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Mean Values for Random Sets

For a stationary random closed set Z in Rd, the volume density or specific
volume was defined in Section 2.4 by

Vd(Z) =
Eλ(Z ∩B)
λ(B)

, (9.1)

where B ⊂ Rd can be an arbitrary Borel set with 0 < λ(B) <∞. This impor-
tant parameter describes the mean volume of the random set per unit volume
of the space. It is obtained by a double averaging, stochastic and spatial. The
straightforward definition (9.1) has the advantage that it immediately exhibits
λ(Z ∩ B)/λ(B) as an unbiased estimator for the specific volume. The situ-
ation becomes less simple if one wants to take other quantitative aspects of
point sets into account. For example, in several applications one is interested
in the mean surface area (the mean perimeter in the plane) per unit volume.
Clearly, one cannot just proceed as in the case of (9.1), since the surface area
of Z ∩B is in general not defined. Evidently, we must restrict the realizations
of the random set Z as well as the ‘observation window’ B. For that reason,
we shall assume in the following that the realizations of the closed random set
Z belong to the extended convex ring S, the sets of which have the property
that the intersection with any convex body is a finite union of convex bodies.
Moreover, the observation window will be a compact convex set W with pos-
itive volume. In that case, Z ∩W has a well-defined surface area. However,
part of it generally comes from Z ∩bdW and not from the boundary of Z. To
overcome boundary effects caused by the window W , the definition of densi-
ties for functionals other than the volume will require additional devices, for
example, limit procedures.

The main purpose of Section 9.2 is the specification of a class of stationary
random sets Z (with locally polyconvex realizations) and a class of functionals
ϕ (defined on polyconvex sets) such that the limit

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

(9.2)
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exists for every convex body W with Vd(W ) > 0. The parameter ϕ(Z) is
called the ϕ-density of Z. Important (but not the only) examples of func-
tionals satisfying the assumptions are the intrinsic volumes (or Minkowski
functionals) V0, . . . , Vd−1. In this way, the Vj-density, or specific jth intrinsic
volume, Vj(Z), is defined for a large class of stationary random sets. Included
are the specific surface area, 2Vd−1(Z), and the specific Euler characteristic,
V0(Z).

For the same class of functionals ϕ, and for stationary particle processes
X with polyconvex grains and satisfying a suitable integrability condition, the
ϕ-density, which was defined in Section 4.1 by

ϕ(X) = γ
∫
C0

ϕdQ,

can be represented in the form

ϕ(X) = lim
r→∞

E
∑

C∈X ϕ(C ∩ rW )
Vd(rW )

,

which is analogous to (9.2).
For Boolean models with convex grains and satisfying suitable invariance

assumptions, the existence of the specific intrinsic volumes can be obtained in
a more direct way, as a consequence of explicit formulas. These formulas will
be derived, together with some other results on Boolean models, in Section 9.1.
They show, in particular, how the specific intrinsic volumes of a stationary,
isotropic Boolean model with convex grains can be computed from the specific
intrinsic volumes of the underlying Poisson particle process, and conversely.
Especially, the intensity of the underlying particle process can, in principle,
be determined from the specific intrinsic volumes of the union set. This seems
surprising at first sight, but is, of course, nothing but another manifestation
of the strong independence properties of Poisson processes. In the derivation,
the integral geometric results of Chapters 5 and 6 will play an important role.

Instead of (9.2), it may even happen, under suitable assumptions, that the
limit

lim
r→∞

ϕ(Z ∩ rW )
Vd(rW )

exists P-almost surely and is a constant, which is then equal to ϕ(Z). This
ergodic approach to densities is described in Section 9.3.

As soon as densities of various functionals for stationary random sets are
defined, the problem arises to estimate these densities from observations of
realizations of the random set within a bounded sampling window, or from
observations in a lower-dimensional section. In Section 9.4, results from in-
tegral geometry are employed to derive various formulas which are useful in
this respect.

Mathematical principles of further estimation procedures are the topic
of Section 9.5. This section gives selected examples and is not meant as a
systematic exposition of estimation methods.



9.1 Formulas for Boolean Models 379

9.1 Formulas for Boolean Models

In our treatment of germ-grain models in Section 4.3, we have already empha-
sized the particular role played by the Boolean models. Recall that a Boolean
model in Rd is a random closed set of the form

Z =
⋃

K∈X

K,

where X is a Poisson particle process. The Boolean model Z is station-
ary (isotropic) if and only if the underlying particle process X is stationary
(isotropic).

In this section, we shall show how some characteristic parameters of ran-
dom closed sets specialize in the case of stationary (and possibly isotropic)
Boolean models, in particular those with convex grains, and then appear in
rather explicit formulas. We begin with evaluating in closed form the capacity
functional and the contact distribution functions H and H[0,u], introduced in
Section 2.4.

Let Z be a Boolean model, generated as the union set of the Poisson
particle process X with intensity measure Θ. If Z and thus X is stationary,
the decomposition of Θ yields the intensity γ and the grain distribution Q of
X. We shall call Θ, γ and Q also the intensity measure, the intensity, and the
grain distribution, respectively, of Z. For stationary Z, we assume that γ > 0.

According to Theorem 3.6.3, the capacity functional of the Boolean model
Z satisfies the equation

TZ(C) = 1− e−Θ(FC) (9.3)

for all C ∈ C. Now we assume that Z is stationary. As in the proof of Theorem
4.1.2, we then have

Θ(FC) = γ
∫
C0

Vd(K − C) Q(dK). (9.4)

In general, this integral cannot be simplified further. If, however, Z is a
Boolean model with convex grains and if C ∈ K′, then the volume Vd(K−C)
can, according to (14.20), be expressed in terms of mixed volumes, in the form

Vd(K − C) =
d∑

j=0

(
d

j

)
V (K[j],−C[d− j]).

For C = rBd, r > 0, this is the Steiner formula (14.5).
The contact distribution function HM of a random closed set Z with re-

spect to the structuring element M ∈ K′ with 0 ∈M is, according to Section
2.4, given by

HM (r) = 1− P(0 /∈ Z − rM)
P(0 /∈ Z)
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for r ≥ 0, if P(0 /∈ Z) > 0. For a stationary Boolean model Z with generating
Poisson particle process X we always have

P(0 /∈ Z) = 1− TZ({0}) = e−Vd(X) > 0, (9.5)

by (9.3) and (9.4).

Theorem 9.1.1. Let Z be a stationary Boolean model in Rd with intensity γ
and grain distribution Q. Then

TZ(C) = 1− exp
(
−γ

∫
C0

Vd(K − C) Q(dK)
)
, C ∈ C.

For the structuring element M ∈ K′ with 0 ∈ M , the contact distribution
function is given by

HM (r) = 1− exp
(
−γ

∫
C0

[Vd(K − rM)− Vd(K)] Q(dK)
)
, r ≥ 0.

If Z has convex grains, then, for M ∈ K′,

TZ(M) = 1− exp

(
−γ

d∑
k=0

(
d

k

)∫
K0

V (−M [k],K[d− k]) Q(dK)

)

and

HM (r) = 1− exp

(
−γ

d∑
k=1

(
d

k

)
rk

∫
K0

V (−M [k],K[d− k]) Q(dK)

)
.

In particular, in this case the spherical contact distribution function is given
by

H(r) = 1− exp

(
−

d∑
k=1

κkr
kVd−k(X)

)
, r ≥ 0,

and for u ∈ Sd−1, the linear contact distribution function is given by

H[0,u](r) = 1− exp
(
−γr

∫
K0

Vd−1(K|u⊥) Q(dK)
)
, r ≥ 0.

If, moreover, Z is isotropic and M ∈ K′, then

TZ(M) = 1− exp

(
−

d∑
k=0

ck,d−k
0,d Vk(M)Vd−k(X)

)
,

where the constants are given by (5.5).

(In the formula for H[0,u], the integrand Vd−1(K|u⊥) is the (d − 1)-
dimensional volume of the orthogonal projection of K onto u⊥.)
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Proof. The first two assertions about the capacity functional have already
been proved. From these, the formulas for HM (r) follow because of

HM (r) = 1− 1− TZ(rM)
1− TZ({0}) , r ≥ 0.

The special form of H(r) in the case of convex grains is obtained, forM = Bd,
from (14.20), and the expression for H[0,u](r) follows from

Vd(K + r[0, u]) = Vd(K) + rVd−1(K|u⊥).

Now suppose that Z is also isotropic, so that Q is rotation invariant. Let
M ∈ K′. In the equation

Θ(FM ) = γ
∫
K0

∫
Rd

1FM
(K + x)λ(dx) Q(dK)

we can replace K in the integrand by ϑK with a rotation ϑ ∈ SOd; this
does not change the integral, since Q is rotation invariant. Then we integrate
over all ϑ ∈ SOd with respect to the invariant measure ν and apply Fubini’s
theorem and the principal kinematic formula (Theorem 5.1.3). ForM,K ′ ∈ K′

we have 1FM
(K ′) = V0(M ∩K ′) (since V0 is the Euler characteristic). This

gives

Θ(FM ) = γ

∫
SOd

∫
K0

∫
Rd

1FM
(ϑK + x)λ(dx) Q(dK) ν(dϑ)

= γ

∫
K0

∫
SOd

∫
Rd

V0(M ∩ (ϑK + x))λ(dx) ν(dϑ) Q(dK)

= γ

d∑
k=0

ck,d−k
0,d Vk(M)

∫
K0

Vd−k(K) Q(dK)

=
d∑

k=0

ck,d−k
0,d Vk(M)Vd−k(X),

which completes the proof. ��

The contact distribution function HM of a stationary random closed set
Z can be generalized in various directions. First, one can skip the stationarity
and consider the distribution of the M -distance dM (x,Z) of a point x to Z,
provided x /∈ Z. Then, one can take into account not only distances but also
directions, contact points and other local geometric information which can be
measured from outside Z. Such generalized contact distributions are discussed
in Section 11.2 and in the corresponding Notes. They give us more information
about the random set Z; in some cases, they even determine the distribution
of Z. An example of that kind is presented in Section 9.5.



382 9 Mean Values for Random Sets

As an introduction to the main topic of this section, we consider the (al-
ready defined) specific volume

Vd(Z) =
Eλ(Z ∩W )
λ(W )

for the case of a stationary Boolean model Z (with general compact grains).
Here W may be an arbitrary Borel set with λ(W ) > 0. We can find a connec-
tion with the volume density Vd(X) of the underlying particle process X. In
fact,

Vd(Z) = P(0 ∈ Z) = 1− P(0 /∈ Z)

= 1− P(card (X ∩ C{0}) = 0) = 1− e−Θ(C{0})

and

Θ(C{0}) = γ

∫
C0

∫
Rd

1C{0}(K + x)λ(dx) Q(dK)

= γ

∫
C0

Vd(K) Q(dK)

= Vd(X).

Thus, we have found that

Vd(Z) = 1− e−Vd(X). (9.6)

This equality should have come as a surprise: it says that the volume density
Vd(X) of the particle process X can be determined from the volume den-
sity of the union set. This is surprising, since in a given realization of Z one
cannot identify the generating particles, due to overlapping, and some parti-
cles may even be covered totally by others. The reason for the existence of
the exact relation (9.6) lies in the strong independence properties of Poisson
processes. The elegant connection between quantitative properties of a sta-
tionary Boolean model and its underlying particle process is not restricted to
the volume, as we shall soon see.

Let Z be a (not necessarily stationary) Boolean model, generated by the
Poisson process X with intensity measure Θ. For simplicity, we assume that
the particles in X are a.s. convex, although the following results hold true
for polyconvex particles, under an additional integrability condition (see the
remark at the end of this section). Motivated by practical applications (in
small dimensions), we assume that a sampling window, a convex body W
with Vd(W ) > 0, is given in which Z ∩W can be observed. Our aim is to
study random variables of the type

ϕ(Z ∩W ),
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with suitable functionals ϕ replacing the volume. In this way, we want to
find out which information on Z and its underlying particle process can be
obtained from measuring the realizations of Z within a bounded observation
window W . Under appropriate assumptions, this will lead in a natural way
to densities of Z and to relations between such densities defined for Z and
similar parameters defined for the underlying particle process.

Since we intend to investigate sets arising as unions of convex bodies, we
allow measurable functions ϕ defined on the convex ringR and having a simple
behavior under unions. Therefore, ϕ : R → R is assumed to be additive, that
is, to satisfy

ϕ(K ∪ L) = ϕ(K) + ϕ(L)− ϕ(K ∩ L) (9.7)

for K,L ∈ R and ϕ(∅) = 0. We further assume that ϕ is conditionally
bounded. Here, we call a function ϕ : R → R conditionally bounded if, for
each K ∈ K′, the function ϕ is bounded on the set {L ∈ K′ : L ⊂ K}. When
ϕ is translation invariant and additive, it is sufficient for this to assume that
ϕ is bounded on the set {L ∈ K′ : L ⊂ Cd}. If ϕ is given as a functional on K′

and is continuous and additive (the latter means that (9.7) holds whenever
K,L,K ∪ L ∈ K′), then Groemer’s extension theorem (Theorem 14.4.2) says
that the functional ϕ has an additive extension (which we denote by the same
symbol) to the convex ring R. By Theorem 14.4.4, the extension is measur-
able and, due to the continuity on K′, it is also conditionally bounded. The
intrinsic volumes Vj , j = 0, . . . , d, are prototypes of measurable, additive and
conditionally bounded functionals ϕ : R → R; they are also motion invariant.

For a Boolean model Z with convex grains, Z ∩W is a polyconvex set,
hence ϕ(Z∩W ) is defined and yields a random variable. We want to investigate
how its expectation is related to the characteristics of the underlying particle
process, that is, to the intensity measureΘ ofX. In applications, such relations
may be used to fit a Boolean model to given data, or to estimate densities of
functionals for the particle process, in particular its intensity (in the stationary
case), from measurements at realizations of the union set.

To begin with the computation of Eϕ(Z∩W ), for an additive, conditionally
bounded and measurable function ϕ, let ν be the random number of particles
of X hitting W , and let M1, . . . ,Mν be these particles (with any numbering).
Then the inclusion–exclusion principle (14.47) gives

ϕ(Z ∩W ) = ϕ

( ⋃
K∈X

K ∩W
)

=
ν∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤ν

ϕ(W ∩Mi1 ∩ . . . ∩Mik
)

=
ν∑

k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

�=

ϕ(W ∩K1 ∩ . . . ∩Kk).
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Here Xk
�= is the set of pairwise distinct k-tuples from X. In the last line, we

may extend the first summation to ∞, since ϕ(∅) = 0.
Since ϕ is conditionally bounded, there exists a number c (depending on

W ) with |ϕ(L)| ≤ c for all L ∈ K′ with L ⊂W . This gives

|ϕ(Z ∩W )| ≤
ν∑

k=1

1
k!

∣∣∣∣∣∣
∑

(K1,...,Kk)∈Xk
�=

ϕ(W ∩K1 ∩ . . . ∩Kk)

∣∣∣∣∣∣
≤

ν∑
k=1

(
ν

k

)
c ≤ 2νc = 2card(X∩KW )c.

Since card(X ∩ KW ) has a Poisson distribution,

E 2card(X∩KW ) =
∞∑

k=0

2k P(card(X ∩ KW ) = k)

= e−Θ(KW )
∞∑

k=0

[2Θ(KW )]k

k!

= e−Θ(KW )e2Θ(KW ) = eΘ(KW ) <∞.

It follows that ϕ(Z∩W ) is integrable. By the dominated convergence theorem,
we can interchange expectation and summation. Using Theorem 3.1.3 and
Corollary 3.2.4, we obtain

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
E

∑
(K1,...,Kk)∈Xk

�=

ϕ(W ∩K1 ∩ . . . ∩Kk)

=
∞∑

k=1

(−1)k−1

k!

∫
K
. . .

∫
K
ϕ(W ∩K1 ∩ . . . ∩Kk)Θ(dK1) · · ·Θ(dKk).

So far, we have not used stationarity. But if we now assume that Z is
stationary, we can use the decomposition of the intensity measure and get

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

∫
K0

. . .

∫
K0

∫
(Rd)k

ϕ(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))

×λk(d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk).

We summarize the results in the following theorem.
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Theorem 9.1.2. Let Z be a Boolean model in Rd with convex grains, let
W ∈ K′ and ϕ : R → R be a measurable, additive and conditionally bounded
functional. Then we have

E |ϕ(Z ∩W )| <∞

and

Eϕ(Z ∩W ) (9.8)

=
∞∑

k=1

(−1)k−1

k!

∫
K
. . .

∫
K
ϕ(W ∩K1 ∩ . . . ∩Kk)Θ(dK1) · · ·Θ(dKk).

If Z is stationary, then

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

∫
K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk)

with

Φ(W,K1, . . . ,Kk)

:=
∫

(Rd)k

ϕ(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk)).

To proceed further, in the stationary case, we need to compute the integrals∫
K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk).

This is possible for special choices of ϕ, using the translative integral formulas
from Section 6.4.

Let us first consider the volume again, ϕ = Vd. For convex bodies
K,K1, . . . ,Kk, we have

Φ(W,K1, . . . ,Kk)

=
∫

(Rd)k

Vd(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk))

= Vd(W )Vd(K1) · · ·Vd(Kk).

This follows from (6.15), but is also a direct consequence of Fubini’s theorem.
Thus, we obtain

EVd(Z ∩W ) =
∞∑

k=1

(−1)k−1

k!
Vd(W )Vd(X)k = Vd(W )

(
1− e−Vd(X)

)
.
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This is nothing but relation (9.6) again.
Now we consider the intrinsic volume Vd−1, which is half the surface area

(for convex bodies with interior points). Again from (6.15) or (5.15), we obtain∫
(Rd)k

Vd−1(K0 ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk))

=
k∑

i=0

Vd(K0) · · ·Vd(Ki−1)Vd−1(Ki)Vd(Ki+1) · · ·Vd(Kk).

Therefore, we get

EVd−1(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
[
Vd−1(W )Vd(X)k + kVd(W )Vd−1(X)Vd(X)k−1

]
= Vd(W )Vd−1(X)

∞∑
k=1

[−Vd(X)]k−1

(k − 1)!
+ Vd−1(W )

(
1− e−Vd(X)

)
,

hence

EVd−1(Z ∩W ) = Vd(W )Vd−1(X)e−Vd(X) + Vd−1(W )
(
1− e−Vd(X)

)
.

In contrast to the case of the volume, the quotient

EVd−1(Z ∩W )
Vd(W )

= Vd−1(X)e−Vd(X) +
Vd−1(W )
Vd(W )

(
1− e−Vd(X)

)
still depends on the observation window W . This influence disappears for
increasing W . More precisely, we have

lim
r→∞

EVd−1(Z ∩ rW )
Vd(rW )

= Vd−1(X)e−Vd(X).

The limit on the left side is denoted by Vd−1(Z) and called the specific
surface area or the density of the surface area of Z (not caring about
the factor 1/2). Such limits exist under more general assumptions, as we shall
study in the next section.

We repeat that so far we have obtained the two relations

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = Vd−1(X)e−Vd(X), (9.9)

connecting specific intrinsic volumes of the stationary Boolean model Z with
corresponding densities of the underlying particle process X.
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We return to the case of a general additive functional ϕ (continuous on
K′). An explicit formula can still be obtained if we assume that the particle
process X and thus the Boolean model Z is isotropic.

Let Z be a stationary, isotropic Boolean model (always with convex
grains). Since the grain distribution Q of X is rotation invariant, we can
insert rotations, integrate over the rotation group, apply Fubini’s theorem,
and then use the iteration of Hadwiger’s general integral geometric theorem
(Theorem 5.1.2). In this way, we obtain∫

K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk)

=
∫
K0

. . .

∫
K0

∫
SOd

∫
Rd

. . .

∫
SOd

∫
Rd

ϕ(W ∩ (ϑ1K1 + x1) ∩ . . . ∩ (ϑkKk + xk))

× λ(dx1) ν(dϑ1) · · ·λ(dxk) ν(dϑk) Q(dK1) · · ·Q(dKk)

=
∫
K0

. . .

∫
K0

d∑
r0,...,rk=0

r0+...+rk=kd

cdd−r0
ϕr0(W )

k∏
i=1

cri

d Vri
(Ki) Q(dK1) · · ·Q(dKk).

This gives

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!

d∑
r0,...,rk=0

r0+...+rk=kd

cdd−r0
ϕr0(W )

k∏
i=1

cri

d Vri
(X)

=
∞∑

k=1

(−1)k−1

k!

d∑
m=0

cdd−m ϕm(W )
d∑

m1,...,mk=0
m1+...+mk=kd−m

k∏
i=1

cmi

d Vmi
(X)

= ϕ(W )
(
1− e−Vd(X)

)
+

d∑
m=1

cdd−m ϕm(W )
∞∑

k=1

(−1)k−1

k!

d∑
m1,...,mk=0

m1+...+mk=kd−m

k∏
i=1

cmi

d Vmi
(X)

︸ ︷︷ ︸
S

.

We rearrange the last two sums according to the number, say s, of indices
among m1, . . . ,mk that are smaller than d; here s ∈ {1, . . . ,m}. This gives

S =
m∑

s=1

∞∑
r=0

(
r + s
r

)
(−1)r+s−1

(r + s)!
Vd(X)r

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X)

= −e−Vd(X)
m∑

s=1

(−1)s

s!

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X).
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Thus we have obtained the following result.

Theorem 9.1.3. Let Z be a Boolean model in Rd, generated by a stationary,
isotropic Poisson process X of convex particles. If ϕ : R → R is an additive
functional which is continuous on K′, then, for any W ∈ K′ with Vd(W ) > 0,

Eϕ(Z ∩W ) = ϕ(W )
(
1− e−Vd(X)

)
−e−Vd(X)

d∑
m=1

cdd−m ϕm(W )
m∑

s=1

(−1)s

s!

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X).

A remarkable fact here is that the functional ϕ and its derived functionals
ϕm are applied, on the right side, only to the sampling window W . For given
ϕ and W , the expectation Eϕ(Z ∩W ) depends only on the densities of the
intrinsic volumes of the generating particle process X. Conversely, this means
that no information about the stationary isotropic particle process X beyond
its specific intrinsic volumes can be obtained from expectations of measure-
ments ϕ(Z ∩W ). All the densities Vi(X) already occur if we choose for ϕ the
intrinsic volumes V0, . . . , Vd.

For that reason, we now concentrate on ϕ = Vj , the jth intrinsic volume.
By the Crofton formula (5.6), we have

(Vj)m = cd−m
j cm+j

d Vm+j ,

with Vm+j = 0 if m+ j > d. Inserting this (and renaming the first summation
index), we obtain

EVj(Z ∩W ) = Vj(W )
(
1− e−Vd(X)

)
−e−Vd(X)

d∑
m=j+1

cmj Vm(W )
m−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=sd+j−m

s∏
i=1

cmi

d Vmi
(X).

Here we can replace W by rW with r > 0 and then let r tend to infinity. We
obtain the following result.

Theorem 9.1.4. Let Z be a Boolean model in Rd, generated by a stationary,
isotropic Poisson process X of convex particles. The limit

Vj(Z) := lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

exists and is given by

Vj(Z) = e−Vd(X)

⎡⎢⎣Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

s∏
i=1

cmi
j Vmi

(X)

⎤⎥⎦



9.1 Formulas for Boolean Models 389

if j = 0, . . . , d− 1 and
Vd(Z) = 1− e−Vd(X).

The cases j = d and j = d − 1 have been obtained earlier without the
isotropy assumption.

We call Vj(Z) the density of the jth intrinsic volume, or the specific
jth intrinsic volume, of the Boolean model Z. In the next section, we shall
introduce such densities for much more general random sets.

For Boolean models, Theorem 9.1.4 can be used to determine the densities
Vi(X) of the underlying particle process from the densities Vj(Z) of the union
set. We demonstrate this only in dimensions two and three. Here we use
classical notation:

d = 2 A = V2, area

L = 2V1, perimeter

χ = V0, Euler characteristic

d = 3 V = V3, volume

S = 2V2, surface area

M = πV1, integral of mean curvature

χ = V0, Euler characteristic.

We obtain the following relations: For d = 2,

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)

(
χ(X)− 1

4π
L(X)2

)
.

For d = 3,

V (Z) = 1− e−V (X),

S(Z) = e−V (X)S(X),

M(Z) = e−V (X)

(
M(X)− π

2

32
S(X)2

)
,

χ(Z) = e−V (X)

(
χ(X)− 1

4π
M(X)S(X) +

π

384
S(X)3

)
.

In either case, if all the parameters on the left side are known, then all
parameters on the right side are known.
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In particular, the densities on the left side determine χ(X), which is the
intensity γ of X. We point out, however, that the determination of the inten-
sity χ(X) requires the determination of the densities of all the d+ 1 intrinsic
volumes of Z.

If we drop the isotropy assumption, hence consider a stationary Boolean
model Z with convex grains and ϕ = Vj , we can combine Theorem 9.1.2 with
the iterated translative formula (6.15). We obtain

EVj(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

d∑
m0,...,mk=j

m0+...+mk=kd+j

∫
K0

. . .

∫
K0

V (j)
m0,...,mk

(W,K1, . . . ,Kk)

×Q(dK1) · · ·Q(dKk).

Again, we replace W by rW , divide by Vd(rW ) and let r →∞. Then, due to
the homogeneity properties of the mixed functionals (see Theorem 6.4.1), all
summands on the right side with m0 < d disappear asymptotically. For m0 =
d, we can use the decomposability property of the mixed functionals (Theorem
6.4.1) and get, with essentially the same arguments as in the isotropic case,

Vj(Z) = lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

=
∞∑

k=1

(−1)k−1

k!
γk

d∑
m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
K0

. . .

∫
K0

V (j)
m1,...,mk

(K1, . . . ,Kk)

×Q(dK1) · · ·Q(dKk)

=
d−j∑
s=1

∞∑
r=0

(
r + s
r

)
(−1)r+s−1

(r + s)!
Vd(X)rγs

d−1∑
m1,...,ms=j

m1+...+ms=(s−1)d+j

∫
K0

. . .

∫
K0

V (j)
m1,...,ms

(K1, . . . ,Ks) Q(dK1) · · ·Q(dKs)

= −e−Vd(X)

d−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

= e−Vd(X)

⎛⎜⎝Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

⎞⎟⎠ .
The densities of X appearing here are special cases of the mixed densities
defined by

V
(j)

m1,...,ms
(X, . . . ,X,Kk+1, . . . ,Ks)
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:= γk

∫
K0

. . .

∫
K0

V (j)
m1,...,ms

(K1, . . . ,Kk,Kk+1, . . . ,Ks) Q(dK1) · · ·Q(dKk).

Hence, we arrive at the following result.

Theorem 9.1.5. For a stationary Boolean model Z in Rd with convex grains,
the limit

Vj(Z) := lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

exists and satisfies

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = e−Vd(X)Vd−1(X),

and

Vj(Z)

= e−Vd(X)

⎛⎜⎝Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

⎞⎟⎠
for j = 0, . . . , d− 2.

For d = 2, only the formula for the Euler characteristic V0 is different from
the isotropic case, and we have

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)
(
γ −A(X,−X)

)
,

where
A(X,−X) := γ2

∫
K0

∫
K0

A(K,−M) Q(dK) Q(dM).

Here, we made use of the fact that the mixed functional V (0)
1,1 (K,M) in the

plane equals twice the mixed area A(K,−M) of K and −M . It is obvious that
the formulas can no longer be used directly for the estimation of γ. Hence,
we need more (local) information for the statistical analysis of non-isotropic
Boolean models; this will be discussed in Section 9.5.

As an immediate generalization of Theorem 9.1.5, we can replace the in-
trinsic volumes Vj(Z ∩ W ) by (additively extended) mixed volumes V (Z ∩
W [j],M [d− j]), j = 1, . . . , d− 1, for M ∈ K′. Applying Theorem 9.1.2 to the
functional ϕ given by

ϕ(K) =
(
d

j

)
V (K[j],−M [d− j]) = V (0)

j,d−j(K,M)
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and using (6.15), we obtain the following result. Since the proof is identical
to the previous one, we skip it.

Theorem 9.1.6. Let Z be a stationary Boolean model in Rd with convex
grains, j ∈ {1, . . . , d− 1} and M ∈ K′. Then the limit

V
(0)

j,d−j(Z,M) :=
(
d

j

)
lim

r→∞

EV (Z ∩ rW [j],−M [d− j])
Vd(rW )

exists, is independent of W and satisfies

V
(0)

j,d−j(Z,M) = e−Vd(X)

(
V

(0)

j,d−j(X,M)

−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(0)

m1,...,ms,d−j(X, . . . ,X,M)

)
.

For j = d− 1, the theorem yields

V
(0)

d−1,1(Z,M) = e−Vd(X)V
(0)

d−1,1(X,M).

We can transform this into a local formula for area measures, using (14.23).
Namely, we can rewrite (14.23) as

V
(0)
d−1,1(K,M) =

∫
Sd−1

h∗(M,−u)Sd−1(K,du) (9.10)

(where h∗ denotes the centered support function, see Section 4.6) and remark
that, by additive extension in each variable, (9.10) holds for K,M ∈ R. Since
the vector space generated by the functions h∗(M, ·), M ∈ K′, is dense in the
space of centered, continuous functions on Sd−1 and since area measures have
centroid 0, we deduce that the weak limit

Sd−1(Z, ·) := lim
r→∞

ESd−1(Z ∩ rW, ·)
Vd(rW )

. (9.11)

exists and satisfies the local density formula

Sd−1(Z, ·) = e−Vd(X)Sd−1(X, ·) . (9.12)

Here, according to (4.43),

Sd−1(X, ·) := γ
∫
K0

Sd−1(K, ·) Q(dK).

Alternatively, (9.12) and the existence of the limit (9.11) can be obtained
directly, with a proof similar to that of the previous results. For this, we use
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Theorem 9.1.2 with ϕ(K) := Sd−1(K,A), for a fixed Borel set A ⊂ Sd−1,
together with the translative formula for area measures,∫

Rd

Sd−1(K ∩ (M + x), ·)λ(dx) = Vd(M)Sd−1(K, ·) + Vd(K)Sd−1(M, ·).

For K,M ∈ K′, this formula can either be deduced from the more general
results in Section 6.4 or proved directly, using approximation by polytopes.

Note that (9.12) is a local version of (9.9).
We could also use (9.10) to obtain a formula for a local version of

V
(0)

j,d−j(Z,M) for j = 1. This would involve the limit of the centered, ad-
ditively extended support function

h(Z, ·) := lim
r→∞

Eh∗(Z ∩ rW, ·)
Vd(rW )

and expresses h(Z, ·) in terms of (mean values of) iterated versions of the
mixed support functions, which appear in Theorem 6.4.6. We mention only
the planar case, where the formula is simple. For d = 2,

h(Z, ·) = e−A(X)h(X, ·), (9.13)

where
h(X, ·) := γ

∫
K0

h ∗(K, ·) Q(dK).

Remark. Starting with Theorem 9.1.2, the results of this section remain
true for Boolean models with polyconvex grains, if the additively extended
functionals are used and the grain distribution satisfies (9.17).

Notes for Section 9.1 are included in the Notes for Section 9.4.

9.2 Densities of Additive Functionals

In the previous section we have seen that for stationary isotropic Boolean
models Z and for arbitrary convex bodies W with positive volume the limit

lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

= Vj(Z)

always exists. In this way, the specific jth intrinsic volume Vj(Z) can be
defined. The existence of the limit for Boolean models was deduced from
explicit formulas. They yielded, at the same time, a representation of this
density of the jth intrinsic volume of the Boolean model Z in terms of densities
of the underlying particle process X.
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Our aim in this section is to show the existence of corresponding densi-
ties for more general random closed sets and for rather general functionals.
Essentially, the realizations of the random closed sets will locally belong to
the convex ring R, consisting of all finite unions of convex bodies in Rd. The
functionals to be considered will share with the intrinsic volumes the property
of additivity.

The existence proof for the limit will be prepared by two lemmas. We make
use of the unit cube Cd = [0, 1]d and the half-open unit cube Cd

0 := [0, 1)d.
The upper right boundary

∂+Cd := Cd \ Cd
0

is the union of d facets of Cd and hence belongs to the convex ring R.
For z ∈ Zd, we put

Cz := Cd + z, C0,z := Cd
0 + z, ∂+Cz := ∂+Cd + z.

Then
Rd =

⋃
z∈Zd

C0,z

is a disjoint decomposition of Rd.
Let ϕ be a real function on the convex ring R, and let K ∈ R. Since

∅ �= K ∩ C0,z = K ∩ C0,y for z, y ∈ Zd implies z = y, we can define

ϕ(K ∩ C0,z) := ϕ(K ∩ Cz)− ϕ(K ∩ ∂+Cz).

Lemma 9.2.1. If ϕ : R → R is an additive function and K ∈ R is a poly-
convex set, then

ϕ(K) =
∑
z∈Zd

ϕ(K ∩ C0,z).

Proof. We give two proofs for this crucial lemma. The first one employs the
extension theorem 14.4.3. This allows us to work with relatively open poly-
topes and, therefore, with disjoint decompositions. The second proof does not
use the extension theorem and has, therefore, a basic idea which is slightly
less obvious.

First proof. Let K ∈ R. For a polytope P ∈ P we define

ψ(P ) := ϕ(K ∩ P ).

Then ψ is an additive functional on convex polytopes. By Theorem 14.4.3, it
has a unique extension to an additive function on U(Pro), the system of finite
unions of relatively open polytopes. We denote this extension also by ψ. Since
C0,z = Cz \∂+Cz and all sets here belong to U(Pro), the additivity of ψ gives

ψ(C0,z) = ψ(Cz)− ψ(∂+Cz).
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Moreover, ψ(P ) = 0 for all convex polytopes P with K ∩ P = ∅. We can
choose a finite set S ⊂ Zd such that

K ⊂ Q :=
⋃
z∈S

C0,z

and that clQ is convex. Then

ϕ(K) = ϕ(K ∩ clQ) = ψ(clQ) = ψ(Q)

=
∑
z∈Zd

ψ(C0,z)

=
∑
z∈Zd

[ψ(Cz)− ψ(∂+Cz)]

=
∑
z∈Zd

[ϕ(K ∩ Cz)− ϕ(K ∩ ∂+Cz)].

This concludes the first proof.

Second proof. We denote by < the lexicographic order on Zd, that is,

(z1, . . . , zd) < (y1, . . . , yd)

if and only if zi = yi for i < k and zk < yk, for some k ∈ {1, . . . , d}. Then

∂+Cz = Cz ∩
⋃

z<y∈Zd

Cy

for z ∈ Zd. With the inclusion–exclusion principle we get (all sums are finite)

∑
z∈Zd

ϕ(K ∩ ∂+Cz) =
∑
z∈Zd

ϕ

⎛⎝ ⋃
z<y∈Zd

(K ∩ Cz ∩ Cy)

⎞⎠
=

∑
z∈Zd

∞∑
k=1

(−1)k−1
∑

z<y1<...<yk

ϕ(K ∩ Cz ∩ Cy1 ∩ . . . ∩ Cyk
)

= −
∞∑

k=2

(−1)k−1
∑

z1<...<zk

ϕ(K ∩ Cz1 ∩ . . . ∩ Czk
).

This gives

ϕ(K) = ϕ

⎛⎝ ⋃
z∈Zd

(K ∩ Cz)

⎞⎠
=

∑
z∈Zd

ϕ(K ∩ Cz) +
∞∑

k=2

(−1)k−1
∑

z1<...<zk

ϕ(K ∩ Cz1 ∩ . . . ∩ Czk
)

=
∑
z∈Zd

ϕ(K ∩ Cz)−
∑
z∈Zd

ϕ(K ∩ ∂+Cz),
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as asserted. ��

We recall that a function ϕ : R → R is conditionally bounded if it is
bounded on {L ∈ K′ : L ⊂ K}, for each K ∈ K′. In particular, if ϕ is
continuous on K′, it is conditionally bounded.

Lemma 9.2.2. Let the function ϕ : R → R be translation invariant, additive
and conditionally bounded. Then

lim
r→∞

ϕ(rW )
Vd(rW )

= ϕ(Cd
0 )

for every W ∈ K′ with Vd(W ) > 0.

Proof. Let W ∈ K′ and 0 ∈ intW , without loss of generality. For K ∈ K and
z ∈ Zd we put

ϕ(K, z) := ϕ(K ∩ C0,z). (9.14)

Lemma 9.2.1 shows that

ϕ(rW ) =
∑
z∈Zd

ϕ(rW, z) for r > 0.

Define
Z1

r := {z ∈ Zd : Cz ∩ rW �= ∅, Cz �⊂ rW}
and

Z2
r := {z ∈ Zd : Cz ⊂ rW}.

Then

lim
r→∞

|Z1
r |

Vd(rW )
= 0, lim

r→∞

|Z2
r |

Vd(rW )
= 1, (9.15)

where |A| denotes the number of elements of a set A. The limit relations follow
from the fact that one easily shows the existence of numbers r0 > s, t > 0
such that

z ∈ Z1
r ⇒ Cz ⊂ (r + s)W \ (r − s)W

and
(r − t)W ⊂

⋃
z∈Z2

r

Cz

for r ≥ r0.
By assumption,

|ϕ(rW, z)| = |ϕ(rW − z, 0)| ≤ b

with some constant b independent of z,W and r. This gives

1
Vd(rW )

∣∣∣∣∣∣
∑

z∈Z1
r

ϕ(rW, z)

∣∣∣∣∣∣ ≤ b |Z1
r |

Vd(rW )
→ 0 for r →∞.
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From this we deduce that

lim
r→∞

ϕ(rW )
Vd(rW )

= lim
r→∞

1
Vd(rW )

∑
z∈Zd

ϕ(rW, z)

= lim
r→∞

1
Vd(rW )

∑
z∈Z2

r

ϕ(rW, z)

= ϕ(Cd
0 ) lim

r→∞

|Z2
r |

Vd(rW )

= ϕ(Cd
0 ).

This proves the lemma. ��

Mean Values of Additive Functionals for Random Sets

Now we introduce a suitable class of random closed sets for which the exis-
tence of densities for rather general functionals can be shown. Recall that the
extended convex ring in Rd is defined by

S := {F ⊂ Rd : F ∩K ∈ R for K ∈ K}.

The elements of S are called locally polyconvex sets. Thus a locally poly-
convex set has the property that its intersection with any convex body is a
finite union of convex bodies.

If M ∈ R is a nonempty polyconvex set, there are a number m ∈ N and
convex bodies K1, . . . ,Km ∈ K′ such that M = K1 ∪ . . . ∪Km. The smallest
number m with this property is denoted by N(M). We also put N(∅) = 0.
By Lemma 4.3.1, the function N : R → N0 is measurable. Now we can define
the random closed sets which will be admitted in the following.

Definition 9.2.1. A standard random set in Rd is a random closed set Z
in Rd with the following properties:

(a) The realizations of Z are a.s. locally polyconvex.
(b)Z is stationary.
(c) Z satisfies the integrability condition

E 2N(Z∩Cd) <∞. (9.16)

Important examples of standard random sets are the Boolean models Z
with convex grains. As we have seen in Section 9.1, they satisfy (9.16).

We are now in a position to prove the existence of densities of suitable
functionals for standard random sets.
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Theorem 9.2.1. Let Z be a standard random set, let the function ϕ : R → R

be translation invariant, additive, measurable and conditionally bounded. Let
W ∈ K′ be such that Vd(W ) > 0. Then the limit

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

exists and satisfies
ϕ(Z) = Eϕ(Z ∩ Cd

0 ).

Hence, ϕ(Z) is independent of W.

Proof. Without loss of generality, we can assume that W ⊂ Cd. For given
ω ∈ Ω, there is a representation

Z(ω) ∩W =
NW (ω)⋃

i=1

Ki(ω) with Ki(ω) ∈ K′,

where NW (ω) := N(Z(ω) ∩W ). By the inclusion–exclusion principle,

ϕ(Z(ω) ∩W )

=
NW (ω)∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤NW (ω)

ϕ(Ki1(ω) ∩ . . . ∩Kik
(ω)).

Since ϕ is conditionally bounded, there is a constant b such that

E |ϕ(Z ∩W )| ≤ bE

NW∑
k=1

(
NW

k

)
≤ bE 2N(Z∩W ) ≤ bE 2N(Z∩Cd),

since N(Z(ω) ∩W ) ≤ N(Z(ω) ∩ Cd). By assumption, the right side is finite,
hence ϕ(Z∩W ) is integrable. For a polyconvex setM ∈ R, the integrability of
ϕ(Z∩M) then follows from additivity, using the inclusion–exclusion principle
again. Therefore, we can define a functional φ : R → R by

φ(M) := Eϕ(Z ∩M) for M ∈ R.

Then φ is additive, translation invariant (as follows from the stationarity of
Z) and conditionally bounded (as follows from the last estimate above). Now
the assertion of the theorem follows from Lemma 9.2.2. ��

With suitable conditions on ϕ and Z, the preceding result would also hold
for general stationary random closed sets with values in F . However, the useful
functionals ϕ on R that satisfy the assumptions of the theorem have, with
the exception of the volume, no reasonable extension to all of C; therefore,
the restriction to the convex ring seems appropriate (but see the Notes for
Section 9.4, for other set classes).
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For ϕ = Vd, the density Vd was already defined in Section 2.4, for example,
by

Vd(Z) =
EVd(Z ∩W )
Vd(W )

,

for any Borel set W with Vd(W ) > 0. Thus, the introduction of the specific
volume does not require a limit procedure, and the assertion of Theorem 9.2.1
is trivial, since Vd(Z ∩ ∂+Cd) = 0.

The quantity ϕ(Z) in Theorem 9.2.1 is called the ϕ-density of Z. The most
important functionals ϕ are the intrinsic volumes V0, . . . , Vd−1. The density
Vj(Z) is also called the specific jth intrinsic volume of Z. In particular,
2Vd−1(Z) is the specific surface area of Z. In Section 9.4, we shall give
an alternative interpretation of Vj(Z), as a Radon–Nikodym derivative of the
expectation of the curvature measure Φj(Z, ·) (which is a stationary random
measure on Rd) with respect to the Lebesgue measure λ. This representa-
tion will allow us in Section 11.1 to introduce specific intrinsic volumes (as
functions on Rd) also for non-stationary random closed sets.

Further functionals ϕ to which Theorem 9.2.1 can be applied are:

• the mixed volumes, ϕ(K) := V (K[j],M [d − j]), for fixed M ∈ R and
j ∈ {1, . . . , d− 1},

• the surface area measure, ϕ(K) := Sd−1(K,A), for A ∈ B(Sd−1),
• the centered support function, ϕ(K) := h∗(K,u), for u ∈ Sd−1.

Letting A ∈ B(Sd−1) vary, we thus get, under the assumptions of Theorem
9.2.1, a finite Borel measure Sd−1(Z, ·) on Sd−1, the specific surface area
measure or the mean normal measure of Z. By (14.15), Sd−1(Z, ·) is
always nonnegative, and it is centered. If Sd−1(Z, ·) is not concentrated on
a subsphere, it is (by Theorem 14.3.1) the surface area measure of a unique
convex body in K0, which we call the Blaschke body B(Z) of Z. Further,
letting u ∈ Sd−1 vary, we get a centered continuous function h(Z, ·) on Sd−1,
the specific support function of Z. (The continuity can be shown with the
aid of (6.28), cf. Goodey and Weil [280, p. 339].) The function h(Z, ·) is a
support function for d = 2, but in general not for d ≥ 3.

Mixed volumes V (K[j],M [d − j]) are only special cases of mixed func-
tionals V (j)

m1,...,mk(K1, . . . ,Kk), as studied in Section 6.4. Since the latter are
additive in each component and have an additive extension to R, Theorem
9.2.1 also yields densities of mixed functionals for standard random sets Z.
Later, we shall need one series of these mixed densities for Z, but in a local
version. Namely, for j ∈ {0, . . . , d}, k ∈ {j, . . . , d}, M ∈ K′ and A ∈ B, the
functional

ϕA : K �→ Φ
(j)
k,d−k+j(K,M ; Rd ×A)

satisfies the assumptions of Theorem 9.2.1. The density ϕA(Z), as a function
of A, is a (signed) measure, which we denote by Φ

(j)

k,d−k+j(Z,M ; ·), thus
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Φ
(j)

k,d−k+j(Z,M ;A) = lim
r→∞

EΦ
(j)
k,d−k+j(Z ∩ rW,M ; Rd ×A)

Vd(rW )
,

with a window W as before. We call Φ
(j)

k,d−k+j(Z,M ; ·) the specific (j, k)th
mixed measure of Z (for given M). We notice that

Φ
(j)

j,d(Z,M ; ·) = Vj(Z)Φd(M, ·),

Φ
(j)

d,j(Z,M ; ·) = Vd(Z)Φj(M, ·).

We finally remark that we can now give a new interpretation of the inten-
sity of a stationary process of k-flats that was introduced in Theorem 4.4.2.
Let ZX be the union set of a stationary k-flat process X with intensity γ. For
r > 0 and W ∈ K with Vd(W ) > 0 we have, by the additivity of Vk,

1
Vd(rW )

EVk(ZX ∩ rW ) =
1

Vd(rW )
E

∑
E∈X

λE(rW ) = γ,

by Theorem 4.4.3. Thus, the left side is independent of r, hence for r →
∞ it converges to Vk(ZX), even without the integrability condition (9.16).
Therefore, we have

γ = Vk(ZX).

Mean Values for Particle Processes

For a stationary particle process X, the ϕ-density ϕ(X) was already intro-
duced in Section 4.1, and different representations were established. Further
representations in the case of additive functionals can now be obtained in
analogy to Theorem 9.2.1. Of the stationary particle process X in R to be
considered we need the integrability condition∫

R0

2N(C)Vd(C +Bd) Q(dC) <∞, (9.17)

where Q is the grain distribution of X. If the particles are convex, then con-
dition (9.17) reduces to the original condition (4.4).

Theorem 9.2.2. Let X be a stationary particle process in Rd with particles
in R and with grain distribution Q satisfying (9.17). Let ϕ : R → R be
translation invariant, additive, measurable and conditionally bounded. Then
ϕ is Q-integrable, and

ϕ(X) = lim
r→∞

1
Vd(rW )

E
∑
C∈X

ϕ(C ∩ rW )

holds for all W ∈ K with Vd(W ) > 0. Moreover,

ϕ(X) = E
∑
C∈X

ϕ(C ∩ Cd
0 ).
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Proof. For given C ∈ R0, let

Z := {z ∈ Zd : C ∩ Cz �= ∅}.

For z ∈ Z we have Cz ⊂ C +
√
dBd, hence

|Z| = λ
( ⋃

z∈Z

Cz

)
≤ Vd(C +

√
dBd) ≤ kVd(C +Bd), (9.18)

if k is chosen such that
√
dBd can be covered by k unit balls.

Let W ∈ K′ and r > 0. By

ϕx(M) := ϕ((M + x) ∩ rW ), M ∈ R,

for given x ∈ Rd, an additive functional ϕx is defined. By Lemma 9.2.1 we
get, using the notation of (9.14), that

ϕ((C + x) ∩ rW ) = ϕx(C) =
∑
z∈Z

ϕx(C, z). (9.19)

As in the proof of Theorem 9.2.1, the additivity and translation invariance of
ϕ lead to an estimate

|ϕx(C, z)| ≤ b2N(C), (9.20)

with
b := c(d) sup

L∈K, L⊂Cd

|ϕ(L)| <∞

and c(d) depending only on d. Together with (9.18), (9.19) and (9.20) this
gives

|ϕ((C + x) ∩ rW )| ≤ kb2N(C)Vd(C +Bd).

Since the right side is Q-integrable, this yields (with x = 0 and r → ∞) the
Q-integrability of ϕ. Further, we obtain∫

Rd

|ϕ((C + x) ∩ rW )|λ(dx) ≤
∑
z∈Z

∫
Rd

|ϕx(C, z)|λ(dx)

≤ |Z|b2N(C)Vd(rW + Cd)

≤ kbVd(rW + Cd)2N(C)Vd(C +Bd)

and hence ∫
R0

∫
Rd

|ϕ((C + x) ∩ rW )|λ(dx) Q(dC) <∞.

Therefore, we can apply the Campbell theorem (Theorem 3.1.2), and with
Theorem 4.1.1 we obtain

E
∑
C∈X

ϕ(C ∩ rW ) = γ
∫
R0

∫
Rd

ϕ((C + x) ∩ rW )λ(dx) Q(dC).
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Here we can decompose∫
Rd

ϕ((C + x) ∩ rW )λ(dx) = I1(r) + I2(r)

with
Iν(r) :=

∑
z∈Z

∫
Aν

r−z

ϕx(C, z)λ(dx), ν = 1, 2,

A1
r := {x ∈ Rd : (Cd + x) ∩ rW �= ∅, Cd + x �⊂ rW},
A2

r := {x ∈ Rd : Cd + x ⊂ rW}.

We have

lim
r→∞

λ(A1
r)

Vd(rW )
= 0, lim

r→∞

λ(A2
r)

Vd(rW )
= 1.

With (9.20) we get
|I1(r)| ≤ |Z|b2N(C)λ(A1

r)

and hence

lim
r→∞

I1(r)
Vd(rW )

= 0.

Further, we have

I2(r) =
∑
z∈Z

ϕ(C, z)λ(A2
r) = ϕ(C)λ(A2

r)

by Lemma 9.2.1 and thus

lim
r→∞

I2(r)
Vd(rW )

= ϕ(C).

This yields

|I1(r) + I2(r)|
Vd(rW )

≤ kb2N(C)Vd(C +Bd)
λ(A1

r)
Vd(rW )

+ |ϕ(C)|.

By (9.17) and the Q-integrability of ϕ we now obtain, using the dominated
convergence theorem,

lim
r→∞

1
Vd(rW )

E
∑
C∈X

ϕ(C ∩ rW ) = γ
∫
R0

ϕ(C) Q(dC) = ϕ(X),

which is the first assertion of the theorem.
We put

φ(K) := E
∑
C∈X

ϕ(C ∩K) for K ∈ R.

ForK ∈ K, the random variable
∑

C∈X ϕ(C∩K) is integrable, as shown, hence
by additivity it is also integrable for K ∈ R. The functional φ is additive,
translation invariant and conditionally bounded. Now Lemma 9.2.2 yields the
second assertion of the theorem. ��
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As in the case of random closed sets Z, the natural candidates for the
functional ϕ are the intrinsic volumes, the mixed volumes, the surface area
measure, and the centered support function. These choices lead to the spe-
cific intrinsic volumes Vj(X) (j ∈ {0, . . . , d}) and to the mean values
V (X[j],M [d − j]) (M ∈ R, j ∈ {1, . . . , d − 1}), Sd−1(X, ·) and h(X, ·).
Other examples are the densities of mixed measures or mixed functionals.
We shall need the specific (j, k)th mixed measure Φ

(j)

k,d−k+j(X,M ; ·) of X
(andM), which either arises as an outcome of Theorem 9.2.2 or can be defined
directly by

Φ
(j)

k,d−k+j(X,M ; ·) := γ
∫
R0

Φ
(j)
k,d−k+j(C,M ; Rd × ·) Q(dC).

Again, we have

Φ
(j)

j,d(X,M ; ·) = Vj(X)Φd(M, ·),

Φ
(j)

d,j(X,M ; ·) = Vd(X)Φj(M, ·).

The mixed densities

V
(j)

m1,...,ms
(X, . . . ,X) and V

(0)

m1,...,ms,d−j(X, . . . ,X,M)

were introduced in Section 9.1, for Poisson particle processes X, by a multiple
integral with respect to (γQ)s. Their definition immediately extends to general
point processes on K′ (or R′). By an iterated application of Theorem 9.2.2,
one gets

V
(j)

m1,...,ms
(X, . . . ,X) = lim

r1→∞
. . . lim

rs→∞

1
Vd(r1W ) · · ·Vd(rsW )

× E
∑

(C1,...,Cs)∈X1×...×Xs

V (j)
m1,...,ms

(C1 ∩ r1W, . . . , Cs ∩ rsW ),

where X1, . . . , Xs are independent copies of X. A similar limit relation holds
for V

(0)

m1,...,ms,d−j(X, . . . ,X,M). For Poisson processes, we can use Corollary
3.2.4 to obtain

V
(j)

m1,...,ms
(X, . . . ,X) = lim

r1→∞
. . . lim

rs→∞

1
Vd(r1W ) · · ·Vd(rsW )

× E
∑

(C1,...,Cs)∈Xs
�=

V (j)
m1,...,ms

(C1 ∩ r1W, . . . , Cs ∩ rsW ).

Also for stationary particle processes X, we shall give in Section 9.4 an
alternative interpretation of Vj(X) as a Radon–Nikodym derivative with re-
spect to the Lebesgue measure λ, namely of the expectation of the stationary
random measure

Φj(X, ·) :=
∑

K∈X

Φj(K, ·).
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This representation will be used in Section 11.1 to introduce specific intrinsic
volumes for non-stationary particle processes X, again as functions on Rd.

We remark that the measure Sd−1(X, ·) on the unit sphere Sd−1 is always
nonnegative (by (14.15)) and centered and therefore, if it is not concentrated
on a subsphere, is the surface area measure of a unique convex body in K0,
the Blaschke body B(X), which was introduced in Section 4.6. There, we
assumed that the particles K ∈ X are convex, but now we see that polyconvex
particles can be allowed. For polyconvex particles, h(X, ·) is a continuous
function. If the particles are convex (or if d = 2), h(X, ·) is the support
function of a unique convex body in K0, the mean body M(X), which was
also introduced and studied in Section 4.6.

Remark. For the introduction of the densities ϕ(Z), ϕ(X) of translation
invariant functionals ϕ for random sets Z and particle processes X, we have
not used the stationarity of Z or X to its full extent. In fact, for a particle
process X, for example, we need only the invariance of the expectations

E
∑

K∈X+t

ϕ(K ∩W )

under all translations by t ∈ Rd, for all windows W . This, in turn, is satisfied
if the process X is weakly stationary, which means that its intensity mea-
sure is translation invariant. The process X is called weakly isotropic if its
intensity measure is rotation invariant. The analogous terminology is used for
processes of flats. For Poisson processes, there is no difference between station-
arity and weak stationarity (isotropy and weak isotropy), by Theorem 3.2.1.
We remark that most mean value formulas to be proved later for stationary
(stationary and isotropic) particle processes X require only that X be weakly
stationary (weakly stationary and weakly isotropic). For simplicity, however,
we shall stay in the framework of stationarity and isotropy. A similar remark
refers to random sets Z, where instead of stationarity it is mostly only needed
that the expectations

Eϕ((Z + t) ∩W )

are invariant under all translations by t ∈ Rd.

Notes for Section 9.2 are included in the Notes for Section 9.4.

9.3 Ergodic Densities

In the previous section we have seen that for suitable closed random sets Z
and functions ϕ a density ϕ(Z) can be defined by

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

.
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It is a natural question whether a corresponding limit exists also pointwise,
that is, without taking the expectation. More precisely, we would like to know
under which conditions the limit

ϕ(Z, ω) := lim
r→∞

ϕ(Z(ω) ∩ rW )
Vd(rW )

exists for almost all ω ∈ Ω. Existence assumed, ϕ(Z, ·) is a random variable,
and we would expect that it satisfies

Eϕ(Z, ·) = ϕ(Z).

Particularly interesting are the random closed sets Z for which ϕ(Z, ·) is al-
most surely equal to a constant, thus satisfying

ϕ(Z, ·) = ϕ(Z) a.s.

For such a random set Z, the ϕ-density ϕ(Z) can be estimated from a single
realization Z(ω), by measuring

ϕ(Z(ω) ∩W )
Vd(W )

in a large window W . Results of the type

ϕ(Z) = lim
r→∞

ϕ(Z ∩ rW )
Vd(rW )

, (9.21)

where the left side is a constant and the right side is a limit of random vari-
ables, are known as ergodic theorems. More precisely, one talks of individual
ergodic theorems if the equality holds almost surely, and of statistical ergodic
theorems if on the right one has Lp-convergence, for suitable p. We restrict
ourselves here to individual ergodic theorems. Such an ergodic result holds for
random closed sets Z satisfying certain independence properties, for instance,
for ergodic random closed sets, as will be explained below. If the density ϕ(Z)
can be obtained in the form (9.21), one talks of an ergodic density.

The program thus sketched will now be made precise. We shall, however,
not give complete proofs, but for one crucial theorem rely on the literature.
In order that the results be applicable not only to random sets, but also to
point processes, the following considerations will adopt a more general point
of view.

Let (Ω,A,P), as always, be the underlying probability space. A bijective
map T : Ω → Ω with the property that T and T−1 are measurable and leave
the probability measure P invariant (that is, satisfy P(TA) = P(T−1A) = P(A)
for all A ∈ A), is called an automorphism. We assume that for (Ω,A,P) a
set T = {Tx : x ∈ Zd} of automorphisms satisfying TxTy = Tx+y for x, y ∈ Zd

is given; thus the set T together with the composition is an abelian group.
We denote by T ⊂ A the σ-algebra of all events invariant under T , thus
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T := {A ∈ A : TxA = A for all x ∈ Zd}.

A family (ξK)K∈R of real random variables on (Ω,A) is called a stochastic
process with parameter space R. Since here the parameter K ∈ R plays
the role of the time (for stochastic processes with continuous time), we also
talk of a ‘spatial process’. The spatial process (ξK)K∈R is called additive if
for K,K ′ ∈ R almost surely

ξK∪K′ + ξK∩K′ = ξK + ξK′

holds and, in addition, ξ∅ = 0. It is called T -covariant if for all K ∈ R and
all x ∈ Zd the equation

ξK+x(Txω) = ξK(ω)

holds for almost all ω ∈ Ω. Further, (ξK)K∈R is called bounded if there
exists an integrable random variable η ≥ 0 with

|ξK | ≤ η a.s. for all K ∈ K with K ⊂ Cd. (9.22)

In the following theorem, E(· | T) denotes the conditional expectation with
respect to the σ-algebra T of T -invariant events.

Theorem 9.3.1. Let (ξW )W∈R be an additive, T -covariant, bounded stochas-
tic process with parameter space R. Then, for W ∈ K with 0 ∈ intW , the
relation

lim
r→∞

ξrW

Vd(rW )
= E (ξCd − ξ∂+Cd | T)

holds a.s.

Proof. First we proceed as in the proof of Lemma 9.2.2 and also use the same
notation. Let W be as above and assume, without loss of generality, that
W ⊂ Cd. For z ∈ Zd and K ∈ K we put

ξK,z := ξK∩Cz
− ξK∩∂+Cz

.

Then, by Lemma 9.2.1, for r > 0 we have

ξrW (ω) =
∑
z∈Zd

ξrW,z(ω)

=
∑

z∈Z1
r

ξrW,z(ω) +
∑

z∈Z2
r

ξrW,z(ω)

=
∑

z∈Z1
r

ξrW,z(ω) +
∑

z∈Z2
r

[ξCd(T−zω)− ξ∂+Cd(T−z(ω))] .

If (9.22) holds, we obtain as in the proof of Theorem 9.2.1 that

|ξrW,z| ≤ |ξrW∩Cz
|+ |ξrW∩∂+Cz

| ≤ cd η ◦ T−z



9.3 Ergodic Densities 407

with a constant cd, hence∣∣∣∣∣∣
∑

z∈Z1
r

ξrW,z(ω)

∣∣∣∣∣∣ ≤ cd
∑

z∈Z1
r

η(T−zω).

Now we apply a version of the individual ergodic theorem, for which we refer
to Tempel’man [755, Th. 6.1]. If ζ is an integrable random variable on Ω
and (Zk)k∈N is an increasing sequence of sets Zk ⊂ Zd, satisfying certain
assumptions, then

lim
k→∞

1
|Zk|

∑
z∈Zk

ζ(T−zω) = E(ζ | T)(ω)

holds for almost all ω ∈ Ω.
We apply this theorem, first, to ζ = η and Zk = Z1

rk
∪ Z2

rk
, respectively

Zk = Z2
rk

, where (rk)k∈N is an increasing real sequence with rk → ∞. The
required assumptions on the sequence (Zz)k∈N are satisfied in either case.
Observing (9.15), we obtain

lim
k→∞

1
Vd(rkW )

∑
z∈Z1

rk

η(T−zω) = 0

for almost all ω, hence also

lim
k→∞

1
Vd(rkW )

∑
z∈Z1

rk

ξrkW,z(ω) = 0.

Second, with ζ = ξCd−ξ∂+Cd and Zk = Z2
rk

and with the result just obtained,
we get

lim
k→∞

ξrkW (ω)
Vd(rkW )

= lim
k→∞

1
Vd(rkW )

∑
z∈Z2

rk

[ξCd(T−zω)− ξ∂+Cd(T−zω)]

= E (ξCd − ξ∂+Cd | T) (ω)

for almost all ω. This yields the assertion, also for the limit r → ∞ (cf.
Tempel’man, loc.cit. §8). ��

The quadruple (Ω,A,P, T ) underlying our considerations is often called
a dynamical system. This system is called ergodic if P(A) ∈ {0, 1} for all
A ∈ T. In the ergodic case we have

E (ξCd − ξ∂+Cd | T) = E (ξCd − ξ∂+Cd) a.s.,

thus the limit in Theorem 9.3.1 is almost surely constant. The system
(Ω,A,P, T ) is called mixing if the automorphisms Tx ∈ T have the as-
ymptotic independence property
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lim
||x||→∞

P(A ∩ TxB) = P(A)P(B) (9.23)

for all A,B ∈ A. Every mixing system is ergodic, since (9.23) with A ∈ T
and B = A implies P(A) = P(A)2. The next lemma shows that it is sufficient
to check (9.23) for a restricted class of sets.

Lemma 9.3.1. The dynamical system (Ω,A,P, T ) is mixing if there is a
semialgebra A0 ⊂ A generating A and satisfying

lim
||x||→∞

P(A ∩ TxB) = P(A)P(B) (9.24)

for all A,B ∈ A0.

Proof. Suppose such a semialgebra A0 exists. The algebra A1 generated by
A0 consists of all finite disjoint unions of sets from A0. Therefore, (9.24) holds
also for A,B ∈ A1. Now let A,B ∈ A. For given ε > 0 there are elements
A′, B′ ∈ A1 with P(A A′) ≤ ε and P(B  B′) ≤ ε (see, for example, Chow
and Teicher [175, p. 23]). From P((A∩B) (A′∩B′)) ≤ P(A A′)+P(B B′)
and the T -invariance of P we obtain

P((A ∩ TxB) (A′ ∩ TxB
′)) ≤ 2ε

for all x ∈ Zd. This gives

|P(A ∩ TxB)− P(A)P(B)| ≤ |P(A′ ∩ TxB
′)− P(A′)P(B′)|+ 4ε,

which yields the assertion. ��

The preceding general considerations will now be applied to more concrete
situations. Let Z be a stationary random closed set in Rd. We can choose
(F ,B(F),PZ) as the underlying probability space (Ω,A,P) and T as the
group of the ordinary lattice translations of Rd. Here, TxF := F + x for
F ∈ F and Tx ∈ T . Since Z is stationary, the probability measure PZ is
invariant under all translations Tx ∈ T . We call the random closed set Z
mixing, respectively ergodic, if the dynamical system (F ,B(F),PZ , T ) has
this property. The following theorem expresses the mixing property of Z in
terms of the capacity functional TZ .

Theorem 9.3.2. The stationary random closed Z in Rd is mixing if and only
if

lim
||x||→∞

(1− TZ(C1 ∪ TxC2)) = (1− TZ(C1))(1− TZ(C2)) (9.25)

holds for all C1, C2 ∈ C.

Proof. By Lemma 2.2.2, the system

A0 := {F C0
C1,...,Ck

: C0, . . . , Ck ∈ C, k ∈ N0}
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is a semialgebra, which by Lemma 2.1.1 generates the σ-algebra B(F).
Let A,B ∈ A0, say

A = F C0
C1,...,Cp

, B = FD0
D1,...,Dq

.

First we assume that p, q ≥ 1. Using (2.2) and (2.3), we obtain

PZ(A ∩ TxB)

= PZ

(
F C0∪TxD0

C1,...,Cp,TxD1,...,TxDq

)
=

p∑
r=0

q∑
s=0

(−1)r+s−1
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

TZ

(
r⋃

ν=0

Ciν
∪

s⋃
µ=0

TxDjµ

)

=
p∑

r=0

q∑
s=0

(−1)r+s
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

(
1− TZ

(
r⋃

ν=0

Ciν
∪ Tx

s⋃
µ=0

Djµ

))
.

This shows that (9.25) implies

lim
||x||→∞

PZ(A ∩ TxB)

=
p∑

r=0

q∑
s=0

(−1)r+s
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

(
1− TZ

(
r⋃

ν=0

Ciν

)) (
1− TZ

(
s⋃

µ=0

Djµ

))

= PZ(A)PZ(B).

The argument is similar if p = 0 or q = 0, where, for example, P(F C0) =
1−TZ(C0) has to be used. From Lemma 9.3.1 it now follows that Z is mixing.
The converse direction is clear. ��

We remark that Theorem 9.3.2 and its proof verbally carry over to the
case where Rd is replaced by E = F ′(Rd) as base space and the operation of
T on F(E) is defined by TxF := F + x (with F + x := {A+ x : A ∈ F}).

Now we apply Theorem 9.3.1 to the situation described in Theorem 9.2.1.
Let Z be a stationary random closed set with values in S. If ϕ : R → R is
translation invariant, additive, measurable and conditionally bounded and if
Z satisfies the integrability condition of Theorem 9.2.1, then

ϕK(Z) := ϕ(Z ∩K), K ∈ R,

defines an additive, T -covariant and bounded stochastic process with para-
meter space R. The T -covariance of (ϕK)K∈R follows from the translation
invariance of ϕ, and the boundedness is a consequence of the integrability
condition on Z, since ϕ is conditionally bounded. Recall that we work with
the canonical probability space (Ω,A,P) = (F ,B(F),PZ), so that
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T = {A ∈ B(F) : A+ x = A for all x ∈ Zd},

where A+x := {F+x : F ∈ A}. In order to stay within the general framework
of this section, we nevertheless continue to use notations such as Z(ω). From
Theorem 9.3.1 we obtain the following result.

Theorem 9.3.3. Let Z be a standard random set and let ϕ : R → R be
additive, translation invariant, measurable and conditionally bounded. Then,
for W ∈ K′ with 0 ∈ intW , the limit

ϕ(Z, ω) := lim
r→∞

ϕ(Z(ω) ∩ rW )
Vd(rW )

exists, for almost all ω ∈ Ω, and this limit is independent of W . Further,

ϕ(Z, ·) = E(ϕ̃(Z) | T) a.s.,

where ϕ̃(S) := ϕ(S ∩ Cd)− ϕ(S ∩ ∂+Cd) for S ∈ S.
If Z is ergodic, then

ϕ(Z, ·) = ϕ(Z) a.s.

The last assertion follows from the fact that in the ergodic case we have

ϕ(Z, ·) = E(ϕ̃(Z)) = E [ϕ(Z ∩ Cd)− ϕ(Z ∩ ∂+Cd)] a.s.

and that this is equal to ϕ(Z), by Theorem 9.2.1.

Theorem 9.3.1 can also be applied to the situation of Theorem 9.2.2. Let
X be a stationary particle process in Rd. We consider the dynamical system
(N,N ,PX , T ) with N = N(F ′(Rd)), N = N (F ′(Rd)), where PX is the dis-
tribution of X and T = {Tx : x ∈ Zd} is defined by (Txη)(B) := η(B − x)
for B ∈ B(F ′) and η ∈ N. Because of the stationarity of X, the probability
measure PX is invariant under the mappings Tx ∈ T . The invariant σ-algebra
T is given by

T = {A ∈ N : TxA = A for all x ∈ Zd},

where TxA := {Txη : η ∈ A}. The particle process X is called mixing, re-
spectively ergodic, if the dynamical system (N,N ,PX , T ) has this property.

Now suppose that X and the functional ϕ satisfy the assumptions of
Theorem 9.2.2. Then by

ϕK(X) :=
∑
C∈X

ϕ(C ∩K), K ∈ R,

we define an additive, T -covariant and bounded stochastic process with pa-
rameter space R. This is verified similarly to above, as well as the following
result.
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Theorem 9.3.4. Let X be a stationary particle process in Rd with particles in
R and with grain distribution Q satisfying (9.17). Let ϕ : R → R be additive,
translation invariant, measurable and conditionally bounded. Then forW ∈ K′

with 0 ∈ intW the limit

ϕ(X,ω) := lim
r→∞

1
Vd(rW )

∑
C∈X(ω)

ϕ(C ∩ rW )

exists for almost all ω ∈ Ω, and this limit is independent of W . Further,

ϕ(X, ·) = E(ϕ̃(X) | T) a.s.,

where the function ϕ̃ is defined by

ϕ̃(η) :=
∑

C∈supp η

[ϕ(C ∩ Cd)− ϕ(C ∩ ∂+Cd)], η ∈ N.

If X is ergodic, then

ϕ(X, ·) = ϕ(X) a.s.

At least for the most important examples of stationary random closed sets,
respectively particle processes, we want to show that they are mixing and thus
ergodic.

Theorem 9.3.5. Stationary Boolean models are mixing.

Proof. For the stationary Boolean model Z with intensity γ and grain distri-
bution Q, the capacity functional is, according to Theorem 9.1.1, given by

1− TZ(C) = e−γ
∫
C0

Vd(C−K) Q(dK)
, C ∈ C.

For C1, C2 ∈ C we have

Vd((C1 ∪ TxC2)−K) = Vd((C1 −K) ∪ (C2 −K + x)).

For givenK ∈ C0 and sufficiently large ||x|| we get (C1−K)∩(C2−K+x) = ∅,
hence

lim
||x||→∞

Vd((C1 ∪ TxC2)−K) = Vd(C1 −K) + Vd(C2 −K).

Further,
Vd((C1 ∪ TxC2)−K) ≤ Vd(C1 −K) + Vd(C2 −K).

The dominated convergence theorem yields (9.25) and thus the assertion. ��
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The preceding theorem allows us, in particular, to interpret the intrinsic
volume densities of a stationary Boolean model Z with grains in R as ergodic
densities. In the case of convex grains, the integrability condition (9.16) is
satisfied automatically, since for the Poisson particle process X that generates
Z we have, for K ∈ K,

E 2N(Z∩K) ≤ E 2X(FK) =
∞∑

k=0

2ke−Θ(FK)Θ(FK)k

k!
= eΘ(FK) <∞.

Hence, for any convex body W ∈ K with Vd(W ) > 0 and for j = 0, . . . , d we
conclude from Theorems 9.3.3 and 9.3.5 that

Vj(Z) = lim
r→∞

Vj(Z ∩ rW )
Vd(rW )

a.s.

A counterpart to Theorem 9.3.5 is true for particle processes.

Theorem 9.3.6. Stationary Poisson particle processes in Rd are mixing.

Proof. Given the stationary Poisson particle process X, we consider, as before
Theorem 9.3.4, the dynamical system (N(E),N (E),PX , T ) for the base space
E = F ′(Rd). By Lemma 3.1.4, Z := suppX defines a locally finite random
closed set in E. For Tx ∈ T and F ∈ F(E) we let TxF := F+x (with F+x :=
{A+x : A ∈ F}). We show that the dynamical system (F(E),B(F(E)),PZ , T )
is mixing. Since the operations of T on N(E) respectively F(E) commute with
the mapping i : η �→ supp η of Lemma 3.1.4, we can then deduce that also
(N(E),N (E),PX , T ) is mixing, which is the assertion.

As remarked after the proof of Theorem 9.3.2, that theorem holds also for
F(Rd) instead of Rd. In this form it will be used in the following.

The capacity functional of the random closed set Z is given by

TZ(C) = P(C ∩ suppX �= ∅) = P(X(C) �= 0)

for C ∈ C(E). If Θ denotes the intensity measure of the Poisson process X,
then

1− TZ(C) = e−Θ(C). (9.26)

In order to show (9.25) (in its generalized form), let C1, C2 ∈ C(E), thus these
are compact subsets of F ′(Rd). There are (according to the proof of Lemma
2.3.1) compact subsets K1,K2 of Rd with Ci ⊂ FKi

, i = 1, 2. For x ∈ Zd we
have TxC2 ⊂ FK2+x, hence

Θ(C1 ∩ TxC2) ≤ Θ(FK1,K2+x)

= γ

∫
C0

∫
Rd

1FK1,K2+x
(C + t)λ(dt) Q(dC),

by Theorem 4.1.1. For given C ∈ C0 and sufficiently large ||x||, there is no t
satisfying (C + t) ∩K1 �= ∅ and (C + t) ∩ (K2 + x) �= ∅; therefore,
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lim
||x||→∞

∫
Rd

1FK1,K2+x
(C + t)λ(dt) = 0.

Moreover, ∫
Rd

1FK1,K2+x
(C + t)λ(dt) ≤ Vd(K1 − C),

and the function C �→ Vd(K1 − C) is Q-integrable, by (4.4). The dominated
convergence theorem yields

lim
||x||→∞

Θ(C1 ∩ TxC2) = 0

and thus
lim

||x||→∞
e−Θ(C1∪TxC2) = e−Θ(C1)e−Θ(C2).

Now (9.26) and Theorem 9.3.2 yield the assertion. ��

If X is, in particular, a stationary Poisson particle process in R that sat-
isfies (9.17), then for W ∈ K with Vd(W ) > 0 we obtain

Vj(X) = lim
r→∞

1
Vd(rW )

∑
C∈X

Vj(C ∩ rW ) a.s.

Note for Section 9.3

First uses of ergodic theorems in stochastic geometry were made by Miles [517];
see also [521, 523]. In special situations, he has proved a number of convergence re-
sults for ‘increasing observation windows’. A unified and general treatment of such
convergence theorems was given by Nguyen and Zessin [584], building on work of
Tempel’man [755]. In Section 9.3, we followed their approach. In their application to
Boolean models, however, Nguyen and Zessin did not mention that the conditional
expectation obtained as a limit function is almost surely constant, as a consequence
of the mixing property of stationary Poisson processes. The importance of mixing
properties in stochastic geometry was pointed out by Cowan [180, 181]. A simple
proof of the mixing property of stationary Boolean models was given by Wieacker
[815]. In using the capacity functional in establishing mixing properties, we here fol-
lowed Heinrich [324]; there one also finds further information on germ-grain models.
For ergodic theory in general, we refer to Krengel [428].

9.4 Intersection Formulas and Unbiased Estimators

The following is a typical question arising from practical applications of ran-
dom sets. Suppose that the realizations Z(ω) of a standard random set Z can
be observed in a window, say, a compact convex set W with Vd(W ) > 0. By
‘observation’ we mean that, in principle, values such as Vj(Z(ω)∩W ) can be
measured. We want to use the random variables Vj(Z∩W )/Vd(W ) to estimate
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the densities Vj(Z). In general, however, Vj(Z∩W )/Vd(W ) will depend onW
and will not be an unbiased estimator for Vj(Z). To estimate the bias, we have
to determine the expectation of Vj(Z ∩W ). Under suitable assumptions on
the random set Z, this can be achieved by means of integral geometry. From
the obtained set of expectations, one can then also derive unbiased estimators
for the densities of the intrinsic volumes.

Analogous situations arise for stationary processes X of polyconvex par-
ticles or k-dimensional flats. In both cases, the total jth intrinsic volumes of
the visible parts in a sampling window W ,∑

F∈X(ω)

Vj(F ∩W ),

are observable for certain realizations X(ω) of X and we need the correspond-
ing expectation to derive unbiased estimators for Vj(X).

Finally, a problem, also motivated by practical applications, consists in the
estimation of densities of a stationary random set Z or a stationary process X
of particles or k-flats from measurements in lower-dimensional sections. Here,
stochastic versions of the Crofton formulas yield an answer.

Intersection Formulas for Random Sets

We begin this program with an extension of the local translative formula
(5.17) to standard random sets.

Theorem 9.4.1. Let Z be a standard random set in Rd, let W ∈ K′ and
j ∈ {0, . . . , d}. Then

EΦj(Z ∩W, ·) =
d∑

k=j

Φ
(j)

k,d−k+j(Z,W ; ·), (9.27)

If Z is isotropic, then

EΦj(Z ∩W, ·) =
d∑

k=j

ck,d−k+j
j,d Vk(Z)Φd−k+j(W, ·), (9.28)

where the constants are given by (5.5).

Proof. Let B ∈ B(Rd) be bounded. The function

Rd ×Ω → R

(x, ω) �→ Φj(Z(ω) ∩W ∩ (Bd + x), B)

is measurable, by Theorems 14.2.2 and 14.4.4. It is also integrable with respect
to the product measure λ ⊗ P. This follows as in the proof of Theorem 9.2.1
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(using Φj(K,B) ≤ Vj(K) for convex bodies) if we additionally assume that
W ⊂ Cd. This assumption is not a restriction of generality, since in the
arguments the cube Cd can clearly be replaced by a larger cube.

For x ∈ Rd and r > 0, we deduce from the translation covariance of Φj

and the stationarity of Z that

EΦj(Z ∩W ∩ (rBd + x), B) = EΦj((Z − x) ∩ (W − x) ∩ rBd, B − x)
= EΦj(Z ∩ (W − x) ∩ rBd, B − x).

Using Fubini’s theorem and the invariance properties of λ, we get

E

∫
Rd

Φj(Z ∩W ∩ (rBd + x), B)λ(dx)

= E

∫
Rd

Φj(Z ∩ (W + x) ∩ rBd, B + x)λ(dx).

We apply the local translative formula (5.17) (for polyconvex sets, see
Theorem 5.2.4) to either side (with one of the sets A,B in the quoted for-
mula equal to Rd) and obtain

d∑
k=j

EΦ
(j)
k,d−k+j(Z ∩W, rBd;B × Rd) =

d∑
k=j

EΦ
(j)
k,d−k+j(Z ∩ rBd,W ; Rd ×B).

Now we divide both sides by Vd(rBd) and let r tend to infinity. Because of

Φ
(j)
k,d−k+j(Z ∩W, rBd;B × Rd) = rd−k+jΦ

(j)
k,d−k+j(Z ∩W,Bd;B × Rd)

and the decomposability property (Theorem 6.4.1), the left side tends to
EΦj(Z ∩W,B) and, by Theorem 9.2.1, the right side tends to

d∑
k=j

Φ
(j)

k,d−k+j(Z,W ;B).

If Z is isotropic,

Φ
(j)

k,d−k+j(Z,W ;B)

= lim
r→∞

1
Vd(rBd)

EΦ
(j)
k,d−k+j(Z ∩ rBd,W ; Rd ×B)

= lim
r→∞

1
Vd(rBd)

E

∫
SOd

Φ
(j)
k,d−k+j(ϑZ ∩ rBd,W ; Rd ×B) ν(dϑ)

= lim
r→∞

1
Vd(rBd)

ck,d−k+j
j,d EVk(Z ∩ rBd)Φd−k+j(W,B).

Here we have used Fubini’s theorem and Theorem 6.4.2. This completes the
proof. ��
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The special case j = d of formula (9.27) reduces to (2.20); it holds for
arbitrary stationary random closed sets.

We note two consequences of Theorem 9.4.1. Let Z be a standard random
set in Rd and B ⊂ Rd a bounded Borel set. We choose a convex body W ∈ K′

with B ⊂ intW . Then Φj(Z ∩W,B) = Φj(Z,B). Since Φ(j)
k,d−k+j(C,W ; Rd ×

B) = 0 for k > j and Φ(j)
j,d(C,W ; Rd ×B) = Vj(C)λ(B), for arbitrary C ∈ R,

we obtain

Φ
(j)

k,d−k+j(Z,W ;B) = 0, k > j, and Φ
(j)

j,d(Z,W ;B) = Vj(Z)λ(B).

Therefore, Theorem 9.4.1 implies the following result, which was already an-
nounced in Section 9.2.

Corollary 9.4.1. If Z is a standard random set in Rd and B ⊂ Rd is a
bounded Borel set, then

EΦj(Z,B) = Vj(Z)λ(B)

for j ∈ {0, . . . , d}.

For j = d− 1, Theorem 9.4.1 yields

EΦd−1(Z ∩W,B) = Vd−1(Z)λ(W ∩B) + Vd(Z)Φd−1(W,B),

and Corollary 9.4.1 reads

EΦd−1(Z,B) = Vd−1(Z)λ(B).

Since Φd−1(C, ·) ≥ 0 for C ∈ R, by (14.15), both results and the limit relation

Vd−1(Z) = lim
r→∞

EVd−1(Z ∩ rW )
Vd(rW )

hold for stationary random closed sets Z with values in S, even without the in-
tegrability condition (9.16), but the corresponding expressions may be infinite.

As a further consequence of Theorem 9.4.1, we note the global case of
(9.28), which is the formula

EVj(Z ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(Z)Vd−k+j(W ).

It holds for isotropic Z, but also in the non-isotropic case, if W is a ball
or if W is replaced by a randomly rotated version θW , with θ uniform and
independent of Z, and if in addition the expectation over θ is taken on the left
side. In that case, we can even consider functionals without motion invariance.
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Theorem 9.4.2. Let Z be a standard random set in Rd, let ϕ : R → R be
additive, translation invariant and continuous on K′, let W ∈ K′. Further, let
θ be a random rotation with distribution ν and independent of Z. Then

Eν Eϕ(Z ∩ θW ) =
d∑

k=0

Vk(W )ϕd−k(Z).

Proof. Similar to the proof of Theorem 9.4.1, one shows that

(x, ϑ, ω) �→ ϕ(Z(ω) ∩ ϑW ∩ (Bd + x))

is λ ⊗ ν ⊗ P-integrable. The translation invariance of ϕ and the stationarity
of Z show that

Eν Eϕ(Z ∩ θW ∩ (rBd + x)) = Eν Eϕ(Z ∩ (θW − x) ∩ rBd).

Integration over Rd and Fubini’s theorem give

Eν E

∫
Rd

ϕ(Z ∩ θW ∩ (rBd + x))λ(dx)

= E

∫
SOd

∫
Rd

ϕ(Z ∩ (ϑW − x) ∩ rBd)λ(dx) ν(dϑ).

In the first integral, we can replaceBd by ρBd with ρ ∈ SOd and then integrate
over all ρ ∈ SOd with respect to ν. This gives

Eν E

∫
Gd

ϕ(Z ∩ θW ∩ grBd)µ(dg) = E

∫
Gd

ϕ(Z ∩ gW ∩ rBd)µ(dg).

Now Theorem 5.1.2 (Hadwiger’s general integral geometric theorem) yields

d∑
k=0

Eν Eϕd−k(Z ∩ θW )Vk(rBd) =
d∑

k=0

Eϕd−k(Z ∩ rBd)Vk(W ). (9.29)

Recall that
ϕd−k(K) =

∫
A(d,k)

ϕ(K ∩ E)µk(dE)

for K ∈ K. This definition can also be used for K ∈ R and then provides
the additive extension of ϕd−k to the convex ring R. Since ϕ is continuous on
K′ and therefore conditionally bounded, also ϕd−k is conditionally bounded.
Hence, Theorem 9.2.1 applies, and the density

ϕd−k(Z) = lim
r→∞

Eϕd−k(Z ∩ rBd)
Vd(rBd)

exists. Therefore, dividing the obtained equation (9.29) by Vd(rBd) and letting
r tend to infinity, we obtain the assertion. ��
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The special choice ϕ = Vj , where

ϕd−k = (Vj)d−k = ck,d−k+j
j,d Vd−k+j ,

gives

Eν EVj(Z ∩ θW ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(Z),

for j = 0, . . . , d.

Intersection Formulas for Particle Processes

Now we consider similar intersection formulas for particle processes. For sim-
plicity, we restrict ourselves to convex particles, although under suitable inte-
grability conditions the results are also valid for point processes in the convex
ring R. For convex particles, the only integrability condition needed is (4.1),
which by Theorem 4.1.2 is equivalent to the integrability of the intrinsic vol-
umes with respect to the grain distribution.

Theorem 9.4.3. Let X be a stationary process of convex particles in Rd, let
j ∈ {0, . . . , d} and W ∈ K′. Then

E
∑

K∈X

Φj(K ∩W, ·) =
d∑

k=j

Φ
(j)

k,d−k+j(X,W ; ·). (9.30)

If X is isotropic, then

E
∑

K∈X

Φj(K ∩W, ·) =
d∑

k=j

ck,d−k+j
j,d Vk(X)Φd−k+j(W, ·). (9.31)

Proof. Let B ∈ B(Rd). With Campbell’s theorem (Theorem 3.1.2) and the
decomposition of Theorem 4.1.1, we obtain

E
∑

K∈X

Φj(K ∩W,B) = γ
∫
K0

∫
Rd

Φj((K + x) ∩W,B)λ(dx) Q(dK),

where γ and Q are, respectively, the intensity and the grain distribution of
X. Now the translative formula (5.17) immediately yields (9.30).

For isotropic X, we can in addition integrate over rotations of the parti-
cles K and then either apply the kinematic formula for curvature measures
(Theorem 5.3.2) or the rotation formula for mixed measures (Theorem 6.4.2)
to get (9.31). ��

The consequences of this result are similar to those of Theorem 9.4.1.
Namely, for j = d and j = d− 1, (9.30) reduces to the simple relations
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E
∑

K∈X

Φd(K ∩W, ·) = Vd(X)Φd(W, ·),

E
∑

K∈X

Φd−1(K ∩W, ·) = Vd−1(X)Φd(W, ·) + Vd(X)Φd−1(W, ·).

If B is a bounded Borel set and W is large enough such that B ⊂ intW , then
(9.30) implies

E
∑

K∈X

Φj(K,B) = Vj(X)λ(B).

Since both sides are nonnegative, they define locally finite measures and the
equality holds for arbitrary Borel sets B.

Corollary 9.4.2. Let X be a stationary process of convex particles in Rd and
let B ∈ B(Rd) be a Borel set. Then

E
∑

K∈X

Φj(K,B) = Vj(X)λ(B).

for j ∈ {0, . . . , d}.

The global case of (9.31), which can be written as

E
∑

K∈X

Vj(K ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(X), (9.32)

holds for isotropic X or for general X if either W is a ball or if we average
over random rotations of W . The following result is the analog of Theorem
9.4.2.

Theorem 9.4.4. Let X be a stationary process of convex particles in Rd,
let ϕ : R → R be additive, translation invariant and continuous on K′, let
W ∈ K′. If θ is a random rotation with distribution ν and independent of Z,
then

EνE
∑

K∈X

ϕ(K ∩ θW ) =
d∑

k=0

Vk(W )ϕd−k(X).

Proof. In complete analogy to the proof of Theorem 9.4.2, we obtain

d∑
k=0

EνE
∑

K∈X

ϕd−k(K ∩ θW )Vk(rBd) =
d∑

k=0

E
∑

K∈X

ϕd−k(K ∩ rBd)Vk(W ).

Dividing by Vd(rBd), letting r → ∞, and using Theorem 9.2.2, we complete
the proof. ��
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Processes of Flats

Instead of particle processes, we now consider k-flat processes in Rd. For
k ∈ {0, . . . , d − 1}, let X be a stationary k-flat process with intensity γ and
directional distribution Q, let j ∈ {0, . . . , k} and W ∈ K′. In analogy to the
corresponding notion for particle processes, we define the specific (j, k)th
mixed measure Φ

(j)

k,d−k+j(X,W ; ·) of X (for given W ) by

Φ
(j)

k,d−k+j(X,W ; ·) := γ
∫

G(d,k)

Φ
(j)
k,d−k+j(L,W ;BL × ·) Q(dL),

where BL ⊂ L is the ball with center 0 and λk(BL) = 1.

Theorem 9.4.5. Let X be a stationary k-flat process in Rd, k ∈ {0, . . . , d−1},
and let j ∈ {0, . . . , k}, W ∈ K′ and B ⊂ Rd a Borel set. Then

E
∑
E∈X

Φj(E ∩W,B) = Φ
(j)

k,d−k+j(X,W ;B).

If X is isotropic, then

E
∑
E∈X

Φj(E ∩W,B) = γck,d−k+j
j,d Φd−k+j(W,B). (9.33)

Proof. Using Campbell’s theorem, the decomposition of Theorem 4.4.2, the
local determination of curvature measures and the translative Crofton formula
from Theorem 6.4.3, we obtain

E
∑
E∈X

Φj(E ∩W,B)

= γ
∫

G(d,k)

∫
L⊥
Φj(W ∩ (L+ x), B ∩ (L+ x))λL⊥(dx) Q(dL)

= γ
∫

G(d,k)

Φ
(j)
k,d−k+j(L,W ;BL ×B) Q(dL)

= Φ
(j)

k,d−k+j(X,W ;B).

In the isotropic case, we can perform an additional integration over all rota-
tions of L and then use either the Crofton formula for curvature measures or
the rotation formula for mixed measures. ��

The relations (9.33) provide k + 1 interpretations of the intensity γ, in-
cluding those given by (4.27) and Theorem 4.4.3.

As before, we get a simpler result if we apply an independent uniform ran-
dom rotation to the sampling window. We state it only in the global version.
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Theorem 9.4.6. Let X be a stationary k-flat process of intensity γ in Rd, let
k ∈ {1, . . . , d− 1}, j ∈ {0, . . . , k} and W ∈ K′. If θ is a random rotation with
distribution ν and independent of X, then

Eν E
∑
E∈X

Vj(E ∩ θW ) = γck,d−k+j
j,d Vd−k+j(W ).

If X is isotropic or if W is a ball, the result holds without the expectation Eν .

Crofton Formulas

Theorems 9.4.1 and 9.4.3 also immediately yield Crofton formulas for random
sets and particle processes. If we talk of a standard random set Z or a sta-
tionary particle process X in some affine subspace E, the stationarity (and
possibly isotropy) of Z and X refers to E, and densities of intrinsic volumes
have to be computed in E. For the following results, we denote by

V
(j)

d−k+j,k(Y,K) := Φ
(j)

d−k+j,k(Y,K; Rd)

the specific (j, d− k+ j)th mixed functional of the random set or particle
process Y and K ∈ K′.

Theorem 9.4.7. Let Z be a standard random set in Rd, let E ∈ A(d, k) be a
k-dimensional flat, where k ∈ {1, . . . , d− 1}, BE ⊂ E a ball with λk(BE) = 1,
and let j ∈ {0, . . . , k}. Then Z ∩ E is a standard random set in E, and

Vj(Z ∩ E) = V
(j)

d−k+j,k(Z,BE).

If Z is isotropic, then Z ∩ E is isotropic and

Vj(Z ∩ E) = ck,d−k+j
j,d Vd−k+j(Z).

Proof. We omit the (not difficult) proof that Z∩E is, with respect to E, again
a standard random set (and isotropic, if Z is isotropic). For that reason, the
density Vj(Z ∩ E) exists. Theorem 9.4.1 yields

EVj(Z ∩BE) =
d∑

m=d−k+j

V
(j)

m,d−m+j(Z,BE) (9.34)

where only terms with m ≥ d − k + j appear since V
(j)

m,d−m+j(Z,BE) = 0
for m < d − k + j. Since Z is stationary, we can assume that 0 ∈ E and
hence rBE ⊂ E for r > 0. In (9.34), we replace BE by rBE and divide
the equation by Vk(rBE). For r →∞, the left side tends to Vj(Z ∩ E), since
Vj(Z∩rBE) = Vj(Z∩E∩rBE) (and the intrinsic volumes do not depend on the

dimension of the surrounding space). Since V
(j)

m,d−m+j(Z, rBE) is homogeneous

of degree d−m+ j in r, the right side tends to V
(j)

d−k+j,k(Z,BE).
As in earlier proofs, the result for isotropic Z follows from the rotation

formula in Theorem 6.4.2. ��
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In analogy to Theorem 9.4.7, the following Crofton formula for particle
processes can be stated. For simplicity, we assume that the resulting intersec-
tion processes X∩E are simple, though it is not difficult to extend the results
to the general case.

Theorem 9.4.8. Let X be a stationary process of convex particles in Rd, let
E ∈ A(d, k) be a k-dimensional flat, where k ∈ {1, . . . , d− 1}, BE ⊂ E a ball
with λk(BE) = 1, and let j ∈ {0, . . . , k}. Then the intersection process X ∩E
is a stationary process of convex particles with respect to E, and

Vj(X ∩ E) = V
(j)

d−k+j,k(X,BE).

If X is isotropic, then X ∩E is isotropic and

Vj(X ∩ E) = ck,d−k+j
j,d Vd−k+j(X).

Proof. It is clear that X ∩ E is a stationary process of convex particles in
E (and isotropic if X is isotropic). In view of the stationarity of X, we may
assume that 0 ∈ BE . From Theorem 9.4.3, and since V

(j)

m,d−m+j(X,BE) = 0
for m < d− k + j, we get

E
∑

K′∈X∩E

Vj(K ′ ∩BE) = E
∑

K∈X

Vj(K ∩BE)

=
d∑

m=d−k+j

V
(j)

m,d−m+j(X,BE).

We replace BE by rBE with r > 0 and divide by Vk(rBE). For r → ∞, by
Theorem 9.2.2, applied in E, the left side converges to Vj(X ∩ E), and the

right side converges to V
(j)

d−k+j,k(X,BE).
For the result in the isotropic case, we use Theorem 6.4.2 again. ��

As an example, let X be a stationary and isotropic process of line segments
in Rd. For a hyperplane E ∈ A(d, d−1) we obtain from the preceding theorem

χ(X ∩ E) = cd−1,1
0,d V1(X).

For v ∈ Sd−1, we let E := v⊥ and put γ(v) := χ(X ∩ E). Observing that
cd−1,1
0,d = 2κd−1/dκd, we get

γ(v) =
2κd−1

dκd
V1(X).

This is also obtained from (4.40), since in the isotropic case the spherical
directional distribution ϕ is given by

ϕ =
1

σ(Sd−1)
σ =

1
dκd

σ
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(with the spherical Lebesgue measure σ), and∫
Sd−1

|〈u, v〉|σ(du) = 2κd−1.

Unbiased Estimators

The intersection formulas proved so far can be used, in an obvious way, to
provide estimators for the specific intrinsic volumes, which are unbiased or
asymptotically unbiased.

We first discuss the situation for a standard random set Z. Let j ∈
{0, . . . , d}. Since the estimation of the specific volume Vd(Z) is of a special
and simple nature (and was discussed earlier), we concentrate on the cases
j ≤ d− 1. An unbiased estimator V̂j for Vj(Z), based on the observation of Z
in a sampling window W with W ∈ K′ and Vd(W ) > 0, is immediately given
by Corollary 9.4.1, namely

V̂j :=
Φj(Z ∩W, intW )

Vd(W )
.

For example, for j = d − 1, this estimator requires us to evaluate the total
surface area of the boundary parts of Z(ω) inside the window W .

Since the evaluation of curvature measures Φj with j < d−1 is more com-
plicated, it seems natural to use the intrinsic volume Vj(Z ∩W ) (normalized
by Vd(W )) as an estimator. This estimator is, in general, not unbiased. In
fact, the bias is given by (9.27), namely through the right side of

EVj(Z ∩W ) =
d∑

k=j

V
(j)

k,d−k+j(Z,W ). (9.35)

Writing (9.35), for the sampling window rW , r > 0, in the form

EVj(Z ∩ rW )
Vd(rW )

= Vj(Z) +
1

Vd(W )

d∑
k=j+1

rj−kV
(j)

k,d−k+j(Z,W ),

we see how the mean error tends to 0 for increasing windows W .
In the isotropic case, one can also obtain an unbiased estimator from (9.35).

Recall that, for isotropic Z, (9.35) transforms into

EVj(Z ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(Z), j = 0, . . . , d.

This system of equations can be solved for V0(Z), . . . , Vd(Z), since the coeffi-
cient matrix is triangular. The resulting formulas are of the form
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Vi(Z) = E

(
d∑

m=i

βdim(W )Vm(Z ∩W )

)
, i = 0, . . . , d,

hence

V̂j :=
d∑

m=j

βdjm(W )Vm(Z ∩W )

is an unbiased estimator for Vj(Z). As an example, we write down the two-
dimensional case, using the notations A,L, χ for area, perimeter and Euler
characteristic, respectively:

A(Z) = E
A(Z ∩W )
A(W )

,

L(Z) = E

[
L(Z ∩W )
A(W )

− L(W )A(Z ∩W )
A(W )2

]
,

χ(Z) = E

[
χ(Z ∩W )
A(W )

− 1
2π
L(W )L(Z ∩W )

A(W )2

+
(

1
2π
L(W )2

A(W )3
− 1
A(W )2

)
A(Z ∩W )

]
.

The method just described requires the evaluation of all the intrinsic vol-
umes V0(Z ∩W ), . . . , Vd(Z ∩W ). A similar method is based on the evaluation
of one functional, the Euler characteristic V0(Z∩W ), but in different sampling
windows r0W, . . . , rdW . The system of equations then reads

EV0(Z ∩ rjW ) =
d∑

k=0

ck,d−k
0,d rkj Vk(W )Vd−k(Z), j = 0, . . . , d.

If the parameters r0, . . . , rd are chosen such that the square matrix with entries
ck,d−k
0,d rkj Vk(W ) is regular, this system of equations can again be solved for
V0(Z), . . . , Vd(Z) and yields unbiased estimators

V̂j :=
d∑

m=0

αdjm(W )V0(Z ∩ rmW )

for Vj(Z).
Returning to random sets Z without the isotropy condition, there is also

an unbiased estimator for Vj(Z) coming from Theorem 9.2.1, namely

V̂j := Vj(Z ∩ Cd)− Vj(Z ∩ ∂+Cd).

This estimator has been described in the stereological literature.
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If Z is a stationary (or stationary and isotropic) Boolean model, the esti-
mators described so far in a sampling window W are strongly consistent, for
increasing W , due to Theorem 9.3.3. For example,

V̂j :=
Vj(Z ∩ rW )
Vd(rW )

→ Vj(Z) a.s.

as r →∞.
With respect to stationary particle processesX on K′ (orR′), the situation

is completely analogous. We therefore skip the details. The basic result here
is Theorem 9.4.3. It provides unbiased estimators

V̂j :=
∑

K∈X Φj(K ∩W, intW )
Vd(W )

for Vj(X), whereas the estimator

V̂j :=
∑

K∈X Vj(K ∩W )
Vd(W )

is asymptotically unbiased. A different unbiased estimator is given by

V̂j :=
∑

K∈X

(
Vj(K ∩ Cd)− Vj(K ∩ ∂+Cd)

)
.

Of course, the different representations of ϕ-densities in Theorem 4.1.3 yield
further unbiased or asymptotically unbiased estimators.

If the particles K ∈ X are polyconvex and uniformly bounded and the
window W is large enough, such that Vd(W � K) > 0, for Q-almost all K,
another simple estimator is given by

V̂j :=
∑

K∈X, K⊂W

Vj(K)
Vd(W �K)

.

In fact, since

E
∑

K∈X, K⊂W

Vj(K)
Vd(W �K)

= γ
∫
R0

∫
Rd

Vj(K + x)
Vd(W � (K + x))

1{K + x ⊂W}λ(dx) Q(dK)

= γ
∫
R0

Vj(K)
Vd(W �K)

∫
Rd

1{K + x ⊂W}λ(dx) Q(dK)

= γ
∫
R0

Vj(K) Q(dK)

= Vj(X),



426 9 Mean Values for Random Sets

this estimator is unbiased.
For isotropic X, the linear equation method yields unbiased estimators

V̂j :=
d∑

m=j

βdjm(W )
∑

K∈X

Vm(K ∩W ),

respectively

V̂j :=
d∑

m=j

αdjm(W )
∑

K∈X

V0(K ∩ rmW ).

Notice that the coefficients βdjm(W ) and αdjm(W ) are the same as in the case
of random sets. Therefore, also the given explicit formulas in the planar case
transfer immediately to particle processes.

For Poisson processes, Theorem 9.3.5 implies that the estimators are
strongly consistent.

Let us now come to applications of the Crofton formulas. We concentrate
on stationary and isotropic random sets Z. Then we can work with a fixed
plane E. Analogous estimators for non-isotropic sets Z follow, if a random
plane E with isotropic distribution (and independent of Z) is chosen. Also,
the formulas for particle processes X are totally analogous.

We have seen how the densities Vj(Z) of an isotropic standard random set
admit asymptotically unbiased or even unbiased estimators. If Z is observed
in a k-dimensional section Z ∩ E, then we can obtain estimators for Vj(Z ∩
E). Theorem 9.4.7 tells us that these are at the same time (asymptotically)
unbiased estimators for the densities ck,d−k+j

j,d Vd−k+j(Z).
As an example, we consider the practically relevant case where d = 3 and

k = 2. We deal with the three-dimensional densities V (volume), S (surface
area), M (integral of mean curvature) and with the two-dimensional densities
A (area), L (boundary length), χ (Euler characteristic). The equations of
Theorem 9.4.7 now read

V (Z) = A(Z ∩ E), (9.36)

S(Z) =
4
π
L(Z ∩ E), (9.37)

M(Z) = 2πχ(Z ∩ E). (9.38)

These equations provide an exact theoretical foundation for the ‘fundamental
equations of stereology’, which are traditionally written in the form

VV = AA,

SV =
4
π
LA,

MV = 2πχA.
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In this way, formula (9.35) and Theorem 9.4.7 provide theoretical justi-
fications for some practical procedures of stereology, at least in those cases
where it is reasonable to model probes of real materials by realizations of
isotropic standard random sets. From the practical point of view, the consid-
eration of locally polyconvex sets only does not seem to be very restrictive.
Of the invariance properties, stationarity is always unrealistic, requiring un-
bounded sets, but it may well be satisfied approximately at close range. The
most critical assumption is that of isotropy. For that reason, the applicability
of motion invariant stereology is limited, and the employment of translative
integral geometry is appropriate.

Notes for Sections 9.1, 9.2, 9.4

1. The introduction of densities of functionals for random S-sets, intersection for-
mulas as in Section 9.4, and formulas for Boolean models as in Section 9.1, go back
to various sources, where they can be found in varying degrees of generality, in part
under special assumptions or treated heuristically. We mention the following refer-
ences, roughly in chronological order: Matheron [462], Davy [198, 199], Miles [530],
Miles and Davy [536], Stoyan [739], A.M. Kellerer [390, 391], H.G. Kellerer [392],
Weil [787], Wieacker [815], Weil and Wieacker [804], Zähle [826].

The starting point for much of the presentation in Sections 9.2, 9.4 and 9.1
was the work of Weil and Wieacker [804]. We gratefully acknowledge simplifications
suggested orally by Markus Kiderlen (proof of Theorem 9.4.1) and Lars Diening
(second proof of Lemma 9.2.1).

2. Theorem 9.4.1 and its counterpart for particle processes, Theorem 9.4.3, which
provide unbiased estimators for the specific intrinsic volumes without isotropy as-
sumptions, were proved by Weil [787, 788].

3. Special cases of the intersection formulas of Section 9.4 first came up in stereol-
ogy (see also Note 2 of Subsection 8.4.2). We have treated them here rigorously and
generally, for suitable stationary random closed sets or particle processes as the em-
ployed models. An alternative approach of stochastic geometry to section stereology
consists in working with deterministic (and bounded) structures and investigating
them with the aid of random sections. Different distributions of intersection planes
that are relevant in this context are discussed in Section 8.4. A presentation of
stereological problems and formulas from a geometric point of view is found in Weil
[785]. A reader interested in the practical side of stereology is referred to the two vol-
umes of Weibel [778]. More recent developments in the stereology of non-stationary
structures are presented in the book by Jensen [379]. For a modern view on stereol-
ogy in general, we refer to the volume Stereology for Statisticians by Baddeley and
Jensen [53].

We have restricted ourselves here to standard random sets. Other classes of
random closed sets can be treated according to the availability of suitable integral
geometric formulas. For example, a counterpart to the second formula of Theorem
9.4.7, for stationary, isotropic random closed sets which are rectifiable manifolds,
appears in Mecke [479]. A very general investigation of intersection formulas for
random processes of Hausdorff rectifiable closed sets is due to Zähle [822].
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4. Applications of Boolean models to various questions of statistical physics (perco-
lation, complex fluids, structure of the universe) were suggested and investigated by
K. Mecke [505, 506]; see also Beisbart et al. [89], Beisbart et al. [88]. Here specific
intrinsic volumes (under the name of means of Minkowski functionals) are used as
morphological parameters for the description of spatial structures.

5. Concerning the estimation of the specific intrinsic volumes of standard random
sets Z, Schmidt and Spodarev [669] proposed a further method, based on the ad-
ditively extended Steiner formula (14.70). In global form, with ρε(K) := ρε(K, Rd),
the latter says that

ρε(K) =

d∑
j=0

εd−jκd−jVj(K)

for ε ≥ 0 and K ∈ R. Since K �→ ρε(K) is additive, translation invariant and locally
bounded (it is even continuous on K′), the density

ρε(Z) := lim
r→∞

Eρε(Z ∩ rW )

Vd(rW )

exists and satisfies

ρε(Z) =
d∑

j=0

εd−jκd−jVj(Z).

Choosing pairwise different values ε0, . . . , εd and inverting the system of linear equa-
tions yields

Vj(Z) =

d∑
m=0

γdjmρεm
(Z), j = 0, . . . , d.

As estimators of ρεm
(Z), again the values ρεm(Z ∩ W )/Vd(W ) in a window W can

be used; then

V̂j :=
1

Vd(rW )

d∑
m=0

γdjmρεm(Z ∩ rW )

is an asymptotically unbiased estimator, as r → ∞. The evaluation of ρεm(Z ∩ W )
is based on the integral of the index function over W + εmBd (see Note 3 of
Section 14.4). A variant, which is also studied in Schmidt and Spodarev [669], is to
integrate the index function only over W � εmBd (this method is sometimes called
‘minus sampling’), then the corresponding estimator is unbiased. Under additional
assumptions, the authors also give a consistent estimation of the asymptotic co-
variance matrix of these estimators and show that, for germ-grain models satisfying
some mixing conditions, a central limit theorem holds.

An algorithmic version of the estimation procedure, for digitized images of
random sets, is developed in Klenk, Schmidt and Spodarev [420], and further in
Guderlei, Klenk, Mayer, Schmidt and Spodarev [301].

6. Limit theorems. For ergodic standard random sets Z, Theorem 9.3.3 provides
an a.s. limit theorem for additive functionals ϕ of Z∩W , as the sampling window W
increases to the whole space. This raises the natural question of more refined results
for the corresponding estimators (asymptotic normality, large deviations, etc.). We
mention here some of the more recent advances and refer to Molchanov [546] for
further and, in particular, earlier results.
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Heinrich and Molchanov [329] show a central limit theorem for quite general ran-
dom measures associated with stationary Boolean models. Their results include the
positive extensions of the curvature measures (intrinsic volumes) and also generalize
to germ-grain models with suitable ergodicity or mixing conditions.

Pantle, Schmidt and Spodarev [594] study the asymptotic normality of estima-
tors for additive functionals (valuations) for stationary Boolean models. In particu-
lar, this includes the (additively extended) intrinsic volumes. Also here, the results
extend to more general germ-grain models satisfying a mixing condition.

Heinrich [326] proved a large deviations result for the empirical volume fraction
of a stationary Boolean model.

9.5 Further Estimation Problems

In the previous section, we have discussed several methods of estimating im-
portant characteristics of stationary random closed sets Z or particle processes
X, the specific intrinsic volumes. For stationary and isotropic Boolean models
Z, we have also seen in Section 9.1 how measurements on Z can be used to
estimate the specific intrinsic volumes of the underlying Poisson process X
of particles. These mean values give first quantitative information about Z
or X. However, even for a Poisson process X of random balls, which are dis-
tributed according to a radius distribution function G on (0,∞), the specific
intrinsic volumes of X, though yielding certain moments of G, in general do
not determine the whole distribution.

In the following, we continue these considerations and discuss three par-
ticular estimation problems in more detail. The first problem concerns the
determination of the intensity γ for a stationary Boolean model Z. We shall
describe different estimation methods which work under various assumptions,
in particular one which is based on the formulas in Theorem 9.1.5. The sec-
ond problem is to estimate the radius distribution of a stationary process X of
balls in Rd from measurements of the section process X∩L in a k-dimensional
section plane L, k ∈ {1, . . . , d−1}. For d = 3, k = 2, this is the classical Wick-
sell problem. In the third problem, we consider a stationary Boolean model
with spherical grains and show how the radius distribution can be estimated
using generalized contact distributions.

Intensity Estimation for Boolean Models

We have seen in Theorem 9.1.4 that, for a stationary and isotropic Boolean
model Z with convex grains, the (d + 1)-tuple of specific intrinsic volumes
V0(Z), . . . , Vd(Z) determines the corresponding (d+1)-tuple V0(X), . . . , Vd(X)
of the underlying Poisson particle process X uniquely (we also emphasized the
cases d = 2 and d = 3). Since the formulas in Theorem 9.1.4 follow a triangular
array, although not linear, they can easily be solved for V0(X), . . . , Vd(X)
yielding equations
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Vj(X) = fdj(V0(Z), . . . , Vd(Z)), j = 0, . . . , d,

with rational functions fdj . Using the estimators for Vi(Z) from the previous
section, we thus obtain estimators for V0(X), . . . , Vd(X) (which are no longer
unbiased). Since

V0(X) = χ(X) = γ

due to the convexity of the grains, this includes an estimator of the intensity
γ. As we have mentioned, Theorem 9.1.4 remains valid for polyconvex grains
(under appropriate integrability conditions). If the grains have Euler char-
acteristic one (which in the plane is the case if they are simply connected),
then χ(X) = γ, so we still obtain an estimator for γ. However, if we drop the
isotropy of Z, the situation becomes more complicated.

We first consider a stationary Boolean model Z with convex grains. Ac-
cording to Theorem 9.1.1, the spherical contact distribution function H of Z
is given by

H(r) = 1− exp

(
−

d∑
k=1

κkr
kVd−k(X)

)
, r ≥ 0.

Hence,

f(r) := −ln(1−H(r)) =
d∑

k=1

ckr
k

is a polynomial in r with coefficients ck := κkVd−k(X) (and without constant
term). SinceH(r) can be expressed in terms of the volume fractions p of Z and
p(r) of Z + rBd, simple estimators for f(r) exist (for example, in the planar
case by counting pixels in a digitized image of Z(ω) ∩W ). If f̂1, . . . , f̂m are
corresponding estimated values of f(r), for different values r1, . . . , rm, then
fitting a polynomial f̂ of degree d (and with f̂(0) = 0) to these values yields
estimators for ck, k = 1, . . . , d. Here, cd = γ.

Another method, which also requires convex grains, is based on the lower
tangent point z̃(C), C ∈ C′, which we have introduced in Section 4.2. Since
there we concentrated on the planar case, we shall do this again, although the
method can be extended to higher dimensions. Hence, we consider a stationary
Boolean model Z in R2 with convex grains. Let X be the underlying Poisson
particle process and γ the intensity. Since z̃ is a center function, the points
z̃(K), K ∈ X, constitute a stationary Poisson process X̃ in R2 which also has
intensity γ (by Theorems 4.2.1 and 4.2.2). Since z̃(K) is a boundary point of
K, some points of X̃ lie on the boundary of Z and the others in the interior.
Let X ′ be the thinning of X̃ consisting of all points x ∈ X̃ which lie in
the boundary of Z, hence they are observable from Z. These points are the
lower tangent points of particles from X which are not covered by any other
particle (the case that the lower tangent point x of one particle is also in the
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boundary of another particle from X has probability 0). Since X ′ = X̃∩clZc,
the (simple) point process X ′ is stationary. Using the common notation from
stereology, we denote the intensity of X ′ by χ+(Z).

Theorem 9.5.1. Let Z be a stationary Boolean model in R2 with convex
grains and X the underlying Poisson particle process with intensity γ. Then

χ+(Z) = γe−A(X). (9.39)

Proof. In the following proof, we make the identifications explained before
Theorems 3.3.5 and 3.5.9. For K ∈ K′, η ∈ Ns(K′) and x ∈ R2, let

Z(K, η) :=
⋃

C∈η\{K}
C

and
f(x,K, η) :=

1
π
1B2∩Z(K,η)c(x).

We apply Theorem 4.2.4 to the particle process X and the center function
z̃. Let K̃ := {K ∈ K′ : z̃(K) = 0} be the corresponding mark space, Q̃

the mark distribution and (P0,K)K∈K̃ the regular family occurring in the
theorem. We then use Slivnyak’s theorem (Theorem 3.5.9) for the stationary
marked Poisson process Xz̃. Since we view P0,K as a measure on B(F(K′)),
as described in the proof of Theorem 4.2.4, Slivnyak’s theorem gives

P0,K(A) = P(X ∪ {K} ∈ A)

for A ∈ B(F(K′)) and Q̃-almost all K ∈ K̃, hence∫
Ns(K′)

g(η) P0,K(dη) =
∫

Ns(K′)
g(η ∪ {K}) PX(dη)

for all measurable functions g ≥ 0. By the definition of χ+(Z), we thus obtain

χ+(Z) = E
∑

K∈X

f(z̃(K),K,X)

= γ

∫
R2

∫
K̃

∫
Ns(K′)

f(x,K + x, η + x) P0,K(dη) Q̃(dK)λ(dx)

=
γ

π

∫
R2

∫
K̃

∫
Ns(K′)

1B2(x)1Z(K,η)c(0) P0,K(dη) Q̃(dK)λ(dx)

= γ

∫
K̃

∫
Ns(K′)

1Z(K,η)c(0) PX(dη) Q̃(dK)

= γ

∫
K̃

∫
Ns(K′)

1Zc
η
(0) PX(dη) Q̃(dK)

= γP(0 /∈ Z)

= γe−A(X),
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where Zη :=
⋃

K∈ηK and where we have used that, for fixed K, the relation
K /∈ η holds for PX -almost all η. ��

Combining (9.39) with (9.6) we obtain a simple estimator for the intensity,
namely by counting the number χ+(Z ∩W ) of lower tangent points of Z in
the window W and dividing by the area of the uncovered part,

γ̂ :=
χ+(Z ∩W )
A(Zc ∩W )

.

This estimator is ratio-unbiased and strongly consistent, but depends very
much on the convexity of the grains.

We next describe a method for stationary Boolean models Z in the plane,
which may have arbitrarily shaped compact grains, but they should be con-
nected and their circumradius should be bounded from above by some con-
stant r0. We make use of the formula

P(Z ∩ C = ∅) = 1− TZ(C) = e−Θ(FC)

for C ∈ C.
For ε > 0, we put

C1 := [0, 2r0 + ε]× [0, ε],

C2 := [0, ε]× [0, 2r0 + ε],

C0 := ([0, 2r0 + ε]× {0}) ∪ ({0} × [0, 2r0 + ε]).

Then

ln
P(Z ∩ (C0 ∪ C1 ∪ C2) = ∅)P(Z ∩ C0 = ∅)

P(Z ∩ (C0 ∪ C1) = ∅)P(Z ∩ (C0 ∪ C2) = ∅)
= Θ(FC0∪C1) +Θ(FC0∪C2)−Θ(FC0∪C1∪C2)−Θ(FC0)

= Θ(F C0
C1,C2

). (9.40)

In order to calculate Θ(F C0
C1,C2

), we use Theorem 4.2.1 with the lower left
corner z′ as center function. Let Q′ be the corresponding mark distribution.
Due to our assumptions, we have r(C) ≤ r0 for Q′-almost all C ∈ Cz′,0 :=
{D ∈ C′ : z′(D) = 0}. Therefore, for these C and for x ∈ R2, the condition
C + x ∈ F C0

C1,C2
is equivalent to x ∈ (0, ε]2 (here we need the assumption that

C is connected). From this, we obtain

Θ(F C0
C1,C2

) = γ
∫
Cz′,0

∫
R2

1(0,ε]2(x)λ(dx) Q′(dC) = γε2.

Since ε is known, this can be used for the estimation of γ. Because of
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P(Z ∩ C = ∅) = 1− P(0 ∈ Z − C),

one would have to estimate the area densities of Z − C0, Z − (C0 ∪ C1), Z −
(C0 ∪ C2) and Z − (C1 ∪ C2). The resulting estimator only makes sense if
the observed area fractions of these four outer parallel sets of Z are smaller
than one or even bounded away from one, since otherwise the logarithm of
the quotient above is not defined or rather unstable. This implies that the
estimation method requires that both the intensity has to be small and the
particles need to be small, in comparison to the observation window W .

Now we return to restricted shapes and describe an estimation method
based on the formulas of Theorem 9.1.5. We assume a stationary Boolean
model Z in R2 and, since Theorem 9.1.5 was formulated for convex grains,
we make the same assumption, although the method also works for simply
connected polyconvex grains. We recall the density formulas for this case:

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)
(
γ −A(X,−X)

)
.

If the densities on the left side are estimated, we obtain estimators for
A(X), L(X) and γ − A(X,−X). However, A(X,−X) cannot be expressed
in terms of L(X) or A(X). We therefore replace the second equation above
by its local counterparts (9.12),

S1(Z, ·) = e−A(X)S1(X, ·),

and (9.13),
h(Z, ·) = e−A(X)h(X, ·).

The connection with A(X,−X) is given by

A(X,−X) =
1
2
γ2

∫
K0

∫
K0

∫
S1
h(K1, u)S1(−K2,du) Q(dK1) Q(dK2)

=
1
2

∫
S1
h(X,u)S1(−X,du).

Hence, we can estimate A(X,−X), and therefore also γ, if we can es-
timate h(X, ·) and S1(X, ·). Fortunately, it is sufficient to estimate only
one of these quantities. Namely, the Blaschke body B(X) of X, satisfying
S1(B(X), ·) = S1(X, ·), is identical with the mean body of X, since in the
plane, Blaschke addition coincides with Minkowski addition. It follows that
h(X, ·) = h(B(X), ·). Therefore, S1(X, ·) determines B(X) and thus h(X, ·),
and conversely.

It is obvious that a corresponding analysis of higher-dimensional Boolean
models becomes more and more complicated. We refer to the Notes of this
section, for a corresponding analysis of the three-dimensional case.
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The Wicksell Problem

Let X be a stationary process of balls in Rd, that is, a stationary particle
process with intensity measure concentrated on the set of balls with positive
radius. The radius distribution G of X can be defined by

G(A) :=
1
γ

E
∑

K∈X

1B(c(K))1A(r(K))

for B ∈ B with λ(B) = 1 and A ∈ B(R+), where c(K) is the center and
r(K) is the radius of the ball K, and where γ > 0 denotes the intensity of
X. We assume that G({0}) = 0. Of course, G is also the image of the grain
distribution Q under the mappingK �→ r(K). If we representX as the marked
point process

X̃ :=
∑

K∈X

δ(c(K),r(K))

(with mark space R+), the radius distribution of X is just the mark distribu-
tion of X̃. For a k-dimensional linear subspace L ∈ G(d, k), k ∈ {1, . . . , d−1},
the section process X ∩ L is a stationary process of (k-dimensional) balls;
we denote its radius distribution by GL. We shall now establish a connection
between G and GL.

For x ∈ Rd we use the orthogonal decomposition x = xL +xL with xL ∈ L
and xL ∈ L⊥. The Euclidean norm in Rd is denoted by ‖ · ‖. For a ball
K ⊂ Rd, the intersection K∩L is a ball in L with radius

√
r(K)2 − ‖c(K)L‖2,

if ‖c(K)L‖ ≤ r(K) (otherwise K ∩L = ∅). With the section process X ∩L we
therefore associate the marked point process

X̃L :=
∑

K∈X, ‖c(K)L‖≤r(K)

δ(
c(K)L,

√
r(K)2−‖c(K)L‖2

)

in L with mark space R+ (assuming here that it is simple); it is stationary
in L. The radius distribution GL of the section process X ∩ L is the mark
distribution of X̃L. The intensity γX∩L of X ∩ L is also the intensity of X̃L.
By Theorem 3.5.1, the intensity measure of X̃ is given by γλ ⊗ G, and the
intensity measure of X̃L is given by γX∩LλL ⊗ GL. Therefore, for B ∈ B(L)
and A ∈ B(R+) we obtain

γX∩LλL(B)GL(A)

= E
∑

(x,a)∈X̃L

1B×A(x, a)

= E
∑

(x,a)∈X̃

1B×A

(
xL,

√
max{0, a2 − ‖xL‖2}

)

= γ
∫

R+

∫
Rd

1B(xL)1A

(√
max{0, a2 − ‖xL‖2}

)
λ(dx) G(da)
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= γλL(B)
∫

R+

∫
L⊥

1[0,a](‖z‖)1A

(√
a2 − ‖z‖2

)
λL⊥(dz) G(da)

= γλL(B)
∫

L⊥

∫
R+

1(‖z‖,∞)(a)1A

(√
a2 − ‖z‖2

)
G(da)λL⊥(dz)

= γλL(B)(d− k)κd−k

∫ ∞

0

∫ ∞

t

1A

(√
a2 − t2

)
G(da)td−k−1 dt.

In particular, for A = [x,∞) with x > 0, we get

γX∩LGL([x,∞)) = γ(d− k)κd−k

∫ ∞

0

G

([√
x2 + t2,∞

))
td−k−1 dt. (9.41)

With x→ 0 we obtain
γX∩L = κd−kγMd−k,

where Md−k is the (d− k)th moment of the radius distribution G.
The Wicksell corpuscle problem of stereology is the task to determine,

in the case d = 3, k = 2, the distribution G from the distribution GL. If we
denote (as is common in stereology) by DV and DA the distribution function
of G and GL, respectively, and if dV denotes the first moment of G, then
(9.41), for d = 3, k = 2, is equivalent to

DA(r) = 1− 1
dV

∫ ∞

0

(
1−DV

(√
r2 + x2

))
dx for r > 0.

Thus, to determine DV from DA, one has (besides the determination of dV )
to solve an Abel type integral equation. An inversion formula exists, but is nu-
merically unstable. In practice, where DA can only be estimated, this inverse
problem presents considerable difficulties.

Boolean Models with Spherical Grains

As a second situation, where an estimation of the radius distribution is pos-
sible, we consider a stationary Boolean model Z where the primary grain Z0

is a random ball with radius distribution G (again, we assume G({0}) = 0).
We recall the contact distribution function HB (with structuring element B)
which we have discussed earlier (see Sections 2.4 and 9.1). For a Boolean
model of balls and t > 0,

HB(t) = P(dB(0, Z) ≤ t | 0 /∈ Z)

= 1− exp

⎛⎝−γ d∑
j=1

κd−jVj(B)tj
∫ ∞

0

rd−j G(dr)

⎞⎠ . (9.42)

We shall consider a variant of HB which includes the radii of the observable
boundaries of the balls.
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Namely, if 0 /∈ Z, the set dB(0, Z)B touches Z almost surely at a boundary
point of precisely one grain. We state this fact, for later use, in a more general
form.

Lemma 9.5.1. Let X = {(ξ1, Z1), (ξ2, Z2), . . .} be an independently marked
Poisson process on Rd with mark space K0 and intensity measure

Θ =
(∫

hdλ
)
⊗Q.

Let x ∈ Rd. Then

P(0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞) = 0, m �= n.

Proof. Using Campbell’s theorem and then Corollary 3.2.4, we obtain

P

⎛⎝ ⋃
m �=n

{0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞}

⎞⎠
≤ E

⎛⎝1
2

∑
m �=n

1{0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞}

⎞⎠
=

1
2

∫
(Rd×K0)2

1 {y ∈ bd(x−K + dB(x, z +M)B)}

×1{0 < dB(x, z +M) <∞}Λ(2)(d((y,K), (z,M)))

=
1
2

∫
K0

∫
K0

∫
Rd

∫
Rd

1 {y ∈ bd(x−K + dB(x, z +M)B)}h(y)h(z)

×1{0 < dB(x, z +M) <∞}λ(dy)λ(dz) Q(dK) Q(dM).

The last expression vanishes, since the boundary of a convex body has
Lebesgue measure zero. ��

We return to our stationary Boolean model Z with spherical grains and
assume that x /∈ Z. Applying the lemma to the underlying (stationary) Pois-
son process X of balls, we almost surely obtain a unique grain Z̃ in X with
dB(x,Z)B ∩ Z̃ �= ∅. We define rB(x,Z) as the radius r(Z̃) of Z̃. Then the
following result holds.

Theorem 9.5.2. Let Z be a stationary Boolean model in Rd with spherical
grains and with intensity γ and radius distribution G. Let g ≥ 0 be a measur-
able function on R+ × R+. Then we have

E(g(dB(0, Z), rB(0, Z)) | 0 /∈ Z)

= γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)
∫ ∞

0

∫ ∞

0

rd−1−jtj(1−HB(t))g(t, r) dtG(dr).



9.5 Further Estimation Problems 437

Proof. We use
Z = U(X),

whereX = {Z1, Z2, . . .} is a measurable enumeration of the stationary Poisson
process of balls underlying Z, with intensity γ and radius distribution G, and
where U(Y ), for a particle process Y , denotes the union set,

U(Y ) :=
⋃

K∈Y

K.

For n ∈ N, we define the events

An := {0 < dB(0, Zn) <∞}

and
Bn := {dB(0, U(X \ {Zn})) > dB(0, Zn)}.

Then
(dB(0, Z), rB(0, Z)) = (dB(0, Zn), r(Zn))

on An ∩Bn and

{0 < dB(0, Z) <∞} =
∞⋃

n=1

(An ∩Bn) a.s.

Using this and Theorem 3.2.5, we obtain

E (1{0 < dB(0, Z) <∞}g(dB(0, Z), rB(0, Z)))

= E

∞∑
n=1

1An∩Bn
g(dB(0, Zn), r(Zn))

= E

( ∑
K∈X

1{0 < dB(0,K) <∞}g(dB(0,K), r(K))

×1{dB(0, U(X \ {K})) > dB(0,K)}
)

=
∫
K′

1{0 < dB(0,K) <∞}g(dB(0,K), r(K))

×P (dB(0, U(X)) > dB(0,K)) Θ(dK)

= P(0 /∈ Z)γ
∫ ∞

0

∫
Rd

1{0 < dB(0, z + rBd) <∞}g(dB(0, z + rBd), r)

× (1−HB(dB(0, z + rBd)))λ(dz) G(dr).

To the inner integral, we can apply formulas (14.27) (with K = rBd) and
(14.25). Using dB(0, z + rBd) = dB(−z, rBd) and the reflection invariance of
λ, we obtain
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Rd

1{0 < dB(0, z + rBd) <∞}g(dB(0, z + rBd), r)

× (1−HB(dB(0, z + rBd)))λ(dz)

=
∫

Rd

1{0 < dB(z, rBd) <∞}g(dB(z, rBd), r)

× (1−HB(dB(z, rBd)))λ(dz)

=
d−1∑
m=0

(d−m)κd−m

∫ ∞

0

∫
Rd×Rd

g(t, r)(1−HB(t))td−1−m

×Ξm(rBd;B; d(y, b)) dt

=
d−1∑
j=0

(
d− 1
j

)
dV (Bd[d− 1− j], B[j + 1])rd−1−j

∫ ∞

0

(1−HB(t))tjg(t, r)dt.

Since (9.42) implies P(dB(0, Z) < ∞) = 1, division by P(0 /∈ Z) and formula
(14.18) yield

E(g(dB(0, Z), rB(0, Z)) | 0 /∈ Z)

= γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)
∫ ∞

0

∫ ∞

0

rd−1−jtj(1−HB(t))g(t, r) dtG(dr).

This proves the theorem. ��

For g(t, r) := 1{t ≤ s}, s ≥ 0, the theorem yields

HB(s) =
∫ s

0

hB(t)(1−HB(t)) dt

with

hB(t) := γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)tj
∫ ∞

0

rd−1−j G(dr).

Equation (9.42) shows that HB(s) < 1 and that HB is a continuous function
satisfying HB(0) = 0. Using the monotonicity of HB , we obtain that∫ s

0

hB(t) dt ≤ HB(s)
1−HB(s)

<∞

for all s ≥ 0. Hence, the exponential formula of Lebesgue–Stieltjes calculus
(see, for example, Last and Brandt [434, Theorem A4.12]) shows that

HB(s) = 1− exp
{
−

∫ s

0

hB(t) dt
}
.

Consequently, formula (9.42) is contained in Theorem 9.5.2 as a special case.
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We now exploit the result for other suitable functions g. Let W ∈ K be a
sampling window with λ(W ) > 0. Choosing

g(t, r) :=
f(t)
h(t, r)

1C(r)

for a Borel set C ⊂ R+, a measurable function f ≥ 0 and

h(t, r) :=
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)rd−1−jtj ,

we see that

Ĝ(C) :=

∫
W\Z

1C(rB(x,Z))f(dB(x,Z))h(dB(x,Z), rB(x,Z))−1
λ(dx)∫

W\Z
f(dB(x,Z))h(dB(x,Z), rB(x,Z))−1

λ(dx)

is a ratio-unbiased estimator of G(C). In fact,

E

∫
W\Z

1C(rB(x,Z))
f(dB(x,Z))

h(dB(x,Z), rB(x,Z))
λ(dx)

= γλ(W )P(0 /∈ Z)
∫ ∞

0

(1−HB(t))f(t) dt ·G(C)

and (putting C = R+)

E

∫
W\Z

f(dB(x,Z))
h(dB(x,Z), rB(x,Z))

λ(dx) = γλ(W )P(0 /∈ Z)
∫ ∞

0

(1−HB(t))f(t) dt.

It should be emphasized that this estimator uses information outside the sam-
pling windowW . Namely, for each x ∈W \Z, the B-distance dB(x,Z) and the
radius rB(x,Z) of the grain determined by the corresponding contact point
have to be observed and the latter may lie outside W .

However, the above considerations show that the generalized contact dis-
tributions which we considered give sufficient information to determine the
radius distribution G.

We discuss a special case, where the estimator Ĝ has a simpler form.
Namely, we consider a planar Boolean model, choose a square as sampling
window and B = [0, u], where the unit vector u is parallel to one side of W .
Then h(t, r) = 2r, hence

Ĝ =
1∑n

i=1 wi

n∑
i=1

wiδri
. (9.43)

Here, r1, . . . , rn are the radii of the arcs C1, . . . , Cn in bdZ which appear as
projections from points in W in direction u. If Ai is the region that ‘projects’
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onto Ci, namely the union of all segments xy, x ∈W \Z, y = x+d[0,u](x,Z)u ∈
Ci, the weights wi are given by

wi =
1

2ri

∫
Ai

f(d[0,u](z, Ci))λ(dz), i = 1, . . . , n.

In the simplest case, f = 1, the weights are proportional to the area of Ai.
On the other hand, if f(t) = 1

ε1{t ≤ ε} with ε → 0, we get in the limit an
estimator of the form (9.43) where the weights are proportional to the lengths
of the arcs. This estimator is studied in the book by Hall [317].

Notes for Section 9.5

1. The estimation of the parameters of a stationary Boolean model (with or without
isotropy) is discussed in the books of Serra [729], Cressie [185], Stoyan, Kendall
and Mecke [743] and, in particular, in Molchanov [544, 546]. The method of fitting a
polynomial to the logarithm of the (empirical) spherical contact distribution function
is known as minimum contrast method. As a variant, one can investigate the
contact distribution function HM (r), for a fixed value r = 1, say, but for different
structuring elements M . For example, in the planar case, M can be chosen to be
0-dimensional (point), 1-dimensional (segment) and 2-dimensional (square). The
resulting equations can then be solved for γ. In this way, an estimation method for
γ was constructed in Hall [316], which is based on counting the number of cells, edges
and vertices of a square lattice which are intersected by the given planar Boolean
model.

2. Formula (9.39) for the intensity of the uncovered lower tangent points in The-
orem 9.5.1 seems to occur first in Serra [729]. The uncovered lower tangent points
are dependent, so they no longer form a Poisson process. However, the following
result holds. Consider the stationary Boolean model Z with convex grains and with
intensity γ in the half plane

R
2
+ := {(x1, x2) ∈ R

2 : x1 ≥ 0}.

The Laslett transform L : R2
+ → R2

+ (depending on Z) shifts the points of R2
+ to

the ‘left’ as far as possible, treating Z as ‘empty space’ and its complement as solid.
More precisely, L(x1, x2) := (x̂1, x2) with

x̂1 := λ1(([0, x1] × {x2}) ∩ Zc).

The images of the uncovered lower tangent points of Z under this transformation
form the restriction to R2

+ of a stationary Poisson process with intensity γ. This
was first explained in Cressie [185]; a short and elegant proof based on a martingale
argument was given by Barbour and Schmidt [78]. They mention that the approach
also holds in the d-dimensional setting. A further proof in Rd was given by Černý
[168].

For the estimator γ̂ based on the uncovered lower tangent points, asymptotic
normality was shown by Molchanov and Stoyan [549].

3. The estimation method for γ based on formula (9.40) is due to Schmitt [670]; it
has been extended to non-stationary Boolean models as well (Schmitt [671]).
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4. The use of Theorem 9.1.4 for the estimation in stationary and isotropic Boolean
models Z is classical (see Molchanov [546]). The procedure is sometimes called the
method of moments since it yields estimators for all the specific intrinsic vol-
umes V0(X), . . . , Vd(X). Because of V0(X) = γ (in the case of convex grains), this
determines the mean values∫

K0

Vj(K) Q(dK), j = 1, . . . , d.

If the grains are balls, we thus obtain the first d moments of the distribution of the
radii. The extension of the method of moments to non-isotropic Boolean models in
the plane is due to Weil [794], based on earlier results in [793]. As we mentioned
already, a corresponding analysis in R3 is still possible. We sketch the corresponding
approach from Weil [798].

For d = 3, we consider the density equations

V (Z) = 1 − e−V (X),

S2(Z, ·) = e−V (X)S2(X, ·),

h(Z, ·) = e−V (X) (
h(X, ·) − h2(X, X, ·)

)
,

χ(Z) = e−V (X)
(
γ − V

(0)
1,2(X, X) + V

(0)
2,2,2(X, X, X)

)
.

Here, the first equation is the usual one, and the fourth results from Theorem 9.1.5.
The second equation is (9.12), and the third is the three-dimensional analog of (9.13).
It involves the specific mixed support function

h2(X, X, ·) := γ2

∫
K0

∫
K0

h∗
2(K, M ; ·) Q(dM) Q(dK)

(see Theorem 6.4.6). The first equation serves to remove the exponential expres-
sion, so we can assume that the quantities S2(X, ·), h(X, ·) − h2(X, X, ·) and

γ − V
(0)
1,2(X, X) + V

(0)
2,2,2(X, X, X) are determined by the left sides. Using the repre-

sentation (6.30) of h∗
2(K, M ; ·) for polytopes K, M , we obtain

h∗
2(K, M ; u) =

∫
S2

∫
S2

f(−u, v, w) S2(K, dv) S2(M, dw), u ∈ S2,

with a function f , given explicitly by (6.30). By approximation, this representation
extends to all convex bodies K, M , therefore we get

h2(X, X; u) =

∫
S2

∫
S2

f(−u, v, w) S2(X, dv) S2(X, dw), u ∈ S2.

It follows that h2,2(X, X, ·) is determined and thus also h(X, ·). It remains to show

that V
(0)
1,2(X, X) and V

(0)
2,2,2(X, X, X) can be expressed in terms of h(X, ·), h2(X, X, ·)

and S2(X, ·), since then we obtain γ. For the first density, this is easy since (9.10)
immediately yields

V
(0)
1,2(X, X) =

∫
S2

h(X, u) S2(X, du).

For the second density, it turns out that similarly
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V
(0)
2,2,2(X, X, X) =

∫
S2

h2(X, X,−u) S2(X, du)

=

∫
S2

∫
S2

∫
S2

f(u, v, w) S2(X, dv) S2(X, dw) S2(X, du)

holds.
In Weil [801], these estimation problems for d = 2 and d = 3 were reviewed from

the point of densities of mixed volumes (compare Theorem 9.1.6). It was shown
that, for d = 2, the densities V0(Z), V (Z[1], M [1]) for all M ∈ K′, and V 2(Z),
determine γ uniquely, whereas in dimension d = 3, the densities V0(Z), V (Z[1], M [2])
and V (Z[2], M [1]), for all M ∈ K′, as well as V3(Z) are needed. In [801], also
the four-dimensional situation was discussed and it was claimed that the intensity
γ is determined by the densities of mixed volumes of Z. The proof, however, is

incomplete, since a summand V
(0)
2,2(X, X) is missing in the formula for the specific

Euler characteristic (see the remarks in Goodey and Weil [280]). Therefore, the
four-dimensional case is still open, as are all the higher-dimensional situations.

The approach with local densities (of surface area measures and support func-
tions) or specific mixed volumes can be applied also to non-stationary Boolean mod-
els. The specific intrinsic volumes and their local counterparts, the specific surface
area measure and the specific support function, then also depend on the location in
space. For their definition and further details, see Section 11.1 and the corresponding
Note 2.

5. The estimation procedure described before the Wicksell problem requires in prac-
tice an estimation of the densities h(Z, ·) and/or S1(Z, ·) from measurements in an
observation window. Methods to achieve this are described, for h(Z, ·) in Weil [794,
p. 112 ff], and for S1(Z, ·) in Rataj [612], Kiderlen and Jensen [407].

6. The Wicksell corpuscle problem is a classic of stochastic geometry, since Wicksell
[813] first treated it and gave an explicit solution of the corresponding Abel type
integral equation. The use of marked point processes for the derivation of (9.41)
goes back to Mecke and Stoyan [502]. For more details on the Wicksell problem, we
refer to Stoyan, Kendall and Mecke [743, sect. 11.4]; see also Ripley [644, sect. 9.4].
Limit distributions of stereological estimators in Wicksell’s problem were studied by
Heinrich [327]. Zähle [830] treated Wicksell’s corpuscle problem in spherical space.

7. Theorem 9.5.2 is a special case of more general results in Hug, Last and Weil
[358]. We shall present some of them in Section 11.2. In [358] also various situations
are discussed where (generalized) contact distributions of a Boolean model can be
used to obtain information on the underlying grain distribution Q. The particular
case of spherical grains in the plane, which we presented here, was explained in Weil
[802] and is based on work in progress by Hug, Last and Weil.

8. Estimating the intensity of stationary flat processes. Let X be a stationary
process of k-flats in Rd (k ∈ {1, . . . , d−1}) with intensity γ . Let W ∈ K be a convex
sampling window with Vd−k(K) > 0. The ‘weighted estimator’

γ̂ :=
∑

E∈X∩FW

1

Vd−k(W |E⊥)

is an unbiased estimator for the intensity γ, as follows immediately from the Camp-
bell theorem and (4.25). On the other hand, if X has a known directional distribution



9.5 Further Estimation Problems 443

Q, then

γ̂ :=
1

VQ

∑
E∈X∩FW

1 with VQ :=

∫
G(d,k)

Vd−k(W |L⊥) Q(dL)

can be used as an unbiased estimator. Schladitz [666] has interpolated between these
two extreme cases (of no knowledge and of complete knowledge about the directional
distribution), defining an unbiased estimator for the intensity, the ‘R-estimator’, in
the case where the directional distribution of X is known to belong to a given
family R of probability measures on G(d, k). She gave sufficient conditions for the
R-estimator to be the uniformly best unbiased estimator for the intensity of sta-
tionary Poisson k-flat processes with directional distribution in R. For stationary
ergodic flat processes, the R-estimator is still uniformly better than the ‘naive’ one
based on Theorem 4.4.3, that is (for Vd(W ) > 0),

γ̂ :=
1

Vd(W )

∑
E∈X

Vk(E ∩ W ).

9. Estimating the Euler characteristic. The system of formulas (9.36)–(9.38)
(as well as the corresponding system in other dimensions) does not include an inter-
section formula for the specific Euler characteristic χ(Z). In fact, this density, as well
as the mean particle number for processes of convex particles, cannot be estimated
from the information provided by lower-dimensional sections. To overcome this dif-
ficulty, estimators have been suggested that use the information coming jointly from
two close parallel hyperplane sections, or from the slab between them. Unbiasedness
of these estimators is only guaranteed if the sets under investigation satisfy addi-
tional assumptions. We refer to the papers by Ohser and Nagel [588] and by Rataj
[616] and to the literature quoted there.

10. Estimating the directional distribution of fiber processes. If X is a
stationary fiber process in Rd, with specific length V1(X) and spherical directional
distribution ϕ, then (4.40) says that

V0(X ∩ v⊥) = V1(X)

∫
Sd−1

|〈u, v〉|ϕ(du)

for v ∈ Sd−1. If the specific length has already been estimated, this can be used
to estimate the directional distribution by means of intersection point counts in
hyperplanes v⊥. (The function v �→ V0(X∩v⊥) is known as the ‘rose of intersections’,
and the even probability measure ϕ as the ‘rose of directions’.) Although the measure
ϕ is uniquely determined by the rose of intersections, there are practical difficulties,
since the inversion of the cosine transform is unstable, and only finitely many values
of the rose of intersections will be available. Different methods of nonparametric
estimation to overcome these difficulties have been described by Kiderlen [403] and
by Kiderlen and Pfrang [408].

11. Estimating mean normal measures. Similar problems to those described
in the previous note arise if one wants to use (4.41) for the estimation of the di-
rectional distribution of a stationary hypersurface process. A related notion is the
mean normal measure of a stationary process X of convex particles or of a stationary
standard random set Z, denoted by Sd−1(X, ·) and Sd−1(Z, ·), respectively. Since
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outer normal vectors are used in their definitions, these measures are also called
oriented mean normal measures, to distinguish them from their even parts,
which are called unoriented mean normal measures and correspond to the di-
rectional distributions of the boundaries. Various estimation procedures for both
oriented and unoriented mean normal measures, by means of lower-dimensional sec-
tions, have been investigated; we refer to Schneider [704], Kiderlen [404, 406] and
the literature quoted there.

12. Estimating particle orientation. If the Blaschke body B(X) of a stationary
process X of convex particles is distinctly non-spherical, it reveals anisotropy of
X. It may, therefore, be of interest to estimate the Blaschke body by stereological
means. Weil [796] has shown that B(X) is uniquely determined by the statistical
properties of two-dimensional sections of X, but in practice an estimation based on
this fact may be difficult. If only mean particle orientation is of interest, one can
replace the Blaschke body by a suitable ellipsoid (equivalently, a positive definite
symmetric matrix), which is more accessible to stereological estimation. For a convex
body K ∈ K with interior points, the area moment tensor T (K) is the symmetric
tensor of rank two with cartesian coordinates Tij(K) given by

Tij(K) :=

∫
Sd−1

uiuj Sd−1(K, du).

The eigenvalues and eigendirections of the matrix (Tij(K))d
i,j=1 can be used to

describe the anisotropy of K. The specific area moment tensor of the stationary
particle process X (with convex particles, intensity γ and grain distribution Q) is
defined by

T (X) := γ

∫
K0

T (K) Q(dK) = lim
r→∞

1

Vd(rW )
E

∑
K∈X

T (K ∩ rW ),

for arbitrary W ∈ K with Vd(W ) > 0. It turns out that T (X) = T (B(X)). A method
for estimating T (X) from sections with hyperplanes was described by Schneider and
Schuster [714].

13. Estimation from digitized images. Practical estimation in two and three di-
mensions may meet the additional difficulty that only digitized images are available,
or the sets under investigation are accessible only via their intersections with suffi-
ciently fine scaled grids. Estimation can then be based, for example, on pixel or voxel
configuration counts. Methods for the estimation from digitized images have been
developed in several investigations, for the Euler characteristic by Nagel, Ohser and
Pischang [573], Ohser, Nagel and Schladitz [589, 590], Kiderlen [405], for specific
intrinsic volumes by Lang, Ohser and Hilfer [431], and for directional distributions
and oriented mean normal measures by Jensen and Kiderlen [381], Kiderlen and
Jensen [407], Gutkowski, Jensen and Kiderlen [302], Ziegel and Kiderlen [835].


