1, we exclude the “giant”
component of the graph from the definition of H1(z, T ) and then H1(1, T )<1.
Because of (4.2) we must have

H1(1, T ) = Γ1(H1(1, T ))

and therefore H1(1, T ) must be the second root z∞(T ) of

Γ1(z, T ) = z

as found in Sect. 4.3. In this case, Γ0(z∞(T )) is the probability that there will
be only a small disease outbreak and 1 − Γ0(z∞(T )) is the probability that
there will be an epidemic.

If R0 < 1, H1(1, T ) = 1, z∞(T ) = 1, and the probability of an epidemic
is 0. If there is an epidemic, we define S(T ) to be the fraction of the graph
affected by the infection, the epidemic size. Above the epidemic threshold,

H0(1, T ) = 1 − S(T ),

and

S(T ) = 1 − H0(1, T ) = 1 − Γ0(H1(1, T ), T ) = 1 − Γ0(z∞(T ), T ),

where z∞(T ) = Γ1(z∞(T ), T ) = H1(1, T ). Thus the size of the epidemic, if
an epidemic occurs, is equal to the probability of an epidemic.

Compartmental models assume homogeneous mixing, corresponding to a
Poisson network. As we shall see in the next section, for a Poisson network,

Γ0(z, T ) = Γ1(z, T ) = eR0(z−1).

Then the equation Γ1(z, T ) = z is

eR0(z−1) = z,
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and the size of the epidemic is 1− z∞(T ). This is equivalent to the final size
relation for a deterministic compartmental model [7, Sect. 1.3].

More sophisticated network analysis makes it possible to predict such
quantities as the probability that an individual will set off an epidemic, the
risk for an individual of becoming infected, the probability that a cluster of
infections will set off a small disease outbreak when the transmissibility is
less than the critical transmissibility, and how the probability of an epidemic
depends on the degree of patient zero, the initial disease case [12,14].

4.5 Some Examples of Contact Networks

The above analysis assumes that there is a known generating function G0(z)
or, equivalently, a degree distribution {pk}. In studying a disease outbreak, we
need to know the degree distribution of the network. If we know the degree
distribution we can calculate the basic reproduction number and also the
probability of an epidemic. What kinds of networks are observed in practice
in social interactions? There are some standard examples.

If contacts between members of the population are random, corresponding
to the assumption of mass action in the transmission of disease, then the
probabilities pk are given by the Poisson distribution

pk =
e−cck

k!

for some constant c. To show this, we think of a probability of contact c∆t
in a time interval ∆t, and we let

n =
1

∆t
.

Then the probability of k contacts in a time interval ∆t is
(

n

k

)

(
c

n
)k(1 − c

n
)n−k,

where (
n

k

)

=
n!

k!(n − k)!

is the binomial coefficient. We rewrite this probability as

n(n − 1)(n − 2) · · · (n − k + 1)
nk

ck

k!
(1 − c

n )n

(1 − c
n )k

.

We let ∆t → 0, or n → ∞. Since
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n(n − 1)(n − 2) · · · (n − k + 1)
nk

→ 1, (1 − c

n
)k → 1,

and
(1 − c

n
)n → e−c,

the limiting probability that there are k contacts is

pk =
e−cck

k!
.

Then the generating function is

G0(z) = e−c
∞∑

k=0

ck

k!
zk = e−cecz = ec(z−1) ,

and
G′

0(z) = cec(z−1), G′
0(1) = c.

The generating function for the Poisson distribution is ec(z−1). Then G1(z) =
G0(z), and R0 = TG′

1(1) = cT, so that

Γ1(z, T ) = G1(1 + (z − 1)T ) = eR0(z−1).

The commonly observed situation that most infectives do not pass on
infection but there are a few “superspreading events” [17] corresponds to
a probability distribution that is quite different from a Poisson distribution,
and could give a quite different probability that an epidemic will occur. For
example, taking T = 1 for simplicity, if R0 = 2.5 the assumption of a Poisson
distribution gives z∞ = 0.107 and G0(z∞) = 0.107, so that the probability of
an epidemic is 0.893. The assumption that nine out of ten infectives do not
transmit infection while the tenth transmits 25 infections gives

G0(z) = (z25 + 9)/10, G1(z) = z24, z∞ = 0, G0(z∞) = 0.9,

from which we see that the probability of an epidemic is 0.1. Another example,
possibly more realistic, is to assume that a fraction (1− p) of the population
follows a Poisson distribution with constant r while the remaining fraction p
consists of superspreaders each of whom makes L contacts. This would give
a generating function

G0(z) = (1 − p)er(z−1) + pzL

G1(z) =
r(1 − p)er(z−1) + pLzL−1

r(1 − p) + pL
,

and

R0 =
r2(1 − p) + pL(L − 1)

r(1 − p) + pL
.
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For example, if r = 2.2, L = 10, p = 0.01, numerical simulation gives

R0 = 2.5, z∞ = 0.146,

so that the probability of an epidemic is 0.849.
These examples demonstrate that the probability of a major epidemic de-

pends strongly on the nature of the contact network. Simulations suggest that
for a given value of the basic reproduction number the Poisson distribution
is the one with the maximum probability of a major epidemic.

It has been observed that in many situations there is a small number
of long range connections in the graph, allowing rapid spread of infection.
There is a high degree of clustering (some vertices with many edges) and
there are short path lengths. Such a situation may arise if a disease is spread
to a distant location by an air traveller. This type of network is called a
small world network. Long range connections in a network can increase the
likelihood of an epidemic dramatically.

A third kind of network frequently observed is a scale free network. In
a random network, the quantity pk approaches zero very rapidly (exponen-
tially) as k → ∞. A scale free network has a “fatter tail”, with pk approaching
zero as k → ∞ but more slowly than in a random network. In an epidemic
setting it corresponds to a situation in which there is an active core group but
there are also “superspreaders” making many contacts. In a scale free net-
work, pk is proportional to k−α with α a constant. In practice, α is usually
between 2 and 3. Often an exponential cutoff is introduced in applications of
scale free networks in order to make G′

0(1) < ∞ for every choice of α, so that

pk = Ck−αe−k/θ.

The constant C, chosen so that
∑∞

k=0 pk = 1, can be expressed in terms of
logarithmic integrals.

These examples indicate that the probability of an epidemic depends
strongly on the contact network at the beginning of a disease outbreak. The
study of complex networks is a field which is developing very rapidly. Some
basic references are [15, 18], and other references to particular kinds of net-
works include [1, 2, 13, 19]. Examination of the contact network in a disease
outbreak situation may lead to an estimate of the probability distribution for
the number of contacts [11,12], and thus to a prediction of the course of the
disease outbreak.

A recent development in the study of networks in epidemic modeling is
the construction of very detailed networks by observation of particular loca-
tions. The data that goes into such a network includes household sizes, age
distributions, travel to schools, workplaces, and other public locations. The
networks constructed are very complex but may offer a great deal of realism.
However, it is very difficult to estimate how sensitive the predictions obtained
from a model using such a complex network will be to small changes in the
network. Nevertheless, simulations based on complicated networks are the
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primary models currently being used for developing strategies to cope with
a potential influenza pandemic. This approach has been followed in [8–10].

An alternative to simulations based on a very detailed network would be
to analyze the behaviour of a model based on a simpler network, such as
a random network or a scale-free network with parameters chosen to match
the reproduction number corresponding to the detailed network. A truncated
scale free network would have superspreaders and thus may be closer than a
random network to what is often observed in actual epidemics.

4.6 Conclusions

We have described the beginning of a disease outbreak in terms of the de-
gree distribution of a branching process, and have related this to a contact
network. There is a developing theory of network epidemic models which is
not confined to the early stages [12,14]. This involves more complicated con-
siderations, such as the way in which a contact network may change over
the course of an epidemic. We have restricted our attention to the beginning
of an epidemic in order not to have to examine these complications. There
are many aspects of network models for epidemics that have not yet been
studied.

While we have suggested using a deterministic compartmental model once
an epidemic is underway, it may be reasonable to go beyond the simplest
Kermack–McKendrick epidemic model. Heterogeneity of contact rates, age
structure, and other aspects of an actual epidemic can be modeled. Ideally,
for the initial stages of an epidemic we would like to use a network some-
where between the over-simplification of a random network and the extreme
complication of an individual-based model.
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Chapter 5

Deterministic Compartmental Models:
Extensions of Basic Models

P. van den Driessche

Abstract The basic compartmental models for disease transmission are ex-
tended to include three separate biological features. The first such feature is
vertical transmission of disease, for which two ordinary differential equation
models (SIR and SEIR) are formulated and analyzed. In particular, vertical
transmission is shown to increase the basic reproduction number. Immigra-
tion of infective individuals is considered as a second feature, and the re-
sulting model has a unique endemic equilibrium (with no disease-free state).
An illustration is provided that includes screening and isolating infectives to
reduce the spread of disease. A constant period of temporary immunity is
introduced in an SIRS model as the third feature. This results in an integro-
differential equation for the fraction of infectives. Analysis shows that, for
some parameter values, Hopf bifurcation can give rise to periodic solutions.

5.1 Introduction

Basic deterministic compartmental models are introduced and discussed in
chapters by Allen [1] and Brauer [2]; the latter also describes models with
demographic effects and models with infectivity depending on the age of
infection. For some diseases and situations, it is desirable to include other
biological features, and to investigate whether these can qualitatively change
the model results.

In this chapter three such features are considered separately, namely ver-
tical transmission, immigration of infectives, and temporary immunity upon
recovery (which is introduced briefly in Sect. 4.5 of [2]). Models from the
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literature are summarized: readers are encouraged to consult the original pa-
pers for more details and references. These are but a few examples of how
the basic models can be extended to better represent certain diseases. More
examples are given in subsequent chapters.

5.2 Vertical Transmission

5.2.1 Kermack–McKendrick SIR Model

This section is based on a model in the authoritative book on vertically trans-
mitted diseases by Busenberg and Cooke [4, Chap. 2 especially Sect. 2.8]. In
the models of the chapter by Brauer [2], disease is transmitted horizontally
between infective and susceptible individuals. By contrast, vertical disease
transmission is the direct transfer of a disease from an infective parent to
an unborn or newly born offspring. The latter can occur, for example, from
breast-feeding. Chagas’ disease, hepatitis B and HIV/AIDS are examples of
diseases that can be transmitted vertically [4, 8]. The SIR model considered
here is based on the special simple case of that proposed by Kermack and
McKendrick in 1932, but includes input of infectives due to vertical trans-
mission from infective parents.

The model is formulated with the assumptions as in the chapter by Brauer
[2] with the following extensions. A fraction q of offspring of infective individ-
uals are assumed infected at birth; thus a fraction p = 1− q of such offspring
are susceptible. The birth and death rate constant for the susceptible and
recovered compartments is b > 0, whereas b̃ > 0 is the birth and death rate
constant for the infective compartment. The disease is assumed to be non-
fatal, thus the total population size K = S + I + R remains constant, where
S, I,R denotes the number in the susceptible, infective, recovered compart-
ment, respectively. Such a model has the form

S′ = −βSI + pb̃I + b(S + R) − bS

I ′ = βSI + qb̃I − b̃I − γI (5.1)
R′ = γI − bR.

Recall that mass action incidence is assumed, with each individual making
βK > 0 contacts sufficient to transmit infection per unit time, and that γ is
the recovery rate constant for infectives.

The variable R can be eliminated from system (5.1), which reduces to the
2-dimensional system
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S′ = −βSI + pb̃I + b(K − S − I)
I ′ = βSI − pb̃I − γI (5.2)

for which
{
(S, I) ∈ R+

2 : S + I ≤ K
}

is invariant. For p = 1 (no vertical trans-
mission) and b̃ = b, system (5.2) reduces to a model given by Brauer [2,
Sect. 2.1].

To begin analysis of (5.2), first consider the two equilibria. These are the
disease-free equilibrium (S, I) = (K, 0) and the endemic equilibrium (S∞, I∞)
with

S∞ =
pb̃ + γ

β
, I∞ =

b(Kβ − pb̃ − γ)
(γ + b)β

(5.3)

provided that K > (pb̃ + γ)/β. This condition gives a lower bound on the
population size needed to sustain the disease. The basic reproduction number
R0 can be easily found from the I ′ equation as

R0 =
βK + qb̃

γ + b̃
(5.4)

which satisfies R0 > 1 if and only if K > (pb̃ + γ)/β, that is the endemic
equilibrium exists. The expression for R0 given in (5.4) comes from account-
ing for all new infections (due to horizontal and vertical transmission) and
multiplying by the average infective period, namely 1/(γ + b̃). The vertical
transmission has the effect of increasing R0 by a factor of qb̃/(γ + b̃).

It is easy to show that if R0 < 1, then the disease-free equilibrium is
globally asymptotically stable, and the disease dies out. If R0 > 1, then the
disease-free equilibrium is unstable and the endemic equilibrium exists. In
this case a special method using a Lyapunov function due to Beretta and
Capasso, see [5, page 11] or [4, Theorem 2.8], can be used to show that
the endemic equilibrium is globally asymptotically stable, and so the disease
remains in the population. Thus R0 = 1 gives a sharp disease threshold.

Here an alternative method is presented to show that (S∞, I∞) attracts all
solutions with initial values (S(0), I(0)) in {(S, I) : S ≥ 0, I > 0} if R0 > 1.
From (5.2)

∂

∂S

(S′

I

)
+

∂

∂I

(I ′

I

)
= −β − b

I
< 0.

Thus by the Bendixon–Dulac criterion (see e.g., [4, page 72]) there are no
periodic orbits with I > 0. An application of the Poincaré- Bendixon Theorem
(see e.g., [4, page 72]) completes the proof.
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5.2.2 SEIR Model

Consider now a more general model that includes vertical transmission and
also contains an exposed (latent) compartment. Infected individuals are ex-
posed before becoming infective, and the length of this exposed period de-
pends on the disease. This gives an SEIR model, in which E denotes the
exposed compartment.

Li, Smith and Wang [15] formulate such a model that includes a fraction of
the offsprings of infected hosts (both exposed and infective) that are infected
at birth and so enter the exposed compartment, giving vertical transmission
of the disease. They state that their model is appropriate for rubella and
the SEI limit (with no recovery) is appropriate for Chagas’ disease. Since the
total population is constant in their model, they work with fractions in each
compartment; thus S,E, I,R denote the fraction in the susceptible, exposed,
infective, recovered compartment, respectively, with S + E + I + R = 1. The
natural birth and death rate constant is denoted by b, exposed individuals
become infective with rate constant ε, and infective individuals recover with
rate constant γ. Horizontal incidence is assumed to be of the bilinear mass
action form βSI. A fraction p ∈ [0, 1] of the offspring from exposed individuals
and a fraction q ∈ [0, 1] of the offspring from infective individuals are born into
the exposed compartment. Thus vertical transmission gives a term pbE +qbI
entering the exposed compartment and a similar reduction in the birth of
susceptibles. The model is given by the following system [15]

S′ = b − βSI − pbE − qbI − bS

E′ = βSI + pbE + qbI − (ε + b)E
I ′ = εE − (γ + b)I (5.5)
R′ = γI − bR.

Note that if p = q = 0, then the system reduces to the classical SEIR model
with mass action.

Let

Ω :
{
(S,E, I,R) ∈ R4

+ : S + E + I + R = 1
}

.

Any solution starting in Ω does not leave R4
+ by crossing one of its faces.

Since also (S +E + I +R)′ = 0, the solution remains in Ω for all t ≥ 0. Thus
Ω is a positively invariant set that is biologically feasible. Using the relation
R = 1 − S − E − I, (5.5) can be reduced to the equivalent 3-dimensional
system, given by the first three equations in (5.5) on the closed invariant set

Γ :
{
(S,E, I) ∈ R3

+ : S + E + I ≤ 1
}

.

The 3-dimensional system has the disease-free equilibrium (S, I,R) =
(1, 0, 0) and an endemic equilibrium (S∞, I∞, R∞) with
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S∞ =
(
(ε + b)(γ + b) − pb(γ + b) − qbε

)
/βε

provided this is less than one. In this case I∞ = εb(1 − S∞)/((ε + b)(γ + b))
and E∞ = (γ + b)I∞/ε.

The authors define a basic reproduction number [15, equation(2.3)]

R0(p, q) =
βε

(ε + b)(γ + b) − pb(γ + b) − qbε
(5.6)

and show that if R0(p, q) ≤ 1, then the disease-free equilibrium is globally
stable in Γ ; whereas if R0(p, q) > 1, then the unique endemic equilibrium
is globally stable in the interior of Γ . Thus R0(p, q) is a sharp threshold,
determining whether the disease dies out or persists at an endemic level. The
interesting and highly nontrivial proof in [15] for R0(p, q) > 1 employs a
geometric approach introduced by Li and Muldowney [14]. The authors [15]
state that a key step in their proof is the construction of a suitable Lyapunov
function for the second additive compound of the Jacobian matrix of the
system. Interested readers please consult [15, Sect. 4] for details of the proof.

The contribution to R0(p, q) in (5.6) of vertical transmission is given in [15,
Sect. 5]. However, we present here an alternate basic reproduction number,
denoted by R0, that is derived from the next generation matrix method [6]
as elaborated in [16]. From the 3-dimensional system taking E and I as
infecteds, and horizontal and vertical transmission as giving new infecteds,
the matrices F and V defined in [16] (which should be consulted for more
details) are

F =
[

pb qb + β
0 0

]

, V =

[
ε + b 0
−ε γ + b

]

.

Then R0 = ρ(FV −1), where ρ denotes the spectral radius, is easily found
(since F has rank 1) as

R0 =
βε + pb(γ + b) + qbε

(ε + b)(γ + b)
. (5.7)

Here the first term in the numerator comes from horizontal transmission and
the second and third terms come from vertical transmission, which increases
the value of R0. The term pb/(ε + b) accounts for vertical transmission from
exposed individuals with 1/(ε + b) the average exposed period. The term
qbε/(ε+ b)(γ + b) accounts for vertical transmission from infected individuals
with ε/(ε + b) giving the fraction surviving the exposed compartment, and
1/(γ + b) the average time in the infective compartment. Comparing (5.6)
and (5.7) it follows that R0(p, q) = 1 precisely where R0 = 1. Thus the sharp
threshold is given by either number, but the biological interpretation and the
dependence on the model parameters is better given by R0 in (5.7).



152 P. van den Driessche

5.3 Immigration of Infectives

In the previous section, newborn infecteds enter the infected population. Con-
sider now a communicable disease introduced into a population by infectives
immigrating from outside. Given such a situation, a model can be formulated
to describe the dynamical spread of disease and to suggest possible control
strategies. The SIS models considered here are related to the basic models de-
scribed in the chapter by Brauer [2, Sect. 2.2] and are taken from [3]. Consider
a constant flow A into the population per unit time with a fraction p ∈ (0, 1]
infective. The per capita natural death rate constant is denoted by d > 0.
Letting S, I denote the number of susceptible, infective individuals, respec-
tively, the total population N = S + I varies with time. Taking mass action
incidence and denoting the recovery rate constant and the disease death rate
constant by γ and α, respectively, the model equations are

S′ = (1 − p)A − βSI − dS + γI

I ′ = pA + βSI − (d + γ + α)I (5.8)
N ′ = A − dN − αI.

For nonnegative initial values, the model is well posed with N ≤ A/d. From
the second equation, it follows that with immigration of infectives there is no
disease-free equilibrium. Working in I,N variables, and eliminating N , at an
endemic equilibrium

G(I) = β(d + α)I2 − σI − pdA = 0

where σ = βA − d(d + γ + α). Thus there is a unique equilibrium given by

I∞ =
σ +
√

σ2 + 4βAdp(d + α)
2β(d + α)

, N∞ =
A − αI∞

d
. (5.9)

This model can be generalized by replacing mass action incidence by the
assumption that each individual makes β(N)N contacts sufficient to transmit
infection per unit time; see [2]. It is biologically reasonable to assume that
β(N)N is a nondecreasing function of N and β(N) is a nonincreasing function
of N . These assumptions are satisfied by mass action incidence (β(N) = β),
standard incidence (β(N) = λ/N) and saturating incidence (β(N) = a/(1 +
bN)). The model equations are now as in system (5.4) with β replaced by
β(N). It is more convenient to write the equilibrium equation in terms of N ,
namely

[(d + α)N − A] β(N) = − α2pA

A − dN
+ α(d + γ + α).

The left side of this equation is zero at N1 = A/(d + α) and is increasing,
whereas the right side is positive at N1, decreases and is zero at
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N = N0 =
A(d + γ + α(1 − p))

d(d + γ + α)
.

Thus there is a unique endemic equilibrium given by N∞ ∈ [N1, N0], and
I∞ > I0 = pA/(d + γ + α).

To investigate the stability, linearize system (5.8) about this equilibrium
to give the Jacobian matrix

⎡

⎣
−pA

I − Iβ(N) (Nβ(N))′I − β′(N)I2

−α −d

⎤

⎦

at (I∞, N∞). By considering the signs of each entry (noting that the (1, 2)
entry is nonnegative), this matrix is sign stable; see, e.g., [12]. Thus for any
values of the parameters, the endemic equilibrium is locally asymptotically
stable. A Bendixson–Dulac calculation as in Sect. 2.1 shows that there are no
period orbits with I > 0. The Poincaré–Bendixson theorem then completes
the proof that the endemic equilibrium is globally asymptotically stable, so
solutions of the SIS model with immigration of infectives converge to the
endemic equilibrium (I∞, N∞). For mass action incidence, this equilibrium
is given explicitly by (5.9).

If R0 is defined in the usual way with mass action incidence as

R0 =
βA

(d + γ + α)d

then for p close to 0

I∞ ≈

⎧
⎪⎨

⎪⎩

Ad
|σ|p if R0 < 1 (σ < 0)

Ad
σ p + σ

β(d+α) if R0 > 1 (σ > 0).

The limiting infective population is a smooth function of R0, with the thresh-
old R0 = 1 not as sharp as in the classical case (except in the limit as p → 0+).

Gani et al. [7, Sect. 2] formulated models for the spread of HIV in a con-
stant population prison, and considered a program of screening with quaran-
tining of prisoners found to be HIV positive. Note that quarantining is used
here to mean the isolation of infective individuals. A continuous analog of
their SI model is formulated in [3, Sect. 5]. This simple model indicates that
such a program can reduce the infective population size, but a more detailed
model including more realistic assumptions and data on HIV is needed to
give quantitative predictions.

Consider model (5.8) in the limit with γ = 0 and α > 0 (since HIV is a
fatal disease). The demographics now refer to incarceration (at rate A with a
fraction p infective) and release of prisoners (with rate constant d). Taking one
month as the time unit, A = 25, d = 1/24, p = 0.1 giving a prison population
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carrying capacity as 600. The mean infective period is assumed to be ten
years (so α = 1/120). With β = 1/3000 (1 contact every 5 months/infective),
I∞ = 391 and N∞ = 521. Thus 75% are infective at equilibrium, which (by
numerical simulation) is reached in 2.5 years.

For constant τ with 0 ≤ τ ≤ 1, τ(S+I) prisoners are screened in unit time
and the τI found to be infective are moved to a quarantined compartment.
The number in this compartment is denoted by Q(t). This gives the model [3,
Sect. 5]

S′ = (1 − p)A − βSI − dS

I ′ = pA + βSI − (d + α + τ)I (5.10)
Q′ = τI − (d + α)Q.

The total population N = S + I + Q thus satisfies

N ′ = A − dN − αI − αQ.

Analysis of this model is similar to that of (5.8) and shows that there is a
unique endemic equilibrium (S∞, I∞, Q∞) with

I∞ =
σ
√

σ2 + 4βAdp(d + α + τ)
2β(d + α + τ)

with σ = βA−d(d+α+τ), and that this equilibrium is locally asymptotically
stable. For global stability, note that the first two equations of (5.10) do not
contain Q, and so by analogy with (5.8) it follows that (S, I) → (S∞, I∞) as
t → ∞. The third equation then shows that Q → Q∞.

Taking parameters as for the prison population above, if τ = 0.1 (so 42
prisoners screened per month), then I∞ = 71; whereas if τ = 0.2 (so 95
prisoners screened per month), then I∞ = 25. It takes about two years to
reach these equilibria. Thus, from this model, a considerable reduction of
infectives occurs with screening and quarantining of infectives.

5.4 General Temporary Immunity

For diseases that confer only temporary immunity, for example strains of
influenza, an SIRS model is appropriate. If the SIR Kermack–McKendrick
model is assumed with the addition of a recovered period that is exponentially
distributed, then an ordinary differential equation model results. For this
model, the basic reproduction number gives a sharp threshold, determining
whether the disease dies out or goes to an endemic value.

To allow for a more general recovered period, let P (t) be the frac-
tion of recovered individuals remaining in the recovered class t units after
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recovery from infection. It is reasonable to assume that P (t) is nonin-
creasing, P (0+)=1, limt→∞ P (t) = 0 and the average period of immunity∫∞
0

P (v)dv = ω is finite. Assuming that the average infectious period is 1/γ
and neglecting demographics, gives the system for the fractions in the infec-
tive, recovered and susceptible compartment as

I(t) = I(0)e−γt +
∫ t

0

βS(x)I(x)e−γ(t−x)dx

R(t) = R0(t) +
∫ t

0

γI(x)P (t − x)dx (5.11)

S(t) = 1 − I(t) − R(t)

where R0(t) is the number initially removed and still removed at t, with
R0(∞) = 0. This model is formulated and analyzed in [11], and has richer
dynamics than the corresponding ordinary differential equation SIRS model.

System (5.11) is equivalent to the integrodifferential equation

I ′(t) = γI(t) + βI(t)[1 − I(t) − R0(t) − γ

∫ t

0

I(t + u)P (−u)]du. (5.12)

By standard theorems on retarded functional differential equations [10, 13],
there exists a unique solution of (5.12) for all t ≥ 0. Here R0 = β/γ, and
it is shown in [11] that if R0 ≤ 1, then all solutions tend to the disease-free
equilibrium; but if R0 > 1, the disease-free equilibrium is unstable and a
unique endemic equilibrium (S∞, I∞) exists that is given by

S∞ =
1
R0

, I∞ =
1 − 1/R0

1 + ωγ
.

For further analysis with R0 > 1, assume a constant period of temporary
immunity, thus

P (t) =

⎧
⎨

⎩

1 for 0 ≤ t < ω

0 for t ≥ ω.

Then for t ≥ ω, equation (5.12) becomes

I ′(t) = −γI(t) + βI(t)[1 − I(t) − γ

∫ 0

−ω

I(t + u)du].

Translating I∞ to the origin by using I(t) = I∞(1+X(t)) and letting t = ωτ
gives

X ′(τ) =
−ωγ(R0 − 1)

1 + ωγ
(X(τ) + 1)[X(τ) + ωγ

∫ 0

−1

X(τ + v)dv].
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Linearizing about X = 0 and setting X(τ) proportional to ezτ yields the
quasi-polynomial characteristic equation

z +
ωγ(R0 − 1)

1 + ωγ
[1 + ωγ

∫ 0

−1

ezvdv] = 0. (5.13)

The assumption of a constant recovery period (through the step function
P (t)) has resulted in a difficult stability problem, even for the linearized
equation about the endemic equilibrium. However, it is possible to find purely
imaginary roots of (5.13) by setting z = iµ for µ > 0, which on equating real
and imaginary parts becomes

sin µ

µ
= − 1

ωγ
and µ2 =

(ωγ)2(R0 − 1)(1 − cos µ)
1 + ωγ

.

This gives a family of imaginary root curves for µ ∈ ((2k − 1)π, 2kπ), k =
1, 2, .... For ωγ < 1, all roots have negative real parts, so the endemic equilib-
rium is locally asymptotically stable below the lowest imaginary root curve
k = 1. Assume R0 > 1 is fixed and that z = iµc solves (5.13) when ωγ = c,
then there is a Hopf bifurcation from X = 0 for small |ωγ − c| of the form

X(τ) = |A(µc)(ωγ − c)|
1
2 [cos(µcτ) + o(|ωγ − c|

1
2 )]

where ωγ > c and A 
= 0. If the bifurcation point (R0, c) is on the lowest
imaginary root curve, then the periodic solution is locally asymptotically
stable and has period between ω and 2ω. If the bifurcation point is on a
higher curve (k = 2, 3, ...), then the periodic solution is unstable. Details of
the Hopf bifurcation theorem can be found in [9] and [13].

Thus a constant period of temporary immunity can lead, for some param-
eter values, to solutions of this SIRS model that oscillate about the endemic
equilibrium. For more details of this and oscillatory solutions for an ordinary
differential equation model that has at least three removed classes (corre-
sponding to a gamma-distributed time delay in the recovered class), please
consult [11]. It is interesting to note that an alternate SIRS model with an
arbitrarily distributed time delay in the infectious compartment and an ex-
ponentially distributed delay in the removed compartment does not exhibit
periodic solutions [11, Sect. 5]. For epidemic models that include delays and
vertical transmission see [4, Chap. 4].

Mechanisms that can lead to oscillatory solutions either autonomously or
through external forcing in epidemic models are discussed in [10]. In addition
to delays in the recovered compartment, these mechanisms include nonlinear
incidence, age structure and periodic incidence. Such oscillations are often
seen in disease incidence data; thus models that predict this phenomenon
are useful in understanding disease spread and suggesting possible control
measures.



5 Deterministic Compartmental Models 157

References

1. Allen, L.J.S.: An introduction to stochastic epidemic models. Chapter 3 of Mathemat-
ical Epidemiology (this volume)

2. Brauer, F.: An introduction to compartmental models in epidemiology. Chapter 2 of

Mathematical Epidemiology (this volume)
3. Brauer, F. and van den Driessche, P.: Models for transmission of disease with immi-

gration of infectives. Math. Biosci. 171, 143–154 (2001)
4. Busenberg, S. and Cooke, K.: Vertically Transmitted Diseases. Biomath. 23, Springer,

Berlin Heidelberg New York (1993)
5. Capasso, V.: Mathematical Structures of Epidemic Systems. Lect. Notes Biomath. 97,

Springer, Berlin Heidelberg New York (1993)
6. Diekmann, O. and Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Dis-

eases. Model Building, Analysis and Interpretation, Wiley (2000)
7. Gani, J. Yakowitz, S. and Blount, M.: The spread and quarantine of HIV infection in

a prison system. SIAM J. Appl. Math. 57, 1510–1530 (1997)
8. Hart, C.A.: Microterrors. Firefly Books. Axis (2004)
9. Hale, J.K. and Verduyn Lunel, S.M.: Introduction to Functional Differential Equations.

Springer, Berlin Heidelberg New York(1993)
10. Hethcote, H.W., and Levin, S.A.: Periodicity in epidemiological models. In: Levin,

S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology, Biomath. Texts.
18, Springer, Berlin Heidelberg New York 193–211 (1989)

11. Hethcote, H.W., Stech, H.W., and van den Driessche, P.: Non-linear oscillations in
epidemic models. SIAM J. Appl. Math. 40, 1–9 (1981)

12. Jeffries, C., Klee, V., and van den Driessche, P.: When is a matrix sign stable? Can.

J. Math. 29, 315–326 (1977)
13. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics.

Academic (1993)
14. Li, M.Y., and Muldowney, J.S.: A geometric approach to global- stability problems.

SIAM. J. Math. Anal. 27, 1070–1083 (1996)
15. Li, M.Y., Smith, H.L., and Wang, L.: Global dynamics of an SEIR epidemic model

with vertical transmission. SIAM. J. Appl. Math. 62, 58–69 (2001)
16. van den Driessche, P., and Watmough, J.: Reproduction numbers and sub-threshold

endemic equilibria for compartmental models of disease transmission. Math. Bios. 180,
29–48 (2002)



Chapter 6

Further Notes on the Basic
Reproduction Number

P. van den Driessche and James Watmough

Abstract The basic reproduction number, R0 is a measure of the potential
for disease spread in a population. Mathematically, R0 is a threshold for sta-
bility of a disease-free equilibrium and is related to the peak and final size
of an epidemic. The purpose of these notes is to give a precise definition and
algorithm for obtaining R0 for a general compartmental ordinary differential
equation model of disease transmission. Several examples of calculating R0

are included, and the epidemiological interpretation of this threshold param-
eter is connected to the local and global stability of a disease-free equilibrium.

6.1 Introduction

The basic reproduction number, Ro is defined as the expected number of
secondary infections produced by an index case in a completely susceptible
population [1,8]. This number is a measure of the potential for disease spread
within a population. If Ro < 1, then a few infected individuals introduced
into a completely susceptible population will, on average, fail to replace them-
selves, and the disease will not spread. If, on the other hand, Ro > 1, then
the number of infected individuals will increase with each generation and
the disease will spread. Note that the basic reproduction number is a thresh-
old parameter for invasion of a disease organism into a completely susceptible
population; once the disease has begun to spread, conditions favouring spread
will change and Ro may no longer be a good measure of disease transmis-
sion. However, in many disease transmission models, the peak prevalence of
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infected hosts and the final size of the epidemic are increasing functions of
Ro, making it a useful measure of spread.

Many researchers use reproductive in place of reproduction and rate or ratio
in place of number. Convincing arguments can be made for each combina-
tion: Ro can be specified as either a ratio of rates, or a number of secondary
cases per index case. In the context of differential equation models (or, more
generally, evolution equation models), Ro arises through dimensional anal-
ysis as a dimensionless rate of transmission. At the time this manuscript
was being prepared, a search of the Biological Abstracts indicated that each
combination was equally popular!

The purpose of this chapter is threefold:

• to give a mathematical definition of Ro for compartmental ordinary dif-
ferential equation (ODE) models,

• to show the connection between Ro and the local and global asymptotic
stability of an ODE model, and

• to illustrate the possible bifurcations of the solution sets of the ODE mod-
els as Ro passes through the threshold.

This chapter is based on the papers of Castillo-Chavez et al. [6] and van den
Driessche and Watmough [18] and the book of Diekmann and Heesterbeek [8].
Results on the theory of nonnegative matrices are taken from Berman and
Plemmons [3]. An excellent review of basic compartmental disease transmis-
sion models is given by Hethcote [12]. A recent review of Ro in a broader
context is given by Heffernan et al. [11].

6.2 Compartmental Disease Transmission Models

This chapter focuses on compartmental models for disease transmission. In-
dividuals are characterized by a single, discrete state variable and are sorted
into compartments based on this state. A compartment is called a disease
compartment if the individuals therein are infected. Note that this use of the
term disease is broader than the clinical definition and includes asymptomatic
stages of infection as well as symptomatic. Suppose there are n disease com-
partments and m nondisease compartments, and let x ∈ R

n and y ∈ R
m be

the subpopulations in each of these compartments. Further, denote by Fi the
rate secondary infections increase the ith disease compartment and by Vi the
rate disease progression, death and recovery decrease the ith compartment.
The compartmental model can then be written in the following form:

x′
i = Fi(x, y) − Vi(x, y) , i = 1, . . . , n, (6.1a)

y′
j = gj(x, y) , j = 1, . . . , m, (6.1b)



6 Further Notes on the Basic Reproduction Number 161

where ′ denotes differentiation with respect to time. Note that the decomposi-
tion of the dynamics into F and V and the designation of compartments as in-
fected or uninfected may not be unique; different decompositions correspond
to different epidemiological interpretations of the model. The definitions of
F and V used here differ slightly from those in [18].

The derivation of the basic reproduction number is based on the lineariza-
tion of the ODE model about a disease-free equilibrium. The following as-
sumptions are made to ensure the existence of this equilibrium and to ensure
the model is well posed.

(A1) Assume Fi(0, y) = 0 and Vi(0, y) = 0 for all y ≥ 0 and i = 1, . . . , n.
All new infections are secondary infections arising from infected hosts;
there is no immigration of individuals into the disease compartments.

(A2) Assume Fi(x, y) ≥ 0 for all nonnegative x and y and i = 1, . . . , n. The
function F represents new infections and cannot be negative.

(A3) Assume Vi(x, y) ≤ 0 whenever xi = 0, i = 1, . . . , n. Each component,
Vi, represents a net outflow from compartment i and must be negative
(inflow only) whenever the compartment is empty.

(A4) Assume
∑n

i=1 Vi(x, y) ≥ 0 for all nonnegative x and y. This sum rep-
resents the total outflow from all infected compartments. Terms in the
model leading to increases in

∑n
i=1 xi are assumed to represent sec-

ondary infections and therefore belong in F .
(A5) Assume the disease-free system y′ = g(0, y) has a unique equilibrium

that is asymptotically stable. That is, all solutions with initial condi-
tions of the form (0, y) approach a point (0, yo) as t → ∞. We refer to
this point as the disease-free equilibrium.

Assumption (A1) ensures that the disease-free set, which consists of all
points of the form (0, y), is invariant. That is, any solution with no infected
individuals at some point in time will be free of infection for all time. This
in turn ensures that the disease-free equilibrium is also an equilibrium of the
full system.

Suppose a single infected person is introduced into a population originally
free of disease. The initial ability of the disease to spread through the popula-
tion is determined by an examination of the linearization of (6.1a) about the
disease-free equilibrium (0, yo). Using Assumption (A1), it can be shown that

∂Fi

∂yj
(0, yo) =

∂Vi

∂yj
(0, yo) = 0

for every pair (i, j). This implies that the linearized equations for the disease
compartments, x, are decoupled from the remaining equations and can be
written as

x′ = (F − V )x, (6.2)

where F and V are the n × n matrices with entries
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F =
∂Fi

∂xj
(0, yo) and V =

∂Vi

∂xj
(0, yo).

Using Assumption (A5), linear stability of the system (6.1) is completely
determined by the linear stability of (F − V ) in (6.2); see Sect. 6.5.

6.3 The Basic Reproduction Number

The number of secondary infections produced by a single infected individual
can be expressed as the product of the expected duration of the infectious
period and the rate secondary infections occur. For the general model with
n disease compartments, these are computed for each compartment for a
hypothetical index case. The expected time the index case spends in each
compartment is given by the integral

∫∞
0

φ(t, xo) dt, where φ(t, xo) is the
solution to (6.2) with F = 0 (no secondary infections) and nonnegative initial
conditions, xo, representing an infected index case:

x′ = −V x, x(0) = xo. (6.3)

In effect, this solution shows the path of the index case through the disease
compartments from the initial exposure through to death or recovery with
the ith component of φ(t, xo) interpreted as the probability that the index
case (introduced at time t = 0) is in disease state i at time t. The solution
to (6.3) is φ(t, xo) = e−V txo, where the exponential of a matrix is defined by
the Taylor series

eA = I + A +
A2

2
+

A3

3!
+ · · · + Ak

k!
+ · · ·

This series converges for all t (see, for example, [13]). Thus
∫∞
0

φ(t, xo) dt =
V −1xo, and the (i, j) entry of the matrix V −1 can be interpreted as the
expected time an individual initially introduced into disease compartment j
spends in disease compartment i.

The (i, j) entry of the matrix F is the rate secondary infections are pro-
duced in compartment i by an index case in compartment j. Hence, the ex-
pected number of secondary infections produced by the index case is given by

∫ ∞

0

Fe−V txo dt = FV −1xo.

Following Diekmann and Heesterbeek [8], the matrix K = FV −1 is referred
to as the next generation matrix for the system at the disease-free equilib-
rium. The (i, j) entry of K is the expected number of secondary infections in
compartment i produced by individuals initially in compartment j, assuming,
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of course, that the environment seen by the individual remains homogeneous
for the duration of its infection.

As we shall see in Sect. 6.5, the next generation matrix, K = FV −1, is
nonnegative and therefore has a nonnegative eigenvalue, Ro = ρ(FV −1), such
that there are no other eigenvalues of K with modulus greater than Ro and
there is a nonnegative eigenvector ω associated with Ro [3, Theorem 1.3.2].
This eigenvector is in some sense the distribution of infected individuals that
produces the greatest number, Ro, of secondary infections per generation.
Thus, Ro and the associated eigenvector ω suitably define a “typical” infective
and the basic reproduction number can be rigorously defined as the spectral
radius of the next generation matrix, K. The spectral radius of a matrix K,
denoted ρ(K), is the maximum of the moduli of the eigenvalues of K. If K is
irreducible, then Ro is a simple eigenvalue of K. However, if K is reducible,
which is often the case for diseases with multiple strains, then K may have
several positive real eigenvectors corresponding to reproduction numbers for
each competing strain of the disease.

6.4 Examples

For a given model, neither the next generation matrix, K, nor the basic
reproduction number, Ro, are uniquely defined; there may be several possible
decompositions of the dynamics into the components F and V and thus
many possibilities for K. Usually only a single decomposition has a realistic
epidemiological interpretation. These ideas are illustrated by the following
examples.

6.4.1 The SEIR Model

In the SEIR model for a childhood disease such as measles, the population is
divided into four compartments: susceptible (S), exposed and latently infected
(E), infectious (I) and recovered with immunity (R). Let S, E, I and R denote
the subpopulations in each compartment. The usual SEIR model is written
as follows:

S′ = Π − µS − βSI, (6.4a)
E′ = βSI − (µ + κ)E, (6.4b)
I ′ = κE − (µ + α)I, (6.4c)
R′ = αI − µR, (6.4d)

together with nonnegative initial conditions.
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S E

IR

βSI

κE

αI

µIµR

µEµS

Π

Fig. 6.1 Progression of infection from susceptible (S) individuals through the exposed
(E), infected (I), and treated (R) compartments for the simple SEIR model

The progression through the compartments is illustrated in Fig. 6.1. New
infections in compartment E arise by contacts between susceptible and in-
fected individuals in compartments S and I at a rate βSI. Individuals progress
from compartment E to I at a rate κ and develop immunity at a rate α. In
addition, natural mortality claims individuals at a rate µ. For simplicity, the
model assumes a constant recruitment, Π, of susceptible individuals. With
incidence βSI and β constant this is commonly referred to as the mass action
model. More generally, β may be taken as a function of the total population
N = S + E + I + R.

The system has a unique disease-free equilibrium, with So = Π/µ. Taking
the infected compartments to be E and I gives

F =
(

βSI
0

)

and V =
(

(µ + κ)E
−κE + (µ + α)I

)

.

Hence,

F =
(

0 βSo

0 0

)

,

V =
(

(µ + κ) 0
−κ (µ + α)

)

,

and the next generation matrix is
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K = FV −1 =

⎛

⎜
⎜
⎝

κβSo

(µ + κ)(µ + α)
βSo

µ + α

0 0

⎞

⎟
⎟
⎠ . (6.5)

The (1,2) entry of K is the expected number of secondary infections pro-
duced in compartment E by an individual initially in compartment I over
the course of its infection. To interpret this term, recall that βSo is the rate
of infection for our single infected individual in a population of So suscep-
tible individuals, and 1/(µ + α) is the expected duration of the infectious
period. The ratio κ/(µ + κ) is the fraction of individuals that progress from
E to I. Hence, the (1,1) entry of K is the expected number of secondary
infections produced in compartment E by an infected individual originally in
compartment E. The eigenvalues of K are 0 and

Ro =
κβSo

(µ + κ)(µ + α)
. (6.6)

6.4.2 A Variation on the Basic SEIR Model

In the basic SEIR model of Sect. 6.4.1, suppose that individuals in compart-
ment E are mildly infectious and produce secondary infections at the reduced
rate εβSE with 0 < ε < 1. This gives rise to an additional nonzero entry in
F , and K becomes

K = FV −1 =

⎛

⎜
⎜
⎝

εβSo

µ + κ
+

κβSo

(µ + κ)(µ + α)
βSo

µ + α

0 0

⎞

⎟
⎟
⎠ . (6.7)

The reproduction number is now

Ro =
εβSo

µ + κ
+

κβSo

(µ + κ)(µ + α)
. (6.8)

The two terms of Ro are the number of secondary infections produced by an
index case initially in compartment E, just as with the model of Sect. 6.4.1.
The first term is the number of secondary infections during the earlier, mildly
infectious stage and the second term is the number of secondary infections
during the fully infectious stage.
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6.4.3 A Simple Treatment Model

To illustrate the mathematical ambiguity in the choice of Ro, consider the
basic SEI model with treatment of infective individuals. Suppose infectious
individuals are treated at a rate r2, but that treatment is only partially
effective: a fraction q of treated infectious individuals recover with partial
immunity, and a fraction p = 1 − q return to a latent stage of infection. The
ambiguity in Ro arises from the two possible interpretations of treatment
failure. Treatment of latently infected individuals, at a rate r1, is also included
in the model and always results in recovery.

The dynamics of the model are illustrated in Fig. 6.2. The model maintains
the basic structure of the SEIR model of Sect. 6.4.1, but the R compartment
is replaced by a compartment of treated individuals (T) and standard (rather
than mass action) incidence is assumed. Since treatment confers only partial
immunity, treated individuals are reinfected at a rate β2T/N , where N =
S + E + I + T . The constant recruitment rate used in the previous example
is generalized to a density dependent rate, but all other parameters retain
their earlier interpretations. The disease transmission model consists of the
following differential equations together with nonnegative initial conditions:

S′ = b(N) − µS − β1SI/N, (6.9a)
E′ = β1SI/N + β2TI/N − (µ + κ + r1)E + pr2I, (6.9b)
I ′ = κE − (µ + r2)I, (6.9c)
T ′ = −µT + r1E + qr2I − β2TI/N. (6.9d)

S E

IT

β1SI/N

β2
TI/

N

r1E
κE

pr2I

qr2I

µIµT

µEµS

b(N)

Fig. 6.2 Progression of infection from susceptible (S) individuals through the exposed
(E), infected (I), and treated (T) compartments for the treatment model (6.9)



6 Further Notes on the Basic Reproduction Number 167

This model is a caricature of the more complex models for tuberculosis pro-
posed by Blower et al. [4] and Castillo-Chavez and Feng [5]. Further analysis
and discussion can be found in those papers.

The disease compartments are E and I, as before, and treatment failure,
modelled by the term pr2I in the second equation, is interpreted as part
of progression of an infected individual through the disease compartments,
rather than a new infection. With this interpretation, F and V are as follows:

F =

(
β1SI/N + β2TI/N

0

)

, V =

(
(µ + κ + r1)E − pr2I

−κE + (µ + r2)I

)

.

An equilibrium solution with E = I = 0 must have T = 0 and S = So,
where So is any positive solution of b(So) = µSo. This will be locally stable,
and therefore a DFE, if b′(So) < µ. Assuming this to be the case, evaluating
the derivatives of F and V at S = So, E = I = T = 0 leads to the following
expressions for F and V .

F =
(

0 β1

0 0

)

, V =
(

µ + κ + r1 −pr2

−κ µ + r2

)

.

As with the SEIR model, FV −1 has rank one, and a straightforward calcu-
lation shows the spectral radius to be

Rc =
β1κ

(µ + κ + r1)(µ + r2) − κpr2
. (6.10)

The notation Rc is used to denote the reproduction number with control
measures in place. A heuristic derivation of Rc is given in [18]. Briefly, Rc

can be written as the geometric series (h1 + h2
1h2 + h3

1h
2
2 + . . . )β1/(µ + r2),

where h1 = κ/(µ+κ+ r1) is the fraction of individuals leaving compartment
E who progress to compartment I, and h2 = pr2/(µ + r2) is the fraction of
individuals leaving compartment I who re-enter compartment E. The product
hk

1hk−1
2 is the fraction of exposed individuals who pass through compartment

I at least k times, and the sum of these products is the expected number
of times an exposed individual passes through compartment I. Multiplying
by β1/(µ + r2) gives Rc, since each time an individual enters the infectious
compartment I, they spend, on average, 1/(µ+r2) time units there producing,
on average, β1/(µ + r2) secondary infections.

In contrast, if treatment failure is considered to be a new infection, then
F and V are as follows:

F =

⎛

⎝
β1SI/N + β2TI/N + pr2I

0

⎞

⎠ , V =

⎛

⎝
(µ + κ + r1)E

−κE + (µ + r2)I

⎞

⎠ .
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Differentiation at the disease-free equilibrium then leads to the following
expressions for F , V and the spectral radius:

F =
(

0 β1 + pr2

0 0

)

, V =
(

µ + κ + r1 0
−κ µ + r2

)

,

ρ(FV −1) =
β1κ + pr2κ

(µ + κ + r1)(µ + r2)
. (6.11)

Note that since T = 0 at the disease-free equilibrium, the reinfection term
does not appear in either linearization and the choice of whether to place the
β2TI/N term in F or V is of little practical consequence.

Mathematically the two resulting thresholds are equivalent since the condi-
tions Rc < 1 from (6.10) and ρ(FV −1) < 1 from (6.11) yield the same portion
of parameter space. The difference between the two expressions (6.10) and
(6.11) lies in their epidemiological interpretation. For example, in the second
interpretation, the infection rate is β1 + pr2 and an exposed individual is
expected to spend κ/((µ+κ+ r1)(µ+ r2)) time units in compartment I. The
flaw in this reasoning is that treatment failure does not give rise to a newly
infected individual, but only changes the infection status of an already in-
fected individual. If the conditions are used simply as threshold parameters,
then the difference between the two choices does not matter. However, any
analysis of the sensitivity of Rc to control parameters should be done on an
epidemiological meaningful threshold.

6.4.4 A Vaccination Model

Consider the following SI vaccination model proposed by Gandon et al. [10].

S′ = (1 − p)Π − µS − (βI + βvIv) S,

S′
v = pΠ − µSv − (1 − r) (βI + βvIv) Sv,

I ′ = (βI + βvIv) S − (µ + ν)I,

I ′v = (1 − r) (βI + βvIv) Sv − (µ + νv)Iv.

S, I, Sv and Iv denote the subpopulations in the unvaccinated suscepti-
ble, unvaccinated infectious, vaccinated susceptible and vaccinated infectious
compartments, respectively. Susceptible individuals are recruited at a rate
Π and a fraction, p, of these recruits are vaccinated immediately. Individ-
uals leave the population at a rate µ, with additional disease-induced host
mortality at the rates ν and νv. Vaccination of infectious individuals reduces



6 Further Notes on the Basic Reproduction Number 169

the transmission rate from β to βv and vaccination of susceptible individuals
reduces the probability of transmission by a fraction r.

The system has a unique disease-free equilibrium, given by So = (1−p)No

and Svo = pNo, where No = Π/µ. The disease compartments are I and Iv,
V is the diagonal matrix

V =
(

µ + ν 0
0 µ + νv

)

,

and F is a rank one matrix that can be expressed as the product of the two
vectors ω =

(
So, (1 − r)Svo

)T and β =
(
β, βv

)T as follows:

F = ωβT =

(
βSo βvSo

(1 − r)βSvo (1 − r)βvSvo

)

. (6.12)

Since F has rank one, the next generation matrix also has rank one. The
spectral radius of a rank one matrix is its trace. Hence,

Rc = ρ
(
FV −1

)
= βT V −1ω =

βSo

µ + ν
+

(1 − r)βvSvo

µ + νv
.

The simplest interpretation to place on this number is that it is the sum
of the number of secondary infections of unvaccinated susceptible individu-
als produced by an index case in I and the number of secondary infections
of vaccinated susceptible individuals produced by an index case in Iv. This
simple interpretation is misleading. The correct, although not immediately
obvious, interpretation is that Rc is the number of secondary infections, both
vaccinated and unvaccinated, produced by an “index case”, ω, distributed in
both infectious compartments, with one part in I and (1− r)Svo/So parts in
Iv. Quite simply, Rc is the eigenvalue of K with largest modulus and ω is an
associated eigenvector.

This simple vaccination model assumes the effects of the vaccine on sus-
ceptible and infectious individuals are separable, which leads to a rank one
next generation matrix and a simple expression for Rc. Replacing the four
incidence parameter combinations β, βv, (1−r)β and (1−r)βv, with the four
parameters βuu, βuv, βvu and βvv respectively, leads to the next generation
matrix

K =

⎛

⎜
⎜
⎜
⎝

βuuSo

µ + ν

βuvSo

µ + νv

βvuSov

µ + ν

βvvSov

µ + νv

⎞

⎟
⎟
⎟
⎠

. (6.13)

Denoting the four entries of K as Ruu, Ruv, Rvu and Rvv, the spectral radius
of K is

Rc =
Ruu + Rvv

2
+

1
2

√
(Ruu + Rvv)2 − 4RuuRvv + 4RuvRvu. (6.14)



170 P. van den Driessche and J. Watmough

Although this expression defies interpretation as anything other than the
spectral radius of K, the threshold condition

Rc < 1

is equivalent to the pair of conditions

1
2

(Ruu + Rvv) < 1,

Ruu + Rvv + RuvRvu −RuuRvv < 1.

Note that these conditions only hold for nonnegative matrices and differ
slightly from the more general Jury conditions. Several authors [7, 14] have
interpreted the left hand side of the second inequality as the reproduction
number for the model. The danger in this interpretation is that the magnitude
of this expression does not give any insight into the solutions of the model.
As Roberts and Heesterbeek [17] point out, this distinction is important if
Rc is used as a measure of the effectiveness of disease control measures.

6.4.5 A Vector-Host Model

Some diseases, notably Dengue fever, malaria and West Nile virus, are not
transmitted directly from host to host, but through a vector. The simplest
vector-host model couples a simple SIS model for the hosts with an SI model
for the vectors. Susceptible hosts (Sh) become infectious hosts (Ih) at a rate
βhShIv through contact with infected vectors (Iv). Similarly, susceptible vec-
tors (Sv) become infectious vectors (Ih) at a rate βvSvIh by contacts with
infected hosts. The model is given by the following equations together with
nonnegative initial conditions:

I ′h = βhShIv − (µh + γ)Ih, (6.15a)
I ′v = βvSvIh − µvIv, (6.15b)
S′

h = Πh − µhSh − βhShIv + γIh, (6.15c)
S′

v = Πv − µvSv − βvSvIh. (6.15d)

As before, µh and µv represent removal rates and Πh and Πv recruitment
rates. The parameter γ is the recovery rate for infected hosts. Vectors are
assumed to remain infected for life. This simple model forms the core of
many vector-host models. More detailed analyses and discussions of vector-
host models can be found in such papers as Feng and Velasco-Hernández [9]
on Dengue fever, and Wonham et al. [20] on West Nile virus.
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The two disease compartments are Ih and Iv. The disease-free equilibrium
has host and vector populations of Sho = Πh/µh and Svo = Πv/µv respec-
tively. Hence

F =

(
0 βhSho

βvSvo 0

)

, V =

(
(µh + γ) 0

0 µv

)

, K =

⎛

⎜
⎝

0
βhSho

µv
βvSvo

µh + γ
0

⎞

⎟
⎠ .

The entries of K are interpreted as the number of secondary infections pro-
duced by infected vectors and hosts during the course of their infection. Note
that infected hosts produce infected vectors and vise versa. The positive
eigenvalue of K is

Ro =

√
βhβvShoSvo

(µh + γ)µv
.

The square root arises since it takes two generations for infected hosts to
produce new infected hosts. That is

K2 =

⎛

⎜
⎝

βhβvShoSvo

(µh + γ)µv
0

0
βhβvShoSvo

(µh + γ)µv

⎞

⎟
⎠

In practise, what we have given as K2 is often taken as K and the square root
is left off the reproduction number. Indeed, this was the original interpretation
of Macdonald (see [1]).

6.4.6 A Model with Two Strains

The reproduction number for models with multiple strains is usually the
larger of the reproduction numbers for the two strains in isolation. How-
ever, many such models also poses multiple endemic equilibria, and there
is a threshold similar to the basic reproduction number connected with the
ability of one strain to invade and outcompete another. As a simple example,
consider the special case of the n-strain SIR model of Andreasen et al. [2]
given by the following system of equations together with nonnegative initial
conditions:
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S′ = Π − µS − β1S(I2 + I12) − β1S(I1 + I21), (6.16a)
I ′1 = β1S(I1 + I21) − (µ + γ1)I1, (6.16b)
I ′2 = β1S(I2 + I12) − (µ + γ2)I2, (6.16c)
S′

1 = γ1I1 − σ1β2S1(I2 + I12) − µS1, (6.16d)
S′

2 = γ2I2 − σ2β1S2(I1 + I21) − µS2, (6.16e)
I ′21 = σ2β1S2(I1 + I21) − (µ + γ1)I21, (6.16f)
I ′12 = σ1β2S1(I2 + I12) − (µ + γ2)I12. (6.16g)

Naive individuals (S) are infected with strain one at a rate β1(I1 + I21)S
or strain two at a rate β2(I2 + I12)S. Individuals in compartment S1 have
recovered, at rate γ1, from an infection with strain one, with full immunity to
reinfection with strain one and partial immunity, modelled by the factor σ1,
to infection with strain two. Upon infection with strain two, which occurs at
a rate σ1β2(I2 + I12)S1, they enter compartment I12. Thus I12 is the number
of individuals who are currently infected with strain two and had a previous
infection with strain one.

The model has four equilibria. We will only concern ourselves with two of
the equilibria in this discussion. Further analysis of a more detailed model
including treatment can be found in Nuño et al. [16]. Linearizing the model
equations about the disease-free equilibrium, S = So = Π/µ, I1 = S1 = I2 =
S2 = I21 = I12 = 0, leads to the following expressions for F and V .

F =

⎛

⎜
⎜
⎝

β1So 0 β1So 0
0 β2So 0 β2So

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , V =

⎛

⎜
⎜
⎝

µ + γ1 0 0 0
0 µ + γ2 0 0
0 0 µ + γ1 0
0 0 0 µ + γ2

⎞

⎟
⎟
⎠ .

The next generation matrix, K = FV −1, and the Jacobian matrix, (F − V ),
are reducible. The equations for the infected subpopulations decouple near
the disease-free equilibrium, and K has two positive eigenvalues correspond-
ing to the reproduction numbers for each strain:

Ri =
βiSo

µ + γi
, i = 1, 2. (6.17)

The basic reproduction number for the system is the maximum of the two.
That is,

Ro = max
i∈{1,2}

Ri. (6.18)

There is also a reproduction number associated with the strain one equi-
librium, S = S̄, I1 = Ī1, S1 = S̄1, I2 = S2 = I21 = I12 = 0, where
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S̄ =
µ + γ1

β1
,

Ī1 =
Π

µ + γ1

(

1 − 1
R1

)

,

S̄1 =
Πγ1

µ(µ + γ1)

(

1 − 1
R1

)

.

Linearizing about the strain one equilibrium then gives

F =

⎛

⎜
⎝

β2S̄ 0 β2S̄

0 0 0

σ1β2S̄1 0 σ1β2S̄1

⎞

⎟
⎠ , V =

⎛

⎝
µ + γ2 0 0

0 µ + γ1 0
0 0 µ + γ2

⎞

⎠ .

These are found by considering I2, I21 and I12 to be disease variables and S,
I1, S1 and S2 to be nondisease variables. Thus, the spectral radius of FV −1,
given by

R12 =
R2

R1
+

σ1γ1R2

µ + γ1

(

1 − 1
R1

)

, (6.19)

is the reproduction number for strain two near the strain one equilibrium.
This, of course, is only valid if R1 > 1. It is reasonable to assume that all
parameters are positive and 0 < σ1 < 1, so that R12 < R2. This implies that
there is a range of values for β2 for which strain two can invade a disease-free
population, but can not invade a population in which strain one is endemic.
Strain one may protect the host population from strain two.

6.5 Ro and the Local Stability of the Disease-Free
Equilibrium

The reproduction number for a disease is the number of secondary infections
produced by an infected individual in a population of susceptible individu-
als. If the reproduction numbers, Ro = ρ(FV −1), computed in the previous
examples are consistent with the differential equation model, then it should
follow that the disease-free equilibrium is stable if Ro < 1 and unstable if
Ro > 1. This is shown through a series of lemmas.

If each entry of a matrix T is nonnegative we write T ≥ 0 and refer to T
as a nonnegative matrix. A matrix of the form A = sI − B, with B ≥ 0, is
said to have the Z sign pattern. These are matrices whose offdiagonal entries
are negative or zero. If in addition, s ≥ ρ(B), then A is called an M-matrix.
Note that in this section, I denotes an identity matrix, not a population of
infectious individuals. The following lemma is a standard result from [3].

Lemma 1. If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a
nonsingular M-matrix.
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From Assumptions (A1) and (A2) it follows that each entry of F is nonneg-
ative. From Assumptions (A1) and (A3) it follows that the offdiagonal entries
of V are negative or zero. Thus V has the Z sign pattern. Assumption (A4)
with Assumption (A1) ensures that the column sums of V are positive or
zero, which, together with the Z sign pattern, implies that V is a (possibly
singular) M-matrix [3, condition M35 of Theorem 6.2.3]. In what follows, it
is assumed that V is nonsingular. In this case, V −1 ≥ 0, by Lemma 1. Hence,
K = FV −1 is also nonnegative.

Lemma 2. If F is nonnegative and V is a nonsingular M-matrix, then Ro =
ρ(FV −1) < 1 if and only if all eigenvalues of (F−V ) have negative real parts.

Proof. Suppose F ≥ 0 and V is a nonsingular M-matrix. By Lemma 1, V −1 ≥
0. Thus, (I−FV −1) has the Z sign pattern, and by Lemma 1, (I−FV −1)−1 ≥
0 if and only if ρ(FV −1) < 1. From the equalities (V − F )−1 = V −1(I −
FV −1)−1 and V (V −F )−1 = I +F (V −F )−1, it follows that (V −F )−1 ≥ 0
if and only if (I − FV −1)−1 ≥ 0. Finally, (V − F ) has the Z sign pattern, so
by Lemma 1, (V −F )−1 ≥ 0 if and only if (V −F ) is a nonsingular M-matrix.
Since the eigenvalues of a nonsingular M-matrix all have positive real parts,
this completes the proof. ��

Theorem 1. Consider the disease transmission model given by (6.1). The
disease-free equilibrium of (6.1) is locally asymptotically stable if Ro < 1, but
unstable if Ro > 1, where Ro is defined as in Sect. 6.3.

Proof. Let F and V be as defined in Sect. 6.2, and let J21 and J22 be the
matrices of partial derivatives of g with respect to x and y evaluated at
the disease-free equilibrium. The Jacobian matrix for the linearization of the
system about the disease-free equilibrium has the block structure

J =
(

F − V 0
J21 J22

)

.

The disease-free equilibrium is locally asymptotically stable if the eigenvalues
of the Jacobian matrix all have negative real parts. Since the eigenvalues of
J are those of (F −V ) and J22, and the latter all have negative real parts by
Assumption (A5), the disease-free equilibrium is locally asymptotically stable
if all eigenvalues of (F−V ) have negative real parts. By the assumptions on F
and V, F is nonnegative and V is a nonsingular M-matrix. Hence, by Lemma 2
all eigenvalues of (F −V ) have negative real parts if and only if ρ(FV −1) < 1.
It follows that the disease-free equilibrium is locally asymptotically if Ro =
ρ(FV −1) < 1.

Instability for Ro > 1 can be established by a continuity argument. If
Ro ≤ 1, then for any ε > 0, ((1 + ε)I − FV −1) is a nonsingular M matrix
and, by Lemma 1, ((1 + ε)I − FV −1)−1 ≥ 0. By the proof of Lemma 2, all
eigenvalues of ((1 + ε)V − F ) have positive real parts. Since ε > 0 is arbitrary,
and eigenvalues are continuous functions of the entries of the matrix, it follows
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that all eigenvalues of (V − F ) have nonnegative real parts. To reverse the
argument, suppose all the eigenvalues of (V − F ) have nonnegative real parts.
For any positive ε, (V + εI − F ) is a nonsingular M-matrix, and by the proof
of Lemma 2, ρ(F (V + εI)−1) < 1. Again, since ε > 0 is arbitrary, it follows
that ρ(FV −1) ≤ 1. Thus, (F − V ) has at least one eigenvalue with positive
real part if and only if ρ(FV −1) > 1, and the disease-free equilibrium is
unstable whenever Ro > 1. ��

6.6 Ro and Global Stability of the Disease-Free
Equilibrium

The change of local stability at the threshold Ro = 1, corresponds to a
transcritical bifurcation in the solutions to (6.1). It can be shown that there
is a branch of endemic equilibria emanating from the bifurcation point at
Ro = 1, (x, y) = (xo, yo). For an introduction to the general theory of these
bifurcations in the context of differential equations, see Wiggins [19].

For the simple example of Sect. 6.4.1, there is an equilibrium with

Se =
So

Ro
,

Ie =
Πκ

(µ + α)(µ + κ)

(

1 − 1
Ro

)

,

Ee =
(µ + α)Ie

κ
,

Re =
αIe

µ
,

defined for Ro > 1. Since the endemic equilibria only exist for Ro > 1,
the bifurcation is said to be in the forward direction, and the disease-free
equilibrium is the only equilibrium of the system when Ro < 1. In models for
which endemic equilibria exist near the disease-free equilibrium for Ro < 1
the bifurcation is called a backward bifurcation.

Castillo-Chavez et al. [6] use a comparison theorem to derive sufficient
conditions for the global asymptotic stability of the disease-free equilibrium
of a general disease transmission model when Ro < 1. Clearly, in the case of
a backward bifurcation this equilibrium can not be globally asymptotically
stable whenever Ro < 1. In most models, however, one expects a second
threshold for global stability. A slight change to the argument of [6] gives a
sufficient condition for global stability in this case as well.

Consider the disease transmission model (6.1) written in the form
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x′ = −Ax − f̂(x, y), (6.20a)
y′ = g(x, y). (6.20b)

Theorem 2. If A is a nonsingular M-matrix and f̂ ≥ 0, then the disease-free
equilibrium of (6.20) is globally asymptotically stable.

Proof. Integrating (6.20a) leads to

x(t) = e−tAx(0) −
∫ t

0

e−(t−s)Af̂(x(s), y(s)) ds. (6.21)

It can be shown that e−tA ≥ 0 whenever A is an M-matrix. Since solutions
of (6.20) remain nonnegative, it follows that

0 ≤ x(t) ≤ e−tAx(0). (6.22)

Finally, since e−tA → 0 as t → ∞, it follows that x(t) → 0 as t → ∞. ��

For the SEIR model of Sect. 6.4.1, take A = V − F and write (6.4) as
follows

x′ = −(V − F )x −
(

β(So − S)I
0

)

, (6.23a)

S′ = Π − µS − βSI, (6.23b)
R′ = αI − µR. (6.23c)

From the previous section, we know that (V −F ) is a nonsingular M-matrix
whenever Ro < 1. Hence, to show that the disease-free equilibrium is glob-
ally asymptotically stable for Ro < 1, it is sufficient to show that S ≤ So.
The total population N = S + E + I + R satisfies N ′ = Π − µN , so
that N(t) = So − (So − N(0)) e−µt, with So = Π/µ. If N(0) ≤ So, then
S(t) ≤ N(t) ≤ So for all time. If, on the other hand, N(0) > So, then N(t)
decays exponentially to So, and either S(t) → So, or there is some time T
after which S(t)<So. Thus, from time T onward, x(t) is bounded above, in
each component, by e−(t−T )(V −F )x(T ), which decays exponentially to zero.
Note that for the argument of global stability we are not concerned with the
size of x(T ). In fact, if N(0) > So, x(T ) may be much larger than x(0). In this
case the exponential bound on x(t) concerns a decay following an epidemic,
not an immediate elimination of the disease. In contrast, if N(0) < So, then
the bound on x(t) is e−(t−T )(V −F )x(0), and no epidemic occurs.

A simple model with a backward bifurcation is the vaccination model
proposed by Kribs-Zaleta and Velasco-Hernández [15].
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S′ = Π − (µ + ξ)S + θSv − βSI + γI, (6.24a)

S
′

v = ξS − (µ + θ)Sv − β(1 − r)SvI, (6.24b)
I ′ = β(S + (1 − r)Sv)I − (γ + µ)I. (6.24c)

As with the model of Sect. 6.4.4, vaccination reduces the force of infection
by a factor r. However, in this model, susceptible individuals are vaccinated
continuously at a rate ξ, and the protection acquired from vaccination wanes
at a rate θ. Additionally, individuals recover from infection with no immunity,
regardless of their vaccination history. The model has a unique disease-free
equilibrium, where So = (1 − p)No and Svo = pNo with No = Π/µ and
p = ξ/(µ+θ+ξ). In keeping with the conventions of the literature, we denote
by Ro, the basic reproduction number in the absence of vaccination, and by
Rc, the control reproduction number, or the basic reproduction number in
the presence of vaccination. For the model above we have

Ro =
βNo

γ + µ
,

Rc =
β (So + (1 − r)Svo)

γ + µ
< Ro.

The disease-free equilibrium is locally asymptotically stable if Rc < 1 and
unstable if Rc > 1.

Equation (6.24c) can be written as

I ′ = (γ + µ)(Ro − 1)I − β
(
No − S − (1 − r)Sv

)
I. (6.25)

The matrix A in this example is simply (γ +µ)(1−Ro). As with our previous
example, we can assume that S+Sv ≤ No, since N approaches No asymptot-
ically. Hence, the second term in the above equation eventually becomes and
remains negative and the disease-free equilibrium is globally asymptotically
stable if Ro < 1.

The disease-free equilibrium may be locally asymptotically stable, but not
globally asymptotically stable if Rc < 1 < Ro. It is known that there may be
multiple endemic equilibria for parameter values in this range; further details
can be found in Kribs-Zaleta and Velasco-Hernández [15].

References

1. R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University
Press, Oxford, 1991.

2. V. Andreasen, J. Lin, and S. A. Levin, The dynamics of cocirculating influenza strains
conferring partial cross-immunity, J. Math. Biol., 35 (1997), pp. 825–842.

3. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
Academic, New York, 1970.



178 P. van den Driessche and J. Watmough

4. S. M. Blower, P. M. Small, and P. C. Hopewell, Control strategies for tuberculosis
epidemics: new models for old problems, Science, 273 (1996), pp. 497–500.

5. C. Castillo-Chavez and Z. Feng, To treat or not to treat: the case of tuberculosis,
J. Math. Biol., 35 (1997), pp. 629–656.

6. C. Castillo-Chavez, Z. Feng, and W. Huang, On the computation of Ro and its role
on global stability, in Mathematical approaches for emerging and reemerging infec-
tious diseases: models, methods and theory, C. Castillo-Chavez, S. Blower, P. van den
Driessche, D. Kirschner, and A.-A. Yakubu, eds., Springer, Berlin Heidelberg New
York, 2002, pp. 229–250.

7. B. R. Cherry, M. J. Reeves, and G. Smith, Evaluation of bovine viral diarrhea virus
control using a mathematical model of infection dynamics, Prev. Vet. Med., 33 (1998),

pp. 91–108.
8. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious dis-

eases, Wiley series in mathematical and computational biology, Wiley, West Sussex,
England, 2000.

9. Z. Feng and J. X. Velasco-Hernández, Competitive exclusion in a vector-host model
for the Dengue fever, J. Math. Biol., 35 (1997), pp. 523–544.

10. S. Gandon, M. Mackinnon, S. Nee, and A. Read, Imperfect vaccination: some epidemi-
ological and evolutionary consequences, Proc. R. Soc. Lond. B., 270 (2003), pp. 1129–
1136.

11. J. M. Heffernan, R. J. Smith, and L. M. Wahl, Perspectives on the basic reproductive
ratio, J. R. Soc. Interface, 2 (2005), pp. 281–293.

12. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000),
pp. 599–653.

13. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear
Algebra, Academic, Orlando, 1974.

14. Y.-H. Hsieh and C. H. Chen, Modelling the social dynamics of a sex industry: its
implications for spread of HIV/AIDS, Bull. Math. Biol., 66 (2004), pp. 143–166.

15. C. M. Kribs-Zaleta and J. X. Velasco-Hernández, A simple vaccination model with
multiple endemic states, Math. Biosci., 164 (2000), pp. 183–201.

16. M. Nuño, Z. Feng, M. Martcheva, and C. Castillo-Chavez, Dynamics of two-strain
influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005),
pp. 964–982.

17. M. G. Roberts and J. A. P. Heesterbeek, A new method for estimating the effort
required to control an infectious disease, Proc. R. Soc. Lond., 270 (2003), pp. 1359–
1364.

18. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission, Math. Biosci., 180
(2002), pp. 29–48.

19. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
Springer, Berlin Heidelberg New York, 1990.

20. M. J. Wonham, T. de Camino-Beck, and M. Lewis, An epidemiological model for
West Nile virus: Invasion, analysis and control applications, Proc. R. Soc. Lond. B,

271 (2004), pp. 501–507.



Chapter 7

Spatial Structure: Patch Models

P. van den Driessche

Abstract Discrete spatial heterogenity is introduced into disease transmis-
sion models, resulting in large systems of ordinary differential equations.
Such metapopulation models describe disease spread on a number of spa-
tial patches. In the first model considered, there is no explicit movement of
individuals; rather infectives can pass the disease to susceptibles in other
patches. The second type of model explicitly includes rates of travel between
patches and also takes account of the resident patch as well as the current
patch of individuals. A formula for and useful bounds on the basic reproduc-
tion number of the system are determined. Brief descriptions of application
of this type of metapopulation model are given to investigate the spread of
bovine tuberculosis and the effect of quarantine on the spread of influenza.

7.1 Introduction

Basic deterministic models assume no spatial variation. However, since both
the environment and any population are spatially heterogeneous, it is obvi-
ously desirable to include spatial structure into an epidemic model. Demo-
graphic and disease parameters may vary spatially, and a human population
may live in cities or be scattered in rural areas. Populations travel, animals
and people by foot, birds and mosquitoes (reservoir and vector for West Nile
virus) by wing. In addition, people travel by air between cities, so diseases
can be spread quickly between very distant places (as was the case with the
SARS outbreak in 2003).
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CSC, Victoria, BC, Canada V8W 3R4
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Spatial structure can be included in either a continuous or discrete way. If
time is assumed continuous, then continuous space yields reaction-diffusion
equations, which are discussed in the chapter by Wu [15], whereas discrete
space yields coupled patch models. These models, which are the focus of this
chapter, are called metapopulation models . They usually consist of a system
(often a large system) of ordinary differential equations with the dynamics of
each patch coupled to that of other patches by travel. A patch can be a city,
community, or some other geographical region. If time is assumed discrete,
then continuous space yields integrodifference equation models, whereas dis-
crete space yields coupled lattice or cellular automata models [8, page 268].

Four different types of metapopulation models from the literature are con-
sidered in this chapter. The first two models are fairly general and are formu-
lated and discussed in detail, whereas the last two, which deal with influenza
and with tuberculosis in possums, are described in less detail. But since these
metapopulation models can be complicated, readers are asked to consult the
references for more background and details.

7.2 Spatial Heterogeneity

Consider a basic susceptible, exposed, infective, recovered (SEIR) compart-
mental model such as is frequently used for childhood diseases; see, for ex-
ample, [1], [13, Sect. 2.2 with p = q = 0]. To incorporate spatial effects,
Lloyd and May [9] divide the population into connected subpopulations. Let
Si, Ei, Ii, Ri denote respectively the number of susceptible, exposed, infective
and recovered individuals in patch i for i = 1, ..., n. The total population of
patch i is Ni = Si + Ei + Ii + Ri. The birth and natural death rate constant
d is assumed to be the same in each patch, so that the total population of
each patch remains constant. The average latent period 1/ε and the average
infectious period 1/γ are assumed to be the same in each patch. This spatial
model can be written for i = 1, ..., n as

S′
i = dNi − dSi − λiSi

E′
i = λiSi − (d + ε)Ei (7.1)

I ′i = εEi − (d + γ)Ii

R′
i = γIi − dRi;

with the force of infection in patch i given by a mass action type of incidence

λi =
n∑

j=1

βijIj .
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Thus infective individuals in one patch can infect susceptible individuals in
another patch, but there is no explicit movement of individuals in this model.
If the exposed period tends to zero, corresponding to ε → ∞, then this reduces
to an SIR model; which is now analyzed. Please consult [9] for analysis of the
SEIR model.

For the SIR model, the equations are

S′
i = dNi − dSi − λiSi

I ′i =
n∑

j=1

βijIjSi − (d + γ)Ii (7.2)

and the disease-free equilibrium is Si = Ni, Ii = Ri = 0. Using the next
generation matrix method [14], the basic reproduction number R0 can be
calculated from (7.2) as R0 = ρ(FV −1) where the i, j entry of FV −1 is
βijNi/(d + γ).

For the case that each patch has the same population (i.e., Ni = N) and βij

are such that the endemic equilibrium values of Si, Ii, and λi are independent
of i, then the endemic equilibrium is given explicitly for R0 > 1 by

Si∞ = S∞ =
N

R0
, Ii∞ = I∞ =

dN

d + γ
(1 − 1

R0
), Ri∞ = R∞ =

γI∞
d

,

(7.3)
with λi∞ = λ∞ = d(R0 − 1).

As an example of a symmetric situation that satisfies the above require-
ments, assume that βij = β if i = j and βij = pβ with p < 1 if i 
= j. Thus the
contact rate is the same within each patch and has a smaller value between
each pair of different patches. Then matrix B = [βij ] = β(pJn×n+(1−p)In×n)
where Jn×n is the matrix of all ones and In×n is the identity matrix. The
eigenvalues of B are β[pn + (1 − p)], which is simple, and β(1 − p) with
multiplicity n − 1. Thus

R0 =
βN [pn + (1 − p)]

(d + γ)
,

which depends on the number of patches n and the coupling strength p.
Linearizing about the endemic equilibrium and assuming solutions are

proportional to exp(zt) yields a characteristic equation that can be written
in the form det(B − ΓIn×n) = 0 with

Γ = (z + d + λ∞)
(z + d + γ)
(z + d)S∞

.

Thus Γ takes values that are the eigenvalues of B. The simple eigenvalue of
B gives rise to the quadratic
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z2 + dR0z + d(d + γ)(R0 − 1) = 0.

Following [1], the authors [9] set dR0 = 1/A where A is the average age of
first infection, and 1/τ = d + γ ≈ γ where τ is the average infective period.
As A >> τ , the quadratic can be approximated by

z2 + z/A + 1/(Aτ) = 0,

which gives z ≈ −1/(2A)± i/
√

Aτ. This represents a weakly damped oscilla-
tion about and towards the endemic equilibrium, with the period of oscillation
shorter than the damping time. The number of individuals in each compart-
ment in all patches oscillate in phase. The repeated eigenvalue (of multiplicity
n− 1) of B gives rise to internal modes that are strongly damped. Thus, for
all but the smallest values of p, the oscillations quickly become phase locked.
This result is based on a linear stability analysis, but the authors [9] believe
that the endemic equilibrium is globally attracting for R0 > 1.

Simulation results for a two patch model (n = 2) for the above example
are presented [9, Sect. 4]. Parameters are chosen to model measles epidemics
in a population of N1 = N2 = 106, with d = 0.02 year−1. The average
infective period is taken as five days (τ = 5) giving γ = 73.0 year−1, with
β = 0.0010107 year−1 infective−1. When p = 0, these parameters give R0 ≈
13.8, with A ≈ 3.6 years. Rapid phase locking occurs for p larger than about
0.002. For p = 0.01, numerical simulations show I1 and I2 synchronized by
about five years as they approach I∞ given by (7.3) with damped oscillations.
A stochastic formulation of this SIR model is also shown numerically to give
synchronization, although a slightly larger value of p is required. Assuming
that the within-patch contact rate is seasonally forced, in-phase and out of
phase biennial oscillations are seen with chaotic solutions possible for some
parameter values (illustrated in [9, Fig. 3] with p = 10−3). As found in other
metapopulation models, with larger p values (i.e., stronger between patch
coupling) the system effectively behaves more like that of a single patch.

7.3 Geographic Spread

Sattenspiel and Dietz [11] introduced a metapopulation epidemic model in
which individuals are labeled with their city of residence as well as the city in
which they are present at a given time. This model explicitly includes rates
of travel between n patches, which can be cities or geographical regions.
A susceptible-infective-recovered (SIR) model incorporating this spatial het-
erogeneity is formulated [11, Sect. 2], and the same spatial heterogeneity is
incorporated in a susceptible- infective-susceptible (SIS) model formulated
by Arino and van den Driessche [2]. The notation of [2] is used here.
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To formulate the demographic model with travel, let Nij(t) be the number
of residents of patch i who are present in patch j at a time t. Residents of
patch i leave this patch at a per capita rate gi ≥ 0 per unit time, with a
fraction mji ≥ 0 going to patch j, thus gimji is the travel rate from patch i
to patch j. Here mii = 0 and

∑n
j=1 mij = 1. Residents of patch i who are in

patch j return home to patch i with a per capita rate of rij ≥ 0 with rii = 0.
It is natural to assume that gimji > 0 if and only if rij > 0. These travel
rates determine a directed graph with patches as vertices and arcs between
vertices if the travel rates between them are positive. It is assumed that the
travel rates are such that this directed graph is strongly connected.

Assume that birth occurs in the home patch at a per capita rate d > 0, and
death occurs in any patch with this same rate. Then the population numbers
satisfy the equations

N ′
ii =

n∑

k=1

rikNik − giNii + d
( n∑

k=1

Nik − Nii

)
(7.4)

N ′
ij = gimjiNii − rijNij − dNij for i 
= j. (7.5)

These equations describe the evolution of the number of residents in patch
i who are currently in patch i (7.4) and those who are currently in patch
j 
= i (7.5). The number of residents of patch i, namely Nr

i =
∑n

j=1 Nij

is constant, as is the total population of the n patch system. With initial
conditions Nij(0) > 0, the system (7.4)–(7.5) has an asymptotically stable
equilibrium N̂ij .

An epidemic model is now formulated in each of the n patches, with Sij(t)
and Iij(t) denoting the number of susceptible and infective individuals res-
ident in patch i who are present in patch j at time t. Taking an SIS model
with standard incidence [2], equations for the evolution of the number of
susceptibles and infectives resident in patch i (with i = 1, ..., n) are

S′
ii =

n∑

k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

+ d
( n∑

k=1

Nik − Sii

)
+ γIii (7.6)

I ′ii =
n∑

k=1

rikIik − giIii +
n∑

k=1

κiβiki
SiiIki

Np
i

− (γ + d)Iii (7.7)

and for j 
= i

S′
ij = gimjiSii − rijSij −

n∑

k=1

κjβikj
SijIkj

Np
j

− dSij + γIij (7.8)

I ′ij = gimjiIii − rijIij +
n∑

k=1

κjβikj
SijIkj

Np
j

− (γ + d)Iij (7.9)
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with Np
i =

∑n
j=1 Nji, the number present in patch i. Here βikj > 0 is the

proportion of adequate contacts in patch j between a susceptible from patch
i and an infective from patch k that results in disease transmission, κj > 0
is the average number of such contacts in patch j per unit time, and γ > 0
is the recovery rate of infectives (assumed the same in each patch). Note
that the disease is assumed to be sufficiently mild so that it does not cause
death and does not inhibit travel, and individuals do not change disease
status during travel. Equations (7.6)–(7.9) together with nonnegative initial
conditions constitute the SIS metapopulation model. It can be shown that the
nonnegative orthant R2n2

+ is positively invariant under the flow and solutions
are bounded.

The disease-free equilibrium is given by Sij = N̂ij , Iij = 0 for all i, j =
1, ..., n. If the system is at an equilibrium and one patch is at the disease-free
equilibrium, then all patches are at the disease-free equilibrium; whereas if
one patch is at an endemic disease level, then all patches are at an endemic
level. These results hold based on the assumption that the directed graph
determined by the travel rates is strongly connected. If this is not the case,
then the results apply to patches within a strongly connected component.

For the n-patch connected model, the next generation matrix [6,14] can be
determined from (7.7) and (7.9), leading to a formula for the basic reproduc-
tion number R0. To keep the notation simple, the formula for n = 2 patches
is explicitly given here, thus m12 = m21 = 1, and g1, g2, r12, r21 are assumed
positive. For the general n case see [2, page 185]. Ordering the infective
variables as I11, I12, I21, I22, the matrix of new infections at the disease-free
equilibrium F is a block matrix with 4 blocks, in which each block Fij is the
2 × 2 diagonal matrix

Fij = diag
(
κ1βij1

N̂i1

N̂p
1

, κ2βij2
N̂i2

N̂p
2

)
.

Matrix V , accounting for transfer between infective compartments, can be
written as V = V1 ⊕ V2, where ⊕ denotes the direct sum, and

V1 =
[

g1 + γ + d −r12

−g1 r12 + γ + d

]

, V2 =
[

r21 + γ + d −g2

−r21 g2 + γ + d

]

.

Matrices V1 and V2 are irreducible nonsingular M-matrices (for definition
and properties of M-matrices see [4]) thus their inverses are positive, and
V −1 = V −1

1 ⊕ V −1
2 . Using these blocks, R0 can easily be computed for a

given set of parameter values as R0 = ρ(FV −1), where ρ denotes the spectral
radius. For n patches, a similar formula is obtained, with FV −1 being an
n2×n2 positive matrix. It is apparent that R0 depends on the travel rates as
well as the epidemic parameters. If R0 < 1, then the disease-free equilibrium
is locally asymptotically stable; whereas if R0 > 1, then it is unstable.
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Assume that the disease transmission coefficients are equal for all popula-
tions present in a patch, i.e., βijk = βk for i, j = 1, ..., n. With this assump-
tion, the following bounds can be found for R0 for n patches:

min
i=1,...,n

R(i)
0 ≤ R0 ≤ max

i=1,...,n
R(i)

0 (7.10)

where R(i)
0 = κiβi/(d + γ) is the basic reproduction number of patch i in

isolation. Thus if R(i)
0 < 1 for all i, the disease dies out; whereas if R(i)

0 > 1
for all i, then the disease-free equilibrium is unstable.

Numerical simulations presented in [2] with n = 3 patches show that
(for parameter values relevant for gonorrhea) when R0 > 1, the number of
infectives in each subpopulation goes to an endemic value. Further numerical
investigations for n = 2 patches focus on a case in which in isolation the
disease would be absent in patch 1 but endemic in patch 2 (i.e., R(1)

0 < 1,

R(2)
0 > 1). The bounds in (7.10) give R0 ∈ [R(1)

0 ,R(2)
0 ]. Parameter values are

chosen to be relevant for a disease like gonorrhea: γ = 1/25, d = 1/(75×365)
with the time unit of one day. Suppose that Nr

1 = Nr
2 = 1500, κ1 = κ2 = 1,

r12 = r21 = 0.05, β1 = 0.016 giving R(1)
0 = 0.4, and β2 = 0.048 giving

R(2)
0 = 1.2. A change in travel rates g1, g2 can induce a bifurcation from

R0 < 1 to R0 > 1 or vice versa, see [2, Fig. 3a]. Another view of this case
is presented in Fig. 7.1 in which g1 = g2 and R0 is plotted as a function of
g1 = g2, with R0 = 1 shown as a broken horizontal line. Thus travel can
stabilize (small travel rates) or destabilize (larger travel rates) the disease-
free equilibrium. These numerical results support the claim that for R0 > 1,
the endemic equilibrium is unique and that R0 acts as a sharp threshold
between extinction and invasion of the disease.

Similar conclusions are drawn for the more general SEIRS model [3], for
which an explicit formula for R0 is derived. Sattenspiel and Dietz [11] sug-
gested an application of their metapopulation SIR model to the spread of
measles in the 1984 epidemic in Dominica. Travel rates of infants, school-
age children and adults are assumed to be different, thus making the model
system highly complex and requiring knowledge of more data for simulation.
Sattenspiel and coworkers; see [10] and references therein, have since used
this modeling approach for studying other infectious diseases in the histori-
cal archives; one such example is discussed further in the next section.

7.4 Effect of Quarantine on Spread of 1918–1919
Influenza in Central Canada

Work by Sattenspiel and Herring focuses on the spread of the 1918–1919
influenza epidemic in three communities in central Manitoba, Canada. The
effect of quarantine on the spread of this epidemic is discussed by Sattenspiel
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Fig. 7.1 The basic reproduction number as a function of travel rates for the two patch
model. For parameter values, see text. Figure by Mahin Salmani

and Herring [12], which is a good source of references to their work. The
three communities, all of which are former Hudson’s Bay Company fur trade
posts, are Norway House (population 746), Oxford House (population 322)
and God’s Lake (population 299). Many of the inhabitants were fur trappers
and Norway House was on a main trading route. Oxford House was in direct
contact with Norway House, and God’s Lake was connected to the other posts
by less travelled routes.

The influenza epidemic occurred in this region during the late fall of 1918
and the following winter. There were 107 deaths among residents of Norway
House in a period of a year beginning in July 1918, with most of these proba-
bly from influenza. The time taken in winter to travel between Norway House
and Oxford House was six days, a factor that slowed the spread of the dis-
ease, especially since influenza has a period of communicability of 3–5 days
from clinical onset in adults [5, page 272]. Sattenspiel and Herring [12] used
a fascinating mix of mathematical modeling and estimation of model pa-
rameters, both epidemiological parameters for influenza and anthropologi-
cal parameters relating to population numbers and travel, to investigate the
impact of attempts to limit travel during this influenza epidemic. Norway
House was quarantined during December 1918 and January 1919, and this
control measure is investigated. Quarantining here means the limit of travel
of any individual regardless of disease status. The SIR model formulated
for n patches [12, Sect. 3] is similar to the SIS model described in Sect. 7.3
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above, except that birth and death are ignored (i.e., d = 0). Using the nota-
tion of Sect. 7.3, and letting Rij(t) denote the number of recovered individuals
resident in patch i who are present in patch j at time t, the system of equa-
tions for individuals residing in patch i (with i = 1, ...n) is

S′
ii =

n∑

k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

I ′ii =
n∑

k=1

rikIik − giIii +
n∑

k=1

κiβiki
SiiIki

Np
i

− γIii

R′
ii =

n∑

k=1

rikRik − giRii + γIii

and for j 
= i

S′
ij = gimjiSii − rijSij −

n∑

k=1

κjβikj
SijIkj

Np
j

I ′ij = gimjiIii − rijIij +
n∑

k=1

κjβikj
SijIkj

Np
j

− γIij

R′
ij = gimjiRii − rijRij + γIij .

The basic reproduction number R0 is calculated as in Sect. 5.3 with d = 0.
Quarantine is incorporated by adjusting the rates of travel between

patches, thus gi and rij are multiplied by a factor qi when patch i is quar-
antined. The parameter qi lies in the range 0 < qi < 1, where 1 would
correspond to no quarantine and 0 would correspond to perfect quarantine.
The quarantine (control) reproduction number is calculated as for R0, but
including the factor qi.

Sattenspiel and Herring [12, Sect. 4] estimated model parameters needed
for the above system with n = 3, for Norway House (NH), Oxford House
(OH) and God’s Lake (GL). They set γ = 0.2 (average influenza infective
period 5 days), βikj = β = 0.5 (50% of all contacts result in infection) for all
communities, and κNH = 1, κOH = κGL = 0.5 (twice as many contacts at
NH). Estimates of gi,mji and rij were made from records kept by the Hud-
son Bay Company of arrivals at and departures from each community, and
population numbers were determined from census data. Quarantine at NH
was incorporated by multiplying gNH , rNH,OH and rNH,GL by a factor qNH .

Simulation results of the above system [12, Sect. 5] show that quarantine
causes a slight delay in the arrival of the epidemic peak, with an increase
in the peak number of infectives at NH and a decrease in those at OH and
GL. Quarantine is found to be most effective if started well before an epi-
demic peaks, but not right at the start of an epidemic. However, starting
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quarantining after an epidemic peaks, has little effect. The authors [12] con-
clude that when travel rates are low (as between these communities), quar-
antine must be highly effective before it significantly alters disease patterns.

7.5 Tuberculosis in Possums

An SEI metapopulation model for the spread of bovine tuberculosis (My-
cobacterium bovis) in the common brushtail possum (Trichosurus vulpecula)
in New Zealand is formulated and analyzed by Fulford et al. [7]. This is now
described very briefly to demonstrate the use of a complex metapopulation
model; please consult the original paper for full details.

Tuberculosis has a significant latent period and is a fatal disease in pos-
sums, thus an SEI model is appropriate. A two-age class model is formulated
with juveniles and adults, with susceptible and exposed (but not infective)
juveniles migrating as they mature (1 to 2 years old). In addition pseudo-
vertical transmission is included, accounting for disease transmission between
mothers to young in their pouch. For n patches, a system of 6n equations de-
scribes the dynamics. For a two patch model (n = 2), the authors determine
the disease-free equilibrium numerically, provide a methodology for comput-
ing R0 by using the next generation matrix [6], and show how this can be
generalized to n patches.

Parameters appropriate for tuberculosis in possums are taken for simula-
tions and for a two patch model prevalence shows damped oscillations towards
an endemic state with R0 ∈ [1.55, 1.67]. Possums are thought to spread tu-
berculosis to farmland, thus the model is applied to evaluate control (culling)
strategies to reduce the control reproduction number below one [7, Sect. 6].
Several spatial configurations are considered and critical culling rates (giving
the control reproduction number equal to one) are calculated.

7.6 Concluding Remarks

The metapopulation models discussed in the previous sections demonstrate
that such spatial models are usually high dimensional and contain many
parameters. However, extended models can be formulated, including biolog-
ical realism such as age structure and control measures such as restriction
of travel. Using the next generation matrix, the basic reproduction number
R0 can be computed for estimated parameters. Simulations can easily be
performed with parameters relevant for a particular disease with given de-
mography and spatial structure. These models assume that the population
of each patch is sufficiently large so that a deterministic model is appropri-
ate and there is homogeneous mixing within each patch. As noted in [12],
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stochastic effects may be significant when patch populations are small, such
as in the three communities modeled by [12] and discussed in Sect. 7.4 above.
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Chapter 8

Spatial Structure: Partial Differential
Equations Models

Jianhong Wu

Abstract This chapter introduces some basic concepts and techniques in
modeling spatial spread of diseases involving hosts moving randomly dur-
ing certain stages of the disease progression. First we derive some reaction
diffusion models using the conservation law and Fick’s law of diffusion. We
then discuss the usefulness of these models in describing disease spread rates
and evaluating the effectiveness of some spatially relevant disease control
strategies. We illustrate the general theory via two case studies, one about
the spread of rabies in continental Europe during the period 1945–1985 and
another about spread rates of West Nile virus in North America.

8.1 Introduction

As discussed in [19], spatial structures play an important role in describing
the spreading of communicable diseases, not only because the environment
is heterogeneous but also because individuals move around in space. Many
prevention and control strategies involve spatial aspects such as immigration,
vaccination, border control and restriction of individual movements.

In this chapter, we introduce an approach, based on reaction diffusion
equations, to describe the spread of communicable diseases in spatially struc-
tured populations. We shall also illustrate this approach and demonstrate its
applications via two case studies; one is about the spread of rabies in con-
tinental Europe during the period 1945–1985 and another is about spread
rates of West Nile virus.
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We have no intention here to give a comprehensive introduction to a sub-
ject that has been intensively studied, and we refer to [10] that has great
influence on the next two sections of this chapter, and [5–7, 15, 18] for rele-
vant literature and detailed discussions.

8.2 Model Derivation

We first consider the case in which a collection of individuals moves randomly
in one dimensional space, with an average step length ∆x in every time unit
∆t. Assume the growth rate (with respect to time) at spatial location x and
time t is given by f(t, x) (this term, in most cases, also depends explicitly on
the numbers of the individuals) and assume the probability of moving to the
left and to the right are both equal, and hence are 0.5.

Let u(t, x) be the number of individuals within the spatial segment [x, x+
∆x] at the time t. Then

u(t + ∆t, x) − u(t, x) =
1
2
u(t, x − ∆x) +

1
2
u(t, x + ∆x) − u(t, x) + f(t, x)∆t.

Using the Taylor series expansions for u(t, x±∆x) and u(t+∆t, x) as follows

u(t, x ± ∆x) = u(t, x) ± ∂
∂xu(t, x)∆x + 1

2
∂2

∂x2 u(t, x, )(∆x)2 + · · · ,

u(t + ∆t, x) = u(t, x) + ∂
∂tu(t, x)∆t + 1

2
∂2

∂t2 u(t, x)(∆t)2 + · · · ,

we obtain

∂

∂t
u(t, x)∆t +

1
2

∂2

∂t2
u(t, x)(∆t)2 + · · · =

1
2

∂2

∂x2
u(t, x)(∆x)2 + · · · + f(t, x)∆t,

(8.1)
where · · · denotes higher order terms. Assume that the temporal and spatial
scales are chosen appropriately so that

(∆x)2

2∆t
= D (8.2)

remains to be a given constant, called the diffusion coefficient. Dividing (8.1)
by ∆t and then letting ∆t → 0 and ∆x → 0, we get

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) + f(t, x). (8.3)

Note the above derivation also suggests how D can be estimated from field
data.

The above reaction diffusion equation can also be established through the
conservation equation based on a certain balance law [5]. To describe the
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model derivation, we consider the spatial segment [x, x + ∆x] and note that
the change of the total number of individuals in this segment is due to the
flow into and out of the interval through its boundary points; and due to the
(local) growth process that reproduces the individuals within the segment.
In other words, if we denote by J(t, x) the number of individuals crossing at
x in the positive direction per unit time, then we have the following balance
law:

∂

∂t
u(t, x)∆x = J(t, x) − J(t, x + ∆x) + f(t, x)∆x.

Again, we use the Taylor series expansion for J(t, x + ∆x) to obtain that

∂

∂t
u(t, x)∆x = − ∂

∂x
J(t, x)∆x − 1

2
∂2

∂x2
J(t, x)(∆x)2 + · · · + f(t, x)∆x.

Dividing by ∆x and then letting ∆x → 0 gives

∂

∂t
u(t, x) = − ∂

∂x
J(t, x) + f(t, x). (8.4)

It remains to specify J(t, x), the flux of individuals at (t, x). A popular
choice of such a flux is based on the so-called Fick’s law, which states that
the flux due to random motion is approximately proportional to the local
gradient of the number of individuals. This yields

J(t, x) = −D
∂

∂x
u(t, x). (8.5)

Combining (8.4) and (8.5) gives the reaction diffusion equation (8.3).
In population ecology, we can translate Fick’s law of diffusion into the

statement that the individuals move from a region of high concentration to a
region of low concentration in search for limited resources. We must, however,
use this law with caution when modeling spatial spread of infectious diseases
since the individual movement behaviors may be altered during the course of
outbreaks of diseases.

To determine the value of u(t, x) in space and for all future time t ≥ 0,
we need to specify the initial distribution of the population u(0, x) (initial
condition). Also, when the space is bounded, say x ∈ (0, L), we need to
specify the boundary conditions. Typical boundary conditions include the
homogeneous Dirichlet condition

u(t, 0) = u(t, L) = 0

when the boundary is uninhabitable, or the homogeneous Neumann condition

∂

∂x
u(t, 0) =

∂

∂x
u(t, L) = 0

when there is no flux through boundaries.
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8.3 Case Study I: Spatial Spread of Rabies
in Continental Europe

We now demonstrate the usefulness of the partial differential equation ap-
proach for the study of spatial spread of rabies in continental Europe during
the period roughly 1945–1985.

Starting on the edge of the German/Polish border, the front of the epi-
zootic moved westward at an average speed of about 30–60 km a year. The
spread of the epizootic was essentially determined by the ecology of the fox
population as foxes are the main carrier of the rabies under consideration. If
the fox population density is estimated at different times as the rabies epi-
zootic passes, the wave is seen to consist of two main parts: the front through
which the population is rapidly decreasing in magnitude and the much longer
tail where there are essentially periodic outbreaks of the disease.

A model was formulated in [9] in order to describe the front of the wave,
its speed and the total number of foxes infected after the front passes, and the
connection of the wave speed to the so-called propagation speed of the disease.
We shall also use this case study to illustrate how the partial differential
equation model can help us in designing some spatial intervention strategies
by considering the minimal length of protective zones. Various extensions
of this basic model were also proposed to discover the mechanism for the
periodic outbreaks and to estimate the periods and amplitudes, and we shall
briefly discuss these extensions at the end of this section.

We start with a list of basic facts and some standing assumptions that we
will use in our modeling and analysis.

• Foxes are the main carriers of rabies in the rabies epizootic considered.
• The rabies virus is contained in the saliva of the rabid fox and is normally

transmitted by bite.
• Rabies is invariably fatal in foxes.
• Foxes are territorial and seem to divide the countryside into non-overlapping

home ranges which are marked out by scent.
• The rabies virus enters the central nervous system and induces behavioral

changes in its host. If the spinal cord is involved it often causes paralysis.
However, if it enters the limbic system the foxes become aggressive, lose
their sense of direction and territorial behavior and wander about in a
more or less random way.

The last observation is the basis on which a reaction diffusion equation can
be used to model the dynamics of rabid foxes. To formulate a deterministic
model, at time t and spatial location x, let

S(t, x) = the total number of susceptible foxes,
I(t, x) = the total number of infective foxes.
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Note that for the sake of simplicity in the above definition of I(t, x), we do
not distinguish rabid foxes and those in the incubation period, although it
should be pointed out that only a fraction of infective foxes, namely, rabid
foxes, transmit the disease.

A salient feature of rabies is the rather lengthy incubation period of be-
tween 12 and 150 days from the time of an infected bite to the onset of
the clinical infectious stage. This feature was taken into account in the ordi-
nary differential equation model [1] and its reaction diffusion analogue was
developed in [16].

Ignoring this lengthy incubation period, then the model formulated in [9]
in a one-dimensional unbounded domain takes the following form

{ ∂
∂tS(t, x) = −KS(t, x)I(t, x),
∂
∂tI(t, x) = D ∂2

∂x2 I(t, x) + KS(t, x)I(t, x) − µI(t, x),

where
K = the transmission coefficient,
µ−1 = life expectancy of an infective fox,
D = diffusion coefficient = A/k,
k = the average time until a fox leaves its territory,
A = the average area of a typical fox’s territory.

In [16], other approaches, based on field observations of net distances trav-
eled by infectives during observation periods, were developed for estimating
the parameter D.

Rescaling the variables by

u(t, x) = I(t, x)/S0, v(t, x) = S(t, x)/S0,
x∗ = (KS0/D)1/2x, t∗ = KS0t,
r = µ/(KS0),

where S0 is the initial susceptible density that is assumed to be uniform
in space, and dropping the asterisks for convenience, we obtain the non-
dimensional system

{
∂
∂tu(t, x) = ∂2

∂x2 u(t, x) + u(t, x)(v(t, x) − r),
∂
∂tv(t, x) = −u(t, x)v(t, x).

(8.6)

Observe that r−1 is in fact the basic reproduction number of the cor-
responding ODE model. Therefore, if r > 1 the infection dies out quickly.
Epidemiologically, this is reasonable since r > 1 if and only if µ > KS0. That
is, r > 1 (or equivalently, the basic reproduction number is less than 1) if
the mortality rate is greater than the rate of recruitment of new infectives.
In this case, rabies cannot persist.

The above discussion also gives the minimum fox density Sc := µ/K below
which rabies cannot persist. Mathematically, in [8], it was proven that if r ≥ 1,
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u(0, x) ≥ 0 for all x ∈ R and u has bounded support, and if v(0, x) = 1 for
x ∈ R, then u(t, x) → 0 as t → ∞ uniformly on R.

A natural question is what happens if r < 1. In what follows, we will
illustrate that if the initial distribution of susceptibles is uniformly equal to
1 (that is, S = S0 everywhere), then a small localized introduction of rabies
evolves into a traveling wave with a certain wave speed.

A solution of (8.6) is called a traveling wave (or traveling wavefront) at
speed c if

u(t, x) = f(z), v(t, x) = g(z)

where
z = x − ct

is the wave variable and f and g are waveforms (or wave profiles).
Intuitively speaking, a traveling wave is a solution that moves in space

with a constant speed c and without changing shape. In other words, if a fox
or an observer moves at the same speed of the wave, the fox will not notice
the change of the wave.

Substituting the above special form into system (8.6), we obtain the equa-
tions for the waveforms:

{
f ′′ + cf ′ + fg − rf = 0,
cg′ − fg = 0.

(8.7)

This is a system of ordinary differential equations, where primes denote dif-
ferentiation with respect to z.

To solve the above system for the waveforms, we need to specify the asymp-
totic boundary conditions that are given naturally by

f(±∞) = 0, g(+∞) = 1, g(−∞) = a, (8.8)

where a is an important parameter to be found, that tells us the proportion
of susceptible foxes that remain after the infective wave has passed, and this
number is given by

a − r ln a = 1. (8.9)

To obtain the above formula (8.9), we rewrite the system for the waveforms as

1
c
f ′′ + f ′ + g′ − r

g′

g
= 0

that gives, after integration, the following

1
c
f ′ + f + g − r ln g = B (8.10)

for a constant B that can be found, using the boundary condition at z = ∞, as
B = 1. Therefore, using the boundary condition at −∞, we get a−r ln a = 1.
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This is a very useful relation in order to obtain an estimation of r (and
hence K). For example, in [14], it is suggested that the mortality rate is about
65–80% during the height of the epizootic. Therefore, if we take the fraction
a of surviving foxes to be 0.2, we obtain approximately r = 0.5.

It follows also from (8.10) that system (8.7) is equivalent to the following
planar system {

f ′ = c[r ln g − f − g + 1],
g′ = fg/c.

(8.11)

The linearization around the stationary point (0, 1) has eigenvalues

λ± = −1
2
[c ±
√

c2 − 4(1 − r)].

Hence, if c2 < 4(1−r) we have complex eigenvalues and all of the trajectories
cannot stay in the positive quadrant near (0, 1).

If c ≥ 2
√

1 − r, (0, 1) is a stable node and (0, a) is a saddle point with the
unstable trajectory entering the positive quadrant that, using some phase-
plane analysis (see [8]), converges to (0, 1) as z → ∞. Therefore, in [9] it is
shown that if r < 1 there exists a traveling wave of system (8.6) subject to
boundary condition (8.8) with the speed

c ≥ c0 = 2
√

1 − r. (8.12)

The traveling wave with the minimal wave speed c0 is of paramount im-
portance since any initial function u(0, x) of compact support splits up into
two traveling waves going in opposite directions with the same speed. More
precisely, it was proved in [8] that if u(0, ·) has compact support, then for
every δ > 0 there exists N so that

u(t, x + c0t − ln t/c0) ≤ δ

for every t > 0 and for all x > N . Therefore, if a fox travels with speed
c(t) = c0 − (c0t)−1 ln t towards +∞ (in space) to the right of the support
of u(0, ·), the infection will never overtake the fox (hence the title “Run for
your life, a note on the asymptotic speed of propagation of an epidemic” of
the paper [3]). In other words, the asymptotic speed of the infection must be
less than c(t). As a consequence, if u(t, x) takes the form of a traveling wave
for large t, it must do so for the one with the minimal speed c0.

A key issue for potential applications of the model is to identify all pa-
rameters involved. The parameter r is related to the transmission coefficient
K which can hardly be estimated directly. Fortunately, as discussed above,
formula (8.9) enables us to calculate r indirectly by considering the mortality
as the epizootic front passes. We have r = 0.5, hence the disease reduces the
fox population by about 50%.

The next parameter is µ. Recall that 1/µ is the life expectancy of an
infective fox. An infective fox first goes through an incubation period that
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can vary from 12 to 150 days, and then a rabid state lasting from 3 to 10 days.
Thus, a life expectancy of about 35 days give µ as approximately (1/10 yr)−1.

The diffusion coefficient D is the one related to the spatial spread and, as
shown in [9], this can be calculated by the formula D = A/k. Fox territories
can range from 2.5 km2 to 16km 2 depending on the habitat, food availability
and fox density. If we assume an average territory to be about 5 km2 and
that an infective fox leaves its territory about the time it becomes rabid,
that is after about a month, then k is approximately 12yr−1. Thus we get D
as approximately 60 km2yr−1.

Putting this together, we then obtain the minimal wave speed of about
50 km per year, which seems to be in good agreement with the empirical data
from Europe.

The diffusion model provides a useful framework to evaluate some spa-
tially related control measures. For example, in [9], some estimate about a
protective barrier is given. The mathematical formulation can be stated as
follows: Let 0 ≤ x ≤ L be a protective barrier between a rabies free region
x > L and an infected region x < 0. How large should L > 0 be in order for
I(t, x) < ε for all t ≥ 0 and for all x > L, where ε > 0 is a parameter, below
which the infection is regarded as dying out?

This problem was investigated in [9] via numerical simulations, and the
result of course also depends on the susceptible fox density in the protective
zone and the parameter r. Reduction of the susceptible fox population in
the protective zone can be achieved be shooting, gassing, vaccination, etc.
Admittedly, the above model is only an approximation, but such a relatively
simple model that captures some basic features of the disease spread requires
very fewer parameters to estimate.

In the model considered so far, the natural birth and death are assumed
to be balanced. Using a classical logistic model for the growth of suscepti-
ble foxes, we can explain the tail part of the wave, and in particular, the
oscillatory behavior. Indeed, Anderson et al. [1] speculated that the periodic
outbreak is primarily an effect of the incubation period, and Dunbar [4] and
Murray et al. [16] obtained some qualitative results that show sustained os-
cillations if the classical logistic model is used and the carrying capacity of
the environment is sufficiently large.

The model also ignores the fact that juvenile foxes leave their home terri-
tory in the fall, traveling distances that typically may be 10 times a territory
size in search of a new territory. If a fox happens to have contracted rabies
around the time of such long-distance movement, it could certainly increase
the rate of spread of the disease into uninfected areas. This factor was pointed
out in [16], and the impact of the age-dependent diffusion of susceptible foxes
was recently considered in [17] by using structured population models.
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8.4 Case Study II: Spread Rates of West Nile Virus

Although West Nile virus (WNv) was isolated in the West Nile district of
Uganda in 1937, and WNv in the Eastern Hemisphere has been maintained
in an enzootic cycle involving culicine mosquitoes (vectors) and birds (reser-
voirs), WNv activities in North America were not recorded until August of
1999 in the borough of Queens, New York City [2]. In the subsequent five
years the epidemic has spread spatially to most of the west coast of North
America, as a consequence of the interplay of disease dynamics and bird and
mosquito movement. We refer to [21] for a detailed discussion of the ecologi-
cal and epidemiological aspects of the disease spread and the recent modeling
efforts of the WNv transmission dynamics.

Here we present the work [11], where the spread of WNv is investigated by
spatially extending the non-spatial dynamical model [20] to include diffusive
movements of birds and mosquitoes. The simplified spatial model that is
analyzed takes the form:

{
∂IV

∂t = αV βR
IR

NR
(AV − IV ) − dV IV + ε∂2IV

∂x2 ,
∂IR

∂t = αRβR
NR−IR

NR
IV − γRIR + D ∂2II

∂x2 ,
(8.13)

where the parameters and variables are defined below:

dV : adult female mosquito death rate,
γR: bird recovery rate from WNv,
βR: biting rate of mosquitoes on birds,
αV , αR: WNv transmission probability per bite to mosquitoes and birds,

respectively,
ε,D: diffusion coefficients for mosquitoes and birds respectively,
IV (t, x), IR(t, x): numbers of infectious (infective) female mosquitoes and

birds at time t and spatial location x ∈ R,
NR: number of live birds,
AV : number of adult mosquitoes.

The initial model is much more complicated and system (8.13) is obtained
after a sequential procedure of simplification. Indeed, in the work [11] the
female mosquito population is divided into larval, susceptible, exposed and
infectious classes, and the bird population consists of compartments for sus-
ceptible, infectious, removed and dead birds. Under the assumption that the
death rate of birds due to WNv can be ignored and the removed birds be-
come immediately susceptible (no temporary immunity arising from WNv),
it is shown that NR remains a constant and the number of removed birds
tend to zero. Hence the spatially homogeneous model for infectious birds is
given by

dIR

dt
= αRβR

NR − IR

NR
IV − γRIR. (8.14)
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Furthermore, if exposed mosquitoes are immediately infective, then the ex-
posed class (of mosquitoes) can be ignored and the dynamical system for
the adult and larval mosquitoes is a simple planar linear system, solutions of
which approach constants. Therefore, the spatially homogeneous version for
the infectious mosquitoes becomes

dIV

dt
= αV βR

IR

NR
(AV − IV ) − dV IV . (8.15)

Phase-plane analysis of the spatially homogeneous coupled system (8.14)-
(8.15) shows that a nontrivial (endemic) equilibrium (I∗V , I∗R) exists if and
only if the basic reproduction number R0 is large than 1, where

R0 =

√
αV αRβ2

RAV

dV γRNR
.

Moreover, this endemic equilibrium, if it exists, is globally asymptotically
stable in the positive quadrant.

For the spatially varying model (8.13), the vector field is cooperative,
therefore an application of the general result in [12] ensures that there exists
a minimal speed of traveling fronts c0 such that for every c ≥ c0, the nonlinear
system (8.13) has a nonincreasing traveling wave solution (IV (x− ct), IR(x−
ct)) with speed c so that

lim
(x−ct)→−∞

(IV , IR) = (I∗V , I∗R), lim
(x−ct)→∞

(IV , IR) = (0, 0).

Here a traveling wavefront with speed c for system (8.13) is a solution that
has the form (IV (x−ct), IR(x−ct)) and connects the disease-free and endemic
equilibria so that the above boundary conditions are satisfied. Note that the
traveling wave solution is then given by

{
−cI ′V = εI ′′V + αV βR

IR

NR
(AV − IV ) − dV IV ,

−cI ′R = DI ′′R + αRβR
NR−IR

NR
IV − γRIR.

What makes the minimal wave speed c0 so important epidemiologically is
the following mathematical relation: the minimal wave speed c0 coincides with
the spread rate c∗ defined as follows: if the initial values of (IV (·, 0), IR(·, 0))
have compact support and are not identical to either equilibrium, then for
small ε > 0,

limt→∞
{

sup|x|≥(c∗+ε)t ||(IV (t, x), IR(t, x))||
}

= 0,

limt→∞
{

sup|x|≤(c∗−ε)t ||(IV (t, x), IR(t, x)) − (I∗V , I∗R)||
}

= 0.

This relation holds due to the cooperative nature of the vector field. It is also
due to this nature that the spread speed c∗ is linearly determined: namely,
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the spread speed is the same as the number c̃ so that the solution (ĨV , ĨR)
with nontrivial initial values of compact support of the linearized system of
(8.13) about the disease endemic equilibrium satisfies, for small ε,

limt→∞
{

sup|x|≥(c̃+ε)t ||(ĨV (t, x), ĨR(t, x))||
}

= 0,

limt→∞
{

sup|x|≤(c̃−ε)t ||(ĨV (t, x), ĨR(t, x))||
}

> 0.

Consequently, it is shown in [11] that

c0 = c∗ = c̃ = inf
λ>0

σ1(λ)

where σ1(λ) is the largest eigenvalue of the matrix

Bλ = λ

(
ε 0
0 D

)

+ λ−1

(
−dV αV βR

AV

NR

αRβR −γR

)

.

The characteristic equation of Bλ is given by

p(σ;λ, ε) = σ2 − σλ−1[θ + (D + ε)λ2]
+λ−2[dV γR − αV αRβ2

R
AV

NR
] − DdV − εγR + εDλ2 = 0.

In the general case ε > 0, the larger root σ1(λ, ε) can have more than one ex-
tremum and hence it is difficult to obtain a result for the minimal spread rate
by examining roots of p(σ;λ, ε). However, the case with ε = 0 is sufficiently
simple and due to the continuous dependence of eigenvalues on parameters, it
is shown in [11] that as ε → 0, the spread speed rate approaches the positive
square root of the largest zero of an explicitly defined cubic.

In [11], an example is provided to show how the spread rate varies as a func-
tion of the bird diffusion coefficient D, in the range D ∈ [0, 14] km2/day as
estimated in [20]. This example is based on the assumption that AV /NR = 20
and γR = 0.01/day and using the parameters dV = 0.029, αV = 0.16, αR =
0.88, βR = 0.3/day estimated in [20]. Since WNv has spread across North
America in about five years, the observed spread rate is about 1, 000 km/year.
This, together with the aforementioned functional relation between the
spread rate and the diffusion rate of birds, shows that a diffusion coefficient
of about 5.94 is needed in the model to achieve the observed spread rate.

Needless to say, the reaction-diffusion system (8.13) is a first approxima-
tion for the spatial spread of WNv, and it is based on the assumption of
random flight of birds and mosquitoes. In reality, as pointed out in [11],
flight is influenced by topographical, environmental and other factors. The
work in [13] based on a patchy model seems to indicate the spread speed may
be different if the movement of birds has preference to direction. Certainly,
to incorporate more ecology and epidemiology, models should contain more
realistic bird and mosquito movements.
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8.5 Remarks

We conclude this chapter with a few remarks. First of all, we note that
reaction diffusion equations arise naturally from modeling spatial spread of
infectious diseases when a subpopulation moves randomly in space, and use
of such a model is appropriate when transmission mechanisms and control
measures involve spatial movements.

We must, however, be extremely cautious when modeling spatial spread
when individual movement is not so obviously random. Other type of models
will be needed, and in particular, the discrete space models considered in
[19] seem to be more appropriate. When other factors such as disease age
and social structures are considered, model systems could be much more
complicated.

We have shown that when the space is large in scale, traveling waves of
the reaction diffusion equations are important as they describe the progress
of the disease to uninfected regions. The wave speed is obviously important
to understand the speed of propagation: in some cases it coincides with the
spread rate and can be determined by considering the linearization of the
nonlinear system at a disease endemic equilibrium.
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Chapter 9

Continuous-Time Age-Structured
Models in Population Dynamics
and Epidemiology

Jia Li and Fred Brauer

Abstract We present continuous-time models for age-structured populations
and disease transmission. We show how to use the method of character-
istic lines to analyze the model dynamics and to write an age-structured
population model as an integral equation model. We then extend to an age-
structured SIR epidemic model. As an example we describe an age-structured
model for AIDS, derive a formula for the reproductive number of infection,
and show how important a role pair-formation plays in the modeling process.
In particular, we outline the semi-group method used in an age-structured
AIDS model with non-random mixing. We also discuss models for populations
and disease spread with discrete age structure.

9.1 Why Age-Structured Models?

In the simplest models for a single population all members are assumed to be
interchangeable. However, even the simplest models for disease transmission
include structuring the population by disease state (susceptible, exposed,
infective, or removed).

More advanced population models add some structure to the population
such as specification of spatial location or age. Age is one of the most impor-
tant characteristics in the modeling of populations and infectious diseases.
Individuals with different ages may have different reproduction and survival
capacities. Diseases may have different infection rates and mortality rates for
different age groups [1].
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Department of Mathematics, University of British Columbia, 1984, Mathematics Road,
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Individuals of different ages may also have different behaviours, and be-
havioural changes are crucial in control and prevention of many infectious
diseases. Young individuals tend to be more active in interactions with or
between populations, and in disease transmissions.

Sexually-transmitted diseases (STDs) are spread through partner interac-
tions with pair-formations, and the pair-formations are clearly age-dependent
in most cases. For example, most AIDS cases occur in the group of young
adults.

Childhood diseases, such as measles, chicken pox, and rubella, are spread
mainly by contacts between children of similar ages. More than half of the
deaths attributed to malaria are in children under five years of age due to
their weaker immune systems. This suggests that in models for disease trans-
mission in an age structured population it is necessary to allow the contact
rates between two members of the population to depend on the ages of both
members.

In order to describe age-structured models for disease transmission we
must first develop the theory of age-structured populations. In fact, the first
models for age-structured populations [34] were designed for the study of
disease transmission in such populations.

9.2 Modeling Populations with Age Structure

Let ρ(t, a) be the age-density function at time t with a ∈ [0, a+], where
a+ < ∞ is the maximum age of individuals, or with a ∈ [0,∞) for convenience

of mathematical description. Then
a2∫

a1

ρ(t, a)da is the number of individuals

having ages in the interval [a1, a2] at time t, and
∞∫

0

ρ(t, a)da = P (t) is the

total population size at t. Let β be the age specific fertility rate, or birth

rate, so that
a2∫

a1

βρ(t, a)da is the number of offspring produced by individuals

with ages in [a1, a2] in unit time at time t. Then
∞∫

0

βρ(t, a)da = B(t) is the

total number of newborns, at time t. The age specific fertility may depend
on the population density so that β = β(a, ρ(t, a)), or may depend on the
total population so that β = β(a, P ). The reader should note that here β
is not related to the contact rate for disease transmission in compartmental
models introduced in earlier chapters. Here we assume the fertility to be
time-independent. Let µ be the age specific mortality, or death rate, so that
∞∫

0

µρ(t, a)da is the total number of deaths at time t, occurring in one unit

time. Similarly, the age specific mortality may depend on the population
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density so that µ = µ(a, ρ(t, a)), or may depend on the total population size
so that µ = µ(a, P ). Again we assume the mortality to be time-independent.
In this chapter we consider the case in which both the fertility and mortality
depend on the total population size rather than on the age-specific population
density.

Suppose that the population changes from time t to t + h, with h > 0.
The number of newborns in the time interval [t, t + h] is

∫ t+h

t
B(s)ds =

∫ t+h

t

∫∞
0

β(σ, P )ρ(s, σ)dσds. Note that the number of individuals who die
at time t + s, having age less than or equal to a + s, is

∫ a+s

0
µ(σ, P )ρ(t +

s, σ)dσ. Then the total number of deaths in the time interval [t, t + h] is
∫ h

0

∫ a+s

0
µ(σ, P )ρ(t + s, σ)dσds.

Let N(t, a) =
∫ a

0
ρ(t, σ)dσ be the number of individuals having ages less

than or equal to a at time t, and assume that there is no migration. Then
the change in the population size from time t to t + h is the total number of
births minus the total number of deaths during the time interval [t, t + h],
that is,

N(t + h, a + h) − N(t, a) =
∫ t+h

t

B(s)ds −
∫ h

0

∫ a+s

0

µ(σ, P )ρ(t + s, σ)dσds.

(9.1)
The instantaneous rate of change of the population size is

lim
h→0

N(t + h, a + h) − N(t, a)
h

= Nt(t, a) + Na(t, a) =
∫ a

0

ρt(t, σ)dσ + ρ(t, a).

Dividing (9.1) by h and then letting h → 0 yields
∫ a

0

ρt(t, σ)dσ + ρ(t, a) = B(t) −
∫ a

0

µ(σ, P )ρ(t, σ)dσ. (9.2)

Setting a = 0 in (9.2), we have ρ(t, 0) = B(t). Differentiating equation
(9.2) with respect to a, we have

ρt(t, a) + ρa(t, a) = −µ(a, P )ρ(t, a). (9.3)

Then we arrive at the following system of a first order partial differential
equation with corresponding initial and boundary conditions:

ρt(t, a) + ρa(t, a) = −µ(a, P )ρ(t, a),
ρ(t, 0) =

∫∞
0

β(a, P )ρ(t, a)da = B(t),
ρ(0, a) = φ(a),

(9.4)

where φ(a) is the initial age distribution. For continuity at (0, 0) it would be
necessary to require that
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φ(0) =
∫ ∞

0

β(a, P )φ(a)da,

but because it is possible to allow discontinuous solutions of (9.4) this re-
quirement is usually ignored.

The partial differential equation in (9.4) is commonly called the Lotka–
McKendrick equation [26,42].

9.2.1 Solutions along Characteristic Lines

Fix t0 and a0 and consider the functions ρ̄(h) := ρ(t0 +h, a0 +h) and µ̄(h) :=
µ(a0 +h, P (t0 +h)). This amounts to following the age cohort of members of
the population with age a0 at time t0. Then equation (9.3) is equivalent to

dρ̄

dh
+ µ̄(h)ρ̄ = 0. (9.5)

Solving (9.5) yields

ρ̄(h) = ρ̄(0)e−
∫ h
0 µ̄(τ)dτ , (9.6)

that is,
ρ(t0 + h, a0 + h) = ρ(t0, a0)e−

∫ h
0 µ̄(τ)dτ . (9.7)

For a > t, setting (t0, a0) = (0, a − t) and h = t, we have

ρ(t, a) = ρ(0, a − t)e−
∫ t
0 µ̄(τ)dτ = φ(a − t)e−

∫ t
0 µ(a−t+τ,P (τ))dτ , (9.8)

and for t > a, setting (t0, a0) = (t − a, 0) and h = a, we have

ρ(t, a) = ρ(t − a, 0)e−
∫ a
0 µ̄(τ)dτ = B(t − a)e−

∫ a
0 µ(τ,P (t−a+τ))dτ , (9.9)

[17,38,42]. Then, we obtain the following expressions for solutions along the
lines of characteristics for system (9.4):

ρ(t, a) =
{

φ(a − t)e−
∫ t
0 µ(a−t+τ,P (τ))dτ , a > t,

B(t − a)e−
∫ a
0 µ(τ,P (t−a+τ))dτ , t > a.

(9.10)

Thus we have obtained an expression for the population density function
for all (t, a) by following each age cohort along a characteristic line. Notice,
however, that the solutions in (9.10) involve the total population size P which
depends on ρ(t, a).
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9.2.2 Equilibria and the Characteristic Equation

One of the important properties in the study of population dynamics is the
asymptotic behavior of the steady states or equilibria of the populations. For
system (9.4), a steady state, or an equilibrium distribution, ρ∗(a), satisfies
the equations

dρ∗(a)
da

= −µ(a, P ∗)ρ∗(a),

ρ∗(0) =
∫∞
0

β(a, P ∗)ρ∗(a)da,
P ∗ =

∫∞
0

ρ∗(a)da.

(9.11)

Suppose that system (9.11) has a solution ρ∗(a). Then we can investigate
the local stability of this steady state or equilibrium by linearization of system
(9.4) about ρ∗(a) as follows.

Let y(t, a) = ρ(t, a) − ρ∗(a), and write Y (t) =
∫∞
0

y(t, a)da. Then substi-
tution into (9.4) yields

yt + ya = ρt + ρa − ρ∗a = −µ(a, Y + P ∗) (y + ρ∗) − ρ∗a,

and

y(t, 0) = ρ(t, 0) − ρ∗(0) =
∫ ∞

0

β(a, Y + P ∗) (y + ρ∗) da − ρ∗(0),

where P ∗ =
∫∞
0

ρ∗(a)da. For ρ(t, a) near ρ∗, we have, using (9.11),

yt + ya ≈ −µ(a, P ∗)y − µ(a, P ∗)ρ∗ − ρ∗µP (a, P ∗)Y − ρ∗a
= −µ(a, P ∗)y − ρ∗µP (a, P ∗)Y,

(9.12)

and

y(t, 0) ≈
∫∞
0

(β(a, P ∗)y + ρ∗(a)βP (a, P ∗)Y ) da
=
∫∞
0

β(a, P ∗)y(t, a)da +
∫∞
0

ρ∗(a)βP (a, P ∗)daY (t)
=
∫∞
0

K(a, ρ∗, P ∗)y(t, a)da,
(9.13)

where
K(a, ρ∗, P ∗) = β(a, P ∗) +

∫ ∞

0

ρ∗(σ)βP (σ, P ∗)dσ. (9.14)

Hence, for ρ(t, a) near ρ∗, we arrive at the linearized equation

yt + ya = −µ(a, P ∗)y − ρ∗µP (a, P ∗)
∫ ∞

0

y(t, a)da, (9.15)

with the linearized integral boundary condition

y(t, 0) =
∫ ∞

0

K(a, ρ∗, P ∗)y(t, a)da. (9.16)
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Suppose further that y(t, a) = u(a)eξ(t−a), and write w =
∫∞
0

u(a)e−ξada.
By substituting them into (9.15) and (9.16), respectively, we have

du(a)
da

= −µ(a, P ∗)u(a) − ρ∗µP (a, P ∗)eξa
∫∞
0

u(a)e−ξada

= −µ(a, P ∗)u(a) − ρ∗µP (a, P ∗)eξaw,
(9.17)

and
u(0) =

∫ ∞

0

K(a, ρ∗, P ∗)u(a)e−ξada. (9.18)

Solving (9.17), we have

u(a) = e−
∫ a
0 µ(α,P∗)dα (u(0) − E(ξ, a) w) , (9.19)

where
E(ξ, a) =

∫ a

0

e(
∫ s
0 µ(α,P∗)dα+ξs)ρ∗µP (s, P ∗)ds.

Then substituting (9.19) into (9.18) and w, we obtain the following linear
system

u(0) =
∫∞
0

Ke−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0) −

∫∞
0

Ke−ξaE(ξ, a)da w,

w =
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0) −

∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da w,

or equivalently, the linear system
(
1 −
∫∞
0

Ke−(
∫ a
0 µ(α,P∗dα+ξa)da

)
u(0) +

∫∞
0

Ke−ξaE(ξ, a)da w = 0,
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0)−

(
1+
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da

)
w=0,

(9.20)
in the unknowns u(0) and w. Hence, there exists a non-zero solution (u(0), w)
to system (9.20) if and only if
(
1 −
∫∞
0

Ke−(
∫ a
0 µ(α,P∗)dα+ξa)da

)(
1 +
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da

)

+
∫∞
0

Ke−ξaE(ξ, a)da
∫∞
0

e−(µ+ξ)ada = 0.
(9.21)

Equation (9.21) is an equation in ξ. There exists a solution of the form
y(t, a) = u(a)eξ(t−a) of the linearization (9.15) and (9.16) if and only if there
exists a solution ξ to equation (9.21). Equation (9.21) is called the charac-
teristic equation of system (9.4) as in [9–11].
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9.3 Age-Structured Integral Equations Models

Integral equations have also been used for modeling of age-structured popu-
lations. These integral equations can be derived from system (9.4), or more
specifically from (9.10).

Write Π(a, P ) = e−
∫ a
0 µ(τ,P (t−a+τ))dτ . Then it follows from (9.10) that

B(t) =
∫ t

0
β(a, P )ρ(t, a)da +

∫∞
t

β(a, P )ρ(t, a)da

=
∫ t

0
β(a, P )Π(a, P )B(t − a)da +

∫∞
t

β(a, P )
Π(a, P )

Π(a − t, P )
φ(a − t)da,

(9.22)
and

P (t) =
∫ t

0
ρ(t, a)da +

∫∞
t

ρ(t, a)da

=
∫ t

0
Π(a, P )B(t − a)da +

∫∞
t

Π(a, P )
Π(a − t, P )

φ(a − t)da.
(9.23)

The coupled equations (9.22) and (9.23) are a system of nonlinear integral
equations. In general, it cannot be solved analytically. We consider two special
cases as follows.

If the birth rate is age-independent and density-dependent, that is, if β =
β(P ), then the equation for the total number of newborns becomes

B(t) =
∫ ∞

0

β(P (t))ρ(t, a)da = P (t)β(P (t)). (9.24)

Substituting (9.24) into (9.23), we have

P (t) =
∫ ∞

t

Π(a, P (t))
Π(a − t, P (t))

φ(a− t)da +
∫ t

0

Π(a, P (t))P (t− a)β(P (t− a))da.

(9.25)
Equation (9.25) is a delayed integral equation.

If the death rate is age-independent and density-dependent, that is, if
µ = µ(P ), then integration of the partial differential equation in (9.4) yields
the nonlinear ordinary differential equation

P ′(t) + P (t)µ(P (t)) = B(t), (9.26)

where ′ denotes d/dt, which is coupled with the following integral equation
for B derived from (9.22):

B(t) =
∫ ∞

t

β(a, P )
Π(a, P )

Π(a − t, P )
φ(a − t)da +

∫ t

0

β(a, P )Π(a, P )B(t − a)da.

(9.27)
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Under further assumptions, systems (9.24) and (9.25), or (9.26) and (9.27)
may become analytically solvable. For example, if β and µ are both functions
of total population size only, then P (t) is obtained by solving the ordinary
differential equation (9.26) with B(t) given by (9.24).

Whereas system (9.22) and (9.23) cannot in general be solved analytically,
the equilibrium age distributions provide useful information for the popula-
tion dynamics.

At an equilibrium age distribution, ρ∗(a), we write

P ∗ =
∫ ∞

0

ρ∗(a)da, B∗ =
∫ ∞

0

β(a, P ∗)ρ∗(a)da, (9.28)

which are constant. It follows from (9.11) that

ρ∗(a) = ρ∗(0)e−
∫ a
0 µ(a,P∗)da = B∗Π(a, P ∗). (9.29)

Substituting (9.29) into B∗ in (9.28), we can solve for B∗ to get

B∗ =
∫ ∞

0

β(a, P ∗)ρ∗(a)da = B∗
∫ ∞

0

β(a, P ∗)Π(a, P ∗)da. (9.30)

Then there exists a positive solution B∗ to equation (9.30) if and only if there
exists positive P ∗ such that

∫ ∞

0

β(a, P ∗)Π(a, P ∗)da = 1. (9.31)

Define R(P ) =
∫∞
0

β(a, P )Π(a, P )da, which is called the reproduction num-
ber and is an expected number of newborns that an individual produces
over its lifetime when the total population size is P . At an equilibrium age
distribution P ∗, the reproduction number is equal to one.

Substituting (9.29) into P ∗ in (9.28), we have

P ∗ = B∗
∫ ∞

0

Π(a, P ∗)da.

Notice that
∫∞
0

Π(a, P ∗)da is the average life expectancy of individuals, when
the population is at the equilibrium P ∗. Then the total population size P ∗

equals the total number of surviving newborns at the equilibrium.

9.3.1 The Renewal Equation

We consider a special case where the birth and death rates are density-
independent such that β = β(a) and µ = µ(a). In this case
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Π(a, P ) = e−
∫ a
0 µ(σ)dσ

is a function of a only. Then equation (9.22) becomes the linear integral
equation

B(t) = F (t) +
∫ t

0

L(t − a)B(a)da, (9.32)

where

F (t) =
∫ ∞

t

β(a)
Π(a)

Π(a − t)
φ(a − t)da, L(t) = β(t)Π(t).

Equation (9.32) is a linear Volterra integral equation of the second kind. It
is called the renewal equation or Lotka equation for the population [4, 26].

Because of the linearity of equation (9.32), we can use Laplace transfor-
mation techniques to investigate the properties of the dynamics of the pop-
ulation. Let B̂(s), F̂ (s), and L̂(s) be the Laplace transforms of B(t), F (t),
and L(t), respectively. Notice that the integral in (9.32) is the convolution of
K and B. Then taking the Laplace transform of each term in (9.22), we have

B̂(s) = F̂ (s) + L̂(s)B̂(s).

Solving for B̂(s), we obtain

B̂(s) =
F̂ (s)

1 − L̂(s)
= F̂ (s) +

F̂ (s)L̂(s)

1 − L̂(s)
. (9.33)

Since F̂ (s) and L̂(s) are analytic functions, the properties of B̂(s) are
determined by the property of 1 − L̂(s).

It follows from
L̂(s) =

∫ ∞

0

β(a)Π(a)e−sada

that
L̂(0) =

∫ ∞

0

β(a)Π(a)da = R(0),

dL̂(s)
ds

= −
∫ ∞

0

aβ(a)Π(a)da < 0,

and
lim

s→−∞
L̂(s) = +∞, lim

s→+∞
L̂(s) = 0.

Hence there exists a unique s0 ∈ IR such that L̂(s0) = 1. Whether s0 is
positive, zero, or negative, depends on whether R(0) is greater than, equal
to, or less than one.

Moreover, it is easy to check that if there exits a complex number s = α+iγ
such that L̂(s) = 1, then it follows from the real part of L̂(s) = 1,
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∫ ∞

0

β(a)Π(a)e−αa cos γada = 1 =
∫ ∞

0

β(a)Π(a)e−s0ada,

that α ≤ s0.
Hence s0 is a dominant root of L̂(s) = 1. With this dominant root, s0, it

can be shown that

B(t) = b0e
s0t (1 + Ω1(t)) , P (t) = p0e

s0t (1 + Ω2(t)) ,

where b0 ≥ 0 and p0 ≥ 0 are real numbers, and lim
t→∞

Ωk(t) = 0, k = 1, 2. (See,

e.g., [26, Sect. I, 5].)
Therefore, the location of s0 determines the asymptotic behavior of the

population. Equation K̂(s) = 1 is called the Lotka characteristic equation for
the renewal equation (9.32).

Now that we have an understanding of age-structured population models,
we can begin to study age-structured disease transmission models.

9.4 Age-Structured Epidemic Models

Suppose that we have an age-structured population described by (9.4) in
which there is an infectious disease of SIR type. We introduce functions
S(t, a), I(t, a), R(t, a) representing the age distribution at time t of suscepti-
ble, infective, and removed members, respectively, so that

S(t, a) + I(t, a) + R(t, a) = ρ(t, a).

As we have seen, the rate of change in time of a function X(t, a) of time and
age is

Xt(t, a) + Xa(t, a).

Thus we may write a system of equations

St(t, a) + Sa(t, a) = − (µ(a) + λ(t, a)) S(t, a),
It(t, a) + Ia(t, a) = λ(t, a)S(t, a) − (µ(a) + γ(a) + δ(a)) I(t, a),

Rt(t, a) + Ra(t, a) = − µ(a)R(t, a) + γ(a)I(t, a),

to describe the transmission dynamics of the disease in the age-structured
population. Here µ(a) is the natural death rate in each class, γ(a) is the re-
covery rate, δ(a) is the disease death rate, and λ(t, a) represents the infection
rate. To this system of partial differential equations we must add the initial
conditions

S(0, a) = Φ(a), I(0, a) = Ψ(a), R(0, a) = 0, (9.34)
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where Φ and Ψ are the initial distributions of susceptibles and infectives,
respectively. In addition there is the birth or renewal condition (assuming
that the age-dependent birth rate does not depend on disease status and
that all newborns are in the susceptible class).

S(t, 0) =
∫ ∞

0

β(a)ρ(t, a)da. (9.35)

Further analysis requires some assumption on the nature of the infection
term λ(t, a). One possibility is intracohort mixing,

λ(t, a) = f(a)I(t, a),

corresponding to the assumption that infection can be transmitted only be-
tween individuals of the same age. Another possibility is intercohort mixing,

λ(t, a) =
∫ ∞

0

b(a, α)I(t, α)dα,

with b(a, α) giving the rate of infection from contacts between an infective
of age α with a susceptible of age a. For intercohort mixing it is necessary
to make further assumptions on the mixing, that is, on the nature of the
function b(a, α). One possibility here would be separable pair formation,

b(a, α) = b1(a)b2(α).

Rather than pursuing the general analysis further here, we refer the reader
to more advanced references such as [26], and turn to an example that will
illustrate the main ideas.

9.5 A Simple Age-Structured AIDS Model

Consider a simple age-structured epidemic model in which HIV/AIDS is
spread in a homosexual population of ages in [a0,∞], where a0 is the minimal
sexually active age. We divide the population into the groups of susceptible
individuals, infective individuals, and AIDS cases, denoted by S, I, and A,
respectively.

Assume that there is an input flow, Λ(a) for all ages a, entering only
the susceptible group. For this simple model, we further assume that the
number of susceptible individuals of age a0 is a constant B, and that no
individuals with age a0 are infected yet. Let µ(a) be the natural death rate
of all individuals in the population, γ(a) the HIV developing rate for infective
individuals, and δ(a) the AIDS induced death rate of AIDS cases. Then the
transmission dynamics of the disease are governed by the following system of
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equations [24]:

St(t, a) + Sa(t, a) = Λ(a) − (µ(a) + λ(t, a)) S(t, a), (9.36a)
S(t, a0) = B, (9.36b)
S(0, a) = Φ(a), (9.36c)

It(t, a) + Ia(t, a) = − (µ(a) + γ(a)) I(t, a) + λ(t, a)S(t, a), (9.36d)
I(t, a0) = 0, (9.36e)
I(0, a) = Ψ(a), (9.36f)

At(t, a) + Aa(t, a) = − δ(a)A(t, a) + γ(a)I(t, a), (9.36g)
A(t, a0) = 0, (9.36h)
A(0, a) = 0, (9.36i)

where Φ and Ψ are the initial distributions of susceptibles and infectives,
respectively.

The infection rate, λ, is determined by

λ(t, a) = r(a)
∫ ∞

a0

β(a, a′)ρ(t, a, a′)
I(t, a′)
T (t, a′)

da′, (9.37)

where T (t, a) = S(t, a) + I(t, a) is the total number of sexually active in-
dividuals, r(a) the number of partners that an individual of age a has per
unit time, β(a, a′) the transmission probability of a susceptible individual
of age a infected by an infected partner of age a′, and ρ(a, a′, t) the rate of
pair-formation between individuals of ages a and a′.

The transmission probability can be further described by

β(a, a′) = f(a)g(a′),

where f(a) is the susceptibility of individuals of age a, and g(a′) is the infec-
tiousness of individuals of age a′. Then

λ(t, a) = r(a)f(a)
∫ ∞

a0

g(a′)ρ(t, a, a′)
I(t, a′)
T (t, a′)

da′. (9.38)

9.5.1 The Reproduction Number

One of the fundamental questions of mathematical epidemiology is to find
the reproduction number, which determines whether an infectious disease
spreads in a susceptible population when the disease is introduced into the
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population [1,13–15,19,21,23,37,41]. A possible formula for the reproduction
number can be derived by determination of the condition for local stability
of the infection-free equilibrium [4,25,28].

Model (9.36) has an infection-free equilibrium, (S, I,A) = (S0(a), 0, 0),
where

S0(a) = Be−M(a) + e−M(a)

∫ a

a0

eM(x)Λ(x)dx

with M(a) =
∫ a

a0
µ(s)ds.

We assume a separable pair-formation such that

ρ(t, a, a′) = p1(a)p2(a′).

Then we perturb the infection-free equilibrium by letting u(t, a) = S(t, a) −
S0(a). Substitution into (9.37) leads to

λ(t, a) = r(a)f(a)p1(a)
∫∞

a0
g(a′)p2(a′)

I(t, a′)
T (t, a′)

da′

≈ r(a)f(a)p1(a)
∫∞

a0

g(a′)p2(a′)
S0(a′)

I(t, a′)da′ := λ̃(t, a).

Then linearizing system (9.36) yields the linear system:

ut + ua = −µ(a)u − λ̃(t, a)S0(a),
It + Ia = − (µ(a) + γ(a)) I + λ̃(t, a)S0(a),

At + Aa = −δ(a)A + γ(a)I.

(9.39)

Assume
u(t, a) = ũ(a)ec(t−a), I(t, a) = Ĩ(a)ec(t−a).

Then ũ(a) and Ĩ(a) satisfy the following system of ordinary differential equa-
tions:

dũ(a)
da

= − µ(a)ũ(a) − b(a)ecaW, (9.40)

dĨ(a)
da

= − (µ(a) + γ(a)) Ĩ(a) + b(a)ecaW, (9.41)

where b(a) = S0(a)r(a)f(a)p1(a), and

W =
∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−ca′
Ĩ(a′)da′. (9.42)

Solving (9.41), we have

Ĩ(a) = We−M(a)−Γ (a)

∫ a

a0

eM(s)+Γ (s)b(s)ecsds, (9.43)
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with Γ (a) =
∫ a

a0
γ(v)dv. Substituting (9.43) into (9.42), we obtain

W = W

∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

∫ a′

a0

eM(s)+Γ (s)b(s)e−c(a′−s)dsda′.

(9.44)
Define

H(c) =
∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

∫ a′

a0

eM(s)+Γ (s)b(s)e−c(a′−s)dsda′.

(9.45)
Then there exists a nonzero solution W to equation (9.44) if and only if there
exists a real or complex number c such that

H(c) = 1. (9.46)

For all real numbers c, we have limc→∞ H(c) = 0. Then it follows from

dH(c)
dc = −

∫∞
a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

·
∫ a′

a0
(a′ − s)eM(s)+Γ (s)b(s)e−c(a′−s)dsda′ < 0,

that H(c) is a decreasing function. Hence, if c is a real solution of equation
(9.46), then c > 0, provided H(0) > 1, and c < 0, provided H(0) < 1.

Suppose c = α + iγ is a complex solution of equation (9.46). Then substi-
tuting it into (9.46) and separating the real and imaginary parts yields

1 = ReH(c) =
∫∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

·
∫ a′

a0
eM(s)+Γ (s)b(s)e−α(a′−s) cos γ(a′ − s)dsda′ ≤ H(α).

If H(0) < 1, then α < 0. Hence H(0) = 1 is a threshold for the stability
of the infection-free equilibrium. Define R0 = H(0). Then R0 is the repro-
duction number of infection for system (9.36). Equation (9.46) is called the
characteristic equation.

9.5.2 Pair-Formation in Age-Structured Epidemic
Models

Sexually transmitted diseases (STDs) spread through sexual activities be-
tween partners. The pair-formation, or mixing, is one of the key terms in
modeling of STDs [18, 23]. In Sect. 9.5.1, we assume the function describing
pair-formation in model (9.36) to be separable, which makes the mathematical
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analysis more tractable. However, it has been shown that the assumption of
a separable pair-formation function is equivalent to assuming a total propor-
tionate or random partnership formation [2, 3, 5–7]. We briefly explain it as
follows.

Let ρ(t, a, a′) be the pair-formation or mixing, which is the proportion of
partners with age a′ that an individual of age a has at time t. Let r(t, a) be
the average number of partners that an individual of age a has per unit of
time, and let T (t, a) be the total number of individuals of age a at time t.
Then the function ρ(t, a, a′) has the properties

1. 0 ≤ ρ(t, a, a′) ≤ 1,
2.
∫∞
0

ρ(t, a, a′)da′ = 1,
3. ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′),
4. r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 =⇒ ρ(t, a, a′) = 0.

Properties (1) and (2) follow from the fact that ρ(t, a, a′) is a proportion so
that it is always between zero and one, and its total sum equals one. Property
(3) comes from the fact that the total number of pairs of individuals of age
a with individuals of age a′ needs to be equal to the total number of pairs of
individuals of age a′ with individuals of age a. Moreover, if there are no active
individuals, then there is no pair-formation, which leads to property (4).

9.5.2.1 Total Proportionate Mixing

Suppose that the pair-formation is a separable function such that

ρ(t, a, a′) = ρ1(t, a)ρ2(t, a′). (9.47)

It follows from property 2) that
∫ ∞

0

ρ(t, a, a′)da′ =
∫ ∞

0

ρ1(t, a)ρ2(t, a′)da′ = ρ1(t, a)
∫ ∞

0

ρ2(t, a′)da′ = 1,

for all t. Hence
ρ1(t, a) =

1
∫∞
0

ρ2(t, a′)da′

is independent of a. Denote it by L(t). Then

ρ(t, a, a′) = L(t)ρ2(t, a′). (9.48)

It follows from property 3) and (9.48) that

L(t)ρ2(t, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′). (9.49)

Integrating (9.49) with respect to a from 0 to ∞ yields
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L(t)ρ2(t, a′)
∫ ∞

0

r(t, a)T (t, a)da = r(t, a′)T (t, a′). (9.50)

Hence

L(t)ρ2(t, a′) =
r(t, a′)T (t, a′)

∫∞
0

r(t, a)T (t, a)da
, (9.51)

which implies that ρ(t, a, a′) satisfies

ρ(t, a, a′) =
r(t, a′)T (t, a′)

∫∞
0

r(t, a)T (t, a)da
. (9.52)

Notice that the right-hand side in (9.52) is the fraction of the total partners
of age a′ in the population, or the availability of partners of age a′. A pair-
formation or mixing function satisfying (9.49) is called a total proportionate
mixing. Such a mixing depends completely on the availability of partners
and is a kind of random mixing. While it may be appropriate to assume a
proportionate mixing or random mixing in special cases such as modeling
of HIV/AIDS for homosexual men, in general, it is necessary to assume the
pair-formation or mixing function to be non-separable.

9.5.3 The Semigroup Method

As we have suggested in Sect. 9.5.2.1, in general the mixing function should
be assumed non-separable. The mathematical analysis then becomes more
difficult. A possible way to investigate dynamical behavior of models with
non-separable mixing is to utilize the semigroup method. We outline the
method for a simplified age-structured HIV/AIDS model with non-separable
mixing as follows.

Consider ages in a finite interval [0, ω], where ω is the maximal sexually
active age and assume the infection rate has the form

λ(t, a) = h(a)
∫ ω

0

ρ(a, a′)
I(t, a′)
T (t, a′)

da′.

Let x = S/T and y = I/T . Then the dynamics of the age-structured epidemic
model can be determined by the equation

yt(t, a) + ya(t, a) = (−γ(a)y + λ(t, a)) (9.53)

with infection rate

λ(t, a) = h(a)
∫ ω

0

ρ(a, a′)y(t, a′)da′. (9.54)
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Linearizing equation (9.53) with (9.54), we have

yt + ya = −γ(a)y + h(a)
∫ ω

0

ρ(a, a′)y(t, a′)da′. (9.55)

Define linear operators B and P by

(Bf)(a) = −df(a)
da

− γ(a)f(a),

(Pf)(a) = h(a)
∫ ω

0
ρ(a, a′)f(a′)da′.

Then equation (9.55) can be written as

dy

dt
= (B + P) y. (9.56)

The operator B + P generates a C0 semigroup T (t), for t ≥ 0, and the
semigroup T (t) is eventually uniformly continuous. The growth bound of
T (t) is the spectral bound of B + P. It can be shown [27, 29, 33] that the
resolvent of B + P, denoted by R(λ;B + P), is equal to (Sλ − I)−1G where

(Gf)(a) =
∫ a

0

e−λ(a−σ)Γ (a)Γ−1(σ)f(σ)dσ,

(Sλf)(a) =
∫ ω

0

∫ a

0

e−λ(a−σ)Γ (a)Γ−1(σ)h(σ)p(σ, ξ)dσf(ξ)dξ.

Here we write Γ (a) = e−
∫ a
0 γ(s)ds. Therefore, we can define the reproduction

number of the epidemic, R0, as the spectral radius of the operator

(Sf)(a) =
∫ ω

0

∫ a

0

Γ (a)Γ−1(σ)h(σ)p(σ, ξ)dσf(ξ)dξ.

Consider a special case where the pair-formation is a finite sum of separable
functions given by

ρ(a, a′) =
n∑

j=1

pj(a)qj(a′).

Then the reproduction number, R0, is the largest positive eigenvalue λ1 of
the nonnegative matrix

K̂ =

⎛

⎜
⎝

∫ ω

0
q1(a)H1(a)da · · ·

∫ ω

0
q1(a)Hn(a)da

...∫ ω

0
qn(a)H1(a)da · · ·

∫ ω

0
qn(a)Hn(a)da

⎞

⎟
⎠ ,

where
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Hj(a) = Γ (a)

a∫

0

h(σ)Γ−1(σ)pi(σ)dσ.

In particular, for n = 2, we have the explicit expression

R0 =
1
2
∫ ω

0
(q1H1 + q2H2) da

+
1
2

√(∫ ω

0
(q1H1 − q2H2) da

)2
+ 4
∫ ω

0
q1H2da

∫ ω

0
q2H1da

for the reproduction number of infection [33].

9.6 Modeling with Discrete Age Groups

Under certain conditions, the age-structured partial differential equation
model (9.4) can be reduced to a system of ordinary differential equations
[22,32,40].

Partition the age interval into a finite number n of subintervals [a0, a1),
[a1, a2), · · · , [an−1, an), where a0 = 0 and an ≤ ∞. Denote the number of indi-
viduals with ages in interval [ai−1, ai] by Hi(t), so that Hi(t) =

∫ ai

ai−1
ρ(t, a)da,

i = 1, · · · , n. Then integrating the partial differential equation in (9.3) from
a0 to a1, we have

dH1(t)
dt

+ ρ(t, a1) − ρ(t, a0) +
∫ a1

a0

µ(a, P )ρ(t, a)da = 0. (9.57)

Assume that individuals with ages in each interval have the same vital
rates such that β(a, P ) = βi, µ(a, P ) = µi, for a in [ai−1, ai], i = 1, · · · , n.
Here βi and µi are age-independent, but may be density-dependent. Then,
in the age interval [0, a1], we have

ρ(t, 0) =
n∑

1

βi Hi(t),
∫ a1

a0

µ ρ(t, a)da = µ1 H1(t),

which leads to
dH1

dt
=

n∑

1

βi Hi − (m1 + µ1)H1. (9.58)

Here m1 is the progression rate from groups 1 to 2, defined by m1 =
ρ(t, a1)/H1(t), and we assume it is time-independent.

Integrating (9.3) from ai−1 to ai for 2 ≤ i ≤ ∞, we have

dHi

dt
= mi−1 Hi−1 − (mi + µi) Hi, i = 2, · · · , n, (9.59)
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where mi is the age progression rate from groups i to i+1, and we let mn = 0.
Then the system in (9.4) is reduced into a system of n ordinary differential
equations.

9.6.1 Examples

We provide two simple examples to demonstrate how the discrete age group
model described by equations (9.58) and (9.59) can be applied to populations
and infectious diseases.

9.6.1.1 A Two-Age-Group Population Model

There are many means by which individuals of a species might compete for
resources and by which intra-specific competition might express itself. Or-
ganisms which do not undergo such radical changes during their life cycles
(e.g., birds, mammals, most reptiles, fishes, and hemimetabolous insects such
as aphids, true bugs and grasshoppers) can experience considerable com-
petition between juveniles and adults for common resources. Intra-specific
competition can also occur to organisms with simple life cycles. The well
studied flour beetles of genus Tribolium whose adult and larval stages utilize
food resources in common provide a case in point [8].

Let J(t) and A(t) denote the densities of juveniles and adults at time t,
respectively. Using the model in (9.58) and (9.59), with n = 2, we have the
two age-group model

J ′(t) = β(J,A)A − (m(J,A) + µ1(J,A)) J,
A′(t) = m(J,A)J − µ2(J,A)A,

(9.60)

where ′ denotes d/dt, β is the birth rate of adults, µi, i = 1, 2, are death rates
for juveniles and adults, respectively, and m is the age progression rate.

Models similar to (9.60) have been studied intensively. Readers are referred
to [12,16,20,30,31,35,38,39].

9.6.1.2 A Multi-Age-Group Malaria Model

Malaria is by far the world’s most important tropical parasitic disease, which
kills more people than any other communicable disease with the exception
of tuberculosis. Approximately 10.5% (1,098,000) of deaths in children in
developing countries in 2002 were due to malaria. Generally children have
weaker immune systems, having not been as exposed to as much illness as
adults.
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It is known that there is acquired immunity in humans, even though the
mechanisms of immunity to malaria are not fully understood. The acquired
immunity appears to depend on both the duration and the intensity of past
exposure to infection. Recovery from a primary infection with malaria does
not imply fully protective immunity against reinfection. Immunity against
malaria evidently influences the production of gametocytes. Frequency and
intensity of gametocytemia decrease with increasing age until they reach a
minimum among adults [43].

Therefore, in modeling of malaria transmission, age-structured models are
more appropriate, and this can provide insight into the spread of malaria
among different age groups, and can help identify efficient disease control
strategies, for example, by targeting certain age-groups for vaccination.

Consider a human population in which malaria spreads. Divide the human
population into four classes: susceptibles, exposeds who are the individuals
infected but not yet transmitting the disease, infectives, and recovereds who
are recovered and also immune from re-infection. Denote them as S(a, t),
E(a, t), I(a, t), and R(a, t), respectively. We further divide the human pop-
ulation into n age groups such that Si, Ei, Ii, and Ri, i = 1, . . . , n, are the
susceptible, exposed, infective, and recovered individuals in age group i. Then
the malaria transmission dynamics in the human population are governed by
the system of ordinary differential equations

S′
1(t) = B(t) − (µ1 + η1)S1 − λ1(t)S1,

S′
j(t) = ηj−1Sj−1 − λj(t)Sj − (µj + ηj)Sj , j = 2, . . . , n,

E′
1(t) = λ1(t)S1 − (µ1 + ε1 + η1)E1,

E′
j(t) = λj(t)Sj + ηj−1Ej−1 − (µj + εj + ηj)Ej j = 2, . . . , n,

I ′1(t) = ε1E1 − (µ1 + γ1 + ω1 + η1)I1,

I ′j(t) = εjEj + ηj−1Ij−1 − (µj + γj + ωj + ηj)Ij j = 2, . . . , n,

R′
1(t) = γ1I1 − (µ1 + η1)R1,

R′
j(t) = ηj−1Rj−1 + γjIj − (µj + ηj)Rj j = 2, . . . , n,

(9.61)

where B(t) is a input flow into the susceptible class, µi the age specific nat-
ural death rates, ωi the age specific disease induced death rates, ηi the age
progression rate, εi the age specific disease progression rates, and γi the age
specific recovery rates.

The infection rates λj(t) for humans are related to the vector (mosquito)
population and are given by

λj(t) =
bNv(t)
N(t)

βj
Iv(t)
Nv(t)

=
bβjIv(t)

N(t)
, j = 1, . . . , n, (9.62)

where b is the number of bites on humans taken per mosquito in unit time, Nv

the total mosquito population, N =
∑n

j=1(Sj +Ej +Ij +Rj) the total human
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population, Iv the number of infective mosquitoes, and βj the probability of
infection for humans in group j.

Due to the short life span of the mosquito populations, age structure is not
incorporated into the mosquitoes. It is also assumed that all mosquitoes will
die before recovering from infection. Then Nv = Sv + Ev + Iv, where Sv and
Ev are the numbers of susceptible and exposed mosquitoes. The dynamics of
the mosquito population are described by the equations

S′
v(t) = Mv − λvSv − µvSv,

E′
v(t) = λv(Nv − Ev − Iv) − (µv + εv),

I ′v(t) = εvEv − µvIv,

(9.63)

where Mv is an input flow of susceptible mosquitoes, µv is the natural death
rate of mosquitoes, εv is the disease progression rate for exposed mosquitoes,
and λv is the infection rate for mosquitoes given by

λv(t) = b

n∑

j=1

(
βvj

Ij(t)
N(t)

)

. (9.64)

Here βvj
are the infection rate of mosquitoes by infected humans in group j.

System (9.61) is strongly coupled, which increases the difficulty of math-
ematical analysis. Readers are referred to [36] for preliminary studies.
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Chapter 10

Distribution Theory, Stochastic
Processes and Infectious Disease
Modelling

Ping Yan

Abstract The occurrence of a major outbreak, the shape of the epidemic
curves, as well as the final sizes of outbreaks, are realizations of some stochas-
tic events with some probability distributions. These distributions are man-
ifested through some stochastic mechanisms. This chapter divides a typical
outbreak in a closed population into two phases, the initial phase and beyond
the initial phase. For the initial phase, this chapter addresses several aspects:
the invasion (i.e. the risk of a large outbreak); quantities associated with a
small outbreak; and characteristics of a large outbreak. In a large outbreak
beyond the initial phase, the focus is on its final size. After a review of dis-
tribution theories and stochastic processes, this chapter separately addresses
each of these issues by asking questions such as: Are the latent period and/or
the infectious period distributions playing any role? What is the role of the
contact process for this issue? Is the basic reproduction number R0 sufficient
to address this issue? How many stochastic mechanisms may manifest obser-
vations that may resemble a power-law distribution, and how much detail is
really needed to address this specific issue? etc. This chapter uses distribu-
tion theory and stochastic processes to capture the agent–host–environment
interface during an outbreak of an infectious disease. With different phases
of an outbreak and special issues in mind, modellers need to choose which
detailed aspects of the distributions and the stochastic mechanisms need to
be included, and which detailed aspects need to be ignored. With these dis-
cussions, this chapter provides some syntheses for the concepts and models
discussed in some proceeding chapters, as well as some food for thought for
following chapters on case studies.

Centre for Communicable Diseases and Infection Control, Infectious Diseases and Emer-
gency Preparedness Branch, Public Health Agency of Canada, 100 Elangtine Drive,
AL0602-B, Tunney’s Pasture, Ottawa, ON, Canada K1A 0K9
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10.1 Introduction

This chapter limits the discussions to human–human transmission through
direct contacts involving an agent (e.g. virus, bacteria, etc.) in a closed popu-
lation. The agent has biological characteristics. The human hosts may differ
in susceptibility. The environment is where contacts and transmissions take
place. One wishes to control the outbreak aimed at preventing a large out-
break from happening. Should it happen, the number of individuals who are
infectious at time t can be approximated by a curve, either symmetrical or
slightly negatively skewed, like that illustrated in Fig. 10.1.

Fig. 10.1 Schematic illustration of the three objectives

Further public health objectives include:

1. Reducing the initial growth of the curve (and delaying the peak)
2. Reducing the peak burden
3. Reducing the final size, defined as the total number of individuals or

the proportion of individuals in the population that will be eventually
infected by the end of the outbreak.

Brauer [1] (Chap. 2 of this book) discussed the initial growth rate and the
maximum value of I(t) for the number of infectious individuals at time t in
a compartment model. The final size of an outbreak was not only discussed
in deterministic compartment models, but also by Allen [2] (Chap. 3 of this
book) with respect to stochastic models. There concepts are also embedded
in network models introduced by Brauer [3] in Chap. 4 of this book.



10 Stochastic Processes in Infectious Disease Modelling 231

10.2 A Review of Some Probability Theory
and Stochastic Processes

10.2.1 Non-negative Random Variables
and Their Distributions

10.2.1.1 The Distribution Functions, the Expectation (Mean)
and the Variance

Most random variables in this chapter, discrete or continuous, take non-
negative values X ≥ 0. The expected (mean) value and variance are denoted
by E[X] and var[X]. The cumulative distribution function (c.d.f.) is denoted
by FX(x) = Pr{X < x} satisfying FX(0) = 0, monotonically increasing, and
FX(∞) = 1. The survivor function is FX(x) = 1 − FX(x) = Pr{X ≥ x}.
The lower case fX(x) is used for the probability density function (p.d.f.)
fX(x) = − d

dxFX(x) = lim
δ→0

Pr{x≤X<x+δ}
δ if X is absolutely continuous; and

for the probability mass function (p.m.f.) fX(x) = FX(x) − FX(x + 1) =
Pr{X = x} if X is discrete taking values x = 0, 1, 2, · · · . fX(x) satisfies
(1) fX(x) > 0; (2)

∑∞
x=0 fX(x) = 1 for discrete and

∫∞
0

fX(x)dx = 1 for
continuous random variable X.

It can be shown that when X ≥ 0,

E[X] =
{∑∞

x=0 FX(x), if X discrete,∫∞
0

FX(x)dx, if X continuous.
(10.1)

10.2.1.2 The Probability Generating Function (p.g.f.)

If X is discrete taking values x = 0, 1, 2, · · · , the probability generating func-
tion, as previously introduced in Allen [2] and Brauer [3], is a mathematical
tool to study its distribution. It is defined as

GX(s) = E
(
sX
)

=
∞∑

x=0

sx Pr{X = x}, (10.2)

satisfying

GX(0) = Pr{X = 0}, GX(1) = 1, G′
X(s) > 0, G′′

X(s) > 0. (10.3)

If the p.m.f. f(x) = Pr{X = x} is given, GX(s) is uniquely defined through
(10.2). If GX(s) is given, provided that it is a smooth function of s with
higher order of derivatives, then
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Pr{X = x} =
1
x!

G
(x)
X (0), x = 0, 1, 2, · · · (10.4)

where G
(x)
X (0) = dx

dsx GX(s)
∣
∣
s=0

, so that the p.m.f. f(x) can be uniquely
generated through GX(s). Calculations of moments and of some probabilities
are very easy. The mean and variance of X are

E[X] = G′
X(1), (10.5)

var[X] = G′′
X(1) + G′

X(1) − (G′
X(1))2 .

10.2.1.3 The Hazard Function

If X is continuous, the hazard function, hX(x) def.= limδ→0
Pr{x≤X<x+δ|X≥x}

δ
uniquely determines the distribution of X, through the relationships fX(x) =
hX(x)FX(x) and FX(x) = exp

(
−
∫ x

0
hX(u)du

)
. The shape of hX(x) can be

used to define and classify families of continuous distributions for X. Some
commonly considered candidates are:

1. Constant: hX(x) = α
2. lim

x→∞
hX(x) = α, but hX(x) is monotone, either increasing or decreasing

3. Monotone with lim
x→∞

hX(x) =
{
∞, if increasing
0, if decreasing

4. Non-monotone: hX(x) initially increases to a maximum value and then
decreases with lim

x→∞
hX(x) = 0.

In the first case when hX(x) = α, FX(x) = exp (−αx) and fX(x) =
α exp (−αx) . This gives the exponential distribution. α is often called rate. If
X represents the infectious period in a Susceptible-Infective-Removed (SIR)
model, α is often referred to as the removal rate. The second equation in (2.1)
of Brauer [1] is a special case of a more general equation

d

dt
I(t) = i(t) −

∫ t

0

i(s) fX(t − s)ds (10.6)

= i(t) −
∫ t

0

i(s) hX(t − s)FX(t − s)ds

where the special case is hX(x) = α and FX(x) = exp (−αx) such that
d
dtI(t) = i(t) − α

∫ t

0
i(s)e−α(t−s)ds. Note that I(t) =

∫ t

0
i(s)e−α(t−s)ds, be-

cause
∫ t

0
i(s)e−α(t−s)ds =

∫ t

0
i(s) Pr{X > t− s}ds is the number of individu-

als infected before t who have not yet been removed. If one further assumes
i(t) = βI(t)S(t), then (10.6) reduces to I ′ = (βS − α) I which is (2.1) of
Brauer [1]. In addition, the exponential distribution has memoryless prop-
erty: Pr{X > x + y|X > x} = exp(−α(x+y))

exp(−αx) = exp (−αy) . For X with expo-
nential distribution, the rate is reciprocal to the mean duration: E[X] = 1

α .



10 Stochastic Processes in Infectious Disease Modelling 233

The exponentially distributed infectious period is the underlying assumption
in the continuous time Markov chain model in Allen [2].

In the second case lim
x→∞

hX(x) = α, a commonly used model is the gamma
distribution with p.d.f.

fX(x) =
α(αx)κ−1

Γ (κ)
e−αx (10.7)

and survivor function FX(x) = ακ

Γ (κ)

∫∞
x

uκ−1e−αudu, where α is a scale pa-
rameter. κ is the shape parameter that determines the shape of the hazard
function. When κ > 1, the hazard is an increasing function of x and when
κ < 1, a decreasing function of x. When κ = 1, it is the exponential distri-
bution. It can be shown that for any κ > 0, hX(x) = fX(x)

F X(x)
→ α as x → ∞.

In the third case, the monotone hazard function satisfies lim
x→∞

hX(x) = ∞,

if increasing, and lim
x→∞

hX(x) = 0, if decreasing. A common choice is hX(x) =

βαβxβ−1, a power function of x such that when β = 1, hX(x) = α; when
β > 1, hX(x) is an increasing function of x and when β < 1, hX(x) is a
decreasing function of x. β is the shape parameter that determines the shape
of the hazard function. The corresponding p.d.f. and the survivor function are
fX(x) = βα (αx)β−1

e−(xα)β

and FX(x) = e−(αx)β

. α is a scale parameter.
This is the Weibull distribution.

Of non-monotone hazard functions that initially increase to a maxi-
mum value and then decrease with lim

x→∞
h(x) = 0, there are two com-

monly used distributions in the literature: the log-normal distribution with

p.d.f. fX(x) = θ
x
√

2π
e

−θ2(log αx)2

2 and the log-logistic distribution with p.d.f.

fX(x) = αθ(αx)θ−1

(1+(αx)θ)2 . In both distributions α is a scale parameter and θ is the

shape parameter.
Another continuous distribution for X used in this chapter is the Pareto

distribution with hazard function hX(x) = ακ
1+αx which is monotonically de-

creasing lim
x→∞

hX(x) = 0. It has p.d.f. fX(x) = κα
(1+αx)κ+1 and survivor func-

tion FX(x) = 1
(1+αx)κ .

10.2.1.4 The Laplace Transform

For a non-negative continuous random variable X, it is sometimes convenient
to work with the Laplace transforms

LX(r) =
∫ ∞

0

e−rxfX(x)dx,
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and its related function L∗
X(r) =

∫∞
0

e−rxFX(x)dx = 1−L(r)
r , provided that

they exist. As a function of r, the following statements hold:

• limr→0 L∗
X(r) =

∫∞
0

FX(x)dx = E[X]
• L∗

X(r) is monotonically decreasing
• limr→∞ L∗

X(r) = 0

10.2.2 Some Important Discrete Random Variables
Representing Count Numbers

10.2.2.1 The Random Number Associated with the Basic
Reproduction Number R0

Let us call an infectious contact a contact at which transmission takes place
[4]. We use the notation N for a discrete valued random variable, defined as

N = the number of infectious contacts made by an infective individual, throughout
its entire infectious period, in a wholly susceptible population.

The expected value of N is the basic reproduction number R0 = E[N ].
Uncertainties are captured by var[N ] as well as the probability distribution
Pr{N = x}, x = 0, 1, 2, · · · . Some public health questions can be sufficiently
addressed by R0 = E[N ] alone. Some other public health questions can be
addressed by the first two moments: E[N ] and var[N ]. For some questions,
one needs to know the precise distribution for N. However, there are many
other important public health issues that are not addressed by the distribu-
tion N. The distribution for N may arise from a combination of the following
stochastic mechanisms:

1. The contact network structure and stochastic features that give rise to
the contact process

2. The individual (host) properties that determine transmissibility per con-
tact, such as host susceptibility

3. The probability distributions of durations of time-to-events, such as the
infectious period.

The same probability distribution Pr{N = x} can arise from different
stochastic mechanisms. For some public health questions, different stochastic
mechanisms may give different answers, even if the probability distribution
Pr{N = x} is the same. For some other public health aspects, different
distributions for Pr{N = x} may give the same answer as long as certain
aspects of the underlying stochastic mechanisms remain the same.
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10.2.2.2 Discrete Random Numbers Associated with the Final
Size of an Outbreak

Calendar time is denoted by t. At t = 0, there are S0 initial susceptible
individuals and I0 initial infectious individuals in a closed population. The
population size n = S0 + I0. S0 and I0 are fixed integers. Under the assump-
tion S0

n ≈ 1 (i.e. S0 is very large) and I0
n = ε ≈ 0 (i.e. I0 is very small),

if infective cases are removed at the end of their infectious period by recov-
ery with immunity, or by complete isolation through intervention, or death,
there may be a proportion of susceptible individuals that eventually escape
from infection when the outbreak is over. The following pair of quantities are
random:

• S∞ = the total number of susceptible individuals who have escaped from
infection in the population

• Z = n − S∞ = the final size, with a probability distribution Pr{Z = z},
z = 1, 2, · · ·

Diekmann and Heesterbeek [5] describe the distinction of a small outbreak
from a large outbreak. Using the random variable Z,

Small outbreak. As n → ∞, the infectious agent produces a handful of cases
and the outbreak becomes extinct, such that the expected number of cases,
E[Z], remains finite. The expected outbreak size as a proportion, E[Z]

n , is
concentrated at zero.

Large outbreak. As n → ∞, the final outbreak size as a proportion is a posi-
tive quantity, such that the expected final outbreak size number scales lin-
early with the size of the susceptible population. In other words, E[Z] → ∞
but E[Z]

n → η where η is a positive quantity, 0 < η < 1.

There are occasions that E[Z] → ∞ but E[Z]
n → 0 (e.g., in the order

∼n
2
3 ). In other words, although the final size as a proportion (scaled to the

population size n) is concentrated at zero, the final outbreak size as absolute
numbers can be very large. In this case, the outbreak size is neither small,
nor large.

10.2.2.3 The Time-to-Extinction of a Small Outbreak

A random variable Tg is defined as the time to extinction at generation
g = 1, 2, 3, · · · , where the event {Tg = g} refers to {no infected case at
generation g and at least one infected case at generation g−1}. The generation
time g is different from the calendar time t. In certain situations, observations
arising from an outbreak can be identified by generation time.
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10.2.2.4 Three Commonly Used Discrete Distributions

Allen [2] used p.g.f. to determine the probability of extinction in the context
of branching processes. Brauer [3] reviewed the use of p.g.f. to characterize
and calculate degree distributions with respect to the spread of diseases over
contact networks. In this chapter, p.g.f. will be used to generate the distribu-
tions for N which is related to the basic reproduction number R0, to derive
probability distributions for the final size Pr{Z = z} in small outbreaks, and
where possible, to derive the probability Pr{Tg = g}.

Table 10.1 Three discrete distributions frequently used in this chapter

fX(x) GX(s) E[X] var[X]

Poisson λx

x!
e−λ e−λ(1−s) λ λ

Geometric λx

(1+λ)x+1
1

1+λ(1−s)
λ λ2 + λ

Neg. binomial
Γ
(

x+ 1
φ

)

Γ (x+1)Γ
(

1
φ

) (λφ)x

(1+λφ)
x+ 1

φ

1

[1+λφ(1−s)]
1
φ

λ φλ2 + λ

Fig. 10.2 Comparing the negative binomial distributions at λ = 3

We use the notation X which could be N , Z or Tg depending on context.
Table 10.1 lists three commonly referred discrete distributions in this chapter.
In discrete distributions, fX(x) = FX(x + 1) − FX(x). The shapes of fX(x)
for these distributions are compared in Fig. 10.2. The Poisson distribution is
a special case of the negative binomial distribution as φ → 0; the geometric
distribution is a special case of the negative binomial distribution as φ = 1.
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10.2.3 Continuous Random Variables Representing
Time-to-Event Durations

In models involving a sequence of events, one may treat each pair of successive
events as an initiating event that leads to a subsequent event over a random
duration X ≥ 0. Durations can be categorized by: (1) the natural history of
infectiousness of an infected individual (e.g. latent and infectious periods);
(2) the natural history of clinical manifestation (e.g. incubation period and
duration of illness); and (3) the reaction time of the public health system
(e.g. time to detect an infection or to isolate an infectious individual).

Table 10.2 Some common durations in infectious disease models

Initiating event Subsequent event DurationX

Infection of a virus Becoming infectious Latent period

Becoming infectious Removal Infectious period
Infection of a virus Onset of symptoms Incubation period

Infection of a virus First positive test (diagnosis) Time to testing

Diagnosis Starting treatment Time to treatment
Diagnosis Isolation Time to isolation

Models are often developed along the event history based on one or a
combination of the three categories. For example, models based on the nat-
ural history of infectiousness of an infected host might be a deterministic or
stochastic SIR or a Susceptible-Latent-Infective-Removed (SEIR) model, like
those discussed in previous chapters.

10.2.3.1 Ordering and Tail Properties of Non-negative
Continuous Random Variables

Very often one wants to compare two non-negative random variables X1 and
X2, either through some overall summary of their distributions, or through
their tail properties. For notational simplicity, we write F 1(x) = FX1(x) and
F 2(x) = FX2(x) hereafter.

Definition 1. X2 is longer than X1 in stochastic order, denoted by X2 ≥st

X1, if corresponding survivor functions F 2(x) ≥ F 1(x) for all x.

In general, F 2(x) ≥ F 1(x) ⇒ E[X2] =
∫∞
0

F 2(x)dx ≥ E[X1] =∫∞
0

F 1(x)dx. The reverse is not true for non-exponential distributions.

Definition 2. X2 is longer than X1 in hazard rate order, denoted by X2 ≥hr

X1, if corresponding hazard functions h2(x) ≤ h1(x), for all x > 0.

Note that X2 ≥hr X1 ⇒ X2 ≥st X1,
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Definition 3. X2 is longer than X1 in Laplace transform order, denoted by
X2 ≥L X1, if L∗

2(r) =
∫∞
0

e−rxF 2(x)dx ≥ L∗
1(r) =

∫∞
0

e−rxF 1(x)dx.

Note that for the Laplace transforms L2(r) =
∫∞
0

e−rxf2(x)dx and
L1(r) =

∫∞
0

e−rxf1(x)dx, X2 ≥L X1 ⇔ L2(r) ≤ L1(r) since L∗
X(r) =

1−LX(r)
r .

In the special case when X is exponentially distributed, with µX = E[X],
the hazard function is hX(x) = 1

µX
; the survivor function is FX(x) = e

− x
µX ;

and L∗
X(r) = µX

1+rµX
. If X2 and X1 are both exponentially distributed, X2 ≥hr

X1 ⇔ X2 ≥st X1 ⇔ X2 ≥L X1 ⇔ E[X2] ≥ E[X1]. In general,

X2 ≥hr X1 ⇒ X2 ≥st X1 ⇒ X2 ≥L X1. (10.8)

Another stochastic property used in this chapter is the relationship be-
tween the hazard function and the tail properties of randomly distributed
durations. Denote Xs = (X − s|X > s) as the residual life of a duration
X conditioning on X > s. If X stands for the infectious period, then Xs

stands for the time remaining to be infectious, after s amount of time since
the beginning of the infectious period. Thus

Pr{Xs > x} = Pr{X > s + x|X > s} =
FX(s + x)

FX(s)

is the survivor function of Xs. Given the hazard function hX(x), it can be
shown that F X(s+x)

F X(s)
= exp

(
−
∫ s+x

s
hX(u)du

)
. This leads to:

1. If hX(x) is strictly increasing with hX(x) → ∞, then F X(s+x)

F X(s)
is a de-

creasing function of s, lims→∞
F X(s+x)

F X(s)
= 0, for any x > 0.

2. If there exists x0 ≥ 0 such that for x > x0, hX(x) is a decreasing function
of x with limx→∞ hX(x) = 0, then

lim
s→∞

FX(s + x)
FX(s)

= 1, for any x > 0. (10.9)

The distribution is said to be heavy tailed if it satisfies (10.9). Intuitively,
if X ever exceeds a large value, then it is just as likely to exceed any
larger value.

3. If hX(x) → α, the distribution has exponential tail

lim
s→∞

FX(s + x)
FX(s)

= e−αx, for any x > 0. (10.10)
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4. A distribution is sub-exponential, if limx→∞
F X(x)

exp(−αx) = ∞, implying that
it has a heavier tail (goes to zero more slowly) than an exponential tail.
All heavy tailed distributions are also sub-exponential.

Another form of heavy tailed distribution is that of the Pareto form, such
that for some θ > 0, A > 0, limx→∞

F X(x)
xθ+1 = A. They are heavy tailed with

power-law property ∝ 1
xθ+1 .

Table 10.3 Comparison of hazard functions and tail properties

p.d.f. fX(x) Hazard hX(x) Pr{Xs > x}, x > 0

Exponential αe−αx Constant
F X (s+x)

F X (s)
= e−αx

α (exponential)

Gamma
α(αx)κ−1

Γ (κ)
e−αx Converge lim

s→∞
F X (s+x)

F X (s)
= e−αx

h(x) → α (exponential)

Weibull βαβxβ−1e−(xα)β
h(x) ↓ 0 lim

s→∞
e
αθ
(

sθ−(s+x)θ
)

= 1

(if β < 1) (heavy, not power-law)

Log-logistic
αθ(αx)θ−1

(1+(αx)θ)2
h(x) ↓ 0 lim

s→∞
1+(αx)θ

1+(α(x+y))θ = 1

After x > x0 (heavy, not power-law)

Log-normal θ
x
√

2π
e

−θ2(log αx)2

2 h(x) ↓ 0 lim
s→∞

F X (s+x)

F X (s)
= 1

After x > x0 (heavy, not power-law)

Pareto κα
(1+αx)κ+1 h(x) = ακ

1+xα
↓ 0 lim

s→∞
(sα+1)κ

(sα+xα+1)κ = 1

(heavy and power-law)

10.2.4 Mixture of Distributions

In a heterogenous population an individual i is associated with a random
variable Xi following a distribution with p.m.f. or p.d.f. f(x|θi) specified up
to a parameter θi. If the heterogeneity can be observed through a vector of
covariates z, say, such as gender, birth date, height, etc., a common practice
in statistics is to model θi as a function of z via a generalized linear model
η(θi) = β1z1 + β2z2 + · · · + βqzq, where η(·) is a link function such that
−∞ < η(θi) < ∞.

If the heterogeneity is not observable, one assumes that θi varies among
individuals as independently and identically distributed (i.i.d.) random vari-
ables with expectation Eθ[·] such that at the population level, one may model
X arising from a distribution given by

fX(x) = Eθ [f(x|θ)] =
∫

θ∈Θ

f(x|θ)dU(θ),
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where U(θ) is a c.d.f. of the mixing distribution.

Example 1. Each individual is associated with an infectious period with a
constant removal rate λi, and λi itself varies across individuals. Then at the
individual level, this leads to an exponentially distributed infectious period
with p.d.f. f(x|λi) = λie

−λix. If λi has a gamma distribution with p.d.f.
u(λ) = λκ−1

ακΓ (κ)e
−λ�α, then the resulting distribution is the Pareto distribu-

tion with p.d.f. fX(x) = κα
(1+αx)κ+1 , survivor function FX(x) = 1

(1+αx)κ and
hazard function hX(x) = ακ

1+xα .

There is often unobservable heterogeneity with respect to the infectious
period, where removal can be due to deaths, recovery, or public health inter-
vention such as isolation. By this example, even at the individual level it is
justified to use an exponentially distributed infectious period with a removal
rate λi, observed data from a population often arise as if the infectious period
follows a distribution with a power-law heavy tail.

10.2.4.1 Mixed Poisson Distributions

Mixed Poisson distributions play a central role in the chapter. It is con-
structed by f(x|λ) = λx

x! e
−λ and an arbitrary mixing distribution U(λ). It is

a discrete distribution with p.m.f. and p.g.f.

fX(x) = Pr{X = x} =
∫ ∞

0

λx

x!
e−λdU(λ)

GX(s) =
∫ ∞

0

eλ(s−1)dU(λ) = Eλ

[
eλ(s−1)

]
.

Example 2. In 1920, Greenwood and Yule [6] derived the negative binomial
distribution as a mixed Poisson distribution. The mixing distribution is a

gamma distribution with p.d.f. u(λ) = 1
φµΓ ( 1

φ )

(
λ

φµ

) 1
φ−1

e−
λ

φµ with E[λ] = µ

and var[λ] = φµ2. The p.m.f. of the mixed Poisson distribution is

fX(x) = Pr{X = x} =
Γ
(
x + 1

φ

)

Γ (1 + x) Γ
(

1
φ

)
(φµ)x

(1 + φµ)x+ 1
φ

(10.11)

and p.g.f. GX(s) = 1

[1+φµ(1−s)]
1
φ

. The mean and variance is E[X] = µ and

var[X] = φµ2 + µ. The special case when φ = 1 gives the exponential dis-
tribution for u(λ) and geometric distribution for Pr{X = x}. The special
case when φ → 0 degenerates u(λ) to a fixed point and results in the Pois-
son distribution. Note that the p.d.f. of gamma distributions displayed in
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Fig. 10.3 shows the remarkable resemblance of the p.m.f. to the negative bi-
nomial distributions in Fig. 10.2.

Fig. 10.3 P.d.f. for gamma distributions with µ = 1 and different φ values

10.2.5 Stochastic Processes

A stochastic process {X(t), t ∈ T} is a collection of random variables. For
each t in the index set T, X(t) is a random variable. If t is referred to as time,
then X(t) is the state of the process at time t. A realization of {X(t), t ∈ T}
is called a sample path. This chapter is restricted to discrete, non-negative
sample paths, that is, for given t, X(t) is a non-negative discrete random
variable taking values x = 0, 1, 2, · · · . The index t can be either discrete, or
continuous. The distribution of X(t) for given t often depends on the past
history of the process Ht = {X(u), 0 < u ≤ t−}. The conditional probability
Pr{X(t) = x|Ht} is meaningful.

If the conditional distribution of the future state at time t + s, given the
present state at time s and all past states, depends only on the present state
and is independent from the past, that is, for all continuous time s, t > 0 and
non-negative integers i, j

Pr{X(t + s) = i|X(s) = i,Hs} = Pr{X(t + s) = i|X(s) = i}, (10.12)

we call it a Markov process. If, in addition, Pr{X(t + s) = i|X(s) = i} =
{X(t) = i|X(0) = i} is independent of s, then the stochastic process {X(t)}
is a continuous time stationary Markov chain.
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10.2.5.1 Continuous Time Markov Chain SIR Model

An SIR model can be expressed as a bivariate continuous time-homogeneous
Markov chain {S(t), I(t)} as described in Allen [2]. At any given time t, both
S(t) and I(t) take integer values. Transitions can only occur from {S(t) = s,
I(t) = i} to {S(t + ∆t) = s − 1, I(t + ∆t) = i + 1} corresponding to a new
infection, or from {S(t) = s, I(t) = i} to {S(t + ∆t) = s, I(t + ∆t) = i − 1}
corresponding to a removal.

Let R(t) be the number of removed individuals at time t; M(t) =
I(t) + R(t) be the total number of infected individuals by time t; and
S(t) + I(t) + R(t) = n, assuming a closed population. {R(t)} and {M(t)}
are also stochastic processes. Let Ht be the history of the epidemic process
up to time t. Under the time stationary Markov chain assumption, the model
in Allen [2] can be re-written as
⎧
⎪⎨

⎪⎩

Pr{dM(t) = 1, dR(t) = 0|Ht} ≈ β S(t)
n I(t)dt,

Pr{dM(t) = 0, dR(t) = 1|Ht} ≈ 1
µI(t)dt,

Pr{dM(t) = 0, dR(t) = 0|Ht} ≈ 1 − β S(t)
n I(t)dt − 1

µI(t)dt.

(10.13)

Assuming the outbreak is originated from a single initial infective, the
stochastic means follow the following renewal-type equations: E[M(t)] =
1 + β

∫ t

0
e−

1
µ xE[M(t − x)]dx, E[R(t)] = 1 − e−

1
µ t + β

∫ t

0
e−

1
µ xE[R(t − x)]dx.

Therefore,

E[I(t)] = e−
1
µ t + β

∫ t

0

e−
1
µ xE[I(t − x)]dx (10.14)

where I(t) = M(t) − R(t). The first term e−
1
µ t in (10.14) is the probability

that the initial infective is still infectious at time t according to an expo-
nentially distributed infectious period. With respect to the integration for
the second term, during the interval (0, t] the initial infective makes many
infectious contacts with a constant rate β, so that the expected number of
infectious contacts at an infinitesimal interval containing x ∈ (0, t] is βe−

1
µ x.

The expected number of individuals who are still infectious at time t evolved
from such contacts at x ∈ (0, t] is E[I(t − x)]. It can be shown that [7]

d

dt
E[I(t)] =

{
βE[S(t)]

n
− 1

µ

}

E [I(t)] +
β

n
cov {S(t), I(t)} (10.15)

where E[S(t)], E[I(t)] and cov {S(t), I(t)} are expected values for the random
variables S(t) and I(t) as well as their covariance at fixed time t.
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Comparison with the Deterministic SIR Model

The deterministic counterpart of (10.13) is
{

d
dtS(t) = −β S(t)

n I(t),
d
dtI(t) =

{
β S(t)

n − 1
µ

}
I(t).

(10.16)

The solution of the deterministic equations is not simply the mean of the
stochastic process since the covariance term in (10.15) is ignored. Never-
theless, for a broad class of processes, the deterministic solution is a good
approximation to the stochastic mean of a major outbreak when n is large.

Fig. 10.4 E[I(t)] by stochastic SIR model compared with its deterministic counterpart,

from Bailey [8]
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Bailey [8] gives a thorough discussion of the properties of deterministic
and stochastic versions of the SIR model, along with comparisons of E[I(t)]
(stochastic model) versus I(t) (deterministic model) for n = 10 and n = 20.
These are reproduced as Fig. 10.4.

10.2.5.2 Counting Processes

A counting process {K(t), t ∈ [0,∞)} is a stochastic process with the mean-
ing:

K(t) = cumulative number of events by time t.

K(t) is a non-negative integer random variable for fixed time t, non-decreasing
(K(s) ≤ K(t), if s < t) and K(t) − K(s) equals the number of events in the
interval (s, t]. For example, {R(t)} and {M(t)} in (10.13) are counting pro-
cesses. The derivative β(x) = d

dxE[K(x)] is the instantaneous increment of
the counting process {K(x)}. A counting process is said to have independent
increment, if the numbers of events in disjoint intervals are independent. A
counting process is said to have stationary increment, if the distribution of
numbers of events that occur in any time interval depends only on the length
of the time interval. For a stationary increment process, β(x) = constant β.

The Stationary Poisson Process

The stationary Poisson process is a counting process satisfying both the
independent increment and the stationary increment properties. In addi-
tion, it satisfies K(0) = 0. It is also a stationary Markov chain with
Pr{K(t + ∆t) = k + 1|K(t) = k,Ht} = Pr{K(∆t) = 1|K(0) = 0} such that
Pr{K(∆t) = 1|K(0) = 0} = λ∆t+o(∆t), Pr{K(∆t) ≥ 2|K(0) = 0} = o(∆t),
where λ is call the intensity of the process. It has the property

Pr{K(t + s) − K(s) = k} = Pr{K(t) = k} =
(λt)k

k!
e−λt

so that the number of events in an interval of length t is Poisson distributed
with mean and variance E [K(t)] = var [K(t)] = λt.

An important consequence of the independent increment and the station-
ary increment properties is that, if we denote X1 the time to the first event,
and for k ≥ 1, Xk the time between the (k − 1)th and the kth events, then
Xk : k = 1, 2, · · · are i.i.d. exponentially distributed random variables with
mean 1

λ . (X1,X2, · · · ,Xk) are called inter-arrival times between events.
Let Y1 = X1, Y2 = X1+X2, · · · , Yk = X1+X2+ · · ·+Xk denote the times

that events occur, it can be further shown that, conditioning on K(t) = k, the
k arrival times of events (Y1, Y2, · · · , Yk) have the same distribution as the
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order statistics corresponding to k independent uniformly distributed random
variables on the interval (0, t).

Mixed Poisson Process

Analogue to the mixed Poisson distributions, if individual i is associated
with a Poisson process with intensity λi which varies across individuals and
if factors resulting in the heterogeneity cannot be observed or at present
understood, one may consider a random variable ξ > 0 with E[ξ] = λ and
var[ξ] = σ > 0. This model is expressed by a conditional process {K(t)|ξ}
and a marginal process {K(t)}.

At the individual level, the cumulative number of infectious contacts is the
conditional process {K(t)|ξ} and is assumed to follow a Poisson process with
intensity rate ξ. The mean and variance are

E[K(t)|ξ] = var[K(t)|ξ] = ξt. (10.17)

The process as seen at the cohort level is the marginal process {K(t)} and is a
mixed Poisson process, of which, for given time t, the probability Pr{K(t) =
k} is

Pr{K(t) = k} =
∫ ∞

0

(ξt)k

k!
e−ξtdU(ξ). (10.18)

For given t, one can write the p.g.f. for K(t) as

GK(s, t) =
∫ ∞

0

eξt(s−1)dU(ξ) = Eξ[(et(s−1))ξ]. (10.19)

Proposition 1. The mixed Poisson process {K(t)} is not a Poisson process.
It preserves the stationary increment of the Poisson process, but loses the
independent increment property.

To show it is not a Poisson process, it is only necessary to notice that

E[K(t)] = E{E[K(t)|ξ]} = λx (10.20)
var[K(t)] = E{var[K(t)|ξ]} + var{E[K(t)|ξ}

= λx + σ(λx)2 > E[K(t)].

To prove that {K(t)} does not have independent increment, one only needs
to show that Pr{K(s) = k,K(s + t) − K(s) = l} 
= Pr{K(s) = k}Pr{K(s +
t) − K(s) = l}.

Unlike the Poisson process where E[X1] = 1
λ , in the mixed Poisson process,

E[X1] > 1
λ as explained by Jensen’s inequality,

E[X1] = E{E[X1|ξ]} = E

[
1
ξ

]

>
1

E [ξ]
=

1
λ

.
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10.2.5.3 Branching Processes

Consider a population consisting of individuals or particles able to produce
offspring of the same kind. Each individual i is associated with a generation
time TG and by the end of TG, it produces a random number Ni of new
offsprings. We use g = 0, 1, 2, · · · as the discrete time unit to represent gen-
erations. Let X0 be the number of individuals initially present at the zeroth
generation. All offsprings of the zeroth generation constitute the first gen-
eration and their number is denoted by X1. Let Xg denote the size of the
gth generation. Given Xg−1, if the distribution of Xg only depends on Xg−1,
then {Xg} is a discrete time Markov chain. This process {Xg} is called a
branching process. Suppose that X0 = 1, we can calculate

Xg =
Xg−1∑

i=0

Ni.

In most branching processes, it is assumed that Ni is i.i.d. according to a
random variable N which does not vary over generations. We say a branching
process becomes extinct at generation g, if Xg−1 > 0 but Xg = 0. In such
case, we denote Z =

∑
g Xg as the final size upon extinction.

Branching processes are often used in infectious disease epidemiology to
approximate the initial stage of an outbreak, where the depletion of the num-
ber of susceptible individuals is negligible. A discrete time branching process
that is well studied in the literature is the Galton–Watson process.

Galton–Watson process. Each infected individual is associated with a fixed
length of generation time TG. At its end, this individual produces a random
number of N secondary infections.

There are various types of continuous time branching processes.

Bellman–Harris processes. Infected individuals have independently and ar-
bitrarily distributed generation time TG. Each individual produces a ran-
dom number of N secondary infections only at the end of the generation
time. TG and N are independent.

Crump–Mode–Jagers (CMJ) processes. Infected individuals have indepen-
dently and arbitrarily distributed generation time TG. Throughout the
generation time, each individual produces secondary infections according
to a counting process {K(x)}. Different individuals follow the same count-
ing process. It is assumed that the generation time TG and {K(x)} are
independent. By the end of the generation time, an infected individual
produces a random number of N secondary infections.

The CMJ processes have been used to approximate the early phase of the
SIR models [9,10]), where the generation time TG has the meaning of the
infectious period.
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In an SEIR model, let us denote TE as the latent period during which an
infected individual is unable to transmit the disease and TI as the infectious
period during which an infected individual is able to transmit the disease, and
let TG = TE +TI . If the infectious period degenerates to µ = E[TI ] → 0, such
that by the end of the latent period, the infected individual instantly produces
N new infections and is removed, then TG = TE and the branching process
approximations are Bellman–Harris processes, including special cases (1) the
Markov branching process assuming TE is exponentially distributed; (2) the
Galton–Watson process assuming TE is non-random. If there is no latent
period, TG = TI , the branching process approximations are CMJ processes.
Therefore, we get:

Combined Bellman–Harris–CMJ processes. TE and TI are independent. TE

is random with an arbitrary but specified distribution. Only after TE

amount of time has elapsed, an infected individual can produce secondary
infections according to a CMJ process.

In these branching processes, there is an embedded Galton–Watson branch-
ing process to track the generations. The basic reproduction number corre-
sponds to the mean value of this embedded Galton–Watson branching pro-
cess with R0 = E[N ]. A schematic illustration of these branching processes
is given in Fig. 10.5.

Fig. 10.5 Illustrations of branching processes in the context of SEIR models
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10.2.6 Random Graph and Random Graph Process

As introduced in Brauer [3], a graph G consists of a set of vertices V =
{v1, ..., vn} and a set of pairs of distinct vertices called edges. The degree of a
vertex vi is the number of vertices adjacent to it which is the number of edges
attached to vertex vi. A subgraph G′ is a graph whose vertices and edges
form subsets of the vertices and edges of a given graph G. A component is a
connected subgraph. A graph may consist of a number of disjoint components.
The size of a graph is n = the total number of vertices.

10.2.6.1 Random Graph

A random graph is obtained by starting with a set of n vertices and adding
edges between them at random. The degrees in a random graph are ran-
dom associated with the degree distribution. In addition, a random graph has
several measures on its geometry, such as measures on its connectivity, diam-
eter, sizes of its components, clustering coefficient, etc. All these measures are
outcomes of random events. Different random graph models produce different
probability distributions on graphs.

10.2.6.2 Random Graph Processes

If new edges are added to vertices according to some stochastic processes over
time, then it becomes a random graph process. It has not only a time dimen-
sion, but also a spatial dimension. At any snapshot at time t, one observes
a realization of a random graph Gt. This is analogous to a random variable
X versus a stochastic process {X(t)}. One may aggregate, or superimpose,
these random graphs per unit of time over a fixed period of time. The result
is still a random graph. This gives an analogy to the counting process.

Similar to such concepts as independent increment, stationary increment,
Markov, etc. that determine the temporal growth of the counting processes
(e.g. the distribution of inter-arrival times and arrival times of events in a
Poisson process), one may develop concepts to capture the spatial-temporal
growth of random graph processes.

10.2.6.3 Infectious Disease Transmission as a Subgraph
in a Random Graph Process

Individuals are represented by vertices. Contacts are represented by edges.
(Social) contacts can be regarded as a random graph process by itself. Con-
tacts made over a fixed period of time is a random graph.
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An infectious contact is a contact at which a transmission of infection
takes place, and hence all infectious contacts during the same period make
a subgraph. The geometry of this subgraph is different from the graph that
represents social contacts. This subgraph grows along a tree, because if three
individuals {a, b, c} are friends forming a triangle relationship, and if individ-
ual a infects both individuals {b, c} , then b and c can not infect each other.
The social contact random graph may contain triangles and loops, as illus-
trated by broken lines in Fig. 10.6. The subgraph of infectious contacts can
not. This tree – like subgraph, illustrated in Fig. 10.6 by edges, may resemble
a realization of an embedded Galton–Watson branching process. However,
its growth is limited to the social contact network of susceptible individuals.
Only when the number of susceptible individuals is very large can the initial
growth of the subgraph be approximated by such a branching process.

Fig. 10.6 A random graph with several connected components, and a subgraph of infec-
tious contacts

10.3 Formulating the Infectious Contact Process

The infectious contacts arise from a combination of two aspects:

1. The environment. The social contact network of individuals in a pop-
ulation as a random graph process, determined by the temporal and
spatial network properties, such as whether the network is directed, the
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neighbourhood structure of the network, clustering, its growth over time
(e.g. stationary increment), etc.

2. The hosts. (1) Whether all susceptible individuals are of the same type
with equal susceptibility and (2) whether all infectious individuals have
equal ability to infect others, so that the probability of transmission per
contact, does not vary by contact to contact. If either (1) or (2) is not
true, there exists heterogeneity among hosts and this is the intrinsic het-
erogeneity.

Let x denote the time measured along a typical infectious individual, start-
ing from the beginning of the infectious period at x = 0. Following Bartlett
[9], and Mode and Sleeman [10], we use a counting process over the time
period {K(x), x ∈ [0,∞)} where

K(x) = cumulative number of infectious contacts by time x.

This process is illustrated in Fig. 10.7, which is (c) in Fig. 10.5.

Fig. 10.7 Event history and the point process for a typical infected individual by time x
since the beginning of the infectious period

When an individual is still in the latent period, we write x < 0. Given
x ≥ 0, K(x) is non-negative integer random variable with p.g.f. GK(s, x) =
E[sK(x)] =

∑∞
k=0 sk Pr{K(x) = k} and mean value E[K(x)]. We use the

notation FI(x) = Pr{TI < x} for the c.d.f. of the infectious period TI . The
mean infectious period is denoted by µ = E[TI ]. Transmission occurs only
when an infected individual is still infectious. The counting process {K(x)}
stops when the infectious period TI expires (removal). It is assumed that
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{K(x)} and TI are independent. TI serves as a random stopping time of the
process {K(x)}.

10.3.1 The Expressions for R0 and the Distribution
of N such that R0 = E[N ]

Let time τ denote that time since infection of a typical infectious individual.
A generic expression for R0 is given by the equation [5]

R0 =
∫ ∞

0

β(τ)A(τ)dτ (10.21)

where A(τ) is the probability that at time τ since infection the individual
is infectious. In other words, A(τ) = Pr{TE ≤ τ ∩ TE + TI > τ}. β(τ)
is associated with the property of a counting process that generates new
infectious individuals during the infectious period. The product β(τ)A(τ) is
the expected infectivity at time τ after infection.

If TE and TI are independent and if at time τ since infection, an individual
is infectious, then τ ≥ TE and TI > τ − TE . Therefore,

A(τ) =
∫ τ

0

F I(τ − x)fE(x)dx = FE+I(τ) − FE(τ), (10.22)

which can be easily proven since FE+I(τ) =
∫∞

τ

∫ y

0
fI(y − x)fE(x)dxdy and

FE(τ) =
∫∞

τ
fE(x)dx. fE(x) and fI(x) are the p.d.f.’s of TE and TI , respec-

tively. Therefore,
∫ ∞

0

A(τ)dτ =
∫ ∞

0

FE+I(τ)dτ −
∫ ∞

0

FE(τ)dτ

= E[TE + TI ] − E[TE ] = E[TI ] =
∫ ∞

0

F I(τ)dx = µ.

We first show that the formulation of R0 does not depend on any as-
sumption on the latent period, during which transmission does not occur.
For an individual with observed latent period TE = tE , β(τ) = 0, if τ ≤ tE ;
β(τ) = β(x), if τ > TE , TI > τ −TE , where x = τ − tE . The equation (10.21)
becomes R0 =

∫∞
tE

β(τ)A(τ)dτ =
∫∞
0

β(x)A(x + tE)dx. One can also show
that (exercise), A(x + tE) = F I(x). Therefore

R0 =
∫ ∞

0

β(x)F I(x)dx. (10.23)

Furthermore, if the counting process {K(x)} has stationary increment:
β(x) ≡ β, then
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R0 = βµ. (10.24)

β > 0 is a parameter that captures the transmission rate in the agent–host–
environment interface. It can be further sub-modelled to reflect the agent–
host–environment interface. A frequently seen expression is β = λp so that
R0 = λpµ. p is the probability of transmission per contact between an infec-
tious host and a susceptible host. λ is the average number of contacts among
hosts per unit of time in the environment. The control measure for β may
be further categorized into interventions designed to alter the social-contact
network and designed to alter the transmission probability.

One may also model β = ab where a measures the infectivity of an in-
fectious individual who comes in contact with a susceptible individual, for
whom, the susceptibility is measured by b. For example, to model the way
individuals respond to vaccination, an individual may respond to vaccination
with a change in their susceptibility to infection and if ever infected, their
infectivity may change from what it is without vaccination. For reference,
one may consult Becker and Starczak [11] which leads to references to many
more publications in this area.

Formation of R0 by a multiplicative relationship is useful for statistical
analyses and is thus of much public health interest. It leads to a log-linear
model to explore the controlled reproduction number Rc:

log Rc = log R0 + covariates (10.25)

where covariates are associated with intervention measures, such as social dis-
tancing, vaccination, treatment of infected individuals with anti-viral drugs,
or altering the duration of infectiousness such as rapid isolation of identi-
fied infectious individuals. If the probability distribution for N such that
R0 = E[N ] is known, the (10.25) leads to the use of generalized linear regres-
sion analyses for exploring the effectiveness of these intervention measures
aided by statistical packages.

An immediate generalization of (10.24) is when the infectious period can
be divided into stages T

(1)
I → T

(2)
I → · · · → T

(l)
I , where the duration T

(j)
I is

associated with distribution Fj(x) with mean µj . Let βj(x) = d
dxE[Kj(x)].

It can be shown that R0 =
∑l

j=1

∫∞
0

βj(x)F j(x)dx [10, p. 205]. In this case,
the infectious contact process may not have stationary increment over the
entire infectious period but has piecewise stationary increment within each
stage so that βj(x) = βj . (10.24) becomes

R0 = β1µ1 + β2µ2 + · · · + βlµl. (10.26)

In order to derive the distribution for N, denote

N(x) =
{

K(x), 0 < x < TI

K(TI). x ≥ TI .



10 Stochastic Processes in Infectious Disease Modelling 253

For fixed x, N(x) is also a random variable with p.g.f.

GN (s, x) =
∞∑

j=0

sj Pr{N(x) = j}.

It has been shown that [10, pp. 177–178] the following two recursive formulae
hold:

E[N(x)] = [1 − FI(x)] E[K(x)] +
∫ x

0

E[K(u)]dFI(u), (10.27a)

GN (s, x) = [1 − FI(x)] GK(s, x) +
∫ x

0

GK(s, u)dFI(u). (10.27b)

N = N(∞) is the cumulative number of infectious contacts generated by
an infectious individual throughout its entire infectious period. Let GN (s) =∑∞

x=0 sx Pr{N = x} be the p.g.f. for N. GN (s) uniquely defines the distribu-
tion Pr{N = x} following the relationship (10.4). GN (s) can be derived from
(10.27b):

GN (s) = lim
x→∞

GN (s, x) =
∫ ∞

0

GK(s, x)dFI(x). (10.28)

The mean and variance of N can be evaluated by (10.5), specifically, R0 =
G′

N (1). It can be also shown that (10.23) can be obtained through integration
by parts of (10.27a) so that E[N(x)] =

∫ x

0
β(u)F I(x)du.

The equation (10.28) implies that the probability distribution of N does
not depend on the distribution of the latent period TE , but depends on:

1. The infectious contact process {K(x)}, with p.d.f. GK(s, x) incorporating
properties of the contact process and the probability of transmission per
contact

2. The infectious period distribution FI(x) = Pr{TI ≤ x}
However, differently specified infectious contact processes defined by

GK(s, x) and infectious period distributions FI(x) may result in the same
probability distribution for N and the same R0. We shall see later in this
chapter that for some public health applications, such as determining the
risk of whether a large outbreak may occur, or the distribution of the final
size η (in E[Z]

n → η) should a large outbreak occur, knowing R0 will be suf-
ficient. For some applications, one requires the knowledge of the distribution
for N. Once the distribution for N is determined, one can use theories for
the embedded Galton–Watson branching process to calculate quantities such
as the probability of a small outbreak π, the final size of the small outbreak
Pr{Z = z} and the probability of time to extinction Pr{Tg = g}. Yet there
are also applications where the detailed distribution for N is not sufficient.
One also needs to know the underlying stochastic mechanisms such as the
property of the counting process {K(x), x ∈ [0,∞)}, the distribution of the
latent period TE and the distribution of the infectious period TI .
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10.3.2 Competing Risks, Independence
and Homogeneity in the Transmission
of Infectious Diseases

Competing risk comes from survival analysis on a non-negative random vari-
able X > 0 associated with a “lifetime”. In a continuous framework, X is
associated with a hazard function h(x) for “failure”. In the competing risk
model, when failure occurs, it may be one of m distinct causes or types,
denoted by J ∈ {1, 2, ...,m}. The overall hazard function is the sum of type-
specific hazard functions h(x) =

∑m
j=1 hj(x) where

hj(x) = lim
∆→0

Pr{x < X ≤ ∆;J = j|X > x}
∆

.

Example 3. In Fig. 10.7, if we define Yk = X1 + · · ·+ Xk, Yk > 0 is a random
variable. Let T = min(Yk,W ). T > 0 is a random variable representing
either the infectious individual is removed or the individual produces its kth
infectious contact. The probability distribution for T arises from a competing
risk framework.

Example 4. In a contact network, let us consider a vertex v is a susceptible
individual attached to m edges, representing m neighbouring vertices with
on-going social contacts with vertex v. All the m neighbours are infectious.
Let T be the time until vertex v become infected. The type-specific hazard
function hj(t) represents the instantaneous risk of infection being transmitted
by the jth neighbouring vertex.

The word independence in the study of infectious diseases has several dif-
ferent aspects.

1. The counting process {K(x)} and the infectious period TI are indepen-
dent. This also implies that in the competing risk framework in Exam-
ple 3, Yk and TI are independent for all k.

2. Viewing the transmission as random graphs, if one randomly chooses a
vertex v to be the initial infective, this vertex makes independent infec-
tious contacts (i.e. adding edges) with other susceptible vertices through-
out its infectious period.

3. If one randomly chooses a vertex v to be a susceptible individual, trans-
mission of infection to this individual by any of its neighbouring infectious
individuals is independent from potential transmission from other neigh-
bouring infectious individuals.

If both 2 and 3 hold true, then we say that infectious contacts between
different pairs are mutually independent.

The word homogeneity also consists of three aspects.
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1. The population is homogeneously mixed. An individual makes contacts
with other individuals with the same probability. As the population size
→ ∞, the contact process itself is a stationary Poisson process with
constant intensity λ.

2. The hosts are homogeneous. All individuals are of the same type the
probability of transmission per contact between each pair of an infectious
individual and a susceptible individual is a constant p.

3. The infectious period from all infected individuals are equal to some
constant µ with FI(x) given by (10.29)

FI(x) =
{

0, x ≤ µ
1, x > µ

(10.29)

such that E[TI ] = µ and var[TI ] = 0.

Violations to one or a combination of the above assumptions result in
heterogeneous transmission.

10.4 Some Models Under Stationary Increment
Infectious Contact Process {K(x)}

If {K(x)} satisfies stationary increment E[K(x)] = βx so that β(x) =
d
dxE[K(x)] = β (constant), (10.23) has a simpler expression R0 = βµ where
µ = E[TI ] =

∫∞
0

F I(x)dx is the mean infectious period.

10.4.1 Classification of some Epidemics Where N
Arises from the Mixed Poisson Processes

Since the distribution of N does not depend on the distribution of the latent
period, we restrict discussion to the case where the latent period is absent. In
the expression GN (s) =

∫∞
0

GK(s, x)dFI(x), differently specified infectious
contact process {K(x)} defined by GK(s, x) and infectious period distribution
FI(x) may result in the same probability distribution for N at the macro
level, with very different characteristics at the micro level. Some models are
classified below as mixed Poisson processes.

10.4.1.1 The Poisson Epidemic

The assumptions are: (1) the infectious contact process is a Poisson process
with G(s, x) = eβx(s−1); (2) contacts between different pairs are mutually
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independent; (3) the infectious period from all infected individuals are equal
to some constant µ with FI(x) given by (10.29). Under this model,

GN (s) = eβµ(s−1) = eR0(s−1). (10.30)

Hence N is also Poisson distributed.

10.4.1.2 The Randomized Epidemic

This terminology is used in von Bahr and Martin-Löf [12]. The model assumes
that the infectious periods from all infected individuals are equal to some
constant µ with FI(x) given by (10.29). β is further sub-modelled as β = λp
where p is a random probability with itself following some distribution Fp

so that β = λE[p]. In this case, it can be shown (later) that GK(s, x) =∫
p
eλpx(s−1)dFp = Ep

[
eλpx(s−1)

]
. Under this model, GN (s) = Ep

[
eλpµ(s−1)

]
.

Without losing generality, we extend the above by assuming that factors
resulting in heterogeneous mixing and/or heterogeneous transmission are not
at present understood and the product ξ = λp is a random variable following
some distribution U(ξ) with E[ξ] = β. Therefore GK(s, x) = Eξ[eξx(s−1)] and

GN (s) = Eξ[eξµ(s−1)]. (10.31)

Provided that the mixing distribution U(ξ) is specified, GN (s) uniquely de-
fines the distribution of N as a mixed Poisson distribution.

10.4.1.3 The Generalized Epidemic

This terminology is used in Lefèvre and Utev [13]. The assumptions are: (1)
the infectious contact process is a Poisson process with G(s, x) = eβx(s−1);
(2) contacts between different pairs are mutually independent; (3) the in-
fectious periods from all infected individuals are i.i.d. following an arbitrary
distribution FI(x). Using (10.28),

GN (s) =
∫ ∞

0

eβx(s−1)dFI(x) = ETI

[
eβTI(s−1)

]
. (10.32)

One notices the duality between (10.31) and (10.32). As far as the distribution
for N is concerned, the generalized epidemic and the randomized epidemic
models can be unified as one mixed Poisson model with

GN (s) =
∫ ∞

0

eρ(s−1)dU(ρ) = Eρ

[
eρ(s−1)

]
(10.33)

with a mixing distribution U(ρ). In (10.32), ρ is re-scaled as ρ = βTI where
β is a constant and TI is random such that E[ρ] = βµ. In (10.31), ρ is
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re-scaled as ρ = ξµ where µ is constant, but ξ is random. It implies that, if
one starts with a simple Poisson distribution with p.g.f. eρ(s−1) and chooses
a mixing distribution U(ρ), the resulting distribution obtained by (10.33)
can be interpreted as arising either from a generalized epidemic with an
appropriately chosen infectious period distribution, or from a randomized
epidemic with an appropriately chosen distribution for ξ.

The General, or the Kermack–McKendrick, Epidemic

This is a special case of the generalized epidemic, by assuming FI(x) =
1 − e−

x
µ in (10.32). The p.d.f. is FI(x) = 1

µe−
x
µ with E[TI ] = µ. Under this

model, (10.32) becomes

GN (s) =
1
µ

∫ ∞

0

eβx(s−1)e−
x
µ dx =

1
1 + βµ(1 − s)

.

This p.g.f. gives the geometric distribution for N with R0 = βµ. This corre-
sponds to the underlying assumption for both the deterministic SIR model
and its stochastic counterpart, the bivariate Markov chain SIR model. Bailey
[8] gave it the name the general epidemic. A better name for this may be the
Kermack–McKendrick epidemic to reflect its early origins [14].

10.4.1.4 The Randomized and Generalized Epidemics

The infectious contact process {K(x)} is a mixed Poisson process under
the same assumptions as that in the randomized epidemic model, with
GK(s, x) = Eξ[eξx(s−1)]. The infectious periods from all infected individu-
als are i.i.d. following an arbitrary distribution FI(x), as that assumed in the
generalized epidemic model, then

GN (s) =
∫ ∞

0

Eξ[eξx(s−1)]dFI(x) = ETI

[
Eξ[eξTI(s−1)]

]
. (10.34)

With respect to (10.34), let ρ = ξTI . Conditioning on TI = x, ξ is random
and hence the conditional distribution for ρ, U1(ρ|x), depends on parameter
x. The integrand Eξ[eξx(s−1)] can be regarded as a mixed Poisson distribu-
tion with p.g.f.

∫
ρ
eρ(s−1)dU1(ρ|x). Provided no dependencies between the

parameters of the distributions considered, one can re-write (10.34) as
∫

ρ

eρ(s−1)

(∫

x

dU1(ρ|x)dFI(x)
)

=
∫

ρ

eρ(s−1)dU(ρ)
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so that it can be also unified as a mixed Poisson distribution with the mixing
distribution U(ρ) as a random mixture of two mixing distributions U1(ρ|x)
and FI(x).

The unification among (10.32), (10.31) and (10.34) is helpful to reduce
redundancy of proof for some theories. This unification can be only applied
to address certain aspects of an outbreak, such as the assessment of the risk of
a large outbreak and the final size, of which, the knowledge of the distribution
of N, uniquely defined by the p.g.f. GN (s), is sufficient.

10.4.2 Tail Properties for N

Karlis and Xekalaki [15] pointed out that the shape of the p.m.f. of a mixed
Poisson distribution exhibits a resemblance to that of the p.d.f. of the mixing
distribution u(λ). Lynch [16] proved that mixing carries the form of the mix-
ing distribution over to the resulting mixed distribution in general. Tail prop-
erties of some commonly used probability models for continuous non-negative
random variables have been summarized in Table 10.3. We now compare the
shape of the distributions for N generated by p.g.f.

∫
ρ
eρ(s−1)dU(ρ) with that

of their mixing distributions U(ρ).

10.4.2.1 N Distributed According to Geometric
and Negative-Binomial Distributions

Figures 10.3 and 10.2 illustrate that the shape of the geometric distribution
resembles that of the exponential distribution and the shape of the negative
binomial distribution resembles that of the gamma distribution. We may
re-parametrize the negative-binomial distribution (10.11) as Pr{N = x} =

Γ (x+ 1
φ )

Γ (x+1)Γ ( 1
φ )

ς
1
φ (1 − ς)x by letting ζ = 1

1+φµ . The geometric distribution is a

special case ς (1 − ς)x
.

1. The geometric distribution has exponential tail because for any x,
FN (x) =

∑∞
l=x ς (1 − ς)l = (1 − ς)x = e−

x
τ where 1

τ = − log (1 − ς) .

Hence F N (s+x)

F N (s)
= e−

x
τ .

2. The negative binomial distribution has exponential tail when φ > 1. In
fact, from page 210 of Johnson, Kotz and Kemp [17]

Pr{N ≥ x} =

∞∑

l=x

Γ (l + 1
φ )

Γ (l + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)l = fN (x)2F1[1, x +

1

φ
; x + 1; 1 − ς]

where fN (x) = Pr{N = x} and 2F1[a, b; c;x] is the Gaussian hypergeomet-
ric function. If c > b > 0, 2F1[a, b; c;x] = Γ (c)

Γ (b)Γ (c−b)

∫ 1

0
υb−1(1−υ)c−b−1

(1−υx)a dυ.
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When φ > 1,

FN (s + x)
FN (s)

=
fN (s + x)

fN (s)
2F1[1, s + x + 1

φ ; s + x + 1; 1 − ς]

2F1[1, x + 1
φ ;x + 1; 1 − ς]

=

∫ 1

0
υ

x+s+ 1
φ

−1
(1−υ)

− 1
φ

1−υ(1−ς) dυ

∫ 1

0
υ

x+ 1
φ

−1
(1−υ)

− 1
φ

1−υ(1−ς) dυ

(1 − ς)x → e−
x
τ , as s → ∞.

10.4.2.2 A Distribution Commonly Used in Social Networks
Modelling for Infectious Diseases

A distribution with supports 1, 2, · · · given by

Pr{N = x} = Cx−θe−
x
τ , x = 1, 2, 3, · · · (10.35)

where C = Li−1
θ

(
e−

1
τ

)
is the normalizing factor and Liθ (z) =

∑∞
n=1

zn

nθ , was
mentioned in Brauer [3]. It has been used in modelling the spread of infectious
diseases on scale-free networks by Newman [18]; Meyers, Pourbohloul et al.
[19] and many others.

• If θ → 0, (10.35) returns to the (zero-truncated) geometric distribution
x−θe− x

τ

Liθ

(
e− 1

τ

) → (1 − e−
1
τ )e−

x−1
τ , x = 1, 2, 3, · · · .

• If τ → ∞, (10.35) has the limiting distribution as the Zipf distribution
x−θe− x

τ

Liθ

(
e− 1

τ

) → 1
ς(θ)x

−θ where ζ(θ) =
∑∞

n=1
1

nθ .

When τ < ∞, the tail of this distribution is exponential. As s → ∞,

Pr{N ≥ s + x}
Pr{N ≥ s} =

∑∞
j=s+x j−θe−

j
τ

∑∞
j=s j−θe−

j
τ

= e−
x
τ

∑∞
j=s (j + x)−θ

e−
j
τ

∑∞
j=s j−θe−

j
τ

→ e−
x
τ .

There are many possible stochastic mechanisms for which a distribution
like (10.35) may arise. One of them is a generalized epidemic model aris-
ing from mixed Poisson distributions p.g.f.

∫∞
0

eβx(s−1)dFI(x), where the
infectious period W arises from a competing process. For some individuals,
the infectious period arises from an exponential distribution with constant
hazard he(x) = γ as the removal rate. For other individuals, the infectious
period follows a generally very short but highly skewed distribution, which
may be fitted well with a Pareto form, with the hazard function expressed
by hp(x) = αθ

1+αx . This scenario may arise if identified infectious individuals
are aggressively isolated during an outbreak. The survivor function of the in-
fectious period has a shape of that of a Pareto distribution with exponential
cut-off:
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F I(x) = exp
(

−
∫ x

0

(

γ +
αθ

1 + αt

)

dt

)

=
αθ

(1 + αx)θ
e−γx, α, γ, θ > 0.

It has an exponential tail:

F I(s + x)
F I(x)

=
(1 + αs)θ

(1 + αs + αx)θ
e−γx → e−γx, as s → ∞.

Although the exact distribution for N ,

Pr{N = j} =
αθ

j!

∫ ∞

0

(βx)j (θα + γ (1 + αx))

(1 + αx)θ+1
e−(β+γ)xdx

may not be easy to calculate, we may use the results in Karlis and Xekalaki
[15] to argue that it carries the shape of the mixing distribution F I(x) which
is a continuous analogue of (10.35).

10.4.2.3 Discrete Power-Law Distributions as Mixed Distributions

The term “scale-free” [20] refers to networks with degrees following a power-
law distribution with Pr{N = x} ∝ 1

xθ+1 . Scale-free models have gained much
attention in infectious disease literature. Liljeros et al. [21] used the power-law
distribution to model the web of sexual contacts with implication of studying
sexually transmitted infections. A discrete power-law distribution is the Zipf
distribution 1

ς(θ+1)x
−(θ+1), a discrete analogue to the continuous Pareto dis-

tribution. In a general sense, any distribution such that limx→∞
F (x)
xθ+1 = A, for

some θ > 0, A > 0 is a power-law distribution. Romillard and Theodorescu
[22] showed that certain Poisson mixtures are power-law.

A class of power-law distributions have the form with p.m.f.

Pr{N = x} =

{
θ Γ (x+α)Γ (α+θ)

Γ (α)Γ (x+α+θ+1) , θ > 0, α > 0

θ Γ (x+1)Γ (θ+1)
Γ (x+θ+2) , special case α = 1

(10.36)

which is the Waring distribution given by (6.149) and the special case Yule
distribution corresponding to (6.139) when α = 1 of Johnson, Kotz and
Kemp [17]. The mean and variance may not exist. The first moment exists:
E[N ] < ∞ only if θ > 1. Using the Barnes expansion [17, p. 6],

Γ (x + α)
Γ (x + α + θ + 1)

≈ 1
xθ+1

(

1 − (θ + 1)(θ + 2α)
2x

+ · · ·
)
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it shows that when x is sufficiently large, the Waring and the Yule distribution
follow the power-law property: ∝ 1

xθ+1 where the parameter α plays little role.
The Waring (Yule) distribution can be generated as a mixture of the neg-

ative binomial distribution of the general form

Γ (x + 1
φ )

Γ (x + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)x , 0 < ζ < 1. (10.37)

If one takes a one-parameter Beta distribution u(ς) = θςθ−1 as the mixing
distribution onto a negative binomial, then

Pr{N = x} =
Γ (x + 1

φ )

Γ (x + 1)Γ ( 1
φ )

∫ 1

0

ς
1
φ (1 − ς)x

θςθ−1dς (10.38)

= θ
Γ (x + α)Γ (α + θ)

Γ (α)Γ (x + α + θ + 1)
, θ > 0, α =

1
φ

> 0.

which returns to the Waring distribution. The Waring distribution can be
justified as arising from a mixed Poisson [23, 24].

It can be also formulated as arising from a infectious contact process that
itself arises from a mixed negative binomial (10.37) with Pareto distribution
as its mixing distribution. Then one can use the results in Lynch [16] to
justify why (10.38) carries the Pareto shape. In fact, if we write ζ = 1

1+φρ ,

then dς = − φ
(1+ρφ)2

dρ, and u(ς) = θςθ−1 = θ
(

1
1+ρφ

)θ−1

. Hence (10.38)
becomes

Γ (x + 1
φ )

Γ (x + 1)Γ ( 1
φ )

∫ ∞

0

(
1

1 + φρ

) 1
φ
(

1 − 1
1 + φρ

)k
θφ

(1 + ρφ)θ+1
dρ

where u1(ρ) = θφ

(1+ρφ)θ+1 is the Pareto mixing distribution.

10.5 The Invasion and Growth During the Initial Phase
of an Outbreak

S(t) is the random number of susceptible individuals at time t with expected
value E[S(t)]. S0 is a fixed number of initial susceptible individuals at t = 0.
n is the total number of individuals in the population. The initial phase of
an outbreak is the period of time when depletion of susceptible individuals
can be ignored, which is

{
t : E[S(t)]

n ≈ 1
}

. During this phase, there are two
approximations to describe the disease spread:
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1. The branching process approximation: A typical infectious individual is
associated with a generation time TG = TE + TI and by its end, it
produces a random number of N new infections. The mean number of
these new infections is R0. If R0 ≤ 1, with certainty (i.e. with probability
one), this branching process will become extinct, resulting in a handful
of total infections. The extinction is intrinsic.

2. The exponential growth approximation: If R0 > 1, the expected number
of infectious individuals at time t follows the Malthus’ Law E[I(t)] ∝
ert [25,26], characterized by a parameter r. The growth is intrinsic and
r is known as the intrinsic growth rate, also known as the Malthusian
parameter.

There is an Euler–Lotka equation [5]
∫ ∞

0

e−rτβ(τ)A(τ)dτ = 1, (10.39)

where β(τ) and A(τ) are defined the same way as in (10.21).

10.5.1 Invasion and the Epidemic Threshold

Kendall [27] considered a continuous random variable Y = Z
n defined on

(0, 1], where Z = n − S∞ is the final size of an outbreak. The shape of this
distribution may have one of the two shapes: the J-shape and the U-shape.
The term J-shape refers to a distribution that is monotonically decreasing so
that it has a mode at zero. The distribution is said to have U-shape if it is
bimodal. As shown in Fig. 10.8, the U-shaped distribution can be thought of
as a weighted average between a J-shaped distribution with weight 0 < π < 1
and a uni-modal distribution of a bell-shape with weight 1 − π.

Fig. 10.8 J-shaped and U-shaped distributions for Y
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Näsell [28] describes the threshold as a value at which the distribution of
Y makes a transition from J-shape to U-shape. In a population with finite
size n, the transition occurs in the vicinity of 1 at the value 1 + K

n
1
3
, where

K is a constant independent of n, but depends on the number of initially
infected individuals I0.

When n → ∞, a sufficient condition for a J-shaped distribution of Y
is R0 < 1, under which, π = 1 (see Fig. 10.8). When R0 > 1, either an
outbreak dies out with a handful of cases with probability π < 1, or starts an
exponential growth into a large outbreak with probability 1 − π. Metz [29]
showed that the outbreak can be either small or large with no middle road
in between.

A small outbreak corresponds to a J-shaped distribution. The opposite
is not true. When n is finite and R0 lies within the vicinity of 1 of the
order of O(n− 1

3 ), then with probability π = 1, Y = Z
n will have a J-shaped

distribution with E[Z]
n → 0 meanwhile E[Z] → ∞. In this case, the outbreak

size is neither small, nor large. Martin-Löf [30] shows that Y ∗ = Z

n
2
3

has a
limit distribution as n → ∞. It may have different shapes, from J-shape to a
bimodal U-shape, to uni-modal with mode not at zero, or with a shape that
is rather flat. This makes the final size unpredictable.

10.5.2 The Risk of a Large Outbreak and Quantities
Associated with a Small Outbreak

10.5.2.1 The Risk of a Large Outbreak 1 − π

When n → ∞, a necessary condition for a non-zero probability 1 − π > 0
is that R0 exists and R0 > 1. It is possible that for some distributions for
N , R0 = E[N ] does not exist. Public health control measures against an
outbreak are often centred around the reduction of R0 to some controlled
reproductive number Rc by a reduction factor c so that

Rc = (1 − c) R0 < R0. (10.40)

Ideally, one wants Rc < 1 so 1−π = 0. If this is not achievable, it is important
to investigate what other aspects of the distribution for N such as var[N ]
as well as aspects of the underlying stochastic mechanisms that manifest the
p.g.f. GN (s) contribute to the reduction of the risk of a large outbreak 1−π.

Using standard results from the (embedded) Galton–Watson branching
process, for any R0 > 0 (if it exists), there is always a probability π so that
the branching process will become extinct and produce a small outbreak. π
is the smallest root of the Fixed-Point Equation

s = GN (s). (10.41)
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Fig. 10.9 The smallest root of the Fixed-Point equation s = GN (s)

From the properties of GN (s) given in (10.3) and the fact that R0 = G′
N (1),

the smallest root of (10.41) is illustrated in Fig. 10.9.
When R0 = G′

N (1) ≤ 1, the smallest root is π = 1. In this case, a large
outbreak will not occur. When R0 = G′

N (1) > 1, there is an unique solution
π in the open interval (0, 1) and the risk of a large outbreak is 1 − π. If the
outcome happens to be a small outbreak, the observed branching process will
be indistinguishable from that as if arising from a different “reproduction
number” R∗

0 = G′
N (π) < 1 with its p.g.f. obtained by taking the graph

Fig. 10.9 over [0, π] and re-scaling to make the domain and range [0, 1].

Application to Some Specific Distributions of N

Poisson In the Poisson epidemic, GN (s) = eR0(s−1). π is the smallest root
of the Fixed-Point Equation (10.41). If R0 > 1, the risk of a large outbreak
is calculated by

π = e−R0(1−π) (10.42)

If the outcome happens to be a small outbreak, the observed branching
process will be indistinguishable from that as if arising from a different
“reproduction number”

R∗
0 = G′

N (π) = R0e
R0(π−1) = πR0 < 1.

Geometric If the p.g.f. for N is GN (s) = 1
1+R0(1−s) , then N has the geo-

metric distribution. One of the stochastic mechanisms for producing the
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geometric distribution is the Kermack–McKendrick epidemic, with all the
underlying assumptions governing the deterministic or stochastic bivariate
Markov chain SIR models. Another stochastic mechanism for producing
the geometric distribution is the randomized distribution with the infec-
tious contact process arising from a mixed Poisson process with exponen-
tial mixing distribution. There are other stochastic mechanisms that also
produce N with geometric distribution. However, for studying the initial
behaviour using the embedded Galton–Watson branching process, it is
only the p.g.f. GN (s) that matters. If R0 > 1, the risk of a large outbreak
is calculated by π = 1

1+R0(1−π) with exact solution π = 1
R0

. The risk of a
large outbreak is 1 − 1

R0
. It can be also shown that R

∗

0 = G′
N (π) = 1

R0
.

Negative binomial If the p.g.f. for N has the form GN (s) = 1

[1+R0φ(1−s)]
1
φ

for some φ > 0, then N has the negative binomial distribution. It may
arise as a generalized epidemic with gamma distributed infectious period,
or as a randomized epidemic with the infectious contact process arising
from a mixed Poisson process with gamma mixing distribution. There are
also other stochastic mechanisms that can produce N with the negative
binomial distribution. In addition, 1

[1+R0φ(1−s)]
1
φ
→ eR0(s−1), as φ → 0. If

R0 > 1, the risk of a large outbreak is calculated by

π =
1

[1 + R0φ(1 − π)]
1
φ

. (10.43)

For later use, we write down the derivatives

G′
N (s) = R0

(1+φR0(1−s))
1
φ

+1
, G′′

N (s) = (1+φ)R2
0

(1+φR0(1−s))
1
φ

+2
. (10.44)

Proposition 2. Within the negative binomial family of distributions,
var[N ] = R0 + φR2

0, GN (s) is ordered by the parameter φ. That is, for each
fixed s ∈ (0, 1), φ1 < φ2 implies 1

[1+R0φ1(1−s)]
1

φ1
< 1

[1+R0φ2(1−s)]
1

φ2
.

Corollary 1. If R0 > 1 and π ∈ (0, 1) is the Fixed-Point as the smallest root
of (10.43), then π is an increasing function of φ. The larger the value of φ,
the larger the probability that an initial outbreak will die out without evolving
into a large outbreak and the smaller the risk.

An alternative way to show that π is an increasing function of φ is to use
implicit differentiation for (10.43) to directly show that dπ

dφ > 0. In fact

dπ

dφ
=

1
1 − R0

(φR0(1−π)+1)
1
φ

+1

(1+R0φ(1−π)) log(1+R0φ(1−π))−R0φ(1−π)

φ2(φR0(1−π)+1)
1
φ

+1
.

From (10.44), R0

(1+φR0(1−π))
1
φ

+1
= G′

N (π) < 1. One only needs to show
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(1 + R0φ (1 − π)) log (1 + R0φ (1 − π)) − R0φ (1 − π) > 0

which is true because log (1 + x) > x
1+x for any x > 0.

Corollary 2. If R0 > 1, the Poisson epidemic, as φ → 0, gives the smallest
probability π and hence the highest risk of a large outbreak, compared with
any other model within the negative binomial family of distributions with the
same R0.

This statement can be extended beyond the negative binomial family. For
all randomized and generalized epidemics that can be formulated as mixed
Poisson distributions, the Poisson epidemic always produces the smallest
probability π.

Proposition 3. Let π0 be the smallest root of s = eR0(s−1) corresponding
to the Poisson epidemic. Let πρ be the smallest root of s =

∫
eρ(s−1)dU(ρ)

corresponding to an epidemic arising from some stochastic mechanisms such
that GN (s) = Eρ

[
eρ(s−1)

]
can be interpreted as the p.g.f. of a mixed Poisson

distribution. If the latter epidemic has finite mean R0 which equals that of
the Poisson epidemic, then π0 < πρ.

Since from any distribution with p.g.f. given by GN (s), Pr{N = 0} =
GN (0) which is the probability that, after introducing the initially infected
individuals into a susceptible population, transmission never occurs. This
leads to the next Corollary, which is a well-known result that was originally
proven by Feller [31] in 1943.

Corollary 3. eR0(s−1) < Eρ

[
eρ(s−1)

]
implies e−R0 < GN (0) = Eρ [e−ρ] .

Therefore, the probability of N = 0 is always higher under a mixed Poisson
distribution than under a simple Poisson distribution with the same mean.

It implies that variances imposed by infectious period, heterogeneous con-
tact environment, heterogeneous transmission among individuals or combi-
nations of them, all reduce the risk of an large outbreak.

10.5.2.2 Boom or Bust: Generations to Extinction in Small
Outbreaks

Using the branching process approximation in the early stage of the epidemic
and from the theory of branching process (Chap. 8 of [32]), Pr{Tg ≤ g} is
uniquely determined by the p.g.f. GN (s) and is calculated by

Pr{Tg ≤ g} = Gg
N (0) def.= GN (GN (· · ·GN︸ ︷︷ ︸

g times

(0) · · ·︸︷︷︸)
g times

. (10.45)

If there is no secondary transmission, the initial infective individuals make
the first generation, hence Pr{Tg = 1} = Pr{N = 0} = GN (0). Pr{Tg ≤ g}
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is a non-decreasing function of g. Starting from Pr{Tg = 1} = GN (0), with
the limit

lim
g→∞

Pr{Tg ≤ g} = π

{
= 1, if R0 < 1,
< 1, if R0 > 1.

For any R0 > 0, the probability of a small outbreak that becomes extinct in a
few generations is π, the smallest root of s = GN (s), s ∈ (0, 1]. The recursive
procedure and convergence of (10.45) are illustrated in Fig. 10.10.

Fig. 10.10 Graphic presentation of Pr{Tg ≤ g} = Gg
N (0) → π, as g → ∞

1
π (1 − Pr{Tg ≤ g}) = π−Gg

N (0)

π is the conditional probability that, given
the outbreak being small, it has become extinct after g generations. It can
be shown that for a suitable positive constant A,

π − Gg
N (0) = π − Pr{Tg ≤ g} ∼ A [G′

N (π)]g

and 0 < G′
N (π) < 1. It implies that if extinction is going to occur, the

smaller the value of G′
N (π), the more likely it will happen quickly with very

few generations.

When N Follows the Negative Binomial Distribution

When N arises from the negative-binomial distribution, (10.45) becomes
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Pr{Tg = 1} = Pr{N = 0} = (1 + φR0)
− 1

φ

Pr{Tg ≤ 2} =
(
1 + φR0 − φR0 (1 + φR0)

− 1
φ

)− 1
φ

...

Pr{Tg ≤ g} =
1

[1 + φR0 (1 − Pr{Tg ≤ g − 1})]
1
φ

,

with the limit limg→∞ Pr{Tg ≤ g} = π.
It can be shown that, Tg is ranked by stochastic order in the sense of

the survivor function FTg(g) = Pr{Tg ≥ g} = 1 − Pr{Tg ≤ g − 1}, ac-
cording to the parameter φ. The larger the φ, the shorter the distribu-
tion Pr{Tg ≥ g}. For N with negative-binomial distribution with mean
value R0, not only large variance var[N ] = φR2

0 + R0 lowers the risk of
large outbreaks 1 − π, but also that if extinction is going to occur, it is
likely to happen quickly with very few generations. An extreme case is
when φ → ∞. It can be shown that limφ→∞ (1 + φR0)

− 1
φ = 1 and hence

limφ→∞ (1 + φR0 − φR0 Pr{Tg ≤ g − 1})−
1
φ = 1, thus

lim
φ→∞

Pr{Tg ≤ g} = 1, any g ≥ 2.

Special Cases as φ → 0 and φ = 1

The special cases are summarized in Table 10.4.

Table 10.4 The distributions for generation time to extinction

Poisson distribution Geometric distribution
φ → 0 φ = 1

GN (s) = exp(−R0(1 − s)) 1
1+R0(1−s)

Pr{Tg = 1} = e−R0

Pr{Tg ≤ 2} = eR0(e−R0−1) Pr{Tg ≤ g} =
R

g
0−1

R
g+1
0 −1

Pr{Tg ≤ 3} = e
R0

(

eR0(e−R0−1)−1

)

.

.

.
.
.
.

At φ = 1,

Pr{Tg ≤ g} =
Rg

0 − 1
Rg+1

0 − 1
→
{

1, R0 < 1
1

R0
, R0 > 1 as g → ∞.

To demonstrate that Tg is stochastically longer when φ → 0 compared
to when φ = 1, Fig. 10.11 illustrates the survivor function Pr{Tg ≥ g}
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at R0 = 0.667. Under the same R0, the probability of lasting more than
5 generations before extinction if N is Poisson distributed, is approximately
1.4 times of that if N has a geometric distribution.

Fig. 10.11 Under the same R0, Poisson distributed N provides a stochastically longer
generation time to extinction Tg than that based on a geometric distribution for N

10.5.2.3 Distribution of the Final Size of Small Outbreaks

For the integer-valued random variable Z corresponding to the final size of a
small minor outbreak, the probability

∞∑

z=1

Pr{Z = z} = π

{
= 1, if R0 ≤ 1
< 1, if R0 > 1

where π is the probability of a minor outbreak as a solution of (10.41). Let
GZ(s) =

∑∞
z=1 sz Pr{Z = z}. It was shown [10, p. 193] that GZ(s) = s ·

GN (GZ(s)). In general, GZ(s) is not a p.g.f. since GZ(1) = π ≤ 1. Taking
derivatives with respect to s,

G′
Z(s) = GN (GZ(s)) + sG′

N (GZ(s))G′
Z(s), (10.46a)

G′′
Z(s) = 2G′

N (GZ(s))G′
Z(s) + sG′′

N (GZ(s)) (G′
Z(s))2 (10.46b)

+ sG′
N (GZ(s))G′′

Z(s).
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Mean and Variances for Z When R0 < 1

In this case, π = 1 and GN (1) = GZ(1) = 1. Since G′
N (1) = R0 < 1, letting

s = 1 in (10.46a), one gets G′
Z(1) = 1 + R0G

′
Z(1). Hence

E[Z] = G′
Z(1) =

1
1 − R0

. (10.47)

Therefore, E[Z] = 1
1−R0

is valid for any distribution of N. Similarly, letting
s = 1 in (10.46b) and using var[Z] = G′′

Z(1) + G′
Z(1) − (G′

Z(1))2 , one gets

var[Z] =
G′′

N (1) + R0 (1 − R0)
(1 − R0)

3 =
var[N ]

(1 − R0)
3 . (10.48)

var[Z] increases with the variance of N.

Mean and Variances for Z When R0 > 1

In this case, there exits π ∈ (0, 1) such that π = GN (π). With probability
π, the observed branching process will be indistinguishable from that as if
arising from a different “reproduction number” R∗

0 = G′
N (π) < 1. (10.47)

and (10.48) can be extended as the following conditional expectation and
conditional variance:

E[Z|small outbreak] =
1

1 − R
∗
0

(10.49a)

var[Z|small outbreak] =
πG′′

N (π) + R
∗

0

[
1 − R

∗

0

]

(1 − R
∗
0)

3 (10.49b)

where (10.49a) and (10.49b) are extensions of (10.47) and (10.48) in the sense
that they are valid for both R0 > 1 and R0 < 1. For the latter, π = 1 and
G′

N (π) = R0.

The Distribution of Z

We treat GZ(s) =
∑∞

z=1 sz Pr{Z = z} as if a p.g.f. for both R0 > 1 and
R0 < 1, such that Pr{Z = z} = 1

z!G
(z)
Z (0) and G

(z)
Z (0) = dz

dsz GZ(s)
∣
∣
s=0

. If
R0 > 1,

Pr{Z = z|small outbreak} =
1
π

Pr{Z = z}

is the conditional distribution of the final size starting from one initial infec-
tive, conditioning on the outcome being a small outbreak.
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For any given p.g.f. GN (·), a closed analytic form of GZ(s) may not always
exist if one wants to solve GZ(s) = sGN (GZ(s)). However, G

(z)
Z (0) can be

sometimes solved recursively starting from Pr{Z = 1} = G′
Z(0). We use the

convention that

Pr{Z = 1} = G′
Z(0) = GN (0) = Pr{N = 0}

because the event {Z = 1} implies that there is no secondary transmission
in the population. There is also a convention that GZ(0) = Pr{Z = 0} = 0
as there must be at least one infective individuals to start an outbreak. The
recursive procedure can be demonstrated for Pr{Z = 2} and Pr{Z = 3}.
From (10.46b), G′′

Z(0) = 2G′
N (GZ(0))G′

Z(0) = 2G′
N (0)GN (0), which gives

Pr{Z = 2} =
1
2
G′′

Z(0) = Pr{N = 1}Pr{N = 0}.

It is the probability that the index case gives transmission to one individ-
ual with probability Pr{N = 1} and the second individual does not trans-
mit with probability Pr{N = 0}. With a bit more calculus, G

(3)
Z (0) =

3G′′
N (0) [GN (0)]2 + 6 [G′

N (0)]2 GN (0) so that Pr{Z = 3} = 1
6G

(3)
Z (0) can

be expressed as

Pr{Z = 3} =
1
2
G′′

N (0) [GN (0)]2 + [G′
N (0)]2 GN (0)

= Pr{N = 2} (Pr{N = 0})2 + (Pr{N = 1})2 Pr{N = 0}.

It implies that either the index case produces two secondary cases with
probability Pr{N = 2} and neither of the secondary cases produces fur-
ther transmission with probability (Pr{N = 0})2 ; or the index case produces
one transmission and the secondary case produce one transmission with joint
probability (Pr{N = 1})2 and the third case does not transmit with proba-
bility Pr{N = 0}.

The Case of Negative-Binomial Distribution for N

When GN (s) has a relatively simple form, one can use GN (s) and the re-
cursive procedure to generate the entire distribution 1

π Pr{Z = z}. Let
GN (s) = 1

[1+R0φ(1−s)]
1
φ

. GZ(s) = sGN (GZ(s)) can be written as:

GZ(s) =
s

[1 + R0φ(1 − GZ(s))]
1
φ

. (10.50)
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For z = 1, Pr{Z = 1} = G′
Z(0) = 1

[1+R0φ]
1
φ

. We can calculate recursively

for z ≥ 2, G
(z)
Z (0) =

z−2∏

j=0

(jφ + z)
(

1
φR0+1

) z
φ
(

R0
φR0+1

)z−1

and hence Pr{Z =

z|small outbreak} is

1
π

Pr{Z = z} =
1

πz!

z−2∏

j=0

(jφ + z)
(

1
φR0 + 1

) z
φ
(

R0

φR0 + 1

)z−1

, (10.51)

where π needs to be numerically calculated from the equation π =
1

[1+R0φ(1−π)]
1
φ

if R0 > 1. When R0 < 1, the mean and variance with respect

to (10.51) is

E[Z] =
1

1 − R0
, var[Z] =

(1 + φ)R2
0 + R0(1 − R0)

(1 − R0)3
. (10.52)

Example 5. When φ → 0 and R0 < 1, (10.51) is

Pr{Z = z} =
(R0z)z−1

z!
e−R0z. (10.53)

This distribution was first discovered by Borel (1942) and called the Borel–
Tanner distribution. It is discussed in Durrett [33] as Corollary 2.6.2. Its
variance is var[Z] = R0

(1−R0)3
.

Example 6. When φ = 1 and R0 < 1, (10.51) is

Pr{Z = z} =
1
z!

z−2∏

j=0

(j + z)
(

1
1 + R0

)z (
R0

1 + R0

)z−1

. (10.54)

This distribution can be found as (6.619) in Mode and Sleeman [10]. Its
variance is var[Z] = R0(R0+1)

(1−R0)3
.

When R0 > 1, to calculate the condition mean E[Z|small outbreak]
and the conditional variance var[Z|small outbreak], one uses (10.49a) and
(10.49b) for the calculation and substitutes R∗

0 = G′
N (π) = R0

(1+φR0(1−π))
1
φ

+1

and G′′
N (π) = (1+φ)R2

0

(1+φR0(1−π))
1
φ

+2
. In the geometric distribution where φ = 1

and π = 1
R0

, one gets simple expressions for R0 > 1 [10, p. 196]

E[Z|small outbreak] =
R0

R0 − 1
, var[Z|small outbreak] =

R0 (R0 + 1)
(R0 − 1)3

.
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10.5.3 Behaviour of a Large Outbreak in its Initial
Phase: The Intrinsic Growth

For the assessment of the risk of a large outbreak 1 − π and quantities asso-
ciated with a small outbreak, it is sufficient to know the distribution for N ,
without the necessity of knowing the distributions for the latent and infec-
tious periods. On the other hand, should a large outbreak occur, the intrinsic
growth rate r, also known as the Malthusian parameter, for E[I(t)] ∝ ert,
depends crucially on the latent and infectious periods distributions. In other
words, even detailed information of the distribution for N is not sufficient.
One needs to know the stochastic mechanisms that manifest the distribution
for N.

Yan [34] re-writes the equation (10.39) under the following conditions:

1. The infectious contact process {K(x)} has stationary increment β(x) ≡ β
over the infectious period

2. TE and TI are independent
3. The Laplace transforms for the latent period and the infectious period:

LE(r) =
∫∞
0

e−rxfE(x)dx and L∗
I(r) =

∫∞
0

e−rxF I(x)dx exist, then

βLE(r)L∗
I(r) = 1, (10.55)

implying that, the property of the infectious contact process {K(x)} as sum-
marized by the parameter β, the distribution of the latent period as summa-
rized by LE(r) and the distribution of the infectious period as summarized
by L∗

I(r), separately shape the shape of E[I(t)] during the initial phase of an
outbreak and a general relationship between the intrinsic growth rate r and
the basic reproduction number R0.

In fact,
∫∞
0

e−rτβ(τ)A(τ)dτ = 1 becomes

β

∫ ∞

0

e−rτ
[
FE+I(τ) − FE(τ)

]
dτ = β

[
L∗

E+I(r) − L∗
E(r)
]

= 1,

where L∗
E+I(r) =

∫∞
0

e−rτFE+I(τ)dτ and L∗
E(r) =

∫∞
0

e−rτFE(τ)dτ. Since
TE and TI are independent, the Laplace transform of the generation time
TE + TI is LE+I(r) = LE(r)LI(r). By writing L∗

E+I(r) = 1−LE(r)LI(r)
r and

L∗
E(r) = 1−LE(r)

r , one immediately gets βLE(r)L∗
I(r) = 1 in (10.55). Since

R0 = βµ, one further gets

R0 =
µ

LE(r)L∗
I(r)

=

{
1

LE(r) , if E[TI ] → 0,
µ

L∗
I (r) , if E[TE ] = 0. (10.56)

The necessary condition for r > 0 is R0 > 1. Together with R0 = βµ, one
gets µ > β−1. In this case, the relationship (10.55) can be illustrated in
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Fig. 10.12, where LE(r)L∗
I(r) =

∫∞
0

e−rτA(τ)dτ is a decreasing function of r,
satisfying limr→0 LE(r)L∗

I(r) = µ > 1
β and limr→∞ LE(r)L∗

I(r) = 0.

Fig. 10.12 Expression (10.55) as illustrated

Recalling the discussions on stochastic ordering and the relationship in
(10.8), one can immediately see that when β is fixed, stochastic ordering
of the latent and infectious periods determines the intrinsic growth rate r.
Therefore we have the following two propositions.

Proposition 4. When β and the infectious period distribution FI(x) are
given, the longer the latent period TE , the smaller the intrinsic growth r.
In this statement, the word longer refers to conditions so that TE is larger in
Laplace transform order.

Figure 10.12 shows that, when LE(r) is smaller, the root for r in the
equation LE(r)L∗

I(r) = β−1 is smaller. By consequence, the existence of a
latent period produces a smaller initial growth rate than that produced by
a model in the absence of a latent period. Since the distribution of TE does
not affect the basic reproduction number R0, we also have:

Corollary 4. For fixed infectious period distribution FI(x) and empirically
observed r, if one takes a distribution for the latent period which is shorter
in Laplace order than it really is, one underestimates R0.

Proposition 5. When β and the latent period distribution FE(x) are given,
among the distributions for the infectious period with equal mean value µ =
E[TI ], the longer the infectious period TI , the larger is the intrinsic growth
rate r. In this statement, the word longer refers to conditions so that TI is
larger in Laplace transform order.
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Figure 10.12 shows that, when L∗
I(r) = 1−LI(r)

r is larger, the root for r
in the equation LE(r)L∗

I(r) = β−1 is larger. In addition, the comparison
is restricted to infectious periods with equal mean value µ = E[TI ] because
R0 = βµ so that comparisons can be made under the same basic reproduction
number.

Corollary 5. Given empirically observed r and mean infectious period µ, if
one takes a distribution for the infectious period which is larger in Laplace
transform order than what it should be, one underestimates R0.

10.5.3.1 The Expressions (10.55) and (10.56) When the
Distributions of TE and TI Arise from Some Specific
Parametric Families

The gamma distribution with p.d.f. given in (10.7), re-parametrized by α =
κ
µ gives fX(x) = α(αx)κ−1

Γ (κ) e−αx =
κ
µ ( κ

µ x)κ−1

Γ (κ) e−
κ
µ x such that E[X] = µ and

var[X] = µ2

κ . The Laplace transform exists and has a simple expression

LX(r) =
(
1 + rµ

κ

)−κ and hence L∗
X(r) =

1−(1+ rµ
κ )−κ

r .
If two random variables TE and TI are both gamma distributed, we reserve

µ = E[TI ] for the mean infectious period. We introduce ν = E[TE ] for the
mean latent period. Thus,

LE(r) =
(

1 +
rν

κ1

)−κ1

, L∗
I(r) =

1 −
(
1 + rµ

κ2

)−κ2

r

where κ1 and κ2 are the shape parameters for the latent and infectious periods
when both are gamma distributed. In this case, The expressions (10.55) and
(10.56) become

β

r

(

1 +
rν

κ1

)−κ1
(

1 −
(

1 +
rµ

κ2

)−κ2
)

= 1 (10.57a)

R0 =
rµ
(
1 + rν

κ1

)κ1

1 −
(
1 + rµ

κ2

)−κ2
. (10.57b)

The expression (10.57b) was originally given by Anderson and Watson [35]
and recently re-visited by Wearing et al. [36] It has many special cases as
summarized by Table 10.5.

In particular, Cases C1, C4, C5, C7 and C11 are highlighted below
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Table 10.5 Special cases with gamma distributed latent and infectious periods

Cases ν µ κ1 κ2 R0

C1 ν → 0 → ∞ κ2 erν = erTG

C2 ν → 0 = 1 κ2 1 + rν = 1 + rE[TG]

C3 ν → 0 κ1 κ2

(
1 + rν

κ1

)κ1

C4 0 µ κ1 → ∞ rµ
1−e−rµ = rTG

1−e−rTG

C5 0 µ κ1 = 1 1 + rµ = 1 + rE[TG]

C6 0 µ κ1 κ2
rµ

1−
(
1+ rµ

κ2

)−κ2

C7 ν µ → ∞ → ∞ erν rµ

(1−e−rµ)
C8 ν µ = 1 → ∞ (1 + rν) rµ

1−e−rµ

C9 ν µ κ1 → ∞
(
1 + rν

κ1

)κ1 rµ
1−e−rµ

C10 ν µ → ∞ = 1 erν (1 + rµ)

C11 ν µ = 1 = 1 (1 + rν) (1 + rµ)

C12 ν µ κ1 = 1
(
1 + rν

κ1

)κ1
(1 + rµ)

C13 ν µ → ∞ κ2 erν rµ

1−
(
1+ rµ

κ2

)−κ2

C14 ν µ = 1 κ2 (1 + rν) rµ

1−
(
1+ rµ

κ2

)−κ2

General ν µ κ1 κ2

(
1 + rν

κ1

)κ1 rµ

1−
(
1+ rµ

κ2

)−κ2

R0 = erE[TG] (10.58a)

R0 =
rµ

1 − e−rµ
(10.58b)

R0 = 1 + rµ (10.58c)

R0 = erν rµ

1 − e−rµ
(10.58d)

R0 = (1 + rν) (1 + rµ)

= 1 + rE[TG] + f(1 − f)(rE[TG])2, (10.58e)

where f = E[TE ]
E[TG] = ν

ν+µ . Of these expressions, (10.58a) is the most intuitive
and appears in ecology textbooks (e.g. [37]), assuming that the variation in
the generation time TG is negligible and only if TG = TE so that transmission
only occurs at an instantaneous moment at the end of the latent period. In
the absence of a latent period, a non-random infectious period gives (10.58b)
which can be found in Anderson and May [38]. The most commonly encoun-
tered relationship is (10.58c) which can be derived from the deterministic
or stochastic SIR models assuming an exponentially distributed infectious
period without a latent period, as in Chap. 2 of this book. If one assumes
that both TE = ν and TI = µ are not random, one gets (10.58d). In recent
years, (10.58e) is frequently seen in the literature, such as Lipsitch et al. [39]
in the application to the SARS epidemic in Singapore; Chowell et al. [40] for
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influenza, etc. The underlying assumption in (10.58e) is that both the latent
and infectious periods are exponentially distributed.

For gamma distributed latent period, the Laplace transform is LE(r) =
(
1 + rν

κ1

)−κ1

. Both ν and κ1 rank TE according to Laplace transform order.
For fixed κ1

d

dν
LE(r) = − r

(
1
κ1

(κ1 + rν)
)κ1+1 < 0,

implying that the longer the mean latent period, the larger the latent period
in Laplace transform order. On the other hand, for the same mean latent
period ν,

d

dκ1
LE(r) = − κκ1

1

(κ1 + rν)κ+1

[

(κ1 + rν) log
κ1 + rν

κ1
− rν

]

< 0,

implying that the larger the value of the shape parameter κ1 (hence the
smaller the variance var[TE ] = ν2

κ1
), the smaller the value of LE(r) and hence

the longer the latent period in Laplace transform order. In both cases, if β
and L∗

I(r) are fixed, a longer latent period in Laplace transform order implies
a smaller value of r.

Two benchmarks are κ1 = 1 and κ1 → ∞. Among a subset of the gamma
distribution with κ1 ≥ 1, for the same R0, the exponentially distributed latent
period gives the largest r. When the latent period distribution degenerates
to a fixed point with TE = ν, one gets the smallest r. Conversely, if r is
empirically observed, then the exponentially distributed latent period yields
the smallest R0 whereas the fixed latent period yields the largest R0.

To examine the effects of the infectious period distribution on r with a
given latent period distribution FE(x), since R0 = βµ, we only consider dis-
tributions for the infectious period with equal mean value µ = E[TI ]. Under
this condition, the longer the infectious period TI in Laplace transform or-
der, the larger is the intrinsic growth rate r. For gamma distributed infectious

period, L∗
I(r) =

1−(1+ rµ
κ )−κ

r and

d

dκ2
L∗

I(r) =
κκ2

2

r (κ2 + rµ)κ2+1

[

(κ2 + rµ) log
κ2 + rµ

κ2
− rµ

]

> 0.

In this case, since we keep the mean µ = E[TI ] fixed and var[TI ] = µ
κ2

, a
longer infectious period TI in Laplace transform order implies that the vari-
ance is smaller. In other words, under the same R0 and fixed latent period
distribution, a gamma distributed infection period with smaller variance pro-
duces larger initial growth rate. Among a subset of the gamma distribution
with κ2 ≥ 1, for the same R0, the exponentially distributed infectious pe-
riod (κ2 = 1) gives the smallest r and the fixed infectious period (κ2 → ∞)
gives the largest r. Conversely, if r is empirically observed and if the mean



278 P. Yan

infectious period µ is given (along with the given latent period distribution),
the larger the value κ2 (hence the smaller the variance), the smaller the R0.
This can be also seen by taking the derivative of (10.57b) with respect to κ2:

d

dκ2
R0 = −

rµκκ2
2 (κ1 + rν)κ1

[
(κ2 + rµ) log 1

κ2
(κ2 + rµ) − rµ

]

κκ1
1 (κ2 + rµ)1−κ2 (κκ2

2 − (κ2 + rµ)κ2)2
< 0.

Example 7. Let us consider an SIR model without the latent period. Let us
assume that the infectious contacts arise from a Poisson process and that
the infectious period has mean µ = 4.098. In this example, let R0 = βµ =
1.386. The infectious period TI has the distribution fI(x) = κκxκ−1

µκΓ (κ) e
−κx

µ ,

µ > 0, κ = 1, 2, 3, · · · , a special case of the gamma distribution (the Erlang
distribution) with integer-valued κ. It can be viewed as the distribution of
the sum of κ i.i.d. exponential random variables with mean µ

κ . A “linear
chain trick” is to consider a compartment model as given by Fig. 10.13 and
to use deterministic ordinary differential equations to numerically calculate
I(t) ≈ E[I(t)]. Figure 10.14 shows results with κ = 1, 2, 3, 4. When κ = 1,

Fig. 10.13 Illustration of the linear chain trick

the model reduces to the SIR model with exponentially distributed infectious
period with r = R0−1

µ = 0.386
4.098 = 0.094192 The larger the κ, the steeper the

initial increase one expects. If κ = 4, r can be solved via the equation:
1.386
4.098r

(
1 −
(
1 + 4.098r

4

)−4
)

= 1 for the non-negative real value. The solution
is r = 0.14122.

One can replace the gamma distribution for the latent or the infectious
period by other distributions, provided that their Laplace transforms exist.
For example, one may consider an inverse-Gaussian distribution for a non-
negative random variable X with p.d.f.

fX(x) =
√

κµ

2πx3
exp
{

−κ(x − µ)2

2µx

}

, µ, κ > 0. (10.59)
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Fig. 10.14 Same R0 : the larger the κ, the larger the growth rate r

It has been parametrized such that E[X] = µ and var[X] = µ2

κ , like
for the gamma distribution. The Laplace transform is LX(r) =

exp
{

κ

(

1 −
√

2rµ+κ
κ

)}

.

If two random variables TE and TI are both inverse-Gaussian distributed,
as before, we reserve µ = E[TI ] for the mean infectious period and use ν =

E[TE ] for the mean latent period. Then LE(r) = exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)}

and L∗
I(r) =

1−exp
{

κ2

(
1−
√

2rµ+κ2
κ2

)}

r . The expressions (10.55) and (10.56)
become

β

r
exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)}(

1 − exp
{

κ2

(

1 −
√

2rµ+κ2
κ2

)})

= 1,

R0 =
1

exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)} × rµ

1 − exp
{

κ2

(
1 −
√

2rµ+κ2
κ2

)} .

Similar to Table 10.5, one can make a table of all the special cases; see
Table 10.6.

One does not need to assume that the latent and infectious periods arise
from the same distribution family. For example, one may take an inverse-
Gaussian distributed latent period to combine with a gamma distributed
infectious period and derive

R0 =
1

exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)} × rµ

1 −
(
1 + rµ

κ2

)−κ2
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Table 10.6 Cases with inv.-Gaussian distributed latent and infectious periods

ν µ κ1 κ2 R0 Remarks

C1 ν → 0 → ∞ κ2 erν = erTG C1 in Table 10.5

C2 ν → 0 = 1 κ2
1

exp(1−
√

1+2rν)
C3 ν → 0 κ1 κ2

1

exp

{

κ1

(

1−
√

2rν+κ1
κ1

)}

C4 0 µ κ1 → ∞ rµ
1−e−rµ C4 in Table 10.5

C5 0 µ κ1 = 1 rµ

1−exp{(1−√
2rµ+1)}

C6 0 µ κ1 κ2
rµ

1−exp

{

κ2

(

1−
√

2rµ+κ2
κ2

)}

C7 ν µ → ∞ → ∞ erν rµ
1−e−rµ C7 in Table 10.5

.

..
.
..

.

..
.
..

.

..
.
.. Other cases

or a gamma distributed latent period to combine with an inverse-Gaussian
distributed infectious period and derive

R0 =
(

1 +
rν

κ1

)κ1 rµ

1 − exp
{

κ2

(
1 −
√

2rµ+κ2
κ2

)} .

10.5.4 Summary for the Initial Phase of an Outbreak

10.5.4.1 Invasion and Everything about a Small Outbreak

The latent period does not play any role. Knowledge of the distribution for N
is sufficient. One uses the p.g.f. GN (s) to calculate the probability 1−π for the
risk of a large outbreak. If the outbreak is small, GN (s) further determines
the distribution of the generation time to extinction Pr{Tg ≤ g} and final
size at extinction Pr{Z = z}.

If the distribution of N can be derived from observed data, then details
with respect to underlying stochastic mechanisms that give rise to GN (s),
such as the property of the infectious contact process {K(x)} and infectious
period distribution FI(x), are irrelevant.

On the other hand, with knowledge of the property of the infectious contact
process {K(x)} and the infectious period distribution FI(x), one can use the
CMJ branching process to derive the p.g.f. GN (s) for N.

10.5.4.2 When the Outbreak is Large

The initial phase of a large outbreak is characterized by the approximation
E[I(t)] ∝ ert. Under the condition that {K(x)} has stationary increment
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property, r is determined by (10.55). It shows that β, the distribution of the
latent period and the distribution of the infectious period separately shape
the shape of E[I(t)] during the initial phase. However, the distribution for N
is irrelevant.

10.6 Beyond the Initial Phase: The Final Size of Large
Outbreaks

For a large outbreak, the expected final outbreak size number scales linearly
with the size of the susceptible population. In other words, E[Z] → ∞ but
E[Z]

n → η where η is a positive quantity, 0 < η < 1. Therefore, one considers
the continuous random variable Y = Z

n , distributed over the range (0, 1), as
the final size.

Theorem 1. When R0 > 1, conditioning on the outcome being a large out-
break and assuming that limn→∞

I0
n → ε, let η be the root of the equation

1 − η = exp (−R0 (η + ε)) . (10.60)

Then S∞−nη√
n

has Gaussian limit distribution N(0, σ2) and the asymptotic
variance is given by

σ2 =
η (1 − η)

(1 − R0η)2
+

η2 (var[N ] − R0) (1 − η + ε)
(1 − R0η)2

. (10.61)

This central limit theorem has been developed from different mathematical
approaches by von Bahr and Martin-Löf [12], Ludwig [41], Scalia-Tomba [42],
Martin-Löf [43] and Lefèvre and Picard [44]. The final size proportion Y =
Z
n converges in distribution to a point mass at η, the root of (10.60). The
fluctuations around the limit are Gaussian of order 1√

n
, which become large

if the variance var[N ] is large. Contrary to the study of the intrinsic growth
rate r at the initial phase, the final size is more robust with respect to the
stochastic mechanisms at the micro level. Even the distribution of N does
not play a significant role, except for its first two moments: R0 = E[N ] and
var[N ].

In von Bahr and Martin-Löf [12], Theorem 1 was first proven under a
Reed-Frost epidemic model [45]. For such a model, it is assumed that an
individual i is infected at time t. A given individual j is contacted by i
and if j is susceptible then j becomes infected at time t + 1. Meanwhile, i
becomes removed (by immunity or death) and plays no further part in the
epidemic process. All contacts are assumed to be independent of each other.
At each increment of time from t to t + 1, an individual produces a random
number of infectious contacts among the available susceptible individuals
following a binomial distribution. When n is large, the binomial distribution
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is approximated by a Poisson distribution. von Bahr and Martin-Löf [12] then
extended their proof to the randomized epidemic model where each infectious
individual i has its own transmission probability per contact pi; the pi are
i.i.d. random variables with a given distribution.

Earlier in this chapter we made the statement that as far as the dis-
tribution for N is concerned, the generalized epidemic and the random-
ized epidemic models can be unified as one mixed Poisson model with
GN (s) =

∫∞
0

eρ(s−1)dU(ρ) = Eρ

[
eρ(s−1)

]
. This corresponds to Ludwig [41],

where it was noted that as far as the distribution of Y = Z
n is concerned, the

generalized epidemic model with an arbitrary but specified infectious period
distribution can be reformulated as a special case of the randomized epidemic
model.

10.6.1 Generality of the Mean Final Size

Subject to the approximation S0
n ≈ 1 and if one re-writes x = 1− S∞

S0
, ε = I0

S0
,

the asymptotic mean of a large outbreak (10.60) is in close agreement with
that given by Kermack and Mckendrick [14], of which, given (R0, S0, I0) , one
solves for S∞ in the equation

S0 − S∞ + I0 +
S0

R0
log
(

S∞
S0

)

= 0. (10.62)

From a deterministic perspective, Ma and Earn [46] used integro-differential
equations to show that the final size calculated by (10.62) is invariant, includ-
ing the existence of a latent period, arbitrarily distributed infectious period,
any number of distinct infectious stages and/or a stage during which in-
fectious individuals are isolated, as well as the existence of super-spreading
events.

From a probabilistic perspective, let us consider a typical susceptible in-
dividual νs. We define a type-specific hazard function

h
(s)
j (t − tj)

{
> 0, if t > tj
= 0, otherwise,

where tj is the time of infection of the individual j, representing the instan-
taneous risk of infection being transmitted by the jth infectious individual.
As illustrated by Example 4, the hazard of a susceptible individual νs to be-
come infected at time t, denoted by h(s)(t), can be thought as a competing
risk problem. Under the independence assumption, h(s)(t) =

∑
j h

(s)
j (t− tj).

Then the probability that a susceptible individual νs ever gets infected over
the course of the epidemic is ηs = 1− exp

{
−
∑

j

∫∞
0

h
(s)
j (t − tj)dt

}
. Hence,
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ηs depends on the set of infectious contact processes that correspond to the
hazard h

(s)
j only through the cumulative hazard

∫∞
0

h
(s)
j (t)dt.

Then we add two homogeneity assumptions:

1. Homogeneous mixing. As population size → ∞, the contact process itself
is a stationary Poisson process with constant intensity λ;

2. Homogeneous hosts. All individuals are of the same type the probability
of transmission per contact between each pair of an infectious individual
and a susceptible individual is a constant p.

Under these assumptions, the type-specific hazard is h
(s)
j (t) = β∗ = λp.

The overall hazard of a susceptible individual νs to become infected at time t
becomes h(s)(t) = h(t) which does not depend on νs (from assumption 2) and
h(t) = β∗E[I(t)]. E[I(t)] is the expected number of infectious individuals at
time t. The probability that a susceptible individual ever get infected over
the course of the epidemic is

η = 1 − exp
{

−
∫ ∞

0

h(t)dt

}

= 1 − exp
{

−β∗
∫ ∞

0

E[I(t)]dt

}

. (10.63)

Note that
∫∞
0

E[I(t)]dt is the expected total infectious time per person. µ =
E[TI ] is the average time spent infectious per infection. Thus,

∫∞
0

E[I(t)]dt =
ηS0E[TI ] = ηS0µ

⇒ η = 1 − exp {− (β∗S0µ) η} = 1 − exp {−R0η}

which is (10.60) and R0 = β∗S0µ = βµ. Ludwig [41] used this analogy in a
discrete time setting, and provided a rigorous proof that the final size distri-
bution does not depend on the duration of latency in the individuals, or on
the time course of infectivity, but only on the “time-integrated infectivity” in
discrete time. The “time-integrated infectivity” is analogous to

∫∞
0

h
(s)
j (t)dt,

for closed populations with homogeneous mixing.

10.6.2 Some Cautionary Remarks

10.6.2.1 The Risk of Large Outbreak =Final Size?

In the literature, one sometimes encounter such a statement that “the risk of
large outbreak = the final size of the large outbreak”. In general, this state-
ment is not true. On one hand, the final size equations (10.60) and (10.62)
are functions of R0 = E[N ], but do not depend on the exact distribution of
N. On the other hand, the risk of a large outbreak 1 − π is determined by
the equation (10.41) which is crucially dependent on GN (s), the probability
generating function of N.
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To give a counterexample, if N follows a geometric distribution, with
R0 > 1, the risk of a large outbreak is calculated with π = 1

1+R0(1−π) with
exact solution π = 1

R0
. The risk of an large outbreak is 1 − 1

R0
. On the

other hand, in a Kermack–McKendrick SIR model, N follows a geometric
distribution, but the final size equations are (10.60) and (10.62).

The statement holds if the outbreak can be described by a Poisson epi-
demic. In this case, the probability of a large outbreak is 1 − π = e−R0π as
derived from (10.42) and it is identical to the final size equation (10.60) as
ε → 0. Recall that a Poisson epidemic arises in the following manner.

1. As n → ∞, the social contact network grows in such a way that at any
time t, the realization can be regarded as a Bernoulli random graph [47]
with Poisson degree distribution with mean λt. If D is the duration of
an outbreak, the random graph as observed at D is a large Bernoulli
random graph approximated by a Poisson degree distribution with mean
R∗

0 = λD.
2. The infectious contact subgraph also grows according to a Poisson degree

distribution with mean λpt = βt. Every infective has a fixed infectious
period µ. By the end of the outbreak, the observed infectious contacts
makes a subgraph which is a large Bernoulli random graph with i.i.d.
Poisson degree distributions with mean R0 = βµ.

Using Theorem 2.3.2. of Durrett [33] (which can be proven using random
walk theory), if R∗

0 > 1, with probability one, there is only one giant compo-
nent with size ∼ η∗n where η∗ is root x of the equation 1 − x = exp (−R∗

0x)
in (0, 1). All other components are small in the sense that there is a constant
ω such that the largest of the remaining components can not have more than
ω log n vertices. The infectious contact subgraph is proportional to the social
contact graph with R0 ∝ R∗

0 by a factor pµ
D .

There is a difference in concept between a random graph and a realization
of a random graph. The random graph belongs to a probability space. A
realization of a large outbreak takes place only within the giant component
of the social contact graph. Since the relative sizes of all other component in
the social contact graph → 0 as n → ∞, the size of a realized large outbreak
η is thus proportional to η∗ by the same factor pµ

D . Therefore we get the final
size equation 1 − η = exp (−R0η) .

There are two independence properties involved.

1. A transmission from an infectious vertex vi to a susceptible vertex vj is
independent from infections to other susceptible vertices derived from vi.

2. All infectious vertices transmit the diseases independently.

A heuristic argument is that, if one randomly chooses vertex vi to be the
initial infective, the probability that it will lead to a large outbreak is the
same probability that it belongs to the giant component. And hence, “the
risk of a large outbreak = its final size”.
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However, if there is a random period of time T
(i)
I to each vertex so that

vi, where T
(i)
I ’s are i.i.d. with distribution FI(x), the evolution of the in-

fectious contact subgraph will be very different from the evolution of the
subgraph where every vertex has a fixed infectious period, even though the
social contact network is the same Bernoulli random graph. If one chooses a
vertex vi to be the initial infective, then each of the other susceptible ver-
tices in the graph has a probability

∫∞
0

(
1 − e−λpx

)
FI(x) to be ever infected

by vi. It can be shown that the probability of vi infects vj is dependent on
other infections of other susceptible vertices with vi as their direct origin of
transmission. By the end of the outbreak the degree of the infectious contact
subgraph has the mean value R0 = λpE[TI ]. The degree distribution has
p.g.f. GN (s) =

∫∞
0

eβx(s−1)dFI(x). N is associated with a larger variance,
with many infectious vertices having few edges due to a shorter infectious
period and some infectious vertices having a large number of vertices due to
a longer infectious period. Because of the loss of independency and the large
variance, the equality between the risk of a large outbreak and the final size
of the large outbreak is lost in generalized epidemic models.

10.6.2.2 Situations Where (10.63) may be Violated

Under the independence assumption that transmission of infection to indi-
vidual νs by individual j is independent from potential transmissions from
other infectious individuals, then the hazard function for individual νs to be
infected at time t is h(s)(t) =

∑
j h

(s)
j (t − tj). There are occasions that this

independent competing risk can be violated. Such an occasion can arise in a
highly clustered social contact network where a number of infectious individu-
als are correlated within a social cluster. Another occasion is that susceptible
individuals are removed by quarantine if they have been identified as exposed
to known infectives. In these circumstances, final size equations (10.60) and
(10.62) may be incorrect.

10.7 When the Infectious Contact Process
may not Have Stationary Increment

If the infectious contact process {K(x)} has β(x) = d
dxE[K(x)] as a func-

tion of x, (10.21) and (10.39) do not have simple forms. Most of the results
discussed in previous sections will no longer apply.
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10.7.1 The Linear Pure Birth Processes and the Yule
Process

Let us consider a process without the stationary increment property, with
β(x) = d

dxE[K(x)] = βeβφx as a function of x. It can be constructed in
the following manner. Consider a linear pure birth process, defined by the
conditional probability with the Markov property so that Pr{K(x + h) −
K(x) = 1|Hx}, k = 0, 1, 2, · · · is equal to

Pr{K(x + h) = k + 1|K(x) = k} = (β1k + β2)h + o(h). (10.64)

Conditioning on K(x) = k, the instantaneous rate of producing the next
infectious contact during [t, t + h) can be considered as an independent com-
peting risk hazard: either from a global environment, with constant rate β2,
or from a clustered environment with non-constant rate β1k and β1 
= β2.
The hazard of producing an infectious contact at time x is

lim
h→0

Pr{K(x + h) = k + 1|K(x) = k}
h

= β1k + β2 = β (kφ + 1) .

When φ = β1
β1

→ 0, the linear pure birth process reduces to a Poisson
process with β = β2

Pr{K(x + h) = k + 1|K(x) = k} = βh + o(h), k = 0, 1, 2, · · · . (10.65)

When φ = 1, the linear pure birth process is the Yule process with

Pr{K(x+h) = k+1|K(x) = k} = β(k+1)h+o(h), k = 0, 1, 2, · · · . (10.66)

According to (10.66), given that an infectious individual has produced k in-
fectious contacts by time x, the hazard for producing the (k + 1)st contact
is a increasing function of k. Starting at x = 0, corresponding to the begin-
ning of the infectious period for an infectious individual, the waiting time
to producing the first infectious contact is exponentially distributed with
mean E[X1] = 1

β1
; conditioning on the first infectious contact, the waiting

time to the second infectious contact is exponentially distributed with mean
E[X2] = 1

2β1
; · · · ; and conditioning on an infectious individual who has pro-

duced k infectious contacts, the waiting time to producing the (k+1)st infec-
tious contact is exponentially distributed with mean E[Xk+1] = 1

(k+1)β1
. On

the surface, it looks as if the more infectious contacts it produces, the more
likely it produces more infectious contacts.
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10.7.1.1 A Justification of Whether the Linear Pure
Birth Processes may be a Sensible Model

This infectious contact process may arise from the following hypothesis. A
typical infectious individual resides in a highly clustered environment (house-
hold, hospital ward, etc.) but meanwhile has contacts with susceptible indi-
viduals from outside this environment. The contact network structures in
the clustered environment is different from that in the “global” environment.
During its infectious period, this individual may infect:

1. Susceptibles from the highly clustered environment such as household
members (if such environment is a household) or nurses and other patients
(if such environment is a clustered hospital ward), such that this network
manifest data as if arising from a preferential attachment model

2. Susceptibles from a “global” environment that can be approximated by
a large Bernoulli random graph

For outbreaks that mainly spread within and among a highly clustered
environment, infected individuals directly and indirectly attributed to the
index case during the time x ≤ TI (infectious period) are often recorded as
exposed and counted as the next generation of the index case. This artificially
changes the order of events and creates artificial “generations” of infectives.
However, real-life epidemiologic data may arise in this “artificial” order. Let
us modify the definition of {K(x)} so that K(x) is not only the cumulative
number of infectious contacts produced directly by an infectious individual,
but also includes those infected cases attributed to itself in later generations,
counted up to time x when the original index case is still infectious. By time
x, if an infected individual is still infectious, then

lim
h→0

Pr{K(x + h) − K(x) = 1|K(x) = 0}
h

= β1

lim
h→0

Pr{K(x + h) − K(x) = 1|K(x) = 1}
h

= 2β1 (10.67)

...

where (10.67) implies that given the index case has produced one infectious
case, and at time x both cases are infectious, the instantaneous rate of a new
infectious contact attributed to the index case is due to the contribution of
the index case itself and of the other infectious individual. {K(x)} is a Yule
process which could be manifested by real epidemiologic data, if the index
case resides in a highly clustered and connected environment and simulta-
neously gives exposure (not necessarily transmission) to a large number of
people. It is the environment that manifests a large number of infected in-
dividuals (i.e. super-spreading events) and data “directly link” them to the
first case in the environment.



288 P. Yan

10.7.2 Parallels to the Preferential Attachment Model
in Random Graph Theory

In random graph theory, there is a concept of “preferential attachment” [20]
of the random graphs over the space of vertices. The linear pure birth pro-
cess is an analogue to such a concept over time. There is an ongoing de-
bate whether preferential attachment actually happen in growing networks.
Liljeros et al. [21] are convinced of preferential attachment as a mechanism
for sexual networks, as “people become more attractive the more partners
they get.” However, Jones and Handcock [48] are skeptical and argue that
networks with infinitely large variances but dramatically different structures
can manifest the same marginal degree distribution, whereas these different
network structures produce different epidemic behaviour. This debate has a
longer history. In 1919, Greenwood and Woods [49] put forward three hy-
potheses into the occurrence of accidents:

1. Pure chance, which gives rise to the Poisson process (10.65)
2. True contagion, i.e. initially all individuals have the same probability of

incurring an accident, but this probability is modified by each accident
sustained to give rise to the linear pure birth process

3. Apparent contagion (proness), i.e. individuals have constant but unequal
probabilities of having an accident and the resulting process being a
mixed Poisson process (10.18)

Xekalaki [50] gives a comprehensive survey of the history of these hy-
potheses and related models. The arguments on occurrence of accidents can
be equally applied to disease transmission: whether observed data can dis-
tinguish if the underlying stochastic mechanism is arising from a linear pure
birth process or a mixed Poisson process with large variance. The two very dif-
ferent stochastic mechanisms produce quantitatively very different epidemic
behaviour.

10.7.3 Distributions for N when {K(x)} Arises
as a Linear Pure Birth Process

Let us start with an infectious contact process {K(x)} with a marginal dis-
tribution having the negative binomial form

Pr{K(x) = k} =
Γ (k + 1

φ )

Γ (k + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)k (10.68)

which a parameter 0 < ς < 1.
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If {K(x)} arises as a linear pure birth process given by (10.64), from page
274 of Bhattachrya and Waymire [51], the marginal distribution for K(x) is

Pr{K(x) = k} =
Γ (k + 1

φ )

Γ (k + 1)Γ ( 1
φ )

(
e−βφx

) 1
φ
(
1 − e−βφx

)k
. (10.69)

In this case, ς = e−βφx.
For comparison, a mixed Poisson process in (10.33) has marginal distribu-

tion

Pr{K(x) = k} =
Γ(k+ 1

φ )
Γ (k+1)Γ( 1

φ )

(
1

1 + βφx

) 1
φ
(

βφx

1 + βφx

)k

(10.70)

where K(x) has p.g.f. GK(s, x) =
∫∞
0

eξx(s−1)dU(ξ) and ξ follows a gamma
distribution. In this case, ς = 1

1+βφx .

The link functions ς = 1
1+βφx and ς = e−βφx are two hypotheses for

whether {K(x)} has stationary increment or not. However, they are often
not identifiable through data.

10.7.3.1 Degenerate Distribution of the Infectious Period
TI = µ

An infectious contact process {K(x)} with marginal distribution (10.68) can
be further stopped by a randomly distributed infectious period to generate
distributions for N. If all infectious individuals have constant infectious period
µ, then N also has a negative binomial distribution:

Pr{N = j} =
Γ (j + 1

φ )

Γ (j + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)j

.

If data are available to suggest a distribution for N which is negative binomial,
there may be two further assumptions, either ς = 1

1+βφµ or ς = e−βφµ, asso-
ciated with two completely different stochastic mechanisms for how {K(x)}
arises. In addition, we have also seen a third way to get the negative distri-
bution for N. It corresponds to G(s, x) = e−βx(1−s) with gamma distributed
infectious period and E[TI ] = µ. Therefore, there are three stochastic mech-
anisms that give rise to the identical distribution for N. Observed data can
not identify these underlying models.
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10.7.3.2 Exponential Distribution of the Infectious Period
with E[TI ] = µ

If TI follows an exponential distribution with p.d.f. FI(x) = 1
µe−

x
µ and if

the infectious contacts follow a linear pure birth process with Pr{K(x) = k}
given by (10.69), the resulting distribution for N is

∫ ∞

0

Γ (j + 1
φ )

Γ (j + 1)Γ ( 1
φ )

(
e−βφx

) 1
φ
(
1 − e−βφx

)j
(

1
µ

e−
x
µ

)

dx. (10.71)

Since ς = e−βφx, (10.71) becomes

Pr{N = j} =
Γ (j + 1

φ )

Γ (j + 1)Γ ( 1
φ )

∫ 1

0

ς
1
φ (1 − ς)j (

θςθ−1
)
dζ

= θ
Γ (j + α)Γ (α + θ)

Γ (α)Γ (j + α + θ + 1)
, θ > 0, α =

1
φ

> 0. (10.72)

where θ = 1
βφµ > 0. It can be regarded as a mixing distribution in

Γ (k+ 1
φ )

Γ (k+1)Γ ( 1
φ )

∫
ς

1
φ (1 − ς)k

u(ς)dς with u(ς) = 1
βφµ ς

1
φβµ−1 = θςθ−1, 0 < ς < 1.

We have seen it before as (10.36), with the power-law property: ∝ 1
jθ+1 .

Notice that the same Waring distribution can also arise if {K(x)} has
marginal distribution given by (10.70) combined with a Pareto infections
period distribution. Therefore, there are multiple stochastic mechanisms that
generate the distribution for N with power-law tail behaviour.

10.7.3.3 A General Observation for Models with Non-stationary
Increment Process {K(x)} with Random Mixing

If {K(x)} arises from a non-stationary increment process described by the
linear pure birth process (10.64), the marginal distribution for K(x) is given
by a negative-binomial form (10.68) with the link ς = e−φβx. Any fur-
ther assumption on randomness in φβx, such as a random infectious pe-
riod, will result in a mixed negative-binomial distribution with some mix-
ing distribution U(ς). It has been shown by Karlis and Xekalaki [52] that
Pr{N = j} ∝ j−θ

∑j
l=0

(
j
l

)
(−1)j−l

E
(
ςj−θ
)

which is a finite series of non-
integral moments of the mixing distribution E

(
ςj−θ
)
, with a predominant

power-law factor. It is heavy-tailed and power-law, if

lim
j→∞

∑j+1
l=0

(
j+1

l

)
(−1)j−l+1

E
(
ςj−θ+1

)

∑j
l=0

(
j
l

)
(−1)j−l

E (ςj−θ)
= 1.
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43. Martin-Löf, A. Symmetric sampling procedures, general epidemic processes and their
threshold limit theorems. Journal of Applied Probability 23 (1986) 265–282
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Chapter 11

The Role of Mathematical Models
in Explaining Recurrent Outbreaks
of Infectious Childhood Diseases

Chris T. Bauch

Abstract Infectious childhood diseases such as measles are characterized by
recurrent outbreaks. Mathematicians have long used models in an effort to
better understand and predict these recurrent outbreak patterns. This paper
summarizes and comments upon those efforts, providing a historical outline
of childhood disease models that have been developed since the start of the
twentieth century. This paper also discusses the influence of data analysis
techniques, such as spectral analysis, on the understanding and modelling of
childhood disease dynamics.

11.1 Introduction

Childhood diseases (such as measles, whooping cough, chickenpox, polio,
mumps and rubella) have had major and longstanding impacts on public
health. Although vaccination programmes have significantly reduced mor-
bidity and mortality from many childhood diseases [1], and are close to
eradicating polio altogether [2], to date only smallpox has been completely
eradicated through vaccination [3,4]. Moreover, measles continues to kill hun-
dreds of thousands of undernourished and unvaccinated children in lesser-
developed countries each year [5]. In the face of persistent vaccine scares
that often cause a resurgence in childhood diseases [6–8], an understanding
of childhood disease transmission and control remains essential.

The mathematical modelling of childhood diseases continues to be an area
of active research. This is due to the significant morbidity and mortality asso-
ciated with childhood diseases, their relatively simple epidemiology, and the
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widespread availability of time series data describing childhood disease inci-
dence (number of new cases per unit time). Time series of childhood disease
incidence are the most detailed and complete ecological time series avail-
able for any organism, and therefore also provide a way of testing ecological
theory [9, 10].

Outbreak patterns for childhood diseases are always recurrent, such that
peaks in disease incidence alternate with troughs. However, there is much
variation in outbreak patterns across diseases, places and times. Some time
series exhibit highly regular annual or biennial outbreaks, some exhibit
much longer interepidemic intervals, while others exhibit apparently irreg-
ular outbreaks (Fig. 11.1a–d) [11, 12]. Outbreak patterns for a given disease
can also change over time, either gradually or through abrupt transitions
(Fig. 11.1a–d) [11,12]. One of the goals of mathematical epidemiology during
the twentieth century has been to determine the causes of recurrent outbreaks
of childhood diseases and predict the interepidemic interval, defined as the
time between successive outbreaks [13].

Immunity to childhood diseases is generally lifelong, or long-term (however
in the case of whooping cough there may be significant asymptomatic trans-
mission among adults [16]). Susceptible individuals gradually accumulate in
the population through births, until there is a sufficient density of suscepti-
bles for an epidemic to start. Epidemiological timescales are fast compared to
demographic timescales, hence the epidemic rapidly depletes the susceptible
pool and the epidemic eventually dies out. Susceptibles are gradually built
up again through new births and the pattern recurs. If this accumulation of
susceptibles occurs more slowly, for instance through a reduced birth rate
or higher rates of vaccine uptake, then the interepidemic interval increases
accordingly.

It is important to emphasize that this ‘dissection’ of an epidemic cycle is
ultimately a description of recurrence, not an explanation (even though it is
often presented as such). One could equally well imagine a scenario in which
the influx of new susceptibles exactly balances the incidence of disease at all
times, so that the susceptible pool is depleted at the same constant rate as it
is refilled. This would imply a constant number of cases over time instead of
recurrent outbreaks. Without modelling, it is not clear a priori why incidence
should exhibit recurrence instead of approaching a stable equilibrium. Mod-
elling is also essential to quantitatively predict the interepidemic interval, and
the time of transition between outbreak patterns. Modelling is indispensable
not only for understanding recurrence as a natural phenomenon but also for
informing public health policy, since it allows one to predict how changes
in vaccination coverage and demographic parameters alter the time between
outbreaks. Indeed, age-structured measles models show good agreement with
pre- and post-vaccination age-stratified case reports and seroprevalence sur-
veys [17], and have been successfully used in this way to predict and plan for
upcoming measles epidemics in New Zealand, for example [18].
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Fig. 11.1 Time series of incidence (a–d) and power spectra (e)–(h) for four common
childhood diseases. In each panel, the green line shows annual susceptible recruitment,
ν(1 − p), where ν denotes births normalized by 1955 population size and p denotes pro-
portion vaccinated (cf. [11]); recruitment is shown displaced forward in time by the mean
age at infection to account for the typical delay between birth and infection (4 years for
measles, 7 years for chickenpox, 11 years for rubella and 4 years for whooping cough). Time
series are divided into sections based on substantial differences in recruitment rates; the
corresponding power spectra are not sensitive to the precise point at which the time series
is divided (the chickenpox time series has not been divided because no dramatic change in
births occurred during the period covered by the data). The power spectrum is the Fourier
transform of the autocovariance function of the time series [14, 15]. Before computation
of the power spectrum the data were trend-corrected and tapered with a double cosine
bell [14]. The autocovariance function was smoothed with a Tukey window [14] to reduce
variance in the power spectrum, which facilitates locating the spectral peaks. The width
of the Tukey window was chosen so that the resulting bandwidth was the same (0.35) for
both weekly and monthly incidence time series. Figure reproduced from [12]
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This paper reviews the role of models in understanding and predicting
recurrent outbreak patterns of childhood diseases. Section 11.2 describes the
SIR model with demographics (a classic epidemic model applicable to child-
hood diseases). Section 11.3 describes the historical development of mathe-
matical models used to study recurrence in childhood diseases, and Sect. 11.4
describes the influence of data analysis techniques on our understanding of
recurrence. Concluding comments are made in Sect. 11.5.

11.2 The SIR Model with Demographics

Compartmental models allocate individuals into mutually exclusive categories
(compartments) based on infection status, age, social group, or other cate-
gories of interest or epidemiological relevance. If a sufficiently large popula-
tion is assumed, then differential equations can be derived to describe the
time evolution of the number of individuals in each compartment. Alterna-
tively, a stochastic (e.g. Monte Carlo or individual-based) model can also
be simulated or analyzed to study the time evolution of the compartments,
particularly when the population size is small.

A classic model for childhood diseases is the SIR model with demograph-
ics, which assigns compartments for the number of susceptible (S), infected
(I), and recovered (R) individuals (Fig. 11.2). For modelling an endemic dis-
ease, birth and death are important, and so individuals in each compartment
are assumed to give birth at constant per capita rate ν (all newborns are
susceptible), and individuals in each compartment die at constant per capita
rate µ (disease-related mortality is neglected). Infected individuals recover at
a constant per capita rate γ and retain lifelong immunity. Finally, we assume
that the incidence is proportional to the product of the number of suscep-
tible and infected individuals (new cases arise through mass-action mixing
between susceptible and infected individuals). These assumptions yield the
system of ordinary differential equations

Ṡ = νN − βIS − µS , (11.1)
İ = βIS − γI − µI , (11.2)
Ṙ = γI − µR , (11.3)

where N = S + I + R is the population size, β is the mean rate at which
an infected individual transmits the infection to a susceptible, and other
parameters are as defined above. Note that 1/γ is the mean duration of in-
fectiousness. It is often assumed that ν = µ, such that S +I +R = N and the
population size is constant. Then, the population size N can be normalized to
1 for simplicity of notation (hence S, I and R become densities). Under these
conditions, for β/(γ+µ) ≤ 1, the equations exhibit a disease-free equilibrium
(1, 0, 0) that is globally asymptotically stable. Conversely, when β/(γ+µ) > 1,
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the disease-free equilibrium is unstable and there is a globally asymptotically
stable endemic equilibrium (γ+µ

β , µ(β−γ−µ)
β(γ+µ) , γ(β−γ−µ)

β(γ+µ) ). Although this model
ignores many aspects of real-world demography and epidemiology, it is ped-
agogically useful nonetheless, and we will see how it quantitatively captures
certain features of real epidemics despite its simplifications.

The SEIR model with demographics is an extension of the SIR model that
is also applied to childhood diseases. The ‘E’ compartment is a latent stage
where individuals are infected but not yet infectious. Individuals leave the
latent compartment ‘E’ and enter the infectious compartment ‘I’ at some
constant rate, the inverse of which equals the mean latent period. Latency is
common in childhood diseases.

Fig. 11.2 Diagram of SIR model with demographics (11.1)–(11.3). Terms next to arrows
denote per capita rates of transitions into or out of compartments

The basic reproductive number, R0, is the average number of secondary
infections produced by a typical infected individual in a fully susceptible
population [19,20]. When R0 > 1, each infected case more than replaces itself,
and incidence grows geometrically, causing an epidemic. However, stochastic
effects can cause the disease to fade out in the early stages, even when R0 > 1
(since the number of infected individuals is initially very small). For childhood
diseases, R0 varies widely depending upon the disease, location, and time.
In most Western countries during the twentieth century, R0 was typically
highest for measles and whooping cough (R0 ≈ 11 − 18), in the middle
range for chickenpox and mumps (R0 ≈ 7 − 14), and lowest for rubella
(R0 ≈ 6 − 9) [19]. For the SIR model with demographics (11.1)–(11.3), it
can be shown that R0 = β/(γ + µ), which is the inverse of the proportion
susceptible at the endemic equilibrium.

An accurate model of recurrent outbreaks would be expected to exhibit
sustained oscillations (e.g. stable limit cycles). However, stability analysis of
the endemic equilibrium of the SIR model shows that it is a stable spiral,
therefore solutions converge to it via damped oscillations with period

T ≈ 2π

√
1

γµ(R0 − 1)
. (11.4)
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Therefore, the simple SIR model alone cannot account for the recurrent out-
breaks observed in incidence time series.

However, a number of extensions to the basic SIR model have been found
to generate sustained oscillations. These extensions fall into two categories.
In first category of endogenous mechanisms, the period of oscillation is not
explicitly incorporated as a model parameter, but rather it is implicit in how
the model is defined and its parameter values set. Endogenous mechanisms
usually yield sustained oscillations by destabilizing the endemic equilibrium of
the basic model (11.1)–(11.3), giving rise to stable limit cycles with a period of
approximately T [19,21–37]. In contrast, in the second category of exogenous
mechanisms, oscillations are produced through periodic (seasonal) forcing of
model parameters such as the transmission rate [11,12,21,25,28,37–40]. The
period of forcing is set explicitly as a model parameter, and the resulting
periods of oscillation are simply integer multiples of the period of forcing.

Throughout the twentieth century, modellers have experimented with vari-
ous extensions to the basic SIR model in an attempt to better account for the
observed patterns of recurrent outbreaks, using endogenous and/or exogenous
mechanisms. We outline this historical development in the next section.

11.3 Historical Development of Compartmental Models

The sources for this historical review include both primary and secondary
sources [19,41–45]. The epidemic modelling literature has become vast, espe-
cially in the past thirty years, and modellers have approached the problem of
recurrence from many different angles. Indeed, this review itself constitutes
just one angle from which the literature can be approached, and is not meant
to be comprehensive.

11.3.1 Early Models

Daniel Bernoulli developed what was probably the first compartmental epi-
demic model in 1760 [46–48]. His model divided the population into sus-
ceptible and immune compartments and assumed an age-specific force of
infection and case fatality rate, yielding a system of equations with an en-
demic equilibrium of susceptible and immune individuals. Bernoulli was not
specifically interested in the cause of recurrent outbreaks or in predicting the
interepidemic interval. Rather, his motivation was to predict the expected
gain in life expectancy that would be brought about by applying smallpox
control measures. Since variolation was becoming widespread in Europe in
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the late 1700s, predicting the resulting increase in life expectancy would have
been important for pricing annuities [48].

For the next hundred years, apparently little work was done in epidemio-
logical modelling. However in the mid-nineteenth century to the early twenti-
eth century, the subject was broached again by a number of authors. During
this time, papers were written on mathematical and statistical models for
various types of infectious diseases [21, 49–57] but here we focus specifically
on mathematical (including stochastic) models for childhood diseases.

In the nineteenth century, researchers were already seeking the causes of
recurrent outbreaks. At this time it was already suspected that the density
of susceptibles was an important quantity. As Hirsch claimed in 1883, “the
recurrence of the epidemics of measles at one particular place is connected
neither with an unknown something (the mystical number of the Pythagore-
ans), nor with ‘general constitutional vicissitudes’, as Köstlin thinks; but it
depends solely on two factors, the time of importation of the morbid poison,
and the number of persons susceptible of it” [58] (quoted from [21]).

However it was probably not until the early 1900s that researchers began
using mechanistic models to explain and predict recurrent outbreaks in child-
hood diseases. At this time, there were at least two competing hypotheses
regarding the causes of recurrence. Scientists such as Brownlee hypothesized
that seasonal recurrence in diseases such as measles was simply due to sea-
sonal variation in pathogen virulence [51]. By comparison, scientists such
as Hamer and Davidson sought an endogenous explanation for recurrence.
They suggested that it is unnecessary to invoke seasonal variation in host
or pathogen properties, rather, a ‘mechanical theory of numbers and den-
sity’ would suffice [50]. More specifically, Hamer hypothesized in 1906 that
incidence is proportional to the product of the densities of susceptible and
infected individuals. This is now called the mass-action mixing assumption,
and is a cornerstone of epidemic modelling.

Hamer geometrically analyzed an average measles epidemic curve to sup-
port this hypothesis (Fig. 11.3). He also used this line of analysis to show that
an epidemic can die out before all susceptibles have been depleted. Ultimately
Hamer’s hypothesis was found to be lacking [21], for the same reasons that
the SIR model with demographics only exhibits damped oscillations (namely,
mass-action mixing alone cannot result in sustained oscillations in models).
However, in the context of what was known at the time, and without the
benefit of developments in nonlinear mathematics, Hamer’s hypothesis is ar-
guably both subtle and original.

Hamer developed a discrete time model, but it was formulated numerically
(without the aid of symbolic notation) and hence it was not readily recog-
nizable as such. Epidemic models were established in a more recognizable,
modern form through the seminal work of Kermack and McKendrick in the
late 1920s [55–57] (reprinted in [59]). They showed that the density of suscep-
tible individuals must exceed a critical threshold in order for an epidemic to
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Fig. 11.3 Diagram representing an average measles epidemic curve in London, analyzed
in Hamer’s 1906 paper [50]

occur. (This result was also discovered by Ross in the early 1900s in the con-
text of discrete-time malaria models [53]. It is also closely related to Hamer’s
finding that the susceptible pool is not fully depleted by the end of a natural
epidemic curve.)

From general assumptions, Kermack and McKendrick derived an integro-
differential equation to describe the spread of an epidemic in a closed popu-
lation,

Ṡ(t) = S(t)
∫ ∞

0

A(τ)
d

dt
S(t − τ)dτ , (11.5)

where A(τ) is the expected infectivity of an individual who became in-
fected a time τ ago, and S(t) is the (spatial) density of susceptible indi-
viduals [43,55]. For the special case that A(τ) = β exp(−γτ), and by defining
I(t) ≡ − 1

β

∫∞
0

A(τ)Ṡ(t − τ)dτ = − 1
β

∫ t

−∞ A(t − τ)Ṡ(τ)dτ and differenti-
ating, one recovers the SIR model without demographics (ν = µ = 0 in
(11.1)–(11.3) [43].

Soon thereafter (in 1929) Soper, who felt he was ‘merely following up the
trail blazed by Sir William Hamer more than twenty years ago’ [21], for-
mulated and analyzed a discrete-time compartmental model to determine
whether mass-action mixing was sufficient to generate sustained oscillations
[21]. His model did generate sustained oscillations, however it was necessary
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to assume that all of an individual’s infectiousness is concentrated at a single
point in time at the end of the incubation period. In reality, of course, infec-
tivity is distributed over some interval of time. Soper found that for a model
with distributed infectivity, oscillations are damped and converged to an en-
demic equilibrium. As noted in Sect. 11.2, this is also true for the equivalent
ordinary differential equation compartmental model (the SIR model with de-
mographics), where the duration of infectiousness is exponentially distributed
(Fig. 11.4, top panel).
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Fig. 11.4 The role of demographic stochasticity in sustaining oscillations. Panels from top
to bottom show the effects of gradually increasing the amount of demographic stochasticity
on time series of the density of infecteds, I(t). A Gaussian (white) noise term was added to
the birth and death parameters µ and ν in (11.1)–(11.3): the value C in the figure legends
is the value of the coefficient of the normalized Gaussian noise term. Other parameters are
β = 1,240 year−1, 1/γ = 15 days, 1/µ = 1/ν = 50 years

Although Soper’s model failed to produce sustained oscillations except un-
der highly restrictive assumptions, his research stimulated further research
on the problem [45]. One of the goals of mathematical epidemiology in the
following decades was to correct for this apparent deficiency in Hamer–Soper
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models by introducing various extensions that would result in sustained os-
cillations. We review these extensions in the following sections.

11.3.2 Stochasticity

Epidemic modelling started growing substantially in the 1950s [44]. During
this time, the challenge of explaining recurrence was taken up by Bartlett,
who took an entirely different (stochastic) approach to the problem [22,
60]. Bartlett hypothesized that Hamer–Soper models failed to produce sus-
tained outbreaks because they did not incorporate demographic stochasticity
(stochastic effects associated with the discrete nature of births, deaths, immi-
gration and emigration processes). These effects are present to some extent
in all populations, but are especially significant for smaller population sizes.

Bartlett, using a stochastic model of measles transmission, showed that
demographic stochasticity could sustain oscillations that would otherwise be
damped. (This can also be seen by adding noise terms to the deterministic
SIR model with demographics (Fig. 11.4).) Bartlett also showed that the
interepidemic interval of the oscillations in silico agreed approximately with
the empirically observed values of the interepidemic interval [22, 61]. It was
found more recently (in 1998) that environmental stochasticity (stochasticity
associated with environmental effects that affect the entire population at
once, such as climatic fluctuations) also results in sustained oscillations in a
model for pertussis [33].

11.3.3 Seasonality

Seasonality is a prominent feature in many incidence time series, with inci-
dence for some diseases peaking consistently in the winter months (Fig. 11.1
a–d). Measles and chickenpox in particular are strongly seasonal. A num-
ber of driving forces have been hypothesized to be behind seasonal recur-
rence [62]. For instance, the seasonal structure of the school calendar means
that transmission rates may be higher in Fall and Winter when school is in
session (and children are crowded together) but lower during the summer
holiday [21, 63]. Likewise, seasonal variation in host physiology, pathogen
virulence, and humidity/rainfall patterns may also play a role [62]. The rel-
ative importance of these factors is still unestablished, although evidence
indicates that a seasonally-structured school calendar is at least partly re-
sponsible [63,64].

Soper suspected seasonal variation in transmission rates might be im-
portant for explaining biennial measles outbreaks, and analyzed a variant
of his discrete-time model with a seasonally-varying transmission rate [21].
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However, more intensive research on seasonally-forced epidemic models did
not begin until the 1970s [25, 38]. Modellers often incorporate seasonal-
ity by making the transmission rate β a sinusoidal function of time, e.g.
β(t) = β0(1 + α cos(2πt)) [40]. Some modellers take β to be a step function
based explicitly on real school calendars [11, 12, 25]. A seasonally-varying
transmission rate yields oscillations at periods that are integer multiples of
the period of forcing [11,12,40].

11.3.4 Age Structure

Susceptibility, infectivity, morbidity, and mortality rates often vary with
age, and available data for these quantities are often broken down into age
classes. Age-structured models have been the focus of many studies, and mod-
ellers have developed both continuous age-structured (PDE) and discrete
age-structured (ODE) models, as well as stochastic and deterministic ver-
sions [19,26,29,30,32,44]. Moreover, other features such as seasonality [25,28],
stochasticity [65], and strain structure [27] have also been incorporated.

Basic age-structured compartmental models of the type appropriate for
endemic childhood diseases, such as the continuous age-structured MSEIR
model with demographics (where the ‘M’ compartment is for maternally-
derived immunity) [44], or the continuous age-structured SIR model with
demographics [19, 29], either do not exhibit sustained oscillations at all (the
endemic equilibrium, if it exists, being stable at all parameter values) [19,29],
or exhibit sustained oscillations only under highly restrictive assumptions
[30,44]. Hence, age structure alone is apparently not sufficient to explain re-
currence. However, oscillations in age-structured models are typically very
weakly damped [19, 27, 29], and so age structure at least facilitates recur-
rence. For oscillations to be sustained in an age-structured model, additional
features must be incorporated, such as seasonality [25, 28], stochasticity [65]
or strain structure [27].

11.3.5 Alternative Assumptions About Incidence Terms

Conventionally, it is assumed that new cases are generated through homoge-
neous mixing, yielding the mass-action incidence term βIS (11.1), (11.2), or
the standard-incidence term βIS/N . The assumption of homogeneous mix-
ing may be inaccurate, particularly under certain circumstances. Examples
where the incidence does not depend linearly on the number of currently
infected individuals include situations where a larger density of infected in-
dividuals decreases their per capita infectivity (saturation effects), and situ-
ations where multiple exposures to an infected individual are required for a
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transmission event to occur (threshold effects). Some researchers have shown
that abandoning the conventional forms for the incidence term in the model
equations can induce sustained oscillations [66–70].

For example, it has been argued that a more realistic term for incidence in
many situations would be βIpSq/N [69, 70]. The case p > 1 corresponds to
synergistic effects among pathogens, and may occur when viral concentration
in the environment must exceed some critical threshold for transmission to
occur (if the viral lifespan outside the host is short), or, for vector-borne
diseases, when the disease vector needs to attack multiple infected hosts to
attain sufficiently high viraemia for transmission to susceptible hosts to occur.
When p > 1, compartmental models can exhibit sustained oscillations at
certain parameter values [69,70].

11.3.6 Distribution of Latent and Infectious Period

It is conventionally assumed that the latent and infectious periods (i.e. the
duration of latency and infectiousness respectively) are distributed exponen-
tially, such that the rate at which a latent individual becomes infectious, or
the rate at which an infectious individuals recovers, is constant and inde-
pendent of how long the individual has been in that compartment. Although
this assumption yields relatively tractable ODEs, it is less realistic than other
assumptions such as fixed or normally distributed durations.

If a fixed duration of infectiousness (incorporated through a time delay) is
used instead, the endemic equilibrium of the basic SIR model can be desta-
bilized through a Hopf bifurcation, yielding stable limit cycles [23,24,31,34].
The resulting interepidemic interval is approximately the same as that pre-
dicted by local stability analysis of endemic equilibria of the corresponding
models with an exponentially distributed periods (11.4). Results for more
general assumptions on the distribution of latent and infectious periods have
also been obtained [35,36].

11.3.7 Seasonality Versus Nonseasonality

The mechanisms described in the previous sections are not mutually exclu-
sive, and it is most likely the case that multiple factors contribute to recur-
rence. It is difficult to determine the relative importance of these factors,
however the fact that the time series exhibit two distinct types of outbreak
patterns suggests the existence of at least two distinct mechanisms: some
time series are characteristically seasonal (e.g. measles, chickenpox), whereas
others are characteristically nonseasonal (e.g. whooping cough).
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Models with seasonally-varying transmission rates can predict the interepi-
demic interval for diseases that are characteristically seasonal [11,12,38,64],
but they perform poorly for childhood diseases that are characteristically
nonseasonal. For instance, seasonally-forced models predict that whooping
cough should have an interepidemic interval of 1 year instead of the observed
≈4 years [12, 71, 72]. Conversely, the period of damped oscillations T com-
puted from the basic model (11.4) or other models that use only endogenous
mechanisms predicts the observed interepidemic interval for diseases that are
characteristically nonseasonal [15,19,22,61], but cannot predict seasonal out-
breaks. Furthermore, for some diseases, the error of the latter models is enor-
mous: for chickenpox, which is highly seasonal, the observed interepidemic
interval in almost all cities is 1 year (e.g. Fig. 11.1b), but models without
seasonal forcing predict T ≈ 3 [12,19].

Using a seasonally-forced SEIR model, it has been demonstrated numeri-
cally that solutions for measles remain close to the attractor (a biennial cycle)
in the presence of demographic stochasticity, whereas solutions for whooping
cough stray far from the attractor (an annual cycle), resulting in a ≈4 year
interepidemic interval [12,71,72]. Hence, the relative importance of determin-
istic (seasonal) versus stochastic (nonseasonal) effects for these two diseases
may explain the observed differences between their outbreak patterns. In-
deed, a perturbative analysis of the attractors of a seasonally-forced model
allows one to predict both seasonal and nonseasonal oscillations in measles,
whooping cough, chickenpox and rubella [12]. Additionally, Monte Carlo sim-
ulations indicate some of the factors which determine the relative importance
of seasonal and nonseasonal effects for a given disease [12]. Seasonality ver-
sus nonseasonality in incidence time series will be discussed more fully in the
section on spectral analysis (Sect. 11.4).

11.3.8 Chaos

Mathematicians have long sought to determine whether chaos (sensitive de-
pendence upon initial conditions) exists in natural and laboratory popula-
tions [73]. Because time series of childhood disease incidence are relatively
long and accurate (in comparison to many ecological time series), researchers
have devoted significant attention to seeking chaos in childhood disease dy-
namics, particularly for measles [74–82]. The presence or absence of chaos
in disease dynamics does not bear directly on the question of what causes
recurrent outbreaks, however, the issue has much to do with characterizing
outbreak patterns as well as with forecasting future outbreaks [80,82].

Some researchers have attempted to detect the hallmarks of chaos in time
series by computing Lyapunov exponents [75,81], deriving return maps from
reconstructed phase space trajectories [76], computing correlation dimensions
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[75], or applying nonlinear forecasting techniques [80, 82]. Other researchers
have constructed epidemic models, pointing out parallels between model dy-
namics in chaotic parameter regimes and real-world time series. However,
existing methods require data sets that are even more extensive than those
currently available [75,81], hence the evidence in support of chaos in measles
time series remains equivocal.

11.3.9 Transitions Between Outbreak Patterns

As noted in Sect. 11.1, incidence time series often exhibit sudden or gradual
transitions between outbreak patterns for a given disease in a given popu-
lation. Measles in New York City, USA, for example, exhibited a dramatic
shift from an apparently irregular pattern to a regular biennial pattern in
the mid 1940s (Fig. 11.1a). Some researchers have suggested that these tran-
sitions, particularly for measles, are caused by endogenous mechanisms such
as chaos [83] or noise-driven shifts between basins of coexisting attractors [40].
Other researchers have emphasized the impact of exogenous changes in pa-
rameters controlling birth rates and vaccine uptake (which move the system
to a new set of attractors) and report quantitative agreement between inci-
dence time series and seasonally-forced SEIR models [11,12].

11.4 Spectral Analysis of Incidence Time Series

The focus of this review so far has been on using models to understand
recurrence. In comparison, the present Section focuses on how data analysis
can help researchers understand recurrence. Techniques of data analysis are
a ‘lens’ through which a system can be observed. They can sharpen or clarify
certain aspects of the data, and thus change our understanding of the system,
and how the system is modelled.

An example of how data analysis can clarify understanding comes from
considering the interepidemic interval, which is a convenient but potentially
misleading concept. Many time series do not have a well-defined time be-
tween outbreaks, because the magnitude and timing of outbreaks can vary
considerably. For instance, in Liverpool, England, 1950–1967, before the era
of mass vaccination (Fig. 11.5), close inspection reveals a complex pattern
where small epidemics sometimes follow one another in rapid succession, on
the order of months, and significant year-to-year variation in the magnitude
of larger epidemics. The ‘time between outbreaks’ depends upon how large a
peak needs to be before it is considered an outbreak. The best that can be said
is that the time between outbreaks is, very roughly, 1–2 years. Likewise, for
measles in New York City from 1944 to 1962, there exists a regular biennial
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pattern where small outbreaks alternate with large outbreaks (Fig. 11.1a).
For this time series, the interepidemic interval could be equally well argued
to be either one year or two years. Similar ambiguities can be seen for other
diseases (Fig. 11.1b–d). Hence, the interepidemic interval can be an imprecise
and arbitrary concept.
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Fig. 11.5 Incidence of measles in Liverpool, England 1950–1967 (top left panel) and
corresponding power spectrum (top right panel), and measles case reports in Ontario,
Canada 1904–1948 (bottom left panel) and corresponding power spectrum (bottom right
panel). See Fig. 11.1 caption for details on computation of power spectra

11.4.1 Power Spectra

Some of this ambiguity can be eliminated by applying spectral analysis to the
time series [14,84]. For instance, starting in the 1980s, epidemic modellers be-
gan computing power spectra of incidence time series [12, 15, 19, 37, 75]. The
power spectrum of a time series describes the relative contributions from
each frequency of oscillation to the time series, over some fixed time interval.
A single dominant peak at a frequency of 1/Y years−1 in a power spectrum
would therefore correspond to recurrent outbreaks every Y years. Power spec-
tra can be computed, for example, by de-trending the incidence time series,
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computing the Fourier transform of the autocorrelation function of the de-
trended time series, and then smoothing with a suitable spectral window such
as a Tukey window or a Bartlett window [12, 15, 19]. Figures 11.1, 11.5 and
11.6 show power spectra of childhood disease incidence time series.

Power spectra can reveal much about a time series that is not obvious upon
casual inspection. For instance, power spectra of time series of childhood dis-
ease incidence reveal that spectral peaks can be either seasonal (correspond-
ing to seasonality in the time series, and occurring at frequencies 1/n years−1,
where n is an integer) or non-seasonal (corresponding to nonseasonality in
the time series and occurring at any real-valued frequency) [12]. For New
York City 1944–1962, spectral peaks appear at frequencies of 1 year−1 and
1/2 years−1, corresponding to the biennium observed in the time series for
those years (Fig. 11.1a,e). Power spectra of childhood disease time series gen-
erally exhibit both seasonal and nonseasonal peaks, although their relative
magnitude may differ significantly (Figs. 11.1, 11.5 and 11.6) [12]. For the
apparently irregular time series of measles in Liverpool 1950–1967 (Fig. 11.5)
there is both a seasonal peak at a frequency of 1 year−1 and a nonsea-
sonal peak occurring at a frequency of 1/1.8 years−1. For measles in Ontario
1904–1948 (Fig. 11.5) there is both a seasonal peak at 1 year−1 and a nonsea-
sonal peak at 1/2.7 years−1. Smaller populations exhibit larger nonseasonal
spectral peaks, perhaps because stochastic effects are more important (see
Sect. 11.3.7). This can be seen in chickenpox power spectra for five Canadian
provinces with differing population sizes for the years 1942–1955 (Fig. 11.6).

Seasonal peaks are associated with exogenous (seasonal) effects, such as
seasonally-varying transmission rates, whereas nonseasonal peaks are asso-
ciated with endogenous effects, such as stochasticity and other mechanisms
discussed in Sect. 11.3. Power spectra provide a way of characterizing out-
break patterns that is less ambiguous than the interepidemic interval, since
one can simply identify the frequencies and relative magnitudes of seasonal
and nonseasonal peaks in the power spectrum. However, power spectra do
not contain phase information, and therefore on their own they are insuffi-
cient to completely specify a time series. There is also a danger in choosing
a bandwidth for the smoothing window that is too narrow, yielding spurious
spectral peaks.

Power spectral analysis illustrates how data analysis can provide new ways
of describing and characterizing incidence time series. This, in turn, may
lead to a better understanding of disease dynamics and may also influence
modelling. For instance, the fact that spectral peaks can be classified into
seasonal and non-seasonal types, and the fact that many spectra simultane-
ously exhibit both types of peaks, suggest that recurrence is not a monolithic
phenomenon. Rather, there seem to be two distinct types of recurrence, each
with its associated causes, and each of which is present to some extent in
all childhood disease time series. Therefore it is important to incorporate
multiple mechanisms into epidemic models, in cases where a ‘true-to-life’



11 Mathematical Models of Recurrent Childhood Diseases 313

0 0.5 1 1.5
freq. (1/yr)

0
0.2
0.4
0.6
0.8

1

Manitoba
popn. 760,000

0 0.5 1 1.5
freq. (1/yr)

0
0.2
0.4
0.6
0.8

1

Saskatchewan
popn. 840,000

0 0.5 1 1.5
freq. (1/yr)

0
0.4
0.8
1.2
1.6

Brit. Columbia
popn 1.1 million

0 0.5 1 1.5
freq. (1/yr)

0
0.4
0.8
1.2
1.6

2

Quebec
popn. 3.9 million

0 0.5 1 1.5
freq. (1/yr)

0
0.4
0.8
1.2
1.6

Ontario
popn. 4.6 million
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representation of recurrence is desirable. Many epidemic models have fo-
cused separately on mechanisms such as seasonality [21], age-structure [29],
or stochasticity [22]. In the past few decades, modellers have begun study-
ing models with multiple mechanisms, such as seasonality and age struc-
ture [25, 28], stochasticity and seasonality [12, 71, 72], or age structure and
strain structure [27].

11.4.2 Wavelet Power Spectra

As demographic and epidemiological parameters evolve over time, the fre-
quencies exhibited in the time series can also change. However, the method
of computing power spectra as described above assumes that frequencies are
stationary over the time interval for which the power spectrum is computed,
and thus cannot capture these trends.

A method of spectral analysis that circumvents this problem is wavelet
analysis [84]. Wavelet analysis also decomposes a time series into component
frequencies, however because the method uses wavelets (which are localized
in time), it provides a temporally localized description of component frequen-
cies, i.e. it can describe the time evolution of component frequencies.

Wavelet analysis can be applied to childhood disease time series [85], and
can reveal interesting temporal trends. For instance, in the wavelet power
spectrum for New York City 1928–1966 (Fig. 11.7) we observe a sudden shift
from a non-seasonal period of approximately 2.5 years to a seasonal pe-
riod of 2 years, a transition that was apparently induced by the baby-boom
(Fig. 11.1a) [11]. The suddenness of this transition is consistent with bifurca-
tion analysis of a seasonally-forced SEIR model, which for these parameters
predicts a shift from an annual attractor to a biennial attractor [11,12]. Like-
wise, in London, England 1944–1994, upon the initiation of mass vaccination,
we observe a transition from a biennial pattern to a pattern of gradual in-
crease in the non-seasonal period, as vaccine coverage increases over time
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(Fig. 11.7). Such obvious patterns do not appear in all wavelet power spectra
for childhood diseases, and they can sometimes be difficult to interpret (e.g.
for measles in Ontario, Fig. 11.7). Nonetheless, wavelet analysis can refine our
understanding of incidence time series and the underlying disease dynamics.

11.5 Conclusions

This paper has reviewed how compartmental epidemic models have been used
to understand and predict recurrent outbreaks of childhood diseases. The
classic SIR model with demographics was presented, and its shortcomings
with respect to explaining recurrence were discussed. The historical develop-
ment of childhood disease models was then reviewed, with particular empha-
sis on efforts to correct this apparent deficiency of the classic SIR model, by
developing and analyzing models that exhibit sustained oscillations through
various mechanisms. The paper concluded with a discussion of the impact
of spectral analysis techniques on our understanding of childhood disease
dynamics.

Childhood disease modelling has received sustained interest over many
decades. Generally speaking, these models, and the methods by which they
are analyzed, have become increasingly diverse and sophisticated. Perhaps
one reason for this sustained interested and continuing development has been
a series of partial successes: models often successfully explain certain fea-
tures of childhood disease dynamics, but their shortcomings leave still other
questions unanswered. In an effort to arrive at a more complete understand-
ing, researchers have developed new models, characterized their properties
more completely, and sought closer agreement with data. Today there re-
main unresolved issues and new questions that continue to attract the at-
tention of mathematicians. One example of an area of continuing research
is the influence of spatial structure upon childhood disease dynamics and
control [10,85,86].

Part of this continuing development is also due to the emergence of new
concepts and new techniques of analysis, which often originate in other fields
and are then applied to childhood diseases. As new concepts emerge, mod-
ellers begin to ask new questions about familiar epidemiological systems, such
as: ‘Are measles dynamics chaotic?’. Modellers have also applied new methods
in time series analysis to childhood disease time series with positive results,
as seen in the example of spectral analysis. These new techniques can sharpen
understanding of the dynamics behind the time series, and can change the
way modellers think about, and discuss, childhood disease dynamics.

These factors, together with the intransigence of childhood diseases, their
worldwide health impact, and the relative availability of childhood disease
incidence data, suggest that modelling of infectious childhood diseases will
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As of time of publication, Matlab scripts for wavelet analysis can be downloaded from
http://paos.colorado.edu/research/wavelets/
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continue to be an area of active research for the foreseeable future, and will
continue to present new challenges to biomathematicians.
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Chapter 12

Modeling Influenza: Pandemics
and Seasonal Epidemics

Fred Brauer

Abstract We describe and analyze compartmental models for influenza, in-
cluding pre-epidemic vaccination and antiviral treatment. The analysis is
based on the final size relation for compartmental epidemic models. We con-
sider models of increasing complexity and compare their predictions using
parameter values appropriate to the 1957 pandemic.

12.1 Introduction

Influenza causes more morbidity and more mortality than all other respi-
ratory diseases together. There are annual seasonal epidemics that cause
about 500,000 deaths worldwide each year. During the twentieth century
there were three influenza pandemics. The World Health Organization esti-
mates that there were 40,000,000–50,000,000 deaths worldwide in the 1918
pandemic, 2,000,000 deaths worldwide in the 1957 pandemic, and 1,000,000
deaths worldwide in the 1968 pandemic. Current fears that the H5N1 strain
of avian influenza could develop into a strain that can be transmitted readily
from human to human and develop into another pandemic, together with
a widely held belief that even if this does not occur there is likely to be
an influenza pandemic in the near future, have aroused considerable interest
in modeling both the spread of influenza and comparison of the results of
possible management strategies.

Vaccines are available for annual seasonal epidemics. Influenza strains mu-
tate rapidly, and each year a judgement is made of which strains of influenza
are most likely to invade. A vaccine is distributed that protects against the
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three strains considered most dangerous. However, if a strain radically dif-
ferent from previously known strains arrives, vaccine provides little or no
protection and there is danger of a pandemic. As it would take at least 6
months to develop a vaccine to protect against such a new strain, it would
not be possible to have a vaccine ready to protect against the initial onslaught
of a new pandemic strain. Antiviral drugs are available to treat pandemic in-
fluenza, and they may have some preventive benefits as well, but such benefits
are present only while antiviral treatment is continued.

Various kinds of models have been used to describe influenza outbreaks.
Many public health policy decisions on coping with a possible influenza pan-
demic are based on construction of a contact network for a population and
analysis of disease spread through this network. This analysis consists of mul-
tiple stochastic simulations requiring a substantial amount of computer time.
We suggest that initially it may be more appropriate to use simpler models
until enough data are acquired to facilitate parameter estimation. More com-
plicated models require more parameters, and we believe that the complexity
of a model to be used should be influenced by the amount and reliability of
data. Our approach is to begin with a simple model and add more structure
later.

We begin this chapter by developing a simple compartmental influenza
transmission model and then augmenting it to include both pre-epidemic
vaccination and treatment during an epidemic. We will then develop a com-
partmental model with more structure and compare its predictions with those
of the simpler model. We will also describe some ways in which the model can
be modified to be more realistic, though more complicated. The development
follows the treatment in [2,3]. We will describe the models and the results of
their analyses, but omit proofs in order to focus attention on the applications
of the models.

12.2 A Basic Influenza Model

Since influenza epidemics usually come and go in a time period of several
months, we do not include demographic effects (births and natural deaths) in
our model. Our starting point is the SIR epidemic model described in Chap. 2
of Mathematical Epidemiology (this volume). Two aspects of influenza that
are easily added are that there is an incubation period between infection and
the appearance of symptoms, and that a significant fraction of people who are
infected never develop symptoms but go through an asymptomatic period,
during which they have some infectivity, and then recover and go to the
removed compartment [11]. Thus a model should contain the compartments
S (susceptible), L (latent), I (infective), A (asymptomatic), and R (removed).
Specifically, we make the following assumptions.
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1. There is a small number I0 of initial infectives in a population of total
size K.

2. The number of contacts in unit time per individual is a constant multiple
β of total population size N .

3. Latent members (L) are not infective.
4. A fraction p of latent members proceed to the infective compartment at

rate κ, while the remainder goes directly to an asymptomatic infective
compartment (A), also at rate κ.

5. Infectives (I) leave the infective compartment at rate α, with a fraction f
recovering and going to the removed compartment (R) and the remainder
dying of infection.

6. Asymptomatics have infectivity reduced by a factor δ, and go to the
removed compartment at rate η.

These assumptions lead to the model

S′ = −Sβ(I + δA)
L′ = Sβ(I + δA) − κL

I ′ = pκL − αI (12.1)
A′ = (1 − p)κL − ηA

R′ = fαI + ηA

N ′ = −(1 − f)αI,

with initial conditions

S(0) = S0, L(0) = 0, I(0) = I0, A(0) = 0, R(0) = 0, N(0) = S0 + I0 = K.

In analyzing this model we may remove one variable since N = S + L +
I + A + R. It is usually convenient to remove the variable R. Our language
is ambiguous in that we use S,L, I,A,R,N to denote both the names of
the classes and the number of members of the classes, but this should cause
no confusion. It is possible to show that the model (12.1) is properly posed
in the sense that all variables remain non-negative for 0 ≤ t < ∞. A flow
diagram for the model (12.1) is shown in Fig. 12.1. The model (12.1) is the
simplest possible description for influenza having the property that there are
asymptomatic infections. The question that should be in the back of our
minds is whether it is a sufficiently accurate description for its predictions to
be useful.

The model (12.1), like the other models that we will introduce later, con-
sists of a system of ordinary differential equations and the number of sus-
ceptibles in the population tends to a limit S∞ as t → ∞. There is a final
size relation that we may use to find this limit without the need to solve the
system of differential equations. If the contact rate β is constant, the final size
relation is an equality. It is more realistic to assume saturation of contacts
and that β is a function of the total population size N . In general, the final
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size relation is an inequality. If there are no disease deaths, N is constant
and β is constant even with saturation of contacts. If the disease death rate
is small, it appears that the final size relation is very close to an equality and
it is reasonable to assume that β is constant and use the final size relation as
an equation to solve for S∞.

Fig. 12.1 Influenza model flow chart

It is easy to see that there are disease-free equilibria with

L = I = A = 0

and S arbitrary with 0 ≤ S ≤ N(0). Since S is a decreasing function, S(t)
approaches a limit S∞ ≥ 0 as t → ∞. We may use the approach of [16],
also described in Chap. 6 of Mathematical Epidemiology (this volume), to
calculate the basic reproduction number

R0 = S0β

[
p

α
+

δ(1 − p)
η

]

. (12.2)

A biological interpretation of this basic reproduction number is that a
latent member introduced into a population of S0 susceptibles becomes in-
fective with probability p, in which case he or she causes βS0/α infections
during an infective period of length 1/α, or becomes asymptomatic with
probability 1− p, in which case he or she causes δβS0/η infections during an
asymptomatic period of length η.

If R0 > 1, then the number of infectives first increases before decreasing to
zero while if R0 < 1, then the number of infectives decreases monotonically
to zero.

The final size relation is given by

ln S0 − ln S∞ = R0

[

1 − S∞
S0

]

+
βI0

α
. (12.3)
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Its derivation, similar to the derivation for a simpler case in Chap. 2 of Math-
ematical Epidemiology (this volume), is given in [2,3]. A very general form of
the final size relation that is applicable to each of the models in this chapter
is derived in [3]. The final size relation shows that S∞ > 0. This means that
some members of the population are not infected during the epidemic. The
size of the epidemic, the number of (clinical) cases of influenza during the
epidemic, is

I0 + (S0 − S∞).

The number of symptomatic cases is

I0 + p(S0 − S∞),

and the number of disease deaths is

(1 − f)[I0 + p(S0 − S∞)].

While mathematicians view the basic reproduction number as central in
studying epidemiological models, epidemiologists may be more concerned
with the attack ratio, as this may be measured directly. For influenza, where
there are asymptomatic cases, there are two attack ratios. One is the clinical
attack ratio, which is the fraction of the population that becomes infected,
defined as

1 − S∞
N(0)

.

There is also the symptomatic attack ratio, defined as the fraction of the
population that develops disease symptoms, defined as

p

[

1 − S∞
N(0)

]

.

The attack ratios and the basic reproduction number are connected through
the final size relation (12.3). If we know the parameters of the model we can
calculate R0 from (12.2) and then solve for S∞ from (12.3).

We apply the model (12.1) using parameters appropriate for the 1957
influenza pandemic as suggested by Longini et al. [11]. The latent period is
approximately 1.9 days and the infective period is approximately 4.1 days,
so that

κ =
1

1.9
= 0.526, α = η =

1
4.1

= 0.244.

We also take
p = 2/3, δ = 0.5, f = 0.98.

As in [11] we consider a population of 2, 000 members, of whom 12 are
infective. In [11] a symptomatic attack ratio was assumed for each of four age
groups, and the average symptomatic attack ratio for the entire population
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was 0.326. This implies S∞ = 1,022. Then, neglecting the small number of
initial infectives for ease of calculation, we obtain

R0 = 1.373

from (12.3). Now, we use this in (12.2) to calculate

S0β = 0.402.

We will use these data as baseline values to estimate the effect that control
measures might have had. Our reason for neglecting I0 in (12.3) is that we
can then calculate R0 directly from (12.3) and S0β from (12.2). If we include
I0, the calculation is more complicated as we must first express (12.3) in
terms of the model parameters and then solve for β before calculating R0

from (12.2).
The number of clinical cases is 978 (including the initial 12), the number

of symptomatic cases is 656, again including the original 12, and the number
of disease deaths is approximately 13.

The model (12.1) can be adapted to describe management strategies for
both annual seasonal epidemics and pandemics.

12.3 Vaccination

To cope with annual seasonal influenza epidemics there is a program of vacci-
nation before the “flu” season begins. Each year a vaccine is produced aimed
at protecting against the three influenza strains considered most dangerous
for the coming season. We formulate a model to add vaccination to the model
described by (12.1) under the assumption that vaccination reduces suscep-
tibility (the probability of infection if a contact with an infected member of
the population is made). In addition we assume that vaccinated members
who develop infection are less likely to transmit infection, more likely not to
develop symptoms, and are likely to recover more rapidly than unvaccinated
members.

These assumptions require us to introduce additional compartments into
the model to follow treated members of the population through the stages
of infection. We use the classes S,L, I,A,R as before and introduce ST , the
class of treated susceptibles, LT , the class of treated latent members, IT , the
class of treated infectives, and AT , the class of treated asymptomatics. In
addition to the assumptions made in formulating the model (12.1) we also
assume

1. A fraction γ of the population is vaccinated before a disease outbreak and
vaccinated members have susceptibility to infection reduced by a factor
σS .
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-

Fig. 12.2 Vaccination model flow chart

2. There are decreases σI and σA respectively in infectivity in IT , and AT ;
it is reasonable to assume

σI < 1, σA < 1.

3. The rates of departure from LT , IT and AT are κT , αT and ηT respec-
tively. It is reasonable to assume

κ ≤ κT , α ≤ αT , η ≤ ηT .

4. The fractions of members recovering from disease when they leave I and
IT are f and fT respectively. It is reasonable to assume f ≤ fT .

5. Vaccination decreases the fraction of latent members who will develop
symptoms by a factor τ , with 0 ≤ τ ≤ 1.

For convenience we introduce the notation

Q = I + δA + σIIT + δσAAT . (12.4)

The resulting model is
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S′ = −βSQ

S′
T = −βσSST Q

L′ = βSQ − κL

L′
T = βσSST Q − κT LT

I ′ = pκL − αI (12.5)
I ′T = τpκT LT − αT IT

A′ = (1 − p)κL − ηA

A′
T = (1 − pτ)κT LT − ηT AT

R′ = fαI + fT αT IT + ηA + ηT AT

N ′ = −(1 − f)αI − (1 − fT )αT IT .

The initial conditions are

S(0) = (1 − γ)S0, ST (0) = γS0, I(0) = I0, N(0) = S0 + I0

L(0) = LT (0) = IT (0) = A(0) = AT (0) = 0.

corresponding to pre-epidemic treatment of a fraction γ of the population.
We again use N as a variable in the model rather than R for convenience,

but R = N − S − L − I − A − ST − LT − IT − AT . A flow diagram for the
model (12.5) is shown in Fig. 12.2.

Since the infection now is beginning in a population which is not fully
susceptible, we speak of the control reproduction number Rc rather than the
basic reproduction number. A computation using the approach of [16] or
Chap. 6 of Mathematical Epidemiology (this volume) leads to the control
reproduction number

Rc = (1 − γ)Ru + γRv,

with

Ru = S0β

[
p

α
+

δ(1 − p)
η

]

= R0 (12.6)

Rv = σSS0β

[
pτσI

αT
+

δ(1 − pτ)σA

ηT

]

.

Then Ru is a reproduction number for unvaccinated people and Rv is a repro-
duction number for vaccinated people. There is a pair of final size relations
for the two variables S and ST , namely

S0[ln(1 − γ)S0 − ln S∞] =
S0βI0

α
+ Ru[(1 − γ)S0 − S∞]

+ Rv[γS0 − ST∞] (12.7)

ST∞ = γS0

[
S∞

(1 − γ)S0

]σS

.
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From (12.7) we calculate that the number of symptomatic disease cases is

I0 + p[(1 − γ)S0 − S∞] + pτ [γS0 − ST∞],

and the number of disease deaths is

(1 − f)[I0 + p[(1 − γ)S0 − S∞] + (1 − fT )pτ [γS0 − ST∞].

By control of the epidemic we mean vaccinating enough people (i. e., taking
γ large enough) to make Rc < 1. We use the parameters of Sect. 12.2, with
vaccination parameters as suggested in [11],

σS = 0.3, σI = σA = 0.2, κT = 0.526, αT = ηT = 0.323, τ = 0.4.

The estimates of vaccine efficacy are based on those reported in [5]. With
these parameter values,

Ru = 1.373, Rv = 0.047.

In order to make Rc = 1, we need to take γ = 0.28. This is the fraction of
the population that needs to be vaccinated to head off an epidemic.

We may solve the pair of final size equations (12.7) with S(0) = (1 − γ)
S0, ST (0) = γS0 for S∞, ST∞ for different values of γ. We do this for the pa-
rameter values suggested above and we obtain the results shown in Table 12.1,
giving the vaccination fraction γ, the number of unvaccinated susceptibles S∞
at the end of the epidemic, the number of vaccinated susceptibles ST∞ at the
end of the epidemic, the number of unvaccinated cases I0 +p((1−γ)S0−S∞)
and the number of vaccinated cases of influenza (γS0 − ST∞). The results
indicate the benefits of pre-epidemic vaccination of even a small fraction of
the population in reducing the number of influenza cases. They also demon-
strate the advantage of vaccination to an individual. The attack ratio in the
vaccinated portion of the population is much less than the attack ratio in the
unvaccinated portion of the population.

Table 12.1 Effect of vaccination

Fraction
vaccinated

S∞ ST∞ Unvaccinated
cases

Vaccinated
cases

0 1,022 0 656 0

0.05 1,079 84 552 4

0.1 1,149 174 439 7

0.15 1,224 271 323 7

0.2 1,305 375 201 6

0.25 1,395 487 76 3

0.3 1,391 596 13 0
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12.4 Antiviral Treatment

If no vaccine is available for a strain of influenza it would be possible to
use an antiviral treatment. However, antiviral treatment affords protection
only while the treatment is continued. In addition, antivirals are in short
supply and expensive, and treatment of enough of the population to control
an anticipated epidemic may not be feasible. A policy of treatment aimed
particularly at people who have been infected or who have been in contact
with infectives once a disease outbreak has begun may be a more appropriate
approach. This requires a model with treatment rates for latent, infective,
and asymptomatically infected members of the population that we construct
building on the structure used for vaccination in (12.5).

Antiviral drugs have effects similar to vaccines in decreasing susceptibility
to infection and decreasing infectivity, likelihood of developing symptoms,
and length of infective period in case of infection. However, they are likely to
be less effective than a well-matched vaccine, especially in the reduction of
susceptibility.

Treatment may be given to diagnosed infectives. In addition, one may
treat contacts of infectives who are thought to have been infected. This is
modelled by treating latent members. In practice, some of those identified by
contact tracing and treated would actually be susceptibles, but we neglect
this in the model. Although we have allowed treatment of asymptomatics in
the model, this is unlikely to be done, and we will describe the results of
the model under the assumption ϕA = θA = 0. However, for generality we
retain the possibility of antiviral treatment of asymptomatics in the model.
If treatment is given only to infectives, the compartments LT , AT are empty
and may be omitted from the model.

We add to the model (12.5) antiviral treatment of latent, infective, and
asymptomatically infected members of the population, but we do not assume
an initial vaccinated class. In addition to the assumptions made earlier we
also assume

1. There is a treatment rate ϕL in L and a rate θL of relapse from LT to
L, a treatment rate ϕI in I and a rate θI of relapse from IT to I, and a
treatment rate ϕA in A and a rate θA of relapse from AT to A.

The resulting model is
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S′ = −βSQ

L′ = βSQ − κL − ϕLL + θLLT

L′
T = −κT LT + ϕLL − θLLT

I ′ = pκL − αI − ϕII + θIIT (12.8)
I ′T = pτκT LT − αT IT + ϕII − θIIT

A′ = (1 − p)κL − ηA − ϕAA + θAAT

A′
T = (1 − pτ)κT LT − ηT AT + ϕAA − θAAT

N ′ = −(1 − f)αI − (1 − fT )αT IT ,

with Q as in (12.4). The initial conditions are

S(0) = S0, I(0) = I0, L(0) = LT (0) = IT (0) = A(0) = AT (0) = 0, N(0) = S0 + I0.

A flow diagram for the model (12.8) is shown in Fig. 12.3.

Fig. 12.3 Treatment model flow chart

The calculation of Rc for the antiviral treatment model (12.8) is more
complicated than for models considered previously, but it is possible to show
that Rc = RI + RA with
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RI =
S0β

∆I∆L

[

(αT + θI + σIϕI)pκ(κT + θL) + (θI + σI(α + ϕI))pτκT φL

]

RA =
δS0β

∆L

[
(1 − p)κ(κT + θL)

η
+

σA(1 − pτ)κT ϕL

ηT

]

, (12.9)

where

∆I = (α + ϕI)(αT + θI) − θIϕI

∆L = (κ + ϕL)(κT + θL) − θLϕL.

The final size equation is

ln
S0

S∞
= Rc

[

1 − S∞
S0

]

+
βI0(αT + θI + σIϕI)

∆I
. (12.10)

The number of people treated is
∫ ∞

0

[ϕLL(t) + ϕII(t)]dt

and the number of disease cases is

I0 +
∫ ∞

0

[pκL(t) + pτκT LT ]dt

which can be evaluated in terms of the parameters of the model. The number
of people treated and the number of disease cases are constant multiples of
S0 − S∞ plus constant multiples of the (small) number of initial infectives.
Since the expressions in terms of S0 −S∞ and I0 are more complicated than
in the cases of no treatment or vaccination, we have chosen to give these
numbers in terms of integrals.

There is an important consequence of the calculation of the number of
disease cases and treatments that is not at all obvious. If Rc is close to or
less than 1, S0 −S∞ depends very sensitively on changes in I0. For example,
in a population of 2, 000 with R0 = 1.5, a change in I0 from 1 to 2 multiplies
S0 − S∞ and therefore treatments and cases by 1.4 and a change in I0 from
1 to 5 multiplies S0 − S∞ and therefore treatments and cases by 3. Thus,
numerical predictions in themselves are of little value. However, comparison
of different strategies is valid, and the model indicates the importance of early
action while the number of infectives is small.

In the special case that treatment is applied only to infectives, Rc is given
by the simpler expression

Rc = S0β

[
p(αT + θI + σIϕI)

∆I
+

δ(1 − p)
η

]

.
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The number of disease cases is I0 + p(S0 − S∞), and the number of people
treated is

ϕI(αT + θI)
∆I

[I0 + p(S0 − S∞)].

Since the infective period is short, antiviral treatment would normally be
applied as long as the patient remains infective. Thus we assume θI = 0, and
these relations become even simpler. The control reproduction number is

Rc = S0β

[
p(αT + σIϕI)
αT (α + ϕI)

+
δ(1 − p)

η

]

, (12.11)

and the number of people treated is

ϕI

α + ϕI
[I0 + p(S0 − S∞)]. (12.12)

Since the basic reproduction number of a future pandemic can not be
known in advance, it is necessary to take a range of contact rates in order to
make predictions. In particular, we could compare the effectiveness in con-
trolling the number of infections or the number of disease deaths of different
strategies such as treating only infectives, treating only latent members, or
treating a combination of both infective and latent members. In making such
comparisons, it is important to take into account that treatment of latent
members must be supplied for a longer period than for infectives. In case
of a pandemic, there are also questions of whether the supply of antiviral
drugs will be sufficient to carry out a given strategy. For this reason we must
calculate the number of treatments corresponding to a given treatment rate.
It is possible to do this from the model; the result is a constant multiple of
I0 plus a multiple of S0 − S∞.

The results of such calculations appear to indicate that treatment of diag-
nosed infectives is the most effective strategy [2,3]. However, there are other
considerations that would go into any policy decision. For example, a pan-
demic would threaten to disrupt essential services and it could be decided
to use antiviral drugs prophylactically in an attempt to protect health care
workers and public safety personnel. A study including this aspect based on
the antiviral treatment model given here is reported in [8].

For simulations, we use the initial values

S0 = 1988, I0 = 12,

the parameters of Sect. 12.2, and for antiviral efficacy we assume

σS = 0.7, σI = σA = 0.2,

based on data reported in [17].
We simulate the model (12.8) with θI = 0, assuming that treatment con-

tinues for the duration of the infection. We assume that 80% of diagnosed
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infectives are treated within 1 day. Since the assumption of treatment at a
constant rate ϕI implies treatment of a fraction 1 − exp(−ϕIt) after a time
t, we take ϕI to satisfy

1 − e−ϕI = 0.8,

or ϕI = 1.61. We use different values of S0β, corresponding to different values
of R0, and use (12.10) and (12.11), obtaining results shown in Table 12.2.

Table 12.2 Control by antiviral treatment

S0β R0 Rc Disease cases Treatments

0.402 1.37 0.92 64 56

0.435 1.49 1.00 130 113

0.5 1.71 1.15 373 314

0.7 2.39 1.61 865 751

We calculate from (12.11) that Rc = 1 if S0β = 0.435 and R0 = 1.49,
corresponding to a symptomatic attack ratio of 39%. This is the critical
attack ratio beyond which treatment at the rate specified can not control the
pandemic.

In the next section, we will formulate and analyze a compartmental model
that describes influenza more precisely. Then we will choose parameters so
that the behavior agrees with the behavior of the model (12.1) without treat-
ment as simulated in Sect. 12.2 and compare simulation of a corresponding
model with the simulation of Sect. 12.4.

12.5 A More Detailed Model

Recent re-examination of data from past influenza epidemics [1,4,7,8,15] has
indicated a more complicated compartmental structure than that of (12.1).
It is suggested that susceptibles go first to a non-infectious first latent stage,
then either to an asymptomatic stage and removal, or to a second latent
stage with some infectivity, followed by two infective stages with different
infectivity. Treatment is applied only during the first infective stage. This
leads to the following model, taken from [1].
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S′ = −βSQ

L′
1 = βSQ − κ1L1

L′
2 = pκ1L1 − κ2L2

I ′1 = κ2L2 − (α1 + ϕ)I1 (12.13)
I ′2 = α1I1 − α2I2

I ′T = ϕI1 − αT IT

A′ = (1 − p)κ1L1 − ηA

N ′ = −(1 − f)α2I2 − (1 − fT )αT IT ,

with
Q = σLL2 + I1 + σII2 + σT IT + σAA.

The parameters σL, σI , σT , σA are the relative infectivities in the compart-
ments L2, I2, IT , A respectively. The initial conditions are

S(0) = S0, I1(0) = I0, L1(0) = L2(0) = I2(0) = IT (0) = A(0) = 0, N(0) = S0 + I0.

A flow diagram for the model (12.13) is shown in Fig. 12.4.

β

κ 1

κ
1

κ
2

η

α1

α 2

φ α
2

 α

Fig. 12.4 Refined model flow chart

Then we calculate

Rc = S0β

[
pσL

κ2
+

p

(α1 + ϕ)
+

pσIα1

α2(α1 + ϕ)
+

pσT ϕ

αT (α1 + ϕ)
+

(1 − p)σA

η

]

.

(12.14)
The basic reproduction number is given by (12.14) with ϕ = 0,

R0 = S0β

[
pσL

κ2
+

p

α1
+

pσI

α2
+

(1 − p)σA

η

]

. (12.15)

The final size relation is
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ln
S0

S∞
= Rc

[

1 − S∞
S0

]

+ βI0ρ (12.16)

with
ρ =

1
α1 + ϕ

+
σIα1

α2(α1 + ϕ)
+

σT ϕ

αT (α1 + ϕ)
.

The number of disease cases is I0 + p(S0 − S∞), and the number of people
treated is

ϕ

α1 + ϕ
[I0 + p(S0 − S∞)].

In [8], suggested parameter values are

κ1 = 0.8, κ2 = 4.0, α1 = 1.0, α2 =
1

2.85
, αT =

1
1.35

η =
1

4.1
, σL = 0.286, σI = 0.143,

and we take
σT = 0.2, σA = 0.5

as in [2, 3, 11]. With these parameter values,

R0 = 1.669S0β.

In order to obtain R0 = 1.37 as in the simulation of Sect. 12.2 using (12.15),
we take S0β = 0.823 (note that this is not the same value as in Sect. 12.2).
Next, we take a treatment rate ϕ = 1.61, as in the simulation of Sect. 12.4.
Using (12.14) we obtain Rc = 0.74, compared with the value Rc = 0.92
obtained in Sect. 12.4. From (12.16) we obtain S∞ = 1, 962, corresponding to
29 cases of disease compared with 64 cases found in Sect. 12.4. The number
of people receiving antiviral treatment is 18.

There are significant differences between the predictions of the models
(12.8) and (12.13), with the number of disease cases and disease deaths lower
for (12.13). Presumably, the model (12.13) is closer to the truth than (12.8).
However, use of (12.13) requires more knowledge of the course of the epidemic
period and more information about parameter values. Also, it should be noted
that the model (12.13), having treatment only during one infective stage, is
not suitable for modeling pre-epidemic vaccination.

There are other, probably more serious, omissions in the model. Let us
consider another possible direction of generalization.

12.6 A Model with Heterogeneous Mixing

In many past influenza epidemics it has been observed that much of the
transmission of infection can be traced to school children, while many of the
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disease fatalities are in elderly or immune-compromised people who make
many fewer contacts. This suggests that in order to give a more accurate de-
scription of influenza transmission it is important to separate the population
into subgroups with different contact rates and different disease mortality
rates. Let us look at the simplest possible version of such a model, an SIR
model with treatment of infectives and two subgroups. In the interest of sim-
plicity we do not include latent or asymptomatic compartments but these
could easily be added to give a model looking more like a description of
influenza. In fact, as it will turn out that the model to be formulated here
does exhibit differences in behavior from the analogous one-group model, this
should be the next step in constructing a better model for influenza. However,
we shall leave this task for another occasion.

A question of considerable importance in the management of influenza is
whether one should concentrate control measures, either vaccination or an-
tiviral treatment, on active relatively invulnerable or less active more vulner-
able members of the population. A two group model is the simplest possible
setting for an analysis of this question. The answer must depend on the pa-
rameters of the model, for the following reason: If the disease is universally
fatal to members of the second group if infected but has no effect on members
of the first group, then it is clearly important to try to protect the second
group and the first group can be ignored. On the other hand, if there is no
difference in death rates between the two groups, then the goal is to minimize
the number of infections and this is achieved by concentrating on the active
first group.

Consider two subpopulations of sizes N1, N2 respectively, each divided into
susceptibles, infectives, and removed members with subscripts to identify the
subpopulation. Suppose that group i members make ai contacts in unit time
and that the fraction of contacts made by a member of group i that is with
a member of group j is pij , i, j = 1, 2. Then

p11 + p12 = p21 + p22 = 1.

The total number of contacts made in unit time by members of group 1
with members of group 2 is a1p12N1 and because this must equal the total
number of contacts by members of group 2 with members of group 1, we have
a balance relation

p12a1

N2
=

p21a2

N1
.

We also make the assumption of proportionate mixing between groups,
that is, that the number of contacts between groups is proportional to the
relative activity levels. In other words, mixing is random but constrained by
the activity levels [13]. We suggest that this is appropriate for diseases in
which contacts may be assumed to be essentially random. It would certainly
not be appropriate for disease in which contacts include preferences, such as
sexually transmitted diseases. Under the assumption of proportionate mixing,
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pij =
ajNj

a1N1 + a2N2
,

and we may write

p11 = p21 = p1, p12 = p22 = p2,

with p1 + p2 = 1. In other words, proportionate mixing means that each
group makes a fraction pj of its contacts with group j for j = 1, 2.

Suppose the mean infective period in each group is 1/α, and the recov-
ery fractions in the two groups are f1, f2 respectively. If the death rate in
either group is positive, this implies that the total population size in the
corresponding group decreases and the mixing proportions may change in
time.

The two-group SIR epidemic model is

S′
1 = −

[
p1a1

S1I1

N1
+ p2a1

S1I2

N2

]

I ′1 =
[
p1a1

S1I1

N1
+ p2a1

S1I2

N2

]
− αI1

R′
1 = f1αI1

N ′
1 = −(1 − f1)αI1

S′
2 = −

[
p1a2

S2I1

N1
+ p2a2

S2I2

N2

]
(12.17)

I ′2 =
[
p1a2

S2I1

N1
+ p2a2

S2I2

N2

]
− αI2

R′
2 = f2αI2

N ′
2 = −(1 − f2)αI2.

The equations for R1, R2 can be discarded from the model since

Ri = Ni − Si − Ii, i = 1, 2.

To the model (12.17) we add treatment of infectives at rates ϕ1, ϕ2 respec-
tively in the two groups that decreases infectivity by a factor σ and changes
the rate of departure from the stage α to αT , presumably with

αT ≥ α.

In addition, we assume that the recovery fractions for treated members are
fT,1 ≥ f1, fT,2 ≥ f2 respectively. This implies the introduction of two treated
compartments T1, T2 and leads to the model
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S′
1 = −

[
p1a1

S1(I1 + σT1)
N1

+ p2a1
S1(I2 + σT2)

N2

]

I ′1 =
[
p1a1

S1(I1 + σT1)
N1

+ p2a1
S1(I2 + σT2)

N2

]
− (α + ϕ1)I1

T ′
1 = ϕ1I1 − αT T1

R′
1 = f1αI1 + fT,1αT T1

N ′
1 = −(1 − f1)αI1 − (1 − fT,1)αT T1

S′
2 = −

[
p1a2

S2(I1 + σT1)
N1

+ p2a2
S2(I2 + σT2)

N2

]
(12.18)

I ′2 =
[
p1a2

S2(I1 + σT1)
N1

+ p2a2
S2(I2 + σT2)

N2

]
− (α + ϕ2)I2

T ′
2 = ϕ2I2 − αT T2

R′
2 = f2αI2 + fT,2αT T2

N ′
2 = −(1 − f2)αI2 − (1 − fT,2)αT T2.

Again, the equations for R1, R2 can be discarded from the model.
Using the technique of [16] or Chap. 6 of Mathematical Epidemiology (this

volume) we calculate the reproduction number for the model (12.18). Since
the model includes treatment, the reproduction number is a control repro-
duction number, denoted by Rc, and

Rc = a1Γ1 + a2Γ2, (12.19)

where

Γ1 =
p1(αT + σϕ1)
αT (α + ϕ1)

, Γ2 =
p2(αT + σϕ2)
αT (α + ϕ2)

,

with p1, p2 evaluated for N1 = N1(0), N2 = N2(0). The basic reproduction
number R0 is Rc with ϕ1 = ϕ2 = 0,

R0 =
a1p1 + a2p2

α
=

a2
1N1 + a2

2N2

α(a1N1 + a2N2)
.

It appears that if the model is simplified by assuming that the population
sizes N1, N2 are assumed constant, the results are very good approximations
to the results given by the full model (12.18) if the disease death rates are
small. In fact, use of this simplification and calculation of disease deaths
as fractions of the epidemic size gives a very good approximation to the
predictions of the full model. The idea is that we use the model (12.20) to
estimate the sizes of the epidemic in each group as if there were no disease
deaths, and then we estimate the actual number of disease deaths by applying
the assumed death rates to these sizes a posteriori. The presumption that the
model (12.20) approximates the model (12.18) well amounts to assuming that
this logically indefensible procedure gives good results.

Thus, we assume that there are no disease deaths, so that the total popu-
lation sizes N1, N2 of the two groups remain constant. We eliminate N1, N2
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and consider the model

S′
1 = −

[
p1a1

S1(I1 + σT1)
N1

+ p2a1
S1(I2 + σT2)

N2

]

I ′1 =
[
p1a1

S1(I1 + σT1)
N1

+ p2a1
S1(I2 + σT2)

N2

]
− (α + ϕ1)I1

T ′
1 = ϕ1I1 − αT T1 (12.20)

S′
2 = −

[
p1a2

S2(I1 + σT1)
N1

+ p2a2
S2(I2 + σT2)

N2

]

I ′2 =
[
p1a2

S2(I1 + σT1)
N1

+ p2a2
S2(I2 + σT2)

N2

]
− (α + ϕ2)I2

T ′
2 = ϕ2I2 − αT T2.

There is a pair of final size equations for (12.20), namely

ln
S1(0)
S1(∞)

= a1

[
Γ1(1 − S1(∞)

N1(0)
) + Γ2(1 − S2(∞)

N2(0)
)
]

(12.21)

ln
S2(0)
S2(∞)

= a2

[
Γ1(1 − S1(∞)

N1(0)
) + Γ2(1 − S2(∞)

N2(0)
)
]
.

Combining these two equations, we obtain

a2 ln
S1(0)
S1(∞)

= a1 ln
S2(0)
S2(∞)

. (12.22)

We see from this that if a1 > a2 then

1 − S1(∞)
S1(0)

> 1 − S2(∞)
S2(0)

,

that is, the attack ratio of the disease is greater in the more active group. We
see also that

S2(∞)
S2(0)

=
[S1(∞)

S1(0)
]a2/a1

.

In the general case, with the model (12.18) and disease deaths, there are
disease deaths in both untreated and treated classes. The number of disease
deaths in the untreated class is

(1 − f1)α
∫ ∞

0

I1(t)dt = (1 − f1)
α

α + ϕ1
[N1(0) − S1(∞)] (12.23)

and the number of disease deaths in the treated class is

(1 − fT,1)αT

∫ ∞

0

T1(t)dt = (1 − fT,1)
ϕ1

α + ϕ1
[N1(0) − S1(∞)], (12.24)
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with analogous relations in the second group. Thus the total number of dis-
ease deaths is

D =
[
(1 − f1)

α

α + ϕ1
+ (1 − fT,1)

ϕ1

α + ϕ1

]
[N1(0) − S1(∞)] (12.25)

+
[
(1 − f2)

α

α + ϕ1
+ (1 − fT,2)

ϕ2

α + ϕ2

]
[N2(0) − S2(∞)].

The number of members of the population treated is

ϕ1

α + ϕ1
[N1(0) − S1(∞)] +

ϕ2

α + ϕ2
[N2(0) − S2(∞)].

If there are disease deaths the final size relation is an inequality

ln
S1(0)
S1(∞)

≤ a1

[
Γ1(1 − S1(∞)

N1(0)
+ Γ2(1 − S2(∞)

N2(0)
]
.

Then S1(∞) is smaller than the value obtained in the case of no disease
deaths. We conjecture that if the disease death rates are small then S1(∞) is
close to the value obtained in the case of no disease death rates and thus that
the number of deaths can be estimated from (12.25) with S1(∞) estimated
from (12.21). Although we have not been able to establish a general result of
this nature, we give an example to suggest its validity.

12.7 A Numerical Example

In this section we present an example to suggest that results obtained from
the model (12.20) assuming constant total population size are good approx-
imations to the results obtained from the full model (12.18). Our example
is a compartmental model based on the influenza model of [11], but sim-
plified by omitting the latent and asymptomatic stages and estimating pa-
rameters consistent with those of [11]. We divide the population into only
two groups, the first consisting of 87.5% of the population aged less than
65 and the second consisting of 12.5% of the population aged 65 or more.
The attack ratios assumed in [11] are 0.35 and 0.21 in the two groups, but
since 1/3 of the infections are assumed asymptomatic in [11] we assume
clinical attack ratios of 0.525 and 0.325 in the two groups. Thus we take
S1(∞) = 0.475N1(0), S2(∞) = 0.675N2(0). Then solution of (12.22) gives
a2 = 0.528a1, and the assumption of proportionate mixing gives

p2

p1
=

a2N2

a1N1
=

12
88

a2

a1
= 0.07,

so that (approximately)
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p1 = 0.93, p2 = 0.07.

We take α = 1/4, corresponding to a mean infective period of 4 days and
αT = 1/3 corresponding to a decrease to 3 days in the mean infective period
due to treatment. In addition, we take

σ = 0.2, f1 = 0.99, fT,1 = 0.995, f2 = 0.92, fT,2 = 0.96,

and initial conditions

S1(0) = 870, I1(0) = 5, T1(0) = 0, N1(0) = 875
S2(0) = 125, I2(0) = 0, T2(0) = 0, N2(0) = 125.

If there is no treatment, ϕ1 = ϕ2 = 0, we have

Γ1 =
p1

α
, Γ2 =

p2

α
,

and since α = 1/4 we obtain

Γ1 = 3.72, Γ2 = 0.28, R0 = 1.41.

Then (12.21) and the assumed values

S1(∞) = 0.475N1(0), S2(∞) = 0.675N2(0)

give a1 = 0.364, a2 = 0.192.
We simulate the model (12.18) with these parameter values, obtaining

results shown in Table 12.3. We do not show the results of simulation of the
model (12.20) but they are very close to the results shown. Note that in the
model (12.20) N1, N2 have the constant values 875, 125 respectively, and the
numerical results may be obtained from the final size relations (12.21),(12.22)
without solving the system of differential equations.

Although the model (12.20) assumes no disease deaths, we may estimate
the number of disease deaths from simulation of (12.18) or, as indicated
earlier by using (12.23), (12.24), obtaining the results shown in Table 12.4.

We compare these results with those obtained from a one-group model
whose parameters are chosen by averaging those of the two-group model.
Thus, we simulate the system

S′ = −a
S(I + σT )

N

I ′ = a
S(I + σT )

N
− (α + ϕ)I (12.26)

T ′ = ϕI − αT T

N ′ = −(1 − f)αI − (1 − fT )αT T,
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Table 12.3 Final sizes for the model (12.18)

ϕ1 ϕ2 S1(∞) S2(∞)

0 0 406.4 84.9

0 0.5 429.2 87.3

0 1.0 433.9 87.8

0.25 0 849.1 123.5

0.25 0.5 851.7 123.7

0.25 1.0 852.2 123.7

0.5 0 862.1 124.4

0.5 0.5 862.7 124.5

0.5 1.0 862.8 124.5

1.0 0 865.8 124.7

1.0 0.5 866.1 124.7

1.0 1.0 866.1 124.7

Table 12.4 Diseases and cases for the model (12.18)

ϕ1 ϕ2 Cases, G1 Deaths, G1 Cases, G2 Deaths, G2

0 0 468.6 4.7 40.1 3.2

0 0.5 445.8 4.5 37.7 2.0

0 1.0 444.1 4.4 37.2 2.0

0.25 0 25.9 1.5 1.5 0.1

0.25 0.5 23.4 0.2 1.3 0.1

0.25 1.0 22.8 0.2 1.3 0.1

0.5 0 12.9 0.1 0.6 0

0.5 0.5 12.3 0.1 0.5 0

0.5 1.0 12.2 0.1 0.5 0

1.0 0 9.2 0.1 0.3 0

1.0 0.5 8.1 0.1 0.3 0

1.0 1.0 8.1 0.1 0.3 0

with parameter values

a = 0.342, σ = 0.2, α = 1/4, αT = 1/3, f = 0.9813, fT = 0.9906,

treatment rates ϕ = 0, 0.5, 1.0, and initial conditions

S(0) = 995, I(0) = 5, T (0) = 0, N(0) = 1,000.

The results are shown in Table 12.5.
The numbers of disease cases and disease deaths predicted by the one-

group model (12.26) are very close to those predicted by the two-group
model (12.18). This raises the question of whether using the two - group
model is worth the additional effort. Our simulations suggest that the one -
group model gives essentially the same results as the two-group model if
treatment rates in the two groups are the same. However, examining the
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Table 12.5 Results for the one-group model (12.26)

ϕ N(∞) S(∞) Cases Deaths

0 990.7 501.5 498.5 9.3

0.5 999.8 988.9 11.1 0.2

1.0 999.9 991.2 8.8 0.1

effect of using different treatment rates in the two groups demands the use
of a two-group model. For the parameters used here, it is clear that treating
only group 2 is wasteful of resources. Treating both groups is a more effec-
tive use of resources than treating only the first group since we may observe
that treating the second group as well as the first reduces the number of
disease cases but requires fewer treatments compared to treating only the
first group. This is consistent with the simulations reported in [11], where it
was concluded that treatment of the most active group in the population was
almost as effective as treating the entire population.

The model (12.18) is a generalization of the simple SIR model, not of the
models (12.8) or (12.13) in which some aspects of influenza were incorporated.
We think of (12.18) as an influenza model that focusses on heterogeneity of
mixing. It would not be difficult to formulate a model incorporating the
structure of (12.13) and two groups with different activity levels. We suggest
that analyzing (12.18) and concentrating on heterogeneity of mixing gives
useful information about the importance of heterogeneity in treatment and
is a strong argument for carrying out this analysis.

The models (12.18) and (12.20) can be extended easily in several directions.
Possible extensions include models with an arbitrary number of groups with
different activity levels, models with more stages in the progression through
compartments, and models in which there are differences between groups in
susceptibility. However, our results are restricted to proportionate mixing.
While this appears to be a reasonable assumption for a two-group model, it
would be plausible that in a three-group model, two of the groups mix with
the third group but not with each other, and this would not be proportionate
mixing.

There are still some open questions for models with heterogeneous mixing.
For the models studied here, the question of how accurate the approximation
of a full model by a model with constant total population sizes when disease
death rates are small remains open. Since we believe that the type of model
studied here should be considered for modeling future epidemics, such as an
anticipated influenza pandemic, these are important questions.
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12.8 Extensions and Other Types of Models

We have considered only compartmental models for influenza in this chapter,
but there are other useful approaches. Many of the estimates being made
for use in making policy decisions for coping with an influenza pandemic are
based on network models [6,7,9–12]. These are based on a detailed study of
mixing patterns in populations and assume a great deal of knowledge of the
contact structure. They divide a population into subgroups having different
contact patterns and are able to give very detailed predictions, including the
effects of management strategies that treat different segments of the pop-
ulation differently. Their analyses involve large-scale stochastic simulations;
while they give a great deal of information it is difficult to estimate their sen-
sitivity to uncertainties in the parameter values. In addition to the use being
made now for pandemic influenza preparation, they would also be useful for
coping with seasonal influenza epidemics.

In Sect. 12.6 we have introduced heterogeneous mixing as an aspect of
a model. Another heterogeneity arises from considering a population as a
collection of separate units or patches with travel between them rather than
as a single entity.

We have assumed mass action incidence in the models of Sects. 12.2–12.6,
but it is probably more realistic to assume some density dependence in the
contact rates. In this case, the final size relations are inequalities rather than
equations. If there are no disease deaths, the total population remains con-
stant and mass action is equivalent to general incidence. It appears that if the
disease death rate is small, mass action incidence is a good approximation,
and the use of final size equations in place of actually solving the systems of
differential equations is a valid approximation.

We have not built into our models any assumptions of behavioral change by
the population during an epidemic. It would be reasonable to expect infectives
to withdraw from contact, either because of weakness caused by infection
or because of public health encouragement to infectives to reduce contacts
in order to avoid spreading infection. This could be modeled by addition
of an isolated compartment with reduced contacts. Another response to be
expected is that at least part of the population would try to reduce contacts
and take hygienic measures to decrease risk of infection. These factors have
not been built into models here but are obvious candidates for consideration.

We have assumed rates of transition between compartments to be pro-
portional to compartment sizes, which is equivalent to assuming negative
exponential distributions of times in compartments. The assumption of more
realistic distributions would lead to more complicated models, formulated as
integral or integro-differential equations. An important question is whether
such more realistic assumptions, giving models that are much more difficult
to analyze, yield a worthwhile return in more accurate information.

A new and important question that is beginning to be studied is the
possibility of development of resistance to antiviral drugs [1, 14, 15]. Models
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currently being developed build on compartmental models of the type studied
in this chapter, and there are many questions coming under study.

In studying epidemic models in general there is a trade-off between the
ease of analyzing a model and the amount of detail and accuracy provided
by the model. The appropriate model for a given situation depends on the
nature of the information sought and the amount and reliability of the data.
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Chapter 13

Mathematical Models of Influenza:
The Role of Cross-Immunity,
Quarantine and Age-Structure

M. Nuño, C. Castillo-Chavez, Z. Feng and M. Martcheva

Abstract This chapter compiles some of the results on influenza dynamics
that involve a single strain, as well as two competing strains. The emphasis is
on the role of cross-immunity, quarantine and age-structure as mechanisms
capable of supporting recurrent influenza epidemic outbreaks. Quarantine or
age-structure alone can support oscillations while cross-immunity enhances
the likelihood of strain coexistence and impacts the length of the period. It
is the hope that the perspective provided here will instigate others to use
mathematical models in the study of disease transmission and its evolution,
particularly in a setting that involves highly variable pathogens.

13.1 Introduction

Recent (2003–2004) fatalities attributed to “flu” infections that resulted from
the interactions between domestic avian populations and humans in Asia
(Cambodia, China, Indonesia, Japan, Laos, South Korea, Thailand and Viet-
nam) have brought back memories of past “flu” epidemics, particularly those
of the 1918 pandemic, which resulted in the deaths of approximately 40 mil-
lion individuals [8, 27]. The periodic recurrence of epidemic outbreaks has
been documented in the context of communicable diseases like measles, rube-
ola and influenza [1]. The identification of mechanisms capable of generat-
ing recurrent, particularly periodic, outbreaks has been investigated using
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mathematical models [16–18,22]. Here, we look at the role on the qualitative
dynamics of communicable diseases played by three mechanisms: quarantine
of infectious individuals, strain-specific cross-immunity and age-structure. In
addition, we also look at systems facing competing pathogens. The work here
is carried on in the context of influenza.

Only three subtypes of influenza type A (H1N1, H2N2 and H3N2) have
been found to be responsible for influenza pandemics or epidemics over the
past century. Point mutations in specific regions of the HA molecule “con-
tinuously” generate new strains within a given subtype while major molecu-
lar changes have been tied to genetic shifts (new subtypes). High mortality
rates are closely tied to the immune system’s ability to effectively control
infections. In the case of influenza type A (the only type considered here),
cross-immunity, that is, the ability of an individual’s immune system to tap
on its history of prior infections to either reduce the likelihood of new infec-
tions (by related strains) or to accelerate “virus control” (within each host)
by bolstering the host’s immune response, can play a significant role on the
pathogen’s transmission dynamics at the population level.

Epidemiological studies in various regions of the US have quantified the
natural reduced susceptibility, gained by individuals who have recovered from
infections to specific flu strains, to invasions by related strains generated from
the same flu A subtype via point mutations [14, 23–26]. (There is no docu-
mented cross-immunity (reduced susceptibility to invasion) to strains from
different flu A subtypes [9, 15]]. Hence, only the competition for suscepti-
bles by flu A strains within the same subtype is assumed to be mediated
by cross-immunity. The levels of protection (to new infections) offered by
cross-immunity are a function of how “close” each invading strain is to the
strain responsible for the immune response. Data from experimental studies
on various communities [14, 26] have captured population-levels of acquired
cross-immunity [6,7]. Data from these studies were used to introduce a coeffi-
cient of cross-immunity, σ ∈ [0, 1] [6,7] at the population level. The scale was
set as follows: a value of σ = 1 corresponds to the case when no protection
is generated by prior infections while a value of σ = 0 implies the acquisition
of total cross-immunity. In [6,7] it was shown that cross-immunity mediated
competition between relate flu strains (both from the same subtype) in a
homogeneous mixing population can enhance the likelihood of strain coex-
istence. Typically, the corresponding disease endemic levels are reached via
slowly damped oscillations. Furthermore, the “period”, that is, the distance
between consecutive “damping” peaks turned out to be significantly larger
for values of σ close to zero (total cross-immunity). This qualitative “dis-
crepancy” (σ = 0 vs σ = 1) is closely tied to the time required (population
characteristic) to replenish strain-specific susceptible populations. The closer
σ is to zero, the longer it takes to replenish the appropriate susceptible pool.

The theoretical results on epidemics recurrence of Feng and Thieme [13]
as well as those of Hethcote and collaborators [19] arose from their studies
of modified SIR single-strain epidemic models. These modifications included
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the possibility of isolating a fraction of the infectious individuals (quaran-
tine class, Q). The introduction of the Q class alters significantly the rate
of secondary infections since it does impact the incidence rate. These re-
searchers [12, 19] did show that the isolation of infectious individuals can be
enough to support not only disease persistence but also the generation of
periodic solutions via a Hopf bifurcation.

In [22] the consequences of incorporating quarantine classes in two-strain
systems mediated by cross-immunity are systematically explored. Not sur-
prisingly, regions where oscillatory co-existence is possible are identified. It
is shown that cross-immunity does in fact promote co-existence to the point
that sub-threshold coexistence is possible. That is, by changing the average
immunological response of a population, cross-immunity favors the survival
of related possibly less fit pathogens.

This chapter is organized as follows: Sect. 13.2 outlines some of the re-
sults of Feng [12] and Feng and Thieme [13] on the role of a quarantine
class as a mechanism capable of generating periodic solutions in SIQR
epidemic models; Sect. 13.3 focuses on a flu-inspired two-strain model me-
diated by cross-immunity that first includes and later excludes the quaran-
tine classes; Sect. 13.4 outlines some results on the role of age-structure and
cross-immunity on “flu” dynamics; Sect. 13.5 collects our final thoughts and
discusses future possibilities.

13.2 Basic Model

Feng’s Ph.D. thesis [12] demonstrated that the introduction of a quarantine
class (Q) could destabilize the disease endemic equilibrium in a Susceptible–
Infected–Recovered (SIR) model. Hethcote and collaborators [19] further
studied the impact of quarantine classes in alternative SIQR frameworks.
Their work [19] confirmed the results of Feng and Thieme [13]. In order to
state the kind of results that are possible under these models [12, 13, 18] we
introduce a simple version of the SIQR models [12, 13]. We let S(t), I(t),
Q(t) and R(t) denote the susceptible, infective (assumed to be infectious),
quarantined and recovered classes, respectively and assume that the total
birth rate equals µN (N = S+I+Q+R) where µ also denotes the natural per-
capita death rate (assumed to be the same in the four epidemiological classes).
We also let γ denote the per-capita recovery rate, δ the per-capita quarantine
rate, c the average per-capita contact rate, qc (0 < q < 1) the average
effective contact rate, and β the per-infective transmission rate. Following
the flow diagram in Fig. 13.1 we conclude that the SIQR model of interest
is given by the following set of equations:
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dS
dt = µN − βS I

N−Q − µS,
dI
dt = βS I

N−Q − (µ + γ)I,
dQ
dt = γI − (µ + δ)Q,

(13.1)

Fig. 13.1 Flow diagram for the classical SIQR model

where R = N − (S + I + Q), S(0) = N − I0, I(0) = I0, and Q(0) = 0 = R(0).
The key difference from standard epidemiological models derives from the fact
that the incidence rate has been modified. That is, here it is assumed that the
infected proportion “faced” by susceptibles is I

N−Q and not I
N . Since N is

constant, without loss of generality, it is assumed that N = 1. The case when
δ = “∞” reduces Model (13.1) to the classical SIR model whose analysis can
be found in [16]. The excellent review by Hethcote [18] provides up-to-date
references on the theoretical work that has been carried out in SIR models.
The basic reproductive number for the classical SIR model is

R0 =
β

µ + γ
= β × D,

where β is the transmission rate and D = 1
µ+γ the death-adjusted infectious

period [4]. The classical SIR model (two-dimensional system) can support
up to two equilibria [16]. The infection-free state is E0 = (1, 0) and (when
R0 > 1) the endemic state is E1 = ( 1

R0
, µ

β (R0 − 1)). It can be shown that
E0 is globally asymptotically stable whenever R0 ≤ 1 while E1 is globally
asymptotically stable whenever it exists, that is, when R0 > 1 (see [18]).

The situation is different when a Q class is introduced (0 < δ < ∞). Model
(13.1) supports at most two equilibria. The infection-free state F0 = (1, 0, 0)
and whenever R0 > 1 a unique endemic state F1 = ( 1

R0
, µ

β [R0 − 1],
δ

µ+γ
µ
β [R0 − 1]) where R0 = β

µ+γ+δ = βDQ, β the transmission rate and
DQ the quarantine-death-adjusted infectious period. F1 is “globally asymp-
totically” stable but only when the quarantine period is either very large
or very small. For intermediate values of the quarantine period the endemic
state becomes unstable. The existence of periodic solutions can then be es-
tablished via Hopf-bifurcation (under realistic parameter sets). Reasonable
value ranges for the quarantine period (1

δ ) capable of generating sustained os-
cillations were not found in this setting. Significant framework modifications
discussed later in this article manage to substantially reduce the 1

δ window
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where oscillations are possible. A typical mathematical results on the exis-
tence of periodic solutions can be summarized [12,13] as follows:

Theorem 1. Let θ be the re-scaled per-capita recovery period. Then there is
a function: ζ0(ν) defined for small ν > 0

ζ0(ν) = θ2(1 − θ) + O(ν1/2),

with the following properties:
(a) The endemic equilibrium is locally asymptotically stable if ζ > ζ0(ν) and
unstable if ζ < ζ0(ν), as long as ζ does not become too small.
(b) There is a Hopf bifurcation of periodic solutions at ζ = ζ0(ν) for small
enough ν > 0. The length of periods can be approximated by the formula

T =
2π

|�ω±|
≈ 2π

(1 − θ)1/2ν1/2
≈ 2π

(θy∗)1/2
,

where y∗ is the proportion of infectious individuals at equilibrium.

As it turns out a Hopf-bifurcation occurs in two separate regions determined
by the length of the quarantine period (not specifically identified in the above
theorem). Figure 13.2 shows a bifurcation occurring for values of the periods
of quarantine or isolation (here used interchangeably) in two distinct ranges.
Only the region that includes “low” values is of relevance for diseases of in-
terest, like childhood diseases. Feng et al. [12, 13] found data on the length
of reported isolation periods during the Scarlet Fever epidemics in England
and Wales during 1897–1978 [2] which somewhat supported Model (13.1),
that is, they were almost large enough to be within the oscillatory range of
this model when relevant epidemiological parameters were fixed. Interesting
mathematical problems arise. Numerical simulations of the periodic solutions
coming from the left branch exhibited periods with rapidly increasing oscil-
lations. This feature suggested the possibility of a homoclinic bifurcation.
Wu and Feng (2000) showed that a relevant perturbed system could indeed
support a homoclinic bifurcation (see Fig. 13.3 [29]).

The practical relevance of this work [12, 13] follows from the fact that
moderate periods quarantine (that is, almost within a realistic range) can
destabilize the endemic state. Obviously, “something” was still required to
bring 1

δ within an “acceptable” range. In the case of the “flu” cross-immunity
(strain competition) or age-structure turn out to be sufficient.
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Fig. 13.2 Auto plot of the steady state solutions (fraction of infectives I
N

) versus the
isolation period

13.3 Cross-Immunity and Quarantine

Cross-immunity studies [9,14,15,23,26,27] motivated the theoretical studies
carried out on immune-mediated strain coexistence which was carried out be-
fore [6,7]. Although simple SIQR models have proved capable of supporting
recurrent epidemic single-strain outbreaks, the fact remains that such qual-
itative behavior seems possible only for unrealistic parameters. Prior work
on influenza [6, 7] provided theoretical support to the hypothesis that either
competition for hosts by related pathogens or age-structure may be enough to
support recurrent, in fact periodic, epidemic outbreaks in regions of param-
eter space that are relevant to the “flu”. Recently, Nuño et al. [22] extended
the work in [6,7,10] by adding a quarantine class to SIR two-strain models.
These SIR two-strain models were capable of supporting coexistence. The
system in [22] which includes those in [6, 7, 10] divides the host population
into ten epidemiological classes. Susceptible (S) individuals who whenever
they become infected by strain i (at a rate βi) move to the class Ii of infected
and infectious individuals. Ii individuals are either isolated, move into the
class Qi at the rate δi or move into the recovered (from strain i) class Ri

at the rate γi. Ri individuals who become infected with strain j do so at
the rate βjσij (a rate reduced by cross-immunity σij ∈ [0, 1]) move to the
class Vj . Finally, individuals who recover from both strains move into the W
class at the rates γl, l=1 or 2. The model assumes that once an individual
is infected with a particular strain, no future infections with the same strain
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Fig. 13.3 As µ2 (re-scaled life expectation parameter) increases the interior equilibrium
changes from stable to unstable (see (b) and (c)), and Hopf bifurcation (see (a) and (b))
and homoclinic bifurcation (see (b) and (c)) may occur

are possible (σii ≡ 0). It is also assumed that no individuals can carry two
infections simultaneously or that the number of such infections is so small
that it can be neglected. Furthermore, it is assumed that only Ii-infected indi-
viduals are isolated. This last assumption is partially justified from reported
studies that show that cross-immunity often reduces “flu” symptoms [14,15].
These assumptions can be easily weakened but such a decision would make
our model less tractable. We suspect that the qualitative results would not
be too different in the regions of parameter space relevant to the “flu”. The
system of equations modeling the competition of two strains mediated by
competition (see Fig. 13.4) is given by
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dS

dt
= Λ − β1S(I1 + V1)

A
− β2S(I2 + V2)

A
− µS,

dIi

dt
= βiS

(Ii + Vi)
A

− (µ + γi + δi)Ii,

dQi

dt
= δiIi − (µ + αi)Qi,

dRi

dt
= γiIi + αiQi − βjσijRi

(Ij + Vj)
A

− µRi, j 
= i (13.2)

dVi

dt
= βiσijRj

(Ii + Vi)
A

− (µ + γi)Vi, j 
= i

dW

dt
= γ1V1 + γ2V2 − µW,

A = S + W + I1 + I2 + V1 + V2 + R1 + R1 or A = 1 − Q,

where A denotes the population of non-isolated individuals.
In the study of System (13.2), Nuño et al. [22] show that influenza may

Fig. 13.4 Schematic diagram for the two-strain model with quarantine and cross-
immunity

survive in three states or become extinct. It becomes extinct when no strain
has the ability of becoming established, that is, when Ri < 1 for i=1 and
2 where Ri denotes the ith strain-specific basic reproductive number. Com-
petitive exclusion is also a possible outcome. It has been shown that the
strain with the highest ability to invade (largest Ri, as long as it is greater
than one) can persist and eliminate competitors under appropriate condi-
tions. The possibility that boundary endemic (one-strain endemic) equilibria
become destabilized giving rise to periodic solutions has been settled. The
analysis takes advantage of significant differences in time scales that are par-
ticularly relevant in the case of flu (and other “fast” communicable diseases).
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The difference in the life-span of the host (several decades) and the life-
time of an individual “flu” infection (few days) allows for the introduction
of a small parameter that facilitates the analysis, in particular the establish-
ment of the possibility of periodic solutions via a Hopf bifurcation. Formulae
for the approximate periods of these oscillations have also been computed.
The dynamics of this model have been explored for various levels of cross-
immunity and quarantine period lengths. Numerical simulations show that
the use of fixed cross-immunity landscapes with variable (increasing) periods
of quarantine that lead to periodic solutions do so with relatively unchanging
epidemic periods. In other words, the period of the oscillations does not seem
too sensitive to the length of the isolation period. Simulations also show that
the amplitude of the outbreaks does increase as 1

δ grows. Various types of
additional simulations have been conducted. For example, we have fixed the
quarantine period and varied the levels of cross-immunity. Such simulations
result in periodic patterns that become irregular as the coefficient of cross-
immunity, σ → 0+. Although the analytical findings are carried out only for
the case of symmetric cross-immunity(σij = σji = σ), the asymmetric case
was also investigated, but numerically. The focus of such numerical simula-
tions were for situations where |σij − σji| is small. In this slightly asymmet-
ric cases, simulations showed that outbreaks could occur every 10–13 years.
The simulated dynamics captured additional differences. For example, alter-
nating strain-specific peaks (highs and lows) for both strains were observed
(Fig. 13.5).

The alternating nature of these peaks is the result of competition for a
varying pool of susceptibles (their quality is mediated by cross-immunity)
“available” for invasion to either strain. Increases and decreases in the effec-
tive pool of susceptibles for each strain are closely tied to the differences in
levels of cross-immunity and the time of the initial invasion.

Using the stability results for each strain independently (boundary equi-
libria), Nuño et al. [22] also investigated the possibility that an established
strain could be displaced by a non-resident strain. For this question, an ap-
propriate reproductive number Rj

i had to be identified. Rj
i describes the

number of secondary infections generated by strain i in a population where
strain j has become established (resident in an endemic state). In order for
strain i to invade (not necessarily replace) resident strain j it is required that
Rj

i > 1. The fact that Rj
i is an increasing function of σ follows directly from

(13.3) below.

Rj
i =

βi

µ + γi + δi

S̃j

Ã
+

βiσ

µ + γi

R̃j

Ã
, (13.3)

where Rj
i (i, j = 1, 2 and i 
= j). Here, βi/(µ + γi + δi) gives the number

of secondary cases that strain-i infected individual generates in a susceptible
population S̃j/Ã (infection prior to cross-immunity) while βiσ/(µ+ γi) gives
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Fig. 13.5 Numerical integration of the model equations. Infective fraction of individuals
(non-isolated) with strain 1 (solid) and strain 2 (dashed). Differences in cross-immunity
levels between strains 1 and 2 (|σ12−σ21|) increase (from top to bottom) 0.01, 0.02 and 0.03.
For example cross-immunity for strains 1 and 2 correspondingly are given by σ12 = 0.36
and σ21 = 0.33 (bottom panel)

the number of secondary cases that a strain-i infected individual is capa-
ble of generating within the “cross-immune” susceptible fraction R̃i/Ã. From
(13.3), we see that strong cross-immunity (σ ↓ 0) reduces (significantly) the
likelihood that strain i would successfully invade a population where strain j
is endemic. Conversely, the likelihood of coexistence is enhanced when cross-
immunity is weak (σ ↑ 1), a result that also follows from (13.3). Hence, the
dependence of Rj

i > 1 on cross-immunity (σ) enhances the ability of strain i
to invade resident strain j.

Numerical simulations were carried out to illustrate oscillatory coexistence
for reasonable lengths of the quarantine period. Increasing the length of the
periods of quarantine enhanced the amplitude of disease outbreaks. On the
other hand, increasing cross-immunity (σ → 0+) for fixed periods of quaran-
tine actually lengthens the distance between epidemic peaks. The dynamics
of our two-strain model with quarantine supported reasonable disease pat-
terns with parameter values in acceptable flu regions. It was also shown that
cross-immunity facilitates coexistence (strain diversity) since it enhances the
survival of less fit strains to survive – a function of the ineffectiveness of a
strain to “prevent” future infections by related strains. In other words, some
levels of cross-immunity facilitates “group” selection, that is, they enhance
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the likelihood of survival of related strains which may not survive on their
own.

13.4 Age-Structure

Population heterogeneity, particularly age-structure, plays a key role on
the dynamics of communicable diseases like influenza, measles, rubella, and
others [1]. There has been plenty of theoretical work on sir (susceptible–
infected–recovered) models with age-structure [18] but relatively few studies
in the context of influenza, that have looked at the role of age-structure
in maintaining recurrent epidemic outbreaks. The complications arise from
the fact that influenza is a highly variable pathogen and, consequently, such
questions are only possible in the context of cross-immunity mediated by
competition [6, 7]. A brief discussion on these topics follows.

The classical sir (susceptible–infected–recovered) single-strain age-
structured model can be modified to include a quarantine (q) class. Here,
we must consider four densities: s(a, t), i(a, t), q(a, t) and r(a, t) where∫ a2

a1
l(a, t) da denotes the number of l-individuals (l = s, i, q, or r) with ages

in [a1, a2] at time t. The transition rates are assumed to be age-dependent.
Hence, µ(a), γ(a), and δ(a) denote the age-specific mortality, recovery and
quarantine rates, respectively. Modeling the incidence rate (new cases of in-
fection per unit time) requires some care as one must model the age-specific
interactions between individuals. Following Blythe and Castillo-Chavez [3]
and Busenberg and Castillo-Chavez [5], we let p(a, a′, t) denote the propor-
tion of contacts of age-a individuals with individuals of age a′ at time t given
that they had contacts. If we let n(a, t) = s(a, t) + i(a, t) + q(a, t) + r(a, t)
and C(a) denote the age-structure per-capita contact rate then we have that
p(a, a′, t) must satisfy the following properties:

(1) p(a, a′, t) ≥ 0
(2)
∫∞
0

p(a, a′, t) da′=1
(3) C(a)n(a, t)p(a, a′, t) = C(a′)n(a′, t)p(a′, a, t)

As was shown in Busenberg and Castillo-Chavez [5] the only separable
solution p(a, a′, t) = g(a, t)f(a′, t) is given by the mixing function commonly
referred to as proportionate mixing or p̄(a′) where

p̄(a′, t) =
C(a′)n(a′, t)
∫∞
0

C(l)n(l, t)dl
.

Proportionate mixing has often been used as the “prototype” for modeling
age-dependent contact rates when it comes to the transmission dynamics of
communicable diseases [1, 18]. Hence, we shall consider only proportionate
mixing, that is, throughout the rest of this discussion we let p(a, a′, t) ≡
p̄(a′, t). If m(a) denotes the age-specific susceptibility to infection per-contact
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then the incidence rate under proportionate mixing becomes

B(a, t) = β(a)s(a, t)
∫ ∞

0

p̄(a′, t)
i(a′, t)

n(a′, t) − q(a′, t)
da′

where β(a) = m(a)c(a). The remaining equations for our siqr model are
(

∂

∂a
+

∂

∂t

)

s(a, t) = −B(a, t) − µ(a)s(a, t)
(

∂

∂a
+

∂

∂t

)

i(a, t) = B(a, t) − [µ(a) + γ(a) + δ(a)]i(a, t)
(

∂

∂a
+

∂

∂t

)

q(a, t) = δ(a)i(a, t) − [µ(a) + γ(a)]q(a, t)
(

∂

∂a
+

∂

∂t

)

r(a, t) = γ(a)[q(a, t) + i(a, t)] − µ(a)r(a, t)

(13.4)

where

s(a, 0) = n0(a) − i0(a),
i(a, 0) = i0(a),
q(a, 0) = r(a, 0) = 0,

s(0, t) = n(0, t) =
∫ ∞

0

λ(a)n(a, t) dā,

i(0, t) = q(0, t) = r(0, t) = 0.

Consequently, n(a, t) satisfies the Kermack and McKendrick [21] initial
boundary problem. That is,

(
∂

∂a
+

∂

∂t

)

n(a, t) = −µ(a)n(a, t),

n(0, t) =
∫ ∞

0

λ(a)n(a, t) da,

n(a, 0) = n0(a),

where λ(a) is the age-specific fertility rate.
It is known [20] that any solution n(a, t) of the Kermack and McKendrick

model approaches (uniformly) as t → ∞ a separable solution n∗(a)ep∗t where
p∗ is the unique real root of Lotka’s characteristic equation [20]. Furthermore,
if z = u + iv is also a root of Lotka’s characteristic equation then it can
be shown that p∗ > u (see [20]. Here, we assume that p∗ = 0 and take
n0(a) = n∗(a) (stable age-distribution). If we ignore the quarantine class (set
δ(a) = “∞” for all a) and use the results of Thieme [28] on asymptotically
autonomous systems we can reduce the study of (13.4 to the consideration
of the following equivalent system:



13 Mathematical Models for Influenza 361

(
∂

∂a
+

∂

∂t

)

s(a, t) = −B̂(a, t) − µ(a)s(a, t)
(

∂

∂a
+

∂

∂t

)

i(a, t) = B̂(a, t) − [µ(a) + γ(a)]i(a, t),
(13.5)

and
r(a, t) = n∗(a) − s(a, t) − i(a, t),

with

B̂(a, t) = β(a)s(a, t)
∫ ∞

0

p̄(a′)
i(a′, t)
n∗(a′)

da′,

s(a, 0) = n∗
0(a) − i0(a),

i(a, 0) = i0(a),

and n(0, t) =constant.
Castillo-Chavez et al. [6, 7] version of the above model with

B(a, t) = β̂(a)s(a, t)
∫ ∞

0

c(a′)i(a′, t) da′

is used to support (via some partial analysis and simulation) the hypothesis
that single strain models with age-specific activity levels and constant levels of
mortality (exponentially distributed survivorship) are incapable of support-
ing sustained oscillations. However, it was shown that uniform activity lev-
els, C(a) ≡ constant, when combined with age-dependent (non-exponentially
distributed survivorship) mortality rates could generate sustained oscillations
(Fig. 13.6). The above single-strain model was extended in [6, 7] to incorpo-
rate the competition of two strains mediated by cross-immunity. Analysis
and simulations of such two-strain model in [6,7] supported the possibility of
sustained oscillations for some age-specific mortality regimes and wide range
of cross-immunity levels. Simulations of a related (discrete in time and age)
two-strain age-structure model supported the possibility of periodic solu-
tions for reasonable cross-immunity values [6,7]. In fact, recurrent outbreaks
with epidemic periods in the 3–5 year range for intermediate levels of cross-
immunity and in the 10–20 year range for strong levels of cross-immunity
(σ ↓ 0) were observed. These results seem in agreement with those supported
by data from limited studies [9, 27]. In these numerical studies a significant
difference in the amplitudes was observed. Hence, such simulations seem to
capture, for intermediate values of cross-immunity, high strain-specific “flu”
peaks followed by very low disease levels. The periods were in the 2–3 year
range which seems to fit (in a rather crude way) the results reported in [27].
Similarly, the extremely long periods (10–20 years) supported by values of
cross-immunity close to zero supported the view that the “same” strain can-
not re-appear soon. These results again seemed to be in crude agreement
with those reported in [9].
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Fig. 13.6 Here P (a) denotes the survivorship function as a function of age. I corresponds
to the case when P (a) is a negative exponential while II models the type of survivorship
that one could expect in populations with long life-expectancy. The work in [6,7] supports
the hypothesis that as curve I is continuously deformed into curve II the appearance of
periodic solutions takes place

13.5 Discussion and Future Work

In this chapter, we provide a personal and limited perspective on the role of
quarantine, age structure and cross-immunity on “flu” dynamics, a disease
characterized by the presence of two highly distinctive time scales (host’s
life span and host’s infectious period). The set up used here is based on
natural extensions of earlier work [6, 7, 12, 18] and references therein. The
role of quarantine versus age structure and cross-immunity has been stud-
ied independently [6, 7, 12, 13, 19]. It was shown that SIQR models and sir
age-structure models were capable of supporting recurrent periodic outbreaks
under various scenarios. Evidence to support the view that cross-immunity on
its own [6,7] is not enough to support sustained oscillations in non-structured
populations was provided. Our most recent effort [22] investigates the joint
impact of cross-immunity and quarantine in a non-structured (homogeneous
mixing) population. It is established that strain competition mediated by
cross-immunity can support recurrent epidemics with quarantine periods con-
sistent with those implemented when there is a flu epidemic.
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Expansions of the work discussed here to models that include a quarantine
class and age-structure within single and multiple-strain systems (mediated
by cross-immunity) are under way [11]. The analysis of such models is not
trivial but we expect again to be able to exploit differences in times scales to
gain some understanding of the joint effects of age-structure in models that
include strongly or “poorly” isolated (quarantine) classes. We also expect to
deepen our understanding of the relationship between cross-immunity, the
amplitude of an epidemic outbreak and the length between epidemic peaks
from the studies of models where strain-competition is mediated by cross-
immunity.

We plan to conduct simulations of the full two-strain model with age-
structure under specific scenarios. Seasonality in transmission rates is also
an important issue. Its effect is being incorporated following earlier work
(see [6, 7]). We hope this discussion will extend the interest in the study of
influenza dynamics, a disease with immense pandemic potential.
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Chapter 14

A Comparative Analysis of Models
for West Nile Virus

M.J. Wonham and M.A. Lewis

Abstract This chapter describes the steps needed to formulate, analyze and
apply epidemiological models to vector-borne diseases. Our models focus on
West Nile (WN) virus, an emerging infectious disease in North America, first
identified in Africa. We begin by introducing a minimalist model for WN
dynamics to illustrate the processes of model formulation, analysis, and ap-
plication. We then revisit the question of model formulation to examine how
two major biological assumptions affect the model structure and therefore its
predictions. Next, we briefly compare these different model structures in an
introductory exercise of model parameterization, validation, and comparison.
Finally, we address model applications in more detail with two examples of
how the model output can usefully be connected to public health applications.

14.1 Introduction: Epidemiological Modeling

Investigating and controlling infectious diseases is a complex enterprise that
has long been assisted by mathematical modeling (e.g., [2, 23]). In now clas-
sic examples, key insights into the dynamics of malaria, influenza, measles,
and other infectious diseases have emerged from epidemiological model-
ing [26, 33, 39]. Today, emerging and re-emerging infectious diseases such as
HIV/AIDS, SARS, feline immunodeficiency virus, hoof and mouth, and plant
fungi and viruses pose major challenges in public health, wildlife, and agri-
cultural management realms. The increase in outbreak frequency of these dis-
eases demands a rapid and effective management response [9–11, 14, 16, 18].

Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences,
University of Alberta, Edmonton, AB, Canada T6G 2G1 mwonham@ualberta.ca

mlewis@math.ualberta.ca

365



366 M.J. Wonham and M.A. Lewis

Happily, there are many well-developed mathematical tools for effectively
studying disease dynamics. There remain, however, continuing and exciting
challenges in both formulating and analyzing biologically relevant disease
models.

Model analysis
& prediction

Model
parameterization

Question

Model scope
& assumptions

Conceptual
model

Mathematical
model

Model validation
& selection

Fig. 14.1 Cartoon of the model development process from an initial question through
model formulation and analysis to the generation of further questions

Developing and applying a disease model, as indeed any model, typically
follows a series of steps (Fig. 14.1). An initial disease observation prompts
questions such as how fast the disease will spread, or how best the outbreak
can be controlled. From the initial question, we first define the scope and
assumptions of the problem and develop a conceptual hypothesis (1), This
is then formulated as a mathematical expression (2), which is parameterized
(3), validated and compared (4), analysed (5), and finally applied and used
to generate predictions (6), In this view, mathematical modeling follows the
familiar scientific method. The model is essentially a formalization of a hy-
pothesis that must be defined (steps 1–2) and tested (steps 3–4) before being
used to answer questions or generate predictions (steps 5–6).

If we are lucky, the model’s predictions shed light on the original ques-
tion. They will also likely generate new questions and hypotheses to be ad-
dressed by further data collection and a subsequent return to modeling. In
this chicken-and-egg fashion, our understanding of disease dynamics develops
as empirical study informs modeling which in turn informs further empirical
investigation.

The focus of this chapter is primarily on the steps of model formulation
(steps 1–2) and model application (step 6) for infectious diseases. Model
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parameterization, validation, and comparison (steps 3–4) would readily fill
another chapter, so we will restrict ourselves to a brief introduction to these
important topics and provide references to more detailed resources. The
mathematical analysis (step 5) of disease models in general is well treated in
this book and elsewhere, so we will keep this aspect to a relative minimum.

We will focus our discussion on one particular type of epidemiological
models, the well-studied S − I or Susceptible-Infectious models. These com-
partmental models, descended from the work of [26], use the dynamics of
interactions between S and I individuals to model the rate of emergence of
new infectious individuals.

Many excellent texts introduce the philosophy and tools of mathemat-
ical modeling in infectious disease systems. For a general presentation of
mathematical modeling in biological systems, we find those by [8, 20, 27, 35]
particularly helpful. For modeling infectious diseases in particular, [2, 6, 12],
provide excellent overviews and detailed examples. For the philosophy and
methodology of model selection using maximum likelihood, we refer to [7,25].

14.2 Case Study: West Nile Virus

Our model formulation and application center around the example of West
Nile virus (WN), an emerging infectious disease in North America. WN was
first identified in Uganda in 1947, and is widespread in Africa, the Middle
East, and Western Asia. Occasional European outbreaks are introduced by
migrating birds [21, 38]. In North America, the first recorded epidemic was
detected in New York State in 1999 and spread rapidly across the continent.
The unprecedented level of bird, horse, and human mortality was attributed
to a highly virulent emerging strain of the virus [1, 36].

WN is characterized as an arboviral encephalitis, a designation that refers
to its mosquito (arthropod) vector, its viral pathogenic agent, and its en-
cephalitic symptoms. The disease amplifies in a transmission cycle between
vector mosquitoes and reservoir-host birds, and is secondarily transmitted
to mammals including humans [4,19,37]. The North American outbreak has
been exceptionally well documented at mosquito, bird, and human levels,
making it a prime candidate for mathematical analysis.

We will begin by introducing a minimalist model for WN dynamics to illus-
trate the processes of model formulation, analysis, and application. We will
then revisit the question of model formulation to examine how two major bi-
ological assumptions affect the model structure and therefore its predictions.
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Next, we will briefly compare these different model structures in an introduc-
tory exercise of model parameterization, validation, and comparison. Finally,
we will address model applications in more detail with two examples of how
the model output can usefully be connected to public health applications.

14.3 Minimalist Model

14.3.1 The Question

It is not often we see a dead bird outdoors in an urban setting. If we had
lived in New York City in the summer of 1999, however, we would have been
astonished by the unusually high number of dead crows, blue jays, and other
birds found in backyards and parks. Later that year, we would have learned
that the cause of death was a newly introduced disease, West Nile virus, that
was carried by mosquitoes and was killing birds and humans [1, 28]. With
those initial reports, we might have begun to ask any number of important
questions. How would the disease affect bird populations? How infectious
would it be in humans? How fast would it spread from New York to other
locations? Would it spread to other animals as well? Was it carried by all
mosquito species? Did they transmit it in every bite? How could the disease be
controlled? Would mosquito spraying help? Would culling the bird population
help?

Some of these questions would best be addressed in field and laboratory
studies, others with mathematical modeling, and yet others with both ap-
proaches. For now, we will focus on the key question of how best to control
a WN outbreak, and take advantage of empirical studies to inform and test
our mathematical modeling.

14.3.2 Model Scope and Scale

To formulate a WN disease model , we must make some decisions about its
scope and scale. Specifically, we need to think about the model’s goals and
complexity, and about how to represent time, space, population structure,
and natural variation.

In terms first of model goals, are we interested in a more strategic model
that simplifies the system to its barest essentials, or a more tactical model
with comparatively more detail and complexity [29]? Model choice influences
the kind of analysis we can conduct: generally speaking, a simpler model
will be more amenable to analytical or more general analysis, whereas a
more complex model will be restricted to numerical, or more specific case
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study analysis. Thus, the strategic approach may provide more qualitative
insight into the basic properties of a system, whereas the tactical approach
may provide better predictive ability for given species in a given location.
Choosing a strategic philosophy is useful at this stage for studying general
WN dynamics and control; later we might be interested in a more tactical
model of local dynamics in a particular location. Our choice of a strategic
or bare bones approach will help inform the remaining decisions about the
model scale and scope.

Second, how should we model time and space? Mosquito and bird popula-
tion dynamics exhibit an annual cycle, so we might consider a discrete-time
model with yearly increments. But since we saw a very rapid disease increase
in New York City within one summer, it might be interesting to focus on
the shorter-term dynamics of a single season. This would allow us to ignore
bird vital dynamics, and would require a model mosquito population that
reproduces throughout the season. We thus choose a continuous time model
that can be formulated as a system of ordinary differential equations (ODEs).
For a more detailed discussion of continuous vs. discrete time models of WN
virus, see [31]. Since our focal question is not explicitly spatial, we will con-
sider only the changes in populations over time, giving us a nonspatial model.
For some spatial approaches to modeling WN, see [30,32].

Third, how should we represent the mosquito and bird populations? We
could treat them in an individual-based framework, in age or stage classes,
or as a homogeneous population. In the interests of strategy, we will think
of them simply as homogeneous populations of identical individuals that can
be represented by a single equation for all ages and stages. (We will revisit
this choice in Sect. 14.5.) WN has been reported thus far from ∼60 mosquito
species and ∼280 bird species in North America. Again for strategy, we will
model only a single generic mosquito and a single generic bird species, ac-
knowledging that this limits our ability to address broader scale ecological
questions in WN dynamics (e.g., [14, 17]). Furthermore, since mammals (in-
cluding humans) appear not to transmit the disease back to the mosquito
population, they are considered secondary hosts [4, 19, 24, 37], so the funda-
mental disease dynamics do not depend on them. Our model will therefore
represent only the mosquito and bird populations.

Finally, are we interested in a stochastic model that can capture the nat-
ural variation in model parameters such as birth, death, and infection rates?
Or are we interested in a more deterministic model that forsakes the vagaries
of realism in favour of clearer, but simplified, analytical results? Given our
strategic focus, we will develop a deterministic model. (In the interests of
interpreting and applying the model output, however, we will examine the
effects of stochastic variation on model predictions in Sect.14.4.3.)
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14.3.3 Model Formulation

We have now decided to develop a strategic, continuous-time, single-season,
nonspatial, non age-structured deterministic model of WN dynamics. With
our adjectives thus in place, we can begin to sketch out the model structure.

We have already chosen to use the well-established S − I epidemiological
modeling framework, in which bird and mosquito populations will be divided
into classes of susceptible and infectious individuals. We thus have four classes
representing the densities of susceptible birds (SB), infectious birds (IB),
susceptible mosquitoes (SM ), and infectious mosquitoes (IM ) (Fig. 14.2a).
Susceptible birds can become infectious when they are bitten by an infectious
mosquito; susceptible mosquitoes can become infectious when they bite an
infectious bird. For the bird lifecycle, which is one to two orders of magnitude
longer than the single season represented by the model, birth and death rates
can reasonably be omitted. The mosquito lifecycle, which has length of order
one month, is represented by birth and death rates. Since birds die from
WN infection, but mosquitoes do not, we include a disease-death rate for
birds. This model (Fig. 14.2a) can be expressed as a system of four ordinary
differential equations,

dSB

dt︸︷︷︸
Susceptible
birds

= − αBβB
SB

NB
IM

︸ ︷︷ ︸
disease transmission

dIB

dt︸︷︷︸
Infectious
birds

= αBβB
SB

NB
IM

︸ ︷︷ ︸
disease transmission

− δBIB︸ ︷︷ ︸
death from
disease

dSM

dt︸ ︷︷ ︸
Susceptible
mosquitoes

= bMNM︸ ︷︷ ︸
birth

− αMβB
IB

NB
SM

︸ ︷︷ ︸
disease transmission

− dMSM︸ ︷︷ ︸
death

dIM

dt︸ ︷︷ ︸
Infectious
mosquitoes

= αMβB
IB

NB
SM

︸ ︷︷ ︸
disease transmission

− dMIM︸ ︷︷ ︸
death

(14.1)

where the total bird population density NB = SB + IB and the total adult
female mosquito population density NM = SM +IM . At the disease-free equi-
librium (DFE), where all individuals are susceptible, the bird and mosquito
population densities are denoted N∗

B and N∗
M , respectively. We assume that,

at the DFE, the mosquito population is constant so the birth and death
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rates are balanced and bM = dM . The model variables and parameters are
further defined in Tables 14.1 and 14.2. The disease-transmission dynamics
used in this model are known as frequency-dependent. In the Sect. 14.4, we
define this term more fully and compare the effects of modeling different
transmission dynamics.
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Fig. 14.2 Conceptual model for West Nile disease dynamics in mosquitoes and birds for
(a) the minimalist model with only four population classes (14.1) and (b) a slightly more

biologically complex and realistic model with two added mosquito compartments (14.9).

Vital and epidemiological dynamics indicated with solid lines and transmission dynamics

with dashed lines. Variables and parameters are defined in Tables 14.1 and 14.2. Adapted

from [43] Fig. 1
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14.3.4 Model Analysis

One of the most powerful tools developed for analyzing and interpreting
epidemic models is the disease basic reproduction number, R0 [2, 15, 22, 23].
Conceptually, R0 is defined as the average number of secondary infections
caused by the introduction of a typical infective individual into an otherwise
entirely susceptible population [2, 22]. Mathematically, R0 is defined as the
spectral radius of the next generation matrix for new infections [13,42].

The reproduction number serves as an invasion threshold for predicting
disease outbreaks and evaluating control strategies. Quantitatively, it has a
threshold value of one. When R0 < 1, the DFE is locally stable and the
introduction of a small number of infectious individuals will not lead to a
disease outbreak. When R0 > 1 the DFE is unstable and an outbreak will
occur. The analytical expression for R0 is also very useful, since it indicates
which elements of the disease system can be manipulated to reduce the chance
of an outbreak.

To obtain R0 for model (14.1), we follow [42] in using vector notation to
rewrite the equations in which infections appears as the difference between
fj , the rate of appearance of new infectives in class j, and vj , the rate of
transfer of individuals into and out of class j by all other processes. New
infectives arise in IB and IM only, giving

d

dt

[
IB

IM

]

= f − v =

[
αBβB

SB

NB
IM

αMβB
IB

NB
SM

]

−
[

δBIB

dMIM

]

. (14.2)

The corresponding Jacobian matrices, F and V , describe the linearization
of this reduced system about the DFE (where SM = N∗

M and SB = N∗
B),

F =

[
0 αBβB

αMβB
N∗

M

N∗
B

0

]

, V =
[

δB 0
0 dM

]

, (14.3)

giving the next generation matrix,

FV −1 =

[
0 αBβB

dM
αM βBN∗

M

δBN∗
B

0

]

. (14.4)

The spectral radius, or spectral bound, of FV −1 is the reproduction
number,
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R0 =
√

αBβB

dM︸ ︷︷ ︸
mosquito
to bird

√
αMβBN∗

M

δBN∗
B

︸ ︷︷ ︸
bird to

mosquito

. (14.5)

The R0 expression in (14.5) consists of two elements under the square root
sign. The first represents the number of secondary bird infections caused
by one infected mosquito. The second represents the number of secondary
mosquito infections caused by one infected bird. Taking the square root gives
the geometric mean of these two terms, which can be interpreted as R0 for
the addition of an average infectious individual, whether mosquito or bird,
to an otherwise susceptible system [41].

14.3.5 Model Application

The minimalist WN model (14.1) is a neat, simple, compact model for the
disease dynamics in mosquitoes and birds. What we do not know is if this
model is any good at capturing empirically observed WN dynamics. This
important question will be addressed in the processes of model parameteri-
zation, validation, and comparison, to which we will return in Sect. 14.6. For
simplicity of presentation, however, we will first consider how this model –
assuming it is a good one – might be applied.

Given our model, what is the best strategy for controlling a WN outbreak?
In the expression for R0 (14.5), we can find the answer. The goal for reducing
the chance of a WN outbreak is to reduce R0, which can be accomplished
by reducing the mosquito density at the DFE, N∗

M . In contrast, reducing
the bird density N∗

B will increase R0 and therefore increase the chance of
outbreak. What is the explanation for this puzzling result? Although it seems
counterintuitive at first, we can see that reducing the bird density means the
remaining individuals are bitten more often by hungry mosquitoes. In this
way, the disease transmission is concentrated through a few highly-bitten
birds that are more likely to become infected, and to re-infect the mosquitoes.

By looking more closely at the R0 expression, we can determine how
much control is needed. Here the ratio of mosquitoes to birds at the DFE,
n∗

m = N∗
M/N∗

B , is the crucial feature. Setting R0 to its critical value of one
and rearranging the expression gives the threshold ratio of mosquito to bird
densities,

n̂∗
m = dMδB/αBαMβ2

B (14.6)

above which an outbreak can occur. Reducing the relative mosquito density
below this level will prevent an outbreak. The mechanics of applying this
strategy are described in more detail in Sect. 14.7. The structure and control
implications of R0 that we see here follow directly from the assumption in
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model (14.1) of frequency-dependence disease transmission. In the next sec-
tion, we will see how the results differ when different transmission dynamics
are assumed.

14.4 Biological Assumptions 1:
When does the Disease-Transmission Term Matter?

The disease-transmission term in our WN mode represents the contact dy-
namics between mosquitoes and birds, which depend on the biting rate by a
mosquito. The term used to describe the biting rate in an S − I model typi-
cally takes one of two forms, frequency dependence or mass action [2, 3, 34].

14.4.1 Frequency Dependence

The commonly used frequency dependent transmission, shown in (14.1), fol-
lows [2] in assuming that the mosquito biting rate is saturated, and not lim-
ited by bird density. In other words, the biting rate by an individual mosquito
is constant across bird densities (Fig. 14.3a), and the biting rate experienced
by an individual bird increases with mosquito density (Fig. 14.3b). Under this
assumption, the biting rate by a mosquito is taken to be the maximal rate
allowed by the gonotrophic cycle, or, the minimum time required between
blood meals for a female to produce and lay eggs, or, the maximum possible
number of bites per day made by a single mosquito. This biting rate βB has
unit time−1.

These biological assumptions are captured in the mathematical formula-
tion of frequency dependence, in which the proportional bird densities appear
in (14.1). Near the disease-free equilibrium, where both populations are al-
most entirely susceptible (i.e., S∗

M = N∗
M , S∗

B = N∗
B , and IM and IB are very

small) the mosquito-to-bird transmission rate βBIMSB/NB depends only on
the biting rate, while the bird-to-mosquito transmission rate βBSMIB/NB

depends on the biting rate and also on the ratio of mosquito to bird densities
(as well as on the disease transmission probabilities αM and αB which for
simplicity are not shown here).

14.4.2 Mass Action

Another common disease transmission term is mass action (e.g., [3, 34]).
Mass action differs from frequency dependence in assuming that the mosquito



14 A Comparative Analysis of Models for West Nile Virus 375

R
0

R
0

R
0

R
0

ba

FD

FD

M
A

MA

c

*NB

*NB

d

0

50

100

150

0

100

200

300
fe

FDMAFDMAFDMA
highlow

βB

B
ite

s 
t−1

by
 o

ne
 m

os
qu

ito

B
ite

s 
t−1

on
 o

ne
 b

ird

FD (l
ow

 N B
*)

MA (h
igh NB

*)

FD (high NB
*)

MA, F
D (m

id N B
*)

MA, FD (mid NB
*)

FD (high NR
*)

mid

FDMAFDMAFDMA
highlow mid

Bird density N*
B Mosquito density N*

M

Fig. 14.3 Different disease-transmission terms in the West Nile model assume different
biting rates (a–b) and lead to qualitatively different reproduction numbers, R0 (c–d) with
different numerical values (e–f). Biting rates are shown as (a) the number of bites per day
by a single mosquito as a function of bird density, and (b) the number of bites per day
on a single bird as a function of mosquito density, for the two disease-transmission terms,
frequency dependence FD and mass action MA. The maximum biting rate βB is reached
at the bird density denoted Ñ∗
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B), the biting rate (a,b) and the R0 (c,d) of FD lie

below that of MA, whereas at lower bird densities (N∗
B < Ñ∗
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latter scenario not shown in d). For numerical R0 estimates, vertical dotted lines separate
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B < Ñ∗
B), medium (N∗
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and (f) low, medium, and high mosquito densities. Sample population densities chosen to
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M
= 1,000,

Ñ∗
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B = 50 (low), 100 (mid), and 500 (high), and (b) Ñ∗
B = 500, N∗

B =
550, and N∗

M = 100 (low), 550 (mid), and 5,500 (high). Parameter values as in Table 14.2.
Boxes show median and 25th and 75th percentiles, bars show 10th and 90th percentiles,
and dots show 5th and 95th percentiles. Adapted from [43] Fig. 2–3
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biting rate is limited by the densities of both mosquitoes and birds
(Fig. 14.3a,b). Mass action is a biologically sensible assumption only up to
some threshold bird density, denoted Ñ∗

B . We can understand this limit by
examining the disease transmission terms, which are written as β′

BIMSB

(mosquito to bird) and β′
BSMIB (bird to mosquito), again omitting the terms

αM and αB for clarity. The biting parameter β′
B = βB/Ñ∗

B has units time−1

density−1, and can be thought of as the number of bites per day made by a
single mosquito, per unit density of birds. Above Ñ∗

B , the mosquito biting rate
in units bites time−1, β′

BN∗
B , would exceed βB , and therefore by definition

would exceed the physiological capacity of the mosquito (Fig. 14.3a).
Replacing the frequency-dependence transmission in model (14.1) with

mass action transmission gives a different reproduction number, namely

R0 =

√
αBβ′

B

dM
︸ ︷︷ ︸
mosquito
to bird

√
αMβ′

BN∗
MN∗

B

δB
︸ ︷︷ ︸

bird to
mosquito

. (14.7)

In this case (14.7), R0 is sensitive not to the ratio, but to the absolute den-
sities of mosquitoes and birds. Thus, the model predicts that reducing either
mosquito or bird density will reduce R0 and reduce the chance of disease
outbreak (Fig. 14.3c,d). In terms of the bird population, this prediction is
opposite to that of frequency dependence. Setting R0 = 1 gives the mosquito
density threshold for WN outbreak under mass action,

N̂∗
M = dMδB/αBαM (β′

B)2N∗
B . (14.8)

When the bird density at the DFE is N∗
B = Ñ∗

B , the biting rates under mass
action and frequency dependence coincide (Fig. 14.3a–b) and the R0 values
are equal (Fig. 14.3c–d). At lower bird densities where N∗

B < Ñ∗
B , the biting

rate and R0 of frequency dependence are artificially high, whereas at higher
densities where N∗

B > Ñ∗
B , it is those of mass action that are artificially high

(Fig. 14.3a,c). This is because the frequency-dependent formulation assumes
the maximal mosquito biting rate even when the bird density is very low, and
the mass action formulation assumes an impossibly high biting rate when the
bird density is very high.

We can see the same dynamics when we examine biting rates and R0 with
respect to mosquito density. As expected, the R0 curves for both transmission
terms coincide when N∗

B = Ñ∗
B (Fig. 14.3d, middle curve). At higher bird

densities (N∗
B > Ñ∗

B) the curve for frequency dependence is lower, but the
curve for mass action is higher because the maximal mosquito biting rate is
exceeded (Fig. 14.3d). In the opposite case of N∗

B < Ñ∗
B , the relative positions

of the two curves are reversed (not shown).
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14.4.3 Numerical Values of R0

The analytical results obtained above illustrate how the choice of disease-
transmission term can change R0, thus altering the model’s control im-
plications. Do these alterations translate into significant differences in the
numerical estimates of R0? To address this question, we generated quanti-
tative R0 estimates that incorporated the underlying variation in the con-
stituent model parameters (Table 14.2, Fig. 14.3e–f). For details of this
parameter estimation and resampling see [43]; an introduction to these meth-
ods is given in [5]. At low bird density where mass action applies, the R0

of frequency dependence can be significantly too high (Fig. 14.3e). At the
threshold bird density Ñ∗

B , where both mass action and frequency depen-
dence apply, the R0 value is the same. At higher bird density where fre-
quency dependence applies, the R0 of mass action is significantly too high
(Fig. 14.3e). Similar comparisons can be made for low, medium, and high
mosquito densities (Fig. 14.3f). These numerical results show that, for these
parameter values, a transmission term misapplied at an inappropriate host
or mosquito population density can significantly over- or underestimate R0.
For the remainder of the chapter, we will use the model formulation with
frequency-dependent transmission terms, as in (14.1).

14.5 Biological Assumptions 2: When do Added Model
Classes Matter?

The minimalist model (14.1) contains the fewest possible classes for bird and
mosquito populations. For mosquitoes in particular, this is a considerable
oversimplification of the lifecycle and epidemiology. What is the effect on the
model output of incorporating additional biologically realistic classes? We
will consider two candidate mosquito classes, and find that one influences R0

whereas the other does not.
The mosquito lifecycle includes larval and pupal stages, which may repre-

sent up to a quarter of the mosquito lifespan. Their inclusion might therefore
be expected to slow down the model dynamics. These pre-adult stages can be
added to the model as a combined Larval compartment LM , with associated
birth rate bL and maturation rate mL (Fig. 14.2b).

Empirical studies of infected mosquitoes show that they undergo a viral
incubation period during which they are infected, but not infectious. Only
when the virus reaches a sufficiently high concentration, and is disseminated
out of the gut and into the salivary glands, is the insect capable of trans-
mitting the disease. This incubation period lasts some 7–12 days and can be
modeled as an exposed compartment, EM , with associated incubation rate
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κM (Fig. 14.2b). These two compartments can be incorporated into the
model’s mathematical structure as follows:

dSB

dt︸︷︷︸
Susceptible
birds

= − αBβBIM
SB

NB︸ ︷︷ ︸
disease transmission

dIB

dt︸︷︷︸
Infectious
birds

= αBβBIM
SB

NB︸ ︷︷ ︸
disease transmission

− δBIB︸ ︷︷ ︸
death from
disease

dLM

dt︸ ︷︷ ︸
Larval
mosquitoes

= bL (SM + EM + IM )
︸ ︷︷ ︸

birth

− mLLM︸ ︷︷ ︸
maturation

− dLLM︸ ︷︷ ︸
death

dSM

dt︸ ︷︷ ︸
Susceptible
mosquitoes

= − αMβBSM
IB

NB︸ ︷︷ ︸
disease transmission

+ mLLM︸ ︷︷ ︸
maturation

− dMSM︸ ︷︷ ︸
death

dEM

dt︸ ︷︷ ︸
Exposed
mosquitoes

= αMβBSM
IB

NB︸ ︷︷ ︸
disease transmission

− κMEM︸ ︷︷ ︸
disease
incubation

− dMEM︸ ︷︷ ︸
death

dIM

dt︸ ︷︷ ︸
Infectious
mosquitoes

= κMEM︸ ︷︷ ︸
disease
incubation

− dMIM︸ ︷︷ ︸
death

(14.9)

where the total female mosquito density NM = (LM + SM + EM + IM ). For
this model, the assumption of a constant mosquito population at the DFE is
met by the parameter constraint that bL = dM (mL + dL)/mL.

Following a similar R0 analysis as that given above (14.2–14.5), we obtain

R0 =

√
√
√
√αBβBφM

dM

αMβB
N∗

M

N∗
B

δM
, (14.10)

where φM is the proportion of exposed mosquitoes surviving the exposed
period to become infectious, φM = κM/ (κM + dM ). As before, setting
R0 = 1 returns the critical relative mosquito density above which the virus
will invade a constant population of susceptible individuals,
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n∗
m = dMδB/αBαMβ2

BφM . (14.11)

By inspecting this R0 expression (14.10), we can see that the added ex-
posed class alters R0, reducing it by the fraction

√
φM . In contrast, the added

larval class does not influence R0. We can understand this curious result by
recalling the definition of R0, which applies only to the linearized system
around the DFE, and is calculated using only the equations for infected in-
dividuals. Recall too that R0 is simply a ratio and has no time scale, so
that although adding a larval compartment may delay the system’s dynam-
ics (see Sect. 14.6), it does not affect the average number of secondary infec-
tions caused by the introduction of an infectious individual into an otherwise
susceptible population – the definition of R0. The following section shows
how both the larval and exposed mosquito compartments can influence the
model’s numerical outbreak simulations.
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14.6 Model Parameterization, Validation,
and Comparison

In the terms of the scientific method, formulating a model is the formal
equivalent of proposing a conceptual hypothesis. Applying a model without
testing it (as we did in Sect. 14.3) is like using a hypothesis to make predic-
tions before the hypothesis has been tested. As with hypotheses, evaluating
one model is good, but testing and comparing multiple models is even bet-
ter [7, 25]. The science of model testing – which includes parameterization,
validation, and multi-model comparison – is a highly developed statistical
enterprise with multiple approaches. One key approach is that of maximum
likelihood, which tests the relative abilities of multiple models to fit an inde-
pendent dataset. This is a widely used and powerful method, but the details
are beyond the scope of this chapter and readers are referred to central ref-
erences such as [7, 25] for further guidance.

Instead, we will take a brief look at how model parameterization can be
tackled, and then used for qualitative model comparison. From the two WN
models we have formulated, (14.1) and (14.9), we can generate four candidate
model structures for this disease: the minimalist model (14.1), two models of
intermediate complexity based on model (14.1) with either the larval or the
exposed mosquito class added, and the full model with both added classes
(14.9). Running numerical solutions can help us compare the predictions of
these four models.

Numerical simulation requires first that we obtain parameter values,
which can be derived from literature reports of field and laboratory stud-
ies (Table 14.2). The more recent studies are readily found through Internet
search engines; older studies, which are often gold mines of valuable data,
may require a little more legwork and library time. Often, we can find only a
mean and range of expected values for our parameters. The mean values give
us deterministic model simulations, and the ranges can be used in stochastic
simulations to evaluate the effects of natural variation and uncertainty in the
estimates (e.g., [43]).

Figure 14.4 shows numerical simulations of all four WN model structures
using the mean parameter values in Table 14.2. For a given set of initial
conditions, we can predict the densities of infectious mosquitoes, infectious
birds, and susceptible birds, over time following the introduction of a small
infectious inoculum to an otherwise entirely susceptible population. From
these simulations, we can see that the simplest model (14.1) has the fastest
dynamics and the earliest outbreak, and the most complex model (14.9) has
the slowest and latest (Fig. 14.4). Adding the larval class to model (14.1)
makes only the slightest difference in the outbreak timing, but adding the
exposed class to model (14.1) makes a substantial difference (Fig. 14.4).
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This type of preliminary qualitative model assessment should best be fol-
lowed by a rigorous quantitative comparison using maximum likelihood or
other evaluative techniques to see which model best fits the observed, inde-
pendent, outbreak data. Some of these methods are discussed for WN models
by [43]; more extensive commentary and methodology of model validation and
comparison are provided by [7,25]. For the remaining model analyses in this
chapter, we will use the full model with both larval and exposed mosquito
classes (14.9).
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Fig. 14.5 Connecting the WN model output to disease surveillance and control applica-
tions. The curved line shows the final proportion of surviving birds at the end of the season
as a function of the initial mosquito-to-bird density at the beginning of the season. For a
season with observed 50% bird mortality, the initial mosquito density can be inferred (1)
For a future season with a target bird survival of 90%, the required initial mosquito density
can be inferred in the same way (2) The ratio of these two initial mosquito densities (3)
gives the relative reduction in the mosquito population required to obtain the target level
of bird mortality. Adapted from [41] Fig. 3a

14.7 Model Application #1: WN Control

The model output from (14.9) presents a WN outbreak threshold in terms
of the relative densities of mosquitoes and birds at the DFE (14.11). How-
ever, this ratio would be extremely difficult to estimate on the ground. Can
the model output be better connected to real-life disease management? WN
surveillance programs typically track the number of dead birds throughout a
season, a datum that can be linked to the initial mosquito-to-bird ratio as fol-
lows. By running repeated numerical solutions starting from different initial
population densities at the DFE, a relationship can be plotted between the
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initial ratio of mosquito to bird densities, n∗
m, and the final disease-induced

bird mortality at the end of the season (Fig. 14.5). For a given level of mor-
tality observed at the end of the season, the initial value n∗

m can be inferred.
For future seasons, a target level of bird loss can be obtained by calculating
the required relative reduction in the mosquito population (Fig. 14.5).

14.8 Model Application #2: Seasonal Mosquito
Population

Our model is restricted to a single temperate North American season, during
which we assume the mosquito population density remains constant. More
realistically, however, the population will increase in spring and decline in
fall (Fig. 14.6a). How will this variation affect the model predictions? There
are a number of ways to tackle this question, from the simple to the complex
and from the analytical to the numerical. We will take a simpler approach
that will give us both analytical results and a useful graphical interpretation
(Fig. 14.6).

To pursue this analysis, we will have to put R0 to one side and introduce a
second major model analysis tool, the disease growth rate λ. Mathematically,
λ is the maximum real part of the eigenvalues of the ODE system linearized
around the DFE. It has the threshold value λ = 0, above which a disease
outbreak will occur and below which it will not. The parameters λ and R0

are related, in that the same threshold mosquito density n̂∗
m corresponds to

both R0 = 1 and λ = 0. An important difference between the two parameters
is that R0 is a dimensionless ratio with no time scale, whereas λ is a rate
with unit time−1. This feature is an advantage when we want to consider the
effects of different mosquito levels over time.

Note that the disease reproduction number R0 and the disease growth rate
λ are connected by the disease generation time, Tg, the mean time interval
between infection of a host individual and the secondary infections it causes,
such that λ = log(R0)/Tg.

Calculation of the disease growth rate is given in the Appendix. Its calcu-
lation introduces a slight change of notation that was partially introduced in
(14.6) and will prove more convenient for what follows. Specifically, the ratio
of the current mosquito density to the initial bird density, NM/NB∗ , becomes
nm, the ratio at the DFE, NM∗/NB∗ , becomes n∗

m, and the threshold ratio
for disease outbreak with a constant mosquito density is n̂∗

m.
Based on empirical observations, we will represent mosquito seasonality as

a simple step function (Fig. 14.6a), giving the mean relative mosquito density
over the season,

n̄m =
(
tana

m + tbn
b
m

)
/ (ta + tb) , (14.12)
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a step function from na
m to nb

m to na
m (solid line). Multiplying by the time spent at levels

a and b, periods ta and tb respectively, gives the mean mosquito density over the season,
n̄m (dashed line). (b) For a constant population, the relationship between the disease
growth rate λ and the initial mosquito density n∗

m is shown with the curved line. WN
outbreak occurs when λ > 0, i.e., when n∗

m > n̂∗
m. For variable mosquito density, the

linear relationship between the average growth rate λ̄ and the average initial disease-free
mosquito density n̄∗

m is given by the straight line L = La + Lb that connects points a
(na

m,λa) and b (nb
m,λb). A WN outbreak occurs when λ̄ > 0, i.e., when n̄∗

m > ˆ̄n∗
m. For a

given season, the point (n̄∗
m, λ̄) may be calculated from (14.12)–(14.13), or may be obtained

graphically as the point along L where the ratio between line segments La:Lb = ta:tb. As
long as the lower population density na

m < n̂∗
m, the threshold mosquito density for disease

outbreak will be higher for a seasonal than for a constant mosquito density. Adapted
from [41] Fig. 3b–c
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where ta and tb refer to the total time spent at population levels na
m and nb

m,
respectively (Fig. 14.6a). The mean disease growth rate is then given by

λ̄ = (taλa + tbλb) / (ta + tb) , (14.13)

where λa and λb are the largest eigenvalues of the Jacobian matrix J evalu-
ated at na

m and nb
m, respectively (Fig. 14.6b; see Appendix for details). This

gives a mean geometric growth rate for infective mosquitoes over the season
of eλ̄(ta+tb) = eλataeλbtb . Setting λ̄ = 0 in (14.11) gives the critical average
mosquito level, ˆ̄n∗

m > n̂∗
m, above which WN can invade a seasonally variable

population and below which it cannot (Fig. 14.6b). Provided the lower of
the two mosquito population levels, na

m, is below the threshold n̂∗
m, disease-

outbreak control requires only that the higher level, nb
m, be reduced such that

the average mosquito density n̄∗
m < ˆ̄n∗

m. We therefore expect WN virus to be
easier to control in more seasonal northern regions than in warmer southern
regions where the population remains constant above n̂∗

m year-round.

14.9 Summary

In its simplest form, a model can be thought of as a “black box” which takes
inputs, such as parameters and initial conditions, and produces outputs, such
as disease thresholds, or outbreak levels over time. The conversion from inputs
to outputs requires underlying hypotheses about the dynamical relationships
between components. These hypotheses are then translated into equations,
whose subsequent analysis and simulation yield the model outputs.

As mathematicians we often focus on the details of the black box, fixing the
set of model equations, and deriving sophisticated methods for determining
the model outputs. This chapter suggests an alternative and complementary
activity: analysis of the role of inputs (parameters) and hypotheses (formal-
ized into model structure) in determining the model outputs. Such analyses
employ a suite of different models, with uncertain parameters and variable
structure. The effects of the parameter uncertainty and model structure on
the model outputs (such as predictions of R0) are then deduced.

We believe that this kind of comparative analysis approach is key for
scientists wishing to interface biology with mathematical models, particularly
in the area of epidemiology. The goal of this chapter is to demonstrate both
the methods and the usefulness of the comparative analysis approach.

Our series of models describes the cross-infection of West Nile virus be-
tween birds and mosquitoes. The primary mathematical tool is the basic
reproduction number R0, which is derived from mathematical epidemiology
as the spectral radius of the next generation operator [42]. We calculate
how R0 changes with differences in the disease transmission term (frequency
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dependence versus mass action, Sect. 14.4), with additional model classes (lar-
val and exposed mosquito classes, Sect. 14.5) and with uncertain and variable
parameters (Sect. 14.6). Finally, we make two applications of the model, one
to WN virus control (Sect. 14.7) and one to outbreaks in seasonal environ-
ments (Sect. 14.8).

The calculation of R0 for the frequency-dependent and mass-action trans-
mission term models shows a striking dependence of the model predictions
on model structure. Although both transmission term models have a sound
theoretical basis, they yield starkly contrasting predictions as to the effect
of bird density on WN virus. When bird densities are low, the frequency-
dependent model predicts remaining birds receive more bites and become
local hot spots for disease transmission, with each bird having a high prob-
ability of becoming infected and passing on the virus. By way of contrast,
the mass-action model predicts the disease will die out in regions of low bird
density. Thus, while the mass-action model predicts that bird control would
be effective in controlling WN, the frequency-dependent model predicts that
it would be counterproductive (see [31] for further discussion).

The calculation of R0 for models with larval and exposed mosquito classes
shows how the added complexity of a more realistic model does not always
translate into refined model predictions. Here an additional larval class has no
effect on the basic reproduction number, and hence on whether an outbreak
will occur. Interestingly, the additional larval class does actually change the
time-dependent dynamics if an outbreak actually occurs (Fig. 14.4). By way
of contrast, the additional exposed class means that some infected mosquitoes
may be removed before ever making it to the infective state. As our intuition
would lead us to believe, this yields a reduced R0.

Our experience shows that parameterization of epidemiological models is a
substantial task, requiring great familiarity with the biological literature. For
example, the parameters shown in Fig. 14.2 (taken from [43]) originally came
from 25 different sources, each of which had to be carefully read before the
parameter could be extracted. However, as shown in Fig. 14.3, careful model
parameterization allows us to incorporate the uncertainty of parameter values
into ranges of predictions for R0, following the methods of [5]. In the case of
WN virus models, variation in R0 arising from model structure was larger
than variation arising from parameter uncertainty.

Finally, once a model is tested, via parameterization, validation and multi-
model comparison, it is possible to make applications to different epidemio-
logical scenarios. How can a disease be controlled? How is control managed in
a seasonal mosquito population? These applications sometime require model
extensions (Fig. 14.6) and unique perspective on model outputs (Fig. 14.5).
However, it is the applications that allow us to move the science forward
and, more often than not, the applications also lead to a new generation of
models that promise to keep mathematicians employed for considerable time
to come.
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Appendix

We include this appendix to illustrate a different approach to calculating the
disease growth rate, λ, for the full West Nile model (14.9). Although this
exercise is somewhat redundant with the earlier R0 calculations, it provides
an alternative and pedagogically useful perspective.

We use linear analysis to calculate the disease growth rate for the two-
level mosquito population shown in Fig. 14.6a. To simplify the ODE system
(14.9), we non-dimensionalise by scaling time t with the quantity 1/κ by
setting τ = κt, scaling all parameters to κ, and scaling the bird and mosquito
densities by the initial bird density N∗

B . In the resulting dimensionless system
(14.14), the two bird compartments sb and ib indicate the fraction of the
initial bird density in susceptible and infected classes, with the total live bird
density 0 ≤ nb = (sb + ib) ≤ 1. The four mosquito compartments lm, sm, em,
and im, represent larval, susceptible, exposed, and infected females scaled to
the initial bird density, with the total female mosquito population density
0 ≤ nm = (lm + sm + em + im). The rescaled system is:

dsb

dτ = −αbβbim
sb

nb
dib

dτ = αbβbim
sb

nb
− δbib

dlm
dτ = bl (sm + em + im) − mllm − dllm

dsm

dτ = −αmβbsm
ib

nb
+ mllm − dmsm

dem

dτ = αmβbsm
ib

nb
− em − dmem

dim

dτ = em − dmim

(14.14)

where the subscripts b and m indicate the dimensionless versions of the di-
mensional variables and parameters defined in Tables 14.1 and 14.2. As in
the dimensional system, we ensure a constant mosquito population density
by setting bl = dm(ml + dl)/ml.

For the DFE for this system, (sb, ib, lm, sm, em, im) = (1, 0, bln
∗
m/(ml+dl),

n∗
m, 0, 0), we define small perturbations in each variable, (s̃b, ĩb, l̃m, s̃m, ẽm,

ĩm). The corresponding Jacobian matrix, J , describes the linearization with
respect to (̃ib, l̃m, s̃m, ẽm, ĩm):

J =

⎡

⎢
⎢
⎢
⎢
⎣

−δb 0 0 0 αbβb

0 −ml − dl bl bl bl

−αmβbn
∗
m ml −dm 0 0

αmβbn
∗
m 0 0 −dm − 1 0

0 0 0 1 −dm

⎤

⎥
⎥
⎥
⎥
⎦

. (14.15)

(The term s̃b is not included because it decouples from the rest of the system;
in other words, the 6 × 6 matrix that includes s̃b has an entire column of
zeroes.) This yields the characteristic polynomial in λ:
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0 = Det(J−λI) = λ

(

λ + dm +
mlbl

dm

)

(λ3 + a1λ
2 + a2λ + a3), (14.16)

where I is the 5 × 5 identity matrix and a1 > 0, a2 > 0. The zero root of the
5th order polynomial comes from the steady-state condition bl = dm(ml +
dl)/ml that means the disease-free mosquito population is constant. For
a3 > 0, and a1a2 > a3, by the Roth–Hurwitz conditions, all roots of the
cubic polynomial in λ have negative real parts. Some algebra shows that
a1a2 > a3, since

a1 = 1 + δb + 2dm

a2 = d2
m + 2δbdm + δb + dm

a3 = δbd
2
m − αbαmβ2

b n∗
m + δbdm

. (14.17)

The disease outbreak threshold is thus when a3 = 0 or equivalently, when
zero is the largest eigenvalue of J . In biological terms this threshold may be
thought of as a disease growth rate of zero, which corresponds directly to the
reproduction number threshold, R0 = 1.

Table 14.1 Variables for West Nile virus model. Subscripts M and m refer to mosquitoes
and B and b to birds; capital letters refer to dimensional forms and lower case to nondi-
mensional forms, which are rescaled to N∗

B . Dashes indicate term not used

Meaning Dimensional Dimensionless

Mosquitoes
Larval female mosquito density LM lm
Susceptible adult female mosquito density SM sm

Exposed adult female mosquito density EM em

Infectious adult female mosquito density IM im
Total female mosquito density, NM nm

NM = LM + SM + EM + IM

Total female mosquito density at the N∗
M n∗

m

disease-free equilibrium

Threshold mosquito density for disease N̂∗
M n̂∗

m

outbreak, given constant population
Average mosquito density across a season, – n̄m

given variable population
Average mosquito density – n̄∗

m

at the disease-free equilibrium
Threshold average mosquito density for – ˆ̄n∗

m

disease outbreak, given variable population

Birds
Susceptible bird density SB sb

Infectious bird density IB ib
Total bird density NB = SB + IB NB nb

Bird density at which frequency dependent and ÑB –
mass action disease-transmission terms coincide,
giving identical mosquito biting rates
Total bird density at the disease-free equilibrium N∗

B 1
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Exercises

1. A survey of Yale University freshmen in 1982 about an influenza outbreak
reported that 91.1% were susceptible to influenza at the beginning of the
year and 51.4% were susceptible at the end of the year. Assume that the
mean infective period is approximately 3 days.

(a) Estimate the basic reproduction number and decide whether there
was an epidemic.

(b) What fraction of Yale students in Exercise (a) would have had to be
immunized to prevent an epidemic?

(c) What was the maximum number of Yale students in Exercises (a) and
(b) suffering from influenza at any time?

2. A disease is introduced by two visitors into a town with 1,200 inhabitants.
An average infective is in contact with 0.4 inhabitant per day. The average
duration of the infective period is 6 days, and recovered infectives are
immune against reinfection. How many inhabitants would have to be
immunized to avoid an epidemic?

3. A disease begins to spread in a population of 800. The infective period
has an average duration of 14 days and an average infective is in contact
with 0.1 person per day. What is the basic reproduction number? To what
level must the average rate of contact be reduced so that the disease will
die out?

4. An epidemic of a communicable disease that does not cause death but
from which infectives do not recover may be modeled by the pair of
differential equations

S′ = −βSI, I ′ = βSI.

391
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Show that in a population of fixed size K such a disease will eventually
spread to the entire population.

5. If a fraction λ of the population susceptible to a disease that provides
immunity against reinfection moves out of the region of an epidemic, the
situation may be modeled by a system

S′ = −βSI − λS, I ′ = βSI − αI.

Show that both S and I approach zero as t → ∞.

6. Compare the qualitative behaviors of the models

S′ = −βSI, I ′ = βSI − αI,

and
S′ = −βSI, E′ = βSI − κE, I ′ = κE − αI,

with

β = 1/3, 000, α = 1/6, κ = 1/2, S(0) = 999, I(0) = 1.

These models represent an SIR epidemic model and an SEIR epidemic
model respectively with a mean infective period of 6 days and a mean
exposed period of 2 days. Do numerical simulations to decide whether
the exposed period noticeably affects the behavior of the model.

7. To the models in the previous exercise add a constant birth rate of 100/7
births per year and a constant death rate of 1/70 per year. Compare the
behaviors of these models with each other and with the models of the
previous exercise.

8. Consider the usual SEIR model

S′ = Π − µS − βSI,
E′ = βSI − (µ + κ)E,
I ′ = κE − (µ + α)I,
R′ = αI − µR,

where individuals progress from compartment E to I at a rate κ and
develop immunity at a rate α, natural mortality claims individuals at a
rate µ, and there is a constant recruitment, Π, of susceptible individuals.
The basic reproduction number R0 is calculated as R0 = κβΠ/µ

(µ+κ)(µ+α) ,
where S0 = Π/µ.

(a) Interpret the above formula for the basic reproduction number.
(b) Verify that the disease-free equilibrium is (locally asymptotically)

stable for R0 < 1 and unstable for R0 > 1.
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(c) Include disease induced death in the above model and compute the
basic reproduction number.

9. Consider a model for a disease that confers only temporary immunity
after recovery, so that recovered individuals lose their immunity at a per
capita rate of c (per time unit). Formulate a model to describe such a
disease and analyze its qualitative behavior. Is there a threshold condition
for this SIRS model?

10. European fox rabies is estimated to have a transmission coefficient β
of 80 km2 years/fox and an average infective period of 5 days. There
is a critical carrying capacity Kc measured in foxes per km2, such that
in regions with fox density less than Kc rabies tends to die out while in
regions with fox density greater than Kc rabies tends to persist. Estimate
Kc. [Remark: It has been suggested in Great Britain that hunting to
reduce the density of foxes below the critical carrying capacity would be
a way to control the spread of rabies.]

11. Consider a disease spread by carriers who transmit the disease without
exhibiting symptoms themselves. Let C(t) be the number of carriers and
suppose that carriers are identified and isolated from contact with others
at a constant per capita rate α, so that C ′ = −αC. The rate at which
susceptibles become infected is proportional to the number of carriers
and to the number of susceptibles, so that S′ = −βSC. Let C0 and S0

be the number of carriers and susceptibles, respectively, at time t = 0.

(a) Determine the number of carriers at time t from the first equation.
(b) Substitute the solution to part (a) into the second equation and de-

termine the number of susceptibles at time t.
(c) Find lim

t→∞
S(t), the number of members of the population who escape

the disease.

12. In this exercise, the expected duration of an epidemic is calculated for dif-
ferent values of the population size N and the basic reproduction number
R0 in the CTMC SIS epidemic model.

(a) Let the population size N = 25, contact rate β = 1, and birth and
recovery rates b = 1/4 = γ, so that R0 = 2 in the CTMC SIS epidemic
model. Calculate the expected duration τk = E(Tk), k = 1, . . . , N , i.e.,
τ = −D−11, where τ = (τ1, . . . , τN )T . Then sketch a graph of τk for
k = 1, . . . , N . Maple, Matlab or other software may be useful in
solving the linear system.

(b) Use the mean τ computed in part (a) to find the second moment
τ2
k = E(T 2

k ), k = 1, . . . , N (τ2 = −D−1τ). Then compute the variance
in the time to extinction, σ2

k = τ2
k − (τk)2.
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(c) Let b = 1/2 = γ so that R0 = β. Calculate the expected duration
τk = E(Tk) for different values of the contact rate β and the population
size N . Suppose time units are expressed in terms of days. Give the
value of τN in terms of months or years (whatever unit is appropriate).
What happens to τN as β increases? as N increases?

13. In this exercise, the approximate quasistationary distribution for the in-
fected population is computed for the CTMC SIS epidemic model and
compared to the equilibrium solution of the deterministic model. Assume
the approximate quasistationary distribution satisfies

p1
i+1 =

b(i)
d(i + 1)

p1
i ,

where
∑N

i=1 p1
i = 1, b(i) = βi(N − i)/N , and d(i) = (b + γ)i.

(a) Let the population size N = 50, contact rate β = 1, and birth and
recovery rates b = 1/4 = γ. First find the equilibrium solution for I
in the deterministic SIS epidemic model. Then find the approximate
quasistationary distribution, p1. Graph p1 and compute its mean value.
How does the mean value compare to the equilibrium solution?

(b) Let b = 1/2 = γ so that R0 = β. Choose different values for N and
β. For each choice of N and β compute the equilibrium solution for I
in the determinstic SIS epidemic model and the approximate quasis-
tationary distribution for the CTMC SIS epidemic model. How do the
equilibrium solutions and the mean of the quasistationary distributions
compare for different values of N and β?

14. In this exercise, sample paths for the Itô SDE SIS epidemic model are
computed and compared to the equilibrium solution of the deterministic
model.

(a) Write a computer program for the Itô SDE SIS epidemic model using
Euler’s method with ∆t = 0.01, population size N = 100, contact rate
β = 2, birth and recovery rates b = 1/2 = γ, and initial number of
infected individuals I(0) = 1. Graph three sample paths of the Itô SDE
for t ∈ [0, 20]. Then graph three sample paths for the same parameter
values but for I(0) = 5.

(b) Graph the mean of 1,000 sample paths for the two different sets of
parameter values in part (a). How do your results for the mean compare
with the equilibrium solution of the deterministic model?
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Projects

These suggested projects are taken in part from the recent book “A Course
in Mathematical Biology: Quantitative Modeling with Mathematical and
Computational Methods” by Gerda de Vries, Thomas Hillen, Mark Lewis,
Johannes Müller, and Birgit Schönfisch, Mathematical Modeling and Com-
putation 12, SIAM, Philadelphia (2006).

1 Cholera

The cholera virus, Vibric cholerae, is present in brackish water through algae
blossom and through human faeces. Not every infection leads to sickness.
Only 10–20% of infected individuals suffer from severe symptoms. Many do
not show symptoms at all but their faeces are infectious. Cholera is a serious
disease since the progress of symptoms can be very fast if not treated.

Large outbreaks are usually related to contaminated water. There are four
major control mechanisms, which are recommended by the WHO: hygienic
disposal of human faeces, adequate supply of safe drinking water, good food
hygiene and cooking, washing hands after defecation and before meals. More
information about this disease, control mechanisms and vaccination can be
found at the WHO Web sites (www.who.int).

Develop a model for an outbreak of cholera:

1. Model the epidemic first without any control mechanism.
2. Extend your model to include the above control mechanisms and estimate

which is most effective.

2 Ebola

The Ebola virus erupts occasionally in Africa. Ebola causes hemorrhaging and
death in humans after about 10 days, and people in contact with infectives can
be infected. Quarantine (isolation) of patients is an effective control procedure
for Ebola. Develop a model for the spread of Ebola that includes quarantine
of a fraction of the patients.

3 Gonorrhea

Gonorrhea is a sexually transmitted disease caused by a gonococcus bacteria.
Assume that it is spread from women to men and from men to women.
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Recovery from gonorrhea does not confer immunity. Formulate a model for
gonorrhea with heterosexual transmission. How would you change your model
to include consistent condom use by a fraction of the population?

4 HIV/AIDS

The human immunodeficiency virus (HIV), which is the etiological agent
for acquired immunodeficiency syndrome (AIDS), emerged in 1981 and has
become an important sexually-transmitted disease throughout the world. The
two main components of transmission are needle sharing among injecting drug
users, and prostitution.

1. In the absence of intervention methods or changes in social behavior,
what is the expected size of the HIV epidemic, either as peak, final size
or endemic level?

2. Some locations offer free needle exchange, so that injecting drug users can
get clean needles. What effect would a needle-exchange program have on
your model?

5 HIV in Cuba

In the article “A non-linear model for a sexually transmitted disease with
contact tracing” by H. De Arazoza and R. Lounes in the IMA Journal of
Mathematical Medicine and Biology, 19 (2002), pp. 221–234, we find the
following data about HIV-positives, AIDS outbreak and death cases caused
by AIDS from 1986 until 1997 in Cuba.

Year HIV-cases AIDS-cases Death through AIDS

1986 99 5 2

1987 75 11 4

1988 93 14 6

1989 121 13 5

1990 140 28 23

1991 183 37 17

1992 175 71 32

1993 102 82 59

1994 122 102 62

1995 124 116 80

1996 234 99 92

1997 364 121 99

1998 362 150 98

1999 493 176 122

2000 545 251 142
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Design a model which describes the epidemic spread of HIV after 1997
in Cuba and fit the above data. Which are the relevant parameters of your
model? Try to introduce control mechanisms to lower the number of AIDS
cases. Compare your control mechanism with the data of the given time
period.

6 Human Papalonoma Virus

According to the Health Canada Web site (www.hc-sc.gc.ca), “HPV is likely
one of the most common sexually transmitted infections (STIs) in Canada”.
Several types of HPV are know to circulate in the population. Some types
lead to genital warts, while others lead to cancers. The virus is often asymp-
tomatic and can switch between active and inactive states. Develop a model
for HPV transmission. Include vaccination in you model, and use your model
to estimate the fraction of the population that would need to be effectively
vaccinated to control the disease.

7 Influenza

The recent rapid spread of avian influenza and the potential for the emergence
of a pandemic strain of the virus are concerns of governments worldwide.
Current influenza vaccines will most likely provide little protection against
a shift in the virus, and the main control methods are antiviral treatments,
quarantine and isolation.

1. Assuming a significant shift does occur, what is the expected size of an
outbreak?

2. Would quarantine and isolation be as effective with influenza as they were
with SARS?

3. How many doses of antivirals would be needed to control an epidemic in
the Greater Toronto area?

8 Malaria

Now that mosquitoes are resistant to DDT, malaria has reemerged in many
areas and is spreading into new regions as temperature changes occur. Malaria
spreads from infected mosquitoes (the vector) to humans (the host) by biting,
and susceptible mosquitoes can be infected when they bite an infected human.
Humans can recover from malaria, but infected mosquitoes remain infected
for their lifetime.
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1. In the absence of intervention methods or change in social behavior, what
is the expected size of the malaria burden, either as peak, final size or
endemic level?

2. How effective could bednets be at reducing the cost of malaria?

9 Measles

Measles is no longer endemic in Canada, although small, isolated outbreaks
can still occur among unvaccinated groups. Worldwide, an estimated 30 mil-
lion infections occur each year with over 500,000 deaths in 2003 (www.hc-
sc.gc.ca). Develop a model for measles transmission in Canada and estimate
the fraction of the population that must remain vaccinated to maintain
Canada’s “herd immunity”. Extend your model to a two patch model, with
one patch vaccinated and one unvaccinated. How does travel between the two
patches influence the dynamics in the vaccinated patch?

10 Poliomyelitis (Polio)

Polio is spread by a wild enteric coxackie virus and can cause paralysis in
some people. The polio vaccine virus interferes with binding of the wild virus
by filling the attachment site. Thus the vaccine virus interferes with the wild
virus in the sense that a person cannot have both. Recovery from a polio
infection gives immunity.

Most cases of polio are asymptomatic, but a small fraction of cases result
in paralysis. In the 1950s in the United States, there were about 60,000 par-
alytic polio cases per year. In 1955 Jonas Salk developed an injectable polio
vaccine from an inactivated polio virus. This vaccine provides protection for
the person, but the person can still harbor live viruses in their intestines
and can pass them to others. In 1961 Albert Sabin developed an oral po-
lio vaccine from weakened strains of the polio virus. This vaccine provokes
a powerful immune response, so the person cannot harbor the “wild-type”
polio viruses, but a very small fraction (about one in 2 million) of those re-
ceiving the oral vaccine develop paralytic polio. The Salk vaccine interrupted
polio transmission and the Sabin vaccine eliminated polio epidemics in the
United States, so there have been no indigenous cases of naturally-occurring
polio since 1979. In order to eliminate the few cases of vaccine-related para-
lytic polio each year, the United States now recommends the Salk injectable
vaccine for the first four polio vaccinations, even though it is more expensive.
In the Americas, the last case of paralytic polio caused by the wild virus
was in Peru in 1991. In 1988 WHO set a goal of global polio eradication by
the year 2000. Most countries are using the live-attenuated Sabin vaccine,
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because it is inexpensive (8 cents per dose) and can be easily administered
into a mouth by an untrained volunteer. The WHO strategy includes rou-
tine vaccination, National Immunization Days (during which many people
in a country or region are vaccinated in order to interrupt transmission),
mopping-up vaccinations, and surveillance for acute flaccid paralysis. Polio
has disappeared from many countries in the past 10 years, so that by 1999 it
is concentrated in the Eastern Mediterranean region, South Asia, West Africa
and Central Africa. It is likely that polio will be eradicated worldwide soon.
WHO estimates that eradicating polio will save about $1.5 billion each year
in immunization, treatment, and rehabilitation around the globe.

Formulate a model for polio with the wild and vaccine virus competing for
the attachment site. How would your model be changed if the vaccine virus
were transmissible?

11 Severe Acute Respiratory Syndrome (SARS)

Detailed data on the day-to-day probable and suspect cases for 2002–2003
Severe Acute Respiratory Syndrome (SARS) are given at

http://www.hc-sc.gc.ca/pphb-dgspsp/sars-sras/cn-cc/index.html.
Go to this Web site, and see what data were recorded there.
Construct a model that can be used to determine the number of new

SARS cases, SARS deaths, and SARS recoveries each day. Initially assume
that there is no quarantining of SARS patients, and that there are no mea-
sures taken to reduce the likelihood of infection from one individual to an-
other. One key disease control goal was to eradicate the outbreak of SARS
through quarantining and preventative measures. Assess the effectiveness of
these control measures on the disease dynamics.

12 Smallpox

An outbreak of smallpox in Abakaliki in southeastern Nigeria in 1967 has
been reported by Bailey and Thomas. People living there belong to a religious
group that is quite isolated and declines vaccination. Overall there were 30
cases of infection in a population of 120 individuals. The time (in days)
between newly reported pox-cases is given in the following sequence:

13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5

Develop a model which describes these data and analyze the epidemic out-
break.
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13 Tuberculosis

Worldwide, tuberculosis (TB) accounts for more deaths than all other dis-
eases combined. The standard treatment for active tuberculosis is to give
multiple drugs for at least 6 months. This therapy is effective if the person
has drug-sensitive TB. Drug resistant strains of TB emerge when people do
not complete the treatment.

1. Formulate a model for TB with drug-sensitive and drug-resistant strains
of TB.

2. How would your model be changed to include improved compliance with
drug therapy?

14 West Nile Virus

The West Nile virus is a vector born disease that has been found in over 150
bird species in North America. The virus is transmitted from bird to bird by
mosquitoes. Bites by infected mosquitoes can also lead to infection in humans
and other mammals. Develop a model of West Nile virus transmission between
birds, mosquitoes and humans. What factors have the highest influence on
the prevalence of the virus in the mosquito population? Currently, the West
Nile virus season runs from April through September in Canada. Would you
expect the prevalence of the virus in the mosquito population to increase as
a result of global warming?

15 Yellow Fever in Senegal 2002

Yellow fever (YF) is a viral hoemorrhagic fever transmitted by infected
mosquitoes. Yellow fever is spread into human populations in three stages:

1. Sylvatic (or jungle). YF occurs in tropical rain forests where mosquitoes,
which feed on infected monkeys, pass the virus to humans who work in
the forest.

2. Intermediate. YF occurs as infected individuals bring the disease into
rural villages, where it is spread by mosquitoes amongst humans (and
also monkeys).

3. Urban. YF occurs as soon as an infected individual enters urban areas.
This can lead to an explosive epidemic in densely inhabited regions. Do-
mestic mosquitoes carry the virus from person to person.

The epidemic can be controlled by vaccination. YF vaccine is safe and effec-
tive and provides immunity within 1 week in 95% of those vaccinated.
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Below is a data set of YF cases and YF deaths of an outbreak in Senegal
in 2002 collected from the internet archives of the World Health Organization
(WHO). As soon as the virus was identified a vaccination program was started
(Oct 1, 2002). On Oct 11, 2002 the disease was reported in Touba, a city of
800,000 residents. More information can be found on the WHO Web sites
(www.who.int).

Report date Cases (total) Deaths (total)
Jan 18th 18 0
Oct 4th 12 0
Oct 11th 15 2
Oct 17th 18 2
Oct 24th 41 4
Oct 31st 45 4
Nov 20th 57 10
Nov 28th 60 11

1. Develop a model for the three stages of YF as outlined above.
2. Include a fourth stage that describes vaccination in urban areas.
3. Fit your model to the data.
4. What would have happened without vaccination?
5. Would you expect that the disease dies out, or that it becomes persistent?
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M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life
Sciences. From Microscopic to Macroscopic. Bȩdlewo,
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