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Averaging with Invariant Measures

As soon as stochastic geometry deals with structures satisfying invariance
properties with respect to some group, such as stationarity or isotropy in
Euclidean spaces, there arises the need for a theory allowing averaging with
respect to invariant measures. Integral geometry in the sense of Blaschke and
Santaló is perfectly made for obtaining such averaging formulas. In this chap-
ter we develop the basic tools, namely intersection formulas for fixed and
moving geometric objects, where suitable geometric quantities of the inter-
sections are integrated with respect to invariant measures. Basic facts about
invariant measures on locally compact topological groups and homogeneous
spaces, as far as they are needed for our purposes, are collected in the Appen-
dix in Chapter 13.

The main purpose of Section 5.1 is the calculation of general kinematic
integrals of the form ∫

Gd

ϕ(K ∩ gM)µ(dg) (5.1)

for convex bodies K,M in Rd. Here Gd is the motion group of Rd, and the
integration is with respect to its Haar measure µ. Such integrals are called
‘kinematic’, since one imagines M as moving and one averages the functional
ϕ over all intersections of the moving set with the fixed set K. The integral
(5.1) takes a simple form if the functional ϕ satisfies two natural assumptions,
additivity and continuity. This result is known as Hadwiger’s general integral
geometric theorem (Theorem 5.1.2). The assumptions on ϕ are satisfied, in
particular, by the intrinsic volumes Vj . A brief introduction to these important
functionals from convex geometry is given in Section 14.2. For the intrinsic
volumes, Hadwiger’s general theorem reduces to the classical principal kine-
matic formula for convex bodies.

If the moving convex body is replaced by a moving flat, one is led to the
Crofton formulas, giving explicit expressions for the integrals∫

A(d,k)

Vj(K ∩ E)µk(dE),
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where µk is the invariant measure on the affine Grassmannian A(d, k).
The intrinsic volumes have local versions, the support measures or (gen-

eralized) curvature measures. These are introduced in Section 14.2, by means
of a local Steiner formula. The purpose of the two subsequent sections is a
derivation of the principal kinematic formula for curvature measures. Section
5.2 treats only integrations over the translation group, in a more general fash-
ion with a view to later applications, and Section 5.3 then deals with the
additional integrations over the rotation group. In each case, formulas for
intrinsic volumes result by specialization.

Section 5.4 leaves the domain of convex or polyconvex sets and studies
translative, kinematic and Crofton formulas for Hausdorff rectifiable sets and
the Hausdorff measures of their intersections.

5.1 The Kinematic Formula for Additive Functionals

We make use of the homogeneous spaces and invariant measures of Euclid-
ean geometry, as introduced in the Appendix. We assume that the reader is
familiar with these, either from Chapter 13 or from other sources. We recall
and collect here only the basic notation.

We denote by SOd the group of proper (that is, orientation-preserving)
rotations of Rd. Being a compact group, it carries a unique rotation invariant
(Borel) probability measure, which we denote by ν. The group of (proper) rigid
motions of Rd is denoted by Gd. Let µ be its invariant (or Haar) measure,
normalized so that

µ({g ∈ Gd : gx ∈ Bd}) = κd

for x ∈ Rd. More explicitly, the mapping

γ : Rd × SOd → Gd

(x, ϑ) �→ tx ◦ ϑ,

where tx is the translation by the vector x, is a homeomorphism, and µ is the
image measure of the product measure λ⊗ ν under γ.

The Grassmannian G(d, q) of q-dimensional linear subspaces of Rd, q ∈
{0, . . . , d}, is a compact homogeneous space with respect to the rotation group
SOd. It carries a unique rotation invariant probability measure, which we
denote by νq. The affine Grassmannian A(d, q), the space of q-flats in Rd,
is a locally compact homogeneous space with respect to the motion group
and carries a locally finite motion invariant measure. We denote it by µq and
normalize it so that

µq({E ∈ A(d, q) : E ∩Bd �= ∅}) = κd−q.

More explicitly, we may choose a fixed subspace Lq ∈ G(d, q), denote its
orthogonal complement by L⊥

q , and define mappings
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βq : SOd → G(d, q)
ϑ �→ ϑLq

and
γq : L⊥

q × SOd → A(d, q)
(x, ϑ) �→ ϑ(Lq + x).

(5.2)

These maps are continuous and surjective. Now, νq is the image measure of
the invariant measure ν under βq, and µq is the image measure of the product
measure λL⊥

q
⊗ν under γq, where λL⊥

q
denotes the (d−q)-dimensional Lebesgue

measure on L⊥
q .

A basic task involving these invariant measures consists in the evaluation
of integrals such as∫

Gd

ϕ(K ∩ gM)µ(dg) and
∫

A(d,k)

ϕ(K ∩ E)µk(dE),

for suitable sets K,M and functions ϕ. A typical simple case arises if K and
M are convex bodies and ϕ = χ, the Euler characteristic. Since χ(K) = 1 for
nonempty convex bodies K and χ(∅) = 0, we have∫

Gd

χ(K ∩ gM)µ(dg) = µ({g ∈ Gd : K ∩ gM �= ∅}),

which is the total invariant measure of all rigid motions g for which the body
gM hits (that is, has nonempty intersection with) the body K. In order to
get an idea of what an explicit computation will involve, we first consider the
special case where M is a ball of radius r > 0. By the representation of the
invariant measure µ described above, we then have∫

Gd

χ(K ∩ grBd)µ(dg) =
∫

SOd

∫
Rd

χ(K ∩ (ϑrBd + x))λ(dx) ν(dϑ)

= Vd(K + rBd),

since K ∩ (ϑrBd + x) �= ∅ if and only if x lies in the parallel body

K + rBd = {k + b : k ∈ K, b ∈ rBd}.

The Steiner formula of convex geometry (see (14.5)) tells us that

Vd(K + rBd) =
d∑

j=0

rd−jκd−jVj(K),

where V0, . . . , Vd are the intrinsic volumes. Once it is known (and this is
not difficult to prove) that Vd(K + rBd) is a polynomial in r, the Steiner
formula can serve to define the intrinsic volumes. For these functionals and
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their properties, as well as for a local version of the Steiner formula, we refer
to Section 14.3 and the literature quoted there.

We see already from this special case, M = rBd, that for the computa-
tion of the integrals

∫
Gd
χ(K ∩ gM)µ(dg) the intrinsic volumes must play an

essential role. It is a remarkable fact that no further functions are needed for
the general case: the integrals∫

Gd

χ(K ∩ gM)µ(dg) and
∫

A(d,k)

χ(K ∩ E)µk(dE)

can be expressed in terms of the intrinsic volumes of K and M . These results
will be obtained as special cases of formulas involving more general functions
ϕ in the integrands. The essential property of these integrand functions, which
makes explicit formulas possible, is their additivity. Generally, a function ϕ
on K′ with values in an abelian group is additive if

ϕ(K ∪M) + ϕ(K ∩M) = ϕ(K) + ϕ(M)

for all K,M ∈ K′ with K ∪ M ∈ K′. For an additive function ϕ on K′,
one always extends the definition by ϕ(∅) := 0. A reader not familiar with
additive functionals on convex bodies is advised to have a look at Section
14.4. We shall make essential use of Hadwiger’s characterization theorem for
the intrinsic volumes, which is proved in that section.

To obtain these formulas for more general integrands, we begin with com-
puting the integral

ψ(K) :=
∫

A(d,k)

Vj(K ∩ E)µk(dE) (5.3)

for convex bodies K ∈ K′, where Vj is the jth intrinsic volume, j ∈ {0, . . . , d}.
(Recall that Vj is additive, and that we have defined Vj(∅) = 0.) Equation
(5.3) defines a functional ψ on K′. Since the intrinsic volume Vj is additive, in-
variant under rigid motions, and continuous, it is not difficult to show that the
functional ψ is additive, motion invariant and continuous (for the continuity,
compare the argument used in the proof of Theorem 5.1.2 below). Therefore,
Hadwiger’s characterization theorem (Theorem 14.4.6) yields a representation

ψ(K) =
d∑

r=0

crVr(K), K ∈ K′,

with constant coefficients c0, . . . , cd. Here only one coefficient is different from
zero, due to the homogeneity property

ψ(αK) = αd−k+jψ(K)

for α > 0; this property follows from the representation
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ψ(K) =
∫

G(d,k)

∫
L⊥
Vj(K ∩ (L+ x))λd−k(dx) νk(dL).

Since Vr is homogeneous of degree r, we see that cr = 0 for r �= d − k + j,
hence ∫

A(d,k)

Vj(K ∩ E)µk(dE) = cVd−k+j(K)

with some constant c. In order to determine this constant, we take for K the
unit ball Bd. For ε ≥ 0, the Steiner formula gives

d∑
j=0

εd−jκd−jVj(Bd) = Vd(Bd + εBd) = (1 + ε)dκd =
d∑

j=0

εd−j

(
d

j

)
κd,

hence

Vj(Bd) =
(
d

j

)
κd

κd−j
for j = 0, . . . , d.

In the following, we make use of the fact that the intrinsic volume Vj of a
convex body does not depend on the dimension of the space in which the
body is embedded. Choosing L ∈ G(d, k), we obtain

cVd−k+j(Bd) =
∫

A(d,k)

Vj(Bd ∩ E)µk(dE)

=
∫

SOd

∫
L⊥
Vj(Bd ∩ ϑ(L+ x))λd−k(dx) ν(dϑ)

=
∫

L⊥∩Bd

(1− ‖x‖2)j/2Vj(Bd ∩ L)λd−k(dx)

=
(
k

j

)
κk

κk−j

∫
L⊥∩Bd

(1− ‖x‖2)j/2 λd−k(dx).

Introducing polar coordinates, we transform the latter integral into a Beta
integral and obtain

c =
(
k

j

)
κkκd−k+j

Vd−k+j(Bd)κk−jκj
= ckj c

d−k+j
d .

Here we have denoted by

ckj :=
k!κk

j!κj
(5.4)

a frequently occurring constant. By using the identity

m!κm = 2mπ
m−1

2 Γ
(
m+ 1

2

)
,

it can also be put in the form
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ckj =
Γ

(
k+1
2

)
Γ

(
j+1
2

) .
To simplify later expressions, we also introduce the notation

cr1,...,rk
s1,...,sk

:=
k∏

i=1

cri
si

=
k∏

i=1

ri!κri

si!κsi

. (5.5)

With these notations, we have obtained the following result.

Theorem 5.1.1. Let K ∈ K′ be a convex body. For k ∈ {1, . . . , d − 1} and
j ≤ k the Crofton formula∫

A(d,k)

Vj(K ∩ E)µk(dE) = ck,d−k+j
j,d Vd−k+j(K) (5.6)

holds.

The special case j = 0 of (5.6) gives

Vm(K) = c0,d
m,d−m

∫
A(d,d−m)

χ(K ∩ E)µd−m(dE) (5.7)

and thus provides an integral geometric interpretation of the intrinsic volumes:
Vm(K) is, up to a normalizing factor, the invariant measure of the set of
(d−m)-flats intersecting K.

Using the explicit representation of the measure µd−m and the fact that
the map L �→ L⊥ transforms νd−m into νm, we can rewrite the representation
(5.7) as

Vm(K) = c0,d
m,d−m

∫
G(d,m)

λm(K|L) νm(dL), (5.8)

where K|L denotes the image of K under orthogonal projection to the sub-
space L. The special case m = 1 shows that V1, up to a factor, is the mean
width.

When we consider in the following a fixed and a moving convex body, we
shall often have to exclude the touching positions. We say that the convex
bodies K and M touch if K ∩M �= ∅, but K and M can be separated weakly
by a hyperplane. The following lemma is useful.

Lemma 5.1.1. Let K,M ∈ K′ be convex bodies, and let (Ki)i∈N, (Mi)i∈N be
sequences in K′ with Ki → K and Mi → M for i → ∞. Then the following
holds:

(a) If K ∩M = ∅, then Ki ∩Mi = ∅ for all sufficiently large i.

(b) If K ∩M �= ∅ and K and M do not touch, then Ki ∩Mi → K ∩M for
i→∞.
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Proof. Assertion (a) follows immediately from the definition of convergence
with respect to the Hausdorff metric.

To prove (b), let x ∈ K ∩M . We put xi := p(Ki ∩Mi, x) (the point in
Ki ∩Mi nearest to x, see Section 14.2) for those i for which Ki ∩Mi �= ∅.
We claim that xi is defined for almost all i and that xi → x for i → ∞.
Suppose this were false. Then there exists a ball B with center x such that
B ∩Ki ∩Mi = ∅ holds for infinitely many i. For sufficiently large i we have
B ∩Ki �= ∅, since Ki → K and x ∈ K. By a standard separation theorem, for
each such i there exists a hyperplane separating B ∩Ki and Mi. A suitable
subsequence of this sequence of hyperplanes converges to a hyperplane H; this
hyperplane separates B ∩K and M . Since x ∈ K ∩M , we have x ∈ H, hence
H separates also K and M . This contradicts the assumption that K and M
do not touch. It follows that xi → x for i→∞.

Let xij
∈ Kij

∩Mij
for some increasing sequence (ij)j∈N, and assume that

xij
→ y for j →∞. Then y ∈ K ∩M .
The assertionKi∩Mi → K∩M now follows from Theorem 12.2.2 (together

with Theorem 12.3.4). ��

From Hadwiger’s characterization theorem, we now deduce a general kine-
matic formula, involving a functional on convex bodies that need not have
any invariance property; crucial is the additivity of this functional. (Recall
that an additive functional ϕ on K′ is always extended to K, by ϕ(∅) := 0.)

Theorem 5.1.2 (Hadwiger’s general integral geometric theorem). If
ϕ : K′ → R is additive and continuous, then∫

Gd

ϕ(K ∩ gM)µ(dg) =
d∑

k=0

ϕd−k(K)Vk(M) (5.9)

for K,M ∈ K′, where the coefficients ϕd−k(K) are given by

ϕd−k(K) =
∫

A(d,k)

ϕ(K ∩E)µk(dE).

Proof. The µ-integrability of the integrand in (5.9) is seen as follows. For
K,M ∈ K′, let Gd(K,M) be the set of all motions g ∈ Gd for which K and
gM touch. It is not difficult to check that γ(x, ϑ) ∈ Gd(K,M) if and only if
x ∈ bd (K − ϑM) and, hence, that µ(Gd(K,M)) = 0.

Let g ∈ Gd \Gd(K,M), and let (Mj)j∈N be a sequence in K′ converging to
M . Then gMj → gM and hence K ∩ gMj → K ∩ gM , by Lemma 5.1.1, thus
ϕ(K∩gMj)→ ϕ(K∩gM) for j →∞. It follows that the map g �→ ϕ(K∩gM)
is continuous outside a closed set of µ-measure zero. Moreover, the continuous
function ϕ is bounded on the compact set {L ∈ K′ : L ⊂ K}, and

µ({g ∈ Gd : ϕ(K ∩ gM) �= 0}) ≤ µ({g ∈ Gd : K ∩ gM �= ∅}) <∞.

This shows the µ-integrability of the function g �→ ϕ(K ∩ gM).
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Now we fix a convex body K ∈ K′ and define

ψ(M) :=
∫

Gd

ϕ(K ∩ gM)µ(dg) for M ∈ K′.

Then ψ : K′ → R is additive and motion invariant. The foregoing consid-
eration together with the dominated convergence theorem shows that ψ is
continuous. By Hadwiger’s characterization theorem, there exist constants
ϕ0(K), . . . , ϕd(K) such that

ψ(M) =
d∑

i=0

ϕd−i(K)Vi(M)

for all M ∈ K′. We have to determine the coefficients ϕd−i(K).
Let k ∈ {0, . . . , d}, and choose Lk ∈ G(d, k). Let C ⊂ Lk be a k-

dimensional unit cube with center 0, and let r > 0. Then

ψ(rC) =
d∑

i=0

ϕd−i(K)Vi(rC) =
k∑

i=0

ϕd−i(K)riVi(C).

On the other hand, using the rotation invariance of λ, we get

ψ(rC)

=
∫

Gd

ϕ(K ∩ grC)µ(dg)

=
∫

SOd

∫
Rd

ϕ(K ∩ (ϑrC + x))λ(dx) ν(dϑ)

=
∫

SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ (ϑrC + ϑx1 + ϑx2))λk(dx1)λd−k(dx2) ν(dϑ)

=
∫

SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ [ϑr(C + x1) + ϑx2])rk λk(dx1)λd−k(dx2) ν(dϑ).

Comparison gives

ϕd−k(K)

= lim
r→∞

∫
SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ [ϑr(C + x1) + ϑx2])λk(dx1)λd−k(dx2) ν(dϑ).

For r →∞, we have

ϕ(K ∩ [ϑr(C + x1) + ϑx2])→
{
ϕ(K ∩ ϑ(Lk + x2)) if 0 ∈ relint (C + x1),

0 if 0 /∈ C + x1.

Hence, the dominated convergence theorem yields
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ϕd−k(K) =
∫

SOd

∫
L⊥

k

ϕ(K ∩ ϑ(Lk + x2))λk(C)λd−k(dx2) ν(dϑ)

=
∫

A(d,k)

ϕ(K ∩ E)µk(dE),

as asserted. ��

In Theorem 5.1.2 we can choose for ϕ, in particular, the intrinsic volume
Vj . In this case, the Crofton formula (5.6) gives

(Vj)d−k(K) =
∫

A(d,k)

Vj(K ∩ E)µk(dE) = ck,d−k+j
j,d Vd−k+j(K).

Hence, we obtain the following result.

Theorem 5.1.3. Let K,M ∈ K′ be convex bodies, and let j ∈ {0, . . . , d}.
Then the principal kinematic formula∫

Gd

Vj(K ∩ gM)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Vk(K)Vd−k+j(M) (5.10)

holds.

We note that the special case j = 0, or∫
Gd

χ(K ∩ gM)µ(dg) =
d∑

k=0

ck,d−k
0,d Vk(K)Vd−k(M),

gives the total measure of the set of rigid motions bringing M into a hitting
position with K.

Hadwiger’s general formula can be iterated, that is, extended to a finite
number of moving convex bodies.

Theorem 5.1.4. Let ϕ : K′ → R be additive and continuous, and let
K0,K1, . . . ,Kk ∈ K′, k ≥ 1, be convex bodies. Then∫

Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

r0,...,rk=0
r0+...+rk=kd

cdd−r0
ϕr0(K0)

k∏
i=1

cri

d Vri
(Ki),

where the coefficients are given by (5.4).

The specialization ϕ = Vj yields the following.
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Theorem 5.1.5 (Iterated kinematic formula). Let K0,K1, . . . ,Kk ∈ K′,
k ≥ 1, be convex bodies, and let j ∈ {0, . . . , d}. Then∫

Gd

. . .

∫
Gd

Vj(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

m0,...,mk=j
m0+...+mk=kd+j

cdj

k∏
i=0

cmi

d Vmi
(Ki).

Proof. We prove Theorem 5.1.4. The proof proceeds by induction with respect
to k. Theorem 5.1.2 is the case k = 1. Suppose that k ≥ 1 and that the
assertion of Theorem 5.1.4, and hence that of Theorem 5.1.5, has been proved
for k+1 convex bodies. Let K0, . . . ,Kk+1 ∈ K′. Using Fubini’s theorem twice,
the invariance of the measure µ, and Theorem 5.1.2 followed by Theorem 5.1.5
for k + 1 convex bodies, we obtain∫

Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gk+1Kk+1)µ(dg1) · · ·µ(dgk+1)

=
∫

Gd

. . .

∫
Gd

[∫
Gd

ϕ(K0 ∩ g1(K1 ∩ g2K2 ∩ . . . ∩ gk+1Kk+1))µ(dg1)
]

× µ(dg2) · · ·µ(dgk+1)

=
∫

Gd

. . .

∫
Gd

d∑
j=0

ϕd−j(K0)Vj(K1 ∩ g2K2 ∩ . . . ∩ gk+1Kk+1)

× µ(dg2) · · ·µ(dgk+1)

=
d∑

j=0

cdjϕd−j(K0)
d∑

m0,...,mk=j
m0+...+mk=kd+j

cm0
d · · · cmk

d Vm0(K1) · · ·Vmk
(Kk+1)

=
d∑

r0,...,rk+1=0
r0+...+rk+1=(k+1)d

cdd−r0
ϕr0(K0)cr1

d · · · c
rk+1
d Vr1(K1) · · ·Vrk+1(Kk+1).

This completes the proof. ��

Remark on renormalization. The preceding formulas suggest renormal-
ization of the intrinsic volumes, by putting

Ṽj := cjdVj ,

and also of the invariant measures on the affine Grassmannians, by putting

µ̃k := cdkµk.
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Then the Crofton formula (5.6) becomes∫
A(d,k)

Ṽj(K ∩ E) µ̃k(dE) = Ṽd−k+j(K).

Hadwiger’s general integral geometric theorem reads∫
Gd

ϕ(K ∩ gM)µ(dg) =
d∑

k=0

ϕ̃d−k(K)Ṽk(M)

with
ϕ̃d−k(K) =

∫
A(d,k)

ϕ(K ∩E) µ̃k(dE).

In particular,

(̃Ṽj)d−k = Ṽd−k+j .

The principal kinematic formula (5.10) simplifies to∫
Gd

Ṽj(K ∩ gM)µ(dg) =
d∑

k=j

Ṽk(K)Ṽd−k+j(M). (5.11)

Theorem 5.1.4 becomes∫
Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

r0,...,rk=0
r0+...+rk=kd

ϕ̃r0(K0)
k∏

i=1

Ṽri
(Ki),

and the iterated kinematic formula attains the form∫
Gd

. . .

∫
Gd

Ṽj(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

m0,...,mk=j
m0+...+mk=kd+j

k∏
i=0

Ṽmi
(Ki).

Although these simplifications increase the elegance of the formulas, we retain
the original normalization of the intrinsic volumes, since a different normal-
ization might lead to confusion in several other instances.

Remark on extension to the convex ring. All the integral geometric
formulas of this section remain valid if the involved convex bodies are replaced
by polyconvex sets, that is, finite unions of convex bodies, and the involved
additive functionals are replaced by their additive extensions to the convex
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ring. The simple principle of such extensions will be explained at the end of
Section 5.2.

Notes for Section 5.1

1. Integral geometry as a subject of its own was first presented in two booklets by
Blaschke in 1935 and 1937; a third edition [107] appeared in 1955 (see also vol. 2 of
Blaschke’s Collected Works [108]). The earlier development and its connection with
geometric probability are subsumed in the book by Deltheil [202]. Introductions
to integral geometry, from distinctly different points of view, were given by Santaló
[659], Hadwiger [307, ch. 6], Stoka [738]. The standard source on integral geometry is
the monograph by Santaló [662]. It stresses the applications to geometric probability.
In a similar spirit is the book by Ren [635]. The book by Voss [772] describes integral
geometry as a tool for stereology and image reconstruction.

The survey by Schneider and Wieacker [720] emphasizes the relations to convex
geometry, and the article by Hug and Schneider [369] surveys integral geometric
intersection formulas.

Combinatorial aspects of integral geometry are in the foreground of the original
approaches in the books by Ambartzumian [34] and by Klain and Rota [416].

2. The principal kinematic formula (5.10) is a central result of classical integral
geometry. For easier comparison with older literature, we write the special case
j = 0 in terms of the Euler characteristic χ = V0 and the quermassintegrals, which
are defined by (14.6). It then takes the form∫

Gd

χ(K ∩ gM) µ(dg) =
1

κd

d∑
k=0

(
d

k

)
Wk(K)Wd−k(M). (5.12)

Here K and M can be arbitrary polyconvex sets. Often, only (5.12) is called the
principal kinematic formula. It goes back to Blaschke and to Santaló, under
different assumptions on the sets occurring in it. Hints to the origins can be found
in the work of Blaschke [106], Hadwiger [307], Santaló [662].

When comparing with this literature, one has to observe that Santaló and Had-
wiger normalize the invariant measure on the rotation group so that SOd has total
measure given by

cd :=
d!

2
κ1 · · ·κd.

Under this normalization, the right side of (5.12) attains the additional factor cd,
and in Santaló’s work the further factor 2, since Santaló integrates also over the
improper rigid motions. (The constant Ok that often occurs in Santaló’s work is
given by (k + 1)κk+1.)

If K is a convex body whose boundary is a regular (twice continuously differen-
tiable) hypersurface, then

dWi(K) =

∫
bd K

Hi−1 dS =: Mi−1(bd K) for i = 1, . . . , d,

where Hi−1 denotes the (i − 1)th normalized elementary symmetric function of the
principal curvatures of bd K (and Mi−1 is the notation used by Santaló). With this
interpretation of the functionals Wi as curvature integrals, equation (5.12) holds also
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if K and M are non-convex domains of Rd with boundary hypersurfaces of class C2.
This is the differential-geometric version of the principal kinematic formula. It goes
back to Chern and Yien [171] and was proved with greater care by Chern [169]; see
also Santaló [662, pp. 262 ff]. There (p. 269) one also finds a differential-geometric
version of the formula∫

Gd

Wi(K ∩ gM) µ(dg) =
1

κd

d∑
k=d−i

CkiWi+k−d(K)Wd−k(M)

with

Cki :=

(
i

d − k

)
κkκiκ2d−k−i

κd−kκd−iκk+i−d

(i = 1, . . . , d). For elements of the convex ring, this is formula (5.10), rewritten
in terms of the quermassintegrals Wi. Further kinematic intersection formulas in
a differential-geometric version, valid for lower-dimensional compact differentiable
submanifolds without boundary, are due to Chern [170]; see also Chapter V in the
book by Sulanke and Wintgen [749]. This book, in contrast to [662], also provides the
technical foundations that are required for using the elegant machinery of differential
forms in the derivation of integral geometric formulas.

Also for the Crofton formulas, there are differential-geometric versions; one finds
them in the quoted books of Sulanke and Wintgen and of Santaló.

A common generalization of kinematic formulas for convex bodies and for smooth
compact submanifolds is Federer’s extension to sets of positive reach; see Note 1 for
Section 5.3.

3. The approach to integral geometric formulas for convex bodies that uses the
axiomatic characterization of the intrinsic volumes, goes in principle back to W.
Blaschke. It came into full force only when Hadwiger had proved his characterization
theorem (Theorem 14.4.6). Hadwiger’s general integral geometric theorem (Theorem
5.1.2) was proved in this way in [306, 307]; no other proof is currently known.

4. Hadwiger’s general integral geometric theorem provides a kinematic formula for
arbitrary additive continuous functions on convex bodies. For integrations over the
translation group, an analogous result can be proved for simply additive functions.
Let ϕ be a continuous real function on K′ which is a simple valuation, that is,
additive and satisfying ϕ(K) = 0 for convex bodies of dimension less than d. Then∫

Rd

ϕ(K ∩ (M + x)) λ(dx) = ϕ(K)Vd(M) +

∫
Sd−1

fK,ϕ(u) Sd−1(M, du)

for convex bodies K, M ∈ K′, where the function fK,ϕ : Sd−1 → R is given by

fK,ϕ(u) =

∫ h(K,u)

−h(K,−u)

ϕ(K ∩ H−(u, τ)) dτ − ϕ(K)h(K, u).

Here h(K, ·) is the support function of K and H−(u, τ) is the closed halfspace
{x ∈ Rd : 〈x, u〉 ≤ τ}; the measure Sd−1(M, ·) is the surface area measure of M (see
Section 14.2). This formula was proved by Schneider [708].

5. Alesker’s work on valuations (see [22] for a survey) has also shed new light on
kinematic formulas and their generalizations. Part of his work extends Hadwiger’s
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characterization theorem and its integral geometric applications. Let G be a compact
subgroup of the orthogonal group Od acting transitively on the unit sphere Sd−1. Let
ValG denote the vector space of continuous, translation invariant and G-invariant
real valuations on K. Alesker [18] has shown that ValG has finite dimension. In
[19], he provided explicit bases for the case of G = U(n) (where Cn is identified
with R2n), thus establishing a unitary counterpart to Hadwiger’s characterization
theorem (with a much deeper proof, though). For the case of SU(2), see Alesker
[21]. Further, Alesker [20] has introduced a multiplication for continuous, translation
invariant valuations. With this, ValG becomes a graded algebra over R, satisfying
the Poincaré duality. The structure of this algebra was determined for the case
G = SOd by Alesker [20], and for G = U(d) by Fu [239].

Applications to kinematic formulas, where the role of the rotation group in the
classical case is now played by a group G as above, were investigated by Alesker
[19], Fu [239], Bernig and Fu [95, 96], Bernig [92].

6. Iterations of the principal kinematic formula, as in Theorem 5.1.5, were used, for
instance, by Streit [747].

7. As explained in the remark on renormalization, the intrinsic volumes and the
invariant measures on the Grassmannians can be renormalized so that the principal
kinematic formula takes the particularly simple form (5.11), where all the coefficients
of the bilinear expression are equal to one. Some authors have elaborated upon this
fact from a structural point of view; see Nijenhuis [585] and Fu [239].

Questions of normalization with desirable properties are also an issue in the
book by Klain and Rota [416].

5.2 Translative Integral Formulas

Our next major aim is an extension of the principal kinematic formula (5.10)
to the curvature measures Φm, which are introduced in Section 14.2. Thus,
we want to compute the integral∫

Gd

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

SOd

∫
Rd

Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))λ(dx) ν(dϑ)

for convex bodies K,M and Borel sets A,B ∈ B(Rd) (recall that Φj(∅, ·) = 0,
by definition). The result will be stated in Theorem 5.3.2. In this section we
study only the inner integral∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx). (5.13)

Integrals of this type can be considered to extend over the translation group
of Rd and are therefore known as translative integrals. The computation
of (5.13) is the first step towards a direct proof of the kinematic formula
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for curvature measures, but is also of independent interest, in view of later
applications to non-isotropic stochastic models.

The integral (5.13) is easily computed for j = d. This is a special case of a
simple but often useful integral geometric formula with respect to the transla-
tion group, which can be obtained without much effort (and was already used
in Sections 4.5 and 4.6). It is quite general and is an immediate consequence
of the translation and inversion invariance of the Lebesgue measure.

Theorem 5.2.1. If α is a σ-finite measure on Rd and if A,B ∈ B(Rd), then∫
Rd

α(A ∩ (B + t))λ(dt) = α(A)λ(B).

Proof. Fubini’s theorem gives∫
Rd

α(A ∩ (B + t))λ(dt) =
∫

Rd

∫
Rd

1A(x)1B+t(x)α(dx)λ(dt)

=
∫

Rd

1A(x)
∫

Rd

1−B+x(t)λ(dt)α(dx)

=
∫

Rd

1A(x)λ(−B + x)α(dx)

= α(A)λ(B),

as asserted. ��

The formulas∫
Rd

Vd(K ∩ (M + x))λ(dx) = Vd(K)Vd(M) (5.14)

and∫
Rd

Vd−1(K ∩ (M + x))λ(dx) = Vd−1(K)Vd(M) + Vd(K)Vd−1(M) (5.15)

for convex bodies K,M ∈ K′ are special cases of Theorem 5.2.1. The second
is obtained by applying the theorem twice, taking for the measure α the
(d − 1)-dimensional Hausdorff measure, restricted to the boundary of one of
the bodies. We do not carry this out here, since we shall give a detailed proof
of the much more general Theorem 5.2.3.

The corresponding translative formulas for the intrinsic volumes Vj with
j < d−1 are no longer so simple as (5.14) and (5.15). This is already seen from
the case j = 0. Since V0(K ∩ (M + x)) = 1 is equivalent to K ∩ (M + x) �= ∅
and hence to x ∈ K −M , we have∫

Rd

V0(K ∩ (M + x))λ(dx) = Vd(K −M).



182 5 Averaging with Invariant Measures

Similarly to the case of the Steiner formula, the volume of a sum K + εL,
ε ≥ 0, for convex bodies K,L ∈ K′, can be expanded into a polynomial in ε
(see (14.17)). In this way, one obtains∫

Rd

V0(K ∩ (M + x))λ(dx) =
d∑

k=0

(
d

k

)
V (K, . . . ,K︸ ︷︷ ︸

k

,−M, . . . ,−M︸ ︷︷ ︸
d−k

), (5.16)

where V on the right side denotes a mixed volume. We see that the result
involves functionals that depend on K and M simultaneously. It is in general
not possible to separate the roles of K and M , as was the case with the
principal kinematic formula (5.10). There, the resulting bilinear form owes its
existence to the further integration over the rotation group. The occurrence
of simultaneous functionals is typical for translative integral geometry.

Our proof of translative and kinematic formulas for curvature measures is
prepared by a measurability lemma. We recall from the proof of Theorem 5.1.2
that the set Gd(K,M) = {g ∈ Gd : K and M touch} satisfies µ(Gd(K,M)) =
0.

Lemma 5.2.1. Let K,M ∈ K′ and A,B ∈ B(Rd), let j ∈ {0, . . . , d}. The
mapping

x �→ Φj(K ∩ (M + x), A ∩ (B + x)), x ∈ Rd,

is measurable on Rd \ bd (K −M), where λ(bd (K −M)) = 0.
The mapping

g �→ Φj(K ∩ gM,A ∩ gB), g ∈ Gd,

is measurable on Gd \Gd(K,M), where µ(Gd(K,M)) = 0.

Proof. It suffices to prove the second assertion, since the proof of the first one
is analogous. For fixed (x, ϑ) ∈ Rd × SOd, we define

Tx,ϑ : Rd → Rd × Rd

y �→ (y, ϑ−1(y − x))

and the image measure

ϕ(j)(x, ϑ,K,M, ·) := Tx,ϑ(Φj(K ∩ (ϑM + x), ·)).

Then ϕ(j)(x, ϑ,K,M, ·) is a finite measure on Rd × Rd, and

ϕ(j)(x, ϑ,K,M,A×B) = Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))

for A,B ∈ B(Rd). By the transformation formula for integrals,∫
Rd×Rd

f(y, z)ϕ(j)(x, ϑ,K,M,d(y, z))

=
∫

Rd

f(y, ϑ−1(y − x))Φj(K ∩ (ϑM + x),dy)
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for f ∈ C(Rd × Rd). By Lemma 5.1.1, the mapping (x, ϑ) �→ K ∩ (ϑM + x)
is continuous outside the set γ−1(Gd(K,M)), hence, by Theorem 14.2.2(c)
the mapping (x, ϑ) �→ Φj(K ∩ (ϑM + x), ·) is continuous (with respect to the
weak topology) on (Rd×SOd) \ γ−1(Gd(K,M)). For f ∈ C(Rd×Rd) and for
(xi, ϑi)→ (x0, ϑ0) /∈ γ−1(Gd(K,M)) we deduce that∫

Rd

f(y, ϑ−1
i (y − xi))Φj(K ∩ (ϑiM + xi),dy)

→
∫

Rd

f(y, ϑ−1
0 (y − x0))Φj(K ∩ (ϑ0M + x0),dy)

(since Φj(K ∩ (ϑiM + xi), ·) vanishes outside a suitable compact set indepen-
dent of i, and since f is uniformly continuous on any compact set). Therefore,
the mapping

(x, ϑ) �→
∫

Rd×Rd

f(y, z)ϕ(j)(x, ϑ,K,M,d(y, z))

is continuous on Rd \γ−1(Gd(K,M)). As shown in Lemma 12.1.1, this implies
the measurability of the mapping

(x, ϑ) �→ ϕ(j)(x, ϑ,K,M,A×B) = Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))

on Rd \ γ−1(Gd(K,M)), for arbitrary A,B ∈ B(Rd). ��

In the following, we shall have to use the subspace determinant [L1, . . . , Lk],
which is introduced in Section 14.1. We extend its definition as follows. If
A1, . . . , Ak ⊂ Rd are nonempty subsets, we denote by L(Ai) the linear sub-
space which is a translate of the affine hull of Ai, and we write

[A1, . . . , Ak] := [L(A1), . . . , L(Ak)]

if the latter is defined.
First we investigate a translative formula for polytopes. For the external

angles, we refer to (14.10). For polytopes K,M ∈ P ′ and for faces F of K and
G of M we define a common external angle by

γ(F,G;K,M) := γ(F ∩ (G+ x),K ∩ (M + x)),

where x ∈ Rd is chosen so that

relintF ∩ relint (G+ x) �= ∅.

Obviously, this definition does not depend on the special choice of x.
Two faces F and G of a polytope are said to be in special position if the

linear subspaces L(F ) and L(G) parallel to F and G are in special position,
that is, satisfy
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L(F ) ∩ L(G) �= {0} and lin (L(F ) ∪ L(G)) �= Rd.

For a face F of a polytope, the measure λF is defined by

λF (A) := λdim F (A ∩ F ) for A ∈ B(Rd).

Theorem 5.2.2. If K,M ∈ P ′ are polytopes, A,B ∈ B(Rd) are Borel sets
and j ∈ {0, . . . , d}, then∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx) =
d∑

k=j

Φ
(j)
k (K,M ;A×B)

with finite measures Φ(j)
k (K,M ; ·) on Rd × Rd, which are defined by

Φ
(j)
k (K,M ; ·) :=

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]λF ⊗ λG

(k = j, . . . , d). In particular,

Φ
(j)
j (K,M ;A×B) = Φj(K,A)Φd(M,B),

Φ
(j)
d (K,M ;A×B) = Φd(K,A)Φj(M,B).

Proof. Let

I :=
∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx).

By Lemma 5.2.1, this is well defined. The representation (14.13) gives

I =
∫

Rd

∑
F ′∈Fj(K∩(M+x))

γ(F ′,K ∩ (M + x))λF ′(A ∩ (B + x))λ(dx).

The faces F ′ ∈ Fj(K ∩ (M + x)) are precisely the j-dimensional sets of the
form F ′ = F ∩ (G + x), where F ∈ Fk(K) and G ∈ Fi(M) for suitable
k, i ∈ {j, . . . , d}. For the computation of the integral I, only those vectors
x are relevant that together with F ∩ (G + x) �= ∅ for a pair F,G satisfy
relintF ∩ relint (G + x) �= ∅, since the remaining vectors x form a set of
Lebesgue measure zero. Moreover, the pairs F,G for which k+ i < d or which
are in special position, do not contribute to the integral, since for these we
have

λ({x ∈ Rd : F ∩ (G+ x) �= ∅}) = λ(F −G) = 0.

In the other cases, dimF ′ = dimF +dimG−d, hence k+ i = d+ j. Thus,
we obtain
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I =
d∑

k=j

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)∫

Rd

γ(F ∩ (G+ x),K ∩ (M + x))λF∩(G+x)(A ∩ (B + x))λ(dx)

=
d∑

k=j

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)J(F,G)

with
J(F,G) :=

∫
Rd

λF∩(G+x)(A ∩ (B + x))λ(dx).

For the computation of J(F,G) we suppose, without loss of generality, that

0 ∈ L1 := aff F ∩ aff G.

Let
L2 := L⊥

1 ∩ aff F, L3 := L⊥
1 ∩ aff G,

and let λj , λk−j , λd−k be the Lebesgue measure on L1, L2, L3, respectively.
Then Rd = L1 ⊕ L2 ⊕ L3, and x ∈ Rd can uniquely be written in the form
x = x1 +x2 +x3 with xi ∈ Li for i = 1, 2, 3. Writing A′ := A∩F , B′ := B∩G,
we have

J(F,G) = [F,G]
∫

L3

∫
L2

∫
L1

λF∩(G+x1+x2+x3)(A
′ ∩ (B′ + x1 + x2 + x3))

×λj(dx1)λk−j(dx2)λd−k(dx3).

Since

(A′ ∩ (B′ + x1 + x2 + x3))− x2 = (A′ − x2) ∩ (B′ + x1 + x3) ⊂ L1,

we obtain ∫
L1

λF∩(G+x1+x2+x3)(A
′ ∩ (B′ + x1 + x2 + x3))λj(dx1)

=
∫

L1

λj((A′ − x2) ∩ (B′ + x3 + x1))λj(dx1)

= λj((A′ − x2) ∩ L1)λj((B′ + x3) ∩ L1),

by Theorem 5.2.1. Fubini’s theorem yields∫
L2

λj((A′ − x2) ∩ L1)λk−j(dx2) = λj ⊗ λk−j(A′) = λF (A)

and
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L3

λj((B′ + x3) ∩ L1)λd−k(dx3) = λj ⊗ λd−k(B′) = λG(B).

Altogether this gives

J(F,G) = [F,G]λF (A)λG(B),

and thus the representation of the measure Φ(j)
k (K,M ; ·) as stated in the

theorem.
In the special case k = j we have∑

F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]λF ⊗ λG

=
∑

F∈Fj(K)

γ(F,M ;K,M)[F,M ]λF ⊗ λM

=
∑

F∈Fj(K)

γ(F,K)λF ⊗ λM

= Φj(K, ·)⊗ Φd(M, ·).

Similarly, for k = d we obtain the measure Φd(K, ·)⊗ Φj(M, ·). ��
Corollary 5.2.1. If K,M ∈ P ′ are polytopes and j ∈ {0, . . . , d}, then∫

Rd

Vj(K ∩ (M + x))λ(dx)

= Vj(K)Vd(M) +
d−1∑

k=j+1

V
(j)
k (K,M) + Vd(K)Vj(M),

where

V
(j)
k (K,M) :=

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]Vk(F )Vd−k+j(G).

Theorem 5.2.2 and Corollary 5.2.1 will now be extended, by means of
approximation, to arbitrary convex bodies K,M ∈ K′. In contrast to the case
of polytopes, for the measures Φ(j)

k (K,M ; ·) and functionals V (j)
k (K,M) that

occur, no simple explicit representations are known in the general case.

Theorem 5.2.3. For convex bodies K,M ∈ K′ and for j ∈ {0, . . . , d}, there
exist finite measures Φ(j)

j+1(K,M ; ·), . . . , Φ(j)
d−1(K,M ; ·) on Rd × Rd, concen-

trated on bdK × bdM , such that∫
Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx) (5.17)

= Φj(K,A)Φd(M,B) +
d−1∑

k=j+1

Φ
(j)
k (K,M ;A×B) + Φd(K,A)Φj(M,B)
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for all A,B ∈ B(Rd). In particular,∫
Rd

Vj(K∩ (M+x))λ(dx) = Vj(K)Vd(M)+
d−1∑

k=j+1

V
(j)
k (K,M)+Vd(K)Vj(M)

with V (j)
k (K,M) := Φ(j)

k (K,M ; Rd × Rd).
The measure Φ(j)

k (K,M ; ·) depends continuously on K,M ∈ K′ and is
homogeneous of degree k in K and of degree d− k + j in M. It is additive in
each of its first two arguments. For polytopes K,M , the measure Φ(j)

k (K,M ; ·)
coincides with the one appearing in Theorem 5.2.2.

Proof. As was already verified in the proof of Theorem 5.2.2, the integrand
on the left side of (5.17) is measurable for λ-almost all x, hence the integral in
(5.17) is well defined. We now first remark that equality (5.17) is equivalent
to ∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy)

=
d∑

k=j

∫
Rd×Rd

f(x, y)Φ(j)
k (K,M ; d(x, y)) (5.18)

for all continuous functions f on Rd × Rd, provided that the measures
Φ

(j)
k (K,M ; ·) exist; here we have written

Φ
(j)
j (K,M ; ·) := Φj(K, ·)⊗ Φd(M, ·),

Φ
(j)
d (K,M ; ·) := Φd(K, ·)⊗ Φj(M, ·).

In fact, if (5.17) holds, then (5.18) is true for f = 1A×B , hence (5.18) follows
for elementary functions and then, by a standard argument, for integrable
functions. If (5.18) holds, then (5.17) is obtained for compact sets A,B, since
1A×B is in this case the limit of a decreasing sequence of continuous functions,
and for arbitrary Borel sets it then follows since both sides, as functions of A
and B, are measures.

By Theorem 5.2.2, formulas (5.17) and (5.18) are valid if K and M are
polytopes.

For convex bodies K,M ∈ K′ and for a continuous function f on Rd ×Rd

we now define

J(f,K,M) :=
∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy).

We show that J(f,K,M) depends continuously on K and M . For this, let
Ki → K, Mi → M be convergent sequences in K′. From Lemma 5.1.1 and
Theorem 14.2.2(c) we infer the weak convergence
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Φj(Ki ∩ (Mi + y), ·) w→ Φj(K ∩ (M + y), ·)

and, therefore, the pointwise convergence∫
Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)→
∫

Rd

f(x, x− y)Φj(K ∩ (M + y),dx)

for i→∞, for all y /∈ bd (K −M). From this we deduce that

lim
i→∞

J(f,Ki,Mi)

=
∫

Rd

(
lim

i→∞

∫
Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
)
λ(dy)

=
∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy)

= J(f,K,M).

Here we have applied the dominated convergence theorem. This is legitimate,
since we can find a λ-integrable function of y dominating∣∣∣∣∫

Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
∣∣∣∣ (5.19)

for all i. To see this, we choose a ball rBd, r > 0, containing all Ki, Mi and
hence also K and M , and denote by ‖f‖r the maximum of the continuous
function f on rBd × rBd. Then∣∣∣∣∫

Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
∣∣∣∣ ≤ ‖f‖rVj(Ki ∩ (Mi + y)).

The monotonicity of the intrinsic volumes gives

Vj(Ki ∩ (Mi + y)) ≤ Vj(Ki)1Ki−Mi
(y),

and this yields the required function dominating (5.19).
For r, s > 0 we now define a continuous mapping Dr,s from Rd × Rd into

itself by
Dr,s(x, y) :=

(x
r
,
y

s

)
for x, y ∈ Rd.

If K and M are polytopes, (5.18) gives

Dr,sJ(f,K,M) :=
∫

Rd

∫
Rd

f

(
x

r
,
x− y
s

)
Φj(K ∩ (M + y),dx)λ(dy)

=
d∑

k=j

∫
Rd×Rd

f
(x
r
,
y

s

)
Φ

(j)
k (K,M ; d(x, y))

=
d∑

k=j

∫
Rd×Rd

f(x, y)Dr,s

(
Φ

(j)
k (K,M ; ·)

)
(d(x, y)).
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For the polytopes rK and sM , the image measure Dr,s

(
Φ

(j)
k (rK, sM ; ·)

)
can

be determined by means of the formula in Theorem 5.2.2; this yields

Dr,s

(
Φ

(j)
k (rK, sM ; ·)

)
= rksd−k+jΦ

(j)
k (K,M ; ·).

For given convex bodies K,M we now choose polytopes Ki,Mi (i ∈ N) so
that Ki → K and Mi →M for i→∞. Then it follows that

Dr,sJ(f, rKi, sMi)→ Dr,sJ(f, rK, sM)

for every continuous function f on Rd × Rd and all r, s > 0. As we have just
seen,

Dr,sJ(f, rKi, sMi)

=
d∑

k=j

rksd−k+j

∫
Rd×Rd

f(x, y)Φ(j)
k (Ki,Mi; d(x, y)). (5.20)

We deduce the convergence of the coefficients∫
Rd×Rd

f(x, y)Φ(j)
k (Ki,Mi; d(x, y))

in the polynomial (5.20) and thus the weak convergence of the measures

Φ
(j)
k (Ki,Mi; ·), k = j, . . . , d,

for i→∞. The limits, denoted by Φ(j)
k (K,M ; ·), k = j, . . . , d, are again finite

measures, satisfying

Dr,sJ(f, rK, sM) =
d∑

k=j

rksd−k+j

∫
Rd×Rd

f(x, y)Φ(j)
k (K,M ; d(x, y)), (5.21)

from which we see that they are independent of the approximating sequences
(Ki)i∈N, (Mi)i∈N. For r = s = 1 we obtain (5.18).

From the polynomial expansion (5.21), we also deduce that Φ(j)
k (K,M ; ·)

depends continuously on K and M . That Φ(j)
j+1(K,M ; ·), . . . , Φ(j)

d−1(K,M ; ·)
are concentrated on bdK × bdM is a consequence of Theorem 5.2.2, if K
and M are polytopes, and for general convex bodies K,M it is obtained by
approximation with polytopes. The stated homogeneity properties are obvious
for polytopes, and for the general case they follow by approximation. The
additivity of Φ(j)

k in any of its first two arguments follows immediately from
the expansion (5.17), if one uses the additivity of Φj in its first argument and
then compares summands of equal degrees of homogeneity. ��
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We supplement the definition by Φ(j)
k (K,M ; ·) = 0 if K = ∅ or M = ∅.

In Section 6.4 we shall extend Φ(j)
m (K,M ; ·) to more than two convex bodies;

these functions are then called mixed measures.

Additive Extension

The integral geometric formulas obtained so far are not restricted to convex
bodies, but can be extended to sets of the convex ring R, by means of ad-
ditivity. First we note that the curvature measure Φj , as a function of its
first argument, has an additive extension to R. This follows from Groemer’s
extension theorem (Theorem 14.4.2), since Φj is additive on K′ and is con-
tinuous as a map from K′ into the vector space of finite signed measures on
Rd with the weak topology. The extension is denoted by the same symbol. In
a similar way, the function Φ(j)

k can be extended. First we fix a convex body
M ∈ K′. By the same argument as just used, Φ(j)

k (·,M ; ·) as a function of
its first argument has an additive extension to the convex ring R; we denote
it by the same symbol. Next, we fix a polyconvex set K ∈ R. We choose a
representation K = K1 ∪ . . . ∪ Km with convex bodies Ki ∈ K′. From the
representation

Φ
(j)
k (K, ·; ·) =

∑
v∈S(m)

(−1)|v|−1Φ
(j)
k (Kv, ·; ·)

it follows that Φ(j)
k (K, ·; ·), as a function of its second argument, is additive and

continuous, hence it has an additive extension to R. In this way, Φ(j)
k (K,M ; ·)

is defined for all K,M ∈ R and is additive in each of its first two arguments.
Now both sides of the formula (5.17) make sense for arbitrary polyconvex

setsK,M ∈ R. Suppose, first, thatM is convex. As a function ofK, both sides
are additive, and they are equal if K is convex. By the inclusion–exclusion
principle, two additive functions coinciding on K′ also coincide on R. Thus,
(5.17) remains true if K is a polyconvex set. In the same way, M can be
replaced by a polyconvex set.

Theorem 5.2.4. The translative formula (5.17) holds for polyconvex sets
K,M ∈ R.

The investigation of translative integral geometry will be continued in
Section 6.4.

The Notes for this section are included in those for Section 5.3.

5.3 The Principal Kinematic Formula for Curvature
Measures

As mentioned at the beginning of the previous section, our aim is the deriva-
tion of a formula for the kinematic integral
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Gd

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

SOd

∫
Rd

Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))λ(dx) ν(dϑ). (5.22)

The measurability of the integrand was proved in Lemma 5.2.1. If K and M
are polytopes, we can apply Theorem 5.2.2 and obtain for the right side of
(5.22) the expression

Φj(K,A)Φd(M,B) +
d−1∑

k=j+1

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

λF (A)λG(B)

×
∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ) + Φd(K,A)Φj(M,B). (5.23)

The integral over the rotation group occurring here is evaluated in the next
theorem.

Theorem 5.3.1. If K,M ∈ P ′ are polytopes, j ∈ {0, . . . , d − 2}, k ∈ {j +
1, . . . , d− 1}, F ∈ Fk(K) and G ∈ Fd−k+j(M), then∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ) = ck,d−k+j
j,d γ(F,K)γ(G,M), (5.24)

where the constant is given by (5.5).

Proof. Let ϑ ∈ SOd be a rotation for which F and ϑG are not in special
position. By Lemma 13.2.1, only such rotations need to be considered for the
computation of the integral in (5.24). By definition,

γ(F, ϑG;K,ϑM) = γ(F ∩ (ϑG+ x),K ∩ (ϑM + x))

with a suitable vector x ∈ Rd. Denoting by N(P, F ) the normal cone of P
at a relatively interior point of F , we see from the definition of the external
angle that

γ(F, ϑG;K,ϑM) =
σd−1−j(N(K ∩ (ϑM + x), F ∩ (ϑG+ x)) ∩ Sd−1)

σd−1−j(L ∩ Sd−1)
,

where L ∈ G(d, d − j) is the subspace totally orthogonal to F ∩ (ϑG + x).
Since

N(K ∩ (ϑM + x), F ∩ (ϑG+ x)) = N(K,F ) + ϑN(M,G)

(see Schneider [695, Theorem 2.2.1]), we have to consider the integral∫
SOd

σd−j−1((N(K,F ) + ϑN(M,G)) ∩ Sd−1)[F, ϑG] ν(dϑ).
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More generally, we denote by L1 and L2 the orthogonal spaces of F and
G, respectively. Noting that [F, ϑG] = [L⊥

1 , ϑL
⊥
2 ] = [L1, ϑL2], we define

I(A,B) :=
∫

SOd

σd−j−1((Ă+ ϑB̆) ∩ Sd−1)[L1, ϑL2] ν(dϑ)

for arbitrary Borel sets A ⊂ L1 ∩ Sd−1 and B ⊂ L2 ∩ Sd−1, where

Ă := {αx : x ∈ A, α ≥ 0}

denotes the cone generated by A. Concerning the measurability of the in-
tegrand, we observe the following. The function ϑ �→ [L1, ϑL2] is contin-
uous. Let U be the set of all rotations ϑ ∈ SOd for which L1 and ϑL2

are not in special position; then ν(SOd \ U) = 0 by Lemma 13.2.1. Since
dimL1 + dimL2 = d − j ≤ d, the sum L1 + ϑL2 is direct if ϑ ∈ U , hence
Ă + ϑB̆ is a Borel set. For ϑ ∈ U , all sets Ă + ϑB̆ are images of a fixed one
under linear transformations of Rd. Using this fact, it is not difficult to show
that the map

ϑ �→ σd−j−1((Ă+ ϑB̆) ∩ Sd−1)

is measurable on U .
For fixed B ∈ B(L2 ∩ Sd−1) we now set

ω(A) := I(A,B) for A ∈ B(L1 ∩ Sd−1).

If
⋃∞

i=1Ai is a disjoint union of sets Ai ∈ B(L1 ∩ Sd−1), then( ∞⋃
i=1

Ăi + ϑB̆

)
∩ Sd−1 =

∞⋃
i=1

(
(Ăi + ϑB̆) ∩ Sd−1

)
for ϑ ∈ U , and this is again a disjoint union up to a set of σd−j−1-measure
zero. It follows that

σd−j−1

(( ∞⋃
i=1

Ăi + ϑB̆

)
∩ Sd−1

)
=

∞∑
i=1

σd−j−1

(
(Ăi + ϑB̆) ∩ Sd−1

)
for ϑ ∈ U , hence

ω

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ω(Ai)

by the monotone convergence theorem. Thus ω is a finite measure on L1∩Sd−1.
Let ρ ∈ SOd be a rotation mapping L1 into itself and fixing every point of
L⊥

1 . Then
ρĂ+ ϑB̆ = ρ(Ă+ ρ−1ϑB̆)

and
[L1, ϑL2] = [ρL1, ϑL2] = [L1, ρ

−1ϑL2],
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hence

ω(ρA) =
∫

SOd

σd−j−1((ρĂ+ ϑB̆) ∩ Sd−1)[L1, ϑL2] ν(dϑ)

=
∫

SOd

σd−j−1((Ă+ ρ−1ϑB̆) ∩ Sd−1)[L1, ρ
−1ϑL2] ν(dϑ)

= ω(A).

By the uniqueness of spherical Lebesgue measure (a special case of Theorem
13.1.3), ω is a constant multiple of σd−k−1 on L1 ∩ Sd−1. Similarly we obtain
for fixed A ∈ B(L1 ∩ Sd−1) that I(A, ·) is a constant multiple of σk−j−1 on
L2 ∩ Sd−1. Altogether this yields a representation

I(A,B) = α(L1, L2)σd−k−1(A)σk−j−1(B)

for all A ∈ B(L1∩Sd−1), B ∈ B(L2∩Sd−1), where α(L1, L2) is a constant that
depends only on L1 and L2. The choice A = L1 ∩ Sd−1 and B = L2 ∩ Sd−1,
together with the invariance properties of the functional I resulting from its
definition, shows that α(L1, L2) does, in fact, depend only on the dimensions
d, j, k.

In particular, this gives

I(N(K,F ) ∩ Sd−1, N(M,G) ∩ Sd−1) = αdjkγ(F,K)γ(G,M)

with a constant αdjk > 0 and thus the assertion of Theorem 5.3.1, up to the
determination of αdjk. We insert (5.24) into (5.22), using (5.23) for the right
side. If we choose for K an r-polytope with r ∈ {j + 1, . . . , d − 1}, for M a
(d − r + j)-polytope, and A = B = Rd, then the result must coincide with
formula (5.10). From this we conclude that αdjr = cr,d−r+j

j,d . This completes
the proof. ��

Corollary 5.3.1. If K,M ∈ K′ are convex bodies, A,B ∈ B(Rd) are Borel
sets and if j ∈ {0, . . . , d− 2}, k ∈ {j + 1, . . . , d− 1}, then∫

SOd

Φ
(j)
k (K,ϑM ;A× ϑB) ν(dϑ) = ck,d−k+j

j,d Φk(K,A)Φd−k+j(M,B). (5.25)

Proof. If K,M are polytopes, the definition of Φ(j)
k (K,M ; ·) and formula

(5.24) show that∫
SOd

Φ
(j)
k (K,ϑM ;A× ϑB) ν(dϑ)

=
∑

F∈Fk(K)

∑
G∈Fd−k+j(M)

λF (A)λG(B)
∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ)
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= ck,d−k+j
j,d

⎛⎝ ∑
F∈Fk(K)

λF (A)γ(F,K)

⎞⎠ ⎛⎝ ∑
G∈Fd−k+j(M)

λG(B)γ(G,M)

⎞⎠
= ck,d−k+j

j,d Φk(K,A)Φd−k+j(M,B).

Approximation by polytopes yields (5.25) for general convex bodies K,M ∈
K′. For this, we first have to verify the measurability of the integrand. It is
obtained from the weak continuity of the measures Φ(j)

k (K,ϑM ; ·), established
in Theorem 5.2.3, and from the identity∫

SOd

∫
Rd×Rd

f(x, ϑ−1y)Φ(j)
k (K,ϑM ; d(x, y)) ν(dϑ)

= ck,d−k+j
j,d

∫
Rd

∫
Rd

f(x, y)Φk(K,dx)Φd−k+j(M,dy),

valid for all f ∈ C(Rd × Rd). The latter identity is equivalent to (5.25); this
is seen as in the proof of Theorem 5.2.3. Also the final limit procedure is
analogous to that in the proof of Theorem 5.2.3; one uses the weak continuity
of the involved measures (Theorems 14.2.2 and 5.2.3) and the dominated
convergence theorem. ��

We can now state the main result of this section.

Theorem 5.3.2 (Local principal kinematic formula). If K,M ∈ R are
polyconvex sets, A,B ∈ B(Rd) are Borel sets and if j ∈ {0, . . . , d}, then∫

Gd

Φj(K ∩ gM,A ∩ gB)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j(M,B).

Proof. The extension to polyconvex sets K,M was explained at the end of
Section 5.2. ��

Remark. The extended convex ring S is defined as the system of all
subsets of Rd that intersect every convex body in a union of finitely many
convex bodies. Since the curvature measures are locally determined (Theorem
14.2.3), they can be extended to sets of the extended convex ring, as long as the
involved Borel sets remain bounded. Hence, Theorem 5.3.2 can be extended
in the same sense.

In the principal kinematic formula, curvature measures of the intersection
of a fixed and a moving set from the convex ring are integrated over all
rigid motions. Here the moving compact set can be replaced by a moving
affine subspace, and the integration can be carried out with respect to the
corresponding invariant measure. One can derive such formulas directly from
the principal kinematic formula.
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Theorem 5.3.3 (Local Crofton formula). If K ∈ Rd is a polyconvex set,
A ∈ B(Rd) is a Borel set and q ∈ {0, . . . , d}, j ∈ {0, . . . , q}, then∫

A(d,q)

Φj(K ∩ E,A ∩ E)µq(dE) = cq,d−q+j
j,d Φd−q+j(K,A).

Proof. We may assume that K ∈ K′; the extension to K ∈ R is then achieved
as explained at the end of Section 5.2. We fix Lq ∈ G(d, q) and use the map γq

defined by (5.2), then µq = γq(λd−q ⊗ ν). Let C be a q-dimensional unit cube
in Lq. Since Lq ∈ S, C is bounded and A can be replaced by the bounded set
A ∩K, the remark after the proof of Theorem 5.3.2 shows that

J :=
∫

Gd

Φj(Lq ∩ gK,C ∩ gA)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Φk(Lq, C)Φd−k+j(K,A).

Now

Φk(Lq, C) =

{
λq(C) for k = q,
0 for k �= q,

hence
J = cq,d−q+j

j,d Φd−q+j(K,A).

On the other hand,

J =
∫

SOd

∫
Rd

Φj(Lq ∩ (ϑK + x), C ∩ (ϑA+ x))λ(dx) ν(dϑ)

=
∫

SOd

∫
L⊥

q

∫
Lq

Φj(Lq ∩ (ϑK + x1 + x2), C ∩ (ϑA+ x1 + x2))λq(dx2)

×λd−q(dx1) ν(dϑ).

To compute the inner integral, we put

Φj(Lq ∩ (ϑK + x1), ·) =: φ, ϑA+ x1 =: A′;

then ∫
Lq

Φj(Lq ∩ (ϑK + x1 + x2), C ∩ (ϑA+ x1 + x2))λq(dx2)

=
∫

Lq

φ((C − x2) ∩A′)λq(dx2)

= φ(A′)λq(C)

= Φj(Lq ∩ (ϑK + x1), Lq ∩ (ϑA+ x1)),

where Theorem 5.2.1 was used. This yields
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J =
∫

SOd

∫
L⊥

q

Φj(Lq ∩ (ϑK + x1), Lq ∩ (ϑA+ x1))λd−q(dx1) ν(dϑ)

=
∫

SOd

∫
L⊥

q

Φj(K ∩ ϑ(Lq + x), A ∩ ϑ(Lq + x))λd−q(dx) ν(dϑ)

=
∫

A(d,q)

Φj(K ∩ E,A ∩E)µq(dE),

where we have used the motion covariance of the curvature measures and the
inversion invariance of λd−q and ν. The two representations obtained for J
prove the assertion. ��

The case j = 0,

Φd−q(K,A) = cd,0
q,d−q

∫
A(d,q)

Φ0(K ∩ E,A ∩ E)µq(dE),

gives an interpretation of the measure Φd−q(K,A): up to a numerical factor,
it is the mean value of Φ0(K ∩ E,A ∩ E), where the mean is taken over the
intersections with q-flats. The Gaussian curvature measure Φ0 has a simple
intuitive interpretation, as mentioned in Section 14.2.

Notes for Sections 5.2 and 5.3

1. A general local principal kinematic formula, which coincides with Theorem 5.3.2
in the case of convex bodies, was first obtained by Federer [228]. He proved it for
sets of positive reach and for their curvature measures, which he introduced for
this purpose. The generality of the admissible point sets requires deeper techniques
from geometric measure theory. Using such techniques, in particular Martina Zähle
studied new approaches to curvature measures and to integral geometric formulas
valid for them; see Zähle [824, 825, 826, 827], Rother and Zähle [649].

There have been several successful attempts to define curvature measures and
to obtain kinematic and Crofton formulas in very general situations, where strong
singularities are permitted. We refer here to Fu [236, 237, 238], Bröcker and Kuppe
[122], Bernig and Bröcker [94, 93], Rataj and Zähle [620, 621].

In contrast to this trend to deep generalizations, it has been our aim in this book
to follow an approach to local integral geometric formulas for convex bodies and
sets of the convex ring that needs only elementary measure-theoretic and geometric
arguments, and which (we hope) is more in the spirit of the integral geometry of
Blaschke and Hadwiger. Different approaches of this kind are also found in Schneider
[676, 680].

In deriving the Crofton formula (Theorem 5.3.3) from the local principal kine-
matic formula, we followed Federer [228].

2. In order to extend the curvature measures additively to the convex ring, we have
referred here to Groemer’s extension theorem. For the support measures, and thus
for the curvature measures, a more explicit construction of an additive extension to
polyconvex sets is found in Schneider [679] and in Section 4.4 of [695]. It is based
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on an extension of the local Steiner formula for polyconvex sets, with the Lebesgue
measure replaced by the integral of the multiplicity function that arises from additive
extension of the indicator function of a parallel set. See also Note 3 of Section 14.4.

3. A more general version of Theorem 5.2.1 is Theorem 13.1.4. We refer to Note 2
of Section 13.1 for some references.

Translative integral geometry was first investigated by Blaschke [106] and
Berwald and Varga [98]; see Schneider and Weil [715] for further references. From
the latter paper, we essentially took the proofs of Theorems 5.2.2 and 5.3.1, and
thus of the local principal kinematic formula, Theorem 5.3.2. A first version of The-
orem 5.2.3 appeared in Weil [786]. A better understanding of the mixed measures

Φ
(j)
k (K, M ; ·) of Theorem 5.2.3 is desirable. Results concerning the total measures

Φ
(j)
k (K, M ; Rd × Rd) =: V

(j)
k (K, M) were found by Goodey and Weil [277], Weil

[790, 791, 800].
For further information on translative integral geometry, we refer to the Notes

for Section 6.4.

4. Kinematic formulas for support measures. The curvature measures, for
which we have proved the local principal kinematic formula and the Crofton formula,
are specializations of the support measures Ξm introduced in Section 14.2. There
are also versions of these formulas for support measures. They require that the
intersection of Borel sets in Rd be replaced by a suitable law of composition for
subsets of Σ = Rd × Sd−1, which is adapted to intersections of convex bodies. For
A, B ⊂ Σ, let

A ∧ B := {(x, u) ∈ Σ : there are u1, u2 ∈ Sd−1 with

(x, u1) ∈ A, (x, u2) ∈ B, u ∈ pos {u1, u2}},

where pos {u1, u2} := {λ1u1+λ2u2 : λ1, λ2 ≥ 0} is the positive hull of {u1, u2}. Now
for convex bodies K, M ∈ K′, Borel sets A ⊂ Nor K and B ⊂ Nor M (where Nor
denotes the generalized normal bundle, see Section 14.2), and for j ∈ {0, . . . , d− 2},
the formula∫

Gd

Ξj(K ∩ gM, A ∧ gB) µ(dg) =

d−1∑
k=j+1

ck,d−k+j
j,d Ξk(K, A)Ξd−k+j(M, B) (5.26)

holds (for j = d − 1, both sides would give 0).
For a q-flat E ∈ A(d, q), q ∈ {1, . . . , d − 1}, one defines

A ∧ E := {(x, u) ∈ Σ : there are u1, u2 ∈ Sd−1 with

(x, u1) ∈ A, x ∈ E, u2 ∈ E⊥, u ∈ pos {u1, u2}},

where E⊥ is the linear subspace totally orthogonal to E. Then the local Crofton
formula has the following extension. Let K ∈ K′ be a convex body, k ∈ {1, . . . , d−1},
j ∈ {0, . . . , k − 1}, and let A ⊂ Nor K be a Borel set. Then∫

A(d,k)

Ξj(K ∩ E, A ∧ E) µk(dE) = ck,d−k+j
j,d Ξd−k+j(K, A).

These results are due to Glasauer [266], under an additional assumption in the case
of (5.26). A common boundary point x of the convex bodies K, M is said to be
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‘exceptional’ if the linear hulls of the normal cones of K and M at x have a non-
zero intersection. Glasauer assumed that the set of rigid motions g for which K and
gM have some exceptional common boundary point, is of Haar measure zero. He
conjectured that this assumption is always satisfied. This was proved by Schneider
[700]. An alternative proof of a more general result appears in Zähle [831].

5. A local version of Hadwiger’s general integral geometric theorem. The
local principal kinematic formula together with the local Crofton formula (Theorems
5.3.2 and 5.3.3) can be extended in the same way as the principal kinematic formula
and the Crofton formula (Theorems 5.1.3 and 5.1.1) are extended by Hadwiger’s
general integral geometric theorem. This abstract version of (5.17) reads as follows.

Theorem. Let Λ : K′ × B(Rd) → R be a mapping with the following properties:

(a) Λ(K, ·) is a finite positive measure concentrated on K, for all K ∈ K′.

(b) The map K �→ Λ(K, ·) is additive and weakly continuous.

(c) If K, M ∈ K′, A ⊂ Rd is open and K ∩ A = M ∩ A, then Λ(K, B) = Λ(M, B)
for all Borel sets B ⊂ A.

Then, for K, M ∈ K′, A, B ∈ B(Rd) and j ∈ {0, . . . , d}, the formula∫
Gd

Λ(K ∩ gM, A ∩ gB) µ(dg) =
d∑

k=0

Λd−k(K, A)Φk(M, B)

(with Λ(∅, ·) := 0) holds, where

Λd−k(K, B) :=

∫
A(d,k)

Λ(K ∩ E, B) µk(dE).

This was proved by Schneider [696]. An analog in spherical space and a simpler proof
in Euclidean space were given by Glasauer [264]. Examples of mappings Λ satisfying
the above properties are the relative curvature measures introduced in Schneider
[696]. Also (5.26) admits an abstract generalization in the spirit of Hadwiger’s gen-
eral integral geometric theorem; see Glasauer [268], Theorem 7.

6. Tensor valuations. The intrinsic volumes and their local versions arise from
the notion of volume, through the Steiner formula. Replacement of the volume by
vectorial or higher rank tensorial moments leads to tensor-valued valuations on
convex bodies and raises the question whether their properties and their role in
integral geometry extend those of the intrinsic volumes. To explain this, we denote
by Tp the vector space of symmetric tensors of rank p over Rd (we identify Rd with
its dual space, using the scalar product, so that no distinction between covariant
and contravariant tensors is necessary). If p ∈ N and x ∈ Rd, we write xp for the
p-fold tensor product x ⊗ · · · ⊗ x, and we put x0 := 1. For symmetric tensors a and
b, their symmetric product is denoted by ab. For K ∈ K′ and p ∈ N0, let

Ψp(K) :=
1

p!

∫
K

xp λ(dx).

The Steiner formula extends to a polynomial expansion

Ψp(K + εBd) =

d+p∑
k=0

εd+p−kκd+p−kV
(p)

k (K) (5.27)
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for ε > 0, with V
(p)

k (K) ∈ Tp. Each function V
(p)

k : K′ → Tp is additive, continuous

and isometry covariant, which means that V
(p)

k (ϑK) = ϑV
(p)

k (K) for every rotation

ϑ ∈ SOd and that V
(p)

k (K + t) is a (tensor) polynomial in t ∈ Rd of degree p. The
known facts in the case p = 0 suggest the following questions: (a) Is an additive, con-
tinuous, isometry covariant function f : K′ → Tp necessarily a linear combination of
V

(p)
0 , . . . , V

(p)
d+p? (b) Do the coefficients V

(p)
k satisfy kinematic and Crofton formulas?

For p = 0, positive answers were given in this chapter. For p = 1, both questions
were answered affirmatively by Hadwiger and Schneider [312]. For p > 1, however,
the situation is different. One has to consider more general tensor valuations, defined
by

Φm,r,s(K) :=
1

r!s!

ωd−m

ωd−m+s

∫
Σ

xrus Ξm(K, d(x, u))

for K ∈ K′ and integers r, s ≥ 0, 0 ≤ m ≤ d − 1 (the factors before the integral
turn out to be convenient). They were introduced (via a polytopal approach) by
McMullen [472]. Besides these tensor functions Φm,r,s : K′ → Tr+s, one also needs
the metric tensor G ∈ T2 of Rd. The functions GqΦm,r,s and GqΨp (q ∈ N0) are
called basic tensor valuations. Answering a question posed by McMullen [472],
Alesker [17], based on his earlier work in [16], proved the following extension of
Hadwiger’s characterization theorem:

Theorem. If p ∈ N0 and if f : K′ → Tp is an additive, continuous, isometry
covariant function, then f is a linear combination of the functions GqΦm,r,s (with
2q + r + s = p) and the functions GqΨr (with 2q + r = p).

McMullen [472] had already discovered a set of nontrivial linear relations be-
tween the basic tensor valuations. Therefore, Alesker’s result yielded a generating
system, but not a basis or the dimension of the vector space of continuous, isometry
covariant tensor valuations of fixed rank. This remaining problem was settled by
Hug, Schneider and Schuster [374], who proved that the relations between the basic
tensor valuations discovered by McMullen are essentially the only ones.

By Alesker’s result, the coefficients V
(p)

k appearing in the Steiner polynomial
(5.27) are linear combinations of basic tensor valuations. Question (b) above should,
therefore, be modified, asking whether the functions Φm,r,s and Ψp satisfy kinematic
and Crofton formulas. Unlike in the cases of rank zero or one, the characterization
theorem does not seem useful for obtaining integral geometric formulas, due to the
linear relations between the basic tensor valuations; hence, direct computations are
required. It is sufficient to derive Crofton formulas, since then Hadwiger’s general
integral geometric theorem, which in the case of tensor functions can be applied
coordinate-wise, immediately yields kinematic formulas. For dimension two and rank
one or two, kinematic formulas were already obtained by Müller [567] (except for
Φ0,1,1, in our notation), who took up a suggestion of Blaschke. An investigation for
all dimensions and ranks was begun by Schneider [701] and continued by Schneider
and Schuster [713]. This led, in particular, to a complete set of Crofton and kinematic
formulas in two and three dimensions. The higher-dimensional case turned out to
be intricate; it was settled by Hug, Schneider and Schuster [375].

7. Non-intersecting sets: distances. All the integral geometric results consid-
ered up to now in this chapter concern the intersection of a fixed and a moving
set. For convex sets, there are also kinematic formulas involving relations between
non-intersecting sets. One possibility consists in taking distances into account. The
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distance d(K, L) of a compact set K ⊂ Rd and a closed set L ⊂ Rd, K, L �= ∅, is
defined by

d(K, L) := min{‖x − y‖ : x ∈ K, y ∈ L}.
Let f : [0,∞) → [0,∞) be a measurable function satisfying f(0) = 0 and

mk(f) :=
1

k!

∫ ∞

0

f(r)rk dr < ∞ for k = 0, . . . , d − 1.

Then, for convex bodies K, M ∈ K′, the kinematic formula∫
Gd

f(d(K, gM)) µ(dg) =

d−1∑
j=0

d−j−1∑
k=0

cd−j,d−k
d,0 md−j−1−k(f)Vj(K)Vk(M)

holds. This can be generalized in various directions. To give one example, suppose
that for the convex bodies K, M with K ∩ M = ∅ there is a unique pair x ∈ K,
y ∈ M with ‖x − y‖ = d(K, M). Then one can define p(K, M) := x. One can show
that p(K, gM) exists for µ-almost all g ∈ Gd with K ∩ gM = ∅. If f : (0,∞) ×
bd K × bd M → R is a measurable function for which the integral∫

K∩gM=∅
f(d(K, gM), p(K, gM), g−1p(gM, K)) µ(dg)

is finite, then this integral can be expressed in terms of integrals of curvature mea-
sures of K and M . Similarly, one can treat kinematic integrals involving functions
of the unit vector pointing from K to gM . Further, the moving convex body can be
replaced by a moving flat.

For the special case where M is one-pointed, a related formula is given by The-
orem 14.3.3.

Contributions to this area are due to Hadwiger [309, 310], Bokowski, Hadwiger
and Wills [111], Schneider [675], Groemer [291], Weil [779, 780, 782]. We refer also
to Section 4 of the survey article by Schneider and Wieacker [720].

Translative formulas for non-intersecting convex bodies in suitable general po-
sition have been studied by Kiderlen and Weil [409]; the results involve mixed cur-
vature measures. Hug, Last and Weil [358] give a quite general translative formula,
allowing also non-Euclidean distances and using relative support measures (a special
case is Theorem 14.3.3). A corresponding version for flats is contained in Hug, Last
and Weil [360].

8. Non-intersecting sets: convex hulls. Glasauer [267] found a new type of
kinematic formulas, involving the convex hull of a fixed and a moving convex body.
Since convex hulls with a freely moving convex body are not uniformly bounded,
the results can only be of the type of weighted limits. Let K ∨M denote the convex
hull of K ∪ M . A typical result of Glasauer concerns the mixed volumes with fixed
convex bodies Kj+1, . . . , Kd and states that

lim
r→∞

1

rd+1

(d + 1)κd

κd−1

∫
{g∈Gd: gM⊂rBd}

V (K ∨ gM [j], Kj+1, . . . , Kd) µ(dg)

=

j−1∑
k=0

V (K[k], Bd[j − k], Kj+1, . . . , Kd)V (M [j − k − 1], Bd[d − j + k + 1]).
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This is a special case of Theorem 3 of Glasauer [267]. He has considerably more
general results, for not necessarily invariant measures, and with mixed area measures
instead of mixed volumes. For Kj+1 = . . . = Kd = Bd, the formula reduces to one
for intrinsic volumes. For this result, there is also a local version, which is ‘dual’ to
formula (5.26). It involves a law of composition for subsets of Σ which is adapted
to the convex hull operation for pairs of convex bodies. For A, B ⊂ Σ, let

A ∨ B := {(x, u) ∈ Σ : there are x1, x2 ∈ R
d with

〈x1 − x2, u〉 = 0, (x1, u) ∈ A, (x2, u) ∈ B, x ∈ conv{x1, x2}}.

Now suppose that K, M ∈ K′, A ⊂ Nor K and B ⊂ Nor M are Borel sets, and
j ∈ {0, . . . , d − 1}. Then Glasauer [268] proved (with different notation) that

lim
r→∞

1

rd+1

∫
{g∈Gd: gM⊂rBd}

Ξj(K ∨ gM, A ∨ gB) µ(dg)

=

j−1∑
k=0

βdjkΞk(K, A)Ξj−k−1(M, B),

with explicit constants βdjk. The proof requires the following regularity result. A
common supporting hyperplane H of the convex bodies K, M (leaving K and M
on the same side) is said to be exceptional if the affine hulls of the sets H ∩ K and
H ∩ M have a nonempty intersection or contain parallel lines. Then the set of all
rigid motions g for which K and gM have some exceptional common supporting
hyperplane is of Haar measure zero. This was conjectured by Glasauer and proved
by Schneider [700].

9. Dual quermassintegrals. The principal kinematic formula for convex bodies
involves the intrinsic volumes, which belong to the Brunn–Minkowski theory. There
are analogs in the dual Brunn–Minkowski theory. This analogy becomes clearer in
terms of the quermassintegrals W0, . . . , Wn (see (14.6)). Equivalent to (5.8) is the
formula

Wd−i(K) =
κd

κi

∫
G(d,i)

λi(K|L) νi(dL)

for i = 0, . . . , d. In terms of the quermassintegrals, the principal kinematic for-
mula has the form (5.12). Let K ⊂ Rd be a star body (a compact set, star-shaped
with respect to 0, with continuous radial function). The dual quermassintegrals

W̃0, . . . , W̃d are defined by

W̃d−i(K) =
κd

κi

∫
G(d,i)

λi(K ∩ L) νi(dL).

For g ∈ Gd, let Ng denote the segment joining 0 and g0. Zhang [833] has proved the
kinematic formula∫

Gd

χ(K ∩ gM ∩ Ng) µ(dg) =
1

κd

d∑
i=0

(
d

i

)
W̃i(K)W̃d−i(M)

for star bodies K, M ⊂ Rd, which is formally very similar to (5.12).
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10. Striking combinatorial analogs of the kinematic formula in the context of finite
lattices were found by Klain [415]; see also Klain and Rota [416, p. 29].

11. Kinematic formulas for boundaries of convex bodies. Let K, M ⊂ Rd

be convex bodies with nonempty interiors, and let ∂K, ∂L denote their boundaries.
The following two kinematic formulas, involving intersections of two convex surfaces
or of a convex surface and a convex body, were conjectured by Firey (see Problem
18 in the collection of Gruber and Schneider [298]):∫

Gd

χ(∂K∩g∂M) µ(dg) =
1 + (−1)d

κd

d−1∑
k=0

(
d

k

)
(1− (−1)k)Wd−k(K)Wk(M), (5.28)

∫
Gd

χ(∂K ∩ gM) µ(dg) =
1

κd

d−1∑
k=0

(
d

k

)
(1 − (−1)d−k)Wd−k(K)Wk(M). (5.29)

For polytopes, these formulas can easily be verified. However, there is no simple
approximation argument to extend the results to general convex bodies. In Hug
and Schätzle [368], Firey’s conjecture was confirmed by proving the following more
general translative versions of (5.28) and (5.29):∫

Rd

χ(∂K ∩ (∂M + x)) λ(dx)

= (1 + (−1)d)

d−1∑
k=0

(
d

k

) (
Vk(K,−M) + (−1)k−1Vk(K, M)

)
,

where Vk(K, L) denotes the mixed volume of k copies of K and d − k copies of L,
and∫

Rd

χ(∂K ∩ (M + x)) λ(dx) =

d−1∑
k=0

(
d

k

) (
Vk(K,−M) + (−1)d−k−1Vk(K, M)

)
.

From these formulas, (5.28) and (5.29) are obtained if one replaces M by ϑM , inte-
grates over all ϑ ∈ SOd with respect to the invariant measure, and then applies [695,
formula (5.3.25)]. In fact, Firey’s original question was already answered implicitly
by a result of Fu [238], which, however, does not cover the translative case.

In Hug, Mani–Levitska and Schätzle [363], these integral geometric results are
extended further, to lower-dimensional sets. Furthermore, iterated formulas are es-
tablished concerning intersections of several convex bodies, which then are applied
to obtain formulas of stochastic geometry. Defining intrinsic volumes for intersec-
tions of convex surfaces in a suitable way by a Crofton type expression, integral
formulas for such functionals are also derived.

12. Further information on kinematic and Crofton formulas is contained in the
survey article by Hug and Schneider [369].

13. A Gaussian kinematic formula. Taylor [754] obtains an analog of the Steiner
formula and Weyl tube formula, with Lebesgue measure replaced by Gaussian mea-
sure. This is then applied in an analog of the principal kinematic formula, expressing
the expected Euler characteristic of excursion sets for certain random fields. For the
geometry of random fields, see Adler [1] and Adler and Taylor [2].
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5.4 Intersection Formulas for Submanifolds

The integral geometric formulas considered so far all refer to intersections
of a fixed and a moving set, and these sets, with the exception of Theorem
5.2.1, were either convex bodies or affine subspaces. Certain applications to
stochastic geometry or stereology, dealing with fiber or surface processes, re-
quire intersection formulas for submanifolds of various dimensions and for
Hausdorff measures of their intersections. In the present section we describe
such results. The technical requirements for such a treatment depend on the
generality of the notion of k-dimensional surface that is used. For the most
elementary notion, polyhedral surfaces, the results stated below are easily ob-
tained from the results previously established and by the methods used in this
book. However, already smooth surfaces would require different methods. The
more general k-surfaces, for which the results will be formulated, need notions
and techniques from geometric measure theory. Since this is outside the scope
of this book, we present only the results and give references to complete proofs
(including the measurability considerations omitted here).

Some notions from geometric measure theory, which are used in the fol-
lowing, are collected in Section 14.5 of the Appendix. In this section, we do
not aim at the greatest generality, but prefer simpler formulations which are
sufficient for our applications.

Let k ∈ {0, . . . , d}. Recall that a subsetM ⊂ Rd is k-rectifiable if it is the
image of some bounded subset of Rk under some Lipschitz map. The set M
is countably k-rectifiable if it is the union of countably many k-rectifiable
sets. By a k-surface we understand, in this section, a countably k-rectifiable
Borel setM withHk(M) <∞, whereHk denotes the k-dimensional Hausdorff
measure.

A trivial case of the translative integrals we want to consider is obtained
if we take a k-dimensional convex body K and a (d− k)-dimensional convex
body M . In that case, we immediately get∫

Rd

H0(K ∩ (M + t))λ(dt) = [K,M ]Hk(K)Hd−k(M).

The first theorem of this section is a generalization of this simple formula to
k-surfaces.

Let M be a k-surface. Then there exist k-dimensional C1-submanifolds
N1, N2, . . . such that Hk(M \

⋃
i∈NNi) = 0. Let TxNi denote the tangent

space of Ni at x ∈ Ni (considered as a subspace of Rd). For a Borel set
A ∈ B(G(d, k)), we define

τM (A) := Hk

(⋃
i∈N

{x ∈M ∩Ni : TxNi ∈ A}
)
.

This defines a finite measure τM on G(d, k), which depends only on M .
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Theorem 5.4.1. Let n ∈ {1, . . . , d − 1}, and let Mi be a ki-surface, for i =
0, . . . , n, with k := k0 + . . .+ kn ≥ nd. Then∫

Rd

. . .

∫
Rd

Hk−nd(M0 ∩ (M1 + t1) ∩ . . . ∩ (Mn + tn))λ(dt1) · · ·λ(dtn)

=
∫

G(d,kn)

. . .

∫
G(d,k0)

[L0, . . . , Ln] τM0(dL0) · · · τMn
(dLn).

For the proof, we refer to Wieacker [816]. He has a more general result, for
(Hki , ki)-rectifiable subsets Mi, but in that case, an additional assumption on
the product M0 × . . .×Mn is required.

Our first conclusion from Theorem 5.4.1 is a kinematic formula for two
surfaces.

Theorem 5.4.2. Let k0, k1 ∈ {1, . . . , d− 1} be numbers with k0 + k1 ≥ d, let
Mi be a ki-surface, for i = 0, 1. Then∫

Gd

Hk0+k1−d(M0 ∩ gM1)µ(dg) = ck0,k1
k0+k1−d,dHk0(M0)Hk1(M1).

This theorem holds, more generally, forHki-rectifiable subsetsMi, i = 0, 1,
if it is assumed that M0 ×M1 is (Hk0+k1 , k0 + k1)-rectifiable; see Zähle [823].
We also refer to this paper for the necessary measurability considerations and
the proof that M0 ∩ gM1 is (Hk0+k1−d, k0 +k1−d)-rectifiable for µ-almost all
g ∈ Gd. Here we show only how the formula of Theorem 5.4.2 follows from
that of Theorem 5.4.1.

Proof. Making use of the obvious facts that τϑM = ϑ(τM ) for ϑ ∈ SOd and
that the integral

∫
SOd

[L0, ϑL1] ν(dϑ) is invariant under rotations of L0, we
obtain ∫

Gd

Hk0+k1−d(M0 ∩ gM1)µ(dg)

=
∫

SOd

∫
Rd

Hk0+k1−d(M0 ∩ (ϑM1 + t))λ(dt) ν(dϑ)

=
∫

SOd

∫
G(d,k0)

∫
G(d,k1)

[L0, L1] τϑM1(dL1) τM0(dL0) ν(dϑ)

=
∫

SOd

∫
G(d,k0)

∫
G(d,k1)

[L0, ϑL1] τM1(dL1) τM0(dL0) ν(dϑ)

= cHk0(M0)Hk1(M1)

with a constant c. Its value is obtained from the principal kinematic formula
(5.10), if we choose forMi a convex body of dimension ki (i = 0, 1) and observe
that then Vj(M0 ∩ gM1) = Hk0+k1−d(K ∩ gM), Vk(M0) = 0 for k > k0 and
Vk0+k1−k(M1) = 0 for k < k0. ��
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From this kinematic formula, we can deduce a Crofton formula.

Theorem 5.4.3. Let k, q ∈ {1, . . . , d − 1} be numbers with k + q ≥ d, let M
be a k-surface. Then∫

A(d,q)

Hk+q−d(M ∩ E)µq(dE) = ck,q
k+q−d,dHk(M).

Proof. The proof is similar to that of Theorem 5.3.3, but simpler. Choose
Lq ∈ G(d, q) and a q-dimensional unit cube C ⊂ Lq. By Theorem 5.4.2,

J :=
∫

Gd

Hk+q−d(C ∩ gM)µ(dg) = ck,q
k+q−d,dHk(M).

On the other hand,

J =
∫

SOd

∫
Rd

Hk+q−d(C ∩ (ϑM + t))λ(dt) ν(dϑ)

=
∫

SOd

∫
L⊥

q

∫
Lq

Hk+q−d(C ∩ (ϑM + t1 + t2))λq(dt2)λd−q(dt1) ν(dϑ)

and ∫
Lq

Hk+q−d(C ∩ (ϑM + t1 + t2))λq(dt2)

=
∫

Lq

Hk+q−d((C − t2) ∩ (ϑM + t1))λq(dt2)

= Hk+q−d(Lq ∩ (ϑM + t1))

by Theorem 5.2.1 (the σ-finiteness condition is satisfied for almost all ϑ). This
gives

J =
∫

SOd

∫
L⊥

q

Hk+q−d(Lq ∩ (ϑM + t1))λd−q(dt1) ν(dϑ)

=
∫

SOd

Hk+q−d(M ∩ ϑ(Lq + t))λd−q(dt) ν(dϑ)

=
∫

A(d,q)

Hk+q−d(M ∩ E)µq(dE),

which completes the proof. ��

Finally, we consider the special case of Theorem 5.4.1 where each ki is
equal to d−1. IfM is a (d−1)-surface, it is convenient to replace the measure
τM by the even measure σM on the unit sphere which for A ∈ B(Sd−1) without
antipodal points is defined by
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σM (A) :=
1
2
τM ({u⊥ : u ∈ A}).

We define an auxiliary convex body ΠM , a zonoid, by its support function

h(ΠM , u) :=
1
2

∫
Sd−1

|〈u, v〉|σM (dv), u ∈ Sd−1. (5.30)

If K ∈ K′ is a convex body, then σbd K = (1/2)[Sd−1(K, ·)+Sd−1(−K, ·)] and,
therefore,

Πbd K = ΠK ,

where ΠK is the projection body of K, introduced in (14.40), (14.41).
If m ∈ {2, . . . , d} and Mi is a (d − 1)-surface (i = 1, . . . ,m), then the

formula of Theorem 5.4.1 can be written as follows (recall the definition of
∇m before Theorem 4.4.8).∫

Rd

. . .

∫
Rd

Hd−m(M1 ∩ (M2 + t2) ∩ . . . ∩ (Mm + tm))λ(dt2) · · ·λ(dtm)

=
∫

Sd−1
. . .

∫
Sd−1

∇m(u1, . . . , um)σM1(du1) · · ·σMm
(dum)

=
d!

(d−m)!κd−m
V (ΠM1 , . . . ,ΠMm

, Bd, . . . , Bd),

where the right side is a mixed volume. The last equality follows from (14.34),
observing the factor 1/2 in (5.30).

We state the last result as a theorem.

Theorem 5.4.4. Let m ∈ {2, . . . , d}, and let Mi be a (d − 1)-surface, for
i = 1, . . . ,m. Then∫

Rd

. . .

∫
Rd

Hd−m(M1 ∩ (M2 + t2) ∩ . . . ∩ (Mm + tm))λ(dt2) · · ·λ(dtm)

=
d!

(d−m)!κd−m
V (ΠM1 , . . . ,ΠMm

, Bd, . . . , Bd).

By a convex hypersurface we understand any (d − 1)-surface of the
form F = B ∩ bdK, where K ∈ K is a convex body with interior points and
B ∈ B(Rd) is a Borel set. For such a convex hypersurface, the body defined
by (5.30) can be represented by

h(ΠF , u) :=
1
2

∫
F

|〈u, nK(x)〉|Hd−1(dx), u ∈ Sd−1. (5.31)

Here nK(x) denotes the outer unit normal vector of K at x ∈ bdK; it is
uniquely determined Hd−1-almost everywhere on bdK. The integral in (5.31)
depends only on F and not on K.
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Notes for Section 5.4

1. The techniques of geometric measure theory that are needed for the general
versions of the results of this section are found in the book by Federer [229].

The first general versions of Theorems 5.4.2 and 5.4.3 are due to Federer [227].
Applications to random processes of Hausdorff rectifiable closed sets were inves-

tigated by Zähle [822].

2. The translative formulas of Theorems 5.4.1 and 5.4.4 appear in Wieacker [816].
He has extended the approach considerably and has studied various applications to
stochastic geometry; see [817, 818].

3. Crofton formulas in Minkowski spaces and projective Finsler spaces.
The particular case of Theorem 5.4.3, where M is a k-surface and q = d − k is the
complementary dimension, reduces to∫

A(d,d−k)

card(M ∩ E) µd−k(dE) = αdkHk(M) (5.32)

with a constant αdk. This formula provides a beautiful interpretation of the k-
dimensional area Hk(M): it is, up to a normalizing factor, the invariant measure
of the (d − k)-flats hitting M , weighted by the number of hits. This motivates the
following reverse question. If some other notion of k-dimensional area, denoted by
volk, is given, does there exist a measure (or a signed measure) ηd−k on A(d, d− k)
such that ∫

A(d,d−k)

card(M ∩ E) ηd−k(dE) = volk(M) (5.33)

holds for all k-surfaces M (or at least for a nontrivial subclass, such as polyhedral
surfaces)? This question has been studied in various degrees of generality, in partic-
ular, for Minkowski spaces and for projective Finsler spaces. A Minkowski space
is a finite-dimensional real normed vector space. A Finsler metric on an open con-
vex subset C of Rd is (here) a continuous function F : C × Rd → [0,∞) such that
F (x, ·) is a norm on Rd for each x ∈ C. In the following, the pair (C, F ) is called
a Finsler space, and it is called smooth if F is of class C∞ on C × Rd \ {0} and
the unit sphere of the norm F (x, ·) is quadratically convex (has positive curvatures),
for each x ∈ C. In a Finsler space, there is a canonical notion of curve length (and
an induced metric), denoted by vol1. The Finsler space (C, F ) is called projective
if line segments are shortest curves connecting their endpoints. The classical exam-
ples of projective Finsler spaces are Minkowski spaces and the Hilbert geometries in
bounded open convex sets.

In a Finsler space, for k > 1 there are many different possibilities of defining
a reasonable notion of k-dimensional area, but no canonical one (see Álvarez and
Thompson [31] for a survey). Two such notions are particularly natural and impor-
tant from a geometric point of view. These are the Busemann k-area, which is
defined by the k-dimensional Hausdorff measure coming from the induced metric,
and the Holmes–Thompson k-area, which is defined via the symplectic volume.
For a more detailed introduction, we refer to Schneider [712, pp. 165–177].

For the existence of Crofton type formulas, it has turned out that the Holmes–
Thompson area is the right area notion to be used. Let volk denote the k-dimensional
Holmes–Thompson area. It was observed, with different degrees of generality, by
Busemann [143], El–Ekhtiar [216] and Schneider and Wieacker [721] that for vold−1
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in a Minkowski space there always exists a translation invariant measure η1 on
A(d, 1) so that (5.33) holds. In order that (5.33) hold for vol1 with a translation
invariant measure ηd−1, it is necessary and sufficient that the Minkowski space be
hypermetric. (A metric space (S, δ) is hypermetric if

∑k
i,j=1 δ(pi, pj)NiNj ≤ 0

holds for k ≥ 2, all p1, . . . , pk ∈ S and all integers N1, . . . , Nk with
∑k

i=1 Ni = 1.)
This is equivalent to the condition that the unit ball of the dual Minkowski space is a
zonoid. If this assumption is satisfied, then there are translation invariant measures
ηj on A(d, j) such that the general Crofton type formula∫

A(d,j)

volk+j−d(M ∩ E) ηj(dE) = αnkjvolk(M) (5.34)

holds for all k ∈ {1, . . . , d}, j ∈ {d − k, . . . , d − 1} and for all k-surfaces M . This
was proved by Schneider and Wieacker [721, Th. 7.3]. For general (not necessarily
smooth) hypermetric projective Finsler spaces, the existence of measures ηd−k so
that (5.33) holds at least for k-dimensional compact convex sets M was established
by Schneider [705] (for k = d−1, the assumption ‘hypermetric’ can be deleted). The
proof yields merely the existence; an explicit construction for the line measure η1 in
polytopal Hilbert geometries is described in Schneider [711].

For smooth projective Finsler spaces, general investigations on Crofton densities
have been undertaken by Gelfand and Smirnov [255] and by Álvarez, Gelfand and
Smirnov [30], in part related to Hilbert’s fourth problem and to symplectic geom-
etry. Subsequent work by Álvarez and Fernandes [26, 27, 28, 29] and the thesis of
Fernandes [231] use double fibrations and the Gelfand transform as a unifying ap-
proach to integral geometric intersection formulas and obtain, in particular, Crofton
type formulas (with signed measures) for Holmes–Thompson areas of smooth sub-
manifolds in smooth projective Finsler spaces. The first of these papers makes use
of the symplectic structure on the space of geodesics of a projective Finsler space.
Later it turned out that the methods applied by Schneider and Wieacker [721] for
the case of hypermetric Minkowski spaces (where they yield measures ηj) can be
adapted to the case of smooth projective Finsler spaces (where they yield signed
measures). In this way, a very general version of the Crofton formula (5.34) was
obtained, namely for k = 1, . . . , d, j = d − k, . . . , d − 1 and for Holmes–Thompson
areas of (Hk, k)-rectifiable Borel sets M in smooth projective Finsler spaces (where
the local unit spheres need not be quadratically convex); see Schneider [706].

The special role that the Holmes–Thompson area plays in connection with
Crofton type formulas can be illuminated from other sides. Following Busemann,
one can define a general notion of Minkowskian (d − 1)-area by a few natural ax-
ioms. It was shown by Schneider [698] that there exist Minkowski spaces for which,
among all Minkowskian (d − 1)-areas, only the multiples of the Holmes–Thompson
area allow a Crofton formula (5.33) for k = d−1 with a translation invariant measure
η1. For the Busemann area, the picture is not clear. Let us say that, for a Minkowski
space S = (Rd, ‖ · ‖), the Busemann area is integral geometric if (5.33) holds for
S and for the Busemann (d − 1)-area with a translation invariant measure η1, and
at least for all (d−1)-dimensional compact convex sets M . The following was shown
by Schneider [703], for d ≥ 3. Every neighborhood (in the sense of the Banach–
Mazur distance) of the Euclidean space �d

2 contains Minkowski spaces for which the
Busemann area is not integral geometric, as well as spaces (different from �d

2) for
which the Busemann area is integral geometric. If d is sufficiently large, then a full
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neighborhood of the Minkowski space �d
∞ consists of Minkowski spaces for which the

Busemann area is not integral geometric. We conjecture that it is generically true
(that is, for a dense open subset of the space of all d-dimensional Minkowski spaces)
that the Busemann area is not integral geometric. In the preceding counterexamples,
non-smoothness properties of the unit ball of the Minkowski space play a role. On
the other hand, Álvarez and Berck [25] have constructed smooth projective Finsler
spaces in which there is no Crofton formula for the Busemann area, not even with
a signed measure.

Additional and more detailed information can be found in the survey of Schneider
[710].


