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Extended Concepts of Integral Geometry

In this chapter, we derive further integral geometric formulas for convex bod-
ies. They are related to the principal kinematic formula, either directly or
indirectly. As in the latter formula, we have a fixed and a moving set, but
in the two subsequent sections we do not consider intersections of both; we
form sums of convex bodies or projections of convex bodies to subspaces. First
we treat rotation means of Minkowski sums, which will later (Section 8.5) be
applied to touching probabilities. The global version is an immediate conse-
quence of the principal kinematic formula; the local version will be proved
by techniques similar to those in Sections 5.2 and 5.3. From the formulas for
rotation means of sums we deduce projection formulas.

In Section 6.3, we admit (infinite) convex cylinders as moving sets. For
these, we derive a local kinematic formula, and we also obtain a formula that
combines sections with projections.

Section 6.4 is devoted to a continuation of translative integral geometry.
We treat iterated translative formulas, which involve a more general series
of mixed measures, and consider rotation means and results of Crofton type
for the mixed measures. The integral formulas for mixed measures and their
global versions, the mixed functionals, also yield kinematic formulas for certain
mixed volumes and for projection functions and support functions of convex
bodies.

Section 6.5 provides an introduction to the integral geometry of spherically
convex sets in the spherical space Sd−1.

6.1 Rotation Means of Minkowski Sums

In this section, we are interested in mean value formulas for the Minkowski
sum of a fixed and a moving convex body. The functions to be integrated are
again intrinsic volumes and curvature measures. Since Vj(K + (ϑM + x)), for
example, does not depend on x, only the rotations of M are relevant, hence
we shall be interested in the integral
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SOd

Vj(K + ϑM) ν(dϑ).

In order to illustrate the connection with the principal kinematic formula, we
first prove the global version of the rotational mean value formula.

Theorem 6.1.1. If K,M ∈ K′ are convex bodies and if j ∈ {0, . . . , d}, then∫
SOd

Vj(K + ϑM) ν(dϑ) =
j∑

k=0

cd+k−j,d−k
d−j,d Vk(K)Vj−k(M).

Proof. First we consider the case j = d. We have∫
SOd

Vd(K + ϑM) ν(dϑ) =
∫

SOd

∫
Rd

1K+ϑM (x)λ(dx) ν(dϑ).

The relation x ∈ K+ϑM is equivalent toK∩(ϑM ′+x) �= ∅, whereM ′ := −M .
Hence, we obtain∫

SOd

Vd(K + ϑM) ν(dϑ) =
∫

SOd

∫
Rd

V0(K ∩ (ϑM ′ + x))λ(dx) ν(dϑ)

=
∫

Gd

V0(K ∩ gM ′)µ(dg)

=
d∑

k=0

ck,d−k
0,d Vk(K)Vd−k(M),

where we have used the principal kinematic formula (Theorem 5.1.3) and the
fact that Vj(M ′) = Vj(M) for j = 0, . . . , d.

Now we replace K by K + εBd with ε > 0 and apply the Steiner formula
(14.16), to obtain

d∑
j=0

εd−jκd−j

∫
SOd

Vj(K + ϑM) ν(dϑ)

=
∫

SOd

Vd((K + ϑM) + εBd) ν(dϑ)

=
∫

SOd

Vd((K + εBd) + ϑM) ν(dϑ)

=
d∑

m=0

cm,d−m
0,d Vm(K + εBd)Vd−m(M)

=
d∑

m=0

m∑
k=0

εm−k 1
(m− k)!c

m,d−k
0,d Vk(K)Vd−m(M).
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Putting m = d + k − j and changing the order of summation, we get the
double sum

d∑
j=0

εd−jκd−j

j∑
k=0

cd+k−j,d−k
d−j,d Vk(K)Vj−k(M).

Comparing the coefficients, we obtain the assertion for all j ∈ {0, . . . , d}. ��

We want to extend the previous theorem to curvature measures, that is,
replace the integrand Vj(K + ϑM) by Φj(K + ϑM,A + ϑB). Evidently, this
requires a restriction to the cases j < d and to Borel sets A ⊂ K, B ⊂ M ,
contained in the respective bodies. Even under this assumption, A+ ϑB is in
general not a Borel set, so that Φj(K + ϑM,A + ϑB) would not be defined.
However, it will be sufficient to know the following.

Lemma 6.1.1. Let K,M ∈ K′, A,B ∈ B(Rd) and A ⊂ K, B ⊂ M . For ν-
almost all ϑ ∈ SOd the set

(A+ ϑB) ∩ bd (K + ϑM)

is a Borel set, hence Φj(K + ϑM,A+ ϑB) is defined for j = 0, . . . , d− 1.

Proof. For x ∈ bd (K + ϑM) there is a representation x = y + z with y ∈
K, z ∈ ϑM . The points x, y, z lie in parallel supporting hyperplanes of K +
ϑM , K, and ϑM , respectively; in particular, y ∈ bdK and z ∈ bdϑM .
Suppose there is another representation x = y1+z1 with y1 ∈ K and z1 ∈ ϑM ,
then y − y1 = z1 − z, and the segments yy1, z1z satisfy yy1 ⊂ bdK and
z1z ⊂ bdϑM . Hence the bodies K and ϑM contain parallel segments lying in
parallel supporting hyperplanes. A theorem from the theory of convex bodies
(see Schneider [695, Theorem 2.3.10]) says that for ν-almost all ϑ ∈ SOd this
does not occur. Hence, for these ϑ the representation x = y + z with y ∈ K
and z ∈ ϑM is unique for each x ∈ bd (K + ϑM). Putting

π1(K,M,ϑ, x) := y, π2(K,M,ϑ, x) := ϑ−1z,

we obtain mappings

π1(K,M,ϑ, ·) : bd (K + ϑM)→ bdK,

π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdM.

From the compactness of the bodies K,M it follows easily that the mapping

π := π1(K,M,ϑ, ·)× π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdK × bdM

is continuous. Hence, for Borel sets A ⊂ K, B ⊂M the set

(A+ ϑB) ∩ bd (K + ϑM) = π−1(A×B)

is a Borel set, too. ��
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In proving the local version of Theorem 6.1.1, we proceed similarly to the
case of the principal kinematic formula, so we first consider polytopes. We
say that two polytopes K,M ∈ P ′ are in general relative position if for
any two faces F of K and G of M the linear subspaces L(F ), L(G) parallel to
aff F , aff G, respectively, are in general position.

Theorem 6.1.2. If K,M ∈ K′ are convex bodies, A,B ∈ B(Rd) are Borel
sets satisfying A ⊂ K and B ⊂M , and if j ∈ {0, . . . , d− 1}, then∫

SOd

Φj(K + ϑM,A+ ϑB) ν(dϑ)

=
j∑

k=0

cd+k−j,d−k
d−j,d Φk(K,A)Φj−k(M,B). (6.1)

Proof. The measurability of the integrand will be verified in the course of the
proof. First we consider the case j = d− 1.

Let K,M be d-dimensional polytopes. By Lemmas 13.2.1 and 6.1.1, there
is a Borel set DK,M ⊂ SOd with ν(DK,M ) = 1 such that K and ϑM are
in general relative position and (A + ϑB) ∩ bd (K + ϑM) is a Borel set if
ϑ ∈ DK,M . Let ϑ ∈ DK,M . Since K + ϑM is a polytope, we have

Φd−1(K + ϑM,A+ ϑB) =
∑

F ′∈Fd−1(K+ϑM)

γ(F ′,K + ϑM)λF ′(A+ ϑB).

Because of ϑ ∈ DK,M , each facet F ′ ∈ Fd−1(K + ϑM) is of the form F ′ =
F+ϑG with F ∈ Fk(K) and G ∈ Fd−1−k(M), for some k ∈ {0, . . . , d−1}. For
faces F ∈ Fk(K) and G ∈ Fd−1−k(M), we put L1 := (aff F )⊥, L2 := (aff G)⊥;
then L1 ∩ ϑL2 is of dimension one. The external angle γ(F + ϑG,K + ϑM) is
zero if F + ϑG is not a face of K + ϑM ; otherwise it is equal to 1/2, and this
happens if and only if

N(K,F ) ∩ ϑN(M,G) ∩ Sd−1 �= ∅.

For arbitrary subsets U ⊂ L1, V ⊂ L2, the intersection U ∩ ϑV ∩ Sd−1 is
either empty or one-pointed or two-pointed; we put

I(U, V, ϑ) :=
1
2
card (U ∩ ϑV ∩ Sd−1).

If F + ϑG is a face of K + ϑM , then

(A+ ϑB) ∩ (F + ϑG) = (A ∩ F ) + ϑ(B ∩G).

Since the sum F + ϑG is direct, we obtain

λF+ϑG(A+ ϑB) = [F, ϑG]λF (A)λG(B).
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This yields

Φd−1(K + ϑM,A+ ϑB)

=
d−1∑
k=0

∑
F∈Fk(K)

∑
Fd−1−k(M)

λF (A)λG(B)I(N(K,F ), N(M,G), ϑ)[F, ϑG].

If faces F,G are given, we now define

J(U, V ) :=
∫

SOd

I(U, V, ϑ)[F, ϑG] ν(dϑ)

for arbitrary Borel sets U ⊂ L1 ∩ Sd−1, V ⊂ L2 ∩ Sd−1. The measurability
of the integrand is easily verified. This also yields the measurability of the
integrand in (6.1) for the case where K and M are polytopes. Similarly to the
proof of Theorem 5.3.1 one now proves the equality

J(U, V ) = αdk σd−k−1(U)σk(V )

with a certain constant αdk > 0. This gives∫
SOd

Φd−1(K + ϑM,A+ ϑB) ν(dϑ)

=
d−1∑
k=0

∑
F∈Fk(K)

∑
G∈Fd−k−1(M)

α′
dkγ(F,K)γ(G,M)λF (A)λG(B)

=
d−1∑
k=0

α′
dkΦk(K,A)Φd−k−1(M,B).

If A = K and B = M , this formula must coincide with the corresponding one
in Theorem 6.1.1, hence α′

dk = ck+1,d−k
1,d . Thus the proof of the case j = d− 1

of (6.1) for d-dimensional polytopes K,M is complete.
Now let K,M be arbitrary d-dimensional convex bodies. Without loss of

generality, we assume 0 ∈ intK ∩ intM . Then 0 is an inner point of K +ϑM ,
for all rotations ϑ ∈ SOd. By Lemma 6.1.1, there is a Borel set DK,M ⊂ SOd

with ν(DK,M ) = 1 such that for ϑ ∈ DK,M there exist the mappings

π1(K,M,ϑ, ·) : bd (K + ϑM)→ bdK,

π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdM

introduced in the proof of the lemma. Let ϑ ∈ DK,M . We extend the domain
of π1(K,M,ϑ, ·) and π2(K,M,ϑ, ·) to all of Rd. Since 0 ∈ int (K + ϑM), to
each x ∈ Rd there exist α ≥ 0 and x ∈ bd (K + ϑM) with x = αx. We set

πk(K,M,ϑ, x) := απk(K,M,ϑ, x) for k = 1, 2.
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Evidently the mappings πk(K,M,ϑ, ·) : Rd → Rd thus defined are continuous
(k = 1, 2). Let ϕ(K,M,ϑ, ·) be the image measure of Φd−1(K + ϑM, ·) under
the map

π(K,M,ϑ, ·) := π1(K,M,ϑ, ·)× π2(K,M,ϑ, ·).
Then ϕ(K,M,ϑ, ·) is a finite Borel measure on Rd×Rd, and for A,B ∈ B(Rd)
with A ⊂ K and B ⊂M , we have

ϕ(K,M,ϑ,A×B) = Φd−1(K + ϑM,A+ ϑB). (6.2)

By the transformation rule for integrals,

∫
Rd×Rd

f(x, y)ϕ(K,M,ϑ,d(x, y))

=
∫

Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) (6.3)

for all continuous functions f on Rd × Rd.
Now let ϑ ∈ DK,M and let (ϑi)i∈N be a sequence in DK,M converging to

ϑ. We show that ϕ(K,M,ϑi, ·) converges weakly to ϕ(K,M,ϑ, ·) if i → ∞.
We can choose a convex body C ∈ Kd with K + ϑiM ⊂ C for all i ∈ N. Let
f ∈ C(Rd ×Rd). The function f is uniformly continuous on C ×C, hence for
given ε > 0 there is δ with |f(x, y)− f(x′, y′)| < ε for all x, y, x′, y′ ∈ C with
‖x − x′‖ + ‖y − y′‖ < 2δ. It is easy to see that πk(K,M,ϑi, ·) converges to
πk(K,M,ϑ, ·), uniformly on C, for k = 1, 2. We infer that ‖πk(K,M,ϑi, z)−
πk(K,M,ϑ, z)‖ < δ for all z ∈ C, almost all i ∈ N, and k = 1, 2. Together
with (6.3) this gives∣∣∣∣ ∫

Rd×Rd

f dϕ(K,M,ϑi, ·)−
∫

Rd×Rd

f dϕ(K,M,ϑ, ·)
∣∣∣∣

≤
∫

Rd

|f(π(K,M,ϑi, z))− f(π(K,M,ϑ, z))| Φd−1(K + ϑiM,dz)

+
∣∣∣∣ ∫

Rd

f(π(K,M,ϑ, z)) (Φd−1(K + ϑiM,dz)− Φd−1(K + ϑM,dz))
∣∣∣∣

< aε

for almost all i ∈ N, with a constant a not depending on i. Here we have used
the fact that Φd−1(K + ϑiM,R

d) is bounded by a constant depending only
on C (similarly to the proof of Theorem 5.2.3); further, the weak convergence
Φd−1(K + ϑiM, ·) w→ Φd−1(K + ϑM, ·) and the continuity of the function
f(π(K,M,ϑ, ·)) were applied.

The weak convergence thus established shows that for each f ∈ C(Rd×Rd)
the mapping

ϑ �→
∫

Rd×Rd

f dϕ(K,M,ϑ, ·)
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is continuous on DK,M . By Lemma 12.1.1 this implies the measurability of
the mapping

ϑ �→ ϕ(K,M,ϑ, U)

on DK,M , for all U ∈ B(Rd×Rd). In particular, for A,B ∈ B(Rd) with A ⊂ K
and B ⊂M we obtain from (6.2) the measurability of the map

ϑ �→ Φd−1(K + ϑM,A+ ϑB)

on DK,M and hence the measurability ν-almost everywhere of the integrand
in (6.1), if j = d− 1.

Putting

ϕ(K,M, ·) :=
∫

SOd

ϕ(K,M,ϑ, ·) ν(dϑ),

we now obtain a finite measure on Rd × Rd satisfying∫
Rd×Rd

f dϕ(K,M, ·) =
∫

SOd

∫
Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) ν(dϑ)

for f ∈ C(Rd × Rd). We consider convergent sequences Ki → K and
Mi → M of convex bodies Ki,Mi with 0 ∈ intKi ∩ intMi, and we put
D :=

⋂∞
i=1DKi,Mi

∩ DK,M . As before, we see that for ϑ ∈ D the functions
f(π(Ki,Mi, ϑ, ·)) converge for i → ∞, uniformly on every compact set, and
we deduce in a similar way that∫

Rd

f(π(Ki,Mi, ϑ, z))Φd−1(Ki + ϑMi,dz)

→
∫

Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz)

for i→∞. The dominated convergence theorem yields∫
SOd

∫
Rd

f(π(Ki,Mi, ϑ, z))Φd−1(Ki + ϑMi,dz) ν(dϑ)

→
∫

SOd

∫
Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) ν(dϑ)

and thus the weak convergence ϕ(Ki,Mi, ·) w→ ϕ(K,M, ·) for i→∞.
Obviously, the assertion of the theorem for j = d− 1 is equivalent to∫

Rd×Rd

f(x)g(y)ϕ(K,M,d(x, y))

=
d−1∑
k=0

ck+1,d−k
1,d

∫
Rd

f dΦk(K, ·)
∫

Rd

g dΦd−k−1(M, ·)
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for all f, g ∈ C(Rd). Since we have proved the assertion for d-dimensional
polytopes, we can use the latter equality, where both sides depend continu-
ously on K and M , to extend it by approximation to arbitrary d-dimensional
convex bodies K,M .

The extension to convex bodies without interior points and to j < d− 1 is
now achieved by an application of the local Steiner formula of Theorem 14.2.4.
We assume first that M ∈ K′ still has interior points, while K ∈ K′ may be
arbitrary. The assertion to be proved holds for j = d − 1 and for the bodies
K + εBd and M , where ε > 0 is arbitrary. Using Theorem 14.2.4 twice, we
therefore obtain the measurability of the integrand in (6.1) and the equalities

d−1∑
j=0

εd−1−j 1
(d− 1− j)!c

d−j
1

∫
SOd

Φj(K + ϑM,A+ ϑB) ν(dϑ)

=
∫

SOd

Φd−1(K + εBd + ϑM,A+ εSd−1 + ϑB) ν(dϑ)

=
d−1∑
r=0

cr+1,d−r
1,d Φr(K + εBd, A+ εSd−1)Φd−r−1(M,B)

=
d−1∑
r=0

cr+1,d−r
1,d

r∑
k=0

εr−k 1
(r − k)!c

d−k
d−rΦk(K,A)Φd−r−1(M,B)

=
d−1∑
j=0

εd−1−j 1
(d− 1− j)!c

d−j
1

j∑
k=0

cd+k−j,d−k
d−j,d Φk(K,A)Φj−k(M,B).

Comparing the coefficients, we obtain the assertion for the bodies K and M .
Analogously, M can be replaced by an arbitrary convex body. ��

Notes for Section 6.1

1. Theorem 6.1.1 goes back, with a different proof, to Hadwiger [307, p. 231]. A
local version of this mean value formula under Minkowski addition was first proved
by Schneider [673], though not for the curvature measures Φj , but for the area
measures Ψj . Weil [780] used a result of Schneider [677] on curvature measures to
prove Theorem 6.1.2. A simpler proof and a generalization appear in Schneider [688].

2. The rotation formula (6.1) has an extension to support measures. It involves an
operation for sets of support elements which is adapted to the Minkowski addition
of convex bodies. For sets A, B ⊂ Σ = Rd × Sd−1 we define

A ∗ B := {(x + y, u) ∈ Σ : (x, u) ∈ A, (y, u) ∈ B}.

This operation combines the behaviors of sets of boundary points and of normal
vectors of convex bodies under addition, in the following way. If A ⊂ Nor K and
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B ⊂ Nor M , then A ∗ B ⊂ Nor(K + M), and for A1, A2 ⊂ Rd and B1, B2 ⊂ Sd−1

we have
(A1 × B1) ∗ (A2 × B2) = (A1 + A2) × (B1 ∩ B2).

The following result holds for convex bodies K, M ∈ K′, Borel sets A ⊂ Nor K,
B ⊂ Nor M , and for j = 0, . . . , d − 1:∫

SOd

Ξj(K + ϑM, A ∗ ϑB) ν(dϑ) =

j∑
k=0

cd+k−j,d−k
d−j,d Ξk(K, A)Ξj−k(M, B). (6.4)

Special cases are (6.1) and the formula∫
SOd

Ψj(K + ϑM, A ∩ ϑB) ν(dϑ) =

j∑
k=0

cd+k−j,d−k
d−j,d Ψk(K, A)Ψj−k(M, B) (6.5)

for Borel sets A, B ⊂ Sd−1.
Formula (6.4) was proved by Schneider [688]; the special case (6.5) was obtained

earlier by Schneider [672].

3. For special pairs of convex bodies K, M ∈ K′, a counterpart to Theorem 6.1.1
holds with the sum K + ϑM replaced by the Minkowski difference K � ϑM . One
says that M rolls freely in K if for each rotation ϑ ∈ SOd and each point x ∈ bd K
there is a vector t such that x ∈ ϑM + t ⊂ K, equivalently, if each rotation image
ϑM is a summand of K (see Schneider [695, p. 150]). If M rolls freely in K, then∫

SOd

Vd(K � ϑM) ν(dϑ) =

d∑
k=0

(−1)d−kcd−k,k
d,0 Vk(K)Vd−k(M). (6.6)

In fact, Theorem 6.1.1 together with (14.20) yields

d∑
k=0

cd−k,k
d,0 Vk(K)Vd−k(M)εd−k =

∫
SOd

Vd(K + εϑM) ν(dϑ)

=
d∑

k=0

εd−k

(
d

k

) ∫
SOd

V (K[k], ϑM [d − k]) ν(dϑ).

Comparing the coefficients, we obtain(
d

k

) ∫
SOd

V (K[k], ϑM [d − k]) ν(dϑ) = cd−k,k
d,0 Vk(K)Vd−k(M) (6.7)

for k = 0, . . . , d. Since (K � M) + M = K, the symmetry and linearity properties
of mixed volumes imply

Vd(K � M) = V (K � M, . . . , K � M)

= V (K � M, . . . , K � M, K) − V (K � M, . . . , K � M, M)

= . . . =
d∑

k=0

(−1)d−k

(
d

k

)
V (K[k], M [d − k]),
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and similarly for ϑM instead of M . Together with (6.7) this yields (6.6).

4. Containment measures. While the principal kinematic formula expresses the
hitting measure µ({g ∈ Gd : gM∩K �= ∅}) of two convex bodies K, M ∈ K′ in terms
of intrinsic volumes, there is in general no simple expression for the containment
measure (also called inclusion measure)

I(M, K) := µ({g ∈ Gd : gM ⊂ K}).

An exception is the case of the previous note: if M rolls freely in K, then {t ∈ Rd :
ϑM + t ⊂ K} = K � ϑM , hence I(M, K) =

∫
SOd

Vd(K � ϑM) ν(dϑ).
For results on containment measures, in particular for the case where M is a

segment, we refer to Santaló [664], Ren [635], Zhang [832], the survey by Zhang and
Zhou [834], and the literature quoted there.

6.2 Projection Formulas

A further familiar operation for convex bodies is the projection to a subspace.
For a subspace L ∈ G(d, q), recall that A|L is the image of the set A ⊂ Rd

under the orthogonal projection to L. From the results of the last sections we
shall now derive projection formulas.

Theorem 6.2.1. If K ∈ K′ is a convex body, A ∈ B(Rd) is a Borel set
satisfying A ⊂ K, and if q ∈ {1, . . . , d− 1}, j ∈ {0, . . . , q − 1}, then∫

G(d,q)

Φj(K|L,A|L) νq(dL) = cq,d−j
d,q−jΦj(K,A). (6.8)

Proof. Let Lq ∈ G(d, q) be fixed. By the definition of νq,∫
G(d,q)

Φj(K|L,A|L) νq(dL) =
∫

SOd

Φj(K|ϑLq, A|ϑLq) ν(dϑ).

Let M be a unit cube in L⊥
q and B := relintM , then

Φk(M,B) =

{
1 for k = d− q,
0 for k �= d− q.

(6.9)

Let ϑ ∈ SOd be chosen in such a way that K and ϑM do not contain
parallel segments in parallel supporting hyperplanes. We consider the local
parallel set

Uε(K,A) := {x ∈ Rd : ‖x− p(K,x)‖ ≤ ε, p(K,x) ∈ A}.

For ε > 0 we have

Uε(K + ϑM, (A+ ϑB) ∩ bd (K + ϑM))

= {z ∈ Uε(K,A′) : z − p(K, z) ∈ ϑLq}+ ϑB
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with A′ := {a ∈ A : a|ϑLq ∈ relbd (K|ϑLq)}. In fact, if y = p(K + ϑM, x)
and y ∈ (A + ϑB) ∩ bd (K + ϑM), then y = a + ϑb with a ∈ A, b ∈ B.
There is a supporting hyperplane H to K + ϑM through y. Since ϑb lies in a
supporting hyperplane of ϑM parallel to H and since b ∈ relintM , we obtain
ϑL⊥

q + y ⊂ H and thus a ∈ A′. The argument can be reversed.
Trivially we have

(A|ϑLq) ∩ relbd (K|ϑLq) = A′|ϑLq. (6.10)

This set is a Borel set, since the orthogonal projection to ϑLq, restricted to
the points that are projected to relbd (K|ϑLq), is a homeomorphism, by the
choice of ϑ. Fubini’s theorem now gives

λ(Uε(K + ϑM, (A+ ϑB) ∩ bd (K + ϑM))) = λq(U (q)
ε (K|ϑLq, A

′|ϑLq)),

where U (q)
ε is a local parallel set in ϑLq. Using the local Steiner formula (14.12)

and (6.10), we obtain

d−1∑
i=0

εd−iκd−iΦi(K + ϑM,A+ ϑB) =
q−1∑
j=0

εq−jκq−jΦj(K|ϑLq, A|ϑLq),

hence
Φj(K|ϑLq, A|ϑLq) = Φd−q+j(K + ϑM,A+ ϑB)

for j = 0, . . . , q − 1 and

Φi(K + ϑM,A+ ϑB) = 0

for i = 0, . . . , d−q−1. This entails the measurability, up to a set of ν-measure
zero, of the mapping ϑ �→ Φj(K|ϑLq, A|ϑLq), and from Theorem 6.1.2 and
(6.9) we then obtain∫

SOd

Φj(K|ϑLq, A|ϑLq) ν(dϑ)

=
∫

SOd

Φd−q+j(K + ϑM,A+ ϑB) ν(dϑ)

=
d+j−q∑

r=0

cq+r−j,d−r
d,q−j Φr(K,A)Φd−q+j−r(M,B)

= cq,d−j
d,q−jΦj(K,A),

as asserted. ��

Theorem 6.2.1 implies a projection formula for the intrinsic volumes
Vj , j = 0, . . . , q − 1. This formula holds for Vq, too.
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Theorem 6.2.2. If K ∈ K′ and q ∈ {1, . . . , d− 1}, j ∈ {0, . . . , q}, then∫
G(d,q)

Vj(K|L) νq(dL) = cq,d−j
d,q−jVj(K).

Proof. Only the case j = q needs to be proved. Fix Lq ∈ G(d, q) and let Bd−q

be the unit ball in L⊥
q . For ε > 0, Theorem 6.1.1 gives

∫
SOd

Vd(ϑK + εBd−q) ν(dϑ) =
d∑

k=0

ck,d−k
d,0 Vk(K)Vd−k(Bd−q)εd−k.

The coefficient of εd−q is cq,d−q
d,0 Vq(K)κd−q. On the other hand, Fubini’s the-

orem gives

Vd(ϑK + εBd−q) =
∫

Lq

Vd−q((ϑK ∩ (L⊥
q + x)) + εBd−q)λq(dx).

Applying the Steiner formula (14.5) in L⊥
q + x, we obtain on the right side a

polynomial in ε, where the coefficient of εd−q is equal to∫
Lq

κd−qV0(ϑK ∩ (L⊥
q + x))λq(dx) = κd−qVq(ϑK|Lq) = κd−qVq(K|ϑ−1Lq).

Integrating over SOd (observing the invariance of ν) and comparing the coef-
ficients, we obtain the assertion. ��

Choosing q = j in Theorem 6.2.2, we get

Vj(K) = c0,d
j,d−j

∫
G(d,j)

Vj(K|L) νj(dL), (6.11)

which is known as Kubota’s formula. The special case j = d− 1 of (6.11)
yields the representation

S(K) = 2Vd−1(K) =
dκd

κd−1

∫
G(d,d−1)

Vd−1(K|L) νd−1(dL)

=
1

κd−1

∫
Sd−1

Vd−1(K|u⊥)σ(du) (6.12)

for the surface area S(K) of K. The latter equation is called Cauchy’s sur-
face area formula. For j = 1, (6.11) reduces to

V1(K) =
dκd

2κd−1

∫
G(d,1)

V1(K|L) ν1(dL).

Since V1(K|L) is the width of K in direction L, the integral
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G(d,1)

V1(K|L) ν1(dL)

is the mean width, b(K), of K. Hence we obtain formula (14.7),

V1(K) =
dκd

2κd−1
b(K).

Notes for Section 6.2

1. The projection formulas of Theorem 6.2.2 are classical results of the integral
geometry of convex bodies; a special case was already known to Cauchy. Local
versions are found in Schneider [673] and Weil [780]. The reduction to the rotation
formula for sums, which is used in the proof of Theorem 6.2.1, was noted in Schneider
[688].

2. The projection formula (6.8) has an extension to support measures. For a set
A ⊂ Σ and a linear subspace of Rd we define

A|L := {(x|L, u) : (x, u) ∈ A, u ∈ L}.

Let K ∈ K′ be a convex body and A ⊂ Nor K a Borel set. For q ∈ {1, . . . , d − 1},
j ∈ {0, . . . , q − 1}, the formula∫

G(d,q)

Ξ ′
j(K|L, A|L) νq(dL) = cq,d−j

d,q−jΞj(K, A)

holds, where Ξ ′
j denotes the jth support measure with respect to L. In a different,

but equivalent formulation, this is Theorem 4.5.10 in Schneider [695].

3. An extension of the projection formula (6.8) to polyconvex sets was treated in
Schneider [693]; here suitable multiplicities of tangential projections have to be taken
into account.

6.3 Cylinders and Thick Sections

As we have seen, the Crofton formulas can be deduced from the principal
kinematic formula, and the Cauchy–Kubota formulas are consequences of the
rotation formulas for Minkowski sums. This shows that integral geometric
formulas for convex bodies on one side and for affine subspaces on the other
side are closely connected. This connection will become even more evident
when we now consider cylinders and prove a common generalization of the
principal kinematic formula and the Crofton formula.

By a (convex) cylinder C in Rd we understand a set of the form C = M+L
with L ∈ G(d, q), q ∈ {0, . . . , d − 1}, and M ∈ K′, M ⊂ L⊥. The linear
subspace L is called the direction space of the cylinder C, and M is its
base. Also the images gC of C under g ∈ Gd are called cylinders, but C will
always be of the standard form as described (with fixed L ∈ G(d, q)).
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Since C is a closed convex set, the curvature measures Φ0(C, ·), . . . , Φd(C, ·)
are well defined. They are finite on bounded Borel sets and have a special
form. In the following, we identify Rd with L⊥ × L. We denote by λd−q and
λq, respectively, the Lebesgue measures in L⊥ and L.

Lemma 6.3.1. The curvature measures of the cylinder C satisfy

Φj(C, ·) =

{
Φj−q(M, ·)⊗ λq for q ≤ j ≤ d,
0 for 0 ≤ j < q.

Proof. We can assume that the base M is a polytope; the general case
then follows by approximation, due to the weak continuity of the mapping
C �→ Φj(C ∩K, ·), for each K ∈ K′. Since C is polyhedral in that case, the
representation (14.13) of the curvature measures of polytopes gives

Φj(C, ·) =
∑

F∈Fj(C)

γ(F,C)λF .

Since C =M + L, we have Fj(C) = ∅ for j < q, thus Φj(C, ·) = 0. For j ≥ q,

Fj(C) = {F + L : F ∈ Fj−q(M)},

hence in this case we get

Φj(C, ·) =
∑

F∈Fj−q(M)

γ(F + L,M + L)λF+L.

Together with γ(F + L,M + L) = γ(F,M) and λF+L = λF ⊗ λq, this yields

Φj(C, ·) =

⎛⎝ ∑
F∈Fj−q(M)

γ(F,M)λF

⎞⎠⊗ λq = Φj−q(M, ·)⊗ λq,

as stated. ��

In analogy to the principal kinematic formula and the Crofton formula, we
now consider intersections of a fixed convex body and a moving cylinder. The
principal kinematic formula involves an integration over the motion group.
Although the motion group has infinite invariant measure, the integrals remain
finite, since for K,M ∈ K the relation K ∩gM �= ∅ holds only for the motions
g from a suitable compact set. However, for a convex bodyK with inner points
and for a cylinder C with q > 0, the set of rigid motions g with K ∩ gC �= ∅
has infinite measure. In the case of the Crofton formula, which concerns the
case dimM = 0, the integration was therefore with respect to the invariant
measure µq on the space A(d, q) of q-flats. In a similar way, we can interpret
the set of cylinders congruent to C as a homogeneous space, on which we can
introduce an invariant measure. Implicitly, this has been done in the following
theorem where, though, we work directly with a suitable representation of this
invariant measure.
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Theorem 6.3.1 (Local kinematic formula for cylinders). Suppose that
q ∈ {0, . . . , d− 1} and j ∈ {0, . . . , d}. Let K ∈ K′ be a convex body, let C be a
cylinder with direction space L ∈ G(d, q) and base M , and let A,B ∈ B(Rd)
be Borel sets with B ⊂ L⊥. Then∫

SOd

∫
L⊥
Φj(K ∩ ϑ(C + x), A ∩ ϑ(B + L+ x))λd−q(dx) ν(dϑ)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j−q(M,B)

with N(d, j, q) := min{d, d+ j − q}.

Proof. First we note that∫
SOd

∫
L⊥
Φj(K ∩ ϑ(C + x), A ∩ ϑ(B + L+ x))λd−q(dx) ν(dϑ)

=
∫

SOd

∫
L⊥
Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))λd−q(dx) ν(dϑ).

Since {ϑK : ϑ ∈ SOd} is bounded, there exists a compact set B′ ⊂ L (with
λq(B′) > 0) such that

Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))

= Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x))

for all x ∈ L⊥ and all ϑ ∈ SOd. From Theorem 5.3.2 and Lemma 6.3.1 we get∫
SOd

∫
L⊥

∫
L

Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x+ y))

×λq(dy)λd−q(dx) ν(dϑ)

=
d∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j(C,B +B′)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j−q(M,B)λq(B′).

On the other hand, with K ′ := ϑK − x and A′ := ϑA− x we have∫
L

Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x+ y))λq(dy)

=
∫

L

Φj(K ′ ∩ C,A′ ∩ (B +B′ + y))λq(dy)



226 6 Extended Concepts of Integral Geometry

=
∫

L

∫
Rd

1A′(u)1B+B′(u− y)Φj(K ′ ∩ C,du)λq(dy)

=
∫

Rd

∫
L

1B+B′(u− y)λq(dy)1A′(u)Φj(K ′ ∩ C,du)

=
∫

Rd

1B+L(u)λq(B′)1A′(u)Φj(K ′ ∩ C,du)

= Φj(K ′ ∩ C,A′ ∩ (B + L))λq(B′)

= Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))λq(B′).

Dividing by λq(B′), we obtain the assertion. ��

As special cases, Theorem 6.3.1 contains both, the principal kinematic
formula (Theorem 5.3.2) and the Crofton formula (Theorem 5.3.3). The former
is obtained for q = 0 (thus L = {0}), and the latter for M = B = {0} and
j ≤ q, since then

Φd−k+j−q(M,B) =

{
1 for d− k + j − q = 0,
0 else.

The global version of Theorem 6.3.1 (that is, A = B = Rd) results in a
cylinder formula for intrinsic volumes.

Corollary 6.3.1 (Principal kinematic formula for cylinders). Let q ∈
{0, . . . , d − 1} and j ∈ {0, . . . , d}. If K ∈ K′ is a convex body and C is a
cylinder with direction space L ∈ G(d, q) and base M , then∫

SOd

∫
L⊥
Vj(K ∩ ϑ(C + x))λd−q(dx) ν(dϑ)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Vk(K)Vd−k+j−q(M).

Especially for cylinders, there is a further operation besides section and
projection – combining section and projection. Namely, for K and C as above,
the intersection K ∩ ϑ(C + x) can be projected orthogonally to the direction
space ϑL of ϑ(C + x). In a special case, such a combination appears in cer-
tain applications. For example, microscopical sections, as they are treated in
stereology by means of integral geometric methods, have a non-zero thick-
ness. Therefore, a microscopical section is not an intersection with a plane,
but with a cylinder C =M+L, where L is a plane andM ⊂ L⊥ is a segment.
Only the projection (K ∩C)|L is observable. For such projections of sections
with cylinders we state a general integral geometric formula, restricted to the
global case.
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Theorem 6.3.2 (Projected thick sections). Let q ∈ {0, . . . , d − 1} and
j ∈ {0, . . . , q}. If K ∈ K′ is a convex body and C is a cylinder with direction
space L ∈ G(d, q) and base M , then∫

SOd

∫
L⊥
Vj((K ∩ ϑ(C + x))|ϑL)λd−q(dx) ν(dϑ)

=
d+j−q∑

k=j

ck,d−k,q
j,q−j,d Vk(K)Vd−k+j−q(M).

Proof. First, the double integral in the assertion is again written in the form

Ij :=
∫

SOd

∫
L⊥
Vj(((ϑK + x) ∩ (M + L))|L)λd−q(dx) ν(dϑ).

Since
((ϑK + x) ∩ (M + L))|L = (ϑK −M + x) ∩ L,

we get

Ij =
∫

SOd

∫
L⊥
Vj((ϑK −M + x) ∩ L)λd−q(dx) ν(dϑ).

We put ϑK −M =: C and Bd ∩ L =: Bq and let ε > 0. Using Fubini’s theo-
rem, the Steiner formula (14.5) and the invariance properties of the Lebesgue
measure, we obtain

Vd(C + εBq) =
∫

L⊥
Vq((C + εBq) ∩ (L+ y))λd−q(dy)

=
∫

L⊥
Vq((C ∩ (L+ y)) + εBq)λd−q(dy)

=
∫

L⊥

q∑
j=0

εq−jκq−jVj(C ∩ (L+ y))λd−q(dy)

=
q∑

j=0

εq−jκq−j

∫
L⊥
Vj((C + x) ∩ L)λd−q(dx).

Inserting C = ϑK −M and integrating over SOd, we get

q∑
j=0

εq−jκq−jIj =
∫

SOd

Vd(ϑK −M + εBq) ν(dϑ)

=
d∑

k=0

cd−k,k
0,d Vk(K)Vd−k(−M + εBq)

=
d∑

k=0

cd−k,k
0,d Vk(K)

d−k∑
r=0

Vr(−M)Vd−k−r(Bq)εd−k−r
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=
q∑

j=0

d+j−q∑
k=j

cd−k,k
0,d Vk(K)Vd−k+j−q(M)Vq−j(Bq)εq−j .

Here we have used Theorem 6.1.1 and Lemma 14.2.1. Since

Vq−j(Bq) =
(
q

j

)
κq

κj
,

a comparison of the coefficients yields the assertion. ��

Notes for Section 6.3

1. Kinematic formulas for cylinders were treated by Santaló [662, p. 270 ff]. The
local kinematic formula for a fixed convex body and a moving cylinder (Theorem
6.3.1) was proved in Schneider [680].

2. Theorem 6.3.2 and its proof are taken from Schneider [681].

6.4 Translative Integral Geometry, Continued

Our proof of the local principal kinematic formula, Theorem 5.3.2, was pre-
ceded by a translative version, Theorem 5.2.3. This translative formula in-
volves a series of mixed measures Φ(j)

k (K,M ; ·), which are measures on the
product space Rd×Rd, depending homogeneously (of degrees k and d−k+ j,
respectively) and additively on the convex bodies K and M . In the follow-
ing, we continue the investigation of translative formulas and consider iter-
ations, rotation means and Crofton-type results for the mixed measures. In
contrast to the iterated kinematic formula of Theorem 5.1.5, the iteration of
the translative formula of Theorem 5.2.3 involves new functions at each itera-
tion step. Altogether, a series of mixed measures is required, which depend
on an increasing number of convex bodies. The total mixed measures define
mixed functionals, which generalize the intrinsic volumes of one body and
the mixed volumes of two convex bodies. We start with the definition of the
mixed measures.

In order to simplify the presentation within this section, we frequently
abbreviate the translate A+ x of a set A by Ax.

For polytopes P1, . . . , Pk and faces Fi of Pi (i = 1, . . . , k) with

k∑
i=1

dimFi ≥ (k − 1)d,

we define the common external angle γ(F1, . . . , Fk;P1, . . . , Pk) by

γ(F1, . . . , Fk;P1, . . . , Pk) := γ(F1 ∩ F x2
2 ∩ . . . ∩ F xk

k , P1 ∩ P x2
2 ∩ . . . ∩ P xk

k ),
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where x2, . . . , xk ∈ Rd are chosen so that the sets F1, F
x2
2 , . . . , F

xk

k have rela-
tively interior points in common. The common external angle does not depend
on the choice of x2, . . . , xk.

Definition 6.4.1. Let

k ∈ N, j ∈ {0, . . . , d}, m1, . . . ,mk ∈ {j, . . . , d},

j =
∑k

i=1mi − (k − 1)d.
(6.13)

For polytopes K1, . . . ,Kk ∈ P ′, the mixed measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·)

is the measure on (Rd)k defined by

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

:=
∑

F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]λF1(A1) · · ·λFk
(Ak) (6.14)

for A1, . . . , Ak ∈ B(Rd).

Convention. Integers k, j and k-tuples (m1, . . . ,mk) occurring in this section
are always assumed to satisfy (6.13).

Obviously, the case k = 1 of (6.14) reduces to the representations of the
curvature measures of polytopes given by (14.13), thus

Φ
(j)
j (K; ·) = Φj(K, ·).

The case k = 2 reduces to the mixed measures introduced in Theorem 5.2.2.
First we collect the essential properties of the mixed measures and state

the iterated translative formula.

Theorem 6.4.1. The mixed measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) depends con-

tinuously on the polytopes K1, . . . ,Kk (in the weak topology). It has a (unique)
continuous extension to arbitrary convex bodies K1, . . . ,Kk ∈ K′. The ex-
tended measures have the following properties, valid for all K1, . . . ,Kk ∈ K′

and A1, . . . , Ak ∈ B(Rd).

(a) Symmetry:

Φ(j)
mi1 ,...,mik

(Ki1 , . . . ,Kik
;Ai1 × . . .×Aik

)

= Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

for every permutation (i1, . . . , ik) of (1, . . . , k).
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(b)Decomposability:

Φ
(j)
m1,...,mk−1,d(K1, . . . ,Kk−1,Kk; ·)

= Φ(j)
m1,...,mk−1

(K1, . . . ,Kk−1; ·)⊗ (λ Kk).

For m1, . . . ,mk < d, the measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is concentrated

on bdK1 × . . .× bdKk.

(c) Homogeneity:

Φ(j)
m1,...,mk

(αK1,K2, . . . ,Kk;αA1 ×A2 × . . .×Ak)

= αm1Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

for α ≥ 0.

(d)Additivity: The measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is additive in each of

its arguments K1, . . . ,Kk.

(e) Local determination: The measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is locally

determined, that is, for an open set U ⊂ (Rd)k and for M1, . . . ,Mk ∈ K′

with K1 × . . .×Kk ∩ U =M1 × . . .×Mk ∩ U , we have

Φ(j)
m1,...,mk

(K1, . . . ,Kk; ·) = Φ(j)
m1,...,mk

(M1, . . . ,Mk; ·)

on U .

The following iterated translative formula holds:∫
(Rd)k−1

Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 ∩ . . . ∩Axk

k )λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak). (6.15)

Proof. Concerning (6.15), the measurability of the integrand on the left side
follows from the obvious extension of Lemma 5.2.1. We now show first that
(6.15) holds for polytopes K1, . . . ,Kk, by using induction on k. For k = 1,
(6.15) is trivial, and for k = 2 it reduces to Theorem 5.2.2. For k ≥ 3, the
induction hypothesis, Theorem 5.2.2 and Lemma 14.1.1 yield∫

(Rd)k−1
Φj(K1 ∩Kx2

2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 ∩ . . . ∩Axk

k )λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk−2,m=j

m1+...+mk−2+m=(k−2)d+j

∫
Rd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩Kx

k ;
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A1 × . . .×Ak−2 × (Ak−1 ∩Ax
k))λ(dx)

=
d∑

m1,...,mk−2,m=j

m1+...+mk−2+m=(k−2)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk−2∈Fmk−2 (Kk−2)∫
Rd

∑
F∈Fm(Kk−1∩Kx

k )

γ(F1, . . . , Fk−2, F ;K1, . . . ,Kk−2,Kk−1 ∩Kx
k )

× [F1, . . . , Fk−2, F ]λF1(A1) · · ·λFk−2(Ak−2)λF (Ak−1 ∩Ax
k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

λF1(A1) · · ·λFk−2(Ak−2)

×
∫

Rd

γ(F1, . . . , Fk−2, Fk−1 ∩ F x
k ;K1, . . . ,Kk−2,Kk−1 ∩Kx

k )

× [F1, . . . , Fk−2, Fk−1 ∩ F x
k ]λFk−1∩F x

k
(Ak−1 ∩Ax

k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk−2, L(Fk−1) ∩ L(Fk)]λF1(A1) · · ·λFk−2(Ak−2)

×
∫

Rd

λFk−1∩F x
k
(Ak−1 ∩Ax

k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk−2, L(Fk−1) ∩ L(Fk)][Fk−1, Fk]

×λF1(A1) · · ·λFk−2(Ak−2)λFk−1(Ak−1)λFk
(Ak)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]λF1(A1) · · ·λFk
(Ak)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak).

The integral formula (6.15) is thus established for polytopes.
We now extend (6.15), and thus the mixed measures, to arbitrary con-

vex bodies, employing approximation by polytopes. For this purpose, we first
remark that (6.15), for all Borel sets A1, . . . , Ak, is equivalent to
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(Rd)k−1

∫
Rd

f(x1, x1 − x2, . . . , x1 − xk)Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk)) (6.16)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk))

for all continuous functions f on (Rd)k (provided that the mixed measures
exist). For k = 2, this equivalence is explained at the beginning of the proof of
Theorem 5.2.3; the general case follows analogously. Hence, (6.15) and (6.16)
are valid if K1, . . . ,Kk are polytopes. As in the proof of Theorem 5.2.3, we
consider the functional

J(f,K1, . . . ,Kk)

:=
∫

(Rd)k−1

∫
Rd

f(x1, x1 − x2, . . . , x1 − xk)Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk))

and obtain that J depends continuously on K1, . . . ,Kk. For r1, . . . , rk > 0,
we define a continuous mapping Dr1,...,rk

from (Rd)k into itself by

Dr1,...,rk
(x1, . . . , xk) :=

(
x1

r1
, . . . ,

xk

rk

)
for x1, . . . , xk ∈ Rd.

For polytopes K1, . . . ,Kk, relation (6.16) and the definition of the mixed
measures imply

Dr1,...,rk
J(f, r1K1, . . . , rkKk)

:=
∫

(Rd)k−1

∫
Rd

f

(
x1

r1
,
x1 − x2

r2
, . . . ,

x1 − xk

rk

)
×Φj(r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk ,dx1)λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j∫
(Rd)k

f

(
x1

r1
, . . . ,

xk

rk

)
Φ(j)

m1,...,mk
(r1K1, . . . , r2Kk; d(x1, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

rm1
1 · · · rmk

k

×
∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)).



6.4 Translative Integral Geometry, Continued 233

For arbitrary convex bodies K1, . . . ,Kk, we choose sequences of polytopes
K1i, . . .Kki (i ∈ N) such that K1i → K1, . . . , Kki → Kk for i→∞. Then

Dr1,...,rk
J(f, r1K1i, . . . , rkKki)→ Dr1,...,rk

J(f, r1K1, . . . , rkKk)

for every continuous function f on (Rd)k and all r1, . . . , rk > 0. From the
polynomial expansion just established, we deduce the convergence of the co-
efficients ∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1i, . . . ,Kki; d(x1, . . . , xk))

and thus the weak convergence of the measures

Φ(j)
m1,...,mk

(K1i, . . . ,Kki; ·)

for i → ∞. The limits, denoted by Φ(j)
m1,...,mk(K1, . . . ,Kk; ·), are again finite

measures, satisfying

Dr1,...,rk
J(f, r1K1, . . . , rkKk)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

rm1
1 · · · rmk

k

×
∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)), (6.17)

from which we see that they are independent of the approximating sequences
(K1i)i∈N, . . . , (Kki)i∈N. For r1 = . . . = rk = 1, we obtain (6.16).

Thus, mixed measures for arbitrary bodies K1, . . . ,Kk are defined which
fulfill (6.15). Moreover, properties (a), (b) and (c), which follow for poly-
topes K1, . . . ,Kk from the definition, transfer to general convex bodies by
means of approximation and an application of (6.17). Also, (6.17) shows that
Φ

(j)
m1,...,mk(K1, . . . ,Kk; ·) depends continuously on the bodies K1, . . . ,Kk, and

(d) can be deduced from the corresponding additivity property of curvature
measures, similarly to the proof of Theorem 5.2.3. To prove (e), suppose that
its assumptions are satisfied. Without loss of generality, we may assume that
U = U1 × . . . × Uk with open sets U1, . . . , Uk ⊂ Rd. Then, for r1, . . . , rk > 0
and x2, . . . , xk ∈ Rd, the set

r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk ∩ r1U1 ∩ (r2U2)x2 ∩ . . . ∩ (rkUk)xk

remains the same if Ki is replaced by Mi, i = 1, . . . , k. Since, by Theorem
14.2.3, the curvature measures are locally determined, the value

Φj(r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk , r1A1 ∩ (r2A2)x2 ∩ . . . ∩ (rkAk)xk),
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for Borel sets Ai ⊂ Ui, does not change if Ki is replaced by Mi. Let f be a
continuous function on (Rd)k with support in U . Then the case r1 = . . . =
rk = 1 shows that the left side of (6.16) does not change if Ki is replaced by
Mi. More generally, we obtain

Dr1,...,rk
J(f, r1K1, . . . , rkKk) = Dr1,...,rk

J(f, r1M1, . . . , rkMk).

Therefore, the right side of (6.17) does not change if Ki is replaced by Mi.
This yields the assertion. ��

For the total mixed measures, we introduce the notation

V (j)
m1,...,mk

(K1, . . . ,Kk) := Φ(j)
m1,...,mk

(K1, . . . ,Kk; (Rd)k),

and we call these the mixed functionals. In particular,

V
(j)
j (K) = Vj(K),

and the case k = 2 reduces to the mixed functionals introduced in Theorem
5.2.3. If K1, . . . ,Kk are polytopes, then

V (j)
m1,...,mk

(K1, . . . ,Kk)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]Vm1(F1) · · ·Vmk
(Fk). (6.18)

Results on mixed measures contain results on mixed functionals as special
cases. In the sequel, we therefore concentrate on mixed measures and men-
tion mixed functionals only when their behavior deviates from that of mixed
measures.

In view of the decomposability property (b) we can, in large parts of the
following, concentrate on the case k ≤ d.

Since mixed measures are locally determined, we can extend them to un-
bounded closed convex sets K1, . . . ,Kk. We shall use this extension, in partic-
ular, for linear or affine subspaces and for closed halfspaces. The representation
(6.14) remains valid for polyhedral sets. It is important to note that also the
integral geometric formulas for mixed measures obtained in this section ex-
tend in the same way. In fact, any unbounded convex set Ki in such a formula,
with bounded corresponding Borel set Ai, can be replaced by the intersection
of Ki with a cube (say) that contains Ai in its interior. This replacement does
not affect the values of the involved mixed measures.

The next theorem collects some of the integral geometric formulas that
hold for mixed measures.

Theorem 6.4.2. For k ∈ N, convex bodies K1, . . . ,Kk ∈ K′ and Borel sets
A1, . . . , Ak ∈ B(Rd), the mixed measures satisfy the translative formula
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Rd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩Kx

k ;

A1 × . . .×Ak−2 × (Ak−1 ∩Ax
k))λ(dx)

=
d∑

mk−1,mk=m

mk−1+mk=d+m

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak), (6.19)

the rotation formula∫
SOd

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, ϑKk;

A1 × . . .×Ak−1 × ϑAk) ν(dϑ) (6.20)

= cm,d−m+j
d,j Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1)Φm(Kk, Ak),

and the principal kinematic formula∫
Gd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩ gKk;

A1 × . . .×Ak−2 × (Ak−1 ∩ gAk))µ(dg)

=
d∑

r=m

cd−r+m,j−m+r
d,j Φ(j−m+r)

m1,...,mk−2,r(K1, . . . ,Kk−1;A1 × . . .×Ak−1)

×Φd−r+m(Kk, Ak). (6.21)

Proof. It is sufficient to prove the results for polytopes; the general case then
follows by approximation, using arguments similar to those of the previous
proof.

For polytopes, (6.19) was obtained during the proof of (6.15). In the case
of (6.20), we use the definition of the mixed measures, Lemma 14.1.1, and
Theorem 5.3.1 to get∫

SOd

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, ϑKk;A1 × . . .×Ak−1 × ϑAk) ν(dϑ)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fm(Kk)

λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

×
∫

SOd

γ(F1, . . . , Fk−1, ϑF ;K1, . . . ,Kk−1, ϑKk)[F1, . . . , Fk−1, ϑF ] ν(dϑ)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fm(Kk)

λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

× [F1, . . . , Fk−1]
∫

SOd

γ(G,ϑF ;M,ϑKk)[G,ϑF ] ν(dϑ)
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= cm,d−m+j
d,j

∑
F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

[F1, . . . , Fk−1]

× γ(G,M)λF1(A1) · · ·λFk−1(Ak−1)
∑

F∈Fm(Kk)

γ(F,Kk)λF (Ak)

= cm,d−m+j
d,j Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1)Φm(Kk, Ak),

whereG := F1∩F x2
2 ∩. . .∩F

xk−1
k−1 ,M := K1∩Kx2

2 ∩. . .∩K
xk−1
k−1 and x2, . . . , xk−1

are suitably chosen vectors.
Finally, (6.21) follows immediately by combining (6.19) and (6.20). ��

Further formulas can be obtained by iteration. In particular, there is an
iterated translative formula for mixed measures.

We present next a Crofton formula for the mixed measures, first in a
translative version and then in its kinematic form.

Theorem 6.4.3. For convex bodies K1, . . . ,Kk ∈ K′, Borel sets A1, . . . , Ak ∈
B(Rd), a subspace L ∈ G(d, q) with q ∈ {m, . . . , d−1}, and any Borel set AL ⊂
L with λq(AL) = 1, the mixed measures satisfy the translative Crofton
formula ∫

L⊥
Φ(j)

m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ Lx;

A1 × . . .×Ak−1 × (Ak ∩ Lx))λd−q(dx)

= Φ(j)
m1,...,mk−1,d−q+m,q(K1, . . . ,Kk, L;A1 × . . .×Ak ×AL) (6.22)

and the Crofton formula∫
A(d,q)

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ E;

A1 × . . .×Ak−1 × (Ak ∩ E))µq(dE)

= cq,d−q+j
d,j Φ

(d−q+j)
m1,...,mk−1,d−q+m(K1, . . . ,Kk;A1 × . . .×Ak). (6.23)

Proof. For the proof of (6.22) we may again concentrate on the case of poly-
topes. Moreover, we can assume that the faces of the polytope Kk and the
subspace L are in general position. This implies that the m-dimensional faces
of Kk ∩ Lx, for x ∈ L⊥, are intersections F ∩ Lx of (d − q +m)-dimensional
faces F of Kk, at least for those x for which the sets intersect at relatively
interior points.

Using this observation, we can proceed, in large parts, similarly to the
proof of (6.15) and get∫

L⊥
Φ(j)

m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ Lx;
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A1 × . . .×Ak−1 × (Ak ∩ Lx))λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

λF1(A1) · · ·λFk−1(Ak−1)

×
∫

L⊥

∑
F∈Fm(Kk∩Lx)

γ(F1, . . . , Fk−1, F ;K1, . . . ,Kk−1,Kk ∩ Lx)

× [F1, . . . , Fk−1, F ]λF (Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

λF1(A1) · · ·λFk−1(Ak−1)

×
∑

F∈Fd−q+m(Kk)

∫
L⊥
γ(F1, . . . , Fk−1, F ∩ Lx;K1, . . . ,Kk−1,Kk ∩ Lx)

× [F1, . . . , Fk−1, F ∩ Lx]λF∩Lx(Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fd−q+m(Kk)

γ(F1, . . . , Fk−1, F, L;K1, . . . ,Kk−1,Kk, L)[F1, . . . , Fk−1, L(F ) ∩ L]

×λF1(A1) · · ·λFk−1(Ak−1)
∫

L⊥
λF∩Lx(Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fd−q+m(Kk)

γ(F1, . . . , Fk−1, F, L;K1, . . . ,Kk−1,Kk, L)[F1, . . . , Fk−1, L(F ) ∩ L]

× [F,L]λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

= Φ(j)
m1,...,mk−1,d−q+m,q(K1, . . . ,Kk, L;A1 × . . .×Ak ×AL).

The Crofton formula (6.23) is a direct consequence of (6.22) and the rota-
tion formula (6.20). ��

Remark on extension to the convex ring. Since the mixed measure
Φ

(j)
m1,...,mk is additive and weakly continuous in each of its first k arguments,

it has a unique additive extension to the convex ring. As in Section 5.1, the
integral geometric formulas for mixed measures obtained so far in this section
remain valid if the involved convex bodies are replaced by polyconvex sets.
The arguments explained at the end of Section 5.2 can easily be adapted to
the present situation.

By specializing some of the integral geometric formulas, we obtain useful
information about mixed measures and functionals. For that, we assume one
of the bodies to be the unit ball Bd ⊂ Rd. If we put Kk = Bd and Ak = Rd

in (6.20) and insert the value of Vm(Bd) given by (14.8), then we obtain
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Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, B

d;A1 × . . .×Ak−1 × Rd)

=
1
m!
cm,d−m+j
j,d−m Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1). (6.24)

The following result is a consequence of (6.24).

Theorem 6.4.4. For K1, . . . ,Kk ∈ K′ and A1, . . . , Ak ∈ B(Rd), the mixed
measures satisfy the reduction property

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

=
1
κd−j

Φ
(0)
m1,...,mk,d−j(K1, . . . ,Kk, B

d;A1 × . . .×Ak × Rd)

=
(

2
κd−1

)j 1
j!κj

Φ
(0)
m1,...,mk,d−1,...,d−1(K1, . . . ,Kk, B

d, . . . , Bd︸ ︷︷ ︸
j

;

A1 × . . .×Ak × (Rd)j).

Proof. The first equation is obtained from (6.24) if m, j, k are replaced by
d − j, 0, k, respectively. For the second, we put m = d − 1 and replace k − 1
by k and j by j − 1 in (6.24). This gives

Φ
(j−1)
m1,...,mk,d−1(K1, . . . ,Kk, B

d;A1 × . . .×Ak × Rd)

=
1

(d− 1)!
cj,d−1
j−1,1 Φ

(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak).

The assertion is now obtained by j-fold iteration. ��
It follows from this result that all mixed measures can be reduced to

the (series of) measures Φ(0)
m1,...,mk(K1, . . . ,Kk; ·), where k ∈ {1, . . . , d} and

m1, . . . ,mk ∈ {1, . . . , d− 1} satisfy m1 + . . .+mk = (k − 1)d.
As a consequence of the Crofton formula, we note a connection between

the mixed functionals V (j)
k,d−k+j(K,M) of two convex bodies K,M and mixed

volumes. It already follows from (5.16) and Corollary 5.2.1 that

V
(0)
k,d−k(K,M) =

(
d

k

)
V (K[k],−M [d− k]). (6.25)

Combining (6.25) with the Crofton formula (6.23), we immediately get a repre-
sentation of the mixed functionals V (j)

k,d−k+j(K,M) as Crofton-type integrals
of mixed volumes.

Theorem 6.4.5. Let K,M ∈ K′. If j ∈ {0, . . . , d−2} and k ∈ {j+1, . . . , d−
1}, then

V
(j)
k,d−k+j(K,M) (6.26)

=
(

d

k − j

)
cd,0
j,d−j

∫
A(d,d−j)

V ((K ∩ E)[k − j],−M [d− k + j])µd−j(dE).
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Our next aim is the derivation of a translative integral formula for support
functions. It can be deduced from a translative formula for special mixed
measures. As in (4.42), we replace the support function h(K, ·) by its centered
version h∗(K, ·). Here, a continuous function f on Sd−1 is centered if∫

Sd−1
f(u)uσ(du) = 0.

The centered support function of K is invariant under translations of K.
The following lemma establishes a connection between the centered support
function and a special mixed measure. We use the notation

u+ := {x ∈ Rd : 〈x, u〉 ≥ 0}

for the closed halfspace with 0 in the boundary and inner normal vector u ∈
Sd−1.

Lemma 6.4.1. Let P ∈ P ′ be a polytope, and let u ∈ Sd−1. Then

h∗(P, u) =
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F ). (6.27)

Let K ∈ K′, and let Au⊥ ⊂ u⊥ be a Borel set with λd−1(Au⊥) = 1. Then

h∗(K,u) = Φ(0)
1,d−1(K,u

+; Rd ×Au⊥). (6.28)

Proof. For a vertex e of P , we do not distinguish between the vector e and
the corresponding 0-face {e}. We use the relations∑

e∈F0(P )

γ(e, P ) = χ(P ) = 1,

which is obvious, and ∑
e∈F0(P )

γ(e, P )e = s(K),

which is given by (14.29). Writing

u+
t := {x ∈ Rd : 〈x, u〉 ≥ t}, u⊥t := {x ∈ Rd : 〈x, u〉 = t}

for u ∈ Sd−1 and t ∈ R, and choosing a number c with P ⊂ u+
c , we get

h(P, u)− c

=
∫ ∞

c

χ(P ∩ u+
t ) dt

=
∫ ∞

c

∑
e∈F0(P∩u+

t )

γ(e, P ∩ u+
t ) dt
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=
∫ ∞

c

∑
e∈F0(P )

γ(e, P )1{〈e, u〉 ≥ t}dt

+
∫ ∞

c

∑
F∈F1(P )

γ(F, u⊥;P, u+)χ(F ∩ u⊥t ) dt

=
∑

e∈F0(P )

γ(e, P )(〈e, u〉 − c) +
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F )

= 〈s(P ), u〉 − c+
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F ).

This proves (6.27), and (6.28) for polytopes follows from (6.14) (extended to
polyhedral sets).

For a polytope P , the definition (6.14) implies

Φ
(0)
1,d−1(P, u

+; ·) =

⎛⎝ ∑
F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λF

⎞⎠⊗ λu⊥ .

Using the weak continuity of the mixed measures, we conclude by approxima-
tion that also Φ(0)

1,d−1(K,u
+; ·) for K ∈ K′ is a product measure with λu⊥ as

second factor. Now (6.28) follows by approximation and continuity. ��

We state a translative formula for centered support functions. Here we
restrict ourselves to the case of two convex bodies; the extension to k ≥ 2
bodies presents no additional difficulties.

Theorem 6.4.6. For convex bodies K,M ∈ K′, there exist continuous func-
tions h∗1(K,M ; ·), . . . , h∗d(K,M ; ·) on Sd−1 such that∫

Rd

h∗(K ∩Mx, ·)λ(dx) =
d∑

k=1

h∗k(K,M ; ·), (6.29)

where h∗1(K,M ; ·) = h∗(K, ·)Vd(M) and h∗d(K,M ; ·) = Vd(K)h∗(M, ·). The
function h∗k(K,M ; ·) is centered and symmetric, in the sense that

h∗k(K,M ; ·) = h∗d+1−k(M,K; ·),

it depends continuously on K,M ∈ K′ and is homogeneous of degree k in K
and of degree d+1−k in M. Moreover, it is additive in each of its arguments
K and M .

For polytopes K,M , we have

h∗k(K,M ;u) (6.30)

=
∑

F∈Fk(K)

∑
G∈Fd+1−k(M)

γ(F,G, u⊥;K,M, u+)[F,G, u⊥]λk(F )λd−k+1(G).
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Proof. Let K,M ∈ K′, let u ∈ Sd−1. By (6.28),

h∗(K ∩Mx, u) = Φ(0)
d−1,1(u

+,K ∩Mx;Au⊥ × Rd).

The translative formula (6.19) with k = 3, K1 = u+, K2 = K, K3 = M ,
A1 = Au⊥ , A2 = A3 = Rd, j = 0, m1 = d− 1 and m = 1 gives (6.29) with

h∗k(K,M ;u) := Φ(0)
d−1,k,d+1−k(u+,K,M ;Au⊥ × Rd × Rd) (6.31)

for k = 1, . . . , d. The representation (6.30) in the case of polytopes follows
from (6.14).

From (6.31) and the known properties of mixed measures we immediately
obtain the assertions about symmetry, continuity in K,M , homogeneity, and
additivity of h∗k(K,M ;u). By the homogeneity property, we have

∫
Rd

h∗(rK ∩Mx, ·)λ(dx) =
d∑

k=1

rkh∗k(K,M ; ·)

for all r ≥ 0. Inserting r = 1, . . . , d and solving the resulting system of equa-
tions, we get a representation

h∗k(K,M ; ·) =
d∑

n=1

akn

∫
Rd

h∗(nK ∩Mx, ·)λ(dx)

with coefficients akn independent of K and M . From this representation, we
see that h∗k(K,M ; ·) is a continuous function. Inserting u, multiplying by u,
integrating over Sd−1, and using Fubini’s theorem, we also see that h∗(K,M ; ·)
is centered. ��

We next derive a kinematic formula for support functions. For fixed u ∈ Rd,
the function K �→ h∗(K,u) satisfies the assumptions of Theorem 5.1.2, hence
we get∫

Gd

h∗(K ∩ gM, ·)µ(dg) =
d∑

k=1

(∫
A(d,k)

h∗(K ∩ E, ·)µk(dE)

)
Vk(M) (6.32)

(observing that h∗({x}, ·) = 0). The coefficient of Vk(M) is evidently a support
function. We define, for k ∈ {1, . . . , d − 1}, the kth mean section body
Mk(K) of a convex body K ∈ K′ by

h(Mk(K), ·) :=
∫

A(d,k)

h∗(K ∩ E, ·)µk(dE).

We complement the definition by setting h(Md(K), ·) := h∗(K, ·), that is,
Md(K) = K − s(K), and h(M0(K), ·) := 0, thus M0(K) = {0}. To obtain



242 6 Extended Concepts of Integral Geometry

a connection with mixed measures, we choose M = Bd in (6.32). Applying
(6.29), (6.31) and Theorem 6.4.4, we get, for u ∈ Rd,

h(Mk(K), u)Vk(Bd) = Φ
(0)
d+1−k,k,d−1(K,B

d, u+; Rd × Rd ×Au⊥)

= κkΦ
(d−k)
d+1−k,d−1(K,u

+; Rd ×Au⊥). (6.33)

If K is a polytope, an explicit form of the latter expression is obtained from
(6.14). We collect the obtained results in the following theorem.

Theorem 6.4.7. If K,M ∈ K′, then∫
Gd

h∗(K ∩ gM, ·)µ(dg) =
d∑

k=1

h(Mk(K), ·)Vk(M),

where
h(Mk(K), u) = cd−k,k

d,0 Φ
(d−k)
d+1−k,d−1(K,u

+; Rd ×Au⊥).

If K is a polytope, then

h(Mk(K), u) = cd−k,k
d,0

∑
F∈Fd+1−k(K)

γ(F, u⊥)[F, u⊥]λd+1−k(F ). (6.34)

Finally, we use some of the obtained information on mixed measures to
derive a kinematic and a Crofton formula for projection functions, that is,
volumes of projections of convex bodies. Let j ∈ {1, . . . , d−1} and L ∈ G(d, j).
For K ∈ K′, the j-dimensional volume of the orthogonal projection K|L
defines the jth projection function L �→ Vj(K|L). From (14.19) and (6.25)
we have

Vj(K|L) =
(
d

j

)
V (K[j], BL⊥ [d− j]) = V (0)

j,d−j(K,BL⊥)

where BL⊥ ⊂ L⊥ is a ball with λd−j(BL⊥) = 1. Therefore, (6.21) and (6.23)
yield, for K,M ∈ K′,∫

Gd

Vj((K ∩ gM)|L)µ(dg) =
d∑

i=j

cd−i+j,i−j
d,0 V

(i−j)
i,d−j (K,BL⊥)Vd−i+j(M),

∫
A(d,d−i+j)

Vj((K ∩ E)|L)µd−i+j(dE) = cd−i+j,i−j
d,0 V

(i−j)
i,d−j (K,BL⊥).

(Of course, if one of the two results is known, the other one can also be deduced
from Theorem 5.1.2.) The mixed functionals appearing here can be expressed
as Radon transforms of the projection function. The Radon transform Rij :
C(G(d, i))→ C(G(d, j)) is defined by
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(Rijf)(L) :=
∫

G(L,i)

f(M) νL
i (dM), L ∈ G(d, j). (6.35)

In the following, we assume i ∈ {j + 1, . . . , d}.
Using the symmetry of the mixed functionals together with (6.26) and

denoting by c1, c2, . . . constants depending only on d, i, j, we get

V
(i−j)
i,d−j (K,BL⊥) = V (i−j)

d−j,i (BL⊥ ,K)

= c1
∫

A(d,d−i+j)

V ((BL⊥ ∩ E)[d− i],K[i])µd−i+j(dE).

The integrand, as a function of E, depends only on E∩L⊥. Therefore, we can
use the integral geometric identity∫

A(d,d−i+j)

f(E ∩ L⊥)µd−i+j(dE) = c2
∫

A(L⊥,d−i)

f(F )µL⊥
d−i(dF ),

which holds for all nonnegative measurable functions f on A(L⊥, d− i). Here
A(L⊥, d − i) is the space of (d − i)-flats contained in L⊥, and µL⊥

d−i is its
invariant measure (see Section 13.2). To prove the identity, we note that its
left side, applied to indicator functions of Borel sets in A(L⊥, d − i), defines
a measure on A(L⊥, d − i), which is locally finite and invariant under rigid
motions of L⊥ into itself and hence is a multiple of the invariant measure
µL⊥

d−i. Thus, we obtain

V
(i−j)
i,d−j (K,BL⊥)

= c3
∫

A(L⊥,d−i)

V ((BL⊥ ∩ F )[d− i],K[i])µL⊥
d−i(dF )

= c3
∫

G(L⊥,d−i)

∫
H⊥∩L⊥

V ((BL⊥ ∩Hx)[d− i],K[i])λi−j(dx) νL⊥
d−i(dH).

Here we have∫
H⊥∩L⊥

V ((BL⊥ ∩Hx)[d− i],K[i])λi−j(dx) = c4Vi(K|H⊥),

which follows from (14.19), since BL⊥ ∩ Hx, if not empty, is homothetic to
BL⊥ ∩H, with homothety factor depending only on ‖x‖. We deduce that

V
(i−j)
i,d−j (K,BL⊥) = c5

∫
G(L⊥,d−i)

Vi(K|H⊥) νL⊥
d−i(dH)

= c5

∫
G(L,i)

Vi(K|M) νL
i (dM)

= c5(RijVi(K|·))(L).
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Since (6.24) implies

V
(i−j)
i,d−j (Bd, BL⊥) = κic

d−j,0
d−i,i−j ,

we conclude that c5 = cd−j,0
d−i,i−j . We have obtained the following result.

Theorem 6.4.8. Let K,M ∈ K′. If j ∈ {1, . . . , d− 1} and L ∈ G(d, j), then
the principal kinematic formula for projection functions,∫

Gd

Vj((M ∩ gK)|L)µ(dg) =
d∑

i=j

cd−i+j,d−j
d,d−i (RijVi(K| ·))(L)Vd−i+j(M),

and the Crofton formula for projection functions,∫
A(d,d−i+j)

Vj((K ∩ E)|L)µd−i+j(dE) = cd−i+j,d−j
d,d−i (RijVi(K| ·))(L),

hold.

Notes for Section 6.4

1. An iterated translative integral formula in the plane was first derived by Miles
[529].

The iterated translation formula for curvature measures was proved in Weil [792]
and applied to non-isotropic Poisson particle processes and Boolean models. Shorter
surveys are given in [790] and [791]. The presentation in this section follows closely
the one in Weil [800].

2. Extensions of translative integral formulas to sets of positive reach have been
studied by Rataj and Zähle, using methods of geometric measure theory. First, a
translative formula for support measures of sets with positive reach was proved
in [617]. An iterated version was obtained by Rataj [613]. Various extensions and
supplements were provided by Rataj [614], Hug [355], Zähle [831], Rataj and Zähle
[618], [619]. Translative Crofton formulas for support measures were treated by Rataj
[615].

The iterated translative integral formula for support measures can be written in
the form ∫

Rd

. . .

∫
Rd

∫
Rd×Rd

h(x, x − x2, . . . , x − xk, u)

×Ξj(K1 ∩ Kx2
2 ∩ . . . ∩ K

xk
k , d(x, u)) λ(dx2) · · ·λ(dxk)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
(Rd)k+1

h(x1, . . . , xk, u)

×Ξ(j)
m1,...,mk

(K1, . . . , Kk; d(x1, . . . , xk, u))
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for nonnegative measurable functions h on (Rd)k+1, with certain mixed support

measures Ξ
(j)
m1,...,mk (K1, . . . , Kk; ·) on (Rd)k+1. In Rataj’s version for sets of pos-

itive reach, the mixed support measures are expressed as currents evaluated at spe-
cially chosen differential forms. For closed convex sets, Hug [355] has a more general
version for relative support measures, as well as more explicit expressions for the
mixed support measures, which imply, in particular, representations of special mixed
measures by Goodey and Weil [280].

3. In Schneider [702], the mixed functionals V
(0)

m1,...,mk (K1, . . . , Kk) of convex bodies
are embedded in a wider theory, together with the mixed volumes. For polytopes,
more general representations of type (6.18) (for j = 0) are obtained.

4. The reduction property in Theorem 6.4.4 can be generalized to lower-dimensional
balls. The following result was proved in Weil [800]. It also provides a kind of ex-
changeability, since the role of the subspace L and the unit ball BL in L can be
exchanged. Let K1, . . . , Kk ∈ K′ and A1, . . . , Ak ∈ B(Rd). For q ∈ {j, . . . , d} and
m ∈ {j, . . . , q}, let L ∈ G(d, q) and let BL be the unit ball in L. Then

Φ(j)
m1,...,mk,m(K1, . . . , Kk, BL; A1 × . . . × Ak × L)

=
1

m!κq
cm,q−m+j

j,q−m Φ(q−m+j)
m1,...,mk,q(K1, . . . , Kk, L; A1 × . . . × Ak × BL)

=
1

m!κq
cm,q−m+j

j,q−m Φ(q−m+j)
m1,...,mk,q(K1, . . . , Kk, BL; A1 × . . . × Ak × L). (6.36)

Replacing m and j by q − j and 0, we obtain

Φ(j)
m1,...,mk,q(K1, . . . , Kk, L; A1 × . . . × Ak × BL)

= Φ(j)
m1,...,mk,q(K1, . . . , Kk, BL; A1 × . . . × Ak × L)

=
κq

κq−j
Φ

(0)
m1,...,mk,q−j(K1, . . . , Kk, BL; A1 × . . . × Ak × L). (6.37)

For q = d (and using the reduction property of mixed measures), formula (6.36)
reduces to (6.24) and (6.37) yields the first formula in Theorem 6.4.4.

For the mixed functionals, (6.37) implies

V (j)
m1,...,mk,q(K1, . . . , Kk, BL) =

κq

κq−j
V

(0)
m1,...,mk,q−j(K1, . . . , Kk, BL). (6.38)

5. Translative Crofton formula for mixed volumes. Combining (6.25) with
the translative Crofton formula in Theorem 6.4.3, we obtain a translative integral
formula for mixed volumes of convex bodies K, M (see Weil [800]).

Let j ∈ {1, . . . , d − 1}, q ∈ {j, . . . , d − 1} and L ∈ G(d, q), then∫
L⊥

V ((K ∩ Lx)[j], M [d − j]) λd−q(dx) =
1(

d
j

)
κq

V
(0)

d−q+j,d−j,q(K,−M, BL).

For M = Bd, and using (6.25) and (6.38), a translative Crofton formula for
intrinsic volumes results,∫

L⊥
Vj(K ∩ Lx) λd−q(dx) =

(
d

q−j

)
κq−j

V (K[d − q + j], BL[q − j]), (6.39)
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which was first proved in Schneider [681].

6. Formulas for halfspaces. Crofton-type formulas, where the moving k-flat is
replaced by a moving halfspace, were also discussed in Weil [800]. Let Cu⊥ be a unit
cube in u⊥.

The following formula is the analog of Theorem 6.4.3 (for q = d − 1) and is
proved in the same way:∫ ∞

−∞
Φ(j)

m1,...,mk−1,m(K1, . . . , Kk−1, K ∩ (u+)ru;

A1 × . . . × Ak−1 × (A ∩ (u⊥)ru)) dr

= Φ
(j)
m1,...,mk−1,m+1,d−1(K1, . . . , Kk−1, K, u+;

A1 × . . . × Ak−1 × A × Cu⊥). (6.40)

Combining Theorem 6.4.3 and (6.40), a quite general result for halfspaces of the
form Lu,+ := L ∩ u+, L ∈ G(d, q), u ∈ Sd−1 ∩ L, with bounding flat Lu := L ∩ u⊥,
can be deduced:

Φ
(j)
m1,...,mk,q−1(K1, . . . , Kk, Lu,+; A1 × . . . × Ak × CLu)

= Φ
(j)
m1,...,mk,q,d−1(K1, . . . , Kk, L, u+; A1 × . . . × Ak × CL × Cu⊥).

7. Mean section body. The kth mean section body Mk(K) of a convex body
K was introduced and investigated in Goodey and Weil [279]. In particular, the
representation (6.34) was proved there.

A special case of (6.26) is worth mentioning. If k = j + 1, then

V
(j)

j+1,d−1(K, M) = dcd,0
j,d−j

∫
A(d,d−j)

V ((K ∩ E)[1],−M [d − 1]) µd−j(dE).

The linearity properties of the mixed volume imply that the latter integral equals
the mixed volume V (Md−j(K)[1],−M [d − 1]), thus

V
(j)

j+1,d−1(K, M) = dcd,0
j,d−jV (Md−j(K)[1],−M [d − 1]).

8. Spherical integral representations. For mixed volumes V (K[1], M [d− 1]) of
two convex bodies K, M the spherical integral representation (14.23), namely

V (K[1], M [d − 1]) =
1

d

∫
Sd−1

h∗(K, u) S(M, du),

is classical. It involves the support function h(K, ·) of K (here replaced by its cen-
tered version h∗(K, ·)) and the surface area measure S(M, ·) := Sd−1(M, ·) of M .
Since

V (K[1], M [d − 1]) =
1

d
V

(0)
1,d−1(K,−M),

one can ask for extensions to mixed functionals of more than two bodies. The fol-
lowing result is obtained in Weil [800] for convex bodies K1, . . . , Kk, M1, . . . , Mi:
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Φ
(j)
m1,...,mk,d−1,...,d−1(K1, . . . , Kk,−M1, . . . ,−Mi; A1 × . . . × Ak × (Rd)i)

=

∫
Sd−1

. . .

∫
Sd−1

Φ
(j)
m1,...,mk,d−1,...,d−1(K1, . . . , Kk, u+

1 , . . . , u+
i ;

A1 × . . . × Ak × Cu⊥
1
× . . . × Cu⊥

i
) S(M1, du1) · · ·S(Mi, dui). (6.41)

For k = 1, (6.41) again implies the formulas (6.28) and (6.33). The latter rep-
resentation was proved by Goodey and Weil [281] (in correction of an erroneous
statement from [795]).

If there are no bodies Kj in (6.41), then a formula for V
(j)

d−1,...,d−1(M1, . . . , Md−j)
results. Since

Φ
(j)
d−1,...,d−1(u

+
1 , . . . , u+

d−j ; Cu⊥
1
× . . . × Cu⊥

d−j
)

=
1

(d − j)κd−j
σd−j−1(co(u1, . . . , ud−j))|det(u1, . . . , ud−j)|,

where co denotes the spherical convex hull, we obtain

V
(j)

d−1,...,d−1(M1, . . . , Md−j)

=
1

(d − j)κd−j

∫
Sd−1

. . .

∫
Sd−1

σd−j−1(co(u1, . . . , ud−j))

× |det(u1, . . . , ud−j)|S(M1, du1) · · ·S(Md−j , dud−j). (6.42)

From the case j = d − 2 of (6.42) (or from (6.33)), we get a representation of
h(M2(K), ·) due to Goodey and Weil [279],

h(M2(K), u) =
1

2π
c2,d−2

d,0

∫
Sd−1

α(u, v) sin α(u, v) S(−K, dv).

Here, α(u, v) ∈ [0, π] denotes the (smaller) angle between u, v ∈ Sd−1.

9. Centrally symmetric bodies. For smooth centrally symmetric bodies, repre-
sentations of mixed measures in terms of the projection generating measures are
possible. If M is a generalized zonoid (a centrally symmetric body, for which (14.33)
holds with a signed measure ρ), the signed measure ρ(j) introduced by (14.36) exists
and satisfies (14.38). For convex bodies K1, . . . , Kk ∈ K and generalized zonoids
M1, . . . , Mi, the following was shown in Weil [800]:

Φ(j)
m1,...,mk,r1,...,ri

(K1, . . . , Kk, M1, . . . , Mi; A1 × . . . × Ak × (Rd)i)

= 2
∑ i

j=1 rj

∫
G(d,r1)

. . .

∫
G(d,ri)

Φ(j)
m1,...,mk,r1,...,ri

(K1, . . . , Kk, L1, . . . , Li;

A1 × . . . × Ak × CL1 × . . . × CLi) ρ(r1)(M1, dL1) · · · ρ(ri)(Mi, dLi). (6.43)

For k = 0, (6.43) yields Theorem 10.1 in Weil [792]:

V (j)
r1,...,ri

(M1, . . . , Mi) (6.44)

=
2(i−1)d+j

r1! · · · ri!

∫
G(d,r1)

. . .

∫
G(d,ri)

[L1, . . . , Li] ρ(r1)(M1, dL1) · · · ρ(ri)(Mi, dLi).
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In the case r1 = . . . = ri = d − 1, (6.44) implies an iterated variant of (6.40) for
centrally symmetric bodies M1, . . . , Mi where the halfspaces are replaced by their
bounding hyperplanes (see Weil [800], for details). As special cases, for centrally
symmetric convex bodies K, M , the following formulas result:

V
(j)

j+1,d−1(K, M) =
1

2

∫
Sd−1

Φ
(j)
j+1,d−1(K, u⊥; Rd × Cu⊥) S(M, du),

h(Md−j(K), u) =
cj,d−j

d,0

2
Φ

(j)
j+1,d−1(K, u⊥; Rd × Cu⊥).

10. Support functions. The translative formula for support functions of Theorem
6.4.6 and the kinematic formula of Theorem 6.4.7 were proved by Weil [795]. The
approach to (6.29) that is presented here comes from Schneider [708].

Since the left side of (6.29) defines a support function and the summands on
the right side have different degrees of homogeneity, one may conjecture that the
mixed functions h∗

k(K, M ; ·) are support functions, too. This was indeed proved by
Goodey and Weil [281]. A simpler approach and an extension to mixed functions of
more than two convex bodies are found in Schneider [709].

The case of two convex bodies can also be formulated as follows. If K, M ∈ K′,
then the translative integral ∫

Rd

h∗(K ∩ Mx, ·) λ(dx)

defines the support function of a convex body T (K, M), called the translation
mixture of K and M . There exists a polynomial expansion

T (rK, sM) =
d∑

k=1

rksd+1−kTk(K, M)

with convex bodies Tk(K, M), called the mixed bodies of K and M . For the case
of polytopes K, M , the vertices and edges of Tk(K, M) were explicitly determined
in [709].

Applications of the integral geometric formulas for support functions to stochas-
tic geometry appear in Weil [793, 798].

11. Projection functions. Kinematic and Crofton formulas for projection func-
tions were first studied by Goodey and Weil [278]. Theorem 6.4.8 in its present form
appears in Goodey, Schneider and Weil [275].

6.5 Spherical Integral Geometry

Large parts of integral geometry in Euclidean spaces can be extended, in a
suitable way, to spaces of constant curvature. In this section, we treat basic
facts of the integral geometry of convex bodies in spherical space, since this
is of some relevance for stochastic geometry. The approach will be similar to
the Euclidean case: for (spherically) convex bodies we introduce generalized
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curvature measures via a Steiner formula, and integral geometric intersec-
tion formulas involving curvature measures are proved for polytopes, using
characterization theorems, and then extended to general convex bodies. Our
presentation owes much to the work of Glasauer [264, 265], which we follow
in several aspects and details. We shall be rather brief at points where the
procedure is in an obvious way similar to the Euclidean case. On the other
hand, some geometric facts of spherical geometry are proved here instead of
deferring them to the Appendix, since they are needed only in this section.

The spherical space to be considered is the unit sphere Sd−1 of Rd. The
usual metric in Sd−1 is denoted by ds, thus ds(x, y) = arccos 〈x, y〉 for x, y ∈
Sd−1. It induces the trace topology from Rd on Sd−1, and topological notions
in Sd−1 refer to this topology. For points x, y ∈ Sd−1 with ds(x, y) < π, the
set [x, y] := Sd−1 ∩ pos{x, y} is the unique spherical segment joining x and
y. A spherically convex body in Sd−1 is the intersection of Sd−1 with a
closed convex cone different from {0} in Rd. In the present section, we shall
mostly say ‘convex’ instead of ‘spherically convex’. The convex bodies in Sd−1

are precisely the nonempty closed subsets that contain with any two points
of spherical distance less than π also the spherical segment joining them.
The set of all convex bodies in Sd−1 is denoted by Ks. It is equipped with the
Hausdorff metric induced by the metric ds. Note that Sd−1 is an isolated point
of Ks. For K ∈ Ks, we denote by K̆ := posK the cone with K = Sd−1 ∩ K̆.
The correspondence K ↔ K̆ is quite useful for the study of spherically convex
bodies. The dimension of K ∈ Ks is defined as dimK := dim K̆ − 1. The
relative interior of K, denoted by relintK, is the interior of K relative to
Sd−1 ∩ linK.

A distinguished subset of Ks is the set Sk of k-dimensional great sub-
spheres, which are the intersections of Sd−1 with (k + 1)-dimensional linear
subspaces of Rd, k = 0, . . . , d− 1. We write S• :=

⋃d−1
k=0 Sk, and we often say

‘subsphere’ instead of ‘great subsphere’. A set K ∈ Ks is called a proper
convex body if it is contained in an open hemisphere, equivalently, if the
cone K̆ is pointed (does not contain a line). We write Kp

s for the set of all
proper convex bodies.

Let K,M ∈ Ks. We denote by

K ∨M := Sd−1 ∩ pos (K ∪M)

the spherically convex hull of K and M . For K ∨ {x} we write K ∨ x, and
x ∨ y := [x, y] if x and y are not antipodal. The set

K∗ := {x ∈ Sd−1 : 〈x, y〉 ≤ 0 for all y ∈ K}

is the polar body of K; thus K∗ is the intersection of Sd−1 with the dual
cone of K̆. It is again in Ks. Further, (K∗)∗ = K and

(K ∨M)∗ = K∗ ∩M∗, (K ∩M)∗ = K∗ ∨M∗. (6.45)

The polar body of K can also be represented as
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K∗ := {x ∈ Sd−1 : ds(K,x) ≥ π/2}.

If S ∈ Sk for k ∈ {0, . . . , d− 2}, then S∗ = Sd−1 ∩ (linS)⊥ ∈ Sd−k−2.
Let K ∈ Ks and x ∈ Sd−1. If 0 ≤ ds(K,x) < π/2, there is a unique point

in K that is nearest to x; we denote it by ps(K,x). This defines the nearest-
point map or metric projection ps(K, ·). If x /∈ K, we define us(K,x) =
u(K̆, x) (see Section 14.2 for the latter); note that us(K,x) = ps(K∗, x). For
x ∈ bdK,

Ns(K,x) := {y ∈ K∗ : 〈x, y〉 = 0}

is the set of outer (unit) normal vectors to K at x. Note that posNs(K,x) =
N(K̆, x) is the normal cone of K̆ at x (as introduced in Section 14.2),
but Ns(K,x) consists of unit vectors. A pair (x, u) with x ∈ bdK and
u ∈ Ns(K,x) is called a support element of K. It is easy to see that

(x, u) is a support element of K ⇔ (u, x) is a support element of K∗.

The set of all support elements of K, denoted by NorK, is a closed subset of
the product space Σs := Sd−1 × Sd−1.

A convex body P ∈ Ks is a (spherical) polytope if the cone P̆ is poly-
hedral, that is, an intersection of finitely many closed halfspaces with 0 in
the boundary. The set of polytopes in Sd−1 is denoted by Ps. Let P ∈ Ps.
A k-face of P is a set F = Sd−1 ∩ F̆ , where F̆ is a (k + 1)-face of P̆ ,
k ∈ {0, . . . , d − 1}. The set of all k-faces of P is denoted by Fk(P ), and
we write F•(P ) :=

⋃d−1
k=0Fk(P ).

Let F be a k-face of P . The set Ns(P, x) is the same for all x ∈ relintF
and is denoted by Ns(P, F ). The internal angle β(0, F̆ ) of the cone F̆ at 0
is defined by

β(0, F̆ ) :=
σk(F )
ωk+1

,

and the external angle of P at F by

γ(F, P ) := γ(F̆ , P̆ ) :=
σd−k−2(Ns(P, F ))

ωd−k−1
.

The proof of a local Steiner formula for spherical polytopes will rest on
the following lemma. It is a spherical counterpart to the representation of
Lebesgue measure in Rd as the product of the Lebesgue measures on a sub-
space and its orthogonal complement.

Lemma 6.5.1. Let S ∈ Sk, where k ∈ {0, . . . , d − 2}, and let f : Sd−1 → R

be a nonnegative measurable function. Then∫
Sd−1

fdσ =
∫

S

∫
S∗∨v

sink(ds(S∗, u))f(u)σd−k−1(du)σk(dv).
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Proof. We extend f to Rd by f̄(x) := ‖x‖−d+1f(x/‖x‖) for 0 < ‖x‖ < 1, and
f̄(x) = 0 otherwise. Let L := linS. Using spherical coordinates, we obtain∫

Sd−1
f dσ =

∫
Sd−1

∫ 1

0

(f(x)/td−1)td−1 dt σ(dx)

=
∫

Rd

f̄ dλ

=
∫

L

∫
L⊥
f̄(x+ y)λL⊥(dy)λL(dx)

=
∫

S

[∫ 1

0

tk
∫

L⊥
f̄(tv + y)λL⊥(dy) dt

]
σk(dv).

Recall that d(·, ·) denotes the Euclidean distance. With tv + y =: w = τu,
‖u‖ = 1, we have t = d(L⊥, w) = τ sin(ds(S∗, u)). Hence, the integral in
brackets is equal to∫

pos(L⊥∪{v})
d(L⊥, w)kf̄(w)λd−k(dw)

=
∫

S∗∨v

∫ 1

0

τd−k−1τk sink(ds(S∗, u))f̄(τu) dτ σd−k−1(du)

=
∫

S∗∨v

sink(ds(S∗, u))f(u)σd−k−1(du).

This yields the assertion. ��

For K ∈ Ks, the local parallel set of K, determined by a Borel set
A ⊂ Σs and a number 0 < ε < π/2, is defined by

Mε(K,A) := {x ∈ Sd−1 : ds(K,x) ≤ ε, (ps(K,x), us(K,x)) ∈ A}.

Theorem 6.5.1 (Local spherical Steiner formula). For K ∈ Ks, there
exist uniquely determined finite measures Θ0(K, ·), . . . , Θd−2(K, ·) on Σs such
that the following holds. If A ∈ B(Σs) and 0 < ε < π/2, then

σ(Mε(K,A)) =
d−2∑
m=0

gd,m(ε)Θm(K,A)

with

gd,m(ε) := ωm+1ωd−m−1

∫ ε

0

cosm ϕ sind−m−2 ϕdϕ, 0 ≤ ε ≤ π/2.

If P ∈ Ps, then

Θm(P,A) =
1

ωm+1ωd−m−1

∑
F∈Fm(P )

∫
F

∫
Ns(P,F )

1A(x, u)σd−m−2(du)σm(dx).
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Proof. First let P ∈ Ps, let m ∈ {0, . . . , d − 2} and F ∈ Fm(P ). Put S :=
Sd−1∩ linF and U := ps(P, ·)−1(relintF ). Let f ≥ 0 be a measurable function
on Sd−1. We apply Lemma 6.5.1, first to Sd−1 and its subsphere S, then to
the sphere S∗ ∨ {−x, x}, where x ∈ S, and its subsphere S∗. This gives∫

U

f dσ =
∫

S

∫
S∗∨x

1U (u)f(u) sinm(ds(S∗, u))σd−m−1(du)σm(dx)

=
∫

S

∫
S∗

∫
{−x,x}∨v

1U∩(S∗∨x)(z)f(z) sinm(ds(S∗, z))

× sind−m−2(ds({−x, x}, z))σ1(dz)σd−m−2(dv)σm(dx)

=
∫

S

∫
S∗

∫
[x,v]

1U (z)f(z) cosm(ds(S, z)) sind−m−2(ds(S, z))σ1(dz)

×σd−m−2(dv)σm(dx)

=
∫

F

∫
Ns(P,F )

∫ π/2

0

f(x cosϕ+ v sinϕ) cosm ϕ sind−m−2 ϕdϕ

×σd−m−2(dv)σm(dx).

The choice f = 1Mε(P,A) yields

σ(Mε(P,A) ∩ ps(P, ·)−1(relintF ))

=
∫

F

∫
Ns(P,F )

1A(x, v)σd−m−2(dv)σm(dx)
∫ ε

0

cosm ϕ sind−m−2 ϕdϕ.

Similarly to Euclidean space, bdP =
⋃d−2

m=0

⋃
F∈Fm(P ) relintF is a disjoint

union, hence we get

σ(Mε(P,A)) =
d−2∑
m=0

∑
F∈Fm(P )

∫
F

∫
Ns(P,F )

1A(x, v)σd−m−2(dv)σm(dx)

×
∫ ε

0

cosm ϕ sind−m−2 ϕdϕ

=
d−2∑
m=0

gd,m(ε)Θm(P,A),

if Θm(P,A) is defined as shown in the theorem. We observe that the functions
gd,0, . . . , gd,d−2 are linearly independent on (0, π/2). The remaining parts of
the proof (measurability, extension to general convex bodies, uniqueness) are
so similar to the Euclidean case (which is treated in Schneider [695, sect. 4.1,
4.2]) that we omit them. ��

We add a remark to the Steiner formula. Applying it with K = S ∈ Si for
i ∈ {0, . . . , d−2} and A = Σs, and observing that limε→π/2 σ(Mε(S,Σs)) = ωd

and



6.5 Spherical Integral Geometry 253

Θm(S,Σs) = δim for S ∈ Si (6.46)

(where δim denotes the Kronecker symbol), we find that gd,i(π/2) = ωd (which
can, of course, also be obtained from the definition). If P is a polytope and
F ∈ Fm(P ), then

cl
⋃

0<ε<π/2

Mε(P,Σs) ∩ ps(P, ·)−1(relintF ) = F ∨Ns(P, F ),

hence

σ(F ∨Ns(P, F ))
ωd

=
σm(F )
ωm+1

σd−m−2(Ns(P, F ))
ωd−m−1

=
1

ωm+1
γ(F, P )σm(F ). (6.47)

The polytopes F ∨ Ns(P, F ), F ∈ Fm(P ), m = 0, . . . , d − 2, together with
P and P ∗, tile the sphere Sd−1, that is, they cover it and have pairwise no
common interior points. It follows that

d−2∑
m=0

1
ωm+1

∑
F∈Fm(P )

γ(F, P )σm(F ) +
1
ωd
σ(P ) +

1
ωd
σ(P ∗) = 1, (6.48)

a fact which will later become important.
We call Θm(K, ·) the mth support measure or generalized curvature

measure of K. The chosen normalization has a simplifying effect in later
formulas. The following theorem collects the main properties of the support
measures.

Theorem 6.5.2. For m = 0, . . . , d − 2, the mapping Θm : Ks × B(Σs) → R

has the following properties:

(a) Rotation covariance: Θm(ϑK, ϑA) = Θm(K,A) for ϑ ∈ SOd, where
ϑA := {(ϑx, ϑu) : (x, u) ∈ A},

(b)Weak continuity: Kj → K (in the Hausdorff metric on Ks) implies
Θm(Kj , ·) w→ Θm(K, ·),

(c) Θm(·, A) is additive, for each fixed A ∈ B(Σs),
(d)Θm(·, A) is measurable, for each fixed A ∈ B(Σs).

This theorem is analogous to Theorem 14.2.2, whose proof can be found
in Schneider [695]. In the spherical case, the proof is very similar, so that we
omit it here.

There is no Euclidean counterpart to the following nice behavior of the
support measures under polarity.

Theorem 6.5.3. If K ∈ Ks and A ∈ B(Σs), then

Θm(K,A) = Θd−m−2(K∗, A−1)

for m ∈ {0, . . . , d− 2}, where A−1 := {(u, x) ∈ Σs : (x, u) ∈ A}.
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Proof. By the weak continuity of the support measures and the continuity of
the polarity K �→ K∗ (which is easy to see), it suffices to prove this for the
case where K is a polytope P . The assertion then follows from the explicit
representation of Θm(P,A) given in Theorem 6.5.1 and the fact that F ∈
Fm(P ) and Ns(P, F ) =: G implies G ∈ Fd−m−2(P ∗) and Ns(P ∗, G) = F ; the
latter is again easy to see. ��

As a marginal measure of the mth support measure, we obtain the mth
curvature measure, by

φm(K,A) := Θm(K,A× Sd−1), A ∈ B(Sd−1).

We supplement the definition by

φd−1(K,A) :=
1
ωd
σ(K ∩A), A ∈ B(Sd−1).

Theorem 6.5.2 (together with properties of the spherical Lebesgue mea-
sure) implies that the curvature measure φm, m ∈ {0, . . . , d − 1}, is rota-
tion covariant, in the sense that φm(ϑK, ϑA) = φ(K,A) for K ∈ Ks and
A ∈ B(Sd−1), weakly continuous, and additive and measurable in its first
argument. Further, it follows easily from the definition that φm(K, ·) is con-
centrated on K and that φm(K, ·) is locally determined, in the sense that
K1,K2 ∈ Ks and K1 ∩ B = K2 ∩ B for an open set B ⊂ Sd−1 implies
φ(K1, A) = φ(K2, A) for all A ∈ B(B). These properties can be defined sim-
ilarly for mappings ψ : Ks × B(Sd−1) → R and play a role in the following
characterization theorem.

Theorem 6.5.4. Let ψ : Ps × B(Sd−1) → R be a mapping which is rotation
covariant, locally determined, additive in its first argument, and such that
ψ(P, ·) is a finite measure concentrated on P , for all P ∈ Ps. Then there are
constants c0, . . . , cd−1 ≥ 0 such that

ψ(P, ·) =
d−1∑
m=0

cmφm(P, ·)

for all P ∈ Ps.

Proof. Let k ∈ {0, . . . , d−2}. First let Sk ∈ Sk, and let P(S∗
k) be the set of all

polytopes contained in S∗
k . Let Q ∈ P(S∗

k) ∪ {∅}. For Q = ∅, we define Q∗ :=
Sd−1. The mapping A �→ ψ(Sk ∨Q,A), A ∈ B(Sk), is a finite measure which
is invariant under all rotations that map Sk into itself and fix S∗

k pointwise.
By the uniqueness of the spherical Lebesgue measure, there exists a constant
c(Sk, Q) ≥ 0 with

ψ(Sk ∨Q,A) = c(Sk, Q)σk(A), A ∈ B(Sk). (6.49)
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We write Qo for the polar body of Q with respect to S∗
k as surrounding sphere,

thus Qo = Q∗ ∩ S∗
k ; in particular, Qo = S∗

k if Q = ∅ (one has to keep in mind
that Qo depends on S∗

k). Choosing A = Sk, we put

f(Q) := c(Sk, Q
o) =

1
ωk+1

ψ(Sk ∨Qo, Sk) for Q ∈ P(S∗
k) ∪ {∅}.

The function f is nonnegative and invariant under the rotations of S∗
k into

itself. If Q1 ∪Q2 is convex, then

Sk ∨ (Q1 ∪Q2)o = (Sk ∨Qo
1) ∩ (Sk ∨Qo

2),

Sk ∨ (Q1 ∩Q2)o = (Sk ∨Qo
1) ∪ (Sk ∨Qo

2).

From the additivity of ψ in its first argument it follows that f is additive. Let
Q ∈ P(S∗

k) be a polytope with dimQ < d− k − 2. Then there exists S0 ∈ S0

with S0 ⊂ Qo. Putting Sk+1 := Sk ∨ S0, we have Sk+1 ∈ Sk+1 and

Sk ∨Qo = Sk+1 ∨ (Q∗ ∩ S∗
k+1).

Therefore, using (6.49) with k replaced by k + 1,

ωk+1f(Q) = ψ(Sk ∨Qo, Sk) = ψ(Sk+1 ∨ (Q∗ ∩ S∗
k+1), Sk)

= c(Sk+1, Q
∗ ∩ S∗

k+1)σk+1(Sk) = 0.

This shows that the mapping f satisfies the assumptions of Theorem 14.4.7,
with Sd−1 replaced by S∗

k . It follows that

f(Q) = c(Sk)σd−k−2(Q)

with a constant c(Sk) ≥ 0. By the rotation covariance of ψ, this constant
depends only on k; we put c(Sk) =: bk. Thus we have c(Sk, Q

o) = bkσd−k−2(Q)
and hence c(Sk, Q) = bkσd−k−2(Qo). Altogether, we arrive at

ψ(Sk ∨Q,A) = bkσd−k−2(Qo)σk(A)

for Q ∈ P(S∗
k) and A ∈ B(Sk).

Now let P ∈ Ps, F ∈ Fk(P ) for some k ∈ {0, . . . , d− 2}, and A ∈ B(Sd−1)
with A ⊂ relintF . With Sk := Sd−1 ∩ linF and Q := (Sk ∨ P ) ∩ S∗

k we have
Ns(P, F ) = P ∗ ∩ S∗

k = Q∗ ∩ S∗
k = Qo. A sufficiently small open neighborhood

B of A satisfies P ∩B = (Sk ∨Q) ∩B. Since ψ is locally determined, we get

ψ(P,A) = ψ(Sk ∨Q,A) = bkσd−k−2(Qo)σk(A)

= bkσd−k−2(Ns(P, F ))σk(A).

Finally, let P ∈ Ps and A ∈ B(Sd−1). Then

A = (A \ P ) ∪ (A ∩ intP ) ∪
d−2⋃
k=0

⋃
F∈Fk(P )

A ∩ relintF
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is a disjoint union. Since ψ(P, ·) is concentrated on P , we get

ψ(P,A)

= ψ(P,A ∩ intP ) +
d−2∑
k=0

∑
F∈Fk(P )

bkσd−k−2(Ns(P, F ))σk(A ∩ relintF )

= ψ(P,A ∩ intP ) +
d−2∑
k=0

ckφk(P,A),

with ck := bkωk+1ωd−k−1. Since ψ is locally determined, we have ψ(P,A ∩
intP ) = ψ(Sd−1, A∩ intP ). Here ψ(Sd−1, ·) is a rotation invariant finite mea-
sure and hence proportional to σ, thus ψ(P,A ∩ intP ) = bd−1σ(A ∩ intP ) =
cd−1φd−1(P,A) with a constant cd−1 ≥ 0. This completes the proof. ��

Before applying Theorem 6.5.4 to the proof of a kinematic formula for
curvature measures, we consider the total curvature measures. We write

vm(K) := φm(K,Sd−1), m = 0, . . . , d− 1.

The functional vm is called the mth (spherical) intrinsic volume. For a
polytope P , we obtain from Theorem 6.5.1 the representation

vm(P ) =
1

ωm+1

∑
F∈Fm(P )

γ(F, P )σm(F ) =
∑

G∈Fm+1(P̆ )

β(0, G)γ(G, P̆ ). (6.50)

The duality relation of Theorem 6.5.3 gives

vm(K) = vd−m−2(K∗), m = 0, . . . , d− 2. (6.51)

It is consistent with this to supplement the definition by

v−1(K) := vd−1(K∗). (6.52)

With this definition, the intrinsic volumes satisfy two linear relations,
which also have no counterpart in Euclidean space.

Theorem 6.5.5. For K ∈ Ks,
d−1∑

i=−1

vi(K) = 1, (6.53)

and if K ∈ Ks \ S•, then

d−1∑
i=−1

(−1)ivi(K) = 0, (6.54)

hence also
� d−1

2 �∑
i=0

v2i(K) =
1
2
. (6.55)



6.5 Spherical Integral Geometry 257

Proof. Relation (6.53) is just (6.48). For the proof of (6.54), it is convenient
to consider first a pointed polyhedral cone C ⊂ Rd with interior points and
its dual cone

C∗ := {y ∈ Rd : 〈x, y〉 ≤ 0 for all X ∈ C}.

If F ∈ Fm(C) for some m ∈ {0, . . . , d}, then we define F̂ := N(C,F ) (normal
cone of C at F ) and observe that F̂ ∈ Fd−m(C∗). The cone F + (−F̂ ) has
dimension d. We denote by U the union of all faces of dimensions less than
d− 1 of all the cones F + (−F̂ ), F ∈ F•(C), and assert that

η(x) :=
∑

F∈F•(C)

(−1)dim F 1F+(−F̂ )(x) = 0 for all x ∈ Rd \ U. (6.56)

Since C and C∗ can be separated weakly by a hyperplane, there is a point
y ∈ Rd with y /∈ C ∪ (−C∗), hence with η(y) = 0. Let x ∈ Rd \ U . The point
x can be joined to y by a polygonal path in Rd \U . Hence, it suffices to show
that η is constant along this path, and for this it is sufficient to show that η
does not change when entering some (d− 1)-face of a cone F + (−F̂ ).

Let H be a (d− 1)-face of some cone F + (−F̂ ), F ∈ F•(C). Being a facet
of the direct sum F + (−F̂ ), H is the direct sum, H = F1 + (−G), of a face
F1 ∈ Fk(C), for some k ∈ {0, . . . , d − 1}, and a face −G ∈ Fd−1−k(−F̂ ).
There is a face F2 of C with G = F̂2. From dimF1 + dimG = d − 1 and
dimG = d−dimF2 it follows that dimF2 = k+1. From F1 ⊂ F and F̂2 ⊂ F̂ ,
hence F1 ⊂ F ⊂ F2, it follows that either F = F1 or F = F2.

Since F1 ⊂ H, F2 �⊂ H, F1 is a face of F2 and dimF1 = dimF2 − 1, it
follows that the cone F2 lies in one of the closed halfspaces bounded by linH.
Similarly, F̂1 lies in one of the closed halfspaces bounded by linH. Let u be
the unit normal vector of linH pointing into the halfspace not containing F2;
note that u ∈ (lin F̂2)⊥ = linF2. There exists x ∈ F1 with x − u ∈ F2 \ F1.
Since x − u ∈ C, but x − u /∈ F1, there exists y ∈ F̂1 with 〈x − u, y〉 < 0,
hence with 〈u, y〉 > 0. Thus, F̂1 lies in the halfspace not containing F2. Since
F1 ⊂ H and F̂2 ⊂ H, we conclude that F1 + (−F̂1) and F2 + (−F̂2) lie on the
same side of the hyperplane linH.

As a consequence, when entering the facet H from int(F + (−F̂ )) \U , the
changes in the contributions to the function η coming from F1 + (−F̂1) and
from F2 + (−F̂2) cancel each other. Should part of the facet H also belong to
some other cone G + (−Ĝ), G ∈ F•(C), the same argument applies. In this
way, relation (6.56) is proved.

If now P ∈ Kp
s is a (d − 1)-dimensional polytope, we can apply relation

(6.56) to the cone C = P̆ and obtain

1−P∗(x) +
d−1∑
i=0

(−1)i+1
∑

F∈Fi(P )

1F∨(−Ns(P,F ))(x) = 0
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for σ-almost all x ∈ Sd−1. Integrating this relation over the unit sphere and
using the reflection invariance of σ, we obtain (6.54), in view of (6.47) and
(6.50). The extension to general convex bodies which are not subspheres fol-
lows by approximation. Relation (6.55) follows from (6.53) and (6.54). ��

The spherical convex ringRs is defined as the system of all finite unions
of spherically convex bodies in Sd−1, including the empty set ∅. Groemer’s
extension theorem 14.4.2, with the obvious adaptation to Sd−1, shows that
every continuous additive functional on Kp

s with values in a topological vector
space has a continuous extension to Rs. The function χ defined by χ(K) := 1
for K ∈ Kp

s is additive and hence has such an extension, which is also denoted
by χ and called the Euler characteristic. Since the intrinsic volumes, too,
have additive extensions to Rs, relation (6.55) generalizes to

2
� d−1

2 �∑
i=0

v2i(K) = χ(K)

for K ∈ Rs. This is a version of the spherical Gauss–Bonnet theorem.
(Note that, in contrast to the Euclidean case, v0 is not the Euler characteris-
tic.)

Returning to the curvature measures, we prove an integral geometric in-
tersection formula.

Theorem 6.5.6 (Spherical kinematic formula). If K,M ∈ Rs and
A,B ∈ B(Sd−1), then∫

SOd

φj(K ∩ ϑM,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(K,A)φd−1−k+j(M,B) (6.57)

for j = 0, . . . , d− 1.

Proof. For convex bodies K,M ∈ Ks we define

T (K,M) := {ϑ ∈ SOd : K and M touch},

where K and M are said to touch if K ∩M �= ∅ but the cones K̆, M̆ can be
separated weakly by a hyperplane. Similarly to the proof of Lemma 5.2.1 one
shows that the mapping

ϑ �→ φj(K ∩ ϑM,A ∩ ϑB), ϑ ∈ SOd,

is measurable on SOd \ T (K,M) and hence coincides almost everywhere on
SOd with a measurable mapping if ν(T (K,M)) = 0. The proof of the latter
fact is not so straightforward as that for the Euclidean counterpart (see the
beginning of Theorem 5.1.2). For polytopes P,Q, the relation ν(T (P,Q)) = 0
is easily deduced from Lemma 13.2.1. Therefore, we first prove the kinematic
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formula for polytopes. This is used to prove ν(T (K,M)) = 0 for general
convex bodies, which then allows us to extend the kinematic formula to this
case.

Let j ∈ {0, . . . , d − 1}. The left side of (6.57) is well defined if K,M are
polytopes. We fix Q ∈ Ps and an open set B ⊂ Sd−1 and put

ψ(P,A) :=
∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ),

for P ∈ Ps and A ∈ B(Sd−1). It is easy to check that ψ satisfies the assump-
tions of Theorem 6.5.4, hence there exist constants c0(Q,B), . . . , cd−1(Q,B) ≥
0 such that∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=0

ck(Q,B)φk(P,A)

for all P ∈ Ps and all Borel sets A ⊂ Sd−1. Since, by (6.46), φm(Sk, S
d−1) =

δkm for Sk ∈ Sk, we obtain

ck(Q,B) =
∫

SOd

φj(Sk ∩ ϑQ, ϑB) ν(dϑ) (6.58)

for k = 0, . . . , d− 1. Admitting arbitrary Borel sets B in (6.58), we can again
apply Theorem 6.5.4 and deduce that

ck(Q,B) =
∫

SOd

φj(Sk ∩ ϑQ, ϑB) ν(dϑ) =
d−1∑
i=0

bikφi(Q,B)

with constants bik ≥ 0. Here we choose Q = Sm ∈ Sm and B = Sd−1. It
follows from Lemma 13.2.1 that either Sk ∩ ϑSm = ∅ for ν-almost all ϑ or
Sk ∩ ϑSm ∈ Sk+m−d+1 for ν-almost all ϑ, hence

bmk =
{

1, if m = d− 1− k + j,
0 else.

Thus we get ck(Q,B) = 0 for k = 0, . . . , j−1 and ck(Q,B) = φd−1−k+j(Q,B)
for k = j, . . . , d− 1. We conclude that∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(P,A)φd−1−k+j(Q,B) (6.59)

for P,Q ∈ Ps, A ∈ B(Sd−1) and open sets B. Since both sides define measures
if B varies, (6.59) holds for arbitrary Borel sets B.

We want to replace P in (6.59) by a general convex body K. Since
subspheres are polytopes, we may assume that K is not a subsphere. We
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can choose polytopes P1, P2 ∈ Ps which are not subspheres and satisfy
P1 ⊂ K ⊂ P2. Then

T (K,Q) ⊂ ({ϑ ∈ SOd : P2 ∩ ϑQ �= ∅} \ {ϑ ∈ SOd : P1 ∩ ϑQ �= ∅})∪ T (P1, Q).

Since Pr is not a subsphere (r = 1, 2), it is easy to check that Pr ∩ ϑQ is not
a subsphere for almost all ϑ, hence for almost all ϑ with Pr ∩ϑQ �= ∅ we have

2
� d−1

2 �∑
i=0

v2i(Pr ∩ ϑQ) = 1

by (6.55). Now formula (6.59) with A = B = Rd gives

ν({ϑ ∈ SOd : Pr ∩ ϑQ �= ∅}) =
∫

SOd

2
� d−1

2 �∑
i=0

v2i(Pr ∩ ϑQ) ν(dϑ)

= 2
� d−1

2 �∑
i=0

d−1∑
k=2i

vk(Pr)vd−1−k+2i(Q)

for r = 1, 2 and hence

ν(T (K,Q)) ≤ 2
� d−1

2 �∑
i=0

d−1∑
k=2i

[vk(P2)− vk(P1)]vd−1−k+2i(Q).

Since P1 and P2 can be chosen arbitrarily close to K in the Hausdorff met-
ric and since the spherical intrinsic volumes are continuous (by Theorem
6.5.2(b)), we conclude that ν(T (K,Q)) = 0.

Now we can conclude, as before, that ϑ �→ φj(K ∩ ϑQ,A ∩ ϑB) coincides
almost everywhere on SOd with a measurable function, hence the left side of
our next assertion,∫

SOd

φj(K ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(K,A)φd−1−k+j(Q,B), (6.60)

is well defined. To prove (6.60), we proceed similarly to the Euclidean case,
see Theorem 5.2.3. Assertion (6.60) is equivalent to∫

SOd

∫
Sd−1

f(x)g(ϑ−1x)φj(K ∩ ϑQ,dx) ν(dϑ)

=
d−1∑
k=j

∫
Sd−1

f dφk(K, ·)
∫

Sd−1
g dφd−1−k+j(Q, ·)

for all continuous functions f, g : Sd−1 → R. The proof of this relation and
hence of (6.60) is now completed by approximating K by polytopes, using



6.5 Spherical Integral Geometry 261

the weak continuity of the curvature measures and the bounded convergence
theorem.

Due to the inversion invariance of the measure ν, the result (6.60) can be
written in the form∫

SOd

φj(Q ∩ ϑK,B ∩ ϑA) ν(dϑ) =
d−1∑
k=j

φk(Q,B)φd−1−k+j(K,A),

valid for polytopes Q and convex bodies K. As before, the polytope Q can
now similarly be replaced by a general convex body.

The final extension to the spherical convex ring Rs is also similar to the
Euclidean case. ��

As a particular case of the spherical kinematic formula, we note its global
version ∫

SOd

vj(K ∩ ϑM) ν(dϑ) =
d−1∑
k=j

vk(K)vd−1−k+j(M), (6.61)

for K,M ∈ Rs and j = 0, . . . , d−1. Due to the duality relations (6.45), (6.51),
(6.52), we obtain a dual kinematic formula for convex bodies by applying
(6.61) to polar bodies. The result is∫

SOd

vj(K ∨ ϑM) ν(dϑ) =
j∑

k=−1

vk(K)vj−k−1(M)

for K,M ∈ Ks and j = −1, . . . , d− 2.
In contrast to the Euclidean case, where V0 is the Euler characteristic, we

must use (6.55) to obtain the integral

∫
SOd

χ(K ∩ ϑM) ν(dϑ) = 2
� d−1

2 �∑
k=0

d−1∑
i=2k

vi(K)vd−1−i+2k(M)

for K,M ∈ Rs.
The case of (6.57) where one of the sets is a subsphere deserves special

attention. To have a concise notation, for q ∈ {0, . . . , d−1} we choose S0 ∈ Sq

and denote by τq the image measure of ν under the map ϑ �→ ϑS0 from SOd to
Sq. Thus, τq is the uniquely determined rotation invariant probability measure
on Sq. With this notation, we get the spherical Crofton formula∫

Sq

φj(K ∩ S,A ∩ S) τq(dS) = φd−1−q+j(K,A)

for K ∈ Rs, A ∈ B(Sd−1), q ∈ {0, . . . , d− 1} and j ∈ {0, . . . , q}.
Defining
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Uj(K) :=
1
2

∫
Sd−1−j

χ(K ∩ S) τd−1−j(dS) (6.62)

for K ∈ Rs and j ∈ {0, . . . , d− 1}, we further obtain

Uj(K) =
� d−1−j

2 �∑
k=0

vj+2k(K) (6.63)

If K in (6.62) is a convex body and not a subsphere, then for almost all
S ∈ Sd−1−j the intersection K ∩ S is not a subsphere, hence χ(K ∩ S) = 1 if
K ∩ S �= ∅. Therefore, 2Uj(K) is the total invariant measure of the set of all
(d− 1− j)-dimensional subspheres hitting the convex body K.

Notes for Section 6.5

1. A general source for integral geometry in spaces of constant curvature, from the
differential geometric viewpoint, is the book by Santaló [662] and the literature
quoted there, in particular Santaló [658].

Steiner formulas in spaces of constant curvature, in a differential geometric set-
ting, were studied by Herglotz [336], Allendoerfer [23], Santaló [657]. A very general
local version, for sets of positive reach, is due to Kohlmann [422]. The approach
followed here is taken from Glasauer [264]. For differential geometric proofs of the
spherical Gauss–Bonnet formula, we refer to Allendoerfer and Weil [24], Santaló
[660, 661].

2. Since the linear relations between intrinsic volumes in Theorem 6.5.5 are special
cases of the Steiner formula and the Gauss–Bonnet formula in spherical space, they
appeared first, with differential geometric proofs, in the relevant literature quoted
above. For spherical polytopes, in an equivalent version for polyhedral cones in Rd,
McMullen [469] has given interesting new proofs, more combinatorial in nature. The
proof of (6.54) given here is based on a note by McMullen [470], which expands his
remark at the beginning of §3 in [469].

3. The proof of Theorem 6.5.6, the spherical kinematic formula for curvature mea-
sures, is modeled after the proof given for its Euclidean counterpart by Schneider
[676, Th. (6.1)]. The presentation given here follows the one by Glasauer [264]. This
work contains many more results of spherical integral geometry, among them an
abstract version of the kinematic formula and a version for support measures.

4. For spherical polytopes, or rather their spanned polyhedral cones, the functionals
Uj were studied by Grünbaum [300], under the name of Grassmann angles.

5. In contrast to the Euclidean case, the spherical intrinsic volumes are in general
not monotone under set inclusion. We restrict ourselves here to the set Ks \ S•.
Clearly vd−1 is increasing under set inclusion, and so is vd−2, being equal to Ud−2.
By duality, v−1 and v0 are decreasing. For j ∈ {1, . . . , d−3}, however, the functional
vj is not monotone. This follows, for example, by considering spherical balls Br with
spherical radius r, 0 ≤ r ≤ π/2. From the Steiner formula one sees that

vj(Br) =
ωd

ωj+1ωd−1−j

(
d − 2

j

)
cosd−2−j r sinj r,
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which is not a monotone function of r.
On the other hand, the functionals U0, . . . , Ud−1 are increasing, as follows imme-

diately from their definition. They may as well be considered as spherical analogs of
the Euclidean intrinsic volumes, sharing with them the integral geometric interpre-
tation as total measures of intersecting flats, respectively subspheres, of a suitable
dimension. There is still another series of functionals which can be considered as
counterparts to the Euclidean intrinsic volumes. Let q ∈ {0, . . . , d − 1} and S ∈ Sq.
The spherical projection of K ∈ Ks to S is defined by K|S := S∩ (K∨S∗). Then
the function defined by

Wj(K) :=
1

ωj+1

∫
Sj

σj(K|S) τj(dS)

for K ∈ Ks can be expressed in terms of intrinsic volumes. The relation

Wj(K) =

d−1∑
k=j

vk(K)

was proved by Glasauer [264]. Clearly, also Wj is increasing. Thus, in spherical space,
there are three series of functionals which, with some reason, can be considered
as counterparts to the Euclidean intrinsic volumes. All functionals vj , Uj , Wj are
nonnegative, additive, continuous, and rotation invariant. The Uj and Wj are linear
combinations of the vj with nonnegative coefficients, and they are increasing under
set inclusion.

It is a longstanding (and repeatedly asked) open question whether Hadwiger’s
characterization theorem 14.4.6 has a spherical counterpart. For example, if a func-
tion ϕ : Ks → R is additive, continuous and rotation invariant, must it be of the
form ϕ =

∑d−1
i=0 civi with constant coefficients c0, . . . , cd−1? An affirmative answer

to the question posed in Note 6 of Section 14.4 would be an essential step towards
a solution. As a variant, one might ask whether a function ϕ : Ks \ S• → R which is
additive, rotation invariant and increasing must be a nonnegative linear combination
of the functions Uj or Wj .

6. Motivated by the Euclidean case, one may ask for inequalities existing between
the functionals vj , Uj , Wj . For example, among all convex bodies K ∈ Kp

s of given
positive volume vd−1(K), which ones are extremal for one of the functionals? Only
the following nontrivial cases seem to be known. The minimum of vd−2 is attained if
and only if K is a ball (the classical isoperimetric problem in spherical space). The
maximum of v−1(K) = vd−1(K

∗) (and, because of U1(K) = 1
2
− vd−1(K

∗); also the
minimum of U1(K)) is attained if and only if K is a ball. The latter result, which
can be considered as a spherical counterpart to the Blaschke–Santaló inequality, was
proved by Gao, Hug and Schneider [243].


