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Integral Geometric Transformations

Mean value formulas with respect to invariant measures, as treated in the
preceding two chapters, are a central topic of integral geometry. Another one
is transformation formulas for integrals over various spaces of geometric ob-
jects. The need for such results in stochastic geometry can be demonstrated
by simple examples. Consider, for instance, two independent, identically dis-
tributed random hyperplanes in Rd. Suppose the distribution is such that the
intersection of the two hyperplanes is almost surely a (d − 2)-flat. What is
the distribution of this random (d− 2)-flat? Or, consider k ≤ d independent,
identically distributed random points in Rd, and suppose their distribution is
such that they almost surely span a (k − 1)-flat. What is its distribution? In
the cases where the original distributions are derived from invariant measures
(by restriction, for example), the answers can be obtained from simple cases
of the transformation formulas of this chapter. Generally, these transforma-
tion formulas relate integrations over tuples of flats, with respect to invariant
measures, to integrations over other sets of flats (or other geometric objects)
that are obtained by geometric operations, such as intersection or span. As
an example, consider the integral of a function depending on d points. It may
happen that the function depends only on the hyperplane spanned (almost
everywhere) by the points. Then it may have a simplifying effect to integrate
first over the d-tuples of points lying in a fixed hyperplane, and then over
all hyperplanes. In principle, the required transformation formulas are just
versions of the transformation rule for multiple integrals under differentiable
mappings. However, since the mappings are defined by geometric operations,
the Jacobians have geometric interpretations, and therefore direct geometric
arguments are often simpler and more perspicuous than the use of special
parametrizations.

The transformation formulas to be proved have various applications in
stochastic geometry, for example in the investigation of convex hulls of random
points (Chapter 8), the study of random mosaics (Chapter 10), or in the
foundations of stereology. We do not aim at presenting the integral geometric
transformation formulas in their greatest generality, but rather give typical
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and basic examples. This will be done in Sections 7.2 and 7.3. The first section
provides simple rules for invariant measures on flag spaces.

7.1 Flag Spaces

In this section, we consider pairs of linear or affine subspaces, one contained
in the other.

Let p, q ∈ {0, . . . , d}, and let L ∈ G(d, p) be a fixed p-dimensional linear
subspace. We denote by G(L, q) the space of all q-dimensional linear subspaces
contained in L if q ≤ p, respectively containing L if q > p. In a similar way,
for an affine subspace E ∈ A(d, p), the space A(E, q) of q-flats contained in
E, respectively containing E, is defined. These spaces are described in detail
in Section 13.2. There also the invariant measures νL

q on G(L, q) and µE
q on

A(E, q) are constructed. These measures will be used in the following.
Now we turn to spaces of pairs of linear subspaces or flats. For 0 ≤ p, q ≤ d

with p �= q we define

G(d, p, q) := {(L,M) ∈ G(d, p)×G(d, q) : L ⊂M}, if p < q,

G(d, p, q) := {(L,M) ∈ G(d, p)×G(d, q) : L ⊃M}, if p > q,

and

A(d, p, q) := {(E,F ) ∈ A(d, p)×A(d, q) : E ⊂ F}, if p < q,

A(d, p, q) := {(E,F ) ∈ A(d, p)×A(d, q) : E ⊃ F}, if p > q.

In an obvious way, these definitions could be extended to more than two linear
or affine subspaces. Spaces of the type G(d, p, q) or A(d, p, q) are called flag
spaces. The flag space G(d, p, q), for example, is evidently a homogeneous
SOd-space. Defining

βp,q : SOd → G(d, p, q),

ϑ �→ (ϑLp, ϑLq)

where (Lp, Lq) ∈ G(d, p, q) is arbitrary but fixed, and

νp,q := βp,q(ν),

we obtain a rotation invariant probability measure νp,q on G(d, p, q). Thus,
by definition, ∫

G(d,p,q)

f dνp,q =
∫

SOd

f(ϑLp, ϑLq) ν(dϑ) (7.1)

for every nonnegative measurable function f on G(d, p, q). We shall first show
that this measure can be computed, as one might expect, by iterated integra-
tions over p- and q-dimensional subspaces.
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Theorem 7.1.1. If 0 ≤ p < q ≤ d− 1 and if f : G(d, p, q) → R is a nonneg-
ative measurable function, then∫

G(d,p,q)

f dνp,q =
∫

G(d,q)

∫
G(M,p)

f(L,M) νM
p (dL) νq(dM)

=
∫

G(d,p)

∫
G(L,q)

f(L,M) νL
q (dM) νp(dL).

Proof. Measurability follows, for example, from the fact that the mapping
(M,B) �→ νM

p (B), M ∈ G(d, q), B ∈ B(G(d, p)), is a kernel; for this, see
Lemma 13.2.2. Let (Lp, Lq) ∈ G(d, p, q). In the subsequent chain of equalities
we use, in this order, the definition of νq as the image measure of ν under βq,
the invariance property (13.12), the definition of νLq

p , Fubini’s theorem, the
equality Lq = ρLq for ρ ∈ SO(Lq), and the right invariance of ν. We obtain∫

G(d,q)

∫
G(M,p)

f(L,M) νM
p (dL) νq(dM)

=
∫

SOd

∫
G(ϑLq,p)

f(L, ϑLq) νϑLq
p (dL) ν(dϑ)

=
∫

SOd

∫
G(Lq,p)

f(ϑL′, ϑLq) νLq
p (dL′) ν(dϑ)

=
∫

SOd

∫
SO(Lq)

f(ϑρLp, ϑLq) νLq
(dρ) ν(dϑ)

=
∫

SO(Lq)

∫
SOd

f(ϑρLp, ϑLq) ν(dϑ) νLq
(dρ)

=
∫

SO(Lq)

∫
SOd

f(ϑLp, ϑLq) ν(dϑ) νLq
(dρ)

=
∫

SOd

f(ϑLp, ϑLq) ν(dϑ).

In an analogous manner (though with a difference since p < q) we get∫
G(d,p)

∫
G(L,q)

f(L,M) νL
q (dM) νp(dL)

=
∫

SOd

∫
G(ϑLp,q)

f(ϑLp,M) νϑLp
q (dM) ν(dϑ)

=
∫

SOd

∫
G(Lp,q)

f(ϑLp, ϑM
′) νLp

q (dM ′) ν(dϑ)

=
∫

SOd

∫
SO(L⊥

p )

f(ϑLp, ϑρLq) νL⊥
p
(dρ) ν(dϑ)
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=
∫

SO(L⊥
p )

∫
SOd

f(ϑLp, ϑρLq) ν(dϑ) νL⊥
p
(dρ)

=
∫

SO(L⊥
p )

∫
SOd

f(ϑLp, ϑLq) ν(dϑ) νL⊥
p
(dρ)

=
∫

SOd

f(ϑLp, ϑLq) ν(dϑ).

This, together with (7.1), completes the proof of Theorem 7.1.1. ��

Remark. Let 0 ≤ p < q ≤ d − 1. The special case f(L,M) = 1A(L) with
A ∈ B(G(d, p)) in Theorem 7.1.1 yields

νp(A) =
∫

G(d,q)

νM
p (A) νq(dM), (7.2)

and similarly one has

νq(A) =
∫

G(d,p)

νL
q (A) νp(dL) (7.3)

for A ∈ B(G(d, q)).

Remark. Let p, q ∈ {0, . . . , d− 1}. For the Radon transform

Rpq : C(G(d, p))→ C(G(d, q))

defined by (6.35), Theorem 7.1.1 implies the symmetry relation∫
G(d,q)

(Rpqf)g dνq =
∫

G(d,p)

f(Rqpg) dνp

for f ∈ C(G(d, p)) and g ∈ C(G(d, q)).

Theorem 7.1.1 can be generalized. For example, let integers r < p < q < d
or q < p < r < d be given. For L0 ∈ G(d, r) and L2 ∈ G(d, q), let G(L0, L2, p)
denote the space of all p-dimensional subspaces L1 with L0 ⊂ L1 ⊂ L2 if
r < p < q, respectively with L2 ⊂ L1 ⊂ L0 if q < p < r. It carries a unique
probability measure νL0,L2

p which is invariant under the rotations that map
L0 into itself and L2 into itself. Let L0 ∈ G(d, r) be fixed. If f : G(d, p, q)→ R

is a nonnegative measurable function, then∫
G(L0,p)

∫
G(L1,q)

f(L1, L2) νL1
q (dL2) νL0

p (dL1)

=
∫

G(L0,q)

∫
G(L0,L2,p)

f(L1, L2) νL0,L2
p (dL1) νL0

q (dL2). (7.4)

This can be proved along similar lines to above.
A result analogous to Theorem 7.1.1 is valid for affine subspaces. It can

be deduced from this theorem.



7.1 Flag Spaces 269

Theorem 7.1.2. If 0 ≤ p < q ≤ d− 1 and if f : A(d, p, q)→ R is a nonnega-
tive measurable function, then∫

A(d,q)

∫
A(F,p)

f(E,F )µF
p (dE)µq(dF )

=
∫

A(d,p)

∫
A(E,q)

f(E,F )µE
q (dF )µp(dE). (7.5)

Proof. For measurability, we again refer to Lemma 13.2.2. In the subsequent
chain of equations we use (13.9), (13.13), Theorem 7.1.1, (13.14), again (13.9),
and several times the theorem of Fubini. In this way, we get∫

A(d,q)

∫
A(F,p)

f(E,F )µF
p (dE)µq(dF )

=
∫

G(d,q)

∫
L⊥

∫
A(L+t,p)

f(E,L+ t)µL+t
p (dE)λd−q(dt) νq(dL)

=
∫

G(d,q)

∫
L⊥

∫
G(L,p)

∫
M⊥∩L

f(M + x+ t, L+ t)

× λq−p(dx) νL
p (dM)λd−q(dt) νq(dL)

=
∫

G(d,q)

∫
G(L,p)

∫
L⊥

∫
M⊥∩L

f(M + x+ t, L+ x+ t)

× λq−p(dx)λd−q(dt) νL
p (dM) νq(dL)

=
∫

G(d,q)

∫
G(L,p)

∫
M⊥

f(M + z, L+ z)λd−p(dz) νL
p (dM) νq(dL)

=
∫

G(d,p)

∫
G(M,q)

∫
M⊥

f(M + z, L+ z)λd−p(dz) νM
q (dL) νp(dM)

=
∫

G(d,p)

∫
M⊥

∫
G(M,q)

f(M + z, L+ z) νM
q (dL)λd−p(dz) νp(dM)

=
∫

G(d,p)

∫
M⊥

∫
A(M+z,q)

f(M + z, F )µM+z
q (dF )λd−p(dz) νp(dM)

=
∫

A(d,p)

∫
A(E,q)

f(E,F )µE
q (dF )µp(dE).

This completes the proof of Theorem 7.1.2. ��

Remark. Analogously to (7.2) one obtains, for 0 ≤ p < q ≤ d − 1, a repre-
sentation of the invariant measure µp in the form

µp(A) =
∫

A(d,q)

µF
p (A)µq(dF ),
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for A ∈ B(A(d, p)). There is, however, no representation corresponding to
(7.3), because the measure µF

p , where F ∈ A(d, q) and p < q, is not finite.

Note for Section 7.1

Theorems 7.1.1 and 7.1.2 can also be deduced from the essential uniqueness of
invariant measures on homogeneous spaces (Theorem 13.3.1).

7.2 Blaschke–Petkantschin Formulas

We recall that for E ∈ A(d, q) we denote by λE the q-dimensional Lebesgue
measure on E, considered as a measure on all of Rd, thus

λE(A) = λq(A ∩ E) for A ∈ B(Rd).

For several applications one needs integral geometric transformations of a
kind for which the following is a typical example. Suppose we have to integrate
a function of q-tuples of points in Rd, where q ∈ {1, . . . , d − 1}, with respect
to the product measure λq. In some cases it may simplify the computation to
integrate first over the q-tuples of points in a fixed q-dimensional linear sub-
space L, with respect to the product measure λq

L, and then to integrate over
all linear subspaces L, with respect to the invariant measure νq on G(d, q). The
case q = 1 corresponds essentially to the well-known computation of a volume
integral in terms of polar coordinates. The Jacobian appearing in the general
transformation formula has a simple geometric meaning. A similar transfor-
mation formula exists for affine, instead of linear, subspaces. Results of this
type are called Blaschke–Petkantschin formulas. We prepare the proof of
these formulas by a lemma which extends the polar coordinate formula.

We denote by d(x, L) the distance of the point x ∈ Rd from the subspace
L ⊂ Rd.

Lemma 7.2.1. If r ∈ {0, . . . , d−1} and L ∈ G(d, r) is a fixed linear subspace,
then ∫

Rd

f dλ =
ωd−r

2

∫
G(L,r+1)

∫
M

fd(·, L)d−r−1 dλM νL
r+1(dM)

for every nonnegative measurable function f on Rd.

Proof. We denote by Lu the positive hull of L and a vector u. Using spherical
coordinates in L⊥ and Fubini’s theorem, we obtain∫

Rd

f(x)λ(dx)

=
∫

L

∫
L⊥
f(x0 + x1)λL⊥(dx1)λL(dx0)
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=
∫

L

∫ ∞

0

∫
Sd−1∩L⊥

f(x0 + ρu)ρd−r−1 σd−r−1(du) dρ λL(dx0)

=
∫

Sd−1∩L⊥

∫
L

∫ ∞

0

f(x0 + ρu)ρd−r−1 dρ λL(dx0)σd−r−1(du)

=
∫

Sd−1∩L⊥

∫
Lu

f(x)d(x, L)d−r−1 λLu
(dx)σd−r−1(du)

=
ωd−r

2

∫
G(L,r+1)

∫
M

f(x)d(x, L)d−r−1 λM (dx) νL
r+1(dM).

This was the assertion. ��

We recall (from Section 4.4 or Section 14.1) that for q ∈ {1, . . . , d}
and x1, . . . , xq ∈ Rd we denote by ∇q(x1, . . . , xq) the q-dimensional vol-
ume of the parallelepiped spanned by the vectors x1, . . . , xq. For q + 1 points
x0, x1, . . . , xq ∈ Rd,

∆q(x0, . . . , xq) :=
1
q!
∇q(x1 − x0, . . . , xq − x0) (7.6)

is the q-dimensional volume of the convex hull of {x0, . . . , xq}.
The following result is known as the linear Blaschke–Petkantschin

formula.

Theorem 7.2.1. If q ∈ {1, . . . , d} and if f : (Rd)q → R is a nonnegative
measurable function, then∫

(Rd)q

f dλq = bdq

∫
G(d,q)

∫
Lq

f∇d−q
q dλq

L νq(dL) (7.7)

with
bdq :=

ωd−q+1 · · ·ωd

ω1 · · ·ωq
. (7.8)

Proof. The subsequent proof, which is adapted from Miles [525], proceeds by
induction. For q = 1, the assertion reduces to Lemma 7.2.1 (case r = 0) and
hence is true. We assume that the assertion has been proved for some q ≥ 1
and all dimensions d. In the inductive step we make use of the fact that for
x1, . . . , xq ∈ L ∈ G(d, q) and xq+1 ∈ Rd one has

∇q+1(x1, . . . , xq+1) = ∇q(x1, . . . , xq)d(xq+1, L). (7.9)

Below we abbreviate (x1, . . . , xq) by x. First we use, besides Fubini’s theorem,
the induction hypothesis and Lemma 7.2.1, to obtain

I :=
∫

(Rd)q+1
f dλq+1
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=
∫

Rd

∫
(Rd)q

f(x, x)λq(dx)λ(dx)

= bdq

∫
Rd

∫
G(d,q)

∫
Lq

f(x, x)∇q(x)d−q λq
L(dx) νq(dL)λ(dx)

= bdq

∫
G(d,q)

∫
Lq

∇q(x)d−q

∫
Rd

f(x, x)λ(dx)λq
L(dx) νq(dL)

=
bdqωd−q

2

∫
G(d,q)

∫
Lq

∇q(x)d−q

∫
G(L,q+1)

∫
M

f(x, x) d(x, L)d−q−1

× λM (dx) νL
q+1(dM)λq

L(dx) νq(dL).

Applying Theorem 7.1.1 for interchanging the integrations over q- and (q+1)-
dimensional subspaces and then using (7.9), we get

I =
bdqωd−q

2

∫
G(d,q+1)

∫
G(M,q)

∫
Lq

∫
M

f(x, x)∇q(x)d−q d(x, L)d−q−1

× λM (dx)λq
L(dx) νM

q (dL) νq+1(dM)

=
bdqωd−q

2

∫
G(d,q+1)

∫
M

∫
G(M,q)

∫
Lq

f(x, x)∇q+1(x, x)d−q−1∇q(x)

× λq
L(dx) νM

q (dL)λM (dx) νq+1(dM).

Now we apply the induction hypothesis again, to a q-fold integration over
the (q + 1)-dimensional space M and the function f(·, x)∇q+1(·, x)d−q−1. We
obtain

I =
bdqωd−q

2b(q+1)q

∫
G(d,q+1)

∫
M

∫
Mq

f(x, x)∇q+1(x, x)d−q−1

× λq
M (dx)λM (dx) νq+1(dM)

= bd(q+1)

∫
G(d,q+1)

∫
Mq+1

f∇d−q−1
q+1 dλq+1

M νq+1(dM),

which is the assertion for a (q + 1)-fold integration. ��

Before proceeding further, we want to explain in which situations we talk
of a formula of ‘Blaschke–Petkantschin type’; thus, we try to describe the
common feature of these transformations. The starting point is an integration
over a product (possibly with one factor only) of measure spaces of geomet-
ric objects (points or flats, as a rule), mostly homogeneous spaces with their
invariant measures. Almost everywhere, the integration variable, which is a
tuple of geometric objects, determines a new geometric object (for example,
by span or intersection). We call this new object the ‘pivot’. The initial inte-
gration is then decomposed into an outer and an inner integration. The outer
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integration space is the space of all possible pivots, with a natural measure;
often it is a homogeneous space. For a given pivot, the inner integration space
consists of the tuples of the initial integration space which determine precisely
this pivot; as a rule, it is a product of homogeneous spaces.

Lemma 7.2.1 was already of this type. The initial integration is over Rd.
The integration variable x ∈ Rd determines (almost everywhere) the (q + 1)-
subspace which is spanned by x and the fixed q-subspace L. This (q + 1)-
subspace is the pivot. The outer integration space is the space G(L, q + 1) of
all (q + 1)-subspaces containing L. For M in this space, the inner integration
space is equal to M . In the case of Theorem 7.2.1, the initial integration is
over (Rd)q, and the pivot is the q-subspace spanned by the integration variable
(x1, . . . , xq) ∈ (Rd)q. Hence, the outer integration space is the Grassmannian
G(d, q) of all q-subspaces. For L ∈ G(d, q), the inner integration space is the
product Lq.

There are also extensions of formulas of Blaschke–Petkantschin type where
the pivot is not uniquely determined by the integration variable, but only
associated with it in some way. For example, in the situation of Theorem
7.2.1, a pivot associated with (x1, . . . , xq) could be a subspace of fixed di-
mension s ≥ q containing x1, . . . , xq, or the span of x1, . . . , xq and of a fixed
subspace. One can also combine both possibilities; this gives the following
generalization of the linear Blaschke–Petkantschin formula. Here we denote
by ∇q,r(x1, . . . xq, L0) the (q+ r)-dimensional volume spanned by the vectors
x1, . . . , xq ∈ Rd and an orthonormal basis of the subspace L0 ∈ G(d, r).

Theorem 7.2.2. Let q ≥ 1, r ≥ 0 and s be integers with q + r ≤ s ≤ d, let
L0 ∈ G(d, r). If f : (Rd)q → R is a nonnegative measurable function, then∫

(Rd)q

f dλq =
b(d−r)q

b(s−r)q

∫
G(L0,s)

∫
Lq

f∇q,r(·, L0)d−s dλq
L ν

L0
s (dL). (7.10)

Proof. First we consider the case s = q + r, that is, the formula∫
(Rd)q

f dλq = b(d−r)q

∫
G(L0,q+r)

∫
Lq

f∇q,r(·, L0)d−q−r dλq
L ν

L0
q+r(dL). (7.11)

Its proof proceeds by induction, in a similar manner to Theorem 7.2.1. The
case of q = 1 is again provided by Lemma 7.2.1. In the induction step, one
applies Lemma 7.2.1 to a fixed subspace L of dimension q + r and then uses
the interchange formula (7.4) instead of Theorem 7.1.1. After observing that

∇q+1,r(x1, . . . , xq+1, L0) = ∇q,r(x1, . . . , xq, L0)d(xq+1, L) for L0 ⊂ L

and applying Fubini’s theorem, the induction hypothesis is applied to a q-fold
integration over a (q + r + 1)-dimensional subspace M containing L0. Apart
from these changes, the proof is the same as before. Thus, the formula (7.11)
is proved.

To prove (7.10), we assume that q + r ≤ s ≤ d and start with the integral
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I :=
∫

G(L0,s)

∫
Lq

f dλq
L ν

L0
s (dL).

We apply (7.11) to the integral over Lq; here dimL = s and L0 ⊂ L. Then
we use the interchange formula (7.4) and Fubini’s theorem. This yields

I = b(s−r)q

∫
G(L0,s)

∫
G(L0,L,q+r)

∫
Mq

f∇q,r(·, L0)s−q−r

× dλq
M νL0,L

q+r (dM) νL0
s (dL)

= b(s−r)q

∫
G(L0,q+r)

∫
G(M,s)

∫
Mq

f∇q,r(·, L0)s−q−r dλq
M νM

s (dL) νL0
q+r(dM)

= b(s−r)q

∫
G(L0,q+r)

∫
Mq

∫
G(M,s)

f∇q,r(·, L0)s−q−r νM
s (dL) dλq

M νL0
q+r(dM)

= b(s−r)q

∫
G(L0,q+r)

∫
Mq

f∇q,r(·, L0)s−q−r dλq
M νL0

q+r(dM)

=
b(s−r)q

b(d−r)q

∫
(Rd)q

f∇q,r(·, L0)s−d dλq,

by another application of (7.11). Replacing f by f∇q,r(·, L0)d−s, we obtain
the assertion. ��

The original Blaschke–Petkantschin formula is a source of a series of further
integral geometric transformations, of which we shall give some examples.
First we derive transformation formulas for integrals over tuples of linear
subspaces. The cases where the sum of the dimensions of the subspaces is at
most d or larger than d have to be distinguished.

In the subsequent theorem, the initial integration space is
∏q

i=1G(d, ri),
with

∑q
i=1 ri =: p ≤ d, and the pivot determined by a q-tuple of subspaces is

their linear span. Correspondingly, the outer integration space is G(d, p), and
for L ∈ G(d, p), the inner integration space is

∏q
i=1G(L, ri).

In the following, we shall have to use the subspace determinant [·, . . . , ·]
defined in Section 14.1. If q ∈ N, r1, . . . , rq ∈ {1, . . . , d−1} and (L1, . . . , Lq) ∈
G(d, r1)× . . .×G(d, rq), we write

[L1, . . . , Lq] =: [L1, . . . , Lq]r,

where r := (r1, . . . , rq) serves as a multi-index. If L0 is a fixed linear subspace,
we also write

[L1, . . . , Lq, L0] =: [L1, . . . , Lq, L0]r.

Thus, for r := (r1, . . . , rq), the functions [·, . . . , ·]r and [·, . . . , ·, L0]r are both
defined on G(d, r1)× . . .×G(d, rq).
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Theorem 7.2.3. Let r1, . . . , rq ∈ {1, . . . , d−1} be integers with r1+. . .+rq =:
p ≤ d, and put r := (r1, . . . , rq). If f : G(d, r1) × . . . × G(d, rq) → R is a
nonnegative measurable function, then∫

G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
)

= b
∫

G(d,p)

∫
G(L,r1)×...×G(L,rq)

f [·, . . . , ·]d−p
r d(νL

r1
⊗ . . .⊗ νL

rq
) νp(dL)

with

b := bdp

q∏
j=1

bprj

bdrj

. (7.12)

Proof. We begin with a preparatory remark. If r ∈ {1, . . . , d − 1} and if
h : G(d, r)→ R is a nonnegative measurable function, then∫

Rd

. . .

∫
Rd

h(lin {x1, . . . , xr})
r∏

j=1

1Bd(xj)λ(dx1) · · ·λ(dxr)

= κr
d

∫
G(d,r)

h(L) νr(dL).

In fact, choosing for h the indicator function of a Borel set, one can use the
left side to define a finite measure on G(d, r). Since it is rotation invariant,
it must be a multiple of the invariant measure νr. The factor can then be
determined by choosing h = 1.

Now we define, almost everywhere on (Rd)p, a function g by

g(x1
1, . . . , x

1
r1
, . . . , xq

1, . . . , x
q
rq

)

:= f(lin {x1
1, . . . , x

1
r1
}, . . . , lin {xq

1, . . . , x
q
rq
})

q∏
j=1

rj∏
i=1

1Bd(xj
i ).

Applying Fubini’s theorem and q times the preceding remark, we obtain

I :=
∫

(Rd)p

g dλp = κp
d

∫
G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
).

On the other hand, Theorem 7.2.1 gives

I = bdp

∫
G(d,p)

∫
Lp

g∇d−p
p dλp

L νp(dL).

We abbreviate (xj
r1
, . . . , xj

rj
) =: xj and lin {xj

r1
, . . . , xj

rj
} =: linxj for j =

1, . . . , q, then
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I = bdp

∫
G(d,p)

∫
Lr1

. . .

∫
Lrq

g(x1, . . . ,xq)∇p(x1, . . . ,xq)d−p

× λrq

L (dx1) · · ·λr1
L (dxq) νp(dL).

From the definitions of [·, . . . .·]r and ∇r it follows that

∇p(x1, . . . ,xq) = ∇r1(x1) · · · ∇rq
(xq)[linx1, . . . , linxq]r.

We insert this in the last integrand. Then, for fixed L ∈ G(d, p), we use
Theorem 7.2.1 (with (Rd, q) replaced by (L, r1)) to transform the integration
involving x1 into an integration over G(L, r1) and, for fixed L1 ∈ G(L, r1), an
integration with respect to the measure λr1

L1
. The integral∫

L
r1
1

1(Bd∩L1)r1 (x1)∇r1(x1)d−r1 λr1
L1

(dx1) = I(r1, r1, d− r1)

occurring here can be evaluated by means of Theorem 8.2.2. In a similar way
the integrations involving xj , j = 2, . . . , q, are treated. Now the assertion
follows. ��

In the following generalization of Theorem 7.2.3, a fixed subspace is given,
and the pivot determined by a tuple of subspaces is the linear span of these
and the given one.

Theorem 7.2.4. Let r1, . . . , rq ∈ {1, . . . , d − 1} and r0 ∈ {0, . . . , d − 1} be
integers with

r1 + . . .+ rq =: p ≤ d− r0;
put r := (r1, . . . , rq). Let L0 ∈ G(d, r0) be a fixed subspace. If f : G(d, r1) ×
. . .×G(d, rq)→ R is a nonnegative measurable function, then∫

G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
)

= c
∫

G(L0,p+r0)

∫
G(L,r1)×...×G(L,rq)

f [·, . . . , ·, L0]d−p−r0
r

× d(νL
r1
⊗ . . .⊗ νL

rq
) νL0

p+r0
(dL)

with

c := b(d−r0)p

q∏
j=1

b(p+r0)rj

bdrj

.

Proof. The proof is the obvious extension of the previous one. Instead of
applying Theorem 7.2.1 first, we employ (7.11), with (q, r) replaced by (p, r0).
After using the identity

∇p,r0(x1, . . . ,xq, L0) = ∇r1(x1) · · · ∇rq
(xq)[linx1, . . . , linxq, L0]r,

the rest of the proof is the same. ��
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The preceding theorems have counterparts where linear spans are replaced
by intersections. In that case, we consider linear subspaces L1, . . . , Lq ⊂ Rd

with
∑q

i=1 dimLi ≥ (q − 1)d. In Section 14.1 we define [L1, . . . , Lq] =
[L⊥

1 , . . . , L
⊥
q ]. In particular, if L1, . . . , Lq are hyperplanes through 0 and if

ui is a unit normal vector of Li for i = 1, . . . , q, then [L1, . . . , Lq] is the
q-dimensional volume of the parallelepiped spanned by u1, . . . , uq, also de-
noted by ∇q(u1, . . . , uq). As before, we write [L1, . . . , Lq] = [L1, . . . , Lq]s with
s := (s1, . . . , sq) if dimLi = si, i = 1, . . . , q.

In the next theorem, the initial integration space is
∏q

i=1G(d, si), with∑q
i=1 si ≥ (q − 1)d, and the pivot determined by a q-tuple of subspaces is

their intersection.

Theorem 7.2.5. Let s1, . . . , sq ∈ {1, . . . , d− 1} be integers satisfying

s1 + . . .+ sq − (q − 1)d =: m ≥ 0;

put s := (s1, . . . , sq). If f : G(d, s1) × . . . × G(d, sq) → R is a nonnegative
measurable function, then∫

G(d,s1)×...×G(d,sq)

f d(νs1 ⊗ . . .⊗ νsq
)

= b̄
∫

G(d,m)

∫
G(L,s1)×...×G(L,sq)

f [·, . . . , ·]ms d(νL
s1
⊗ . . .⊗ νL

sq
) νm(dL)

with

b̄ := bd(d−m)

q∏
j=1

b(d−m)(d−sj)

bd(d−sj)
. (7.13)

Proof. We put d − sj =: rj and r := (r1, . . . , rq). For Mj ∈ G(d, rj), j =
1, . . . , q, we set

f⊥(M1, . . . ,Mq) := f(M⊥
1 , . . . ,M

⊥
q ).

By Theorem 7.2.3,∫
G(d,r1)×...×G(d,rq)

f⊥ d(νr1 ⊗ . . .⊗ νrq
)

= b
∫

G(d,d−m)

∫
G(L,r1)×...×G(L,rq)

f⊥[·, . . . , ·]mr d(νL
r1
⊗ . . .⊗ νL

rq
) νd−m(dL)

with b given by (7.12). Now we observe that the mapping L �→ L⊥ maps the
space G(d, k) toG(d, d−k) and transforms the measure νk into νd−k Moreover,
for a fixed subspace M , it maps the space G(M,k) onto G(M⊥, d − k) and
transforms the measure νM

k into νM⊥
d−k, as follows from the uniqueness of these

invariant measures. Hence, the last equation is equivalent to the assertion. ��
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In the same way, one obtains from Theorem 7.2.4 the following general-
ization of the preceding result. Here a fixed subspace is given, and the pivot
determined by a tuple of subspaces is the intersection of these and the given
one.

Theorem 7.2.6. Let s1, . . . , sq ∈ {1, . . . , d−1} and s0 ∈ {1, . . . , d} be integers
with

s1 + . . .+ sq − (q − 1)d =: m ≥ d− s0;
put s := (s1, . . . , sq). Let L0 ∈ G(d, s0) be a fixed subspace. If f : G(d, s1) ×
. . .×G(d, sq)→ R is a nonnegative measurable function, then∫

G(d,s1)×...×G(d,sq)

f d(νs1 ⊗ . . .⊗ νsq
)

= c̄
∫

G(L0,m+s0−d)

∫
G(L,s1)×...×G(L,sq)

f [·, . . . , ·, L0]m+s0−d
s

× d(νL
s1
⊗ . . .⊗ νL

sq
) νL0

m+s0−d(dL)

with

c̄ := bs0(d−m)

q∏
j=1

b(2d−m−s0)(d−sj)

bd(d−sj)
.

Now we turn to affine transformation formulas, with affine subspaces in-
stead of linear subspaces. First we derive the affine Blaschke–Petkantschin
formula. Here the initial integration is over (Rd)q+1, and the pivot is
the q-flat affinely spanned (almost everywhere) by the integration variable
(x0, . . . , xq) ∈ (Rd)q+1. The outer integration space is the affine Grassmannian
A(d, q), and for E ∈ A(d, q), the inner integration space is the product Eq+1.
Recall that ∆q(x0, . . . , xq), as defined by (7.6), denotes the q-dimensional vol-
ume of the simplex with vertices x0, . . . , xq.

Theorem 7.2.7. If q ∈ {1, . . . , d} and if f : (Rd)q+1 → R is a nonnegative
measurable function, then∫

(Rd)q+1
f dλq+1 = bdq(q!)d−q

∫
A(d,q)

∫
Eq+1

f∆d−q
q dλq+1

E µq(dE) (7.14)

with bdq given by (7.8).

Proof. We apply Theorem 7.2.1 and several times the theorem of Fubini:∫
(Rd)q+1

f dλq+1

=
∫

Rd

∫
(Rd)q

f(x0, y1 + x0, . . . , yq + x0)λq(d(y1, . . . , yq))λ(dx0)
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= bdq

∫
Rd

∫
G(d,q)

∫
Lq

f(x0, y1 + x0, . . . , yq + x0)∇q(y1, . . . , yq)d−q

× λq
L(d(y1, . . . , yq)) νq(dL)λ(dx0)

= bdq

∫
G(d,q)

∫
L⊥

∫
L

∫
Lq

f(z + t, y1 + z + t, . . . , yq + z + t)

×∇q(y1, . . . , yq)d−q λq
L(d(y1, . . . , yq))λL(dz)λL⊥(dt) νq(dL)

= bdq(q!)d−q

∫
G(d,q)

∫
L⊥

∫
(L+t)q+1

f(x0, . . . , xq)

×∆q(x0, . . . , xq)d−q λq+1
L+t(d(x0, . . . , xq)) λL⊥(dt) νq(dL)

= bdq(q!)d−q

∫
A(d,q)

∫
Eq+1

f(x0, . . . , xq)∆q(x0, . . . , xq)d−q

× λq+1
E (d(x0, . . . , xq))µq(dE).

Here we have used (13.9). ��
Postponing the treatment of affine spans of flats of small dimensions, we

now consider the affine counterpart to Theorem 7.2.5. Here, the pivot deter-
mined by a q-tuple of flats of large dimensions is their intersection. For an
affine subspace E we denote by E0 the linear subspace parallel to E. For
E1, . . . , Eq ⊂ Rd with dimEi = si we put s := (s1, . . . , sq) and

[E1, . . . , Eq]s := [E0
1 , . . . , E

0
q ]s,

provided the right side is defined.

Theorem 7.2.8. Let s1, . . . , sq ∈ {1, . . . , d− 1} be integers satisfying

s1 + . . .+ sq − (q − 1)d =: m ≥ 0;

put s := (s1, . . . , sq). If f : A(d, s1) × . . . × A(d, sq) → R is a nonnegative
measurable function, then∫

A(d,s1)×...×A(d,sq)

f d(µs1 ⊗ . . .⊗ µsq
)

= b̄
∫

A(d,m)

∫
A(E,s1)×...×A(E,sq)

f [·, . . . , ·]m+1
s d(µE

s1
⊗ . . .⊗ µE

sq
)µm(dE)

with b̄ given by (7.13).

Proof. By (13.9) we can write

I :=
∫

A(d,s1)×...×A(d,sq)

f d(µs1 ⊗ . . .⊗ µsq
) (7.15)

=
∫

G(d,s1)×...×G(d,sq)

J(L1, . . . , Lq) (νs1 ⊗ . . .⊗ νsq
)(d(L1, . . . , Lq))
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with

J(L1, . . . , Lq)

=
∫

L⊥
1 ×...×L⊥

q

f(L1 + t1, . . . , Lq + tq) (λL⊥
1
⊗ . . .⊗ λL⊥

q
)(d(t1, . . . , tq)).

Let Lj ∈ G(d, sj), j = 1, . . . , q and assume, without loss of generality
(by Lemma 13.2.1), that these subspaces are in general position. We put
L1 ∩ . . . ∩ Lq =: L. For (t1, . . . , tq) ∈ L⊥

1 × . . .× L⊥
q we have

(L1 + t1) ∩ . . . ∩ (Lq + tq) = L+ ξ(t1, . . . , tq)

with a unique vector ξ(t1, . . . , tq) ∈ L⊥. This defines a linear map

ξ : L⊥
1 × . . .× L⊥

q → L⊥.

If πj : L⊥ → L⊥
j denotes the orthogonal projection, then the inverse map

ξ−1 is given by ξ−1(x) = (π1(x), . . . , πq(x)). Choosing in each space L⊥
j an

orthonormal basis and applying a linear map from L⊥
1 × . . .×L⊥

q to L⊥ that
maps the union of these bases to an orthonormal basis of L⊥, we see that

J(L1, . . . , Lq) = [L1, . . . , Lq]s
∫

L⊥
f(L1 + x, . . . , Lq + x)λL⊥(dx).

We insert this in (7.15) and use Theorem 7.2.5. In the subsequent integrals
we have L = L1 ∩ . . . ∩ Lq up to sets of measure zero.

I =
∫

G(d,s1)×...×G(d,sq)

[L1, . . . , Lq]s
∫

L⊥
f(L1 + x, . . . , Lq + x)λL⊥(dx)

× (νs1 ⊗ . . .⊗ νsq
)(d(L1, . . . , Lq))

= b̄

∫
G(d,m)

∫
G(L,s1)×...×G(L,sq)

∫
L⊥
f(L1 + x, . . . , Lq + x)[L1, . . . , Lq]m+1

s

× λL⊥(dx) (νL
s1
⊗ . . .⊗ νL

sq
)(d(L1, . . . , Lq)) νm(dL)

= b̄

∫
G(d,m)

∫
L⊥

∫
G(L,s1)×...×G(L,sq)

f(L1 + x, . . . , Lq + x)[L1, . . . , Lq]m+1
s

× (νL
s1
⊗ . . .⊗ νL

sq
)(d(L1, . . . , Lq))λL⊥(dx) νm(dL)

= b̄

∫
G(d,m)

∫
L⊥

∫
A(L+x,s1)×...×A(L+x,sq)

f(E1, . . . , Eq)[E1, . . . , Eq]m+1
s

× (µL+x
s1

⊗ . . .⊗ µL+x
sq

)(d(E1, . . . , Eq))λL⊥(dx) νm(dL)

= b̄

∫
A(d,m)

∫
A(E,s1)×...×A(E,sq)

f(E1, . . . , Eq)[E1, . . . , Eq]m+1
s

× (µE
s1
⊗ . . .⊗ µE

sq
)(d(E1, . . . , Eq))µm(dE).
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Here we have used (13.14) and (13.9). ��

In the case of flats of small dimensions, we consider only two flats. Let
E1 ∈ A(d, r), E2 ∈ A(d, s) be flats with dimensions satisfying r + s ≤ d − 1.
We assume that they are in general position, that is, the dimension of their
affine span is equal to r+s+1. Under this assumption, the distance between E1

and E2 is realized by unique points x1 ∈ E1, x2 ∈ E2, and the line F through
x1 and x2 is orthogonal to both, E1 and E2. We call F the ortholine of E1

and E2 and denote the distance ‖x1 − x2‖ by D(E1, E2).
In the following theorem, the pivot determined by a pair of flats of small

dimensions is their affine span.

Theorem 7.2.9. Let r1, r2 ∈ {0, . . . , d−1} be integers satisfying r1+r2+1 =:
p ≤ d; put r := (r1, r2). If f : A(d, r1) × A(d, r2) → R is a nonnegative
measurable function, then∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

= b
∫

A(d,p)

∫
A(E,r1)×A(E,r2)

fDd−p[·, ·]d−p
r d(µE

r1
⊗ µE

r2
)µp(dE)

with b given by (7.12) for q = 2.

Proof. It is sufficient to prove the assertion for a function f for which there
exists a ball B with f(E1, E2) = 0 if Ej ∩ intB = ∅ for at least one j ∈ {1, 2}.
If this is established, then the general case follows with an application of the
monotone convergence theorem.

For xj := (xj
0, . . . , x

j
rj

) ∈ (Rd)rj+1 we write aff {xj
0, . . . , x

j
rj
} =: aff xj , and

we define

g(x1,x2) :=
2∏

j=1

1Brj+1(xj)λaffxj
(B)−rj−1 if

2∏
j=1

λaffxj
(B) �= 0,

and g(x1,x2) := 0 otherwise. To each of the two integrals in

I := (r1!)r1−d(r2!)r2−d

∫
(Rd)r1+1

∫
(Rd)r2+1

f(affx1, affx2)

× g(x1,x2)∆r1(x1)r1−d∆r2(x2)r2−d λr2+1(dx2)λr1+1(dx1)

we apply the affine Blaschke–Petkantschin formula (7.14). This gives

I =
2∏

j=1

bdrj

∫
A(d,r1)

∫
A(d,r2)

f(E1, E2)µr2(dE2)µr1(dE1).

On the other hand, we can view I as an integral over (Rd)p+1 with respect to
the measure λp+1 and apply (7.14) to this. The result can be written as
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I = bdp

∫
A(d,p)

∫
Er1+1

∫
Er2+1

f(aff x1, aff x2)g(x1,x2)

× (r1!)r1−d(r2!)r2−d(p!)d−p∆r1(x1)r1−d∆r2(x2)r2−d

× ∆p(x1,x2)d−p λr2+1
E (dx2)λr1+1

E (dx1)µp(dE).

Here we employ the (easily established) fact that

p!∆p(x1,x2) = r1!r2!∆r1(x1)∆r2(x2)D(aff x1, aff x2)[aff x1, aff x2].

We insert this and then apply (7.14) to the two inner integrals over Erj+1,
j = 1, 2. This immediately yields the assertion of the theorem. ��

In the following theorem, we restrict ourselves to flats of small dimensions
which affinely span the whole space. The pivot determined by a pair (E1, E2)
of flats in general position will now be the triple (F, x1, x2), consisting of the
ortholine F of E1, E2 and the points x1, x2 where F intersects the flats. For a
given triple (F, x1, x2), the inner integration space is in effect (though written
in a more convenient way) the space A(x1, F

⊥ + x1, r1)×A(x2, F
⊥ + x2, r2).

Here A(x, F⊥ + x, s) denotes the space of s-flats through x and contained in
F⊥ + x (recall that F⊥ := (F 0)⊥ is a linear subspace).

Theorem 7.2.10. Let r1, r2 ∈ {0, . . . , d− 2} be integers satisfying r1 + r2 =
d − 1. If f : A(d, r1) × A(d, r2) → R is a nonnegative measurable function,
then ∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

= b
∫

A(d,1)

∫
F 2

∫
G(F⊥,r1)×G(F⊥,r2)

f(L1 + x1, L2 + x2)[L1, L2]2

× (νF⊥
r1 ⊗ νF⊥

r2 )(d(L1, L2))λ2
F (d(x1, x2))µ1(dF )

with b given by (7.12) for q = 2.

Proof. In the proof, we use repeatedly Fubini’s theorem and (13.9). We apply
Theorem 7.2.3 and then go over to orthogonal complements:

I :=
∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

=
∫

G(d,r1)×G(d,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)

× (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2)) (νr1 ⊗ νr2)(d(L1, L2))

= b

∫
G(d,d−1)

∫
G(H,r1)×G(H,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)
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× [L1, L2] (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2))(νH

r1
⊗ νH

r2
)(d(L1, L2)) νd−1(dH)

= b

∫
G(d,1)

∫
G(L⊥,r1)×G(L⊥,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)

× [L1, L2] (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2)) (νL⊥

r1
⊗ νL⊥

r2
)(d(L1, L2)) ν1(dL).

Using the direct sum decomposition L⊥
j = L ⊕ (L⊥

j ∩ L⊥) and writing xj =
yj + zj with yj ∈ L and zj ∈ L⊥

j ∩ L⊥, we obtain

I = b

∫
G(d,1)

∫
G(L⊥,r1)×G(L⊥,r2)

∫
L2

∫
(L⊥

1 ∩L⊥)×(L⊥
2 ∩L⊥)

f(L1 + y1 + z1, L2 + y2 + z2)[L1, L2] (λL⊥
1 ∩L⊥ ⊗ λL⊥

2 ∩L⊥)(d(z1, z2))

×λ2
L(d(y1, y2)) (νL⊥

r1
⊗ νL⊥

r2
)(d(L1, L2)) ν1(dL)

= b

∫
G(d,1)

∫
L2

{∫
A(L⊥,r1)×A(L⊥,r2)

f(E1 + y1, E2 + y2)

× [E1, E2] (µL⊥
r1
⊗ µL⊥

r2
)(d(E1, E2))

}
λ2

L(d(y1, y2)) ν1(dL).

To the integral in braces we apply Theorem 7.2.8 (in L⊥); here m = 0 (and
thus b̄ = 1), so that A(L⊥,m) is identified with L⊥. This gives

I = b

∫
G(d,1)

∫
L2

{∫
L⊥

∫
G(L⊥,r1)×G(L⊥,r2)

f(L1 + t+ y1, L2 + t+ y2)

× [L1, L2]2 (νL⊥
r1
⊗ νL⊥

r2
)(d(L1, L2))λL⊥(dt)

}
λ2

L(d(y1, y2)) ν1(dL)

= b

∫
G(d,1)

∫
L⊥

∫
(L+t)2

∫
G(L⊥,r1)×G(L⊥,r2)

f(L1 + y1, L2 + y2)

× [L1, L2]2 (νL⊥
r1
⊗ νL⊥

r2
)(d(L1, L2))λ2

L+t(d(y1, y2))λL⊥(dt) ν1(dL)

= b

∫
A(d,1)

∫
F 2

∫
G(F⊥,r1)×G(F⊥,r2)

f(L1 + y1, L2 + y2)

× [L1, L2]2 (νF⊥
r1
⊗ νF⊥

r2
)(d(L1, L2))λ2

F (d(y1, y2))µ1(dF ).

This completes the proof. ��

In Theorem 7.2.10 we have assumed that r1 + r2 +1, the dimension of the
affine span (if the flats are in general position) is equal to d. If this dimension
is less than d, we obtain the corresponding result by first applying Theorem
7.2.9 and then transforming the inner integral by means of Theorem 7.2.10.
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Notes for Section 7.2

1. In this note we give an interesting alternative proof of the Blaschke–Petkantschin
formula of Theorem 7.2.1. This proof, which is due to Møller [550], is based on
a uniqueness result for relatively invariant measures. The method is also briefly
described in Barndorff–Nielsen, Blæsild and Eriksen [79, pp. 59–60]. In the following,
we use notation and results from Section 13.3.

Second proof of Theorem 7.2.1. To prove (7.7), we need evidently consider only
linearly independent q-tuples (x1, . . . , xq). We denote by U ⊂ (Rd)q the subspace of
linearly independent q-tuples. In the following, we consider the elements of Rd as
column vectors (with respect to some fixed basis) and, correspondingly, (x1, . . . , xq)
as a (d, q)-matrix; then U is the space of real (d, q)-matrices of rank q. Let GL(q)
be the group of regular (q, q)-matrices with the standard topology; it is locally
compact. The same holds true for the direct product G := SO(d) × GL(q), where
SO(d) denotes the group of orthogonal (d, d)-matrices with determinant one. By

((D, M), (x1, . . . , xq)) �→ D(x1, . . . , xq)M
t =: (D, M).(x1, . . . , xq)

for (D, M) ∈ G and (x1, . . . , xq) ∈ U , where M t denotes the transpose of the matrix
M , we define a transitive operation of G on U . It is not difficult to verify that U ,
with this operation, becomes a homogeneous G-space. Recall that (Sec. 13.3), if a
group G operates on a set U , one defines (g.f)(u) := f(g−1u), u ∈ U , for a function
f on U .

Now we define two positive linear functionals I1, I2 on Cc(U) by

I1(f) :=

∫
Rd

. . .

∫
Rd

f(x1, . . . , xq) λ(dx1) · · ·λ(dxq),

I2(f) :=

∫
G(d,q)

∫
L

. . .

∫
L

f(x1, . . . , xq)∇q(x1, . . . , xq)
d−q

×λL(dx1) · · ·λL(dxq) νq(dL)

for f ∈ Cc(U). For (D, M) ∈ G we get

I1((D, M).f) =

∫
Rd

. . .

∫
Rd

f(D−1(x1, . . . , xq)M
−t) λ(dx1) · · ·λ(dxq)

= |det M |dI1(f),

because λ is rotation invariant, and the linear map (x1, . . . , xq) �→ (x1, . . . , xq)M
from the space of (d, q)-matrices into itself has determinant (det M)d. Further, for
L ∈ G(d, q) we get∫

L

. . .

∫
L

f(D−1(x1, . . . , xq)M
−t)∇q(x1, . . . , xq)

d−q λL(dx1) · · ·λL(dxq)

= |det M |q
∫

L

. . .

∫
L

f(D−1(x1, . . . , xq))∇q((x1, . . . , xq)M
t)d−q

×λL(dx1) · · ·λL(dxq)

= |det M |d
∫

ϑ−1L

. . .

∫
ϑ−1L

f(x1, . . . , xq)∇q(x1, . . . , xq)
d−q

×λϑ−1L(dx1) · · ·λϑ−1L(dxq),
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where ϑ ∈ SOd is the rotation defined by D. The rotation invariance of νq now
implies

I2((D, M).f) = |det M |dI2(f).

Thus the integrals I1 and I2 are relatively invariant with the same multiplier. From
Theorem 13.3.1 it follows that I1 = cI2 with a constant c. The value of this constant
can be obtained from Theorem 8.2.2. ��
2. A general reference for the formulas of Section 7.2 is Santaló’s book [662]. His
proofs, as much of the original literature, use differential forms. Another flexible tool
for obtaining integral geometric transformation formulas is Federer’s coarea formula.
In contrast to this, our aim was here to give more elementary and geometric proofs,
based either on direct integration procedures or invariance arguments.

Results of Blaschke–Petkantschin type can in principle be traced back to
Lebesgue [437], who used the transformation rule for multiple integrals to give new
proofs for results of Crofton. After an influential lecture course by Herglotz [335] in
Göttingen on geometric probabilities, and papers by Blaschke [105] and Varga [762],
a systematic and general investigation of such integral geometric transformation for-
mulas was undertaken by Petkantschin [601]. In special forms, most of the results of
this section appear already in that paper. The usefulness of Blaschke–Petkantschin
type formulas in stochastic geometry was emphasized by Miles. In [531], he gave
new proofs and extensions of some results going back to Petkantschin, for example,
of Theorem 7.2.2 above. In the style of the present chapter, though less generally,
Blaschke–Petkantschin formulas were presented in Schneider and Weil [716].

For a recent application (in particular of Theorem 7.2.3) outside stochastic geom-
etry, we mention E. Milman [540].

3. There are more general versions of Lemma 7.2.1, for integrations over A(d, q)
instead of Rd; see Petkantschin [601, formula (49)]. A special case, where the given
linear subspace is of dimension zero, reads as follows. Let q < r ≤ d. For the pivot
associated with E ∈ A(d, q) one can choose a linear r-subspace containing E. Then
the outer integration space is G(d, r), and for L ∈ G(d, r), the inner integration
space is A(L, q). The resulting formula is∫

A(d,q)

f dµq = c

∫
G(d,r)

∫
A(L,q)

f d(·, 0)d−r dµL
q νr(dL)

with a constant c depending on d, q, r. Applications of the special case d = 3, q = 1
are discussed by Cruz–Orive [190].

4. Vertical Sections. The following special case of Theorem 7.2.4 is of interest in
stereology. Let d = 3, q = 1, r1 = 1, r0 = 1 and let V ∈ G(3, 1) be a fixed line.
In some applications, the direction of the ‘vertical’ line V plays a particular role,
and two-dimensional planes parallel to V define ‘vertical sections’. Theorem 7.2.4
specializes to ∫

G(3,1)

f dν1 = c

∫
G(V,2)

∫
G(L,1)

f [·, V ] dνL
1 νV

2 (dL).

This can be interpreted as saying that an isotropic random line through 0 can be
generated by first generating a uniform vertical 2-plane L containing V and then in
L a random line through 0 with the distribution defined by the inner integral. Such
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and more general ‘vertical uniform random sampling designs’ can be of advantage
in practical situations where preferred directions are present. They were suggested
by Baddeley [46] and further studied in Baddeley [47, 48], Baddeley, Gundersen and
Cruz–Orive [52]; see also Kötzer, Jensen and Baddeley [424] and Beneš and Rataj
[90, sect. 4.1.3]. A detailed description is found in Baddeley and Jensen [53, ch. 8].

5. Hug and Reitzner [365] have proved and applied the following formula of
Blaschke–Petkantschin type. The initial integration space is (Rd)d+p, where 1 ≤
p ≤ d. The pivot determined by (x1, . . . , xd+p) ∈ (Rd)d+p is the pair (H1, H2),
where H1 := aff{x1, . . . , xd} and H2 := aff{xp+1, . . . , xp+d}. The outer integration
space is A(d, d − 1) × A(d, d − 1), and for (H1, H2) ∈ A(d, d − 1) × A(d, d − 1), the
inner integration space is Hp

1 × (H1 ∩ H2)
d−p × Hp

2 . The formula reads∫
(Rd)d+p

f dλd+p =

(
d!κd

2

)2 ∫
A(d,d−1)×A(d,d−1)

∫
H

p
1×(H1∩H2)d−p×H

p
2

f

× ∆d(x1, . . . , xd)∆d(xp+1, . . . , xp+d)[H1, H2]
p−d

× d(λp
H1

⊗ λd−p
H1∩H2

⊗ λp
H2

) µ2
d−1(d(H1, H2)).

6. There is a spherical counterpart to the affine Blaschke–Petkantschin formula. The
initial integration is over (Sd−1)q+1, where q ∈ {1, . . . , d − 1}. The pivot is the q-
flat affinely spanned (almost everywhere) by the integration variable (x0, . . . , xq) ∈
(Sd−1)q+1. The outer integration space is the affine Grassmannian A(d, q), and for
E ∈ A(d, q) hitting Sd−1, the inner integration space is (Sd−1 ∩ E)q+1. The result
appears in Miles [525, Th. 4], with a short sketch of a proof. A detailed proof could
be given similarly to Theorem 8.2.3. A typical application is found in Buchta, Müller
and Tichy [134].

A related very general transformation formula, involving spheres and linear in-
stead of affine subspaces, appears together with applications in Arbeiter and Zähle
[38, Th. 1].

7. The affine Blaschke–Petkantschin formula of Theorem 7.2.7 can be interpreted
as a decomposition of the (q + 1)-fold product of the Lebesgue measure in Rd.
Integration with respect to this product measure is decomposed into integration
with respect to the (q + 1)-fold product of Lebesgue measure in a q-dimensional
affine subspace, with a suitable Jacobian, followed by an integration over all q-
dimensional affine subspaces. A somewhat similar decomposition is possible if the
d-dimensional Lebesgue measure is replaced by the k-dimensional Hausdorff measure
on a k-surface, k < d. In that case, the relative directions of the intersecting affine
subspace and the tangent plane of the k-surface at the intersection points enter into
the formula and make it complicated. General formulas of this type were proved by
Zähle [829] (see Reitzner [628] for a short proof of a useful special case) and Jensen
and Kiêu [382] (using an extended coarea formula by Kiêu [410]). A simplified proof
was given in Jensen [379]. Stereological applications were presented by Jensen and
Gundersen [380], Jensen, Kiêu and Gundersen [383].
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7.3 Transformation Formulas Involving Spheres

In this section we prove two formulas of Blaschke–Petkantschin type (in the
sense explained in the previous section), where the pivots are spheres. Corre-
spondingly, the outer integration is over the space of all spheres, or equiva-
lently, over the space of all possible centers and all possible radii, with a very
simple measure. The inner integrations are conveniently written in terms of
the unit sphere instead of variable spheres.

Theorem 7.3.1. If f : (Rd)d+1 → R is a nonnegative measurable function,
then ∫

(Rd)d+1
f dλd+1

= d!
∫

Rd

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

f(z + ru0, . . . , z + rud)

× rd2−1∆d(u0, . . . , ud)σ(du0) · · ·σ(dud) dr λ(dz).

Proof. It must be shown that the differentiable mapping

T : Rd × (0,∞)× (Sd−1)d+1 → (Rd)d+1,

which is defined by

(z, r, u0, . . . , ud) �→ (z + ru0, . . . , z + rud)

and is bijective up to sets of measure zero, has Jacobian given by

D(z, r, u0, . . . , ud) = d!rd
2−1∆d(u0, . . . , ud). (7.16)

In the proof, we use the block notation for matrices. We write At for the
transpose of a matrix A; vectors of Rd are interpreted as columns. We de-
note by Ek the k × k unit matrix. In order to prove (7.16) at a given point
(z, r, u0, . . . , ud) of R× (0,∞)× (Sd−1)d+1, we use special local coordinates in
a neighborhood of this point. For i = 0, . . . , d we introduce, in a neighborhood
of ui on Sd−1, parameters in such a way that the d×d matrix (ui u̇i) becomes
orthogonal at the considered point; here u̇i denotes the d × (d − 1) matrix
of the partial derivatives of ui with respect to the corresponding parameters.
This can easily be achieved. If for u ∈ Sd−1 the matrix (u u̇) is orthogonal,
then

u̇tu = 0, u̇tu̇ = Ed−1, Ed − u̇u̇t = uut.

For D = D(z, r, u0, . . . , ud) we therefore get

D =

∣∣∣∣∣∣∣∣∣
Ed u0 ru̇0 0 · · · 0
· · 0 · · · · ·
...

...
...

...
. . .

...
Ed ud 0 · · · · ru̇d

∣∣∣∣∣∣∣∣∣ .
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For D̃ := r1−d2
D we thus obtain

D̃2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ed · · · · Ed

ut
0 · · · · ut

d

u̇t
0 0 · · · 0
0 · ·
...

...
. . .

...
0 · · · · u̇t

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

Ed u0 u̇0 0 · · · 0
· · 0 · · · · ·
...

...
...

...
. . .

...
Ed ud 0 · · · · u̇d

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

(d+ 1)Ed

∑
ui u̇0 · · · u̇d∑

ut
i d+ 1 0 · · · 0

u̇t
0 0 Ed−1 · · · 0
...

...
...

. . .
...

u̇t
d 0 0 · · · Ed−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ (d+ 1)Ed −
∑
u̇iu̇

t
i

∑
ui∑

ut
i d+ 1

∣∣∣∣∣ =

∣∣∣∣∣
∑
uiu

t
i

∑
ui∑

ut
i d+ 1

∣∣∣∣∣
=

∣∣∣∣∣∣∣
(
u0 · · ·ud

1 · · · 1

)⎛⎜⎝u
t
0 1
...

...
ut

d 1

⎞⎟⎠
∣∣∣∣∣∣∣

= (d!)2∆2
d(u0, . . . , ud),

as asserted. ��

The previous result was based on the fact that d + 1 points in general
position determine a unique sphere through these points. The following coun-
terpart employs the unique sphere touching d+ 1 hyperplanes in general po-
sition and contained in the bounded region determined by the hyperplanes.
Let H0, . . . , Hd ∈ A(d, d− 1) by hyperplanes in general position (that is, they
don’t have a common point, and any d of their normal vectors are linearly
independent). There is a unique simplex S such that H0, . . . , Hd are the facet
hyperplanes of S. We denote by P the set of (d + 1)-tuples of unit vectors
positively spanning Rd, that is, not lying in some closed hemisphere of Sd−1.

Theorem 7.3.2. If f : A(d, d−1)d+1 → R is a nonnegative measurable func-
tion, then∫

A(d,d−1)d+1
f dµd+1

d−1

=
d!
ωd+1

d

∫
Rd

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

f(H(u0, 〈z, u0〉+ r), . . . , H(ud, 〈z, ud〉+ r))

×∆d(u0, . . . , ud)1P(u0, . . . , ud)σ(du0) · · ·σ(dud) dr λ(dz).
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Proof. Let A∗(d, d − 1)d+1 denote the set of (d + 1)-tuples of hyperplanes in
general position. Let H0, . . . , Hd ∈ A∗(d, d− 1)d+1, and let ∆ be the simplex
determined by these hyperplanes. We denote by z the center of the insphere
of ∆, by r its radius, and by z + rui, i = 0, . . . , d, the contact points of the
insphere with the given hyperplanes. Then (u0, . . . , ud) ∈ P. The mapping

(z, r, u0, . . . , ud) �→ (H(u0, t0), . . . , H(ud, td)) with ti := 〈z, ui〉+ r

maps Rd×R+×P bijectively onto A∗(d, d−1)d+1. For fixed (u0, . . . , ud) ∈ P,
the mapping (z, r) �→ (t0, . . . , td) has Jacobian d!∆d(u0, . . . , ud). It follows
that∫

A(d,d−1)

. . .

∫
A(d,d−1)

f(H0, . . . , Hd)µd−1(dH0) · · ·µd−1(dHd)

=
1

ωd+1
d

∫
Sd−1

. . .

∫
Sd−1

∫
R

. . .

∫
R

f(H(u0, τ0), . . . , H(ud, τd))

× dτ0 · · · dτd σ(du0) · · ·σ(dud)

=
d!
ωd+1

d

∫
Sd−1

. . .

∫
Sd−1

∫
Rd

∫ ∞

0

f(H(u0, 〈z, u0〉+ r), . . . , H(ud, 〈z, ud〉+ r))

× dr λ(dz)1P(u0, . . . , ud)∆d(u0, . . . , ud)σ(du0) · · ·σ(dud),

which gives the assertion, by Fubini’s theorem. ��

Notes for Section 7.3

1. Theorem 7.3.1 appears, with a sketched proof, in Miles [521], equation (70). It
was proved in a different way by Affentranger [9]. The proof given here goes back
(for d = 3) to Møller [553].

2. Theorem 7.3.2 is taken from Calka [149].


