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Preface

Stochastic Geometry deals with mathematical models for random geometric
structures and spatial data, as they frequently arise in modern applications.
As a mathematical discipline, stochastic geometry came into life in the last
third of the twentieth century, but its roots and the close connections between
geometric probability and integration techniques using invariant measures
(though not under this name) date back much farther. The famous Buffon
needle problem of 1777 was solved by what seems to be the first application
of integral calculus to a probability question. A variety of problems in Geomet-
ric Probability was treated in the late nineteenth and early twentieth century.
After the role of invariant measures had become clear, the discipline of Inte-
gral Geometry was initiated in the 1930s, mostly by Wilhelm Blaschke and his
school. The book Integral Geometry and Geometric Probability by Luis San-
taló (1976) summarizes the concepts and results of the preceding development.
Interpretations of integral geometric results in terms of geometric probability
abound in that work. At that time, David Kendall and Georges Matheron had
already developed, independently, a theory of Random Sets, and Roger Miles
had written his pioneering thesis on Poisson processes of certain geometric
objects. The book Random Sets and Integral Geometry by Matheron (1975)
presented the new field of Stochastic Geometry in its intimate relation with
Integral Geometry. Applications in Spatial Statistics and Stereology, later also
in Image Analysis, contributed to a rapid development. The classical integral
geometry of Euclidean spaces is well suited to the treatment of random sets
and point processes with invariance properties, like stationarity and isotropy.
The necessity of studying structures which exhibit anisotropy, or even without
spatial homogeneity, grew hand in hand with new developments in integral
geometry, coming from Geometric Measure Theory. In particular, Federer’s
local formulas for curvature measures proved useful, and Translative Integral
Geometry was promoted, meeting the needs of stationary structures.

Over many years, we both gave courses on Integral Geometry or Stochas-
tic Geometry in Freiburg and Karlsruhe. This led to the joint publication
of lecture notes in German, under the titles of Integralgeometrie (1992) and
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Stochastische Geometrie (2000). It was always our plan later to amalgamate
both topics in one extended monograph in English. During the time we worked
on this project, the field of stochastic geometry has expanded considerably in
various directions, too many to include them all in one volume. We decided
to concentrate on our original idea, namely to present the basic models of sto-
chastic geometry and their properties, the fundamental concepts and formulas
of integral geometry, and the interrelations between these two fields.

In this book, therefore, we have three main aims: to give a sound mathe-
matical foundation for the most basic and general models of stochastic geo-
metry, namely random closed sets, particle processes, and random mosaics,
to introduce the reader to the parts of integral geometry that are relevant for
the applications in stochastic geometry, and, naturally, to demonstrate such
applications. Since the strength of integral geometry lies in the computation
of mean values and in integral transformations, this means that we develop
mainly a ‘first order theory’ of stochastic geometry, centering around expec-
tations. This restricted concept, with its foundational character, implies that
essential and interesting parts of stochastic geometry are missing: we do not
treat special point process models other than Poisson processes, nor higher
order moment measures, limit theorems, spatial statistics, practical proce-
dures, simulations; however, we comment on some of these developments in
the section notes. The integral geometry here is taylored to its use in stochas-
tic geometry; this influences the selection of topics as well as the approach,
which is measure theoretic rather than differential geometric. Another re-
striction may be seen in the predominance of invariance and independence.
The first means that we study (except in one chapter providing an outlook)
only random sets and geometric point processes that are stationary (spatially
homogeneous) or even stationary and isotropic, in distribution. Invariance of
measures and distributions is the leitmotiv of this volume; it underlies both the
stochastic geometry parts and the integral geometric parts. On the stochastic
side, there is a preference for independence assumptions, as for example in the
prominent role of Poisson processes, with their strong independence proper-
ties. Very often, only invariance and independence assumptions allow simple
approaches and lead to beautiful results. The confinement to the fundamen-
tals of stochastic geometry leaves us room for emphasizing the geometry; in
fact, in integral as well as in stochastic geometry, we draw a richer picture
than sketched above, and we include various topics of geometric appeal. For
example, there is a chapter on Geometric Probability, since this area has seen
a recent revival with many interesting problems and results.

Naturally, this book employs notions and results from other fields. We
make use of some basic facts from general topology, from the theory of topo-
logical groups and homogeneous spaces of Euclidean geometry and their in-
variant measures, and from the geometry of convex sets; further, some more
specialized results concerning geometric inequalities and additive functionals
on convex bodies are needed. Anticipating that the familiarity of the readers
with these topics will not be uniform, we have collected the required material
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in an Appendix; this should be consulted whenever necessary. This also allows
us to start directly with the fundamental notion in this book, the concept of
a random closed set.

We are grateful to many colleagues for their helpful comments on early
drafts of our book. Special thanks go to Paul Goodey, Günter Last and Werner
Nagel, for providing useful hints after reading parts of the final manuscript,
and in particular to Daniel Hug, who has carefully read all of it. He prevented
us from including a number of flaws and made many suggestions for improve-
ments. We also thank the Mathematisches Forschungsinstitut Oberwolfach for
giving us the opportunity to spend some time, working on our mansucript, in
their wonderful ‘Research in Pairs’ programme.

Freiburg i. Br., Karlsruhe Rolf Schneider
Spring 2008 Wolfgang Weil
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1

Prolog

1.1 Introduction

Since this book is about relations between stochastic geometry and integral
geometry, we begin with an imaginary experiment that demonstrates the need
for and use of integral geometry for certain geometric probability questions
and at the same time leads in a natural way to a basic model of stochastic
geometry.

We assume that K and W are given convex bodies (nonempty compact
convex sets) in d-dimensional Euclidean space Rd. The body K serves to
generate a random field of congruent copies of K, and the body W plays the
role of an ‘observation window’. The random field consists of countably many
congruent copies ofK which are laid out in space randomly and independently,
overlappings being allowed. The number of bodies in the random field that
hit (that is, have nonempty intersection with) the observation window W
is a random variable. We ask for its distribution. This is, of course, not a
meaningful question, as long as no stochastic model for the random field of
convex bodies is specified. In a few steps, we shall introduce some natural
assumptions, which motivate a precise model and lead to an explicit formula
for the desired distribution.

In the first step, we consider a much simpler situation. We take a ball Br

of radius r and origin 0 that contains the observation window W , and we
consider only one randomly moving copy of K, under the condition that it
hits Br. We ask for the probability that it also hits W . There is a geometri-
cally very natural way of specifying a probability distribution of a randomly
moving convex body that satisfies the side condition. A random congruent
copy of K can be represented in the form g̃K, where g̃ is a random element
of the group Gd of rigid motions. The locally compact group Gd carries an
essentially unique Haar measure, that is, a locally finite Borel measure that is
similarly under left and right multiplications and is not identically zero. We
denote this measure, with a suitable normalization, by µ. A natural probabil-
ity distribution of a random congruent copy of K hitting Br is then obtained
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by restricting µ as required by the side condition, normalizing, and taking an
image measure. Thus, in our situation we define a probability measure Q on
the space K of convex bodies (with its usual topology) in Rd by

Q(A) :=
µ({g ∈ Gd : gK ∩Br �= ∅, gK ∈ A})

µ({g ∈ Gd : gK ∩Br �= ∅})

for Borel sets A ⊂ K. A random congruent copy of K hitting Br is then, by
definition, a random convex body with distribution Q.

Now the probability, denoted by p, that a random congruent copy of K
hitting Br also hits W , is well defined. If we put

µ(K,M) := µ({g ∈ Gd : gK ∩M �= ∅})

for convex bodies K and M , this probability is given by

p =
µ(K,W )
µ(K,Br)

. (1.1)

The computation of µ(K,M) is a typical task of integral geometry. First,
we assume that K is a ball of radius ρ. If the Haar measure µ is suitably
normalized, the measure of all motions g that bring K into a hitting position
with M is just the measure of all translations that bring the center of K into
the parallel body

M +Bρ := {m+ b : m ∈M, b ∈ Bρ},

and hence is the volume of this body. By the Steiner formula of convex
geometry, this volume is a polynomial of degree at most d in the parameter
ρ. It is convenient to write it in the form

λd(M +Bρ) =
d∑

i=0

ρd−iκd−iVi(M), (1.2)

where λd is the Lebesgue measure on Rd and κj is the volume of the j-
dimensional unit ball. This defines the intrinsic volumes V0, . . . , Vd, which
are important functionals on the space of convex bodies.

The intrinsic volumes, which appear naturally in the computation of the
measure µ(K,M) for the special case K = Bρ, are also sufficient to handle
the general case. The principal kinematic formula of integral geometry,
specialized to convex bodies, states that

µ(K,M) =
d∑

i=0

αdiVi(K)Vd−i(M), (1.3)

with certain explicit constants αdi. From (1.1) and (1.3) we obtain
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p =
∑d

i=0 αdiVi(K)Vd−i(W )∑d
i=0 αdiVi(K)Vd−i(Br)

, (1.4)

which depends only on the intrinsic volumes of K and W (and on r).
In the second step, we consider m ≥ 2 independent, identically distributed

random convex bodies, each with distribution Q, thus each one is a random
congruent copy of K hitting Br. For k ∈ {0, 1, . . . ,m}, we denote by pk the
probability that the fixed bodyW is hit by exactly k of the random congruent
copies of K. By the independence, we obtain a binomial distribution, thus

pk =
(
m

k

)
p k(1− p)m−k,

with p given by (1.4).
In the third step, we choose m depending on the radius r and let r tend

to ∞, in such a way that

lim
r→∞

m

λd(Br)
= γ > 0

with a constant γ. Since

lim
r→∞

µ(K,Br)
λd(Br)

= 1,

we obtain limr→∞mp = γµ(K,W ) =: θ, and hence

lim
r→∞

pk =
θk

k!
e−θ (1.5)

with

θ = γ
d∑

i=0

αdiVi(K)Vd−i(W ). (1.6)

We have found, not surprisingly, a Poisson distribution. Its parameter is
expressed explicitly in terms of the constant γ, which can be interpreted as
the number density of our random system of convex bodies, and the intrinsic
volumes of K and W .

The original question and the answer given by (1.5) and (1.6) are found in
a paper by Giger and Hadwiger [260]. The answer, though nice and explicit,
is still not entirely satisfactory. We have computed a limit of probabilities and
found a Poisson law. However, this Poisson distribution is not yet interpreted
as the distribution of a well-defined random variable. What we would prefer,
and what is needed for applications, is a model that allows us to consider from
the beginning countably infinite systems of randomly placed convex bodies,
with suitable independence properties.

This goal is readily achieved by employing suitable point processes. For
the purpose of this introduction, a point process in Rd is a measurable map
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from the underlying probability space into the measurable space of locally
finite subsets of Rd. In particular, let Ξ be a Poisson point process of inten-
sity γ in Rd, with a translation invariant distribution. We choose a Poisson
process since its built-in independence properties reflect the independence
assumptions made above in the second step. With each point of Ξ, we asso-
ciate a congruent copy of K, in the following way. For easier visualization,
we suppose that 0 ∈ K. We may assume that Ξ = {ξ1, ξ2, . . .}, with a mea-
surable numeration. Let (ϑ1, ϑ2, . . .) be an independent sequence of random
rotations of Rd, each with distribution given by the invariant probability mea-
sure on the rotation group SOd; let this sequence be independent of Ξ. Then
{ξi + ϑiK, i = 1, 2, . . .} defines a random field X of convex bodies which are
congruent copies of K. For this model one can compute that the probability,
say qk, of the event that the fixed observation window W is hit by precisely
k bodies of the field X, is given by

qk =
θk

k!
e−θ, (1.7)

with θ according to (1.6).
This very special model can immediately be generalized. There is no partic-

ular reason for attaching to the points ξi of the Poisson process Ξ only rotation
images ϑiK of a fixed convex bodyK. One may as well attach to ξ1, ξ2, . . . ran-
dom convex bodies K1,K2, . . ., chosen independently and independent from
Ξ, according to some given rotation invariant probability distribution on the
space K of convex bodies. Essentially equivalent is the assumption that X is
a Poisson process in the locally compact space K, which is stationary and
isotropic, that is, whose distribution is invariant under translations and ro-
tations. Again, let qk denote the probability that the observation window W
is hit by k bodies of the particle process X. The intrinsic volumes Vi(K) ap-
pearing in (1.6), or rather γVi(K), must now be replaced by suitable densities.
Under a mild integrability condition onX (which is assumed in the following),
it can be shown that the limit

Vi(X) = lim
r→∞

1
λd(rW )

E
∑

K∈X, K⊂rW

Vi(K) (1.8)

exists for every convex bodyW with λd(W ) > 0 and is finite and independent
of W ; here E denotes mathematical expectation. The number Vi(X) is called
the density of the ith intrinsic volume, or the ith specific intrinsic
volume, of the particle process X. If we now replace (1.6) by

θ :=
d∑

i=0

αdiVi(X)Vd−i(W ),

then (1.7) still holds.
Together with the Poisson particle process X, we consider its union set,
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Z :=
⋃

K∈X

K.

Under the mentioned integrability assumption, this is almost surely a closed
set. Thus, we obtain an example of a random closed set. Generally, a ran-
dom closed set in Rd is a measurable map from the underlying probability
space into the space of closed subsets of Rd, endowed with a suitable topol-
ogy and the induced Borel σ-algebra. Random closed sets are, besides particle
processes, the second basic model of stochastic geometry. The random closed
set obtained here is of a special type: besides being stationary and isotropic,
it is the union set of a Poisson particle process. Random closed sets generated
in this way are known as Boolean models. Due to the strong indepen-
dence properties of Poisson processes, Boolean models are mathematically
more tractable than general random closed sets. We give one example, after
introducing specific intrinsic volumes of the random set Z.

In a certain analogy to (1.8), we want to define the ith specific intrinsic
volume of the random closed set Z by

Vi(Z) = lim
r→∞

1
λd(rW )

EVi(Z ∩ rW ). (1.9)

This is indeed possible. By the properties of the generating particle process
X, the set Z ∩ rW is, for a convex body W , almost surely the union of fi-
nitely many convex bodies. The intrinsic volume Vi has a unique additive and
measurable extension from K to the lattice of finite unions of convex bodies.
With this extension, also denoted by Vi, the random variable Vi(Z ∩ rW ) is
well defined, and the limit (1.9) exists for every convex body W with positive
volume, it is finite and independent ofW . The numbers V0(Z), . . . , Vd(Z) are,
in several respects, the simplest and most basic parameters for a quantita-
tive description of a stationary random set. They include the specific volume
Vd(Z), the specific surface area 2Vd−1(Z), and the specific Euler characteristic
V0(Z).

A special and remarkable property of the stationary and isotropic Boolean
model Z is now the fact that the specific intrinsic volumes of Z can be ex-
pressed explicitly in terms of the specific intrinsic volumes of the generating
particle process X, and conversely! The latter fact is rather surprising at first
sight: it says that, in principle, the specific intrinsic volumes of the particle
process can be determined by observing its union set. This is astonishing,
since observation of the union set does not allow us to observe individual par-
ticles. The explanation for this seeming paradox lies in the strong indepen-
dence properties of Poisson processes. The first two of the mentioned relations,
connecting the specific volumes and the specific surface areas of the Poisson
particle process X and of its union set Z, are given by

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = Vd−1(X)e−Vd(X).
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The remaining relations are more complicated. Their proof is a typical appli-
cation of iterated kinematic formulas of integral geometry.

Poisson processes of convex bodies and their union sets, as described, are
interesting and tractable models of stochastic geometry, but are, of course, too
special for many applications. Part I of our book, on foundations of stochastic
geometry, begins with an introduction to general random closed sets in a
topological space. The basic space, as in the treatment of point processes, is
assumed to be locally compact and to have a countable base. This generality
is sufficient, but it is also required for the geometric models to be introduced.
Some prerequisites from general topology are collected in the Appendix. Point
processes and marked point processes are the subject of Chapter 3.

Since the point processes we introduce live in quite general spaces, the
‘points’ can themselves be geometric objects, such as compact or convex sub-
sets of Rd, submanifolds or planes of a fixed dimension. This leads to the geo-
metric models which are the subject of Chapter 4. We study particle processes
and their union sets, and the geometry of processes of flats. Geometric results
are treated to an extent that does not yet require special knowledge from inte-
gral geometry, but considerable use is made of results from convex geometry.
The latter are made available in the Appendix.

The quantitative description of random closed sets and particle processes
in Rd requires the definition of suitable parameters. In the spatially homo-
geneous case one may hope that real-valued parameters already carry useful
information. Let X be a stationary particle process, Z a stationary random
closed set, and ϕ a suitable function. In analogy to (1.8) and (1.9) above, it
is a plausible attempt to define ϕ-densities by a double averaging process,
stochastically and spatially, in the form

ϕ(X) = lim
r→∞

1
λd(rW )

E
∑

K∈X, K⊂rW

ϕ(K) (1.10)

and
ϕ(Z) = lim

r→∞

1
λd(rW )

Eϕ(Z ∩ rW ), (1.11)

whereW is, say, a convex body with positive volume. Clearly, such a procedure
requires appropriate assumptions. In general, Z ∩ rW will have a well-defined
Lebesgue measure, but not, for example, a well-defined surface area or Euler
characteristic, and other appropriate functions ϕ are even harder to think of.
In most of the quantitative investigations we shall therefore restrict ourselves
to particle processes X and random closed sets Z with the properties that
K ∈ X and Z∩W , for a convex bodyW , are almost surely polyconvex, that
is, can be represented as finite unions of convex bodies. From the viewpoint of
modeling real materials and structures, this is not a severe restriction, since
such objects can be approximately represented by unions of large numbers
of small convex bodies. The advantage of this restriction is that a series of
geometrically meaningful functions ϕ becomes available. Since we want to
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generate sets as unions of convex bodies, the functions ϕ to be considered
must have a simple behavior under taking unions; therefore, we demand finite
additivity. More precisely, a real function ϕ on the space K of convex bodies
is called additive or a valuation if

ϕ(K ∪M) = ϕ(K) + ϕ(M)− ϕ(K ∩M)

whenever K,M,K ∪M ∈ K. Every continuous valuation on K has a unique
extension to an additive function on the system of polyconvex sets. For trans-
lation invariant, additive functions ϕ on polyconvex sets, suitable measura-
bility and integrability conditions are sufficient to ensure the existence of the
densities ϕ(Z) according to (1.11). The densities (1.10) already exist under
weaker assumptions. In isotropic situations, the relevant functions ϕ are well
known. By a remarkable theorem of Hadwiger, every continuous, rigid mo-
tion invariant valuation on K is a linear combination of the intrinsic volumes.
This explains the predominant role of the intrinsic volumes in large parts of
this book. The required facts about additive functionals on convex bodies and
their proofs can be found in the Appendix.

Our emphasis on polyconvex sets and intrinsic volumes and their gen-
eralizations also affects our introduction to integral geometry, in Part II of
the book. A main task of integral geometry is to compute mean values of
geometric functions with respect to invariant measures. Some fundamentals
about invariant measures are collected in the Appendix. Specifically, we need
the invariant measures on the groups and homogeneous spaces of Euclidean
geometry, namely the translation, rotation and rigid motion group, and spaces
such as spheres and linear or affine Grassmannians. Typical formulas of inte-
gral geometry will evaluate the integral, with respect to an invariant measure,
of a function taken at the intersection of a fixed and a moving polyconvex set.
First we consider fairly general additive functions and the motion group; then
we concentrate on intrinsic volumes and their local versions, the curvature
measures, and also study the case of the translation group. The picture is
enriched by also treating some related topics.

Another subject of integral geometry is integral transforms involving in-
variant measures. As an example, consider an integral, with respect to d-fold
Lebesgue measure in Rd, of a function of d points where the function does, in
fact, depend only on the hyperplane that is spanned (up to a set of measure
zero) by the d points. Then it may be of advantage to transform the integral
into one with respect to the invariant measure on the space of hyperplanes.
Integral geometry provides geometric techniques for obtaining a variety of
such transformation results, which are known as Blaschke–Petkantschin
formulas. They are extremely useful, often allowing explicit calculations in
geometric probabilities and stochastic geometry.

Part III of the book, on selected topics from stochastic geometry, combines
the first two parts, but also aims at giving a broader picture. With this goal
in mind, in Chapter 8 we present some geometric probability problems. This
topic is not only the origin of stochastic geometry, but remains to be an
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attractive subject of many investigations. Our presentation touches convex
hulls of random points, random projections of polytopes, questions about
randomly moving convex bodies and flats, touching probabilities for convex
bodies, and extremal problems for probabilities and expectations coming from
intuitive geometric settings. As this chapter intends to paint a colorful picture,
the presentation is not very systematic, and much information is to be found
in the section notes.

Chapter 9 returns to the mainstream of the book and proceeds with a quan-
titative treatment of stationary random closed sets and particle processes. We
begin with a study of the Boolean model. For more general random closed sets
and for particle processes, we then introduce, as basic descriptive parameters,
densities of additive functionals, in particular the specific intrinsic volumes. In
their further investigation, stochastic geometry and integral geometry come
close together. Intersection formulas lead to unbiased estimators for such pa-
rameters, and some selected estimation procedures are described.

Chapter 10 gives a detailed treatment of stationary random mosaics, an-
other basic model of stochastic geometry. After a careful introduction, partic-
ular attention is paid to tessellations induced by stationary Poisson processes,
either as Voronoi or Delaunay tessellations corresponding to Poisson point
processes, or as hyperplane tessellations generated by a Poisson process in
the space of hyperplanes. Zero cells and typical cells of stationary random
mosaics provide interesting examples of random polytopes and are studied in
some detail.

Chapter 11 is an outlook to non-stationary models. While, as emphasized
in the preface, invariance of measures and distributions, at least under transla-
tions, is an essential feature in this book, we want to conclude with extending
some of the results in previous chapters to non-stationary situations. Natu-
rally, the statements become more involved, but it is perhaps surprising to see
how the structure of the translative results is still recognizable and how the
tools developed in the stationary case remain indispensable.

Part IV, the Appendix, collects basic material from other fields that is
needed in the different chapters of the book. In Chapters 12 to 14, the reader
will find, when necessary, the employed notions and results from general topol-
ogy, the theory of invariant measures, and the geometry of convex bodies.

1.2 General Hints to the Literature

As explained in the preface, our presentation of stochastic geometry in this
book has restricted aims only: to lay sound foundations for the standard
models of stochastic geometry, and to prepare and describe the use of integral
geometry. Although several further topics of geometric interest are touched,
we are necessarily far from giving a complete picture of stochastic geometry.
Therefore, in the following we list monographs and collections where the reader
may find what is missing here. We shall, with a few exceptions, mention only
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literature of the last forty years, the period in which stochastic geometry, as
it is understood today, has developed. We order the references in thematic
groups and then chronologically.

Stochastic geometry:
1974 Harding, Kendall (eds.) [321] (collection of articles)
1975 Matheron [462]
1987 Stoyan, Kendall, Mecke [743] (second ed. 1995)
1988 Hall [317] (coverage processes)
1990 Ambartzumian [35]
1990 Mecke, Schneider, Stoyan, Weil [500] (DMV seminar, in German)
1993 Ambartzumian, Mecke, Stoyan [36] (in German)
1999 Barndorff–Nielsen, Kendall, van Lieshout (eds.) [80] (collection)
2004 Beneš, Rataj [90]
2007 Baddeley, Bárány, Schneider, Weil [50] (C.I.M.E. course)

Integral geometry:
1957 Hadwiger [307] (chapter 6, in German)
1968 Stoka [738] (in French)
1972 Sulanke, Wintgen [749] (chapter 5, in German)
1976 Santaló [662]
1982 Ambartzumian [34] (combinatorial integral geometry)
1994 K. Mecke [505] (applications to statistical physics, in German)
1994 Ren [635]
1997 Klain, Rota [416] (combinatorial aspects)
2007 Voss [772] (applied to stereology and image processing, in German)

Geometric probability:
1963 Kendall, Moran [397]
1978 Solomon [731]
1999 Mathai [456]

Random sets:
1993 Molchanov [543] (limit theorems)
1997 Goutsias, Mahler, Nguyen (eds.) [284] (collection of articles)
1997 Jeulin (ed.) [384] (collection of articles)
2005 Molchanov [548]
2006 Nguyen [583]

Point processes with geometric applications:
1986 Kallenberg [385]
1986 Matérn [454]
1988 Daley, Vere–Jones [194]
1992 König, Schmidt [423] (in German)
1993 Kingman [413]
2005 Daley, Vere–Jones [195]
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2008 Daley, Vere–Jones [196]
2008 Illian, Penttinen, H. Stoyan, D. Stoyan [376]

Stereology:
1980 Weibel [778]
1998 Jensen [379]
2005 Baddeley, Jensen [53]

Spatial and geometric statistics:
1981 Ripley [644]
1988 Ripley [645]
1983 Diggle [204]
1991 Karr [389]
1992 D. Stoyan, H. Stoyan [746] (in German 1992, in English 1994)
1993 Cressie [185]
1997 Molchanov [546] (statistics of the Boolean model)
1999 Kendall, Barden, Carne, Le [396] (shape theory and shape statistics)
2000 van Lieshout [439]
2002 Ohser, Mücklich [587] (materials science)
2002 Torquato [759] (materials science)
2004 Møller, Waagepetersen [556]
2006 Baddeley, Gregori, Mateu, Stoica, D. Stoyan [51] (collection)

Random tessellations:
1994 Møller [553]
2000 Okabe, Boots, Sugihara, Chiu [591]

Several areas involving random geometric structures overlap more or less
with stochastic geometry, or can be subsumed under it (the more so as sto-
chastic geometry is not clearly defined), or they apply stochastic geometry.
The following list is certainly not exhaustive.

1981 Adler [1] (random fields)
1982 Serra [729] (image analysis and mathematical morphology)
1996 Meesters, Roy [509] (continuum percolation)
2003 Penrose [598] (random geometric graphs)
2007 Adler, Taylor [2] (random fields)

Introductory surveys, emphasizing different aspects of stochastic geometry,
were written by Baddeley [44, 45, 49], Cruz–Orive [189], Stoyan [741, 742],
Weil [785], Weil and Wieacker [806].

1.3 Notation and Conventions

We collect here some basic notation, which will be used throughout the book.
More detailed explanations of fundamental notions are found in the Appendix.
The reader is advised to consult Chapters 12 to 14 whenever the notions and
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results from general topology, the theory of invariant measures, or convex
geometry that we use do not appear sufficiently familiar.

Let E be a set. We denote by P(E) the power set, that is, the system of
all subsets of E. For a subset A ⊂ E, the complement of A is denoted by Ac

and the indicator function by 1A. When one of the latter two notions is used,
it will be clear from the context to which basic set E it refers. We also write
1{x ∈ A} instead of 1A(x), if convenient.

Let E be a topological space. Most of the considered spaces will be locally
compact or compact; by definition, this includes the Hausdorff property. Let A
a subset of E. Then clA, intA, bdA are, respectively, the closure, the interior
and the boundary of A. The system of closed, open, and compact subsets of
E is denoted, in this order, by F , G, C. If necessary to avoid ambiguities,
we also write F(E), G(E), C(E). A prime always indicates the corresponding
system of nonempty sets, thus F ′, G′, C′ are the systems of nonempty closed,
open, compact subsets of E, respectively. The vector space of continuous real
functions on E is denoted by C(E), and Cc(E) is the subspace of functions
with compact support.

A measure or signed measure on a topological space E will always be
defined on the σ-algebra B(E) of Borel sets of the space, unless a different
domain is indicated. B(E) is the smallest σ-algebra in E containing the open
sets. Also measurability, of sets or mappings, refers to Borel σ-algebras, if no
other σ-algebras are mentioned explicitly. We write

µr := µ⊗ . . .⊗ µ (r factors)

for the r-fold product of a measure µ. The restriction of a measure µ to a
measurable set A is denoted by µ A, thus (µ A)(B) := µ(B ∩A) for all B
in the domain of µ. If X,Y are topological spaces, ρ is a measure on X and
f : X → Y is a measurable map, we denote the image measure of ρ under f
by f(ρ).

In probabilistic considerations, the underlying probability space will gen-
erally be denoted by (Ω,A,P). If ξ is a random variable, then Pξ denotes its
distribution. We employ the usual abbreviations, such as P(ξ ∈ A) := P({ω ∈
Ω : ξ(ω) ∈ A}). The expected value of a real random variable ξ is denoted by
E ξ.

Most of our investigations take place in Euclidean space. Rd is the d-
dimensional real Euclidean vector space, with scalar product 〈·, ·〉 and induced
norm ‖·‖. The distance of two points x, y ∈ Rd is denoted by d(x, y) := ‖x−y‖,
the distance of two nonempty sets K,L ⊂ Rd by d(K,L) := inf{d(x, y) : x ∈
K, y ∈ L}, and we write d(K,x) = d(x,K) := d({x},K) for the distance of
the point x from the set K.

For subsets A,B ⊂ Rd, the set A + B := {a + b : a ∈ A, b ∈ B} is the
vector sum or Minkowski sum, λA := {λa : a ∈ A} is the dilate of A by the
number λ ≥ 0, and −A := {−a : a ∈ A} is the image of A under reflection
in the origin. A−B means A+ (−B). This has to be distinguished from the
Minkowski difference of A and B, which is defined by
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A�B :=
⋂
b∈B

(A− b) = {x ∈ Rd : B + x ⊂ A}

(note that in some of the literature this is A�−B). We denote by convA the
convex hull of the set A, and by posA its positive hull.

If A ⊂ Rd and if E ⊂ Rd is an affine subspace, then A|E denotes the image
of A under orthogonal projection to E.

The following systems of subsets will play a prominent role. K is the family
of compact convex subsets of Rd. The convex ringR consists of all finite unions
of compact convex sets; its elements are sometimes called polyconvex sets. A
locally polyconvex set in Rd is defined by the property that its intersection
with any compact convex set is polyconvex. The system of these sets is denoted
by S and is called the extended convex ring. P is the family of (compact,
convex) polytopes. Again, K′, R′, S ′, P ′ denote the corresponding systems of
nonempty sets. On C′ (and thus also on K′) the Hausdorff metric δ is defined
by

δ(K,L) := max
{

max
x∈K

min
y∈L

d(x, y), max
x∈L

min
y∈K

d(x, y)
}
.

Some particular subsets of Rd will occur frequently. These are the unit ball
Bd := {x ∈ Rd : ‖x‖ ≤ 1}, the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, and
the unit cube Cd := [0, 1]d. The ‘half-open’ cube Cd

0 := [0, 1)d is useful since
its translates by the vectors of Zd form a decomposition of Rd; moreover, the
‘upper right’ boundary ∂+Cd := Cd \ Cd

0 is an element of the convex ring.
Hyperplanes of Rd are written in the form

H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ}

with u ∈ Sd−1 and τ ∈ R; this representation is unique if τ > 0. For H(u, 0)
we often write u⊥.

The following measures are used. Lebesgue measure on Rd is denoted by
λ or, if there is danger of ambiguity, by λd. For k ∈ {0, . . . , d − 1}, λk is the
k-dimensional Lebesgue measure on a k-dimensional affine subspace of Rd. If
E is this subspace, the Lebesgue measure on E is also denoted by λE . If F is
a compact convex set with affine hull E, then

λF := λE F.

The spherical Lebesgue measure on a k-dimensional great subsphere of Sd−1

is denoted by σk, and we write σ instead of σd−1 if this does not cause am-
biguities. Occasionally, the k-dimensional Hausdorff measure is used, which
is denoted by Hk. For the Lebesgue measure of a compact set C, we often
use the notation Vd(C) and call it the volume of C. The intrinsic volumes
V0(M), . . . , Vd−1(M) of a compact convex set M are defined by the Steiner
formula (1.2); they are discussed in more detail in Section 14.3.

A frequently occurring constant is the volume of the unit ball,
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κd := λd(Bd) =
π

d
2

Γ
(
1 + d

2

) .
The surface area of the unit sphere Sd−1 is given by

ωd := σd−1(Sd−1) = dκd =
2π

d
2

Γ
(

d
2

) .
The standard groups operating on Rd are the translation group, which is

the additive group of Rd and is denoted by Td if a distinction is appropriate,
the group SOd of proper (orientation-preserving) rotations, and the group
Gd of rigid motions, or orientation-preserving isometries. These groups carry
their standard topologies.

The translation by the vector x ∈ Rd is denoted by tx, thus txy := y + x
for y ∈ Rd. For a set A ⊂ Rd, we have A + x := txA = {a + x : a ∈ A}.
If µ is a measure on Rd, then the image measure tx(µ) is also denoted by
txµ = µ+x, thus (µ+x)(A) = µ(t−1

x A) = µ(A−x) for A ∈ B(Rd). Similarly,
(ϑµ)(A) := µ(ϑ−1A) for ϑ ∈ SOd.

For k ∈ {0, . . . , d}, the Grassmannian of k-dimensional linear subspaces of
Rd is denoted by G(d, k), and the affine Grassmannian of k-dimensional affine
subspaces by A(d, k); both are equipped with their standard topologies.

We denote by R = R ∪ {−∞,∞} the extended system of real numbers,
and by R+ the set of positive real numbers.



Part I

Foundations of Stochastic Geometry



2

Random Closed Sets

A random set in a space E is defined, in agreement with the usual approach
of axiomatic probability, as a set-valued random variable, that is, as a mea-
surable map from some abstract probability space into a system of subsets
of E, endowed with a suitable σ-algebra. It has turned out to be particularly
tractable to assume that E is a locally compact space with a countable base
and to consider the system F of its closed subsets, equipped with the topology
of closed convergence and the induced σ-algebra of Borel sets. This approach
is described in Section 2.1.

The distribution of a random closed set is completely determined by certain
hitting probabilities, in particular, by its capacity functional. This gives, for
every compact set C ⊂ E, the probability that the random set has nonempty
intersection with C. The capacity functional can be seen in a certain analogy
to the distribution function of a real random variable. Like distribution func-
tions, the possible capacity functionals can be completely characterized. This
characterization is provided by the Theorem of Choquet, for which we give a
proof in Section 2.2. Some applications of this theorem are treated in Section
2.3. Special features of random closed sets in Euclidean spaces are the subject
of Section 2.4.

2.1 Random Closed Sets in Locally Compact Spaces

The basic space in this chapter is a locally compact topological space E with
a countable base. We denote by F , G, C the system of the closed, open, and
compact subsets of E, respectively. The empty set is always included; we
write F ′ := F \ {∅}, and similarly G′ and C′ are defined. If necessary to avoid
ambiguities, we write F(E), G(E), C(E) for F , G, C.

Since random sets will be investigated in terms of their hitting probabilities
with given sets, the following notation is fundamental. For A ⊂ E we write

FA := {F ∈ F : F ∩A = ∅},
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FA := {F ∈ F : F ∩A �= ∅},

and we set
FA

A1,...,Ak
:= FA ∩ FA1 ∩ . . . ∩ FAk

(:= FA for k = 0), if k ∈ N0 and A1, . . . , Ak ⊂ E.

Definition 2.1.1. The topology of closed convergence on F is the topol-
ogy generated by the set system

{F C : C ∈ C} ∪ {FG : G ∈ G}.

The topology of closed convergence is also known as the ‘Fell topology’. It
is an example of a ‘hit-and-miss topology’.

In the following, F will always be equipped with the topology of closed
convergence. Basic properties of this topology are proved in Chapter 12, which
the reader is advised to consult when necessary. The space F is compact
and has a countable base (Theorem 12.2.1), and the subspace F ′ is locally
compact.

Lemma 2.1.1. The σ-algebra B(F) of Borel sets of F is generated by either
of the systems

{F C : C ∈ C} and {FG : G ∈ G}.

Proof. As shown in the proof of Theorem 12.2.1, the topology of F is generated
by a countable subsystem of A := {F C : C ∈ C} ∪ {FG : G ∈ G}. Therefore,
A generates B(F).

Let G ∈ G. According to Theorem 12.1.1, there is a sequence (Ci)i∈N of
compact sets with

⋃
i∈N Ci = G, hence

FG =
⋃
i∈N

FCi
=

⋃
i∈N

(F Ci)c.

This shows that the system {F C : C ∈ C} is sufficient to generate the σ-
algebra B(F).

Let C ∈ C. According to Theorem 12.1.1, there is a sequence (Gi)i∈N of
open neighborhoods of C such that every open set G with C ⊂ G contains a
suitable set Gi. This yields

F C =
⋃
i∈N

F Gi =
⋃
i∈N

(FGi
)c,

hence also the system {FG : G ∈ G} is sufficient to generate B(F). ��

Remark. Similarly, also each of the systems {FC : C ∈ C} and {F G : G ∈ G}
generates B(F).
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The following consequence is important. If the map ϕ : T → F from
some topological space T to F is upper or lower semicontinuous (see Section
12.2), then it is Borel measurable. In fact, if ϕ is upper semicontinuous, then
ϕ−1(F C) is open, and hence a Borel set, for every compact set C ∈ C. Since
{F C : C ∈ C} is a generating system of B(F), the measurability of ϕ follows.
For lower semicontinuous maps, the proof is analogous.

Lemma 2.1.2. C is a Borel set in F .

Proof. By Theorem 12.1.1, there is a sequence (Ci)i∈N of compact sets with
Ci ⊂ intCi+1 for i ∈ N and

⋃
i∈N Ci = E. This yields

C =
⋃
i∈N

F Cc
i ,

where each F Cc
i is closed, hence C is a Borel set in F . ��

Now we introduce random closed sets.

Definition 2.1.2. A random closed set in E is an F-valued random vari-
able, that is, an (A,B(F))-measurable map Z : Ω → F from some proba-
bility space (Ω,A,P) into F . The distribution of Z is the image measure
PZ := Z(P) of P under Z.

In the following, ‘random closed set’ always means ‘random closed set in
E’.

As usual in probability theory, the essential feature of a random variable
is its distribution and what can be derived from it. Two random closed sets
Z and Z ′, which may be defined on different probability spaces, are called
stochastically equivalent if they have the same distribution. This is also
written as Z D= Z ′ (equality in distribution). Even though every ran-
dom closed set Z has a canonical representation Z ′ with Z ′ D= Z, via the
identical map on (F ,B(F),PZ), it is still more convenient to use the general
representation of Definition 2.1.2, with an abstract probability space.

For PZ(A), where A ∈ B(F), we also use the notation P(Z ∈ A), as an
abbreviation for P({ω ∈ Ω : Z(ω) ∈ A}), etc. If P(Z ∈ A) = 1, we say that
‘Z ∈ A almost surely’ (a.s.).

If, in the following, several (finitely or countably many) random closed
sets are treated simultaneously, we always assume that they are defined on
the same probability space (Ω,A,P). If Z1, . . . , Zk are random closed sets,
their joint distribution is the probability measure PZ1,...,Zk

on Fk defined
by

PZ1,...,Zk
(A1 × . . .×Ak) = P(Z1 ∈ A1, . . . , Zk ∈ Ak)

for A1, . . . , Ak ∈ B(F). Analogously, the joint distribution PZ1,Z2,... of a se-
quence Z1, Z2, . . . of random closed sets is defined. It is a probability measure
on F N. As usual, the random closed sets Z1, . . . , Zk, respectively Z1, Z2, . . .,
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are called (stochastically) independent if their joint distribution is the
product of their individual distributions, that is, if

PZ1,...,Zk
= PZ1 ⊗ . . .⊗ PZk

,

respectively
PZ1,Z2,... =

⊗
i∈N

PZi
.

From given random closed sets Z and Z ′, one can obtain new ones by
means of set-theoretic or topological operations. If ϕ : F → F and ψ : F×F →
F are measurable maps, then also the compositions ϕ ◦Z and ψ ◦ (Z,Z ′) are
measurable. Therefore, the continuity or semicontinuity results of Theorems
12.2.3, 12.2.6, 13.1.1 yield the following.

Theorem 2.1.1. If Z and Z ′ are random closed sets, then also Z∪Z ′, Z∩Z ′,
bdZ and clZc are random closed sets. If the topological group G operates
continuously on E, then for g ∈ G also gZ is a random closed set.

We mention some simple examples of random closed sets. Trivially, if
F ∈ F , the constant map ω �→ F from Ω into F is a random closed set.
Therefore, Theorem 2.1.1 implies that for a random closed set Z also the
intersection Z ∩ F with a fixed set F ∈ F is a random closed set (and sim-
ilarly Z ∪ F ). If ξ1, ξ2, . . . is a sequence of random variables with values in
E, then the countable set Z = {ξ1, ξ2, . . .} is a random closed set if the set
{ξ1(ω), ξ2(ω), . . .} has no accumulation points, for almost all ω. If, as in this
case, Z ∩ C is almost surely finite for every compact set C ∈ C, we say that
the random closed set Z is locally finite.

Now we introduce, for random closed sets, a functional which can be con-
sidered as an analog to the distribution function of a real random variable.
We first recall this latter notion.

For a random variable ξ with values in (−∞,∞], the distribution function
ϕ = ϕξ is defined by

ϕξ(t) := P(ξ ≤ t) = P({ξ} ∩ (−∞, t] �= ∅), t ∈ [−∞,∞).

It has the following properties:

(a) 0 ≤ ϕ ≤ 1, ϕ(−∞) = 0,
(b)ϕ is continuous from the right, that is, ti ↓ t implies ϕ(ti)→ ϕ(t),
(c) ϕ is increasing, that is, ϕ(t0 + t1) − ϕ(t0) ≥ 0 for all t1 ≥ 0 and all
t0 ∈ [−∞,∞).

The distribution function ϕξ determines the distribution Pξ uniquely. For
any function ϕ satisfying (a), (b), (c), there exists a random variable with
distribution function ϕ.

A tool with analogous properties exists in the theory of random closed
sets.
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Definition 2.1.3. The capacity functional TZ of the random closed set Z
is defined by

TZ(C) := PZ(FC) = P(Z ∩ C �= ∅) for C ∈ C.

The following theorem shows that the capacity functional has properties
corresponding to the properties (a), (b), (c) of a distribution function. We
denote by Ai ↓ A the monotone convergence of sets Ai to A; this means
that Ai+1 ⊂ Ai for i ∈ N and

⋂
i∈NAi = A. Similarly, Ai ↑ A means that

Ai+1 ⊃ Ai for i ∈ N and
⋃

i∈NAi = A. If a function T : C → R is given, we
define

S0(C) := 1− T (C) for C ∈ C
and then, by recurrence,

Sk(C0;C1, . . . , Ck) := Sk−1(C0;C1, . . . , Ck−1)− Sk−1(C0 ∪ Ck;C1, . . . , Ck−1)

for C0, C1, . . . , Ck ∈ C and k ∈ N. It should be kept in mind that Sk depends
on T , although the notation does not reveal this.

Theorem 2.1.2. The capacity functional T = TZ of a random closed set Z
has the following properties:

(a) 0 ≤ T ≤ 1, T (∅) = 0,
(b) if Ci, C ∈ C and Ci ↓ C, then T (Ci)→ T (C),
(c) Sk(C0;C1, . . . , Ck) ≥ 0 for C0, C1, . . . , Ck ∈ C and k ∈ N0.

Proof. Assertion (a) follows immediately from the definition.
(b) If Ci ↓ C, then the sequence (FCi

)i∈N is decreasing, and FC ⊂⋂
i∈N FCi

. We show that FCi
↓ FC . Let F ∈

⋂
i∈N FCi

, then F ∩ Ci �= ∅
for all i ∈ N. From

⋂
i∈N Ci = C and the intersection property of compact

sets it follows that F ∩ C =
⋂

i∈N(F ∩ Ci) �= ∅. Hence, F ∈ FC and thus⋂
i∈N FCi

= FC . Assertion (b) now follows from the fact that the probability
measure PZ is continuous from above.

(c) Clearly, S0 ≥ 0. Using the relation

F C0
C1,...,Ck

= F C0
C1,...,Ck−1

\ F C0∪Ck

C1,...,Ck−1
, (2.1)

one shows by induction with respect to k that

Sk(C0;C1, . . . , Ck) = PZ(F C0
C1,...,Ck

), k ∈ N. (2.2)

The assertion follows. ��

A real function T on C satisfying (a) and (b) of Theorem 2.1.2 is called
a Choquet capacity. (The reason for this terminology comes from the fact
that T can be extended to a set function on the power set P(E) of E which
has the properties of a capacity; see Choquet [174].) A Choquet capacity
satisfying (c) is called alternating of infinite order. The distribution of a
random closed set is uniquely determined by its capacity functional.



22 2 Random Closed Sets

Theorem 2.1.3. If Z,Z ′ are random closed sets with TZ = TZ′ , then Z D= Z ′.

Proof. The equality TZ = TZ′ means that PZ(F C) = 1 − PZ(FC) = 1 −
PZ′(FC) = PZ′(F C). Since the system {F C : C ∈ C} is ∩-stable and by
Lemma 2.1.1 generates the σ-algebra B(F), the assertion follows from a well-
known uniqueness theorem of measure theory. ��

Notes for Section 2.1

1. Random sets were systematically developed by Matheron [459, 460] and D.G.
Kendall [395]. Important fundamental ideas can already be found in Choquet’s [173]
theory of capacities. The introduction given in this chapter is essentially based on
Matheron’s seminal book [462].

2. General introductions to the theory of random closed sets are found in the mono-
graphs by Molchanov [548] and by Nguyen [583]. As the reader is advised to consult
these volumes, the section notes in this chapter will be very brief.

3. Several different aspects of the theory of random sets are described in the surveys
[542, 547] of Molchanov. The volumes edited by Jeulin [384] and by Goutsias, Mahler
and Nguyen [284] contain various contributions to theory and applications of random
sets.

2.2 Characterization of Capacity Functionals

The capacity functional T = TZ of a random closed set Z has the properties
listed in Theorem 2.1.2. These properties of a function T on the system C of
compact sets are also sufficient for T to be the capacity functional of a random
closed set. This result is known as Choquet’s Theorem.

Theorem 2.2.1 (Theorem of Choquet). Let T : C → R be a function
with the following properties:

(a) 0 ≤ T ≤ 1, T (∅) = 0,
(b) if Ci, C ∈ C and Ci ↓ C, then T (Ci)→ T (C),
(c) Sk(C0;C1, . . . , Ck) ≥ 0 for C0, C1, . . . , Ck ∈ C and k ∈ N0.

Then there exists a uniquely determined probability measure P on F with

T (C) = P(FC)

for all C ∈ C.

Consequently, the function T is the capacity functional of a random closed
set Z. For example, one can take for Z the identical map on the probability
space (F ,B(F),P).

The stated uniqueness is clear from Theorem 2.1.3. For the existence, we
shall present a proof due to Matheron [462], with a simplification taken from
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Salinetti and Wets [655]. The proof is not short, but we want to give a complete
and comprehensible presentation, not presupposing more than first principles
from probability theory.

The basic idea of the proof is to define a function P on the set system

A := {F C0
C1,...,Ck

: Ci ∈ C, k ∈ N0}

by means of

P(F C0
C1,...,Ck

) := Sk(C0;C1, . . . , Ck), Ci ∈ C.

Since the sets C0, C1, . . . , Ck are not uniquely determined by F C0
C1,...,Ck

, it must
be shown that this definition is unambiguous. It is then possible to prove that
A is a semialgebra generating B(F) and that P is σ-additive on A. By the
measure extension theorem, P can be extended to a probability measure on
B(F). This probability measure satisfies P(FC) = T (C) for all C ∈ C.

The first part of the proof (consisting of three lemmas) is combinatorial in
nature and does not use topological properties; therefore, we formulate it for a
general set system with appropriate properties. Let V ⊂ P(E) be a nonempty,
∪-stable system of subsets of E, and let T : V → R be an arbitrary function.
Then we define

S0(V ) := 1− T (V ) for V ∈ V

and, recursively,

Sk(V0;V1, . . . , Vk) := Sk−1(V0;V1, . . . , Vk−1)− Sk−1(V0 ∪ Vk;V1, . . . , Vk−1)

for k ∈ N and Vi ∈ V. It will be clear from the context from which function T
the functions Sk are derived. Explicitly, for k ≥ 1, Sk is given by

Sk(V0;V1, . . . , Vk) =
k∑

r=0

(−1)r−1
∑

1≤i1<...<ir≤k

T (V0 ∪ Vi1 ∪ . . . ∪ Vir
), (2.3)

as follows by induction. For r = 0, the inner sum has to be read as T (V0). In
the following, we assume that a system V as above is given. Sets V, Vi,W,Wi

appearing below are always elements of V.

Lemma 2.2.1. If ∅ �= FV
V1,...,Vm

⊂ FW
W1,...,Wk

, then

(a)W ⊂ V ,
(b) to each i ∈ {1, . . . , k} there exists j(i) ∈ {1, . . . ,m} with Vj(i) ⊂Wi ∪ V .

Proof. Suppose (a) were false. Then there is x ∈ W ∩ V c. Since FV
V1,...,Vm

�=
∅, to each i ∈ {1, . . . ,m} there is xi ∈ Vi ∩ V c. Then {x, x1, . . . , xm} ∈
FV

V1,...,Vm
⊂ FW

W1,...,Wk
and thus {x, x1, . . . , xm} ∩W = ∅, which contradicts

x ∈W .
Suppose (b) were false. Then there exists i ∈ {1, . . . , k} with
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Vj �⊂Wi ∪ V for j = 1, . . . ,m.

Hence, to each j ∈ {1, . . . ,m} there is xj ∈ Vj ∩ W c
i ∩ V c, and it follows

that {x1, . . . , xm} ∈ FV
V1,...,Vm

⊂ FW
W1,...,Wk

, hence {x1, . . . , xm} ∩Wi �= ∅, a
contradiction. ��

We recall that a semialgebra in F is a set system A ⊂ P(F) with the
following properties:

(a) ∅ ∈ A, F ∈ A,
(b) A is ∩-stable,
(c) for every A ∈ A, the complement Ac is the union of a finite family of

pairwise disjoint sets from A.

With the system V ⊂ P(E) as given above, we define

A := {FV
V1,...,Vk

: V, V1, . . . , Vk ∈ V, k ∈ N0}. (2.4)

The representation
A = FV

V1,...,Vk

of an element A ∈ A with k ∈ N0 and V, V1, . . . , Vk ∈ V is called reduced if

Vi �⊂ Vj ∪ V for i, j ∈ {1, . . . , k} with i �= j.

The following lemma provides the main structural information about the
set system A.

Lemma 2.2.2. Let ∅ ∈ V ⊂ P(E) be ∪-stable and let A be defined by (2.4).

(a) A is a semialgebra in F .
(b)Every A ∈ A has a reduced representation.
(c) If

A = FV
V1,...,Vm

= FW
W1,...,Wk

are two reduced representations of an element A ∈ A \ {∅}, then V = W ,
m = k and

Vi ∪ V = Wπ(i) ∪ V for i = 1, . . . ,m

with a permutation π of {1, . . . ,m}.
(d) If A,B ∈ A and A ⊂ B, there are elements D0, D1, . . . , Dr ∈ A with

A = D0 ⊂ D1 ⊂ . . . ⊂ Dr = B

and Di \Di−1 ∈ A for i = 1, . . . , r.

Proof. (a) From ∅ ∈ V it follows that ∅ = F ∅
∅ ∈ A and F = F ∅ ∈ A. Since

FV
V1,...,Vm

∩ FW
W1,...,Wk

= FV ∪W
V1,...,Vm,W1,...,Wk
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and V ∪W ∈ V for V,W ∈ V, the system A is closed under finite intersections.
The complement of A = FV

V1,...,Vm
∈ A can be written in the form

Ac = F ∅
V ∪ FV ∪V1 ∪ FV ∪V2

V1
∪ FV ∪V3

V1,V2
∪ . . . ∪ FV ∪Vm

V1,...,Vm−1
,

where the right side is a disjoint union of elements of A. Thus, A is a semial-
gebra.

(b) Let A = FV
V1,...,Vm

. If there are indices i �= j with Vi ⊂ Vj ∪ V , then

FV
V1,...,Vm

= FV
V1,...,Vj−1,Vj+1,...,Vm

.

In fact, if F ∈ FV
V1,...,Vj−1,Vj+1,...,Vm

, then F ∩ Vi �= ∅ and F ∩ V = ∅, hence
F ∩ Vj �= ∅ and, therefore, F ∈ FV

V1,...,Vm
. The converse inclusion is trivial.

Hence, Vj can be deleted in the representation of A. Repeating this procedure,
we finally obtain a reduced representation.

(c) Suppose that
A = FV

V1,...,Vm
= FW

W1,...,Wk

are two reduced representations of some A ∈ A \ {∅}. Lemma 2.2.1 yields
V = W and, if k ≥ 1, the existence of an index j(1) ∈ {1, . . . ,m} with
Vj(1) ⊂W1∪V . By the same argument (interchanging the two representations
and replacing the index 1 by j(1)), there is an index i(1) ∈ {1, . . . , k} with

Wi(1) ⊂ Vj(1) ∪W = Vj(1) ∪ V.

Since Wi(1) ⊂ Vj(1) ∪ V ⊂ W1 ∪ V = W1 ∪W and the representations are
reduced, we conclude that i(1) = 1. Thus, Vj(1) ∪ V = W1 ∪ V . Repeating
the procedure with each of the sets W2, . . . ,Wk (and observing, for example,
that W2 ∪ V �= W1 ∪ V since the representations are reduced and V = W ),
we deduce the truth of (c).

(d) Let A,B ∈ A be elements with A ⊂ B, say

∅ �= A = FV
V1,...,Vm

⊂ FW
W1,...,Wk

= B

(the case A = ∅ is trivial). By Lemma 2.2.1,W ⊂ V , and to each i ∈ {1, . . . , k}
there is j(i) ∈ {1, . . . ,m} with

Vj(i) ⊂Wi ∪ V. (2.5)

Renumbering V1, . . . , Vm, we may assume that

{j(1), . . . , j(k)} = {1, . . . , p}

with p ∈ {1, . . . ,m}. For q ∈ {1, . . . , p}, let W (q) be the tuple of the Wi

for which j(i) = q. Then (with FV
W (1),V2,...,Vp

:= FV
W1,...,Ws,V2,...,Vp

if W (1) =
(W1, . . . ,Ws), etc.),
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FV
V1,...,Vm

⊂ FV
V1,...,Vp,Vp+2,...,Vm

⊂ FV
V1,...,Vp,Vp+3,...,Vm

⊂ . . . ⊂ FV
V1,...,Vp

⊂ FV
W (1),V2,...,Vp

⊂ FV
W (1),W (2),V3,...,Vp

⊂ . . . ⊂ FV
W (1),...,W (p)

= FV
W1,...,Wk

⊂ FW
W1,...,Wk

.

The inclusions of the first line are trivial; generally

FV
U1,...,Ur

⊂ FV
U1,...,Ur−1

and
FV

U1,...,Ur−1
\ FV

U1,...,Ur
= FV ∪Ur

U1,...,Ur−1
∈ A

for V,U1, . . . , Ur ∈ V. To prove the inclusion

FV
V1,...,Vp

⊂ FV
W (1),V2,...,Vp

connecting the first and the second line, we may assume, after renumbering,
that W (1) = (W1, . . . ,Ws). For F ∈ FV

V1,...,Vp
we have F ∩ V = ∅, F ∩ Vj �= ∅

for j = 1, . . . , p and V1 ⊂Wi ∪ V for i = 1, . . . , s, by (2.5), hence F ∩Wi �= ∅
for i = 1, . . . , s and thus F ∈ FV

W (1),V2,...,Vp
. Moreover,

FV
W (1),V2,...,Vp

\ FV
V1,...,Vp

= FV ∪V1
W (1),V2,...,Vp

∈ A.

In the same way, the corresponding relations for the second line are obtained.
The inclusion of the third line follows from W ⊂ V , and we have

FW
W1,...,Wk

\ FV
W1,...,Wk

= FW
W1,...,Wk,V ∈ A.

This completes the proof of Lemma 2.2.2. ��

As a first step towards the existence proof for the probability measure P,
we construct a finitely additive function on the semialgebra A.

Lemma 2.2.3. Let T : V → R be a function satisfying T (∅) = 0 and

Sk(V ;V1, . . . , Vk) ≥ 0

for all k ∈ N0 and all V, V1, . . . , Vk ∈ V. Then there is a finitely additive
function P : A→ [0, 1] with

P
(
FV

V1,...,Vk

)
= Sk(V ;V1, . . . , Vk)

for V, V1, . . . , Vk ∈ V and k ∈ N0. In particular, P(∅) = 0, P(F) = 1, and
P(FV ) = T (V ).

This lemma is a consequence of Propositions 2.2.1 and 2.2.2 below. The
first of them removes the ambiguity in the definition of P.
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Proposition 2.2.1. If FV
V1,...,Vm

= FW
W1,...,Wk

=: A �= ∅, then

Sm(V ;V1, . . . , Vm) = Sk(W ;W1, . . . ,Wk).

Proof. We show that the value of Sm(V ;V1, . . . , Vm) does not change un-
der a stepwise reduction of the representation FV

V1,...,Vm
as performed in

the proof of Lemma 2.2.2. For example, suppose that V1 ⊂ Vm ∪ V . Then
A = FV

V1,...,Vm−1
. Generally, an inclusion Vi ⊂ V0 for some i ∈ {1, . . . , n}

implies Sn(V0;V1, . . . , Vn) = 0. In fact, since Sn is symmetric in its last n
arguments, we can assume i = n and then obtain

Sn(V0;V1, . . . , Vn) = Sn−1(V0;V1, . . . , Vn−1)−Sn−1(V0∪Vn;V1, . . . , Vn−1) = 0.

Hence, in our case we have

Sm−1(V ∪ Vm;V1, . . . , Vm−1) = 0

and, therefore,

Sm(V ;V1, . . . , Vm) = Sm−1(V ;V1, . . . , Vm−1).

This shows that the value of Sm(V ;V1, . . . , Vm) does not change under step-
wise reduction. We may, therefore, assume that the two given representations
of A are already reduced. Then, by Lemma 2.2.2, V = W ,m = k, and without
loss of generality (that is, after a permutation of indices, by which the value
of Sm(V ;V1, . . . , Vm) is not changed) Vi ∪ V = Wi ∪ V for i = 1, . . . ,m. Now
the relation

Sm(V ;V1, . . . , Vm) = Sm(V ;V ∪ V1, . . . , V ∪ Vm),

which follows from (2.3), yields the truth of Proposition 2.2.1. ��

Under the assumptions of Lemma 2.2.3, it is now possible to define

P
(
FV

V1,...,Vm

)
:= Sm(V ;V1, . . . , Vm) for m ∈ N0, V, Vi ∈ V.

Then P ≥ 0. The recursion formula for Sm and the assumption Sm ≥ 0 yield

P
(
FV

V1,...,Vm

)
= Sm(V ;V1, . . . , Vm) ≤ Sm−1(V ;V1, . . . , Vm−1)

≤ . . . ≤ S0(V ) = 1− T (V ) = 1− S1(∅;V ) ≤ 1.

Thus P maps A into [0, 1]. Moreover, P(∅) = P(F ∅
∅ ) = S1(∅; ∅) = 0, P(F) =

P(F ∅) = S0(∅) = 1− T (∅) = 1, and P(FV ) = P(F ∅
V ) = S1(∅;V ) = T (V ).

Proposition 2.2.2. P is finitely additive on A.
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Proof. We have to show that

P(A1 ∪ . . . ∪Ar) =
r∑

i=1

P(Ai) (2.6)

whenever r ≥ 2 and A1, . . . , Ar ∈ A are pairwise disjoint elements with
A1 ∪ . . . ∪Ar ∈ A. First we consider the case r = 2.

Let A,B ∈ A \ {∅} be elements with representations

A = FV
V1,...,Vm

, B = FW
W1,...,Wk

and satisfying A ∩B = ∅ and A ∪B ∈ A.
Suppose first that m = 0, say, so that A = FV . Then ∅ ∈ A ⊂ A ∪ B,

hence A ∪B = FU with some U ∈ V. It follows that

A = (A ∪B) ∩ FV = FU∪V ,

B = (A ∪B) ∩ FV = FU
V

and, therefore,

P(A) + P(B) = P(FU∪V ) + P(FU
V )

= S0(U ∪ V ) + S0(U)− S0(U ∪ V )

= P(FU )

= P(A ∪B).

Hence, we can now assume that m, k ≥ 1 and, therefore, ∅ /∈ A ∪B.
Because of A ∪B ∈ A, there is a representation

A ∪B = FU
U1,...,Up

with U,U1, . . . , Up ∈ V, and ∅ /∈ A ∪ B implies that p ≥ 1. By Lemma 2.2.1,
U ⊂ V and U ⊂W , thus

U ⊂ V ∩W. (2.7)

We assert that
V ⊂ U or W ⊂ U. (2.8)

Suppose this were false. Then there are points x ∈ V ∩ U c and y ∈ W ∩ U c.
Since A ∪ B �= ∅, we can choose points zi ∈ Ui ∩ U c for i = 1, . . . , p. Then
{x, y, z1, . . . , zp} ∈ FU

U1,...,Up
= A ∪B = FV

V1,...,Vm
∪ FW

W1,...,Wk
. Since {x, y} ∩

V �= ∅ and {x, y} ∩ W �= ∅, this is a contradiction. Thus (2.8) holds, say
V ⊂ U . Then (2.7) implies V = U and

V ⊂W. (2.9)

By assumption,
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FV ∪W
V1,...,Vm,W1,...,Wk

= A ∩B = ∅.

This implies Vi ⊂ V ∪W for some i ∈ {1, . . . ,m} or Wj ⊂ V ∪W for some
j ∈ {1, . . . , k}. The second case would imply Wj ⊂ W by (2.9) and thus
B = ∅, a contradiction. Hence, Vi ⊂ V ∪W for some i and thus

Vi ⊂W. (2.10)

Now let F ∈ A ∪B. If F ∈ FVi
, then F ∩W �= ∅ by (2.10), hence F /∈ B and

thus F ∈ A. If, on the other hand, F ∈ FVi , then F /∈ A, hence F ∈ B. This
shows that

A = (A ∪B) ∩ FVi
= FV

U1,...,Up,Vi
,

B = (A ∪B) ∩ FVi = FV ∪Vi

U1,...,Up
.

Observing that U = V , we conclude that

P(A ∪B) = P

(
FV

U1,...,Up

)
= Sp(V ;U1, . . . , Up)

= Sp+1(V ;U1, . . . , Up, Vi) + Sp(V ∪ Vi;U1, . . . , Up)

= P

(
FV

U1,...,Up,Vi

)
+ P

(
FV ∪Vi

U1,...,Up

)
= P(A) + P(B),

which establishes (2.6) for r = 2.
The case r = 2 does not trivially imply the general case of (2.6), since

A is merely a semialgebra. To obtain the general case and thus establish
finite additivity, we observe that assertion (d) of Lemma 2.2.2 shows that the
semialgebra A is also a semiring (in the sense of Halmos [318, p. 22]). That P

satisfies (2.6) for all r ≥ 2, now follows from [318, pp. 31–32]. ��

Proof of Theorem 2.2.1. We apply Lemma 2.2.3 to the function T of Theo-
rem 2.2.1 and the system V = C. The subsequent steps serve the purpose of
extending the finitely additive function P on the semialgebra

A := {F C0
C1,...,Ck

: Ci ∈ C, k ∈ N0}

to a probability measure on B(F).
Let A• be the algebra in F generated by A. Then A• consists of all finite

unions of pairwise disjoint elements of A, and the unique additive extension
of P to A• is given by

P(A) =
m∑

i=1

P(Ai)
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if A = A1 ∪ . . . ∪Am and A1, . . . , Am are pairwise disjoint elements of A (see
Neveu [581, Proposition I.6.1]).

We state the following approximation property: for every A ∈ A• and every
ε > 0 there exist a set A0 ∈ A• and a compact set B ⊂ F such that

A0 ⊂ B ⊂ A (2.11)

and
P(A \A0) < ε. (2.12)

Since every element of A• is a finite union of pairwise disjoint elements of A, it
suffices to prove this for A ∈ A, say A = F C0

C1,...,Ck
with Ci ∈ C. We can choose

a sequence (Gi)i∈N of open, relatively compact sets in E with clGi+1 ⊂ Gi

and Gi ↓ C0 (by Theorem 12.1.1). Then

F cl Gi

C1,...,Ck
⊂ F Gi

C1,...,Ck
⊂ F C0

C1,...,Ck
.

The sets F Gi

C1,...,Ck
are closed and hence compact, since F is compact. From

clGi ↓ C0 and condition (b) of Theorem 2.2.1 we have T (clGi)→ T (C0). The
function T is isotone, since C ⊂ C ′ implies 0 ≤ S1(C;C ′) = −T (C) + T (C ∪
C ′), hence T (C) ≤ T (C ′). It follows that T (clGi) ↓ T (C0) and hence that
P(F cl Gi) ↑ P(F C0), thus

lim
i→∞

P(F cl Gi

C1,...,Ck
) = P(F C0

C1,...,Ck
).

Therefore, for given ε > 0, there exists a number j ∈ N with

P(F C0
C1,...,Ck

) < P(F cl Gj

C1,...,Ck
) + ε.

The sets A0 := F cl Gj

C1,...,Ck
and B := F Gj

C1,...,Ck
satisfy (2.11) and (2.12).

Now let (Ai)i∈N be a sequence in A• with Ai ↓ ∅, and let ε > 0. To each
i ∈ N, we can choose a set A0

i ∈ A• and a compact set Bi ⊂ F such that

A0
i ⊂ Bi ⊂ Ai (2.13)

and
P(Ai \A0

i ) < ε2
−i. (2.14)

From
⋂

i∈NAi = ∅ and (2.13) we have
⋂

i∈NBi = ∅. The finite intersec-
tion property of compact sets yields the existence of a number m ∈ N with⋂m

i=1Bi = ∅, and (2.13) gives
⋂m

i=1A
0
i = ∅. Since the Ai are decreasing, for

j ≥ m we have
Aj =

⋂
i≤j

Ai ⊂
⋃
i≤j

(Ai \A0
i ).

This yields
P(Aj) ≤

∑
i≤j

P(Ai \A0
i ) < ε
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by (2.14). Since ε > 0 was arbitrary, we get

lim
i→∞

P(Ai) = 0.

Thus, P is ∅-continuous, which implies that P is σ-additive on A•.
By the measure extension theorem, P has an extension to a measure on

the σ-algebra generated by A•, namely B(F). ��

Notes for Section 2.2

1. We have presented here an elaborate version of Matheron’s proof for Choquet’s
Theorem (Theorem 2.2.1, with an alternate proof for the σ-additivity taken from
Salinetti and Wets [655]), in a form we found suitable for class room use. One reason
for the choice of this proof was the fact that it requires only basic measure theory
and does not need tools from functional analysis. Several proofs in the literature are
seemingly much shorter, but we found them either less elementary or less detailed.

2. Choquet’s [173] original proof of Theorem 2.2.1 used Choquet’s functional-
analytic generalization of the theorem of Krein–Milman. For further proofs, we refer
to Berg, Christensen and Ressel [91, Th. 6.19], Norberg [586], Kallenberg [386, Th.
24.22], Molchanov [548, ch. 1, sect. 1]. An extension of Choquet’s theorem to spaces
without a countable base is due to Ross [648].

Kallenberg’s proof uses the following basic idea (adjusted to our notation). Let
C1, C2, . . . be a sequence of compact sets such that, for each pair C ∈ C, G ∈ G with
C ⊂ G there is an i ∈ N with C ⊂ Ci ⊂ G (such a sequence exists by Theorem
12.1.1). Let Cn be the collection of finite unions of the sets C1, . . . , Cn, n ∈ N.
By induction on n, one can show that, for each functional Tn on Cn satisfying
conditions (a), (b), (c) of Theorem 2.2.1 (on Cn), there exists a locally finite random
set Zn (a simple point process in the terminology of the next chapter) such that the
distribution Pn of Zn satisfies

Pn(FC) = Tn(C)

for all C ∈ Cn. Choose Tn to be the restriction of T to Cn. Since F is compact,
the space M1(F) of probability measures on F is weakly compact. Hence there is
a subsequence Pi1 , Pi2 , . . . that converges weakly to a probability measure P on F .
This measure satisfies

P(FC) = T (C)

for all C ∈ ⋃∞
n=1 Cn, but then also for all C ∈ C.

3. For simple point processes, a characterization of the capacity functional was also
obtained by Kurtz [430].

2.3 Some Consequences of Choquet’s Theorem

In order to construct a random closed set in E, it may in some cases be
possible first to define it locally, that is, in compact subsets of E, and then
to extend the definition through a sequence of compact sets covering E. This
works if suitable compatibility assumptions are satisfied.
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Theorem 2.3.1. Let (Zi)i∈N be a sequence of random closed sets in E with
the following property. There is a sequence (Gi)i∈N of open, relatively compact
sets in E with clGi ⊂ Gi+1 for i ∈ N and Gi ↑ E such that

Zm ∩ clGi
D= Zi for m > i

(that is, Zm ∩ clGi and Zi are stochastically equivalent). Then there exists a
random closed set Z in E with

Z ∩ clGi
D= Zi for i ∈ N.

Proof. Let Ti be the capacity functional of Zi. For given C ∈ C there exists
i ∈ N with C ⊂ clGi. For m > i we then have

Ti(C) = P(Zi ∩ C �= ∅)
= P(Zm ∩ clGi ∩ C �= ∅)
= Tm(clGi ∩ C)

= Tm(C).

Therefore, it is possible to define T (C) := Ti(C). The obtained function T on
C satisfies 0 ≤ T ≤ 1 and T (∅) = 0. If Cj ↓ C in C, then there exists m ∈ N

with Cj , C ⊂ Gm for all j ∈ N, hence T (Cj) = Tm(Cj) and T (C) = Tm(C),
which yields T (Cj)→ T (C). Similarly one shows that Sk(C;C1, . . . , Ck) ≥ 0
for k ∈ N0 and C,C1, . . . , Ck ∈ C. By Theorem 2.2.1, there exists a random
closed set Z in E with capacity functional T .

Let i ∈ N. For C ∈ C and m > i, we have

TZ∩cl Gi
(C) = P(Z ∩ clGi ∩ C �= ∅)

= T (clGi ∩ C)

= Tm(clGi ∩ C)

= Ti(C).

Thus, Z ∩ clGi and Zi have the same capacity functional and, therefore, by
Theorem 2.1.3, also the same distribution. ��

In the following, we consider (Borel) measures on F ′ = F \ {∅}, the space
of nonempty closed subsets of E. The space F ′ (with the trace topology) is
locally compact. A measure µ on F ′ is called locally finite if it is finite on
compact sets.

Lemma 2.3.1. The measure µ on F ′ is locally finite if and only if

µ(FC) <∞ for all C ∈ C.

A locally finite measure µ on F ′ is uniquely determined by its values on the
system {FC : C ∈ C}.
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Proof. Since {F C : C ∈ C} is a neighborhood base of ∅ in F , every compact
subset of F ′ is contained in some FC , C ∈ C, and every such set FC is compact.
This yields the first assertion.

If µ is a locally finite measure on F ′ and if C0, C1, . . . , Ck ∈ C, k ∈ N, then

µ
(
F C0

C1,...,Ck

)
=

k∑
r=0

(−1)r−1
∑

1≤i1<...<ir≤k

µ(FC0∪Ci1∪...∪Cir
).

For k = 1, this follows from F C0
C1

= FC0∪C1 \ FC0 , and the general case is
obtained by induction, using (2.1). Hence, the values of µ on {FC : C ∈
C} determine its values on the system {FC1,...,Ck

: C1, . . . , Ck ∈ C, k ∈ N}.
The latter is a ∩-stable generating system of the σ-algebra B(F ′), hence µ is
uniquely determined. ��

By Theorem 12.1.1, there exists a sequence (Ci)i∈N of compact sets with
Ci ↑ E, hence with FCi

↑ F ′. Therefore, every locally finite measure on F ′ is
σ-finite.

For later application, we extend Theorem 2.2.1 to functions T not neces-
sarily satisfying T ≤ 1. Instead of a probability measure, we then obtain a
locally finite measure.

Theorem 2.3.2. Let T : C → R be a function with the following properties:

(a) T ≥ 0, T (∅) = 0,
(b) if Ci ↓ C for Ci, C ∈ C, then T (Ci)→ T (C),
(c) Sk(C0;C1, . . . , Ck) ≥ 0 for all Ci ∈ C and all k ∈ N.

Then there exists a uniquely determined locally finite measure Θ on F ′ with

T (C) = Θ(FC) for all C ∈ C. (2.15)

Proof. The case k = 1 in (c) shows that T is isotone. By Theorem 12.1.1,
there is a sequence (Km)m∈N of compact sets in E such that Km ⊂ intKm+1

for m ∈ N and Km ↑ E. If T (C) = 0 for all C ∈ C, then Θ = 0 is the required
measure. Therefore, we can assume T (Km) > 0 for all m. We define

T (m)(C) := T (Km)−1[T (C) + T (Km)− T (C ∪Km)] for C ∈ C.

From S2(∅;C,Km) ≥ 0 and the isotony of T it follows that 0 ≤ T (m) ≤ 1;
moreover, T (m)(∅) = 0. If Ci ↓ C in C, then T (m)(Ci) → T (m)(C). Let S(m)

k

denote the function derived from T (m) in the same way as Sk is derived from
T . Then

S
(m)
k (C0;C1, . . . , Ck) = T (Km)−1Sk+1(C0;Km, C1, . . . , Ck) (2.16)

for Ci ∈ C, as can be seen by induction. Thus T (m) satisfies the assump-
tions of Theorem 2.2.1. By that theorem, there exists a uniquely determined
probability measure P(m) on F with
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P(m)(FC) = T (m)(C) for C ∈ C.

The finite measure Θ(m) := T (Km)P(m) satisfies

Θ(m)(FC) = T (C) + T (Km)− T (C ∪Km) for C ∈ C.

For C ∈ C we get, from (2.2) and (2.16),(
Θ(m+1) FKm

)
(FC) = Θ(m+1)(FC ∩ FKm

)

= T (Km+1)P(m+1)
(
F ∅

C,Km

)
= T (Km+1)S

(m+1)
2 (∅;C,Km)

= S3(∅;Km+1, C,Km)

= T (C) + T (Km)− T (C ∪Km)

= Θ(m)(FC).

By the second assertion of Lemma 2.3.1, Θ(m+1) FKm
= Θ(m). Since Km ↑

E implies FKm
↑ F ′, we can define

Θ(A) := lim
m→∞

Θ(m)(A) for A ∈ B(F ′).

Then Θ ≥ 0 and Θ(∅) = 0. Being a monotone limit of measures, Θ is σ-
additive: for a disjoint sequence (Ai)i∈N in B(F ′) we have

Θ

(⋃
i∈N

Ai

)
= lim

m→∞
Θ(m)

(⋃
i∈N

Ai

)
= lim

m→∞

∑
i∈N

Θ(m)(Ai)

=
∑
i∈N

lim
m→∞

Θ(m)(Ai) =
∑
i∈N

Θ(Ai)

by the theorem of monotone convergence (applied to the counting measure on
N).

For given C ∈ C, there is m ∈ N with C ⊂ Km and thus FC ⊂ FKm
. It

follows that

Θ(FC) = Θ(m)(FC) = T (C) + T (Km)− T (C ∪Km) = T (C).

Thus, (2.15) is satisfied and Θ is locally finite. The uniqueness is clear by
Lemma 2.3.1. ��

Infinitely Divisible Random Sets

We turn our attention to an interesting special class of random closed sets,
which we shall later come across again in a different context. In probabil-
ity theory, when studying limit distributions of sums of independent random
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variables, one is led to infinitely divisible distributions. The prominent role of
Poisson and normal distributions can then be explained by the representation
of infinitely divisible distributions as compositions of normal and (general-
ized) Poisson distributions (see, for example, Araujo and Giné [37, p. 68]). A
comparable phenomenon exists for random closed sets, with sums replaced by
unions.

Definition 2.3.1. A random closed set Z in E is called infinitely divisible
if to each m ∈ N there are independent, identically distributed random closed
sets Z1, . . . , Zm such that

Z
D= Z1 ∪ . . . ∪ Zm.

The point x ∈ E is called a fixed point of the random closed set Z if
P(x ∈ Z) = 1.

Let (xi)i∈N be a sequence of fixed points of Z with xi → x. For m ∈ N,
the set Cm := cl {xi : i ≥ m} is compact and satisfies TZ(Cm) = 1. Since
Cm ↓ {x}, we conclude that TZ({x}) = 1, hence x is a fixed point. Thus the
set of fixed points of Z is closed. For that reason we can, if Z is a random
closed set with fixed point set F �= E, replace E by the locally compact space
E ∩ F c and replace Z by Z ∩ F c, which is a random closed set in E ∩ F c.
Therefore, it is no restriction to assume in the following that Z has no fixed
points.

Lemma 2.3.2. Let Z be a random closed set in E.

(a) Z is infinitely divisible if and only if for each m ∈ N the function

T (m) := 1− (1− TZ)1/m

is an alternating Choquet capacity of infinite order.
(b) If Z is infinitely divisible and has no fixed points, then

P(Z ∩ C �= ∅) = TZ(C) < 1 for C ∈ C.

Proof. (a) If Z is infinitely divisible, then to each m ∈ N there exist in-
dependent, identically distributed random closed sets Z1, . . . , Zm with Z D=
Z1 ∪ . . . ∪ Zm. For C ∈ C it follows that

1− TZ(C) = 1− TZ1∪...∪Zm
(C)

= P(Z1 ∩ C = ∅, . . . , Zm ∩ C = ∅)
= P(Z1 ∩ C = ∅)m

= (1− TZ1(C))m,

thus TZ1 = 1−(1−TZ)1/m = T (m). Therefore, T (m) has the properties (a), (b),
(c) of Theorems 2.1.2 and 2.2.1, that is, it is an alternating Choquet capacity
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of infinite order. Conversely, if this is satisfied, then Theorem 2.2.1 ensures
the existence of a random closed set Z(m) with capacity functional T (m).
Let Z1, . . . , Zm be independent copies of Z(m). As just shown, TZ1∪...∪Zm

=
1− (1−T (m))m, hence TZ1∪...∪Zm

= TZ , which implies Z1 ∪ . . .∪Zm
D= Z, by

Theorem 2.1.3.
(b) Let Z be infinitely divisible and without fixed points. Assume to the

contrary that there exists a set C ∈ C with TZ(C) = 1. The system T :=
{C ′ ∈ C : C ′ ⊂ C, TZ(C ′) = 1} is ordered by inclusion. Let S ⊂ T be a
linearly ordered subset, and put CS :=

⋂
C′∈S C

′. In the space F(E), CS is
an accumulation point of S and thus the limit of a sequence in S. Hence, there
exists a sequence (Ci)i∈N in S with Ci ↓ C. This yields TZ(Ci) → TZ(CS).
Thus S has a lower bound in T . By Zorn’s lemma, there exists a minimal
element C0 ∈ T , and C0 �= ∅ because of TZ(C0) = 1. Since Z has no fixed
points, C0 must contain more than one point. By Theorem 12.1.1, there exist
sets C1, C2 ∈ C with C1, C2 /∈ {∅, C0} and C0 = C1 ∪C2. Since C0 is minimal,
we must have TZ(C1) < 1 and TZ(C2) < 1.

Since Z is infinitely divisible, by (a) there exists for each m ∈ N a random
closed set Z(m) with capacity functional T (m) = 1 − (1 − TZ)1/m. Also T (m)

satisfies T (m)(C0) = 1 and T (m)(C1) < 1, T (m)(C2) < 1. From

PZ(m)(F C1 ∩ F C2) = PZ(m)(F C1∪C2) = PZ(m)(F C0) = 1− TZ(m)(C0) = 0

we get

PZ(m)(F C1 ∪ F C2) = PZ(m)(F C1) + PZ(m)(F C2)

= (1− TZ(m)(C1)) + (1− TZ(m)(C2))

= (1− TZ(C1))1/m + (1− TZ(C2))1/m,

where both summands are positive. For sufficiently large m, this exceeds one,
a contradiction. ��

Now we can give an explicit description of the capacity functional of an
infinitely divisible random closed set without fixed points.

Theorem 2.3.3. If Z is an infinitely divisible random closed set without fixed
points in E, then there exists a locally finite measure Θ on F ′ with

TZ(C) = 1− e−Θ(FC)

for C ∈ C.

Proof. Let Z be infinitely divisible and without fixed points. By Lemma 2.3.2,
T (m) := 1− (1− TZ)1/m is an alternating Choquet capacity of infinite order
(m ∈ N), and we have TZ(C) < 1 for all C ∈ C. We deduce that
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S(C) := lim
m→∞

mT (m)(C)

= lim
m→∞

m
[
1− (1− TZ(C))1/m

]
= − log(1− TZ(C))

< ∞

for all C ∈ C, hence
TZ(C) = 1− e−S(C). (2.17)

We have defined a function S on C which satisfies the conditions for T in
Theorem 2.3.2. In fact, (a) holds by the definition of S, (b) follows from
(2.17), and (c) is obtained by taking the limit m → ∞ in the corresponding
property of T (m). By Theorem 2.3.2 there exists a locally finite measure Θ on
F ′ with Θ(FC) = S(C) for all C ∈ C. This yields

TZ(C) = 1− e−S(C) = 1− e−Θ(FC)

for C ∈ C. ��

The converse of Theorem 2.3.3 is also true. This will be proved later in Sec-
tion 3.6, together with a further characterization of infinitely divisible random
closed sets.

Note for Section 2.3

Infinitely divisible random closed sets referring to the operation of union are further
investigated by Molchanov [543, 548]; he also studies union stable random closed
sets. Random closed sets with values in the space of convex bodies of Rd which are
infinitely divisible with respect to Minkowski addition, are characterized by Giné
and Hahn [262]; a more special result is due to Mase [451].

2.4 Random Closed Sets in Euclidean Space

In this section, the basic space is E = Rd, the d-dimensional Euclidean space.
Random closed sets in Rd show some additional features, due to the character
of Rd as a linear space and a homogeneous space with respect to the group of
isometries.

We begin with a remark on compact sets. The set C of compact subsets of
Rd is often equipped with the Hausdorff metric δ (see Section 12.3), which is
convenient for geometric considerations. By Lemma 2.1.2, C is a Borel subset of
F , with respect to the topology of closed convergence. The following theorem
shows that for the Borel σ-algebras on C it does not matter whether one uses
the topology induced from F or from δ.

Theorem 2.4.1. The trace σ-algebra B(F)C of B(F) on C coincides with the
Borel σ-algebra B(C) of C when C is equipped with the Hausdorff metric.
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Proof. By Theorem 12.3.2, the topology of (C, δ) is finer than the trace topol-
ogy induced from F . This implies B(F)C ⊂ B(C). To show the reverse inclu-
sion, let Uε(C) be a closed ε-neighborhood of C in C′. By Theorem 12.3.2,
Uε(C) is closed in F and hence a Borel set in F , thus Uε(C) ∈ B(F)C . For
C = ∅, we have Uε(C) = {∅} = F Rd ∈ B(F)C . There is a countable system of
such neighborhoods generating the topology of C, for example all Uε(C) where
ε is rational and C is a set of finitely many points with rational coordinates.
It follows that every open set in C belongs to B(F)C . Hence, the Borel sets in
C are also Borel sets in F . ��

For our later investigations, we need further special subsystems of F , whose
elements have simple geometric properties. One of these systems is the set K
of convex bodies (compact convex subsets) of Rd. We emphasize that ∅ ∈ K
in this book, which is convenient, but differs from common usage. We denote
by R the convex ring, whose elements are the finite unions of convex bodies,
also called polyconvex sets. The extended convex ring is the system

S := {F ∈ F : F ∩K ∈ R for all K ∈ K}.

The elements of S are the countable unions of convex bodies with the property
that every compact set hits only finitely many of the bodies. Clearly, K ⊂ R ⊂
S ⊂ F and R ⊂ C ⊂ F , where each inclusion is strict. However, clR = F ; in
fact, every element of F is the limit of a sequence of finite sets.

Theorem 2.4.2. K, R and S are Borel sets in F .

Proof. The set K = {C ∈ C : C = convC} is closed, by the continuity of the
map C �→ convC (Theorem 12.3.5); hence, it is a Borel set in C and thus, by
Theorem 2.4.1, also in F .

For k,m ∈ N let

Rm
k := {K1 ∪ . . . ∪Km : K � Ki ⊂ kBd for i = 1, . . . ,m}.

The set R1
k = K ∩ F (kBd)c

is closed in C and hence, by Theorem 12.3.2, also
in F , thus it is compact. Together with Theorem 12.2.3 and induction, this
yields the compactness of Rm

k . Since

R =
⋃
k∈N

⋃
m∈N

Rm
k ,

R is a Borel set.
The set

Sk := {F ∈ F : F ∩ kBd ∈ R}

is the pre-image of the Borel set R under the map F �→ F ∩ kBd. The latter
is upper semicontinuous by Theorem 12.2.6 and hence measurable. Therefore,
Sk is a Borel set, and since S =

⋂
k∈N Sk, the same holds for S. ��
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Other geometrically defined subsets of F are the Grassmannian G(d, k)
and the affine Grassmannian A(d, k). Both are Borel sets in F , as follows
from Section 13.2.

If a random closed set Z in Rd satisfies Z ∈ C almost surely, we call it
a random compact set. Similarly, random convex bodies, random R-
sets (or random polyconvex sets) and random S-sets are defined. The
random closed set Z is a random k-subspace, respectively a random k-flat,
if its distribution PZ is concentrated on G(d, k), respectively A(d, k).

From the continuity and lower semicontinuity results of Theorem 12.3.1,
the following is deduced.

Theorem 2.4.3. Let Z and Z ′ be random closed sets in Rd. Then also αZ for
α ≥ 0, −Z, cl (Z+Z ′) and cl convZ are random closed sets. If Z is compact,
then convZ and Z + Z ′ are random closed sets.

If Z is a random closed set in Rd and E is a fixed affine subspace of Rd,
then the intersection Z ∩ E is a random closed set (in Rd and in E). Also
every parallel set Z + εBd, ε > 0, is a random closed set.

Now we consider invariance properties for random closed sets in Rd; they
will play an essential role later on.

Definition 2.4.1. The random closed set Z in Rd is called stationary if
Z + t D= Z for all t ∈ Rd. It is called isotropic if ϑZ D= Z for all rotations
ϑ ∈ SOd.

Theorem 2.4.4. A nonempty stationary random closed set Z is a.s. un-
bounded. A stationary convex random closed set attains a.s. only the values ∅
and Rd.

Proof. If Z is a stationary random closed set in Rd, then

cl conv (Z + t) = (cl convZ) + t for t ∈ Rd

shows that also cl convZ is stationary. Therefore, it suffices to prove the second
assertion.

Let Z be a stationary convex random closed set, and assume that P(Z /∈
{∅,Rd}) > 0. Let 0 < α < π/2. For x, y ∈ Rd with y �= 0, let

K(x, y) := {z ∈ Rd : 〈z, y〉 ≥ ‖z‖ cosα}+ x;

this is a convex cone with apex x. We assert that there are rational vectors
x, y ∈ Qd, y �= 0, with

P(∅ �= Z ∩K(x, y) ⊂ x+ ‖y‖Bd) =: p > 0. (2.18)

Suppose this were false. Then



40 2 Random Closed Sets

P

⎛⎝ ⋃
x,y∈Qd, y �=0

{∅ �= Z ∩K(x, y) ⊂ x+ ‖y‖Bd}

⎞⎠ = 0. (2.19)

For every ω ∈ Ω with Z(ω) /∈ {∅,Rd} we have bdZ(ω) �= ∅, hence there are a
point x ∈ bdZ(ω) and a supporting hyperplane H of Z(ω) at x. Let y be an
outer normal vector of H. Then Z(ω) ∩K(x, y) = {x} and hence

∅ �= Z(ω) ∩K(x, y) ⊂ x+ ‖y‖Bd.

This inclusion can also be satisfied with suitable vectors x, y ∈ Qd, y �= 0.
Now (2.19) implies P(Z /∈ {∅,Rd}) = 0, a contradiction. Hence, there are
x, y ∈ Qd, y �= 0, satisfying (2.18).

Now we consider, for k ∈ N0, the events

Ak := {∅ �= Z ∩K(x+ 2ky, y) ⊂ x+ 2ky + ‖y‖Bd}
= {∅ �= (Z − 2ky) ∩K(x, y) ⊂ x+ ‖y‖Bd}.

Since Z is stationary, we have P(Ak) = p, hence∑
k∈N0

P(Ak) =∞.

But the events Ak are pairwise disjoint, which yields

∑
k∈N0

P(Ak) = P

( ⋃
k∈N0

Ak

)
≤ 1,

a contradiction. This completes the proof. ��

To obtain nontrivial examples of stationary and isotropic random closed
sets, we can proceed as follows. The set

Cd := {x = (x1, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1, i = 1, . . . , d}

is the unit cube. Let Z ′ be a compact set, deterministic or random, which is
a.s. contained in Cd, and let

Z̃ :=
⋃

z∈Zd

(Z ′ + z).

Let ξ be a random vector, independent of Z ′, which is uniformly distributed in
Cd (that is, its distribution is λ Cd, the restriction of the Lebesgue measure
to Cd). Then

Z := Z̃ + ξ

is a stationary random closed set. More generally, one could replace Z ′ by an
independent sequence Z ′

1, Z
′
2, . . . with PZ′

i
= PZ′ and define
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Z̃ :=
⋃
i∈N

(Z ′
i + zi),

where {z1, z2, . . .} is an enumeration of Zd.
Starting from a stationary random closed set Z, we obtain a stationary and

isotropic random closed set ϑZ by taking for ϑ a random rotation, independent
of Z and with uniform distribution (that is, a random variable with values in
SOd, whose distribution is the unique rotation invariant probability measure
ν on SOd; see Section 13.2).

The stationary random closed sets obtained in this way have too special a
structure to be of interest and use for applications. More flexible constructions
will be developed later. Nevertheless, the above considerations show that for
the theoretical investigation of a structure observed in some ‘observation win-
dow’ it is often legitimate to assume that the observed specimen comes from
a realization of a stationary and isotropic random set, if only position and
orientation of the observation window have been chosen in a suitable random
fashion.

The invariance properties of a random closed set are reflected in corre-
sponding properties of its capacity functional.

Theorem 2.4.5. The random closed set Z in Rd is stationary if and only if
its capacity functional TZ is translation invariant, and it is isotropic if and
only if TZ is rotation invariant.

Proof. The first assertion follows from

TZ+t(C) = P((Z + t) ∩ C �= ∅) = P(Z ∩ (C − t) �= ∅) = TZ(C − t)

for t ∈ Rd, the second from

TϑZ(C) = P(ϑZ ∩ C �= ∅) = P(Z ∩ ϑ−1C �= ∅) = TZ(ϑ−1C)

for ϑ ∈ SOd, together with Theorem 2.1.3. ��

We give a further example showing how properties of a random closed set
can possibly be read off from its capacity functional. The following theorem
characterizes the capacity functionals of almost surely convex random closed
sets.

For sets K,K ′, C ⊂ Rd we say that C lies between K and K ′ if every
segment [x, x′] joining two points x ∈ K, x′ ∈ K ′ satisfies [x, x′] ∩ C �= ∅.

Theorem 2.4.6. For a random closed set Z in Rd and its capacity functional
T the following assertions are equivalent:

(a) Z is almost surely convex.
(b) If K,K ′, C ∈ C and C lies between K and K ′, then

T (K ∪K ′ ∪ C) + T (C) = T (K ∪ C) + T (K ′ ∪ C).
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(c) The functional T is additive on K, that is,

T (K ∪K ′) + T (K ∩K ′) = T (K) + T (K ′)

holds for all K,K ′ ∈ K with K ∪K ′ ∈ K.

Proof. First we prove the implication (a)⇒ (b). Let K,K ′, C ∈ C be compact
sets such that C lies between K and K ′. If Z(ω) is a convex realization of Z
and if

Z(ω) ∩K �= ∅, Z(ω) ∩K ′ �= ∅,

then also Z(ω) ∩ C �= ∅. It follows that

PZ(F C
K,K′) = 0,

thus S2(C;K,K ′) = 0 by (2.2) and hence

−T (C) + T (C ∪K) + T (C ∪K ′)− T (C ∪K ∪K ′) = 0.

This shows that (a) implies (b).
Suppose that (b) holds. LetK,K ′ ∈ K be convex bodies such thatK∪K ′ ∈

K. Then K ∩ K ′ lies between K and K ′. In fact, suppose that x ∈ K and
x′ ∈ K ′, then [x, x′] ∩ K and [x, x′] ∩ K ′ are closed and not empty, and
their union is [x, x′]. It follows that [x, x′] ∩K ∩K ′ �= ∅. Now (b), applied to
C := K ∩K ′, shows that (c) holds.

To prove the implication (c)⇒ (a), let F ∈ F be a set which is not convex.
Then there are points x, x′ ∈ F with [x, x′] ∩ F c �= ∅, and we can choose a
ball B(y0, ε) with rational center y0 and rational positive radius ε such that

B(y0, ε) ⊂ F c and [x, x′] ∩ intB(y0, ε) �= ∅.

Because of the second relation, there are rational points x0, x
′
0 ∈ Rd with

y0 ∈ [x0, x
′
0], x ∈ B(x0, ε), x′ ∈ B(x′0, ε). Putting

C := conv (B(x0, ε) ∪B(y0, ε)),

C ′ := conv (B(x′0, ε) ∪B(y0, ε)),

we have C,C ′, C ∪ C ′ ∈ K and F ∈ F C∩C′
C,C′ . From (c) we get

PZ

(
F C∩C′

C,C′

)
= −T (C ∩ C ′) + T (C) + T (C ′)− T (C ∪ C ′) = 0

and thus PZ

(⋃
F C∩C′

C,C′

)
= 0, where the union extends over all the countably

many possible pairs C,C ′. Hence, with probability 1 we have Z /∈
⋃
F C∩C′

C,C′ ,
which means that Z is almost surely convex. ��
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Finally in this chapter, we consider first examples of simple parameters
for a quantitative description of a random closed set in Rd.

In the following, E denotes mathematical expectation. Since one can re-
place the random closed set Z by the stochastic process (with parameter
domain Rd) given by its indicator function, it is natural to define a mean
value function of Z by

m(x) := E1Z(x) for x ∈ Rd.

Explicitly,

m(x) =
∫

Ω

1Z(ω)(x) P(dω) =
∫
F

1F (x) PZ(dF ).

The measurability of the integrand follows from Theorem 12.2.7. We may also
write

m(x) = P(x ∈ Z).

Further, the covariance function k of Z is defined by

k(x, y) := E(1Z(x)−m(x))(1Z(y)−m(y)) for x, y ∈ Rd.

For stationary Z, the function m is constant, thus

m(x) = m(0) =: p,

and k satisfies
k(x, y) = k(x− y, 0).

Theorem 2.4.7. If Z is a stationary random closed set in Rd, then

p = P(0 ∈ Z) = TZ({0}) = Eλ(Z ∩ Cd)

and

k(x, 0) = P(0 ∈ Z, x ∈ Z)− p2 = Eλ(Z ∩ (Z − x) ∩ Cd)− p2.

Proof. By definition,

p = E1Z(0) = P(0 ∈ Z) = TZ({0}).

By Fubini’s theorem,

p =
∫

Cd

E1Z(x)λ(dx) = E

∫
Cd

1Z(x)λ(dx) = Eλ(Z ∩ Cd).

(The measurability of the map (F, x) �→ 1F (x) from F ×Rd to R is proved in
Theorem 12.2.7.) The second assertion is obtained similarly. ��
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For the quantity p, several names are in use: it has been called the ‘volume
fraction’, the ‘volume density’, the ‘intensity of the volume’, or the ‘specific
volume’ of the stationary random closed set. We shall talk here of the volume
density and also of the specific volume. We also write Vd(Z) := p for the
specific volume, and we remark that the above proof more generally shows
that

Vd(Z) =
Eλ(Z ∩B)
λ(B)

(2.20)

for every Borel set B ⊂ Rd with 0 < λ(B) <∞.
For a stationary random closed set Z, the function defined by

C(x) := P(0 ∈ Z, x ∈ Z), x ∈ Rd,

is called the covariance of Z. For x ∈ Rd, C(x) is the specific volume of the
random closed set Z ∩ (Z − x). If Z is isotropic, then C(x) depends only on
the norm ‖x‖.

A further means of quantifying size and shape aspects of a stationary
random closed set are the contact distributions. Let K ∈ K′ be a convex body
containing the origin, and for F ∈ F and x ∈ Rd let

dK(x, F ) := min{r ≥ 0 : (x+ rK) ∩ F �= ∅}; (2.21)

this is the K-distance of x from F (with min ∅ := ∞). For given K and x,
the function F �→ dK(x, F ) is lower semicontinuous and hence measurable.
Now let Z be a stationary random closed set in Rd with specific volume p < 1
and define

HK(r) := P(dK(0, Z) ≤ r | 0 /∈ Z) = P(0 ∈ Z − rK | 0 /∈ Z)

for r ≥ 0. Thus, HK(r) is the distribution function of theK-distance of 0 from
Z, conditional to 0 /∈ Z (due to the stationarity, the point 0 could be replaced
by any other point x). The function HK is called the contact distribution
function of Z (with respect to the structuring element or gauge body
K). By definition,

HK(r) = 1− P(0 /∈ Z − rK | 0 /∈ Z)

= 1− P(0 /∈ Z − rK)
P(0 /∈ Z)

= 1− P(0 /∈ Z − rK)
1− p

and thus

HK(r) = 1− 1− Vd(Z − rK)
1− Vd(Z)

=
Vd(Z − rK)− Vd(Z)

1− Vd(Z)
.

Thus, the quantity HK(r) can be estimated by estimating specific volumes.
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Two special cases of K are particularly relevant for applications. For K =
Bd we get the spherical contact distribution function, denoted by H;
this is the distribution function of the Euclidean distance of 0 from the set
Z under the condition that 0 /∈ Z. The case K = [0, u] with a unit vector u
(and [x, y] denoting the closed line segment with endpoints x and y) gives the
linear contact distribution function H[0,u] of Z in the direction u.

Notes for Section 2.4

1. Limit theorems. For random compact sets Z in Rd, the operation of Minkowski
addition motivates the search for notions and results which are in analogy to the
classical addition of real- or vector-valued random variables. The characterization
of random convex bodies which are infinitely divisible with respect to Minkowski
addition, mentioned in the Note for Section 2.3, is an example of that kind. The
first result in this direction was the strong law of large numbers for random
compact sets, established by Artstein and Vitale [40] (here we exclude the trivial
case of constant random sets):

Let Z, Z1, Z2, . . . be a sequence of independent, identically distributed (i.i.d.) ran-
dom compact sets in Rd with E‖Z‖ < ∞. Then

1

n
(Z1 + . . . + Zn) → EZ a.s.,

as n → ∞.
Here, convergence is in the Hausdorff metric, ‖Z‖ := δ({0}, Z), and the expec-

tation EZ of a random compact set Z is defined as

EZ := {Eξ : ξ : Ω → R
d measurable with ξ ∈ Z a.s.}.

Measurable mappings ξ : Ω → Rd satisfying ξ ∈ Z a.s. are called measurable se-
lections of Z. Since EZ is the set of expectation vectors of all measurable selections
of Z, it is also called the selection expectation (or Aumann expectation) (see
also Subsection 8.2.4). The condition E‖Z‖ < ∞ implies that EZ is compact. More-
over, if the underlying probability space (Ω,A, P) does not have atoms (which in
the above situation is guaranteed by the existence of an i.i.d sequence of non-trivial
sets Z, Z1, Z2, . . .), then EZ is convex and its support function satisfies

h(EZ, ·) = Eh(Z, ·)

(for a compact set C, the support functions of C and conv C are the same).
For random convex bodies Zi, the strong law of large numbers follows from a

corresponding result for Banach-space-valued random variables (see, e.g., the book
by Araujo and Giné [37]) since h(Zi, ·) is a random element of C(Sd−1) and the
mapping K �→ h(K, ·) is linear and injective on K′. The extension from random
convex bodies to random compact sets uses the fact that the Minkowski addition is
a convexifying operation, as expressed in the Shapley–Folkman–Starr theorem (see,
e.g., Schneider [695, Theorem 3.1.6]). Namely, for C1, . . . , Cn ∈ C,

δ(C1 + . . . + Cn, conv(C1 + . . . + Cn)) ≤
√

d max
i=1,...,n

‖Ci‖.
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In a similar vein, a central limit theorem for random compact sets was proved
independently by Weil [784] and Giné, Hahn and Zinn [263]. It requires that Z is
square integrable, that is E‖Z‖2 < ∞, and involves the covariance function

Γζ : (u, v) �→ E[ζ(u)ζ(v)] − Eζ(u)Eζ(v)

of a random element ζ ∈ C(Sd−1).
Let Z, Z1, Z2, . . . be a sequence of square integrable and i.i.d. random compact

sets in Rd. Then

√
nδ

(
1

n
(Z1 + . . . + Zn), EZ

)
→ max

x∈Sd−1
‖ζ(x)‖,

in distribution, as n → ∞. Here, ζ is a centered Gaussian variable in C(Sd−1) with
covariance function Γζ = Γh(Z,·).

Subsequently, various further results have been obtained (ergodic theorems, laws
of the iterated logarithm, characterization of stable random sets), and also exten-
sions to random compact or compact and convex sets in Banach spaces have been
considered. We refer to Molchanov [548, ch. 3] for details and references.

It should be mentioned that the Gaussian law appearing in such limit results
does not allow a simple geometric interpretation, in general. This is due to the fact
that a Gaussian measure on the convex cone K′ (which corresponds to the closed
convex cone of support functions in C(Sd−1)) is degenerate (i.e., concentrated on
points). This was shown by Lyashenko [444] and Vitale [768].

For a random compact set Z in Rd, Vitale [770] proved a Brunn–Minkowski
theorem showing that

λ1/d(EZ) ≥ Eλ1/d(Z).

2. Set-valued expectations. For random compact sets Z, the Aumann expecta-
tion mentioned in Note 1 is especially adapted to Minkowski addition and the rep-
resentation by support functions. Various other notions of set-valued expectations
have been studied in the literature (e.g. the Fréchet, Vorob’ev and Herer expecta-
tions), some of which make sense in more general spaces E (even without a vector
space structure). We refer to Molchanov [548, ch. 2], for a detailed discussion. Such
set-valued expectations are of particular interest for structures like Boolean models,
which will be treated later, since the estimation of a mean particle is a first step to
adapt a random set model to a given spatial structure. Unfortunately, for random
compact sets Z which are isotropic, most of the mentioned expectations (including
the Aumann expectation) yield balls, hence they do not reflect the shapes attained
by Z. This problem was discussed by Stoyan and Molchanov [744], who proposed to
transform the random sets into a standard form before performing an average.
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Point Processes

The notion of a random closed set, as developed so far, is still very general.
To obtain tractable models for applications, one has to restrict the admis-
sible set classes suitably. One possibility consists in considering sets which
are generated as the union set of a countable family of simpler sets, such as
compact sets, convex bodies, curves, lines, or flats. The appropriate notion for
randomizing such families is that of a point process in a space of geometric
objects. Point processes are, besides random sets, the second basic object of
stochastic geometry. In many applications, the ‘points’ of the process are or-
dinary points of Rd, but in others, like those employing random closed sets,
the ‘points’ may themselves be sets. For that reason, we study point processes
in a general locally compact space E.

The basic idea of a point process in E is that of a random collection of
isolated points in E. Therefore, a point process in E could be defined as a
random closed set in E which is almost surely locally finite. This leads to a
‘simple point process’ in E. For some purposes, however, this model is too
narrow, since constructions leading to point processes may produce ‘points
with multiplicity’. One can deal with this problem by introducing ‘marked
point processes’, where the multiplicity of a point is attached to it as its
‘mark’. Another possibility consists in replacing a locally finite set X by the
measure which attains the value one at each point of X and is zero elsewhere,
a ‘counting measure’. Then multiplicities can easily be treated, by allowing
nonnegative integer values at single points for the measure. In this way, point
processes appear as special random measures.

As this measure-theoretic approach has some advantages, we shall intro-
duce point processes as random counting measures and will therefore treat
general random measures as well. This is done in Section 3.1. As for point
processes, a particular role is played by the Poisson processes; they are the sub-
ject of Section 3.2. Palm distributions of random measures and point processes
are treated, with two different approaches, in Sections 3.3 and 3.4. Section 3.5,
on marked point processes, lays some foundations for the treatment of geomet-
ric models. Marked point processes also allow us to discuss some special types
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of point processes in Rd. Finally in this chapter, we consider point processes
of closed sets.

3.1 Random Measures and Point Processes

As in Chapter 2, we assume that a locally compact space E with a countable
base is given. Its Borel σ-algebra is denoted by B = B(E). The argument E
will often be deleted, also in similar terms.

Let M = M(E) be the set of all Borel measures η on E which are locally
finite, that is, satisfy η(C) <∞ for all C ∈ C. Note that this implies that the
measures η ∈ M are σ-finite. We supply M with the σ-algebra M generated
by the evaluation maps

ΦA : M→ R ∪ {∞}
η �→ η(A)

with A ∈ B. Thus,M is the smallest σ-algebra for which all maps ΦA, A ∈ B,
are measurable. To obtain a convenient generating system, we denote by Gc

the system of open, relatively compact subsets of E, and for A ∈ B and r ≥ 0
we define

MA,r := {η ∈ M : η(A) ≤ r}.

Lemma 3.1.1. The σ-algebra M is generated by the system

E := {MG,r : G ∈ Gc, r ≥ 0}.

Proof. LetM′ be the σ-algebra that E generates in M. It is easy to check that

A := {A ∈ B : ΦA∩G is M′-measurable for all G ∈ Gc}

is a Dynkin system. For G ∈ Gc and r ≥ 0, we have Φ−1
G ([0, r]) = MG,r ∈M′,

hence A contains the Dynkin system generated by Gc. Since Gc is ∩-stable, this
Dynkin system is equal to the σ-algebra generated by Gc, which is B. Thus, for
every Borel set A ∈ B, all functions ΦA∩G, G ∈ Gc, are M′-measurable. Since
in Gc there exists a sequence increasing to E, also ΦA isM′-measurable. AsM
is the smallest σ-algebra in M with this property, we conclude thatM⊂M′.
From MG,r ∈M for G ∈ Gc and r ≥ 0 we now get M =M′, as asserted. ��

A special class of measures on E is given by the counting measures. A
counting measure on E is a measure η ∈ M with η(A) ∈ N0 ∪ {∞} for all
A ∈ B (observe that a counting measure is locally finite by definition). Let N
be the set of all counting measures on E. The following lemma shows that N
is a measurable subset of M. By N we then denote the trace σ-algebra of M
on N.
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Lemma 3.1.2. We have N ∈ M. The trace σ-algebra N is generated by the
system

E ′ := {NG,k : G ∈ Gc, k ∈ N0}
with

NG,k := {η ∈ N : η(G) = k}.

Proof. By Theorem 12.1.1, there exists a countable base {D1, D2, . . .} of the
topology, consisting of open relatively compact sets Di ⊂ E. Then,

N =
∞⋂

i=1

{η ∈ M : η(Di) ∈ N0},

as is easy to see. Namely, for a measure η in the right-hand set, we have
η(D) ∈ N0 ∪ {∞}, for every open set D, and thus for every Borel set, by the
usual extension argument.

The assertion about the generating system follows as in the proof of Lemma
3.1.1. ��

Examples of counting measures are the locally finite sums of Dirac mea-
sures,

η =
k∑

i=1

δxi
, k ∈ N0 ∪ {∞},

where the xi are points in E. Here, for x ∈ E, the Dirac measure δx is defined
by

δx(A) :=

{
1, if x ∈ A,
0, if x /∈ A,

for A ∈ B. It is a probability measure on E. We do not assume here that the
xi are pairwise distinct; thus η({x}) > 1 is possible. If k = 0, then η = 0, the
zero measure.

The following lemma shows that every counting measure is such a finite
or countable sum of Dirac measures. It even allows us to enumerate the cor-
responding points x1, x2, . . . in a measurable way.

Lemma 3.1.3. There exist measurable mappings ζi : N→ E such that

η =
η(E)∑
i=1

δζi(η)

for η ∈ N.

Proof. We use a metric generating the topology of E. From the proof of The-
orem 12.1.1, we obtain for each k ∈ N the existence of a sequence Ak

1 , A
k
2 , . . .

of pairwise disjoint, relatively compact Borel sets in E of diameters less than
1/k and such that E =

⋃
i∈NA

k
i .
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Let η ∈ N. An atomic pair (x,m) of η consists of a point x ∈ E with
η({x}) > 0 (an atom) and the multiplicity m = η({x}) ∈ N. Since η is finite
on compact sets, it has at most countably many atoms. Let B ∈ B(E) be
a Borel set with η(B) > 0 and hence η(B) ∈ N ∪ {∞}. We can inductively
define a sequence i1, i2, . . . such that η(B ∩ A1

i1
∩ . . . ∩ Ar

ir
) ∈ N for r ∈ N. It

follows that η
(
B ∩

⋂
k∈NA

k
ik

)
∈ N. Since the intersection has diameter zero,

B contains an atom. Now it is clear that

η =
∑

(x,m)

mδx

where the sum runs over the atomic pairs (x,m) of η.
For x ∈ E, the relations

x ∈ Ak
jk(x), k ∈ N,

define uniquely a sequence (j1(x), j2(x), . . .) in N. By

x ≺ y : ⇔ (j1(x), j2(x), . . .) ≤ (j1(y), j2(y), . . .),

where ≤ on the right side denotes the lexicographical order, we define a linear
order ≺ on E. We construct, for each p ∈ N, a measurable map ζp : N → E.
It will associate with every counting measure its pth atom (counted with
multiplicity). Let η ∈ N, and let (x,m) be an atomic pair of η. All atoms y of
η with y ≺ x, y �= x, lie in the relatively compact set

⋃j1(x)
i=1 A1

i , hence their
number is finite and so is the sum of their multiplicities, say n. We define
ζn+j(η) := x for j = 1, . . . ,m. If this is done for all atomic pairs (x,m) of η,
then ζp(η) is defined, for all p ∈ N if η(E) =∞, respectively for p = 1, . . . , q,
if η(E) = q < ∞. In the latter case, we put ζp(η) := a for p > q, where
a ∈ E is an arbitrary given point. Now for p ∈ N and B ∈ B(E), the set
{η ∈ N : η(E) < p, ζp(η) ∈ B} is either empty or equal to {η ∈ N : η(E) < p},
and we have

{η ∈ N : η(E) ≥ p, ζp(η) ∈ B}

=
∞⋃

j=1

∞⋃
i1,...,ij=1

{
η ∈ N : η(B ∩A1

i1 ∩ . . . ∩A
j
ij

) = η(A1
i1 ∩ . . . ∩A

j
ij

) ∈ N,

η

⎛⎝ ⋃
(r1,...,rj)<(i1,...,ij)

A1
r1
∩ . . . ∩Aj

rj

⎞⎠ ≤ p− 1,

η

⎛⎝ ⋃
(r1,...,rj)≤(i1,...,ij)

A1
r1
∩ . . . ∩Aj

rj

⎞⎠ ≥ p}.
This shows that ζp is measurable. ��
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The counting measure η is simple if η({x}) ≤ 1 for all x ∈ E. Since
η ∈ N is simple if and only if the mappings ζi in the preceding lemma satisfy
ζi(η) �= ζj(η), for all pairs j �= i, we see that the set Ns of simple counting
measures is a measurable subset of N. Let Ns denote the induced σ-algebra.

For a measure η ∈M, the support supp η is the smallest closed set A in
E such that η(E \ A) = 0. If η is a counting measure, then supp η is locally
finite and satisfies

supp η := {x ∈ E : η({x}) ≥ 1}.
The mapping i : η �→ supp η maps the set N to the set F�f of locally finite
sets in F . The restriction is : Ns → F�f of i is bijective.

Lemma 3.1.4. The set F�f is measurable, that is, F�f ∈ B(F). The mapping
i : M→ F is measurable. The trace σ-algebra B(F)�f of B(F) on F�f satisfies
Ns = i−1

s (B(F)�f ) and B(F)�f = is(Ns).

Proof. To prove the measurability of F�f , let (Gk)k∈N be a sequence in Gc

increasing to E. The set

{F ∈ F : |F ∩Gk| ≤ m}

is closed, as follows from Theorem 12.2.2, hence

F�f =
∞⋂

k=1

∞⋃
m=1

{F ∈ F : |F ∩Gk| ≤ m}

is a Borel set.
For the measurability of the map i : M→ F it suffices by Lemma 2.1.1 to

consider only the sets FG, G ∈ G. From

i−1(FG) = {η ∈ M : supp η ∩G �= ∅} = {η ∈ M : η(G) > 0}

it follows that i−1(FG) ∈M, hence i is measurable.
This also implies that i−1

s (A) ∈ Ns for A ∈ B(F)�f . For the converse
direction, we note that the σ-algebra Ns is generated by the system

{NG,k ∩ Ns : G ∈ Gc, k ∈ N0}.

For G ∈ Gc and k ∈ N0, the set

is(NG,k ∩ Ns) = {F ∈ F : |F ∩G| = k} ∩ F�f

is the intersection of a closed set, an open set and a Borel set and hence is a
Borel set. Thus, for a generating system of Ns, the images under is are Borel
sets. This shows that also is(Ns) ⊂ B(F�f ). ��

This lemma implies, as a counterpart to Lemma 3.1.2, that

E ′0 := {NG,0 : G ∈ Gc}

is a (∩-stable) generating system of Ns.
Now we define random measures and point processes.
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Definition 3.1.1. A random measure X on E is a measurable map from
some probability space (Ω,A,P) into the measurable space (M,M) of locally
finite measures on E. If X is a random measure, the image measure PX :=
X(P) is the distribution of X.

A random measure X which is almost surely concentrated on N is called
a point process (in E). The point process X is simple if X ∈ Ns almost
surely.

A point process X in Rd is also called an ordinary point process.
For a random measure X, for ω ∈ Ω, and A ∈ B(E), we shall often write

X(ω,A) instead of X(ω)(A).

Lemma 3.1.5. The mapping X : (Ω,A,P) → (M,M) is a random measure
if and only if {X(G) ≤ r} is measurable for all G ∈ Gc and all r ≥ 0.

The mapping X : (Ω,A,P) → (N,N ) is a point process if and only if
{X(G) = k} is measurable for all G ∈ Gc and all k ∈ N0.

Proof. Since both assertions have a similar proof, we concentrate on the sec-
ond.

The condition is clearly necessary. If the condition is satisfied, then

X−1(NG,k) = {ω ∈ Ω : X(ω,G) = k} ∈ A

for G ∈ Gc and k ∈ N0. By Lemma 3.1.2, X is measurable. ��

By Lemma 3.1.4, a simple point processX is isomorphic to the locally finite
random closed set suppX. For that reason, we shall often identify a simple
point process X with its support suppX, so that X(ω) is understood as a
counting measure and also as a locally finite set. For example, the notations
X({x}) = 1 and x ∈ X will be used synonymously.

Since simple point processes can be identified with locally finite random
closed sets, results from Section 2.1 carry over to simple point processes. In
this way, we obtain the following measurability and uniqueness result (using
analogous notation).

Theorem 3.1.1. The mapping X : (Ω,A,P)→ (Ns,Ns) is a point process if
and only if {X(C) = 0} is measurable for all C ∈ C.

Let X,X ′ be simple point processes in E. If

P(X(C) = 0) = P(X ′(C) = 0)

for all C ∈ C, then X D= X ′.

Proof. The first assertion follows from the fact that the mapping Z :=
suppX : (Ω,A,P) → F is measurable if and only if Z−1(F C) is measur-
able for all C ∈ C.

By Theorem 2.1.3, the distribution of X is uniquely determined by the
probabilities P(X∩C �= ∅), C ∈ C. Therefore, also the probabilities P(X∩C =
∅) = P(X(C) = 0), C ∈ C, determine the distribution of X. ��
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If X and X ′ are random measures (point processes) on E, then also X+X ′

is a random measure (a point process) on E (the measurability is easy to
check). If X+X ′ is a simple point process, the sum corresponds to taking the
union of the corresponding random closed sets. The random measure X +X ′

is called the superposition of X and X ′.
If A ∈ B, the mapping η �→ η A is measurable on (M,M). Therefore,

the restriction X A of a random measure (a point process) X to A is
again a random measure (a point process). For a simple point process X, this
corresponds to taking the intersection of X with A.

If a topological group G operates measurably on the space E, then G
operates in a canonical way on M, by letting gη for g ∈ G and η ∈ M be the
image of η under g,

gη(B) := η(g−1B) for B ∈ B.

It follows from Lemma 3.1.1 that the mapping η �→ gη from (M,M) into itself
is measurable. Hence, for a random measure (a point process) X on E and
for g ∈ G, also gX is a random measure (a point process) on E. This will be
used later, mainly for E = Rd or E = F ′(Rd), where G is the group Gd of
rigid motions of Rd. In both cases, the operation is continuous. In the second
case, the continuity follows from Theorem 13.1.1. If E = Rd or E = F ′(Rd)
and tx is the translation by the vector x, we denote the image measures txη
and txX also by η + x and X + x, respectively. This notation is extended to
sets A of measures in the obvious way, that is, A+x is the set of all measures
µ+ x with µ ∈ A.

Definition 3.1.2. The random measure X on E = Rd or E = F ′(Rd) is
stationary if X D= X + x for all x ∈ Rd. It is isotropic if X D= ϑX for all
rotations ϑ ∈ SOd.

We return to the general situation and introduce, for a random measure X
on E, a quantity corresponding to the expectation of a real random variable.

Definition 3.1.3. The intensity measure of the random measure X is the
measure on E defined by

Θ(A) := EX(A) for A ∈ B.

Since X(A) ≥ 0, Θ(A) is always defined, but may be infinite. It follows
from the theorem of monotone convergence that Θ is indeed a measure on E.
If X is a simple point process, then Θ(A) is the mean number of points of X
lying in A. Although the random measure X is locally finite a.s., it may well
happen that Θ(C) =∞ for some compact sets C. Later, we shall concentrate
on random measures and point processes with locally finite intensity measure.

If X is a stationary random measure on Rd, its intensity measure Θ, which
is now a measure on Rd, is invariant under translations. This follows imme-
diately from the definition of Θ. The only translation invariant, locally finite
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measure on Rd is, up to a constant factor, the Lebesgue measure λ. Hence, if
Θ is locally finite, then

Θ = γλ

with a constant γ ∈ [0,∞). The number γ is called the intensity of the
(stationary) random measure X. The case γ = 0 means that Θ = 0, thus
X = 0 almost surely. As the zero measure is not very interesting, we may
assume γ > 0 where necessary.

For a stationary random measure X on F ′(Rd), the intensity measure Θ
is a translation invariant measure on F ′(Rd). If X (and hence Θ) is supported
by certain subclasses of F ′(Rd), the class C′(Rd) of compact sets (particles)
or the class A(d, k) of k-dimensional affine flats, the translation invariance of
Θ will lead to important decomposition results, as we shall see in Chapter 4.

The following simple observation will be used frequently.

Theorem 3.1.2 (Campbell). Let X be a random measure on E with inten-
sity measure Θ, and let f : E → R be a nonnegative, measurable function.
Then

∫
E
f dX is measurable, and

E

∫
E

f dX =
∫

E

f dΘ.

Proof. For A ∈ B,

X(A) =
∫

E

1A dX;

this is a nonnegative measurable function, and

E

∫
E

1A dX = EX(A) = Θ(A) =
∫

E

1A dΘ.

Thus, the assertion holds for indicator functions of Borel sets and therefore
also for linear combinations of such functions. By a standard argument of
integration theory, it holds for nonnegative measurable functions. ��

Remark. We have formulated Campbell’s theorem only for nonnegative mea-
surable functions, but it is clear that it holds also for Θ-integrable functions.
The same remark refers to the subsequent relatives of Campbell’s theorem;
they will later tacitly be applied to integrable functions.

For a simple point process X, Campbell’s theorem can be written in the
form

E
∑
x∈X

f(x) =
∫

E

f dΘ.

The intensity measure Θ is also known as the first moment measure.
Higher moment measures can be introduced in a similar way. The second
moment measure of the random measure X is defined by
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Γ (2)(A) := E(X ⊗X)(A)

for A ∈ B(E) ⊗ B(E) = B(E × E) (for the latter equality see, for example,
Cohn [177, Proposition 7.6.2]). In particular,

Γ (2)(A×A′) = E(X ⊗X)(A×A′) = EX(A)X(A′) for A,A′ ∈ B.

Generally, the mth moment measure Γ (m) of X is the Borel measure on
Em for which

Γ (m)(A1 × . . .×Am) = EXm(A1 × . . .×Am) = EX(A1) · · ·X(Am)

for A1, . . . , Am ∈ B. Here, the product measure Xm is a random measure on
the locally compact space Em, therefore Γ (m) is just the intensity measure of
Xm.

For m ∈ N, let

Em
�= := {(x1, . . . , xm) ∈ Em : xi pairwise distinct};

then Em
�= is an open set in Em. For a random measure X on E, one defines

the mth factorial moment measure as the Borel measure Λ(m) on Em for
which

Λ(m)(A1 × . . .×Am) := EXm(A1 × . . .×Am ∩ Em
�= )

for A1, . . . , Am ∈ B. In particular, for a simple point process X and for A ∈ B,

Λ(m)(Am) = E
∑

x1∈X∩A

∑
x2∈X∩A, x2 �=x1

. . .
∑

xm∈X∩A, xm �=x1,...,xm−1

1

= E[X(A)(X(A)− 1) · · · (X(A)−m+ 1)]

is the mth factorial moment of the random variable X(A). We observe that
Λ(m) is the intensity measure of the random measure

Xm
�= := Xm Em

�=

(which is different from Xm, in general). It is clear that also the mth moment
measure Γ (m) and the mth factorial moment measure Λ(m) satisfy the Camp-
bell theorem. We only formulate the corresponding result for simple point
processes.

Theorem 3.1.3. Let X be a simple point process in E, let f : Em → R be a
nonnegative measurable function (m ∈ N). Then

∑
(x1,...,xm)∈Xm f(x1, . . . , xm)

and
∑

(x1,...,xm)∈Xm
�=
f(x1, . . . , xm) are measurable, and

E
∑

(x1,...,xm)∈Xm

f(x1, . . . , xm) = E

∫
Em

f dXm =
∫

Em

f dΓ (m)

and

E
∑

(x1,...,xm)∈Xm
�=

f(x1, . . . , xm) = E

∫
Em

f dXm
�= =

∫
Em

f dΛ(m).
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From this one obtains, for example, the following connection between Γ (2)

and Λ(2). For a simple point process X in E and for A1, A2 ∈ B,

Γ (2)(A1 ×A2) = E
∑

(x1,x2)∈X2

1A1×A2(x1, x2)

= E

⎛⎝ ∑
(x1,x2)∈X2

�=

1A1×A2(x1, x2) +
∑
x∈X

1A1(x)1A2(x)

⎞⎠ ,
hence

Γ (2)(A1 ×A2) = Λ(2)(A1 ×A2) +Θ(A1 ∩A2). (3.1)

Examples of random measures will occur later in connection with particle
processes and random mosaics. Concerning point processes, simple examples
are easily constructed. A starting point can be random variables or sequences
of random variables with values in E. For example, if ξ1, . . . , ξm are random
points in E, that is, E-valued random variables, then

X :=
m∑

i=1

δξi

is a point process in E (not necessarily a simple one). In fact, for A ∈ B and
k ∈ N0 we have

{X(A) = k} = {precisely k of the ξi are in A}

=
⋃

1≤i1<...<ik≤m

{ξi ∈ A, i ∈ {i1, . . . , ik}, ξj /∈ A, j /∈ {i1, . . . , ik}},

hence {X(A) = k} is measurable, and Lemma 3.1.5 implies the measurability
of X. Similarly, one can start with a sequence ξ1, ξ2, . . . of random points in
E; then

X :=
∑
i∈N

δξi

defines a point process in E, provided that additional conditions ensure the
local finiteness of the measure

∑
i∈N δξi(ω) for almost all ω. Using Lemma

3.1.3 and putting ξi = ζi ◦X, i ∈ N, we see that every point process X can
be represented in this way.

We conclude this section with a motivation for the next one. For that, we
return to a point process X =

∑m
i=1 δξi

with finitely many random points
ξ1, . . . , ξm. If these points are independent and identically distributed, then,
for k = 0, 1, . . . ,m,

P(X(A) = k)

=
∑

1≤i1<...<ik≤m

P(ξi ∈ A, i ∈ {i1, . . . , ik}, ξj /∈ A, j /∈ {i1, . . . , ik})



3.1 Random Measures and Point Processes 57

=
(
m

k

)
pk

A(1− pA)m−k

with pA := P(ξ1 ∈ A). Thus, X(A) has a binomial distribution.
Letting m → ∞ and pA → 0 in such a way that mpA converges, one is

led to the class of Poisson processes. For example, consider a locally finite
measure Θ on E and a sequence (Ci)i∈N in C with Ci ⊂ intCi+1, Θ(Ci) > 0
for i ∈ N, Ci ↑ E and Θ(Ci) → ∞ for i → ∞. For i ∈ N, let ξi1, . . . , ξ

i
m(i) be

independent random points in E, each with distribution

Θ Ci

Θ(Ci)
.

As before, we define the point process

Xi :=
m(i)∑
j=1

δξi
j
.

For k ∈ N0 and A ∈ B, we have

P(Xi(A) = k) =
(
m(i)
k

)
pk

i,A(1− pi,A)m(i)−k

with pi,A := Θ(A ∩ Ci)/Θ(Ci). If we choose the numbers m(i) in such a way
that

m(i)
Θ(Ci)

→ 1 for i→∞,

then we get, for every relatively compact Borel set A, the relation

lim
i→∞

P(Xi(A) = k) = e−Θ(A)Θ(A)k

k!
.

It is plausible to conjecture the existence of a ‘limit process’, a point process
X satisfying

P(X(A) = k) = e−Θ(A)Θ(A)k

k!
for all k ∈ N0 and all A ∈ B with Θ(A) <∞. Such a process X, if it is simple,
is called a Poisson process; the measure Θ is then its intensity measure. In
the next section, we prove the existence of these Poisson processes, though
not by a limit procedure, but by a direct construction, which permits us to
derive further properties of Poisson processes in a straightforward way.

General assumption. From now on, the intensity measures Θ of all random
measures and point processes, which are considered, are assumed to be locally
finite, that is, to satisfy

Θ(C) <∞ for all C ∈ C.
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Notes for Section 3.1

1. From the general theory of point processes, we treat in this chapter only some
basic notions and results, mainly to lay the foundations for our later considerations.
For comprehensive presentations of the theory, we refer to Daley and Vere–Jones
[195, 196], Karr [389], Kerstan, Matthes and Mecke [400] (the extended English
version is Matthes, Kerstan and Mecke [465]), König and Schmidt [423], Neveu
[582], Reiss [626]. A short introduction to point processes in measurable spaces is
found in Appendix A of Mecke, Schneider, Stoyan and Weil [500].

2. The theory of random measures is developed in much more detail in some of the
mentioned books and particularly in Kallenberg [385].

3. If the set M of locally finite measures on E is equipped with the vague topology,
then M is a Polish space and the σ-algebra M, generated by the evaluation mappings
ΦA : η �→ η(A), A ∈ B, turns out to be the Borel σ-algebra. Thus, also N is the
Borel σ-algebra with respect to the vague topology on N. See Kallenberg [386, Th.
A2.3].

3.2 Poisson Processes

Poisson processes can be introduced in quite general measurable spaces with
suitable additional structures. Here we restrict ourselves, as in the previous
sections, to a locally compact space E with a countable base, and we also
concentrate on simple processes. We first introduce the two characteristic
properties of Poisson processes.

A point process X in E with intensity measure Θ has Poisson counting
variables if for each A ∈ B with Θ(A) < ∞ the (a.s. real) random variable
X(A) has a Poisson distribution. In that case, EX(A) = Θ(A), so that Θ(A)
is the parameter of the Poisson distribution. Thus, X has Poisson counting
variables if and only if

P(X(A) = k) = e−Θ(A)Θ(A)k

k!
(3.2)

for k ∈ N0 and A ∈ B. The equation (3.2) is also correct for Θ(A) =∞, if the
right side is read as 0. In fact, for such A ∈ B there is a sequence A1, A2, . . .
of Borel sets increasing to A and satisfying Θ(Ai) <∞. This gives

P(X(A) = k) ≤ P(X(Ai) ≤ k) = e−Θ(Ai)
k∑

j=0

Θ(Ai)j

j!
→ 0 (i→∞)

for k ∈ N0, hence X(A) =∞ a.s. Thus (3.2) holds in this case, too.
We shall see later that the probabilities (3.2) do not determine the distrib-

ution ofX uniquely if the intensity measure Θ has atoms, hence if Θ({x}) > 0
for some x ∈ E. (Observe that, under our assumptions on E and Θ, the exis-
tence of atoms is equivalent to the existence of point masses.) For that reason
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and in view of the applications which we have in mind, we shall restrict our-
selves to the case of intensity measures without atoms. For a point process
with Poisson counting variables, this condition is equivalent to being simple.

Lemma 3.2.1. The point process X with Poisson counting variables is simple
if and only if its intensity measure Θ has no atoms.

Proof. From Θ({x}) > 0 and (3.2) it follows that P(X({x}) = k) > 0 for
k ∈ N, hence the point process X is not simple.

Conversely, suppose that Θ({x}) = 0 for all x ∈ E. Assume that X were
not simple, that is, PX(Ns) < 1. Then there is a compact set C ∈ C with

α := P(X C not simple) > 0;

in particular, ε := Θ(C) > 0. Let k ∈ N. Since the range of a finite measure
without atoms is a closed interval (see, for example, Neveu [581, exercise 1.4.3]
or, without Zorn’s lemma, Gardner and Pfeffer [246, Lemma 9.1]), there exist
pairwise disjoint Borel sets C(k)

1 , . . . , C
(k)
k ∈ B with

Θ(C(k)
i ) =

ε

k
, i = 1, . . . , k,

and
k⋃

i=1

C
(k)
i = C.

There must be a number i ∈ {1, . . . , k} with

P

(
X(C(k)

i ) > 1
)
≥ α
k
.

This yields
α

k
≤ 1− eΘ(C

(k)
i )

(
1 +Θ(C(k)

i )
)

and thus
α ≤ k − e−ε/k(k + ε).

For k →∞, the right side converges to 0, a contradiction. ��

The second characteristic property of Poisson processes on the real line
is that they have independent increments. For a point process X in E, we
say that X has independent increments, if for pairwise disjoint Borel sets
A1, . . . , Am in E, m ∈ N, the random variables X(A1), . . . , X(Am) are inde-
pendent.

Definition 3.2.1. A Poisson process in E is a simple point process in E
with Poisson counting variables and independent increments.

The following theorem shows that the class of Poisson processes is quite
large.
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Theorem 3.2.1. Let Θ be a locally finite measure without atoms on E. Then
there exists a Poisson process in E with intensity measure Θ; it is uniquely
determined (up to equivalence).

Proof. We first prove the existence by construction.
Since Θ is locally finite, there are (by Theorem 12.1.1) pairwise disjoint

Borel sets A1, A2, . . . in E with E =
⋃

i∈NAi, Θ(Ai) < ∞, and such that to
each C ∈ C there exists k ∈ N with C ⊂

⋃k
i=1Ai. In each Ai, we define a

point process X(i) in the following way. For r ∈ N, write Ar
i = Ai × . . .× Ai

(r factors) and let
Γr : Ar

i → N,

be the map defined by

Γr(x1, . . . , xr) :=
r∑

j=1

δxj
.

Then Γr is (B(Ar
i ),N )-measurable. Let ∆0 denote the Dirac measure on N

concentrated at the zero measure. Then

Pi := e−Θ(Ai)

(
∆0 +

∑
r∈N

1
r!
Γr ((Θ Ai)r)

)

is a probability measure on N which is concentrated on the counting measures
η with supp η ⊂ Ai. (For the normalization, observe that Γr ((Θ Ai)r) (N) =
Θ(Ai)r.) Let X1, X2, . . . be an independent sequence of point processes in E
such that Xi has distribution Pi, for i ∈ N (for example, we may take as
underlying probability space Ω the space NN with the product σ-algebra and
the probability measure P =

⊗
i∈N Pi, and forXi the ith coordinate mapping).

Finally, we put
X :=

∑
i∈N

Xi.

Then X ∈ N almost surely. In fact, if C ∈ C and k ∈ N is chosen such that
C ⊂

⋃k
i=1Ai, then

X(ω,C) ≤ X
(
ω,

k⋃
i=1

Ai

)
=

k∑
i=1

X(i)(ω,Ai),

and the right side is finite for P-almost all ω.
Since X is locally a finite sum of point processes, it is measurable and thus

a point process in E. We show that X has Poisson counting variables.
For this, let A ∈ B be a set with Θ(A) < ∞ and put A′

i := A ∩ Ai for
i ∈ N, then

X(A) =
∑
i∈N

Xi(A) =
∑
i∈N

Xi(A′
i).
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By construction, the random variables X1(A′
1), X2(A′

2), . . . are independent.
Again from construction, for each k ∈ N we have

P(Xi(A′
i) = k) = Pi({η ∈ N : η(A′

i) = k})

=
∞∑

r=k

Pi({η ∈ N : η(A′
i) = k, η(Ai \A′

i) = r − k})

= e−Θ(Ai)
∞∑

r=k

(
r

k

)
1
r!
Θ(A′

i)
kΘ(Ai \A′

i)
r−k

= e−Θ(Ai)
Θ(A′

i)
k

k!

∞∑
r=k

Θ(Ai \A′
i)

r−k

(r − k)!

= e−Θ(Ai)
Θ(A′

i)
k

k!
eΘ(Ai\A′

i)

= e−Θ(A′
i)
Θ(A′

i)
k

k!
.

The corresponding result for k = 0 is obtained similarly. Thus, the random
variable Xi(A′

i) =: ξi has a Poisson distribution with parameter Θ(A′
i) =: αi,

and the sequence (ξi)i∈N is independent. For k ∈ N0,

P(ξ1 + ξ2 = k) =
k∑

j=0

P(ξ1 = j, ξ2 = k − j)

=
k∑

j=0

e−α1
αj

1

j!
e−α2

αk−j
2

(k − j)!

= e−(α1+α2)
(α1 + α2)k

k!
.

Hence, ξ1 + ξ2 is Poisson distributed with parameter α1 + α2. By induction,
it follows that Sm := ξ1 + . . . + ξm is Poisson distributed with parameter
σm := α1 + . . .+αm (m ∈ N). For the sum S :=

∑
j∈N ξj we have {Sm ≤ k} ↓

{S ≤ k} for m→∞ and hence

P(S ≤ k) = lim
m→∞

P(Sm ≤ k)

= lim
m→∞

k∑
j=0

e−σm
σj

m

j!

=
k∑

j=0

e−Θ(A)Θ(A)j

j!
,

where
∑

j∈NΘ(A′
j) = Θ(A) < ∞ was used. Thus, for the sets A ∈ B with

Θ(A) < ∞, the random variable S = X(A) has a Poisson distribution with
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parameter Θ(A), which means that X is a point process with Poisson counting
variables and with intensity measure Θ. Since Θ has no atoms, X is simple,
by Lemma 3.2.1.

Because of (3.2) and Theorem 3.1.1, the simple point process X with
Poisson counting variables which we just constructed is uniquely determined
in distribution.

In order to see that X is a Poisson process, it remains to show that X
has independent increments. For m ∈ N, let A1, . . . , Am be pairwise dis-
joint Borel sets in E. Each Ai can be divided into (countably many) pair-
wise disjoint Borel sets with finite Θ-measure. Hence, for the independence of
X(A1), . . . , X(Am), we may assume that Θ(Ai) <∞, i = 1, . . . ,m. Repeating
the construction for the existence of X, given above, we may put A′

i := Ai

for i = 1, . . . ,m and then choose A′
i for i > m so that we obtain a sequence

A′
1, A

′
2, . . . of pairwise disjoint Borel sets with Θ(A′

i) < ∞, E =
⋃

i∈NA
′
i,

and such that to each C ∈ C there exists k ∈ N with C ⊂
⋃k

i=1A
′
i.

With this sequence, and the intensity measure Θ of X, we obtain a point
process X ′ with intensity measure Θ and Poisson counting variables. By the
uniqueness assertion, we have X D= X ′. By construction, the point processes
X ′ A′

1, X
′ A′

2, . . . are independent, thus also X A1, . . . , X Am are in-
dependent; this implies the independence of X(A1), . . . , X(Am). ��

Corollary 3.2.1. Let γ ∈ [0,∞). Then there is (up to equivalence) precisely
one stationary Poisson process X in Rd with intensity γ. The process X is also
isotropic.

Proof. Since Θ = γλ has no atoms, the first part follows from Theorem 3.2.1.
If ϑ ∈ SOd is a rotation, then ϑX has the intensity measure ϑΘ = Θ. By
the uniqueness of Poisson processes with given intensity measure, ϑX D= X,
which means that X is isotropic. ��

Whereas a stationary Poisson process in Rd is automatically isotropic,
there are other stationary point processes in Rd which are not isotropic. It is
clear from the general existence theorem 3.2.1 that there exist non-stationary
Poisson processes in Rd, and also non-stationary Poisson processes that are
isotropic.

As we have seen in the proof of Theorem 3.2.1, for a simple point process
X in E, the condition that X has Poisson counting variables already implies
that X has independent increments. We state this important fact explicitly.

Corollary 3.2.2. A simple point process in E with Poisson counting variables
is a Poisson process.

The constructive proof even permits us to establish some further properties
of Poisson processes, which we collect in the following theorem.

Theorem 3.2.2. Let X be a Poisson process in E with intensity measure Θ.
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(a) Let A1, A2, . . . be pairwise disjoint Borel sets in E. Then the point processes
X A1, X A2, . . . are independent. If m, k ∈ N and

⋃m
i=1Ai =: A with

0 < Θ(A) < ∞, then under the condition X(A) = k the random vector
(X(A1), . . . , X(Am)) has a multinomial distribution.

(b)Let A ⊂ E be a Borel set with 0 < Θ(A) <∞, and let k ∈ N. Then

P(X A ∈ · | X(A) = k) = P

(
k∑

i=1

δξi
∈ ·

)
,

where ξ1, . . . , ξk are independent, identically distributed random points in
E with distribution

Pξi
:=
Θ A

Θ(A)
, i = 1, . . . , k.

Proof. (a) We need to show the independence of X A1, . . . , X Am, for each
m ∈ N. As was already explained at the end of the proof of Theorem 3.2.1,
we may assume Θ(Ai) <∞, i = 1, . . . ,m, and then the independence follows
from the construction in the proof together with the uniqueness.

For j1 + . . .+ jm = k, the established independence yields

P(X(A1) = j1, . . . , X(Am) = jm | X(A) = k)

=
∏m

i=1 e−Θ(Ai)Θ(Ai)ji/ji!
e−Θ(A)Θ(A)k/k!

=
k!

j1! · · · jm!

(
Θ(A1)
Θ(A)

)j1

· · ·
(
Θ(Am)
Θ(A)

)jm

.

(b) We can take A as the first member A1 of a sequence A1, A2, . . . which
we use to construct the Poisson processX, up to distribution. By construction,
X A has the distribution

P1 := e−Θ(A)

(
∆0 +

∑
r∈N

1
r!
Γr((Θ A)r)

)
.

For k ∈ N, this gives

P(X A ∈ · | X(A) = k) =
e−Θ(A)Γk((Θ A)k)/k!

e−Θ(A)Θ(A)k/k!
=
Γk((Θ A)k)
Θ(A)k

.

Let ξ1, . . . , ξk be independent random points in E with distribution

Pξi
:=
Θ A

Θ(A)
, i = 1, . . . , k.

By the independence, we have
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Pξ1,...,ξk
=

(Θ A)k

Θ(A)k
,

hence

P∑ k
i=1 δξi

=
Γk((Θ A)k)
Θ(A)k

,

which proves (b). ��

The proof of Theorem 3.2.1 and assertion (b) of Theorem 3.2.2 suggest
a way for simulating a Poisson process X in Rd, stationary or not, within a
given observation window. In the stationary case, for example, we prescribe
an intensity γ and an observation window W , say convex and with λ(W ) = 1.
First one generates a random number ν which has a Poisson distribution with
parameter γ. If the outcome is ν(ω) = k, one generates k independent random
points ξ1, . . . , ξk uniformly in W , that is, with distribution λ W . The point
process X̃ constructed in this way (which is concentrated in W ), has the
same distribution as X restricted to W , that is, X̃ D= X W . Therefore, the
realization {ξ1(ω), . . . , ξk(ω)} can be considered as a realization of X in W .

The construction in the proof of Theorem 3.2.1 works also for measures Θ
with atoms; it then produces a point process with Poisson counting variables.
However, the uniqueness assertion no longer holds in this case, as shown by
the subsequent example. For that reason, point processes satisfying (3.2) in
general do not have the strong independence properties of Theorem 3.2.2.

Example. The basic space is E = {0, 1} with the discrete topology. Every
η ∈ N can be identified with the pair (η(0), η(1)) ∈ N2

0. With a real number
c ∈ [−e−2/2, e−2/2], we define a probability distribution Pc on N2

0 by the
counting density

p(0, 1) := e−2 + c, p(1, 0) := e−2 − c,

p(0, 2) :=
e−2

2
− c, p(2, 0) :=

e−2

2
+ c,

p(1, 2) :=
e−2

2
+ c, p(2, 1) :=

e−2

2
− c,

and
p(i, j) := e−2 1

i!j!

for all other pairs (i, j) ∈ N2
0. For the corresponding point process Xc we have

P(Xc({0}) = k) = P(Xc({1}) = k) =
e−1

k!

and
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P(Xc({0, 1}) = k) = e−2 2k

k!
for k ∈ N0, independently of the parameter c. Hence, all point processes
Xc, c ∈ [−e−2/2, e−2/2], have Poisson counting variables and have different
distributions, but they yield the same distributions for the counting variables
Xc(A), A ⊂ {0, 1}.

We note two particular formulas for Poisson processes, which will be ap-
plied later. The second one even characterizes Poisson processes.

Theorem 3.2.3. Let X be a Poisson process in E with intensity measure Θ.
Let A ∈ B be a Borel set with Θ(A) <∞, and let f : N→ R be a nonnegative
measurable function. Then

Ef(X A)

= e−Θ(A)

(
f(0) +

∑
k∈N

1
k!

∫
A

. . .

∫
A

f

(
k∑

i=1

δxi

)
Θ(dx1) · · ·Θ(dxk)

)
.

Proof. The result trivially holds if Θ(A) = 0, hence we now assume Θ(A) > 0.
Using Theorem 3.2.2(b), we get

Ef(X A)

=
∑
k∈N0

P(X(A) = k) E(f(X A) | X(A) = k)

= e−Θ(A)

×
(
f(0) +

∑
k∈N

Θ(A)k

k!
Θ(A)−k

∫
A

. . .

∫
A

f

(
k∑

i=1

δxi

)
Θ(dx1) · · ·Θ(dxk)

)

and thus the assertion. ��

Theorem 3.2.4. Let X be a point process in E, the intensity measure Θ of
which has no atoms. Then X is a Poisson process if and only if

E
∏
x∈X

f(x) = exp
(∫

E

(f − 1) dΘ
)

(3.3)

holds for all measurable functions f : E → [0, 1].

Proof. Let X be a Poisson process. For Θ = 0, the assertion is trivial (the
product is empty a.s.), hence we assume Θ �= 0. First we suppose that A ⊂ E
is a compact set with Θ(A) > 0 and such that f(x) = 1 for x ∈ E \A. Using
Theorem 3.2.2(b), we obtain
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E
∏
x∈X

f(x) = E
∏

x∈X A

f(x)

=
∑
k∈N0

P(X(A) = k) E

( ∏
x∈X A

f(x)
∣∣∣∣X(A) = k

)

=
∑
k∈N0

e−Θ(A)Θ(A)k

k!

(∫
A

f dΘ
)k

Θ(A)−k

= exp
(
−Θ(A) +

∫
A

f dΘ
)

= exp
(∫

A

(f − 1) dΘ
)

= exp
(∫

E

(f − 1) dΘ
)
.

The general assertion (3.3) is now obtained if we choose a sequence of compact
sets increasing to E and apply the monotone convergence theorem.

Conversely, suppose that (3.3) holds for all measurable functions f : E →
[0, 1]. Again, the assertion is trivial for Θ = 0 (the empty process is Poisson),
hence we assume Θ �= 0. We choose

f(x) := t1B(x),

where t ∈ (0, 1) and B ∈ B with Θ(B) <∞. Then,

E tX(B) = E
∏
x∈X

t1B(x)

= exp
(∫

E

(t1B(x) − 1)Θ(dx)
)

= exp ((t− 1)Θ(B))

= e−Θ(B)etΘ(B).

We expand both sides and get∑
k∈N0

tkP(X(B) = k) = e−Θ(B)
∑
k∈N0

tk
1
k!
Θ(B)k

for all t ∈ (0, 1). Comparing coefficients yields

P(X(B) = k) = e−Θ(B)Θ(B)k

k!

for all k ∈ N0 and all B ∈ B with Θ(B) <∞. This shows that X has Poisson
counting variables. Since Θ has no atoms, it follows that X is simple and
therefore a Poisson process, by Corollary 3.2.2. ��

We next deduce a characterization of Poisson processes which will be useful
in Section 3.3 when we study Palm distributions.
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Theorem 3.2.5 (Mecke). Let X be a point process in E, the intensity mea-
sure Θ of which has no atoms. Then X is a Poisson process if and only if

E
∑
x∈X

f(X,x) =
∫

E

E f(X + δx, x)Θ(dx), (3.4)

for all nonnegative measurable functions f on N× E.

Proof. First let X be a Poisson process. Since X is simple and since the sets
NC,0, C ∈ B, generate the σ-algebra Ns (see the remark after Lemma 3.1.4),
it is sufficient to consider the case f = 1NC,0×B , where C,B ∈ B are Borel
sets with Θ(B) <∞.

The left side of (3.4) then equals

E[1{X(C) = 0}X(B)].

For the right side, we obtain∫
B

E1{(X + δx)(C) = 0}Θ(dx)

=
∫

B∩C

P(X(C) + 1 = 0)Θ(dx) +
∫

B\C

P(X(C) = 0)Θ(dx)

= P(X(C) = 0)Θ(B \ C)

= E1{X(C) = 0}EX(B \ C)

= E [1{X(C) = 0}X(B)],

due to the independence properties of X (Theorem 3.2.2(a)).
For the converse direction, we assume that (3.4) holds for all measurable

functions f : N× E → [0,∞). We choose

f(η, x) = tη(B)1B(x)

for t ∈ (0, 1] and B ∈ B with Θ(B) <∞. Then we obtain

E tX(B)X(B) =
∫

E

E tX(B)+11B(x)Θ(dx) = E tX(B)+1Θ(B).

It follows that h : t �→ E tX(B) is differentiable in (0, 1] and satisfies the
differential equation

h′(t) = Θ(B)h(t), h(1) = 1.

Therefore
h(t) = exp((t− 1)Θ(B)),

which gives
E tX(B) = e−Θ(B)etΘ(B).

As we have seen in the proof of Theorem 3.2.4, this implies that X is a Poisson
process. ��
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Formula (3.4) can be iterated and then yields a result which will be useful,
for instance, in Section 10.2.

Corollary 3.2.3 (Slivnyak–Mecke formula). Let X be a Poisson process
in E with intensity measure Θ, let m ∈ N, and let f : N × Em → R be a
nonnegative measurable function. Then

E
∑

(x1,...,xm)∈Xm
�=

f(X,x1, . . . , xm)

=
∫

E

. . .

∫
E

E f

(
X +

m∑
i=1

δxi
, x1, . . . , xm

)
Θ(dx1) · · ·Θ(dxm).

Proof. One uses induction, writing∑
(x1,...,xm)∈Xm

�=

f(X,x1, . . . , xm) =
∑
x∈X

g(X,x)

with
g(X,x) :=

∑
(x2,...,xm)∈X

m−1
�=

x2,...,xm �=x

f(X,x, x2, . . . , xm),

and Fubini’s theorem. ��

If we choose

f(η, x1, . . . , xm) := 1A1×...×Am
(x1, . . . , xm)

with A1, . . . , Am ∈ B, then

E
∑

(x1,...,xm)∈Xm
�=

f(X,x1, . . . , xm) = EXm(A1 × . . .×Am ∩ Em
�= )

= Λ(m)(A1 × . . .×Am),

hence Corollary 3.2.3 immediately gives the following result.

Corollary 3.2.4. For a Poisson process X in E with intensity measure Θ
and for m ∈ N, the mth factorial moment measure Λ(m) of X satisfies

Λ(m) = Θm.

We finally mention a generalization of Poisson processes, the Cox processes.
Let Y be a random measure on E; we assume that Y is not identically 0
and has a.s. no atoms. The Cox process (or doubly stochastic Poisson
process) X directed by Y is a Poisson process in E with random intensity
measure Y . More precisely, the distribution of X is specified by
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P(X(A) = k) =
∫

M

e−η(A) η(A)k

k!
PY (dη)

for k ∈ N0 and A ∈ Gc. The right side is well defined since

ϕA : M→ [0,∞), η �→ e−η(A) η(A)k

k!
,

is measurable.
Of course, it still remains to show the existence of such a point process

X. For η ∈ M, let Xη be the Poisson process with intensity measure η. The
mapping η �→ PXη

is a (probability) kernel; for fixed η it is a probability
measure on Ns, and for fixed A ∈ Ns, the mapping η �→ PXη

(A) is measurable.
In order to see this, we remark that

η �→ PXη

(
m⋂

i=1

NGi,ki

)
=

m∏
i=1

e−η(Gi)
η(Gi)ki

ki!

is measurable, as we have mentioned above, for pairwise disjoint G1, . . . , Gm ∈
Gc. The measurability extends to intersections

⋂m
i=1 NGi,ki

with arbitrary sets
G1, . . . , Gm ∈ Gc, since the probability on the left is then a finite sum of such
products. It therefore holds for all A ∈ Ns, by the usual extension argument.
Since PXη

is a kernel,

PX :=
∫

M

PXη
PY (dη)

is the distribution of a point process X on E.
We thus have obtained the following result.

Theorem 3.2.6. Let Y be a random measure on E which is not identically 0
and has a.s. no atoms. Then there exists a Cox process X in E directed by Y .

As follows from the definition of the Cox process X and Fubini’s theorem
for kernels, the intensity measure Θ of X is given by the intensity measure of
the random measure Y .

Notes for Section 3.2

1. Poisson processes are treated in the books on point processes listed in the Notes
for Section 3.1; they are also the subject of Kingman [413]. In our treatment of Pois-
son processes, we emphasized and made heavy use of the fact that the distribution
property (3.2) together with the simplicity implies the strong independence proper-
ties of Theorem 3.2.2. This observation goes back to Rényi [638]. Conversely, for a
point process X with an intensity measure without atoms one can show that the in-
dependence of the random variables X(A1), X(A2), . . ., for all sequences A1, A2, . . .
of pairwise disjoint Borel sets, implies the Poisson distribution property (3.2) (see,
for example, Daley and Vere–Jones [194, Lemma 2.VI]). However, the usual defini-
tion of a Poisson process is based on both properties, thus requiring that for pair-
wise disjoint Borel sets A1, . . . , Ak, k ∈ N, the random variables X(A1), . . . , X(Ak)
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are independent and Poisson distributed. Equivalent to this is the assumption that
the random vectors (X(A1), . . . , X(Ak)) have multivariate Poisson distributions. In
Mecke et al. [500, Appendix A] a corresponding definition is given which uses the
generating functional of X. For general (non-simple) Poisson processes, uniqueness
can still be proved, based on the finite-dimensional distributions.

2. The example showing that for intensity measures with atoms the distribution
property (3.2) is in general not sufficient for uniqueness, is taken from Kerstan,
Matthes and Mecke [400, p. 17].

Remarkably, there are simple point processes in R2 satisfying (3.2) (with Θ = λ)
for all convex Borel sets, without being Poisson processes (an example due to Moran
[560] shows even more).

3. Theorem 3.2.4 presents the ‘generating functional’ of a Poisson process. How the
generating functional is used as a tool in the theory of point processes can be seen,
for instance, in Daley and Vere–Jones [194], König and Schmidt [423], Mecke et al.
[500, Appendix].

4. For Theorem 3.2.5 we refer to Mecke [476], where this property is used in the
construction of Poisson processes.

5. The ‘complementary theorem’. The complementary theorem of Miles [522,
523] allows one to find Gamma distributions for the ‘contents’ of certain random sets
constructed from the points of a Poisson process. Whereas Miles used an ergodic
approach, Møller and Zuyev [555] employed Palm distributions in their more general
investigation. We use their words to describe their aims. They consider a family of
Poisson processes Φρ defined on an arbitrary space S with intensity measure ρϑ
where ρ > 0 is a scale parameter and ϑ is a σ-finite measure. For functionals f(Φρ)
which only depend on Φρ through a finite subprocess Ψρ they study derivatives of
the mean Ef(Φρ) with respect to ρ and establish various distributional results for
random subsets ∆ρ ⊂ S determined by Ψρ. In particular, under certain equivariance
conditions with respect to the scale ρ, the conditional distribution of the ‘content’
ϑ(∆ρ) given the ‘cardinality’ of Ψρ is shown to be a Gamma distribution.

Another more comprehensive version of the complementary theorem is discussed
by Cowan [182].

3.3 Palm Distributions

In this section, we consider stationary random measures and point processes
on Rd and introduce the Palm calculus, a powerful tool to describe conditional
distributions of random measures and point processes.

In order to motivate the idea of Palm distributions, we start with an
intuitive example.

If X is a simple stationary point process in Rd, then X (identified with
supp X, by convention) is at the same time a stationary, locally finite closed
random set. Hence, we can consider its contact distributions as introduced in
Section 2.4. The spherical contact distribution function of X is defined by

H(r) = P(0 ∈ X + rBd) | 0 /∈ X).
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Since P(0 ∈ X) = 0 (by Theorem 2.4.7), the condition 0 /∈ X is satisfied a.s.
If δ denotes the distance of the origin 0 to the nearest point in X, then

H(r) = 1− P(0 /∈ X + rBd) = 1− P(rBd ∩X = ∅)
= P(X(rBd) > 0) = P(δ ≤ r).

Thus, H is the distribution function of δ. For a stationary Poisson process
with intensity γ,

H(r) = 1− e−γκdrd

(where κd := λ(Bd)).
The spherical contact distribution function is used in statistical inves-

tigations of stationary point processes (for example, in testing the Poisson
hypothesis). Further statistical data involve mutual distances between points.
For that reason, one wants to consider the distribution of the distance ∆ of a
‘typical’ point of X from its nearest neighbor in X. This requires a suitable
notion of distributions with respect to a typical point of X. One might think
of conditional distributions, under the condition that a prescribed point, say
0, is a point of the process X. But since P(X({0}) = 1) = 0 for a stationary
process, such conditional distributions do not exist in the elementary sense.
For a stationary Poisson process X, an alternative procedure is possible. To
define the distribution of the random variable∆ which we have in mind, we re-
place the point 0 by the ball εBd and define P(∆ ≤ r) as the limit, for ε→ 0, of
the well-defined conditional probabilities P(X(rBd \ εBd) > 0 | X(εBd) = 1).
Using the independence assertion of Theorem 3.2.2, we get

P(∆ ≤ r) = lim
ε→0

P(X(rBd \ εBd) > 0 | X(εBd) = 1)

= lim
ε→0

P(X(rBd \ εBd) > 0)

= lim
ε→0

(
1− e−γλ(rBd\εBd)

)
= 1− e−γκdrd

= P(δ ≤ r).

Thus, ∆ and δ have the same distribution, in the case of a stationary Poisson
process.

In probability theory, it is possible under suitable assumptions to intro-
duce conditional probabilities, which are not defined in an elementary way, by
means of disintegration procedures. A somewhat similar procedure is possible
for random measures and point processes and leads to the notion of the Palm
distribution Px with respect to a given point x ∈ Rd. Since we shall consider
only stationary random measures in this section, it suffices to consider P0,
with respect to the origin 0; the distribution Px is then obtained as the image
txP0 of P0 under the translation by the vector x.
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We begin with a measurability assertion, for which stationarity does not
yet play a role.

Lemma 3.3.1. Let X be a random measure on Rd, and let f : Rd ×M → R

be a nonnegative B ⊗M-measurable function. Then the mappings

ϕ1 : ω �→
∫

Rd

f(x,X(ω))X(ω,dx)

and
ϕ2 : ω �→

∫
Rd

f(x,X(ω)− x)X(ω,dx)

are measurable.

Proof. Since (x, η) �→ (x, η − x) is measurable, together with f also the func-
tion g : (x, η) → f(x, η − x) is measurable (and nonnegative). Therefore,
observing that∫

Rd

g(x,X(ω))X(ω,dx) =
∫

Rd

f(x,X(ω)− x)X(ω,dx),

it is sufficient to prove the measurability of ϕ1.
For that, it is sufficient to consider indicator functions f = 1B×A with

B ∈ B and A ∈M. In this case,

ϕ1(ω) =
∫

Rd

1B(x)1A(X(ω))X(ω,dx) = X(ω)(B)1A(X(ω)),

thus ϕ1 is a product of measurable functions. ��

Due to the lemma, for a random measure X on Rd, we can define two
measures µ and C on B ⊗M in the following way. For Ã ∈ B ⊗M, let

µ(Ã) := E

∫
Rd

1Ã(x,X − x)X(dx)

and
C(Ã) := E

∫
Rd

1Ã(x,X)X(dx).

The σ-additivity is a consequence of the monotone convergence theorem. We
observe that C is the image measure of µ under (x, η) �→ (x, η + x), and µ is
the image measure of C under (x, η) �→ (x, η − x). The measure C is called
the Campbell measure of X. It has a simple meaning on product sets:

C(B ×A) = E[X(B)1A(X)]

for B ∈ B and A ∈ M. The definition of C, Lemma 3.3.1, and monotone
convergence immediately yield an extension of the Campbell theorem,



3.3 Palm Distributions 73

E

∫
Rd

f(x,X)X(dx) =
∫

Rd×M

f(x, η)C(d(x, η)) (3.5)

for nonnegative measurable functions f : Rd ×M→ R.
Now we show that in the stationary case the measures µ and C can be

decomposed.

Theorem 3.3.1. Let X be a stationary random measure on Rd with intensity
γ > 0. Then

µ = γλ⊗ P0

with a (uniquely determined ) probability measure P0 on M. For B ∈ B and
A ∈M,

C(B ×A) = γ
∫

B

P0(A− x)λ(dx).

Proof. Let B ∈ B, A ∈ M and y ∈ Rd be given. Using the stationarity of X,
we get

µ((B + y)×A) = E

∫
Rd

1B+y(x)1A(X − x)X(dx)

= E

∫
Rd

1B(x)1A(X − y − x) (X − y)(dx)

= E

∫
Rd

1B(x)1A(X − x)X(dx)

= µ(B ×A).

Thus, for fixed A the measure µ(· ×A) is translation invariant (and locally fi-
nite). The uniqueness of Lebesgue measure implies that µ(B×A) = α(A)λ(B)
for B ∈ B, with a factor α(A). Since

µ(B ×M) = E

∫
Rd

1B(x)X(dx) = EX(B) = γλ(B)

for B ∈ B, the definition P0 := γ−1µ(Cd × ·) (where Cd = [0, 1]d is the unit
cube) yields the product representation of µ.

The representation of C is obtained by applying the map (x, η) �→ (x, η+
x). ��

The probability measure P0 onM is called the Palm distribution of X.
Theorem 3.3.1 together with the definition of µ gives the following explicit
representation of P0, which reveals its intuitive meaning.

Theorem 3.3.2. Let X be a stationary random measure on Rd with intensity
γ > 0. For an arbitrary Borel set B ∈ B with λ(B) = 1 and for A ∈M,

γP0(A) = E

∫
Rd

1B(x)1A(X − x)X(dx).
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More generally, we can choose an arbitrary Borel set B ∈ B with 0 <
λ(B) <∞ and represent the Palm distribution at A in the form

P0(A) =
E

∫
B

1A(X − x)X(dx)
EX(B)

(3.6)

and thus as a quotient of intensities.
Using the Palm distribution, the extension (3.5) of the Campbell theorem

can be simplified in the stationary case.

Theorem 3.3.3 (Refined Campbell theorem). Let X be a stationary
random measure on Rd with intensity γ > 0, and let f : Rd × M → R be a
nonnegative measurable function. Then

∫
Rd f(x,X)X(dx) is measurable, and

E

∫
Rd

f(x,X)X(dx) = γ
∫

Rd

∫
M

f(x, η + x) P0(dη)λ(dx).

Proof. The measurability was already proved in Lemma 3.3.1. The further
assertion then follows from (3.5), using the decomposition of C. ��

We use the refined Campbell theorem to prove an inversion formula by
which the distribution PX of a random measure X is expressed in terms of its
Palm distribution P0. For this purpose, we make use of a measurable function
h : Rd ×M→ [0,∞) which satisfies∫

Rd

h(x, η) η(dx) = 1 (3.7)

for all η ∈ M \ {0}. Such a function h can be easily constructed as follows.
There exist pairwise disjoint Borel sets A1, A2, . . . in Rd which are relatively
compact and cover Rd. For η ∈ M \ {0} and x ∈ Rd, let

h̃(x, η) :=
∑

n∈N, η(An)>0

1
2n
η(An)−11An

(x),

then
0 < α(η) :=

∫
Rd

h̃(x, η) η(dx) =
∑

n∈N, η(An)>0

1
2n
≤ 1.

Hence

h(x, η) :=

{
α(η)−1h̃(x, η), if η �= 0,

0, if η = 0,

satisfies (3.7).

Theorem 3.3.4. Let X be a stationary random measure on Rd with intensity
γ > 0, and let h : Rd×M→ R be a nonnegative measurable function satisfying
(3.7). Then
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PX(A) = γ
∫

Rd

∫
M

1A(η + x)h(x, η + x) P0(dη)λ(dx)

for all A ∈M with 0 /∈ A.

Proof. For A ∈ M with 0 /∈ A, we apply Theorem 3.3.3 to the measurable
function f : Rd ×M→ R defined as

f(x, η) := h(x, η + x)1A(η + x)

and get, using (3.7),

PX(A) =
∫

A

∫
Rd

h(x, η) η(dx) PX(dη)

=
∫

M

∫
Rd

f(x, η − x) η(dx) PX(dη)

= E

∫
Rd

f(x,X − x)X(dx)

= γ

∫
Rd

∫
M

f(x, η) P0(dη)λ(dx)

= γ

∫
Rd

∫
M

1A(η + x)h(x, η + x) P0(dη)λ(dx),

as stated. ��

For x ∈ Rd we now put Px := txP0. Then Theorem 3.3.1 yields the repre-
sentation

C(B ×A) = γ
∫

B

Px(A)λ(dx) =
∫

B

Px(A)Θ(dx). (3.8)

Thus, the family {Px : x ∈ Rd} is a disintegration of the Campbell measure
C with respect to the intensity measure. Since in the classical case of real
(or vector-valued) random variables, (regular) conditional probabilities are
defined by a disintegration of the distribution (cf., for example, Kallenberg
[386, Th. 6.3]), it is plausible to interpret Px as the distribution of X, given
that x is a point in the support of X. For simple point processes X this
intuitive meaning becomes clearer since we can interpret Px as the conditional
distribution P(X ∈ · | x ∈ X).

If the random measure X is ergodic (some ergodicity considerations are
the topic of Section 9.3), the interpretation of P0 can be made even more
explicit. As a counterpart to (3.6), without expectations, we then have

P0(A) = lim
r→∞

∫
rBd 1A(X − x)X(dx)

X(rBd)
a.s. (3.9)
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If X is, in particular, a simple point process, this can be interpreted as follows:
P0 is the asymptotic distribution (for r → ∞) of X − ξ, where ξ is a point
randomly chosen from X ∩ rBd. For that reason, P0 is often considered as
the distribution of X with respect to a ‘typical point’ of the process. Also the
disintegration (3.8) can be made more explicit in the ergodic case; we have

PX(A) = lim
r→∞

1
λ(rBd)

∫
rBd

Px(A)λ(dx) a.s., (3.10)

which makes the mentioned analogy of Palm distributions to (regular) con-
ditional probabilities even clearer. Relation (3.10) follows from (3.8) and the
definition of the Campbell measure, since in the ergodic case

lim
r→∞

1
λ(rBd)

X(rBd) = γ a.s.

For further details, and a proof of (3.9), we refer to König and Schmidt [423,
ch. 12].

Now we show that the Palm distribution can be used to obtain a simplified
representation of the second moment measure of a simple stationary point
process X in Rd. Using its Palm distribution P0 and intensity γ > 0, we
define the reduced second moment measure K by

γK(A) :=
∫

N

η(A \ {0}) P0 (dη) for A ∈ B.

We assume that it is locally finite. For the second factorial moment measure
of X we then obtain from Theorem 3.3.3, for A1, A2 ∈ B,

Λ(2)(A1 ×A2) = E
∑

(x,y)∈X2
�=

1A1(x)1A2(y)

= E
∑
x∈X

1A1(x)X(A2 \ {x})

= γ

∫
Rd

∫
N

1A1(x)η((A2 − x) \ {0}) P0(dη)λ(dx)

= γ2

∫
A1

K(A2 − x)λ(dx)

= γ2

∫
A1

∫
Rd

1A2(x+ t) K(dt)λ(dx).

Together with (3.1), for the second moment measure of X this yields the
representation

Γ (2)(A1 ×A2) = Θ(A1 ∩A2) + γ2

∫
Rd

∫
Rd

1A1(x)1A2(x+ t)λ(dx) K(dt),
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which involves only measures on Rd.
For a stationary Poisson process X, the Palm distribution P0 is closely

related to the distribution of X. To formulate this very useful connection,
it is convenient to identify again a simple point process X with its support
suppX. Correspondingly, the Palm distribution P0 of X is interpreted as a
measure on F . In other words, we identify P0 with its image measure under the
bijective measurable mapping is : Ns → F�f (cf. Lemma 3.1.4), but without
introducing a new notation, and view it as a measure on F .

Theorem 3.3.5 (Theorem of Slivnyak). Let P0 be the Palm distribution
of a stationary simple point process X in Rd with intensity γ > 0. Then X is
a Poisson process if and only if

P0(A) = P(X ∪ {0} ∈ A) (3.11)

holds for all A ∈ B(F).

Proof. Theorem 3.2.5 (applied to this special situation and formulated in set-
theoretic language) and the stationarity ofX imply thatX is a Poisson process
if and only if

E
∑
x∈X

g(x,X) = γ

∫
Rd

E g(x,X ∪ {x})λ(dx)

= γ

∫
Rd

∫
N

g(x, (η ∪ {0}) + x) PX(dη)λ(dx)

holds for all measurable functions g : Rd × N → [0,∞). Applying the refined
Campbell theorem (Theorem 3.3.3) to the left side, we obtain that X is a
Poisson process if and only if∫

Rd

∫
N

g(x, η + x) P0(dη)λ(dx) =
∫

Rd

∫
N

g(x, (η ∪ {0}) + x) PX(dη)λ(dx)

holds for all g. Choosing g(x, η) := 1A(η − x)1B(x) with A ∈ B(F) and
B ∈ B(Rd), we see that the latter equality is equivalent to

P0(A) = P(X ∪ {0} ∈ A)

for all A ∈ B(F). ��

With the aid of Slivnyak’s theorem, for the spherical contact distribution
function of the stationary Poisson process X we obtain

P(δ ≤ r) = P(d (0, (X ∪ {0}) \ {0}) ≤ r)
= P0({F ∈ F�f : d (0, F \ {0}) ≤ r})

= lim
s→∞

card {x ∈ X ∩ sBd : d (x,X \ {x}) ≤ r}
card (X ∩ sBd)

=: F (r),
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where the limit relation holds a.s., because of (3.9). If we interpret the distri-
bution function F as the distribution function of the distance ∆ of a typical
point of X to its nearest neighbor, we see that δ and ∆ have the same distri-
bution, as we already found heuristically.

Notes for Section 3.3

1. An essential precondition for the existence of the Palm distribution P0 was our
general assumption that the intensity measure Θ of a random measure X is locally
finite. Thus, we only considered in this section stationary random measures X on
Rd with finite intensity γ. The measure ρ0 := γP0 is usually called the Palm
measure of X. If one skips the assumption that γ < ∞, the decompositions of
µ and the Campbell measure C in Theorem 3.3.1 still hold true and define the
Palm measure ρ0, which in this case need not be locally finite. Some of the results
following Theorem 3.3.1 are valid in this more general situation.

2. If the interpretation of point processes as random counting measures is main-
tained, then there is another concise formulation of equation (3.11) in Slivnyak’s
theorem, namely

P
0 = PX ∗ δδ0 ,

where ∗ denotes the convolution of measures on N.

3. Besides the Palm distribution P0, one often considers the reduced Palm dis-
tribution P0

! . For a simple point process X in Rd it is defined by

P
0
! (A) := P

0({F ∪ {0} : F ∈ A ∩ F{0}})

for A ∈ B(F); it describes the distribution of X \ {0} under the condition 0 ∈ X.
Equation (3.11) in Slivnyak’s theorem then takes the simple form

P
0
! = PX .

4. Palm distributions were introduced for stationary point processes on the real line
R by Palm [593] and developed further by many authors. For a brief description of
the historical development, including the names Khinchin (1955), Kaplan (1955),
Ryll–Nardzewski (1961) and Slivnyak (1962, 1966), we refer to Daley and Vere–
Jones [194]. Of special importance were the paper by Mecke [476] and the book
by Kerstan, Matthes and Mecke [400]. Most modern books on random measures or
point processes contain chapters on Palm measures.

5. The interpretation of Palm distributions given after (3.9), where X is a simple
point process, can be made precise in the following way. There is a random point
ξ ∈ X such that the distribution of X − ξ is the Palm distribution P0 of X. This
is a consequence of Thorisson’s results on shift-coupling (see [386, Lemma 11.7]).
Holroyd and Peres [349] give an explicit construction of ξ, depending only on X.

6. The approach to Palm measures through disintegration of the Campbell measure
can be pursued also in the non-stationary setting and produces a family Px, x ∈ Rd,
of probability measures Px which can be interpreted as conditional distributions of
the random measure (or point process) X, given that x is a point in (the support
of) X. This set-up is used, for example, in Daley and Vere–Jones [194] and in
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Kallenberg [385]. A rather general theory of disintegration with applications to Palm
measures, without the usual explicit topological requirements and for more general
group operations, is presented in Kallenberg [387].

7. The notion of Palm distributions can be extended to that of n-point (or n-fold)

Palm distributions. General inversion formulas for these, in the spirit of Theorem

3.3.4, were treated by Hanisch [320].

3.4 Palm Distributions – General Approach

The Palm distribution P0 of a random measure X on Rd, which we introduced
in the last section, is a probability measure on (M,M). This is motivated by
the invariance properties with respect to translations which we exploited and
by the fact that the translation group operates naturally on M. In this section
we describe a slightly more abstract approach, which is useful to derive an
important exchange formula for Palm distributions.

We now assume that the basic probability space (Ω,A,P) is supplied with
an additional structure, namely a group T = {Tx : x ∈ Rd} of automorphisms.
Here, a map T : Ω → Ω is called an automorphism if T is bijective and T
and T−1 are measurable and leave the probability measure P invariant (that
is, satisfy P(TA) = P(T−1A) = P(A) for all A ∈ A). The group structure of
T is enforced by requiring that TxTy = Tx+y for all x, y ∈ Rd, thus T with
the composition is an abelian group (the neutral element is T0, the identity
map). T is also called a flow on (Ω,A,P) (parameterized by Rd), and the
quadruple (Ω,A,P, T ) is called a dynamical system (we shall discuss such
dynamical systems further in connection with ergodic limits in Section 9.3).
Within this framework, a random measure X on Rd is called stationary or
adapted (to the flow T ) if

X(ω,B + x) = X(Tx ω,B) for ω ∈ Ω, x ∈ Rd, B ∈ B.

As in Section 3.3, we obtain the following results. Since the proofs are
nearly identical, we only emphasize instances where there are essential differ-
ences.

Lemma 3.4.1. Let X be a random measure on Rd, and let f : Rd × Ω → R

be a nonnegative B ⊗A-measurable function. Then the mappings

ω �→
∫

Rd

f(x, ω)X(ω,dx) and ω �→
∫

Rd

f(x, Tx ω)X(ω,dx)

are measurable.

The measures µ and C are now defined on B ⊗Ω by

µ(Ã) :=
∫

Ω

∫
Rd

1Ã(x, Tx ω)X(ω,dx) P(dω)
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and
C(Ã) :=

∫
Ω

∫
Rd

1Ã(x, ω)X(ω,dx) P(dω).

Now, C is the image measure of µ under (x, ω) �→ (x, T−x ω), and µ is the
image measure of C under (x, ω) �→ (x, Tx ω). The measure C is called the
Campbell measure of X. It fulfills∫

Ω

∫
Rd

f(x, ω)X(ω,dx) P(dω) =
∫

Rd×Ω

f(x, ω)C(d(x, ω))

for nonnegative measurable functions f : Rd ×Ω → R.

Theorem 3.4.1. Let X be a stationary random measure on Rd with intensity
γ > 0. Then

µ = γλ⊗ P0

with a (uniquely determined ) probability measure P0 on Ω. For B ∈ B and
A ∈ A,

C(B ×A) = γ
∫

B

P0(TxA)λ(dx).

The measure P0 is called the Palm distribution of X.

Theorem 3.4.2. Let X be a stationary random measure on Rd with intensity
γ > 0. For an arbitrary Borel set B ∈ B with λ(B) = 1 and for A ∈ A,

γP0(A) =
∫

Ω

∫
Rd

1B(x)1A(Tx ω)X(ω,dx) P(dω).

Theorem 3.4.3 (Refined Campbell theorem). Let X be a stationary
random measure on Rd with intensity γ > 0, and let f : Rd × Ω → R be a
nonnegative measurable function. Then ω →

∫
Rd f(x, ω)X(ω,dx) is measur-

able, and∫
Ω

∫
Rd

f(x, ω)X(ω,dx) P(dω) = γ
∫

Rd

∫
Ω

f(x, T−x ω) P0(dω)λ(dx).

The general framework described so far reduces to the situation in Sec-
tion 3.3 if we consider a stationary random measure X (in the sense of Section
3.3) and take as (Ω,A,P) the canonical space (M,M,PX) where the automor-
phisms Tx are the translations t−x, x ∈ Rd. The advantages of the abstract
approach become apparent if we now consider two stationary random mea-
sures X,Y .

Theorem 3.4.4. Let X be a stationary random measure on Rd with intensity
γ > 0 and Palm distribution P0, and let Y be a further stationary random
measure on Rd. Then, for a nonnegative measurable function g : Rd×Rd×Ω →
R, we have
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Ω

∫
Rd

∫
Rd

g(x, y, Tx ω)Y (ω,dy)X(ω,dx) P(dω)

= γ
∫

Ω

∫
Rd

∫
Rd

g(x, x+ y, ω)Y (ω,dy)λ(dx) P0(dω).

Proof. We apply Theorem 3.4.3 to the (measurable) function

f(x, ω) :=
∫

Rd

g(x, x+ y, ω)Y (ω,dy)

and get

γ

∫
Ω

∫
Rd

∫
Rd

g(x, x+ y, ω)Y (ω,dy)λ(dx) P0(dω)

= γ
∫

Ω

∫
Rd

f(x, ω)λ(dx) P0(dω)

=
∫

Ω

∫
Rd

f(x, Tx ω)X(ω,dx) P(dω)

=
∫

Ω

∫
Rd

∫
Rd

g(x, x+ y, Tx ω)Y (Tx ω,dy)X(ω,dx) P(dω)

=
∫

Ω

∫
Rd

∫
Rd

g(x, y, Tx ω)Y (ω,dy)X(ω,dx) P(dω),

as asserted. ��

We use Theorem 3.4.4 to establish a useful exchange formula for Palm
distributions.

Theorem 3.4.5 (Exchange formula of Neveu). Let X,Y be stationary
random measures on Rd with intensities γX , γY > 0 and Palm distributions
P0,X ,P0,Y . Then, for a nonnegative measurable function f : Rd×Ω → R, we
have

γX

∫
Ω

∫
Rd

f(y, Ty ω)Y (ω,dy) P0,X(dω)

= γY

∫
Ω

∫
Rd

f(−x, ω)X(ω,dx) P0,Y (dω).

Proof. Using Theorem 3.4.2, the stationarity and Fubini’s theorem, we obtain

γX

∫
Ω

∫
Rd

f(y, Ty ω)Y (ω,dy) P0,X(dω)

=
∫

Ω

∫
Rd

∫
Rd

1B(x)f(y − x, Ty ω)X(ω,dx)Y (ω,dy) P(dω),
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where B ∈ B is a set with λ(B) = 1. Now we apply Theorem 3.4.4 with

g(y, x, ω) := 1B(x)f(y − x, ω)

(and the roles of X,Y interchanged) and get the assertion after another ap-
plication of Fubini’s theorem. ��

Notes for Section 3.4

1. The use of abstract flows in the set-up for Palm measures appears in Geman and
Horowitz [256], Mecke [477] and Neveu [582].

2. As we remarked in the Notes for Section 3.3, Palm-type formulas can be estab-
lished for stationary random measures with not necessarily finite intensity γ by using
the Palm measure ρ0 (which equals γP0 for finite γ). Even more generally, in the
framework underlying this section, a Palm theory has been developed in which the
basic probability measure P is replaced by a σ-finite measure (see the pioneering
paper by Mecke [476]).

3. As another generalization, the Palm theory has been extended to random mea-
sures and point processes in a (suitable) topological group G (which is then also
the parameter group for the automorphisms Tx, x ∈ G). The role of the Lebesgue
measure in the formulas is then played by the Haar measure on G (again, see Mecke
[476]).

4. For a stationary point process X, Thorisson [757] (see also Thorisson [758])
showed that the Palm distribution P0 of X is invariant under bijective point-shifts.
If X0 is the point process distributed as P0, a point-shift is a mapping picking
a point of X0 \ {0} by some unbiased rule. Thorisson asked whether this point-
stationarity characterizes Palm measures. A positive answer was given by Heveling
and Last [339, 341] (see also Heveling [337]). General invariance properties of Palm
measures as well as an extension of the concept of point-stationarity to general
random measures are discussed in Last and Thorisson [435].

3.5 Marked Point Processes

The construction of Palm distributions in the previous two sections made use
of the fact that the random measures are defined on E = Rd, which at the
same time is the group of transformations to which stationarity refers. This
set-up can be extended to the more general situation where the basic space
E is a product, with Rd being one of the factors.

Thus, we assume now that E = Rd×M , whereM is a locally compact space
with a countable base and E carries the product topology. For a translation
tx of Rd, with translation vector x, and for (y,m) ∈ E we define

tx(y,m) := (txy,m),
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letting translations operate on the first component only. The mapping tx :
(y,m) �→ tx(y,m) is continuous and hence measurable, and for a measure η
on E we define η + x as the image measure under tx. Together with X, also
X + x is a point process in Rd ×M .

Definition 3.5.1. A marked point process in Rd with mark space M is a
simple point process X in Rd ×M with intensity measure Θ satisfying

Θ(C ×M) <∞ for all C ∈ C. (3.12)

We remark that by means of the mapping

e : N(Rd) → Ns(Rd × N)

η �→
∑

x∈supp η
δ(x,η({x}))

every point process in Rd can be represented as a marked point process with
mark space N, and thus as a simple point process.

If X is a marked point process in Rd, its image under the projection
(y,m) �→ y is an ordinary point process X0 in Rd. The process X0 is called
the unmarked point process or ground process of X. The interpretation
of the pair (y,m) is that of a point y in Rd to which a mark m ∈ M is
attached. The motivation for introducing marked point processes comes from
applications where a mark is used to provide additional information about the
point. In simple cases, the marks will be real numbers or tuples of numbers,
but they can also be more complicated objects, for example compact sets, as
in the next chapter.

Obviously, for a marked point process X, the unmarked point process X0

need not be simple. In particular, this can happen for a Poisson process X.
However, if we speak of a marked Poisson process X, in the following, we
assume that X is a Poisson process and that X0 is simple (and therefore a
Poisson process, too).

The main interest in the following lies in marked point processes X in Rd

which are stationary, in the sense that

X
D= X + x

for all x ∈ Rd.
For stationary marked point processes, the intensity measure has a useful

decomposition.

Theorem 3.5.1. If X is a stationary marked point process in Rd with mark
space M and intensity measure Θ �= 0, then

Θ = γλ⊗Q

with a number 0 < γ < ∞ and a (uniquely determined ) probability measure
Q on M.
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Proof. Let A ∈ B(M). Putting

µA(B) := Θ(B ×A) for B ∈ B,

we have defined a locally finite measure µA on Rd. It is translation invariant,
since

µA(txB) = EX(txB ×A) = Et−xX(B ×A) = µA(B)

for x ∈ Rd, and hence µA = c(A)λ with 0 ≤ c(A) < ∞. From c(A) =
Θ(Cd×A) it follows that c is a measure, and for γ := c(M) we have 0 < γ <∞.
Putting Q := γ−1c, we obtain

Θ(B ×A) = γ(λ⊗Q)(B ×A)

for B ∈ B, A ∈ B(M), which implies the assertion. ��

The number γ is again called the intensity of the marked point process
X, and the probability measure Q is called the mark distribution. This
name is plausible, since the Campbell theorem gives

Q(A) =
1
γ

E
∑

(y,m)∈X

1B(y)1A(m)

for B ∈ B with λ(B) = 1 and A ∈ B(M).
If the marked point process X is stationary, then the unmarked process

X0 is a stationary ordinary point process, and γ is its intensity. A possible
construction (and simulation) of stationary marked point processes with given
data γ,Q consists in first generating a stationary point process X0 in Rd with
intensity γ and then equipping the points y ∈ X0 independently with random
marks m distributed according to Q. However, in this way one obtains only
a special class of marked point processes. These independently marked point
processes will be considered later in this section.

To construct Palm distributions of stationary marked point processes, we
proceed in a similar way to Section 3.3, with Rd replaced by Rd ×M . Let X
be a stationary marked point process in Rd with mark space M . We define
the Campbell measure of X by

C(Ã) := E
∑

(y,m)∈X

1Ã(y,m,X)

for Ã ∈ B ⊗ B(M)⊗Ns(Rd ×M). In particular, we have

C(B ×A×N) = E[X(B ×A)1N (X)]

for B ∈ B, A ∈ B(M) and N ∈ Ns(Rd ×M). The following theorem com-
prises the assertions corresponding to Theorems 3.3.1 and 3.3.2. The proof is
analogous (observing the assumption (3.12)).
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Theorem 3.5.2. Let X be a stationary marked point process in Rd with mark
space M and intensity γ > 0. Then there exists a uniquely determined proba-
bility measure P0 on M × Ns(Rd ×M) such that

C(B ×A×N) = γ
∫

B

P0(A× (N − y))λ(dy) (3.13)

for B ∈ B, A ∈ B(M) and N ∈ Ns(Rd ×M), and

γP0(Ã) = E
∑

(y,m)∈X

1B(y)1Ã(m,X − y)

for all B ∈ B with λ(B) = 1 and all Ã ∈ B(M)⊗Ns(Rd ×M).

The probability measure P0 is called the Palm distribution of the
marked point process X. Similarly to Section 3.3, we can interpret P0(A× ·),
for A ∈ B(M), as the conditional distribution of X under the condition that
at the origin there is a point of X (more precisely, of X0) with mark in A.

Because of

γP0(A× Ns(Rd ×M)) = C(B ×A× Ns(Rd ×M)) = Θ(B ×A) = γQ(A)

for A ∈ B(M) and B ∈ B with λ(B) = 1, the mark distribution Q is the
projection of the Palm distribution P0 to the first component.

Again there is a refined Campbell theorem, with an analogous proof.

Theorem 3.5.3 (Refined Campbell theorem). Let X be a stationary
marked point process in Rd with mark space M and intensity γ > 0. Let
f : Rd ×M × Ns(Rd ×M) → R be a nonnegative measurable function. Then∑

(y,m)∈X f(y,m,X) is measurable, and

E
∑

(y,m)∈X

f(y,m,X)

= γ
∫

Rd

∫
M×Ns(Rd×M)

f(y,m, η + y) P0(d(m, η))λ(dy).

As shown by (3.13), also in the present situation the Palm distribution P0

can be obtained by disintegration (and subsequent normalization) from the
Campbell measure C. We can go yet one step further and disintegrate also P0

(with respect to the mark distribution Q). For this, we observe that for fixed
N ∈ Ns(Rd ×M) the measure P0(· ×N) on M is absolutely continuous with
respect to Q. In fact, if Q(A) = 0 for some A ∈ B(M), then Theorem 3.5.1
shows that for B ∈ B with λ(B) = 1 we have Θ(B×A) = 0 and therefore, by
Theorem 3.5.2,

γP0(A×N) ≤ γP0(A× Ns(Rd ×M)) = γQ(A) = 0.
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Hence, the Radon–Nikodym theorem provides a density g0N of P0(·×N) with
respect to Q.

By means of the bijective mapping

is : Ns(Rd ×M)→ F�f (Rd ×M)

we can consider the measure P0 as a probability measure on M ×F(Rd×M)
(cf. Theorem 3.1.1). This space is locally compact and has a countable base,
since M and F(Rd ×M) have these properties, the first by assumption and
the second by Theorem 12.2.1. Thus, the topological assumptions for the ap-
plication of a known existence and uniqueness theorem for regular conditional
probabilities are satisfied (see, for example, Kallenberg [386, Th. 6.3]). By this
result, there exists a regular version m �→ g0N (m) of the density found above,
that is, for Q-almost all m ∈M ,

P0,m(N) := g0N (m)

defines a probability measure on F(Rd×M) (concentrated on F�f (Rd×M)).
To obtain a uniform presentation in this section, we now interpret P0,m again
as a measure on Ns(Rd ×M). We call (P0,m)m∈M a regular family. (The
mapping (m,N) �→ P0,m(N) has the properties by which one usually defines
transition probabilities or Markov kernels.) The following theorem collects
what we have obtained.

Theorem 3.5.4. There exists a regular family (P0,m)m∈M of probability mea-
sures on Ns(Rd ×M) which satisfies

P0(A×N) =
∫

A

P0,m(N) Q(dm)

for all A ∈ B(M) and N ∈ Ns(Rd ×M). The family (P0,m)m∈M is uniquely
determined, up to a set of Q-measure zero.

We call also P0,m a Palm distribution, and we interpret it as the dis-
tribution of X under the condition (0,m) ∈ X, that is, under the condition
that at the origin there is a point of X0 with mark m.

Combining Theorems 3.5.4 and 3.5.3, we obtain a further version of the
refined Campbell theorem (using Fubini’s theorem for kernels).

Theorem 3.5.5 (Refined Campbell theorem). Let X be a stationary
marked point process in Rd with mark space M and intensity γ > 0. Let
f : Rd ×M × Ns(Rd ×M) → R be a nonnegative measurable function. Then∑

(y,m)∈X f(y,m,X) is measurable, and

E
∑

(y,m)∈X

f(y,m,X)

= γ
∫

Rd

∫
M

∫
Ns(Rd×M)

f(y,m, η + y) P0,m(dη) Q(dm)λ(dy).
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A third type of Palm distribution for stationary marked point processes X
arises in the context of the previous section. To explain this, let (Ω,A,P, T )
be the dynamical system given by the canonical space (Ns(Rd×M),Ns(Rd×
M),PX) and the class T of translations t−x, x ∈ Rd, as they were introduced
at the beginning of this section. Then, the unmarked processX0 is a stationary
random measure, which has a Palm distribution P0,X0

. It describes the
distribution of X under the condition that there is a point of X0 at the origin
(with no information on the mark). Obviously, we have

P0,X0
= P0(M × ·).

Although P0,X0
carries less information than P0, it still determines the

mark distribution Q. Namely, for x ∈ Rd and η ∈ Ns(Rd ×M), let us define
ζx(η) ∈M as m if η({(x,m)}) > 0, and as some fixed mark m0 if there is no
such m, that is, if η({x} ×M) = 0. Then

ζx : Ns(Rd ×M)→M

is a measurable mapping, as follows by arguments similar to the proof of
Lemma 3.1.3. Since

Q(A) = P0,X0
({η ∈ Ns(Rd ×M) : η({(0,m)}) > 0, ζ0(η) ∈ A})

and since P0,X0
is concentrated on

{η ∈ Ns(Rd ×M) : η({(0,m)}) > 0},

Q is the image measure of P0,X0
under ζ0.

Independently Marked Point Processes

We turn now to the investigation of an important subclass of marked point
processes. The notion of mark distribution of a marked point process is in gen-
eral meaningless without additional structural information, such as station-
arity, but it does have a meaning under suitable independence assumptions.
By Lemma 3.1.3, a marked point process X in Rd with mark space M can be
represented in the form

X =
τ∑

i=1

δ(ξi,µi), (3.14)

where (ξi, µi)i∈N is a sequence of random variables in Rd × M and τ :=
X(Rd ×M) = X0(Rd).

Definition 3.5.2. The marked point process X is independently marked
if it has a representation (3.14) where the random marks µ1, µ2, . . . are inde-
pendently and identically distributed and are independent of ((ξi)i∈N, τ). The
distribution Q of the µi is then called the mark distribution of X.
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The following theorem shows that the mark distribution of an indepen-
dently marked point process X does not depend on the special representation
(3.14) and that in the stationary case it coincides with the mark distribution
defined by Theorem 3.5.1.

Theorem 3.5.6. Let X be an independently marked point process in Rd with
intensity measure Θ and mark distribution Q. Then

Θ = ϑ⊗Q,

where ϑ is the intensity measure of the unmarked point process X0.

Proof. Let M be the mark space of X. Put X(Rd ×M) =: τ ∈ N0 ∪ {∞}.
For B ∈ B(Rd) and A ∈ B(M) the assumed independence properties yield
(employing a representation (3.14))

Θ(B ×A) = E

τ∑
i=1

δ(ξi,µi)(B ×A)

=
∑

k∈N0∪{∞}
E

[
1{k}(τ)

k∑
i=1

δ(ξi,µi)(B ×A)

]

=
∑

k∈N0∪{∞}

k∑
i=1

E
[
1{k}(τ)1B(ξi)1A(µi)

]

=
∑

k∈N0∪{∞}

k∑
i=1

E
[
1{k}(τ)1B(ξi)

]
E[1A(µi)]

= Q(A)
∑

k∈N0∪{∞}
E

[
1{k}(τ)

k∑
i=1

δξi
(B)

]

= Q(A)ϑ(B) = (ϑ⊗Q)(B ×A),

from which the assertion follows. ��

Of particular interest is the case where the unmarked point process X0 is
a Poisson process.

Theorem 3.5.7. Let X be an independently marked point process in Rd, and
assume that the unmarked process X0 is a Poisson process. Then X is a Pois-
son process.

Proof. Let M be the mark space of X. Let X ′ be a Poisson process in Rd×M
with intensity measure ϑ⊗Q, where ϑ is the intensity measure of X0 and Q

is the mark distribution of X. We shall show that

P(X(C) = 0) = P(X ′(C) = 0) (3.15)
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holds for all C ∈ C(Rd×M). By Theorem 3.1.1, this implies X D= X ′ and thus
the assertion. To prove (3.15), we assume a representation (3.14) and exploit
the independence properties. This yields

P(X(C) = 0) = P

(
τ∑

i=1

δ(ξi,µi)(C) = 0

)

=
∑

k∈N0∪{∞}
P(τ = k, 1C(ξi, µi) = 0 for i = 1, . . . , k)

=
∑

k∈N0∪{∞}
P

(
τ = k,

k∏
i=1

(1− 1C(ξi, µi)) = 1

)

=
∑

k∈N0∪{∞}
E

[
1{k}(τ)

k∏
i=1

(1− 1C(ξi, µi))

]

=
∑

k∈N0∪{∞}
E

[
1{k}(τ)

k∏
i=1

∫
M

(1− 1C(ξi,m)) Q(dm)

]

= E

τ∏
i=1

∫
M

(1− 1C(ξi,m)) Q(dm).

Now Theorem 3.2.4, applied to X0, gives

P(X(C) = 0) = exp
(
−

∫
Rd

∫
M

1C(x,m) Q(dm)ϑ(dx)
)

= exp (−ϑ⊗Q(C))

= P(X ′(C) = 0),

which completes the proof. ��

The previous theorem shows that independent marking, applied to a Pois-
son process X0 in Rd, yields a marked point process X which is a Poisson
process. However, by Theorem 3.5.6, this procedure yields only marked point
processes for which the intensity measure has a product form. For marked
Poisson processesX with a general intensity measure Θ, the unmarked process
X0 is again a Poisson process, but X cannot be obtained from X0 by inde-
pendent marking (the marks are position-dependent). In the stationary case,
though, the situation is different.

Theorem 3.5.8. Let X be a stationary Poisson process in Rd ×M with in-
tensity measure Θ satisfying (3.12). Then X is independently marked.

Proof. We assume Θ �= 0, since for Θ = 0 there is nothing to show. Condition
(3.12) being satisfied, X is a stationary marked point process in Rd with mark
space M . Theorem 3.5.1 shows that
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Θ = γλ⊗Q

with 0 < γ <∞ and a probability measure Q on M .
For η ∈ Ns(Rd ×M) we put

η0 :=
∑

(x,m)∈η

δx

and define

N0
s(R

d ×M) :=
{
η ∈ Ns(Rd ×M) : η0 simple, η(Rd ×M) =∞,

η(C ×M) <∞ for all C ∈ C(Rd)
}
.

Then N0
s(R

d ×M) is measurable. Now we modify the argument in the proof
of Lemma 3.1.3. In that proof, we choose E = Rd and define the sets Ak

i , the
functions ji, and the linear order ≺ on Rd in the same way. Then we define,
for p ∈ N, a mapping ζp : N0

s(R
d ×M) → Rd ×M in the following way. Let

η ∈ N0
s(R

d ×M), and let (x,m) be an atom of η. All atoms (x′,m′) of η with
x′ ≺ x, x′ �= x, lie in the set

⋃j1(x)
i=1 A1

i ×M , hence their number is finite, say
p− 1. We define ζp(η) := (x,m). If this is done for all atoms (x,m) of η, then
ζp is defined for all p ∈ N. The measurability of ζp is obtained in a similar
way to the proof of Lemma 3.1.3.

Setting ζi(η) =: (xi,mi) for N0
s(R

d ×M), we have defined a measurable
mapping

Ξ : N0
s(R

d ×M)→ (Rd ×M)N

η �→ (xi,mi)i∈N,

from which we get the measurable mapping

Ξ ′ : N0
s(R

d ×M)→ (Rd)N ×MN

η �→ ((xi)i∈N, (mi)i∈N).

For the stationary Poisson process X in Rd ×M , the mappings ζp, Ξ,Ξ ′

are defined PX -almost surely. Hence, we can define (ξi, µi) := ζi ◦X for i ∈ N

and thus obtain a sequence (ξi, µi)i∈N of random variables with

X =
∞∑

i=1

δ(ξi,µi).

We assert that the marks µ1, µ2, . . . are independently and uniformly distrib-
uted and that they are independent of (ξi)i∈N. For the proof, we note that the
joint distribution

P((ξi)i∈N,(µi)i∈N)

is the image of PX under Ξ ′. Let (νi)i∈N be a sequence of independent, identi-
cally distributed random variables in M with distribution Q and independent
of (ξi)i∈N. Then
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X̃ :=
∞∑

i=1

δ(ξi,νi)

is an independently marked stationary Poisson process which has intensity
measure Θ and hence satisfies

PX = PX̃ ,

by Theorem 3.2.1. Since X̃ is independently marked, we have

P((ξi)i∈N,(νi)i∈N) = P⊗QN

with a probability measure P on (Rd)N. Since P((ξi)i∈N,(νi)i∈N) is the image of
PX̃ under Ξ ′, we also have

P((ξi)i∈N,(µi)i∈N) = P⊗QN,

which implies what we have stated. ��

In the preceding proof, the stationarity was only needed in so far as it
implies the product form of the intensity measure. Therefore, a generalization
of Theorem 3.5.8 can be obtained whenever the intensity measure is of the
form Θ = ϑ⊗Q with suitable ϑ.

For stationary marked point processes, there is also a version of Theorem
3.3.5, Slivnyak’s theorem. For that, we again use the map is : Ns(Rd ×M)→
F�f (Rd×M) to interpret measures on Ns(Rd×M) also as measures on F(Rd×
M). Corresponding to the convention that translations on Rd×M affect only
the first component, we define A + x for A ∈ F(Rd ×M) and x ∈ Rd by
{(y + x,m) : (y,m) ∈ A}.

Theorem 3.5.9 (Theorem of Slivnyak). Let X be a stationary marked
point process in Rd with intensity γ > 0 and with mark space M and mark
distribution Q and let P0,m, m ∈ M, be the family of Palm distributions of
X. Then, X is a Poisson process if and only if, for Q-almost all m ∈M , we
have

P0,m(A) = P(X ∪ {(0,m)} ∈ A)

for all A ∈ B(F(Rd ×M)).

Proof. Though the proof is analogous to that of Theorem 3.3.5, we present it
for the reader’s convenience. From Theorems 3.2.5 and 3.5.1 we obtain that
X is a Poisson process if and only if

E
∑

(x,m)∈X

g(X,x,m)

= γ
∫

M

∫
Rd

E g(X ∪ {(x,m)}, x,m)λ(dx) Q(dm)

= γ
∫

M

∫
Rd

∫
Ns(Rd×M)

g((η ∪ {(0,m)}) + x, x,m) PX(dη)λ(dx) Q(dm)
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holds for all measurable functions g : Ns(Rd × M) × Rd × M → [0,∞).
Applying the refined Campbell theorem (Theorem 3.5.5) to the left side and
using Fubini’s theorem, we obtain that X is a Poisson process if and only if∫

M

∫
Rd

∫
Ns(Rd×M)

g(η + x, x,m) P0,m(dη)λ(dx) Q(dm)

=
∫

M

∫
Rd

∫
Ns(Rd×M)

g((η ∪ {(0,m)}) + x, x,m) PX(dη)λ(dx) Q(dm)

holds for all g. Choosing g(η, x,m) := 1A(η − x)1C×B(x,m) with A ∈
B(F(Rd × M)), C ∈ B(Rd) and B ∈ B(M), we see that the latter equal-
ity is equivalent to∫

B

P(X ∪ {(0,m)} ∈ A) Q(dm) =
∫

B

P0,m(A) Q(dm)

for all B ∈ B(M) and A ∈ B(F(Rd×M)). Since the regular family in Theorem
3.5.4 is Q-almost surely uniquely determined, the assertion follows. ��

Up to now, Poisson processes and Cox processes were the only non-trivial
examples of (stationary) point processes in Rd which we discussed. Although
the Poisson process Xγλ yields the basis for most of the more sophisticated
geometric models which we shall investigate later, we want to mention two
other (classes of) stationary point processes in Rd. They are obtained as vari-
ations of Xγλ, with the help of marked processes.

A cluster process X in Rd is generated by a marked point process X̃,
where the mark space M is the subset Nsf ⊂ Ns of simple finite counting
measures on Rd, by superposition of the translated marks,

X =
∑

(x,η)∈X̃

∑
y∈η

δx+y =
∑

(x,η)∈X̃

(η + x).

Under appropriate conditions on the size of the marks, which guarantee that
X is locally finite, X is a point process. For (x, η) ∈ X̃, the point x is called a
parent point of X, whereas the points x+y, y ∈ η, are called daughter points.
They form a ‘cluster around’ x, therefore x is often called the center of the
cluster. If 0 ∈ η, the parent points appear in the cluster process, but this is
not part of the definition. Although the intensity measure of the marked point
process X̃ is locally finite (by our general assumption), the intensity measure
Θ of the cluster process X need not have this property, so it has to be added
as an additional requirement. If X̃ is stationary (with intensity γ̃ > 0), the
cluster process X is stationary and has intensity

γ = E
∑
z∈X

1Cd(z)
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= E
∑

(x,η)∈X̃

∑
y∈η

1Cd(x+ y)

= γ̃

∫
Nsf

∫
Rd

∑
y∈η

1Cd(x+ y)λ(dx) Q(dη)

= γ̃

∫
Nsf

∑
y∈η

1 Q(dη)

= γ̃nc,

where nc is the mean cluster size (mean number of points in the typical
cluster).

If X̃ is an independently marked Poisson process, the cluster process
X is called a Neyman–Scott process. By Theorem 3.5.8, a (stationary)
Neyman–Scott process arises if X̃ is a stationary Poisson process. A special
Neyman–Scott process is the Matérn cluster process. It has Poissonian
clusters, that is, its mark distribution is the distribution of a second station-
ary Poisson process Y restricted to the ball RBd. Here, the intensity µ of
Y and the cluster radius R > 0 are additional parameters. A Neyman–Scott
process X is simple, due to the following argument. Let ϑ be the intensity
measure of the (Poisson) process of parent points and let V0 denote the Euler
characteristic (see Section 14.2). From Corollary 3.2.4 and the Campbell the-
orem, we obtain

E
∑

(x,η),(x′,η′)∈X̃2
�=

V0((η + x) ∩ (η′ + x′))

= γ̃2

∫
Nsf

∫
Nsf

∫
Rd

∫
Rd

V0((η + x) ∩ (η′ + x′))ϑ(dx)ϑ(dx′) Q(dη) Q(dη′)

= 0,

since the inner integral vanishes (ϑ has no atoms). Hence, almost surely, all
clusters η+x and η′ +x′ in X with x �= x′ are disjoint, and thus X is simple.

In contrast to this, the definition of a general cluster process given above
allows multiple points. If we identify η ∈ Nsf with its support, then

X =
⋃

(x,η)∈X̃

(η + x)

defines a simple point process which is also called a cluster process. For
Neyman–Scott processes, both definitions coincide. Since, in this latter in-
terpretation, clusters are finite sets, cluster processes appear as union sets of
special particle processes, as they will be discussed in Section 4.1. Neyman–
Scott processes are then special cases of Boolean models (see Section 4.3).

For the second model which we present here, we also assume a special set-
up. We start with a stationary Poisson process Y in Rd and generate a hard
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core process X by deleting some points of Y , such that the remaining points
in X have a minimal distance from each other. The process X is determined
by the hard core distance c > 0 and by the thinning procedure used. Several
methods are popular here. The simplest one consists in deleting all pairs of
points x, y ∈ Y , x �= y, with distance d(x, y) < c. The resulting process is
called the Matérn process (first kind). For the Matérn process (sec-
ond kind) X, we start with a stationary marked Poisson process X̃ with
intensity γ̃ and mark space [0, 1] (with uniform mark distribution). For each
pair (x1, w1), (x2, w2) ∈ X̃2

�= with d(x1, x2) < c, we delete the point xi ∈ X̃0

with the higher weight wi. The undeleted points form the point process X.
In order to calculate the intensity γ of X, we apply Theorems 3.2.5 and 3.5.1
and get

γ = E
∑
z∈X

1Cd(z)

= E
∑

(x,w)∈X̃

1Cd(x)
∏

(y,v)∈X̃\{(x,w)}, y∈x+cBd

1[w,1](v)

= γ̃

∫ 1

0

∫
Rd

1Cd(x) E
∏

(y,v)∈X̃, y∈x+cBd

1[w,1](v)λ(dx) dw

= γ̃

∫ 1

0

P(X̃(cBd × [0, w]) = 0) dw

= γ̃

∫ 1

0

exp{−γ̃cdκd w}dw

=
1
cdκd

(
1− e−γ̃cdκd

)
.

In a similar way, the intensity γ of the Matérn process (first kind) can be
derived as

γ = γ̃ e−γ̃cdκd ,

where γ̃ is the intensity of the original Poisson process Y before thinning.

Notes for Section 3.5

1. Since marked point processes can be subsumed under the general theory of point
processes, as (special) point processes on product spaces, they are treated in most of
the monographs on point processes. Thorough presentations are found in Matthes,
Kerstan and Mecke [465], König and Schmidt [423] and – with a view to applications
in stochastic geometry – in Stoyan, Kendall and Mecke [743].

2. Poisson cluster processes also appear as infinitely divisible point processes which
have a regularity property (see Daley and Vere–Jones [196, sect. 10.2]).
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3.6 Point Processes of Closed Sets

Now we consider point processes where the ‘points’ are themselves nonempty,
closed subsets of Rd. Thus, the basic space in this section is E = F ′(Rd). We
often write F ′(Rd) = F ′ again, and also symbols such as N, N etc. are mostly
used with suppression of their argument E. Let X be a point process in F ′.
Its intensity measure Θ is a measure on F ′; according to our convention in
Section 3.1, it is always assumed to be locally finite. By Lemma 2.3.1, local
finiteness of Θ is equivalent to Θ(FC) <∞ for all C ∈ C.

As for ordinary and marked point processes in Rd, also for point processes
X of closed sets, invariance properties play an important role. X is called
stationary if X+x D= X for all x ∈ Rd, and it is isotropic if ϑX D= X for all
ϑ ∈ SOd. The following assertion follows directly from the definition of the
intensity measure Θ.

Lemma 3.6.1. If X is a stationary point process in F ′, then its intensity
measure Θ is translation invariant. If X is isotropic, then Θ is rotation in-
variant.

For Poisson processes, the converse assertion is also true. For stationary
point processes in F ′ with Poisson counting variables, we give a condition
ensuring that they are simple and thus Poisson processes.

Theorem 3.6.1. A Poisson process X in F ′ is stationary (isotropic) if and
only if its intensity measure Θ is translation invariant (rotation invariant).

A point process X in F ′ with Poisson counting variables, with translation
invariant intensity measure Θ and satisfying X({Rd}) = 0 a.s., is a stationary
Poisson process.

Proof. Let X be a Poisson process in F ′ with intensity measure Θ. For g ∈
Gd (the motion group), gX has intensity measure gΘ. By the uniqueness of
Poisson processes with given intensity measure (Theorem 3.2.1), gX D= X is
equivalent to gΘ = Θ. This yields the first assertion.

For the second assertion, we need only show that, under the assumptions,
Θ has no atoms. Let {F}, F ∈ F ′, be an atom of Θ. Then also every translate
{F} + x with x ∈ Rd is an atom. If F �= Rd, then there is a compact set C
and there are infinitely many x ∈ Rd so that the sets F + x are all distinct
and satisfy (F + x) ∩ C �= ∅. This gives Θ(FC) = ∞, a contradiction. Thus,
only F = Rd is possible. But then P(X({Rd}) > 0) > 0, which contradicts
the assumption. Hence, Θ has no atoms. ��

Let X be a point process in F ′, and let A ∈ F ′ be a fixed closed set. We
define X ∩A by

(X ∩A)(ω) :=
∑

Fi∩A �=∅
δFi∩A if X(ω) =

∑
δFi
.
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The mapping α : F �→ F ∩A from F ′ in F is measurable, by Theorem 12.2.6.
For G ∈ B(F ′) and k ∈ N0,

(X ∩A)−1(NG,k) = X−1(Nα−1(G),k),

hence, by Lemma 3.1.5, X ∩A is a point process in F ′ (though possibly with
intensity measure zero). We call X ∩ A the section process of X with the
set A.

Starting from point processes in F ′, one obtains random sets by taking
unions. For a point process X in F ′ we put

ZX(ω) :=
⋃

F∈supp X(ω)

F for ω ∈ Ω.

Theorem 3.6.2. The union set ZX of a point process in F ′ is a random
closed set. If X is stationary (isotropic), then ZX is stationary (isotropic).

Proof. We have to show that ZX is closed. For that, let ω ∈ Ω. Let
(xj)j∈N be a convergent sequence with xj ∈ ZX(ω) and xj → x. The set
C := {x, x1, x2, . . .} is compact. Since X(ω) is locally finite and FC is com-
pact, we have X(ω,FC) := X(ω)(FC) < ∞, hence only finitely many sets
F1, . . . , Fk from suppX(ω) meet the set C. Thus xj ∈

⋃k
i=1 Fi for j ∈ N and

hence x ∈
⋃k

i=1 Fi ⊂ ZX(ω). The set ZX(ω) being closed, we have indeed
defined a map ZX : Ω → F .

To show that ZX is measurable, let C ∈ C. Then ZX(ω) ∈ F C is equivalent
to X(ω,F C) = 0. From the definition of N it follows that {X(F C) = 0} is
measurable, hence {ZX ∈ F C} is measurable. The measurability of ZX now
follows from Lemma 2.1.1.

The remaining assertions are clear. ��

In particular, the union set of a point process in F ′ with Poisson counting
variables is a random closed set. With the aid of the results from Section 2.3,
the random closed sets generated in this way can be characterized as follows.

Theorem 3.6.3. For a random closed Z set in Rd, the following conditions
(a), (b), (c) are equivalent:

(a) Z is (up to equivalence) the union set ZX of a point process X in F ′ with
Poisson counting variables.

(b)There is a locally finite measure Θ on F ′ with

TZ(C) = 1− e−Θ(FC), C ∈ C.

(c) Z is infinitely divisible and has no fixed points.

If (a) and (b) are satisfied, then Θ is the intensity measure of X.
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Proof. First we show the equivalence of (a) and (b). If Z is the union set of a
point process X in F ′ with Poisson counting variables and if C ∈ C, then

TZ(C) = P(Z ∩ C �= ∅) = P(X(FC) > 0)

= 1− P(X(FC) = 0) = 1− e−Θ(FC),

where Θ is the intensity measure of X.
If, conversely,

TZ(C) = 1− e−Θ(FC), C ∈ C,

holds with a locally finite measure Θ, then, as shown in the proof of Theorem
3.2.1, there exists a point process X in F ′ satisfying (3.2) with intensity
measure Θ. From the first part already proved we have

TZX
(C) = 1− e−Θ(FC) = TZ(C), C ∈ C,

thus TZX
= TZ . By Theorem 2.1.3, this implies ZX

D= Z.
Suppose that (b) holds, that is,

TZ(C) = 1− e−Θ(FC), C ∈ C.

For m ∈ N, we define
T (m) := 1− (1− TZ)1/m,

thus
T (m)(C) = 1− e−Θ(FC)/m = 1− e−Θm(FC), C ∈ C,

with Θm := Θ/m. To the locally finite measure Θm there exists, again by
Theorem 3.2.1, a point process X(m) satisfying (3.2) with intensity measure
Θm. Its union set Z(m) has the capacity functional T (m), as was proved above.
By Lemma 2.3.2(a), Z is infinitely divisible. Since Θ is locally finite,

P(x ∈ Z) = TZ({x}) = 1− e−Θ(F{x}) < 1,

hence Z has no fixed points. Thus (c) holds.
The implication (c) ⇒ (b) is the assertion of Theorem 2.3.2. ��

We cannot conclude, in general, that the point process with Poisson count-
ing variables appearing in Theorem 3.6.3 is simple. In the stationary case,
however, this conclusion is possible, under a mild extra condition.

Theorem 3.6.4. For a stationary random closed set Z in Rd satisfying Z �=
Rd almost surely, the following conditions (a), (b), (c) are equivalent:

(a) Z is (equivalent to) the union set of a Poisson process X in F ′.
(b)There is a locally finite measure without atoms on F ′ with

TZ(C) = 1− e−Θ(FC), C ∈ C.
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(c) Z is infinitely divisible and has no fixed points.

If (a) and (b) are satisfied, then Θ is the intensity measure of X, and Θ is
translation invariant.

Proof. That (a) implies (b) follows from Theorem 3.6.3. For the converse,
it remains to show that the point process X satisfying (3.2) with intensity
measure Θ, which exists by Theorem 3.6.3, is simple. Since Z is stationary
and satisfies

TZ(C) = 1− eΘ(FC),

we have (txΘ)(FC) = Θ(FC) for C ∈ C. By Lemma 2.3.1, this implies
txΘ = Θ, thus Θ is translation invariant. The relation P(Z = Rd) = 0 implies
P(X(Rd) > 0) = 0, hence X is simple, by Theorem 3.6.1. ��

General assumption. All point processes appearing in the following are
assumed to be simple, except in the cases where the opposite is explicitly
stated. Thus, a point process in F ′ can be viewed as a random locally finite
collection of closed sets. However, the interpretation as a counting measure is
maintained where it simplifies assertions and notation.

Note for Section 3.6

Theorems 3.6.3 and 3.6.4 are due to Matheron [462].



4

Geometric Models

Having laid the general foundations in the previous chapters, we now study
geometric processes in Rd and the random sets derived from them. By geo-
metric processes we understand point processes of closed sets which are con-
centrated on geometrically distinguished subclasses of F ′. In particular, we
consider particle processes and flat processes. Particle processes are point
processes in the subset C′ of nonempty compact sets. Special processes, in
general more tractable, are obtained if only particles from the convex ring R
or even the class K of convex bodies are admitted. A k-flat process is a point
process in F ′ whose intensity measure is concentrated on the space A(d, k) of
k-dimensional flats (planes, affine subspaces) of Rd.

We begin with the investigation of particle processes. For these we in-
troduce, in the stationary case, intensities, grain distributions, and densities
of functionals in various representations. Special cases are fiber and surface
processes; they are treated after the flat processes, in the fifth section. The
second section establishes a connection between particle processes and marked
point processes. In particular, we introduce the germ-grain processes,
where compact sets serve as marks. The germ-grain models of the third
section, which are generated from germ-grain processes, are important exam-
ples of random closed sets. An especially tractable subclass are the Boolean
models, derived from Poisson processes. In the fourth section we treat flat
processes. Of particular interest are the processes arising from flat processes
by intersections, either with a fixed plane or by intersecting fixed numbers of
the flats in the process. Some assertions about the intensities and the direc-
tional distributions of these derived processes are obtained, mainly in the case
of Poisson processes. The sixth section is concerned with a set-valued parame-
ter, which can be attached to different processes of geometric objects. This is
Matheron’s ‘Steiner compact set’, which we call here the associated zonoid.
It permits us to obtain, among other results, several geometric inequalities
for particle or flat processes. In some cases, these can be used to characterize
processes with specific extremal properties.



100 4 Geometric Models

We remind the reader of two general assumptions that we have made. The
first one (at the end of Section 3.6) is that all point processes considered from
now on are simple, except when the opposite is explicitly stated. The second
assumption (at the end of Section 3.1) is that only point processes with locally
finite intensity measures are admitted.

4.1 Particle Processes

By a particle process in Rd we understand a point process in F ′ = F ′(Rd)
that is concentrated on the subset C′ of nonempty compact sets, that is, the
intensity measure Θ of which satisfies Θ(F ′ \ C′) = 0. In particular, a point
process in F ′ whose intensity measure is concentrated on R′ = R \ {∅} or
K′ = K \ {∅}, is called a particle process in R, respectively, in K, in the
latter case also a process of convex particles. The local finiteness of the
intensity measure Θ of a particle process is, by Lemma 2.3.1, equivalent to

Θ(FC) <∞ for all C ∈ C. (4.1)

The assumption (4.1) is essential for many later consequences. This is one
reason for the fact that we did not define a particle process as a point process
in the space (C′, δ) (with the Hausdorff metric); local finiteness of an intensity
measure Θ in this case would only mean that Θ(F Cc

) <∞ for C ∈ C.
Nevertheless, it is convenient in the following, when we work with the

set C′, to equip it with the Hausdorff metric δ. In particular, continuity of
functions on C′ will refer to the Hausdorff metric. Although this continuity
differs from continuity with respect to the topology of F , for measurability
there is no difference (see Theorem 2.4.1).

The intensity measure of a stationary particle process has a useful decom-
position, obtained, roughly speaking, by factoring out the translations. For
this, we need a center function, and we choose here the mapping

c : C′ → Rd

that associates with each C ∈ C′ the circumcenter c(C) of C. By definition,
this is the center of the (uniquely determined) smallest ball containing C. We
denote this ball by B(C) and call it the circumball and its radius r(C) the
circumradius of C.

Lemma 4.1.1. The mapping c is continuous on C′.

Proof. Let r(C) denote the radius of B(C), for C ∈ C′. We show first that r is
continuous. Let Ci → C be a convergent sequence in C′. Every accumulation
point of the sequence (B(Ci))i∈N is a ball containing C. This implies r(C) ≤
lim inf r(Ci). Conversely, for given ε > 0, almost all Ci are contained in the
ball B(C) + εBd, hence lim sup r(Ci) ≤ r(C) + ε. For ε→ 0 we obtain r(C) =
lim r(Ci).
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Next, we show that B(Ci) → B(C). The sequence of balls B(Ci) is
bounded, hence we can assume without loss of generality that it converges, say
B(Ci)→ B. The limit body B is a ball containing C, and since r(Ci)→ r(C),
it has radius r(C). Since the circumball is unique, we have B = B(C).

Finally, B(Ci)→ B(C) implies c(Ci)→ c(C). ��

We put
C0 := {C ∈ C′ : c(C) = 0}

and call C0 the grain space (for particle processes). This grain space may
also be considered as the set of all translation classes in C′. The set C0 is closed
in C′ and hence (by Lemma 2.1.2) a Borel set in F . Similarly, we define the
subsets K0 := C0 ∩ K′, and R0 := C0 ∩R′. For a subset B ⊂ Rd we put

Cc(B) := {C ∈ C′ : c(C) ∈ B}.

The mapping
Φ : Rd × C0 → C′

(x,C) �→ x+ C

is a homeomorphism, by Lemma 4.1.1 and Theorem 12.3.5.

Theorem 4.1.1. Let X be a stationary particle process in Rd with intensity
measure Θ �= 0. Then there exist a number γ ∈ (0,∞) and a probability
measure Q on C0 such that

Θ = γΦ(λ⊗Q). (4.2)

The number γ and the measure Q are uniquely determined.

Proof. Let Θ̃ := Φ−1(Θ) be the image measure of Θ on Rd×C0. We first show
a finiteness property. For the unit cube Cd = [0, 1]d, we put Cd

0 := [0, 1)d =
Cd \ ∂+Cd, where

∂+Cd := {x = (x1, . . . , xd) ∈ Cd : max
1≤i≤d

xi = 1}

is the upper right boundary of Cd. Let (zi)i∈N be an enumeration of Zd.
We have

Θ̃(Cd
0 × C0) = Θ({C ∈ C′ : c(C) ∈ Cd

0})

≤
∞∑

i=1

Θ({C ∈ C′ : C ∩ (Cd
0 + zi) �= ∅, c(C) ∈ Cd

0})

=
∞∑

i=1

Θ({C ∈ C′ : C ∩ Cd
0 �= ∅, c(C) ∈ Cd

0 − zi})

= Θ({C ∈ C′ : C ∩ Cd
0 �= ∅}) ≤ Θ(FCd) <∞,
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due to the translation invariance of Θ (which follows from the stationarity of
X) and (4.1).

Now we can copy the proof of Theorem 3.5.1, to obtain a representation

Θ̃ = γ(λ⊗Q)

with γ ∈ (0,∞) and a probability measure Q on C0. This proves (4.2). The
uniqueness is trivial. ��

Note that Theorem 4.1.1 shows that for Θ-integrable functions f on C′ we
have ∫

C′
f dΘ = γ

∫
C0

∫
Rd

f(C + x)λ(dx) Q(dC), (4.3)

which will be used frequently.
We call γ the intensity and Q the grain distribution of the stationary

particle process X. A random set with distribution Q is called the typical
grain ofX. IfX is isotropic, then Q is rotation invariant (since c(ϑC) = ϑc(C)
for C ∈ C′ and ϑ ∈ SOd), but the converse is generally false. Unless explicitly
stated otherwise, we occasionally allow also stationary particle processes with
Θ = 0; in this case we define γ = 0, the grain distribution Q is not defined,
and γQ has to be read as the zero measure.

For later applications, it will be necessary to admit other center functions,
besides the circumcenter. If c is replaced by a measurable mapping z : C′ → Rd

satisfying z(tC) = tz(C) for C ∈ C′ and every translation t, then again a
decomposition (4.2) is obtained, with different Q. However, isotropy of X is
reflected in rotation invariance of Q only if z has the additional property
z(ϑC) = ϑz(C) for ϑ ∈ SOd. (An example, different from the circumcenter,
with this property is provided by the Steiner point of the convex hull.) Such
center functions play a role if a particle process is to be represented as a
marked point process; this is explained in Section 4.2.

It must be noted that the assumed local finiteness of the intensity measure
on F ′ has the consequence that not every probability measure on C0 can occur
as the grain distribution Q of a stationary particle process. The following
theorem clarifies this.

Theorem 4.1.2. The probability measure Q on C0 is the grain distribution of
some stationary particle process if and only if∫

C0

Vd(C + rBd) Q(dC) <∞ for some (or all ) r > 0. (4.4)

This is equivalent to the Q-integrability of the dth power of the circumradius,
and in the case of a process of convex particles it is equivalent to the Q-
integrability of the intrinsic volumes V1, . . . , Vd.

If Q satisfies (4.4) and if γ > 0 is given, then there exists (up to stochastic
equivalence) precisely one stationary Poisson particle process X in Rd with
intensity γ and grain distribution Q. The process X is isotropic if and only if
Q is rotation invariant.
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Proof. If Θ is the intensity measure of the stationary particle process X with
intensity γ > 0 and grain distribution Q, then (4.3) gives, for K ∈ C,

Θ(FK) = γ

∫
C0

∫
Rd

1FK
(C + x)λ(dx) Q(dC)

= γ

∫
C0

Vd(−C +K) Q(dC),

since
1FK

(C + x) = 1⇔ (C + x) ∩K �= ∅ ⇔ x ∈ −C +K.

Hence, the local finiteness of Θ implies, in particular, that∫
C0

Vd(C + rBd) Q(dC) <∞ (4.5)

for all r > 0. If (4.5) is satisfied for one number r > 0, then∫
C0

Vd(C +K) Q(dC) <∞

holds for all K ∈ C, since K can be covered by finitely many translates of
rBd. The remaining equivalences follow from

Vd(C +Bd) ≤ 2dκd max{r(C)d, 1}

and, in the case of a process of convex particles, from the Steiner formula
(14.5).

Suppose, conversely, that Q satisfies (4.4) and that γ > 0 is given. Then
the measure Θ defined by (4.2) is locally finite and translation invariant.
By Theorems 3.2.1 and 3.6.1, there exists a Poisson process, unique up to
equivalence, with intensity measure Θ. It is stationary, and if Q is rotation
invariant, it is also isotropic. ��

The intuitive meaning of the intensity and the grain distribution of a
stationary particle process will become clearer by the representations given
below, as special cases of the next theorem. With this theorem, we turn to
a refined quantitative description of particle processes, which we begin with
the definition of densities for geometric functionals. For stationary particle
processes, Theorem 4.1.1 opens an easy way of introducing mean values of
geometric quantities.

Let ϕ : C′ → R be a translation invariant, measurable function, and let X
be a stationary particle process with intensity γ > 0 and grain distribution
Q. If ϕ is nonnegative or Q-integrable, we define the ϕ-density of X by

ϕ(X) := γ
∫
C0

ϕdQ. (4.6)
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Remark. We emphasize that ϕ(X) is defined here as the mean value of ϕ
with respect to the grain distribution Q, multiplied by the intensity γ. That
the factor γ has been included in the definition, simplifies many formulas, but
must be observed when these formulas are compared with other literature.

For nonnegative ϕ, it is permitted in (4.6) that ϕ (and thus also the limit
in Theorem 4.1.3(b)) is infinite.

The following theorem gives different representations of the ϕ-density, and
it also justifies this name.

Theorem 4.1.3. Let X be a stationary particle process in Rd with grain dis-
tribution Q, and let ϕ : C′ → R be a translation invariant measurable function
which is nonnegative or Q-integrable.

(a) For all B ∈ B(Rd) with 0 < λ(B) <∞,

ϕ(X) =
1

λ(B)
E

∑
C∈X, c(C)∈B

ϕ(C).

(b)For all W ∈ K with Vd(W ) > 0,

ϕ(X) = lim
r→∞

1
Vd(rW )

E
∑

C∈X, C⊂rW

ϕ(C).

(c) If ∫
C0

|ϕ(C)|Vd(C +Bd) Q(dC) <∞,

then
ϕ(X) = lim

r→∞

1
Vd(rW )

E
∑

C∈X, C∩rW �=∅
ϕ(C)

for all W ∈ K with Vd(W ) > 0.

Proof. (a) From Campbell’s theorem (Theorem 3.1.2) and (4.3), together with
the translation invariance of ϕ, we get

E
∑

C∈X, c(C)∈B

ϕ(C) = E
∑
C∈X

1B(c(C))ϕ(C)

= γ

∫
C0

∫
Rd

1B(c(C + x))ϕ(C)λ(dx) Q(dC)

= γλ(B)
∫
C0

ϕ(C) Q(dC)

= λ(B)ϕ(X).

(b) As above, we get
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E
∑

C∈X, C⊂rW

ϕ(C) = γ
∫
C0

ϕ(C)λ({x ∈ Rd : C + x ⊂ rW}) Q(dC).

We may assume that 0 is in the interior of W . Then there is a nonnegative
measurable function ρ : C0 → R such that C ′ ⊂ ρ(C ′)W for all C ′ ∈ C0.
For given C ∈ C0, suppose that r > ρ(C). For x ∈ (r − ρ(C))W we have
C + x ⊂ rW . It follows that(

1− ρ(C)
r

)d

≤ λ({x ∈ Rd : C + x ⊂ rW})
Vd(rW )

≤ 1.

For r → ∞, the left side converges monotonically to 1, hence the monotone
convergence theorem proves the assertion if ϕ is nonnegative. The dominated
convergence theorem gives the result if ϕ is integrable.

(c) We have

1
Vd(rW )

E
∑

C∈X, C∩rW �=∅
ϕ(C) =

γ

Vd(W )

∫
C0

ϕ(C)Vd

(
W − 1

r
C

)
Q(dC).

For C ∈ C0, let B be a ball with −C ⊂ B, then W − 1
rC ⊂ W + 1

rB
and hence Vd(W ) ≤ Vd(W − 1

rC) ≤ Vd(W + 1
rB). From the continuity of the

volume functional on K it follows that

Vd

(
W − 1

r
C

)
→ Vd(W ) for r →∞.

Let y1, . . . , ym ∈ −C be points with (W +yi)∩ (W +yj) = ∅ for i �= j, and
assume thatm is maximal. For x ∈ −C there exists i with (W+x)∩(W+yi) �=
∅, thus x ∈ W −W + yi. This shows that −C ⊂

⋃
i(W −W + yi). We may

assume that 0 ∈ W . For r ≥ 1, we get W − 1
rC ⊂

⋃
i

[
2W −W + 1

ryi

]
and,

therefore, Vd(W − 1
rC) ≤ mVd(2W −W ). From mVd(W ) ≤ Vd(W − C) we

obtain

Vd

(
W − 1

r
C

)
≤ b(W )Vd(W − C)

with a constant b(W ) that does not depend on C or r.
There are finitely many vectors t1, . . . , tn ∈ Rd such that W ⊂

⋃n
i=1(B

d +
ti). This yieldsW−C ⊂

⋃n
i=1(B

d−C+ti), hence Vd(W−C) ≤ nVd(Bd−C) =
nVd(Bd + C) and thus∫

C0

|ϕ(C)|Vd(W − C) Q(dC) <∞.

The assertion now follows from the dominated convergence theorem. ��

For additive functionals ϕ, further representations of the ϕ-density will
be given in Theorem 9.2.2. The most important such functionals will be the
intrinsic volumes of convex bodies.
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As a special case of Theorem 4.1.3, we may choose

ϕ(C) := 1A(C − c(C)) with A ∈ B(C0).

If B is as in Theorem 4.1.3, we get

γQ(A) =
1

λ(B)
E

∑
C∈X, c(C)∈B

1A(C − c(C)),

in particular

γ =
1

λ(B)
E

∑
C∈X, c(C)∈B

1. (4.7)

Thus, the intensity γ can be interpreted as the expected number of particles
per unit volume.

Further we obtain, with W is as in Theorem 4.1.3,

γQ(A) = lim
r→∞

1
Vd(rW )

E
∑

C∈X, C⊂rW

1A(C − c(C)) (4.8)

= lim
r→∞

1
Vd(rW )

E
∑

C∈X, C∩rW �=∅
1A(C − c(C)). (4.9)

If X is a stationary particle process in Rd, then the points c(C), C ∈ X,
almost surely generate an ordinary point process X0 in Rd (the necessary
finiteness condition follows from the proof of Theorem 4.1.1). The correspond-
ing assertion is also true in the non-stationary case if the particles are convex;
however, for non-convex particles, the measure

∑
C∈X δc(C) is not necessar-

ily locally finite a.s. For a stationary (simple) particle process X, the point
process X0 need no longer be simple. We shall see, however, that for a sta-
tionary Poisson particle process the point process X0 is always simple (and
thus a stationary Poisson process, too).

In the case of a stationary particle process X the intensity γ is, according
to (4.7), also the intensity of the stationary point process X0. One might
interpret this as a construction of X, starting from the ordinary point process
X0 and attaching random compact sets with distribution Q to the points
(regarding multiplicities). However, this idea is not precise, since the random
C0-sets corresponding to different points of X0 need not be independent. The
following example may be instructive.

In R2, let sh be a horizontal and sv a vertical unit segment, both with
center 0, and consider the system of segments sh +z, sv +z′, z, z′ ∈ Z2, where
z has even and z′ has odd sum of coordinates. Applying to this system the
translation by a random vector, uniformly distributed in [0, 1]2, we obtain a
stationary particle process for which Q is concentrated on the set {sh, sv}
(associating probability 1/2 to either segment). In this case, the particle, sh
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or sv, attached to one point of the ordinary point process X0, completely
determines all the other particles of the realization.

The situation is different for Poisson processes.

Theorem 4.1.4. Let X be a stationary Poisson particle process in Rd with
intensity γ > 0 and grain distribution Q. Then the ordinary point process X0

is a (stationary) Poisson process, and the following holds.
To every B ∈ C with λ(B) > 0 and every k ∈ N there exist random

points ξ1, . . . , ξk in B with distribution λ B/λ(B) and random closed sets
Z1, . . . , Zk in C0 with distribution Q such that ξ1, . . . , ξk, Z1, . . . , Zk are inde-
pendent and

P(X Cc(B) ∈ · | X(Cc(B)) = k) = P

(
k∑

i=1

δξi+Zi
∈ ·

)
.

In other words, a stationary Poisson process X in C′ can be generated
(and also simulated) by taking an ordinary stationary Poisson process X0

with intensity γ and adding to every x ∈ X0 independently a random closed
set Zx with distribution Q,

X =
∑

x∈X0

δx+Zx
.

Proof. Since

P(X0(A) = k) = P(X(Cc(A)) = k), A ∈ B(Rd),

X0 is a stationary Poisson process in Rd with intensity measure

Θc(A) = Θ(Cc(A)) = γλ(A), A ∈ B(Rd);

here we have applied Theorem 4.1.1 to the set Cc(A). In particular, if B is
compact and λ(B) > 0, then 0 < Θ(Cc(B)) <∞, hence we can apply Theorem
3.2.2(b) and obtain independent random closed sets Z̃1, . . . , Z̃k with

P(X Cc(B) ∈ · | X(Cc(B)) = k) = P

(
k∑

i=1

δZ̃i
∈ ·

)
;

here each Z̃i has distribution

PZ̃i
=
Θ Cc(B)
Θ(Cc(B))

.

From Θ Cc(B) = Φ((λ B)⊗ γQ) and Θ(Cc(B)) = γλ(B) it follows that

PZ̃i
= Φ

(
λ B

λ(B)
⊗Q

)
.
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Hence, if we define Zi, ξi by Φ−1◦Z̃i =: (ξi, Zi), we obtain independent random
variables Zi (random closed sets with distribution Q) and ξi (random points
with distribution λ B/λ(B)), and we have

Z̃i = Φ(ξi, Zi) = ξi + Zi,

therefore also

P

(
k∑

i=1

δZ̃i
∈ ·

)
= P

(
k∑

i=1

δξi+Zi
∈ ·

)
.

This completes the proof. ��

Marked Particle Processes

In Chapter 10 it will be useful to have limit relations, analogous to those of
Theorem 4.1.3, for marked particle processes. By a marked particle process
we understand a simple point process in C′ ×M , where M denotes the mark
space, as in Section 3.5. For the intensity measure Θ we assume, corresponding
to (3.12), that

Θ(C ×M) <∞ for all C ∈ C(F ′).

Stationarity again means invariance of the distribution PX under translations,
where these, as in the case of marked point processes, affect only the first
component. Let X be a stationary marked particle process with intensity
measure Θ �= 0. Using the mapping

Φ : Rd × C0 ×M → C′ ×M
(x,C,m) �→ (x+ C,m),

we obtain, in analogy to Theorem 4.1.1, a decomposition

Θ = γΦ(λ⊗Q)

where Q is now a probability measure on C0×M ; it is called the grain-mark
distribution of X. With this decomposition, Campbell’s theorem and the
analog of (4.3) read as follows. For every nonnegative measurable function f
on C′ ×M ,

E
∑

(C,m)∈X

f(C,m) =
∫
C′×M

f dΘ

= γ
∫
C0×M

∫
Rd

f(C + x,m)λ(dx) Q(d(C,m)).

Theorem 4.1.5. Let X be a stationary marked particle process in Rd with
grain-mark distribution Q, and let ϕ : C′ ×M → R be a measurable function
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which is translation invariant in the first variable and either nonnegative or
Q-integrable. Then the ϕ-density defined by

ϕ(X) := γ
∫
C0×M

ϕdQ

has the representations

ϕ(X) =
1

λ(B)
E

∑
(C,m)∈X, c(C)∈B

ϕ(C,m) (4.10)

for B ∈ B(Rd) with 0 < λ(B) <∞,

ϕ(X) = lim
r→∞

1
Vd(rW )

E
∑

(C,m)∈X, C⊂rW

ϕ(C,m) (4.11)

for W ∈ K with Vd(W ) > 0, and

ϕ(X) = lim
r→∞

1
Vd(rW )

E
∑

(C,m)∈X, C∩rW �=∅
ϕ(C,m), (4.12)

if, in addition, ∫
C0×M

|ϕ(C,m)|Vd(C +Bd) Q(d(C,m)) <∞

is satisfied.

The proof is obtained by the obvious modification of that of Theorem
4.1.3.

Note for Section 4.1

Theorem 4.1.1 shows, as did also Theorems 3.3.1 and 3.5.1, how the assumption of
stationarity leads to a decomposition of the intensity measure, where the Lebesgue
measure appears as a factor. Such a factorization of measures with partial invariance
properties on (local) product spaces, where a Haar measure appears as one factor,
was raised by Ambartzumian [35] to a basic principle of stochastic geometry.

4.2 Germ-grain Processes

We recall the convention, agreed upon in Section 3.1, that simple counting
measures are often identified with their supports, so that, for example, for
η ∈ Ns(C′) the notations η({C}) = 1 and C ∈ η are employed synonymously.

In the previous section, the decomposition of the intensity measure of a
stationary particle process X in Rd was based on a representation of the
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particles C ∈ X in the form C = C0 + x with x := c(C) and C0 := C − c(C).
Of course, the formulation of Theorem 4.1.1 is strongly reminiscent of the
corresponding Theorem 3.5.1 on marked point processes. One can, in fact,
identify the stationary particle process X with the marked point process

Φ−1(X) = {(x,C) ∈ Rd × C0 : C + x ∈ X}.

Here the mark space is C0, and the grain distribution Q becomes the mark
distribution. Before we make use of this connection and apply the results
of Section 3.5 on Palm distributions of marked point processes to particle
processes, we want to clarify the role that the choice of the circumcenter as a
center of the particles plays here.

Generally, we understand by a center function a measurable map z :
C′ → Rd which is compatible with translations, that is, satisfies

z(C + x) = z(C) + x for all x ∈ Rd.

Examples of center functions, besides the circumcenter c, are the center of
gravity, if only particles with positive Lebesgue measure are considered, or the
Steiner point of the convex hull. These center functions are also equivariant
under rotations (that is, z(ϑC) = ϑz(C) for ϑ ∈ SOd). The following examples
do not have this property. For C ∈ C′(R2) (the definition can be extended to
d ≥ 2), the lower tangent point of C is defined by z̃(C) = (z1, z2) with

z2 := min{x2 : (x1, x2) ∈ C}
z1 := min{x1 : (x1, z2) ∈ C},

where x1, x2 are the coordinates of x. Further, the left lower corner of C is
defined by

z′(C) :=
(

min
x∈C

x1,min
x∈C

x2

)
(in general, z′(C) /∈ C). These center functions are applied in certain estima-
tion procedures. As in the example of the center of gravity, it is sometimes
convenient to allow center functions that are defined only on measurable sub-
classes of C′ which are closed under translations.

If X is a particle process and z is a center function, then

Xz :=
∑
C∈X

δz(C)

is a random counting measure on Rd which, however, need neither be simple
nor locally finite. In the stationary case, local finiteness is ensured. Thus, the
following connection between stationary particle processes and marked point
processes can be established.



4.2 Germ-grain Processes 111

Theorem 4.2.1. Let X be a stationary particle process in Rd, and let z be a
center function. Then Xz is a stationary point process in Rd, and

Xz :=
∑
C∈X

δ(z(C),C−z(C))

is a stationary marked point process with mark space C′. The intensities of
X,Xz and Xz are the same. The mark distribution Qz of Xz is the image of
the grain distribution Q of X under the mapping C �→ C − z(C).

In particular, the grain distribution Q is the mark distribution of Xc.

Proof. To show the measurability of Xz, it suffices by Lemma 3.1.5 to verify
that {Xz(A) = k} is measurable for all A ∈ B(Rd ×C′) and all k ∈ N0. Let A
and k be given. The function

ϕ : C′ → Rd × C′

C �→ (z(C), C − z(C))

is measurable, since z is measurable. Hence, {Xz(A) = k} = {X(ϕ−1(A)) =
k} is measurable.

As in the proof of Theorem 4.1.1 (where we replace C0 by C′ and c by z)
we obtain

EXz(Cd
0 × C′) ≤ Θ(FCd) <∞,

where Θ is the intensity measure of X. This gives EXz(C×C′) <∞ for every
compact set C ∈ C; thus the measure Xz is a.s. locally finite. Hence, Xz is a
point process with locally finite intensity measure, and Xz satisfies (3.12) and
is, therefore, a marked point process in Rd.

For t ∈ Rd, the definition of the operation of the translation group on
Rd × C′ and the compatibility of z with translations give

Xz + t =
∑
C∈X

δ(z(C)+t,C−z(C))

=
∑
C∈X

δ(z(C+t),C+t−z(C+t))

=
∑

C∈X+t

δ(z(C),C−z(C))

= (X + t)z.

Since X and X + t have the same distribution, the same holds for Xz and
Xz + t, which means that Xz is stationary. From this it follows that also Xz

is stationary.
Let Qz be the mark distribution of Xz and let γz be its intensity. Denoting

by γ and Q the intensity and the grain distribution ofX, from Theorems 3.5.1,
3.1.2 and 4.1.1 we get, for B ∈ B(Rd) and A ∈ B(C′),
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γzλ⊗Qz(B ×A) = EXz(B ×A)

= E
∑
C∈X

1B(z(C))1A(C − z(C))

= γ
∫
C0

∫
Rd

1B(z(C + x))1A(C + x− z(C + x))λ(dx) Q(dC)

= γλ(B)
∫
C0

1A(C − z(C)) Q(dC)

= γ(λ⊗ fz(Q))(B ×A)

with fz : C0 → C′ defined by fz(C) = C − z(C). The special case B = Cd and
A = C′ gives γ = γz, which is also the intensity of Xz. Now it follows that Qz

is the image measure of Q under the mapping fz. ��

Some properties of the mark distribution, for example rotation invariance,
depend essentially on the choice of the center function. If X is isotropic and
z is equivariant under rotations, then the mark distribution, too, is rotation
invariant.

By Theorem 4.2.1, to every stationary particle processX there corresponds
a whole family of marked point processes with mark space C′; every center
function z generates an element Xz of this family. The special choice z = c
yields the canonical model Xc of X with Xz = X0, which we mostly use in
the following. If X is a stationary Poisson process, a corresponding assertion
holds for Xz.

Theorem 4.2.2. Let X be a stationary Poisson particle process in Rd, and
let z be a center function. Then Xz is an independently marked stationary
Poisson process.

Proof. We define
ϕ : C′ → Rd × C0
C �→ (z(C), C − z(C)).

As we have seen in the proof of Theorem 4.2.1,

{Xz(A) = k} = {X(ϕ−1(A)) = k}

holds for Borel sets A ∈ B(Rd × C0) and k ∈ N0. Hence, Xz is a stationary
Poisson process in Rd×C0. The assertion now follows from Theorem 3.5.8. ��

We return to the general situation and now consider, conversely, a marked
point process X̃ with mark space C′. Then

X :=
∑

(x,C)∈X̃

δx+C (4.13)
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defines a particle process X, if the local finiteness of the counting measures
on the right side (and of the intensity measure) is guaranteed. In this case,
we call X̃ a germ-grain process. The intuitive idea behind this is that the
points x of the pairs (x,C) ∈ X̃ are the ‘germs’ and the compact sets x+ C
are the ‘grains’. The process (4.13) is called the particle process generated
by X̃. If, in particular, X̃ is stationary, then in analogy to Theorem 4.1.2 one
finds that for the local finiteness of the intensity measure of X the condition∫

C′

Vd(C +Bd) Q(dC) <∞ (4.14)

on the mark distribution Q of X̃ is necessary and sufficient. In the stationary
case, the mark distribution Q is also called the distribution of the typi-
cal grain, and every random closed set Z0 with distribution Q is called the
typical grain (or primary grain) of X̃.

If X̃ is an independently marked point process with mark space C′, then
even without stationarity it is possible to work with the mark distribution Q,
as in Section 3.5. Also in this case, a random closed set Z0 with distribution
Q is called the typical grain of X̃. The finiteness condition (4.1) for the
intensity measure Θ of the particle process X generated by (4.13) can now be
rewritten in the following way. For C ∈ C′ we have

Θ(FC) =
∫

Rd

∫
C′

1FC
(x+K) Q(dK)ϑ(dx)

=
∫

Rd

TZ0(C − x)ϑ(dx).

Here, ϑ is the intensity measure of the unmarked process X0, and TZ0 is the
capacity functional of the typical grain Z0 of X̃. Hence, for the particle process
X, (4.1) is equivalent to∫

Rd

TZ0(C − x)ϑ(dx) <∞ for C ∈ C′. (4.15)

If X̃ is stationary, this is again equivalent to (4.14). An independently marked
point process X̃ satisfying (4.15) is called an independent germ-grain
process.

If, for an independent germ-grain process X̃, the germ process X0 is a
Poisson process, and thus X̃, according to Theorem 3.5.7, is a Poisson process
in Rd ×C′, with intensity measure ϑ⊗Q, then the generated particle process
X is the image σ(X̃) of X̃ under the mapping

σ : Rd × C′ → C′

(x,C) �→ x+ C
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and hence is also a Poisson process (with intensity measure Θ = σ(ϑ ⊗ Q)).
Since ϑ has no atoms, the same holds true for Θ.

We continue these considerations in the next section, where we treat ran-
dom closed sets which arise from independent germ-grain processes by taking
union sets of the generated particle processes.

Now we apply the results of Section 3.5 to particle processes.

Theorem 4.2.3. Let X be a stationary particle process in Rd with intensity
γ > 0, and let z be a center function. Then there is a (uniquely determined )
probability measure P0 on C′ × Ns(C′) such that

γP0(A) = E
∑
C∈X

1B(z(C))1A(C − z(C), X − z(C))

for all A ∈ B(C′)⊗Ns(C′) and all B ∈ B(Rd) with λ(B) = 1.
If f : Rd × C′ × Ns(C′) → R is a nonnegative measurable function, then∑

C∈X f(z(C), C − z(C), X) is measurable and

E
∑
C∈X

f(z(C), C − z(C), X)

= γ
∫

Rd

∫
C′×Ns(C′)

f(x,C, η + x) P0(d(C, η))λ(dx).

Proof. We apply Theorem 3.5.2 to the marked point process Xz with mark
space C′. More precisely, if A ∈ B(C′)⊗Ns(C′) is given, we apply it to the set
Ã := (id× ψ)(A), where ψ : Ns(C′)→ Ns(Rd × C′) is defined by

ψ(η) :=
∑

δ(z(Ci),Ci−z(Ci)), if η =
∑

δCi
.

If the measure that results from Theorem 3.5.2 is denoted by P̃0, then P0(A) =
P̃0(Ã) yields the required measure. The second part of Theorem 4.2.3 follows
from Theorem 3.5.3. ��

Theorem 4.2.4. Let X be a stationary particle process in Rd with intensity
γ > 0, let z be a center function. Let Cz,0 := {C ∈ C′ : z(C) = 0} denote the
mark space of the marked point process Xz, and let Q be the mark distribu-
tion of Xz. Then there exists a (Q-a.s. uniquely determined ) regular family
(P0,C)C∈Cz,0 of probability measures on Ns(C′) with

P0(B ×A) =
∫

B

P0,C(A) Q(dC)

for B ∈ B(Cz,0) and A ∈ Ns(C′).
If f : Rd × Cz,0 × Ns(C′) → R is a nonnegative measurable function, then∑

C∈X f(z(C), C − z(C), X) is measurable, and
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E
∑
C∈X

f(z(C), C − z(C), X)

= γ
∫

Rd

∫
Cz,0

∫
Ns(C′)

f(x,C, η + x) P0,C(dη) Q(dC)λ(dx).

Proof. Let P̃0 be the measure obtained in the proof of Theorem 4.2.3. By
Theorem 3.5.4, there exists a (Q-a.s. uniquely determined) regular family
(P̃0,C)C∈Cz,0 of probability measures on Ns(Rd × Cz,0) with

P̃0(B ×A) =
∫

B

P̃0,C(A) Q(dC)

for all B ∈ B(Cz,0) and A ∈ Ns(Rd×Cz,0). Defining P0,C as the image measure
of P̃0,C under the mapping

N(Rd × Cz,0)→ Ns(C′),
η̃ �→

∑
(x,C)∈η̃

δx+C

we obtain the assertion. ��

Now we consider sections with a fixed k-dimensional plane S ∈ G(d, k).
Let X̃ be a stationary (but otherwise arbitrary) germ-grain process in Rd.
With it, we can associate in a natural way the section process

X̃ ∩ S :=
∑

(x,C)∈X̃, (x+C)∩S �=∅

δ(xS ,(xS+C)∩S),

where x = xS +xS with xS ∈ S and xS ∈ S⊥ is the orthogonal decomposition.
Thus, the germs of X̃ ∩ S arise by orthogonally projecting to S those germs
of X̃ for which the corresponding grain has nonempty intersection with S.
Observe that

(x+ C) ∩ S = xS + [(xS + C) ∩ S]. (4.16)

If we assume in addition that X̃ ∩ S is simple and that the condition corre-
sponding to (3.12) is satisfied, then X̃ ∩S is a germ-grain process in the space
S (which we can identify with Rk) with mark space C′(S); the marked process
X̃ ∩ S is stationary in S. For the particle process generated by X̃,

X :=
∑

(x,C)∈X̃

δx+C ,

the section process X∩S was already defined in Section 3.6. Because of (4.16),
X ∩ S coincides with the particle process generated by X̃ ∩ S.

Suppose now that γ is the intensity and Q is the mark distribution of X̃,
and let γX̃∩S , QX̃∩S be the corresponding parameters for the section process
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X̃ ∩ S. Then, for B ∈ B(S) and A ∈ B(C′(S)), by Theorem 3.5.1 and the
Campbell theorem we have

γX̃∩SλS(B)QX̃∩S(A)

= E
∑

(x,C)∈X̃

1B(XS)1A((xS + C) ∩ S)

= γ
∫
C′

∫
Rd

1B(xS)1A((xS + C) ∩ S)λ(dx) Q(dC)

= γ
∫
C′

∫
S⊥

∫
S

1B(y)1A((z + C) ∩ S)λS(dy)λS⊥(dz) Q(dC)

= γλS(B)
∫
C′

∫
S⊥

1A((z + C) ∩ S)λS⊥(dz) Q(dC).

Hence, setting

MS(A) :=
∫
C′

∫
S⊥

1A((z + C) ∩ S)λS⊥(dz) Q(dC),

we obtain
γX̃∩S = γMS(C′(S)) = γ

∫
C′
λS⊥(C|S⊥) Q(dC), (4.17)

where C|S⊥ is the image of C under the orthogonal projection to S⊥, and

QX̃∩S(A) =MS(A)/MS(C′(S)), (4.18)

if MS(C′(S)) �= 0. Thus, the mark distribution of the section process depends
only on the mark distribution of the original process. More explicit results
for γX̃∩S can be obtained for stationary and isotropic processes of convex
particles (a general result of this type is Theorem 9.4.8).

Notes for Section 4.2

1. Generalized center functions. As a generalization of the notion of center
function z, a generalized center function z maps each particle C in a particle
collection η to a point which may depend not only on C but also on the other
particles in η. Formally, z is a measurable mapping from C′ ◦ Ns(C′) := {(C, η) ∈
C′ × Ns(C′) : C ∈ η} to Rd, which is compatible with translations,

z(C + x, η + x) = z(C, η) + x for all x ∈ R
d.

Every center function z defines a generalized center function 〈z〉 by 〈z〉(C, η) := z(C).
In generalization of Theorem 4.2.1, the following holds (see Schneider and Weil [717,
Satz 4.3.1]).

Let X be a stationary particle process in Rd, and let z be a generalized center func-
tion. Then
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Xz :=
∑
C∈X

δz(C,X)

is a stationary point process in Rd, and

Xz :=
∑
C∈X

δ(z(C,X),C−z(C,X))

is a stationary marked point process with mark space C′. The intensities of X, Xz

and Xz are the same.
Generalized center functions occur, for example, in connection with Voronoi

mosaics. If A is a locally finite set in Rd such that the Voronoi cells C(x, A), x ∈ A,
are all bounded (see Section 10.2), then, for the corresponding Voronoi mosaic m :=
{C(x, A) : x ∈ A}, the mapping z : (C, η) �→ x, if η = m and C = C(x, A), (and
z(C, η) := c(C) otherwise) is a generalized center function.

2. The section formulas (4.17) and (4.18) can be found in Stoyan [740].

3. The interpretation of germ-grain processes as processes of points around which
grains have grown randomly already indicates a temporal aspect which can, and
has been, pursued further. Motivated by applications to the growth of crystals,
tumor cells and other growing structures, various spatio-temporal models have been
developed. Starting with the realization of a spatial point process X, one can, for
example, let balls grow around the points of X with constant or random speed,
in a dependent way or independently, at the same time or at different, random
times. The growth can be stopped or modified, according to different rules, when
the growing balls touch, or the growing balls can overlap, penetrate or get deformed
to form a tessellation of space. Finally, also the underlying point process X may
vary in time, for example as a birth-and-death process. Examples of this kind are
the Stienen model (compare Note 9 to Section 10.2), the lilypond model (lilypond
growth protocol, see Daley and Last [193], Heveling and Last [340]), the dead leaves
model (see Serra [729, pp. 508–511], Cowan and Tsang [184]), the Johnson–Mehl
tessellation model (see Møller [552]) and the general class of crystallization processes
investigated by Capasso and co-workers [157], [158], [159], [515].

Some of the mentioned spatio-temporal models produce random systems of non-
overlapping balls, others can be modified to do so, for example by thinning. There
are current efforts by statisticians and physicists to generate random packings of
balls with high volume density (Torquato [759], Stoyan and Schlather [745], Döge
et al. [205]).

4.3 Germ-grain Models, Boolean Models

In Theorem 3.6.2 we have seen that for a point process X in F ′ the union set

ZX :=
⋃

F∈X

F

is a random closed set, and in Theorem 3.6.3 we have characterized those ZX

for which X has Poisson distributed counting variables. Now we study the
random closed sets arising as the union sets of particle processes. We shall



118 4 Geometric Models

be particularly interested in the random closed sets resulting from special
germ-grain processes.

It is easy to see that a given random closed set Z can always be repre-
sented as the union set of a particle process X. In the following, we describe
a construction which has the advantage that invariance properties of Z carry
over to X. If Z is a random S-set, then it is even possible to choose the parti-
cles of X as convex bodies. However, in order to ensure in this case the local
finiteness of the intensity measure of X, we need an integrability assumption
on the random S-set Z. To formulate it, we define

N(K) := min

{
m ∈ N : K =

m⋃
i=1

Ki with Ki ∈ K
}

for K ∈ R′,

and N(∅) := 0.

Lemma 4.3.1. The function N : R → N0 is measurable.

Proof. By Theorem 2.4.1, it is sufficient to show that N is semicontinuous
with respect to the Hausdorff metric. Let Mj ,M ∈ R be sets with Mj → M
(in the Hausdorff metric) as j →∞. We assert that

N(M) ≤ lim inf N(Mj). (4.19)

Suppose this were false. Going over to a subsequence, we can assume that
there exists a number m ∈ N with

N(Mj) = m < N(M) for j ∈ N,

thus

Mj =
m⋃

i=1

K
(i)
j with K(i)

j ∈ K′.

Since the sets Mj and hence also the sets K(i)
j are uniformly bounded, there

exists a subsequence (jk)k∈N such that

K
(i)
jk
→ K(i) as k →∞, i = 1, . . . ,m,

with K(i) ∈ K′. Theorem 12.3.5 gives

Mjk
=

m⋃
i=1

K
(i)
jk
→

m⋃
i=1

K(i),

thus M =
⋃m

i=1K
(i), and hence N(M) ≤ m, a contradiction. This completes

the proof of (4.19) and thus of the lemma. ��

Now we can prove the announced representation result.
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Theorem 4.3.1. To every random closed set Z in Rd there exists a simple
particle process X with Z = ZX and such that X D= gX for all rigid motions
g ∈ Gd for which Z D= gZ. In particular, X is stationary (isotropic) if Z is
stationary (isotropic).

If Z is a random S-set with EN(Z ∩ C) < ∞ for all C ∈ C′, then X can
in addition be chosen so that all particles are convex.

Proof. The decomposition of a random closed set Z into compact particles is
easier to achieve than that of a random S-set into convex bodies. Therefore,
we restrict ourselves in the proof to this more difficult situation. The decom-
position into compact particles can be done in a similar way if the mapping
ψ used below is replaced by ψ̃ : C �→ δC , C ∈ C′ (and ψ̃(∅) = 0).

From the proof of Theorem 14.4.4 we get the existence of a measurable
map ψ : R → Ns(K′) with

ψ(C) =
N(C)∑
i=1

δKi
, C =

N(C)⋃
i=1

Ki

for C �= ∅, and ψ(∅) = 0.
As before, we denote by Cd

0 the half-open unit cube. With an enumeration
(zk)k∈N of Zd and with Cd

0k := Cd
0 + zk, we put

Ψ(Z) :=
∞∑

k=1

[
ψ

(
cl (Z ∩ Cd

0k)− zk
)

+ zk
]
. (4.20)

Then Ψ(Z) is a simple point process in K′ with a locally finite intensity mea-
sure. In fact, we have

EΨ(Z)(FC) ≤ p(C)EN(Z ∩ w(C)) <∞

for C ∈ C′, where p(C) denotes the number of cubes Cd + zk, k ∈ N, with
C ∩ (Cd + zk) �= ∅, and w(C) is the union of these cubes.

Obviously, we have Z =
⋃

K∈Ψ(Z)K and t−zΨ(tzZ) = Ψ(Z) for all z ∈ Zd

(to achieve this invariance, and the simplicity, Ψ has been defined by (4.20)).
To obtain the stronger invariance properties as required, the construction has
yet to be modified. For a motion g ∈ Gd, we define Ψg(Z) := gΨ(g−1Z). We
put

G0
d :=

{
g = ϑtx ∈ Gd : ϑ ∈ SOd, x ∈ Cd

0

}
and denote by µ0 the Haar measure on the motion group Gd, restricted to the
relatively compact set G0

d and normalized to a probability measure. Let ξ be
a random motion, independent of Z and with distribution µ0. We define

X := Ψξ(Z).

As shown above, X is a point process in K′ with Z = ZX .
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Now suppose that g0 ∈ Gd is a motion with Z D= g0Z. Then

g0X = g0ξΨ
(
ξ−1g−1

0 g0Z
)

= Ψg0ξ(g0Z),

hence, for all A ∈ Ns(K′),

P(g0X ∈ A) =
∫

G0
d

P(Ψg0g(Z) ∈ A)µ0(dg),

by the independence of Z and ξ and the g0-invariance of Z. For g0 = ϑ0tx0 ,
g = ϑtx we have

g0g = ϑ0ϑtx+ϑ−1x0 ,

hence (using the decomposition (13.8) of the invariant measure on Gd)

P(g0X ∈ A) =
∫

SOd

∫
Cd

0

P

(
Ψϑ0ϑtx+ϑ−1x0

(Z) ∈ A
)
λ(dx) ν(dϑ).

If ϑ ∈ SOd is fixed, to each x ∈ Cd
0 there exists a unique representation

x+ ϑ−1x0 = y(x) + z(x)

with y(x) ∈ Cd
0 and z(x) ∈ Zd. If x varies in Cd

0 , the norm of z(x) remains
bounded, hence z(x) attains only finitely many values z1, . . . , zr ∈ Zd. For
Di := {x ∈ Cd

0 : z(x) = zi}, i = 1, . . . , r, we then have

Cd
0 =

r⋃
i=1

Di,

and the sets Di are pairwise disjoint. Consider the mapping ϕ : x �→ y(x) on
Cd

0 . On each Di, it is a translation. For x, x′ ∈ Cd
0 with y(x) = y(x′) we have

x−x′ = z(x)− z(x′) ∈ Zd, hence x = x′. Thus ϕ is injective. This map is also
surjective, since to each y ∈ Cd

0 there exists a decomposition y−ϑ−1x0 = x−z,
x ∈ Cd

0 , z ∈ Zd. This gives x + ϑ−1x0 = y + z, hence y = y(x). Thus ϕ is a
bijection onto Cd

0 , which leaves λ invariant. Therefore, we obtain∫
Cd

0

P

(
Ψϑ0ϑtx+ϑ−1x0

(Z) ∈ A
)
λ(dx)

=
∫

Cd
0

P
(
Ψϑ0ϑty(x)+z(x)(Z) ∈ A

)
λ(dx)

=
∫

Cd
0

P
(
ϑ0ϑΨty(x)+z(x)(ϑ

−1ϑ−1
0 Z) ∈ A

)
λ(dx)

=
∫

Cd
0

P
(
ϑ0ϑΨty(x)(ϑ

−1ϑ−1
0 Z) ∈ A

)
λ(dx)

=
∫

Cd
0

P(ϑ0ϑΨtx
(ϑ−1ϑ−1

0 Z) ∈ A)λ(dx)

=
∫

Cd
0

P(Ψϑ0ϑtx
(Z) ∈ A)λ(dx).
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The rotation invariance of the measure ν now yields

P(g0X ∈ A) =
∫

SOd

∫
Cd

0

P(Ψϑtx
(Z) ∈ A)λ(dx) ν(dϑ)

=
∫

Gd

P(Ψg(Z) ∈ A)µ0(dg)

= P(X ∈ A)

and thus g0X
D= X. ��

Due to this theorem, in particular every stationary random closed set Z is
the union set of a stationary germ-grain process X̃. Moreover, in the case of a
random S-set satisfying the finiteness condition of Theorem 4.3.1 the grains
are convex. Here, the union set ZX̃ of a germ-grain process X̃ is defined as
the union set

ZX̃ :=
⋃

(x,C)∈X̃

(x+ C)

of the particle process induced by X̃ according to (4.13).
To obtain more accessible models, we now consider random sets Z = ZX̃

arising from an independent germ-grain process. Such a random closed set is
called a germ-grain model. If the mark distribution of X̃ is concentrated on
K′, we call ZX̃ a germ-grain model with convex grains. For a germ-grain
model Z, the capacity functional TZ can be expressed in terms of the process
X0 of germs and the capacity functional of the typical grain Z0. In fact, for
C ∈ C we have

TZ(C) = 1− E
∏

x∈X0

(1− TZ0(C − x)). (4.21)

To prove this, we choose a suitable representation

X̃ =
τ∑

i=1

δ(ξi,Zi), τ = X̃(Rd × C′),

and then argue as follows.

1− TZ(C) = P

(
τ⋃

i=1

(ξi + Zi) ∩ C = ∅
)

= P(ξi /∈ C − Zi, i = 1, . . . , τ)

= P

(
τ∏

i=1

(1− 1C−Zi
(ξi)) = 1

)

= E

τ∏
i=1

(1− 1C−Zi
(ξi))
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= E

τ∏
i=1

(
1−

∫
C′

1C−K(ξi) Q(dK)
)

= E
∏

x∈X0

(1− TZ0(C − x)).

Particularly accessible are those germ-grain models Z for which the process
of germs is a Poisson process. They are called Boolean models (Boolean
models with convex grains if the generating germ-grain process X̃ has
convex grains). These random closed sets are the most tractable ones for
applications. The Boolean model

Z :=
⋃

(x,C)∈X̃

(x+ C) (4.22)

is (up to stochastic equivalence) determined by the intensity measure ϑ of the
Poisson process of germs and by the distribution Q of the typical grain. For
that reason, we also write Z =: Z(ϑ,Q).

Formulas for Boolean models are the subject of Section 9.1.
Now let Z be a stationary Boolean model, that is, a stationary random

closed set that is generated, according to (4.22), by an independent germ-
grain process X̃ with a Poisson germ process X0. Then the generated particle
process

X :=
∑

(x,C)∈X̃

δx+C ,

is a Poisson process, too, as remarked before Theorem 4.2.3. Hence, Z is the
union set of a (by Theorem 3.6.4) stationary Poisson particle process X. From
Theorem 4.2.2 we obtain also a converse, and thus the following result.

Theorem 4.3.2. The stationary Boolean models are precisely the union sets
of stationary Poisson particle processes.

If Z is a stationary Boolean model and X is a generating Poisson parti-
cle process, then the intensity measure of X is uniquely determined by the
distribution of Z, by Theorem 3.6.3 and Lemma 2.3.1. It is translation invari-
ant, and by Theorem 4.1.1 the intensity γ (assumed positive) and the grain
distribution Q of X are uniquely determined. By Theorem 4.1.2, also the cor-
responding particle process is uniquely determined. However, this does not
hold for the corresponding marked processes. If, besides Z = Z(γλ,Q) one
also has Z = Z(γλ,Q′), then Q′ is in general distinct from the grain distri-
bution Q of X. Yet, it is true that Q is the image of Q′ under the mapping
πc : C �→ C − c(C). This follows from Theorem 4.2.1. Thus, the generation
of a stationary Boolean model by an independent germ-grain process with a
Poisson germ process can be achieved in different ways. It is, however, always
possible to choose the ‘canonical’ generating process Xc.
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If a stationary Boolean model is intersected with a plane S, then in S one
obtains again a Boolean model, stationary with respect to S. In fact, for a
Poisson particle process X, the section process X∩S, too, is a Poisson process,
as follows immediately from (3.2).

For a point process of lower-dimensional sets, it may be possible to obtain
certain quantities of X from studying the union set Z. In general this will be
difficult, due to overlappings. In particular, for Poisson processes in C, R or
K and with full-dimensional particles, such overlappings occur with positive
probability, due to Theorem 4.1.4. On the other hand, for a stationary Boolean
model Z, which is the union set of a stationary Poisson particle process X,
this process X is already uniquely determined, as just remarked. Therefore, all
characteristic parameters of X, for example the intensity, must be obtainable
from quantities of Z. We shall study this phenomenon in greater detail in
Section 9.1.

Notes for Section 4.3

1. Theorem 4.3.1 is due to Weil and Wieacker [805].

2. General germ-grain models were introduced by Hanisch [319] and further studied
by Heinrich [324] and others. In Hanisch [319] one finds, for example, formula (4.21).

3. The Boolean model was, after a few precursors (see Cressie [185, p. 753]), at first
mainly studied by the Fontainebleau school; this is reflected in the books of Math-
eron [462] and Serra [729]. The book by Hall [317] contains a detailed discussion
of qualitative and quantitative properties of the Boolean model and more general
germ-grain models, in particular with a view to covering and connectivity proper-
ties. Meesters and Roy [509] study Boolean models in the framework of percolation
theory. Statistical methods for Boolean models are treated by Molchanov [546].

4. Quermass-interaction models. Starting with a Poisson process Y of convex
particles with a finite intensity measure Θ and the corresponding Boolean model
Z, Kendall, van Lieshout and Baddeley [398] defined quermass-interaction processes
Y ′ and their union sets Z′. The particle process Y ′ is supposed to be absolutely
continuous to Y with density

p(y) = αβn(y) exp

[
−

d∑
j=0

γjVj(U(y))

]
.

Here, y = {K1, . . . , Kn} is a (finite) realization of Y with n(y) = n, β > 0 and
γj ∈ R are model parameters, α is a normalizing constant and U(y) =

⋃n
i=1 Ki.

The particles of Y ′ are no longer independent, in general, but satisfy a Markov
property. The main question discussed in [398] is whether Y ′ is stable in the sense
of Ruelle, a property which implies integrability of the density p. The results mostly
concern the planar case with particles being disks or convex polygons.
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4.4 Processes of Flats

In this section, we study processes of flats. A process of k-flats, or k-flat
process, in Rd is a point process in the space A(d, k) of k-flats (k-dimensional
planes) in Rd, where k ∈ {1, . . . , d − 1}, and thus a point process in F ′ with
intensity measure concentrated on A(d, k). For k = 1, we also speak of a line
process, and for k = d− 1, of a hyperplane process.

For stationary k-flat processes, there is again a decomposition of the in-
tensity measure. The proof is not quite as simple as for the analogous results
in Theorems 3.3.1 and 3.5.1, since A(d, k) can, for k < d− 1, only locally be
represented as a product space with a Euclidean factor.

The Grassmannian G(d, k) of k-dimensional linear subspaces of Rd is a
subset of A(d, k) and is closed in F and F ′. For L ∈ G(d, k), recall that λL is
the k-dimensional Lebesgue measure on L. The (continuous) mapping

π0 :
d−1⋃
k=1

A(d, k)→
d−1⋃
k=1

G(d, k)

associates with every plane its translate through 0.

Theorem 4.4.1. Let Θ be a locally finite, translation invariant measure on
A(d, k). Then there exists a uniquely determined finite measure Θ0 on G(d, k)
such that

Θ(A) =
∫

G(d,k)

∫
L⊥

1A(L+ x)λL⊥(dx)Θ0(dL) (4.23)

for every Borel set A ∈ B(A(d, k)).

Proof. Let U ∈ G(d, d− k), and define

GU := {L ∈ G(d, k) : dim (L ∩ U) = 0}

and AU := {L+ x : L ∈ GU , x ∈ U}. The mapping

ϕ : GU × U → AU

(L, x) �→ L+ x

is a homeomorphism. Let A ⊂ GU be a Borel set. For Borel sets B ⊂ U , let

η(B) := Θ(ϕ(A×B)).

Then η is a locally finite, translation invariant measure on U and thus a
multiple of the Lebesgue measure λU . Denoting the factor by ρ(A), we have

Θ(ϕ(A×B)) = ρ(A)λU (B).

Evidently, ρ is a finite measure on GU . Thus,
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ϕ−1(Θ)(A×B) = (ρ⊗ λU )(A×B),

which gives ϕ−1(Θ) = ρ⊗λU and, therefore, Θ AU = ϕ(ρ⊗λU ). Hence, for
every nonnegative measurable function f on A(d, k) we have∫

AU

f dΘ =
∫

GU

∫
U

f(L+ x)λU (dx) ρ(dL).

For given L ∈ GU , let ΠL : U → L⊥ denote the orthogonal projection
to the orthogonal complement of L. It is bijective, since L ∈ GU . Therefore,
ΠL(λU ) = a(L)λL⊥ , with a factor a(L) > 0 that depends only on L. Further,
f(L+ x) = f(L+ ΠL(x)). This yields∫

U

f(L+ x)λU (dx) = a(L)
∫

L⊥
f(L+ x)λL⊥(dx).

Defining a measure ΘU on GU by a(L)ρ(dL) =: ΘU (dL), we have∫
AU

f dΘ =
∫

GU

∫
L⊥
fL+ x)λL⊥(dx)ΘU (dL).

We interpret ΘU as a measure on all of G(d, k), with ΘU (G(d, k) \GU ) = 0,
and then have∫

AU

f dΘ =
∫

G(d,k)

∫
L⊥
f(L+ x)λL⊥(dx)ΘU (dL).

Every set GU , U ∈ G(d, d − k), is open in G(d, k), hence there are finitely
many subspaces U1, . . . , Um ∈ G(d, d− k) with G(d, k) =

⋃m
i=1GUi

. The sets
AUi

, i = 1, . . . ,m, cover A(d, k) and are invariant under translations. The
translation invariant Borel sets defined by Ak := AUk

\ (A1 ∪ . . . ∪ Ak−1),
k = 1, . . . ,m, form a disjoint covering of A(d, k). Since Θ Ai is translation
invariant, the measure Θi := (Θ Ai)Ui

, defined as above, satisfies∫
Ai

f dΘ =
∫

G(d,k)

∫
L⊥
f(L+ x)λL⊥(dx)Θi(dL).

Therefore, the measure Θ0 := Θ1 + . . .+Θm satisfies (4.23).
From (4.23) we obtain, for A ∈ B(G(d, k)),

Θ0(A) =
1

κd−k
Θ

(
FBd ∩ π−1

0 (A)
)
. (4.24)

From (4.24) it is obvious that Θ0 is finite and uniquely determined. ��

Applying the preceding theorem to intensity measures, we immediately
obtain the following result.



126 4 Geometric Models

Theorem 4.4.2. Let X be a stationary k-flat process in Rd with intensity
measure Θ �= 0. Then there are a number γ ∈ (0,∞) and a probability measure
Q on G(d, k) with∫

A(d,k)

f dΘ = γ
∫

G(d,k)

∫
L⊥
f(L+ x)λL⊥(dx) Q(dL) (4.25)

for all nonnegative measurable functions f on A(d, k). Here γ and Q are
uniquely determined by Θ.

We call γ the intensity and Q the directional distribution of the sta-
tionary flat process X. If X is moreover isotropic, then Q is rotation invariant,
as follows from the uniqueness. By Theorem 13.2.11, there is only one nor-
malized rotation invariant measure on G(d, k), the Haar measure νk.

Occasionally (for example, when sections are considered) we have to allow
flat processes with Θ = 0; for these we define γ = 0.

The interpretation of γ and Q is clear from (4.25), since for A ∈ B(G(d, k))
this gives

γQ(A) =
1

κd−k
EX

(
FBd ∩ π−1

0 (A)
)
, (4.26)

in particular

γ =
1

κd−k
EX (FBd) (4.27)

and

Q(A) =
EX

(
FBd ∩ π−1

0 (A)
)

EX(FBd)
. (4.28)

The representation (4.28) explains why the measure Q is called the directional
distribution of X.

For a further interpretation of the intensity γ, we need a measurability
result.

Lemma 4.4.1. Let X be a point process in A(d, k). Then∑
E∈X

λE(A) (4.29)

is measurable for all A ∈ B(Rd).

Proof. It is sufficient to consider the case A ⊂ mBd, m ∈ N. First let A be
compact, and assume that Ei → E in G(d, k). Then there exist rotations gi ∈
SOd, i ∈ N, converging to the identity for i→∞, and such that g−1

i E = Ei.
Using the representation

λEi
(A) =

∫
E

1giA(x)λE(dx),
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one shows as in the proof of Theorem 12.3.6 that the function E �→ λE(A)
is upper semicontinuous and thus measurable. By Theorem 3.1.2, also (4.29)
is measurable. Now let A be the system of all Borel sets A ⊂ mBd for which
(4.29) is measurable. We have shown that A contains all compact subsets
of mBd. Evidently, A is closed under disjoint countable unions and relative
complements. Since C is ∩-stable, A contains the σ-algebra generated by the
compact sets in mBd, and, therefore, all Borel sets in mBd. ��

The measurability being shown, we can define

ϕX(A) := E
∑
E∈X

λE(A), A ∈ B(Rd),

and thus obtain a locally finite measure ϕX . If X is stationary, ϕX is transla-
tion invariant and, therefore, of the form ϕX = αλ with a number α ∈ [0,∞).
The following theorem shows that this constant is precisely the intensity γ.

Theorem 4.4.3. Let X be a stationary k-flat process in Rd with intensity γ.
Then

E
∑
E∈X

λE = γλ.

Proof. Using the Campbell theorem and Theorem 4.4.2, we get

E
∑
E∈X

λE(A) =
∫

A(d,k)

λE(A)Θ(dE)

= γ

∫
G(d,k)

∫
L⊥
λL+x(A)λL⊥(dx) Q(dL)

= γ

∫
G(d,k)

λ(A) Q(dL)

= γλ(A),

as stated. ��

Further interpretations of the intensity will be obtained in Section 9.4. In
particular, formula (9.33) provides k + 1 such interpretations.

Processes of k-flats satisfying Poisson assumptions again have particular
properties. From Theorems 3.2.1 and 3.6.1, the following is immediately clear.

Theorem 4.4.4. Let γ ∈ (0,∞) and let Q be a probability measure on
G(d, k). Then there is (up to equivalence) precisely one stationary Poisson
k-flat process X in Rd with intensity γ and directional distribution Q. The
process X is isotropic if and only if Q = νk.

In the next theorem, we collect some consequences of the independence
properties of Poisson k-flat processes. We say that two linear subspaces L,L′

of Rd are in general position if
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lin (L ∪ L′) = Rd or dim (L ∩ L′) = 0.

Two k-planes E,E′ are said to be in general position if their direction spaces
π0(E), π0(E′) are in general position.

Theorem 4.4.5. Let X be a stationary Poisson k-flat process in Rd.

(a) If k < d/2, then a.s. any two k-flats of X are disjoint.

(b) If the directional distribution Q of X has no atoms, then a.s. any two
k-flats of the process X are not translates of each other.

(c) If the directional distribution of X is absolutely continuous with respect to
the invariant measure νk, then a.s. any two k-planes of the process X are
in general position.

Proof. Let A ∈ B(A(d, k)2). From Theorem 3.1.3, Corollary 3.2.4, Theorem
4.1.2 we get

E
∑

(E1,E2)∈X2
�=

1A(E1, E2) =
∫

A(d,k)2
1A dΛ(2)

=
∫

A(d,k)

∫
A(d,k)

1A(E1, E2)Θ(dE1)Θ(dE2)

= γ2

∫
G(d,k)

∫
G(d,k)

∫
L⊥

2

∫
L⊥

1

1A(L1 + x1, L2 + x2)

×λL⊥
1
(dx1)λL⊥

2
(dx2) Q(dL1) Q(dL2).

To prove (a), suppose that k < d/2 and choose

A := {(E1, E2) ∈ A(d, k)2 : E1 ∩ E2 �= ∅}.

For fixed k-flats L1 ∈ G(d, k), E2 ∈ A(d, k), the integral∫
L⊥

1

1A(L1 + x1, E2)λL⊥
1
(dx1)

gives the (d− k)-dimensional Lebesgue measure of the image of E2 under the
orthogonal projection to L⊥

1 , which is zero. We deduce that

E
∑

(E1,E2)∈X2
�=

1A(E1, E2) = 0,

and from this the assertion (a) follows.
To prove (b), let m ∈ N and

A := {(E1, E2) ∈ A(d, k)2 : Ei ∩mBd �= ∅, i = 1, 2, E1 is a translate of E2}.
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Then we get

E
∑

(E1,E2)∈X2
�=

1A(E1, E2)

≤
(
γmd−kκd−k

)2
∫

G(d,k)

∫
G(d,k)

1A(L1, L2) Q(dL1) Q(dL2)

=
(
γmd−kκd−k

)2
∫

G(d,k)

Q({L2}) Q(dL2)

= 0,

since Q has no atoms. Assertion (b) follows, since m ∈ N was arbitrary.
To prove (c), suppose that Q has a density f with respect to νk. Form ∈ N

we choose

A := {(E1, E2) ∈ A(d, k)2 : Ei ∩mBd �= ∅, i = 1, 2,

E1, E2 not in general position}.

As above, we obtain similarly

E
∑

(E1,E2)∈X2
�=

1A(E1, E2)

≤
(
γmd−kκd−k

)2
∫

G(d,k)

∫
A(L2)

f(L1) νk(dL1)f(L2) νk(dL2)

= 0,

since the set A(L2) := {L1 ∈ G(d, k) : (L1, L2) ∈ A} satisfies νk(A(L2)) = 0,
as can be deduced from Lemma 13.2.1. Since m ∈ N was arbitrary, assertion
(c) follows. ��

When considering section processes in the following, we shall also meet j-
flat processes for j = 0. These can be considered as ordinary point processes.
Namely, we identify every one-pointed set {x} with x, observing that the
mapping {x} �→ x maps the subspace {{x} : x ∈ Rd} of F ′ homeomorphically
to Rd.

Sections with a Fixed Plane

We turn to sections with fixed planes, a topic which, at least in small dimen-
sions, is important for applications. Let X be a stationary k-flat process in Rd

(k ∈ {1, . . . , d− 1}), and let S be a fixed (d− k + j)-flat with 0 ≤ j ≤ k − 1.
We recall the definition of the section process,

(X ∩ S)(ω) :=
∑

E∈X, E∩S �=∅
δE∩S .
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As we shall see below, X∩S is a j-flat process. Its realizations lie in the section
plane S and it is stationary with respect to S. Therefore, in the following
X∩S is considered as a stationary j-flat process in S. The question arises how
intensity and directional distribution of X∩S are related to the corresponding
parameters of X. This will now be investigated.

Because of the stationarity of the process X it is no restriction to assume
that S ∈ G(d, d − k + j). The nonempty intersections E ∩ S, E ∈ X, can
be r-flats with r ∈ {j, . . . ,min(k, d− k + j)}; we show, however, that almost
surely they are j-flats. Let

A := {E ∈ A(d, k) : dim (E ∩ S) > j}

(with the usual convention that dim ∅ := −1). By (4.25),

EX(A) = Θ(A) = γ
∫

G(d,k)

∫
L⊥

1A(L+ x)λL⊥(dx) Q(dL).

If 1A(L+ x) = 1, then L and S span only a proper subspace U of Rd, and we
have x ∈ U and dim (L⊥ ∩ U) < dimL⊥. This gives

EX(A) ≤ γ
∫

G(d,k)

λL⊥(L⊥ ∩ U) Q(dL) = 0.

Hence, almost surely we have dim (E ∩ S) = j or E ∩ S = ∅ for E ∈ X.
Therefore, X∩S is a j-flat process in S (which may have intensity 0, though).
Similarly we obtain thatX∩S is a.s. simple. In fact, if a j-flat in S is generated
as the intersection of two distinct k-flats E1, E2 with S, then E1 ∩ E2 is an
i-flat with j ≤ i ≤ k − 1. For given i, we consider all i-flats which are the
intersection of two flats of X (counting every such i-flat only once, even if it is
generated in two different ways). In this way, a process Yi of i-flats is obtained
(the measurability is not difficult to prove). The process Yi is stationary. By
the argument used above and because of i ≤ k − 1, the flats of Yi intersect
the plane S a.s. in planes of dimension less than j. This shows that X ∩ S is
a.s. simple.

First we consider now the case dimS = d− k, where X ∩S is an ordinary
point process in S. In the next theorem, we determine the intensity of this
point process. For the subspace determinant [·, ·] occurring in the following
we refer to Section 14.1.

Theorem 4.4.6. Let k ∈ {1, . . . , d−1}, and let X be a stationary k-flat process
in Rd with intensity γ and directional distribution Q. Let S ∈ G(d, d−k), and
let γX∩S be the intensity of the point process X ∩ S. Then

γX∩S = γ
∫

G(d,k)

[S,L] Q(dL).
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Proof. Let Bd−k be the unit ball in S. By the definition of the intensity of
the point process X ∩ S,

κd−kγX∩S = E(X ∩ S)(FBd−k)

= EX(FBd−k) = Θ(FBd−k)

= γ

∫
G(d,k)

∫
L⊥

1F
Bd−k

(L+ x)λL⊥(dx) Q(dL)

= γ

∫
G(d,k)

λL⊥(Bd−k|L⊥) Q(dL).

Here Bd−k|L⊥ is the image of Bd−k under the orthogonal projection to L⊥.
The (d− k)-volume of this image is given by λS(Bd−k)[S,L], from which the
assertion follows. ��

In the cases k = 1 and k = d − 1 it is convenient to replace the direc-
tional distribution Q by the spherical directional distribution ϕ. This is
the measure on the unit sphere Sd−1 which, for a set A ∈ B(Sd−1) without
antipodal points, is defined by

ϕ(A) :=
1
2

Q({L(u) : u ∈ A}) if k = 1,

for L(u) := lin{u}, respectively

ϕ(A) :=
1
2

Q({u⊥ : u ∈ A}) if k = d− 1. (4.30)

(The factor 1
2 appears here since L(u) = L(−u) and u⊥ = (−u)⊥.) By ad-

ditivity, ϕ is then defined for all A ∈ B(Sd−1). Thus, ϕ is an even prob-
ability measure on Sd−1. Writing γX(u) := γX∩L(u) if k = 1, respectively
γX(u) := γX∩u⊥ if k = d− 1, we then have

γX(u) = γ
∫

Sd−1
|〈u, v〉|ϕ(dv). (4.31)

The right side of (4.31) defines the support function of a centrally symmetric
convex body, which can be associated with the measure γϕ. This body belongs
to the class of zonoids. Such associated zonoids will be studied and applied in
Section 4.6.

A corresponding uniqueness theorem (Theorem 14.3.4) shows that the
function γX in (4.31) uniquely determines the measure γϕ (and therefore also
γ and ϕ). In particular, for a stationary Poisson line or hyperplane process
X, the distribution PX is uniquely determined by the section intensities
γX∩S , S ∈ G(d, d − 1), respectively S ∈ G(d, 1) (see also Section 4.6). For
1 < k < d − 1, however, a stationary Poisson k-flat process X is in general
not uniquely determined by the section intensities γX∩S , S ∈ G(d, d− k); see
Note 2 of this section.
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Now we consider also the case of higher-dimensional section planes S,
where we obtain in S an intersection process of j-flats with j > 0. Let X be a
stationary k-flat process, and let S ∈ G(d, d− k+ j), with j ∈ {1, . . . , k− 1},
be a fixed plane. As shown above, X ∩ S is a.s. a j-flat process. Its intensity
measure, ΘX∩S , is concentrated on the space

G(S, j) := {L ∈ G(d, j) : L ⊂ S}.

Theorem 4.4.7. Let k ∈ {2, . . . , d−1}, and let X be a stationary k-flat process
in Rd with intensity γ and directional distribution Q. Let j ∈ {1, . . . , k − 1}
and S ∈ G(d, d − k + j); let γX∩S be the intensity and QX∩S the directional
distribution of the j-flat process X ∩ S. Then, for A ∈ B(G(d, j)),

γX∩SQX∩S(A) = γ
∫

G(d,k)

1A(L ∩ S)[L, S] Q(dL).

(If γX∩S = 0, then QX∩S is not defined, and the expression γX∩SQX∩S has
to be read as the zero measure.)

Proof. Let P ∈ B(A(d, j)). By Campbell’s theorem and Theorem 4.4.2,

ΘX∩S(P ) = E(X ∩ S)(P ) = E
∑
E∈X

1P (E ∩ S)

=
∫

A(d,k)

1P (E ∩ S)Θ(dE)

= γ

∫
G(d,k)

∫
L⊥

1P ((L+ x) ∩ S)λL⊥(dx) Q(dL).

The intensity measure ΘX∩S is concentrated on the j-flats in S and is in-
variant under the translations of S into itself. By (4.24) (applied in S) and
the definition of intensity and directional distribution, for A ∈ B(G(d, j)) and
BS := Bd ∩ S we get

γX∩SQX∩S(A)

=
1

κd−k
ΘX∩S(FBS

∩ π−1
0 (A))

=
γ

κd−k

∫
G(d,k)

∫
L⊥

1FBS
∩π−1

0 (A)((L+ x) ∩ S)λL⊥(dx) Q(dL)

=
γ

κd−k

∫
G(d,k)

1A(L ∩ S)λd−k(BS |L⊥) Q(dL),

since (L + x) ∩ S ∈ FBS
∩ π−1

0 (A) obviously holds if and only if L ∩ S ∈ A
and x ∈ BS |L⊥. If T denotes the orthogonal complement of L ∩ S in S, then

BS |L⊥ = (BS |T )|L⊥ = BT |L⊥.
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The orthogonal projection from T to L⊥ has the absolute determinant [L, S],
hence

λd−k(BS |L⊥) = κd−k[L, S].

This yields the assertion. ��

Intersection Processes

By intersecting flats in a k-flat process among themselves, we obtain new
lower-dimensional flat processes. We shall now study such intersection pro-
cesses in the case of stationary Poisson flat processes. In particular, we are
interested in how the intensity and the directional distribution of an intersec-
tion process depend on the data of the original process. We restrict ourselves to
two cases: intersecting k-tuples of hyperplanes, or intersecting pairs of r-flats,
where r ≥ d/2. In some cases we shall be able to obtain sharp inequalities
between the intensities of the intersection process and the original process;
this will be explained in Section 4.6.

First we consider hyperplane processes. It is convenient to represent hy-
perplanes in the form

H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ} (4.32)

with a unit vector u ∈ Sd−1 and a number τ ∈ R. Every hyperplane H ∈
A(d, d−1) has two such representations. Instead of H(u, 0), we shall write u⊥

again.
Let X be a stationary hyperplane process in Rd with intensity γ �= 0

and directional distribution Q. Using the spherical directional distribution ϕ
introduced by (4.30), the decomposition of the intensity measure Θ given by
Theorem 4.4.2 can be written in the form∫

A(d,d−1)

f dΘ = γ
∫

Sd−1

∫ ∞

−∞
f(H(u, τ)) dτ ϕ(du). (4.33)

Let k ∈ {2, . . . , d}. For every realization of X, we consider the intersection
of any k hyperplanes in the process which are in general position. We want
to show that in this way we obtain a stationary (d − k)-flat process Xk; we
shall call this the intersection process of order k of the process X. For
P ∈ B(A(d, d− k)), define the function fP : A(d, d− 1)k → R by

fP (H1, . . . , Hk) :=

{
1, if H1 ∩ . . . ∩Hk ∈ P,
0 else.

(4.34)

The set of all (H1, . . . , Hk) ∈ A(d, d− 1)k with dim (H1 ∩ . . .∩Hk) = d− k is
open, and on this set the mapping (H1, . . . , Hk) �→ H1∩. . .∩Hk is continuous.
Hence, fP is measurable. By Theorem 3.1.3, the function
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Xk(P ) :=
1
k!

∑
(H1,...,Hk)∈Xk

�=

fP (H1, . . . , Hk)

is measurable. If P is compact, there exists a ball that is hit by all (d−k)-flats
in P and hence also by all hyperplanes H1, . . . , Hk with fP (H1, . . . , Hk) = 1.
It follows that Xk(P ) is a.s. finite. Thus, Xk is a point process in A(d, d− k).
Obviously, it is stationary, but it may have intensity zero and need not be
simple. If X is a stationary Poisson hyperplane process, then almost surely
either the intersection H1 ∩ . . . ∩ Hk is empty or H1, . . . , Hk are in general
position, as follows by the method used in the proof of Theorem 4.4.5. There-
fore, Xk is a.s. simple. That Xk is not a Poisson process, in general, is already
seen in the case d = 2, k = 2, since for a stationary Poisson point process in
R2 a.s. no three points are collinear.

In the following, for vectors u1, . . . , um ∈ Rd, m ≤ d, we denote by
∇m(u1, . . . , um) the m-dimensional volume of the parallelepiped spanned by
u1, . . . , um.

Theorem 4.4.8. Let X be a stationary Poisson hyperplane process in Rd with
intensity γ �= 0 and spherical directional distribution ϕ. Let k ∈ {2, . . . , d},
and let Xk be the intersection process of order k of X. Then the intensity γk

and the directional distribution Qk of Xk are given by

γkQk(A)

=
γk

k!

∫
Sd−1

. . .

∫
Sd−1

1A(u⊥1 ∩ . . . ∩ u⊥k )∇k(u1, . . . , uk)ϕ(du1) · · ·ϕ(duk)

for A ∈ B(G(d, d− k)).

(For k = d, Qk(A) and 1A(u⊥1 ∩ . . . ∩ u⊥k ) have to be omitted from the
formula. If γk = 0, the measure Qk is not defined; then γkQk has to be read
as the zero measure.)

Proof. Let Θk be the intensity measure of the intersection process Xk (the
subsequent proof also yields that Θk is locally finite). For P ∈ B(A(d, d− k))
let fP be the function defined by (4.34). Then

Θk(P ) = EXk(P )

=
1
k!

E
∑

(H1,...,Hk)∈Xk
�=

fP (H1, . . . , Hk)

=
1
k!

∫
A(d,d−1)k

fP dΛ(k),

by Theorem 3.1.3. Here Λ(k) = Θk by Corollary 3.2.4. Together with (4.33)
this gives
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k!Θk(P ) =
∫

A(d,d−1)

. . .

∫
A(d,d−1)

fP (H1, . . . , Hk)Θ(dH1) · · ·Θ(dHk)

= γk

∫
Sd−1

. . .

∫
Sd−1

∫ ∞

−∞
. . .

∫ ∞

−∞
fP (H(u1, τ1), . . . , H(uk, τk))

×dτ1 · · · dτk ϕ(du1) · · ·ϕ(duk).

Let A ∈ B(G(d, d− k)) and choose P := FBd ∩ π−1
0 (A). By (4.26),

k!γkQk(A) =
k!
κk
Θk(FBd ∩ π−1

0 (A))

=
γk

κk

∫
Sd−1

. . .

∫
Sd−1

∫ ∞

−∞
. . .

∫ ∞

−∞
fP (H(u1, τ1), . . . , H(uk, τk))

×dτ1 · · · dτk ϕ(du1) · · ·ϕ(duk),

where

fP (H(u1, τ1), . . . , H(uk, τk))

= 1A(u⊥1 ∩ . . . ∩ u⊥k )1F
Bd

(H(u1, τ1) ∩ . . . ∩H(uk, τk)).

For the computation of the integral

Ik :=
∫ ∞

−∞
. . .

∫ ∞

−∞
1F

Bd
(H(u1, τ1) ∩ . . . ∩H(uk, τk)) dτ1 · · · dτk,

we first assume that u1, . . . , uk are linearly independent. Let k = d. For
τ := (τ1, . . . , τd) let T (τ) be the intersection point of the hyperplanes
H(u1, τ1), . . . , H(ud, τd). Then Id is the d-dimensional Lebesgue measure of
the set T−1(Bd). The mapping T is injective, and its inverse is given by
T−1(x) = (〈x, u1〉, . . . , 〈x, ud〉); the Jacobian of T−1 is ∇d(u1, . . . , ud). There-
fore,

Id = κd∇d(u1, . . . , ud).

For k < d we obtain
Ik = κk∇k(u1, . . . , uk),

by applying the obtained result in the space lin {u1, . . . , uk}. Thus we get∫ ∞

−∞
. . .

∫ ∞

−∞
fP (H(u1, τ1), . . . , H(uk, τk)) dτ1 · · · dτk

= 1A(u⊥1 ∩ . . . ∩ u⊥k )κk∇k(u1, . . . , uk).

This equation also holds if u1, . . . , uk are linearly dependent, since in that case
both sides are zero. This completes the proof. ��
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Now we consider a stationary process X of r-flats, where d/2 ≤ r ≤ d− 1.
In every realization of X, we take the intersection of any two flats in the
process which are in general position. By similar arguments to those used
for hyperplanes, we see that we obtain in this way a stationary process of
(2r − d)-flats. We denote it by X2 and call it the intersection process of
order 2 of X.

Theorem 4.4.9. Let d/2 ≤ r ≤ d−1, let X be a stationary Poisson process of
r-flats in Rd with intensity γ �= 0 and directional distribution Q. Let X2 be the
intersection process of order 2 of X. Then the intensity γ2 and the directional
distribution Q2 of X2 are given by

γ2Q2(A) =
γ2

2

∫
G(d,r)

∫
G(d,r)

1A(E ∩ F )[E,F ] Q(dE) Q(dF )

for A ∈ B(G(d, 2r − d)).
(If γ2 = 0, the measure Q2 is not defined; then γ2Q2 has to be read as the
zero measure.)

Proof. Let Θ2 be the intensity measure of X2. For A ∈ B(G(d, 2r − d)) we
obtain, similarly to the proof of Theorem 4.4.8,

γ2Q2(A)

=
1

κ2(d−r)
Θ2(FBd ∩ π−1

0 (A))

=
γ2

2κ2(d−r)

∫
G(d,r)

∫
G(d,r)

∫
E⊥

∫
F⊥

1A(E ∩ F )1F
Bd

((E + x) ∩ (F + y))

×λF⊥(dy)λE⊥(dx) Q(dE) Q(dF ).

In the integral

I(x) :=
∫

F⊥
1F

Bd
((E + x) ∩ (F + y))λF⊥(dy),

the integrand is equal to 1 if and only if y ∈ (Bd ∩ (E + x))|F⊥. As in the
proof of Theorem 4.4.7 (observing that Bd ∩ (E + x) is now a ball of radius√

1− ‖x‖2), we obtain

I(x) = κd−r[E,F ](1− ‖x‖2)(d−r)/2.

This gives ∫
E⊥

∫
F⊥

1F
Bd

((E + x) ∩ (F + y))λF⊥(dy)λE⊥(dx)

= κd−r[E,F ]
∫

Bd∩E⊥
(1− ‖x‖2)(d−r)/2 λE⊥(dx)

= κ2(d−r)[E,F ].
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This yields the assertion. ��

The Proximity of Non-intersecting Poisson Flats

The considered intersection densities of stationary Poisson hyperplane pro-
cesses are examples of real parameters that describe the geometric behavior
of such processes and are not determined by the intensity alone. We now
suggest a similar parameter for r-flat processes, where r < d/2. For these,
we cannot work with intersections. The proposed parameter is a means to
measure how close flats in general position of the process approach each other,
in the mean. (If the directional distribution of a Poisson r-flat process is
absolutely continuous, then by Theorem 4.4.5 almost surely any two flats in
the process are in general position.)

Let 1 ≤ r < d/2 and E1, E2 ∈ A(d, r). If E1, E2 are in general position,
there are uniquely determined points x1 ∈ E1 and x2 ∈ E2 such that

d(E1, E2) := ||x1 − x2|| = inf{||y1 − y2|| : y1 ∈ E1, y2 ∈ E2}.

We call the point

m(E1, E2) :=
1
2
(x1 + x2)

the midpoint of E1 and E2.
Let X be a stationary r-flat process in Rd, where 1 ≤ r < d/2. For every

realization of X we take the midpoint m(E1, E2) of any two flats E1, E2 of
the realization which are in general position and satisfy d(E1, E2) ≤ 1. (The
bound 1 for the distance is only chosen for convenience; for a Poisson process,
a different bound would result in an additional factor in (4.35).) In this way,
we obtain a stationary point process in Rd, the midpoint process of X. Its
intensity is denoted by π(X) and called the proximity of the flat process X.
(Here π(X) = 0 is possible, for example, if the directional distribution of X
is degenerate.)

Theorem 4.4.10. Let 1 ≤ r < d/2, and let X be a stationary Poisson r-flat
process in Rd with intensity γ > 0 and directional distribution Q. Then the
proximity of X is given by

π(X) =
1
2
κd−2rγ

2

∫
G(d,r)

∫
G(d,r)

[E,F ] Q(dE) Q(dF ). (4.35)

Proof. For E1, E2 ∈ A(d, r), define

g(E1, E2) :=

⎧⎪⎨⎪⎩
1, if E1, E2 are in general position,
d(E1, E2) ≤ 1 and m(E1, E2) ∈ Bd,

0 otherwise.
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Since the proximity π(X) is the intensity of the midpoint process of X, it is
given by the expectation

π(X) =
1

2κd
E

∑
(E1,E2)∈X2

�=

g(E1, E2).

By Theorems 3.1.3, 4.4.2 and Corollary 3.2.4, we obtain

π(X) =
1

2κd

∫
A(d,r)

∫
A(d,r)

g(E1, E2)Θ(dE1)Θ(dE2)

=
γ2

2κd

∫
G(d,r)

∫
G(d,r)

∫
E⊥

∫
F⊥
g(E + x, F + y)

×λF⊥(dy)λE⊥(dx) Q(dE) Q(dF ).

We compute the inner double integral

I(E,F ) :=
∫

E⊥

∫
F⊥
g(E + x, F + y)λF⊥(dy)λE⊥(dx)

for two fixed subspaces E,F ∈ G(d, r) in general position.
Let E + F =: V and U := V ⊥. Vectors x ∈ E⊥ and y ∈ F⊥ have unique

decompositions

x = x1 + x2, x1 ∈ E⊥ ∩ V, x2 ∈ U,
y = y1 + y2, y1 ∈ F⊥ ∩ V, y2 ∈ U,

which gives

I(E,F ) =
∫

U

∫
U

J(E,F, x2, y2)λU (dx2)λU (dy2)

with

J(E,F, x2, y2)

=
∫

E⊥∩V

∫
F⊥∩V

g(E + x1 + x2, F + y1 + y2)λF⊥∩V (dy1)λE⊥∩V (dx1).

To compute this double integral, let z ∈ V be the intersection point of E+x1

and F + y1. The distance of E + x1 + x2 and F + y1 + y2 is realized by the
points z + x2 and z + y2, hence d(E + x1 + x2, F + y1 + y2) = ‖x2 − y2‖ and
m(E + x1 + x2, F + y1 + y2) = z + (x2 + y2)/2 . Thus, J(E,F, x2, y2) = 0 if
‖x2−y2‖ > 1. Assume that ‖x2−y2‖ ≤ 1. Then g(E+x1+x2, F+y1+y2) = 1
if and only if z + (x2 + y2)/2 ∈ Bd. The set V ∩ (Bd − (x2 + y2)/2) is a 2r-
dimensional ball with radius (1− ‖(x2 + y2)/2‖2)1/2. It follows that

J(E,F, x2, y2) = κ2r(1− ‖(x2 + y2)/2‖2)r[E,F ],
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if ‖x2 − y2‖ ≤ 1 and ‖(x2 + y2)/2‖ ≤ 1, and 0 otherwise. This yields

π(X) =
κ2r

2κd
γ2

∫
G(d,r)

∫
G(d,r)

[E,F ] Q(dE) Q(dF ) ·K

with

K :=
∫

U2
1{‖x2 − y2‖ ≤ 1}1{‖(x2 + y2)/2‖ ≤ 1}

× (1− ‖(x2 + y2)/2‖2)r λ2
U (d(x2, y2)).

The substitution x2 − y2 = u, (x2 + y2)/2 = v allows us to compute this
integral, which completes the proof. ��

Remark. Let X be as in Theorem 4.4.10. Let Q⊥ be the image measure
of Q under the mapping L �→ L⊥ from G(d, r) to G(d, d − r). There is a
stationary Poisson (d − r)-flat process X⊥ with directional distribution Q⊥

and intensity γ. A comparison of Theorems 4.4.9 and 4.4.10 shows that the
second intersection density γ2(X⊥) of the process X⊥ and the proximity π(X)
of the process X are related by

1
2
κd−2rγ2(X⊥) = π(X).

Therefore, inequalities for the second intersection density of a stationary Pois-
son flat process, as they are treated in Section 4.6, can be transferred to the
proximity.

Notes for Section 4.4

1. Flat processes, in particular under Poisson assumptions, were first studied inten-
sively by Miles [521, 523] and Matheron [460, 461, 462]. In the book by Matheron
[462] one finds most of the results of Section 4.4, though partially with different
proofs. For example, Theorem 4.4.1 appears there (p. 66) with a proof involving an
extension of conditional probabilities, whereas we have preferred to give a direct and
more elementary proof.

2. In the discussion following Theorem 4.4.6, we have mentioned the result (first
pointed out by Matheron) that the distribution PX of a stationary Poisson k-flat
process X is uniquely determined by the section intensities γX∩S , S ∈ G(d, d − k),
if either k = 1 or k = d − 1. That there is no corresponding uniqueness result for
1 < k < d − 1, was shown by Goodey and Howard [271]. Sections with planes S of
dimension d−k+j, j ∈ {1, . . . , k−1}, raise at least two questions: whether the section
intensities γX∩S , or whether the intensity measures of X ∩ S, S ∈ G(d, d − k + j),
are sufficient to determine the distribution of the Poisson k-flat process X. These
questions were answered partially by Goodey and Howard [271, 272] and completely
by Goodey, Howard and Reeder [273].

The distribution PX of a stationary Poisson hyperplane process X is, more
generally, determined by the section intensities γX∩S , S ∈ G(d, r), for fixed
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r ∈ {1, . . . , d − 1}. Corresponding inversion formulas (for the intensity measure of
X) are discussed in Spodarev [733, 734] (in a purely analytic setting, more general
inversion formulas are treated by Rubin [653]).

3. Theorem 4.4.10, together with Theorem 4.6.6, is found in Schneider [699], though
with a factor 1/2 missing.

4. In analogy to the idea of proximity, Spodarev [733, 735] introduced the rose of
neighborhood γkr of a stationary k-flat process X, as a function on G(d, r) where
k+r < d. For S ∈ G(d, r), γkr(S) is the intensity of the (stationary) process of points
in S arising as projections of midpoints m(E, S), E ∈ X, with distance d(E, S) ≤ 1
(say). Relating X to a ‘dual’ process X ′ of (d − k)-flats, γkr(S) transforms into
the section intensity γX′∩S⊥ of X ′. Therefore, the uniqueness, respectively non-
uniqueness, results for section intensities (see Note 2 above) carry over to the roses
of neighborhood.

For a similar situation, a process X of k-flats and a fixed r-plane S with r+s < d,
Hug, Last and Weil [360] discussed the question whether distance measurements
from S to (the union set of) the flats in X suffice to determine the directional
distribution of X. Their results also hold for non-stationary processes X (see the
Notes to Section 11.3).

5. The complementary theorem of Miles (see Note 5 of Section 3.2), in its versions
for Poisson flat processes due to Miles [523] and to Møller and Zuyev [555], was con-
siderably extended by Baumstark and Last [86]. They considered stationary Poisson
processes of k-flats (k ∈ {0, . . . , d − 1}) in Rd and obtained that the integral geo-
metric contents of several closed sets constructed on such processes have conditional
Gamma distributions.

4.5 Surface Processes

After studying processes of k-dimensional flats, it is a natural next step to
consider processes of k-dimensional surfaces. Since unbounded surfaces can be
represented as unions of countably many bounded surfaces, we may restrict
ourselves to the latter. In particular, we shall consider particle processes where
the particles are compact surfaces. For example, a surface process in R3

is obtained if the particles are almost surely two-dimensional surfaces, and a
particle process consisting of curves is a curve process or fiber process, etc.
The technical requirements for a theory of particle processes of k-dimensional
surfaces depend very much on the generality of the notion of k-surface that is
employed. A suitable general concept is that of a Hk-rectifiable closed set. We
refer to Section 14.5 for the definition of Hk-rectifiable sets, and to Zähle [823]
for a proof of the fact that the system X (k) of Hk-rectifiable closed sets in Rd

is a measurable subset of F . Therefore, a k-surface process can be defined as
a point process in F the intensity measure of which is concentrated on X (k).
The treatment of such processes, however, requires methods from geometric
measure theory, which are outside the scope of this book. For that reason, in
the following we treat, with complete proofs, only an elementary version of
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surface processes, namely special processes in the convex ring R. For this, we
consider k-dimensional surfaces (k = 1, . . . , d− 1) that can be represented as
finite unions of k-dimensional compact convex sets, for example, polyhedral
surfaces of dimension k.

For k ∈ {1, . . . , d− 1}, we denote by K(k) the set of all convex sets K ∈ K
of dimension k and by R(k) ⊂ R the set of all finite unions of elements from
K(k). Elements of R(k) are briefly called k-surfaces in the following. Obvious
modifications of the proof of Theorem 2.4.2 show that K(k) and R(k) are
Borel subsets of F . By a k-surface process in Rd we understand a particle
process with intensity measure concentrated on R(k). This elementary case
is sufficient for demonstrating the typical questions and results about surface
processes. The extension to more general models then requires no principally
new ideas, but is technically more involved. The methods and results from
[823] allow us to obtain the results below with the system R(k) of elementary
k-surfaces replaced by the system X (k) of Hk-rectifiable closed sets, but this
is not carried out here.

Let X be a stationary k-surface process with intensity measure Θ �= 0.
According to Theorem 4.1.1, this process has an intensity γ and a grain dis-
tribution Q. The intensity γ has to be distinguished from the k-volume den-
sity or specific k-volume. The latter is the intensity of the induced random
k-volume measure (and is, therefore, by some authors called the ‘intensity’ of
X). It can be introduced as follows. First we note that for C ∈ R(k) we have

Vk(C) = Hk(C), (4.36)

where Vk is the additive extension of the kth intrinsic volume to the convex
ring R (see Sections 14.2 and 14.4) and Hk is the k-dimensional Hausdorff
measure. This follows by additivity, since (4.36) is true for C ∈ K(k). The
function C �→ Vk(C), C ∈ R(k), which we call the k-volume, is measurable by
Theorem 14.4.4 (the additive extension of Vk is measurable on R). By (4.36)
it is nonnegative.

According to (4.6), the k-volume density of X is defined by

Vk(X) := γ
∫
C0

Vk dQ. (4.37)

We call Vk(X) the specific k-volume of X (the possibility of Vk(X) =∞ is
not excluded).

We define a random measure η by

η :=
∑
C∈X

Hk C.

Almost surely η is locally finite, since X is a particle process, and each particle
C ∈ R(k) satisfies Hk(C) <∞. The following theorem shows that the specific
k-volume, if finite, can be interpreted as the intensity of the stationary random
measure η.
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Theorem 4.5.1. Let X be a stationary k-surface process in Rd with Vk(X) <
∞. Then ∑

C∈X

Hk C

is a stationary random measure, and Vk(X) is its intensity, that is,

Vk(X) =
1

λ(A)
E

∑
C∈X

Hk(C ∩A) (4.38)

for all A ∈ B(Rd) with 0 < λ(A) <∞.

Proof. Let A ∈ B(Rd) be given. We define

f(C) := (Hk C)(A) = Hk(A ∩ C) for C ∈ R(k).

Assume, first, that A is compact and that Ki,K ∈ K(k) satisfy Ki → K in the
Hausdorff metric. Let E ∈ A(d, k) be the plane with K ⊂ E. There exist rigid
motions gi, converging to the identity, such that giKi ⊂ E and giKi → K.
For every x ∈ Rd,

lim sup1gi(A∩Ki)(x) ≤ 1A∩K(x).

As in the proof of Theorem 12.3.6, we get

Hk(A ∩K) =
∫

E

1A∩K(x)Hk(dx) ≥
∫

E

lim sup1gi(A∩Ki)(x)Hk(dx)

≥ lim sup
∫

E

1gi(A∩Ki)(x)Hk(dx) = lim supHk(A ∩Ki).

Thus, on K(k) the function f is upper semicontinuous and, therefore, mea-
surable. Modifying the proof of Theorem 14.4.4, we see that f is measurable
on R(k). Since this holds for all compact sets A, it holds for all Borel sets
A. Now the Campbell theorem shows that

∑
C∈X(Hk C)(A) is measurable.

It follows that
∑

C∈X Hk C is a random measure; clearly it is stationary.
Campbell’s theorem further shows that

E
∑
C∈X

(Hk C)(A) = γ

∫
C0

∫
Rd

Hk(A ∩ (C + x))λ(dx) Q(dC)

= γ

∫
C0

Vk(C)λ(A) Q(dC)

= Vk(X)λ(A),

where Theorem 5.2.1 (with α := Hk C) and (4.37) were used. This proves
(4.38). Now the assumption Vk(X) < ∞ implies that

∑
C∈X Hk C has lo-

cally finite intensity measure and intensity Vk(X). ��
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A k-surface has, at Hk-almost every point, a k-dimensional tangent plane.
For a k-surface process, this leads to the notion of its directional distribution.
Let C ∈ R(k), and let C =

⋃m
i=1 Ci be a representation with Ci ∈ K(k) for

i = 1, . . . ,m. The set of all y ∈ C lying in some Ci and some Cj , where Ci

and Cj have different affine hulls, is of Hk-measure zero. For the remaining
y ∈ C, we can choose i with y ∈ Ci and then define the tangent plane TyC
of C at y as the linear subspace of Rd which is parallel to the affine hull of
Ci. Thus, at Hk-almost all y ∈ C, the tangent plane is uniquely determined.

Theorem 4.5.2. Let X be a stationary k-surface process in Rd with specific k-
volume satisfying 0 < Vk(X) <∞. Then there is a unique probability measure
T on the Grassmannian G(d, k) satisfying

E
∑
C∈X

∫
B∩C

1A(TyC)Hk(dy) = Vk(X)λ(B)T(A)

for all B ∈ B(Rd) with 0 < λ(B) <∞ and all A ∈ B(G(d, k)).

Proof. From the Campbell theorem and from Theorem 5.2.1 we obtain

E
∑
C∈X

∫
B∩C

1A(TyC)Hk(dy)

= γ
∫
C0

∫
Rd

∫
B∩(C+x)

1A(Ty(C + x))Hk(dy)λ(dx) Q(dC)

= γ
∫
C0

∫
Rd

∫
(B−x)∩C

1A(TyC)Hk(dy)λ(dx) Q(dC)

= γλ(B)
∫
C0

∫
C

1A(TyC)Hk(dy) Q(dC).

The mapping

A �→ γ

∫
C0

∫
C

1A(TyC)Hk(dy) Q(dC), A ∈ B(G(d, k)),

is a measure η with η(G(d, k)) = Vk(X). Defining T := η/Vk(X), we obtain
the assertion. The uniqueness is clear. ��

For later use, we note that

Vk(X)T(A) = γ
∫
C0

∫
C

1A(TyC)Hk(dy) Q(dC). (4.39)

We call the probability measure T the directional distribution of the k-
surface process X (another common name is rose of directions, in particular
for fiber processes). The directional distribution can be interpreted as the
distribution of the tangent plane in a typical point of the surface process.



144 4 Geometric Models

Now we consider section processes derived from k-surface processes. Let
X be a stationary k-surface process with positive, finite specific k-volume,
and let S ∈ G(d, d − k + j) be a (d − k + j)-plane, where 0 ≤ j ≤ k − 1. In
Section 3.6 we have defined the section process X ∩ S. It is a particle process
in S. Because of the elementary notion of k-surface that we employ, it is not
difficult to show that X ∩ S is almost surely a j-surface process in S. We
do not carry out the proof here, since very similar arguments were already
employed when we treated processes of flats (before Theorem 4.4.6). It is clear
that the j-surface process X ∩ S is stationary in S.

Theorem 4.5.3. Let X be a stationary k-surface process in Rd with positive,
finite specific k-volume Vk(X) and with directional distribution T. Let S ∈
G(d, d − k + j), 0 ≤ j ≤ k − 1, and let Vj(X ∩ S) be the specific j-volume of
the section process X ∩ S. Then

Vj(X ∩ S) = Vk(X)
∫

G(d,k)

[S,L] T(dL).

Proof. Let A ⊂ S be a compact set with λS(A) = 1. By Theorem 4.5.1 and
Campbell’s theorem,

Vj(X ∩ S) = E
∑
C∈X

Hj(C ∩A)

= γ

∫
C0

∫
Rd

Hj((C + x) ∩A)λ(dx) Q(dC).

Let C =
⋃m

i=1 Ci with Ci ∈ K(k). By the inclusion–exclusion principle (with
the notation used in (14.48)) we have∫

Rd

Hj((C + x) ∩A)λ(dx) =
∑

v∈S(m)

(−1)|v|−1

∫
Rd

Hj((Cv + x) ∩A)λ(dx)

=
∑

v∈S(m)

(−1)|v|−1[S, aff Cv]Vk(Cv)

=
∑

v∈S(m)

(−1)|v|−1

∫
Cv

[S, TyCv]Hk(dy)

=
∫

C

[S, TyC]Hk(dy)

(observe that Vk(Cv) = 0 if dimCv < k). This yields

Vj(X ∩ S) = γ

∫
C0

∫
C

[S, TyC]Hk(dy) Q(dC)

= Vk(X)
∫

G(d,k)

[S,L] T(dL),
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where we have used (4.39), extended from indicator functions to nonnegative
measurable functions on G(d, k). ��

In the cases k = 1 (fiber processes) and k = d−1 (hypersurface processes)
it is again convenient (as after Theorem 4.4.6) to interpret the directional
distribution as an even measure on the sphere Sd−1. For a unit vector u ∈
Sd−1, L(u) denotes the one-dimensional linear subspace spanned by u, and
u⊥ is the (d− 1)-dimensional linear subspace orthogonal to u. Corresponding
to a directional distribution T we define a spherical directional distribution ϕ
by setting, for a set A ∈ B(Sd−1) without pairs of antipodal points,

ϕ(A) :=
1
2

T({L(u) : u ∈ A}) if k = 1

and
ϕ(A) :=

1
2

T({u⊥ : u ∈ A}) if k = d− 1.

For the specific 0-volumes (intersection point densities) of the section processes
found in Theorem 4.5.3, we now obtain, for v ∈ Sd−1,

V0(X ∩ v⊥) = V1(X)
∫

Sd−1
|〈u, v〉|ϕ(du) if k = 1 (4.40)

and

V0(X ∩ L(v)) = Vd−1(X)
∫

Sd−1
|〈u, v〉|ϕ(du) if k = d− 1. (4.41)

Note for Section 4.5

The investigation of the directional distribution (also called ‘rose of directions’) of
fiber and surface processes was initiated in papers by Mecke and Stoyan, beginning
with [501], which was generalized by Mecke and Nagel [495]. Pohlmann, Mecke and
Stoyan [606] treated stereological formulas for stationary surface processes. For a
very general investigation of fiber and surface processes (using Hausdorff rectifiable
sets), we refer to Zähle [822].

4.6 Associated Convex Bodies

For a stationary particle process X in Rd and a suitable translation invariant
function ϕ on C0, the ϕ-density ϕ was defined in Section 4.1 by

ϕ(X) := γ
∫
C0

ϕ dQ.

This procedure is not restricted to real-valued functions ϕ. In particular, on
the space of convex bodies, there are some geometrically meaningful trans-
lation invariant mappings into spaces of functions or measures which can be
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employed. In this way one can associate with a particle process, besides inten-
sities of real-valued functionals, also measures or convex bodies as describing
parameters. Similar procedures are possible for other geometric processes,
such as processes of flats, fibers, or surfaces, or even for certain random closed
sets. One motivation for this comes from the fact that associated measures
or convex bodies contain more information than real-valued parameters, and
may yet be accessible to estimation procedures. Another reason for introduc-
ing auxiliary convex bodies lies in the observation that sometimes the appli-
cation of results from convex geometry to associated auxiliary bodies leads to
results, for example to solutions of extremal problems, which otherwise would
be out of reach. Such results from convex geometry are applied in this section;
they are collected in Section 14.3, with references to sources where proofs can
be found.

Processes of Convex Particles

First we consider a stationary process X of convex particles in Rd with inten-
sity γ > 0 and grain distribution Q.

Since a convex body K is determined by its support function h(K, ·),
defined by

h(K,u) := max{〈x, u〉 : x ∈ K}, u ∈ Rd,

it appears natural to consider the density of the functional h(·, u) for u ∈ Rd.
However, the support function is not translation invariant. This is remedied
by introducing the centered support function, by

h∗(K,u) := h(K,u)− 〈s(K), u〉 = h(K − s(K), u), (4.42)

where s(K) is the Steiner point of K (see (14.28)). We have

h∗(K + x, ·) = h∗(K, ·) for x ∈ Rd

and h∗(K, ·) ≥ 0. From (14.7) and (14.28) we obtain an estimate of the form
h∗(K,u) ≤ c(d)V1(K)‖u‖ with a constant c(d). Since V1 is Q-integrable by
Theorem 4.1.2, h∗(·, u) is Q-integrable. Hence, we can define

h(X,u) := γ
∫
K0

h∗(K,u) Q(dK) for u ∈ Rd.

Obviously, the function h(X, ·) is again convex and positively homogeneous,
hence it is the support function of a uniquely determined convex body. We
denote this body by M(X) and call it the mean body of the particle
process X.

In a similar way, the surface area measure Sd−1(K, ·) (see (14.22)) can
be employed. For A ∈ B(Sd−1), the function Sd−1(·, A) is measurable and
translation invariant. Further, 0 ≤ Sd−1(K, ·) ≤ Sd−1(K,Sd−1) = 2Vd−1(K),
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where Vd−1 is one of the intrinsic volumes (see Section 14.2). Since Vd−1 is
Q-integrable by Theorem 4.1.2, we can define

Sd−1(X,A) := γ
∫
K0

Sd−1(K,A) Q(dK) (4.43)

for A ∈ B(Sd−1). By monotone convergence, Sd−1(X, ·) is a measure.
We indicate how this measure-valued parameter can be interpreted in the

case where the particles of the process X are a.s. of dimension d. From the
process X we then also obtain a hypersurface process, by replacing each parti-
cle by its boundary. For such a hypersurface process, a directional distribution
can be defined, similarly to Section 4.1. In contrast to the case k = d−1 of The-
orem 4.5.2, we now consider an oriented directional distribution, taking into
account that for the boundary of a d-dimensional convex body one can distin-
guish between an outer and an inner normal direction. For the boundary hy-
persurface bdK of a convex body it is convenient to describe the direction of a
tangent hyperplane by its outer normal vector. For Hd−1-almost all y ∈ bdK,
the outer unit normal vector nK(y) of K at y is uniquely determined. For a
Borel set A ⊂ Sd−1, we have Sd−1(K,A) = Hd−1(n−1

K (A)). For A ∈ B(Sd−1)
and B ∈ B(Rd) with λ(B) <∞, the mapping K �→ Hd−1(B∩n−1

K (A)) is mea-
surable (as follows from Schneider [695, Theorem 4.2.1]), and the Campbell
theorem together with (4.3) gives

E
∑

K∈X

Hd−1
(
B ∩ n−1

K (A)
)

= γ
∫
K0

∫
Rd

Hd−1
(
B ∩ n−1

K+x(A)
)
λ(dx) Q(dK)

= γ
∫
K0

∫
Rd

Hd−1
(
(B − x) ∩ n−1

K (A)
)
λ(dx) Q(dK)

= γ
∫
K0

λ(B)Hd−1
(
n−1

K (A)
)

Q(dK)

= γλ(B)
∫
K0

Sd−1(K,A) Q(dK),

where Theorem 5.2.1 was used. Thus, for B ∈ B(Rd) with λ(B) = 1 we have

Sd−1(X,A) = E
∑

K∈X

Hd−1
(
B ∩ n−1

K (A)
)
.

For this reason, the normalized measure Sd−1(X, ·)/2Vd−1(X) can be inter-
preted as the distribution of the normal vector in a typical boundary
point of the particle process X.

The measure Sd−1(X, ·) is called the mean normal measure of X (also
in the case where the particles are not necessarily d-dimensional).
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Starting from the measure-valued parameter Sd−1(X, ·), we now associate
two convex bodies with the particle process X. This requires a preliminary
consideration.

For a convex body K and for u ∈ Rd \ {0}, we denote by Vd−1(K|u⊥)
the (d− 1)-dimensional volume of the orthogonal projection of K to u⊥. The
density of the function K �→ Vd−1(K|u⊥) for the particle process X is denoted
by Vd−1(X|u⊥), thus

Vd−1(X|u⊥) = γ
∫
K0

Vd−1(K|u⊥) Q(dK).

With Fubini’s theorem for kernels and with (14.41), for unit vectors u ∈ Sd−1

we get

Vd−1(X|u⊥) =
γ

2

∫
K0

∫
Sd−1

|〈u, v〉|Sd−1(K,dv) Q(dK)

=
1
2

∫
Sd−1

|〈u, v〉|Sd−1(X,dv). (4.44)

From the Campbell theorem and Theorem 4.1.2, we get for r > 0

E
∑

K∈X, c(K)∈rBd

Vd−1(K|u⊥)

= γ
∫
K0

∫
Rd

1rBd(c(K + x))Vd−1((K + x)|u⊥)λ(dx) Q(dK)

= κdr
d Vd−1(X|u⊥).

Thus, Vd−1(X|u⊥) = 0 holds if and only if∑
K∈X

Vd−1(K|u⊥) = 0

almost surely. If there exists a vector u ∈ Sd−1 with this property, we say that
the particle process X is degenerate.

We assume now that X is not degenerate. Then (4.44) shows that the
measure Sd−1(X, ·) is not concentrated on a great subsphere. Since∫

Sd−1
uSd−1(K,du) = 0

always holds, we also have∫
Sd−1

uSd−1(X,du) = 0.

By the Theorem of Minkowski (Theorem 14.3.1), there exists a uniquely de-
termined convex body B(X) ∈ K0 with
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Sd−1(B(X), ·) = Sd−1(X, ·). (4.45)

We call B(X) the Blaschke body of the particle process X. (The name
reflects the fact that the addition of surface area measures induces the so-
called Blaschke addition of the corresponding convex bodies.)

For a convex body K, we denote by ΠK its projection body (see Section
14.3, in particular (14.40)). The projection body of the Blaschke body, that
is,

ΠX := ΠB(X), (4.46)

is called the associated zonoid of the particle process X. (The name refers
to the fact that projection bodies belong to the special class of convex bodies
known as zonoids; these are precisely the bodies which can be approximated
by vector sums of line segments.) Using (14.40), (14.41), (4.44), (4.45), we get

h(ΠX , u) =
1
2

∫
Sd−1

|〈u, v〉|Sd−1(X,dv)

= Vd−1(X|u⊥)

= γ

∫
K0

h(ΠK , u) Q(dK). (4.47)

Thus, the support function of the associated zonoid has a simple geometric
meaning: on unit vectors, it represents the density of the projection volume
in the direction of the vector. Moreover, ΠX can be interpreted as the mean
projection body of the particle process X.

Rewriting (4.47) in the form

h(ΠX , u) =
γ

2

∫
K0

∫
Sd−1

|〈u, v〉|Sd−1(K,dv) Q(dK),

integrating over Sd−1 with respect to the spherical Lebesgue measure, and
observing Sd−1(K,Sd−1) = 2Vd−1(K) as well as (14.7), we obtain the identity

V1(ΠX) = 2Vd−1(X), (4.48)

The intrinsic volume V1 appearing here is essentially the mean width; hence,
the identity says that the mean width of the associated zonoid is, up to a
constant factor, the surface area density of the particle process X.

Next we show how further geometric quantities of the particle process X
are related to the associated zonoid ΠX . First we determine

f(u) := E
∑

K∈X

card ([0, u] ∩ bdK),

the expected number of points in which the segment with endpoints 0 and
u ∈ Rd \ {0} meets the boundaries of the bodies of the particle process.
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Thus, for a unit vector u, the value f(u) gives the intensity γL(u) of the point
process that is generated by intersecting the hypersurface process induced by
the boundaries of the particles with the line L(u) (as considered similarly in
Theorem 4.5.3 for a different class of surface processes). With the Campbell
theorem and the decomposition (4.2) we obtain

f(u) = γ

∫
K0

∫
Rd

card ([0, u] ∩ bd (K + x))λ(dx) Q(dK)

= 2γ
∫
K0

‖u‖Vd−1(K|u⊥) Q(dK)

= 2‖u‖Vd−1(X|u⊥)

= 2h(ΠX , u).

Thus, we have

h(ΠX , u) =
1
2

E
∑

K∈X

card ([0, u] ∩ bdK) =
1
2
‖u‖γL(u), (4.49)

which provides a further interpretation of the support function of the associ-
ated zonoid. In particular, for the intersection intensity we obtain from (4.47)
the formula

γL(u) =
∫

Sd−1
|〈u, v〉|Sd−1(X,dv). (4.50)

Since Sd−1(X, ·)/2Vd−1(X) is a probability measure, this equation is analo-
gous to (4.41). However, it must be observed thatX in (4.41) is a hypersurface
process, whereas in (4.50) it is a process of convex particles (for a convex body
K, 2Vd−1(K) is the surface area).

Applications to Boolean Models

The associated zonoid is particularly useful when dealing with stationary
Boolean models with convex grains. Therefore, we assume now in addition
that X is a Poisson process. We still assume that X is nondegenerate, that
is, it satisfies Vd−1(X|u⊥) �= 0 for all u ∈ Sd−1. In this case, also the Boolean
model Z = ZX is called nondegenerate (this property depends only on Z,
since Z determines the particle process X up to equivalence). Hence, the
Boolean model Z is degenerate if and only if there is a direction u such that
the orthogonal projection of Z to u⊥ a.s. has Lebesgue measure zero.

For F ∈ F and x ∈ Rd, we write

Sx(F ) := {y ∈ Rd : [x, y] ∩ F = ∅}

for the region visible from x; here F is regarded as opaque. The set Sx(F )
is open and star-shaped with respect to x; it is empty if x ∈ F . For the
stationary Boolean model Z = ZX , the conditional expectation
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Vs(Z) := E(λ(S0(Z)) | 0 /∈ Z)

is called the mean visible volume outside Z (note that we always have
P(0 /∈ Z) > 0, by (9.5)). The measurability of the function λ(S0(Z)) and of
the function (u, ω) �→ su(Z(ω)) used below follows from the measurability of
the set {

(ω, u, α) ∈ Ω × Sd−1 × R+
0 : [0, αu] ∩ Z(ω) = ∅

}
.

The quantity Vs(Z) is a further simple parameter which, besides volume and
surface area density, can be used for the description of a Boolean model.
(Here, volume and surface area density refer to the underlying particle process
X; a connection with corresponding parameters of the union set ZX will be
established later in Section 9.1.)

First we observe that also the visible domain S0(Z) can itself be averaged
in a natural way, namely by averaging its radial function ρ(S0(Z), ·). For
u ∈ Sd−1,

su(Z) := ρ(S0(Z), u) = sup{α ≥ 0 : [0, αu] ∩ Z = ∅}

defines the visibility range from 0 in direction u. For r ≥ 0, we have

P(su(Z) ≤ r | 0 /∈ Z) = H(u)
l (r) = 1− e−rVd−1(X|u⊥),

as will be proved in Theorem 9.1.1. Thus, the visibility range su(Z) has (under
the condition 0 /∈ Z) an exponential distribution with parameter Vd−1(X|u⊥)
(which is positive, since X was assumed to be nondegenerate). Therefore,
the kth moment of the visibility range su(Z) is equal to k!Vd−1(X|u⊥)−k; in
particular, the expectation is Vd−1(X|u⊥)−1. We define the mean visible
region Ks outside Z as the star-shaped set with radial function

ρ(Ks, ·) = E(ρ(S0(Z), ·) | 0 /∈ Z),

thus
Ks = {αu : u ∈ Sd−1, 0 ≤ α ≤ E(su(Z) | 0 /∈ Z)}.

Because of
ρ(Ks, u) = Vd−1(X|u⊥)−1 = h(ΠX , u)−1

for u ∈ Sd−1, the set Ks is the polar body of the associated zonoid, which in
the following will be denoted by Πo

X . In particular, it follows that the mean
visible region is convex.

The volume of the visible region S0(Z) is given by

Vd(S0(Z)) =
1
d

∫
Sd−1

su(Z)d σ(du),

where σ denotes spherical Lebesgue measure. Therefore, for the mean visible
volume outside Z we obtain
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Vs(Z) = E(λ(S0(Z)) | 0 /∈ Z)

=
1
d

∫
Sd−1

E(su(Z)d | 0 /∈ Z)σ(du)

= (d− 1)!
∫

Sd−1
Vd−1(X|u⊥)−d σ(du)

= d!Vd(Πo
X).

We resume this as a theorem.

Theorem 4.6.1. Let Z = ZX be a nondegenerate stationary Boolean model
with convex grains in Rd. The mean visible region outside Z is the polar body
Πo

X of the associated zonoid of X; the mean visible volume outside Z is given
by

Vs(Z) = (d− 1)!
∫

Sd−1
Vd−1(X|u⊥)−d σ(du) = d!Vd(Πo

X). (4.51)

We are now in a position to establish a few sharp inequalities between dif-
ferent parameters of the Boolean model ZX , respectively of the corresponding
particle process X. From (4.48) and (14.43) we obtain the inequality

Vs(Z) ≥ d!κd

(
κd−1

dκd
2Vd−1(X)

)−d

. (4.52)

Here, equality holds if and only if the associated zonoid ΠX is a ball. This
occurs, for instance, if the density Sd−1(X, ·) of the surface area measure is
rotation invariant (and, hence, the Blaschke body is a ball). Therefore, we can
formulate the following result.

Theorem 4.6.2. Let Z = ZX be a nondegenerate stationary Boolean model
with convex grains in Rd, generated by a Poisson particle process X with given
surface area density. The mean visible volume outside ZX is minimal if the
process is isotropic.

This raises the question whether there also exists an upper estimate of the
mean visible volume Vs(Z) in terms of a functional density of X. In terms of
the surface area density this is not possible, as can be shown by examples.
A suitable functional for such an estimate is given by V 1−1/d

d (which is of
the same degree of homogeneity as the surface area). For this, we employ the
Blaschke body B(X). Applying successively (14.23), (4.45), (14.23), (14.30)
and making use of mixed volumes (see Section 14.2) we obtain

Vd(B(X)) =
1
d

∫
Sd−1

h(B(X), u)Sd−1(B(X),du)

=
γ

d

∫
K0

∫
Sd−1

h(B(X), u)Sd−1(K,du) Q(dK)
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= γ

∫
K0

V (B(X),K, . . . ,K) Q(dK)

≥ Vd(B(X))1/dγ

∫
K0

Vd(K)1−1/d Q(dK),

hence
Vd(B(X))1−1/d ≥ V 1−1/d

d (X).

From (4.51), (4.46), (14.44) we now obtain, as a counterpart to (4.52), the
inequality

Vs(Z) ≤ d!
(
κd−1

κd
V

1−1/d
d (X)

)−d

. (4.53)

Here, equality holds if and only if the grain distribution Q is concentrated
on a set of homothetic ellipsoids. This follows from the available information
about the equality cases in the inequalities (14.30) and (14.44).

As a further parameter for a geometric description of a Poisson parti-
cle process X we introduce the intersection density of the boundaries. For a
bounded Borel set B ⊂ Rd, let s(X,B) be the number of points in B arising
as intersection points of the boundaries of any d distinct bodies of the process.
The intersection density of X is the number γd(X) satisfying

E s(X,B) = γd(X)λ(B)

for all bounded Borel sets B. In order to show its existence and to compute
it, we use Theorem 3.1.3, Corollary 3.2.4, and Theorem 4.1.1 and obtain

E s(X,B) =
1
d!

E
∑

(K1,...,Kd)∈Xd
�=

card (B ∩ bdK1 ∩ . . . ∩ bdKd)

=
1
d!

∫
Kd

card (B ∩ bdK1 ∩ . . . ∩ bdKd)Λ(d)(d(K1, . . . ,Kd))

=
γd

d!

∫
K0

. . .

∫
K0

I(K1, . . . ,Kd) Q(dK1) · · ·Q(dKd)

with

I(K1, . . . ,Kd) :=∫
Rd

. . .

∫
Rd

card (B ∩ bd (K1 + x1) ∩ . . . ∩ bd (Kd + xd))λ(dx1) · · ·λ(dxd).

We abbreviate B ∩ bd (K1 + x) =: Fx and bdKi =: Fi for i = 2, . . . , d.
Using the body ΠFx

given by (5.31) and applying Theorem 5.4.4, (14.21) and
Theorem 5.2.1, we get
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I(K1, . . . ,Kd)

=
∫

Rd

. . .

∫
Rd

card (Fx ∩ (F2 + x2) ∩ . . . ∩ (Fd + xd))λ(dx2) · · ·λ(dxd)λ(dx)

= d!
∫

Rd

V (ΠFx
,ΠK2 , . . . ,ΠKd

)λ(dx)

= (d− 1)!
∫

Rd

∫
Sd−1

h(ΠFx
, u)S(ΠK2 , . . . ,ΠKd

,du)λ(dx)

= (d− 1)!
∫

Sd−1

∫
Rd

h(ΠFx
, u)λ(dx)S(ΠK2 , . . . ,ΠKd

,du)

= (d− 1)!
∫

Sd−1
h(ΠK1 , u)S(ΠK2 , . . . ,ΠKd

,du)λ(B)

= d!V (ΠK1 ,ΠK2 , . . . ,ΠKd
)λ(B).

Thus, we obtain

E s(X,B) = γd

∫
K0

. . .

∫
K0

V (ΠK1 , . . . ,ΠKd
) Q(dK1) · · ·Q(dKd)λ(B).

Here we have, by (14.21) and (4.47),

γ

∫
K0

V (ΠK1 , . . . ,ΠKd
) Q(dK1)

=
γ

d

∫
K0

∫
Sd−1

h(ΠK1 , u)S(ΠK2 , . . . ,ΠKd
,du) Q(dK1)

=
1
d

∫
Sd−1

h(ΠX , u)S(ΠK2 , . . . ,ΠKd
,du)

= V (ΠX ,ΠK2 , . . . ,ΠKd
).

Repeating this procedure, we finally get

E s(X,B) = Vd(ΠX)λ(B),

and thus the existence of the intersection density, together with the represen-
tation

γd(X) = Vd(ΠX). (4.54)

From (4.54), (4.48) and (14.31) we obtain a sharp inequality between the in-
tersection density and the surface area density, namely

γd(X) ≤ κd

(
2κd−1

dκd
Vd−1(X)

)d

. (4.55)

Here equality holds if and only if the associated zonoid ΠX is a ball, which
occurs, for example, if the Poisson particle process X is isotropic.
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It is intuitively plausible that a large intersection density indicates that
much overlapping of particles occurs and that, therefore, the mean visible
volume must be small. This intuition is indeed precise, in so far as the product
γd(X)Vs(X) does not depend on the intensity of the process. For this quantity,
we are able to establish sharp inequalities.

Theorem 4.6.3. Let Z = ZX be a nondegenerate stationary Boolean model
with convex grains in Rd. The intersection density and the mean visible volume
satisfy the inequalities

4d ≤ γd(X)Vs(Z) ≤ d!κ2
d. (4.56)

On the right side, equality holds if the process X is isotropic. On the left side,
equality holds if and only if the particles of X are almost surely parallelepipeds
with edges of d fixed directions.

Proof. The inequalities follow from (4.51), (4.54), and (14.45). On the right
side, equality holds if and only if the associated zonoid ΠX is an ellipsoid, thus
in particular if the process is isotropic. On the left side, equality holds if and
only if ΠX is a parallelepiped. This is equivalent to the existence of d linearly
independent vectors v1, . . . , vd ∈ Sd−1 such that the measure Sd−1(X, ·) is
concentrated on {±vi : i = 1, . . . , d}. By (4.43), this holds if and only if
for Q-almost all K ∈ K0 the measure Sd−1(K, ·) is concentrated on {±vi :
i = 1, . . . , d}, hence if K is a parallelepiped with facet normal vectors ±vi.
We conclude that equality in the left inequality of (4.56) holds if and only if
the particles of X are almost surely parallelepipeds whose facet normals are
parallel to d fixed directions. The facet normals determine also the directions
of the edges. ��

Processes of Flats

We turn now to processes of flats and want to show how associated zonoids
can be utilized for them. We describe a general construction, which is not
only applicable to flat processes, but also, for instance, to fiber and surface
processes. We begin with a finite Borel measure τ on the space G(d, k) of k-
dimensional linear subspaces of Rd, k ∈ {1, . . . , d− 1}. There exists a convex
body Πk(τ) with support function

h(Πk(τ), ·) =
1
2

∫
G(d,k)

h(L⊥ ∩Bd, ·) τ(dL). (4.57)

That this is indeed a support function, is clear, since the integrand is a support
function. Since L⊥∩Bd is a ball (of dimension d−k) and thus a zonoid, Πk(τ)
is a zonoid, too. We have h(L⊥ ∩Bd, u) = [L⊥, u⊥] = [L,L(u)] for u ∈ Sd−1,
hence also
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h(Πk(τ), u) =
1
2

∫
G(d,k)

[L,L(u)] τ(dL), u ∈ Sd−1. (4.58)

Now we consider, first, a stationary hyperplane process X in Rd. Let γ > 0
be its intensity and Q its directional distribution. We put

ΠX := Πd−1(γQ)

and call ΠX the associated zonoid of the hyperplane process X. By (4.58),
we have

h(ΠX , u) =
γ

2

∫
Sd−1

|〈u, v〉|ϕ(dv), u ∈ Rd, (4.59)

where ϕ is the spherical directional distribution of X. According to Theorem
14.3.4, ΠX determines the measure γϕ uniquely, hence also the intensity γ
and the spherical directional distribution ϕ of X are uniquely determined by
ΠX . In particular, a Poisson process X is isotropic if and only if ΠX is a ball.
From Theorem 4.4.1 we get the following.

Theorem 4.6.4. For every centered zonoid Z ⊂ Rd there is up to equivalence
precisely one stationary Poisson hyperplane process X with associated zonoid
Z.

The support function of the associated zonoid is again connected with
intersection densities. As in Section 4.4, let γX∩L(u) denote the intensity of
the point process X ∩ L(u). By (4.59) and (4.34) we have

2h(ΠX , u) = ‖u‖γX∩L(u) = EX(F[0,u]) for u ∈ Rd. (4.60)

From (4.60) we see immediately how to obtain the associated zonoid of a
section process. For an r-dimensional linear subspace S ∈ G(d, r) with r ∈
{1, . . . , d−1}, let X∩S be the section process (see Section 4.4). Its associated
zonoid ΠX∩S is defined as a convex body in S. For u ∈ S we have, by (4.60),

2h(ΠX∩S , u) = E(X ∩ S)(F[0,u]) = EX(F[0,u]) = 2h(ΠX , u).

For the orthogonal projection ΠX |S, we have h(ΠX |S, u) = h(ΠX , u) for u ∈
S, hence

ΠX∩S = ΠX |S. (4.61)

This means that the associated zonoid of the section process X ∩ S is the
orthogonal projection of the associated zonoid of X to the linear subspace S.

Now we assume, in particular, that X is a stationary Poisson hyperplane
process with intensity γ > 0. With the aid of the associated zonoid, we can ob-
tain information on the intersection processes of X of higher order. In Section
4.4 we have defined, for k ∈ {2, . . . , d}, the intersection process of order k of
X, as the (d− k)-flat process Xk that is obtained if one takes the intersection
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of any k hyperplanes of the process X which are in general position. Simi-
lar intersection processes can be formed more generally for stationary surface
processes. As a different special case, we have previously considered the inter-
section point density γd of the boundary hypersurfaces of a stationary process
of convex particles. Now, for the stationary Poisson hyperplane process X,
let γk be the intensity and Qk the directional distribution of the intersection
process Xk. By Theorem 4.4.8 we then have, for A ∈ B(G(d, d− k)),

γkQk(A)

=
γk

k!

∫
Sd−1

. . .

∫
Sd−1

1A

(
u⊥1 ∩ . . . ∩ u⊥k

)
∇k(u1, . . . , uk)ϕ(du1) · · ·ϕ(duk),

where ϕ is the spherical directional distribution of X. The associated zonoid
ΠX of X is given by

h(ΠX , u) =
∫

Sd−1
|〈u, v〉| ρ(dv) for u ∈ Rd,

where ρ := γϕ/2. Hence, if ρ(k) is the kth projection generating measure of
ΠX , as defined by (14.36), then, for A ∈ B(G(d, d− k)),

γkQk(A) = κk

∫
G(d,k)

1A(L⊥) ρ(k)(dL) = κkρ
⊥
(k)(A),

where ρ⊥(k) is the image measure of ρ(k) under the mapping L �→ L⊥ from
G(d, k) to G(d, d− k). Therefore, we have

γkQk = κkρ
⊥
(k), (4.62)

saying that the intensity measure of the intersection process of order k of X is
determined by the kth projection generating measure of the associated zonoid
ΠX .

The intensity γk of the intersection process of order k of X is called the kth
intersection density ofX. Here, γ1 = γ. By the definition of the intersection
processes and by Theorem 4.4.3, the kth intersection density is given by

γk =
1
d!κd

E
∑

(H1,...,Hk)∈Xk

λ∗d−k(H1 ∩ . . . ∩Hk ∩Bd).

Here λ∗d−k(A) is the (d − k)-dimensional volume of A if dimA = d − k, and
is zero otherwise. For the intersection densities, we can obtain inequalities.
They are based on the fact that γk = κkρ(k)(G(d, k)) by (4.62) and hence, by
(14.37),

γk = Vk(ΠX); (4.63)

thus, the kth intersection density is the kth intrinsic volume of the associated
zonoid. In particular, the dth intersection density, which is the density of the
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intersection points generated byX, is nothing but the volume of the associated
zonoid. An analog of this fact is (4.54); both equations are special cases of a
corresponding result for general stationary hypersurface processes (with the
k-volume density instead of γk). Also (4.55) and (4.56) can be generalized in
this sense.

Now, from (14.31) we obtain the inequality(
κd−j(

d
j

) γj

)k

≥ κk−j
d

(
κd−k(

d
k

) γk

)j

(4.64)

for 1 ≤ j < k ≤ d. If γj > 0, then equality in (4.64) holds if and only if
ΠX is a ball. By the uniqueness theorem 14.3.4, this holds if and only if the
spherical directional distribution ϕ of X is the normalized spherical Lebesgue
measure, hence, if and only if the Poisson hyperplane process X is isotropic.
The case γj = 0 occurs, by (4.63), if and only if dim ΠX < j, hence if and only
if the spherical directional distribution ϕ is concentrated on Sd−1∩L for some
subspace L ∈ G(d, j − 1). An equivalent condition is that the hyperplanes of
the process almost surely contain a translate of the (d + 1 − j)-dimensional
plane L⊥.

We formulate the special case j = 1 as a theorem.

Theorem 4.6.5. The kth intersection density, k ∈ {2, . . . , d}, of a stationary
Poisson hyperplane process of intensity γ > 0 in Rd satisfies the inequality

γk ≤
(

d
k

)
κk

d−1

dkκd−kκ
k−1
d

γk.

Equality holds if and only if the process is isotropic.

Thus, the isotropic processes are characterized here by an extremal prop-
erty of isoperimetric type: for given intensity, they have maximal intersection
densities.

If X1 and X2 are independent stationary Poisson hyperplane processes,
then their superposition X1 + X2 is also a stationary Poisson process, with
intensity measure Θ1 +Θ2, if Θi is the intensity measure of Xi. It follows that
the associated zonoids also add:

ΠX1+X2 = ΠX1 + ΠX2 .

If γk(X) denotes the kth intersection density of X, then (4.63) and (14.32)
yield the inequality

γk(X1 +X2)1/k ≥ γk(X1)1/k + γk(X2)1/k, (4.65)

for k = 2, . . . , d. Equality in (4.65) holds at least if the hyperplane processes
X1 and X2 have the same directional distribution, since then their associated
zonoids are homothetic.

We can also derive a sharp estimate for the proximity (defined before
Theorem 4.4.10) of a Poisson line process.
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Theorem 4.6.6. Let X be a stationary Poisson line process of given intensity
γ > 0. The proximity π(X) attains its maximum if and only if X is isotropic.

Proof. This follows from the remark after Theorem 4.4.10 and the case k = 2
of Theorem 4.6.5. ��

For a k-flat process X and a fixed (d − k)-plane S, we have considered
in Section 4.4 the section process X ∩ S. There it was mentioned that a sta-
tionary Poisson k-flat process is uniquely determined, up to stochastic equiv-
alence, by its intersection densities γX∩S , S ∈ G(d, d − k), if either k = 1
or k = d − 1, but not in the cases 1 < k < d − 1. However, for kth-order
intersection processes of stationary Poisson hyperplane processes, there exists
a corresponding uniqueness result. An even stronger assertion is expressed by
the subsequent theorem. Here it has to be observed that

γXk∩S = γk(X ∩ S).

A stationary hyperplane process is nondegenerate if the hyperplanes of the
process are not almost surely parallel to a fixed line.

Theorem 4.6.7. Let X be a nondegenerate stationary Poisson hyperplane
process of intensity γ in Rd, let r ∈ {1, . . . , d− 1} and k ∈ {1, . . . , r}. Then X
is uniquely determined (up to stochastic equivalence) by the kth intersection
densities γk(X ∩ S) of the section processes X ∩ S, S ∈ G(d, r).

Proof. By (4.63) and (4.61) we have

γk(X ∩ S) = Vk(ΠX∩S) = Vk(ΠX |S)

for S ∈ G(d, r). Since X is nondegenerate, dim ΠX ≥ d, as was remarked ear-
lier. By a theorem from convex geometry (Aleksandrov’s Projection Theorem;
see Gardner [244, Theorem 3.3.6]), the convex body ΠX , which is centrally
symmetric with respect to 0, is uniquely determined by the intrinsic volumes
Vk(ΠX |S), S ∈ G(d, r). Now the assertion follows from Theorem 4.6.4. ��

Flat Processes Hitting Convex Bodies

Now we consider more general flat processes. Let X be a stationary k-flat
process of intensity γ > 0 in Rd. We suppose that a convex ‘test body’ K ∈ K′

is hit by the flats of the process, and we want to measure in different ways
how intensively it is hit. We could, for example, be interested in deciding
which shape a convex body of given volume must have so that in the mean
it is hit by as few flats as possible. This depends on how the intensity of
hitting is measured. For instance, if we use the k-dimensional volume of the
intersections as a measure, then Theorem 4.4.3 gives the answer

E
∑
E∈X

Vk(K ∩ E) = γVd(K),
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saying that the left side is independent of the shape of K. Instead of the
k-dimensional volume of the intersections, we could ask for the number of
nonempty intersections or, more generally, using the jth intrinsic volume Vj ,
j ∈ {0, . . . , k}, ask for

E
∑
E∈X

Vj(K ∩ E). (4.66)

The number of nonempty intersections is included here, for j = 0. If X is in
addition isotropic, then Theorem 9.4.8, to be proved later, gives the result

E
∑
E∈X

Vj(K ∩ E) = γck,d−k+j
j,d Vd+j−k(K),

with certain constants ck,d−k+j
j,d . For j < k and given positive volume, the

functional Vd+j−k(K) attains its minimum if and only if K is a ball (cf.
(14.31)). Here the assumption of isotropy cannot be deleted; without it, the
quantity (4.66) will not only depend on the intrinsic volume Vd+j−k(K), but
the shape of K will play an essential role. To see this, at least in some special
cases, we first compute the expectation (4.66). Let Θ be the intensity measure
and Q the directional distribution of X. From the Campbell theorem and
Theorem 4.4.2 we get

E
∑
E∈X

Vj(K ∩ E) =
∫

A(d,k)

Vj(K ∩ E)Θ(dE)

= γ

∫
G(d,k)

∫
L⊥
Vj(K ∩ (L+ x))λL⊥(dx) Q(dL).

Using the integral geometric formula (6.39), we obtain

E
∑
E∈X

Vj(K ∩ E)

=

(
d

k−j

)
κk−j

γ

∫
G(d,k)

V (K[d+ j − k], (L ∩Bd)[k − j]) Q(dL), (4.67)

where the integrand is a mixed volume. For j = 0, the integral geometric
formula is not needed, and one obtains directly

E
∑
E∈X

V0(K ∩ E) = γ
∫

G(d,k)

Vd−k(K|L⊥) Q(dL). (4.68)

A further treatment of the integral (4.67) has only been successful in spe-
cial cases. First we consider the case j = k− 1, that is, the surface area of the
k-dimensional sections K ∩E. If Sd−1(K, ·) denotes the surface area measure
of K, then formula (14.23) for mixed volumes and (4.57) give
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G(d,k)

V (K, . . . ,K, L ∩Bd) Q(dL)

=
1
d

∫
G(d,k)

∫
Sd−1

h(L ∩Bd, u)Sd−1(K,du) Q(dL)

=
1
d

∫
Sd−1

∫
G(d,k)

h(L ∩Bd, u) Q(dL)Sd−1(K,du).

We define a zonoid Πk(Q) by

h(Πk(Q), u) =
1
2

∫
G(d,k)

h(L ∩Bd, u) Q(dL).

Thus,
Πk(Q) = Πd−k(Q⊥),

where Q⊥ is the image measure of Q under the mapping L �→ L⊥ from G(d, k)
to G(d, d− k). Then we put

ΠX := γΠk(Q).

We obtain ∫
G(d,k)

V (K, . . . ,K, L ∩Bd) Q(dL)

=
∫

G(d,k)

1
d

∫
Sd−1

h(L ∩Bd, u)Sd−1(K,du) Q(dL)

=
2
d

∫
Sd−1

h(Πk(Q), u)Sd−1(K,du)

= 2V (Πk(Q),K, . . . ,K),

hence
E

∑
E∈X

Vk−1(K ∩ E) = dV (ΠX ,K, . . . ,K).

From Minkowski’s inequality (14.30), we now deduce the following extremal
property.

Theorem 4.6.8. Let X be a stationary k-flat process of intensity γ > 0 in
Rd, and let K be a convex body of given positive volume. Then the expected
value

E
∑
E∈X

Vk−1(K ∩ E)

is minimal if and only if K is homothetic to the zonoid ΠX .
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In the case of a line process (k = 1), the quantity E
∑

E∈X Vk−1(K ∩ E)
is just the expected number of lines hitting the body K.

Further information on the expected number of hitting k-planes is avail-
able in the case k = d − 1. Let X be a stationary hyperplane process of
intensity γ > 0 and with spherical directional distribution ϕ. We assume that
X is nondegenerate, so that the hyperplanes of the process are not almost
surely parallel to a fixed line. Under this assumption, the measure ϕ is not
concentrated on a great subsphere, and it follows that Vd(ΠX) > 0. Since ϕ is
an even measure, it follows from Theorem 14.3.1 that there exists a uniquely
determined convex body B(X), centrally symmetric with respect to 0, for
which

Sd−1(B(X), ·) = γϕ.

We call B(X) the Blaschke body of the hyperplane process X. Thus, by
(4.59) we have

ΠX = ΠB(X),

in analogy to (4.46).
Now from (4.68) and (14.23), we obtain

E
∑
E∈X

V0(K ∩ E) = γ

∫
G(d,d−1)

V1(K|L⊥) Q(dL)

= γ

∫
Sd−1

[h(K,u) + h(K,−u)]ϕ(du)

= 2
∫

Sd−1
h(K,u)Sd−1(B(X),du)

= 2dV (K,B(X), . . . , B(X)). (4.69)

Again, we can apply Minkowski’s inequality (14.30), and deduce the following
result.

Theorem 4.6.9. Let X be a nondegenerate stationary hyperplane process of
intensity γ > 0 in Rd, and let K ∈ K be a convex body with given volume
Vd(K) > 0. The expected number of hyperplanes of the process X hitting the
convex body K is minimal if and only if K is homothetic to the Blaschke body
B(X) of X.

Notes for Section 4.6

1. The associated zonoid of a stationary process X of convex particles was intro-
duced here as the projection body of the Blaschke body of X; this is equivalent to the
original definition. The construction of the Blaschke body requires Minkowski’s exis-
tence theorem (Theorem 14.3.1). This existence theorem was first used in Schneider
[686] for associating a convex body with a directional distribution (of finitely many
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random hyperplanes in that case) and then applying results from convex geometry.
Extensive use of this association in the case of random hypersurfaces was made by
Wieacker [817, 818]. The Blaschke body B(X) of a particle process X was introduced
in Weil [796]; that paper also provides information on the mean body M(X). In Weil
[797], Blaschke bodies were also suggested and investigated for random closed sets
with values in the extended convex ring. For Boolean models, for example, this paper
established a connection between the Blaschke body and the contact distribution
function.

2. The associated zonoid of a stationary Poisson hyperplane process was introduced
by Matheron [461, 462], under the name of ‘Steiner compact set’. The book by Math-
eron [462] has already the formulas (4.61) and (4.63), and in principle also (4.62).
Associated zonoids for random hyperplanes were also used in Schneider [685, 686].
Generalization and systematic application of associated zonoids then followed in the
work of Wieacker [816, 817, 818]; see also Sections 6 and 7 in the survey article of
Weil and Wieacker [806] and Section 6 of Schneider and Wieacker [720]. Wieacker
has introduced different types of associated zonoids, and he has applied them to
random surfaces, surface processes, k-flat processes, particle processes, and random
mosaics. In Wieacker [817] one finds, for example, the assertions (4.48), (4.49), The-
orem 4.6.1 (essentially), (4.52), (4.54), (4.55), (4.56) (the right-hand inequality), and
a generalization of Theorem 4.6.5. For extensions and supplements (such as (4.56)
(left side) and (4.53), see Schneider [689]; that paper treats Poisson processes of con-
vex cylinders, which includes as special cases flat processes and processes of convex
particles. Compare also inequality (10.52) and Note 4 for Section 10.4.

3. Inequality (4.64) and with it Theorem 4.6.5 are due to Thomas [756]. Similar
arguments, but with different interpretations, appear in Schneider [686, 697]. Alter-
native proofs for special cases were found by Mecke [480, 484].

Theorem 4.6.5 raises the question which stationary Poisson k-flat processes of
given (positive) intensity, where d/2 ≤ k < d− 1, have maximal second intersection
density. According to Theorem 4.4.9, this amounts to finding the maximum of the
integral ∫

G(d,k)

∫
G(d,k)

[E, F ] Q(dE) Q(dF )

over all probability measures Q on G(d, k). For k = d− 1, the maximum is attained
precisely by the rotation invariant probability measures, by Theorem 4.6.5. For
k < d − 1, however, the maximum is not attained by invariant measures, as was
discovered by Mecke and Thomas [504] (see also Mecke [489]). Mecke [486, 487] was
able to determine explicitly the extremal measures for d = 2k. Keutel [401] has
completely settled the case where k < d− 2 and d− k divides d. The general case is
still open.

Theorem 4.6.6 goes back, in principle, to Janson and Kallenberg [378], though
with a different approach.

Theorems 4.6.8 and 4.6.9 are special cases of considerably more general assertions
in Wieacker [818]. Theorem 4.6.7 and related results were first published in Schneider
and Weil [717].
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Integral Geometry



5

Averaging with Invariant Measures

As soon as stochastic geometry deals with structures satisfying invariance
properties with respect to some group, such as stationarity or isotropy in
Euclidean spaces, there arises the need for a theory allowing averaging with
respect to invariant measures. Integral geometry in the sense of Blaschke and
Santaló is perfectly made for obtaining such averaging formulas. In this chap-
ter we develop the basic tools, namely intersection formulas for fixed and
moving geometric objects, where suitable geometric quantities of the inter-
sections are integrated with respect to invariant measures. Basic facts about
invariant measures on locally compact topological groups and homogeneous
spaces, as far as they are needed for our purposes, are collected in the Appen-
dix in Chapter 13.

The main purpose of Section 5.1 is the calculation of general kinematic
integrals of the form ∫

Gd

ϕ(K ∩ gM)µ(dg) (5.1)

for convex bodies K,M in Rd. Here Gd is the motion group of Rd, and the
integration is with respect to its Haar measure µ. Such integrals are called
‘kinematic’, since one imagines M as moving and one averages the functional
ϕ over all intersections of the moving set with the fixed set K. The integral
(5.1) takes a simple form if the functional ϕ satisfies two natural assumptions,
additivity and continuity. This result is known as Hadwiger’s general integral
geometric theorem (Theorem 5.1.2). The assumptions on ϕ are satisfied, in
particular, by the intrinsic volumes Vj . A brief introduction to these important
functionals from convex geometry is given in Section 14.2. For the intrinsic
volumes, Hadwiger’s general theorem reduces to the classical principal kine-
matic formula for convex bodies.

If the moving convex body is replaced by a moving flat, one is led to the
Crofton formulas, giving explicit expressions for the integrals∫

A(d,k)

Vj(K ∩ E)µk(dE),
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where µk is the invariant measure on the affine Grassmannian A(d, k).
The intrinsic volumes have local versions, the support measures or (gen-

eralized) curvature measures. These are introduced in Section 14.2, by means
of a local Steiner formula. The purpose of the two subsequent sections is a
derivation of the principal kinematic formula for curvature measures. Section
5.2 treats only integrations over the translation group, in a more general fash-
ion with a view to later applications, and Section 5.3 then deals with the
additional integrations over the rotation group. In each case, formulas for
intrinsic volumes result by specialization.

Section 5.4 leaves the domain of convex or polyconvex sets and studies
translative, kinematic and Crofton formulas for Hausdorff rectifiable sets and
the Hausdorff measures of their intersections.

5.1 The Kinematic Formula for Additive Functionals

We make use of the homogeneous spaces and invariant measures of Euclid-
ean geometry, as introduced in the Appendix. We assume that the reader is
familiar with these, either from Chapter 13 or from other sources. We recall
and collect here only the basic notation.

We denote by SOd the group of proper (that is, orientation-preserving)
rotations of Rd. Being a compact group, it carries a unique rotation invariant
(Borel) probability measure, which we denote by ν. The group of (proper) rigid
motions of Rd is denoted by Gd. Let µ be its invariant (or Haar) measure,
normalized so that

µ({g ∈ Gd : gx ∈ Bd}) = κd

for x ∈ Rd. More explicitly, the mapping

γ : Rd × SOd → Gd

(x, ϑ) �→ tx ◦ ϑ,

where tx is the translation by the vector x, is a homeomorphism, and µ is the
image measure of the product measure λ⊗ ν under γ.

The Grassmannian G(d, q) of q-dimensional linear subspaces of Rd, q ∈
{0, . . . , d}, is a compact homogeneous space with respect to the rotation group
SOd. It carries a unique rotation invariant probability measure, which we
denote by νq. The affine Grassmannian A(d, q), the space of q-flats in Rd,
is a locally compact homogeneous space with respect to the motion group
and carries a locally finite motion invariant measure. We denote it by µq and
normalize it so that

µq({E ∈ A(d, q) : E ∩Bd �= ∅}) = κd−q.

More explicitly, we may choose a fixed subspace Lq ∈ G(d, q), denote its
orthogonal complement by L⊥

q , and define mappings
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βq : SOd → G(d, q)
ϑ �→ ϑLq

and
γq : L⊥

q × SOd → A(d, q)
(x, ϑ) �→ ϑ(Lq + x).

(5.2)

These maps are continuous and surjective. Now, νq is the image measure of
the invariant measure ν under βq, and µq is the image measure of the product
measure λL⊥

q
⊗ν under γq, where λL⊥

q
denotes the (d−q)-dimensional Lebesgue

measure on L⊥
q .

A basic task involving these invariant measures consists in the evaluation
of integrals such as∫

Gd

ϕ(K ∩ gM)µ(dg) and
∫

A(d,k)

ϕ(K ∩ E)µk(dE),

for suitable sets K,M and functions ϕ. A typical simple case arises if K and
M are convex bodies and ϕ = χ, the Euler characteristic. Since χ(K) = 1 for
nonempty convex bodies K and χ(∅) = 0, we have∫

Gd

χ(K ∩ gM)µ(dg) = µ({g ∈ Gd : K ∩ gM �= ∅}),

which is the total invariant measure of all rigid motions g for which the body
gM hits (that is, has nonempty intersection with) the body K. In order to
get an idea of what an explicit computation will involve, we first consider the
special case where M is a ball of radius r > 0. By the representation of the
invariant measure µ described above, we then have∫

Gd

χ(K ∩ grBd)µ(dg) =
∫

SOd

∫
Rd

χ(K ∩ (ϑrBd + x))λ(dx) ν(dϑ)

= Vd(K + rBd),

since K ∩ (ϑrBd + x) �= ∅ if and only if x lies in the parallel body

K + rBd = {k + b : k ∈ K, b ∈ rBd}.

The Steiner formula of convex geometry (see (14.5)) tells us that

Vd(K + rBd) =
d∑

j=0

rd−jκd−jVj(K),

where V0, . . . , Vd are the intrinsic volumes. Once it is known (and this is
not difficult to prove) that Vd(K + rBd) is a polynomial in r, the Steiner
formula can serve to define the intrinsic volumes. For these functionals and
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their properties, as well as for a local version of the Steiner formula, we refer
to Section 14.3 and the literature quoted there.

We see already from this special case, M = rBd, that for the computa-
tion of the integrals

∫
Gd
χ(K ∩ gM)µ(dg) the intrinsic volumes must play an

essential role. It is a remarkable fact that no further functions are needed for
the general case: the integrals∫

Gd

χ(K ∩ gM)µ(dg) and
∫

A(d,k)

χ(K ∩ E)µk(dE)

can be expressed in terms of the intrinsic volumes of K and M . These results
will be obtained as special cases of formulas involving more general functions
ϕ in the integrands. The essential property of these integrand functions, which
makes explicit formulas possible, is their additivity. Generally, a function ϕ
on K′ with values in an abelian group is additive if

ϕ(K ∪M) + ϕ(K ∩M) = ϕ(K) + ϕ(M)

for all K,M ∈ K′ with K ∪ M ∈ K′. For an additive function ϕ on K′,
one always extends the definition by ϕ(∅) := 0. A reader not familiar with
additive functionals on convex bodies is advised to have a look at Section
14.4. We shall make essential use of Hadwiger’s characterization theorem for
the intrinsic volumes, which is proved in that section.

To obtain these formulas for more general integrands, we begin with com-
puting the integral

ψ(K) :=
∫

A(d,k)

Vj(K ∩ E)µk(dE) (5.3)

for convex bodies K ∈ K′, where Vj is the jth intrinsic volume, j ∈ {0, . . . , d}.
(Recall that Vj is additive, and that we have defined Vj(∅) = 0.) Equation
(5.3) defines a functional ψ on K′. Since the intrinsic volume Vj is additive, in-
variant under rigid motions, and continuous, it is not difficult to show that the
functional ψ is additive, motion invariant and continuous (for the continuity,
compare the argument used in the proof of Theorem 5.1.2 below). Therefore,
Hadwiger’s characterization theorem (Theorem 14.4.6) yields a representation

ψ(K) =
d∑

r=0

crVr(K), K ∈ K′,

with constant coefficients c0, . . . , cd. Here only one coefficient is different from
zero, due to the homogeneity property

ψ(αK) = αd−k+jψ(K)

for α > 0; this property follows from the representation
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ψ(K) =
∫

G(d,k)

∫
L⊥
Vj(K ∩ (L+ x))λd−k(dx) νk(dL).

Since Vr is homogeneous of degree r, we see that cr = 0 for r �= d − k + j,
hence ∫

A(d,k)

Vj(K ∩ E)µk(dE) = cVd−k+j(K)

with some constant c. In order to determine this constant, we take for K the
unit ball Bd. For ε ≥ 0, the Steiner formula gives

d∑
j=0

εd−jκd−jVj(Bd) = Vd(Bd + εBd) = (1 + ε)dκd =
d∑

j=0

εd−j

(
d

j

)
κd,

hence

Vj(Bd) =
(
d

j

)
κd

κd−j
for j = 0, . . . , d.

In the following, we make use of the fact that the intrinsic volume Vj of a
convex body does not depend on the dimension of the space in which the
body is embedded. Choosing L ∈ G(d, k), we obtain

cVd−k+j(Bd) =
∫

A(d,k)

Vj(Bd ∩ E)µk(dE)

=
∫

SOd

∫
L⊥
Vj(Bd ∩ ϑ(L+ x))λd−k(dx) ν(dϑ)

=
∫

L⊥∩Bd

(1− ‖x‖2)j/2Vj(Bd ∩ L)λd−k(dx)

=
(
k

j

)
κk

κk−j

∫
L⊥∩Bd

(1− ‖x‖2)j/2 λd−k(dx).

Introducing polar coordinates, we transform the latter integral into a Beta
integral and obtain

c =
(
k

j

)
κkκd−k+j

Vd−k+j(Bd)κk−jκj
= ckj c

d−k+j
d .

Here we have denoted by

ckj :=
k!κk

j!κj
(5.4)

a frequently occurring constant. By using the identity

m!κm = 2mπ
m−1

2 Γ
(
m+ 1

2

)
,

it can also be put in the form
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ckj =
Γ

(
k+1
2

)
Γ

(
j+1
2

) .
To simplify later expressions, we also introduce the notation

cr1,...,rk
s1,...,sk

:=
k∏

i=1

cri
si

=
k∏

i=1

ri!κri

si!κsi

. (5.5)

With these notations, we have obtained the following result.

Theorem 5.1.1. Let K ∈ K′ be a convex body. For k ∈ {1, . . . , d − 1} and
j ≤ k the Crofton formula∫

A(d,k)

Vj(K ∩ E)µk(dE) = ck,d−k+j
j,d Vd−k+j(K) (5.6)

holds.

The special case j = 0 of (5.6) gives

Vm(K) = c0,d
m,d−m

∫
A(d,d−m)

χ(K ∩ E)µd−m(dE) (5.7)

and thus provides an integral geometric interpretation of the intrinsic volumes:
Vm(K) is, up to a normalizing factor, the invariant measure of the set of
(d−m)-flats intersecting K.

Using the explicit representation of the measure µd−m and the fact that
the map L �→ L⊥ transforms νd−m into νm, we can rewrite the representation
(5.7) as

Vm(K) = c0,d
m,d−m

∫
G(d,m)

λm(K|L) νm(dL), (5.8)

where K|L denotes the image of K under orthogonal projection to the sub-
space L. The special case m = 1 shows that V1, up to a factor, is the mean
width.

When we consider in the following a fixed and a moving convex body, we
shall often have to exclude the touching positions. We say that the convex
bodies K and M touch if K ∩M �= ∅, but K and M can be separated weakly
by a hyperplane. The following lemma is useful.

Lemma 5.1.1. Let K,M ∈ K′ be convex bodies, and let (Ki)i∈N, (Mi)i∈N be
sequences in K′ with Ki → K and Mi → M for i → ∞. Then the following
holds:

(a) If K ∩M = ∅, then Ki ∩Mi = ∅ for all sufficiently large i.

(b) If K ∩M �= ∅ and K and M do not touch, then Ki ∩Mi → K ∩M for
i→∞.
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Proof. Assertion (a) follows immediately from the definition of convergence
with respect to the Hausdorff metric.

To prove (b), let x ∈ K ∩M . We put xi := p(Ki ∩Mi, x) (the point in
Ki ∩Mi nearest to x, see Section 14.2) for those i for which Ki ∩Mi �= ∅.
We claim that xi is defined for almost all i and that xi → x for i → ∞.
Suppose this were false. Then there exists a ball B with center x such that
B ∩Ki ∩Mi = ∅ holds for infinitely many i. For sufficiently large i we have
B ∩Ki �= ∅, since Ki → K and x ∈ K. By a standard separation theorem, for
each such i there exists a hyperplane separating B ∩Ki and Mi. A suitable
subsequence of this sequence of hyperplanes converges to a hyperplane H; this
hyperplane separates B ∩K and M . Since x ∈ K ∩M , we have x ∈ H, hence
H separates also K and M . This contradicts the assumption that K and M
do not touch. It follows that xi → x for i→∞.

Let xij
∈ Kij

∩Mij
for some increasing sequence (ij)j∈N, and assume that

xij
→ y for j →∞. Then y ∈ K ∩M .
The assertionKi∩Mi → K∩M now follows from Theorem 12.2.2 (together

with Theorem 12.3.4). ��

From Hadwiger’s characterization theorem, we now deduce a general kine-
matic formula, involving a functional on convex bodies that need not have
any invariance property; crucial is the additivity of this functional. (Recall
that an additive functional ϕ on K′ is always extended to K, by ϕ(∅) := 0.)

Theorem 5.1.2 (Hadwiger’s general integral geometric theorem). If
ϕ : K′ → R is additive and continuous, then∫

Gd

ϕ(K ∩ gM)µ(dg) =
d∑

k=0

ϕd−k(K)Vk(M) (5.9)

for K,M ∈ K′, where the coefficients ϕd−k(K) are given by

ϕd−k(K) =
∫

A(d,k)

ϕ(K ∩E)µk(dE).

Proof. The µ-integrability of the integrand in (5.9) is seen as follows. For
K,M ∈ K′, let Gd(K,M) be the set of all motions g ∈ Gd for which K and
gM touch. It is not difficult to check that γ(x, ϑ) ∈ Gd(K,M) if and only if
x ∈ bd (K − ϑM) and, hence, that µ(Gd(K,M)) = 0.

Let g ∈ Gd \Gd(K,M), and let (Mj)j∈N be a sequence in K′ converging to
M . Then gMj → gM and hence K ∩ gMj → K ∩ gM , by Lemma 5.1.1, thus
ϕ(K∩gMj)→ ϕ(K∩gM) for j →∞. It follows that the map g �→ ϕ(K∩gM)
is continuous outside a closed set of µ-measure zero. Moreover, the continuous
function ϕ is bounded on the compact set {L ∈ K′ : L ⊂ K}, and

µ({g ∈ Gd : ϕ(K ∩ gM) �= 0}) ≤ µ({g ∈ Gd : K ∩ gM �= ∅}) <∞.

This shows the µ-integrability of the function g �→ ϕ(K ∩ gM).
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Now we fix a convex body K ∈ K′ and define

ψ(M) :=
∫

Gd

ϕ(K ∩ gM)µ(dg) for M ∈ K′.

Then ψ : K′ → R is additive and motion invariant. The foregoing consid-
eration together with the dominated convergence theorem shows that ψ is
continuous. By Hadwiger’s characterization theorem, there exist constants
ϕ0(K), . . . , ϕd(K) such that

ψ(M) =
d∑

i=0

ϕd−i(K)Vi(M)

for all M ∈ K′. We have to determine the coefficients ϕd−i(K).
Let k ∈ {0, . . . , d}, and choose Lk ∈ G(d, k). Let C ⊂ Lk be a k-

dimensional unit cube with center 0, and let r > 0. Then

ψ(rC) =
d∑

i=0

ϕd−i(K)Vi(rC) =
k∑

i=0

ϕd−i(K)riVi(C).

On the other hand, using the rotation invariance of λ, we get

ψ(rC)

=
∫

Gd

ϕ(K ∩ grC)µ(dg)

=
∫

SOd

∫
Rd

ϕ(K ∩ (ϑrC + x))λ(dx) ν(dϑ)

=
∫

SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ (ϑrC + ϑx1 + ϑx2))λk(dx1)λd−k(dx2) ν(dϑ)

=
∫

SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ [ϑr(C + x1) + ϑx2])rk λk(dx1)λd−k(dx2) ν(dϑ).

Comparison gives

ϕd−k(K)

= lim
r→∞

∫
SOd

∫
L⊥

k

∫
Lk

ϕ(K ∩ [ϑr(C + x1) + ϑx2])λk(dx1)λd−k(dx2) ν(dϑ).

For r →∞, we have

ϕ(K ∩ [ϑr(C + x1) + ϑx2])→
{
ϕ(K ∩ ϑ(Lk + x2)) if 0 ∈ relint (C + x1),

0 if 0 /∈ C + x1.

Hence, the dominated convergence theorem yields
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ϕd−k(K) =
∫

SOd

∫
L⊥

k

ϕ(K ∩ ϑ(Lk + x2))λk(C)λd−k(dx2) ν(dϑ)

=
∫

A(d,k)

ϕ(K ∩ E)µk(dE),

as asserted. ��

In Theorem 5.1.2 we can choose for ϕ, in particular, the intrinsic volume
Vj . In this case, the Crofton formula (5.6) gives

(Vj)d−k(K) =
∫

A(d,k)

Vj(K ∩ E)µk(dE) = ck,d−k+j
j,d Vd−k+j(K).

Hence, we obtain the following result.

Theorem 5.1.3. Let K,M ∈ K′ be convex bodies, and let j ∈ {0, . . . , d}.
Then the principal kinematic formula∫

Gd

Vj(K ∩ gM)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Vk(K)Vd−k+j(M) (5.10)

holds.

We note that the special case j = 0, or∫
Gd

χ(K ∩ gM)µ(dg) =
d∑

k=0

ck,d−k
0,d Vk(K)Vd−k(M),

gives the total measure of the set of rigid motions bringing M into a hitting
position with K.

Hadwiger’s general formula can be iterated, that is, extended to a finite
number of moving convex bodies.

Theorem 5.1.4. Let ϕ : K′ → R be additive and continuous, and let
K0,K1, . . . ,Kk ∈ K′, k ≥ 1, be convex bodies. Then∫

Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

r0,...,rk=0
r0+...+rk=kd

cdd−r0
ϕr0(K0)

k∏
i=1

cri

d Vri
(Ki),

where the coefficients are given by (5.4).

The specialization ϕ = Vj yields the following.
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Theorem 5.1.5 (Iterated kinematic formula). Let K0,K1, . . . ,Kk ∈ K′,
k ≥ 1, be convex bodies, and let j ∈ {0, . . . , d}. Then∫

Gd

. . .

∫
Gd

Vj(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

m0,...,mk=j
m0+...+mk=kd+j

cdj

k∏
i=0

cmi

d Vmi
(Ki).

Proof. We prove Theorem 5.1.4. The proof proceeds by induction with respect
to k. Theorem 5.1.2 is the case k = 1. Suppose that k ≥ 1 and that the
assertion of Theorem 5.1.4, and hence that of Theorem 5.1.5, has been proved
for k+1 convex bodies. Let K0, . . . ,Kk+1 ∈ K′. Using Fubini’s theorem twice,
the invariance of the measure µ, and Theorem 5.1.2 followed by Theorem 5.1.5
for k + 1 convex bodies, we obtain∫

Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gk+1Kk+1)µ(dg1) · · ·µ(dgk+1)

=
∫

Gd

. . .

∫
Gd

[∫
Gd

ϕ(K0 ∩ g1(K1 ∩ g2K2 ∩ . . . ∩ gk+1Kk+1))µ(dg1)
]

× µ(dg2) · · ·µ(dgk+1)

=
∫

Gd

. . .

∫
Gd

d∑
j=0

ϕd−j(K0)Vj(K1 ∩ g2K2 ∩ . . . ∩ gk+1Kk+1)

× µ(dg2) · · ·µ(dgk+1)

=
d∑

j=0

cdjϕd−j(K0)
d∑

m0,...,mk=j
m0+...+mk=kd+j

cm0
d · · · cmk

d Vm0(K1) · · ·Vmk
(Kk+1)

=
d∑

r0,...,rk+1=0
r0+...+rk+1=(k+1)d

cdd−r0
ϕr0(K0)cr1

d · · · c
rk+1
d Vr1(K1) · · ·Vrk+1(Kk+1).

This completes the proof. ��

Remark on renormalization. The preceding formulas suggest renormal-
ization of the intrinsic volumes, by putting

Ṽj := cjdVj ,

and also of the invariant measures on the affine Grassmannians, by putting

µ̃k := cdkµk.
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Then the Crofton formula (5.6) becomes∫
A(d,k)

Ṽj(K ∩ E) µ̃k(dE) = Ṽd−k+j(K).

Hadwiger’s general integral geometric theorem reads∫
Gd

ϕ(K ∩ gM)µ(dg) =
d∑

k=0

ϕ̃d−k(K)Ṽk(M)

with
ϕ̃d−k(K) =

∫
A(d,k)

ϕ(K ∩E) µ̃k(dE).

In particular,

(̃Ṽj)d−k = Ṽd−k+j .

The principal kinematic formula (5.10) simplifies to∫
Gd

Ṽj(K ∩ gM)µ(dg) =
d∑

k=j

Ṽk(K)Ṽd−k+j(M). (5.11)

Theorem 5.1.4 becomes∫
Gd

. . .

∫
Gd

ϕ(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

r0,...,rk=0
r0+...+rk=kd

ϕ̃r0(K0)
k∏

i=1

Ṽri
(Ki),

and the iterated kinematic formula attains the form∫
Gd

. . .

∫
Gd

Ṽj(K0 ∩ g1K1 ∩ . . . ∩ gkKk)µ(dg1) · · ·µ(dgk)

=
d∑

m0,...,mk=j
m0+...+mk=kd+j

k∏
i=0

Ṽmi
(Ki).

Although these simplifications increase the elegance of the formulas, we retain
the original normalization of the intrinsic volumes, since a different normal-
ization might lead to confusion in several other instances.

Remark on extension to the convex ring. All the integral geometric
formulas of this section remain valid if the involved convex bodies are replaced
by polyconvex sets, that is, finite unions of convex bodies, and the involved
additive functionals are replaced by their additive extensions to the convex
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ring. The simple principle of such extensions will be explained at the end of
Section 5.2.

Notes for Section 5.1

1. Integral geometry as a subject of its own was first presented in two booklets by
Blaschke in 1935 and 1937; a third edition [107] appeared in 1955 (see also vol. 2 of
Blaschke’s Collected Works [108]). The earlier development and its connection with
geometric probability are subsumed in the book by Deltheil [202]. Introductions
to integral geometry, from distinctly different points of view, were given by Santaló
[659], Hadwiger [307, ch. 6], Stoka [738]. The standard source on integral geometry is
the monograph by Santaló [662]. It stresses the applications to geometric probability.
In a similar spirit is the book by Ren [635]. The book by Voss [772] describes integral
geometry as a tool for stereology and image reconstruction.

The survey by Schneider and Wieacker [720] emphasizes the relations to convex
geometry, and the article by Hug and Schneider [369] surveys integral geometric
intersection formulas.

Combinatorial aspects of integral geometry are in the foreground of the original
approaches in the books by Ambartzumian [34] and by Klain and Rota [416].

2. The principal kinematic formula (5.10) is a central result of classical integral
geometry. For easier comparison with older literature, we write the special case
j = 0 in terms of the Euler characteristic χ = V0 and the quermassintegrals, which
are defined by (14.6). It then takes the form∫

Gd

χ(K ∩ gM) µ(dg) =
1

κd

d∑
k=0

(
d

k

)
Wk(K)Wd−k(M). (5.12)

Here K and M can be arbitrary polyconvex sets. Often, only (5.12) is called the
principal kinematic formula. It goes back to Blaschke and to Santaló, under
different assumptions on the sets occurring in it. Hints to the origins can be found
in the work of Blaschke [106], Hadwiger [307], Santaló [662].

When comparing with this literature, one has to observe that Santaló and Had-
wiger normalize the invariant measure on the rotation group so that SOd has total
measure given by

cd :=
d!

2
κ1 · · ·κd.

Under this normalization, the right side of (5.12) attains the additional factor cd,
and in Santaló’s work the further factor 2, since Santaló integrates also over the
improper rigid motions. (The constant Ok that often occurs in Santaló’s work is
given by (k + 1)κk+1.)

If K is a convex body whose boundary is a regular (twice continuously differen-
tiable) hypersurface, then

dWi(K) =

∫
bd K

Hi−1 dS =: Mi−1(bd K) for i = 1, . . . , d,

where Hi−1 denotes the (i − 1)th normalized elementary symmetric function of the
principal curvatures of bd K (and Mi−1 is the notation used by Santaló). With this
interpretation of the functionals Wi as curvature integrals, equation (5.12) holds also
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if K and M are non-convex domains of Rd with boundary hypersurfaces of class C2.
This is the differential-geometric version of the principal kinematic formula. It goes
back to Chern and Yien [171] and was proved with greater care by Chern [169]; see
also Santaló [662, pp. 262 ff]. There (p. 269) one also finds a differential-geometric
version of the formula∫

Gd

Wi(K ∩ gM) µ(dg) =
1

κd

d∑
k=d−i

CkiWi+k−d(K)Wd−k(M)

with

Cki :=

(
i

d − k

)
κkκiκ2d−k−i

κd−kκd−iκk+i−d

(i = 1, . . . , d). For elements of the convex ring, this is formula (5.10), rewritten
in terms of the quermassintegrals Wi. Further kinematic intersection formulas in
a differential-geometric version, valid for lower-dimensional compact differentiable
submanifolds without boundary, are due to Chern [170]; see also Chapter V in the
book by Sulanke and Wintgen [749]. This book, in contrast to [662], also provides the
technical foundations that are required for using the elegant machinery of differential
forms in the derivation of integral geometric formulas.

Also for the Crofton formulas, there are differential-geometric versions; one finds
them in the quoted books of Sulanke and Wintgen and of Santaló.

A common generalization of kinematic formulas for convex bodies and for smooth
compact submanifolds is Federer’s extension to sets of positive reach; see Note 1 for
Section 5.3.

3. The approach to integral geometric formulas for convex bodies that uses the
axiomatic characterization of the intrinsic volumes, goes in principle back to W.
Blaschke. It came into full force only when Hadwiger had proved his characterization
theorem (Theorem 14.4.6). Hadwiger’s general integral geometric theorem (Theorem
5.1.2) was proved in this way in [306, 307]; no other proof is currently known.

4. Hadwiger’s general integral geometric theorem provides a kinematic formula for
arbitrary additive continuous functions on convex bodies. For integrations over the
translation group, an analogous result can be proved for simply additive functions.
Let ϕ be a continuous real function on K′ which is a simple valuation, that is,
additive and satisfying ϕ(K) = 0 for convex bodies of dimension less than d. Then∫

Rd

ϕ(K ∩ (M + x)) λ(dx) = ϕ(K)Vd(M) +

∫
Sd−1

fK,ϕ(u) Sd−1(M, du)

for convex bodies K, M ∈ K′, where the function fK,ϕ : Sd−1 → R is given by

fK,ϕ(u) =

∫ h(K,u)

−h(K,−u)

ϕ(K ∩ H−(u, τ)) dτ − ϕ(K)h(K, u).

Here h(K, ·) is the support function of K and H−(u, τ) is the closed halfspace
{x ∈ Rd : 〈x, u〉 ≤ τ}; the measure Sd−1(M, ·) is the surface area measure of M (see
Section 14.2). This formula was proved by Schneider [708].

5. Alesker’s work on valuations (see [22] for a survey) has also shed new light on
kinematic formulas and their generalizations. Part of his work extends Hadwiger’s
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characterization theorem and its integral geometric applications. Let G be a compact
subgroup of the orthogonal group Od acting transitively on the unit sphere Sd−1. Let
ValG denote the vector space of continuous, translation invariant and G-invariant
real valuations on K. Alesker [18] has shown that ValG has finite dimension. In
[19], he provided explicit bases for the case of G = U(n) (where Cn is identified
with R2n), thus establishing a unitary counterpart to Hadwiger’s characterization
theorem (with a much deeper proof, though). For the case of SU(2), see Alesker
[21]. Further, Alesker [20] has introduced a multiplication for continuous, translation
invariant valuations. With this, ValG becomes a graded algebra over R, satisfying
the Poincaré duality. The structure of this algebra was determined for the case
G = SOd by Alesker [20], and for G = U(d) by Fu [239].

Applications to kinematic formulas, where the role of the rotation group in the
classical case is now played by a group G as above, were investigated by Alesker
[19], Fu [239], Bernig and Fu [95, 96], Bernig [92].

6. Iterations of the principal kinematic formula, as in Theorem 5.1.5, were used, for
instance, by Streit [747].

7. As explained in the remark on renormalization, the intrinsic volumes and the
invariant measures on the Grassmannians can be renormalized so that the principal
kinematic formula takes the particularly simple form (5.11), where all the coefficients
of the bilinear expression are equal to one. Some authors have elaborated upon this
fact from a structural point of view; see Nijenhuis [585] and Fu [239].

Questions of normalization with desirable properties are also an issue in the
book by Klain and Rota [416].

5.2 Translative Integral Formulas

Our next major aim is an extension of the principal kinematic formula (5.10)
to the curvature measures Φm, which are introduced in Section 14.2. Thus,
we want to compute the integral∫

Gd

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

SOd

∫
Rd

Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))λ(dx) ν(dϑ)

for convex bodies K,M and Borel sets A,B ∈ B(Rd) (recall that Φj(∅, ·) = 0,
by definition). The result will be stated in Theorem 5.3.2. In this section we
study only the inner integral∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx). (5.13)

Integrals of this type can be considered to extend over the translation group
of Rd and are therefore known as translative integrals. The computation
of (5.13) is the first step towards a direct proof of the kinematic formula
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for curvature measures, but is also of independent interest, in view of later
applications to non-isotropic stochastic models.

The integral (5.13) is easily computed for j = d. This is a special case of a
simple but often useful integral geometric formula with respect to the transla-
tion group, which can be obtained without much effort (and was already used
in Sections 4.5 and 4.6). It is quite general and is an immediate consequence
of the translation and inversion invariance of the Lebesgue measure.

Theorem 5.2.1. If α is a σ-finite measure on Rd and if A,B ∈ B(Rd), then∫
Rd

α(A ∩ (B + t))λ(dt) = α(A)λ(B).

Proof. Fubini’s theorem gives∫
Rd

α(A ∩ (B + t))λ(dt) =
∫

Rd

∫
Rd

1A(x)1B+t(x)α(dx)λ(dt)

=
∫

Rd

1A(x)
∫

Rd

1−B+x(t)λ(dt)α(dx)

=
∫

Rd

1A(x)λ(−B + x)α(dx)

= α(A)λ(B),

as asserted. ��

The formulas∫
Rd

Vd(K ∩ (M + x))λ(dx) = Vd(K)Vd(M) (5.14)

and∫
Rd

Vd−1(K ∩ (M + x))λ(dx) = Vd−1(K)Vd(M) + Vd(K)Vd−1(M) (5.15)

for convex bodies K,M ∈ K′ are special cases of Theorem 5.2.1. The second
is obtained by applying the theorem twice, taking for the measure α the
(d − 1)-dimensional Hausdorff measure, restricted to the boundary of one of
the bodies. We do not carry this out here, since we shall give a detailed proof
of the much more general Theorem 5.2.3.

The corresponding translative formulas for the intrinsic volumes Vj with
j < d−1 are no longer so simple as (5.14) and (5.15). This is already seen from
the case j = 0. Since V0(K ∩ (M + x)) = 1 is equivalent to K ∩ (M + x) �= ∅
and hence to x ∈ K −M , we have∫

Rd

V0(K ∩ (M + x))λ(dx) = Vd(K −M).
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Similarly to the case of the Steiner formula, the volume of a sum K + εL,
ε ≥ 0, for convex bodies K,L ∈ K′, can be expanded into a polynomial in ε
(see (14.17)). In this way, one obtains∫

Rd

V0(K ∩ (M + x))λ(dx) =
d∑

k=0

(
d

k

)
V (K, . . . ,K︸ ︷︷ ︸

k

,−M, . . . ,−M︸ ︷︷ ︸
d−k

), (5.16)

where V on the right side denotes a mixed volume. We see that the result
involves functionals that depend on K and M simultaneously. It is in general
not possible to separate the roles of K and M , as was the case with the
principal kinematic formula (5.10). There, the resulting bilinear form owes its
existence to the further integration over the rotation group. The occurrence
of simultaneous functionals is typical for translative integral geometry.

Our proof of translative and kinematic formulas for curvature measures is
prepared by a measurability lemma. We recall from the proof of Theorem 5.1.2
that the set Gd(K,M) = {g ∈ Gd : K and M touch} satisfies µ(Gd(K,M)) =
0.

Lemma 5.2.1. Let K,M ∈ K′ and A,B ∈ B(Rd), let j ∈ {0, . . . , d}. The
mapping

x �→ Φj(K ∩ (M + x), A ∩ (B + x)), x ∈ Rd,

is measurable on Rd \ bd (K −M), where λ(bd (K −M)) = 0.
The mapping

g �→ Φj(K ∩ gM,A ∩ gB), g ∈ Gd,

is measurable on Gd \Gd(K,M), where µ(Gd(K,M)) = 0.

Proof. It suffices to prove the second assertion, since the proof of the first one
is analogous. For fixed (x, ϑ) ∈ Rd × SOd, we define

Tx,ϑ : Rd → Rd × Rd

y �→ (y, ϑ−1(y − x))

and the image measure

ϕ(j)(x, ϑ,K,M, ·) := Tx,ϑ(Φj(K ∩ (ϑM + x), ·)).

Then ϕ(j)(x, ϑ,K,M, ·) is a finite measure on Rd × Rd, and

ϕ(j)(x, ϑ,K,M,A×B) = Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))

for A,B ∈ B(Rd). By the transformation formula for integrals,∫
Rd×Rd

f(y, z)ϕ(j)(x, ϑ,K,M,d(y, z))

=
∫

Rd

f(y, ϑ−1(y − x))Φj(K ∩ (ϑM + x),dy)
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for f ∈ C(Rd × Rd). By Lemma 5.1.1, the mapping (x, ϑ) �→ K ∩ (ϑM + x)
is continuous outside the set γ−1(Gd(K,M)), hence, by Theorem 14.2.2(c)
the mapping (x, ϑ) �→ Φj(K ∩ (ϑM + x), ·) is continuous (with respect to the
weak topology) on (Rd×SOd) \ γ−1(Gd(K,M)). For f ∈ C(Rd×Rd) and for
(xi, ϑi)→ (x0, ϑ0) /∈ γ−1(Gd(K,M)) we deduce that∫

Rd

f(y, ϑ−1
i (y − xi))Φj(K ∩ (ϑiM + xi),dy)

→
∫

Rd

f(y, ϑ−1
0 (y − x0))Φj(K ∩ (ϑ0M + x0),dy)

(since Φj(K ∩ (ϑiM + xi), ·) vanishes outside a suitable compact set indepen-
dent of i, and since f is uniformly continuous on any compact set). Therefore,
the mapping

(x, ϑ) �→
∫

Rd×Rd

f(y, z)ϕ(j)(x, ϑ,K,M,d(y, z))

is continuous on Rd \γ−1(Gd(K,M)). As shown in Lemma 12.1.1, this implies
the measurability of the mapping

(x, ϑ) �→ ϕ(j)(x, ϑ,K,M,A×B) = Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))

on Rd \ γ−1(Gd(K,M)), for arbitrary A,B ∈ B(Rd). ��

In the following, we shall have to use the subspace determinant [L1, . . . , Lk],
which is introduced in Section 14.1. We extend its definition as follows. If
A1, . . . , Ak ⊂ Rd are nonempty subsets, we denote by L(Ai) the linear sub-
space which is a translate of the affine hull of Ai, and we write

[A1, . . . , Ak] := [L(A1), . . . , L(Ak)]

if the latter is defined.
First we investigate a translative formula for polytopes. For the external

angles, we refer to (14.10). For polytopes K,M ∈ P ′ and for faces F of K and
G of M we define a common external angle by

γ(F,G;K,M) := γ(F ∩ (G+ x),K ∩ (M + x)),

where x ∈ Rd is chosen so that

relintF ∩ relint (G+ x) �= ∅.

Obviously, this definition does not depend on the special choice of x.
Two faces F and G of a polytope are said to be in special position if the

linear subspaces L(F ) and L(G) parallel to F and G are in special position,
that is, satisfy
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L(F ) ∩ L(G) �= {0} and lin (L(F ) ∪ L(G)) �= Rd.

For a face F of a polytope, the measure λF is defined by

λF (A) := λdim F (A ∩ F ) for A ∈ B(Rd).

Theorem 5.2.2. If K,M ∈ P ′ are polytopes, A,B ∈ B(Rd) are Borel sets
and j ∈ {0, . . . , d}, then∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx) =
d∑

k=j

Φ
(j)
k (K,M ;A×B)

with finite measures Φ(j)
k (K,M ; ·) on Rd × Rd, which are defined by

Φ
(j)
k (K,M ; ·) :=

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]λF ⊗ λG

(k = j, . . . , d). In particular,

Φ
(j)
j (K,M ;A×B) = Φj(K,A)Φd(M,B),

Φ
(j)
d (K,M ;A×B) = Φd(K,A)Φj(M,B).

Proof. Let

I :=
∫

Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx).

By Lemma 5.2.1, this is well defined. The representation (14.13) gives

I =
∫

Rd

∑
F ′∈Fj(K∩(M+x))

γ(F ′,K ∩ (M + x))λF ′(A ∩ (B + x))λ(dx).

The faces F ′ ∈ Fj(K ∩ (M + x)) are precisely the j-dimensional sets of the
form F ′ = F ∩ (G + x), where F ∈ Fk(K) and G ∈ Fi(M) for suitable
k, i ∈ {j, . . . , d}. For the computation of the integral I, only those vectors
x are relevant that together with F ∩ (G + x) �= ∅ for a pair F,G satisfy
relintF ∩ relint (G + x) �= ∅, since the remaining vectors x form a set of
Lebesgue measure zero. Moreover, the pairs F,G for which k+ i < d or which
are in special position, do not contribute to the integral, since for these we
have

λ({x ∈ Rd : F ∩ (G+ x) �= ∅}) = λ(F −G) = 0.

In the other cases, dimF ′ = dimF +dimG−d, hence k+ i = d+ j. Thus,
we obtain
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I =
d∑

k=j

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)∫

Rd

γ(F ∩ (G+ x),K ∩ (M + x))λF∩(G+x)(A ∩ (B + x))λ(dx)

=
d∑

k=j

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)J(F,G)

with
J(F,G) :=

∫
Rd

λF∩(G+x)(A ∩ (B + x))λ(dx).

For the computation of J(F,G) we suppose, without loss of generality, that

0 ∈ L1 := aff F ∩ aff G.

Let
L2 := L⊥

1 ∩ aff F, L3 := L⊥
1 ∩ aff G,

and let λj , λk−j , λd−k be the Lebesgue measure on L1, L2, L3, respectively.
Then Rd = L1 ⊕ L2 ⊕ L3, and x ∈ Rd can uniquely be written in the form
x = x1 +x2 +x3 with xi ∈ Li for i = 1, 2, 3. Writing A′ := A∩F , B′ := B∩G,
we have

J(F,G) = [F,G]
∫

L3

∫
L2

∫
L1

λF∩(G+x1+x2+x3)(A
′ ∩ (B′ + x1 + x2 + x3))

×λj(dx1)λk−j(dx2)λd−k(dx3).

Since

(A′ ∩ (B′ + x1 + x2 + x3))− x2 = (A′ − x2) ∩ (B′ + x1 + x3) ⊂ L1,

we obtain ∫
L1

λF∩(G+x1+x2+x3)(A
′ ∩ (B′ + x1 + x2 + x3))λj(dx1)

=
∫

L1

λj((A′ − x2) ∩ (B′ + x3 + x1))λj(dx1)

= λj((A′ − x2) ∩ L1)λj((B′ + x3) ∩ L1),

by Theorem 5.2.1. Fubini’s theorem yields∫
L2

λj((A′ − x2) ∩ L1)λk−j(dx2) = λj ⊗ λk−j(A′) = λF (A)

and
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L3

λj((B′ + x3) ∩ L1)λd−k(dx3) = λj ⊗ λd−k(B′) = λG(B).

Altogether this gives

J(F,G) = [F,G]λF (A)λG(B),

and thus the representation of the measure Φ(j)
k (K,M ; ·) as stated in the

theorem.
In the special case k = j we have∑

F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]λF ⊗ λG

=
∑

F∈Fj(K)

γ(F,M ;K,M)[F,M ]λF ⊗ λM

=
∑

F∈Fj(K)

γ(F,K)λF ⊗ λM

= Φj(K, ·)⊗ Φd(M, ·).

Similarly, for k = d we obtain the measure Φd(K, ·)⊗ Φj(M, ·). ��
Corollary 5.2.1. If K,M ∈ P ′ are polytopes and j ∈ {0, . . . , d}, then∫

Rd

Vj(K ∩ (M + x))λ(dx)

= Vj(K)Vd(M) +
d−1∑

k=j+1

V
(j)
k (K,M) + Vd(K)Vj(M),

where

V
(j)
k (K,M) :=

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

γ(F,G;K,M)[F,G]Vk(F )Vd−k+j(G).

Theorem 5.2.2 and Corollary 5.2.1 will now be extended, by means of
approximation, to arbitrary convex bodies K,M ∈ K′. In contrast to the case
of polytopes, for the measures Φ(j)

k (K,M ; ·) and functionals V (j)
k (K,M) that

occur, no simple explicit representations are known in the general case.

Theorem 5.2.3. For convex bodies K,M ∈ K′ and for j ∈ {0, . . . , d}, there
exist finite measures Φ(j)

j+1(K,M ; ·), . . . , Φ(j)
d−1(K,M ; ·) on Rd × Rd, concen-

trated on bdK × bdM , such that∫
Rd

Φj(K ∩ (M + x), A ∩ (B + x))λ(dx) (5.17)

= Φj(K,A)Φd(M,B) +
d−1∑

k=j+1

Φ
(j)
k (K,M ;A×B) + Φd(K,A)Φj(M,B)
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for all A,B ∈ B(Rd). In particular,∫
Rd

Vj(K∩ (M+x))λ(dx) = Vj(K)Vd(M)+
d−1∑

k=j+1

V
(j)
k (K,M)+Vd(K)Vj(M)

with V (j)
k (K,M) := Φ(j)

k (K,M ; Rd × Rd).
The measure Φ(j)

k (K,M ; ·) depends continuously on K,M ∈ K′ and is
homogeneous of degree k in K and of degree d− k + j in M. It is additive in
each of its first two arguments. For polytopes K,M , the measure Φ(j)

k (K,M ; ·)
coincides with the one appearing in Theorem 5.2.2.

Proof. As was already verified in the proof of Theorem 5.2.2, the integrand
on the left side of (5.17) is measurable for λ-almost all x, hence the integral in
(5.17) is well defined. We now first remark that equality (5.17) is equivalent
to ∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy)

=
d∑

k=j

∫
Rd×Rd

f(x, y)Φ(j)
k (K,M ; d(x, y)) (5.18)

for all continuous functions f on Rd × Rd, provided that the measures
Φ

(j)
k (K,M ; ·) exist; here we have written

Φ
(j)
j (K,M ; ·) := Φj(K, ·)⊗ Φd(M, ·),

Φ
(j)
d (K,M ; ·) := Φd(K, ·)⊗ Φj(M, ·).

In fact, if (5.17) holds, then (5.18) is true for f = 1A×B , hence (5.18) follows
for elementary functions and then, by a standard argument, for integrable
functions. If (5.18) holds, then (5.17) is obtained for compact sets A,B, since
1A×B is in this case the limit of a decreasing sequence of continuous functions,
and for arbitrary Borel sets it then follows since both sides, as functions of A
and B, are measures.

By Theorem 5.2.2, formulas (5.17) and (5.18) are valid if K and M are
polytopes.

For convex bodies K,M ∈ K′ and for a continuous function f on Rd ×Rd

we now define

J(f,K,M) :=
∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy).

We show that J(f,K,M) depends continuously on K and M . For this, let
Ki → K, Mi → M be convergent sequences in K′. From Lemma 5.1.1 and
Theorem 14.2.2(c) we infer the weak convergence
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Φj(Ki ∩ (Mi + y), ·) w→ Φj(K ∩ (M + y), ·)

and, therefore, the pointwise convergence∫
Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)→
∫

Rd

f(x, x− y)Φj(K ∩ (M + y),dx)

for i→∞, for all y /∈ bd (K −M). From this we deduce that

lim
i→∞

J(f,Ki,Mi)

=
∫

Rd

(
lim

i→∞

∫
Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
)
λ(dy)

=
∫

Rd

∫
Rd

f(x, x− y)Φj(K ∩ (M + y),dx)λ(dy)

= J(f,K,M).

Here we have applied the dominated convergence theorem. This is legitimate,
since we can find a λ-integrable function of y dominating∣∣∣∣∫

Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
∣∣∣∣ (5.19)

for all i. To see this, we choose a ball rBd, r > 0, containing all Ki, Mi and
hence also K and M , and denote by ‖f‖r the maximum of the continuous
function f on rBd × rBd. Then∣∣∣∣∫

Rd

f(x, x− y)Φj(Ki ∩ (Mi + y),dx)
∣∣∣∣ ≤ ‖f‖rVj(Ki ∩ (Mi + y)).

The monotonicity of the intrinsic volumes gives

Vj(Ki ∩ (Mi + y)) ≤ Vj(Ki)1Ki−Mi
(y),

and this yields the required function dominating (5.19).
For r, s > 0 we now define a continuous mapping Dr,s from Rd × Rd into

itself by
Dr,s(x, y) :=

(x
r
,
y

s

)
for x, y ∈ Rd.

If K and M are polytopes, (5.18) gives

Dr,sJ(f,K,M) :=
∫

Rd

∫
Rd

f

(
x

r
,
x− y
s

)
Φj(K ∩ (M + y),dx)λ(dy)

=
d∑

k=j

∫
Rd×Rd

f
(x
r
,
y

s

)
Φ

(j)
k (K,M ; d(x, y))

=
d∑

k=j

∫
Rd×Rd

f(x, y)Dr,s

(
Φ

(j)
k (K,M ; ·)

)
(d(x, y)).
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For the polytopes rK and sM , the image measure Dr,s

(
Φ

(j)
k (rK, sM ; ·)

)
can

be determined by means of the formula in Theorem 5.2.2; this yields

Dr,s

(
Φ

(j)
k (rK, sM ; ·)

)
= rksd−k+jΦ

(j)
k (K,M ; ·).

For given convex bodies K,M we now choose polytopes Ki,Mi (i ∈ N) so
that Ki → K and Mi →M for i→∞. Then it follows that

Dr,sJ(f, rKi, sMi)→ Dr,sJ(f, rK, sM)

for every continuous function f on Rd × Rd and all r, s > 0. As we have just
seen,

Dr,sJ(f, rKi, sMi)

=
d∑

k=j

rksd−k+j

∫
Rd×Rd

f(x, y)Φ(j)
k (Ki,Mi; d(x, y)). (5.20)

We deduce the convergence of the coefficients∫
Rd×Rd

f(x, y)Φ(j)
k (Ki,Mi; d(x, y))

in the polynomial (5.20) and thus the weak convergence of the measures

Φ
(j)
k (Ki,Mi; ·), k = j, . . . , d,

for i→∞. The limits, denoted by Φ(j)
k (K,M ; ·), k = j, . . . , d, are again finite

measures, satisfying

Dr,sJ(f, rK, sM) =
d∑

k=j

rksd−k+j

∫
Rd×Rd

f(x, y)Φ(j)
k (K,M ; d(x, y)), (5.21)

from which we see that they are independent of the approximating sequences
(Ki)i∈N, (Mi)i∈N. For r = s = 1 we obtain (5.18).

From the polynomial expansion (5.21), we also deduce that Φ(j)
k (K,M ; ·)

depends continuously on K and M . That Φ(j)
j+1(K,M ; ·), . . . , Φ(j)

d−1(K,M ; ·)
are concentrated on bdK × bdM is a consequence of Theorem 5.2.2, if K
and M are polytopes, and for general convex bodies K,M it is obtained by
approximation with polytopes. The stated homogeneity properties are obvious
for polytopes, and for the general case they follow by approximation. The
additivity of Φ(j)

k in any of its first two arguments follows immediately from
the expansion (5.17), if one uses the additivity of Φj in its first argument and
then compares summands of equal degrees of homogeneity. ��
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We supplement the definition by Φ(j)
k (K,M ; ·) = 0 if K = ∅ or M = ∅.

In Section 6.4 we shall extend Φ(j)
m (K,M ; ·) to more than two convex bodies;

these functions are then called mixed measures.

Additive Extension

The integral geometric formulas obtained so far are not restricted to convex
bodies, but can be extended to sets of the convex ring R, by means of ad-
ditivity. First we note that the curvature measure Φj , as a function of its
first argument, has an additive extension to R. This follows from Groemer’s
extension theorem (Theorem 14.4.2), since Φj is additive on K′ and is con-
tinuous as a map from K′ into the vector space of finite signed measures on
Rd with the weak topology. The extension is denoted by the same symbol. In
a similar way, the function Φ(j)

k can be extended. First we fix a convex body
M ∈ K′. By the same argument as just used, Φ(j)

k (·,M ; ·) as a function of
its first argument has an additive extension to the convex ring R; we denote
it by the same symbol. Next, we fix a polyconvex set K ∈ R. We choose a
representation K = K1 ∪ . . . ∪ Km with convex bodies Ki ∈ K′. From the
representation

Φ
(j)
k (K, ·; ·) =

∑
v∈S(m)

(−1)|v|−1Φ
(j)
k (Kv, ·; ·)

it follows that Φ(j)
k (K, ·; ·), as a function of its second argument, is additive and

continuous, hence it has an additive extension to R. In this way, Φ(j)
k (K,M ; ·)

is defined for all K,M ∈ R and is additive in each of its first two arguments.
Now both sides of the formula (5.17) make sense for arbitrary polyconvex

setsK,M ∈ R. Suppose, first, thatM is convex. As a function ofK, both sides
are additive, and they are equal if K is convex. By the inclusion–exclusion
principle, two additive functions coinciding on K′ also coincide on R. Thus,
(5.17) remains true if K is a polyconvex set. In the same way, M can be
replaced by a polyconvex set.

Theorem 5.2.4. The translative formula (5.17) holds for polyconvex sets
K,M ∈ R.

The investigation of translative integral geometry will be continued in
Section 6.4.

The Notes for this section are included in those for Section 5.3.

5.3 The Principal Kinematic Formula for Curvature
Measures

As mentioned at the beginning of the previous section, our aim is the deriva-
tion of a formula for the kinematic integral
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Gd

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

SOd

∫
Rd

Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))λ(dx) ν(dϑ). (5.22)

The measurability of the integrand was proved in Lemma 5.2.1. If K and M
are polytopes, we can apply Theorem 5.2.2 and obtain for the right side of
(5.22) the expression

Φj(K,A)Φd(M,B) +
d−1∑

k=j+1

∑
F∈Fk(K)

∑
G∈Fd−k+j(M)

λF (A)λG(B)

×
∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ) + Φd(K,A)Φj(M,B). (5.23)

The integral over the rotation group occurring here is evaluated in the next
theorem.

Theorem 5.3.1. If K,M ∈ P ′ are polytopes, j ∈ {0, . . . , d − 2}, k ∈ {j +
1, . . . , d− 1}, F ∈ Fk(K) and G ∈ Fd−k+j(M), then∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ) = ck,d−k+j
j,d γ(F,K)γ(G,M), (5.24)

where the constant is given by (5.5).

Proof. Let ϑ ∈ SOd be a rotation for which F and ϑG are not in special
position. By Lemma 13.2.1, only such rotations need to be considered for the
computation of the integral in (5.24). By definition,

γ(F, ϑG;K,ϑM) = γ(F ∩ (ϑG+ x),K ∩ (ϑM + x))

with a suitable vector x ∈ Rd. Denoting by N(P, F ) the normal cone of P
at a relatively interior point of F , we see from the definition of the external
angle that

γ(F, ϑG;K,ϑM) =
σd−1−j(N(K ∩ (ϑM + x), F ∩ (ϑG+ x)) ∩ Sd−1)

σd−1−j(L ∩ Sd−1)
,

where L ∈ G(d, d − j) is the subspace totally orthogonal to F ∩ (ϑG + x).
Since

N(K ∩ (ϑM + x), F ∩ (ϑG+ x)) = N(K,F ) + ϑN(M,G)

(see Schneider [695, Theorem 2.2.1]), we have to consider the integral∫
SOd

σd−j−1((N(K,F ) + ϑN(M,G)) ∩ Sd−1)[F, ϑG] ν(dϑ).
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More generally, we denote by L1 and L2 the orthogonal spaces of F and
G, respectively. Noting that [F, ϑG] = [L⊥

1 , ϑL
⊥
2 ] = [L1, ϑL2], we define

I(A,B) :=
∫

SOd

σd−j−1((Ă+ ϑB̆) ∩ Sd−1)[L1, ϑL2] ν(dϑ)

for arbitrary Borel sets A ⊂ L1 ∩ Sd−1 and B ⊂ L2 ∩ Sd−1, where

Ă := {αx : x ∈ A, α ≥ 0}

denotes the cone generated by A. Concerning the measurability of the in-
tegrand, we observe the following. The function ϑ �→ [L1, ϑL2] is contin-
uous. Let U be the set of all rotations ϑ ∈ SOd for which L1 and ϑL2

are not in special position; then ν(SOd \ U) = 0 by Lemma 13.2.1. Since
dimL1 + dimL2 = d − j ≤ d, the sum L1 + ϑL2 is direct if ϑ ∈ U , hence
Ă + ϑB̆ is a Borel set. For ϑ ∈ U , all sets Ă + ϑB̆ are images of a fixed one
under linear transformations of Rd. Using this fact, it is not difficult to show
that the map

ϑ �→ σd−j−1((Ă+ ϑB̆) ∩ Sd−1)

is measurable on U .
For fixed B ∈ B(L2 ∩ Sd−1) we now set

ω(A) := I(A,B) for A ∈ B(L1 ∩ Sd−1).

If
⋃∞

i=1Ai is a disjoint union of sets Ai ∈ B(L1 ∩ Sd−1), then( ∞⋃
i=1

Ăi + ϑB̆

)
∩ Sd−1 =

∞⋃
i=1

(
(Ăi + ϑB̆) ∩ Sd−1

)
for ϑ ∈ U , and this is again a disjoint union up to a set of σd−j−1-measure
zero. It follows that

σd−j−1

(( ∞⋃
i=1

Ăi + ϑB̆

)
∩ Sd−1

)
=

∞∑
i=1

σd−j−1

(
(Ăi + ϑB̆) ∩ Sd−1

)
for ϑ ∈ U , hence

ω

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ω(Ai)

by the monotone convergence theorem. Thus ω is a finite measure on L1∩Sd−1.
Let ρ ∈ SOd be a rotation mapping L1 into itself and fixing every point of
L⊥

1 . Then
ρĂ+ ϑB̆ = ρ(Ă+ ρ−1ϑB̆)

and
[L1, ϑL2] = [ρL1, ϑL2] = [L1, ρ

−1ϑL2],
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hence

ω(ρA) =
∫

SOd

σd−j−1((ρĂ+ ϑB̆) ∩ Sd−1)[L1, ϑL2] ν(dϑ)

=
∫

SOd

σd−j−1((Ă+ ρ−1ϑB̆) ∩ Sd−1)[L1, ρ
−1ϑL2] ν(dϑ)

= ω(A).

By the uniqueness of spherical Lebesgue measure (a special case of Theorem
13.1.3), ω is a constant multiple of σd−k−1 on L1 ∩ Sd−1. Similarly we obtain
for fixed A ∈ B(L1 ∩ Sd−1) that I(A, ·) is a constant multiple of σk−j−1 on
L2 ∩ Sd−1. Altogether this yields a representation

I(A,B) = α(L1, L2)σd−k−1(A)σk−j−1(B)

for all A ∈ B(L1∩Sd−1), B ∈ B(L2∩Sd−1), where α(L1, L2) is a constant that
depends only on L1 and L2. The choice A = L1 ∩ Sd−1 and B = L2 ∩ Sd−1,
together with the invariance properties of the functional I resulting from its
definition, shows that α(L1, L2) does, in fact, depend only on the dimensions
d, j, k.

In particular, this gives

I(N(K,F ) ∩ Sd−1, N(M,G) ∩ Sd−1) = αdjkγ(F,K)γ(G,M)

with a constant αdjk > 0 and thus the assertion of Theorem 5.3.1, up to the
determination of αdjk. We insert (5.24) into (5.22), using (5.23) for the right
side. If we choose for K an r-polytope with r ∈ {j + 1, . . . , d − 1}, for M a
(d − r + j)-polytope, and A = B = Rd, then the result must coincide with
formula (5.10). From this we conclude that αdjr = cr,d−r+j

j,d . This completes
the proof. ��

Corollary 5.3.1. If K,M ∈ K′ are convex bodies, A,B ∈ B(Rd) are Borel
sets and if j ∈ {0, . . . , d− 2}, k ∈ {j + 1, . . . , d− 1}, then∫

SOd

Φ
(j)
k (K,ϑM ;A× ϑB) ν(dϑ) = ck,d−k+j

j,d Φk(K,A)Φd−k+j(M,B). (5.25)

Proof. If K,M are polytopes, the definition of Φ(j)
k (K,M ; ·) and formula

(5.24) show that∫
SOd

Φ
(j)
k (K,ϑM ;A× ϑB) ν(dϑ)

=
∑

F∈Fk(K)

∑
G∈Fd−k+j(M)

λF (A)λG(B)
∫

SOd

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ)
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= ck,d−k+j
j,d

⎛⎝ ∑
F∈Fk(K)

λF (A)γ(F,K)

⎞⎠ ⎛⎝ ∑
G∈Fd−k+j(M)

λG(B)γ(G,M)

⎞⎠
= ck,d−k+j

j,d Φk(K,A)Φd−k+j(M,B).

Approximation by polytopes yields (5.25) for general convex bodies K,M ∈
K′. For this, we first have to verify the measurability of the integrand. It is
obtained from the weak continuity of the measures Φ(j)

k (K,ϑM ; ·), established
in Theorem 5.2.3, and from the identity∫

SOd

∫
Rd×Rd

f(x, ϑ−1y)Φ(j)
k (K,ϑM ; d(x, y)) ν(dϑ)

= ck,d−k+j
j,d

∫
Rd

∫
Rd

f(x, y)Φk(K,dx)Φd−k+j(M,dy),

valid for all f ∈ C(Rd × Rd). The latter identity is equivalent to (5.25); this
is seen as in the proof of Theorem 5.2.3. Also the final limit procedure is
analogous to that in the proof of Theorem 5.2.3; one uses the weak continuity
of the involved measures (Theorems 14.2.2 and 5.2.3) and the dominated
convergence theorem. ��

We can now state the main result of this section.

Theorem 5.3.2 (Local principal kinematic formula). If K,M ∈ R are
polyconvex sets, A,B ∈ B(Rd) are Borel sets and if j ∈ {0, . . . , d}, then∫

Gd

Φj(K ∩ gM,A ∩ gB)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j(M,B).

Proof. The extension to polyconvex sets K,M was explained at the end of
Section 5.2. ��

Remark. The extended convex ring S is defined as the system of all
subsets of Rd that intersect every convex body in a union of finitely many
convex bodies. Since the curvature measures are locally determined (Theorem
14.2.3), they can be extended to sets of the extended convex ring, as long as the
involved Borel sets remain bounded. Hence, Theorem 5.3.2 can be extended
in the same sense.

In the principal kinematic formula, curvature measures of the intersection
of a fixed and a moving set from the convex ring are integrated over all
rigid motions. Here the moving compact set can be replaced by a moving
affine subspace, and the integration can be carried out with respect to the
corresponding invariant measure. One can derive such formulas directly from
the principal kinematic formula.
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Theorem 5.3.3 (Local Crofton formula). If K ∈ Rd is a polyconvex set,
A ∈ B(Rd) is a Borel set and q ∈ {0, . . . , d}, j ∈ {0, . . . , q}, then∫

A(d,q)

Φj(K ∩ E,A ∩ E)µq(dE) = cq,d−q+j
j,d Φd−q+j(K,A).

Proof. We may assume that K ∈ K′; the extension to K ∈ R is then achieved
as explained at the end of Section 5.2. We fix Lq ∈ G(d, q) and use the map γq

defined by (5.2), then µq = γq(λd−q ⊗ ν). Let C be a q-dimensional unit cube
in Lq. Since Lq ∈ S, C is bounded and A can be replaced by the bounded set
A ∩K, the remark after the proof of Theorem 5.3.2 shows that

J :=
∫

Gd

Φj(Lq ∩ gK,C ∩ gA)µ(dg) =
d∑

k=j

ck,d−k+j
j,d Φk(Lq, C)Φd−k+j(K,A).

Now

Φk(Lq, C) =

{
λq(C) for k = q,
0 for k �= q,

hence
J = cq,d−q+j

j,d Φd−q+j(K,A).

On the other hand,

J =
∫

SOd

∫
Rd

Φj(Lq ∩ (ϑK + x), C ∩ (ϑA+ x))λ(dx) ν(dϑ)

=
∫

SOd

∫
L⊥

q

∫
Lq

Φj(Lq ∩ (ϑK + x1 + x2), C ∩ (ϑA+ x1 + x2))λq(dx2)

×λd−q(dx1) ν(dϑ).

To compute the inner integral, we put

Φj(Lq ∩ (ϑK + x1), ·) =: φ, ϑA+ x1 =: A′;

then ∫
Lq

Φj(Lq ∩ (ϑK + x1 + x2), C ∩ (ϑA+ x1 + x2))λq(dx2)

=
∫

Lq

φ((C − x2) ∩A′)λq(dx2)

= φ(A′)λq(C)

= Φj(Lq ∩ (ϑK + x1), Lq ∩ (ϑA+ x1)),

where Theorem 5.2.1 was used. This yields
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J =
∫

SOd

∫
L⊥

q

Φj(Lq ∩ (ϑK + x1), Lq ∩ (ϑA+ x1))λd−q(dx1) ν(dϑ)

=
∫

SOd

∫
L⊥

q

Φj(K ∩ ϑ(Lq + x), A ∩ ϑ(Lq + x))λd−q(dx) ν(dϑ)

=
∫

A(d,q)

Φj(K ∩ E,A ∩E)µq(dE),

where we have used the motion covariance of the curvature measures and the
inversion invariance of λd−q and ν. The two representations obtained for J
prove the assertion. ��

The case j = 0,

Φd−q(K,A) = cd,0
q,d−q

∫
A(d,q)

Φ0(K ∩ E,A ∩ E)µq(dE),

gives an interpretation of the measure Φd−q(K,A): up to a numerical factor,
it is the mean value of Φ0(K ∩ E,A ∩ E), where the mean is taken over the
intersections with q-flats. The Gaussian curvature measure Φ0 has a simple
intuitive interpretation, as mentioned in Section 14.2.

Notes for Sections 5.2 and 5.3

1. A general local principal kinematic formula, which coincides with Theorem 5.3.2
in the case of convex bodies, was first obtained by Federer [228]. He proved it for
sets of positive reach and for their curvature measures, which he introduced for
this purpose. The generality of the admissible point sets requires deeper techniques
from geometric measure theory. Using such techniques, in particular Martina Zähle
studied new approaches to curvature measures and to integral geometric formulas
valid for them; see Zähle [824, 825, 826, 827], Rother and Zähle [649].

There have been several successful attempts to define curvature measures and
to obtain kinematic and Crofton formulas in very general situations, where strong
singularities are permitted. We refer here to Fu [236, 237, 238], Bröcker and Kuppe
[122], Bernig and Bröcker [94, 93], Rataj and Zähle [620, 621].

In contrast to this trend to deep generalizations, it has been our aim in this book
to follow an approach to local integral geometric formulas for convex bodies and
sets of the convex ring that needs only elementary measure-theoretic and geometric
arguments, and which (we hope) is more in the spirit of the integral geometry of
Blaschke and Hadwiger. Different approaches of this kind are also found in Schneider
[676, 680].

In deriving the Crofton formula (Theorem 5.3.3) from the local principal kine-
matic formula, we followed Federer [228].

2. In order to extend the curvature measures additively to the convex ring, we have
referred here to Groemer’s extension theorem. For the support measures, and thus
for the curvature measures, a more explicit construction of an additive extension to
polyconvex sets is found in Schneider [679] and in Section 4.4 of [695]. It is based
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on an extension of the local Steiner formula for polyconvex sets, with the Lebesgue
measure replaced by the integral of the multiplicity function that arises from additive
extension of the indicator function of a parallel set. See also Note 3 of Section 14.4.

3. A more general version of Theorem 5.2.1 is Theorem 13.1.4. We refer to Note 2
of Section 13.1 for some references.

Translative integral geometry was first investigated by Blaschke [106] and
Berwald and Varga [98]; see Schneider and Weil [715] for further references. From
the latter paper, we essentially took the proofs of Theorems 5.2.2 and 5.3.1, and
thus of the local principal kinematic formula, Theorem 5.3.2. A first version of The-
orem 5.2.3 appeared in Weil [786]. A better understanding of the mixed measures

Φ
(j)
k (K, M ; ·) of Theorem 5.2.3 is desirable. Results concerning the total measures

Φ
(j)
k (K, M ; Rd × Rd) =: V

(j)
k (K, M) were found by Goodey and Weil [277], Weil

[790, 791, 800].
For further information on translative integral geometry, we refer to the Notes

for Section 6.4.

4. Kinematic formulas for support measures. The curvature measures, for
which we have proved the local principal kinematic formula and the Crofton formula,
are specializations of the support measures Ξm introduced in Section 14.2. There
are also versions of these formulas for support measures. They require that the
intersection of Borel sets in Rd be replaced by a suitable law of composition for
subsets of Σ = Rd × Sd−1, which is adapted to intersections of convex bodies. For
A, B ⊂ Σ, let

A ∧ B := {(x, u) ∈ Σ : there are u1, u2 ∈ Sd−1 with

(x, u1) ∈ A, (x, u2) ∈ B, u ∈ pos {u1, u2}},

where pos {u1, u2} := {λ1u1+λ2u2 : λ1, λ2 ≥ 0} is the positive hull of {u1, u2}. Now
for convex bodies K, M ∈ K′, Borel sets A ⊂ Nor K and B ⊂ Nor M (where Nor
denotes the generalized normal bundle, see Section 14.2), and for j ∈ {0, . . . , d− 2},
the formula∫

Gd

Ξj(K ∩ gM, A ∧ gB) µ(dg) =

d−1∑
k=j+1

ck,d−k+j
j,d Ξk(K, A)Ξd−k+j(M, B) (5.26)

holds (for j = d − 1, both sides would give 0).
For a q-flat E ∈ A(d, q), q ∈ {1, . . . , d − 1}, one defines

A ∧ E := {(x, u) ∈ Σ : there are u1, u2 ∈ Sd−1 with

(x, u1) ∈ A, x ∈ E, u2 ∈ E⊥, u ∈ pos {u1, u2}},

where E⊥ is the linear subspace totally orthogonal to E. Then the local Crofton
formula has the following extension. Let K ∈ K′ be a convex body, k ∈ {1, . . . , d−1},
j ∈ {0, . . . , k − 1}, and let A ⊂ Nor K be a Borel set. Then∫

A(d,k)

Ξj(K ∩ E, A ∧ E) µk(dE) = ck,d−k+j
j,d Ξd−k+j(K, A).

These results are due to Glasauer [266], under an additional assumption in the case
of (5.26). A common boundary point x of the convex bodies K, M is said to be
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‘exceptional’ if the linear hulls of the normal cones of K and M at x have a non-
zero intersection. Glasauer assumed that the set of rigid motions g for which K and
gM have some exceptional common boundary point, is of Haar measure zero. He
conjectured that this assumption is always satisfied. This was proved by Schneider
[700]. An alternative proof of a more general result appears in Zähle [831].

5. A local version of Hadwiger’s general integral geometric theorem. The
local principal kinematic formula together with the local Crofton formula (Theorems
5.3.2 and 5.3.3) can be extended in the same way as the principal kinematic formula
and the Crofton formula (Theorems 5.1.3 and 5.1.1) are extended by Hadwiger’s
general integral geometric theorem. This abstract version of (5.17) reads as follows.

Theorem. Let Λ : K′ × B(Rd) → R be a mapping with the following properties:

(a) Λ(K, ·) is a finite positive measure concentrated on K, for all K ∈ K′.

(b) The map K �→ Λ(K, ·) is additive and weakly continuous.

(c) If K, M ∈ K′, A ⊂ Rd is open and K ∩ A = M ∩ A, then Λ(K, B) = Λ(M, B)
for all Borel sets B ⊂ A.

Then, for K, M ∈ K′, A, B ∈ B(Rd) and j ∈ {0, . . . , d}, the formula∫
Gd

Λ(K ∩ gM, A ∩ gB) µ(dg) =
d∑

k=0

Λd−k(K, A)Φk(M, B)

(with Λ(∅, ·) := 0) holds, where

Λd−k(K, B) :=

∫
A(d,k)

Λ(K ∩ E, B) µk(dE).

This was proved by Schneider [696]. An analog in spherical space and a simpler proof
in Euclidean space were given by Glasauer [264]. Examples of mappings Λ satisfying
the above properties are the relative curvature measures introduced in Schneider
[696]. Also (5.26) admits an abstract generalization in the spirit of Hadwiger’s gen-
eral integral geometric theorem; see Glasauer [268], Theorem 7.

6. Tensor valuations. The intrinsic volumes and their local versions arise from
the notion of volume, through the Steiner formula. Replacement of the volume by
vectorial or higher rank tensorial moments leads to tensor-valued valuations on
convex bodies and raises the question whether their properties and their role in
integral geometry extend those of the intrinsic volumes. To explain this, we denote
by Tp the vector space of symmetric tensors of rank p over Rd (we identify Rd with
its dual space, using the scalar product, so that no distinction between covariant
and contravariant tensors is necessary). If p ∈ N and x ∈ Rd, we write xp for the
p-fold tensor product x ⊗ · · · ⊗ x, and we put x0 := 1. For symmetric tensors a and
b, their symmetric product is denoted by ab. For K ∈ K′ and p ∈ N0, let

Ψp(K) :=
1

p!

∫
K

xp λ(dx).

The Steiner formula extends to a polynomial expansion

Ψp(K + εBd) =

d+p∑
k=0

εd+p−kκd+p−kV
(p)

k (K) (5.27)
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for ε > 0, with V
(p)

k (K) ∈ Tp. Each function V
(p)

k : K′ → Tp is additive, continuous

and isometry covariant, which means that V
(p)

k (ϑK) = ϑV
(p)

k (K) for every rotation

ϑ ∈ SOd and that V
(p)

k (K + t) is a (tensor) polynomial in t ∈ Rd of degree p. The
known facts in the case p = 0 suggest the following questions: (a) Is an additive, con-
tinuous, isometry covariant function f : K′ → Tp necessarily a linear combination of
V

(p)
0 , . . . , V

(p)
d+p? (b) Do the coefficients V

(p)
k satisfy kinematic and Crofton formulas?

For p = 0, positive answers were given in this chapter. For p = 1, both questions
were answered affirmatively by Hadwiger and Schneider [312]. For p > 1, however,
the situation is different. One has to consider more general tensor valuations, defined
by

Φm,r,s(K) :=
1

r!s!

ωd−m

ωd−m+s

∫
Σ

xrus Ξm(K, d(x, u))

for K ∈ K′ and integers r, s ≥ 0, 0 ≤ m ≤ d − 1 (the factors before the integral
turn out to be convenient). They were introduced (via a polytopal approach) by
McMullen [472]. Besides these tensor functions Φm,r,s : K′ → Tr+s, one also needs
the metric tensor G ∈ T2 of Rd. The functions GqΦm,r,s and GqΨp (q ∈ N0) are
called basic tensor valuations. Answering a question posed by McMullen [472],
Alesker [17], based on his earlier work in [16], proved the following extension of
Hadwiger’s characterization theorem:

Theorem. If p ∈ N0 and if f : K′ → Tp is an additive, continuous, isometry
covariant function, then f is a linear combination of the functions GqΦm,r,s (with
2q + r + s = p) and the functions GqΨr (with 2q + r = p).

McMullen [472] had already discovered a set of nontrivial linear relations be-
tween the basic tensor valuations. Therefore, Alesker’s result yielded a generating
system, but not a basis or the dimension of the vector space of continuous, isometry
covariant tensor valuations of fixed rank. This remaining problem was settled by
Hug, Schneider and Schuster [374], who proved that the relations between the basic
tensor valuations discovered by McMullen are essentially the only ones.

By Alesker’s result, the coefficients V
(p)

k appearing in the Steiner polynomial
(5.27) are linear combinations of basic tensor valuations. Question (b) above should,
therefore, be modified, asking whether the functions Φm,r,s and Ψp satisfy kinematic
and Crofton formulas. Unlike in the cases of rank zero or one, the characterization
theorem does not seem useful for obtaining integral geometric formulas, due to the
linear relations between the basic tensor valuations; hence, direct computations are
required. It is sufficient to derive Crofton formulas, since then Hadwiger’s general
integral geometric theorem, which in the case of tensor functions can be applied
coordinate-wise, immediately yields kinematic formulas. For dimension two and rank
one or two, kinematic formulas were already obtained by Müller [567] (except for
Φ0,1,1, in our notation), who took up a suggestion of Blaschke. An investigation for
all dimensions and ranks was begun by Schneider [701] and continued by Schneider
and Schuster [713]. This led, in particular, to a complete set of Crofton and kinematic
formulas in two and three dimensions. The higher-dimensional case turned out to
be intricate; it was settled by Hug, Schneider and Schuster [375].

7. Non-intersecting sets: distances. All the integral geometric results consid-
ered up to now in this chapter concern the intersection of a fixed and a moving
set. For convex sets, there are also kinematic formulas involving relations between
non-intersecting sets. One possibility consists in taking distances into account. The
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distance d(K, L) of a compact set K ⊂ Rd and a closed set L ⊂ Rd, K, L �= ∅, is
defined by

d(K, L) := min{‖x − y‖ : x ∈ K, y ∈ L}.
Let f : [0,∞) → [0,∞) be a measurable function satisfying f(0) = 0 and

mk(f) :=
1

k!

∫ ∞

0

f(r)rk dr < ∞ for k = 0, . . . , d − 1.

Then, for convex bodies K, M ∈ K′, the kinematic formula∫
Gd

f(d(K, gM)) µ(dg) =

d−1∑
j=0

d−j−1∑
k=0

cd−j,d−k
d,0 md−j−1−k(f)Vj(K)Vk(M)

holds. This can be generalized in various directions. To give one example, suppose
that for the convex bodies K, M with K ∩ M = ∅ there is a unique pair x ∈ K,
y ∈ M with ‖x − y‖ = d(K, M). Then one can define p(K, M) := x. One can show
that p(K, gM) exists for µ-almost all g ∈ Gd with K ∩ gM = ∅. If f : (0,∞) ×
bd K × bd M → R is a measurable function for which the integral∫

K∩gM=∅
f(d(K, gM), p(K, gM), g−1p(gM, K)) µ(dg)

is finite, then this integral can be expressed in terms of integrals of curvature mea-
sures of K and M . Similarly, one can treat kinematic integrals involving functions
of the unit vector pointing from K to gM . Further, the moving convex body can be
replaced by a moving flat.

For the special case where M is one-pointed, a related formula is given by The-
orem 14.3.3.

Contributions to this area are due to Hadwiger [309, 310], Bokowski, Hadwiger
and Wills [111], Schneider [675], Groemer [291], Weil [779, 780, 782]. We refer also
to Section 4 of the survey article by Schneider and Wieacker [720].

Translative formulas for non-intersecting convex bodies in suitable general po-
sition have been studied by Kiderlen and Weil [409]; the results involve mixed cur-
vature measures. Hug, Last and Weil [358] give a quite general translative formula,
allowing also non-Euclidean distances and using relative support measures (a special
case is Theorem 14.3.3). A corresponding version for flats is contained in Hug, Last
and Weil [360].

8. Non-intersecting sets: convex hulls. Glasauer [267] found a new type of
kinematic formulas, involving the convex hull of a fixed and a moving convex body.
Since convex hulls with a freely moving convex body are not uniformly bounded,
the results can only be of the type of weighted limits. Let K ∨M denote the convex
hull of K ∪ M . A typical result of Glasauer concerns the mixed volumes with fixed
convex bodies Kj+1, . . . , Kd and states that

lim
r→∞

1

rd+1

(d + 1)κd

κd−1

∫
{g∈Gd: gM⊂rBd}

V (K ∨ gM [j], Kj+1, . . . , Kd) µ(dg)

=

j−1∑
k=0

V (K[k], Bd[j − k], Kj+1, . . . , Kd)V (M [j − k − 1], Bd[d − j + k + 1]).
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This is a special case of Theorem 3 of Glasauer [267]. He has considerably more
general results, for not necessarily invariant measures, and with mixed area measures
instead of mixed volumes. For Kj+1 = . . . = Kd = Bd, the formula reduces to one
for intrinsic volumes. For this result, there is also a local version, which is ‘dual’ to
formula (5.26). It involves a law of composition for subsets of Σ which is adapted
to the convex hull operation for pairs of convex bodies. For A, B ⊂ Σ, let

A ∨ B := {(x, u) ∈ Σ : there are x1, x2 ∈ R
d with

〈x1 − x2, u〉 = 0, (x1, u) ∈ A, (x2, u) ∈ B, x ∈ conv{x1, x2}}.

Now suppose that K, M ∈ K′, A ⊂ Nor K and B ⊂ Nor M are Borel sets, and
j ∈ {0, . . . , d − 1}. Then Glasauer [268] proved (with different notation) that

lim
r→∞

1

rd+1

∫
{g∈Gd: gM⊂rBd}

Ξj(K ∨ gM, A ∨ gB) µ(dg)

=

j−1∑
k=0

βdjkΞk(K, A)Ξj−k−1(M, B),

with explicit constants βdjk. The proof requires the following regularity result. A
common supporting hyperplane H of the convex bodies K, M (leaving K and M
on the same side) is said to be exceptional if the affine hulls of the sets H ∩ K and
H ∩ M have a nonempty intersection or contain parallel lines. Then the set of all
rigid motions g for which K and gM have some exceptional common supporting
hyperplane is of Haar measure zero. This was conjectured by Glasauer and proved
by Schneider [700].

9. Dual quermassintegrals. The principal kinematic formula for convex bodies
involves the intrinsic volumes, which belong to the Brunn–Minkowski theory. There
are analogs in the dual Brunn–Minkowski theory. This analogy becomes clearer in
terms of the quermassintegrals W0, . . . , Wn (see (14.6)). Equivalent to (5.8) is the
formula

Wd−i(K) =
κd

κi

∫
G(d,i)

λi(K|L) νi(dL)

for i = 0, . . . , d. In terms of the quermassintegrals, the principal kinematic for-
mula has the form (5.12). Let K ⊂ Rd be a star body (a compact set, star-shaped
with respect to 0, with continuous radial function). The dual quermassintegrals

W̃0, . . . , W̃d are defined by

W̃d−i(K) =
κd

κi

∫
G(d,i)

λi(K ∩ L) νi(dL).

For g ∈ Gd, let Ng denote the segment joining 0 and g0. Zhang [833] has proved the
kinematic formula∫

Gd

χ(K ∩ gM ∩ Ng) µ(dg) =
1

κd

d∑
i=0

(
d

i

)
W̃i(K)W̃d−i(M)

for star bodies K, M ⊂ Rd, which is formally very similar to (5.12).
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10. Striking combinatorial analogs of the kinematic formula in the context of finite
lattices were found by Klain [415]; see also Klain and Rota [416, p. 29].

11. Kinematic formulas for boundaries of convex bodies. Let K, M ⊂ Rd

be convex bodies with nonempty interiors, and let ∂K, ∂L denote their boundaries.
The following two kinematic formulas, involving intersections of two convex surfaces
or of a convex surface and a convex body, were conjectured by Firey (see Problem
18 in the collection of Gruber and Schneider [298]):∫

Gd

χ(∂K∩g∂M) µ(dg) =
1 + (−1)d

κd

d−1∑
k=0

(
d

k

)
(1− (−1)k)Wd−k(K)Wk(M), (5.28)

∫
Gd

χ(∂K ∩ gM) µ(dg) =
1

κd

d−1∑
k=0

(
d

k

)
(1 − (−1)d−k)Wd−k(K)Wk(M). (5.29)

For polytopes, these formulas can easily be verified. However, there is no simple
approximation argument to extend the results to general convex bodies. In Hug
and Schätzle [368], Firey’s conjecture was confirmed by proving the following more
general translative versions of (5.28) and (5.29):∫

Rd

χ(∂K ∩ (∂M + x)) λ(dx)

= (1 + (−1)d)

d−1∑
k=0

(
d

k

) (
Vk(K,−M) + (−1)k−1Vk(K, M)

)
,

where Vk(K, L) denotes the mixed volume of k copies of K and d − k copies of L,
and∫

Rd

χ(∂K ∩ (M + x)) λ(dx) =

d−1∑
k=0

(
d

k

) (
Vk(K,−M) + (−1)d−k−1Vk(K, M)

)
.

From these formulas, (5.28) and (5.29) are obtained if one replaces M by ϑM , inte-
grates over all ϑ ∈ SOd with respect to the invariant measure, and then applies [695,
formula (5.3.25)]. In fact, Firey’s original question was already answered implicitly
by a result of Fu [238], which, however, does not cover the translative case.

In Hug, Mani–Levitska and Schätzle [363], these integral geometric results are
extended further, to lower-dimensional sets. Furthermore, iterated formulas are es-
tablished concerning intersections of several convex bodies, which then are applied
to obtain formulas of stochastic geometry. Defining intrinsic volumes for intersec-
tions of convex surfaces in a suitable way by a Crofton type expression, integral
formulas for such functionals are also derived.

12. Further information on kinematic and Crofton formulas is contained in the
survey article by Hug and Schneider [369].

13. A Gaussian kinematic formula. Taylor [754] obtains an analog of the Steiner
formula and Weyl tube formula, with Lebesgue measure replaced by Gaussian mea-
sure. This is then applied in an analog of the principal kinematic formula, expressing
the expected Euler characteristic of excursion sets for certain random fields. For the
geometry of random fields, see Adler [1] and Adler and Taylor [2].
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5.4 Intersection Formulas for Submanifolds

The integral geometric formulas considered so far all refer to intersections
of a fixed and a moving set, and these sets, with the exception of Theorem
5.2.1, were either convex bodies or affine subspaces. Certain applications to
stochastic geometry or stereology, dealing with fiber or surface processes, re-
quire intersection formulas for submanifolds of various dimensions and for
Hausdorff measures of their intersections. In the present section we describe
such results. The technical requirements for such a treatment depend on the
generality of the notion of k-dimensional surface that is used. For the most
elementary notion, polyhedral surfaces, the results stated below are easily ob-
tained from the results previously established and by the methods used in this
book. However, already smooth surfaces would require different methods. The
more general k-surfaces, for which the results will be formulated, need notions
and techniques from geometric measure theory. Since this is outside the scope
of this book, we present only the results and give references to complete proofs
(including the measurability considerations omitted here).

Some notions from geometric measure theory, which are used in the fol-
lowing, are collected in Section 14.5 of the Appendix. In this section, we do
not aim at the greatest generality, but prefer simpler formulations which are
sufficient for our applications.

Let k ∈ {0, . . . , d}. Recall that a subsetM ⊂ Rd is k-rectifiable if it is the
image of some bounded subset of Rk under some Lipschitz map. The set M
is countably k-rectifiable if it is the union of countably many k-rectifiable
sets. By a k-surface we understand, in this section, a countably k-rectifiable
Borel setM withHk(M) <∞, whereHk denotes the k-dimensional Hausdorff
measure.

A trivial case of the translative integrals we want to consider is obtained
if we take a k-dimensional convex body K and a (d− k)-dimensional convex
body M . In that case, we immediately get∫

Rd

H0(K ∩ (M + t))λ(dt) = [K,M ]Hk(K)Hd−k(M).

The first theorem of this section is a generalization of this simple formula to
k-surfaces.

Let M be a k-surface. Then there exist k-dimensional C1-submanifolds
N1, N2, . . . such that Hk(M \

⋃
i∈NNi) = 0. Let TxNi denote the tangent

space of Ni at x ∈ Ni (considered as a subspace of Rd). For a Borel set
A ∈ B(G(d, k)), we define

τM (A) := Hk

(⋃
i∈N

{x ∈M ∩Ni : TxNi ∈ A}
)
.

This defines a finite measure τM on G(d, k), which depends only on M .
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Theorem 5.4.1. Let n ∈ {1, . . . , d − 1}, and let Mi be a ki-surface, for i =
0, . . . , n, with k := k0 + . . .+ kn ≥ nd. Then∫

Rd

. . .

∫
Rd

Hk−nd(M0 ∩ (M1 + t1) ∩ . . . ∩ (Mn + tn))λ(dt1) · · ·λ(dtn)

=
∫

G(d,kn)

. . .

∫
G(d,k0)

[L0, . . . , Ln] τM0(dL0) · · · τMn
(dLn).

For the proof, we refer to Wieacker [816]. He has a more general result, for
(Hki , ki)-rectifiable subsets Mi, but in that case, an additional assumption on
the product M0 × . . .×Mn is required.

Our first conclusion from Theorem 5.4.1 is a kinematic formula for two
surfaces.

Theorem 5.4.2. Let k0, k1 ∈ {1, . . . , d− 1} be numbers with k0 + k1 ≥ d, let
Mi be a ki-surface, for i = 0, 1. Then∫

Gd

Hk0+k1−d(M0 ∩ gM1)µ(dg) = ck0,k1
k0+k1−d,dHk0(M0)Hk1(M1).

This theorem holds, more generally, forHki-rectifiable subsetsMi, i = 0, 1,
if it is assumed that M0 ×M1 is (Hk0+k1 , k0 + k1)-rectifiable; see Zähle [823].
We also refer to this paper for the necessary measurability considerations and
the proof that M0 ∩ gM1 is (Hk0+k1−d, k0 +k1−d)-rectifiable for µ-almost all
g ∈ Gd. Here we show only how the formula of Theorem 5.4.2 follows from
that of Theorem 5.4.1.

Proof. Making use of the obvious facts that τϑM = ϑ(τM ) for ϑ ∈ SOd and
that the integral

∫
SOd

[L0, ϑL1] ν(dϑ) is invariant under rotations of L0, we
obtain ∫

Gd

Hk0+k1−d(M0 ∩ gM1)µ(dg)

=
∫

SOd

∫
Rd

Hk0+k1−d(M0 ∩ (ϑM1 + t))λ(dt) ν(dϑ)

=
∫

SOd

∫
G(d,k0)

∫
G(d,k1)

[L0, L1] τϑM1(dL1) τM0(dL0) ν(dϑ)

=
∫

SOd

∫
G(d,k0)

∫
G(d,k1)

[L0, ϑL1] τM1(dL1) τM0(dL0) ν(dϑ)

= cHk0(M0)Hk1(M1)

with a constant c. Its value is obtained from the principal kinematic formula
(5.10), if we choose forMi a convex body of dimension ki (i = 0, 1) and observe
that then Vj(M0 ∩ gM1) = Hk0+k1−d(K ∩ gM), Vk(M0) = 0 for k > k0 and
Vk0+k1−k(M1) = 0 for k < k0. ��
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From this kinematic formula, we can deduce a Crofton formula.

Theorem 5.4.3. Let k, q ∈ {1, . . . , d − 1} be numbers with k + q ≥ d, let M
be a k-surface. Then∫

A(d,q)

Hk+q−d(M ∩ E)µq(dE) = ck,q
k+q−d,dHk(M).

Proof. The proof is similar to that of Theorem 5.3.3, but simpler. Choose
Lq ∈ G(d, q) and a q-dimensional unit cube C ⊂ Lq. By Theorem 5.4.2,

J :=
∫

Gd

Hk+q−d(C ∩ gM)µ(dg) = ck,q
k+q−d,dHk(M).

On the other hand,

J =
∫

SOd

∫
Rd

Hk+q−d(C ∩ (ϑM + t))λ(dt) ν(dϑ)

=
∫

SOd

∫
L⊥

q

∫
Lq

Hk+q−d(C ∩ (ϑM + t1 + t2))λq(dt2)λd−q(dt1) ν(dϑ)

and ∫
Lq

Hk+q−d(C ∩ (ϑM + t1 + t2))λq(dt2)

=
∫

Lq

Hk+q−d((C − t2) ∩ (ϑM + t1))λq(dt2)

= Hk+q−d(Lq ∩ (ϑM + t1))

by Theorem 5.2.1 (the σ-finiteness condition is satisfied for almost all ϑ). This
gives

J =
∫

SOd

∫
L⊥

q

Hk+q−d(Lq ∩ (ϑM + t1))λd−q(dt1) ν(dϑ)

=
∫

SOd

Hk+q−d(M ∩ ϑ(Lq + t))λd−q(dt) ν(dϑ)

=
∫

A(d,q)

Hk+q−d(M ∩ E)µq(dE),

which completes the proof. ��

Finally, we consider the special case of Theorem 5.4.1 where each ki is
equal to d−1. IfM is a (d−1)-surface, it is convenient to replace the measure
τM by the even measure σM on the unit sphere which for A ∈ B(Sd−1) without
antipodal points is defined by
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σM (A) :=
1
2
τM ({u⊥ : u ∈ A}).

We define an auxiliary convex body ΠM , a zonoid, by its support function

h(ΠM , u) :=
1
2

∫
Sd−1

|〈u, v〉|σM (dv), u ∈ Sd−1. (5.30)

If K ∈ K′ is a convex body, then σbd K = (1/2)[Sd−1(K, ·)+Sd−1(−K, ·)] and,
therefore,

Πbd K = ΠK ,

where ΠK is the projection body of K, introduced in (14.40), (14.41).
If m ∈ {2, . . . , d} and Mi is a (d − 1)-surface (i = 1, . . . ,m), then the

formula of Theorem 5.4.1 can be written as follows (recall the definition of
∇m before Theorem 4.4.8).∫

Rd

. . .

∫
Rd

Hd−m(M1 ∩ (M2 + t2) ∩ . . . ∩ (Mm + tm))λ(dt2) · · ·λ(dtm)

=
∫

Sd−1
. . .

∫
Sd−1

∇m(u1, . . . , um)σM1(du1) · · ·σMm
(dum)

=
d!

(d−m)!κd−m
V (ΠM1 , . . . ,ΠMm

, Bd, . . . , Bd),

where the right side is a mixed volume. The last equality follows from (14.34),
observing the factor 1/2 in (5.30).

We state the last result as a theorem.

Theorem 5.4.4. Let m ∈ {2, . . . , d}, and let Mi be a (d − 1)-surface, for
i = 1, . . . ,m. Then∫

Rd

. . .

∫
Rd

Hd−m(M1 ∩ (M2 + t2) ∩ . . . ∩ (Mm + tm))λ(dt2) · · ·λ(dtm)

=
d!

(d−m)!κd−m
V (ΠM1 , . . . ,ΠMm

, Bd, . . . , Bd).

By a convex hypersurface we understand any (d − 1)-surface of the
form F = B ∩ bdK, where K ∈ K is a convex body with interior points and
B ∈ B(Rd) is a Borel set. For such a convex hypersurface, the body defined
by (5.30) can be represented by

h(ΠF , u) :=
1
2

∫
F

|〈u, nK(x)〉|Hd−1(dx), u ∈ Sd−1. (5.31)

Here nK(x) denotes the outer unit normal vector of K at x ∈ bdK; it is
uniquely determined Hd−1-almost everywhere on bdK. The integral in (5.31)
depends only on F and not on K.
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Notes for Section 5.4

1. The techniques of geometric measure theory that are needed for the general
versions of the results of this section are found in the book by Federer [229].

The first general versions of Theorems 5.4.2 and 5.4.3 are due to Federer [227].
Applications to random processes of Hausdorff rectifiable closed sets were inves-

tigated by Zähle [822].

2. The translative formulas of Theorems 5.4.1 and 5.4.4 appear in Wieacker [816].
He has extended the approach considerably and has studied various applications to
stochastic geometry; see [817, 818].

3. Crofton formulas in Minkowski spaces and projective Finsler spaces.
The particular case of Theorem 5.4.3, where M is a k-surface and q = d − k is the
complementary dimension, reduces to∫

A(d,d−k)

card(M ∩ E) µd−k(dE) = αdkHk(M) (5.32)

with a constant αdk. This formula provides a beautiful interpretation of the k-
dimensional area Hk(M): it is, up to a normalizing factor, the invariant measure
of the (d − k)-flats hitting M , weighted by the number of hits. This motivates the
following reverse question. If some other notion of k-dimensional area, denoted by
volk, is given, does there exist a measure (or a signed measure) ηd−k on A(d, d− k)
such that ∫

A(d,d−k)

card(M ∩ E) ηd−k(dE) = volk(M) (5.33)

holds for all k-surfaces M (or at least for a nontrivial subclass, such as polyhedral
surfaces)? This question has been studied in various degrees of generality, in partic-
ular, for Minkowski spaces and for projective Finsler spaces. A Minkowski space
is a finite-dimensional real normed vector space. A Finsler metric on an open con-
vex subset C of Rd is (here) a continuous function F : C × Rd → [0,∞) such that
F (x, ·) is a norm on Rd for each x ∈ C. In the following, the pair (C, F ) is called
a Finsler space, and it is called smooth if F is of class C∞ on C × Rd \ {0} and
the unit sphere of the norm F (x, ·) is quadratically convex (has positive curvatures),
for each x ∈ C. In a Finsler space, there is a canonical notion of curve length (and
an induced metric), denoted by vol1. The Finsler space (C, F ) is called projective
if line segments are shortest curves connecting their endpoints. The classical exam-
ples of projective Finsler spaces are Minkowski spaces and the Hilbert geometries in
bounded open convex sets.

In a Finsler space, for k > 1 there are many different possibilities of defining
a reasonable notion of k-dimensional area, but no canonical one (see Álvarez and
Thompson [31] for a survey). Two such notions are particularly natural and impor-
tant from a geometric point of view. These are the Busemann k-area, which is
defined by the k-dimensional Hausdorff measure coming from the induced metric,
and the Holmes–Thompson k-area, which is defined via the symplectic volume.
For a more detailed introduction, we refer to Schneider [712, pp. 165–177].

For the existence of Crofton type formulas, it has turned out that the Holmes–
Thompson area is the right area notion to be used. Let volk denote the k-dimensional
Holmes–Thompson area. It was observed, with different degrees of generality, by
Busemann [143], El–Ekhtiar [216] and Schneider and Wieacker [721] that for vold−1
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in a Minkowski space there always exists a translation invariant measure η1 on
A(d, 1) so that (5.33) holds. In order that (5.33) hold for vol1 with a translation
invariant measure ηd−1, it is necessary and sufficient that the Minkowski space be
hypermetric. (A metric space (S, δ) is hypermetric if

∑k
i,j=1 δ(pi, pj)NiNj ≤ 0

holds for k ≥ 2, all p1, . . . , pk ∈ S and all integers N1, . . . , Nk with
∑k

i=1 Ni = 1.)
This is equivalent to the condition that the unit ball of the dual Minkowski space is a
zonoid. If this assumption is satisfied, then there are translation invariant measures
ηj on A(d, j) such that the general Crofton type formula∫

A(d,j)

volk+j−d(M ∩ E) ηj(dE) = αnkjvolk(M) (5.34)

holds for all k ∈ {1, . . . , d}, j ∈ {d − k, . . . , d − 1} and for all k-surfaces M . This
was proved by Schneider and Wieacker [721, Th. 7.3]. For general (not necessarily
smooth) hypermetric projective Finsler spaces, the existence of measures ηd−k so
that (5.33) holds at least for k-dimensional compact convex sets M was established
by Schneider [705] (for k = d−1, the assumption ‘hypermetric’ can be deleted). The
proof yields merely the existence; an explicit construction for the line measure η1 in
polytopal Hilbert geometries is described in Schneider [711].

For smooth projective Finsler spaces, general investigations on Crofton densities
have been undertaken by Gelfand and Smirnov [255] and by Álvarez, Gelfand and
Smirnov [30], in part related to Hilbert’s fourth problem and to symplectic geom-
etry. Subsequent work by Álvarez and Fernandes [26, 27, 28, 29] and the thesis of
Fernandes [231] use double fibrations and the Gelfand transform as a unifying ap-
proach to integral geometric intersection formulas and obtain, in particular, Crofton
type formulas (with signed measures) for Holmes–Thompson areas of smooth sub-
manifolds in smooth projective Finsler spaces. The first of these papers makes use
of the symplectic structure on the space of geodesics of a projective Finsler space.
Later it turned out that the methods applied by Schneider and Wieacker [721] for
the case of hypermetric Minkowski spaces (where they yield measures ηj) can be
adapted to the case of smooth projective Finsler spaces (where they yield signed
measures). In this way, a very general version of the Crofton formula (5.34) was
obtained, namely for k = 1, . . . , d, j = d − k, . . . , d − 1 and for Holmes–Thompson
areas of (Hk, k)-rectifiable Borel sets M in smooth projective Finsler spaces (where
the local unit spheres need not be quadratically convex); see Schneider [706].

The special role that the Holmes–Thompson area plays in connection with
Crofton type formulas can be illuminated from other sides. Following Busemann,
one can define a general notion of Minkowskian (d − 1)-area by a few natural ax-
ioms. It was shown by Schneider [698] that there exist Minkowski spaces for which,
among all Minkowskian (d − 1)-areas, only the multiples of the Holmes–Thompson
area allow a Crofton formula (5.33) for k = d−1 with a translation invariant measure
η1. For the Busemann area, the picture is not clear. Let us say that, for a Minkowski
space S = (Rd, ‖ · ‖), the Busemann area is integral geometric if (5.33) holds for
S and for the Busemann (d − 1)-area with a translation invariant measure η1, and
at least for all (d−1)-dimensional compact convex sets M . The following was shown
by Schneider [703], for d ≥ 3. Every neighborhood (in the sense of the Banach–
Mazur distance) of the Euclidean space �d

2 contains Minkowski spaces for which the
Busemann area is not integral geometric, as well as spaces (different from �d

2) for
which the Busemann area is integral geometric. If d is sufficiently large, then a full



5.4 Intersection Formulas for Submanifolds 209

neighborhood of the Minkowski space �d
∞ consists of Minkowski spaces for which the

Busemann area is not integral geometric. We conjecture that it is generically true
(that is, for a dense open subset of the space of all d-dimensional Minkowski spaces)
that the Busemann area is not integral geometric. In the preceding counterexamples,
non-smoothness properties of the unit ball of the Minkowski space play a role. On
the other hand, Álvarez and Berck [25] have constructed smooth projective Finsler
spaces in which there is no Crofton formula for the Busemann area, not even with
a signed measure.

Additional and more detailed information can be found in the survey of Schneider
[710].



6

Extended Concepts of Integral Geometry

In this chapter, we derive further integral geometric formulas for convex bod-
ies. They are related to the principal kinematic formula, either directly or
indirectly. As in the latter formula, we have a fixed and a moving set, but
in the two subsequent sections we do not consider intersections of both; we
form sums of convex bodies or projections of convex bodies to subspaces. First
we treat rotation means of Minkowski sums, which will later (Section 8.5) be
applied to touching probabilities. The global version is an immediate conse-
quence of the principal kinematic formula; the local version will be proved
by techniques similar to those in Sections 5.2 and 5.3. From the formulas for
rotation means of sums we deduce projection formulas.

In Section 6.3, we admit (infinite) convex cylinders as moving sets. For
these, we derive a local kinematic formula, and we also obtain a formula that
combines sections with projections.

Section 6.4 is devoted to a continuation of translative integral geometry.
We treat iterated translative formulas, which involve a more general series
of mixed measures, and consider rotation means and results of Crofton type
for the mixed measures. The integral formulas for mixed measures and their
global versions, the mixed functionals, also yield kinematic formulas for certain
mixed volumes and for projection functions and support functions of convex
bodies.

Section 6.5 provides an introduction to the integral geometry of spherically
convex sets in the spherical space Sd−1.

6.1 Rotation Means of Minkowski Sums

In this section, we are interested in mean value formulas for the Minkowski
sum of a fixed and a moving convex body. The functions to be integrated are
again intrinsic volumes and curvature measures. Since Vj(K + (ϑM + x)), for
example, does not depend on x, only the rotations of M are relevant, hence
we shall be interested in the integral
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SOd

Vj(K + ϑM) ν(dϑ).

In order to illustrate the connection with the principal kinematic formula, we
first prove the global version of the rotational mean value formula.

Theorem 6.1.1. If K,M ∈ K′ are convex bodies and if j ∈ {0, . . . , d}, then∫
SOd

Vj(K + ϑM) ν(dϑ) =
j∑

k=0

cd+k−j,d−k
d−j,d Vk(K)Vj−k(M).

Proof. First we consider the case j = d. We have∫
SOd

Vd(K + ϑM) ν(dϑ) =
∫

SOd

∫
Rd

1K+ϑM (x)λ(dx) ν(dϑ).

The relation x ∈ K+ϑM is equivalent toK∩(ϑM ′+x) �= ∅, whereM ′ := −M .
Hence, we obtain∫

SOd

Vd(K + ϑM) ν(dϑ) =
∫

SOd

∫
Rd

V0(K ∩ (ϑM ′ + x))λ(dx) ν(dϑ)

=
∫

Gd

V0(K ∩ gM ′)µ(dg)

=
d∑

k=0

ck,d−k
0,d Vk(K)Vd−k(M),

where we have used the principal kinematic formula (Theorem 5.1.3) and the
fact that Vj(M ′) = Vj(M) for j = 0, . . . , d.

Now we replace K by K + εBd with ε > 0 and apply the Steiner formula
(14.16), to obtain

d∑
j=0

εd−jκd−j

∫
SOd

Vj(K + ϑM) ν(dϑ)

=
∫

SOd

Vd((K + ϑM) + εBd) ν(dϑ)

=
∫

SOd

Vd((K + εBd) + ϑM) ν(dϑ)

=
d∑

m=0

cm,d−m
0,d Vm(K + εBd)Vd−m(M)

=
d∑

m=0

m∑
k=0

εm−k 1
(m− k)!c

m,d−k
0,d Vk(K)Vd−m(M).
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Putting m = d + k − j and changing the order of summation, we get the
double sum

d∑
j=0

εd−jκd−j

j∑
k=0

cd+k−j,d−k
d−j,d Vk(K)Vj−k(M).

Comparing the coefficients, we obtain the assertion for all j ∈ {0, . . . , d}. ��

We want to extend the previous theorem to curvature measures, that is,
replace the integrand Vj(K + ϑM) by Φj(K + ϑM,A + ϑB). Evidently, this
requires a restriction to the cases j < d and to Borel sets A ⊂ K, B ⊂ M ,
contained in the respective bodies. Even under this assumption, A+ ϑB is in
general not a Borel set, so that Φj(K + ϑM,A + ϑB) would not be defined.
However, it will be sufficient to know the following.

Lemma 6.1.1. Let K,M ∈ K′, A,B ∈ B(Rd) and A ⊂ K, B ⊂ M . For ν-
almost all ϑ ∈ SOd the set

(A+ ϑB) ∩ bd (K + ϑM)

is a Borel set, hence Φj(K + ϑM,A+ ϑB) is defined for j = 0, . . . , d− 1.

Proof. For x ∈ bd (K + ϑM) there is a representation x = y + z with y ∈
K, z ∈ ϑM . The points x, y, z lie in parallel supporting hyperplanes of K +
ϑM , K, and ϑM , respectively; in particular, y ∈ bdK and z ∈ bdϑM .
Suppose there is another representation x = y1+z1 with y1 ∈ K and z1 ∈ ϑM ,
then y − y1 = z1 − z, and the segments yy1, z1z satisfy yy1 ⊂ bdK and
z1z ⊂ bdϑM . Hence the bodies K and ϑM contain parallel segments lying in
parallel supporting hyperplanes. A theorem from the theory of convex bodies
(see Schneider [695, Theorem 2.3.10]) says that for ν-almost all ϑ ∈ SOd this
does not occur. Hence, for these ϑ the representation x = y + z with y ∈ K
and z ∈ ϑM is unique for each x ∈ bd (K + ϑM). Putting

π1(K,M,ϑ, x) := y, π2(K,M,ϑ, x) := ϑ−1z,

we obtain mappings

π1(K,M,ϑ, ·) : bd (K + ϑM)→ bdK,

π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdM.

From the compactness of the bodies K,M it follows easily that the mapping

π := π1(K,M,ϑ, ·)× π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdK × bdM

is continuous. Hence, for Borel sets A ⊂ K, B ⊂M the set

(A+ ϑB) ∩ bd (K + ϑM) = π−1(A×B)

is a Borel set, too. ��
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In proving the local version of Theorem 6.1.1, we proceed similarly to the
case of the principal kinematic formula, so we first consider polytopes. We
say that two polytopes K,M ∈ P ′ are in general relative position if for
any two faces F of K and G of M the linear subspaces L(F ), L(G) parallel to
aff F , aff G, respectively, are in general position.

Theorem 6.1.2. If K,M ∈ K′ are convex bodies, A,B ∈ B(Rd) are Borel
sets satisfying A ⊂ K and B ⊂M , and if j ∈ {0, . . . , d− 1}, then∫

SOd

Φj(K + ϑM,A+ ϑB) ν(dϑ)

=
j∑

k=0

cd+k−j,d−k
d−j,d Φk(K,A)Φj−k(M,B). (6.1)

Proof. The measurability of the integrand will be verified in the course of the
proof. First we consider the case j = d− 1.

Let K,M be d-dimensional polytopes. By Lemmas 13.2.1 and 6.1.1, there
is a Borel set DK,M ⊂ SOd with ν(DK,M ) = 1 such that K and ϑM are
in general relative position and (A + ϑB) ∩ bd (K + ϑM) is a Borel set if
ϑ ∈ DK,M . Let ϑ ∈ DK,M . Since K + ϑM is a polytope, we have

Φd−1(K + ϑM,A+ ϑB) =
∑

F ′∈Fd−1(K+ϑM)

γ(F ′,K + ϑM)λF ′(A+ ϑB).

Because of ϑ ∈ DK,M , each facet F ′ ∈ Fd−1(K + ϑM) is of the form F ′ =
F+ϑG with F ∈ Fk(K) and G ∈ Fd−1−k(M), for some k ∈ {0, . . . , d−1}. For
faces F ∈ Fk(K) and G ∈ Fd−1−k(M), we put L1 := (aff F )⊥, L2 := (aff G)⊥;
then L1 ∩ ϑL2 is of dimension one. The external angle γ(F + ϑG,K + ϑM) is
zero if F + ϑG is not a face of K + ϑM ; otherwise it is equal to 1/2, and this
happens if and only if

N(K,F ) ∩ ϑN(M,G) ∩ Sd−1 �= ∅.

For arbitrary subsets U ⊂ L1, V ⊂ L2, the intersection U ∩ ϑV ∩ Sd−1 is
either empty or one-pointed or two-pointed; we put

I(U, V, ϑ) :=
1
2
card (U ∩ ϑV ∩ Sd−1).

If F + ϑG is a face of K + ϑM , then

(A+ ϑB) ∩ (F + ϑG) = (A ∩ F ) + ϑ(B ∩G).

Since the sum F + ϑG is direct, we obtain

λF+ϑG(A+ ϑB) = [F, ϑG]λF (A)λG(B).
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This yields

Φd−1(K + ϑM,A+ ϑB)

=
d−1∑
k=0

∑
F∈Fk(K)

∑
Fd−1−k(M)

λF (A)λG(B)I(N(K,F ), N(M,G), ϑ)[F, ϑG].

If faces F,G are given, we now define

J(U, V ) :=
∫

SOd

I(U, V, ϑ)[F, ϑG] ν(dϑ)

for arbitrary Borel sets U ⊂ L1 ∩ Sd−1, V ⊂ L2 ∩ Sd−1. The measurability
of the integrand is easily verified. This also yields the measurability of the
integrand in (6.1) for the case where K and M are polytopes. Similarly to the
proof of Theorem 5.3.1 one now proves the equality

J(U, V ) = αdk σd−k−1(U)σk(V )

with a certain constant αdk > 0. This gives∫
SOd

Φd−1(K + ϑM,A+ ϑB) ν(dϑ)

=
d−1∑
k=0

∑
F∈Fk(K)

∑
G∈Fd−k−1(M)

α′
dkγ(F,K)γ(G,M)λF (A)λG(B)

=
d−1∑
k=0

α′
dkΦk(K,A)Φd−k−1(M,B).

If A = K and B = M , this formula must coincide with the corresponding one
in Theorem 6.1.1, hence α′

dk = ck+1,d−k
1,d . Thus the proof of the case j = d− 1

of (6.1) for d-dimensional polytopes K,M is complete.
Now let K,M be arbitrary d-dimensional convex bodies. Without loss of

generality, we assume 0 ∈ intK ∩ intM . Then 0 is an inner point of K +ϑM ,
for all rotations ϑ ∈ SOd. By Lemma 6.1.1, there is a Borel set DK,M ⊂ SOd

with ν(DK,M ) = 1 such that for ϑ ∈ DK,M there exist the mappings

π1(K,M,ϑ, ·) : bd (K + ϑM)→ bdK,

π2(K,M,ϑ, ·) : bd (K + ϑM)→ bdM

introduced in the proof of the lemma. Let ϑ ∈ DK,M . We extend the domain
of π1(K,M,ϑ, ·) and π2(K,M,ϑ, ·) to all of Rd. Since 0 ∈ int (K + ϑM), to
each x ∈ Rd there exist α ≥ 0 and x ∈ bd (K + ϑM) with x = αx. We set

πk(K,M,ϑ, x) := απk(K,M,ϑ, x) for k = 1, 2.
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Evidently the mappings πk(K,M,ϑ, ·) : Rd → Rd thus defined are continuous
(k = 1, 2). Let ϕ(K,M,ϑ, ·) be the image measure of Φd−1(K + ϑM, ·) under
the map

π(K,M,ϑ, ·) := π1(K,M,ϑ, ·)× π2(K,M,ϑ, ·).
Then ϕ(K,M,ϑ, ·) is a finite Borel measure on Rd×Rd, and for A,B ∈ B(Rd)
with A ⊂ K and B ⊂M , we have

ϕ(K,M,ϑ,A×B) = Φd−1(K + ϑM,A+ ϑB). (6.2)

By the transformation rule for integrals,

∫
Rd×Rd

f(x, y)ϕ(K,M,ϑ,d(x, y))

=
∫

Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) (6.3)

for all continuous functions f on Rd × Rd.
Now let ϑ ∈ DK,M and let (ϑi)i∈N be a sequence in DK,M converging to

ϑ. We show that ϕ(K,M,ϑi, ·) converges weakly to ϕ(K,M,ϑ, ·) if i → ∞.
We can choose a convex body C ∈ Kd with K + ϑiM ⊂ C for all i ∈ N. Let
f ∈ C(Rd ×Rd). The function f is uniformly continuous on C ×C, hence for
given ε > 0 there is δ with |f(x, y)− f(x′, y′)| < ε for all x, y, x′, y′ ∈ C with
‖x − x′‖ + ‖y − y′‖ < 2δ. It is easy to see that πk(K,M,ϑi, ·) converges to
πk(K,M,ϑ, ·), uniformly on C, for k = 1, 2. We infer that ‖πk(K,M,ϑi, z)−
πk(K,M,ϑ, z)‖ < δ for all z ∈ C, almost all i ∈ N, and k = 1, 2. Together
with (6.3) this gives∣∣∣∣ ∫

Rd×Rd

f dϕ(K,M,ϑi, ·)−
∫

Rd×Rd

f dϕ(K,M,ϑ, ·)
∣∣∣∣

≤
∫

Rd

|f(π(K,M,ϑi, z))− f(π(K,M,ϑ, z))| Φd−1(K + ϑiM,dz)

+
∣∣∣∣ ∫

Rd

f(π(K,M,ϑ, z)) (Φd−1(K + ϑiM,dz)− Φd−1(K + ϑM,dz))
∣∣∣∣

< aε

for almost all i ∈ N, with a constant a not depending on i. Here we have used
the fact that Φd−1(K + ϑiM,R

d) is bounded by a constant depending only
on C (similarly to the proof of Theorem 5.2.3); further, the weak convergence
Φd−1(K + ϑiM, ·) w→ Φd−1(K + ϑM, ·) and the continuity of the function
f(π(K,M,ϑ, ·)) were applied.

The weak convergence thus established shows that for each f ∈ C(Rd×Rd)
the mapping

ϑ �→
∫

Rd×Rd

f dϕ(K,M,ϑ, ·)
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is continuous on DK,M . By Lemma 12.1.1 this implies the measurability of
the mapping

ϑ �→ ϕ(K,M,ϑ, U)

on DK,M , for all U ∈ B(Rd×Rd). In particular, for A,B ∈ B(Rd) with A ⊂ K
and B ⊂M we obtain from (6.2) the measurability of the map

ϑ �→ Φd−1(K + ϑM,A+ ϑB)

on DK,M and hence the measurability ν-almost everywhere of the integrand
in (6.1), if j = d− 1.

Putting

ϕ(K,M, ·) :=
∫

SOd

ϕ(K,M,ϑ, ·) ν(dϑ),

we now obtain a finite measure on Rd × Rd satisfying∫
Rd×Rd

f dϕ(K,M, ·) =
∫

SOd

∫
Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) ν(dϑ)

for f ∈ C(Rd × Rd). We consider convergent sequences Ki → K and
Mi → M of convex bodies Ki,Mi with 0 ∈ intKi ∩ intMi, and we put
D :=

⋂∞
i=1DKi,Mi

∩ DK,M . As before, we see that for ϑ ∈ D the functions
f(π(Ki,Mi, ϑ, ·)) converge for i → ∞, uniformly on every compact set, and
we deduce in a similar way that∫

Rd

f(π(Ki,Mi, ϑ, z))Φd−1(Ki + ϑMi,dz)

→
∫

Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz)

for i→∞. The dominated convergence theorem yields∫
SOd

∫
Rd

f(π(Ki,Mi, ϑ, z))Φd−1(Ki + ϑMi,dz) ν(dϑ)

→
∫

SOd

∫
Rd

f(π(K,M,ϑ, z))Φd−1(K + ϑM,dz) ν(dϑ)

and thus the weak convergence ϕ(Ki,Mi, ·) w→ ϕ(K,M, ·) for i→∞.
Obviously, the assertion of the theorem for j = d− 1 is equivalent to∫

Rd×Rd

f(x)g(y)ϕ(K,M,d(x, y))

=
d−1∑
k=0

ck+1,d−k
1,d

∫
Rd

f dΦk(K, ·)
∫

Rd

g dΦd−k−1(M, ·)
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for all f, g ∈ C(Rd). Since we have proved the assertion for d-dimensional
polytopes, we can use the latter equality, where both sides depend continu-
ously on K and M , to extend it by approximation to arbitrary d-dimensional
convex bodies K,M .

The extension to convex bodies without interior points and to j < d− 1 is
now achieved by an application of the local Steiner formula of Theorem 14.2.4.
We assume first that M ∈ K′ still has interior points, while K ∈ K′ may be
arbitrary. The assertion to be proved holds for j = d − 1 and for the bodies
K + εBd and M , where ε > 0 is arbitrary. Using Theorem 14.2.4 twice, we
therefore obtain the measurability of the integrand in (6.1) and the equalities

d−1∑
j=0

εd−1−j 1
(d− 1− j)!c

d−j
1

∫
SOd

Φj(K + ϑM,A+ ϑB) ν(dϑ)

=
∫

SOd

Φd−1(K + εBd + ϑM,A+ εSd−1 + ϑB) ν(dϑ)

=
d−1∑
r=0

cr+1,d−r
1,d Φr(K + εBd, A+ εSd−1)Φd−r−1(M,B)

=
d−1∑
r=0

cr+1,d−r
1,d

r∑
k=0

εr−k 1
(r − k)!c

d−k
d−rΦk(K,A)Φd−r−1(M,B)

=
d−1∑
j=0

εd−1−j 1
(d− 1− j)!c

d−j
1

j∑
k=0

cd+k−j,d−k
d−j,d Φk(K,A)Φj−k(M,B).

Comparing the coefficients, we obtain the assertion for the bodies K and M .
Analogously, M can be replaced by an arbitrary convex body. ��

Notes for Section 6.1

1. Theorem 6.1.1 goes back, with a different proof, to Hadwiger [307, p. 231]. A
local version of this mean value formula under Minkowski addition was first proved
by Schneider [673], though not for the curvature measures Φj , but for the area
measures Ψj . Weil [780] used a result of Schneider [677] on curvature measures to
prove Theorem 6.1.2. A simpler proof and a generalization appear in Schneider [688].

2. The rotation formula (6.1) has an extension to support measures. It involves an
operation for sets of support elements which is adapted to the Minkowski addition
of convex bodies. For sets A, B ⊂ Σ = Rd × Sd−1 we define

A ∗ B := {(x + y, u) ∈ Σ : (x, u) ∈ A, (y, u) ∈ B}.

This operation combines the behaviors of sets of boundary points and of normal
vectors of convex bodies under addition, in the following way. If A ⊂ Nor K and
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B ⊂ Nor M , then A ∗ B ⊂ Nor(K + M), and for A1, A2 ⊂ Rd and B1, B2 ⊂ Sd−1

we have
(A1 × B1) ∗ (A2 × B2) = (A1 + A2) × (B1 ∩ B2).

The following result holds for convex bodies K, M ∈ K′, Borel sets A ⊂ Nor K,
B ⊂ Nor M , and for j = 0, . . . , d − 1:∫

SOd

Ξj(K + ϑM, A ∗ ϑB) ν(dϑ) =

j∑
k=0

cd+k−j,d−k
d−j,d Ξk(K, A)Ξj−k(M, B). (6.4)

Special cases are (6.1) and the formula∫
SOd

Ψj(K + ϑM, A ∩ ϑB) ν(dϑ) =

j∑
k=0

cd+k−j,d−k
d−j,d Ψk(K, A)Ψj−k(M, B) (6.5)

for Borel sets A, B ⊂ Sd−1.
Formula (6.4) was proved by Schneider [688]; the special case (6.5) was obtained

earlier by Schneider [672].

3. For special pairs of convex bodies K, M ∈ K′, a counterpart to Theorem 6.1.1
holds with the sum K + ϑM replaced by the Minkowski difference K � ϑM . One
says that M rolls freely in K if for each rotation ϑ ∈ SOd and each point x ∈ bd K
there is a vector t such that x ∈ ϑM + t ⊂ K, equivalently, if each rotation image
ϑM is a summand of K (see Schneider [695, p. 150]). If M rolls freely in K, then∫

SOd

Vd(K � ϑM) ν(dϑ) =

d∑
k=0

(−1)d−kcd−k,k
d,0 Vk(K)Vd−k(M). (6.6)

In fact, Theorem 6.1.1 together with (14.20) yields

d∑
k=0

cd−k,k
d,0 Vk(K)Vd−k(M)εd−k =

∫
SOd

Vd(K + εϑM) ν(dϑ)

=
d∑

k=0

εd−k

(
d

k

) ∫
SOd

V (K[k], ϑM [d − k]) ν(dϑ).

Comparing the coefficients, we obtain(
d

k

) ∫
SOd

V (K[k], ϑM [d − k]) ν(dϑ) = cd−k,k
d,0 Vk(K)Vd−k(M) (6.7)

for k = 0, . . . , d. Since (K � M) + M = K, the symmetry and linearity properties
of mixed volumes imply

Vd(K � M) = V (K � M, . . . , K � M)

= V (K � M, . . . , K � M, K) − V (K � M, . . . , K � M, M)

= . . . =
d∑

k=0

(−1)d−k

(
d

k

)
V (K[k], M [d − k]),
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and similarly for ϑM instead of M . Together with (6.7) this yields (6.6).

4. Containment measures. While the principal kinematic formula expresses the
hitting measure µ({g ∈ Gd : gM∩K �= ∅}) of two convex bodies K, M ∈ K′ in terms
of intrinsic volumes, there is in general no simple expression for the containment
measure (also called inclusion measure)

I(M, K) := µ({g ∈ Gd : gM ⊂ K}).

An exception is the case of the previous note: if M rolls freely in K, then {t ∈ Rd :
ϑM + t ⊂ K} = K � ϑM , hence I(M, K) =

∫
SOd

Vd(K � ϑM) ν(dϑ).
For results on containment measures, in particular for the case where M is a

segment, we refer to Santaló [664], Ren [635], Zhang [832], the survey by Zhang and
Zhou [834], and the literature quoted there.

6.2 Projection Formulas

A further familiar operation for convex bodies is the projection to a subspace.
For a subspace L ∈ G(d, q), recall that A|L is the image of the set A ⊂ Rd

under the orthogonal projection to L. From the results of the last sections we
shall now derive projection formulas.

Theorem 6.2.1. If K ∈ K′ is a convex body, A ∈ B(Rd) is a Borel set
satisfying A ⊂ K, and if q ∈ {1, . . . , d− 1}, j ∈ {0, . . . , q − 1}, then∫

G(d,q)

Φj(K|L,A|L) νq(dL) = cq,d−j
d,q−jΦj(K,A). (6.8)

Proof. Let Lq ∈ G(d, q) be fixed. By the definition of νq,∫
G(d,q)

Φj(K|L,A|L) νq(dL) =
∫

SOd

Φj(K|ϑLq, A|ϑLq) ν(dϑ).

Let M be a unit cube in L⊥
q and B := relintM , then

Φk(M,B) =

{
1 for k = d− q,
0 for k �= d− q.

(6.9)

Let ϑ ∈ SOd be chosen in such a way that K and ϑM do not contain
parallel segments in parallel supporting hyperplanes. We consider the local
parallel set

Uε(K,A) := {x ∈ Rd : ‖x− p(K,x)‖ ≤ ε, p(K,x) ∈ A}.

For ε > 0 we have

Uε(K + ϑM, (A+ ϑB) ∩ bd (K + ϑM))

= {z ∈ Uε(K,A′) : z − p(K, z) ∈ ϑLq}+ ϑB
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with A′ := {a ∈ A : a|ϑLq ∈ relbd (K|ϑLq)}. In fact, if y = p(K + ϑM, x)
and y ∈ (A + ϑB) ∩ bd (K + ϑM), then y = a + ϑb with a ∈ A, b ∈ B.
There is a supporting hyperplane H to K + ϑM through y. Since ϑb lies in a
supporting hyperplane of ϑM parallel to H and since b ∈ relintM , we obtain
ϑL⊥

q + y ⊂ H and thus a ∈ A′. The argument can be reversed.
Trivially we have

(A|ϑLq) ∩ relbd (K|ϑLq) = A′|ϑLq. (6.10)

This set is a Borel set, since the orthogonal projection to ϑLq, restricted to
the points that are projected to relbd (K|ϑLq), is a homeomorphism, by the
choice of ϑ. Fubini’s theorem now gives

λ(Uε(K + ϑM, (A+ ϑB) ∩ bd (K + ϑM))) = λq(U (q)
ε (K|ϑLq, A

′|ϑLq)),

where U (q)
ε is a local parallel set in ϑLq. Using the local Steiner formula (14.12)

and (6.10), we obtain

d−1∑
i=0

εd−iκd−iΦi(K + ϑM,A+ ϑB) =
q−1∑
j=0

εq−jκq−jΦj(K|ϑLq, A|ϑLq),

hence
Φj(K|ϑLq, A|ϑLq) = Φd−q+j(K + ϑM,A+ ϑB)

for j = 0, . . . , q − 1 and

Φi(K + ϑM,A+ ϑB) = 0

for i = 0, . . . , d−q−1. This entails the measurability, up to a set of ν-measure
zero, of the mapping ϑ �→ Φj(K|ϑLq, A|ϑLq), and from Theorem 6.1.2 and
(6.9) we then obtain∫

SOd

Φj(K|ϑLq, A|ϑLq) ν(dϑ)

=
∫

SOd

Φd−q+j(K + ϑM,A+ ϑB) ν(dϑ)

=
d+j−q∑

r=0

cq+r−j,d−r
d,q−j Φr(K,A)Φd−q+j−r(M,B)

= cq,d−j
d,q−jΦj(K,A),

as asserted. ��

Theorem 6.2.1 implies a projection formula for the intrinsic volumes
Vj , j = 0, . . . , q − 1. This formula holds for Vq, too.
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Theorem 6.2.2. If K ∈ K′ and q ∈ {1, . . . , d− 1}, j ∈ {0, . . . , q}, then∫
G(d,q)

Vj(K|L) νq(dL) = cq,d−j
d,q−jVj(K).

Proof. Only the case j = q needs to be proved. Fix Lq ∈ G(d, q) and let Bd−q

be the unit ball in L⊥
q . For ε > 0, Theorem 6.1.1 gives

∫
SOd

Vd(ϑK + εBd−q) ν(dϑ) =
d∑

k=0

ck,d−k
d,0 Vk(K)Vd−k(Bd−q)εd−k.

The coefficient of εd−q is cq,d−q
d,0 Vq(K)κd−q. On the other hand, Fubini’s the-

orem gives

Vd(ϑK + εBd−q) =
∫

Lq

Vd−q((ϑK ∩ (L⊥
q + x)) + εBd−q)λq(dx).

Applying the Steiner formula (14.5) in L⊥
q + x, we obtain on the right side a

polynomial in ε, where the coefficient of εd−q is equal to∫
Lq

κd−qV0(ϑK ∩ (L⊥
q + x))λq(dx) = κd−qVq(ϑK|Lq) = κd−qVq(K|ϑ−1Lq).

Integrating over SOd (observing the invariance of ν) and comparing the coef-
ficients, we obtain the assertion. ��

Choosing q = j in Theorem 6.2.2, we get

Vj(K) = c0,d
j,d−j

∫
G(d,j)

Vj(K|L) νj(dL), (6.11)

which is known as Kubota’s formula. The special case j = d− 1 of (6.11)
yields the representation

S(K) = 2Vd−1(K) =
dκd

κd−1

∫
G(d,d−1)

Vd−1(K|L) νd−1(dL)

=
1

κd−1

∫
Sd−1

Vd−1(K|u⊥)σ(du) (6.12)

for the surface area S(K) of K. The latter equation is called Cauchy’s sur-
face area formula. For j = 1, (6.11) reduces to

V1(K) =
dκd

2κd−1

∫
G(d,1)

V1(K|L) ν1(dL).

Since V1(K|L) is the width of K in direction L, the integral
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G(d,1)

V1(K|L) ν1(dL)

is the mean width, b(K), of K. Hence we obtain formula (14.7),

V1(K) =
dκd

2κd−1
b(K).

Notes for Section 6.2

1. The projection formulas of Theorem 6.2.2 are classical results of the integral
geometry of convex bodies; a special case was already known to Cauchy. Local
versions are found in Schneider [673] and Weil [780]. The reduction to the rotation
formula for sums, which is used in the proof of Theorem 6.2.1, was noted in Schneider
[688].

2. The projection formula (6.8) has an extension to support measures. For a set
A ⊂ Σ and a linear subspace of Rd we define

A|L := {(x|L, u) : (x, u) ∈ A, u ∈ L}.

Let K ∈ K′ be a convex body and A ⊂ Nor K a Borel set. For q ∈ {1, . . . , d − 1},
j ∈ {0, . . . , q − 1}, the formula∫

G(d,q)

Ξ ′
j(K|L, A|L) νq(dL) = cq,d−j

d,q−jΞj(K, A)

holds, where Ξ ′
j denotes the jth support measure with respect to L. In a different,

but equivalent formulation, this is Theorem 4.5.10 in Schneider [695].

3. An extension of the projection formula (6.8) to polyconvex sets was treated in
Schneider [693]; here suitable multiplicities of tangential projections have to be taken
into account.

6.3 Cylinders and Thick Sections

As we have seen, the Crofton formulas can be deduced from the principal
kinematic formula, and the Cauchy–Kubota formulas are consequences of the
rotation formulas for Minkowski sums. This shows that integral geometric
formulas for convex bodies on one side and for affine subspaces on the other
side are closely connected. This connection will become even more evident
when we now consider cylinders and prove a common generalization of the
principal kinematic formula and the Crofton formula.

By a (convex) cylinder C in Rd we understand a set of the form C = M+L
with L ∈ G(d, q), q ∈ {0, . . . , d − 1}, and M ∈ K′, M ⊂ L⊥. The linear
subspace L is called the direction space of the cylinder C, and M is its
base. Also the images gC of C under g ∈ Gd are called cylinders, but C will
always be of the standard form as described (with fixed L ∈ G(d, q)).
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Since C is a closed convex set, the curvature measures Φ0(C, ·), . . . , Φd(C, ·)
are well defined. They are finite on bounded Borel sets and have a special
form. In the following, we identify Rd with L⊥ × L. We denote by λd−q and
λq, respectively, the Lebesgue measures in L⊥ and L.

Lemma 6.3.1. The curvature measures of the cylinder C satisfy

Φj(C, ·) =

{
Φj−q(M, ·)⊗ λq for q ≤ j ≤ d,
0 for 0 ≤ j < q.

Proof. We can assume that the base M is a polytope; the general case
then follows by approximation, due to the weak continuity of the mapping
C �→ Φj(C ∩K, ·), for each K ∈ K′. Since C is polyhedral in that case, the
representation (14.13) of the curvature measures of polytopes gives

Φj(C, ·) =
∑

F∈Fj(C)

γ(F,C)λF .

Since C =M + L, we have Fj(C) = ∅ for j < q, thus Φj(C, ·) = 0. For j ≥ q,

Fj(C) = {F + L : F ∈ Fj−q(M)},

hence in this case we get

Φj(C, ·) =
∑

F∈Fj−q(M)

γ(F + L,M + L)λF+L.

Together with γ(F + L,M + L) = γ(F,M) and λF+L = λF ⊗ λq, this yields

Φj(C, ·) =

⎛⎝ ∑
F∈Fj−q(M)

γ(F,M)λF

⎞⎠⊗ λq = Φj−q(M, ·)⊗ λq,

as stated. ��

In analogy to the principal kinematic formula and the Crofton formula, we
now consider intersections of a fixed convex body and a moving cylinder. The
principal kinematic formula involves an integration over the motion group.
Although the motion group has infinite invariant measure, the integrals remain
finite, since for K,M ∈ K the relation K ∩gM �= ∅ holds only for the motions
g from a suitable compact set. However, for a convex bodyK with inner points
and for a cylinder C with q > 0, the set of rigid motions g with K ∩ gC �= ∅
has infinite measure. In the case of the Crofton formula, which concerns the
case dimM = 0, the integration was therefore with respect to the invariant
measure µq on the space A(d, q) of q-flats. In a similar way, we can interpret
the set of cylinders congruent to C as a homogeneous space, on which we can
introduce an invariant measure. Implicitly, this has been done in the following
theorem where, though, we work directly with a suitable representation of this
invariant measure.
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Theorem 6.3.1 (Local kinematic formula for cylinders). Suppose that
q ∈ {0, . . . , d− 1} and j ∈ {0, . . . , d}. Let K ∈ K′ be a convex body, let C be a
cylinder with direction space L ∈ G(d, q) and base M , and let A,B ∈ B(Rd)
be Borel sets with B ⊂ L⊥. Then∫

SOd

∫
L⊥
Φj(K ∩ ϑ(C + x), A ∩ ϑ(B + L+ x))λd−q(dx) ν(dϑ)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j−q(M,B)

with N(d, j, q) := min{d, d+ j − q}.

Proof. First we note that∫
SOd

∫
L⊥
Φj(K ∩ ϑ(C + x), A ∩ ϑ(B + L+ x))λd−q(dx) ν(dϑ)

=
∫

SOd

∫
L⊥
Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))λd−q(dx) ν(dϑ).

Since {ϑK : ϑ ∈ SOd} is bounded, there exists a compact set B′ ⊂ L (with
λq(B′) > 0) such that

Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))

= Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x))

for all x ∈ L⊥ and all ϑ ∈ SOd. From Theorem 5.3.2 and Lemma 6.3.1 we get∫
SOd

∫
L⊥

∫
L

Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x+ y))

×λq(dy)λd−q(dx) ν(dϑ)

=
d∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j(C,B +B′)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Φk(K,A)Φd−k+j−q(M,B)λq(B′).

On the other hand, with K ′ := ϑK − x and A′ := ϑA− x we have∫
L

Φj(ϑK ∩ (C + x), ϑA ∩ (B +B′ + x+ y))λq(dy)

=
∫

L

Φj(K ′ ∩ C,A′ ∩ (B +B′ + y))λq(dy)
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=
∫

L

∫
Rd

1A′(u)1B+B′(u− y)Φj(K ′ ∩ C,du)λq(dy)

=
∫

Rd

∫
L

1B+B′(u− y)λq(dy)1A′(u)Φj(K ′ ∩ C,du)

=
∫

Rd

1B+L(u)λq(B′)1A′(u)Φj(K ′ ∩ C,du)

= Φj(K ′ ∩ C,A′ ∩ (B + L))λq(B′)

= Φj(ϑK ∩ (C + x), ϑA ∩ (B + L+ x))λq(B′).

Dividing by λq(B′), we obtain the assertion. ��

As special cases, Theorem 6.3.1 contains both, the principal kinematic
formula (Theorem 5.3.2) and the Crofton formula (Theorem 5.3.3). The former
is obtained for q = 0 (thus L = {0}), and the latter for M = B = {0} and
j ≤ q, since then

Φd−k+j−q(M,B) =

{
1 for d− k + j − q = 0,
0 else.

The global version of Theorem 6.3.1 (that is, A = B = Rd) results in a
cylinder formula for intrinsic volumes.

Corollary 6.3.1 (Principal kinematic formula for cylinders). Let q ∈
{0, . . . , d − 1} and j ∈ {0, . . . , d}. If K ∈ K′ is a convex body and C is a
cylinder with direction space L ∈ G(d, q) and base M , then∫

SOd

∫
L⊥
Vj(K ∩ ϑ(C + x))λd−q(dx) ν(dϑ)

=
N(d,j,q)∑

k=j

ck,d−k+j
j,d Vk(K)Vd−k+j−q(M).

Especially for cylinders, there is a further operation besides section and
projection – combining section and projection. Namely, for K and C as above,
the intersection K ∩ ϑ(C + x) can be projected orthogonally to the direction
space ϑL of ϑ(C + x). In a special case, such a combination appears in cer-
tain applications. For example, microscopical sections, as they are treated in
stereology by means of integral geometric methods, have a non-zero thick-
ness. Therefore, a microscopical section is not an intersection with a plane,
but with a cylinder C =M+L, where L is a plane andM ⊂ L⊥ is a segment.
Only the projection (K ∩C)|L is observable. For such projections of sections
with cylinders we state a general integral geometric formula, restricted to the
global case.
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Theorem 6.3.2 (Projected thick sections). Let q ∈ {0, . . . , d − 1} and
j ∈ {0, . . . , q}. If K ∈ K′ is a convex body and C is a cylinder with direction
space L ∈ G(d, q) and base M , then∫

SOd

∫
L⊥
Vj((K ∩ ϑ(C + x))|ϑL)λd−q(dx) ν(dϑ)

=
d+j−q∑

k=j

ck,d−k,q
j,q−j,d Vk(K)Vd−k+j−q(M).

Proof. First, the double integral in the assertion is again written in the form

Ij :=
∫

SOd

∫
L⊥
Vj(((ϑK + x) ∩ (M + L))|L)λd−q(dx) ν(dϑ).

Since
((ϑK + x) ∩ (M + L))|L = (ϑK −M + x) ∩ L,

we get

Ij =
∫

SOd

∫
L⊥
Vj((ϑK −M + x) ∩ L)λd−q(dx) ν(dϑ).

We put ϑK −M =: C and Bd ∩ L =: Bq and let ε > 0. Using Fubini’s theo-
rem, the Steiner formula (14.5) and the invariance properties of the Lebesgue
measure, we obtain

Vd(C + εBq) =
∫

L⊥
Vq((C + εBq) ∩ (L+ y))λd−q(dy)

=
∫

L⊥
Vq((C ∩ (L+ y)) + εBq)λd−q(dy)

=
∫

L⊥

q∑
j=0

εq−jκq−jVj(C ∩ (L+ y))λd−q(dy)

=
q∑

j=0

εq−jκq−j

∫
L⊥
Vj((C + x) ∩ L)λd−q(dx).

Inserting C = ϑK −M and integrating over SOd, we get

q∑
j=0

εq−jκq−jIj =
∫

SOd

Vd(ϑK −M + εBq) ν(dϑ)

=
d∑

k=0

cd−k,k
0,d Vk(K)Vd−k(−M + εBq)

=
d∑

k=0

cd−k,k
0,d Vk(K)

d−k∑
r=0

Vr(−M)Vd−k−r(Bq)εd−k−r
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=
q∑

j=0

d+j−q∑
k=j

cd−k,k
0,d Vk(K)Vd−k+j−q(M)Vq−j(Bq)εq−j .

Here we have used Theorem 6.1.1 and Lemma 14.2.1. Since

Vq−j(Bq) =
(
q

j

)
κq

κj
,

a comparison of the coefficients yields the assertion. ��

Notes for Section 6.3

1. Kinematic formulas for cylinders were treated by Santaló [662, p. 270 ff]. The
local kinematic formula for a fixed convex body and a moving cylinder (Theorem
6.3.1) was proved in Schneider [680].

2. Theorem 6.3.2 and its proof are taken from Schneider [681].

6.4 Translative Integral Geometry, Continued

Our proof of the local principal kinematic formula, Theorem 5.3.2, was pre-
ceded by a translative version, Theorem 5.2.3. This translative formula in-
volves a series of mixed measures Φ(j)

k (K,M ; ·), which are measures on the
product space Rd×Rd, depending homogeneously (of degrees k and d−k+ j,
respectively) and additively on the convex bodies K and M . In the follow-
ing, we continue the investigation of translative formulas and consider iter-
ations, rotation means and Crofton-type results for the mixed measures. In
contrast to the iterated kinematic formula of Theorem 5.1.5, the iteration of
the translative formula of Theorem 5.2.3 involves new functions at each itera-
tion step. Altogether, a series of mixed measures is required, which depend
on an increasing number of convex bodies. The total mixed measures define
mixed functionals, which generalize the intrinsic volumes of one body and
the mixed volumes of two convex bodies. We start with the definition of the
mixed measures.

In order to simplify the presentation within this section, we frequently
abbreviate the translate A+ x of a set A by Ax.

For polytopes P1, . . . , Pk and faces Fi of Pi (i = 1, . . . , k) with

k∑
i=1

dimFi ≥ (k − 1)d,

we define the common external angle γ(F1, . . . , Fk;P1, . . . , Pk) by

γ(F1, . . . , Fk;P1, . . . , Pk) := γ(F1 ∩ F x2
2 ∩ . . . ∩ F xk

k , P1 ∩ P x2
2 ∩ . . . ∩ P xk

k ),
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where x2, . . . , xk ∈ Rd are chosen so that the sets F1, F
x2
2 , . . . , F

xk

k have rela-
tively interior points in common. The common external angle does not depend
on the choice of x2, . . . , xk.

Definition 6.4.1. Let

k ∈ N, j ∈ {0, . . . , d}, m1, . . . ,mk ∈ {j, . . . , d},

j =
∑k

i=1mi − (k − 1)d.
(6.13)

For polytopes K1, . . . ,Kk ∈ P ′, the mixed measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·)

is the measure on (Rd)k defined by

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

:=
∑

F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]λF1(A1) · · ·λFk
(Ak) (6.14)

for A1, . . . , Ak ∈ B(Rd).

Convention. Integers k, j and k-tuples (m1, . . . ,mk) occurring in this section
are always assumed to satisfy (6.13).

Obviously, the case k = 1 of (6.14) reduces to the representations of the
curvature measures of polytopes given by (14.13), thus

Φ
(j)
j (K; ·) = Φj(K, ·).

The case k = 2 reduces to the mixed measures introduced in Theorem 5.2.2.
First we collect the essential properties of the mixed measures and state

the iterated translative formula.

Theorem 6.4.1. The mixed measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) depends con-

tinuously on the polytopes K1, . . . ,Kk (in the weak topology). It has a (unique)
continuous extension to arbitrary convex bodies K1, . . . ,Kk ∈ K′. The ex-
tended measures have the following properties, valid for all K1, . . . ,Kk ∈ K′

and A1, . . . , Ak ∈ B(Rd).

(a) Symmetry:

Φ(j)
mi1 ,...,mik

(Ki1 , . . . ,Kik
;Ai1 × . . .×Aik

)

= Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

for every permutation (i1, . . . , ik) of (1, . . . , k).
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(b)Decomposability:

Φ
(j)
m1,...,mk−1,d(K1, . . . ,Kk−1,Kk; ·)

= Φ(j)
m1,...,mk−1

(K1, . . . ,Kk−1; ·)⊗ (λ Kk).

For m1, . . . ,mk < d, the measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is concentrated

on bdK1 × . . .× bdKk.

(c) Homogeneity:

Φ(j)
m1,...,mk

(αK1,K2, . . . ,Kk;αA1 ×A2 × . . .×Ak)

= αm1Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

for α ≥ 0.

(d)Additivity: The measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is additive in each of

its arguments K1, . . . ,Kk.

(e) Local determination: The measure Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) is locally

determined, that is, for an open set U ⊂ (Rd)k and for M1, . . . ,Mk ∈ K′

with K1 × . . .×Kk ∩ U =M1 × . . .×Mk ∩ U , we have

Φ(j)
m1,...,mk

(K1, . . . ,Kk; ·) = Φ(j)
m1,...,mk

(M1, . . . ,Mk; ·)

on U .

The following iterated translative formula holds:∫
(Rd)k−1

Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 ∩ . . . ∩Axk

k )λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak). (6.15)

Proof. Concerning (6.15), the measurability of the integrand on the left side
follows from the obvious extension of Lemma 5.2.1. We now show first that
(6.15) holds for polytopes K1, . . . ,Kk, by using induction on k. For k = 1,
(6.15) is trivial, and for k = 2 it reduces to Theorem 5.2.2. For k ≥ 3, the
induction hypothesis, Theorem 5.2.2 and Lemma 14.1.1 yield∫

(Rd)k−1
Φj(K1 ∩Kx2

2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 ∩ . . . ∩Axk

k )λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk−2,m=j

m1+...+mk−2+m=(k−2)d+j

∫
Rd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩Kx

k ;
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A1 × . . .×Ak−2 × (Ak−1 ∩Ax
k))λ(dx)

=
d∑

m1,...,mk−2,m=j

m1+...+mk−2+m=(k−2)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk−2∈Fmk−2 (Kk−2)∫
Rd

∑
F∈Fm(Kk−1∩Kx

k )

γ(F1, . . . , Fk−2, F ;K1, . . . ,Kk−2,Kk−1 ∩Kx
k )

× [F1, . . . , Fk−2, F ]λF1(A1) · · ·λFk−2(Ak−2)λF (Ak−1 ∩Ax
k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

λF1(A1) · · ·λFk−2(Ak−2)

×
∫

Rd

γ(F1, . . . , Fk−2, Fk−1 ∩ F x
k ;K1, . . . ,Kk−2,Kk−1 ∩Kx

k )

× [F1, . . . , Fk−2, Fk−1 ∩ F x
k ]λFk−1∩F x

k
(Ak−1 ∩Ax

k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk−2, L(Fk−1) ∩ L(Fk)]λF1(A1) · · ·λFk−2(Ak−2)

×
∫

Rd

λFk−1∩F x
k
(Ak−1 ∩Ax

k)λ(dx)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk−2, L(Fk−1) ∩ L(Fk)][Fk−1, Fk]

×λF1(A1) · · ·λFk−2(Ak−2)λFk−1(Ak−1)λFk
(Ak)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∑
F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]λF1(A1) · · ·λFk
(Ak)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak).

The integral formula (6.15) is thus established for polytopes.
We now extend (6.15), and thus the mixed measures, to arbitrary con-

vex bodies, employing approximation by polytopes. For this purpose, we first
remark that (6.15), for all Borel sets A1, . . . , Ak, is equivalent to
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(Rd)k−1

∫
Rd

f(x1, x1 − x2, . . . , x1 − xk)Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk)) (6.16)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk))

for all continuous functions f on (Rd)k (provided that the mixed measures
exist). For k = 2, this equivalence is explained at the beginning of the proof of
Theorem 5.2.3; the general case follows analogously. Hence, (6.15) and (6.16)
are valid if K1, . . . ,Kk are polytopes. As in the proof of Theorem 5.2.3, we
consider the functional

J(f,K1, . . . ,Kk)

:=
∫

(Rd)k−1

∫
Rd

f(x1, x1 − x2, . . . , x1 − xk)Φj(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk))

and obtain that J depends continuously on K1, . . . ,Kk. For r1, . . . , rk > 0,
we define a continuous mapping Dr1,...,rk

from (Rd)k into itself by

Dr1,...,rk
(x1, . . . , xk) :=

(
x1

r1
, . . . ,

xk

rk

)
for x1, . . . , xk ∈ Rd.

For polytopes K1, . . . ,Kk, relation (6.16) and the definition of the mixed
measures imply

Dr1,...,rk
J(f, r1K1, . . . , rkKk)

:=
∫

(Rd)k−1

∫
Rd

f

(
x1

r1
,
x1 − x2

r2
, . . . ,

x1 − xk

rk

)
×Φj(r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk ,dx1)λk−1(d(x2, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j∫
(Rd)k

f

(
x1

r1
, . . . ,

xk

rk

)
Φ(j)

m1,...,mk
(r1K1, . . . , r2Kk; d(x1, . . . , xk))

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

rm1
1 · · · rmk

k

×
∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)).
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For arbitrary convex bodies K1, . . . ,Kk, we choose sequences of polytopes
K1i, . . .Kki (i ∈ N) such that K1i → K1, . . . , Kki → Kk for i→∞. Then

Dr1,...,rk
J(f, r1K1i, . . . , rkKki)→ Dr1,...,rk

J(f, r1K1, . . . , rkKk)

for every continuous function f on (Rd)k and all r1, . . . , rk > 0. From the
polynomial expansion just established, we deduce the convergence of the co-
efficients ∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1i, . . . ,Kki; d(x1, . . . , xk))

and thus the weak convergence of the measures

Φ(j)
m1,...,mk

(K1i, . . . ,Kki; ·)

for i → ∞. The limits, denoted by Φ(j)
m1,...,mk(K1, . . . ,Kk; ·), are again finite

measures, satisfying

Dr1,...,rk
J(f, r1K1, . . . , rkKk)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

rm1
1 · · · rmk

k

×
∫

(Rd)k

f(x1, . . . , xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)), (6.17)

from which we see that they are independent of the approximating sequences
(K1i)i∈N, . . . , (Kki)i∈N. For r1 = . . . = rk = 1, we obtain (6.16).

Thus, mixed measures for arbitrary bodies K1, . . . ,Kk are defined which
fulfill (6.15). Moreover, properties (a), (b) and (c), which follow for poly-
topes K1, . . . ,Kk from the definition, transfer to general convex bodies by
means of approximation and an application of (6.17). Also, (6.17) shows that
Φ

(j)
m1,...,mk(K1, . . . ,Kk; ·) depends continuously on the bodies K1, . . . ,Kk, and

(d) can be deduced from the corresponding additivity property of curvature
measures, similarly to the proof of Theorem 5.2.3. To prove (e), suppose that
its assumptions are satisfied. Without loss of generality, we may assume that
U = U1 × . . . × Uk with open sets U1, . . . , Uk ⊂ Rd. Then, for r1, . . . , rk > 0
and x2, . . . , xk ∈ Rd, the set

r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk ∩ r1U1 ∩ (r2U2)x2 ∩ . . . ∩ (rkUk)xk

remains the same if Ki is replaced by Mi, i = 1, . . . , k. Since, by Theorem
14.2.3, the curvature measures are locally determined, the value

Φj(r1K1 ∩ (r2K2)x2 ∩ . . . ∩ (rkKk)xk , r1A1 ∩ (r2A2)x2 ∩ . . . ∩ (rkAk)xk),
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for Borel sets Ai ⊂ Ui, does not change if Ki is replaced by Mi. Let f be a
continuous function on (Rd)k with support in U . Then the case r1 = . . . =
rk = 1 shows that the left side of (6.16) does not change if Ki is replaced by
Mi. More generally, we obtain

Dr1,...,rk
J(f, r1K1, . . . , rkKk) = Dr1,...,rk

J(f, r1M1, . . . , rkMk).

Therefore, the right side of (6.17) does not change if Ki is replaced by Mi.
This yields the assertion. ��

For the total mixed measures, we introduce the notation

V (j)
m1,...,mk

(K1, . . . ,Kk) := Φ(j)
m1,...,mk

(K1, . . . ,Kk; (Rd)k),

and we call these the mixed functionals. In particular,

V
(j)
j (K) = Vj(K),

and the case k = 2 reduces to the mixed functionals introduced in Theorem
5.2.3. If K1, . . . ,Kk are polytopes, then

V (j)
m1,...,mk

(K1, . . . ,Kk)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)

× [F1, . . . , Fk]Vm1(F1) · · ·Vmk
(Fk). (6.18)

Results on mixed measures contain results on mixed functionals as special
cases. In the sequel, we therefore concentrate on mixed measures and men-
tion mixed functionals only when their behavior deviates from that of mixed
measures.

In view of the decomposability property (b) we can, in large parts of the
following, concentrate on the case k ≤ d.

Since mixed measures are locally determined, we can extend them to un-
bounded closed convex sets K1, . . . ,Kk. We shall use this extension, in partic-
ular, for linear or affine subspaces and for closed halfspaces. The representation
(6.14) remains valid for polyhedral sets. It is important to note that also the
integral geometric formulas for mixed measures obtained in this section ex-
tend in the same way. In fact, any unbounded convex set Ki in such a formula,
with bounded corresponding Borel set Ai, can be replaced by the intersection
of Ki with a cube (say) that contains Ai in its interior. This replacement does
not affect the values of the involved mixed measures.

The next theorem collects some of the integral geometric formulas that
hold for mixed measures.

Theorem 6.4.2. For k ∈ N, convex bodies K1, . . . ,Kk ∈ K′ and Borel sets
A1, . . . , Ak ∈ B(Rd), the mixed measures satisfy the translative formula
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Rd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩Kx

k ;

A1 × . . .×Ak−2 × (Ak−1 ∩Ax
k))λ(dx)

=
d∑

mk−1,mk=m

mk−1+mk=d+m

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak), (6.19)

the rotation formula∫
SOd

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, ϑKk;

A1 × . . .×Ak−1 × ϑAk) ν(dϑ) (6.20)

= cm,d−m+j
d,j Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1)Φm(Kk, Ak),

and the principal kinematic formula∫
Gd

Φ(j)
m1,...,mk−2,m(K1, . . . ,Kk−2,Kk−1 ∩ gKk;

A1 × . . .×Ak−2 × (Ak−1 ∩ gAk))µ(dg)

=
d∑

r=m

cd−r+m,j−m+r
d,j Φ(j−m+r)

m1,...,mk−2,r(K1, . . . ,Kk−1;A1 × . . .×Ak−1)

×Φd−r+m(Kk, Ak). (6.21)

Proof. It is sufficient to prove the results for polytopes; the general case then
follows by approximation, using arguments similar to those of the previous
proof.

For polytopes, (6.19) was obtained during the proof of (6.15). In the case
of (6.20), we use the definition of the mixed measures, Lemma 14.1.1, and
Theorem 5.3.1 to get∫

SOd

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, ϑKk;A1 × . . .×Ak−1 × ϑAk) ν(dϑ)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fm(Kk)

λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

×
∫

SOd

γ(F1, . . . , Fk−1, ϑF ;K1, . . . ,Kk−1, ϑKk)[F1, . . . , Fk−1, ϑF ] ν(dϑ)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fm(Kk)

λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

× [F1, . . . , Fk−1]
∫

SOd

γ(G,ϑF ;M,ϑKk)[G,ϑF ] ν(dϑ)



236 6 Extended Concepts of Integral Geometry

= cm,d−m+j
d,j

∑
F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

[F1, . . . , Fk−1]

× γ(G,M)λF1(A1) · · ·λFk−1(Ak−1)
∑

F∈Fm(Kk)

γ(F,Kk)λF (Ak)

= cm,d−m+j
d,j Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1)Φm(Kk, Ak),

whereG := F1∩F x2
2 ∩. . .∩F

xk−1
k−1 ,M := K1∩Kx2

2 ∩. . .∩K
xk−1
k−1 and x2, . . . , xk−1

are suitably chosen vectors.
Finally, (6.21) follows immediately by combining (6.19) and (6.20). ��

Further formulas can be obtained by iteration. In particular, there is an
iterated translative formula for mixed measures.

We present next a Crofton formula for the mixed measures, first in a
translative version and then in its kinematic form.

Theorem 6.4.3. For convex bodies K1, . . . ,Kk ∈ K′, Borel sets A1, . . . , Ak ∈
B(Rd), a subspace L ∈ G(d, q) with q ∈ {m, . . . , d−1}, and any Borel set AL ⊂
L with λq(AL) = 1, the mixed measures satisfy the translative Crofton
formula ∫

L⊥
Φ(j)

m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ Lx;

A1 × . . .×Ak−1 × (Ak ∩ Lx))λd−q(dx)

= Φ(j)
m1,...,mk−1,d−q+m,q(K1, . . . ,Kk, L;A1 × . . .×Ak ×AL) (6.22)

and the Crofton formula∫
A(d,q)

Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ E;

A1 × . . .×Ak−1 × (Ak ∩ E))µq(dE)

= cq,d−q+j
d,j Φ

(d−q+j)
m1,...,mk−1,d−q+m(K1, . . . ,Kk;A1 × . . .×Ak). (6.23)

Proof. For the proof of (6.22) we may again concentrate on the case of poly-
topes. Moreover, we can assume that the faces of the polytope Kk and the
subspace L are in general position. This implies that the m-dimensional faces
of Kk ∩ Lx, for x ∈ L⊥, are intersections F ∩ Lx of (d − q +m)-dimensional
faces F of Kk, at least for those x for which the sets intersect at relatively
interior points.

Using this observation, we can proceed, in large parts, similarly to the
proof of (6.15) and get∫

L⊥
Φ(j)

m1,...,mk−1,m(K1, . . . ,Kk−1,Kk ∩ Lx;



6.4 Translative Integral Geometry, Continued 237

A1 × . . .×Ak−1 × (Ak ∩ Lx))λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

λF1(A1) · · ·λFk−1(Ak−1)

×
∫

L⊥

∑
F∈Fm(Kk∩Lx)

γ(F1, . . . , Fk−1, F ;K1, . . . ,Kk−1,Kk ∩ Lx)

× [F1, . . . , Fk−1, F ]λF (Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

λF1(A1) · · ·λFk−1(Ak−1)

×
∑

F∈Fd−q+m(Kk)

∫
L⊥
γ(F1, . . . , Fk−1, F ∩ Lx;K1, . . . ,Kk−1,Kk ∩ Lx)

× [F1, . . . , Fk−1, F ∩ Lx]λF∩Lx(Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fd−q+m(Kk)

γ(F1, . . . , Fk−1, F, L;K1, . . . ,Kk−1,Kk, L)[F1, . . . , Fk−1, L(F ) ∩ L]

×λF1(A1) · · ·λFk−1(Ak−1)
∫

L⊥
λF∩Lx(Ak ∩ Lx)λd−q(dx)

=
∑

F1∈Fm1 (K1)

. . .
∑

Fk−1∈Fmk−1 (Kk−1)

∑
F∈Fd−q+m(Kk)

γ(F1, . . . , Fk−1, F, L;K1, . . . ,Kk−1,Kk, L)[F1, . . . , Fk−1, L(F ) ∩ L]

× [F,L]λF1(A1) · · ·λFk−1(Ak−1)λF (Ak)

= Φ(j)
m1,...,mk−1,d−q+m,q(K1, . . . ,Kk, L;A1 × . . .×Ak ×AL).

The Crofton formula (6.23) is a direct consequence of (6.22) and the rota-
tion formula (6.20). ��

Remark on extension to the convex ring. Since the mixed measure
Φ

(j)
m1,...,mk is additive and weakly continuous in each of its first k arguments,

it has a unique additive extension to the convex ring. As in Section 5.1, the
integral geometric formulas for mixed measures obtained so far in this section
remain valid if the involved convex bodies are replaced by polyconvex sets.
The arguments explained at the end of Section 5.2 can easily be adapted to
the present situation.

By specializing some of the integral geometric formulas, we obtain useful
information about mixed measures and functionals. For that, we assume one
of the bodies to be the unit ball Bd ⊂ Rd. If we put Kk = Bd and Ak = Rd

in (6.20) and insert the value of Vm(Bd) given by (14.8), then we obtain
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Φ(j)
m1,...,mk−1,m(K1, . . . ,Kk−1, B

d;A1 × . . .×Ak−1 × Rd)

=
1
m!
cm,d−m+j
j,d−m Φ(d−m+j)

m1,...,mk−1
(K1, . . . ,Kk−1;A1 × . . .×Ak−1). (6.24)

The following result is a consequence of (6.24).

Theorem 6.4.4. For K1, . . . ,Kk ∈ K′ and A1, . . . , Ak ∈ B(Rd), the mixed
measures satisfy the reduction property

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak)

=
1
κd−j

Φ
(0)
m1,...,mk,d−j(K1, . . . ,Kk, B

d;A1 × . . .×Ak × Rd)

=
(

2
κd−1

)j 1
j!κj

Φ
(0)
m1,...,mk,d−1,...,d−1(K1, . . . ,Kk, B

d, . . . , Bd︸ ︷︷ ︸
j

;

A1 × . . .×Ak × (Rd)j).

Proof. The first equation is obtained from (6.24) if m, j, k are replaced by
d − j, 0, k, respectively. For the second, we put m = d − 1 and replace k − 1
by k and j by j − 1 in (6.24). This gives

Φ
(j−1)
m1,...,mk,d−1(K1, . . . ,Kk, B

d;A1 × . . .×Ak × Rd)

=
1

(d− 1)!
cj,d−1
j−1,1 Φ

(j)
m1,...,mk

(K1, . . . ,Kk;A1 × . . .×Ak).

The assertion is now obtained by j-fold iteration. ��
It follows from this result that all mixed measures can be reduced to

the (series of) measures Φ(0)
m1,...,mk(K1, . . . ,Kk; ·), where k ∈ {1, . . . , d} and

m1, . . . ,mk ∈ {1, . . . , d− 1} satisfy m1 + . . .+mk = (k − 1)d.
As a consequence of the Crofton formula, we note a connection between

the mixed functionals V (j)
k,d−k+j(K,M) of two convex bodies K,M and mixed

volumes. It already follows from (5.16) and Corollary 5.2.1 that

V
(0)
k,d−k(K,M) =

(
d

k

)
V (K[k],−M [d− k]). (6.25)

Combining (6.25) with the Crofton formula (6.23), we immediately get a repre-
sentation of the mixed functionals V (j)

k,d−k+j(K,M) as Crofton-type integrals
of mixed volumes.

Theorem 6.4.5. Let K,M ∈ K′. If j ∈ {0, . . . , d−2} and k ∈ {j+1, . . . , d−
1}, then

V
(j)
k,d−k+j(K,M) (6.26)

=
(

d

k − j

)
cd,0
j,d−j

∫
A(d,d−j)

V ((K ∩ E)[k − j],−M [d− k + j])µd−j(dE).
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Our next aim is the derivation of a translative integral formula for support
functions. It can be deduced from a translative formula for special mixed
measures. As in (4.42), we replace the support function h(K, ·) by its centered
version h∗(K, ·). Here, a continuous function f on Sd−1 is centered if∫

Sd−1
f(u)uσ(du) = 0.

The centered support function of K is invariant under translations of K.
The following lemma establishes a connection between the centered support
function and a special mixed measure. We use the notation

u+ := {x ∈ Rd : 〈x, u〉 ≥ 0}

for the closed halfspace with 0 in the boundary and inner normal vector u ∈
Sd−1.

Lemma 6.4.1. Let P ∈ P ′ be a polytope, and let u ∈ Sd−1. Then

h∗(P, u) =
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F ). (6.27)

Let K ∈ K′, and let Au⊥ ⊂ u⊥ be a Borel set with λd−1(Au⊥) = 1. Then

h∗(K,u) = Φ(0)
1,d−1(K,u

+; Rd ×Au⊥). (6.28)

Proof. For a vertex e of P , we do not distinguish between the vector e and
the corresponding 0-face {e}. We use the relations∑

e∈F0(P )

γ(e, P ) = χ(P ) = 1,

which is obvious, and ∑
e∈F0(P )

γ(e, P )e = s(K),

which is given by (14.29). Writing

u+
t := {x ∈ Rd : 〈x, u〉 ≥ t}, u⊥t := {x ∈ Rd : 〈x, u〉 = t}

for u ∈ Sd−1 and t ∈ R, and choosing a number c with P ⊂ u+
c , we get

h(P, u)− c

=
∫ ∞

c

χ(P ∩ u+
t ) dt

=
∫ ∞

c

∑
e∈F0(P∩u+

t )

γ(e, P ∩ u+
t ) dt
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=
∫ ∞

c

∑
e∈F0(P )

γ(e, P )1{〈e, u〉 ≥ t}dt

+
∫ ∞

c

∑
F∈F1(P )

γ(F, u⊥;P, u+)χ(F ∩ u⊥t ) dt

=
∑

e∈F0(P )

γ(e, P )(〈e, u〉 − c) +
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F )

= 〈s(P ), u〉 − c+
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λ1(F ).

This proves (6.27), and (6.28) for polytopes follows from (6.14) (extended to
polyhedral sets).

For a polytope P , the definition (6.14) implies

Φ
(0)
1,d−1(P, u

+; ·) =

⎛⎝ ∑
F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]λF

⎞⎠⊗ λu⊥ .

Using the weak continuity of the mixed measures, we conclude by approxima-
tion that also Φ(0)

1,d−1(K,u
+; ·) for K ∈ K′ is a product measure with λu⊥ as

second factor. Now (6.28) follows by approximation and continuity. ��

We state a translative formula for centered support functions. Here we
restrict ourselves to the case of two convex bodies; the extension to k ≥ 2
bodies presents no additional difficulties.

Theorem 6.4.6. For convex bodies K,M ∈ K′, there exist continuous func-
tions h∗1(K,M ; ·), . . . , h∗d(K,M ; ·) on Sd−1 such that∫

Rd

h∗(K ∩Mx, ·)λ(dx) =
d∑

k=1

h∗k(K,M ; ·), (6.29)

where h∗1(K,M ; ·) = h∗(K, ·)Vd(M) and h∗d(K,M ; ·) = Vd(K)h∗(M, ·). The
function h∗k(K,M ; ·) is centered and symmetric, in the sense that

h∗k(K,M ; ·) = h∗d+1−k(M,K; ·),

it depends continuously on K,M ∈ K′ and is homogeneous of degree k in K
and of degree d+1−k in M. Moreover, it is additive in each of its arguments
K and M .

For polytopes K,M , we have

h∗k(K,M ;u) (6.30)

=
∑

F∈Fk(K)

∑
G∈Fd+1−k(M)

γ(F,G, u⊥;K,M, u+)[F,G, u⊥]λk(F )λd−k+1(G).
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Proof. Let K,M ∈ K′, let u ∈ Sd−1. By (6.28),

h∗(K ∩Mx, u) = Φ(0)
d−1,1(u

+,K ∩Mx;Au⊥ × Rd).

The translative formula (6.19) with k = 3, K1 = u+, K2 = K, K3 = M ,
A1 = Au⊥ , A2 = A3 = Rd, j = 0, m1 = d− 1 and m = 1 gives (6.29) with

h∗k(K,M ;u) := Φ(0)
d−1,k,d+1−k(u+,K,M ;Au⊥ × Rd × Rd) (6.31)

for k = 1, . . . , d. The representation (6.30) in the case of polytopes follows
from (6.14).

From (6.31) and the known properties of mixed measures we immediately
obtain the assertions about symmetry, continuity in K,M , homogeneity, and
additivity of h∗k(K,M ;u). By the homogeneity property, we have

∫
Rd

h∗(rK ∩Mx, ·)λ(dx) =
d∑

k=1

rkh∗k(K,M ; ·)

for all r ≥ 0. Inserting r = 1, . . . , d and solving the resulting system of equa-
tions, we get a representation

h∗k(K,M ; ·) =
d∑

n=1

akn

∫
Rd

h∗(nK ∩Mx, ·)λ(dx)

with coefficients akn independent of K and M . From this representation, we
see that h∗k(K,M ; ·) is a continuous function. Inserting u, multiplying by u,
integrating over Sd−1, and using Fubini’s theorem, we also see that h∗(K,M ; ·)
is centered. ��

We next derive a kinematic formula for support functions. For fixed u ∈ Rd,
the function K �→ h∗(K,u) satisfies the assumptions of Theorem 5.1.2, hence
we get∫

Gd

h∗(K ∩ gM, ·)µ(dg) =
d∑

k=1

(∫
A(d,k)

h∗(K ∩ E, ·)µk(dE)

)
Vk(M) (6.32)

(observing that h∗({x}, ·) = 0). The coefficient of Vk(M) is evidently a support
function. We define, for k ∈ {1, . . . , d − 1}, the kth mean section body
Mk(K) of a convex body K ∈ K′ by

h(Mk(K), ·) :=
∫

A(d,k)

h∗(K ∩ E, ·)µk(dE).

We complement the definition by setting h(Md(K), ·) := h∗(K, ·), that is,
Md(K) = K − s(K), and h(M0(K), ·) := 0, thus M0(K) = {0}. To obtain
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a connection with mixed measures, we choose M = Bd in (6.32). Applying
(6.29), (6.31) and Theorem 6.4.4, we get, for u ∈ Rd,

h(Mk(K), u)Vk(Bd) = Φ
(0)
d+1−k,k,d−1(K,B

d, u+; Rd × Rd ×Au⊥)

= κkΦ
(d−k)
d+1−k,d−1(K,u

+; Rd ×Au⊥). (6.33)

If K is a polytope, an explicit form of the latter expression is obtained from
(6.14). We collect the obtained results in the following theorem.

Theorem 6.4.7. If K,M ∈ K′, then∫
Gd

h∗(K ∩ gM, ·)µ(dg) =
d∑

k=1

h(Mk(K), ·)Vk(M),

where
h(Mk(K), u) = cd−k,k

d,0 Φ
(d−k)
d+1−k,d−1(K,u

+; Rd ×Au⊥).

If K is a polytope, then

h(Mk(K), u) = cd−k,k
d,0

∑
F∈Fd+1−k(K)

γ(F, u⊥)[F, u⊥]λd+1−k(F ). (6.34)

Finally, we use some of the obtained information on mixed measures to
derive a kinematic and a Crofton formula for projection functions, that is,
volumes of projections of convex bodies. Let j ∈ {1, . . . , d−1} and L ∈ G(d, j).
For K ∈ K′, the j-dimensional volume of the orthogonal projection K|L
defines the jth projection function L �→ Vj(K|L). From (14.19) and (6.25)
we have

Vj(K|L) =
(
d

j

)
V (K[j], BL⊥ [d− j]) = V (0)

j,d−j(K,BL⊥)

where BL⊥ ⊂ L⊥ is a ball with λd−j(BL⊥) = 1. Therefore, (6.21) and (6.23)
yield, for K,M ∈ K′,∫

Gd

Vj((K ∩ gM)|L)µ(dg) =
d∑

i=j

cd−i+j,i−j
d,0 V

(i−j)
i,d−j (K,BL⊥)Vd−i+j(M),

∫
A(d,d−i+j)

Vj((K ∩ E)|L)µd−i+j(dE) = cd−i+j,i−j
d,0 V

(i−j)
i,d−j (K,BL⊥).

(Of course, if one of the two results is known, the other one can also be deduced
from Theorem 5.1.2.) The mixed functionals appearing here can be expressed
as Radon transforms of the projection function. The Radon transform Rij :
C(G(d, i))→ C(G(d, j)) is defined by
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(Rijf)(L) :=
∫

G(L,i)

f(M) νL
i (dM), L ∈ G(d, j). (6.35)

In the following, we assume i ∈ {j + 1, . . . , d}.
Using the symmetry of the mixed functionals together with (6.26) and

denoting by c1, c2, . . . constants depending only on d, i, j, we get

V
(i−j)
i,d−j (K,BL⊥) = V (i−j)

d−j,i (BL⊥ ,K)

= c1
∫

A(d,d−i+j)

V ((BL⊥ ∩ E)[d− i],K[i])µd−i+j(dE).

The integrand, as a function of E, depends only on E∩L⊥. Therefore, we can
use the integral geometric identity∫

A(d,d−i+j)

f(E ∩ L⊥)µd−i+j(dE) = c2
∫

A(L⊥,d−i)

f(F )µL⊥
d−i(dF ),

which holds for all nonnegative measurable functions f on A(L⊥, d− i). Here
A(L⊥, d − i) is the space of (d − i)-flats contained in L⊥, and µL⊥

d−i is its
invariant measure (see Section 13.2). To prove the identity, we note that its
left side, applied to indicator functions of Borel sets in A(L⊥, d − i), defines
a measure on A(L⊥, d − i), which is locally finite and invariant under rigid
motions of L⊥ into itself and hence is a multiple of the invariant measure
µL⊥

d−i. Thus, we obtain

V
(i−j)
i,d−j (K,BL⊥)

= c3
∫

A(L⊥,d−i)

V ((BL⊥ ∩ F )[d− i],K[i])µL⊥
d−i(dF )

= c3
∫

G(L⊥,d−i)

∫
H⊥∩L⊥

V ((BL⊥ ∩Hx)[d− i],K[i])λi−j(dx) νL⊥
d−i(dH).

Here we have∫
H⊥∩L⊥

V ((BL⊥ ∩Hx)[d− i],K[i])λi−j(dx) = c4Vi(K|H⊥),

which follows from (14.19), since BL⊥ ∩ Hx, if not empty, is homothetic to
BL⊥ ∩H, with homothety factor depending only on ‖x‖. We deduce that

V
(i−j)
i,d−j (K,BL⊥) = c5

∫
G(L⊥,d−i)

Vi(K|H⊥) νL⊥
d−i(dH)

= c5

∫
G(L,i)

Vi(K|M) νL
i (dM)

= c5(RijVi(K|·))(L).
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Since (6.24) implies

V
(i−j)
i,d−j (Bd, BL⊥) = κic

d−j,0
d−i,i−j ,

we conclude that c5 = cd−j,0
d−i,i−j . We have obtained the following result.

Theorem 6.4.8. Let K,M ∈ K′. If j ∈ {1, . . . , d− 1} and L ∈ G(d, j), then
the principal kinematic formula for projection functions,∫

Gd

Vj((M ∩ gK)|L)µ(dg) =
d∑

i=j

cd−i+j,d−j
d,d−i (RijVi(K| ·))(L)Vd−i+j(M),

and the Crofton formula for projection functions,∫
A(d,d−i+j)

Vj((K ∩ E)|L)µd−i+j(dE) = cd−i+j,d−j
d,d−i (RijVi(K| ·))(L),

hold.

Notes for Section 6.4

1. An iterated translative integral formula in the plane was first derived by Miles
[529].

The iterated translation formula for curvature measures was proved in Weil [792]
and applied to non-isotropic Poisson particle processes and Boolean models. Shorter
surveys are given in [790] and [791]. The presentation in this section follows closely
the one in Weil [800].

2. Extensions of translative integral formulas to sets of positive reach have been
studied by Rataj and Zähle, using methods of geometric measure theory. First, a
translative formula for support measures of sets with positive reach was proved
in [617]. An iterated version was obtained by Rataj [613]. Various extensions and
supplements were provided by Rataj [614], Hug [355], Zähle [831], Rataj and Zähle
[618], [619]. Translative Crofton formulas for support measures were treated by Rataj
[615].

The iterated translative integral formula for support measures can be written in
the form ∫

Rd

. . .

∫
Rd

∫
Rd×Rd

h(x, x − x2, . . . , x − xk, u)

×Ξj(K1 ∩ Kx2
2 ∩ . . . ∩ K

xk
k , d(x, u)) λ(dx2) · · ·λ(dxk)

=
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
(Rd)k+1

h(x1, . . . , xk, u)

×Ξ(j)
m1,...,mk

(K1, . . . , Kk; d(x1, . . . , xk, u))
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for nonnegative measurable functions h on (Rd)k+1, with certain mixed support

measures Ξ
(j)
m1,...,mk (K1, . . . , Kk; ·) on (Rd)k+1. In Rataj’s version for sets of pos-

itive reach, the mixed support measures are expressed as currents evaluated at spe-
cially chosen differential forms. For closed convex sets, Hug [355] has a more general
version for relative support measures, as well as more explicit expressions for the
mixed support measures, which imply, in particular, representations of special mixed
measures by Goodey and Weil [280].

3. In Schneider [702], the mixed functionals V
(0)

m1,...,mk (K1, . . . , Kk) of convex bodies
are embedded in a wider theory, together with the mixed volumes. For polytopes,
more general representations of type (6.18) (for j = 0) are obtained.

4. The reduction property in Theorem 6.4.4 can be generalized to lower-dimensional
balls. The following result was proved in Weil [800]. It also provides a kind of ex-
changeability, since the role of the subspace L and the unit ball BL in L can be
exchanged. Let K1, . . . , Kk ∈ K′ and A1, . . . , Ak ∈ B(Rd). For q ∈ {j, . . . , d} and
m ∈ {j, . . . , q}, let L ∈ G(d, q) and let BL be the unit ball in L. Then

Φ(j)
m1,...,mk,m(K1, . . . , Kk, BL; A1 × . . . × Ak × L)

=
1

m!κq
cm,q−m+j

j,q−m Φ(q−m+j)
m1,...,mk,q(K1, . . . , Kk, L; A1 × . . . × Ak × BL)

=
1

m!κq
cm,q−m+j

j,q−m Φ(q−m+j)
m1,...,mk,q(K1, . . . , Kk, BL; A1 × . . . × Ak × L). (6.36)

Replacing m and j by q − j and 0, we obtain

Φ(j)
m1,...,mk,q(K1, . . . , Kk, L; A1 × . . . × Ak × BL)

= Φ(j)
m1,...,mk,q(K1, . . . , Kk, BL; A1 × . . . × Ak × L)

=
κq

κq−j
Φ

(0)
m1,...,mk,q−j(K1, . . . , Kk, BL; A1 × . . . × Ak × L). (6.37)

For q = d (and using the reduction property of mixed measures), formula (6.36)
reduces to (6.24) and (6.37) yields the first formula in Theorem 6.4.4.

For the mixed functionals, (6.37) implies

V (j)
m1,...,mk,q(K1, . . . , Kk, BL) =

κq

κq−j
V

(0)
m1,...,mk,q−j(K1, . . . , Kk, BL). (6.38)

5. Translative Crofton formula for mixed volumes. Combining (6.25) with
the translative Crofton formula in Theorem 6.4.3, we obtain a translative integral
formula for mixed volumes of convex bodies K, M (see Weil [800]).

Let j ∈ {1, . . . , d − 1}, q ∈ {j, . . . , d − 1} and L ∈ G(d, q), then∫
L⊥

V ((K ∩ Lx)[j], M [d − j]) λd−q(dx) =
1(

d
j

)
κq

V
(0)

d−q+j,d−j,q(K,−M, BL).

For M = Bd, and using (6.25) and (6.38), a translative Crofton formula for
intrinsic volumes results,∫

L⊥
Vj(K ∩ Lx) λd−q(dx) =

(
d

q−j

)
κq−j

V (K[d − q + j], BL[q − j]), (6.39)
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which was first proved in Schneider [681].

6. Formulas for halfspaces. Crofton-type formulas, where the moving k-flat is
replaced by a moving halfspace, were also discussed in Weil [800]. Let Cu⊥ be a unit
cube in u⊥.

The following formula is the analog of Theorem 6.4.3 (for q = d − 1) and is
proved in the same way:∫ ∞

−∞
Φ(j)

m1,...,mk−1,m(K1, . . . , Kk−1, K ∩ (u+)ru;

A1 × . . . × Ak−1 × (A ∩ (u⊥)ru)) dr

= Φ
(j)
m1,...,mk−1,m+1,d−1(K1, . . . , Kk−1, K, u+;

A1 × . . . × Ak−1 × A × Cu⊥). (6.40)

Combining Theorem 6.4.3 and (6.40), a quite general result for halfspaces of the
form Lu,+ := L ∩ u+, L ∈ G(d, q), u ∈ Sd−1 ∩ L, with bounding flat Lu := L ∩ u⊥,
can be deduced:

Φ
(j)
m1,...,mk,q−1(K1, . . . , Kk, Lu,+; A1 × . . . × Ak × CLu)

= Φ
(j)
m1,...,mk,q,d−1(K1, . . . , Kk, L, u+; A1 × . . . × Ak × CL × Cu⊥).

7. Mean section body. The kth mean section body Mk(K) of a convex body
K was introduced and investigated in Goodey and Weil [279]. In particular, the
representation (6.34) was proved there.

A special case of (6.26) is worth mentioning. If k = j + 1, then

V
(j)

j+1,d−1(K, M) = dcd,0
j,d−j

∫
A(d,d−j)

V ((K ∩ E)[1],−M [d − 1]) µd−j(dE).

The linearity properties of the mixed volume imply that the latter integral equals
the mixed volume V (Md−j(K)[1],−M [d − 1]), thus

V
(j)

j+1,d−1(K, M) = dcd,0
j,d−jV (Md−j(K)[1],−M [d − 1]).

8. Spherical integral representations. For mixed volumes V (K[1], M [d− 1]) of
two convex bodies K, M the spherical integral representation (14.23), namely

V (K[1], M [d − 1]) =
1

d

∫
Sd−1

h∗(K, u) S(M, du),

is classical. It involves the support function h(K, ·) of K (here replaced by its cen-
tered version h∗(K, ·)) and the surface area measure S(M, ·) := Sd−1(M, ·) of M .
Since

V (K[1], M [d − 1]) =
1

d
V

(0)
1,d−1(K,−M),

one can ask for extensions to mixed functionals of more than two bodies. The fol-
lowing result is obtained in Weil [800] for convex bodies K1, . . . , Kk, M1, . . . , Mi:
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Φ
(j)
m1,...,mk,d−1,...,d−1(K1, . . . , Kk,−M1, . . . ,−Mi; A1 × . . . × Ak × (Rd)i)

=

∫
Sd−1

. . .

∫
Sd−1

Φ
(j)
m1,...,mk,d−1,...,d−1(K1, . . . , Kk, u+

1 , . . . , u+
i ;

A1 × . . . × Ak × Cu⊥
1
× . . . × Cu⊥

i
) S(M1, du1) · · ·S(Mi, dui). (6.41)

For k = 1, (6.41) again implies the formulas (6.28) and (6.33). The latter rep-
resentation was proved by Goodey and Weil [281] (in correction of an erroneous
statement from [795]).

If there are no bodies Kj in (6.41), then a formula for V
(j)

d−1,...,d−1(M1, . . . , Md−j)
results. Since

Φ
(j)
d−1,...,d−1(u

+
1 , . . . , u+

d−j ; Cu⊥
1
× . . . × Cu⊥

d−j
)

=
1

(d − j)κd−j
σd−j−1(co(u1, . . . , ud−j))|det(u1, . . . , ud−j)|,

where co denotes the spherical convex hull, we obtain

V
(j)

d−1,...,d−1(M1, . . . , Md−j)

=
1

(d − j)κd−j

∫
Sd−1

. . .

∫
Sd−1

σd−j−1(co(u1, . . . , ud−j))

× |det(u1, . . . , ud−j)|S(M1, du1) · · ·S(Md−j , dud−j). (6.42)

From the case j = d − 2 of (6.42) (or from (6.33)), we get a representation of
h(M2(K), ·) due to Goodey and Weil [279],

h(M2(K), u) =
1

2π
c2,d−2

d,0

∫
Sd−1

α(u, v) sin α(u, v) S(−K, dv).

Here, α(u, v) ∈ [0, π] denotes the (smaller) angle between u, v ∈ Sd−1.

9. Centrally symmetric bodies. For smooth centrally symmetric bodies, repre-
sentations of mixed measures in terms of the projection generating measures are
possible. If M is a generalized zonoid (a centrally symmetric body, for which (14.33)
holds with a signed measure ρ), the signed measure ρ(j) introduced by (14.36) exists
and satisfies (14.38). For convex bodies K1, . . . , Kk ∈ K and generalized zonoids
M1, . . . , Mi, the following was shown in Weil [800]:

Φ(j)
m1,...,mk,r1,...,ri

(K1, . . . , Kk, M1, . . . , Mi; A1 × . . . × Ak × (Rd)i)

= 2
∑ i

j=1 rj

∫
G(d,r1)

. . .

∫
G(d,ri)

Φ(j)
m1,...,mk,r1,...,ri

(K1, . . . , Kk, L1, . . . , Li;

A1 × . . . × Ak × CL1 × . . . × CLi) ρ(r1)(M1, dL1) · · · ρ(ri)(Mi, dLi). (6.43)

For k = 0, (6.43) yields Theorem 10.1 in Weil [792]:

V (j)
r1,...,ri

(M1, . . . , Mi) (6.44)

=
2(i−1)d+j

r1! · · · ri!

∫
G(d,r1)

. . .

∫
G(d,ri)

[L1, . . . , Li] ρ(r1)(M1, dL1) · · · ρ(ri)(Mi, dLi).
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In the case r1 = . . . = ri = d − 1, (6.44) implies an iterated variant of (6.40) for
centrally symmetric bodies M1, . . . , Mi where the halfspaces are replaced by their
bounding hyperplanes (see Weil [800], for details). As special cases, for centrally
symmetric convex bodies K, M , the following formulas result:

V
(j)

j+1,d−1(K, M) =
1

2

∫
Sd−1

Φ
(j)
j+1,d−1(K, u⊥; Rd × Cu⊥) S(M, du),

h(Md−j(K), u) =
cj,d−j

d,0

2
Φ

(j)
j+1,d−1(K, u⊥; Rd × Cu⊥).

10. Support functions. The translative formula for support functions of Theorem
6.4.6 and the kinematic formula of Theorem 6.4.7 were proved by Weil [795]. The
approach to (6.29) that is presented here comes from Schneider [708].

Since the left side of (6.29) defines a support function and the summands on
the right side have different degrees of homogeneity, one may conjecture that the
mixed functions h∗

k(K, M ; ·) are support functions, too. This was indeed proved by
Goodey and Weil [281]. A simpler approach and an extension to mixed functions of
more than two convex bodies are found in Schneider [709].

The case of two convex bodies can also be formulated as follows. If K, M ∈ K′,
then the translative integral ∫

Rd

h∗(K ∩ Mx, ·) λ(dx)

defines the support function of a convex body T (K, M), called the translation
mixture of K and M . There exists a polynomial expansion

T (rK, sM) =
d∑

k=1

rksd+1−kTk(K, M)

with convex bodies Tk(K, M), called the mixed bodies of K and M . For the case
of polytopes K, M , the vertices and edges of Tk(K, M) were explicitly determined
in [709].

Applications of the integral geometric formulas for support functions to stochas-
tic geometry appear in Weil [793, 798].

11. Projection functions. Kinematic and Crofton formulas for projection func-
tions were first studied by Goodey and Weil [278]. Theorem 6.4.8 in its present form
appears in Goodey, Schneider and Weil [275].

6.5 Spherical Integral Geometry

Large parts of integral geometry in Euclidean spaces can be extended, in a
suitable way, to spaces of constant curvature. In this section, we treat basic
facts of the integral geometry of convex bodies in spherical space, since this
is of some relevance for stochastic geometry. The approach will be similar to
the Euclidean case: for (spherically) convex bodies we introduce generalized
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curvature measures via a Steiner formula, and integral geometric intersec-
tion formulas involving curvature measures are proved for polytopes, using
characterization theorems, and then extended to general convex bodies. Our
presentation owes much to the work of Glasauer [264, 265], which we follow
in several aspects and details. We shall be rather brief at points where the
procedure is in an obvious way similar to the Euclidean case. On the other
hand, some geometric facts of spherical geometry are proved here instead of
deferring them to the Appendix, since they are needed only in this section.

The spherical space to be considered is the unit sphere Sd−1 of Rd. The
usual metric in Sd−1 is denoted by ds, thus ds(x, y) = arccos 〈x, y〉 for x, y ∈
Sd−1. It induces the trace topology from Rd on Sd−1, and topological notions
in Sd−1 refer to this topology. For points x, y ∈ Sd−1 with ds(x, y) < π, the
set [x, y] := Sd−1 ∩ pos{x, y} is the unique spherical segment joining x and
y. A spherically convex body in Sd−1 is the intersection of Sd−1 with a
closed convex cone different from {0} in Rd. In the present section, we shall
mostly say ‘convex’ instead of ‘spherically convex’. The convex bodies in Sd−1

are precisely the nonempty closed subsets that contain with any two points
of spherical distance less than π also the spherical segment joining them.
The set of all convex bodies in Sd−1 is denoted by Ks. It is equipped with the
Hausdorff metric induced by the metric ds. Note that Sd−1 is an isolated point
of Ks. For K ∈ Ks, we denote by K̆ := posK the cone with K = Sd−1 ∩ K̆.
The correspondence K ↔ K̆ is quite useful for the study of spherically convex
bodies. The dimension of K ∈ Ks is defined as dimK := dim K̆ − 1. The
relative interior of K, denoted by relintK, is the interior of K relative to
Sd−1 ∩ linK.

A distinguished subset of Ks is the set Sk of k-dimensional great sub-
spheres, which are the intersections of Sd−1 with (k + 1)-dimensional linear
subspaces of Rd, k = 0, . . . , d− 1. We write S• :=

⋃d−1
k=0 Sk, and we often say

‘subsphere’ instead of ‘great subsphere’. A set K ∈ Ks is called a proper
convex body if it is contained in an open hemisphere, equivalently, if the
cone K̆ is pointed (does not contain a line). We write Kp

s for the set of all
proper convex bodies.

Let K,M ∈ Ks. We denote by

K ∨M := Sd−1 ∩ pos (K ∪M)

the spherically convex hull of K and M . For K ∨ {x} we write K ∨ x, and
x ∨ y := [x, y] if x and y are not antipodal. The set

K∗ := {x ∈ Sd−1 : 〈x, y〉 ≤ 0 for all y ∈ K}

is the polar body of K; thus K∗ is the intersection of Sd−1 with the dual
cone of K̆. It is again in Ks. Further, (K∗)∗ = K and

(K ∨M)∗ = K∗ ∩M∗, (K ∩M)∗ = K∗ ∨M∗. (6.45)

The polar body of K can also be represented as
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K∗ := {x ∈ Sd−1 : ds(K,x) ≥ π/2}.

If S ∈ Sk for k ∈ {0, . . . , d− 2}, then S∗ = Sd−1 ∩ (linS)⊥ ∈ Sd−k−2.
Let K ∈ Ks and x ∈ Sd−1. If 0 ≤ ds(K,x) < π/2, there is a unique point

in K that is nearest to x; we denote it by ps(K,x). This defines the nearest-
point map or metric projection ps(K, ·). If x /∈ K, we define us(K,x) =
u(K̆, x) (see Section 14.2 for the latter); note that us(K,x) = ps(K∗, x). For
x ∈ bdK,

Ns(K,x) := {y ∈ K∗ : 〈x, y〉 = 0}

is the set of outer (unit) normal vectors to K at x. Note that posNs(K,x) =
N(K̆, x) is the normal cone of K̆ at x (as introduced in Section 14.2),
but Ns(K,x) consists of unit vectors. A pair (x, u) with x ∈ bdK and
u ∈ Ns(K,x) is called a support element of K. It is easy to see that

(x, u) is a support element of K ⇔ (u, x) is a support element of K∗.

The set of all support elements of K, denoted by NorK, is a closed subset of
the product space Σs := Sd−1 × Sd−1.

A convex body P ∈ Ks is a (spherical) polytope if the cone P̆ is poly-
hedral, that is, an intersection of finitely many closed halfspaces with 0 in
the boundary. The set of polytopes in Sd−1 is denoted by Ps. Let P ∈ Ps.
A k-face of P is a set F = Sd−1 ∩ F̆ , where F̆ is a (k + 1)-face of P̆ ,
k ∈ {0, . . . , d − 1}. The set of all k-faces of P is denoted by Fk(P ), and
we write F•(P ) :=

⋃d−1
k=0Fk(P ).

Let F be a k-face of P . The set Ns(P, x) is the same for all x ∈ relintF
and is denoted by Ns(P, F ). The internal angle β(0, F̆ ) of the cone F̆ at 0
is defined by

β(0, F̆ ) :=
σk(F )
ωk+1

,

and the external angle of P at F by

γ(F, P ) := γ(F̆ , P̆ ) :=
σd−k−2(Ns(P, F ))

ωd−k−1
.

The proof of a local Steiner formula for spherical polytopes will rest on
the following lemma. It is a spherical counterpart to the representation of
Lebesgue measure in Rd as the product of the Lebesgue measures on a sub-
space and its orthogonal complement.

Lemma 6.5.1. Let S ∈ Sk, where k ∈ {0, . . . , d − 2}, and let f : Sd−1 → R

be a nonnegative measurable function. Then∫
Sd−1

fdσ =
∫

S

∫
S∗∨v

sink(ds(S∗, u))f(u)σd−k−1(du)σk(dv).



6.5 Spherical Integral Geometry 251

Proof. We extend f to Rd by f̄(x) := ‖x‖−d+1f(x/‖x‖) for 0 < ‖x‖ < 1, and
f̄(x) = 0 otherwise. Let L := linS. Using spherical coordinates, we obtain∫

Sd−1
f dσ =

∫
Sd−1

∫ 1

0

(f(x)/td−1)td−1 dt σ(dx)

=
∫

Rd

f̄ dλ

=
∫

L

∫
L⊥
f̄(x+ y)λL⊥(dy)λL(dx)

=
∫

S

[∫ 1

0

tk
∫

L⊥
f̄(tv + y)λL⊥(dy) dt

]
σk(dv).

Recall that d(·, ·) denotes the Euclidean distance. With tv + y =: w = τu,
‖u‖ = 1, we have t = d(L⊥, w) = τ sin(ds(S∗, u)). Hence, the integral in
brackets is equal to∫

pos(L⊥∪{v})
d(L⊥, w)kf̄(w)λd−k(dw)

=
∫

S∗∨v

∫ 1

0

τd−k−1τk sink(ds(S∗, u))f̄(τu) dτ σd−k−1(du)

=
∫

S∗∨v

sink(ds(S∗, u))f(u)σd−k−1(du).

This yields the assertion. ��

For K ∈ Ks, the local parallel set of K, determined by a Borel set
A ⊂ Σs and a number 0 < ε < π/2, is defined by

Mε(K,A) := {x ∈ Sd−1 : ds(K,x) ≤ ε, (ps(K,x), us(K,x)) ∈ A}.

Theorem 6.5.1 (Local spherical Steiner formula). For K ∈ Ks, there
exist uniquely determined finite measures Θ0(K, ·), . . . , Θd−2(K, ·) on Σs such
that the following holds. If A ∈ B(Σs) and 0 < ε < π/2, then

σ(Mε(K,A)) =
d−2∑
m=0

gd,m(ε)Θm(K,A)

with

gd,m(ε) := ωm+1ωd−m−1

∫ ε

0

cosm ϕ sind−m−2 ϕdϕ, 0 ≤ ε ≤ π/2.

If P ∈ Ps, then

Θm(P,A) =
1

ωm+1ωd−m−1

∑
F∈Fm(P )

∫
F

∫
Ns(P,F )

1A(x, u)σd−m−2(du)σm(dx).
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Proof. First let P ∈ Ps, let m ∈ {0, . . . , d − 2} and F ∈ Fm(P ). Put S :=
Sd−1∩ linF and U := ps(P, ·)−1(relintF ). Let f ≥ 0 be a measurable function
on Sd−1. We apply Lemma 6.5.1, first to Sd−1 and its subsphere S, then to
the sphere S∗ ∨ {−x, x}, where x ∈ S, and its subsphere S∗. This gives∫

U

f dσ =
∫

S

∫
S∗∨x

1U (u)f(u) sinm(ds(S∗, u))σd−m−1(du)σm(dx)

=
∫

S

∫
S∗

∫
{−x,x}∨v

1U∩(S∗∨x)(z)f(z) sinm(ds(S∗, z))

× sind−m−2(ds({−x, x}, z))σ1(dz)σd−m−2(dv)σm(dx)

=
∫

S

∫
S∗

∫
[x,v]

1U (z)f(z) cosm(ds(S, z)) sind−m−2(ds(S, z))σ1(dz)

×σd−m−2(dv)σm(dx)

=
∫

F

∫
Ns(P,F )

∫ π/2

0

f(x cosϕ+ v sinϕ) cosm ϕ sind−m−2 ϕdϕ

×σd−m−2(dv)σm(dx).

The choice f = 1Mε(P,A) yields

σ(Mε(P,A) ∩ ps(P, ·)−1(relintF ))

=
∫

F

∫
Ns(P,F )

1A(x, v)σd−m−2(dv)σm(dx)
∫ ε

0

cosm ϕ sind−m−2 ϕdϕ.

Similarly to Euclidean space, bdP =
⋃d−2

m=0

⋃
F∈Fm(P ) relintF is a disjoint

union, hence we get

σ(Mε(P,A)) =
d−2∑
m=0

∑
F∈Fm(P )

∫
F

∫
Ns(P,F )

1A(x, v)σd−m−2(dv)σm(dx)

×
∫ ε

0

cosm ϕ sind−m−2 ϕdϕ

=
d−2∑
m=0

gd,m(ε)Θm(P,A),

if Θm(P,A) is defined as shown in the theorem. We observe that the functions
gd,0, . . . , gd,d−2 are linearly independent on (0, π/2). The remaining parts of
the proof (measurability, extension to general convex bodies, uniqueness) are
so similar to the Euclidean case (which is treated in Schneider [695, sect. 4.1,
4.2]) that we omit them. ��

We add a remark to the Steiner formula. Applying it with K = S ∈ Si for
i ∈ {0, . . . , d−2} and A = Σs, and observing that limε→π/2 σ(Mε(S,Σs)) = ωd

and
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Θm(S,Σs) = δim for S ∈ Si (6.46)

(where δim denotes the Kronecker symbol), we find that gd,i(π/2) = ωd (which
can, of course, also be obtained from the definition). If P is a polytope and
F ∈ Fm(P ), then

cl
⋃

0<ε<π/2

Mε(P,Σs) ∩ ps(P, ·)−1(relintF ) = F ∨Ns(P, F ),

hence

σ(F ∨Ns(P, F ))
ωd

=
σm(F )
ωm+1

σd−m−2(Ns(P, F ))
ωd−m−1

=
1

ωm+1
γ(F, P )σm(F ). (6.47)

The polytopes F ∨ Ns(P, F ), F ∈ Fm(P ), m = 0, . . . , d − 2, together with
P and P ∗, tile the sphere Sd−1, that is, they cover it and have pairwise no
common interior points. It follows that

d−2∑
m=0

1
ωm+1

∑
F∈Fm(P )

γ(F, P )σm(F ) +
1
ωd
σ(P ) +

1
ωd
σ(P ∗) = 1, (6.48)

a fact which will later become important.
We call Θm(K, ·) the mth support measure or generalized curvature

measure of K. The chosen normalization has a simplifying effect in later
formulas. The following theorem collects the main properties of the support
measures.

Theorem 6.5.2. For m = 0, . . . , d − 2, the mapping Θm : Ks × B(Σs) → R

has the following properties:

(a) Rotation covariance: Θm(ϑK, ϑA) = Θm(K,A) for ϑ ∈ SOd, where
ϑA := {(ϑx, ϑu) : (x, u) ∈ A},

(b)Weak continuity: Kj → K (in the Hausdorff metric on Ks) implies
Θm(Kj , ·) w→ Θm(K, ·),

(c) Θm(·, A) is additive, for each fixed A ∈ B(Σs),
(d)Θm(·, A) is measurable, for each fixed A ∈ B(Σs).

This theorem is analogous to Theorem 14.2.2, whose proof can be found
in Schneider [695]. In the spherical case, the proof is very similar, so that we
omit it here.

There is no Euclidean counterpart to the following nice behavior of the
support measures under polarity.

Theorem 6.5.3. If K ∈ Ks and A ∈ B(Σs), then

Θm(K,A) = Θd−m−2(K∗, A−1)

for m ∈ {0, . . . , d− 2}, where A−1 := {(u, x) ∈ Σs : (x, u) ∈ A}.
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Proof. By the weak continuity of the support measures and the continuity of
the polarity K �→ K∗ (which is easy to see), it suffices to prove this for the
case where K is a polytope P . The assertion then follows from the explicit
representation of Θm(P,A) given in Theorem 6.5.1 and the fact that F ∈
Fm(P ) and Ns(P, F ) =: G implies G ∈ Fd−m−2(P ∗) and Ns(P ∗, G) = F ; the
latter is again easy to see. ��

As a marginal measure of the mth support measure, we obtain the mth
curvature measure, by

φm(K,A) := Θm(K,A× Sd−1), A ∈ B(Sd−1).

We supplement the definition by

φd−1(K,A) :=
1
ωd
σ(K ∩A), A ∈ B(Sd−1).

Theorem 6.5.2 (together with properties of the spherical Lebesgue mea-
sure) implies that the curvature measure φm, m ∈ {0, . . . , d − 1}, is rota-
tion covariant, in the sense that φm(ϑK, ϑA) = φ(K,A) for K ∈ Ks and
A ∈ B(Sd−1), weakly continuous, and additive and measurable in its first
argument. Further, it follows easily from the definition that φm(K, ·) is con-
centrated on K and that φm(K, ·) is locally determined, in the sense that
K1,K2 ∈ Ks and K1 ∩ B = K2 ∩ B for an open set B ⊂ Sd−1 implies
φ(K1, A) = φ(K2, A) for all A ∈ B(B). These properties can be defined sim-
ilarly for mappings ψ : Ks × B(Sd−1) → R and play a role in the following
characterization theorem.

Theorem 6.5.4. Let ψ : Ps × B(Sd−1) → R be a mapping which is rotation
covariant, locally determined, additive in its first argument, and such that
ψ(P, ·) is a finite measure concentrated on P , for all P ∈ Ps. Then there are
constants c0, . . . , cd−1 ≥ 0 such that

ψ(P, ·) =
d−1∑
m=0

cmφm(P, ·)

for all P ∈ Ps.

Proof. Let k ∈ {0, . . . , d−2}. First let Sk ∈ Sk, and let P(S∗
k) be the set of all

polytopes contained in S∗
k . Let Q ∈ P(S∗

k) ∪ {∅}. For Q = ∅, we define Q∗ :=
Sd−1. The mapping A �→ ψ(Sk ∨Q,A), A ∈ B(Sk), is a finite measure which
is invariant under all rotations that map Sk into itself and fix S∗

k pointwise.
By the uniqueness of the spherical Lebesgue measure, there exists a constant
c(Sk, Q) ≥ 0 with

ψ(Sk ∨Q,A) = c(Sk, Q)σk(A), A ∈ B(Sk). (6.49)
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We write Qo for the polar body of Q with respect to S∗
k as surrounding sphere,

thus Qo = Q∗ ∩ S∗
k ; in particular, Qo = S∗

k if Q = ∅ (one has to keep in mind
that Qo depends on S∗

k). Choosing A = Sk, we put

f(Q) := c(Sk, Q
o) =

1
ωk+1

ψ(Sk ∨Qo, Sk) for Q ∈ P(S∗
k) ∪ {∅}.

The function f is nonnegative and invariant under the rotations of S∗
k into

itself. If Q1 ∪Q2 is convex, then

Sk ∨ (Q1 ∪Q2)o = (Sk ∨Qo
1) ∩ (Sk ∨Qo

2),

Sk ∨ (Q1 ∩Q2)o = (Sk ∨Qo
1) ∪ (Sk ∨Qo

2).

From the additivity of ψ in its first argument it follows that f is additive. Let
Q ∈ P(S∗

k) be a polytope with dimQ < d− k − 2. Then there exists S0 ∈ S0

with S0 ⊂ Qo. Putting Sk+1 := Sk ∨ S0, we have Sk+1 ∈ Sk+1 and

Sk ∨Qo = Sk+1 ∨ (Q∗ ∩ S∗
k+1).

Therefore, using (6.49) with k replaced by k + 1,

ωk+1f(Q) = ψ(Sk ∨Qo, Sk) = ψ(Sk+1 ∨ (Q∗ ∩ S∗
k+1), Sk)

= c(Sk+1, Q
∗ ∩ S∗

k+1)σk+1(Sk) = 0.

This shows that the mapping f satisfies the assumptions of Theorem 14.4.7,
with Sd−1 replaced by S∗

k . It follows that

f(Q) = c(Sk)σd−k−2(Q)

with a constant c(Sk) ≥ 0. By the rotation covariance of ψ, this constant
depends only on k; we put c(Sk) =: bk. Thus we have c(Sk, Q

o) = bkσd−k−2(Q)
and hence c(Sk, Q) = bkσd−k−2(Qo). Altogether, we arrive at

ψ(Sk ∨Q,A) = bkσd−k−2(Qo)σk(A)

for Q ∈ P(S∗
k) and A ∈ B(Sk).

Now let P ∈ Ps, F ∈ Fk(P ) for some k ∈ {0, . . . , d− 2}, and A ∈ B(Sd−1)
with A ⊂ relintF . With Sk := Sd−1 ∩ linF and Q := (Sk ∨ P ) ∩ S∗

k we have
Ns(P, F ) = P ∗ ∩ S∗

k = Q∗ ∩ S∗
k = Qo. A sufficiently small open neighborhood

B of A satisfies P ∩B = (Sk ∨Q) ∩B. Since ψ is locally determined, we get

ψ(P,A) = ψ(Sk ∨Q,A) = bkσd−k−2(Qo)σk(A)

= bkσd−k−2(Ns(P, F ))σk(A).

Finally, let P ∈ Ps and A ∈ B(Sd−1). Then

A = (A \ P ) ∪ (A ∩ intP ) ∪
d−2⋃
k=0

⋃
F∈Fk(P )

A ∩ relintF



256 6 Extended Concepts of Integral Geometry

is a disjoint union. Since ψ(P, ·) is concentrated on P , we get

ψ(P,A)

= ψ(P,A ∩ intP ) +
d−2∑
k=0

∑
F∈Fk(P )

bkσd−k−2(Ns(P, F ))σk(A ∩ relintF )

= ψ(P,A ∩ intP ) +
d−2∑
k=0

ckφk(P,A),

with ck := bkωk+1ωd−k−1. Since ψ is locally determined, we have ψ(P,A ∩
intP ) = ψ(Sd−1, A∩ intP ). Here ψ(Sd−1, ·) is a rotation invariant finite mea-
sure and hence proportional to σ, thus ψ(P,A ∩ intP ) = bd−1σ(A ∩ intP ) =
cd−1φd−1(P,A) with a constant cd−1 ≥ 0. This completes the proof. ��

Before applying Theorem 6.5.4 to the proof of a kinematic formula for
curvature measures, we consider the total curvature measures. We write

vm(K) := φm(K,Sd−1), m = 0, . . . , d− 1.

The functional vm is called the mth (spherical) intrinsic volume. For a
polytope P , we obtain from Theorem 6.5.1 the representation

vm(P ) =
1

ωm+1

∑
F∈Fm(P )

γ(F, P )σm(F ) =
∑

G∈Fm+1(P̆ )

β(0, G)γ(G, P̆ ). (6.50)

The duality relation of Theorem 6.5.3 gives

vm(K) = vd−m−2(K∗), m = 0, . . . , d− 2. (6.51)

It is consistent with this to supplement the definition by

v−1(K) := vd−1(K∗). (6.52)

With this definition, the intrinsic volumes satisfy two linear relations,
which also have no counterpart in Euclidean space.

Theorem 6.5.5. For K ∈ Ks,
d−1∑

i=−1

vi(K) = 1, (6.53)

and if K ∈ Ks \ S•, then

d−1∑
i=−1

(−1)ivi(K) = 0, (6.54)

hence also
� d−1

2 �∑
i=0

v2i(K) =
1
2
. (6.55)
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Proof. Relation (6.53) is just (6.48). For the proof of (6.54), it is convenient
to consider first a pointed polyhedral cone C ⊂ Rd with interior points and
its dual cone

C∗ := {y ∈ Rd : 〈x, y〉 ≤ 0 for all X ∈ C}.

If F ∈ Fm(C) for some m ∈ {0, . . . , d}, then we define F̂ := N(C,F ) (normal
cone of C at F ) and observe that F̂ ∈ Fd−m(C∗). The cone F + (−F̂ ) has
dimension d. We denote by U the union of all faces of dimensions less than
d− 1 of all the cones F + (−F̂ ), F ∈ F•(C), and assert that

η(x) :=
∑

F∈F•(C)

(−1)dim F 1F+(−F̂ )(x) = 0 for all x ∈ Rd \ U. (6.56)

Since C and C∗ can be separated weakly by a hyperplane, there is a point
y ∈ Rd with y /∈ C ∪ (−C∗), hence with η(y) = 0. Let x ∈ Rd \ U . The point
x can be joined to y by a polygonal path in Rd \U . Hence, it suffices to show
that η is constant along this path, and for this it is sufficient to show that η
does not change when entering some (d− 1)-face of a cone F + (−F̂ ).

Let H be a (d− 1)-face of some cone F + (−F̂ ), F ∈ F•(C). Being a facet
of the direct sum F + (−F̂ ), H is the direct sum, H = F1 + (−G), of a face
F1 ∈ Fk(C), for some k ∈ {0, . . . , d − 1}, and a face −G ∈ Fd−1−k(−F̂ ).
There is a face F2 of C with G = F̂2. From dimF1 + dimG = d − 1 and
dimG = d−dimF2 it follows that dimF2 = k+1. From F1 ⊂ F and F̂2 ⊂ F̂ ,
hence F1 ⊂ F ⊂ F2, it follows that either F = F1 or F = F2.

Since F1 ⊂ H, F2 �⊂ H, F1 is a face of F2 and dimF1 = dimF2 − 1, it
follows that the cone F2 lies in one of the closed halfspaces bounded by linH.
Similarly, F̂1 lies in one of the closed halfspaces bounded by linH. Let u be
the unit normal vector of linH pointing into the halfspace not containing F2;
note that u ∈ (lin F̂2)⊥ = linF2. There exists x ∈ F1 with x − u ∈ F2 \ F1.
Since x − u ∈ C, but x − u /∈ F1, there exists y ∈ F̂1 with 〈x − u, y〉 < 0,
hence with 〈u, y〉 > 0. Thus, F̂1 lies in the halfspace not containing F2. Since
F1 ⊂ H and F̂2 ⊂ H, we conclude that F1 + (−F̂1) and F2 + (−F̂2) lie on the
same side of the hyperplane linH.

As a consequence, when entering the facet H from int(F + (−F̂ )) \U , the
changes in the contributions to the function η coming from F1 + (−F̂1) and
from F2 + (−F̂2) cancel each other. Should part of the facet H also belong to
some other cone G + (−Ĝ), G ∈ F•(C), the same argument applies. In this
way, relation (6.56) is proved.

If now P ∈ Kp
s is a (d − 1)-dimensional polytope, we can apply relation

(6.56) to the cone C = P̆ and obtain

1−P∗(x) +
d−1∑
i=0

(−1)i+1
∑

F∈Fi(P )

1F∨(−Ns(P,F ))(x) = 0
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for σ-almost all x ∈ Sd−1. Integrating this relation over the unit sphere and
using the reflection invariance of σ, we obtain (6.54), in view of (6.47) and
(6.50). The extension to general convex bodies which are not subspheres fol-
lows by approximation. Relation (6.55) follows from (6.53) and (6.54). ��

The spherical convex ringRs is defined as the system of all finite unions
of spherically convex bodies in Sd−1, including the empty set ∅. Groemer’s
extension theorem 14.4.2, with the obvious adaptation to Sd−1, shows that
every continuous additive functional on Kp

s with values in a topological vector
space has a continuous extension to Rs. The function χ defined by χ(K) := 1
for K ∈ Kp

s is additive and hence has such an extension, which is also denoted
by χ and called the Euler characteristic. Since the intrinsic volumes, too,
have additive extensions to Rs, relation (6.55) generalizes to

2
� d−1

2 �∑
i=0

v2i(K) = χ(K)

for K ∈ Rs. This is a version of the spherical Gauss–Bonnet theorem.
(Note that, in contrast to the Euclidean case, v0 is not the Euler characteris-
tic.)

Returning to the curvature measures, we prove an integral geometric in-
tersection formula.

Theorem 6.5.6 (Spherical kinematic formula). If K,M ∈ Rs and
A,B ∈ B(Sd−1), then∫

SOd

φj(K ∩ ϑM,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(K,A)φd−1−k+j(M,B) (6.57)

for j = 0, . . . , d− 1.

Proof. For convex bodies K,M ∈ Ks we define

T (K,M) := {ϑ ∈ SOd : K and M touch},

where K and M are said to touch if K ∩M �= ∅ but the cones K̆, M̆ can be
separated weakly by a hyperplane. Similarly to the proof of Lemma 5.2.1 one
shows that the mapping

ϑ �→ φj(K ∩ ϑM,A ∩ ϑB), ϑ ∈ SOd,

is measurable on SOd \ T (K,M) and hence coincides almost everywhere on
SOd with a measurable mapping if ν(T (K,M)) = 0. The proof of the latter
fact is not so straightforward as that for the Euclidean counterpart (see the
beginning of Theorem 5.1.2). For polytopes P,Q, the relation ν(T (P,Q)) = 0
is easily deduced from Lemma 13.2.1. Therefore, we first prove the kinematic
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formula for polytopes. This is used to prove ν(T (K,M)) = 0 for general
convex bodies, which then allows us to extend the kinematic formula to this
case.

Let j ∈ {0, . . . , d − 1}. The left side of (6.57) is well defined if K,M are
polytopes. We fix Q ∈ Ps and an open set B ⊂ Sd−1 and put

ψ(P,A) :=
∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ),

for P ∈ Ps and A ∈ B(Sd−1). It is easy to check that ψ satisfies the assump-
tions of Theorem 6.5.4, hence there exist constants c0(Q,B), . . . , cd−1(Q,B) ≥
0 such that∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=0

ck(Q,B)φk(P,A)

for all P ∈ Ps and all Borel sets A ⊂ Sd−1. Since, by (6.46), φm(Sk, S
d−1) =

δkm for Sk ∈ Sk, we obtain

ck(Q,B) =
∫

SOd

φj(Sk ∩ ϑQ, ϑB) ν(dϑ) (6.58)

for k = 0, . . . , d− 1. Admitting arbitrary Borel sets B in (6.58), we can again
apply Theorem 6.5.4 and deduce that

ck(Q,B) =
∫

SOd

φj(Sk ∩ ϑQ, ϑB) ν(dϑ) =
d−1∑
i=0

bikφi(Q,B)

with constants bik ≥ 0. Here we choose Q = Sm ∈ Sm and B = Sd−1. It
follows from Lemma 13.2.1 that either Sk ∩ ϑSm = ∅ for ν-almost all ϑ or
Sk ∩ ϑSm ∈ Sk+m−d+1 for ν-almost all ϑ, hence

bmk =
{

1, if m = d− 1− k + j,
0 else.

Thus we get ck(Q,B) = 0 for k = 0, . . . , j−1 and ck(Q,B) = φd−1−k+j(Q,B)
for k = j, . . . , d− 1. We conclude that∫

SOd

φj(P ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(P,A)φd−1−k+j(Q,B) (6.59)

for P,Q ∈ Ps, A ∈ B(Sd−1) and open sets B. Since both sides define measures
if B varies, (6.59) holds for arbitrary Borel sets B.

We want to replace P in (6.59) by a general convex body K. Since
subspheres are polytopes, we may assume that K is not a subsphere. We
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can choose polytopes P1, P2 ∈ Ps which are not subspheres and satisfy
P1 ⊂ K ⊂ P2. Then

T (K,Q) ⊂ ({ϑ ∈ SOd : P2 ∩ ϑQ �= ∅} \ {ϑ ∈ SOd : P1 ∩ ϑQ �= ∅})∪ T (P1, Q).

Since Pr is not a subsphere (r = 1, 2), it is easy to check that Pr ∩ ϑQ is not
a subsphere for almost all ϑ, hence for almost all ϑ with Pr ∩ϑQ �= ∅ we have

2
� d−1

2 �∑
i=0

v2i(Pr ∩ ϑQ) = 1

by (6.55). Now formula (6.59) with A = B = Rd gives

ν({ϑ ∈ SOd : Pr ∩ ϑQ �= ∅}) =
∫

SOd

2
� d−1

2 �∑
i=0

v2i(Pr ∩ ϑQ) ν(dϑ)

= 2
� d−1

2 �∑
i=0

d−1∑
k=2i

vk(Pr)vd−1−k+2i(Q)

for r = 1, 2 and hence

ν(T (K,Q)) ≤ 2
� d−1

2 �∑
i=0

d−1∑
k=2i

[vk(P2)− vk(P1)]vd−1−k+2i(Q).

Since P1 and P2 can be chosen arbitrarily close to K in the Hausdorff met-
ric and since the spherical intrinsic volumes are continuous (by Theorem
6.5.2(b)), we conclude that ν(T (K,Q)) = 0.

Now we can conclude, as before, that ϑ �→ φj(K ∩ ϑQ,A ∩ ϑB) coincides
almost everywhere on SOd with a measurable function, hence the left side of
our next assertion,∫

SOd

φj(K ∩ ϑQ,A ∩ ϑB) ν(dϑ) =
d−1∑
k=j

φk(K,A)φd−1−k+j(Q,B), (6.60)

is well defined. To prove (6.60), we proceed similarly to the Euclidean case,
see Theorem 5.2.3. Assertion (6.60) is equivalent to∫

SOd

∫
Sd−1

f(x)g(ϑ−1x)φj(K ∩ ϑQ,dx) ν(dϑ)

=
d−1∑
k=j

∫
Sd−1

f dφk(K, ·)
∫

Sd−1
g dφd−1−k+j(Q, ·)

for all continuous functions f, g : Sd−1 → R. The proof of this relation and
hence of (6.60) is now completed by approximating K by polytopes, using
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the weak continuity of the curvature measures and the bounded convergence
theorem.

Due to the inversion invariance of the measure ν, the result (6.60) can be
written in the form∫

SOd

φj(Q ∩ ϑK,B ∩ ϑA) ν(dϑ) =
d−1∑
k=j

φk(Q,B)φd−1−k+j(K,A),

valid for polytopes Q and convex bodies K. As before, the polytope Q can
now similarly be replaced by a general convex body.

The final extension to the spherical convex ring Rs is also similar to the
Euclidean case. ��

As a particular case of the spherical kinematic formula, we note its global
version ∫

SOd

vj(K ∩ ϑM) ν(dϑ) =
d−1∑
k=j

vk(K)vd−1−k+j(M), (6.61)

for K,M ∈ Rs and j = 0, . . . , d−1. Due to the duality relations (6.45), (6.51),
(6.52), we obtain a dual kinematic formula for convex bodies by applying
(6.61) to polar bodies. The result is∫

SOd

vj(K ∨ ϑM) ν(dϑ) =
j∑

k=−1

vk(K)vj−k−1(M)

for K,M ∈ Ks and j = −1, . . . , d− 2.
In contrast to the Euclidean case, where V0 is the Euler characteristic, we

must use (6.55) to obtain the integral

∫
SOd

χ(K ∩ ϑM) ν(dϑ) = 2
� d−1

2 �∑
k=0

d−1∑
i=2k

vi(K)vd−1−i+2k(M)

for K,M ∈ Rs.
The case of (6.57) where one of the sets is a subsphere deserves special

attention. To have a concise notation, for q ∈ {0, . . . , d−1} we choose S0 ∈ Sq

and denote by τq the image measure of ν under the map ϑ �→ ϑS0 from SOd to
Sq. Thus, τq is the uniquely determined rotation invariant probability measure
on Sq. With this notation, we get the spherical Crofton formula∫

Sq

φj(K ∩ S,A ∩ S) τq(dS) = φd−1−q+j(K,A)

for K ∈ Rs, A ∈ B(Sd−1), q ∈ {0, . . . , d− 1} and j ∈ {0, . . . , q}.
Defining
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Uj(K) :=
1
2

∫
Sd−1−j

χ(K ∩ S) τd−1−j(dS) (6.62)

for K ∈ Rs and j ∈ {0, . . . , d− 1}, we further obtain

Uj(K) =
� d−1−j

2 �∑
k=0

vj+2k(K) (6.63)

If K in (6.62) is a convex body and not a subsphere, then for almost all
S ∈ Sd−1−j the intersection K ∩ S is not a subsphere, hence χ(K ∩ S) = 1 if
K ∩ S �= ∅. Therefore, 2Uj(K) is the total invariant measure of the set of all
(d− 1− j)-dimensional subspheres hitting the convex body K.

Notes for Section 6.5

1. A general source for integral geometry in spaces of constant curvature, from the
differential geometric viewpoint, is the book by Santaló [662] and the literature
quoted there, in particular Santaló [658].

Steiner formulas in spaces of constant curvature, in a differential geometric set-
ting, were studied by Herglotz [336], Allendoerfer [23], Santaló [657]. A very general
local version, for sets of positive reach, is due to Kohlmann [422]. The approach
followed here is taken from Glasauer [264]. For differential geometric proofs of the
spherical Gauss–Bonnet formula, we refer to Allendoerfer and Weil [24], Santaló
[660, 661].

2. Since the linear relations between intrinsic volumes in Theorem 6.5.5 are special
cases of the Steiner formula and the Gauss–Bonnet formula in spherical space, they
appeared first, with differential geometric proofs, in the relevant literature quoted
above. For spherical polytopes, in an equivalent version for polyhedral cones in Rd,
McMullen [469] has given interesting new proofs, more combinatorial in nature. The
proof of (6.54) given here is based on a note by McMullen [470], which expands his
remark at the beginning of §3 in [469].

3. The proof of Theorem 6.5.6, the spherical kinematic formula for curvature mea-
sures, is modeled after the proof given for its Euclidean counterpart by Schneider
[676, Th. (6.1)]. The presentation given here follows the one by Glasauer [264]. This
work contains many more results of spherical integral geometry, among them an
abstract version of the kinematic formula and a version for support measures.

4. For spherical polytopes, or rather their spanned polyhedral cones, the functionals
Uj were studied by Grünbaum [300], under the name of Grassmann angles.

5. In contrast to the Euclidean case, the spherical intrinsic volumes are in general
not monotone under set inclusion. We restrict ourselves here to the set Ks \ S•.
Clearly vd−1 is increasing under set inclusion, and so is vd−2, being equal to Ud−2.
By duality, v−1 and v0 are decreasing. For j ∈ {1, . . . , d−3}, however, the functional
vj is not monotone. This follows, for example, by considering spherical balls Br with
spherical radius r, 0 ≤ r ≤ π/2. From the Steiner formula one sees that

vj(Br) =
ωd

ωj+1ωd−1−j

(
d − 2

j

)
cosd−2−j r sinj r,
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which is not a monotone function of r.
On the other hand, the functionals U0, . . . , Ud−1 are increasing, as follows imme-

diately from their definition. They may as well be considered as spherical analogs of
the Euclidean intrinsic volumes, sharing with them the integral geometric interpre-
tation as total measures of intersecting flats, respectively subspheres, of a suitable
dimension. There is still another series of functionals which can be considered as
counterparts to the Euclidean intrinsic volumes. Let q ∈ {0, . . . , d − 1} and S ∈ Sq.
The spherical projection of K ∈ Ks to S is defined by K|S := S∩ (K∨S∗). Then
the function defined by

Wj(K) :=
1

ωj+1

∫
Sj

σj(K|S) τj(dS)

for K ∈ Ks can be expressed in terms of intrinsic volumes. The relation

Wj(K) =

d−1∑
k=j

vk(K)

was proved by Glasauer [264]. Clearly, also Wj is increasing. Thus, in spherical space,
there are three series of functionals which, with some reason, can be considered
as counterparts to the Euclidean intrinsic volumes. All functionals vj , Uj , Wj are
nonnegative, additive, continuous, and rotation invariant. The Uj and Wj are linear
combinations of the vj with nonnegative coefficients, and they are increasing under
set inclusion.

It is a longstanding (and repeatedly asked) open question whether Hadwiger’s
characterization theorem 14.4.6 has a spherical counterpart. For example, if a func-
tion ϕ : Ks → R is additive, continuous and rotation invariant, must it be of the
form ϕ =

∑d−1
i=0 civi with constant coefficients c0, . . . , cd−1? An affirmative answer

to the question posed in Note 6 of Section 14.4 would be an essential step towards
a solution. As a variant, one might ask whether a function ϕ : Ks \ S• → R which is
additive, rotation invariant and increasing must be a nonnegative linear combination
of the functions Uj or Wj .

6. Motivated by the Euclidean case, one may ask for inequalities existing between
the functionals vj , Uj , Wj . For example, among all convex bodies K ∈ Kp

s of given
positive volume vd−1(K), which ones are extremal for one of the functionals? Only
the following nontrivial cases seem to be known. The minimum of vd−2 is attained if
and only if K is a ball (the classical isoperimetric problem in spherical space). The
maximum of v−1(K) = vd−1(K

∗) (and, because of U1(K) = 1
2
− vd−1(K

∗); also the
minimum of U1(K)) is attained if and only if K is a ball. The latter result, which
can be considered as a spherical counterpart to the Blaschke–Santaló inequality, was
proved by Gao, Hug and Schneider [243].
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Integral Geometric Transformations

Mean value formulas with respect to invariant measures, as treated in the
preceding two chapters, are a central topic of integral geometry. Another one
is transformation formulas for integrals over various spaces of geometric ob-
jects. The need for such results in stochastic geometry can be demonstrated
by simple examples. Consider, for instance, two independent, identically dis-
tributed random hyperplanes in Rd. Suppose the distribution is such that the
intersection of the two hyperplanes is almost surely a (d − 2)-flat. What is
the distribution of this random (d− 2)-flat? Or, consider k ≤ d independent,
identically distributed random points in Rd, and suppose their distribution is
such that they almost surely span a (k − 1)-flat. What is its distribution? In
the cases where the original distributions are derived from invariant measures
(by restriction, for example), the answers can be obtained from simple cases
of the transformation formulas of this chapter. Generally, these transforma-
tion formulas relate integrations over tuples of flats, with respect to invariant
measures, to integrations over other sets of flats (or other geometric objects)
that are obtained by geometric operations, such as intersection or span. As
an example, consider the integral of a function depending on d points. It may
happen that the function depends only on the hyperplane spanned (almost
everywhere) by the points. Then it may have a simplifying effect to integrate
first over the d-tuples of points lying in a fixed hyperplane, and then over
all hyperplanes. In principle, the required transformation formulas are just
versions of the transformation rule for multiple integrals under differentiable
mappings. However, since the mappings are defined by geometric operations,
the Jacobians have geometric interpretations, and therefore direct geometric
arguments are often simpler and more perspicuous than the use of special
parametrizations.

The transformation formulas to be proved have various applications in
stochastic geometry, for example in the investigation of convex hulls of random
points (Chapter 8), the study of random mosaics (Chapter 10), or in the
foundations of stereology. We do not aim at presenting the integral geometric
transformation formulas in their greatest generality, but rather give typical
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and basic examples. This will be done in Sections 7.2 and 7.3. The first section
provides simple rules for invariant measures on flag spaces.

7.1 Flag Spaces

In this section, we consider pairs of linear or affine subspaces, one contained
in the other.

Let p, q ∈ {0, . . . , d}, and let L ∈ G(d, p) be a fixed p-dimensional linear
subspace. We denote by G(L, q) the space of all q-dimensional linear subspaces
contained in L if q ≤ p, respectively containing L if q > p. In a similar way,
for an affine subspace E ∈ A(d, p), the space A(E, q) of q-flats contained in
E, respectively containing E, is defined. These spaces are described in detail
in Section 13.2. There also the invariant measures νL

q on G(L, q) and µE
q on

A(E, q) are constructed. These measures will be used in the following.
Now we turn to spaces of pairs of linear subspaces or flats. For 0 ≤ p, q ≤ d

with p �= q we define

G(d, p, q) := {(L,M) ∈ G(d, p)×G(d, q) : L ⊂M}, if p < q,

G(d, p, q) := {(L,M) ∈ G(d, p)×G(d, q) : L ⊃M}, if p > q,

and

A(d, p, q) := {(E,F ) ∈ A(d, p)×A(d, q) : E ⊂ F}, if p < q,

A(d, p, q) := {(E,F ) ∈ A(d, p)×A(d, q) : E ⊃ F}, if p > q.

In an obvious way, these definitions could be extended to more than two linear
or affine subspaces. Spaces of the type G(d, p, q) or A(d, p, q) are called flag
spaces. The flag space G(d, p, q), for example, is evidently a homogeneous
SOd-space. Defining

βp,q : SOd → G(d, p, q),

ϑ �→ (ϑLp, ϑLq)

where (Lp, Lq) ∈ G(d, p, q) is arbitrary but fixed, and

νp,q := βp,q(ν),

we obtain a rotation invariant probability measure νp,q on G(d, p, q). Thus,
by definition, ∫

G(d,p,q)

f dνp,q =
∫

SOd

f(ϑLp, ϑLq) ν(dϑ) (7.1)

for every nonnegative measurable function f on G(d, p, q). We shall first show
that this measure can be computed, as one might expect, by iterated integra-
tions over p- and q-dimensional subspaces.
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Theorem 7.1.1. If 0 ≤ p < q ≤ d− 1 and if f : G(d, p, q) → R is a nonneg-
ative measurable function, then∫

G(d,p,q)

f dνp,q =
∫

G(d,q)

∫
G(M,p)

f(L,M) νM
p (dL) νq(dM)

=
∫

G(d,p)

∫
G(L,q)

f(L,M) νL
q (dM) νp(dL).

Proof. Measurability follows, for example, from the fact that the mapping
(M,B) �→ νM

p (B), M ∈ G(d, q), B ∈ B(G(d, p)), is a kernel; for this, see
Lemma 13.2.2. Let (Lp, Lq) ∈ G(d, p, q). In the subsequent chain of equalities
we use, in this order, the definition of νq as the image measure of ν under βq,
the invariance property (13.12), the definition of νLq

p , Fubini’s theorem, the
equality Lq = ρLq for ρ ∈ SO(Lq), and the right invariance of ν. We obtain∫

G(d,q)

∫
G(M,p)

f(L,M) νM
p (dL) νq(dM)

=
∫

SOd

∫
G(ϑLq,p)

f(L, ϑLq) νϑLq
p (dL) ν(dϑ)

=
∫

SOd

∫
G(Lq,p)

f(ϑL′, ϑLq) νLq
p (dL′) ν(dϑ)

=
∫

SOd

∫
SO(Lq)

f(ϑρLp, ϑLq) νLq
(dρ) ν(dϑ)

=
∫

SO(Lq)

∫
SOd

f(ϑρLp, ϑLq) ν(dϑ) νLq
(dρ)

=
∫

SO(Lq)

∫
SOd

f(ϑLp, ϑLq) ν(dϑ) νLq
(dρ)

=
∫

SOd

f(ϑLp, ϑLq) ν(dϑ).

In an analogous manner (though with a difference since p < q) we get∫
G(d,p)

∫
G(L,q)

f(L,M) νL
q (dM) νp(dL)

=
∫

SOd

∫
G(ϑLp,q)

f(ϑLp,M) νϑLp
q (dM) ν(dϑ)

=
∫

SOd

∫
G(Lp,q)

f(ϑLp, ϑM
′) νLp

q (dM ′) ν(dϑ)

=
∫

SOd

∫
SO(L⊥

p )

f(ϑLp, ϑρLq) νL⊥
p
(dρ) ν(dϑ)
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=
∫

SO(L⊥
p )

∫
SOd

f(ϑLp, ϑρLq) ν(dϑ) νL⊥
p
(dρ)

=
∫

SO(L⊥
p )

∫
SOd

f(ϑLp, ϑLq) ν(dϑ) νL⊥
p
(dρ)

=
∫

SOd

f(ϑLp, ϑLq) ν(dϑ).

This, together with (7.1), completes the proof of Theorem 7.1.1. ��

Remark. Let 0 ≤ p < q ≤ d − 1. The special case f(L,M) = 1A(L) with
A ∈ B(G(d, p)) in Theorem 7.1.1 yields

νp(A) =
∫

G(d,q)

νM
p (A) νq(dM), (7.2)

and similarly one has

νq(A) =
∫

G(d,p)

νL
q (A) νp(dL) (7.3)

for A ∈ B(G(d, q)).

Remark. Let p, q ∈ {0, . . . , d− 1}. For the Radon transform

Rpq : C(G(d, p))→ C(G(d, q))

defined by (6.35), Theorem 7.1.1 implies the symmetry relation∫
G(d,q)

(Rpqf)g dνq =
∫

G(d,p)

f(Rqpg) dνp

for f ∈ C(G(d, p)) and g ∈ C(G(d, q)).

Theorem 7.1.1 can be generalized. For example, let integers r < p < q < d
or q < p < r < d be given. For L0 ∈ G(d, r) and L2 ∈ G(d, q), let G(L0, L2, p)
denote the space of all p-dimensional subspaces L1 with L0 ⊂ L1 ⊂ L2 if
r < p < q, respectively with L2 ⊂ L1 ⊂ L0 if q < p < r. It carries a unique
probability measure νL0,L2

p which is invariant under the rotations that map
L0 into itself and L2 into itself. Let L0 ∈ G(d, r) be fixed. If f : G(d, p, q)→ R

is a nonnegative measurable function, then∫
G(L0,p)

∫
G(L1,q)

f(L1, L2) νL1
q (dL2) νL0

p (dL1)

=
∫

G(L0,q)

∫
G(L0,L2,p)

f(L1, L2) νL0,L2
p (dL1) νL0

q (dL2). (7.4)

This can be proved along similar lines to above.
A result analogous to Theorem 7.1.1 is valid for affine subspaces. It can

be deduced from this theorem.
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Theorem 7.1.2. If 0 ≤ p < q ≤ d− 1 and if f : A(d, p, q)→ R is a nonnega-
tive measurable function, then∫

A(d,q)

∫
A(F,p)

f(E,F )µF
p (dE)µq(dF )

=
∫

A(d,p)

∫
A(E,q)

f(E,F )µE
q (dF )µp(dE). (7.5)

Proof. For measurability, we again refer to Lemma 13.2.2. In the subsequent
chain of equations we use (13.9), (13.13), Theorem 7.1.1, (13.14), again (13.9),
and several times the theorem of Fubini. In this way, we get∫

A(d,q)

∫
A(F,p)

f(E,F )µF
p (dE)µq(dF )

=
∫

G(d,q)

∫
L⊥

∫
A(L+t,p)

f(E,L+ t)µL+t
p (dE)λd−q(dt) νq(dL)

=
∫

G(d,q)

∫
L⊥

∫
G(L,p)

∫
M⊥∩L

f(M + x+ t, L+ t)

× λq−p(dx) νL
p (dM)λd−q(dt) νq(dL)

=
∫

G(d,q)

∫
G(L,p)

∫
L⊥

∫
M⊥∩L

f(M + x+ t, L+ x+ t)

× λq−p(dx)λd−q(dt) νL
p (dM) νq(dL)

=
∫

G(d,q)

∫
G(L,p)

∫
M⊥

f(M + z, L+ z)λd−p(dz) νL
p (dM) νq(dL)

=
∫

G(d,p)

∫
G(M,q)

∫
M⊥

f(M + z, L+ z)λd−p(dz) νM
q (dL) νp(dM)

=
∫

G(d,p)

∫
M⊥

∫
G(M,q)

f(M + z, L+ z) νM
q (dL)λd−p(dz) νp(dM)

=
∫

G(d,p)

∫
M⊥

∫
A(M+z,q)

f(M + z, F )µM+z
q (dF )λd−p(dz) νp(dM)

=
∫

A(d,p)

∫
A(E,q)

f(E,F )µE
q (dF )µp(dE).

This completes the proof of Theorem 7.1.2. ��

Remark. Analogously to (7.2) one obtains, for 0 ≤ p < q ≤ d − 1, a repre-
sentation of the invariant measure µp in the form

µp(A) =
∫

A(d,q)

µF
p (A)µq(dF ),
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for A ∈ B(A(d, p)). There is, however, no representation corresponding to
(7.3), because the measure µF

p , where F ∈ A(d, q) and p < q, is not finite.

Note for Section 7.1

Theorems 7.1.1 and 7.1.2 can also be deduced from the essential uniqueness of
invariant measures on homogeneous spaces (Theorem 13.3.1).

7.2 Blaschke–Petkantschin Formulas

We recall that for E ∈ A(d, q) we denote by λE the q-dimensional Lebesgue
measure on E, considered as a measure on all of Rd, thus

λE(A) = λq(A ∩ E) for A ∈ B(Rd).

For several applications one needs integral geometric transformations of a
kind for which the following is a typical example. Suppose we have to integrate
a function of q-tuples of points in Rd, where q ∈ {1, . . . , d − 1}, with respect
to the product measure λq. In some cases it may simplify the computation to
integrate first over the q-tuples of points in a fixed q-dimensional linear sub-
space L, with respect to the product measure λq

L, and then to integrate over
all linear subspaces L, with respect to the invariant measure νq on G(d, q). The
case q = 1 corresponds essentially to the well-known computation of a volume
integral in terms of polar coordinates. The Jacobian appearing in the general
transformation formula has a simple geometric meaning. A similar transfor-
mation formula exists for affine, instead of linear, subspaces. Results of this
type are called Blaschke–Petkantschin formulas. We prepare the proof of
these formulas by a lemma which extends the polar coordinate formula.

We denote by d(x, L) the distance of the point x ∈ Rd from the subspace
L ⊂ Rd.

Lemma 7.2.1. If r ∈ {0, . . . , d−1} and L ∈ G(d, r) is a fixed linear subspace,
then ∫

Rd

f dλ =
ωd−r

2

∫
G(L,r+1)

∫
M

fd(·, L)d−r−1 dλM νL
r+1(dM)

for every nonnegative measurable function f on Rd.

Proof. We denote by Lu the positive hull of L and a vector u. Using spherical
coordinates in L⊥ and Fubini’s theorem, we obtain∫

Rd

f(x)λ(dx)

=
∫

L

∫
L⊥
f(x0 + x1)λL⊥(dx1)λL(dx0)
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=
∫

L

∫ ∞

0

∫
Sd−1∩L⊥

f(x0 + ρu)ρd−r−1 σd−r−1(du) dρ λL(dx0)

=
∫

Sd−1∩L⊥

∫
L

∫ ∞

0

f(x0 + ρu)ρd−r−1 dρ λL(dx0)σd−r−1(du)

=
∫

Sd−1∩L⊥

∫
Lu

f(x)d(x, L)d−r−1 λLu
(dx)σd−r−1(du)

=
ωd−r

2

∫
G(L,r+1)

∫
M

f(x)d(x, L)d−r−1 λM (dx) νL
r+1(dM).

This was the assertion. ��

We recall (from Section 4.4 or Section 14.1) that for q ∈ {1, . . . , d}
and x1, . . . , xq ∈ Rd we denote by ∇q(x1, . . . , xq) the q-dimensional vol-
ume of the parallelepiped spanned by the vectors x1, . . . , xq. For q + 1 points
x0, x1, . . . , xq ∈ Rd,

∆q(x0, . . . , xq) :=
1
q!
∇q(x1 − x0, . . . , xq − x0) (7.6)

is the q-dimensional volume of the convex hull of {x0, . . . , xq}.
The following result is known as the linear Blaschke–Petkantschin

formula.

Theorem 7.2.1. If q ∈ {1, . . . , d} and if f : (Rd)q → R is a nonnegative
measurable function, then∫

(Rd)q

f dλq = bdq

∫
G(d,q)

∫
Lq

f∇d−q
q dλq

L νq(dL) (7.7)

with
bdq :=

ωd−q+1 · · ·ωd

ω1 · · ·ωq
. (7.8)

Proof. The subsequent proof, which is adapted from Miles [525], proceeds by
induction. For q = 1, the assertion reduces to Lemma 7.2.1 (case r = 0) and
hence is true. We assume that the assertion has been proved for some q ≥ 1
and all dimensions d. In the inductive step we make use of the fact that for
x1, . . . , xq ∈ L ∈ G(d, q) and xq+1 ∈ Rd one has

∇q+1(x1, . . . , xq+1) = ∇q(x1, . . . , xq)d(xq+1, L). (7.9)

Below we abbreviate (x1, . . . , xq) by x. First we use, besides Fubini’s theorem,
the induction hypothesis and Lemma 7.2.1, to obtain

I :=
∫

(Rd)q+1
f dλq+1
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=
∫

Rd

∫
(Rd)q

f(x, x)λq(dx)λ(dx)

= bdq

∫
Rd

∫
G(d,q)

∫
Lq

f(x, x)∇q(x)d−q λq
L(dx) νq(dL)λ(dx)

= bdq

∫
G(d,q)

∫
Lq

∇q(x)d−q

∫
Rd

f(x, x)λ(dx)λq
L(dx) νq(dL)

=
bdqωd−q

2

∫
G(d,q)

∫
Lq

∇q(x)d−q

∫
G(L,q+1)

∫
M

f(x, x) d(x, L)d−q−1

× λM (dx) νL
q+1(dM)λq

L(dx) νq(dL).

Applying Theorem 7.1.1 for interchanging the integrations over q- and (q+1)-
dimensional subspaces and then using (7.9), we get

I =
bdqωd−q

2

∫
G(d,q+1)

∫
G(M,q)

∫
Lq

∫
M

f(x, x)∇q(x)d−q d(x, L)d−q−1

× λM (dx)λq
L(dx) νM

q (dL) νq+1(dM)

=
bdqωd−q

2

∫
G(d,q+1)

∫
M

∫
G(M,q)

∫
Lq

f(x, x)∇q+1(x, x)d−q−1∇q(x)

× λq
L(dx) νM

q (dL)λM (dx) νq+1(dM).

Now we apply the induction hypothesis again, to a q-fold integration over
the (q + 1)-dimensional space M and the function f(·, x)∇q+1(·, x)d−q−1. We
obtain

I =
bdqωd−q

2b(q+1)q

∫
G(d,q+1)

∫
M

∫
Mq

f(x, x)∇q+1(x, x)d−q−1

× λq
M (dx)λM (dx) νq+1(dM)

= bd(q+1)

∫
G(d,q+1)

∫
Mq+1

f∇d−q−1
q+1 dλq+1

M νq+1(dM),

which is the assertion for a (q + 1)-fold integration. ��

Before proceeding further, we want to explain in which situations we talk
of a formula of ‘Blaschke–Petkantschin type’; thus, we try to describe the
common feature of these transformations. The starting point is an integration
over a product (possibly with one factor only) of measure spaces of geomet-
ric objects (points or flats, as a rule), mostly homogeneous spaces with their
invariant measures. Almost everywhere, the integration variable, which is a
tuple of geometric objects, determines a new geometric object (for example,
by span or intersection). We call this new object the ‘pivot’. The initial inte-
gration is then decomposed into an outer and an inner integration. The outer
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integration space is the space of all possible pivots, with a natural measure;
often it is a homogeneous space. For a given pivot, the inner integration space
consists of the tuples of the initial integration space which determine precisely
this pivot; as a rule, it is a product of homogeneous spaces.

Lemma 7.2.1 was already of this type. The initial integration is over Rd.
The integration variable x ∈ Rd determines (almost everywhere) the (q + 1)-
subspace which is spanned by x and the fixed q-subspace L. This (q + 1)-
subspace is the pivot. The outer integration space is the space G(L, q + 1) of
all (q + 1)-subspaces containing L. For M in this space, the inner integration
space is equal to M . In the case of Theorem 7.2.1, the initial integration is
over (Rd)q, and the pivot is the q-subspace spanned by the integration variable
(x1, . . . , xq) ∈ (Rd)q. Hence, the outer integration space is the Grassmannian
G(d, q) of all q-subspaces. For L ∈ G(d, q), the inner integration space is the
product Lq.

There are also extensions of formulas of Blaschke–Petkantschin type where
the pivot is not uniquely determined by the integration variable, but only
associated with it in some way. For example, in the situation of Theorem
7.2.1, a pivot associated with (x1, . . . , xq) could be a subspace of fixed di-
mension s ≥ q containing x1, . . . , xq, or the span of x1, . . . , xq and of a fixed
subspace. One can also combine both possibilities; this gives the following
generalization of the linear Blaschke–Petkantschin formula. Here we denote
by ∇q,r(x1, . . . xq, L0) the (q+ r)-dimensional volume spanned by the vectors
x1, . . . , xq ∈ Rd and an orthonormal basis of the subspace L0 ∈ G(d, r).

Theorem 7.2.2. Let q ≥ 1, r ≥ 0 and s be integers with q + r ≤ s ≤ d, let
L0 ∈ G(d, r). If f : (Rd)q → R is a nonnegative measurable function, then∫

(Rd)q

f dλq =
b(d−r)q

b(s−r)q

∫
G(L0,s)

∫
Lq

f∇q,r(·, L0)d−s dλq
L ν

L0
s (dL). (7.10)

Proof. First we consider the case s = q + r, that is, the formula∫
(Rd)q

f dλq = b(d−r)q

∫
G(L0,q+r)

∫
Lq

f∇q,r(·, L0)d−q−r dλq
L ν

L0
q+r(dL). (7.11)

Its proof proceeds by induction, in a similar manner to Theorem 7.2.1. The
case of q = 1 is again provided by Lemma 7.2.1. In the induction step, one
applies Lemma 7.2.1 to a fixed subspace L of dimension q + r and then uses
the interchange formula (7.4) instead of Theorem 7.1.1. After observing that

∇q+1,r(x1, . . . , xq+1, L0) = ∇q,r(x1, . . . , xq, L0)d(xq+1, L) for L0 ⊂ L

and applying Fubini’s theorem, the induction hypothesis is applied to a q-fold
integration over a (q + r + 1)-dimensional subspace M containing L0. Apart
from these changes, the proof is the same as before. Thus, the formula (7.11)
is proved.

To prove (7.10), we assume that q + r ≤ s ≤ d and start with the integral
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I :=
∫

G(L0,s)

∫
Lq

f dλq
L ν

L0
s (dL).

We apply (7.11) to the integral over Lq; here dimL = s and L0 ⊂ L. Then
we use the interchange formula (7.4) and Fubini’s theorem. This yields

I = b(s−r)q

∫
G(L0,s)

∫
G(L0,L,q+r)

∫
Mq

f∇q,r(·, L0)s−q−r

× dλq
M νL0,L

q+r (dM) νL0
s (dL)

= b(s−r)q

∫
G(L0,q+r)

∫
G(M,s)

∫
Mq

f∇q,r(·, L0)s−q−r dλq
M νM

s (dL) νL0
q+r(dM)

= b(s−r)q

∫
G(L0,q+r)

∫
Mq

∫
G(M,s)

f∇q,r(·, L0)s−q−r νM
s (dL) dλq

M νL0
q+r(dM)

= b(s−r)q

∫
G(L0,q+r)

∫
Mq

f∇q,r(·, L0)s−q−r dλq
M νL0

q+r(dM)

=
b(s−r)q

b(d−r)q

∫
(Rd)q

f∇q,r(·, L0)s−d dλq,

by another application of (7.11). Replacing f by f∇q,r(·, L0)d−s, we obtain
the assertion. ��

The original Blaschke–Petkantschin formula is a source of a series of further
integral geometric transformations, of which we shall give some examples.
First we derive transformation formulas for integrals over tuples of linear
subspaces. The cases where the sum of the dimensions of the subspaces is at
most d or larger than d have to be distinguished.

In the subsequent theorem, the initial integration space is
∏q

i=1G(d, ri),
with

∑q
i=1 ri =: p ≤ d, and the pivot determined by a q-tuple of subspaces is

their linear span. Correspondingly, the outer integration space is G(d, p), and
for L ∈ G(d, p), the inner integration space is

∏q
i=1G(L, ri).

In the following, we shall have to use the subspace determinant [·, . . . , ·]
defined in Section 14.1. If q ∈ N, r1, . . . , rq ∈ {1, . . . , d−1} and (L1, . . . , Lq) ∈
G(d, r1)× . . .×G(d, rq), we write

[L1, . . . , Lq] =: [L1, . . . , Lq]r,

where r := (r1, . . . , rq) serves as a multi-index. If L0 is a fixed linear subspace,
we also write

[L1, . . . , Lq, L0] =: [L1, . . . , Lq, L0]r.

Thus, for r := (r1, . . . , rq), the functions [·, . . . , ·]r and [·, . . . , ·, L0]r are both
defined on G(d, r1)× . . .×G(d, rq).
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Theorem 7.2.3. Let r1, . . . , rq ∈ {1, . . . , d−1} be integers with r1+. . .+rq =:
p ≤ d, and put r := (r1, . . . , rq). If f : G(d, r1) × . . . × G(d, rq) → R is a
nonnegative measurable function, then∫

G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
)

= b
∫

G(d,p)

∫
G(L,r1)×...×G(L,rq)

f [·, . . . , ·]d−p
r d(νL

r1
⊗ . . .⊗ νL

rq
) νp(dL)

with

b := bdp

q∏
j=1

bprj

bdrj

. (7.12)

Proof. We begin with a preparatory remark. If r ∈ {1, . . . , d − 1} and if
h : G(d, r)→ R is a nonnegative measurable function, then∫

Rd

. . .

∫
Rd

h(lin {x1, . . . , xr})
r∏

j=1

1Bd(xj)λ(dx1) · · ·λ(dxr)

= κr
d

∫
G(d,r)

h(L) νr(dL).

In fact, choosing for h the indicator function of a Borel set, one can use the
left side to define a finite measure on G(d, r). Since it is rotation invariant,
it must be a multiple of the invariant measure νr. The factor can then be
determined by choosing h = 1.

Now we define, almost everywhere on (Rd)p, a function g by

g(x1
1, . . . , x

1
r1
, . . . , xq

1, . . . , x
q
rq

)

:= f(lin {x1
1, . . . , x

1
r1
}, . . . , lin {xq

1, . . . , x
q
rq
})

q∏
j=1

rj∏
i=1

1Bd(xj
i ).

Applying Fubini’s theorem and q times the preceding remark, we obtain

I :=
∫

(Rd)p

g dλp = κp
d

∫
G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
).

On the other hand, Theorem 7.2.1 gives

I = bdp

∫
G(d,p)

∫
Lp

g∇d−p
p dλp

L νp(dL).

We abbreviate (xj
r1
, . . . , xj

rj
) =: xj and lin {xj

r1
, . . . , xj

rj
} =: linxj for j =

1, . . . , q, then
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I = bdp

∫
G(d,p)

∫
Lr1

. . .

∫
Lrq

g(x1, . . . ,xq)∇p(x1, . . . ,xq)d−p

× λrq

L (dx1) · · ·λr1
L (dxq) νp(dL).

From the definitions of [·, . . . .·]r and ∇r it follows that

∇p(x1, . . . ,xq) = ∇r1(x1) · · · ∇rq
(xq)[linx1, . . . , linxq]r.

We insert this in the last integrand. Then, for fixed L ∈ G(d, p), we use
Theorem 7.2.1 (with (Rd, q) replaced by (L, r1)) to transform the integration
involving x1 into an integration over G(L, r1) and, for fixed L1 ∈ G(L, r1), an
integration with respect to the measure λr1

L1
. The integral∫

L
r1
1

1(Bd∩L1)r1 (x1)∇r1(x1)d−r1 λr1
L1

(dx1) = I(r1, r1, d− r1)

occurring here can be evaluated by means of Theorem 8.2.2. In a similar way
the integrations involving xj , j = 2, . . . , q, are treated. Now the assertion
follows. ��

In the following generalization of Theorem 7.2.3, a fixed subspace is given,
and the pivot determined by a tuple of subspaces is the linear span of these
and the given one.

Theorem 7.2.4. Let r1, . . . , rq ∈ {1, . . . , d − 1} and r0 ∈ {0, . . . , d − 1} be
integers with

r1 + . . .+ rq =: p ≤ d− r0;
put r := (r1, . . . , rq). Let L0 ∈ G(d, r0) be a fixed subspace. If f : G(d, r1) ×
. . .×G(d, rq)→ R is a nonnegative measurable function, then∫

G(d,r1)×...×G(d,rq)

f d(νr1 ⊗ . . .⊗ νrq
)

= c
∫

G(L0,p+r0)

∫
G(L,r1)×...×G(L,rq)

f [·, . . . , ·, L0]d−p−r0
r

× d(νL
r1
⊗ . . .⊗ νL

rq
) νL0

p+r0
(dL)

with

c := b(d−r0)p

q∏
j=1

b(p+r0)rj

bdrj

.

Proof. The proof is the obvious extension of the previous one. Instead of
applying Theorem 7.2.1 first, we employ (7.11), with (q, r) replaced by (p, r0).
After using the identity

∇p,r0(x1, . . . ,xq, L0) = ∇r1(x1) · · · ∇rq
(xq)[linx1, . . . , linxq, L0]r,

the rest of the proof is the same. ��
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The preceding theorems have counterparts where linear spans are replaced
by intersections. In that case, we consider linear subspaces L1, . . . , Lq ⊂ Rd

with
∑q

i=1 dimLi ≥ (q − 1)d. In Section 14.1 we define [L1, . . . , Lq] =
[L⊥

1 , . . . , L
⊥
q ]. In particular, if L1, . . . , Lq are hyperplanes through 0 and if

ui is a unit normal vector of Li for i = 1, . . . , q, then [L1, . . . , Lq] is the
q-dimensional volume of the parallelepiped spanned by u1, . . . , uq, also de-
noted by ∇q(u1, . . . , uq). As before, we write [L1, . . . , Lq] = [L1, . . . , Lq]s with
s := (s1, . . . , sq) if dimLi = si, i = 1, . . . , q.

In the next theorem, the initial integration space is
∏q

i=1G(d, si), with∑q
i=1 si ≥ (q − 1)d, and the pivot determined by a q-tuple of subspaces is

their intersection.

Theorem 7.2.5. Let s1, . . . , sq ∈ {1, . . . , d− 1} be integers satisfying

s1 + . . .+ sq − (q − 1)d =: m ≥ 0;

put s := (s1, . . . , sq). If f : G(d, s1) × . . . × G(d, sq) → R is a nonnegative
measurable function, then∫

G(d,s1)×...×G(d,sq)

f d(νs1 ⊗ . . .⊗ νsq
)

= b̄
∫

G(d,m)

∫
G(L,s1)×...×G(L,sq)

f [·, . . . , ·]ms d(νL
s1
⊗ . . .⊗ νL

sq
) νm(dL)

with

b̄ := bd(d−m)

q∏
j=1

b(d−m)(d−sj)

bd(d−sj)
. (7.13)

Proof. We put d − sj =: rj and r := (r1, . . . , rq). For Mj ∈ G(d, rj), j =
1, . . . , q, we set

f⊥(M1, . . . ,Mq) := f(M⊥
1 , . . . ,M

⊥
q ).

By Theorem 7.2.3,∫
G(d,r1)×...×G(d,rq)

f⊥ d(νr1 ⊗ . . .⊗ νrq
)

= b
∫

G(d,d−m)

∫
G(L,r1)×...×G(L,rq)

f⊥[·, . . . , ·]mr d(νL
r1
⊗ . . .⊗ νL

rq
) νd−m(dL)

with b given by (7.12). Now we observe that the mapping L �→ L⊥ maps the
space G(d, k) toG(d, d−k) and transforms the measure νk into νd−k Moreover,
for a fixed subspace M , it maps the space G(M,k) onto G(M⊥, d − k) and
transforms the measure νM

k into νM⊥
d−k, as follows from the uniqueness of these

invariant measures. Hence, the last equation is equivalent to the assertion. ��
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In the same way, one obtains from Theorem 7.2.4 the following general-
ization of the preceding result. Here a fixed subspace is given, and the pivot
determined by a tuple of subspaces is the intersection of these and the given
one.

Theorem 7.2.6. Let s1, . . . , sq ∈ {1, . . . , d−1} and s0 ∈ {1, . . . , d} be integers
with

s1 + . . .+ sq − (q − 1)d =: m ≥ d− s0;
put s := (s1, . . . , sq). Let L0 ∈ G(d, s0) be a fixed subspace. If f : G(d, s1) ×
. . .×G(d, sq)→ R is a nonnegative measurable function, then∫

G(d,s1)×...×G(d,sq)

f d(νs1 ⊗ . . .⊗ νsq
)

= c̄
∫

G(L0,m+s0−d)

∫
G(L,s1)×...×G(L,sq)

f [·, . . . , ·, L0]m+s0−d
s

× d(νL
s1
⊗ . . .⊗ νL

sq
) νL0

m+s0−d(dL)

with

c̄ := bs0(d−m)

q∏
j=1

b(2d−m−s0)(d−sj)

bd(d−sj)
.

Now we turn to affine transformation formulas, with affine subspaces in-
stead of linear subspaces. First we derive the affine Blaschke–Petkantschin
formula. Here the initial integration is over (Rd)q+1, and the pivot is
the q-flat affinely spanned (almost everywhere) by the integration variable
(x0, . . . , xq) ∈ (Rd)q+1. The outer integration space is the affine Grassmannian
A(d, q), and for E ∈ A(d, q), the inner integration space is the product Eq+1.
Recall that ∆q(x0, . . . , xq), as defined by (7.6), denotes the q-dimensional vol-
ume of the simplex with vertices x0, . . . , xq.

Theorem 7.2.7. If q ∈ {1, . . . , d} and if f : (Rd)q+1 → R is a nonnegative
measurable function, then∫

(Rd)q+1
f dλq+1 = bdq(q!)d−q

∫
A(d,q)

∫
Eq+1

f∆d−q
q dλq+1

E µq(dE) (7.14)

with bdq given by (7.8).

Proof. We apply Theorem 7.2.1 and several times the theorem of Fubini:∫
(Rd)q+1

f dλq+1

=
∫

Rd

∫
(Rd)q

f(x0, y1 + x0, . . . , yq + x0)λq(d(y1, . . . , yq))λ(dx0)
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= bdq

∫
Rd

∫
G(d,q)

∫
Lq

f(x0, y1 + x0, . . . , yq + x0)∇q(y1, . . . , yq)d−q

× λq
L(d(y1, . . . , yq)) νq(dL)λ(dx0)

= bdq

∫
G(d,q)

∫
L⊥

∫
L

∫
Lq

f(z + t, y1 + z + t, . . . , yq + z + t)

×∇q(y1, . . . , yq)d−q λq
L(d(y1, . . . , yq))λL(dz)λL⊥(dt) νq(dL)

= bdq(q!)d−q

∫
G(d,q)

∫
L⊥

∫
(L+t)q+1

f(x0, . . . , xq)

×∆q(x0, . . . , xq)d−q λq+1
L+t(d(x0, . . . , xq)) λL⊥(dt) νq(dL)

= bdq(q!)d−q

∫
A(d,q)

∫
Eq+1

f(x0, . . . , xq)∆q(x0, . . . , xq)d−q

× λq+1
E (d(x0, . . . , xq))µq(dE).

Here we have used (13.9). ��
Postponing the treatment of affine spans of flats of small dimensions, we

now consider the affine counterpart to Theorem 7.2.5. Here, the pivot deter-
mined by a q-tuple of flats of large dimensions is their intersection. For an
affine subspace E we denote by E0 the linear subspace parallel to E. For
E1, . . . , Eq ⊂ Rd with dimEi = si we put s := (s1, . . . , sq) and

[E1, . . . , Eq]s := [E0
1 , . . . , E

0
q ]s,

provided the right side is defined.

Theorem 7.2.8. Let s1, . . . , sq ∈ {1, . . . , d− 1} be integers satisfying

s1 + . . .+ sq − (q − 1)d =: m ≥ 0;

put s := (s1, . . . , sq). If f : A(d, s1) × . . . × A(d, sq) → R is a nonnegative
measurable function, then∫

A(d,s1)×...×A(d,sq)

f d(µs1 ⊗ . . .⊗ µsq
)

= b̄
∫

A(d,m)

∫
A(E,s1)×...×A(E,sq)

f [·, . . . , ·]m+1
s d(µE

s1
⊗ . . .⊗ µE

sq
)µm(dE)

with b̄ given by (7.13).

Proof. By (13.9) we can write

I :=
∫

A(d,s1)×...×A(d,sq)

f d(µs1 ⊗ . . .⊗ µsq
) (7.15)

=
∫

G(d,s1)×...×G(d,sq)

J(L1, . . . , Lq) (νs1 ⊗ . . .⊗ νsq
)(d(L1, . . . , Lq))
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with

J(L1, . . . , Lq)

=
∫

L⊥
1 ×...×L⊥

q

f(L1 + t1, . . . , Lq + tq) (λL⊥
1
⊗ . . .⊗ λL⊥

q
)(d(t1, . . . , tq)).

Let Lj ∈ G(d, sj), j = 1, . . . , q and assume, without loss of generality
(by Lemma 13.2.1), that these subspaces are in general position. We put
L1 ∩ . . . ∩ Lq =: L. For (t1, . . . , tq) ∈ L⊥

1 × . . .× L⊥
q we have

(L1 + t1) ∩ . . . ∩ (Lq + tq) = L+ ξ(t1, . . . , tq)

with a unique vector ξ(t1, . . . , tq) ∈ L⊥. This defines a linear map

ξ : L⊥
1 × . . .× L⊥

q → L⊥.

If πj : L⊥ → L⊥
j denotes the orthogonal projection, then the inverse map

ξ−1 is given by ξ−1(x) = (π1(x), . . . , πq(x)). Choosing in each space L⊥
j an

orthonormal basis and applying a linear map from L⊥
1 × . . .×L⊥

q to L⊥ that
maps the union of these bases to an orthonormal basis of L⊥, we see that

J(L1, . . . , Lq) = [L1, . . . , Lq]s
∫

L⊥
f(L1 + x, . . . , Lq + x)λL⊥(dx).

We insert this in (7.15) and use Theorem 7.2.5. In the subsequent integrals
we have L = L1 ∩ . . . ∩ Lq up to sets of measure zero.

I =
∫

G(d,s1)×...×G(d,sq)

[L1, . . . , Lq]s
∫

L⊥
f(L1 + x, . . . , Lq + x)λL⊥(dx)

× (νs1 ⊗ . . .⊗ νsq
)(d(L1, . . . , Lq))

= b̄

∫
G(d,m)

∫
G(L,s1)×...×G(L,sq)

∫
L⊥
f(L1 + x, . . . , Lq + x)[L1, . . . , Lq]m+1

s

× λL⊥(dx) (νL
s1
⊗ . . .⊗ νL

sq
)(d(L1, . . . , Lq)) νm(dL)

= b̄

∫
G(d,m)

∫
L⊥

∫
G(L,s1)×...×G(L,sq)

f(L1 + x, . . . , Lq + x)[L1, . . . , Lq]m+1
s

× (νL
s1
⊗ . . .⊗ νL

sq
)(d(L1, . . . , Lq))λL⊥(dx) νm(dL)

= b̄

∫
G(d,m)

∫
L⊥

∫
A(L+x,s1)×...×A(L+x,sq)

f(E1, . . . , Eq)[E1, . . . , Eq]m+1
s

× (µL+x
s1

⊗ . . .⊗ µL+x
sq

)(d(E1, . . . , Eq))λL⊥(dx) νm(dL)

= b̄

∫
A(d,m)

∫
A(E,s1)×...×A(E,sq)

f(E1, . . . , Eq)[E1, . . . , Eq]m+1
s

× (µE
s1
⊗ . . .⊗ µE

sq
)(d(E1, . . . , Eq))µm(dE).
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Here we have used (13.14) and (13.9). ��

In the case of flats of small dimensions, we consider only two flats. Let
E1 ∈ A(d, r), E2 ∈ A(d, s) be flats with dimensions satisfying r + s ≤ d − 1.
We assume that they are in general position, that is, the dimension of their
affine span is equal to r+s+1. Under this assumption, the distance between E1

and E2 is realized by unique points x1 ∈ E1, x2 ∈ E2, and the line F through
x1 and x2 is orthogonal to both, E1 and E2. We call F the ortholine of E1

and E2 and denote the distance ‖x1 − x2‖ by D(E1, E2).
In the following theorem, the pivot determined by a pair of flats of small

dimensions is their affine span.

Theorem 7.2.9. Let r1, r2 ∈ {0, . . . , d−1} be integers satisfying r1+r2+1 =:
p ≤ d; put r := (r1, r2). If f : A(d, r1) × A(d, r2) → R is a nonnegative
measurable function, then∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

= b
∫

A(d,p)

∫
A(E,r1)×A(E,r2)

fDd−p[·, ·]d−p
r d(µE

r1
⊗ µE

r2
)µp(dE)

with b given by (7.12) for q = 2.

Proof. It is sufficient to prove the assertion for a function f for which there
exists a ball B with f(E1, E2) = 0 if Ej ∩ intB = ∅ for at least one j ∈ {1, 2}.
If this is established, then the general case follows with an application of the
monotone convergence theorem.

For xj := (xj
0, . . . , x

j
rj

) ∈ (Rd)rj+1 we write aff {xj
0, . . . , x

j
rj
} =: aff xj , and

we define

g(x1,x2) :=
2∏

j=1

1Brj+1(xj)λaffxj
(B)−rj−1 if

2∏
j=1

λaffxj
(B) �= 0,

and g(x1,x2) := 0 otherwise. To each of the two integrals in

I := (r1!)r1−d(r2!)r2−d

∫
(Rd)r1+1

∫
(Rd)r2+1

f(affx1, affx2)

× g(x1,x2)∆r1(x1)r1−d∆r2(x2)r2−d λr2+1(dx2)λr1+1(dx1)

we apply the affine Blaschke–Petkantschin formula (7.14). This gives

I =
2∏

j=1

bdrj

∫
A(d,r1)

∫
A(d,r2)

f(E1, E2)µr2(dE2)µr1(dE1).

On the other hand, we can view I as an integral over (Rd)p+1 with respect to
the measure λp+1 and apply (7.14) to this. The result can be written as
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I = bdp

∫
A(d,p)

∫
Er1+1

∫
Er2+1

f(aff x1, aff x2)g(x1,x2)

× (r1!)r1−d(r2!)r2−d(p!)d−p∆r1(x1)r1−d∆r2(x2)r2−d

× ∆p(x1,x2)d−p λr2+1
E (dx2)λr1+1

E (dx1)µp(dE).

Here we employ the (easily established) fact that

p!∆p(x1,x2) = r1!r2!∆r1(x1)∆r2(x2)D(aff x1, aff x2)[aff x1, aff x2].

We insert this and then apply (7.14) to the two inner integrals over Erj+1,
j = 1, 2. This immediately yields the assertion of the theorem. ��

In the following theorem, we restrict ourselves to flats of small dimensions
which affinely span the whole space. The pivot determined by a pair (E1, E2)
of flats in general position will now be the triple (F, x1, x2), consisting of the
ortholine F of E1, E2 and the points x1, x2 where F intersects the flats. For a
given triple (F, x1, x2), the inner integration space is in effect (though written
in a more convenient way) the space A(x1, F

⊥ + x1, r1)×A(x2, F
⊥ + x2, r2).

Here A(x, F⊥ + x, s) denotes the space of s-flats through x and contained in
F⊥ + x (recall that F⊥ := (F 0)⊥ is a linear subspace).

Theorem 7.2.10. Let r1, r2 ∈ {0, . . . , d− 2} be integers satisfying r1 + r2 =
d − 1. If f : A(d, r1) × A(d, r2) → R is a nonnegative measurable function,
then ∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

= b
∫

A(d,1)

∫
F 2

∫
G(F⊥,r1)×G(F⊥,r2)

f(L1 + x1, L2 + x2)[L1, L2]2

× (νF⊥
r1 ⊗ νF⊥

r2 )(d(L1, L2))λ2
F (d(x1, x2))µ1(dF )

with b given by (7.12) for q = 2.

Proof. In the proof, we use repeatedly Fubini’s theorem and (13.9). We apply
Theorem 7.2.3 and then go over to orthogonal complements:

I :=
∫

A(d,r1)×A(d,r2)

f d(µr1 ⊗ µr2)

=
∫

G(d,r1)×G(d,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)

× (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2)) (νr1 ⊗ νr2)(d(L1, L2))

= b

∫
G(d,d−1)

∫
G(H,r1)×G(H,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)
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× [L1, L2] (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2))(νH

r1
⊗ νH

r2
)(d(L1, L2)) νd−1(dH)

= b

∫
G(d,1)

∫
G(L⊥,r1)×G(L⊥,r2)

∫
L⊥

1 ×L⊥
2

f(L1 + x1, L2 + x2)

× [L1, L2] (λL⊥
1
⊗ λL⊥

2
)(d(x1, x2)) (νL⊥

r1
⊗ νL⊥

r2
)(d(L1, L2)) ν1(dL).

Using the direct sum decomposition L⊥
j = L ⊕ (L⊥

j ∩ L⊥) and writing xj =
yj + zj with yj ∈ L and zj ∈ L⊥

j ∩ L⊥, we obtain

I = b

∫
G(d,1)

∫
G(L⊥,r1)×G(L⊥,r2)

∫
L2

∫
(L⊥

1 ∩L⊥)×(L⊥
2 ∩L⊥)

f(L1 + y1 + z1, L2 + y2 + z2)[L1, L2] (λL⊥
1 ∩L⊥ ⊗ λL⊥

2 ∩L⊥)(d(z1, z2))

×λ2
L(d(y1, y2)) (νL⊥

r1
⊗ νL⊥

r2
)(d(L1, L2)) ν1(dL)

= b

∫
G(d,1)

∫
L2

{∫
A(L⊥,r1)×A(L⊥,r2)

f(E1 + y1, E2 + y2)

× [E1, E2] (µL⊥
r1
⊗ µL⊥

r2
)(d(E1, E2))

}
λ2

L(d(y1, y2)) ν1(dL).

To the integral in braces we apply Theorem 7.2.8 (in L⊥); here m = 0 (and
thus b̄ = 1), so that A(L⊥,m) is identified with L⊥. This gives

I = b

∫
G(d,1)

∫
L2

{∫
L⊥

∫
G(L⊥,r1)×G(L⊥,r2)

f(L1 + t+ y1, L2 + t+ y2)

× [L1, L2]2 (νL⊥
r1
⊗ νL⊥

r2
)(d(L1, L2))λL⊥(dt)

}
λ2

L(d(y1, y2)) ν1(dL)

= b

∫
G(d,1)

∫
L⊥

∫
(L+t)2

∫
G(L⊥,r1)×G(L⊥,r2)

f(L1 + y1, L2 + y2)

× [L1, L2]2 (νL⊥
r1
⊗ νL⊥

r2
)(d(L1, L2))λ2

L+t(d(y1, y2))λL⊥(dt) ν1(dL)

= b

∫
A(d,1)

∫
F 2

∫
G(F⊥,r1)×G(F⊥,r2)

f(L1 + y1, L2 + y2)

× [L1, L2]2 (νF⊥
r1
⊗ νF⊥

r2
)(d(L1, L2))λ2

F (d(y1, y2))µ1(dF ).

This completes the proof. ��

In Theorem 7.2.10 we have assumed that r1 + r2 +1, the dimension of the
affine span (if the flats are in general position) is equal to d. If this dimension
is less than d, we obtain the corresponding result by first applying Theorem
7.2.9 and then transforming the inner integral by means of Theorem 7.2.10.



284 7 Integral Geometric Transformations

Notes for Section 7.2

1. In this note we give an interesting alternative proof of the Blaschke–Petkantschin
formula of Theorem 7.2.1. This proof, which is due to Møller [550], is based on
a uniqueness result for relatively invariant measures. The method is also briefly
described in Barndorff–Nielsen, Blæsild and Eriksen [79, pp. 59–60]. In the following,
we use notation and results from Section 13.3.

Second proof of Theorem 7.2.1. To prove (7.7), we need evidently consider only
linearly independent q-tuples (x1, . . . , xq). We denote by U ⊂ (Rd)q the subspace of
linearly independent q-tuples. In the following, we consider the elements of Rd as
column vectors (with respect to some fixed basis) and, correspondingly, (x1, . . . , xq)
as a (d, q)-matrix; then U is the space of real (d, q)-matrices of rank q. Let GL(q)
be the group of regular (q, q)-matrices with the standard topology; it is locally
compact. The same holds true for the direct product G := SO(d) × GL(q), where
SO(d) denotes the group of orthogonal (d, d)-matrices with determinant one. By

((D, M), (x1, . . . , xq)) �→ D(x1, . . . , xq)M
t =: (D, M).(x1, . . . , xq)

for (D, M) ∈ G and (x1, . . . , xq) ∈ U , where M t denotes the transpose of the matrix
M , we define a transitive operation of G on U . It is not difficult to verify that U ,
with this operation, becomes a homogeneous G-space. Recall that (Sec. 13.3), if a
group G operates on a set U , one defines (g.f)(u) := f(g−1u), u ∈ U , for a function
f on U .

Now we define two positive linear functionals I1, I2 on Cc(U) by

I1(f) :=

∫
Rd

. . .

∫
Rd

f(x1, . . . , xq) λ(dx1) · · ·λ(dxq),

I2(f) :=

∫
G(d,q)

∫
L

. . .

∫
L

f(x1, . . . , xq)∇q(x1, . . . , xq)
d−q

×λL(dx1) · · ·λL(dxq) νq(dL)

for f ∈ Cc(U). For (D, M) ∈ G we get

I1((D, M).f) =

∫
Rd

. . .

∫
Rd

f(D−1(x1, . . . , xq)M
−t) λ(dx1) · · ·λ(dxq)

= |det M |dI1(f),

because λ is rotation invariant, and the linear map (x1, . . . , xq) �→ (x1, . . . , xq)M
from the space of (d, q)-matrices into itself has determinant (det M)d. Further, for
L ∈ G(d, q) we get∫

L

. . .

∫
L

f(D−1(x1, . . . , xq)M
−t)∇q(x1, . . . , xq)

d−q λL(dx1) · · ·λL(dxq)

= |det M |q
∫

L

. . .

∫
L

f(D−1(x1, . . . , xq))∇q((x1, . . . , xq)M
t)d−q

×λL(dx1) · · ·λL(dxq)

= |det M |d
∫

ϑ−1L

. . .

∫
ϑ−1L

f(x1, . . . , xq)∇q(x1, . . . , xq)
d−q

×λϑ−1L(dx1) · · ·λϑ−1L(dxq),
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where ϑ ∈ SOd is the rotation defined by D. The rotation invariance of νq now
implies

I2((D, M).f) = |det M |dI2(f).

Thus the integrals I1 and I2 are relatively invariant with the same multiplier. From
Theorem 13.3.1 it follows that I1 = cI2 with a constant c. The value of this constant
can be obtained from Theorem 8.2.2. ��
2. A general reference for the formulas of Section 7.2 is Santaló’s book [662]. His
proofs, as much of the original literature, use differential forms. Another flexible tool
for obtaining integral geometric transformation formulas is Federer’s coarea formula.
In contrast to this, our aim was here to give more elementary and geometric proofs,
based either on direct integration procedures or invariance arguments.

Results of Blaschke–Petkantschin type can in principle be traced back to
Lebesgue [437], who used the transformation rule for multiple integrals to give new
proofs for results of Crofton. After an influential lecture course by Herglotz [335] in
Göttingen on geometric probabilities, and papers by Blaschke [105] and Varga [762],
a systematic and general investigation of such integral geometric transformation for-
mulas was undertaken by Petkantschin [601]. In special forms, most of the results of
this section appear already in that paper. The usefulness of Blaschke–Petkantschin
type formulas in stochastic geometry was emphasized by Miles. In [531], he gave
new proofs and extensions of some results going back to Petkantschin, for example,
of Theorem 7.2.2 above. In the style of the present chapter, though less generally,
Blaschke–Petkantschin formulas were presented in Schneider and Weil [716].

For a recent application (in particular of Theorem 7.2.3) outside stochastic geom-
etry, we mention E. Milman [540].

3. There are more general versions of Lemma 7.2.1, for integrations over A(d, q)
instead of Rd; see Petkantschin [601, formula (49)]. A special case, where the given
linear subspace is of dimension zero, reads as follows. Let q < r ≤ d. For the pivot
associated with E ∈ A(d, q) one can choose a linear r-subspace containing E. Then
the outer integration space is G(d, r), and for L ∈ G(d, r), the inner integration
space is A(L, q). The resulting formula is∫

A(d,q)

f dµq = c

∫
G(d,r)

∫
A(L,q)

f d(·, 0)d−r dµL
q νr(dL)

with a constant c depending on d, q, r. Applications of the special case d = 3, q = 1
are discussed by Cruz–Orive [190].

4. Vertical Sections. The following special case of Theorem 7.2.4 is of interest in
stereology. Let d = 3, q = 1, r1 = 1, r0 = 1 and let V ∈ G(3, 1) be a fixed line.
In some applications, the direction of the ‘vertical’ line V plays a particular role,
and two-dimensional planes parallel to V define ‘vertical sections’. Theorem 7.2.4
specializes to ∫

G(3,1)

f dν1 = c

∫
G(V,2)

∫
G(L,1)

f [·, V ] dνL
1 νV

2 (dL).

This can be interpreted as saying that an isotropic random line through 0 can be
generated by first generating a uniform vertical 2-plane L containing V and then in
L a random line through 0 with the distribution defined by the inner integral. Such
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and more general ‘vertical uniform random sampling designs’ can be of advantage
in practical situations where preferred directions are present. They were suggested
by Baddeley [46] and further studied in Baddeley [47, 48], Baddeley, Gundersen and
Cruz–Orive [52]; see also Kötzer, Jensen and Baddeley [424] and Beneš and Rataj
[90, sect. 4.1.3]. A detailed description is found in Baddeley and Jensen [53, ch. 8].

5. Hug and Reitzner [365] have proved and applied the following formula of
Blaschke–Petkantschin type. The initial integration space is (Rd)d+p, where 1 ≤
p ≤ d. The pivot determined by (x1, . . . , xd+p) ∈ (Rd)d+p is the pair (H1, H2),
where H1 := aff{x1, . . . , xd} and H2 := aff{xp+1, . . . , xp+d}. The outer integration
space is A(d, d − 1) × A(d, d − 1), and for (H1, H2) ∈ A(d, d − 1) × A(d, d − 1), the
inner integration space is Hp

1 × (H1 ∩ H2)
d−p × Hp

2 . The formula reads∫
(Rd)d+p

f dλd+p =

(
d!κd

2

)2 ∫
A(d,d−1)×A(d,d−1)

∫
H

p
1×(H1∩H2)d−p×H

p
2

f

× ∆d(x1, . . . , xd)∆d(xp+1, . . . , xp+d)[H1, H2]
p−d

× d(λp
H1

⊗ λd−p
H1∩H2

⊗ λp
H2

) µ2
d−1(d(H1, H2)).

6. There is a spherical counterpart to the affine Blaschke–Petkantschin formula. The
initial integration is over (Sd−1)q+1, where q ∈ {1, . . . , d − 1}. The pivot is the q-
flat affinely spanned (almost everywhere) by the integration variable (x0, . . . , xq) ∈
(Sd−1)q+1. The outer integration space is the affine Grassmannian A(d, q), and for
E ∈ A(d, q) hitting Sd−1, the inner integration space is (Sd−1 ∩ E)q+1. The result
appears in Miles [525, Th. 4], with a short sketch of a proof. A detailed proof could
be given similarly to Theorem 8.2.3. A typical application is found in Buchta, Müller
and Tichy [134].

A related very general transformation formula, involving spheres and linear in-
stead of affine subspaces, appears together with applications in Arbeiter and Zähle
[38, Th. 1].

7. The affine Blaschke–Petkantschin formula of Theorem 7.2.7 can be interpreted
as a decomposition of the (q + 1)-fold product of the Lebesgue measure in Rd.
Integration with respect to this product measure is decomposed into integration
with respect to the (q + 1)-fold product of Lebesgue measure in a q-dimensional
affine subspace, with a suitable Jacobian, followed by an integration over all q-
dimensional affine subspaces. A somewhat similar decomposition is possible if the
d-dimensional Lebesgue measure is replaced by the k-dimensional Hausdorff measure
on a k-surface, k < d. In that case, the relative directions of the intersecting affine
subspace and the tangent plane of the k-surface at the intersection points enter into
the formula and make it complicated. General formulas of this type were proved by
Zähle [829] (see Reitzner [628] for a short proof of a useful special case) and Jensen
and Kiêu [382] (using an extended coarea formula by Kiêu [410]). A simplified proof
was given in Jensen [379]. Stereological applications were presented by Jensen and
Gundersen [380], Jensen, Kiêu and Gundersen [383].
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7.3 Transformation Formulas Involving Spheres

In this section we prove two formulas of Blaschke–Petkantschin type (in the
sense explained in the previous section), where the pivots are spheres. Corre-
spondingly, the outer integration is over the space of all spheres, or equiva-
lently, over the space of all possible centers and all possible radii, with a very
simple measure. The inner integrations are conveniently written in terms of
the unit sphere instead of variable spheres.

Theorem 7.3.1. If f : (Rd)d+1 → R is a nonnegative measurable function,
then ∫

(Rd)d+1
f dλd+1

= d!
∫

Rd

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

f(z + ru0, . . . , z + rud)

× rd2−1∆d(u0, . . . , ud)σ(du0) · · ·σ(dud) dr λ(dz).

Proof. It must be shown that the differentiable mapping

T : Rd × (0,∞)× (Sd−1)d+1 → (Rd)d+1,

which is defined by

(z, r, u0, . . . , ud) �→ (z + ru0, . . . , z + rud)

and is bijective up to sets of measure zero, has Jacobian given by

D(z, r, u0, . . . , ud) = d!rd
2−1∆d(u0, . . . , ud). (7.16)

In the proof, we use the block notation for matrices. We write At for the
transpose of a matrix A; vectors of Rd are interpreted as columns. We de-
note by Ek the k × k unit matrix. In order to prove (7.16) at a given point
(z, r, u0, . . . , ud) of R× (0,∞)× (Sd−1)d+1, we use special local coordinates in
a neighborhood of this point. For i = 0, . . . , d we introduce, in a neighborhood
of ui on Sd−1, parameters in such a way that the d×d matrix (ui u̇i) becomes
orthogonal at the considered point; here u̇i denotes the d × (d − 1) matrix
of the partial derivatives of ui with respect to the corresponding parameters.
This can easily be achieved. If for u ∈ Sd−1 the matrix (u u̇) is orthogonal,
then

u̇tu = 0, u̇tu̇ = Ed−1, Ed − u̇u̇t = uut.

For D = D(z, r, u0, . . . , ud) we therefore get

D =

∣∣∣∣∣∣∣∣∣
Ed u0 ru̇0 0 · · · 0
· · 0 · · · · ·
...

...
...

...
. . .

...
Ed ud 0 · · · · ru̇d

∣∣∣∣∣∣∣∣∣ .
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For D̃ := r1−d2
D we thus obtain

D̃2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ed · · · · Ed

ut
0 · · · · ut

d

u̇t
0 0 · · · 0
0 · ·
...

...
. . .

...
0 · · · · u̇t

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

Ed u0 u̇0 0 · · · 0
· · 0 · · · · ·
...

...
...

...
. . .

...
Ed ud 0 · · · · u̇d

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

(d+ 1)Ed

∑
ui u̇0 · · · u̇d∑

ut
i d+ 1 0 · · · 0

u̇t
0 0 Ed−1 · · · 0
...

...
...

. . .
...

u̇t
d 0 0 · · · Ed−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ (d+ 1)Ed −
∑
u̇iu̇

t
i

∑
ui∑

ut
i d+ 1

∣∣∣∣∣ =

∣∣∣∣∣
∑
uiu

t
i

∑
ui∑

ut
i d+ 1

∣∣∣∣∣
=

∣∣∣∣∣∣∣
(
u0 · · ·ud

1 · · · 1

)⎛⎜⎝u
t
0 1
...

...
ut

d 1

⎞⎟⎠
∣∣∣∣∣∣∣

= (d!)2∆2
d(u0, . . . , ud),

as asserted. ��

The previous result was based on the fact that d + 1 points in general
position determine a unique sphere through these points. The following coun-
terpart employs the unique sphere touching d+ 1 hyperplanes in general po-
sition and contained in the bounded region determined by the hyperplanes.
Let H0, . . . , Hd ∈ A(d, d− 1) by hyperplanes in general position (that is, they
don’t have a common point, and any d of their normal vectors are linearly
independent). There is a unique simplex S such that H0, . . . , Hd are the facet
hyperplanes of S. We denote by P the set of (d + 1)-tuples of unit vectors
positively spanning Rd, that is, not lying in some closed hemisphere of Sd−1.

Theorem 7.3.2. If f : A(d, d−1)d+1 → R is a nonnegative measurable func-
tion, then∫

A(d,d−1)d+1
f dµd+1

d−1

=
d!
ωd+1

d

∫
Rd

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

f(H(u0, 〈z, u0〉+ r), . . . , H(ud, 〈z, ud〉+ r))

×∆d(u0, . . . , ud)1P(u0, . . . , ud)σ(du0) · · ·σ(dud) dr λ(dz).
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Proof. Let A∗(d, d − 1)d+1 denote the set of (d + 1)-tuples of hyperplanes in
general position. Let H0, . . . , Hd ∈ A∗(d, d− 1)d+1, and let ∆ be the simplex
determined by these hyperplanes. We denote by z the center of the insphere
of ∆, by r its radius, and by z + rui, i = 0, . . . , d, the contact points of the
insphere with the given hyperplanes. Then (u0, . . . , ud) ∈ P. The mapping

(z, r, u0, . . . , ud) �→ (H(u0, t0), . . . , H(ud, td)) with ti := 〈z, ui〉+ r

maps Rd×R+×P bijectively onto A∗(d, d−1)d+1. For fixed (u0, . . . , ud) ∈ P,
the mapping (z, r) �→ (t0, . . . , td) has Jacobian d!∆d(u0, . . . , ud). It follows
that∫

A(d,d−1)

. . .

∫
A(d,d−1)

f(H0, . . . , Hd)µd−1(dH0) · · ·µd−1(dHd)

=
1

ωd+1
d

∫
Sd−1

. . .

∫
Sd−1

∫
R

. . .

∫
R

f(H(u0, τ0), . . . , H(ud, τd))

× dτ0 · · · dτd σ(du0) · · ·σ(dud)

=
d!
ωd+1

d

∫
Sd−1

. . .

∫
Sd−1

∫
Rd

∫ ∞

0

f(H(u0, 〈z, u0〉+ r), . . . , H(ud, 〈z, ud〉+ r))

× dr λ(dz)1P(u0, . . . , ud)∆d(u0, . . . , ud)σ(du0) · · ·σ(dud),

which gives the assertion, by Fubini’s theorem. ��

Notes for Section 7.3

1. Theorem 7.3.1 appears, with a sketched proof, in Miles [521], equation (70). It
was proved in a different way by Affentranger [9]. The proof given here goes back
(for d = 3) to Møller [553].

2. Theorem 7.3.2 is taken from Calka [149].
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Some Geometric Probability Problems

Geometric probability deals with randomly generated objects and configu-
rations of elementary geometry. Whereas stochastic geometry employs more
sophisticated models, such as random sets and particle processes, the typical
questions of geometric probability involve only finitely many random geomet-
ric objects of a simple nature, like points, lines, planes, convex bodies, and
simple operations performed with them, for example, taking convex hulls or
intersections. The geometric events or random variables under investigation
are in general of an elementary nature. Many related questions are easily
formulated, but the answers may differ widely in their levels of difficulty.

Geometric probability problems and the early development of integral
geometry have been closely related. From the wealth of questions on geometric
probabilities that can be considered, we present here a selection, guided by
the criteria of intrinsic interest (a personal choice, of course) and of applica-
bility of integral geometry. After a glimpse of the early examples of geometric
probability problems in Section 8.1, we devote Section 8.2 to convex hulls
of random points, and Section 8.6 to various inequalities for geometric prob-
abilities and expectations of geometric random variables related to convex
bodies. In both sections, Blaschke–Petkantschin type transformations are a
useful tool. Section 8.3 applies spherical integral geometry to random projec-
tions of polytopes, and Section 8.4 treats randomly moving convex bodies and
flats by means of Euclidean integral geometry. Section 8.5 develops a theory
of randomly touching convex bodies.

8.1 Historical Examples

It seems appropriate to begin our presentation of selected geometric probabil-
ity problems with a brief look at the classical examples. Geometric probability
took its origin, as did probability in general, in considerations about games of
chance. In 1733, the naturalist Georges–Louis Leclerc Comte de Buffon pre-
sented to the Académie des Sciences his Mémoire sur le jeu de franc-carreau
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(according to [139]). It was published by Buffon [140] in 1777, as Section 23 in
a longer article with the remarkable title Essai d’arithmétique morale. Buffon’s
first geometric probability problem reads as follows (in a free translation). ‘In
a room, parqueted or paved with equal tiles, one tosses a coin in the air; one of
the players bets that this coin, after its fall, will lie on a single tile; the second
bets that this coin will be placed on two tiles, that is, it will cover one of the
joints that separate them; a third player bets that the coin will be placed on
two joints; a fourth bets that the coin will be found on three, four or six joints:
one asks for the odds of each of these players.’ After considering some special
cases, the author turns to the question that has become famous as the ‘Buffon
needle problem’: ‘I suppose that in a room, in which the parquet is simply di-
vided by parallel joints, one tosses a rod in the air and that one of the players
bets that the rod will not cross any of the parquet’s parallels while the other
bets, on the contrary, that the rod will cross several of the parallels. What
are the odds for these two players? One can play this game on a draughting
board with a sewing needle or with a headless pin.’ (Translation from [728];
emphasis by Buffon.) Buffon talked of both, ‘baguette’ and ‘aiguille’; in his
calculations he worked, of course, with a line segment. In the case where the
distance between two neighboring lines on the floor is D and the needle has
length L < D, Buffon obtained for the probability p, that the needle hits a
line, the value

p =
2L
πD

. (8.1)

To derive this, he noted that the event of hitting depends only on the distance
of the needle from the nearest line and on the angle that the needle forms with
the direction of the lines. He tacitly assumed that, as we would say today,
both random variables are independent and are uniformly distributed in their
respective ranges. Under these assumptions, Buffon found the correct answer
(not so, however, for his next question, concerning two orthogonal arrays of
equidistant lines – the correct answer in that case was given by Laplace [432,
p. 362]).

It was Laplace who pointed out, in his Théorie analytique des probabilités
of 1812 [432, p. 360], that (8.1) suggests throwing a needle (or rather a very
thin cylinder, as he put it) many times, in order to derive from the observed
frequency of hits an estimation for the number π. Later, the outcomes of such
experiments have repeatedly been reported in the literature. Such reports can
only be digested cum grano salis. For one reason, it seems arguable whether
the assumptions leading to (8.1) are compatible with reality (note that the
uniformity assumption for the position of the midpoint only makes sense af-
ter going over to a quotient space). Moreover, some of the reported results
are too good to be true. The critical discussion of Gridgeman [285] is very
illuminating.

‘Historically, it would seem that the first question given on local probabil-
ity, since Buffon, was the remarkable four-point problem of Prof. Sylvester.’
This quotation from Crofton’s [188] article on Probability in the Encyclopedia
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Britannica of 1885 refers to a question that Sylvester [750] had posed in 1864
in the Educational Times. The first part of this question reads: ‘Show that the
chance of four points forming the apices of a reentrant quadrilateral is 1/4 if
they be taken at random in an indefinite plane . . . ’ Several different answers
were received, so that Sylvester came to the conclusion: “This problem does
not admit of a determinate solution.” A modified version of the question, for
which we again quote Crofton, had much more impact: ‘Professor Sylvester
has remarked that it would be a novel question in the calculus of variations
to determine the form of the convex contour which renders the probability a
maximum or minimum that four points taken within it shall give a re-entrant
quadrilateral.’ This asks for the extrema of p(K), taken over all planar convex
bodies K, where p(K) is the probability that the convex hull of four indepen-
dent, uniformly distributed random points in K is a triangle. Some special
values of p(K) were readily computed, but the question was only answered in
1917, when Blaschke [102] showed that the minimum of p(K) is attained if
and only if K is an ellipse and the maximum if and only if K is a triangle (see
Note 1 for Subsection 8.2.3 below). Both the topic – convex hulls of random
points – and the tool in part of Blaschke’s proof – Steiner symmetrization –
later inspired many other geometers.

Relations between geometric probability and an arising integral geometry
first appeared implicitly in the work of Barbier [77] in 1860 and explicitly
in that of Crofton in 1868. Barbier (following G. Lamé) generalized Buffon’s
needle problem by replacing the needle by a convex domain K (or even a
more general rigid curve) with diameter less than D (the distance between
the parallel lines). Under the usual (tacit) assumptions on the distribution of
the randomly tossed domainK, he found that the probability that the domain
hits a line is given by L/πD, where L is the boundary length ofK. For a convex
polygon, he proved this by considering for each of its edges the expectation of
the number of hits with a line (as found by Buffon), adding up over all edges,
and dividing by two. The obtained formula is equivalent to the planar case
of Cauchy’s surface area formula (see (6.12)), which Cauchy [166, 167] had
already published in 1841, though without relations to geometric probability.
That Barbier’s formula is in principle an integral geometric result, becomes
clearer if one interchanges the roles of the convex domain and the lines. Let
C be a circle of diameter D containing the convex domain K, and toss a line
randomly on C. The probability that it hits K is given by L/πD, which is
the quotient of the perimeters of K and C. The tacit assumptions on the
distribution of the random line are those resulting from the assumptions in
Buffon’s problem: the direction of the line and its distance from the center of
C are independent and uniformly distributed in their ranges. Precisely this
distribution is obtained if one derives it from a motion invariant measure (or
density) on the space of lines. Such a measure was introduced by Crofton.

The object of Crofton’s [186] paper was, as he put it, ‘principally, the
application of the Theory of Probability to straight lines drawn at random
in a plane’. The following considerations led him from the idea of equal
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probabilities of finitely many cases to a measure on the space of lines. In
his own words (though in different order): ‘If we take any fixed axes in the
plane, a random line may be represented by the equation

x cos θ + y sin θ = p,

where p and θ are constants taken at random. Divide the angular space round
any point into a number of equal angles δθ, and for every direction let the plane
be ruled with an infinity of equidistant parallel lines, the common infinitesimal
distance being the same for every set of parallels.’ In effect, Crofton defined
a measure on the lines by the indefinite integral

∫
dpdθ. His considerations

preceding the definition can be interpreted as indicating that this measure
does not depend on the choice of the coordinate system. With this measure
at hand, Crofton then determined the measure of the lines (which he called
the ‘measure of the number of random lines’) satisfying certain conditions, for
example, hitting a given convex domain, or hitting both of two disjoint convex
domains, or separating the latter. He also determined probabilities (strictly
speaking, conditional probabilities, derived from the infinite measure, under
conditions having finite positive measure). For example, for the probability
p that two (independent) random lines hitting a given convex domain K
intersect inside that domain he found p = 2πA/L2, where A is the area and L
is the perimeter of K. He pointed out that p = 1/2 for the circle, and p < 1/2
for any other convex figure.

A neat modern derivation of the formulas obtained by Crofton, stressing
their integral geometric character, was presented by Lebesgue [437].

Twenty-seven years after his four-point problem, Sylvester [751] entered
the geometric probability scene again, with a funicular solution of Buffon’s
‘problem of the needle’ in its most general form. He generalized the result of
Barbier and also results of Crofton, although he did not know of Crofton’s
paper at the time of writing (see the Postscriptum of [751]). Using Crofton’s
measure on the space of lines instead of Buffon’s approach, one can formulate
Sylvester’s starting point as follows. Let a finite collection of pairwise disjoint
planar convex domains be given, enclosed by some circle C. Determine the
probability that a random line hitting C hits a prescribed selection of the given
domains and not the others. Sylvester treated the case of three domains in
detail and remarked the following about the general case (which explains the
title): ‘the final result for either probability is a linear homogeneous function
of lengths of stretched bands drawn in various ways round the given figures’.

The problematic nature of ‘choosing at random’ from an infinite collection,
as it used to occur in naive geometric probability questions, was illustrated by
a striking example that Bertrand gave in his Calcul des probabilités [97, pp.
4–5] of 1888. He proposed to draw at random a chord of a circle and to ask for
the probability that it is longer than an edge of a regular triangle inscribed
to the circle. The first suggested reasoning goes like this: by symmetry, one
endpoint of the chord can be assumed fixed on the circle; if the other is chosen
uniformly on the circle, one obtains 1/3 for the probability in question. Second,
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by symmetry one may assume that the direction of the chord is fixed; if its
distance from the origin is chosen uniformly, one obtains the probability 1/2.
Finally, one may choose the midpoint of the chord uniformly in the interior
of the circle; this yields the probability 1/4. Bertrand’s verdict is that ‘the
question is ill-posed’. The attribute of paradox for this example comes from
other authors, for example, Poincaré, in his Calcul des probabilités [607, p. 107]
of 1896. Poincaré points out that the probability 1/2 is obtained in Bertrand’s
question if one accepts the usual conventions of the needle problem, in modern
words, if one uses the invariant measure on the space of lines. That Crofton’s
line measure is indeed invariant under rigid motions, was probably felt by
Crofton, though not clearly stated. Invariant measures on the lines in the plane
and on the planes and lines in three-space were studied systematically by E.
Cartan [164]. In the same year, Poincaré in his quoted book introduced the
kinematic densities in the plane and on the sphere and showed their invariance;
in other words, he established the invariant measure on the motion group
of the plane and of the rotation group of three-space. As an application,
he considered ([607, p. 118]) a fixed and a moving curve on the sphere and
asked for the expected number of their intersection points. He found that it is
proportional to the product of the lengths of the two curves. Underlying this
result is the assumption that the moving curve undergoes a random rotation
with distribution given by the normalized invariant measure. Thus, by the end
of the nineteenth century, geometric probability and integral geometry were
closely tied together.

Notes for Section 8.1

1. Buffon type problems. Buffon’s needle problem and his clean tile prob-
lem (jeu de franc-carreau) have remained popular until today (as an Internet
search will confirm). Variants of the original problems which are still being in-
vestigated range from Buffon noodles (Waymire [777]) to various special pla-
nar convex bodies that hit at random a given periodic system of lines or fig-
ures, with natural uniformity assumptions about the distribution of the randomly
placed domains. (Animated demonstrations of Buffon’s clean tile problem are found
at http://mathworld.wolfram.com/CleanTileProblem.html) We refer the interested
reader to the extensive references given in the book by Mathai [456] and mention
only a few papers where the randomly placed object is a general convex body in the
plane. Ren and Zhang [636], and independently Aleman, Stoka and Zamfirescu [15],
consider two families of equidistant lines in the plane and are interested in the angle
between them for which the hitting events become independent. Similar questions
are treated by Duma and Stoka [212].

A more intricate Buffon type problem is attacked by Bárány [65]. In his work, the
lattice to be hit (or not to be hit) is Zd. It is proved, under the usual distributional
assumption for the randomly placed body K, that the probability of non-hitting is
of order 1/Vd(K) if the volume of K is sufficiently large and its width is sufficiently
small.
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2. The ideas underlying Sylvester’s [751] ‘funicular solution’ of Buffon’s problem ad-
mit far-reaching generalizations. They led Ambartzumian [34] to his Combinatorial
Integral Geometry. This is not restricted to invariant measures. It has yielded sev-
eral applications to stochastic geometry and various geometric results, among them
a solution of Hilbert’s fourth problem in the plane (though not the only solution).

3. The historical article by Seneta, Parshall and Jongmans [728] describes the devel-
opment of geometric probability in the nineteenth century, paying particular atten-
tion to Sylvester, Crofton, Barbier, and Bertrand. The early history is also sketched
in the introduction, written by Miles and Serra, to the Proceedings [539] of the
Buffon Bicentenary Symposium that was held in Paris in 1977. For the particular
history of Sylvester’s problem, we refer to Pfiefer [602].

Early collections of problems and solutions of geometric probability problems are
Section 6 of Crofton’s [188] article in the Encyclopedia Britannica, and the books
by Czuber [191] and Deltheil [202].

Much information on the later development of geometric probability can be
gathered from the book by Kendall and Moran [397] and the survey articles by
Moran [558, 559], Little [440], and Baddeley [43]. See also Solomon [731], and in
particular the book by Mathai [456].

For introductory surveys to geometrical probability and stochastic geometry, we
also refer to the articles by Baddeley [44] and by Weil and Wieacker [806].

8.2 Convex Hulls of Random Points

From the early beginnings of geometric probability until today, convex hulls
of independent random points have been a favorite subject of investigation.
In the following four subsections and the corresponding notes we hope to give
an impression, though necessarily restricted, of the nature and diversity of the
questions that have been posed and answered.

8.2.1 A Given Point in a Random Convex Hull

We consider n independent, identically distributed random points X1, . . . , Xn

in Rd and ask for the probability of the event that 0 is in the convex hull of
these points. Evidently, this probability depends heavily on the distribution
of the points. It may be surprising, at first sight, that for centrally symmetric
distributions (that is, distributions invariant under reflection in the origin) the
probability is independent of the distribution. If we denote the probability in
question by q(d)

n , then p(d)
n = 1 − q(d)

n is the probability that X1, . . . , Xn lie
in some open halfspace with 0 in the boundary. The following is a classical
result due to Wendel [810].

Theorem 8.2.1. If X1, . . . , Xn are i.i.d. random points in Rd whose distrib-
ution is symmetric with respect to 0 and assigns measure zero to every hyper-
plane through 0, then
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p(d)
n := P(0 /∈ conv {X1, . . . , Xn}) =

1
2n−1

d−1∑
k=0

(
n− 1
k

)
.

For example, p(d)
n = 1 for n ≤ d, and p(d)

d+1 = 1− 2−d.
The independence of the distribution indicates that Theorem 8.2.1 is essen-

tially a geometric result. Its proof depends on an observation in combinatorial
geometry that goes back to Steiner [736] for d ≤ 3 and to Schläfli [667, pp. 209
– 212] in general. Let H1, . . . , Hn ⊂ Rd be hyperplanes through 0 which are
in general position, that is, any d or fewer of them have linearly independent
normal vectors. Then Rd \ (H1 ∪ . . .∪Hn) consists of finitely many connected
components (open polyhedral cones), which are called the cells induced by
H1, . . . , Hn.

Lemma 8.2.1. If C(n, d) denotes the number of cells induced by n hyper-
planes through 0 in general position in Rd, then

C(n, d) = 2
d−1∑
k=0

(
n− 1
k

)
.

Proof. For d = 1 (where only n = 1 is possible), the assertion is true, and
also for d = 2, since evidently C(n, 2) = 2n. The assertion is further true for
n = 1 and any dimension d ≥ 1. Suppose that n ≥ 2 and that the assertion is
true for n− 1 hyperplanes, in any dimension d ≥ 2. Let H1, . . . , Hn ⊂ Rd be
hyperplanes through 0 in general position. We may assume that d ≥ 3. The
hyperplanes H1, . . . , Hn−1 induce C(n− 1, d) cells. Some of these cells, let C ′

be their number, are cut by Hn into two pieces; the remaining C ′′ cells are
not hit by Hn. It follows that C(n− 1, d) = C ′ +C ′′ and C(n, d) = 2C ′ +C ′′,
hence

C(n, d) = C ′ + C(n− 1, d). (8.2)

We state that
C ′ = C(n− 1, d− 1). (8.3)

In fact, the intersections Hj ∩ Hn, j = 1, . . . , n − 1, are hyperplanes in the
(d − 1)-dimensional space Hn, and they are in general position. Therefore,
Hn \

⋃n−1
j=1 (Hj ∩Hn) has C(n− 1, d− 1) cells of dimension d− 1, and clearly

these are the intersections of the C ′ cells in Rd with Hn. This proves (8.3).
From (8.2) and (8.3) we obtain C(n, d) = C(n − 1, d − 1) + C(n − 1, d),

which together with the induction hypothesis shows that the assertion is true
for n hyperplanes. ��

Proof of Theorem 8.2.1. Let φ denote the distribution of Xi, and define

g(x1, . . . , xn) :=

⎧⎨⎩
1, if x1, . . . , xn lie in some open halfspace

with 0 in the boundary,
0 else.
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Then

p(d)
n =

∫
Rd

. . .

∫
Rd

g(x1, . . . , xn)φ(dx1) · · ·φ(dxn)

=
∫

Rd

. . .

∫
Rd

g(ε1x1, . . . , εnxn)φ(dx1) · · ·φ(dxn)

for εi ∈ {1,−1} (i = 1, . . . , n), since φ is invariant under reflection in the
origin. This gives

p(d)
n =

∫
Rd

. . .

∫
Rd

1
2n

∑
εi∈{1,−1}

g(ε1x1, . . . , εnxn)φ(dx1) · · ·φ(dxn).

We consider a fixed n-tuple x1, . . . , xn ∈ Rd. Due to the assumption on φ, we
can assume that any d or fewer of these vectors are independent (the other
n-tuples do not contribute to the integral). An n-tuple (ε1, . . . , εn) contributes
1 to the sum in the integral if and only if there is a vector y with

〈εixi, y〉 > 0 for i = 1, . . . , n,

thus if and only if
n⋂

i=1

{z ∈ Rd : 〈εixi, z〉 > 0} �= ∅.

The nonempty intersections of this kind are precisely the cells that are induced
by the hyperplanes through 0 orthogonal to x1, . . . , xn, respectively. It follows
that ∑

εi∈{1,−1}
g(ε1x1, . . . , εnxn) = C(n, d).

Lemma 8.2.1 now completes the proof of the theorem. ��

Notes for Subsection 8.2.1

1. Wendel’s theorem 8.2.1 is complemented by the (deeper) result saying that the
probability in question is extremal for symmetric distributions. The following was
proved by Wagner and Welzl [775]. Let µ be a probability measure on Rd that is
absolutely continuous with respect to Lebesgue measure. Let X1, . . . , Xn be i.i.d.
random points in Rd with distribution µ. Then the probability q

(d)
n of the event

0 ∈ conv{X1, . . . , Xn} satisfies

q(d)
n ≤ 1 − 1

2n−1

d−1∑
k=0

(
n − 1

k

)
.

Equality holds if and only if

µ({αx : x ∈ B, α ≥ 0} = µ({αx : x ∈ B, α ≤ 0}

holds for every Borel set B ⊂ Rd.
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2. Slightly different versions of the proof of Theorem 8.2.1 are found in Mycielski
[570] and Bárány [64, Sec. 9].

3. The setting underlying Wendel’s theorem, namely the partition of Rd induced by
n hyperplanes through 0 in general position, was studied further by Cover and Efron
[179]. Some of their results have the following interpretation in terms of geometric
probability. Let X1, . . . , Xn be independent uniform random points on the sphere
Sd−1 (thus, the distribution of Xi is σ/ωd; this can be generalized). Under the
condition that X1, . . . , Xn lie in some open hemisphere, their spherical convex hull
has expected spherical volume

(
n−1
d−1

)
/C(n, d), and the expectation of its number of

k-faces is given by

2k+1

(
n

k + 1

)
C(n − k − 1, d − k − 1)

C(n, d)
,

k = 0, . . . , d − 2. For n → ∞, this converges to 2k+1
(

d−1
k+1

)
, which happens to be the

number of k-faces of the (d − 1)-dimensional crosspolytope.
For d = 3, Miles [524] has determined first and second moments of area, perime-

ter and vertex number for the spherical random polytopes considered here.

8.2.2 Points in Balls and Spheres

If 1 ≤ q+1 ≤ d+1, then the convex hull of q+1 independent uniform random
points in the ball Bd is almost surely a q-dimensional simplex. The moments
of its q-dimensional volume can be computed explicitly. This was first done
by Miles, in fact more generally for independent random points of which some
are uniform in Bd and the others are uniform on the boundary Sd−1 of Bd.
We present here only the cases where the points are uniform either in Bd or
in Sd−1. The computation is a typical application of Blaschke–Petkantschin
type formulas. Before these results, which are stated in Theorem 8.2.3 and
are needed on various occasions, we consider the q-dimensional volume of the
parallelepiped spanned by q independent uniform random vectors in Bd.

Note that the subsequent theorems yield results about moments, after
normalization.

Theorem 8.2.2. For integers d ≥ 1, 1 ≤ q ≤ d, k ≥ 1,

I(d, q, k) :=
∫

Bd

. . .

∫
Bd

∇q(x1, . . . , xq)k λ(dx1) · · ·λ(dxq)

= κq
d+k

q−1∏
j=0

ωd−j

ωd+k−j
.

Proof. An elementary calculation yields

I(d, 1, k) =
ωd

d+ k
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and thus the assertion for q = 1 (and hence for d = 1). Assume now that
d ≥ 2 and q ≥ 2. Let L ∈ G(d, q − 1). Using Fubini’s theorem and (7.9), we
obtain

I(d, q, k)
I(d, q − 1, k)

=
∫

Bd

d(x, L)k λ(dx)

=
∫

L⊥∩Bd

∫
(L+x)∩Bd

‖x‖k λL+x(dy)λL⊥(dx)

= κq−1

∫
L⊥∩Bd

‖x‖k(1− ‖x‖2)(q−1)/2 λL⊥(dx)

= κq−1ωd−q+1

∫ 1

0

(1− t2)(q−1)/2 td+k−q dt

= κd+k
ωd−q+1

ωd+k−q+1
.

Repeated application gives the desired result. ��

Theorem 8.2.3. For integers d ≥ 1, 1 ≤ q ≤ d, k ≥ 0,

J(d, q, k) :=
∫

Bd

. . .

∫
Bd

∆q(x0, . . . , xq)k λ(dx0) · · ·λ(dxq)

=
1

(q!)k
κq+1

d+k

κq(d+k)+d

κ(q+1)(d+k)

bdq

b(d+k)q
(8.4)

and

S(d, q, k) :=
∫

Sd−1
. . .

∫
Sd−1

∆q(u0, . . . , uq)k σ(du0) · · ·σ(duq)

=
1

(q!)k
ωq+1

d+k

κq(d+k−2)+d−2

κ(q+1)(d+k−2)

bdq

b(d+k)q
(8.5)

with bdq given by (7.8).

Proof. An elementary calculation gives

J(1, 1, k) =
2k+3

(k + 1)(k + 2)
,

and since
κk+1κk+2

κ2k+2
=

2k+2

k + 2
,

this coincides with the assertion (8.4) for d = 1, q = 1.
Evidently, S(1, 1, k) = 2k+1. Since

κk+1κk−2

κ2k−2
=

2k

k + 1
,
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this coincides with the assertion (8.5) for d = 1 and q = 1.
Let d ≥ 2 and assume, first, that q < d. For 0 ≤ ρ < 1 we put Bd

ρ := {x ∈
Rd : ρ ≤ ‖x‖ ≤ 1} and

Jρ(d, q, k) :=
∫

Bd
ρ

. . .

∫
Bd

ρ

∆q(x0, . . . , xq)k λ(dx0) · · ·λ(dxq). (8.6)

Using Theorem 7.2.7 and decomposing the measure µq according to (13.9),
we obtain

Jρ(d, q, k)

= bdq(q!)d−q

∫
G(d,q)

∫
L⊥

∫
(L+y)∩Bd

ρ

. . .

∫
(L+y)∩Bd

ρ

∆q(x0, . . . , xq)d+k−q

×λL+y(dx0) · · ·λL+y(dxq)λL⊥(dy) νq(dL). (8.7)

With ρ = 0, this gives

J(d, q, k)

= bdq(q!)d−q

∫
L⊥∩Bd

(1− ‖y‖2)q(d+k+1)/2J(q, q, d+ k − q)λL⊥(dy)

= bdq(q!)d−qωd−qJ(q, q, d+ k − q)
∫ 1

0

(1− t2)q(d+k+1)/2 td−q−1 dt

= θ(d, q, k)J(q, q, d+ k − q),

where
θ(d, q, k) := bdq(q!)d−q κq(d+k)+d

κq(d+k+1)
.

For k = 0 we get
κq+1

d = θ(d, q, 0)J(q, q, d− q).
Hence, we have

κq+1
d+k = θ(d+ k, q, 0)J(q, q, d+ k − q) (8.8)

and therefore

J(d, q, k) = κq+1
d+k

θ(d, q, k)
θ(d+ k, q, 0)

.

This yields the assertion (8.4) for q < d. For k = 0, (8.4) it is trivially true,
and from (8.8) it is obtained for q = d, k ≥ 1, replacing (d, q, k) by (d+k, d, 0).

To prove (8.5), we introduce spherical coordinates in (8.6) and employ the
mean value theorem of integral calculus. This yields

Jρ(d, q, k) =
(

1− ρd

d

)q+1 ∫
Sd−1

. . .

∫
Sd−1

∆q(t0u0, . . . , tquq)k

×σ(du0) · · ·σ(duq) (8.9)
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with suitable numbers ti ∈ [ρ, 1] (depending on u0, . . . , uq, in a measurable
way, w.l.o.g.). From (8.9) and (8.7) we get∫

Sd−1
. . .

∫
Sd−1

∆q(t0u0, . . . , tquq)k σ(du0) · · ·σ(duq)

= bdq(q!)d−q

∫
G(d,q)

∫
L⊥
Iρ(L, y)λL⊥(dy) νq(dL)

with

Iρ(L, y) :=
(

d

1− ρd

)q+1 ∫
(L+y)∩Bd

ρ

. . .

∫
(L+y)∩Bd

ρ

∆q(x0, . . . , xq)d+k−q

×λL+y(dx0) · · ·λL+y(dxq).

For fixed L ∈ G(d, q) and y ∈ L⊥ ∩ intBd, we obtain from (8.9), applied in
(L+ y) ∩Bd

ρ , (and denoting by a+ the positive part of a)

Iρ(L, y)

=
(
d

q

)q+1
(

(1− ||y||2)q/2 − (ρ2 − ||y||2)q/2
+

1− ρd

)q+1

(1− ||y||2)q(d+k−q)/2

×
∫

Sd−1∩L

. . .

∫
Sd−1∩L

∆q(t0,yu0, . . . , tq,yuq)d+k−q σL(du0) · · ·σL(duq)

with suitably chosen intermediate values ti,y, satisfying

(ρ2 − ||y||2)1/2
+

(1− ||y||2)1/2
≤ ti,y ≤ 1

(and, w.l.o.g., depending in a measurable way on u0, . . . , uq and y). Here, we
have denoted by σL the spherical Lebesgue measure on Sd−1∩L. With ρ→ 1
and the dominated convergence theorem, we now deduce that

S(d, q, k)

= bdq(q!)d−qωd−qS(q, q, d+ k − q)
∫ 1

0

(1− t2)(q(d+k−1)/2)−1td−q−1 dt

= α(d, q, k)S(q, q, d+ k − q)

with
α(d, q, k) := bdq(q!)d−q κq(d+k−2)+d−2

κq(d+k−1)−2
.

(Here κ−1 := 1/π, in agreement with the formula κp = πp/2/Γ(1 + (p/2)).)
The case k = 0 gives

ωq+1
d = α(d, q, 0)S(q, q, d− q),
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hence
ωq+1

d+k = α(d+ k, q, 0)S(q, q, d+ k − q) (8.10)

and, therefore,

S(d, q, k) = ωq+1
d+k

α(d, q, k)
α(d+ k, q, 0)

.

This yields the assertion (8.5) for q < d. For k = 0, it holds trivially, and for
q = d and k ≥ 1 it follows from (8.10), replacing (d, q, k) by (d+ k, d, 0). ��

Notes for Subsection 8.2.2

1. Theorem 8.2.3 is a special case of a result of Miles [525, (29)]. The value J(d, d, 1)
was determined earlier by Kingman [412], and for d = 3 already by Hostinský [350].

More generally, Miles considered r+1 ≤ d+1 independent random points in Rd,
of which the first p are uniform in the ball Bd, while the last r + 1 − p are uniform
in the sphere Sd−1. The convex hull of these points is a.s. an r-dimensional simplex;
let ∆(r,p) denote its r-dimensional volume. Miles [525] determined all moments of
∆(r,p). Mathai [455] found the probability density of ∆(r,p) for r = 2 and p = 3, and
Mathai and Tracy [457] did the same for r = 2 and p = 0, 1, 2. For the general case
of arbitrary r ≤ d and p ≤ r + 1, Pederzoli [597] obtained explicit series forms for
the density function of ∆(r,p). An extensive study of the set-up introduced by Miles,
without the restriction r ≤ d, was made by Affentranger [3, 4], who extended many
of the previous results.

2. A conjecture of Miles [525], that (2d/3)1/2[r!∆(r,p)−(r+1)1/2] has asymptotically,
for d → ∞, a standard normal distribution, was proved by Ruben [651]; a shorter
proof was given by Mathai [455].

3. More general moments of the type J(d, q, k), for rotationally symmetric distribu-
tions, were computed by Ruben and Miles [652]. Additional information on volumes
of convex hulls of uniform random points in the ball or, more generally, with centrally
symmetric distributions, is found in the book by Mathai [456].

8.2.3 Basic Probabilities, Expectations and Moments

For the investigation of convex hulls of random points, we introduce some
short notation which will be used throughout this section. Let ϕ : P ′ → Rd

be a measurable function on the set of convex polytopes in Rd. For a given
probability distribution µ on Rd, we define the random variable

ϕ(µ, n) := ϕ(conv{X1, . . . , Xn}), n ∈ N,

where X1, . . . , Xn are independent random points, each with distribution µ.
If K ∈ K′ is a convex body with interior points, we write ϕ(K,n) := ϕ(µ, n),
where µ := (λ K)/λ(K) is the uniform distribution on K. Typical examples
of functions ϕ are Vj , the jth intrinsic volume, and fk, the number of k-faces.
Frequently studied particular cases are the volume Vd and the vertex number
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f0. Also of interest are Dd(K,n) := Vd(K)− Vd(K,n), the missed volume,
and the indicator function of polytopes with k vertices,

ψk(P ) :=
{

1, if f0(P ) = k,
0, otherwise.

The classical problem of Sylvester [750], in a precise formulation suggested
later, asks for the probability that four independent uniform random points in
a two-dimensional convex body K form a triangle, thus it asks for Eψ3(K, 4).
It is easy to see that

Eψ3(K, 4) = 4
EV2(K, 3)
V2(K)

, (8.11)

and since Ef0(K, 4) = 3Eψ3(K, 4) + 4Eψ4(K, 4), also that

Ef0(K, 4) = 4
(

1− EV2(K, 3)
V2(K)

)
.

The extensions of these relations to dimensions d ≥ 2 and to arbitrary numbers
n ≥ d+ 1 of random points read

EVd(K,n)
Vd(K)

= 1− Ef0(K,n+ 1)
n+ 1

, (8.12)

Eψd+1(K,n) =
(
n

d+ 1

)
EVd(K, d+ 1)n−d−1

Vd(K)n−d−1
. (8.13)

They are easily obtained by rearranging multiple integrals. The following the-
orem provides a considerable generalization of (8.12). The proof extends to
more general probability distributions, if the volume is replaced by the prob-
ability content, but we restrict ourselves here to the uniform distribution in a
convex body.

Theorem 8.2.4 (Buchta). Let K ∈ K′ be a convex body with interior points,
and let n, k ∈ N. Then

EVd(K,n)k

Vd(K)k
= E

k∏
i=1

(
1− f0(K,n+ k)

n+ i

)
(8.14)

and, consequently,

EDd(K,n)k

Vd(K)k
=

k∑
j=1

(−1)j−1

(
k

j

)
E

(
1−

j∏
i=1

(
1− f0(K,n+ j)

n+ i

))
.

Proof. Since K is fixed in the following, we write Vd(n) and f0(n) for Vd(K,n)
and f0(K,n), respectively. Let X1, . . . , Xn+k be independent uniform ran-
dom points in K. We denote by Pn,k the number of k-element subsets of
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{X1, . . . , Xn+k} which are contained in the convex hull of the remaining n
points. For a fixed realization, where X1, . . . , Xn+k are pairwise different, the
number Pn,k is equal to the number of possibilities of choosing k points from
X1, . . . , Xn+k which are not vertices of the convex hull of X1, . . . , Xn+k. It
follows that

Pn,k =
(
n+ k − f0(n+ k)

k

)
a.s.

and therefore

EPn,k = E

(
n+ k − f0(n+ k)

k

)
. (8.15)

On the other hand, let pn,k denote the probability that X1, . . . , Xk are
contained in the convex hull of Xk+1, . . . , Xk+n. Since X1, . . . , Xn+k are in-
dependent and identically distributed, we clearly have

EPn,k =
(
n+ k
k

)
pn,k. (8.16)

The probability pn,k can be computed as follows. For fixed points x1, . . . , xn

in K, the probability that a uniform random point X falls within the con-
vex hull of x1, . . . , xn is given by Vd(conv{x1, . . . , xn})/Vd(K). Hence, the
probability that each of the independent points X1, . . . , Xk falls within the
convex hull of x1, . . . , xn is the kth power of this value. Since X1, . . . , Xn+k

are independent, it follows that

pn,k =
EVd(n)k

Vd(K)k
. (8.17)

From (8.15), (8.16) and (8.17) we get(
n+ k
k

)
EVd(n)k

Vd(K)k
= E

(
n+ k − f0(n+ k)

k

)
. (8.18)

Since (
n+ k
k

)−1(
n+ k − f0(n+ k)

k

)
=

k∏
i=1

(
1− f0(n+ k)

n+ i

)
,

this yields the first assertion of the theorem. The second assertion follows from
this, using the identity

(1− z)k =
k∑

j=1

(−1)j−1

(
k

j

)
(1− zj).

This completes the proof. ��

We may write (8.14) in the form
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EVd(K,n)k

Vd(K)k
=

k∑
r=0

(−1)ra
(r)
n,k Ef0(K,n+ k)r, (8.19)

where a(r)n,k denotes the rth elementary symmetric function of the numbers
1

n+1 , . . . ,
1

n+k . Thus, the kth moment of Vd(K,n)/Vd(K) is a linear combina-
tion of the first k moments of f0(K,n+ k). For k = 1, formula (8.19) reduces
to (8.12).

Relation (8.19) shows that (if the volume of K is given) all moments
EVd(K,n)k are determined by the distribution of f0(K,n + k). Conversely,
the following theorem shows that the distribution of f0(K,n), for n ≥ d+ 1,
is determined by the moments EVd(K, j)n−j , j = d + 1, . . . , n. The case of
n ≤ d could be included, but is trivial. The case k = d + 1 of the theorem is
formula (8.13).

Theorem 8.2.5. For n ≥ d+ 1 and k ∈ {1, . . . , n},

P(f0(K,n) = k) =
(
n

k

) k∑
j=d+1

(−1)j+k

(
k

j

)
EVd(K, j)n−j

Vd(K)n−j
. (8.20)

Proof. Using the notation from the previous proof, together with

P(f0(K,m) = k) = Eψk(K,m) =: Eψk(m)

for m ≥ k, relation (8.18) can be written in the form(
j + k
k

)
EVd(j)k

Vd(K)k
=

j+k∑
i=1

(
j + k − i

k

)
Eψi(j + k),

hence (
n

j

)
EVd(j)n−j

Vd(K)n−j
=

n∑
i=1

(
n− i
n− j

)
Eψi(n), j = 1, . . . , n.

The matrix((
n− i
n− j

))
i,j=1,...,n

has the inverse
(

(−1)j+k

(
n− j
n− k

))
j,k=1,...,n

.

This is easily checked, noting that
(

n−i
n−j

)(
n−j
n−k

)
�= 0 only for i ≤ j ≤ k and that(

n− i
n− j

)(
n− j
n− k

)
=

(
n− i
n− k

)(
k − i
k − j

)
.

Therefore,

Eψk(n) =
n∑

j=1

(−1)j+k

(
n− j
n− k

)(
n

j

)
EVd(j)n−j

Vd(K)n−j
, k = 1, . . . , n.

This yields the assertion. ��
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The following identity relates expected volumes of convex hulls for different
numbers of i.i.d. random points, with arbitrary distributions.

Theorem 8.2.6 (Buchta). Let µ be a probability distribution on Rd. For
m ∈ N,

EVd(µ, d+ 2m) =
1
2

2m−1∑
k=1

(−1)k−1

(
d+ 2m
k

)
EVd(µ, d+ 2m− k) (8.21)

and, consequently,

EVd(µ, d+2m) =
m∑

k=1

(22k− 1)
B2k

k

(
d+ 2m
2k − 1

)
EVd(µ, d+2m+1− 2k), (8.22)

where the constants B2k are the Bernoulli numbers.

Proof. The first result is obtained by integrating a geometric identity involv-
ing convex hulls. To state this identity, let x1, . . . , xn ∈ Rd be points (not
necessarily distinct) such that their convex hull, denoted by K, is of dimen-
sion d. We say that a j-subset {i1, . . . , ij} from {1, . . . , n} captures the point
y ∈ Rd if y is in the convex hull of xi1 , . . . , xij

. Let cj(y) denote the number
of j-subsets from {1, . . . , n} that capture the point y (j ∈ N, with cj(y) = 0
if j > n). Let D be the union of all (d− 2)-flats that are affinely spanned by
points from {x1, . . . , xn}. Cowan’s identity says that

c1(y)− c2(y) + . . .+ (−1)n−1cn(y) = (−1)d if y ∈ intK \D, (8.23)

c1(y)− c2(y) + . . .+ (−1)n−1cn(y) = 0 if y ∈ bdK. (8.24)

For the proof, we first consider the case where y ∈ bdK, say y ∈ K∩H, where
H is a supporting hyperplane of K. Without loss of generality, let 1, . . . , n−p
be precisely the indices i for which xi ∈ H; then p ∈ {1, . . . , n− 1}. Let aj(y)
denote the number of j-subsets from {1, . . . , n− p} that capture the point y.
To each such j-subset we can add r indices from {n − p + 1, . . . , n}, where
r ∈ {0, . . . , p}, to obtain a (j + r)-subset from {1, . . . , n} capturing y, and all
such subsets are obtained in this way. It follows that

ck(y) =
min{p,k−1}∑

r=max{0,k−n+p}

(
p

r

)
ak−r(y)

for k = 1, . . . , n and hence that

n∑
k=1

(−1)k−1ck(y) =
n−p∑
j=1

(−1)j−1aj(y)
p∑

r=0

(−1)r

(
p

r

)
= 0.

This proves (8.24).
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By a spanned hyperplane we understand a hyperplane that is affinely
spanned by points from x1, . . . , xn. The complement in K of the union of
all spanned hyperplanes is the union of finitely many open convex polytopes,
which we call cells. Let C be a cell, let F be a facet of clC, and let H be
the affine hull of F ; then H is a spanned hyperplane. Let H+ be the closed
halfspace bounded by H that does not contain C. Without loss of general-
ity, let 1, . . . , n − p be precisely the indices i for which xi ∈ H+. Let y ∈ C
and y′ ∈ relintF . By the definition of the cells, no k-flat spanned by points
from x1, . . . , xn meets C, for k = 1, . . . , d− 1. It follows that a j-subset from
{1, . . . , n} that captures y also captures y′. Conversely, a j-subset capturing
y′ and containing an index from {n− p+ 1, . . . , n} also captures y. Let bj(y′)
denote the number of j-subsets from {1, . . . , n− p} that capture y′. We have
shown that

cj(y′) = cj(y) + bj(y′). (8.25)

We apply (8.25) in two ways. First, we assume that the points x1, . . . , xn−p

not all lie in H. Then their convex hull has dimension d (since H is a spanned
hyperplane), hence (8.24), applied to x1, . . . , xn−p, gives

n∑
j=1

(−1)j−1cj(y′) =
n∑

j=1

(−1)j−1cj(y).

Since intK \D is pathwise connected, we conclude that the function

n∑
j=1

(−1)j−1cj

is constant on intK \D. We show by induction with respect to the dimension
that this value is equal to (−1)d. The case d = 1 is easy, so we assume that
d ≥ 2 and that the assertion has been proved in dimensions less than d. With
the same notations as used before (8.25), we now assume that x1, . . . , xn−p ∈
H (that is, we take for F a facet of K and choose C, y and y′ appropriately).
Using (8.24), (8.25) and the inductive assumption, we get

0 =
n∑

j=1

(−1)j−1cj(y′) =
n∑

j=1

(−1)j−1cj(y) +
n∑

j=1

(−1)j−1bj(y′)

=
n∑

j=1

(−1)j−1cj(y) + (−1)d−1

and hence the assertion (8.23). Thus the identity is proved.
For y ∈ intK \D, (8.23) can be written as

n∑
j=1

(−1)j−1
∑

I⊂{1,...,n}, |I|=j

1conv{xi:i∈I}(y) = (−1)d.



8.2 Convex Hulls of Random Points 311

Integration with respect to Lebesgue measure yields

n∑
j=d+1

(−1)j−1
∑

I⊂{1,...,n}, |I|=j

Vd(conv{xi : i ∈ I}) = (−1)dVd(K).

Now let X1, . . . , Xn be independent random points, each with distribution
µ. Then we get

n∑
j=d+1

(−1)j−1

(
n

j

)
EVd(conv{X1, . . . , Xj}) = (−1)dEVd(conv{X1, . . . , Xn}).

Setting j = n− k, we obtain

1
2

n−d−1∑
k=1

(−1)k−1

(
n

k

)
EVd(µ, n− k) =

{
EVd(µ, n), if n− d is even,
0, if n− d is odd.

With n − d = 2m, this gives (8.21). The relation (8.21) can then be used to
eliminate the terms with even k from the right side of (8.21); this yields (8.22)
(see Badertscher [54]). ��

Notes for Subsection 8.2.3

1. Sylvester’s problem and related questions. For general two-dimensional
convex bodies K, Blaschke [102] (see also [104, §24]) gave a solution to Sylvester’s
problem (in its later formulation), by determining the range of the probability in
question. He proved that

2

3
≤ Eψ4(K, 4) ≤ 1 − 35

12π2
.

By (8.11), this is equivalent to

35

48π2
≤ EV2(K, 3)

V2(K)
≤ 1

12
. (8.26)

Equality holds on the left side of (8.26) if and only if K is an ellipse, and on the
right side if and only if K is a triangle. Blaschke proved the left side of (8.26) by
Steiner symmetrization and the right side by the process of ‘shakedown’.

The left side of (8.26) was extended to higher dimensions and higher moments
by Groemer [288]. His result, now known as the Blaschke–Groemer inequality,
says that for a convex body K in Rd (d ≥ 2) with given volume Vd(K) > 0 and for
n ≥ d+1 and r ≥ 1, the expectation E Vd(K, n)r attains its minimum precisely if K
is an ellipsoid (see Theorem 8.6.3 for the case n = d + 1, and see also the references
in Note 1 for Section 8.6).

Henze [334] observed that Blaschke’s method to prove (8.26) yields more, namely
inequalities for distribution functions. Let FK denote the distribution function of
V2(K, 3) for a two-dimensional convex body K with V2(K) = 1, let T be a triangle
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and E an ellipse, each of area one. Then Henze showed that FT (t) ≤ FK(t) ≤ FE(t)
for t ∈ R.

Again for d = 2, Dalla and Larman [197] showed that E V2(K, n) ≤ E V2(T, n)
for n ≥ 3 and for a convex body K and a triangle T with the same area, with strict
inequality if K is a polygon other than a triangle. Giannopoulos [257] showed for
arbitrary K that equality holds only for triangles.

For d ≥ 3, it has repeatedly been conjectured that E Vd(K, d + 1)/Vd(K) is
maximal if K is a simplex. This is still one of the major open problems of convex
geometry. Its interesting relations to other open problems are discussed in Milman
and Pajor [541]. Dalla and Larman [197] proved that on the set of d-polytopes with
at most d+2 vertices, E Vd(K, d+1)/Vd(K) is maximal precisely for simplices. Strong
support for the general conjecture comes from work of Bárány and Buchta [68]. From
their more general results they deduced that, for any d-dimensional convex body K
and a simplex T d of the same volume, there is a number n0 (depending on K) such
that E Vd(K, n) < E Vd(T d, n) for n ≥ n0, unless K is a simplex. Restrictions for
possible maximizers of the functional E Vd(K, d + 1)/Vd(K) were found by Campi,
Colesanti and Gronchi [155].

2. Explicit results: volumes. Apart from the formulas for balls mentioned in the
preceding subsection, few explicit values of the moments EVd(K, n)k are known. The
value of EVd(T d, d + 1)k for a simplex T d was found by Reed [624]. In the plane,
the expectation EV2(K, n) was only known if K is an affinely regular polygon and
if n = 3 (see the survey by Buchta [126] and the references in [125]), until Buchta
[125] found a formula by which EV2(K, n) can be calculated for any given convex
polygon K.

For triangles and parallelograms K, all moments of V2(K, 3) are known (Reed
[624]), and for a triangle, Alagar [13] found also the explicit distribution. Henze [334]
did the same for parallelograms and circles.

The problem of determining EVd(T d, d + 1) for the d-simplex T d was made
popular by Klee [418]. Even the case d = 3, in spite of its deceivingly elementary
character, remained open for many years. In [135], Buchta and Reitzner announced
the formula

EV3(T
3, 4) =

13

720
− π2

15015
= 0.0173982 . . . , (8.27)

as well as a more general formula for EV3(T
3, n), and they sketched a proof. Inde-

pendently, (8.27) was established by Mannion [450], making heavy use of computer
algebra. Finally, Buchta and Reitzner [138] published a detailed version of their
proof of the formula

EV3(T
3, n) = pn − π2rn,

where pn and rn are explicitly given rational numbers.

3. Explicit results: vertex numbers in polygons. Let X1, . . . , Xn be indepen-
dent uniform random points in the triangle with vertices (0, 1), (0, 0) and (1, 0) in
R2. Let Nn be the number of points from X1, . . . , Xn that are vertices of the convex
hull of (0, 1), X1, . . . , Xn, (1, 0), and let p

(n)
k := P(Nn = k). Bárány, Rote, Steiger

and Zhang [74] proved that p
(n)
n = 2n/[n!(n+1)!]; they also established a limit shape

for random convex chains and a corresponding central limit theorem. Buchta [132]

determined the probability p
(n)
k , for k = 1, . . . , n − 1, and thus the distribution of

Nn. As an application, he announced the determination of the exact distribution
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of the vertex number f0(P, n) for a convex polygon P . For example, if P = T is a
triangle, the expectation

Ef0(T, n) = 2

n−1∑
k=1

1

k

is known from Buchta [125], and the new approach yields the variance

var f0(T, n) =
10

9

n−1∑
k=1

1

k
− 4

3

n−1∑
k=1

1

k2
.

4. Explicit results for radially symmetric distributions. For independent uni-
form random points in the ball, Buchta and Müller [133] obtained explicit (though
complicated) formulas for Eϕ(Bd, n), where ϕ is either the surface area, the mean
width, or the number of facets; see also Meilijson [511]. Analogous results for inde-
pendent uniform random points in the sphere Sd−1 are due to Buchta, Müller and
Tichy [134].

Let µ denote the standard normal distribution in R3. Bosetto [118] found ex-
plicitly the distribution densities of V2(µ, 3) and V3(µ, 4).

5. Symmetric convex bodies. If K is a 0-symmetric convex body, one can, to-
gether with ϕ(K, n), also consider the random variable

ϕ(K, n,±) := ϕ(conv{±X1, . . . ,±Xn},

where X1, . . . , Xn are uniform random points in K. Meckes [507] has calculated the
second and fourth moments of Vd(Bd

q , n,±), where Bd
q denotes the unit ball of the

normed space �d
q , 1 ≤ q ≤ ∞, and all moments of Vd(Bd, n,±). He has also shown in

[508] that among planar symmetric convex bodies K the moments of V2(K, n)/V2(K)
and of V2(K, n,±)/V2(K) are maximized by parallelograms.

6. Formulas (8.12) and (8.13) appeared in Efron [215]. Theorem 8.2.4 and its proof,
as well as the conclusions drawn from it, such as (8.20), are due to Buchta [131].
This paper also discusses the consequences that the results have for the investigation
of variances.

7. Points in convex position. The special value Eψn(K, n) = P(f0(K, n) = n)
gives the probability that n independent uniform random points in K are in convex
position, that is, all of them are vertices of their convex hull. Some information on
this probability is available for d = 2. Valtr [760] determined it explicitly if K is a
parallelogram, and in Valtr [761] he did the same for a triangle. For a convex body
K ⊂ R2 with V2(K) = 1, Bárány [60] (using a result from Bárány [59]) proved the
limit relation

lim
n→∞

n2(Eψn(K, n))1/n =
1

4
e2a3(K),

where a(K) denotes the supremum of the affine perimeters of all convex bodies
contained in K. He even established the existence of a limit shape and a law of
large numbers. As he showed, there exists a unique convex body K̃ ⊂ K with affine
perimeter a(K). Let Kn denote the convex hull of n independent uniform random
points in K. Bárány [60] proved that, for the Hausdorff distance δ and any ε > 0,

lim
n→∞

P(δ(Kn, K̃) > ε | f0(K) = n) = 0.
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In higher dimensions, Bárány [62] determined the order of Eψn(K, n) as n → ∞.
For balls in increasing dimensions and numbers of points growing with the dimen-

sion, Bárány and Füredi [70] (strengthening earlier work of Buchta [127]) established
an interesting threshold phenomenon, namely

lim
d→∞

Eψn(d)(B
d, n(d)) =

{
1, if n(d) = 2d/2d−ε,

0, if n(d) = 2d/2d(3/4)+ε,

for every ε > 0.

8. Disjoint convex hulls. Let X1, . . . , Xj , Y1, . . . , Yk be independent, identically
distributed random points in Rd, and let pjk denote the probability that the convex
hull of X1, . . . , Xj is disjoint from the convex hull of Y1, . . . , Yk. This probability
was first investigated, for d = 2, by Rogers [647]. For example, if the distribution of
the points is absolutely continuous, Rogers showed a recursion formula according to
which pjk is known for all j, k ≥ 1 if pnn is known for all n ≥ 2, or alternatively if
pn1 is known for all n ≥ 3. Further work by Buchta [130] was continued by Buchta
and Reitzner [136]. For uniform random points in two-dimensional convex bodies
K, they connected pjk to equiaffine inner parallel curves of K, found an explicit
representation in the case of polygons and proved, among other results, that

lim
n→∞

pnn

n3/24−n
≥ 8

√
π

3
,

with equality if K is centrally symmetric. Further results on pjk were obtained in
Buchta and Reitzner [137].

9. After Buchta [123] and Affentranger [5, 6] had found special cases of Theorem
8.2.6, the general result was proved by Buchta [129]. The approach presented here,
by integrating a pointwise identity, was discovered by Cowan [183]. Badertscher [54]
noticed the special form of the coefficients in (8.22).

8.2.4 Convex Hulls: Asymptotic Results

For a given number n and functional ϕ, the distribution of the random variable
ϕ(K,n), and even its expectation, is in general hardly accessible. However, the
asymptotic behavior, as n → ∞, has proved to be tractable in several cases.
The technical effort to achieve this may be considerable, though. Therefore,
we only carry out one example, and give extensive hints in the Notes.

The example that we give concerns the random polytope

Kn := conv{X1, . . . , Xn},

where X1, . . . , Xn are independent uniform random points in the convex body
K. However, instead of a real functional applied to Kn, we consider the se-
lection expectation of this random set. It can be defined by

EKn := {EY : Y is a measurable selection of Kn}.

Here, a measurable selection of the random setKn is a measurable mapping
Y : Ω → Rd satisfying Y ∈ Kn almost surely. It is known (see, e.g., Molchanov
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[548, p. 159]) that EKn is a convex body (in this case) and that for the support
function h we have

h(EKn, u) = Eh(Kn, u) for u ∈ Sd−1.

The asymptotic behavior of such expectations, as n→∞, depends heavily
on the boundary structure of K. We consider here only sufficiently smooth
convex bodies. The convex body K is said to be of class Ck

+, for k ≥ 2,
if its boundary is a regular, k-times continuously differentiable hypersurface
with everywhere positive Gauss–Kronecker curvature (product of the principal
curvatures). IfK is of class C2

+ and if u ∈ Sd−1, thenK has a unique boundary
point with outer normal vector u, and we denote by κ(u) the Gauss–Kronecker
curvature of bdK at this point.

Theorem 8.2.7. If K is a convex body of class C3
+ in Rd and if u ∈ Sd−1,

then

h(K,u)− h(EKn, u) = cdκ(u)1/(d+1)

(
n

Vd(K)

)−2/(d+1)

+O(n−3/(d+1))

as n→∞, with

cd :=
1
2
Γ

(
d+ 3
d+ 1

) (
d+ 1
κd−1

)2/(d+1)

.

The constant involved in the O-term can be chosen to be independent of u.

Proof. We assume that 0 ∈ intK and define v(u, t) := λ({x ∈ K : 〈x, u〉 ≥ t})
for u ∈ Sd−1 and t ≥ 0. Put Vd(K) =: V . There is a number c0 > 0 with
h(K,u) ≥ c0 for all u ∈ Sd−1, and for each c ∈ (0, c0) the number

αc := 1− min
u∈Sd−1

v(u, h(K,u)− c)/V

satisfies αc < 1. Choose c ∈ (0, c0). For A ∈ K′, let

g(A, u, t) :=
{

1, if A ∩H(u, t) = ∅,
0, otherwise.

Let X1, . . . , Xn be independent uniform random points in K. Let u ∈ Sd−1.
The probability that 〈Xi, u〉 ≤ h(K,u)− c for all i or that 〈Xi, u〉 ≥ 0 for all
i is less than 2αn

c . If we denote by Kn
∗ the set of all n-tuples (x1, . . . , xn) of

points in K for which 〈xi, u〉 > h(K,u)−c for some i and 〈xj , u〉 < 0 for some
j, then we obtain

h(K,u)− Eh(Kn, u)

= V −n

∫
Kn∗

∫ h(K,u)

h(K,u)−c

g(conv{x1, . . . , xn}, u, t) dt λ(d(x1, . . . , xn)) +O(αn
c )

=
∫ h(K,u)

h(K,u)−c

V −n

∫
Kn∗

g(conv{x1, . . . , xn}, u, t)λ(d(x1, . . . , xn)) dt+O(αn
c ).
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The integrand of the inner integral is 1 if and only if 〈xk, u〉 < t for all k. It
follows that

h(K,u)− Eh(Kn, u) =
∫ h(K,u)

h(K,u)−c

(
1− v(u, t)

V

)n

dt+O(αn
c )

=
∫ c

0

(
1− w(u, τ)

V

)n

dτ +O(αn
c ),

where we have put w(u, τ) := v(u, h(K,u)− τ).
Let u ∈ Sd−1, and let y ∈ bdK be the point at which K has the outer

normal vector u. Reducing c (independently of u) if necessary, we can assume
the following. There is a real C3 function f defined in a convex neighborhood
of 0 in the linear subspace H(u, 0) such that every point x ∈ H(u, h(K,u)−
τ) ∩ bdK with 0 ≤ τ ≤ c has a representation of the form x = y + z − f(z)u
with z ∈ H(u, 0). For given τ ∈ (0, c], let z′ ∈ H(u, 0) be a point at which the
function

z �→

∣∣∣∣∣∣f(z)− 1
2

d−1∑
i,j=1

fij(0)zizj

∣∣∣∣∣∣
attains its maximum, say b(τ), under the condition f(z) = τ . Here z1, . . . , zd−1

are the coordinates of z with respect to an orthonormal basis of H(u, 0), and
fij := ∂2f/∂zi∂zj . In the following, c1, c2, . . . denote positive constants which
can be chosen independently of u. (The necessary arguments to show this
independence are carried out in Schneider [684].) It follows from Taylor’s
theorem that

b(τ) ≤ c1‖z′‖3. (8.28)

The eigenvalues of the matrix (fij(0))i,j=1,...,d−1 are the principal curvatures
ki, i = 1, . . . , d− 1, of bdK at y and hence have a positive lower bound 2c2.
We have

1
2

d−1∑
i,j=1

fij(0)z′iz
′
j ≥ c2‖z′‖2,

hence

τ = f(z′) ≥ 1
2

d−1∑
i,j=1

fij(0)z′iz
′
j − b(τ) ≥ c2‖z′‖2 − c1‖z′‖3 ≥ c3‖z′‖2, (8.29)

provided c has been chosen sufficiently small. Inequalities (8.28) and (8.29)
yield

b(τ) ≤ c4τ3/2.

By the definition of b(τ), every point z ∈ H(u, 0) with f(z) = τ satisfies

τ − b(τ) ≤ 1
2

d−1∑
i,j=1

fij(0)zizj ≤ τ + b(τ).
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Defining the (d− 1)-dimensional ellipsoids

E± =

⎧⎨⎩y + z − τu : z ∈ H(u, 0) and
1
2

d−1∑
i,j=1

fij(0)zizj ≤ τ ± b(τ)

⎫⎬⎭ ,
we deduce that E− ⊂ K ∩ H(u, τ) ⊂ E+. Hence, λd−1(K ∩ H(u, τ)) lies
between the (d− 1)-volumes of these ellipsoids, which have semi-axes√

2(τ ± b(τ))/ki, i = 1, . . . , d− 1.

It follows that

λd−1(K ∩H(u, τ)) = κd−1κ(u)−1/2(2τ)(d−1)/2(1 + η(τ))

with |η(τ)| ≤ c5τ1/2, and hence

w(u, τ) =
∫ τ

0

λd−1(K ∩H(u, ρ)) dρ =
κd−1

d+ 1
κ(u)−1/2(2τ)(d+1)/2(1 + η1(τ))

with |η1(τ)| ≤ c6τ1/2. This gives

h(K,u)− Eh(Kn, u) +O(αn
c )

= J :=
∫ c

0

(
1− 2(d+1)/2κd−1κ(u)−1/2

(d+ 1)V
τ (d+1)/2(1 + η1(τ))

)n

dτ.

We substitute

t = naτ (d+1)/2 with a :=
2(d+1)/2κd−1κ(u)−1/2

(d+ 1)V

and obtain

J =
2

d+ 1
(an)−2/(d+1)

∫ γn

0

[
1− t

n
− t

n
ψ

(
t

n

)]n

tβ−1 dt

with γ := ac(d+1)/2 and β := 2/(d+ 1); here∣∣∣∣ψ(
t

n

)∣∣∣∣ ≤ c7 (
t

n

)1/(d+1)

.

Without changing c7, we can decrease c and thus γ, independently of u, such
that t ∈ [0, γn] implies |ψ(t/n)| ≤ 1/2. We use the estimates

0 ≤ e−x −
(
1− x

n

)n

≤ e−xx
2

n
(8.30)

for 0 ≤ x < n (see, e.g., Whittaker and Watson [812, p. 242]). For sufficiently
large n we get
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n1/(d+2)

[
1− t

n
− t

n
ψ

(
t

n

)]n

tβ−1 dt

≤
∫ γn

n1/(d+2)
e−t(1+ψ(t/n))tβ−1 dt ≤

∫ γn

n1/(d+2)
e−t/2tβ−1dt = O(n−p)

for any p > 0. For arbitrary ρ > 0 and q > 0 we obtain∫ ∞

n1/(d+2)
e−ttρ−1dt < n−q/(d+2)

∫ ∞

n1/(d+2)
e−ttρ−1+qdt < n−q/(d+2)Γ(ρ+ q)

and, therefore, ∫ n1/(d+2)

0

e−ttρ−1 dt = Γ(ρ) +O(n−k)

for arbitrary k > 0. In the subsequent integral, we have 0 ≤ t ≤ n1/(d+2) and
hence |tψ(t/n)| ≤ c7. We observe that |ex − 1| ≤ c8|x| for |x| ≤ c7, with a
constant c8 depending only on c7, and apply this with x = −tψ(t/n). Together
with (8.30), this yields∫ n1/(d+2)

0

[
1− t

n
− t

n
ψ

(
t

n

)]n

tβ−1 dt

=
∫ n1/(d+2)

0

e−t−tψ(t/n)
(
1 + t2O(n−1)

)
tβ−1 dt

=
∫ n1/(d+2)

0

e−t
(
1 + t1+1/(d+1)O

(
n−1/(d+1)

)) (
1 + t2O(n−1)

)
tβ−1 dt

=
∫ n1/(d+2)

0

e−ttβ−1 dt+O
(
n−1/(d+1)

)
= Γ(β) +O

(
n−1/(d+1)

)
.

Altogether we obtain

J =
2

d+ 1
(an)−2/(d+1)

[
Γ

(
2

d+ 1

)
+O

(
n−1/(d+1)

)]
.

This completes the proof. ��

Corollary 8.2.1. Under the assumptions of Theorem 8.2.7,

lim
n→∞

n2/(d+1)δ(K,EKn) = cdVd(K)2/(d+1)κ1/(d+1)
max ,

where κmax denotes the maximum of the Gauss–Kronecker curvature of bdK.

Proof. From Theorem 8.2.7 we have

lim
n→∞

(
n

Vd(K)

)2/(d+1)

[h(K,u)− h(EKn, u)] = cdκ(u)1/(d+1) (8.31)
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uniformly in u. Let u0 ∈ Sd−1 be a vector with κ(u0) = κmax. By (8.31), to
every ε > 0 there is n0 ∈ N with

cdκ
1/(d+1)
max − ε ≤

(
n

Vd(K)

)2/(d+1)

[h(K,u0)− h(EKn, u0)],

(
n

Vd(K)

)2/(d+1)

[h(K,u)− h(EKn, u)] ≤ cdκ1/(d+1)
max + ε

for u ∈ Sd−1 and n ≥ n0. Since δ(K,EKn) = maxu∈Sd−1 |h(K,u)−h(EKn, u)|,
we obtain

cdκ
1/(d+1)
max − ε ≤

(
n

Vd(K)

)2/(d+1)

δ(K,EKn) ≤ cdκ1/(d+1)
max + ε

for n ≥ n0. The assertion follows. ��

The only further result that we present in this section is a general formula
for the expectation Eϕ(φ, n), where φ is a probability distribution on Rd and
ϕ is a function of the form

ϕ(P ) =
∑

F∈Fd−1(P )

η(F ), P ∈ P ′,

with a measurable function η on (d − 1)-polytopes. Examples of geometric
interest are η = 1 and η(F ) = λd−1(F ), also η(F ) = Vd(conv(F ∪ {0})) if
0 ∈ P . Of the probability distribution φ we assume that it has a density g
with respect to Lebesgue measure.

Let X1, . . . , Xn, n ≥ d+1, be independent random points in Rd, each with
distribution φ, and let Pn be their convex hull. By the assumption on φ, every
facet of Pn is almost surely a (d − 1)-simplex. Points X1, . . . , Xd in general
position determine a facet of Pn if and only if the points Xd+1, . . . , Xn lie on
the same side of the hyperplane spanned by X1, . . . , Xd. For fixed X1, . . . , Xd,
this happens with probability

φ(H+(X1, . . . , Xd))n−d + (1− φ(H+(X1, . . . , Xd)))n−d,

where H+(X1, . . . , Xd) is one of the two closed halfspaces bounded by the
affine hull of X1, . . . , Xd. Since X1, . . . , Xn are independent and identically
distributed, we deduce that

Eϕ(φ, n) =
(
n

d

) ∫
(Rd)d

[φ(H+(x1, . . . , xd))n−d + (1− φ(H+(x1, . . . , xd)))n−d]

× η(conv{x1, . . . , xd})g(x1) · · · g(xd)λd(d(x1, . . . , xd)).

This can be simplified by introducing as an integration variable the hyperplane
spanned (almost everywhere) by x1, . . . , xd. For a hyperplane H, we denote
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by H+ one of the two closed halfspaces bounded by H. The affine Blaschke–
Petkantschin formula (7.14) now gives

Eϕ(φ, n) =
d!κd

2

(
n

d

)∫
A(d,d−1)

[φ(H+)n−d + (1− φ(H+))n−d]

×
∫

Hd

η(conv{x1, . . . , xd})λd−1(conv{x1, . . . , xd})

× g(x1) · · · g(xd)λd
H(d(x1, . . . , xd))µd−1(dH). (8.32)

We have mentioned this formula since it is a typical application of a Blaschke–
Petkantschin transformation, and since it and closely related formulas have
been the starting point for further asymptotic investigations.

Notes for Subsection 8.2.4

1. Areas, perimeters, and vertex numbers in the plane. The investigation of
the asymptotic behavior of convex hulls of independent random points was initiated
by Rényi and Sulanke [639, 640]. For a convex r-gon P in the plane they showed in
[639] that

Ef0(P, n) =
2r

3
(log n + C) +

2

3
log

∏r
i=1 Ai

A(P )r
+ o(1) (8.33)

as n → ∞, where C denotes Euler’s constant, A(P ) is the area of P , and Ai is the
area of the triangle spanned by the ith vertex of P and its two neighbors. For a
planar convex domain K of class C2 they obtained

Ef0(K, n) ∼ Γ

(
5

3

) (
2

3

)1/3 ∫
bd K

κ1/3 ds

(
n

A(K)

)1/3

,

where κ is the curvature and the integration over the boundary is with respect to arc
length. In [640] they proved similar asymptotic results for the area and the perimeter
in the case of a sufficiently smooth convex body in the plane. For area and perimeter
in the case of polygons, where Rényi and Sulanke had treated only squares, general
asymptotic relations were established by Buchta [124]. A considerable strengthening
of (8.33), in the form of an asymptotic expansion, was proved by Buchta and Reitzner
[136].

It took some time until the first central limit theorems for random variables
ϕ(µ, n) were established. For a convex r-gon P , Groeneboom [293] proved that

f0(P, n) − 2
3
r log n√

10
27

r log n

D→ N(0, 1)

as n → ∞, where
D→ denotes convergence in distribution and N(0, 1) is the standard

normal distribution. Massé [453] deduced from this a law of large numbers,

lim
n→∞

3f0(P, n)

2r log n
= 1 in probability.
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For the area A and an r-gon P , a result by Cabo and Groeneboom [147], modified
by Buchta [131] (see also Groeneboom [294]), says that

n[1 − A(P, n)/A(P )] − 2
3
r log n√

28
27

r log n

D→ N(0, 1).

For the circular disk B2, a central limit theorem for the vertex number f0(B
2, n) is

due to Groeneboom [293] (see Finch and Hueter [232] for additional information on
the variance), and one for the missed area to Hsing [351] (see Buchta [131] for infor-
mation on the appearing constants). A thorough study of the asymptotic properties
of the missed area A(K)−A(µ, n) and the perimeter difference L(K)−L(µ, n), for
rather general distributions µ in a planar convex body K (either sufficiently smooth
and with positive curvature, or a polygon), was made by Bräker and Hsing [120].

2. Random points on convex curves. Let K be a planar convex body of class
C2

+. Let µ be a probability distribution on bd K which has a positive continuous
density h with respect to the length measure. Let X1, X2 . . . be an independent
sequence of random points, each with distribution µ. Schneider [694] proved some
laws of large numbers, for example,

lim
n→∞

n2[A(K) − A(conv{X1, . . . , Xn})] =
1

2

∫
bd K

κh−2 ds a.s.,

and a similar relation for the perimeter. Here κ denotes the curvature of bd K and
ds indicates integration with respect to the arc length.

3. The floating body approach. Recall, also for the subsequent notes, that

Kn := conv {X1, . . . , Xn}

for independent random points X1, . . . , Xn in K, with uniform distribution unless
stated otherwise.

For general convex bodies K, a powerful method for investigating the asymptotic
behavior of the polytope Kn was developed by Bárány and Larman [71] (see Bárány
[61] for a survey, and Bárány [64] for a highly recommended introduction to the
method). For convenience, assume Vd(K) = 1. For x ∈ K, let v(x) be the minimum
of Vd(K ∩ H), taken over all closed halfspaces H with x ∈ H. For each sufficiently
small t > 0, the floating body of K with parameter t is the convex body defined
by K[t] := {x ∈ K : v(x) ≥ t}. What Bárány and Larman discovered is that the
asymptotic behavior of Kn, with respect to expectations, can very well be compared
to that of K[1/n]. Instances of this phenomenon are the following. Bárány and
Larman showed that

c1[Vd(K) − Vd(K[1/n])] ≤ E[Vd(K) − Vd(K, n)] ≤ c2[Vd(K) − Vd(K[1/n])]

for n ≥ n0, with constants c1, c2, where c2 depends on d. Bárány [56] proved

c3n[Vd(K) − Vd(K[1/n])] ≤ Efi(K, n) ≤ c4n[Vd(K) − Vd(K[1/n])]

for i = 0, . . . , d − 1, where c3, c4 depend on d. For convex bodies containing a ball
of radius r and contained in a ball of radius R, Bárány [57] showed that

c5[Vj(K) − Vj(K[1/n])] ≤ E[Vj(K) − Vj(K, n)] ≤ c6[Vj(K) − Vj(K[1/n])]
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for j = 1, . . . , d, where the constants c5, c6 depend on d, r, R. Bárány and Vitale
[75] considered the set-valued expectation (selection expectation) of Kn and showed
that, with suitable constants a, b > 0,

K[a/n] ⊂ EKn ⊂ K[b/n].

The order of Vd(K) − Vd(K[1/n]) for n → ∞ can be estimated, and it can be
determined for special classes of convex bodies. For example (Bárány and Larman
[71]),

Vd(P ) − Vd(P [1/n]) = Θ(n−1 logd−1 n)

for polytopes P and

Vd(K) − Vd(K[1/n]) = Θ(n−2/(d+1))

for K of class C2. (Here and below, f(K, n) = Θ(g(K, n)) means that c1g(K, n) <
f(K, n) < c2g(K, n) for all n, with constants c1, c2 > 0 independent of n, but
possibly depending on d and K.) For applications to Eϕ(K, n), see the subsequent
notes. Another application appears in Bárány [63].

4. Support function and mean width. Theorem 8.2.7 determines the asymp-
totic behavior of the support function h(Kn, u) at given u, for independent uniform
random points in a smooth convex body K. The proof is taken from Schneider and
Wieacker [718], where the result is formulated for the mean width, that is, twice
the mean value of the support function over all directions. In the final part of the
proof, we modified an argument of Ziezold [837], who treated an extension of the
result to more general distributions. Under stronger smoothness assumptions on K,
an asymptotic expansion for h(K, u) − Eh(Kn, u) was derived by Gruber [296].

Schreiber [723] showed

E[V1(B
d) − V1(B

d, n)]k = (cd)kn−2k/(d+1) + o(n−2k/(d+1))

for all k ∈ N and

lim
n→∞

n2/(d+1)[V1(B
d) − V1(B

d, n)] = cd in probability,

with an explicitly given constant cd (note that V1 is dκd/2κd−1 times the mean
width).

5. Hausdorff distance. In contrast to the Hausdorff distance between K and the
set-valued expectation of Kn, namely

δ(K, EKn) = max
u∈Sd−1

E[h(K, u) − h(Kn, u)],

to which the previous note refers, the expected Hausdorff distance of K and Kn,
given by

Eδ(K, Kn) = E max
u∈Sd−1

[h(K, u) − h(Kn, u)],

is more delicate. For a planar convex body K, either smooth or a polygon, and under
suitable assumptions on the distribution, the asymptotic behavior of δ(K, Kn) was
investigated by Bräker, Hsing and Bingham [121]. For K of class C2

+ in Rd, Bárány
[56] showed that
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Eδ(K, Kn) = Θ
(
(n−1 log n)2/(d+1)

)
.

The following results hold for independent uniform random points on the bound-
ary of a convex body K. We write

Cn(µ) := conv{X1, . . . , Xn}

if X1, . . . , Xn are independent, identically distributed random points with distribu-
tion µ. For a planar convex body K of class C2

+, Schneider [694] showed, under the
same assumptions on µ as in Note 2, that

lim
n→∞

(
n

log n

)2

δ(K, Cn(µ)) =
1

8
max

κ

h2
a.s.

Dümbgen and Walther [211] proved that δ(K, Kn) is of order O((n−1 log n)1/(d−1))
for general K in Rd, and of order O((n−1 log n)2/(d−1)) under a smoothness assump-
tion. For K of class C3

+ and for a distribution µ on bd K with a continuous positive
density h, Glasauer and Schneider [269] obtained a weak law of large numbers,
namely

lim
n→∞

(
n

log n

)2/(d−1)

δ(K, Cn(µ)) =
1

2

(
1

κd−1
max

√
κ

h

)2/(d−1)

in probability,

where κ is the Gauss–Kronecker curvature.

6. Diameter. Mayer and Molchanov [467] found the limit distribution for D(Bd, n),
where D denotes the diameter.

7. For independent uniform random points in a convex body K, Bárány and Dalla
[69] have shown that, with high probability, Kn can be obtained by taking the
convex hull of m = o(n) points chosen independently and uniformly from a small
neighborhood of the boundary of K. A similar investigation for the circular disk was
made before by Carnal and Hüsler [163].

8. Intrinsic volumes and face numbers. Early extensions of some of the as-
ymptotic results of Rényi and Sulanke to higher dimensions appear in Efron [215]
(formulas of type (8.32)), Raynaud [623], Wieacker [814] (unpublished). Raynaud
determined the asymptotic behavior of Efd−1(B

d, n), and Wieacker did the same
(by a different method) for Efd−1(K, n) if K is smooth, and for EVj(B

d, n) for j = d
(volume) and j = d − 1 (surface area). This was later generalized considerably, as
follows.

In this note we assume
Vd(K) = 1

for the considered convex bodies K. Without this assumption, some of the asymp-
totic formulas have to be modified by inserting suitable powers of Vd(K).

For a d-dimensional convex body K of class C3
+ and for the intrinsic volume Vj ,

j ∈ {1, . . . , d}, the relation

E[Vj(K) − Vj(K, n)]

= cd,j

∫
bd K

κ1/(d+1)Hd−j dS · n−2/(d+1) + O
(
n−3/(d+1) log2 n

)
(8.34)
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holds, where cd,j is a constant depending only on d and j, Hd−j denotes the (d−j)th
normalized elementary symmetric function of the principal curvatures of bd K, and
dS indicates integration with respect to the surface area. This result is due to Bárány
[57] (with the form of the integral given by Reitzner [631]). It was extended by
Böröczky, Hoffmann and Hug [115], to convex bodies admitting a freely rolling ball.
For j = d, (8.34) yields the limit relation

lim
n→∞

n2/(d+1)
E[Vd(K) − Vd(K, n)] = cd,d

∫
bd K

κ1/(d+1) dS, (8.35)

where the integral on the right side is the affine surface area of K, which is
denoted by Ω(K). This relation was extended by Schütt [724] to arbitrary convex
bodies of volume one, with the notion of Gauss–Kronecker curvature generalized
appropriately. For a convex body K of class Ck+3

+ and with volume one, Reitzner
[631] obtained an asymptotic expansion

E[Vj(K) − Vj(K, n)] = c
(2)
d,jn

−2/(d+1) + . . . + c
(k)
d,jn−k/(d+1) + O

(
n−(k+1)/(d+1)

)
as n → ∞, with additional information on the coefficients (for d = j = 2, see also
Reitzner [627]).

For a d-dimensional polytope P , the relation

E[V1(P ) − V1(P, n)] ∼ c(P )n−1/d as n → ∞

was proved by Schneider [692]. The constant c(P ) is expressed as an integral that
depends only on arbitrarily small neighborhoods of the vertices of P . For a simple
polytope P with r vertices, Affentranger and Wieacker [12] deduced from their more
general results that

E[Vd(P ) − Vd(P, n)] = Vd(P )
rd

(d + 1)d−1

logd−1 n

n
+ O

(
n−1 logd−2 n

)
and derived an asymptotic relation for the vertex number. These results were ex-
tended to arbitrary d-polytopes by Bárány and Buchta [68] (announced in [67]).
They showed that

Ef0(P, n) =
T (P )

(d + 1)d−1(d − 1)!
logd−1 n + O

(
logd−2 n log log n

)
. (8.36)

Here T (P ) denotes the number of towers of P , that is, of chains F0 ⊂ F1 ⊂ . . . ⊂
Fd−1, where Fi is an i-dimensional face of P . Bárány and Buchta also mentioned
without proof that their method would allow one to extend (8.36) to Efi(P, n) for
i = 0, . . . , d − 1, with the denominator replaced by a constant depending only on d
and i. For the intrinsic volumes V2, . . . , Vd−1, only the estimate

E[Vj(P ) − Vj(P, n)] = Θ
(
n−1/(d−j+1)

)
,

due to Bárány [56], seems to be known.
Reitzner [632] developed a new method for computing face numbers and deduced

the following results. For a polytope P , he proved the asymptotic relation

Efi(P, n) = c̄d,iT (P ) logd−1 n + O
(
logd−2 n log n

)
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with c̄d,i > 0. For K of class C2
+, he obtained

Efi(K, n) = cd,iΩ(K)n(d−1)/(d+1) + o
(
n(d−1)/(d+1)

)
,

where Ω(K) is the affine surface area and the cd,i are positive constants. Both results
replace, by precise asymptotic relations, corresponding estimates of the orders that
had been obtained earlier by Bárány [57]. Reitzner also obtained a law of large
numbers,

lim
n→∞

fi(K, n)n−(d−1)/(d+1) = cd,iΩ(K) in probability.

For convex bodies K more general than those of class C2, namely admitting a
ball of positive radius rolling freely inside K, Böröczky, Fodor, Reitzner and Vı́gh
[113] have extended the asymptotic relation for the expected mean width of Kn from
Schneider and Wieacker [718] (see Note 4) and have proved a corresponding strong
law of large numbers,

lim
n→∞

[V1(K) − V1(K, n)]n2/(d+1) = cd

∫
bd K

κ(d+2)/(d+1) dS a.s.,

with an explicitly given positive constant cd.

9. Central limit theorems and deviation estimates. Calka and Schreiber [154]
proved a large deviation estimate for f0(B

d, n).
Essential progress towards central limit theorems for ϕ(K, n) in higher dimen-

sions began with two papers of Reitzner. In [630], he used the Efron–Stein jackknife
inequality for obtaining a variance estimate,

Var Vd(K, n) ≤ c1(K)n(d+3)/(d+1),

for convex bodies K of class C2
+, and he deduced a strong law of large numbers.

(For K = Bd, the upper estimate for the variance was obtained before by Küfer
[429].) In Reitzner [633], under the same assumptions on K, a lower bound for the
variance of the same order was proved. Further, instead of Kn, Reitzner considered
a stationary Poisson point process Π of intensity n/Vd(K) in Rd, and for the volume
of the convex hull of the points of Π falling in K, denoted by KΠ

n , he showed that∣∣∣∣∣P
(

Vd(KΠ
n ) − EVd(KΠ

n )√
Var Vd(KΠ

n )
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ c2(K)n−(d+3)/(d+1) log2d+4 n

for all x. Here Φ is the distribution function of the standard normal distribution. For
the proof, he used a central limit theorem of Rinott for weakly dependent random
variables, involving their dependency graph. Reitzner’s result can be transferred to
a central limit theorem for Vd(K, n),∣∣∣∣∣P

(
Vd(K, n) − EVd(K, n)√

Var Vd(K, n)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ ε(n)

for all x, with ε(n) → 0 for n → ∞. In full generality, this was proved by Vu [774],
who used Reitzner’s result and his own strong tail estimates for geometric random
variables such as Vd(K) − Vd(K, n), which he had obtained in [773]. In that paper,
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Vu proved a deviation estimate of the following form. Let a convex body K and a
(sufficiently small) number ε > 0 be given. There exist numbers A, B > 0, depending
on ε and on the behavior of K near its boundary, and there are positive constants
α, c, ε0 such that, for αn−1 log n < ε ≤ ε0 and 0 < λ ≤ B/4A2, one has

P(|Vd(K) − EVd(K, n)| ≥
√

Bλ) ≤ 2e−λ/4 + e−cεn.

In the geometric part of the proof, floating bodies play an essential role.
For polytopes P , Bárány and Reitzner [73] showed that Vd(P )−Vd(P, n) satisfies

a central limit theorem.
Results corresponding to those for the volume functionals were also obtained for

other functionals, so for the vertex number in Reitzner [630], and for the number fi

of i-faces in Reitzner [633], Bárány and Reitzner [73], Vu [774].

10. General convex bodies. If the asymptotic behavior of Eϕ(K, n), as n → ∞,
is of different orders for polytopes and for smooth convex bodies, then it follows
from a general principle (see Gruber [295]) that for most convex bodies (in the sense
of Baire category) the asymptotic behavior oscillates between these orders and is,
thus, highly irregular. (Relation (8.35), which holds for general convex bodies, is
consistent with this, since the affine surface area vanishes for most convex bodies.)
More precise formulations, in several instances, are found in Schneider [692, p. 305],
Bárány and Larman [71, Th. 5], Bárány [56, Cor. 3], [64, Th. 4.7]. Therefore, for
general convex bodies, the aim can only be to obtain lower and upper estimates
which are asymptotically of optimal order. Bárány [56] showed that

c1(d)(log n)d−1 < Efi(K, n) < c2n
(d−1)/(d+1) (8.37)

for i = 0, . . . , d − 1, with positive constants c1(d), c2(d), where the orders are best
possible. For the intrinsic volumes, it is only known that, with positive constants
ai(K),

a1(K)n−2/(d+1) < E[V1(K) − V1(K, n)] < a2(K)n−1/d

(Schneider [692]) and

a3(K)n−1 logd−1 n < E[Vd(K) − Vd(K, n)] < a4(K)n−2/(d+1),

as follows from Bárány and Larman [71] or from the case i = 0 of (8.37) together
with (8.12). Note that polytopes and smooth bodies switch their roles here, which
suggests that the intermediate cases may be difficult.

11. Random points on the boundary. Let K be a convex body with interior
points and let µh be a distribution on its boundary which has a positive, continuous
density h with respect to the normalized surface area measure (in particular, µ1

denotes µh for h ≡ 1). Some results on ϕ(µ1, n) were already mentioned in Notes 2
and 5. For smooth K, Buchta, Müller and Tichy [134] proved an asymptotic relation
for E[V1(K)− V1(µ1, n)], and they sketched similar results for Vd−1 and fd−1 in the
case of Bd. Complete proofs for Vd−1 and Vd were given by Müller [569], who in
[568] also studied E[V1(K) − V1(µh, n)] for smooth K.

For K of class C2
+ and for j ∈ {1, . . . , d}, Reitzner [628] showed that

E[Vj(K) − Vj(µh, n)]

= bd,j

∫
bd K

κ1/(d−1)Hd−jh
−2/(d−1) dS · n−2/(d−1) + o

(
n−2/(d−1)

)
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as n → ∞. Under stronger differentiability assumptions on K and h, he obtained
an asymptotic expansion with more terms.

An asymptotic formula in the case of volume, for convex bodies that need not
be of class C2, was established by Schütt and Werner [727] (announced in [726]).
With a long and difficult proof they showed that

lim
n→∞

n2/(d−1)[Vd(K) − EVd(µh, n)] = b(d)

∫
bd K

κ1/(d−1)h−2/(d−1) dS,

if the lower and upper curvatures of K are between two fixed positive bounds.
For K of class C2

+ and the random variable Vd(µh, n), Richardson, Vu and
Wu [643] established the precise order of the variance and a concentration re-
sult, from which they deduced that the kth moment of Vd(µh, n), k ≥ 2, is of
order O((n−(d+3)/(d−1))k/2). Further, they obtained a central limit theorem for
Vd(conv Πn), where Πn is a Poisson process with intensity measure equal to n times
the normalized boundary measure of K.

12. Comparison of random and best approximation. There are several in-
stances where it can be observed, and made precise, that random approximation
is of the same order of magnitude as best approximation. Different aspects of this
phenomenon are described in Bárány [58], Gruber [297], Reitzner [629], Schütt [725].

13. Giannopoulos and Tsolomitis [259] studied the volume radius, ϕ(C) := Vd(C)1/d,
and gave lower and upper estimates for Eϕ(K, n) if n satisfies certain lower and upper
estimates depending on the dimension.

14. Normally distributed random points. Let ν denote the standard normal
distribution in Rd, and let Gn be the convex hull of n independent random points
with distribution ν. Geffroy [254] determined the radius of a ball Bn with center
0 such that a.s. limn→∞ δ(Gn, Bn) = 0. Efron [215] gave integral representations
of Eϕ(ν, n) for some functions ϕ in two and three dimensions. Rényi and Sulanke
[639] found E fd−1(ν, n) for d = 2 and Raynaud [623] for arbitrary d. Compare also
Note 4 of Section 8.3. Groeneboom [293] mentioned that his methods would yield
a central limit theorem for f0(ν, n) in the plane. Concerning central limit theorems
by Hueter [352, 353], see the remark in Bárány and Vu [76].

Hug, Munsonius and Reitzner [364] determined, among other results, the asymp-
totic behavior of Eϕ(ν, n), where ϕ(P ) is either the number or the total k-dimen-
sional volume of the k-faces of the polytope P . Analogous results for the intrinsic
volumes had been obtained before by Affentranger [10]. Hug and Reitzner [365]
proved laws of large numbers for fi(ν, n) and Vj(ν, n), after establishing estimates
for the variances by using the Efron–Stein jackknife inequality.

Bárány and Vu [76] succeeded in proving central limit theorems for Vd(ν, n) and
for fi(ν, n).

15. Points with rotationally symmetric distributions. Some of the random
variables ϕ(µ, n) have been studied for more general distributions µ with spherical
symmetry. See Carnal [162], Kaltenbach [388], Affentranger [10], Aldous, Fristedt,
Griffin and Pruitt [14], Devroye [203], Dwyer [213], Chu [176], Hueter [354], Massé
[452, 453], and see the book by Mathai [456].

16. Random 0-1-polytopes and generalizations. A random 0-1-polytope with
n vertices is the convex hull of n independent randomly chosen vertices (with equal
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probabilities) of the d-dimensional unit cube. These polytopes pose interesting prob-
lems, though somewhat outside the scope of this book. We mention contributions by
Füredi [240], Dyer, Füredi and McDiarmid [214], Bárány and Pór [72], Giannopou-
los and Hartzoulaki [258], Gatzouras, Giannopoulos and Markoulakis [252, 253],
Mendelson, Pajor and Rudelson [512], Gatzouras and Giannopoulos [250, 251]. Some
of these papers consider the symmetric (or absolutely) convex hull, or they consider
more general random points with independent coordinates; see also Litvak, Pajor,
Rudelson and Tomczak–Jaegermann [441].

17. Intersections of random halfspaces. As an alternative to taking the convex
hull of random points, a random polytope can be generated by taking the intersection
of random closed halfspaces. One instance where such random polytopes appear is
the average case analysis of linear programming algorithms. Closer to some of the
topics described in the previous notes, and somehow ‘dual’ (though not in a strict
sense), is the question of how well a given convex body is approximated by the
intersection of n independent random closed halfspaces containing the body, as n
tends to infinity. For the case of the plane, we refer to Carlsson and Grenander [161],
Rényi and Sulanke [641], Ziezold [836], Schneider [694]; for higher dimensions, see
Kelly and Tolle [394], Buchta [128], Kaltenbach [388], Reitzner [628], Böröczky and
Reitzner [116], Böröczky and Schneider [117].

A different version of approximation by circumscribed random convex bodies is
studied by Small [730], who considers the intersection of a finite (and increasing)
number of cylinders circumscribed about a convex body with independent random
directions.

18. Random polytopes in asymptotic convexity. In high-dimensional convex
geometry, random constructions often yield examples or counterexamples. However,
for the notorious problem of whether the isotropic constant of convex bodies is
bounded by a constant independent of dimension, two different approaches using
random polytopes have not produced counterexamples. For the convex hull of n
independent standard Gaussian random points in Rd, Klartag and Kozma [417]
proved that with high probability the isotropic constant is bounded by a universal
constant. Dafnis, Giannopoulos and Guédon [192] obtained a similar result for the
convex hull and the symmetric convex hull of n independent uniform random points
in an isotropic 1-unconditional convex body.

19. The highly recommended survey article by Bárány [66] presents many of the
more recent developments about random points in convex bodies, in particular those
touched upon in the previous Notes 1, 3, 8, 9, 10. It also treats lattice points in
convex bodies, emphasizing the analogies in the asymptotic behavior of convex hulls
of independent random points and of lattice points.

8.3 Random Projections of Polytopes

In this section, we introduce a totally different way of generating a d-
dimensional random polytope. Every d-dimensional polytope with N + 1 ≥
d + 1 vertices is affinely equivalent to an orthogonal projection of an N -
dimensional regular simplex (e.g., McMullen and Shephard [475, p. 121]). If



8.3 Random Projections of Polytopes 329

one is only interested in affine properties of polytopes, this suggests the fol-
lowing natural way of defining random polytopes. Consider Rd as a subspace
of RN , N > d, and let TN be a regular simplex in RN . Let ϑ be a random
rotation of RN , that is, a random element of SON with distribution equal to
the invariant probability measure on SON . Then the orthogonal projection of
ϑTN to Rd defines a random polytope in Rd. Similarly, every centrally sym-
metric d-polytope with 2N ≥ 2d vertices is a projection of an N -dimensional
crosspolytope (Grünbaum [299, p. 72]). This suggests replacing the regular
simplex TN by a regular crosspolytope QN , to obtain a random centrally
symmetric polytope in Rd. Up to (inessential) rigid motions, the same ran-
dom polytopes are obtained if we orthogonally project the fixed simplex TN

(respectively, the crosspolytope QN ) to a uniform random d-dimensional sub-
space of RN ; we prefer here the latter interpretation. This approach to random
polytopes is also known as the ‘Grassmann approach’, since it involves the
Grassmannian G(N, d) and its invariant probability measure, which we de-
note here by νN,d. We shall derive basic expectation formulas for this model
and then describe an interesting application. We restrict ourselves, however,
to the geometric background, since the analytic details are outside the scope
of this book.

First we consider projections of an arbitrary convex polytope. Let N >
d, and let P be an N -dimensional convex polytope in RN . Let L be a d-
dimensional linear subspace of RN . Recall that P |L denotes the image of P
under orthogonal projection to L (we use this notation also in RN ). We are
interested in fk(P |L), the number of k-dimensional faces of the d-polytope
P |L, for k = 0, . . . , d − 1. We suppose that L is in general position with
respect to P , which means that dimF |L = k for each k-face F of P and each
k ∈ {1, . . . , d}. It follows from Lemma 13.2.1 that νN,d-almost all L ∈ G(N, d)
are in general position with respect to P .

For a closed convex cone C and a linear subspace E in RN we write

ξ(C,E) :=

{
1, if E ∩ C = {0},
0, if E ∩ C �= {0}.

Let k ∈ {0, . . . , d−1} and let F be a k-face of P . Choose a point z ∈ relintF
and let C(P, F ) be the cone spanned by P − z; this cone does not depend on
the choice of z. We have dimF |L = k, and F |L is a face of P |L if and only if
the flat L⊥ +z lies in a supporting hyperplane of P . Since (L⊥ +z)∩F = {z}
by general position, this is equivalent to ξ(C(P, F ), L⊥) = 1. It follows that

fk(P |L) =
∑

F∈Fk(P )

ξ(C(P, F ), L⊥).

Now let X be a uniform random d-subspace of RN , that is, a random
element of G(N, d) with distribution νN,d. Then the previous considerations
show that
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E fk(P |X) =
∑

F∈Fk(P )

γN−d,N (P, F )

with
γN−d,N (P, F ) :=

∫
G(N,N−d)

ξ(C(P, F ), E) νN,N−d(dE).

We apply some spherical integral geometry from Section 6.5. Introducing
the spherical polytope

S(P, F ) := C(P, F ) ∩ SN−1

and using (6.62), (6.63), (6.50), we obtain

γN−d,N (P, F ) = 1−
∫

G(N,N−d)

χ(S(P, F ) ∩ E) νN,N−d(dE)

= 1− 2Ud(S(P, F ))

= 1− 2
∑
s≥0

vd+2s(S(P, F ))

= 1− 2
∑
s≥0

∑
G∈Fd+1+2s(C(P,F ))

β(0, G)γ(G,C(P, F ))

= 1− 2
∑
s≥0

∑
G∈Fd+1+2s(P )

β(F,G)γ(G,P ).

Alternatively, we may use (6.55), (6.53) to get

1− 2
∑
s≥0

vd+2s(S(P, F )) = 2
∑
s≥0

vd−2−2s(S(P, F )),

which gives

γN−d,N (P, F ) = 2
∑
s≥0

∑
G∈Fd−1−2s(P )

β(F,G)γ(G,P ).

Thus, we have obtained the following result.

Theorem 8.3.1. Let N > d, let P be a convex polytope in RN , and let X be a
uniform random d-dimensional subspace of RN . Then, for k ∈ {0, . . . , d− 1},

Efk(P |X) = fk(P )− 2
∑
s≥0

∑
F∈Fk(P )

∑
G∈Fd+1+2s(P )

β(F,G)γ(G,P )

= 2
∑
s≥0

∑
F∈Fk(P )

∑
G∈Fd−1−2s(P )

β(F,G)γ(G,P ). (8.38)
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The internal and external angles appearing in the preceding formulas are
defined as spherical volumes of certain spherical polytopes, hence they can
in general not be computed explicitly in concrete cases. An exception is the
(regular) cube CN , for which all internal and external angles are powers of
1/2, and it is not difficult to show that

Efk(CN |X) = 2
(
N

k

)∑
s≥0

(
N − k

d− 1− 2s− k

)
. (8.39)

For the regular simplex TN we obtain, for example,

Efk(TN |X)

= 2
∑
s≥0

(
N + 1
d− 2s

)(
d− 2s
k + 1

)
β(T k, T d−2s−1)γ(T d−2s−1, TN ). (8.40)

Here β(T p, T q) is the internal angle and γ(T p, T q) is the external angle of a
regular q-simplex at one of its p-faces (p < q).

Random projections of regular polytopes have found applications of a kind
that we briefly indicate. Various practical tasks lead to the following recon-
struction problem. Let N, d, k ∈ N be given numbers with d, k < N . Let S be
an (N − d)-dimensional linear subspace of RN . Suppose we are given a vector
y′ ∈ RN , and we have to find a vector y ∈ S that differs from y′ in at most
k coordinates, or a good approximation of such a vector. A surprisingly good
strategy consists in constructing a point y in S that is nearest to y′ in the !N1 -
norm ‖ · ‖1. This approach is good since for many subspaces S (in a sense to
be made precise) it yields a correct solution. To investigate this phenomenon
more closely, we formulate the following property.

Definition 8.3.1. Let k ∈ {1, . . . , N}. The subspace S has property Uk if
the following holds. Whenever y ∈ S and y′ ∈ RN are such that they differ in
at most k coordinates, then the optimization problem

minimize ‖x− y′‖1 subject to the condition x ∈ S

has a unique solution and this is equal to y.

The unit ball of the !N1 -norm in RN is the regular crosspolytope QN :=
conv {±e1, . . . ,±eN}, where (e1, . . . , eN ) is the standard orthonormal basis
of RN . The polytope QN is centrally N -neighborly. For k ∈ N, a centrally
symmetric polytope P is called centrally k-neighborly if every subset of k
vertices of P , not containing a pair of opposite vertices, is the set of vertices
of a (k− 1)-face of P (necessarily a (k− 1)-dimensional simplex). It turns out
that property Uk has to do with neighborliness properties of projections of
QN .
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Lemma 8.3.1. Let k ∈ {1, . . . , N}. The subspace S has property Uk if and
only if the polytope QN |S⊥ satisfies fk−1(QN |S⊥) = fk−1(QN ), equivalently,
it has 2N vertices and is centrally k-neighborly.

Proof. Let F be a (k − 1)-face of QN , and choose z ∈ F . Then z lies in the
intersection of QN with some k-dimensional coordinate subspace. Therefore,
any point y ∈ S and the point y′ := y + z differ in at most k coordinates.
Suppose that the linear subspace S has property Uk. Then S touches the
crosspolytope QN + y′ at the unique point y. Equivalently, S + z touches QN

only at z. Thus, to any point z in a (k−1)-face of QN , there exists a translate
of the subspace S that touches QN only at z. It follows that the projection
F |S⊥ is a (k−1)-face of the centrally symmetric polytope QN |S⊥. Since F was
an arbitrary (k− 1)-face of QN , we deduce that fk−1(QN |S⊥) = fk−1(QN ) =
2k

(
N
k

)
. The centrally symmetric polytope QN |S⊥ has 2v ≤ 2N vertices and,

therefore, at most 2k
(

v
k

)
faces of dimension k − 1. Hence, QN |S⊥ has 2N

vertices, and any k of these vertices without an antipodal pair determine a
(k − 1)-face of QN |S⊥. The arguments can be reversed (replacing QN by
‖y′ − y‖1QN ). ��

This equivalence will be useful if ‘many’ subspaces S have property Uk.
In particular, we hope that for a random subspace with uniform distribution,
the required condition is satisfied with high probability.

Therefore, we consider a d-dimensional uniform random subspaceX of RN .
We are interested in those realizations X for which the polytope QN |X has
the same number of (k − 1)-faces as QN , and hence is centrally k-neighborly.
Since

E
(
fk−1(QN )− fk−1(QN |X)

)
=

∫
1{fk−1(QN ) > fk−1(QN |X)}

(
fk−1(QN )− fk−1(QN |X)

)
dP

≥ P
(
fk−1(QN ) > fk−1(QN |X)

)
,

we have

P
(
fk−1(QN |X) < fk−1(QN )

)
≤ fk−1(QN )− Efk−1(QN |X). (8.41)

This shows that for obtaining an upper estimate for the probability that the
random subspace X does not have property Uk, we need information on the
expected number Efk−1(QN |X) of (k−1)-faces of the random polytopeQN |X.
From (8.41) and (8.38), and using elementary information on the faces and
face numbers of the regular crosspolytope, we get

P
(
fk−1(QN |X) < fk−1(QN )

)
≤ 2

∑
s≥0

∑
F∈Fk−1(QN )

∑
G∈Fd+1+2s(QN )

β(F,G)γ(G,QN )
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= 2
∑
s≥0

2�

(
N

k

)(
N − k
!− k + 1

)
β(T k−1, T �)γ(T �, QN ) (8.42)

with with ! := d + 1 + 2s. The expression (8.42) is the starting point for
asymptotic investigations; see Note 7 below.

Notes for Section 8.3

1. The Grassmann approach was suggested by J.E. Goodman and R. Pollack in
the following general formulation. Every configuration of N + 1 numbered points in
general position in Rd is affinely equivalent to the orthogonal projection of the set of
numbered vertices of a fixed regular simplex T N in RN into a unique d-dimensional
linear subspace of RN . In this way, one obtains a one-to-one correspondence be-
tween the orientation-preserving equivalence classes of such configurations and an
open dense subset of the Grassmannian G(N, d). The invariant probability mea-
sure on G(N, d) can then be transferred to a natural probability distribution on the
mentioned set of equivalence classes of (N + 1)-point configurations.

Independently, versions of the Grassmann approach were proposed by Vershik,
see [764], [763]. Vershik and Sporyshev [765, 766] used it for an asymptotic upper
estimate for the average number of steps required by a version of the simplex algo-
rithm, with a fixed number of constraints and the number of variables tending to
infinity.

2. For the external angles of regular simplices appearing in (8.40), an integral repre-
sentation for volumes of regular spherical simplices due to Ruben [650] can be used.
It yields

γ(T d−1, T N ) =

√
d

π

∫ ∞

−∞
e−dt2

(
1√
π

∫ t

−∞
e−s2

ds

)N−d+1

dt. (8.43)

Short proofs are found in Hadwiger [311, sect. 3.3] and Böhm and Hertel [110, p.
283]. Using this formula, Affentranger and Schneider [11] deduced from (8.40) the
asymptotic relation

Efk(T N |X) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log N)(d−1)/2, (8.44)

as N → ∞. It describes the asymptotic behavior of Efk(T N |X) for large N , though
with a factor involving the ‘unknown’ constant β(T k, T d−1). For this, Böröczky and
Henk [114] obtained the asymptotic formula

β(T k, T d−1) =
(k + 1)

d−k−2
2 e

d−3k−3
2

√
2

d−k√
π

d−k−1
d

d−k−2
2

(
1 + O

(
k2 + 1

d

))
.

The relation

Efk(T N |X⊥) ∼
(

N + 1

k + 1

)
= fk(T N )

as N → ∞, is also proved in Affentranger and Schneider [11].
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3. An analog of (8.43) for the external angle of the regular crosspolytope QN at a
(d − 1)-face F d−1 reads

γ(F d−1, QN ) =

√
d

π

∫ ∞

0

e−dt2
(

2√
π

∫ t

0

e−s2
ds

)N−d

dt;

it is due to Betke and Henk [99]. Böröczky and Henk [114] used it to prove a
counterpart to (8.44), namely

Efk(QN |X) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log N)(d−1)/2, (8.45)

as N → ∞. Remarkably, the right sides of (8.44) and (8.45) are identical. Equation
(8.39) also appears in [114].

4. It was observed in Affentranger and Schneider [11] that the expected facet num-
ber Efd−1(T

N |X), where X is an isotropic random d-subspace, is the same as the
expected number of facets of the convex hull of N + 1 independent random points
in Rd with standard normal distribution; this expectation was determined earlier by
Raynaud [623]). This fact found a general explanation in the work of Baryshnikov
and Vitale [82], who proved the following result. Let T N be a regular simplex in RN

with center of gravity at the origin. Let ϑ be a uniform random rotation of RN , and
project the vertices of ϑT N into a fixed subspace. Up to an affine transformation, the
resulting point set coincides in distribution with a standard Gaussian sample of size
N +1 in that subspace. As a corollary, an affine-invariant functional of a finite point
set follows the same distribution for the Goodman–Pollack model and a standard
Gaussian sample. Baryshnikov [81] explained the unique role that is played in this
correspondence by the vertex sets of regular simplices. Baryshnikov and Vitale used
their correspondence to transcribe to standard Gaussian samples the asymptotic
results from [11]. Only later were these, and much stronger, results for convex hulls
of standard Gaussian samples obtained in a direct way, see Hug, Munsonius and
Reitzner [364], Hug and Reitzner [365].

5. Vershik and Sporyshev [767] studied Efk(T N |X) (where dim X = d) under a
linearly coordinated growth of the parameters. For 0 < γ < α < 1, d = [αN ],
k = [γN ], they determined the asymptotic behavior of Efk(T N |X) for N → ∞.
Recall that a polytope is j-neighborly if any j of its vertices are the vertices of a
(j − 1)-face of the polytope. Vershik and Sporyshev also studied neighborliness, and
a weaker form of it, where the overwhelming majority of j-tuples of vertices has to
determine (j − 1)-faces. They proved the following result. Let k ∈ N0 be fixed, let
d = c log N + o(log N). If c > 2(k + 1), then

Efk(T N |X) =

(
N + 1

k + 1

)
(1 + o(1))

for N → ∞. If c < 2(k + 1), this does not hold.

6. By duality, the results of Böröczky and Henk (see Note 3) can be carried over to
random central sections of the cube CN . Additional results for the numbers of k-
faces of such sections, among them lower bounds with consequences for asymptotic
results, were obtained by Lonke [442].
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7. Formula (8.42) estimates the probability P
(
fk−1(Q

N |X) < fk−1(Q
N )

)
. By ana-

lyzing carefully the asymptotic behavior, as N → ∞, of the combinatorial factor,
the internal angle and the external angle in (8.42), Donoho [207] obtained upper es-
timates, in the interesting cases where d and k are proportional to N . He established
the existence of a function P : (0, 1) → (0, 1], defined implicitly but computable nu-
merically with sufficient accuracy, such that the following holds. For given δ ∈ (0, 1),
let 0 < ρ < P(δ) and put d := �δN� and k := �ρd�. Then, for sufficiently small ε > 0,

P

(
fk−1(Q

N |X) < fk−1(Q
N )

)
≤ Ne−Nε

for N > N0(δ, ρ, ε).
This estimate is only one example of the author’s thorough investigation of

applications of �N
1 approximation and its relation to neighborliness properties of

randomly projected polytopes. As an approach to sparse solutions of underdeter-
mined linear equations this is explained in Donoho [206]. Donoho and Tanner [208]
studied random projections of simplices in a similar way, with applications to sparse
nonnegative solutions of underdetermined linear equations. Neighborliness proper-
ties of random projections of simplices were investigated by Donoho and Tanner in
[209], and in [210] they discussed various applications of (weak) neighborliness of
random projections of high-dimensional polytopes.

8.4 Randomly Moving Bodies and Flats

Some of the early interpretations of the kinematic and Crofton formulas of in-
tegral geometry were in terms of geometric probabilities for randomly moving
convex bodies and flats. In contrast to the applications to particle processes
and random sets, which will be explained in Chapter 9, in these elementary
geometric probability problems one is dealing with a finite number of ran-
domly moving geometric objects; the randomness concerns the positions of
these objects, but not their shapes. In this section, we give a few basic exam-
ples of typical questions and results, where formulas from integral geometry
provide the answers. We consider probabilities, distributions and expectations
that are related to the interaction between randomly moving geometric ob-
jects and a fixed one.

8.4.1 Hitting Probabilities

By a randomly moving geometric object (for example, a convex body, a
q-flat, a cylinder) we understand a random variable with values in a space
of congruent geometric objects; here ‘congruent’ means equivalent by a rigid
motion.

From a geometric point of view, it appears natural to impose strong invari-
ance assumptions on the probability distribution of a randomly moving set,
and possibly to derive this distribution from an invariant measure. In the cases
where such an invariant measure is infinite, as, for example, the Haar measure
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µ on the group Gd of rigid motions, only the introduction of additional condi-
tions will allow the definition of probability distributions. A typical example
is given by a randomly moving convex body, under the condition that it hits
a fixed convex body, that is, has nonempty intersection with it.

Definition 8.4.1. Let M,K0 ∈ K′ be convex bodies, let intK0 �= ∅. A ran-
dom congruent copy of M meeting K0 is a random convex body XM,K0

with distribution Q given by

Q(A) :=
µ({g ∈ Gd : gM ∩K0 �= ∅, gM ∈ A})

µ({g ∈ Gd : gM ∩K0 �= ∅})

for A ∈ B(K).

In other words, if we define the mapping fM : Gd → K by fM (g) := gM ,
then

Q =
fM (µ) FK0

fM (µ)(FK0)
.

Let K be a convex body contained in K0. The probability

P(XM,K0 ∩K �= ∅)

can, with a slight abuse of language, be considered as the conditional proba-
bility that a random congruent copy of M hits K, under the condition that it
hits K0. The value of this probability immediately follows from the principal
kinematic formula (Theorem 5.1.3).

Theorem 8.4.1. If M,K,K0 ∈ K′ are convex bodies with K ⊂ K0 and
intK0 �= ∅ and if XM,K0 is a random congruent copy of M meeting K0,
then

P(XM,K0 ∩K �= ∅) =

∑d
k=0 c

k,d−k
d,0 Vk(K)Vd−k(M)∑d

k=0 c
k,d−k
d,0 Vk(K0)Vd−k(M)

.

It is evident why we have to assume convexity of the sets K,M,K0. For
sets from the convex ring, for example, the same question can be asked, but
the values µ({g ∈ Gd : K ∩ gM �= ∅}) cannot be obtained as special cases of
the principal kinematic formula. In the case where M and K0 are convex and
K ∈ R, one can still not evaluate the intersection probability P(XM,K0 ∩K �=
∅), but the kinematic formula yields the expectations EVj(XM,K0 ∩K), which
are of interest, for example, in stereology.

In a similar way, more complicated random events can be treated. For
example, let K0,M1, . . . ,Mn ∈ K′ be given convex bodies, where intK0 �= ∅.
For i ∈ {1, . . . , n}, let XMi,K0 be a random congruent copy of Mi hitting K0,
and suppose that XM1,K0 , . . . , XMn,K0 are independent. We ask for the prob-
ability that the random convex bodies XM1,K0 , . . . , XMn,K0 have a common
intersection point in K0. Immediately from the definitions we get
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P(K0 ∩XM1,K0 ∩ . . . ∩XMn,K0 �= ∅)

=

∫
Gd
. . .

∫
Gd
V0(K0 ∩ g1M1 ∩ . . . ∩ gnMn)µ(dg1) · · ·µ(dgn)∏n

i=1

∫
Gd
V0(K0 ∩ giMi)µ(dgi)

.

While the denominator is obtained directly from the kinematic formula, for
the numerator we have to use the iteration given by Theorem 5.1.5. We do
not write down the result explicitly.

We turn to an example where the expectation of a random volume defined
by moving convex bodies can be calculated by integral geometric means. Let
M,K0 ∈ K′ be given convex bodies with interior points. We consider n in-
dependent random congruent copies of M meeting K0, and we ask for the
expected volume of the set of points in K0 that are covered exactly r times.
To be precise, let X1, . . . , Xn be independent, identically distributed random
convex bodies, each with the same distribution as XM,K0 . For convex bodies
M1, . . . ,Mn and for r = 0, . . . , n, we define

Ar(M1, . . . ,Mn) := {x ∈ K0 : x ∈Mi for precisely r indices i}.

We want to find EVd(Ar(X1, . . . , Xn)).
Let Y be a uniform random point in K0, such that Y,X1, . . . , Xn are

independent. We define random variables N,Nj by

N := card{i : Y ∈ Xi}, Nj := 1Xj
(Y ),

for j = 1, . . . , n. Then

P(N = r) = E1{Y ∈ Ar(X1, . . . , Xn)} = EVd(Ar(X1, . . . , Xn))/Vd(K0).

Since N1, . . . , Nn are independent and identically distributed, the random
variable N = N1 + . . .+Nn has a binomial distribution, namely

P(N = r) =
(
n

r

)
pr(1− p)n−r

with p := P(Nj = 1). Now,

P(Nj = 1) =

∫
Gd

∫
K0

1gM (x)λ(dx)µ(dg)

Vd(K0)
∫

Gd
V0(K0 ∩ gM)µ(dg)

=

∫
Gd
Vd(K0 ∩ gM)µ(dg)

Vd(K0)
∫

Gd
V0(K0 ∩ gM)µ(dg)

.

Consequently,

EVd(Ar(X1, . . . , Xn)) = Vd(K0)
(
n

r

)
pr(1− p)n−r
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with

p =
Vd(M)∑d

k=0 c
k,d−k
d,0 Vk(K0)Vd−k(M)

.

Notes for Subsection 8.4.1

1. For convex bodies K ⊂ K0, the probability P(XM,K0 ∩ K �= ∅) was interpreted
above, somewhat loosely, as the ‘conditional probability that a random congruent
copy of M hits K, under the condition that it hits K0’. We remark that Rényi [637]
has developed an axiomatic theory of conditional probabilities which, as in this
case, are not necessarily derived from a finite measure. He has mentioned integral
geometry as one field where such conditional probabilities appear naturally.

2. Results of the types of Theorems 8.4.1 above and 8.4.2 below are classical in-
terpretations of integral geometric formulas in terms of geometric probabilities. A
general source for results of the type considered here is the book by Santaló [662];
see also Santaló [656, 659].

8.4.2 Randomly Moving Flats

Now we consider randomly moving flats. We assume that a convex reference
body K0 is given and derive a natural probability distribution for q-flats hit-
ting K0 from the invariant measure µq on the affine Grassmannian A(d, q).

Definition 8.4.2. Let q ∈ {0, . . . , d − 1}, and let K0 ∈ K′ be a convex body
with Vd−q(K0) > 0. An isotropic random q-flat through K0 is a random
q-flat Xq,K0 with distribution given by

Q =
µq FK0

µq(FK0)
.

If K is a convex body contained in K0, then similarly to the previous
subsection, we consider the probability P(Xq,K0 ∩K �= ∅) as the conditional
probability that an isotropic random q-flat hits K, under the condition that
it hits K0. For this probability, the Crofton formula of Theorem 5.1.1 imme-
diately gives the following result.

Theorem 8.4.2. Let K0,K ∈ K′ be convex bodies with K ⊂ K0, let q ∈
{0, . . . , d−1} and Vd−q(K0) > 0. If Xq,K0 is an isotropic random q-flat through
K0, then

P(Xq,K0 ∩K �= ∅) =
Vd−q(K)
Vd−q(K0)

.

We take again a convex body K0 ∈ K′, and we consider n stochastically
independent isotropic q-flats X1, . . . , Xn through K0. We assume that n(d−
q) ≤ d, then the intersection X1 ∩ . . . ∩ Xn is almost surely of dimension
d − n(d − q) ≥ 0 (as can be shown with the aid of Lemma 13.2.1). We can
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therefore ask for the probability that this intersection meets a given convex
body K ⊂ K0 (even for K = K0, this is a nontrivial question). From the
definition and the Crofton formula of Theorem 5.1.1 we obtain

P(X1 ∩ . . . ∩Xn ∩K �= ∅)

=

∫
A(d,q)

. . .
∫

A(d,q)
V0(K ∩ E1 ∩ . . . ∩ En)µq(dEn) · · ·µq(dE1)(∫
A(d,q)

V0(K0 ∩ E)µq(dE)
)n

=

cq,d−q
d,0

∫
A(d,q)

. . .
∫

A(d,q)

Vd−q(K ∩ E1 ∩ . . . ∩ En−1)µq(dEn−1) · · ·µq(dE1)(
cq,d−q
d,0 Vd−q(K0)

)n

= . . . =
cq,d−q
d,0 c

q,2(d−q)
d,d−q c

q,3(d−q)
d,2(d−q) · · · c

q,n(d−q)
d,(n−1)(d−q)Vn(d−q)(K)(

cq,d−q
d,0 Vd−q(K0)

)n

=
(n(d− q))!κn(d−q)

((d− q)!κd−q)n

Vn(d−q)(K)
V n

d−q(K0)
.

Examples. Let d = 2, q = 1, n = 2 and K = K0, so we consider two
independent isotropic random lines through K in the plane. The probability
that their intersection point lies in K is given by

2π
22

V2(K)
V1(K)2

= 2π
A(K)
L(K)2

.

By the planar isoperimetric inequality, this probability is at most 1/2, and it
is equal to 1/2 if and only if K is a circular disk.

For d independent isotropic random hyperplanes through a convex body
K in Rd, the probability that their intersection point lies in K, is given by

d!κd

2d

Vd(K)
V1(K)d

=
(d− 1)!κd

d−1

(dκd)d−1

Vd(K)
b(K)d

,

where b(K) is the mean width of K. By (14.31), the maximum of this expres-
sion is attained precisely if K is a ball.

For applications and simulations it is important to know how such random
q-flats as considered above can be generated, and how their distributions are
related to other natural distributions. (Randomly moving convex bodies can
be treated along similar lines.)

Let q ∈ {0, . . . , d−1}, and letK,M ∈ K′ be convex bodies with Vd−q(M) >
0 and M ⊂ K. For an isotropic random q-flat through K we can consider the
conditional distribution, under the condition that it hitsM . Immediately from
the definitions we obtain, for A ∈ B(A(d, q)),
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P(Xq,K ∈ A | Xq,K ∩M �= ∅) =
µq(A ∩ FK ∩ FM )/µq(FK)

µq(FM )/µq(FK)

=
µq(A ∩ FM )
µq(FM )

= P(Xq,M ∈ A).

We formulate this as a lemma.

Lemma 8.4.1. Let q ∈ {0, . . . , d − 1}. Let K,M ∈ K′ be convex bodies with
M ⊂ K and Vd−q(M) > 0. Then the conditional distribution of an isotropic
random q-flat through K, under the condition that it hits M , is equal to the
distribution of an isotropic random q-flat through M .

In view of this lemma, the generation of isotropic random q-flats through a
given convex body K ∈ K′ can be achieved as follows. We choose a ball rBd of
radius rBd containing K and generate independent isotropic q-flats through
rBd until the body K is hit for the first time. The q-flat thus obtained is then
a realization of an isotropic q-flat through K. In the case q = 0, where X0,K

is a uniform random point in K, it is more convenient to replace the ball rBd

by a cube, for instance C = α[0, 1]d with α > 0. In fact, a uniform random
point x in C is easily generated in the form x = α(ξ1, . . . , ξd), where ξ1, . . . , ξd
are d independent uniform random numbers in the interval [0, 1].

In order to generate, for q ≥ 1, an isotropic q-flat through rBd, we use the
definition of the measure µq. Let L ∈ G(d, q) be fixed and let rBq := rBd∩L⊥.
We choose independently a uniform random point x ∈ rBq (as described
above) and an isotropic random rotation ϑ ∈ SOd. Then E := ϑ(L + x)
is an isotropic q-flat through rBd. In order to generate ϑ, we can choose d
independent uniform points x1, . . . , xd in Bd, then x1/‖x1‖, . . . , xd/‖xd‖ are
unit vectors which are linearly independent with probability one. The mapping
ψ described in the proof of Theorem 13.2.9 maps this d-tuple into a rotation
ϑ. In this way we have defined a random rotation ϑ with rotation invariant
distribution ν, as follows from the proof of Theorem 13.2.9.

We now describe a different, and possibly more natural, way of construct-
ing random q-flats through a given convex body K ∈ K with interior points.
We choose a uniform random point Y in K and independently an isotropic
random subspace L(q) ∈ G(d, q). Then

X
(q)
K := L(q) + Y

is a random q-flat meeting K. It is called a q-weighted random q-flat
through K. The corollary to the following theorem describes how its dis-
tribution is related to the distribution of an isotropic random q-flat through
K.

Theorem 8.4.3. Let q ∈ {1, . . . , d − 1}. Let K ∈ K be a convex body with
interior points. If X(q)

K is a q-weighted random q-flat through K, then
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P(X(q)
K ∈ A) =

1
Vd(K)

∫
A

Vq(K ∩ E)µq(dE)

for A ∈ B(A(d, q)).

Proof. By definition and Fubini’s theorem,

Vd(K)P(X(q)
K ∈ A)

=
∫

G(d,q)

∫
K

1A(L+ x)λ(dx) νq(dL)

=
∫

G(d,q)

∫
L⊥

∫
L

1A(L+ y)1K(y + z)λL(dz)λL⊥(dy) νq(dL)

=
∫

G(d,q)

∫
L⊥

1A(L+ y)Vq(K ∩ (L+ y))λL⊥(dy) νq(dL)

=
∫

A

Vq(K ∩ E)µq(dE),

as asserted. ��
Corollary 8.4.1. Let q ∈ {1, . . . , d − 1}. Suppose that X(q)

K is a q-weighted
random q-flat through K and Xq,K is an isotropic random q-flat through K.
Then the distribution of X(q)

K is absolutely continuous with respect to the dis-
tribution of Xq,K , with density given by

E �→ cq,d−q
d,0

Vd−q(K)
Vd(K)

Vq(K ∩ E).

Various random sections of sets play a prominent role in stereology. As an
applied discipline, stereology is concerned with estimating geometric parame-
ters of three-dimensional structures from the evaluation of lower-dimensional
sections, projections, projected thick sections, etc. We explain briefly, in the
setting of d-dimensional space, some ideas underlying the use of sections with
random flats. The set in Rd to be investigated will be denoted by K.

We assume that a random q-flat Xq is given and that K ∩ Xq can be
observed. We also assume that K is contained in some a priori given, known
reference set K0 ∈ K′. A plausible choice for Xq would then be an isotropic
random q-flat through K0. In order to apply the Crofton formula, we suppose
that K is an element of the convex ring R (which, from a practical viewpoint,
is not a severe restriction) and that the quantity

Vj(K ∩Xq), j ∈ {0, . . . , q},

can be measured. We are interested in the expectation of the random vari-
able Vj(K ∩ Xq), because the expectation will be a d-dimensional quantity
associated with K, for which the q-dimensional quantity Vj(K ∩ Xq) is an
unbiased estimator. The Crofton formula of Theorem 5.1.1 (extended to the
convex ring) immediately gives the following result.
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Theorem 8.4.4. Let q ∈ {0, . . . , d−1} and j ∈ {0, . . . , q}. If K0 ∈ K′, K ∈ R
are sets with K ⊂ K0 and if Xq,K0 is an isotropic random q-flat through K0,
then

EVj(K ∩Xq,K0) = c0,d−q+j
j,d−q

Vd−q+j(K)
Vd−q(K0)

.

A situation of practical interest is the case d = 3 and q = 2. In a section
with X2 one may measure the Euler characteristic V0(K ∩X2), the boundary
length 2V1(K ∩ X2), or the area V2(K ∩ X2). If the mean width of K0 and
hence V1(K0) is known, one can thus estimate without bias the quantities
V1(K), V2(K), V3(K), which are, respectively, proportional to the (additive
extension of) the mean width, the surface area, and the volume of K. If
measurements at the two-dimensional setK∩X2 are too involved (for example,
in the case of the boundary length L(K∩X2)), one may in turn apply Theorem
8.4.4, with d = 2 and q = 1, to the sets K̃ := K ∩ X2 ⊂ K0 ∩ X2 =: K̃0.
For this, one considers isotropic random lines X1 through K̃0 and determines
V0(K̃ ∩X1) or V1(K̃ ∩X1). In this way, V1(K̃) and V2(K̃) can be estimated
without bias, so that in the end one obtains an estimate for surface area and
volume of K. Going one step further, we may generate random points X0

within the set K̃0 and then use V0(K̃ ∩ X0) to estimate the area of K̃, and
thus finally the volume of K.

Alternatively, we can directly choose random lines X1 through K0 or ran-
dom points X0 in K0 and use them for estimating volume and surface area of
K, respectively the volume alone. However, it must be pointed out that the
two-step method described above, which consists in first choosing an isotropic
random plane X2 through K0 and subsequently choosing an isotropic random
line in X2 through K0 ∩X2, will not lead to an isotropic line X1 through K0.
The distributions of random flats arising by such two-step procedures will be
discussed in Subsection 8.4.3 in a general form.

A disadvantage of the formula of Theorem 8.4.4 for practical purposes is
to be seen in the fact that one obtains the quotient

Vd−q+j(K)
Vd−q(K0)

,

whereas the quotient
Vd−q+j(K)
Vd(K0)

(the specific amount of Vd−q+j of K per unit volume) might be of greater
interest. In particular, this would be the case if K is obtained from a larger
set K̃ ∈ R by intersection with K0. Now

EVj(K ∩Xq,K0) = cd−q+j,0
d−q,j

Vd−q+j(K)
Vd−q(K0)

and



8.4 Randomly Moving Bodies and Flats 343

EVq(K0 ∩Xq,K0) = cd,0
d−q,q

Vd(K0)
Vd−q(K0)

,

hence the quotient
Vj(K ∩Xq,K0)
Vq(K0 ∩Xq,K0)

may be viewed as a natural estimator for

cq,d−q+j
d,j

Vd−q+j(K)
Vd(K0)

.

In general, this estimator is biased, that is,

E
Vj(K ∩Xq,K0)
Vq(K0 ∩Xq,K0)

�= cq,d−q+j
d,j

Vd−q+j(K)
Vd(K0)

.

If, however, we do not work with isotropic random q-flats through K0, but
with q-weighted random q-flats, then we obtain an unbiased estimator.

Theorem 8.4.5. Let K0 ∈ K′ and K ∈ R be sets with K ⊂ K0, let q ∈
{0, . . . , d − 1} and j ∈ {0, . . . , q}, and let X(q)

K0
be a q-weighted random q-flat

through K0. Then

E
Vj(K ∩X(q)

K0
)

Vq(K0 ∩X(q)
K0

)
= cq,d−q+j

d,j

Vd−q+j(K)
Vd(K0)

.

Proof. Let Xq,K0 be an isotropic random q-flat through K0. From Corollary
8.4.1 and Theorem 8.4.4 we get

E
Vj(K ∩X(q)

K0
)

Vq(K0 ∩X(q)
K0

)
= E

(
Vj(K ∩Xq,K0)
Vq(K0 ∩Xq,K0)

cq,d−q
d,0

Vd−q(K0)
Vd(K0)

Vq(K0 ∩Xq,K0)
)

= cq,d−q
d,0

Vd−q(K0)
Vd(K0)

EVj(K ∩Xq,K0)

= cq,d−q+j
d,j

Vd−q+j(K)
Vd(K0)

,

as asserted. ��

Notes for Subsection 8.4.2

1. The systematic investigation of isotropic uniform random flats through a convex
body began with an influential paper by Miles [520]. Different ways of generating
random lines through a convex body and the relations between their distributions
were first investigated by Kingman [411, 412] and Coleman [178]. The importance
of q-weighted random q-flats, in particular for stereology, was emphasized by Miles
and Davy [536], Davy and Miles [201].
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2. Principles of stereology. In stereological notation, for d = 3, q = 2, the
expectation formulas of Theorem 8.4.5 read

VV = AA,

SV =
4

π
LA,

MV = 2πχA.

Here, VV , SV , MV denote the mean volume, mean surface area and mean inte-
gral mean curvature per unit volume, and AA, LA and χA are the corresponding
mean values of area, boundary length and Euler characteristic per unit area (in a
planar section). These ‘fundamental formulas’ of stereology appeared in the non-
mathematical literature starting with the volume formula by the geologist A. De-
lesse in 1847 and subsequently improved and extended to the other functionals over
a period of more than a hundred years. The improvements mainly concerned corre-
sponding expectation formulas for d = 2, q = 1, respectively d = 1, q = 0, by which
the mean values AA and LA in planar sections can again be estimated through in-
tersections with linear structures (grids of lines or segments) or even, in the case
of AA, with a grid of points. It was obvious that the validity of these fundamental
formulas required some randomness, either of the underlying structure or of the sec-
tioning devices, as well as appropriate invariance assumptions on the corresponding
distributions. Only after the foundation of the International Society for Stereology
in 1961 was a systematic investigation of the mathematical background and the in-
terrelations with integral geometry started, and this led to the fundamental papers
of Miles and Davy mentioned above (see also Davy [199]). Nowadays two differ-
ent stereological approaches are distinguished, the design-based approach and the
model-based approach. In the former, the set K under consideration is assumed
to be fixed and contained in a reference set K0. The quantities of interest are the
quotients VV = V (K)/V (K0), AV = A(K)/V (K0) and MV = M(K)/V (K0). In
this case, the quantities on the right side of the fundamental formulas have to be
interpreted as expectations with respect to random (two-dimensional) sections of
K0, hence they describe natural estimators. Only through the work of Davy and
Miles did it become clear that in order for these estimators to be unbiased, the
random sections have to be obtained not from isotropic random planes but from 2-
weighted ones. The design-based approach is discussed in detail in the recent book
by Baddeley and Jensen [53], which includes many interesting historical remarks and
a description of various pitfalls in the statistical analysis of stereological problems.

The model-based approach, in contrast, assumes that the structure K ⊂ K0 of
interest is the realization of a random set Z (intersected with the window K0). If Z
is stationary and isotropic and the sectioning plane E is fixed (or if Z is stationary
and E is an isotropic random plane), the fundamental formulas appear as Crofton
formulas for specific intrinsic volumes, as discussed at the end of Section 9.4.

3. After Lemma 8.4.1, we have mentioned a method of generating isotropic random
rotations. This method may be impractical for actual simulations if d is large. For
a different method see, for example, Stewart [737].

4. Let K be a convex body, and let X1, . . . , Xn be independent uniform random
lines through K. For given r > 0, these lines are said to be r-close if there exists
some point in K from which all the lines have distance at most r. Formulas for the
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probability of this and similar events (for flats) can be obtained with the help of
iterated kinematic formulas, see Hadwiger and Streit [313].

8.4.3 Distributions of Random Flats

In this subsection we determine the distributions of random flats that are
derived, by various geometric constructions, from given isotropic random flats.
We restrict ourselves to affine subspaces, remarking that linear subspaces can
be treated similarly.

Let K ∈ K′ be a convex body with interior points, and let 0 ≤ p < q < d.
We imagine a random p-flat X through K, generated by first choosing an
isotropic uniform q-flat Y through K and then choosing in Y an isotropic
uniform p-flat through K ∩ Y . We want to determine the distribution of the
resulting random p-flat through K.

We denote the distribution of an isotropic random r-flat through the con-
vex body K by P

(K)
r . By definition and by the Crofton formula, we have

P(K)
r (A) =

µr(A ∩ {E ∈ A(d, r) : E ∩K �= ∅})
cr,d−r
d,0 Vd−r(K)

for A ∈ B(A(d, r)). Now let F ∈ A(d, q) be a q-flat with dim (K ∩F ) = q. An
isotropic random p-flat through K ∩ F , taken in F as the surrounding space,
can also be considered as a random p-flat in Rd. Denoting its distribution by
P

(K,F )
p , we have

P(K,F )
p (A) =

µF
p (A ∩ {E ∈ A(F, p) : E ∩K �= ∅})

cp,q−p
q,0 Vq−p(K ∩ F )

for A ∈ B(A(d, p)). It follows from Lemma 13.2.2 that for each A ∈ B(A(d, p))
the function F �→ P

(K,F )
p (A) is measurable on

[K]q := {F ∈ A(d, q) : dim (K ∩ F ) = q}.

Thus the function (F,A) �→ P
(K,F )
p (A) is a transition probability from

([K]q,B([K]q)) to (A(d, p),B(A(d, p))). Let

Q := P(K)
q ⊗ P(K, · )

p

be the probability measure on B([K]q) ⊗ B(A(d, p)) that is determined by
P

(K)
q and P

(K, · )
p . The distribution P

(K)
q of an isotropic random q-flat through

K is concentrated on [K]q, since the set of q-flats touching K has µq-measure
zero, as is easy to see.

The generation of the random p-flat X, which was described above in a
more heuristic way, can now be modeled more precisely as a two-step random
experiment, by requiring that the distribution of X be given by
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P2(A) := Q([K]q ×A), A ∈ B(A(d, p)).

For this distribution we then obtain

P2(A)

= (P(K)
q ⊗ P(K, · )

p )([K]q ×A)

=
∫

[K]q

∫
A(d,p)

1[K]q×A(F,E) P(K,F )
p (dE) P(K)

q (dF )

=
∫

A(d,q)

∫
A(F,p)

1A(E)
V0(K ∩ E)

cp,q−p
q,0 Vq−p(K ∩ F )

µF
p (dE)

V0(K ∩ F )

cq,d−q
d,0 Vd−q(K)

µq(dF )

= c
∫

A(d,q)

∫
A(F,p)

1A(E)
V0(K ∩ E)V0(K ∩ F )

Vq−p(K ∩ F )
µF

p (dE)µq(dF )

with
c = (cd−q,p,q−p

d,0,0 Vd−q(K))−1.

The distribution P2 can be considered as known if one knows its density
with respect to the invariant measure µp. Using the interchange formula (7.5)
and observing that

V0(K ∩ E)V0(K ∩ F ) = V0(K ∩ E)

for E ⊂ F , we obtain

P2(A) = c

∫
A(d,p)

∫
A(E,q)

1A(E)
V0(K ∩ E)V0(K ∩ F )

Vq−p(K ∩ F )
µE

q (dF )µp(dE)

= c

∫
A

(
V0(K ∩ E)

∫
A(E,q)

1
Vq−p(K ∩ F )

µE
q (dF )

)
µp(dE).

Thus, the distribution P2 of the random p-flat X has a density with respect
to the invariant measure µp on the space A(d, p) which is given by

E �→ cd,0,0
d−q,p,q−p

V0(K ∩ E)
Vd−q(K)

∫
A(E,q)

1
Vq−p(K ∩ F )

µE
q (dF ). (8.46)

We state this as a theorem.

Theorem 8.4.6. Let 0 ≤ p < q < d, and let K ∈ K′ be a convex body with
Vd(K) > 0. Let Y be an isotropic random q-flat through K, and let X be an
isotropic random p-flat through K ∩ Y in Y . Then the distribution of X has
a density with respect to the invariant measure µp which is given by (8.46).

In a similar way we may, for 0 ≤ p < q < d, generate a random q-flat Y
through K, by first choosing an isotropic uniform p-flat X through K and
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then choosing an isotropic q-flat containing X. Let E ∈ A(d, p) be a p-flat
with dim(K ∩ E) = p. An isotropic flat in A(E, q) has, by definition, the
distribution µE

q . Since µ( · )
q is a transition probability from ([K]p,B([K]p)) to

(A(d, q),B(A(d, q))), a probability measure

Q′ := P(K)
p ⊗ µ( · )

q

on B([K]p) ⊗ B(A(d, q)) is determined by P
(K)
p and µ( · )

q . Then, similarly to
above,

P′
2(A) := Q′([K]p ×A), A ∈ B(A(d, q)),

can be considered as the distribution of the required random q-flat Y . For this
distribution we obtain, as before, for A ∈ B(A(d, q)),

P′
2(A) =

∫
[K]p

∫
A(E,q)

1[K]p×A(E,F )µE
q (dF ) P(K)

p (dE)

=
∫

A(d,p)

∫
A(E,q)

1A(F )µE
q (dF )

V0(K ∩ E)

cp,d−p
d,0 Vd−p(K)

µp(dE)

=
cd,0
p,d−p

Vd−p(K)

∫
A

∫
A(F,p)

V0(K ∩ E)µF
p (dE)µq(dF )

=
cd,q−p
q,d−p

Vd−p(K)

∫
A

Vq−p(K ∩ F )µq(dF ),

where the Crofton formula (5.6) was applied in F . We have obtained the
density of the distribution P′

2 of the random q-flat Y with respect to the
invariant measure µq on the space A(d, q), namely

F �→ cd,q−p
q,d−p

Vq−p(K ∩ F )
Vd−p(K)

. (8.47)

For p = 0, this result was already noted in Theorem 8.4.3. We state the general
result again as a theorem.

Theorem 8.4.7. Let 0 ≤ p < q < d, and let K ∈ K′ be a convex body with
Vd(K) > 0. Let X be an isotropic random p-flat through K, and let Y be
an isotropic random q-flat containing X. Then Y is a random q-flat through
K, whose distribution has a density with respect to the invariant measure µq

which is given by (8.47).

Next, we study random flats spanned by independent uniform random
points. Let K ∈ K′ be a convex body with Vd(K) > 0. For q ∈ {1, . . . , d− 1}
we consider q + 1 independent uniform random points in K. Almost surely
their affine hull is a q-dimensional flat. The distribution of this random flat
we denote by Q. For A ∈ B(A(d, q)), we then have
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Q(A) =
1

Vd(K)q+1

∫
Rd

. . .

∫
Rd

f(x0, . . . , xq)λ(dx0) · · ·λ(dxq)

with

f(x0, . . . , xq) := 1A(aff {x0, . . . , xq})
q∏

j=0

1K(xj).

The affine Blaschke–Petkantschin formula of Theorem 7.2.7 immediately
yields that the distribution Q has a density with respect to the invariant
measure µq on A(d, q), given by

E �→ bdq(q!)d−q

Vd(K)q+1

∫
E∩K

. . .

∫
E∩K

∆q(x0, . . . , xq)d−q λE(dx0) · · ·λE(dxq),

(8.48)
for E ∈ A(d, q).

Theorem 8.4.8. Let q ∈ {1, . . . , d − 1}, and let K ∈ K′ be a convex body
with Vd(K) > 0. Let Q be the distribution of the random q-flat that is spanned
(almost surely) by q+1 independent uniform random points in K. With respect
to the invariant measure µq on A(d, q), the distribution Q has the density given
by (8.48).

Finally, we study the distribution of the intersection of independent
isotropic random flats through a convex body. We restrict ourselves to the
case of 2 ≤ q ≤ d independent isotropic random hyperplanes through a con-
vex body K ∈ K′ with dimK ≥ 1. The intersection of these hyperplanes is
almost surely a (d − q)-flat X. The distribution of this random flat X is, of
course, no longer concentrated on the set of (d − q)-flats hitting K. Let Q

denote the distribution of X. For A ∈ B(A(d, d− q)) we have, by the Crofton
formula and (14.7),

Q(A) =
1

b(K)q

∫
A(d,d−1)

. . .

∫
A(d,d−1)

f(H1, . . . , Hq)µd−1(dH1) · · ·µd−1(dHq)

with

f(H1, . . . , Hq) := 1A(H1 ∩ . . . ∩Hq)
q∏

j=1

1HK
(Hj);

here we use the notation

HK := {H ∈ A(d, d− 1) : H ∩K �= ∅}.

From Theorem 7.2.8, for s1 = . . . = sq = d−1, we obtain that the distribution
of X has a density with respect to the invariant measure µd−q which is given
by

E �→ c

∫
HE

K

. . .

∫
HE

K

[H1, . . . , Hq]d−q+1µE
d−1(dH1) · · ·µE

d−1(dHq) (8.49)
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with HE
K := A(E, d− 1) ∩HK and

c = bdq

(
ωq

ωdb(K)

)q

.

We state the result as a theorem.

Theorem 8.4.9. Let q ∈ {2, . . . , d}, and let K ∈ K′ be a convex body with
dimK ≥ 1. The intersection of q independent isotropic uniform random hy-
perplanes through K is almost surely a (d−q)-flat. With respect to the invari-
ant measure µd−q on A(d, d − q), the distribution of this random (d− q)-flat
has the density given by (8.49).

In particular, we see from (8.49) that the conditional distribution of the
generated (d − q)-flat X, under the condition that it meets the body K,
is isotropic and uniform; but this is not surprising. Of more interest is the
information about the form of the density on the set of (d − q)-flats not
meeting K. For example, for d = q = 2 we obtain the density

x �→ c

∫
H{x}

K

∫
H{x}

K

[G,H]µ{x}
1 (dG)µ{x}

1 (dH).

The invariant measure µ{x}
1 is in this case induced from the uniform distrib-

ution on [0, 2π); therefore the right side is proportional to∫ 2π

0

∫ 2π

0

f(K,x, α)f(K,x, β)| sin(α− β)|dα dβ,

where f(K,x, α) denotes the indicator function of the event that the line G =
G(x, α) through x and making the angle α with a fixed direction, intersects
the body K. Thus, for x /∈ K the density is proportional to ω − sinω, where
ω = ω(x) denotes the angle under which K is seen from x.

Notes for Subsection 8.4.3

1. The distribution of the intersection point of two independent isotropic random
lines through a planar convex body was already determined by Crofton [186]; he
found the last result mentioned above.

2. Distributions of random lines through convex bodies generated in different ways
were investigated by Kingman [411], Coleman [178], Enns and Ehlers [217]. See also
Note 2 for Section 8.6.

8.5 Touching Probabilities

In this section, we want to show how integral geometry and curvature measures
can be used to treat an unconventional ‘dice probability problem’. Imagine
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that two congruent cubical dice in three-space are thrown randomly in such
a way that they touch each other. Under plausible assumptions on the dis-
tribution, only the touching positions ‘edge against edge’ and ‘vertex against
two-face’ will have positive probabilities. If two players bet on these comple-
mentary events, who has the better chances? Under suitable natural model
assumptions, we shall give an explicit answer to this question.

We consider touching probabilities of a more general kind. Let K and
M be nonempty convex bodies in Rd, and let A ⊂ bdK, B ⊂ bdM be
two given Borel sets. If we consider the boundary sets A of K and B of M
as being colored and if K and M touch at random, what is the probability
that the touching occurs at a pair of colored points? Of course, we must first
specify a suitable probabilistic model. If not touching, but hitting probabilities
are asked, there is a geometrically natural underlying sample space, namely
{g ∈ Gd : K ∩gM �= ∅}, together with the motion invariant measure µ on Gd,
restricted to this space and normalized to a probability measure. The obvious
underlying space for the investigation of random touchings is given by the set

Gd(K,M) := {g ∈ Gd : K and gM touch},

which was introduced in Section 5.1 (proof of Theorem 5.1.2). This set, how-
ever, has µ measure zero, so that a conditional probability

P(A ∩ gB �= ∅ | K and gM touch)

cannot be defined in an elementary way. Therefore, the set Gd(K,M) of rigid
motions bringing M into a touching position with K has first to be equipped
with a positive finite measure, which can then be normalized to a probability
measure, and which can be viewed as a natural touching measure. (As usual,
this measure will be considered as a measure defined on all of Gd.) The mea-
sure can be considered as natural or canonical if it can be deduced in a simple
way from the motion invariant measure µ, say in analogy to the deduction of
a natural notion of (Minkowski) surface area from the notion of volume. We
shall now describe such a construction for given convex bodies K,M ∈ K′.

We define

r(K,M) := min{||x− y|| : x ∈ K, y ∈M}

and
G∗

d(K,M) := {g ∈ Gd : K ∩ gM = ∅}.

Then

G∗
d(K,M) =

⋃
r>0

{g ∈ Gd : r(K, gM) = r} =
⋃
r>0

Gd(K + rBd,M),

and the latter is a disjoint union. Therefore, the required touching measure
µ(K,M, ·) should have the property that
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µ G∗
d(K,M) =

∫ ∞

0

µ(K + rBd,M, ·) dr,

and the integrand should be a continuous function of r, with respect to the
weak topology. The proof that this is possible in a unique way is preceded
by a lemma, which expresses an analogous relationship between the Lebesgue
measure and the boundary measure of a convex body.

Throughout this section, we make essential use of the curvature measures
Φ0(K, ·), . . . , Φd−1(K, ·) of a convex body K (see Section 14.2).

Lemma 8.5.1. If K ∈ K′, then

λ (Rd \K) = 2
∫ ∞

0

Φd−1(K + rBd, ·) dr.

Proof. It suffices to prove the assertion for the case where K is a polytope; the
general case is then obtained by approximation, using the weak convergence
of the curvature measures and the dominated convergence theorem.

For a polytope K we have

Rd \K =
d−1⋃
j=0

⋃
F∈Fj(K)

{x ∈ Rd \K : p(K,x) ∈ relintF},

and this is a disjoint decomposition, hence

λ (Rd \K) =
d−1∑
j=0

∑
F∈Fj(K)

λ {x ∈ Rd \K : p(K,x) ∈ relintF}. (8.50)

Now let A ∈ B(Rd) and suppose that A ⊂ {x ∈ Rd \K : p(K,x) ∈ relintF}
for some face F ∈ Fj(K). With Ld−j := (aff F )⊥ we then have

λ(A) = (λF ⊗ λF⊥)(A)

=
(
λF ⊗

∫ ∞

0

2Φd−j−1

(
rBd ∩ Ld−j , ·

)
dr

)
(A)

=
∫ ∞

0

2Φd−1(F + rBd, A) dr

= 2
∫ ∞

0

Φd−1(K + rBd, A) dr.

Together with (8.50), this yields the assertion. ��

The construction of the touching measure is based on this lemma and is
at the same time a generalization of the procedure leading to it.
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Theorem 8.5.1. There is precisely one mapping that associates with every
pair K,M ∈ K′ a finite measure µ(K,M, ·) on Gd(K,M) that is continuous
and satisfies

µ G∗
d(K,M) =

∫ ∞

0

µ(K + rBd,M, ·) dr.

The measure µ(K,M, ·) is given by

µ(K,M,A) = 2
∫

SOd

Φd−1(K − ϑM,T (A, ϑ)) ν(dϑ) (8.51)

for A ∈ B(Gd), where

T (A, ϑ) := {x ∈ Rd : γ(x, ϑ) ∈ A}.

(Recall that the map γ : Rd × SOd → Gd is given by γ(x, ϑ)y := ϑy + x for
y ∈ Rd.)

Proof. Let A ⊂ G∗
d(K,M) be a Borel set. We have

µ(A) =
∫

SOd

∫
Rd

1A(γ(x, ϑ))λ(dx) ν(dϑ)

=
∫

SOd

∫
Rd\(K−ϑM)

1A(γ(x, ϑ))λ(dx) ν(dϑ),

since, for given ϑ ∈ SOd, the relation γ(x, ϑ) ∈ G∗
d(K,M) is equivalent to

x ∈ Rd \ (K − ϑM). By Lemma 8.5.1, applied to K − ϑM instead of K, we
have

µ(A) = 2
∫

SOd

∫ ∞

0

∫
Rd

1A(γ(x, ϑ))Φd−1(K − ϑM + rBd,dx) dr ν(dϑ).

By Theorem 14.2.2(c), the mapping

(ϑ, r) �→ Φd−1(K − ϑM + rBd, ·)

is continuous, hence Lemma 12.1.2 yields the measurability of the mapping

(ϑ, r) �→
∫

Rd

1A(γ(x, ϑ))Φd−1(K − ϑM + rBd,dx).

An application of Fubini’s theorem gives

µ(A) = 2
∫ ∞

0

∫
SOd

Φd−1(K − ϑM + rBd, T (A, ϑ)) ν(dϑ) dr

=
∫ ∞

0

µ(K + rBd,M,A) dr,
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where (8.51) was used as a definition. Since the measure Φd−1(K − ϑM, ·) is
concentrated on bd (K − ϑM), the measure defined by (8.51) is concentrated
on Gd(K,M).

We show that µ(K,M, ·) depends weakly continuously on (K,M). Let
Ki,Mi be convex bodies such that (Ki,Mi)→ (K,M) for i→∞. Let A ⊂ Gd

be open; then for given ϑ ∈ SOd, the set T (A, ϑ) is open, too. Using the weak
continuity of Φd−1 and the Lemma of Fatou, we obtain

µ(K,M,A) =
∫

SOd

Φd−1(K − ϑM,T (A, ϑ)) ν(dϑ)

≤
∫

SOd

lim inf
i→∞

Φd−1(Ki − ϑMi, T (A, ϑ)) ν(dϑ)

≤ lim inf
i→∞

∫
SOd

Φd−1(Ki − ϑMi, T (A, ϑ)) ν(dϑ)

= lim inf
i→∞

µ(Ki,Mi, A).

Similarly one shows that limi→∞ µ(Ki,Mi, Gd) = µ(K,M,Gd), which then
yields the assertion.

To prove the uniqueness, we assume that there are two mappings (K,M) �→
µ(k)(K,M, ·), k = 1, 2, with the required properties; then, in particular,

µ G∗
d(K,M) =

∫ ∞

0

µ(k)(K + rBd,M, ·) dr.

We choose functions f on [0,∞) and h on Gd, both continuous and with
compact support. For k = 1, 2 we get∫

G∗
d(K,M)

f(r(K, gM))h(g)µ(dg)

=
∫ ∞

0

∫
Gd

f(r(K, gM))h(g)µ(k)(K + rBd,M,dg) dr

=
∫ ∞

0

f(r)
∫

Gd

h(g)µ(k)(K + rBd,M,dg) dr.

The inner integral depends continuously on r. Since f was arbitrary, we con-
clude that∫

Gd

h(g)µ(1)(K + rBd,M,dg) =
∫

Gd

h(g)µ(2)(K + rBd,M,dg)

for all r ≥ 0. Since h was arbitrary, we deduce that

µ(1)(K,M, ·) = µ(2)(K,M, ·).

This completes the proof of the theorem. ��
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The measure µ(K,M, ·) is called the touching measure of the convex
bodies K and M .

Remark. The touching measure µ(K,M, ·) is not symmetric in K and M ; in
the background is the idea that K is fixed and M is moving. However, it is
evident that

µ(M,K,A) = µ(K,M,A−1) for A ∈ B(Gd).

Remark. Let rK,M : G∗
n(K,M)→ (0,∞) be defined by

rK,M (g) := r(K, gM).

Then, Theorem 8.5.1 says that the family

{µ(K + rBd,M, ·)}r>0

is a disintegration of the measure µ∗ := µ G∗
d(K,M) with respect to the

function rK,M ; thus, µ(K + rBd,M, ·) is the (continuous) regular version of
the conditional measure µ∗(· | rK,M = r) (cf. results on regular conditional
probabilities in Kallenberg [386, Th. 6.3]).

The touching measure of K and M can be normalized to a probability
measure if µ(K,M,Gd) > 0. We first check when the latter condition is sat-
isfied.

Corollary 8.5.1. We have

µ(K,M,Gd) = 2
d−1∑
k=0

cd−k,k+1
1,d Vk(K)Vd−1−k(M),

where the coefficients are given by (5.5).

Proof. Since T (Gd, ϑ) = Rd, Theorem 8.5.1 gives

µ(K,M,Gd) = 2
∫

SOd

Φd−1(K − ϑM,T (Gd, ϑ)) ν(dϑ)

= 2
∫

SOd

Vd−1(K − ϑM) ν(dϑ)

= 2
d−1∑
k=0

cd−k,k+1
1,d Vk(K)Vd−1−k(M),

where Theorem 6.1.1 was used. ��



8.5 Touching Probabilities 355

By the preceding result, in order to have µ(K,M,Gd) > 0, the condition
dimK+dimM ≥ d−1 is necessary and sufficient. For the following we assume
for simplicity that dimK ≥ d− 1 and M �= ∅. By

µ(K,M, ·)
µ(K,M,Gd)

we can then define the touching probability measure of K and M . We
denote it by

P(· | g ∈ Gd(K,M)) = P(· | K and gM touch).

Having thus described a probabilistic model for the idea of randomly touch-
ing convex bodies, we ask for the probability

P(A ∩ gB �= ∅ | g ∈ Gd(K,M)),

for Borel sets A ⊂ bdK and B ⊂ bdM . In order to apply Theorem 8.5.1, we
have to consider, for

Ã := {g ∈ Gd(K,M) : A ∩ gB �= ∅}

and ϑ ∈ SOd, the set T (Ã, ϑ). The relation x ∈ T (Ã, ϑ) is equivalent to

γ(x, ϑ) ∈ Gd(K,M) and A ∩ (ϑB + x) �= ∅.

Here, the first condition is equivalent to x ∈ bd (K − ϑM), and the second to
x ∈ A− ϑB; thus

T (Ã, ϑ) = (A− ϑB) ∩ bd (K − ϑM).

It follows that

µ(K,M, Ã) = 2
∫

SOd

Φd−1(K − ϑM,A− ϑB) ν(dϑ).

This integral can be computed with the aid of Theorem 6.1.2; we obtain

µ(K,M, Ã) = 2
d−1∑
k=0

cd−k,k+1
1,d Φk(K,A)Φd−1−k(M,B).

Thus we have proved the following result.

Theorem 8.5.2. If K,M ∈ K′ are convex bodies with dimK ≥ d − 1 and
A,B ∈ B(Rd) are Borel sets with A ⊂ bdK and B ⊂ bdM , then

P(A ∩ gB �= ∅ | K and gM touch) =

∑d−1
k=0 c

d−k,k+1
1,d Φk(K,A)Φd−1−k(M,B)∑d−1

k=0 c
d−k,k+1
1,d Vk(K)Vd−1−k(M)

.
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Let us consider the special case whereK andM are polytopes with interior
points and where the specified boundary sets are

A(i) :=
⋃

F∈Fi(K)

relintF,

B(j) :=
⋃

G∈Fj(M)

relintG,

with i, j ∈ {0, . . . , d− 1}. In this case,

Φk(K,A(i)) =
{
Vi(K) if k = i,
0 if k �= i,

and similarly for Φk(M,B(j)). Therefore, Theorem 8.5.1 yields

P(A(i) ∩ gB(j) �= ∅ | g ∈ Gd(K,M)) = 0 if i+ j �= d− 1,

and

P

(
A(i) ∩ gB(d−1−i) �= ∅ | g ∈ Gd(K,M)

)
=

cd−i,i+1
1,d Vi(K)Vd−1−i(M)∑d−1

k=0 c
d−k,k+1
1,d Vk(K)Vd−1−k(M)

.

Example. Let d = 3, and let K =M = C3, the unit cube. The total touching
measure is given by

µ(C3, C3, G3(C3, C3)) = 2
2∑

k=0

c3−k,k+1
1,3 Vk(C3)V2−k(C3)

= 4V2(C3) +
π

2
V 2

1 (C3) = 12 +
π

2
9 =

3
2
(8 + 3π).

The only events with positive touching probability are

E(1) := {g ∈ G3(C3, C3) : A(0) ∩ gB(2) �= ∅}

(a vertex of the fixed cube touches a two-face of the moving cube),

E(2) := {g ∈ G3(C3, C3) : A(1) ∩ gB(1) �= ∅}

(edge against edge), and

E(3) := {g ∈ G3(C3, C3) : A(2) ∩ gB(0) �= ∅}

(a two-face of the fixed cube touches a vertex of the moving cube). We have
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P(E(1) | G3(C3, C3)) = P(E(3) | G3(C3, C3)) =
6

3
2 (8 + 3π)

=
4

8 + 3π

and

P(E(2) | G3(C3, C3)) =
9π
2

3
2 (8 + 3π)

=
3π

8 + 3π
.

Thus, the chances of the bet described at the beginning of this section are
given by

P(touching ‘vertex against face’ | G3(C3, C3)) =
8

8 + 3π
= 0.4591

and

P(touching ‘edge against edge’ | G3(C3, C3)) =
3π

8 + 3π
= 0.5409.

In an analogous way, we can also treat the touching of convex bodies by
q-dimensional planes. We only sketch the corresponding considerations. As for
touching convex bodies, we define similarly

A(d, q,K) := {E ∈ A(d, q) : E touches K}

and
A(d, q,K)∗ := {E ∈ A(d, q) : E ∩K = ∅}.

Then we have a disjoint decomposition

A(d, q,K)∗ =
⋃
r>0

A(d, q,K + rBd)

and a disintegration

µq A(d, q,K)∗ =
∫ ∞

0

µq(K + rBd, ·) dr.

How the measure µq(K, ·) has to be defined for this purpose, can be seen as
follows. For fixed Lq ∈ G(d, q) and for a Borel set A ⊂ A(d, q,K)∗, we have,
by the definition of µq,

µq(A) =
∫

SOd

∫
L⊥

q

1A(γq(x, ϑ))λL⊥
q
(dx) ν(dϑ)

(recall that γq(x, ϑ) = ϑ(Lq + x)). Since γq(x, ϑ) ∈ A(d, q,K)∗ is equivalent
to x /∈ (ϑ−1K)|L⊥

q , the inner integral extends only over L⊥
q \ (ϑ−1K)|L⊥

q , and
Lemma 8.5.1 yields
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µq(A) = 2
∫

SOd

∫ ∞

0

∫
L⊥

q

1A(ϑ(Lq + x))

×Φd−q−1((ϑ−1K)|L⊥
q + r(Bd ∩ L⊥

q ),dx) dr ν(dϑ)

= 2
∫ ∞

0

∫
SOd

Φd−q−1((ϑ−1(K + rBd)|L⊥
q , T

′
q(A, ϑ)) ν(dϑ) dr

= 2
∫ ∞

0

∫
SOd

Φd−q−1((K + rBd)|ϑL⊥
q , Tq(A, ϑ)) ν(dϑ) dr,

with T ′
q(A, ϑ) := {x ∈ L⊥

q : ϑ(Lq + x) ∈ A} and

Tq(A, ϑ) := ϑT ′
q(A, ϑ) = {x ∈ L⊥

q : ϑLq + x ∈ A}.

Thus, we have to define

µq(K,A) := 2
∫

SOd

Φd−q−1(K|ϑL⊥
q , Tq(A, ϑ)) ν(dϑ).

The remaining assertions and proofs are then completely analogous to the case
of touching convex bodies. We call µq(K, ·) the q-flat touching measure of
K.

Now we prescribe again a Borel set A ∈ B(Rd) with A ⊂ bdK, and we ask
for the measure of all q-flats touching K in points of A, that is, for µq(K, Ã)
with

Ã := {E ∈ A(d, q,K) : E ∩A �= ∅}.
Since

Tq(Ã, ϑ) = (A|ϑL⊥
q ) ∩ bd (K|ϑL⊥

q ),

the local projection formula of Theorem 6.2.1 yields the following theorem.

Theorem 8.5.3. For a convex body K ∈ K′, a Borel set A ⊂ B(Rd) with
A ⊂ bdK, and for q ∈ {0, . . . , d − 1}, let Ã denote the set of all q-flats
touching K at A. Then

µq(K, Ã) = 2cd−q,q+1
d,1 Φd−q−1(K,A).

This shows that the curvature measure Φj(K, ·) quantifies the touching of
K by (d− j − 1)-flats. In particular, Vj(K) is proportional to the measure of
(d− j − 1)-flats touching K, j ∈ {0, . . . , d− 1}.

As before, Theorem 8.5.3 allows the determination of touching probabili-
ties.

Notes for Section 8.5

1. The study of touching probabilities, in the sense described here, was initiated
by Firey. This began in [233], with an integral geometric interpretation of the area
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measures of convex bodies in terms of touching flats. Firey also proposed considering
randomly touching three-dimensional dice and asked whether a touching edge-to-
edge or a touching vertex-to-face had larger probability. An answer was given by
McMullen [468], though without a precise specification of the underlying probability
model. Firey [234] investigated general convex bodies touching randomly at given
sets of directions. With a different approach and some extensions, this was contin-
ued by Schneider [672, 673] (see also [674]). The more intuitive random touching of
convex bodies at given sets of boundary points was treated by Schneider [677]; the
formula of Theorem 8.5.2 appears there. In all this work, the touching probabili-
ties were defined as certain limits (after first ‘thickening’ sets of touching positions
to obtain sets of positive rigid motion invariant measure). The proper underlying
probability measures on the spaces of touching positions, as specified in this section,
were constructed by Weil [779, 782]; see also [780]. Further extensions and variants
of touching probabilities were treated in Firey [235], Schneider [680], Weil [783],
Schneider and Wieacker [719], Molter [557], Weil [789].

2. A similar question, about probabilities of collisions of a randomly moving convex
body with a field of convex particles, was investigated by Papaderou–Vogiatzaki and
Schneider [595], also with integral geometric methods.

8.6 Extremal Problems for Probabilities
and Expectations

Geometric probabilities and expectations of geometric random variables can
in general not be computed explicitly. In some cases, sharp estimates for such
quantities are known. In particular, some classical inequalities for convex bod-
ies can be interpreted as estimates for moments of geometric random variables
defined by convex hulls of independent uniform random points or by intersec-
tions of convex bodies with isotropic random flats. In this section, we collect
such results, mostly without proofs, for which we refer to the original litera-
ture.

First we extend the definitions of the quantities I(d, q, k) (Theorem 8.2.2)
and J(d, q, k) (Theorem 8.2.3) from balls to general convex bodies. For a d-
dimensional convex body K ∈ K′ and for 1 ≤ q ≤ d and k ≥ 0, we put

I(K, q, k) :=
∫

K

. . .

∫
K

∇q(x1, . . . , xq)k λ(dx1) · · ·λ(dxq),

J(K, q, k) :=
∫

K

. . .

∫
K

∆q(x0, . . . , xq)k λ(dx0) · · ·λ(dxq).

For r > 0 we have
I(rBd, q, k) = rq(d+k)I(d, q, k),

hence

I(rBd, q, k) = I(d, q, k)
(
Vd(rBd)
κd

)q(d+k)/d

.
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The functional I(·, d, k) is invariant under volume-preserving linear transfor-
mations, hence for a d-dimensional ellipsoid Q0 with center 0 we obtain

I(Q0, d, k) = I(d, d, k)
(
Vd(Q0)
κd

)d+k

. (8.52)

Similarly, using the fact that J(·, d, k) is invariant under volume-preserving
affinities, we get

J(Q, d, k) = J(d, d, k)
(
Vd(Q)
κd

)d+k+1

, (8.53)

if Q is a d-dimensional ellipsoid.
The special values (8.52) and (8.53) are of interest, since ellipsoids have

extremal properties with respect to the functionals we have introduced. We
quote the following theorem. The case k = 1 is known as the Busemann
random simplex inequality.

Theorem 8.6.1. If K ∈ K′ is a d-dimensional convex body and if k ≥ 1, then

I(K, d, k) ≥
κd

d+k

κd+k
d

⎛⎝ d∏
j=1

ωj

ωk+j

⎞⎠Vd(K)d+k.

Equality holds if and only if K is an ellipsoid with center 0.

This theorem was proved by Busemann [141] for k = 1. His proof, which
uses Steiner symmetrization, yields the assertion also for k ≥ 1; one merely
has to use that the function x �→ xk, x ≥ 0, is convex and strictly increasing.

Theorem 8.6.1 admits the following interpretation. We consider d indepen-
dent uniform random points in the convex body K and denote by T̃ (K) the
random variable given by the volume of the simplex that is the convex hull
of these points and the origin. For the kth moment of the random variable
T̃ (K)/Vd(K) we then have

E

(
T̃ (K)
Vd(K)

)k

≥ 1
(d!)k

κd
d+k

κd+k
d

d∏
j=1

ωj

ωk+j
,

with equality if and only if K is an ellipsoid with center 0.
Combining Theorem 8.6.1 with the linear Blaschke–Petkantschin formula,

we obtain information about volumes of sections of convex bodies by random
flats. The case q = d− 1 of (8.54) is known as the Busemann intersection
inequality.

Theorem 8.6.2. If K ∈ K′ is a d-dimensional convex body and if 1 ≤ q ≤
d− 1, then
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G(d,q)

Vq(K ∩ L)d νq(dL) ≤
κd

q

κq
d

Vd(K)q. (8.54)

Equality holds for q = 1 if and only if K is symmetric with respect to 0, and
for q ≥ 2 if and only if K is an ellipsoid with center 0.

Proof. Let L ∈ G(d, q). By Theorem 8.6.1, with the triple (K, d, k) replaced
by (K ∩ L, q, d− q), we have

κq
d

κd
q

Vq(K ∩ L)d ≤ bdqI(K ∩ L, q, d− q).

This, together with Theorem 7.2.1, yields

κq
d

κd
q

∫
G(d,q)

Vq(K ∩ L)d νq(dL)

≤ bdq

∫
G(d,q)

∫
K∩L

. . .

∫
K∩L

∇q(x1, . . . , xq)d−q λL(dx1) · · ·λL(dxq) νq(dL)

=
∫

K

. . .

∫
K

λ(dx1) · · ·λ(dxq)

= Vd(K)q.

Equality holds if and only if, for every subspace L ∈ G(d, q) satisfying dim (K∩
L) = q, the intersection K ∩ L is a q-dimensional ellipsoid (a line segment if
q = 1) with center 0. The equality condition now follows, due to a theorem of
Busemann [142, p. 91]. ��

Remark. The fact that (8.54) holds with equality if q = 1 and K has sym-
metry center 0, is just a special case of the usual formula for calculating the
volume in spherical coordinates. However, that for q ≥ 2 an ellipsoid Q0 with
center 0 satisfies the equality∫

G(d,q)

Vq(Q0 ∩ L)d νq(dL) =
κd

q

κq
d

Vd(Q0)q, (8.55)

is not so evident. Equation (8.55) is known as the Furstenberg–Tzkoni
formula.

Now we turn to analogous considerations for affine instead of linear sub-
spaces. For the proof of the following counterpart to Theorem 8.6.1, which
also uses Steiner symmetrization, we refer to Groemer [287] (where, though,
the value of J(Q, d, k) for ellipsoids Q and k > 1 is not given explicitly). The
result is known as the Blaschke–Groemer inequality.

Theorem 8.6.3. If K ∈ K′ is a d-dimensional convex body and if k ≥ 1, then
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J(K, d, k) ≥ 1
(d!)k

κd+1
d+k

κd+k+1
d

κd(d+k)+d

κ(d+1)(d+k)

1
b(d+k)d

Vd(K)d+k+1.

Equality holds if and only if K is an ellipsoid.

Thus, if we consider d+1 independent uniform random points in the convex
body K and if S̃(K) is the volume of the simplex which is (a.s.) the convex
hull of the points, then

E

(
S̃(K)
Vd(K)

)k

≥ 1
(d!)k

κd+1
d+k

κd+k+1
d

κd(d+k)+d

κ(d+1)(d+k)

1
b(d+k)d

,

with equality if and only if K is an ellipsoid.
We combine Theorem 8.6.3 with the affine version of the Blaschke–

Petkantschin formula and thus obtain the following result about section vol-
umes.

Theorem 8.6.4. If K ∈ K′ is a d-dimensional convex body and if 1 ≤ p <
q ≤ d, then∫

A(d,q)

Vq(K ∩ E)p+1 µq(dE) ≥
κp+1

q

κq+1
p

κp(q+1)

κ(p+1)q

∫
A(d,p)

Vp(K ∩ E)q+1 µp(dE).

Equality holds always for p = 1, and for p ≥ 2 it holds if and only if K is an
ellipsoid.

Proof. We use, in this order, Theorems 7.2.7, 7.1.2, 8.6.3 (from which the
values of the constants c1, c2 can be seen) and obtain∫

A(d,q)

Vq(K ∩ F )p+1 µq(dF )

=
∫

A(d,q)

∫
(K∩F )p+1

dλp+1
F µq(dF )

= c1
∫

A(d,q)

∫
A(F,p)

∫
(K∩F )p+1

∆q−p
p dλp+1

E µF
p (dE)µq(dF )

= c1
∫

A(d,p)

∫
(K∩F )p+1

∆q−p
p dλp+1

E µp(dE)

≥ c1
∫

A(d,p)

c2Vp(K ∩ E)q+1 µp(dE).

Equality holds if and only if, for every flatE ∈ A(d, p) satisfying dim (K∩E) =
p, the intersection K ∩ E is a p-dimensional ellipsoid. Again, together with
the theorem of Busemann [142, p. 91], this yields the equality conditions. ��
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We emphasize two special cases of the preceding theorem. For q = d, we
obtain the inequality∫

A(d,p)

Vp(K ∩ E)d+1 µp(dE) ≤
κd+1

p

κp+1
d

κ(p+1)d

κp(d+1)
Vd(K)p+1. (8.56)

Equality holds always for p = 1, and for p ≥ 2 it holds if and only if K is an
ellipsoid.

The case p = 1 of Theorem 8.6.4 yields the identity∫
A(d,q)

Vq(K ∩ E)2 µq(dE) =
κq

q + 1

∫
A(d,1)

V1(K ∩ L)q+1 µ1(dL) (8.57)

(if the factor is treated as in the proof of Theorem 8.2.3).
This leads us to the frequently studied random chords of convex bodies.

For a convex body K ∈ K′, the chord power integrals are defined by

Ik(K) :=
ωd

2

∫
A(d,1)

V1(K ∩ E)k µ1(dE)

for k ≥ 1. (The factor before the integral has only historical reasons and comes
from a different normalization of the measure µ1.) Obviously,

I1(K) =
ωd

2
Vd(K).

The case q = d of (8.57) gives

Id+1(K) =
d(d+ 1)

2
Vd(K)2. (8.58)

For d = 2, this is an old result due to Crofton [187].
For the other chord power integrals one can obtain sharp estimates. They

are based on the following result, which we quote without proof (see, for
example, Pfiefer [603]).

Theorem 8.6.5. Let f : (0,∞) → R be a strictly decreasing function satis-
fying

∫ a

0
|f(x)|xd−1 dx < ∞ for all a ∈ R. Then, among all convex bodies K

with given volume Vd(K) > 0, precisely the balls yield the maximum of the
integral ∫

K

∫
K

f(||x− y||)λ(dx)λ(dy).

With this result, the following inequalities for chord power integrals can
be obtained.

Theorem 8.6.6. Every d-dimensional convex body K ∈ K′ satisfies the in-
equalities
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Ik(K) ≤ Ik(Bd)
(
Vd(K)
κd

)(d+k−1)/d

for 1 < k < d+ 1, and

Ik(K) ≥ Ik(Bd)
(
Vd(K)
κd

)(d+k−1)/d

for k > d+ 1. Equality, for given k, holds if and only if K is a ball; further,

Ik(Bd) = 2k−1κdκd+k−1

κk
=

2k−1πd− 1
2 kΓ( 1

2k)
Γ( 1

2d)Γ(1
2 (d+ k + 1))

.

Proof. Let j > −d. Theorem 7.2.7 with q = 1 yields∫
K

∫
K

||x0 − x1||j λ(dx0)λ(dx1)

=
ωd

2

∫
A(d,1)

∫
K∩E

∫
K∩E

||x0 − x1||d+j−1 λE(dx0)λE(dx1)µ1(dE)

=
ωd

2

∫
A(d,1)

2
(d+ j)(d+ j + 1)

V1(K ∩ E)d+j+1 µ1(dE)

=
2

(d+ j)(d+ j + 1)
Id+j+1(K).

To the first double integral, we can apply Theorem 8.6.5, with f(x) = xj if
−d < j < 0 and f(x) = −xj if j > 0. Assuming that Vd(K) = κd, we get the
inequalities

Id+j+1(K)

{
≤ Id+j+1(Bd) if − d < j < 0,

≥ Id+j+1(Bd) if j > 0.

For general K with Vd(K) > 0, the inequalities of the theorem follow, since
Ik is homogeneous of degree d+ k + 1. Moreover, the value

2
(d+ j)(d+ j + 1)

Id+j+1(Bd) = J(d, 1, j)

is already known from Theorem 8.2.3, and an easy calculation gives the stated
result. ��

In order to interpret the obtained results as information about random
chords, we consider a d-dimensional convex body K ∈ K′ and an isotropic
random line G̃ through K, as defined in Section 8.4. Thus, the distribution of
G̃ is given by

ωd

2κd−1

1
Vd−1(K)

µ1 E(1)
K with E(1)

K := {E ∈ A(d, 1) : K ∩ E �= ∅}.



8.6 Extremal Problems for Probabilities and Expectations 365

The intersection G̃ ∩ K is a random chord of K. It is called a µ-random
chord of K, since its definition is based on the invariant measure µ1. We
define the random variable σ̃µ(K) as the length of a µ-random chord of K.
For the moments of σ̃µ(K) we then have

E σ̃µ(K)k =
1

κd−1Vd−1(K)
Ik(K).

Now Theorem 8.6.6 yields sharp inequalities for these moments involving vol-
ume and surface area of K.

Besides isotropic random flats through K, in Section 8.4 we have also
considered q-weighted random q-flats through K. Let G̃ν be a 1-weighted
random line through K, and let σ̃ν(K) be the length of the chord G̃ν ∩K. In
the literature, G̃ν ∩K has been called a ν-random chord of K. By Corollary
8.4.1, the distribution of G̃ν has, with respect to the distribution of G̃, the
density

E �→ 2κd−1

ωd

Vd−1(K)
Vd(K)

V1(K ∩ E), E ∈ A(d, 1).

Therefore, for the moments of the length σ̃ν(K) of a ν-random chord of K
one obtains the representation

E σ̃ν(K)k =
2
ωd

1
Vd(K)

Ik+1(K). (8.59)

Hence, for 0 < k < d, and given volume Vd(K), the moment Eσ̃ν(K)k becomes
maximal if and only if K is a ball. In particular, the expectation satisfies

E σ̃ν(K) ≤ 4κd+1

πκd

(
Vd(K)
κd

)1/d

, (8.60)

with equality precisely if K is a ball. For d = 2 and with the normalization
V2(K) = κ2, we get

E σ̃ν(K) ≤ 16
3π

= 1.6977,

and for d = 3 and with the normalization V3(K) = κ3 we have

E σ̃ν(K) ≤ 3
2

= 1.5.

An essentially different result is obtained if random chords are generated
in the following way. Let G̃λ be the random line that is spanned by two
independent uniform random points in K. The intersection G̃λ ∩K is called
a λ-random chord of K. Let σ̃λ(K) denote the length of this chord. By
Theorem 8.4.8, the distribution of G̃λ has a density with respect to µ1 which
is given by

E �→ κd

d+ 1
1

Vd(K)2
V1(K ∩ E)d+1, E ∈ A(d, 1).
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Thus, we have

E σ̃λ(K)k =
2

d(d+ 1)
1

Vd(K)2
Id+k+1(K).

From Theorem 8.6.6 we now deduce that, for k > 0 and given volume Vd(K),
the moment E σ̃λ(K)k becomes minimal (not maximal, as above) precisely if
K is a ball. In particular, the expectation satisfies

E σ̃λ(K) ≥ 2d+2

d+ 1
κ2d+1

κdκd+2

(
Vd(K)
κd

)1/d

,

with equality if and only if K is a ball. For d = 2 and V2(K) = κ2, we get

E σ̃λ(K) ≥ 256
45π

= 1.81081,

and for d = 3 and V3(K) = κ3, we obtain

E σ̃λ(K) ≥ 12
7

= 1.7143.

We shall now consider some extremal problems for geometric probabilities
related to convex bodies. The proofs combine Blaschke–Petkantschin type
formulas with classical inequalities from convex geometry.

Let K be a convex body with interior points. Recall that an isotropic
uniform random (isotropic random, for short) q-flat through K is a random
q-flat with distribution

µq E(q)
K

µq(E(q)
K )

, E(q)
K := {E ∈ A(d, q) : E ∩K �= ∅},

and that
µq(E(q)

K ) = cq,d−q
0,d Vd−q(K),

by the Crofton formula (5.6).
Now let r, s be positive integers with r + s ≤ d − 1, and let E1, E2 be

independent random flats such that E1 is an isotropic random r-flat and E2

is an isotropic random s-flat through K. With probability one, the distance
between E1 and E2 is realized by a unique pair of points x1 ∈ E1 and x2 ∈ E2.
We denote by pr,s(K) the probability that x1, x2 both belong to K.

Theorem 8.6.7. Let r, s be positive integers with r + s ≤ d − 1. On the set
of d-dimensional convex bodies K, the probability pr,s(K) is maximal if and
only if K is a ball.
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Proof. In this proof, c1, . . . , c5 denote positive constants depending only on
d, r, s. By definition,

p(K) =
c1

Vd−r(K)Vd−s(K)
I(K)

with
I(K) :=

∫
A(d,s)

∫
A(d,r)

f(E1, E2)µr(dE1)µs(dE2),

where f(E1, E2) := 1 if a pair of points realizing the distance of E1 and E2 is
unique and belongs to K, and 0 otherwise. From Theorem 7.2.9 with q = 2
and p = r + s+ 1 we get

I(K) = c2

∫
A(d,p)

∫
A(U,s)

∫
A(U,r)

f(E1, E2)D(E1, E2)d−p[E1, E2]
d−p
(r,s)

× µU
r (dE1)µU

s (dE2)µp(dU).

To the inner double integral we apply Theorem 7.2.10 (with Rd replaced by U).
The resulting integrals are easily carried out, observing that for x1, x2 ∈ F ∈
A(d, 1) and subspaces L1, L2 ⊂ F⊥ we have D(L1 +x1, L2 +x2) = ‖x1−x2‖.
We arrive at

I(K) = c3
∫

A(d,p)

∫
A(U,1)

V1(K ∩ F )d−r−s+1 µU
1 (dF )µp(dU).

By Theorem 7.1.2,

I(K) = c4
∫

A(d,1)

V1(K ∩ F )d−r−s+1 µ1(dF ).

Now Theorem 8.6.6 shows that

pr,s(K) ≤ c5
Vd(K)(d−r)/d

Vd−r(K)
Vd(K)(d−s)/d

Vd−s(K)
,

and inequality (14.31) yields the assertion. ��

Let us consider random hyperplanes through a d-dimensional convex body
K ∈ K′ which are not necessarily isotropic, but still uniform, in the following
sense. A uniform random hyperplane through K is a random hyperplane
in Rd with distribution

Θ HK

Θ(HK)

(recall that HK := {H ∈ A(d, d − 1) : H ∩ K �= ∅}), where Θ �= 0 is a
translation invariant, locally finite measure on A(d, d− 1). By Theorem 4.4.2
(compare (4.33)), there exist a number γ > 0 and an even probability measure
ϕ on Sd−1 such that
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A(d,d−1)

f dΘ = γ
∫

Sd−1

∫ ∞

−∞
f(H(u, τ)) dτ ϕ(du) (8.61)

for every nonnegative measurable function f on A(d, d− 1). We assume that
the random hyperplane is nondegenerate, which means that the measure ϕ is
not concentrated on a great subsphere.

Now we consider d independent uniform random hyperplanes through K
with the same distribution given above, and we ask for the probability, denoted
by pd(K,Θ), that their intersection point belongs to K. We shall see that
this probability is maximized by a unique homothety class of convex bodies.
Similarly to Section 4.6, we define the convex body B(Θ) with surface area
measure

Sd−1(B(Θ), ·) = γϕ

and symmetry center 0. Existence and uniqueness are guaranteed by Theorem
14.3.1.

Theorem 8.6.8. Under the above assumptions,

pd(K,Θ) ≤ pd(B(Θ), Θ),

and equality holds if and only if K is homothetic to B(Θ).

Proof. By definition and by (8.61) we have (compare the proof of Theorem
4.4.8)

pd(K,Θ)

=
1

Θ(HK)d

∫
A(d,d−1)

. . .

∫
A(d,d−1)

χ(K ∩H1 ∩ . . . ∩Hd)Θ(dH1) · · ·Θ(dHd)

=
Vd(K)
Θ(HK)d

γd

∫
Sd−1

. . .

∫
Sd−1

∇d(u1, . . . , ud)ϕ(du1) · · ·ϕ(dud).

From (8.61) and (14.23) we obtain

Θ(HK) = γ
∫

Sd−1
[h(K,u) + h(K,−u)]ϕ(du) = 2dV (K,B(Θ), . . . , B(Θ)).

Minkowski’s inequality (14.30) gives

Θ(HK)d ≥ (2d)dVd(K)Vd(B(Θ))d−1

and hence
Vd(K)
Θ(HK)d

≤ 1
(2d)d

1
Vd(B(Θ))d−1

=
Vd(B(Θ))
Θ(HB(Θ))d

.

Together with the equality conditions of Minkowski’s inequality, this yields
the assertion. ��
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In a d-dimensional convex body K we now consider a fixed number m ≥ 2
of independent uniform random points X1, . . . , Xm. We denote by pm(K)
the probability that the circumball of X1, . . . , Xm, that is, the smallest ball
containing these points, is contained in K.

Theorem 8.6.9. The probability pm(K) is maximal if and only if K is a ball.

Proof. We denote by B(x1, . . . , xm) the circumball of the points x1, . . . , xm.
With probability one, at most d+1 and at least two of the points X1, . . . , Xm

lie on the boundary of B(X1, . . . , Xm), and B(X1, . . . , Xm) is also the cir-
cumball of these points. For 1 ≤ q ∈ min{m− 1, d}, we define

fq(x1, . . . , xm) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if B(x1, . . . , xm) ⊂ K,
x1, . . . , xq+1 ∈ bdB(x1, . . . , xm),
xq+2, . . . , xm ∈ intB(x1, . . . , xm),

0, otherwise.

Then

pm(K) =
1

Vd(K)m

d∑
q=1

(
m

q + 1

) ∫
K

. . .

∫
K

fq(x1, . . . , xm)λ(dx1) · · ·λ(dxm)

=
1

Vd(K)m

d∑
q=1

(
m

q + 1

)
κm−q−1

d Aq

with

Aq :=
∫

K

. . .

∫
K

fq(x1, . . . , xq+1)r(x1, . . . , xq+1)d(m−q−1) λ(dx1) · · ·λ(dxq+1),

where r(x1, . . . , xq+1) is the radius of B(x1, . . . , xq+1). As fq(x1, . . . , xq+1) = 0
if some xi /∈ K, the Blaschke–Petkantschin formula of Theorem 7.2.7 yields

Aq =
∫

(Rd)q+1
fqr

d(m−q−1) dλq+1

= bdq(q!)d−q

∫
A(d,q)

∫
Eq+1

fqr
d(m−q−1)∆d−q

q dλq+1
E µq(dE).

To the inner integral over Eq+1 we apply the transformation formula of Theo-
rem 7.3.1 (with Rd replaced by E), observing that fq(z+su1, . . . , z+suq+1) =
1 implies r(z + su1, . . . , z + suq+1) = s and that

∆q(z + su1, . . . , z + suq+1) = sq∆q(u1, . . . , uq+1).

Denoting by SE the intersection of the sphere Sd−1 with the linear subspace
parallel to E and by σE its spherical Lebesgue measure, we obtain
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Aq = bdq(q!)d−q+1

∫
A(d,q)

∫
E

∫ ∞

0

∫
SE

. . .

∫
SE

fq(z + ru1, . . . , z + ruq+1)

× rd(m−1)−1∆q(u1, . . . , uq+1)d−q+1 σE(du1) · · ·σE(duq+1)

× dr λE(dz)µq(dE).

We have fq(z+ ru1, . . . , z+ ruq+1) = 1 if and only if z+ rBd ⊂ K, the points
z + ru1, . . . , z + ruq+1 lie on the boundary of z + rBd, and z + rBd is the
circumball of these points. The latter holds if and only if u1, . . . , uq+1 do not
all lie in an open hemisphere of SE . Therefore, defining

hE(u1, . . . , uq+1) :=

⎧⎨⎩
1, if u1, . . . , uq+1 ∈ SE are not contained

in an open hemisphere of SE ,

0, otherwise,

and

g(z, r) :=
{

1, if z + rBd ⊂ K,
0, otherwise,

we get

Aq = bdq(q!)d−q+1

∫
A(d,q)

∫
E

∫ ∞

0

∫
SE

. . .

∫
SE

hE(u1, . . . , uq+1)g(z, r)

× rd(m−1)−1∆q(u1, . . . , uq+1)d−q+1 σE(du1) · · ·σE(duq+1)

× dr λE(dz)µq(dE).

We write

M(d, k)

:=
∫

Sd−1
. . .

∫
Sd−1

hRd(u1, . . . , ud+1)∆d(u1, . . . , ud+1)k σ(du1) · · ·σ(dud+1),

then∫
SE

. . .

∫
SE

hE(u1, . . . , uq+1)∆q(u1, . . . , uq+1)d−q+1 σE(du1) · · ·σE(duq+1)

=M(q, d− q + 1).

Further, we define

Jp(K) :=
∫

K

d(z,bdK)p λ(dz)

for p ∈ N, where d(z,bdK) = max{r ≥ 0 : z + rBd ⊂ K} for z ∈ K is the
distance of z from the boundary of K. Then we obtain



8.6 Extremal Problems for Probabilities and Expectations 371

Aq = bdq(q!)d−q+1M(q, d− q + 1)
∫

A(d,q)

∫
E∩K

∫ d(z,bd K)

0

rd(m−1)−1

× dr λE(dz)µq(dE)

=
1

d(m− 1)
bdq(q!)d−q+1M(q, d− q + 1)

∫
A(d,q)

∫
E∩K

d(z,bdK)d(m−1)

× λE(dz)µq(dE)

=
1

d(m− 1)
bdq(q!)d−q+1M(q, d− q + 1)

∫
K

d(z,bdK)d(m−1) λ(dz)

(the latter, for example, by (13.9)). Thus, we finally arrive at

pm(K)

=
1

d(m− 1)
Jd(m−1)(K)
Vd(K)m

d∑
q=1

(
m

q + 1

)
κm−q−1

d bdq(q!)d−q+1M(q, d− q + 1).

The inequality
Jp(K)

Vd(K)(d+p)/d
≤ 1(

d+p
d

)
κ

p/d
d

(8.62)

was proved for d = 3 by Bol [112] and was extended in Bauer and Schneider
[83]. Equality for some p ∈ N holds if and only if K is a ball. This finishes the
proof. ��

The explicit values of pm(Bd), which would require the computation of
M(d, k), are unknown, with the exception of

p2(Bd) = 2d

(
2d
d

)−1

and pm(B2) =
m

2m− 1
.

The first follows from the easily established relation M(1, k) = 2k+1. For the
second, we compute the value of

M(2, 1) =
∫

S1

∫
S1

∫
S1
hR2(u1, u2, u3)∆2(u1, u2, u3)σ(du1)σ(du2)σ(du3)

as follows. The integrand does not change if u1, u2, u3 undergo the same ro-
tation. Therefore, we may fix u1, perform the other two integrations, and
multiply the result by 2π, to get M(2, 1). If the circle S1 is oriented, the inte-
gration variables u2, u3 occur (up to a set of measure zero) either in the order
u1, u2, u3 or in the order u1, u3, u2. Each order gives the same contribution to
the integral. It follows that

M(2, 1) = 4π
∫ π

0

∫ π

π−ϕ

1
2
[sinϕ+ sinψ − sin(ϕ+ ψ)] dψ dϕ = 6π2.
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As a variant of the preceding problem, we consider d + 1 independent
uniform random points in a d-dimensional convex body K and ask for the
probability, denoted by p0(K), that the circumsphere of these points is en-
tirely contained in K. The circumsphere of d+1 points x0, . . . , xd in general
position is the unique (d − 1)-sphere through these points (this must be dis-
tinguished from the boundary of the circumball).

Theorem 8.6.10. The probability p0(K) is maximal if and only if K is a ball.

Proof. By a similar, though simpler, argument to the foregoing proof, using
Theorem 7.3.1, we find that

p0(K) =
Jd2(K)
Vd(K)d+1

d!
d2

∫
Sd−1

. . .

∫
Sd−1

∆d(u0, . . . , ud)σ(du0) · · ·σ(dud).

As in the previous proof, the assertion follows from inequality (8.62) and its
equality condition. ��

The explicit value of p0(Bd) can be obtained from Theorem 8.2.3.

Notes for Section 8.6

1. The proofs of Theorems 8.6.1, 8.6.3, 8.6.5 rest on Steiner symmetrization. Appar-
ently, Blaschke [102] was the first to apply Steiner symmetrization to solve an ex-
tremal problem for a geometric expectation. Following him, Busemann [141] proved
Theorem 8.6.1, and Groemer [287] obtained Theorem 8.6.3. Generalizations of the
latter result are found in Groemer [288, 292], Schöpf [722], Hartzoulaki and Paouris
[322], Campi and Gronchi [156]. Inequality (8.54) for q = d− 1 is due to Busemann
[141]; for the general case, see Busemann and Straus [144] or Grinberg [286]. Equa-
tion (8.55) was first observed, in a more general context, by Furstenberg and Tzkoni
[241]; a simple proof using the Blaschke–Petkantschin formula was given by Miles
[528]. The identity (8.57) (which for d = 3 appears in Blaschke and Varga [109]) was
pointed out to us by Lothar Heinrich. Inequality (8.56) was proved in Schneider [687]
(second part of Theorem 1). It was also shown in [687] that for q ∈ {2, . . . , d − 1},
k ∈ {q + 1, . . . , d}, on the set of convex bodies K with given positive volume, the
functional ∫

A(d,q)

Vq(K ∩ E)k µq(dE)

attains its maximum precisely at the balls.
The integrals appearing in Theorem 8.6.2 are usually renormalized in the form

Φ̃d−q(K) :=
κd

κq

(∫
G(d,q)

Vq(K ∩ L)dνq(dL)

)1/d

for q = 1, . . . , d − 1, supplemented by Φ̃0(K) := Vd(K) and Φ̃d(K) := κd. The

functional Φ̃d−q is known as the (d − q)th dual affine quermassintegral. It is
invariant under volume-preserving linear transformations (Grinberg [286]). It has
been asked whether the inequality
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κi
dΦ̃j(K)d−i ≤ κj

dΦ̃i(K)d−j

holds for 0 ≤ i < j ≤ d (Problem 9.6 in the first edition of [244]). However, Gardner
[245] found that this inequality does not hold, even for 0-symmetric convex bodies,
if 1 = i < j ≤ d − 1.

The functionals appearing in inequality (8.57), renormalized as

Φd−q(K) :=
κd

κq

(∫
A(d,q)

Vq(K ∩ E)d+1µq(dE)

)1/(d+1)

,

q = 0, . . . , d − 1, are known as mean dual affine quermassintegrals. They are
invariant under volume-preserving affine transformations of K. This follows from
the invariance of the dual quermassintegrals under volume-preserving linear trans-
formations, since

Φd−q(K) =

(
κd

κq

∫
K

Φ̃d−q(K − t)d λ(dt)

)1/(d+1)

. (8.63)

In fact, writing f(E) := Vq(K ∩ E)d for E ∈ A(d, q), we have∫
K

∫
G(d,q)

Vq((K − t) ∩ L)d νq(dL) λ(dt)

=

∫
K

∫
G(d,q)

f(L + t) νq(dL) λ(dt)

=

∫
G(d,q)

∫
Rd

f(L + t)1K(t) λ(dt) νq(dL)

=

∫
G(d,q)

∫
L⊥

∫
L

f(L + y)1K(y + z) λL(dz) λL⊥(dy) νq(dL)

=

∫
G(d,q)

∫
L⊥

f(L + y)Vq(K ∩ (L + y)) λL⊥(dy) νq(dL)

=

∫
A(d,q)

f(E)Vq(K ∩ E) µq(dE),

from which (8.63) follows.
The (d − q)th affine quermassintegral of a convex body K is defined by

Φd−q(K) :=
κd

κq

(∫
G(d,q)

Vq(K|L)−dνq(dL)

)−1/d

for q = 1, . . . , d−1, and Φ0(K) := Vd(K), Φd(K) := κd. It is invariant under volume-
preserving affine transformations (Grinberg [286]). Lutwak [443] has asked whether
the inequality

κi
dΦj(K)d−i ≥ κj

dΦi(K)d−j

holds for 0 ≤ i < j ≤ d. Equality holds if K is a centered ellipsoid.
Some of the inequalities of this section hold for much more general sets than

convex bodies. See Pfiefer [603] for an extension of the Blaschke–Groemer inequality
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to compact sets, and Gardner [245] for generalizations, for example, of Theorem 8.6.2
to bounded Borel sets, complete with equality conditions.

2. For hints to literature on chord power integrals, see Santaló [662, pp. 48, 238] and
[664]. Theorem 8.6.5 goes back, in principle, to Blaschke [103] and Carleman [160];
a general version was proved by Pfiefer [603].

The investigation of different types of random secants of a convex body (namely,
µ, ν, λ random) goes back to Kingman [411], Coleman [178], Enns and Ehlers
[217]. The inequality (8.60), which follows from (8.59) and Theorem 8.6.6, had been
conjectured by Enns and Ehlers [217] and was proved independently by Davy [200],
Schneider [687], and Santaló [664].

In a series of papers, Enns and Ehlers [218, 219, 220, 221] have studied further
types of random chords and rays.

In the plane, Xie and Jiang [821] studied the ‘double chord power integrals’∫
A(2,1)

∫
A(2,1)

1{E ∩ F ∩ K �= ∅}V1(K ∩ E)mV1(K ∩ F )n µ1(dE) µ1(dF )

for convex bodies K and nonnegative integers m, n.

3. For d = 3, formula (8.58) reads∫
A(3,1)

V1(K ∩ E)4 µ1(dE) =
3

π
V3(K)2.

Variants of this formula, also for non-convex sets, have applications in stereology;
see Cabo and Baddeley [145, 146] and the references given there.

4. In the proof of Theorem 8.6.6, the classical formula∫
K×K

‖x1 − x2‖j λ2(d(x1, x2)) =
2

(d + j)(d + j + 1)
Id+j+1(K)

was used. This formula was generalized by Piefke [605], to pairs of convex bodies
and more general functions of the distance.

The distribution of the chord length σ̃µ(K) (of a µ-random chord of K) can be
determined from the distribution of the distance between two independent uniform
random points in K, and conversely. General formulas to this effect were proved by
Piefke [604].

5. Chord length distributions and the covariogram problem. It was an old
question of Blaschke (for d = 2, see [107, p. 52]) whether the moments of the random
chord length σ̃µ(K) determine the convex body K uniquely, up to a rigid motion or
reflection. This was disproved by Mallows and Clark [448], who constructed two non-
congruent polygons with the same chord length distribution. Gates [247] showed that
triangles and quadrangles can be reconstructed from their chord length distributions.
Further results on the chord length distribution of planar convex sets are found in
Waksman [776] and Gates [249].

A different question arises if one considers, for each direction u ∈ Sd−1, the
distribution of the length of the uniform random chord of the convex body K with
direction u. Determination of a convex body K by these distributions, for all direc-
tions, is equivalent to the determination by its covariogram, which is the function
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defined by C(K, x) := Vd(K ∩ (K + x)), x ∈ Rd. Matheron [458] introduced this co-
variogram (more generally, for functions), and in [463] he conjectured that a planar
convex body with interior points is uniquely determined (within the class of convex
bodies) by its covariogram, up to translation or reflection in a point. An equivalent
problem is whether a convex body K is determined, up to translation or reflection,
by the distribution of X−Y , where X and Y are independent uniform random points
in K. In the plane, an affirmative answer to the covariogram problem for convex
polygons was given by Nagel [572]. Various partial results were obtained by several
authors (see the references in [41]), until Averkov and Bianchi [41] finally settled
the problem completely for arbitrary convex bodies in the plane. Examples show
that convexity is essential in this characterization. Bianchi [100] found counterex-
amples to the covariogram conjecture in dimensions d ≥ 4, and a positive answer
for three-dimensional polytopes in [101]. The general three-dimensional case is still
open. For d ≥ 3, most convex bodies, in the sense of Baire category, are determined
by their covariogram; this was proved by Goodey, Schneider and Weil [276].

6. Theorem 8.6.7 was proved for d = 3 and r = s = 1 by Knothe [421], for d ≥ 3
and r + s = 1 by Schneider [687], and in general by Affentranger [7]. An extension
to two convex bodies appears in Wu [820].

7. More generally than before Theorem 8.6.8, let k ∈ {2, . . . , d} and consider k
independent uniform random hyperplanes through a d-dimensional convex body K
with distribution defined by Θ. The hyperplanes are isotropic if Θ is also rotation
invariant and thus a multiple of the Haar measure µd−1 on A(d, d−1). Let pk(K, Θ)
denote the probability that the intersection of the hyperplanes meets the convex
body K. Miles [520] has proved that pk(K, µd−1) ≤ pk(Bd, µd−1), with equality
if and only if K is a ball. This was extended by Schneider [687] to intersections of
tuples of independent isotropic uniform random flats of different dimensions through
K. Miles had also conjectured that pk(Bd, Θ) ≤ pk(Bd, µd−1). This was proved by
Schneider [686]. (Essentially equivalent is the proof by which Thomas [756] proved
Theorem 4.6.5.) Equality holds if and only if the random hyperplanes are isotropic.
Theorem 8.6.8 was also proved in [686]. There it was further shown that for d = 2
one has p2(K, Θ) ≤ 1/2 = p2(B

2, µ1), whereas for d > 2 and a d-dimensional cube
C, one has pd(C, Sd−1(C, ·)) = d−dd! > pd(Bd, µd−1). This disproved the conjecture
of Miles [520] that pk(K, Θ) ≤ pk(Bd, µd−1) for all K and Θ. In Bauer and Schneider
[83], the counterexample was extended to 2 ≤ k < d. The maximum of pd(K, Θ) for
d > 2 is still unknown.

8. Theorem 8.6.9 was proved by Bauer and Schneider [83]. It was motivated by
Theorem 8.6.10, which is due to Affentranger [9]. Affentranger has also computed
the probability that the (m−2)-dimensional circumsphere through m ∈ {3, . . . , d+1}
independent uniform random points in the unit ball Bd is contained in the ball; see
[8] for m = 3 and [9] for the general case. A generalization of the planar case of
Theorem 8.6.10, in which the class of circles is replaced by a homothety class of
strictly convex closed curves of class C2, was treated by Bauer and Schneider [83].

9. Let H1, . . . , Hn be independent, identically distributed uniform random hy-
perplanes through the unit ball Bd (n ≥ d). We assume that their directional
distribution ϕ, defined by (8.61), is not concentrated on a great subsphere. Let
Pn :=

⋂n
i=1 H−

i , where H−
i is the (almost surely unique) closed halfspace bounded

by Hi that contains the origin 0. Let f0(Pn) be the number of vertices of the random
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polyhedral set Pn. It was shown by Schneider [685] that

lim
n→∞

E f0(Pn) = 2−dd!Vd(Zϕ)Vd(Zo
ϕ),

where Zϕ is the zonoid with support function

h(Zϕ, u) =
1

2

∫
Sd−1

|〈u, v〉|ϕ(dv), u ∈ R
d.

Now (14.45) yields sharp inequalities for limn→∞ E f0(Pn); in particular, this limit
is maximal if the random hyperplanes are isotropic.

10. The following question seems still to be unanswered. Let K be a convex body
with interior points and consider the random triangle which is the convex hull of
three independent uniform random points in K. It was asked by G.R. Hall [315]
whether the probability that this triangle is acute becomes maximal if K is a ball.

11. Consider n independent isotropic uniform random lines through the unit disk
B2 in the plane. Sulanke [748] and Gates [248] have investigated bounds for the
probability that all intersection points of the lines are in B2.

12. Randomly iterated symmetrizations. Most of the inequalities for geometric
expectations mentioned in this section are proved by symmetrization. This gives us
an opportunity to mention further relations between symmetrizations of convex
bodies and probability.

In Rd, let L1, L2, . . . be an i.i.d. sequence of random (d − 1)-dimensional linear
subspaces with uniform distribution (that is, given by the rotation invariant proba-
bility measure νd−1 on G(d, d − 1)). Let K be a convex body with interior points,
and define K1 := K, Kn+1 := SnKn for n ∈ N, where Sn denotes the (orthogonal)
Steiner symmetrization with respect to Ln. Then, with probability one, the sequence
K1, K2, . . . converges to a ball. This was proved by Mani–Levitska [449].

Let ϑ1, ϑ2, . . . be an i.i.d. sequence of rotations with uniform distribution (that
is, given by the invariant probability measure ν on SOd). Let K be a convex body
with more than one point, and define Kn := 1

n
(ϑ1K + . . . + ϑnK) for n ∈ N. Then,

with probability one, the sequence K1, K2, . . . converges to a ball (Vitale [769]).
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Mean Values for Random Sets

For a stationary random closed set Z in Rd, the volume density or specific
volume was defined in Section 2.4 by

Vd(Z) =
Eλ(Z ∩B)
λ(B)

, (9.1)

where B ⊂ Rd can be an arbitrary Borel set with 0 < λ(B) <∞. This impor-
tant parameter describes the mean volume of the random set per unit volume
of the space. It is obtained by a double averaging, stochastic and spatial. The
straightforward definition (9.1) has the advantage that it immediately exhibits
λ(Z ∩ B)/λ(B) as an unbiased estimator for the specific volume. The situ-
ation becomes less simple if one wants to take other quantitative aspects of
point sets into account. For example, in several applications one is interested
in the mean surface area (the mean perimeter in the plane) per unit volume.
Clearly, one cannot just proceed as in the case of (9.1), since the surface area
of Z ∩B is in general not defined. Evidently, we must restrict the realizations
of the random set Z as well as the ‘observation window’ B. For that reason,
we shall assume in the following that the realizations of the closed random set
Z belong to the extended convex ring S, the sets of which have the property
that the intersection with any convex body is a finite union of convex bodies.
Moreover, the observation window will be a compact convex set W with pos-
itive volume. In that case, Z ∩W has a well-defined surface area. However,
part of it generally comes from Z ∩bdW and not from the boundary of Z. To
overcome boundary effects caused by the window W , the definition of densi-
ties for functionals other than the volume will require additional devices, for
example, limit procedures.

The main purpose of Section 9.2 is the specification of a class of stationary
random sets Z (with locally polyconvex realizations) and a class of functionals
ϕ (defined on polyconvex sets) such that the limit

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

(9.2)
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exists for every convex body W with Vd(W ) > 0. The parameter ϕ(Z) is
called the ϕ-density of Z. Important (but not the only) examples of func-
tionals satisfying the assumptions are the intrinsic volumes (or Minkowski
functionals) V0, . . . , Vd−1. In this way, the Vj-density, or specific jth intrinsic
volume, Vj(Z), is defined for a large class of stationary random sets. Included
are the specific surface area, 2Vd−1(Z), and the specific Euler characteristic,
V0(Z).

For the same class of functionals ϕ, and for stationary particle processes
X with polyconvex grains and satisfying a suitable integrability condition, the
ϕ-density, which was defined in Section 4.1 by

ϕ(X) = γ
∫
C0

ϕdQ,

can be represented in the form

ϕ(X) = lim
r→∞

E
∑

C∈X ϕ(C ∩ rW )
Vd(rW )

,

which is analogous to (9.2).
For Boolean models with convex grains and satisfying suitable invariance

assumptions, the existence of the specific intrinsic volumes can be obtained in
a more direct way, as a consequence of explicit formulas. These formulas will
be derived, together with some other results on Boolean models, in Section 9.1.
They show, in particular, how the specific intrinsic volumes of a stationary,
isotropic Boolean model with convex grains can be computed from the specific
intrinsic volumes of the underlying Poisson particle process, and conversely.
Especially, the intensity of the underlying particle process can, in principle,
be determined from the specific intrinsic volumes of the union set. This seems
surprising at first sight, but is, of course, nothing but another manifestation
of the strong independence properties of Poisson processes. In the derivation,
the integral geometric results of Chapters 5 and 6 will play an important role.

Instead of (9.2), it may even happen, under suitable assumptions, that the
limit

lim
r→∞

ϕ(Z ∩ rW )
Vd(rW )

exists P-almost surely and is a constant, which is then equal to ϕ(Z). This
ergodic approach to densities is described in Section 9.3.

As soon as densities of various functionals for stationary random sets are
defined, the problem arises to estimate these densities from observations of
realizations of the random set within a bounded sampling window, or from
observations in a lower-dimensional section. In Section 9.4, results from in-
tegral geometry are employed to derive various formulas which are useful in
this respect.

Mathematical principles of further estimation procedures are the topic
of Section 9.5. This section gives selected examples and is not meant as a
systematic exposition of estimation methods.
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9.1 Formulas for Boolean Models

In our treatment of germ-grain models in Section 4.3, we have already empha-
sized the particular role played by the Boolean models. Recall that a Boolean
model in Rd is a random closed set of the form

Z =
⋃

K∈X

K,

where X is a Poisson particle process. The Boolean model Z is station-
ary (isotropic) if and only if the underlying particle process X is stationary
(isotropic).

In this section, we shall show how some characteristic parameters of ran-
dom closed sets specialize in the case of stationary (and possibly isotropic)
Boolean models, in particular those with convex grains, and then appear in
rather explicit formulas. We begin with evaluating in closed form the capacity
functional and the contact distribution functions H and H[0,u], introduced in
Section 2.4.

Let Z be a Boolean model, generated as the union set of the Poisson
particle process X with intensity measure Θ. If Z and thus X is stationary,
the decomposition of Θ yields the intensity γ and the grain distribution Q of
X. We shall call Θ, γ and Q also the intensity measure, the intensity, and the
grain distribution, respectively, of Z. For stationary Z, we assume that γ > 0.

According to Theorem 3.6.3, the capacity functional of the Boolean model
Z satisfies the equation

TZ(C) = 1− e−Θ(FC) (9.3)

for all C ∈ C. Now we assume that Z is stationary. As in the proof of Theorem
4.1.2, we then have

Θ(FC) = γ
∫
C0

Vd(K − C) Q(dK). (9.4)

In general, this integral cannot be simplified further. If, however, Z is a
Boolean model with convex grains and if C ∈ K′, then the volume Vd(K−C)
can, according to (14.20), be expressed in terms of mixed volumes, in the form

Vd(K − C) =
d∑

j=0

(
d

j

)
V (K[j],−C[d− j]).

For C = rBd, r > 0, this is the Steiner formula (14.5).
The contact distribution function HM of a random closed set Z with re-

spect to the structuring element M ∈ K′ with 0 ∈M is, according to Section
2.4, given by

HM (r) = 1− P(0 /∈ Z − rM)
P(0 /∈ Z)
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for r ≥ 0, if P(0 /∈ Z) > 0. For a stationary Boolean model Z with generating
Poisson particle process X we always have

P(0 /∈ Z) = 1− TZ({0}) = e−Vd(X) > 0, (9.5)

by (9.3) and (9.4).

Theorem 9.1.1. Let Z be a stationary Boolean model in Rd with intensity γ
and grain distribution Q. Then

TZ(C) = 1− exp
(
−γ

∫
C0

Vd(K − C) Q(dK)
)
, C ∈ C.

For the structuring element M ∈ K′ with 0 ∈ M , the contact distribution
function is given by

HM (r) = 1− exp
(
−γ

∫
C0

[Vd(K − rM)− Vd(K)] Q(dK)
)
, r ≥ 0.

If Z has convex grains, then, for M ∈ K′,

TZ(M) = 1− exp

(
−γ

d∑
k=0

(
d

k

)∫
K0

V (−M [k],K[d− k]) Q(dK)

)

and

HM (r) = 1− exp

(
−γ

d∑
k=1

(
d

k

)
rk

∫
K0

V (−M [k],K[d− k]) Q(dK)

)
.

In particular, in this case the spherical contact distribution function is given
by

H(r) = 1− exp

(
−

d∑
k=1

κkr
kVd−k(X)

)
, r ≥ 0,

and for u ∈ Sd−1, the linear contact distribution function is given by

H[0,u](r) = 1− exp
(
−γr

∫
K0

Vd−1(K|u⊥) Q(dK)
)
, r ≥ 0.

If, moreover, Z is isotropic and M ∈ K′, then

TZ(M) = 1− exp

(
−

d∑
k=0

ck,d−k
0,d Vk(M)Vd−k(X)

)
,

where the constants are given by (5.5).

(In the formula for H[0,u], the integrand Vd−1(K|u⊥) is the (d − 1)-
dimensional volume of the orthogonal projection of K onto u⊥.)
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Proof. The first two assertions about the capacity functional have already
been proved. From these, the formulas for HM (r) follow because of

HM (r) = 1− 1− TZ(rM)
1− TZ({0}) , r ≥ 0.

The special form of H(r) in the case of convex grains is obtained, forM = Bd,
from (14.20), and the expression for H[0,u](r) follows from

Vd(K + r[0, u]) = Vd(K) + rVd−1(K|u⊥).

Now suppose that Z is also isotropic, so that Q is rotation invariant. Let
M ∈ K′. In the equation

Θ(FM ) = γ
∫
K0

∫
Rd

1FM
(K + x)λ(dx) Q(dK)

we can replace K in the integrand by ϑK with a rotation ϑ ∈ SOd; this
does not change the integral, since Q is rotation invariant. Then we integrate
over all ϑ ∈ SOd with respect to the invariant measure ν and apply Fubini’s
theorem and the principal kinematic formula (Theorem 5.1.3). ForM,K ′ ∈ K′

we have 1FM
(K ′) = V0(M ∩K ′) (since V0 is the Euler characteristic). This

gives

Θ(FM ) = γ

∫
SOd

∫
K0

∫
Rd

1FM
(ϑK + x)λ(dx) Q(dK) ν(dϑ)

= γ

∫
K0

∫
SOd

∫
Rd

V0(M ∩ (ϑK + x))λ(dx) ν(dϑ) Q(dK)

= γ

d∑
k=0

ck,d−k
0,d Vk(M)

∫
K0

Vd−k(K) Q(dK)

=
d∑

k=0

ck,d−k
0,d Vk(M)Vd−k(X),

which completes the proof. ��

The contact distribution function HM of a stationary random closed set
Z can be generalized in various directions. First, one can skip the stationarity
and consider the distribution of the M -distance dM (x,Z) of a point x to Z,
provided x /∈ Z. Then, one can take into account not only distances but also
directions, contact points and other local geometric information which can be
measured from outside Z. Such generalized contact distributions are discussed
in Section 11.2 and in the corresponding Notes. They give us more information
about the random set Z; in some cases, they even determine the distribution
of Z. An example of that kind is presented in Section 9.5.
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As an introduction to the main topic of this section, we consider the (al-
ready defined) specific volume

Vd(Z) =
Eλ(Z ∩W )
λ(W )

for the case of a stationary Boolean model Z (with general compact grains).
Here W may be an arbitrary Borel set with λ(W ) > 0. We can find a connec-
tion with the volume density Vd(X) of the underlying particle process X. In
fact,

Vd(Z) = P(0 ∈ Z) = 1− P(0 /∈ Z)

= 1− P(card (X ∩ C{0}) = 0) = 1− e−Θ(C{0})

and

Θ(C{0}) = γ

∫
C0

∫
Rd

1C{0}(K + x)λ(dx) Q(dK)

= γ

∫
C0

Vd(K) Q(dK)

= Vd(X).

Thus, we have found that

Vd(Z) = 1− e−Vd(X). (9.6)

This equality should have come as a surprise: it says that the volume density
Vd(X) of the particle process X can be determined from the volume den-
sity of the union set. This is surprising, since in a given realization of Z one
cannot identify the generating particles, due to overlapping, and some parti-
cles may even be covered totally by others. The reason for the existence of
the exact relation (9.6) lies in the strong independence properties of Poisson
processes. The elegant connection between quantitative properties of a sta-
tionary Boolean model and its underlying particle process is not restricted to
the volume, as we shall soon see.

Let Z be a (not necessarily stationary) Boolean model, generated by the
Poisson process X with intensity measure Θ. For simplicity, we assume that
the particles in X are a.s. convex, although the following results hold true
for polyconvex particles, under an additional integrability condition (see the
remark at the end of this section). Motivated by practical applications (in
small dimensions), we assume that a sampling window, a convex body W
with Vd(W ) > 0, is given in which Z ∩W can be observed. Our aim is to
study random variables of the type

ϕ(Z ∩W ),
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with suitable functionals ϕ replacing the volume. In this way, we want to
find out which information on Z and its underlying particle process can be
obtained from measuring the realizations of Z within a bounded observation
window W . Under appropriate assumptions, this will lead in a natural way
to densities of Z and to relations between such densities defined for Z and
similar parameters defined for the underlying particle process.

Since we intend to investigate sets arising as unions of convex bodies, we
allow measurable functions ϕ defined on the convex ringR and having a simple
behavior under unions. Therefore, ϕ : R → R is assumed to be additive, that
is, to satisfy

ϕ(K ∪ L) = ϕ(K) + ϕ(L)− ϕ(K ∩ L) (9.7)

for K,L ∈ R and ϕ(∅) = 0. We further assume that ϕ is conditionally
bounded. Here, we call a function ϕ : R → R conditionally bounded if, for
each K ∈ K′, the function ϕ is bounded on the set {L ∈ K′ : L ⊂ K}. When
ϕ is translation invariant and additive, it is sufficient for this to assume that
ϕ is bounded on the set {L ∈ K′ : L ⊂ Cd}. If ϕ is given as a functional on K′

and is continuous and additive (the latter means that (9.7) holds whenever
K,L,K ∪ L ∈ K′), then Groemer’s extension theorem (Theorem 14.4.2) says
that the functional ϕ has an additive extension (which we denote by the same
symbol) to the convex ring R. By Theorem 14.4.4, the extension is measur-
able and, due to the continuity on K′, it is also conditionally bounded. The
intrinsic volumes Vj , j = 0, . . . , d, are prototypes of measurable, additive and
conditionally bounded functionals ϕ : R → R; they are also motion invariant.

For a Boolean model Z with convex grains, Z ∩W is a polyconvex set,
hence ϕ(Z∩W ) is defined and yields a random variable. We want to investigate
how its expectation is related to the characteristics of the underlying particle
process, that is, to the intensity measureΘ ofX. In applications, such relations
may be used to fit a Boolean model to given data, or to estimate densities of
functionals for the particle process, in particular its intensity (in the stationary
case), from measurements at realizations of the union set.

To begin with the computation of Eϕ(Z∩W ), for an additive, conditionally
bounded and measurable function ϕ, let ν be the random number of particles
of X hitting W , and let M1, . . . ,Mν be these particles (with any numbering).
Then the inclusion–exclusion principle (14.47) gives

ϕ(Z ∩W ) = ϕ

( ⋃
K∈X

K ∩W
)

=
ν∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤ν

ϕ(W ∩Mi1 ∩ . . . ∩Mik
)

=
ν∑

k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

�=

ϕ(W ∩K1 ∩ . . . ∩Kk).
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Here Xk
�= is the set of pairwise distinct k-tuples from X. In the last line, we

may extend the first summation to ∞, since ϕ(∅) = 0.
Since ϕ is conditionally bounded, there exists a number c (depending on

W ) with |ϕ(L)| ≤ c for all L ∈ K′ with L ⊂W . This gives

|ϕ(Z ∩W )| ≤
ν∑

k=1

1
k!

∣∣∣∣∣∣
∑

(K1,...,Kk)∈Xk
�=

ϕ(W ∩K1 ∩ . . . ∩Kk)

∣∣∣∣∣∣
≤

ν∑
k=1

(
ν

k

)
c ≤ 2νc = 2card(X∩KW )c.

Since card(X ∩ KW ) has a Poisson distribution,

E 2card(X∩KW ) =
∞∑

k=0

2k P(card(X ∩ KW ) = k)

= e−Θ(KW )
∞∑

k=0

[2Θ(KW )]k

k!

= e−Θ(KW )e2Θ(KW ) = eΘ(KW ) <∞.

It follows that ϕ(Z∩W ) is integrable. By the dominated convergence theorem,
we can interchange expectation and summation. Using Theorem 3.1.3 and
Corollary 3.2.4, we obtain

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
E

∑
(K1,...,Kk)∈Xk

�=

ϕ(W ∩K1 ∩ . . . ∩Kk)

=
∞∑

k=1

(−1)k−1

k!

∫
K
. . .

∫
K
ϕ(W ∩K1 ∩ . . . ∩Kk)Θ(dK1) · · ·Θ(dKk).

So far, we have not used stationarity. But if we now assume that Z is
stationary, we can use the decomposition of the intensity measure and get

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

∫
K0

. . .

∫
K0

∫
(Rd)k

ϕ(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))

×λk(d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk).

We summarize the results in the following theorem.
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Theorem 9.1.2. Let Z be a Boolean model in Rd with convex grains, let
W ∈ K′ and ϕ : R → R be a measurable, additive and conditionally bounded
functional. Then we have

E |ϕ(Z ∩W )| <∞

and

Eϕ(Z ∩W ) (9.8)

=
∞∑

k=1

(−1)k−1

k!

∫
K
. . .

∫
K
ϕ(W ∩K1 ∩ . . . ∩Kk)Θ(dK1) · · ·Θ(dKk).

If Z is stationary, then

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

∫
K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk)

with

Φ(W,K1, . . . ,Kk)

:=
∫

(Rd)k

ϕ(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk)).

To proceed further, in the stationary case, we need to compute the integrals∫
K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk).

This is possible for special choices of ϕ, using the translative integral formulas
from Section 6.4.

Let us first consider the volume again, ϕ = Vd. For convex bodies
K,K1, . . . ,Kk, we have

Φ(W,K1, . . . ,Kk)

=
∫

(Rd)k

Vd(W ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk))

= Vd(W )Vd(K1) · · ·Vd(Kk).

This follows from (6.15), but is also a direct consequence of Fubini’s theorem.
Thus, we obtain

EVd(Z ∩W ) =
∞∑

k=1

(−1)k−1

k!
Vd(W )Vd(X)k = Vd(W )

(
1− e−Vd(X)

)
.
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This is nothing but relation (9.6) again.
Now we consider the intrinsic volume Vd−1, which is half the surface area

(for convex bodies with interior points). Again from (6.15) or (5.15), we obtain∫
(Rd)k

Vd−1(K0 ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk))λk(d(x1, . . . , xk))

=
k∑

i=0

Vd(K0) · · ·Vd(Ki−1)Vd−1(Ki)Vd(Ki+1) · · ·Vd(Kk).

Therefore, we get

EVd−1(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
[
Vd−1(W )Vd(X)k + kVd(W )Vd−1(X)Vd(X)k−1

]
= Vd(W )Vd−1(X)

∞∑
k=1

[−Vd(X)]k−1

(k − 1)!
+ Vd−1(W )

(
1− e−Vd(X)

)
,

hence

EVd−1(Z ∩W ) = Vd(W )Vd−1(X)e−Vd(X) + Vd−1(W )
(
1− e−Vd(X)

)
.

In contrast to the case of the volume, the quotient

EVd−1(Z ∩W )
Vd(W )

= Vd−1(X)e−Vd(X) +
Vd−1(W )
Vd(W )

(
1− e−Vd(X)

)
still depends on the observation window W . This influence disappears for
increasing W . More precisely, we have

lim
r→∞

EVd−1(Z ∩ rW )
Vd(rW )

= Vd−1(X)e−Vd(X).

The limit on the left side is denoted by Vd−1(Z) and called the specific
surface area or the density of the surface area of Z (not caring about
the factor 1/2). Such limits exist under more general assumptions, as we shall
study in the next section.

We repeat that so far we have obtained the two relations

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = Vd−1(X)e−Vd(X), (9.9)

connecting specific intrinsic volumes of the stationary Boolean model Z with
corresponding densities of the underlying particle process X.
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We return to the case of a general additive functional ϕ (continuous on
K′). An explicit formula can still be obtained if we assume that the particle
process X and thus the Boolean model Z is isotropic.

Let Z be a stationary, isotropic Boolean model (always with convex
grains). Since the grain distribution Q of X is rotation invariant, we can
insert rotations, integrate over the rotation group, apply Fubini’s theorem,
and then use the iteration of Hadwiger’s general integral geometric theorem
(Theorem 5.1.2). In this way, we obtain∫

K0

. . .

∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk)

=
∫
K0

. . .

∫
K0

∫
SOd

∫
Rd

. . .

∫
SOd

∫
Rd

ϕ(W ∩ (ϑ1K1 + x1) ∩ . . . ∩ (ϑkKk + xk))

× λ(dx1) ν(dϑ1) · · ·λ(dxk) ν(dϑk) Q(dK1) · · ·Q(dKk)

=
∫
K0

. . .

∫
K0

d∑
r0,...,rk=0

r0+...+rk=kd

cdd−r0
ϕr0(W )

k∏
i=1

cri

d Vri
(Ki) Q(dK1) · · ·Q(dKk).

This gives

Eϕ(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!

d∑
r0,...,rk=0

r0+...+rk=kd

cdd−r0
ϕr0(W )

k∏
i=1

cri

d Vri
(X)

=
∞∑

k=1

(−1)k−1

k!

d∑
m=0

cdd−m ϕm(W )
d∑

m1,...,mk=0
m1+...+mk=kd−m

k∏
i=1

cmi

d Vmi
(X)

= ϕ(W )
(
1− e−Vd(X)

)
+

d∑
m=1

cdd−m ϕm(W )
∞∑

k=1

(−1)k−1

k!

d∑
m1,...,mk=0

m1+...+mk=kd−m

k∏
i=1

cmi

d Vmi
(X)

︸ ︷︷ ︸
S

.

We rearrange the last two sums according to the number, say s, of indices
among m1, . . . ,mk that are smaller than d; here s ∈ {1, . . . ,m}. This gives

S =
m∑

s=1

∞∑
r=0

(
r + s
r

)
(−1)r+s−1

(r + s)!
Vd(X)r

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X)

= −e−Vd(X)
m∑

s=1

(−1)s

s!

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X).
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Thus we have obtained the following result.

Theorem 9.1.3. Let Z be a Boolean model in Rd, generated by a stationary,
isotropic Poisson process X of convex particles. If ϕ : R → R is an additive
functional which is continuous on K′, then, for any W ∈ K′ with Vd(W ) > 0,

Eϕ(Z ∩W ) = ϕ(W )
(
1− e−Vd(X)

)
−e−Vd(X)

d∑
m=1

cdd−m ϕm(W )
m∑

s=1

(−1)s

s!

d−1∑
m1,...,ms=0

m1+...+ms=sd−m

s∏
i=1

cmi

d Vmi
(X).

A remarkable fact here is that the functional ϕ and its derived functionals
ϕm are applied, on the right side, only to the sampling window W . For given
ϕ and W , the expectation Eϕ(Z ∩W ) depends only on the densities of the
intrinsic volumes of the generating particle process X. Conversely, this means
that no information about the stationary isotropic particle process X beyond
its specific intrinsic volumes can be obtained from expectations of measure-
ments ϕ(Z ∩W ). All the densities Vi(X) already occur if we choose for ϕ the
intrinsic volumes V0, . . . , Vd.

For that reason, we now concentrate on ϕ = Vj , the jth intrinsic volume.
By the Crofton formula (5.6), we have

(Vj)m = cd−m
j cm+j

d Vm+j ,

with Vm+j = 0 if m+ j > d. Inserting this (and renaming the first summation
index), we obtain

EVj(Z ∩W ) = Vj(W )
(
1− e−Vd(X)

)
−e−Vd(X)

d∑
m=j+1

cmj Vm(W )
m−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=sd+j−m

s∏
i=1

cmi

d Vmi
(X).

Here we can replace W by rW with r > 0 and then let r tend to infinity. We
obtain the following result.

Theorem 9.1.4. Let Z be a Boolean model in Rd, generated by a stationary,
isotropic Poisson process X of convex particles. The limit

Vj(Z) := lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

exists and is given by

Vj(Z) = e−Vd(X)

⎡⎢⎣Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

s∏
i=1

cmi
j Vmi

(X)

⎤⎥⎦
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if j = 0, . . . , d− 1 and
Vd(Z) = 1− e−Vd(X).

The cases j = d and j = d − 1 have been obtained earlier without the
isotropy assumption.

We call Vj(Z) the density of the jth intrinsic volume, or the specific
jth intrinsic volume, of the Boolean model Z. In the next section, we shall
introduce such densities for much more general random sets.

For Boolean models, Theorem 9.1.4 can be used to determine the densities
Vi(X) of the underlying particle process from the densities Vj(Z) of the union
set. We demonstrate this only in dimensions two and three. Here we use
classical notation:

d = 2 A = V2, area

L = 2V1, perimeter

χ = V0, Euler characteristic

d = 3 V = V3, volume

S = 2V2, surface area

M = πV1, integral of mean curvature

χ = V0, Euler characteristic.

We obtain the following relations: For d = 2,

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)

(
χ(X)− 1

4π
L(X)2

)
.

For d = 3,

V (Z) = 1− e−V (X),

S(Z) = e−V (X)S(X),

M(Z) = e−V (X)

(
M(X)− π

2

32
S(X)2

)
,

χ(Z) = e−V (X)

(
χ(X)− 1

4π
M(X)S(X) +

π

384
S(X)3

)
.

In either case, if all the parameters on the left side are known, then all
parameters on the right side are known.
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In particular, the densities on the left side determine χ(X), which is the
intensity γ of X. We point out, however, that the determination of the inten-
sity χ(X) requires the determination of the densities of all the d+ 1 intrinsic
volumes of Z.

If we drop the isotropy assumption, hence consider a stationary Boolean
model Z with convex grains and ϕ = Vj , we can combine Theorem 9.1.2 with
the iterated translative formula (6.15). We obtain

EVj(Z ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

d∑
m0,...,mk=j

m0+...+mk=kd+j

∫
K0

. . .

∫
K0

V (j)
m0,...,mk

(W,K1, . . . ,Kk)

×Q(dK1) · · ·Q(dKk).

Again, we replace W by rW , divide by Vd(rW ) and let r →∞. Then, due to
the homogeneity properties of the mixed functionals (see Theorem 6.4.1), all
summands on the right side with m0 < d disappear asymptotically. For m0 =
d, we can use the decomposability property of the mixed functionals (Theorem
6.4.1) and get, with essentially the same arguments as in the isotropic case,

Vj(Z) = lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

=
∞∑

k=1

(−1)k−1

k!
γk

d∑
m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
K0

. . .

∫
K0

V (j)
m1,...,mk

(K1, . . . ,Kk)

×Q(dK1) · · ·Q(dKk)

=
d−j∑
s=1

∞∑
r=0

(
r + s
r

)
(−1)r+s−1

(r + s)!
Vd(X)rγs

d−1∑
m1,...,ms=j

m1+...+ms=(s−1)d+j

∫
K0

. . .

∫
K0

V (j)
m1,...,ms

(K1, . . . ,Ks) Q(dK1) · · ·Q(dKs)

= −e−Vd(X)

d−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

= e−Vd(X)

⎛⎜⎝Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

⎞⎟⎠ .
The densities of X appearing here are special cases of the mixed densities
defined by

V
(j)

m1,...,ms
(X, . . . ,X,Kk+1, . . . ,Ks)



9.1 Formulas for Boolean Models 391

:= γk

∫
K0

. . .

∫
K0

V (j)
m1,...,ms

(K1, . . . ,Kk,Kk+1, . . . ,Ks) Q(dK1) · · ·Q(dKk).

Hence, we arrive at the following result.

Theorem 9.1.5. For a stationary Boolean model Z in Rd with convex grains,
the limit

Vj(Z) := lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

exists and satisfies

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = e−Vd(X)Vd−1(X),

and

Vj(Z)

= e−Vd(X)

⎛⎜⎝Vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X)

⎞⎟⎠
for j = 0, . . . , d− 2.

For d = 2, only the formula for the Euler characteristic V0 is different from
the isotropic case, and we have

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)
(
γ −A(X,−X)

)
,

where
A(X,−X) := γ2

∫
K0

∫
K0

A(K,−M) Q(dK) Q(dM).

Here, we made use of the fact that the mixed functional V (0)
1,1 (K,M) in the

plane equals twice the mixed area A(K,−M) of K and −M . It is obvious that
the formulas can no longer be used directly for the estimation of γ. Hence,
we need more (local) information for the statistical analysis of non-isotropic
Boolean models; this will be discussed in Section 9.5.

As an immediate generalization of Theorem 9.1.5, we can replace the in-
trinsic volumes Vj(Z ∩ W ) by (additively extended) mixed volumes V (Z ∩
W [j],M [d− j]), j = 1, . . . , d− 1, for M ∈ K′. Applying Theorem 9.1.2 to the
functional ϕ given by

ϕ(K) =
(
d

j

)
V (K[j],−M [d− j]) = V (0)

j,d−j(K,M)
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and using (6.15), we obtain the following result. Since the proof is identical
to the previous one, we skip it.

Theorem 9.1.6. Let Z be a stationary Boolean model in Rd with convex
grains, j ∈ {1, . . . , d− 1} and M ∈ K′. Then the limit

V
(0)

j,d−j(Z,M) :=
(
d

j

)
lim

r→∞

EV (Z ∩ rW [j],−M [d− j])
Vd(rW )

exists, is independent of W and satisfies

V
(0)

j,d−j(Z,M) = e−Vd(X)

(
V

(0)

j,d−j(X,M)

−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+...+ms=(s−1)d+j

V
(0)

m1,...,ms,d−j(X, . . . ,X,M)

)
.

For j = d− 1, the theorem yields

V
(0)

d−1,1(Z,M) = e−Vd(X)V
(0)

d−1,1(X,M).

We can transform this into a local formula for area measures, using (14.23).
Namely, we can rewrite (14.23) as

V
(0)
d−1,1(K,M) =

∫
Sd−1

h∗(M,−u)Sd−1(K,du) (9.10)

(where h∗ denotes the centered support function, see Section 4.6) and remark
that, by additive extension in each variable, (9.10) holds for K,M ∈ R. Since
the vector space generated by the functions h∗(M, ·), M ∈ K′, is dense in the
space of centered, continuous functions on Sd−1 and since area measures have
centroid 0, we deduce that the weak limit

Sd−1(Z, ·) := lim
r→∞

ESd−1(Z ∩ rW, ·)
Vd(rW )

. (9.11)

exists and satisfies the local density formula

Sd−1(Z, ·) = e−Vd(X)Sd−1(X, ·) . (9.12)

Here, according to (4.43),

Sd−1(X, ·) := γ
∫
K0

Sd−1(K, ·) Q(dK).

Alternatively, (9.12) and the existence of the limit (9.11) can be obtained
directly, with a proof similar to that of the previous results. For this, we use
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Theorem 9.1.2 with ϕ(K) := Sd−1(K,A), for a fixed Borel set A ⊂ Sd−1,
together with the translative formula for area measures,∫

Rd

Sd−1(K ∩ (M + x), ·)λ(dx) = Vd(M)Sd−1(K, ·) + Vd(K)Sd−1(M, ·).

For K,M ∈ K′, this formula can either be deduced from the more general
results in Section 6.4 or proved directly, using approximation by polytopes.

Note that (9.12) is a local version of (9.9).
We could also use (9.10) to obtain a formula for a local version of

V
(0)

j,d−j(Z,M) for j = 1. This would involve the limit of the centered, ad-
ditively extended support function

h(Z, ·) := lim
r→∞

Eh∗(Z ∩ rW, ·)
Vd(rW )

and expresses h(Z, ·) in terms of (mean values of) iterated versions of the
mixed support functions, which appear in Theorem 6.4.6. We mention only
the planar case, where the formula is simple. For d = 2,

h(Z, ·) = e−A(X)h(X, ·), (9.13)

where
h(X, ·) := γ

∫
K0

h ∗(K, ·) Q(dK).

Remark. Starting with Theorem 9.1.2, the results of this section remain
true for Boolean models with polyconvex grains, if the additively extended
functionals are used and the grain distribution satisfies (9.17).

Notes for Section 9.1 are included in the Notes for Section 9.4.

9.2 Densities of Additive Functionals

In the previous section we have seen that for stationary isotropic Boolean
models Z and for arbitrary convex bodies W with positive volume the limit

lim
r→∞

EVj(Z ∩ rW )
Vd(rW )

= Vj(Z)

always exists. In this way, the specific jth intrinsic volume Vj(Z) can be
defined. The existence of the limit for Boolean models was deduced from
explicit formulas. They yielded, at the same time, a representation of this
density of the jth intrinsic volume of the Boolean model Z in terms of densities
of the underlying particle process X.
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Our aim in this section is to show the existence of corresponding densi-
ties for more general random closed sets and for rather general functionals.
Essentially, the realizations of the random closed sets will locally belong to
the convex ring R, consisting of all finite unions of convex bodies in Rd. The
functionals to be considered will share with the intrinsic volumes the property
of additivity.

The existence proof for the limit will be prepared by two lemmas. We make
use of the unit cube Cd = [0, 1]d and the half-open unit cube Cd

0 := [0, 1)d.
The upper right boundary

∂+Cd := Cd \ Cd
0

is the union of d facets of Cd and hence belongs to the convex ring R.
For z ∈ Zd, we put

Cz := Cd + z, C0,z := Cd
0 + z, ∂+Cz := ∂+Cd + z.

Then
Rd =

⋃
z∈Zd

C0,z

is a disjoint decomposition of Rd.
Let ϕ be a real function on the convex ring R, and let K ∈ R. Since

∅ �= K ∩ C0,z = K ∩ C0,y for z, y ∈ Zd implies z = y, we can define

ϕ(K ∩ C0,z) := ϕ(K ∩ Cz)− ϕ(K ∩ ∂+Cz).

Lemma 9.2.1. If ϕ : R → R is an additive function and K ∈ R is a poly-
convex set, then

ϕ(K) =
∑
z∈Zd

ϕ(K ∩ C0,z).

Proof. We give two proofs for this crucial lemma. The first one employs the
extension theorem 14.4.3. This allows us to work with relatively open poly-
topes and, therefore, with disjoint decompositions. The second proof does not
use the extension theorem and has, therefore, a basic idea which is slightly
less obvious.

First proof. Let K ∈ R. For a polytope P ∈ P we define

ψ(P ) := ϕ(K ∩ P ).

Then ψ is an additive functional on convex polytopes. By Theorem 14.4.3, it
has a unique extension to an additive function on U(Pro), the system of finite
unions of relatively open polytopes. We denote this extension also by ψ. Since
C0,z = Cz \∂+Cz and all sets here belong to U(Pro), the additivity of ψ gives

ψ(C0,z) = ψ(Cz)− ψ(∂+Cz).
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Moreover, ψ(P ) = 0 for all convex polytopes P with K ∩ P = ∅. We can
choose a finite set S ⊂ Zd such that

K ⊂ Q :=
⋃
z∈S

C0,z

and that clQ is convex. Then

ϕ(K) = ϕ(K ∩ clQ) = ψ(clQ) = ψ(Q)

=
∑
z∈Zd

ψ(C0,z)

=
∑
z∈Zd

[ψ(Cz)− ψ(∂+Cz)]

=
∑
z∈Zd

[ϕ(K ∩ Cz)− ϕ(K ∩ ∂+Cz)].

This concludes the first proof.

Second proof. We denote by < the lexicographic order on Zd, that is,

(z1, . . . , zd) < (y1, . . . , yd)

if and only if zi = yi for i < k and zk < yk, for some k ∈ {1, . . . , d}. Then

∂+Cz = Cz ∩
⋃

z<y∈Zd

Cy

for z ∈ Zd. With the inclusion–exclusion principle we get (all sums are finite)

∑
z∈Zd

ϕ(K ∩ ∂+Cz) =
∑
z∈Zd

ϕ

⎛⎝ ⋃
z<y∈Zd

(K ∩ Cz ∩ Cy)

⎞⎠
=

∑
z∈Zd

∞∑
k=1

(−1)k−1
∑

z<y1<...<yk

ϕ(K ∩ Cz ∩ Cy1 ∩ . . . ∩ Cyk
)

= −
∞∑

k=2

(−1)k−1
∑

z1<...<zk

ϕ(K ∩ Cz1 ∩ . . . ∩ Czk
).

This gives

ϕ(K) = ϕ

⎛⎝ ⋃
z∈Zd

(K ∩ Cz)

⎞⎠
=

∑
z∈Zd

ϕ(K ∩ Cz) +
∞∑

k=2

(−1)k−1
∑

z1<...<zk

ϕ(K ∩ Cz1 ∩ . . . ∩ Czk
)

=
∑
z∈Zd

ϕ(K ∩ Cz)−
∑
z∈Zd

ϕ(K ∩ ∂+Cz),



396 9 Mean Values for Random Sets

as asserted. ��

We recall that a function ϕ : R → R is conditionally bounded if it is
bounded on {L ∈ K′ : L ⊂ K}, for each K ∈ K′. In particular, if ϕ is
continuous on K′, it is conditionally bounded.

Lemma 9.2.2. Let the function ϕ : R → R be translation invariant, additive
and conditionally bounded. Then

lim
r→∞

ϕ(rW )
Vd(rW )

= ϕ(Cd
0 )

for every W ∈ K′ with Vd(W ) > 0.

Proof. Let W ∈ K′ and 0 ∈ intW , without loss of generality. For K ∈ K and
z ∈ Zd we put

ϕ(K, z) := ϕ(K ∩ C0,z). (9.14)

Lemma 9.2.1 shows that

ϕ(rW ) =
∑
z∈Zd

ϕ(rW, z) for r > 0.

Define
Z1

r := {z ∈ Zd : Cz ∩ rW �= ∅, Cz �⊂ rW}
and

Z2
r := {z ∈ Zd : Cz ⊂ rW}.

Then

lim
r→∞

|Z1
r |

Vd(rW )
= 0, lim

r→∞

|Z2
r |

Vd(rW )
= 1, (9.15)

where |A| denotes the number of elements of a set A. The limit relations follow
from the fact that one easily shows the existence of numbers r0 > s, t > 0
such that

z ∈ Z1
r ⇒ Cz ⊂ (r + s)W \ (r − s)W

and
(r − t)W ⊂

⋃
z∈Z2

r

Cz

for r ≥ r0.
By assumption,

|ϕ(rW, z)| = |ϕ(rW − z, 0)| ≤ b

with some constant b independent of z,W and r. This gives

1
Vd(rW )

∣∣∣∣∣∣
∑

z∈Z1
r

ϕ(rW, z)

∣∣∣∣∣∣ ≤ b |Z1
r |

Vd(rW )
→ 0 for r →∞.
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From this we deduce that

lim
r→∞

ϕ(rW )
Vd(rW )

= lim
r→∞

1
Vd(rW )

∑
z∈Zd

ϕ(rW, z)

= lim
r→∞

1
Vd(rW )

∑
z∈Z2

r

ϕ(rW, z)

= ϕ(Cd
0 ) lim

r→∞

|Z2
r |

Vd(rW )

= ϕ(Cd
0 ).

This proves the lemma. ��

Mean Values of Additive Functionals for Random Sets

Now we introduce a suitable class of random closed sets for which the exis-
tence of densities for rather general functionals can be shown. Recall that the
extended convex ring in Rd is defined by

S := {F ⊂ Rd : F ∩K ∈ R for K ∈ K}.

The elements of S are called locally polyconvex sets. Thus a locally poly-
convex set has the property that its intersection with any convex body is a
finite union of convex bodies.

If M ∈ R is a nonempty polyconvex set, there are a number m ∈ N and
convex bodies K1, . . . ,Km ∈ K′ such that M = K1 ∪ . . . ∪Km. The smallest
number m with this property is denoted by N(M). We also put N(∅) = 0.
By Lemma 4.3.1, the function N : R → N0 is measurable. Now we can define
the random closed sets which will be admitted in the following.

Definition 9.2.1. A standard random set in Rd is a random closed set Z
in Rd with the following properties:

(a) The realizations of Z are a.s. locally polyconvex.
(b)Z is stationary.
(c) Z satisfies the integrability condition

E 2N(Z∩Cd) <∞. (9.16)

Important examples of standard random sets are the Boolean models Z
with convex grains. As we have seen in Section 9.1, they satisfy (9.16).

We are now in a position to prove the existence of densities of suitable
functionals for standard random sets.
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Theorem 9.2.1. Let Z be a standard random set, let the function ϕ : R → R

be translation invariant, additive, measurable and conditionally bounded. Let
W ∈ K′ be such that Vd(W ) > 0. Then the limit

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

exists and satisfies
ϕ(Z) = Eϕ(Z ∩ Cd

0 ).

Hence, ϕ(Z) is independent of W.

Proof. Without loss of generality, we can assume that W ⊂ Cd. For given
ω ∈ Ω, there is a representation

Z(ω) ∩W =
NW (ω)⋃

i=1

Ki(ω) with Ki(ω) ∈ K′,

where NW (ω) := N(Z(ω) ∩W ). By the inclusion–exclusion principle,

ϕ(Z(ω) ∩W )

=
NW (ω)∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤NW (ω)

ϕ(Ki1(ω) ∩ . . . ∩Kik
(ω)).

Since ϕ is conditionally bounded, there is a constant b such that

E |ϕ(Z ∩W )| ≤ bE

NW∑
k=1

(
NW

k

)
≤ bE 2N(Z∩W ) ≤ bE 2N(Z∩Cd),

since N(Z(ω) ∩W ) ≤ N(Z(ω) ∩ Cd). By assumption, the right side is finite,
hence ϕ(Z∩W ) is integrable. For a polyconvex setM ∈ R, the integrability of
ϕ(Z∩M) then follows from additivity, using the inclusion–exclusion principle
again. Therefore, we can define a functional φ : R → R by

φ(M) := Eϕ(Z ∩M) for M ∈ R.

Then φ is additive, translation invariant (as follows from the stationarity of
Z) and conditionally bounded (as follows from the last estimate above). Now
the assertion of the theorem follows from Lemma 9.2.2. ��

With suitable conditions on ϕ and Z, the preceding result would also hold
for general stationary random closed sets with values in F . However, the useful
functionals ϕ on R that satisfy the assumptions of the theorem have, with
the exception of the volume, no reasonable extension to all of C; therefore,
the restriction to the convex ring seems appropriate (but see the Notes for
Section 9.4, for other set classes).
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For ϕ = Vd, the density Vd was already defined in Section 2.4, for example,
by

Vd(Z) =
EVd(Z ∩W )
Vd(W )

,

for any Borel set W with Vd(W ) > 0. Thus, the introduction of the specific
volume does not require a limit procedure, and the assertion of Theorem 9.2.1
is trivial, since Vd(Z ∩ ∂+Cd) = 0.

The quantity ϕ(Z) in Theorem 9.2.1 is called the ϕ-density of Z. The most
important functionals ϕ are the intrinsic volumes V0, . . . , Vd−1. The density
Vj(Z) is also called the specific jth intrinsic volume of Z. In particular,
2Vd−1(Z) is the specific surface area of Z. In Section 9.4, we shall give
an alternative interpretation of Vj(Z), as a Radon–Nikodym derivative of the
expectation of the curvature measure Φj(Z, ·) (which is a stationary random
measure on Rd) with respect to the Lebesgue measure λ. This representa-
tion will allow us in Section 11.1 to introduce specific intrinsic volumes (as
functions on Rd) also for non-stationary random closed sets.

Further functionals ϕ to which Theorem 9.2.1 can be applied are:

• the mixed volumes, ϕ(K) := V (K[j],M [d − j]), for fixed M ∈ R and
j ∈ {1, . . . , d− 1},

• the surface area measure, ϕ(K) := Sd−1(K,A), for A ∈ B(Sd−1),
• the centered support function, ϕ(K) := h∗(K,u), for u ∈ Sd−1.

Letting A ∈ B(Sd−1) vary, we thus get, under the assumptions of Theorem
9.2.1, a finite Borel measure Sd−1(Z, ·) on Sd−1, the specific surface area
measure or the mean normal measure of Z. By (14.15), Sd−1(Z, ·) is
always nonnegative, and it is centered. If Sd−1(Z, ·) is not concentrated on
a subsphere, it is (by Theorem 14.3.1) the surface area measure of a unique
convex body in K0, which we call the Blaschke body B(Z) of Z. Further,
letting u ∈ Sd−1 vary, we get a centered continuous function h(Z, ·) on Sd−1,
the specific support function of Z. (The continuity can be shown with the
aid of (6.28), cf. Goodey and Weil [280, p. 339].) The function h(Z, ·) is a
support function for d = 2, but in general not for d ≥ 3.

Mixed volumes V (K[j],M [d − j]) are only special cases of mixed func-
tionals V (j)

m1,...,mk(K1, . . . ,Kk), as studied in Section 6.4. Since the latter are
additive in each component and have an additive extension to R, Theorem
9.2.1 also yields densities of mixed functionals for standard random sets Z.
Later, we shall need one series of these mixed densities for Z, but in a local
version. Namely, for j ∈ {0, . . . , d}, k ∈ {j, . . . , d}, M ∈ K′ and A ∈ B, the
functional

ϕA : K �→ Φ
(j)
k,d−k+j(K,M ; Rd ×A)

satisfies the assumptions of Theorem 9.2.1. The density ϕA(Z), as a function
of A, is a (signed) measure, which we denote by Φ

(j)

k,d−k+j(Z,M ; ·), thus
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Φ
(j)

k,d−k+j(Z,M ;A) = lim
r→∞

EΦ
(j)
k,d−k+j(Z ∩ rW,M ; Rd ×A)

Vd(rW )
,

with a window W as before. We call Φ
(j)

k,d−k+j(Z,M ; ·) the specific (j, k)th
mixed measure of Z (for given M). We notice that

Φ
(j)

j,d(Z,M ; ·) = Vj(Z)Φd(M, ·),

Φ
(j)

d,j(Z,M ; ·) = Vd(Z)Φj(M, ·).

We finally remark that we can now give a new interpretation of the inten-
sity of a stationary process of k-flats that was introduced in Theorem 4.4.2.
Let ZX be the union set of a stationary k-flat process X with intensity γ. For
r > 0 and W ∈ K with Vd(W ) > 0 we have, by the additivity of Vk,

1
Vd(rW )

EVk(ZX ∩ rW ) =
1

Vd(rW )
E

∑
E∈X

λE(rW ) = γ,

by Theorem 4.4.3. Thus, the left side is independent of r, hence for r →
∞ it converges to Vk(ZX), even without the integrability condition (9.16).
Therefore, we have

γ = Vk(ZX).

Mean Values for Particle Processes

For a stationary particle process X, the ϕ-density ϕ(X) was already intro-
duced in Section 4.1, and different representations were established. Further
representations in the case of additive functionals can now be obtained in
analogy to Theorem 9.2.1. Of the stationary particle process X in R to be
considered we need the integrability condition∫

R0

2N(C)Vd(C +Bd) Q(dC) <∞, (9.17)

where Q is the grain distribution of X. If the particles are convex, then con-
dition (9.17) reduces to the original condition (4.4).

Theorem 9.2.2. Let X be a stationary particle process in Rd with particles
in R and with grain distribution Q satisfying (9.17). Let ϕ : R → R be
translation invariant, additive, measurable and conditionally bounded. Then
ϕ is Q-integrable, and

ϕ(X) = lim
r→∞

1
Vd(rW )

E
∑
C∈X

ϕ(C ∩ rW )

holds for all W ∈ K with Vd(W ) > 0. Moreover,

ϕ(X) = E
∑
C∈X

ϕ(C ∩ Cd
0 ).
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Proof. For given C ∈ R0, let

Z := {z ∈ Zd : C ∩ Cz �= ∅}.

For z ∈ Z we have Cz ⊂ C +
√
dBd, hence

|Z| = λ
( ⋃

z∈Z

Cz

)
≤ Vd(C +

√
dBd) ≤ kVd(C +Bd), (9.18)

if k is chosen such that
√
dBd can be covered by k unit balls.

Let W ∈ K′ and r > 0. By

ϕx(M) := ϕ((M + x) ∩ rW ), M ∈ R,

for given x ∈ Rd, an additive functional ϕx is defined. By Lemma 9.2.1 we
get, using the notation of (9.14), that

ϕ((C + x) ∩ rW ) = ϕx(C) =
∑
z∈Z

ϕx(C, z). (9.19)

As in the proof of Theorem 9.2.1, the additivity and translation invariance of
ϕ lead to an estimate

|ϕx(C, z)| ≤ b2N(C), (9.20)

with
b := c(d) sup

L∈K, L⊂Cd

|ϕ(L)| <∞

and c(d) depending only on d. Together with (9.18), (9.19) and (9.20) this
gives

|ϕ((C + x) ∩ rW )| ≤ kb2N(C)Vd(C +Bd).

Since the right side is Q-integrable, this yields (with x = 0 and r → ∞) the
Q-integrability of ϕ. Further, we obtain∫

Rd

|ϕ((C + x) ∩ rW )|λ(dx) ≤
∑
z∈Z

∫
Rd

|ϕx(C, z)|λ(dx)

≤ |Z|b2N(C)Vd(rW + Cd)

≤ kbVd(rW + Cd)2N(C)Vd(C +Bd)

and hence ∫
R0

∫
Rd

|ϕ((C + x) ∩ rW )|λ(dx) Q(dC) <∞.

Therefore, we can apply the Campbell theorem (Theorem 3.1.2), and with
Theorem 4.1.1 we obtain

E
∑
C∈X

ϕ(C ∩ rW ) = γ
∫
R0

∫
Rd

ϕ((C + x) ∩ rW )λ(dx) Q(dC).
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Here we can decompose∫
Rd

ϕ((C + x) ∩ rW )λ(dx) = I1(r) + I2(r)

with
Iν(r) :=

∑
z∈Z

∫
Aν

r−z

ϕx(C, z)λ(dx), ν = 1, 2,

A1
r := {x ∈ Rd : (Cd + x) ∩ rW �= ∅, Cd + x �⊂ rW},
A2

r := {x ∈ Rd : Cd + x ⊂ rW}.

We have

lim
r→∞

λ(A1
r)

Vd(rW )
= 0, lim

r→∞

λ(A2
r)

Vd(rW )
= 1.

With (9.20) we get
|I1(r)| ≤ |Z|b2N(C)λ(A1

r)

and hence

lim
r→∞

I1(r)
Vd(rW )

= 0.

Further, we have

I2(r) =
∑
z∈Z

ϕ(C, z)λ(A2
r) = ϕ(C)λ(A2

r)

by Lemma 9.2.1 and thus

lim
r→∞

I2(r)
Vd(rW )

= ϕ(C).

This yields

|I1(r) + I2(r)|
Vd(rW )

≤ kb2N(C)Vd(C +Bd)
λ(A1

r)
Vd(rW )

+ |ϕ(C)|.

By (9.17) and the Q-integrability of ϕ we now obtain, using the dominated
convergence theorem,

lim
r→∞

1
Vd(rW )

E
∑
C∈X

ϕ(C ∩ rW ) = γ
∫
R0

ϕ(C) Q(dC) = ϕ(X),

which is the first assertion of the theorem.
We put

φ(K) := E
∑
C∈X

ϕ(C ∩K) for K ∈ R.

ForK ∈ K, the random variable
∑

C∈X ϕ(C∩K) is integrable, as shown, hence
by additivity it is also integrable for K ∈ R. The functional φ is additive,
translation invariant and conditionally bounded. Now Lemma 9.2.2 yields the
second assertion of the theorem. ��
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As in the case of random closed sets Z, the natural candidates for the
functional ϕ are the intrinsic volumes, the mixed volumes, the surface area
measure, and the centered support function. These choices lead to the spe-
cific intrinsic volumes Vj(X) (j ∈ {0, . . . , d}) and to the mean values
V (X[j],M [d − j]) (M ∈ R, j ∈ {1, . . . , d − 1}), Sd−1(X, ·) and h(X, ·).
Other examples are the densities of mixed measures or mixed functionals.
We shall need the specific (j, k)th mixed measure Φ

(j)

k,d−k+j(X,M ; ·) of X
(andM), which either arises as an outcome of Theorem 9.2.2 or can be defined
directly by

Φ
(j)

k,d−k+j(X,M ; ·) := γ
∫
R0

Φ
(j)
k,d−k+j(C,M ; Rd × ·) Q(dC).

Again, we have

Φ
(j)

j,d(X,M ; ·) = Vj(X)Φd(M, ·),

Φ
(j)

d,j(X,M ; ·) = Vd(X)Φj(M, ·).

The mixed densities

V
(j)

m1,...,ms
(X, . . . ,X) and V

(0)

m1,...,ms,d−j(X, . . . ,X,M)

were introduced in Section 9.1, for Poisson particle processes X, by a multiple
integral with respect to (γQ)s. Their definition immediately extends to general
point processes on K′ (or R′). By an iterated application of Theorem 9.2.2,
one gets

V
(j)

m1,...,ms
(X, . . . ,X) = lim

r1→∞
. . . lim

rs→∞

1
Vd(r1W ) · · ·Vd(rsW )

× E
∑

(C1,...,Cs)∈X1×...×Xs

V (j)
m1,...,ms

(C1 ∩ r1W, . . . , Cs ∩ rsW ),

where X1, . . . , Xs are independent copies of X. A similar limit relation holds
for V

(0)

m1,...,ms,d−j(X, . . . ,X,M). For Poisson processes, we can use Corollary
3.2.4 to obtain

V
(j)

m1,...,ms
(X, . . . ,X) = lim

r1→∞
. . . lim

rs→∞

1
Vd(r1W ) · · ·Vd(rsW )

× E
∑

(C1,...,Cs)∈Xs
�=

V (j)
m1,...,ms

(C1 ∩ r1W, . . . , Cs ∩ rsW ).

Also for stationary particle processes X, we shall give in Section 9.4 an
alternative interpretation of Vj(X) as a Radon–Nikodym derivative with re-
spect to the Lebesgue measure λ, namely of the expectation of the stationary
random measure

Φj(X, ·) :=
∑

K∈X

Φj(K, ·).
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This representation will be used in Section 11.1 to introduce specific intrinsic
volumes for non-stationary particle processes X, again as functions on Rd.

We remark that the measure Sd−1(X, ·) on the unit sphere Sd−1 is always
nonnegative (by (14.15)) and centered and therefore, if it is not concentrated
on a subsphere, is the surface area measure of a unique convex body in K0,
the Blaschke body B(X), which was introduced in Section 4.6. There, we
assumed that the particles K ∈ X are convex, but now we see that polyconvex
particles can be allowed. For polyconvex particles, h(X, ·) is a continuous
function. If the particles are convex (or if d = 2), h(X, ·) is the support
function of a unique convex body in K0, the mean body M(X), which was
also introduced and studied in Section 4.6.

Remark. For the introduction of the densities ϕ(Z), ϕ(X) of translation
invariant functionals ϕ for random sets Z and particle processes X, we have
not used the stationarity of Z or X to its full extent. In fact, for a particle
process X, for example, we need only the invariance of the expectations

E
∑

K∈X+t

ϕ(K ∩W )

under all translations by t ∈ Rd, for all windows W . This, in turn, is satisfied
if the process X is weakly stationary, which means that its intensity mea-
sure is translation invariant. The process X is called weakly isotropic if its
intensity measure is rotation invariant. The analogous terminology is used for
processes of flats. For Poisson processes, there is no difference between station-
arity and weak stationarity (isotropy and weak isotropy), by Theorem 3.2.1.
We remark that most mean value formulas to be proved later for stationary
(stationary and isotropic) particle processes X require only that X be weakly
stationary (weakly stationary and weakly isotropic). For simplicity, however,
we shall stay in the framework of stationarity and isotropy. A similar remark
refers to random sets Z, where instead of stationarity it is mostly only needed
that the expectations

Eϕ((Z + t) ∩W )

are invariant under all translations by t ∈ Rd.

Notes for Section 9.2 are included in the Notes for Section 9.4.

9.3 Ergodic Densities

In the previous section we have seen that for suitable closed random sets Z
and functions ϕ a density ϕ(Z) can be defined by

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rW )
Vd(rW )

.
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It is a natural question whether a corresponding limit exists also pointwise,
that is, without taking the expectation. More precisely, we would like to know
under which conditions the limit

ϕ(Z, ω) := lim
r→∞

ϕ(Z(ω) ∩ rW )
Vd(rW )

exists for almost all ω ∈ Ω. Existence assumed, ϕ(Z, ·) is a random variable,
and we would expect that it satisfies

Eϕ(Z, ·) = ϕ(Z).

Particularly interesting are the random closed sets Z for which ϕ(Z, ·) is al-
most surely equal to a constant, thus satisfying

ϕ(Z, ·) = ϕ(Z) a.s.

For such a random set Z, the ϕ-density ϕ(Z) can be estimated from a single
realization Z(ω), by measuring

ϕ(Z(ω) ∩W )
Vd(W )

in a large window W . Results of the type

ϕ(Z) = lim
r→∞

ϕ(Z ∩ rW )
Vd(rW )

, (9.21)

where the left side is a constant and the right side is a limit of random vari-
ables, are known as ergodic theorems. More precisely, one talks of individual
ergodic theorems if the equality holds almost surely, and of statistical ergodic
theorems if on the right one has Lp-convergence, for suitable p. We restrict
ourselves here to individual ergodic theorems. Such an ergodic result holds for
random closed sets Z satisfying certain independence properties, for instance,
for ergodic random closed sets, as will be explained below. If the density ϕ(Z)
can be obtained in the form (9.21), one talks of an ergodic density.

The program thus sketched will now be made precise. We shall, however,
not give complete proofs, but for one crucial theorem rely on the literature.
In order that the results be applicable not only to random sets, but also to
point processes, the following considerations will adopt a more general point
of view.

Let (Ω,A,P), as always, be the underlying probability space. A bijective
map T : Ω → Ω with the property that T and T−1 are measurable and leave
the probability measure P invariant (that is, satisfy P(TA) = P(T−1A) = P(A)
for all A ∈ A), is called an automorphism. We assume that for (Ω,A,P) a
set T = {Tx : x ∈ Zd} of automorphisms satisfying TxTy = Tx+y for x, y ∈ Zd

is given; thus the set T together with the composition is an abelian group.
We denote by T ⊂ A the σ-algebra of all events invariant under T , thus
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T := {A ∈ A : TxA = A for all x ∈ Zd}.

A family (ξK)K∈R of real random variables on (Ω,A) is called a stochastic
process with parameter space R. Since here the parameter K ∈ R plays
the role of the time (for stochastic processes with continuous time), we also
talk of a ‘spatial process’. The spatial process (ξK)K∈R is called additive if
for K,K ′ ∈ R almost surely

ξK∪K′ + ξK∩K′ = ξK + ξK′

holds and, in addition, ξ∅ = 0. It is called T -covariant if for all K ∈ R and
all x ∈ Zd the equation

ξK+x(Txω) = ξK(ω)

holds for almost all ω ∈ Ω. Further, (ξK)K∈R is called bounded if there
exists an integrable random variable η ≥ 0 with

|ξK | ≤ η a.s. for all K ∈ K with K ⊂ Cd. (9.22)

In the following theorem, E(· | T) denotes the conditional expectation with
respect to the σ-algebra T of T -invariant events.

Theorem 9.3.1. Let (ξW )W∈R be an additive, T -covariant, bounded stochas-
tic process with parameter space R. Then, for W ∈ K with 0 ∈ intW , the
relation

lim
r→∞

ξrW

Vd(rW )
= E (ξCd − ξ∂+Cd | T)

holds a.s.

Proof. First we proceed as in the proof of Lemma 9.2.2 and also use the same
notation. Let W be as above and assume, without loss of generality, that
W ⊂ Cd. For z ∈ Zd and K ∈ K we put

ξK,z := ξK∩Cz
− ξK∩∂+Cz

.

Then, by Lemma 9.2.1, for r > 0 we have

ξrW (ω) =
∑
z∈Zd

ξrW,z(ω)

=
∑

z∈Z1
r

ξrW,z(ω) +
∑

z∈Z2
r

ξrW,z(ω)

=
∑

z∈Z1
r

ξrW,z(ω) +
∑

z∈Z2
r

[ξCd(T−zω)− ξ∂+Cd(T−z(ω))] .

If (9.22) holds, we obtain as in the proof of Theorem 9.2.1 that

|ξrW,z| ≤ |ξrW∩Cz
|+ |ξrW∩∂+Cz

| ≤ cd η ◦ T−z
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with a constant cd, hence∣∣∣∣∣∣
∑

z∈Z1
r

ξrW,z(ω)

∣∣∣∣∣∣ ≤ cd
∑

z∈Z1
r

η(T−zω).

Now we apply a version of the individual ergodic theorem, for which we refer
to Tempel’man [755, Th. 6.1]. If ζ is an integrable random variable on Ω
and (Zk)k∈N is an increasing sequence of sets Zk ⊂ Zd, satisfying certain
assumptions, then

lim
k→∞

1
|Zk|

∑
z∈Zk

ζ(T−zω) = E(ζ | T)(ω)

holds for almost all ω ∈ Ω.
We apply this theorem, first, to ζ = η and Zk = Z1

rk
∪ Z2

rk
, respectively

Zk = Z2
rk

, where (rk)k∈N is an increasing real sequence with rk → ∞. The
required assumptions on the sequence (Zz)k∈N are satisfied in either case.
Observing (9.15), we obtain

lim
k→∞

1
Vd(rkW )

∑
z∈Z1

rk

η(T−zω) = 0

for almost all ω, hence also

lim
k→∞

1
Vd(rkW )

∑
z∈Z1

rk

ξrkW,z(ω) = 0.

Second, with ζ = ξCd−ξ∂+Cd and Zk = Z2
rk

and with the result just obtained,
we get

lim
k→∞

ξrkW (ω)
Vd(rkW )

= lim
k→∞

1
Vd(rkW )

∑
z∈Z2

rk

[ξCd(T−zω)− ξ∂+Cd(T−zω)]

= E (ξCd − ξ∂+Cd | T) (ω)

for almost all ω. This yields the assertion, also for the limit r → ∞ (cf.
Tempel’man, loc.cit. §8). ��

The quadruple (Ω,A,P, T ) underlying our considerations is often called
a dynamical system. This system is called ergodic if P(A) ∈ {0, 1} for all
A ∈ T. In the ergodic case we have

E (ξCd − ξ∂+Cd | T) = E (ξCd − ξ∂+Cd) a.s.,

thus the limit in Theorem 9.3.1 is almost surely constant. The system
(Ω,A,P, T ) is called mixing if the automorphisms Tx ∈ T have the as-
ymptotic independence property
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lim
||x||→∞

P(A ∩ TxB) = P(A)P(B) (9.23)

for all A,B ∈ A. Every mixing system is ergodic, since (9.23) with A ∈ T
and B = A implies P(A) = P(A)2. The next lemma shows that it is sufficient
to check (9.23) for a restricted class of sets.

Lemma 9.3.1. The dynamical system (Ω,A,P, T ) is mixing if there is a
semialgebra A0 ⊂ A generating A and satisfying

lim
||x||→∞

P(A ∩ TxB) = P(A)P(B) (9.24)

for all A,B ∈ A0.

Proof. Suppose such a semialgebra A0 exists. The algebra A1 generated by
A0 consists of all finite disjoint unions of sets from A0. Therefore, (9.24) holds
also for A,B ∈ A1. Now let A,B ∈ A. For given ε > 0 there are elements
A′, B′ ∈ A1 with P(A A′) ≤ ε and P(B  B′) ≤ ε (see, for example, Chow
and Teicher [175, p. 23]). From P((A∩B) (A′∩B′)) ≤ P(A A′)+P(B B′)
and the T -invariance of P we obtain

P((A ∩ TxB) (A′ ∩ TxB
′)) ≤ 2ε

for all x ∈ Zd. This gives

|P(A ∩ TxB)− P(A)P(B)| ≤ |P(A′ ∩ TxB
′)− P(A′)P(B′)|+ 4ε,

which yields the assertion. ��

The preceding general considerations will now be applied to more concrete
situations. Let Z be a stationary random closed set in Rd. We can choose
(F ,B(F),PZ) as the underlying probability space (Ω,A,P) and T as the
group of the ordinary lattice translations of Rd. Here, TxF := F + x for
F ∈ F and Tx ∈ T . Since Z is stationary, the probability measure PZ is
invariant under all translations Tx ∈ T . We call the random closed set Z
mixing, respectively ergodic, if the dynamical system (F ,B(F),PZ , T ) has
this property. The following theorem expresses the mixing property of Z in
terms of the capacity functional TZ .

Theorem 9.3.2. The stationary random closed Z in Rd is mixing if and only
if

lim
||x||→∞

(1− TZ(C1 ∪ TxC2)) = (1− TZ(C1))(1− TZ(C2)) (9.25)

holds for all C1, C2 ∈ C.

Proof. By Lemma 2.2.2, the system

A0 := {F C0
C1,...,Ck

: C0, . . . , Ck ∈ C, k ∈ N0}
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is a semialgebra, which by Lemma 2.1.1 generates the σ-algebra B(F).
Let A,B ∈ A0, say

A = F C0
C1,...,Cp

, B = FD0
D1,...,Dq

.

First we assume that p, q ≥ 1. Using (2.2) and (2.3), we obtain

PZ(A ∩ TxB)

= PZ

(
F C0∪TxD0

C1,...,Cp,TxD1,...,TxDq

)
=

p∑
r=0

q∑
s=0

(−1)r+s−1
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

TZ

(
r⋃

ν=0

Ciν
∪

s⋃
µ=0

TxDjµ

)

=
p∑

r=0

q∑
s=0

(−1)r+s
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

(
1− TZ

(
r⋃

ν=0

Ciν
∪ Tx

s⋃
µ=0

Djµ

))
.

This shows that (9.25) implies

lim
||x||→∞

PZ(A ∩ TxB)

=
p∑

r=0

q∑
s=0

(−1)r+s
∑

0=i0<i1<...<ir≤p
0=j0<j1<...<js≤q

(
1− TZ

(
r⋃

ν=0

Ciν

)) (
1− TZ

(
s⋃

µ=0

Djµ

))

= PZ(A)PZ(B).

The argument is similar if p = 0 or q = 0, where, for example, P(F C0) =
1−TZ(C0) has to be used. From Lemma 9.3.1 it now follows that Z is mixing.
The converse direction is clear. ��

We remark that Theorem 9.3.2 and its proof verbally carry over to the
case where Rd is replaced by E = F ′(Rd) as base space and the operation of
T on F(E) is defined by TxF := F + x (with F + x := {A+ x : A ∈ F}).

Now we apply Theorem 9.3.1 to the situation described in Theorem 9.2.1.
Let Z be a stationary random closed set with values in S. If ϕ : R → R is
translation invariant, additive, measurable and conditionally bounded and if
Z satisfies the integrability condition of Theorem 9.2.1, then

ϕK(Z) := ϕ(Z ∩K), K ∈ R,

defines an additive, T -covariant and bounded stochastic process with para-
meter space R. The T -covariance of (ϕK)K∈R follows from the translation
invariance of ϕ, and the boundedness is a consequence of the integrability
condition on Z, since ϕ is conditionally bounded. Recall that we work with
the canonical probability space (Ω,A,P) = (F ,B(F),PZ), so that
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T = {A ∈ B(F) : A+ x = A for all x ∈ Zd},

where A+x := {F+x : F ∈ A}. In order to stay within the general framework
of this section, we nevertheless continue to use notations such as Z(ω). From
Theorem 9.3.1 we obtain the following result.

Theorem 9.3.3. Let Z be a standard random set and let ϕ : R → R be
additive, translation invariant, measurable and conditionally bounded. Then,
for W ∈ K′ with 0 ∈ intW , the limit

ϕ(Z, ω) := lim
r→∞

ϕ(Z(ω) ∩ rW )
Vd(rW )

exists, for almost all ω ∈ Ω, and this limit is independent of W . Further,

ϕ(Z, ·) = E(ϕ̃(Z) | T) a.s.,

where ϕ̃(S) := ϕ(S ∩ Cd)− ϕ(S ∩ ∂+Cd) for S ∈ S.
If Z is ergodic, then

ϕ(Z, ·) = ϕ(Z) a.s.

The last assertion follows from the fact that in the ergodic case we have

ϕ(Z, ·) = E(ϕ̃(Z)) = E [ϕ(Z ∩ Cd)− ϕ(Z ∩ ∂+Cd)] a.s.

and that this is equal to ϕ(Z), by Theorem 9.2.1.

Theorem 9.3.1 can also be applied to the situation of Theorem 9.2.2. Let
X be a stationary particle process in Rd. We consider the dynamical system
(N,N ,PX , T ) with N = N(F ′(Rd)), N = N (F ′(Rd)), where PX is the dis-
tribution of X and T = {Tx : x ∈ Zd} is defined by (Txη)(B) := η(B − x)
for B ∈ B(F ′) and η ∈ N. Because of the stationarity of X, the probability
measure PX is invariant under the mappings Tx ∈ T . The invariant σ-algebra
T is given by

T = {A ∈ N : TxA = A for all x ∈ Zd},

where TxA := {Txη : η ∈ A}. The particle process X is called mixing, re-
spectively ergodic, if the dynamical system (N,N ,PX , T ) has this property.

Now suppose that X and the functional ϕ satisfy the assumptions of
Theorem 9.2.2. Then by

ϕK(X) :=
∑
C∈X

ϕ(C ∩K), K ∈ R,

we define an additive, T -covariant and bounded stochastic process with pa-
rameter space R. This is verified similarly to above, as well as the following
result.
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Theorem 9.3.4. Let X be a stationary particle process in Rd with particles in
R and with grain distribution Q satisfying (9.17). Let ϕ : R → R be additive,
translation invariant, measurable and conditionally bounded. Then forW ∈ K′

with 0 ∈ intW the limit

ϕ(X,ω) := lim
r→∞

1
Vd(rW )

∑
C∈X(ω)

ϕ(C ∩ rW )

exists for almost all ω ∈ Ω, and this limit is independent of W . Further,

ϕ(X, ·) = E(ϕ̃(X) | T) a.s.,

where the function ϕ̃ is defined by

ϕ̃(η) :=
∑

C∈supp η

[ϕ(C ∩ Cd)− ϕ(C ∩ ∂+Cd)], η ∈ N.

If X is ergodic, then

ϕ(X, ·) = ϕ(X) a.s.

At least for the most important examples of stationary random closed sets,
respectively particle processes, we want to show that they are mixing and thus
ergodic.

Theorem 9.3.5. Stationary Boolean models are mixing.

Proof. For the stationary Boolean model Z with intensity γ and grain distri-
bution Q, the capacity functional is, according to Theorem 9.1.1, given by

1− TZ(C) = e−γ
∫
C0

Vd(C−K) Q(dK)
, C ∈ C.

For C1, C2 ∈ C we have

Vd((C1 ∪ TxC2)−K) = Vd((C1 −K) ∪ (C2 −K + x)).

For givenK ∈ C0 and sufficiently large ||x|| we get (C1−K)∩(C2−K+x) = ∅,
hence

lim
||x||→∞

Vd((C1 ∪ TxC2)−K) = Vd(C1 −K) + Vd(C2 −K).

Further,
Vd((C1 ∪ TxC2)−K) ≤ Vd(C1 −K) + Vd(C2 −K).

The dominated convergence theorem yields (9.25) and thus the assertion. ��
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The preceding theorem allows us, in particular, to interpret the intrinsic
volume densities of a stationary Boolean model Z with grains in R as ergodic
densities. In the case of convex grains, the integrability condition (9.16) is
satisfied automatically, since for the Poisson particle process X that generates
Z we have, for K ∈ K,

E 2N(Z∩K) ≤ E 2X(FK) =
∞∑

k=0

2ke−Θ(FK)Θ(FK)k

k!
= eΘ(FK) <∞.

Hence, for any convex body W ∈ K with Vd(W ) > 0 and for j = 0, . . . , d we
conclude from Theorems 9.3.3 and 9.3.5 that

Vj(Z) = lim
r→∞

Vj(Z ∩ rW )
Vd(rW )

a.s.

A counterpart to Theorem 9.3.5 is true for particle processes.

Theorem 9.3.6. Stationary Poisson particle processes in Rd are mixing.

Proof. Given the stationary Poisson particle process X, we consider, as before
Theorem 9.3.4, the dynamical system (N(E),N (E),PX , T ) for the base space
E = F ′(Rd). By Lemma 3.1.4, Z := suppX defines a locally finite random
closed set in E. For Tx ∈ T and F ∈ F(E) we let TxF := F+x (with F+x :=
{A+x : A ∈ F}). We show that the dynamical system (F(E),B(F(E)),PZ , T )
is mixing. Since the operations of T on N(E) respectively F(E) commute with
the mapping i : η �→ supp η of Lemma 3.1.4, we can then deduce that also
(N(E),N (E),PX , T ) is mixing, which is the assertion.

As remarked after the proof of Theorem 9.3.2, that theorem holds also for
F(Rd) instead of Rd. In this form it will be used in the following.

The capacity functional of the random closed set Z is given by

TZ(C) = P(C ∩ suppX �= ∅) = P(X(C) �= 0)

for C ∈ C(E). If Θ denotes the intensity measure of the Poisson process X,
then

1− TZ(C) = e−Θ(C). (9.26)

In order to show (9.25) (in its generalized form), let C1, C2 ∈ C(E), thus these
are compact subsets of F ′(Rd). There are (according to the proof of Lemma
2.3.1) compact subsets K1,K2 of Rd with Ci ⊂ FKi

, i = 1, 2. For x ∈ Zd we
have TxC2 ⊂ FK2+x, hence

Θ(C1 ∩ TxC2) ≤ Θ(FK1,K2+x)

= γ

∫
C0

∫
Rd

1FK1,K2+x
(C + t)λ(dt) Q(dC),

by Theorem 4.1.1. For given C ∈ C0 and sufficiently large ||x||, there is no t
satisfying (C + t) ∩K1 �= ∅ and (C + t) ∩ (K2 + x) �= ∅; therefore,



9.4 Intersection Formulas and Unbiased Estimators 413

lim
||x||→∞

∫
Rd

1FK1,K2+x
(C + t)λ(dt) = 0.

Moreover, ∫
Rd

1FK1,K2+x
(C + t)λ(dt) ≤ Vd(K1 − C),

and the function C �→ Vd(K1 − C) is Q-integrable, by (4.4). The dominated
convergence theorem yields

lim
||x||→∞

Θ(C1 ∩ TxC2) = 0

and thus
lim

||x||→∞
e−Θ(C1∪TxC2) = e−Θ(C1)e−Θ(C2).

Now (9.26) and Theorem 9.3.2 yield the assertion. ��

If X is, in particular, a stationary Poisson particle process in R that sat-
isfies (9.17), then for W ∈ K with Vd(W ) > 0 we obtain

Vj(X) = lim
r→∞

1
Vd(rW )

∑
C∈X

Vj(C ∩ rW ) a.s.

Note for Section 9.3

First uses of ergodic theorems in stochastic geometry were made by Miles [517];
see also [521, 523]. In special situations, he has proved a number of convergence re-
sults for ‘increasing observation windows’. A unified and general treatment of such
convergence theorems was given by Nguyen and Zessin [584], building on work of
Tempel’man [755]. In Section 9.3, we followed their approach. In their application to
Boolean models, however, Nguyen and Zessin did not mention that the conditional
expectation obtained as a limit function is almost surely constant, as a consequence
of the mixing property of stationary Poisson processes. The importance of mixing
properties in stochastic geometry was pointed out by Cowan [180, 181]. A simple
proof of the mixing property of stationary Boolean models was given by Wieacker
[815]. In using the capacity functional in establishing mixing properties, we here fol-
lowed Heinrich [324]; there one also finds further information on germ-grain models.
For ergodic theory in general, we refer to Krengel [428].

9.4 Intersection Formulas and Unbiased Estimators

The following is a typical question arising from practical applications of ran-
dom sets. Suppose that the realizations Z(ω) of a standard random set Z can
be observed in a window, say, a compact convex set W with Vd(W ) > 0. By
‘observation’ we mean that, in principle, values such as Vj(Z(ω)∩W ) can be
measured. We want to use the random variables Vj(Z∩W )/Vd(W ) to estimate
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the densities Vj(Z). In general, however, Vj(Z∩W )/Vd(W ) will depend onW
and will not be an unbiased estimator for Vj(Z). To estimate the bias, we have
to determine the expectation of Vj(Z ∩W ). Under suitable assumptions on
the random set Z, this can be achieved by means of integral geometry. From
the obtained set of expectations, one can then also derive unbiased estimators
for the densities of the intrinsic volumes.

Analogous situations arise for stationary processes X of polyconvex par-
ticles or k-dimensional flats. In both cases, the total jth intrinsic volumes of
the visible parts in a sampling window W ,∑

F∈X(ω)

Vj(F ∩W ),

are observable for certain realizations X(ω) of X and we need the correspond-
ing expectation to derive unbiased estimators for Vj(X).

Finally, a problem, also motivated by practical applications, consists in the
estimation of densities of a stationary random set Z or a stationary process X
of particles or k-flats from measurements in lower-dimensional sections. Here,
stochastic versions of the Crofton formulas yield an answer.

Intersection Formulas for Random Sets

We begin this program with an extension of the local translative formula
(5.17) to standard random sets.

Theorem 9.4.1. Let Z be a standard random set in Rd, let W ∈ K′ and
j ∈ {0, . . . , d}. Then

EΦj(Z ∩W, ·) =
d∑

k=j

Φ
(j)

k,d−k+j(Z,W ; ·), (9.27)

If Z is isotropic, then

EΦj(Z ∩W, ·) =
d∑

k=j

ck,d−k+j
j,d Vk(Z)Φd−k+j(W, ·), (9.28)

where the constants are given by (5.5).

Proof. Let B ∈ B(Rd) be bounded. The function

Rd ×Ω → R

(x, ω) �→ Φj(Z(ω) ∩W ∩ (Bd + x), B)

is measurable, by Theorems 14.2.2 and 14.4.4. It is also integrable with respect
to the product measure λ ⊗ P. This follows as in the proof of Theorem 9.2.1
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(using Φj(K,B) ≤ Vj(K) for convex bodies) if we additionally assume that
W ⊂ Cd. This assumption is not a restriction of generality, since in the
arguments the cube Cd can clearly be replaced by a larger cube.

For x ∈ Rd and r > 0, we deduce from the translation covariance of Φj

and the stationarity of Z that

EΦj(Z ∩W ∩ (rBd + x), B) = EΦj((Z − x) ∩ (W − x) ∩ rBd, B − x)
= EΦj(Z ∩ (W − x) ∩ rBd, B − x).

Using Fubini’s theorem and the invariance properties of λ, we get

E

∫
Rd

Φj(Z ∩W ∩ (rBd + x), B)λ(dx)

= E

∫
Rd

Φj(Z ∩ (W + x) ∩ rBd, B + x)λ(dx).

We apply the local translative formula (5.17) (for polyconvex sets, see
Theorem 5.2.4) to either side (with one of the sets A,B in the quoted for-
mula equal to Rd) and obtain

d∑
k=j

EΦ
(j)
k,d−k+j(Z ∩W, rBd;B × Rd) =

d∑
k=j

EΦ
(j)
k,d−k+j(Z ∩ rBd,W ; Rd ×B).

Now we divide both sides by Vd(rBd) and let r tend to infinity. Because of

Φ
(j)
k,d−k+j(Z ∩W, rBd;B × Rd) = rd−k+jΦ

(j)
k,d−k+j(Z ∩W,Bd;B × Rd)

and the decomposability property (Theorem 6.4.1), the left side tends to
EΦj(Z ∩W,B) and, by Theorem 9.2.1, the right side tends to

d∑
k=j

Φ
(j)

k,d−k+j(Z,W ;B).

If Z is isotropic,

Φ
(j)

k,d−k+j(Z,W ;B)

= lim
r→∞

1
Vd(rBd)

EΦ
(j)
k,d−k+j(Z ∩ rBd,W ; Rd ×B)

= lim
r→∞

1
Vd(rBd)

E

∫
SOd

Φ
(j)
k,d−k+j(ϑZ ∩ rBd,W ; Rd ×B) ν(dϑ)

= lim
r→∞

1
Vd(rBd)

ck,d−k+j
j,d EVk(Z ∩ rBd)Φd−k+j(W,B).

Here we have used Fubini’s theorem and Theorem 6.4.2. This completes the
proof. ��



416 9 Mean Values for Random Sets

The special case j = d of formula (9.27) reduces to (2.20); it holds for
arbitrary stationary random closed sets.

We note two consequences of Theorem 9.4.1. Let Z be a standard random
set in Rd and B ⊂ Rd a bounded Borel set. We choose a convex body W ∈ K′

with B ⊂ intW . Then Φj(Z ∩W,B) = Φj(Z,B). Since Φ(j)
k,d−k+j(C,W ; Rd ×

B) = 0 for k > j and Φ(j)
j,d(C,W ; Rd ×B) = Vj(C)λ(B), for arbitrary C ∈ R,

we obtain

Φ
(j)

k,d−k+j(Z,W ;B) = 0, k > j, and Φ
(j)

j,d(Z,W ;B) = Vj(Z)λ(B).

Therefore, Theorem 9.4.1 implies the following result, which was already an-
nounced in Section 9.2.

Corollary 9.4.1. If Z is a standard random set in Rd and B ⊂ Rd is a
bounded Borel set, then

EΦj(Z,B) = Vj(Z)λ(B)

for j ∈ {0, . . . , d}.

For j = d− 1, Theorem 9.4.1 yields

EΦd−1(Z ∩W,B) = Vd−1(Z)λ(W ∩B) + Vd(Z)Φd−1(W,B),

and Corollary 9.4.1 reads

EΦd−1(Z,B) = Vd−1(Z)λ(B).

Since Φd−1(C, ·) ≥ 0 for C ∈ R, by (14.15), both results and the limit relation

Vd−1(Z) = lim
r→∞

EVd−1(Z ∩ rW )
Vd(rW )

hold for stationary random closed sets Z with values in S, even without the in-
tegrability condition (9.16), but the corresponding expressions may be infinite.

As a further consequence of Theorem 9.4.1, we note the global case of
(9.28), which is the formula

EVj(Z ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(Z)Vd−k+j(W ).

It holds for isotropic Z, but also in the non-isotropic case, if W is a ball
or if W is replaced by a randomly rotated version θW , with θ uniform and
independent of Z, and if in addition the expectation over θ is taken on the left
side. In that case, we can even consider functionals without motion invariance.
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Theorem 9.4.2. Let Z be a standard random set in Rd, let ϕ : R → R be
additive, translation invariant and continuous on K′, let W ∈ K′. Further, let
θ be a random rotation with distribution ν and independent of Z. Then

Eν Eϕ(Z ∩ θW ) =
d∑

k=0

Vk(W )ϕd−k(Z).

Proof. Similar to the proof of Theorem 9.4.1, one shows that

(x, ϑ, ω) �→ ϕ(Z(ω) ∩ ϑW ∩ (Bd + x))

is λ ⊗ ν ⊗ P-integrable. The translation invariance of ϕ and the stationarity
of Z show that

Eν Eϕ(Z ∩ θW ∩ (rBd + x)) = Eν Eϕ(Z ∩ (θW − x) ∩ rBd).

Integration over Rd and Fubini’s theorem give

Eν E

∫
Rd

ϕ(Z ∩ θW ∩ (rBd + x))λ(dx)

= E

∫
SOd

∫
Rd

ϕ(Z ∩ (ϑW − x) ∩ rBd)λ(dx) ν(dϑ).

In the first integral, we can replaceBd by ρBd with ρ ∈ SOd and then integrate
over all ρ ∈ SOd with respect to ν. This gives

Eν E

∫
Gd

ϕ(Z ∩ θW ∩ grBd)µ(dg) = E

∫
Gd

ϕ(Z ∩ gW ∩ rBd)µ(dg).

Now Theorem 5.1.2 (Hadwiger’s general integral geometric theorem) yields

d∑
k=0

Eν Eϕd−k(Z ∩ θW )Vk(rBd) =
d∑

k=0

Eϕd−k(Z ∩ rBd)Vk(W ). (9.29)

Recall that
ϕd−k(K) =

∫
A(d,k)

ϕ(K ∩ E)µk(dE)

for K ∈ K. This definition can also be used for K ∈ R and then provides
the additive extension of ϕd−k to the convex ring R. Since ϕ is continuous on
K′ and therefore conditionally bounded, also ϕd−k is conditionally bounded.
Hence, Theorem 9.2.1 applies, and the density

ϕd−k(Z) = lim
r→∞

Eϕd−k(Z ∩ rBd)
Vd(rBd)

exists. Therefore, dividing the obtained equation (9.29) by Vd(rBd) and letting
r tend to infinity, we obtain the assertion. ��
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The special choice ϕ = Vj , where

ϕd−k = (Vj)d−k = ck,d−k+j
j,d Vd−k+j ,

gives

Eν EVj(Z ∩ θW ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(Z),

for j = 0, . . . , d.

Intersection Formulas for Particle Processes

Now we consider similar intersection formulas for particle processes. For sim-
plicity, we restrict ourselves to convex particles, although under suitable inte-
grability conditions the results are also valid for point processes in the convex
ring R. For convex particles, the only integrability condition needed is (4.1),
which by Theorem 4.1.2 is equivalent to the integrability of the intrinsic vol-
umes with respect to the grain distribution.

Theorem 9.4.3. Let X be a stationary process of convex particles in Rd, let
j ∈ {0, . . . , d} and W ∈ K′. Then

E
∑

K∈X

Φj(K ∩W, ·) =
d∑

k=j

Φ
(j)

k,d−k+j(X,W ; ·). (9.30)

If X is isotropic, then

E
∑

K∈X

Φj(K ∩W, ·) =
d∑

k=j

ck,d−k+j
j,d Vk(X)Φd−k+j(W, ·). (9.31)

Proof. Let B ∈ B(Rd). With Campbell’s theorem (Theorem 3.1.2) and the
decomposition of Theorem 4.1.1, we obtain

E
∑

K∈X

Φj(K ∩W,B) = γ
∫
K0

∫
Rd

Φj((K + x) ∩W,B)λ(dx) Q(dK),

where γ and Q are, respectively, the intensity and the grain distribution of
X. Now the translative formula (5.17) immediately yields (9.30).

For isotropic X, we can in addition integrate over rotations of the parti-
cles K and then either apply the kinematic formula for curvature measures
(Theorem 5.3.2) or the rotation formula for mixed measures (Theorem 6.4.2)
to get (9.31). ��

The consequences of this result are similar to those of Theorem 9.4.1.
Namely, for j = d and j = d− 1, (9.30) reduces to the simple relations
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E
∑

K∈X

Φd(K ∩W, ·) = Vd(X)Φd(W, ·),

E
∑

K∈X

Φd−1(K ∩W, ·) = Vd−1(X)Φd(W, ·) + Vd(X)Φd−1(W, ·).

If B is a bounded Borel set and W is large enough such that B ⊂ intW , then
(9.30) implies

E
∑

K∈X

Φj(K,B) = Vj(X)λ(B).

Since both sides are nonnegative, they define locally finite measures and the
equality holds for arbitrary Borel sets B.

Corollary 9.4.2. Let X be a stationary process of convex particles in Rd and
let B ∈ B(Rd) be a Borel set. Then

E
∑

K∈X

Φj(K,B) = Vj(X)λ(B).

for j ∈ {0, . . . , d}.

The global case of (9.31), which can be written as

E
∑

K∈X

Vj(K ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(X), (9.32)

holds for isotropic X or for general X if either W is a ball or if we average
over random rotations of W . The following result is the analog of Theorem
9.4.2.

Theorem 9.4.4. Let X be a stationary process of convex particles in Rd,
let ϕ : R → R be additive, translation invariant and continuous on K′, let
W ∈ K′. If θ is a random rotation with distribution ν and independent of Z,
then

EνE
∑

K∈X

ϕ(K ∩ θW ) =
d∑

k=0

Vk(W )ϕd−k(X).

Proof. In complete analogy to the proof of Theorem 9.4.2, we obtain

d∑
k=0

EνE
∑

K∈X

ϕd−k(K ∩ θW )Vk(rBd) =
d∑

k=0

E
∑

K∈X

ϕd−k(K ∩ rBd)Vk(W ).

Dividing by Vd(rBd), letting r → ∞, and using Theorem 9.2.2, we complete
the proof. ��
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Processes of Flats

Instead of particle processes, we now consider k-flat processes in Rd. For
k ∈ {0, . . . , d − 1}, let X be a stationary k-flat process with intensity γ and
directional distribution Q, let j ∈ {0, . . . , k} and W ∈ K′. In analogy to the
corresponding notion for particle processes, we define the specific (j, k)th
mixed measure Φ

(j)

k,d−k+j(X,W ; ·) of X (for given W ) by

Φ
(j)

k,d−k+j(X,W ; ·) := γ
∫

G(d,k)

Φ
(j)
k,d−k+j(L,W ;BL × ·) Q(dL),

where BL ⊂ L is the ball with center 0 and λk(BL) = 1.

Theorem 9.4.5. Let X be a stationary k-flat process in Rd, k ∈ {0, . . . , d−1},
and let j ∈ {0, . . . , k}, W ∈ K′ and B ⊂ Rd a Borel set. Then

E
∑
E∈X

Φj(E ∩W,B) = Φ
(j)

k,d−k+j(X,W ;B).

If X is isotropic, then

E
∑
E∈X

Φj(E ∩W,B) = γck,d−k+j
j,d Φd−k+j(W,B). (9.33)

Proof. Using Campbell’s theorem, the decomposition of Theorem 4.4.2, the
local determination of curvature measures and the translative Crofton formula
from Theorem 6.4.3, we obtain

E
∑
E∈X

Φj(E ∩W,B)

= γ
∫

G(d,k)

∫
L⊥
Φj(W ∩ (L+ x), B ∩ (L+ x))λL⊥(dx) Q(dL)

= γ
∫

G(d,k)

Φ
(j)
k,d−k+j(L,W ;BL ×B) Q(dL)

= Φ
(j)

k,d−k+j(X,W ;B).

In the isotropic case, we can perform an additional integration over all rota-
tions of L and then use either the Crofton formula for curvature measures or
the rotation formula for mixed measures. ��

The relations (9.33) provide k + 1 interpretations of the intensity γ, in-
cluding those given by (4.27) and Theorem 4.4.3.

As before, we get a simpler result if we apply an independent uniform ran-
dom rotation to the sampling window. We state it only in the global version.
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Theorem 9.4.6. Let X be a stationary k-flat process of intensity γ in Rd, let
k ∈ {1, . . . , d− 1}, j ∈ {0, . . . , k} and W ∈ K′. If θ is a random rotation with
distribution ν and independent of X, then

Eν E
∑
E∈X

Vj(E ∩ θW ) = γck,d−k+j
j,d Vd−k+j(W ).

If X is isotropic or if W is a ball, the result holds without the expectation Eν .

Crofton Formulas

Theorems 9.4.1 and 9.4.3 also immediately yield Crofton formulas for random
sets and particle processes. If we talk of a standard random set Z or a sta-
tionary particle process X in some affine subspace E, the stationarity (and
possibly isotropy) of Z and X refers to E, and densities of intrinsic volumes
have to be computed in E. For the following results, we denote by

V
(j)

d−k+j,k(Y,K) := Φ
(j)

d−k+j,k(Y,K; Rd)

the specific (j, d− k+ j)th mixed functional of the random set or particle
process Y and K ∈ K′.

Theorem 9.4.7. Let Z be a standard random set in Rd, let E ∈ A(d, k) be a
k-dimensional flat, where k ∈ {1, . . . , d− 1}, BE ⊂ E a ball with λk(BE) = 1,
and let j ∈ {0, . . . , k}. Then Z ∩ E is a standard random set in E, and

Vj(Z ∩ E) = V
(j)

d−k+j,k(Z,BE).

If Z is isotropic, then Z ∩ E is isotropic and

Vj(Z ∩ E) = ck,d−k+j
j,d Vd−k+j(Z).

Proof. We omit the (not difficult) proof that Z∩E is, with respect to E, again
a standard random set (and isotropic, if Z is isotropic). For that reason, the
density Vj(Z ∩ E) exists. Theorem 9.4.1 yields

EVj(Z ∩BE) =
d∑

m=d−k+j

V
(j)

m,d−m+j(Z,BE) (9.34)

where only terms with m ≥ d − k + j appear since V
(j)

m,d−m+j(Z,BE) = 0
for m < d − k + j. Since Z is stationary, we can assume that 0 ∈ E and
hence rBE ⊂ E for r > 0. In (9.34), we replace BE by rBE and divide
the equation by Vk(rBE). For r →∞, the left side tends to Vj(Z ∩ E), since
Vj(Z∩rBE) = Vj(Z∩E∩rBE) (and the intrinsic volumes do not depend on the

dimension of the surrounding space). Since V
(j)

m,d−m+j(Z, rBE) is homogeneous

of degree d−m+ j in r, the right side tends to V
(j)

d−k+j,k(Z,BE).
As in earlier proofs, the result for isotropic Z follows from the rotation

formula in Theorem 6.4.2. ��
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In analogy to Theorem 9.4.7, the following Crofton formula for particle
processes can be stated. For simplicity, we assume that the resulting intersec-
tion processes X∩E are simple, though it is not difficult to extend the results
to the general case.

Theorem 9.4.8. Let X be a stationary process of convex particles in Rd, let
E ∈ A(d, k) be a k-dimensional flat, where k ∈ {1, . . . , d− 1}, BE ⊂ E a ball
with λk(BE) = 1, and let j ∈ {0, . . . , k}. Then the intersection process X ∩E
is a stationary process of convex particles with respect to E, and

Vj(X ∩ E) = V
(j)

d−k+j,k(X,BE).

If X is isotropic, then X ∩E is isotropic and

Vj(X ∩ E) = ck,d−k+j
j,d Vd−k+j(X).

Proof. It is clear that X ∩ E is a stationary process of convex particles in
E (and isotropic if X is isotropic). In view of the stationarity of X, we may
assume that 0 ∈ BE . From Theorem 9.4.3, and since V

(j)

m,d−m+j(X,BE) = 0
for m < d− k + j, we get

E
∑

K′∈X∩E

Vj(K ′ ∩BE) = E
∑

K∈X

Vj(K ∩BE)

=
d∑

m=d−k+j

V
(j)

m,d−m+j(X,BE).

We replace BE by rBE with r > 0 and divide by Vk(rBE). For r → ∞, by
Theorem 9.2.2, applied in E, the left side converges to Vj(X ∩ E), and the

right side converges to V
(j)

d−k+j,k(X,BE).
For the result in the isotropic case, we use Theorem 6.4.2 again. ��

As an example, let X be a stationary and isotropic process of line segments
in Rd. For a hyperplane E ∈ A(d, d−1) we obtain from the preceding theorem

χ(X ∩ E) = cd−1,1
0,d V1(X).

For v ∈ Sd−1, we let E := v⊥ and put γ(v) := χ(X ∩ E). Observing that
cd−1,1
0,d = 2κd−1/dκd, we get

γ(v) =
2κd−1

dκd
V1(X).

This is also obtained from (4.40), since in the isotropic case the spherical
directional distribution ϕ is given by

ϕ =
1

σ(Sd−1)
σ =

1
dκd

σ



9.4 Intersection Formulas and Unbiased Estimators 423

(with the spherical Lebesgue measure σ), and∫
Sd−1

|〈u, v〉|σ(du) = 2κd−1.

Unbiased Estimators

The intersection formulas proved so far can be used, in an obvious way, to
provide estimators for the specific intrinsic volumes, which are unbiased or
asymptotically unbiased.

We first discuss the situation for a standard random set Z. Let j ∈
{0, . . . , d}. Since the estimation of the specific volume Vd(Z) is of a special
and simple nature (and was discussed earlier), we concentrate on the cases
j ≤ d− 1. An unbiased estimator V̂j for Vj(Z), based on the observation of Z
in a sampling window W with W ∈ K′ and Vd(W ) > 0, is immediately given
by Corollary 9.4.1, namely

V̂j :=
Φj(Z ∩W, intW )

Vd(W )
.

For example, for j = d − 1, this estimator requires us to evaluate the total
surface area of the boundary parts of Z(ω) inside the window W .

Since the evaluation of curvature measures Φj with j < d−1 is more com-
plicated, it seems natural to use the intrinsic volume Vj(Z ∩W ) (normalized
by Vd(W )) as an estimator. This estimator is, in general, not unbiased. In
fact, the bias is given by (9.27), namely through the right side of

EVj(Z ∩W ) =
d∑

k=j

V
(j)

k,d−k+j(Z,W ). (9.35)

Writing (9.35), for the sampling window rW , r > 0, in the form

EVj(Z ∩ rW )
Vd(rW )

= Vj(Z) +
1

Vd(W )

d∑
k=j+1

rj−kV
(j)

k,d−k+j(Z,W ),

we see how the mean error tends to 0 for increasing windows W .
In the isotropic case, one can also obtain an unbiased estimator from (9.35).

Recall that, for isotropic Z, (9.35) transforms into

EVj(Z ∩W ) =
d∑

k=j

ck,d−k+j
j,d Vk(W )Vd−k+j(Z), j = 0, . . . , d.

This system of equations can be solved for V0(Z), . . . , Vd(Z), since the coeffi-
cient matrix is triangular. The resulting formulas are of the form
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Vi(Z) = E

(
d∑

m=i

βdim(W )Vm(Z ∩W )

)
, i = 0, . . . , d,

hence

V̂j :=
d∑

m=j

βdjm(W )Vm(Z ∩W )

is an unbiased estimator for Vj(Z). As an example, we write down the two-
dimensional case, using the notations A,L, χ for area, perimeter and Euler
characteristic, respectively:

A(Z) = E
A(Z ∩W )
A(W )

,

L(Z) = E

[
L(Z ∩W )
A(W )

− L(W )A(Z ∩W )
A(W )2

]
,

χ(Z) = E

[
χ(Z ∩W )
A(W )

− 1
2π
L(W )L(Z ∩W )

A(W )2

+
(

1
2π
L(W )2

A(W )3
− 1
A(W )2

)
A(Z ∩W )

]
.

The method just described requires the evaluation of all the intrinsic vol-
umes V0(Z ∩W ), . . . , Vd(Z ∩W ). A similar method is based on the evaluation
of one functional, the Euler characteristic V0(Z∩W ), but in different sampling
windows r0W, . . . , rdW . The system of equations then reads

EV0(Z ∩ rjW ) =
d∑

k=0

ck,d−k
0,d rkj Vk(W )Vd−k(Z), j = 0, . . . , d.

If the parameters r0, . . . , rd are chosen such that the square matrix with entries
ck,d−k
0,d rkj Vk(W ) is regular, this system of equations can again be solved for
V0(Z), . . . , Vd(Z) and yields unbiased estimators

V̂j :=
d∑

m=0

αdjm(W )V0(Z ∩ rmW )

for Vj(Z).
Returning to random sets Z without the isotropy condition, there is also

an unbiased estimator for Vj(Z) coming from Theorem 9.2.1, namely

V̂j := Vj(Z ∩ Cd)− Vj(Z ∩ ∂+Cd).

This estimator has been described in the stereological literature.
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If Z is a stationary (or stationary and isotropic) Boolean model, the esti-
mators described so far in a sampling window W are strongly consistent, for
increasing W , due to Theorem 9.3.3. For example,

V̂j :=
Vj(Z ∩ rW )
Vd(rW )

→ Vj(Z) a.s.

as r →∞.
With respect to stationary particle processesX on K′ (orR′), the situation

is completely analogous. We therefore skip the details. The basic result here
is Theorem 9.4.3. It provides unbiased estimators

V̂j :=
∑

K∈X Φj(K ∩W, intW )
Vd(W )

for Vj(X), whereas the estimator

V̂j :=
∑

K∈X Vj(K ∩W )
Vd(W )

is asymptotically unbiased. A different unbiased estimator is given by

V̂j :=
∑

K∈X

(
Vj(K ∩ Cd)− Vj(K ∩ ∂+Cd)

)
.

Of course, the different representations of ϕ-densities in Theorem 4.1.3 yield
further unbiased or asymptotically unbiased estimators.

If the particles K ∈ X are polyconvex and uniformly bounded and the
window W is large enough, such that Vd(W � K) > 0, for Q-almost all K,
another simple estimator is given by

V̂j :=
∑

K∈X, K⊂W

Vj(K)
Vd(W �K)

.

In fact, since

E
∑

K∈X, K⊂W

Vj(K)
Vd(W �K)

= γ
∫
R0

∫
Rd

Vj(K + x)
Vd(W � (K + x))

1{K + x ⊂W}λ(dx) Q(dK)

= γ
∫
R0

Vj(K)
Vd(W �K)

∫
Rd

1{K + x ⊂W}λ(dx) Q(dK)

= γ
∫
R0

Vj(K) Q(dK)

= Vj(X),
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this estimator is unbiased.
For isotropic X, the linear equation method yields unbiased estimators

V̂j :=
d∑

m=j

βdjm(W )
∑

K∈X

Vm(K ∩W ),

respectively

V̂j :=
d∑

m=j

αdjm(W )
∑

K∈X

V0(K ∩ rmW ).

Notice that the coefficients βdjm(W ) and αdjm(W ) are the same as in the case
of random sets. Therefore, also the given explicit formulas in the planar case
transfer immediately to particle processes.

For Poisson processes, Theorem 9.3.5 implies that the estimators are
strongly consistent.

Let us now come to applications of the Crofton formulas. We concentrate
on stationary and isotropic random sets Z. Then we can work with a fixed
plane E. Analogous estimators for non-isotropic sets Z follow, if a random
plane E with isotropic distribution (and independent of Z) is chosen. Also,
the formulas for particle processes X are totally analogous.

We have seen how the densities Vj(Z) of an isotropic standard random set
admit asymptotically unbiased or even unbiased estimators. If Z is observed
in a k-dimensional section Z ∩ E, then we can obtain estimators for Vj(Z ∩
E). Theorem 9.4.7 tells us that these are at the same time (asymptotically)
unbiased estimators for the densities ck,d−k+j

j,d Vd−k+j(Z).
As an example, we consider the practically relevant case where d = 3 and

k = 2. We deal with the three-dimensional densities V (volume), S (surface
area), M (integral of mean curvature) and with the two-dimensional densities
A (area), L (boundary length), χ (Euler characteristic). The equations of
Theorem 9.4.7 now read

V (Z) = A(Z ∩ E), (9.36)

S(Z) =
4
π
L(Z ∩ E), (9.37)

M(Z) = 2πχ(Z ∩ E). (9.38)

These equations provide an exact theoretical foundation for the ‘fundamental
equations of stereology’, which are traditionally written in the form

VV = AA,

SV =
4
π
LA,

MV = 2πχA.
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In this way, formula (9.35) and Theorem 9.4.7 provide theoretical justi-
fications for some practical procedures of stereology, at least in those cases
where it is reasonable to model probes of real materials by realizations of
isotropic standard random sets. From the practical point of view, the consid-
eration of locally polyconvex sets only does not seem to be very restrictive.
Of the invariance properties, stationarity is always unrealistic, requiring un-
bounded sets, but it may well be satisfied approximately at close range. The
most critical assumption is that of isotropy. For that reason, the applicability
of motion invariant stereology is limited, and the employment of translative
integral geometry is appropriate.

Notes for Sections 9.1, 9.2, 9.4

1. The introduction of densities of functionals for random S-sets, intersection for-
mulas as in Section 9.4, and formulas for Boolean models as in Section 9.1, go back
to various sources, where they can be found in varying degrees of generality, in part
under special assumptions or treated heuristically. We mention the following refer-
ences, roughly in chronological order: Matheron [462], Davy [198, 199], Miles [530],
Miles and Davy [536], Stoyan [739], A.M. Kellerer [390, 391], H.G. Kellerer [392],
Weil [787], Wieacker [815], Weil and Wieacker [804], Zähle [826].

The starting point for much of the presentation in Sections 9.2, 9.4 and 9.1
was the work of Weil and Wieacker [804]. We gratefully acknowledge simplifications
suggested orally by Markus Kiderlen (proof of Theorem 9.4.1) and Lars Diening
(second proof of Lemma 9.2.1).

2. Theorem 9.4.1 and its counterpart for particle processes, Theorem 9.4.3, which
provide unbiased estimators for the specific intrinsic volumes without isotropy as-
sumptions, were proved by Weil [787, 788].

3. Special cases of the intersection formulas of Section 9.4 first came up in stereol-
ogy (see also Note 2 of Subsection 8.4.2). We have treated them here rigorously and
generally, for suitable stationary random closed sets or particle processes as the em-
ployed models. An alternative approach of stochastic geometry to section stereology
consists in working with deterministic (and bounded) structures and investigating
them with the aid of random sections. Different distributions of intersection planes
that are relevant in this context are discussed in Section 8.4. A presentation of
stereological problems and formulas from a geometric point of view is found in Weil
[785]. A reader interested in the practical side of stereology is referred to the two vol-
umes of Weibel [778]. More recent developments in the stereology of non-stationary
structures are presented in the book by Jensen [379]. For a modern view on stereol-
ogy in general, we refer to the volume Stereology for Statisticians by Baddeley and
Jensen [53].

We have restricted ourselves here to standard random sets. Other classes of
random closed sets can be treated according to the availability of suitable integral
geometric formulas. For example, a counterpart to the second formula of Theorem
9.4.7, for stationary, isotropic random closed sets which are rectifiable manifolds,
appears in Mecke [479]. A very general investigation of intersection formulas for
random processes of Hausdorff rectifiable closed sets is due to Zähle [822].
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4. Applications of Boolean models to various questions of statistical physics (perco-
lation, complex fluids, structure of the universe) were suggested and investigated by
K. Mecke [505, 506]; see also Beisbart et al. [89], Beisbart et al. [88]. Here specific
intrinsic volumes (under the name of means of Minkowski functionals) are used as
morphological parameters for the description of spatial structures.

5. Concerning the estimation of the specific intrinsic volumes of standard random
sets Z, Schmidt and Spodarev [669] proposed a further method, based on the ad-
ditively extended Steiner formula (14.70). In global form, with ρε(K) := ρε(K, Rd),
the latter says that

ρε(K) =

d∑
j=0

εd−jκd−jVj(K)

for ε ≥ 0 and K ∈ R. Since K �→ ρε(K) is additive, translation invariant and locally
bounded (it is even continuous on K′), the density

ρε(Z) := lim
r→∞

Eρε(Z ∩ rW )

Vd(rW )

exists and satisfies

ρε(Z) =
d∑

j=0

εd−jκd−jVj(Z).

Choosing pairwise different values ε0, . . . , εd and inverting the system of linear equa-
tions yields

Vj(Z) =

d∑
m=0

γdjmρεm
(Z), j = 0, . . . , d.

As estimators of ρεm
(Z), again the values ρεm(Z ∩ W )/Vd(W ) in a window W can

be used; then

V̂j :=
1

Vd(rW )

d∑
m=0

γdjmρεm(Z ∩ rW )

is an asymptotically unbiased estimator, as r → ∞. The evaluation of ρεm(Z ∩ W )
is based on the integral of the index function over W + εmBd (see Note 3 of
Section 14.4). A variant, which is also studied in Schmidt and Spodarev [669], is to
integrate the index function only over W � εmBd (this method is sometimes called
‘minus sampling’), then the corresponding estimator is unbiased. Under additional
assumptions, the authors also give a consistent estimation of the asymptotic co-
variance matrix of these estimators and show that, for germ-grain models satisfying
some mixing conditions, a central limit theorem holds.

An algorithmic version of the estimation procedure, for digitized images of
random sets, is developed in Klenk, Schmidt and Spodarev [420], and further in
Guderlei, Klenk, Mayer, Schmidt and Spodarev [301].

6. Limit theorems. For ergodic standard random sets Z, Theorem 9.3.3 provides
an a.s. limit theorem for additive functionals ϕ of Z∩W , as the sampling window W
increases to the whole space. This raises the natural question of more refined results
for the corresponding estimators (asymptotic normality, large deviations, etc.). We
mention here some of the more recent advances and refer to Molchanov [546] for
further and, in particular, earlier results.
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Heinrich and Molchanov [329] show a central limit theorem for quite general ran-
dom measures associated with stationary Boolean models. Their results include the
positive extensions of the curvature measures (intrinsic volumes) and also generalize
to germ-grain models with suitable ergodicity or mixing conditions.

Pantle, Schmidt and Spodarev [594] study the asymptotic normality of estima-
tors for additive functionals (valuations) for stationary Boolean models. In particu-
lar, this includes the (additively extended) intrinsic volumes. Also here, the results
extend to more general germ-grain models satisfying a mixing condition.

Heinrich [326] proved a large deviations result for the empirical volume fraction
of a stationary Boolean model.

9.5 Further Estimation Problems

In the previous section, we have discussed several methods of estimating im-
portant characteristics of stationary random closed sets Z or particle processes
X, the specific intrinsic volumes. For stationary and isotropic Boolean models
Z, we have also seen in Section 9.1 how measurements on Z can be used to
estimate the specific intrinsic volumes of the underlying Poisson process X
of particles. These mean values give first quantitative information about Z
or X. However, even for a Poisson process X of random balls, which are dis-
tributed according to a radius distribution function G on (0,∞), the specific
intrinsic volumes of X, though yielding certain moments of G, in general do
not determine the whole distribution.

In the following, we continue these considerations and discuss three par-
ticular estimation problems in more detail. The first problem concerns the
determination of the intensity γ for a stationary Boolean model Z. We shall
describe different estimation methods which work under various assumptions,
in particular one which is based on the formulas in Theorem 9.1.5. The sec-
ond problem is to estimate the radius distribution of a stationary process X of
balls in Rd from measurements of the section process X∩L in a k-dimensional
section plane L, k ∈ {1, . . . , d−1}. For d = 3, k = 2, this is the classical Wick-
sell problem. In the third problem, we consider a stationary Boolean model
with spherical grains and show how the radius distribution can be estimated
using generalized contact distributions.

Intensity Estimation for Boolean Models

We have seen in Theorem 9.1.4 that, for a stationary and isotropic Boolean
model Z with convex grains, the (d + 1)-tuple of specific intrinsic volumes
V0(Z), . . . , Vd(Z) determines the corresponding (d+1)-tuple V0(X), . . . , Vd(X)
of the underlying Poisson particle process X uniquely (we also emphasized the
cases d = 2 and d = 3). Since the formulas in Theorem 9.1.4 follow a triangular
array, although not linear, they can easily be solved for V0(X), . . . , Vd(X)
yielding equations
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Vj(X) = fdj(V0(Z), . . . , Vd(Z)), j = 0, . . . , d,

with rational functions fdj . Using the estimators for Vi(Z) from the previous
section, we thus obtain estimators for V0(X), . . . , Vd(X) (which are no longer
unbiased). Since

V0(X) = χ(X) = γ

due to the convexity of the grains, this includes an estimator of the intensity
γ. As we have mentioned, Theorem 9.1.4 remains valid for polyconvex grains
(under appropriate integrability conditions). If the grains have Euler char-
acteristic one (which in the plane is the case if they are simply connected),
then χ(X) = γ, so we still obtain an estimator for γ. However, if we drop the
isotropy of Z, the situation becomes more complicated.

We first consider a stationary Boolean model Z with convex grains. Ac-
cording to Theorem 9.1.1, the spherical contact distribution function H of Z
is given by

H(r) = 1− exp

(
−

d∑
k=1

κkr
kVd−k(X)

)
, r ≥ 0.

Hence,

f(r) := −ln(1−H(r)) =
d∑

k=1

ckr
k

is a polynomial in r with coefficients ck := κkVd−k(X) (and without constant
term). SinceH(r) can be expressed in terms of the volume fractions p of Z and
p(r) of Z + rBd, simple estimators for f(r) exist (for example, in the planar
case by counting pixels in a digitized image of Z(ω) ∩W ). If f̂1, . . . , f̂m are
corresponding estimated values of f(r), for different values r1, . . . , rm, then
fitting a polynomial f̂ of degree d (and with f̂(0) = 0) to these values yields
estimators for ck, k = 1, . . . , d. Here, cd = γ.

Another method, which also requires convex grains, is based on the lower
tangent point z̃(C), C ∈ C′, which we have introduced in Section 4.2. Since
there we concentrated on the planar case, we shall do this again, although the
method can be extended to higher dimensions. Hence, we consider a stationary
Boolean model Z in R2 with convex grains. Let X be the underlying Poisson
particle process and γ the intensity. Since z̃ is a center function, the points
z̃(K), K ∈ X, constitute a stationary Poisson process X̃ in R2 which also has
intensity γ (by Theorems 4.2.1 and 4.2.2). Since z̃(K) is a boundary point of
K, some points of X̃ lie on the boundary of Z and the others in the interior.
Let X ′ be the thinning of X̃ consisting of all points x ∈ X̃ which lie in
the boundary of Z, hence they are observable from Z. These points are the
lower tangent points of particles from X which are not covered by any other
particle (the case that the lower tangent point x of one particle is also in the
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boundary of another particle from X has probability 0). Since X ′ = X̃∩clZc,
the (simple) point process X ′ is stationary. Using the common notation from
stereology, we denote the intensity of X ′ by χ+(Z).

Theorem 9.5.1. Let Z be a stationary Boolean model in R2 with convex
grains and X the underlying Poisson particle process with intensity γ. Then

χ+(Z) = γe−A(X). (9.39)

Proof. In the following proof, we make the identifications explained before
Theorems 3.3.5 and 3.5.9. For K ∈ K′, η ∈ Ns(K′) and x ∈ R2, let

Z(K, η) :=
⋃

C∈η\{K}
C

and
f(x,K, η) :=

1
π
1B2∩Z(K,η)c(x).

We apply Theorem 4.2.4 to the particle process X and the center function
z̃. Let K̃ := {K ∈ K′ : z̃(K) = 0} be the corresponding mark space, Q̃

the mark distribution and (P0,K)K∈K̃ the regular family occurring in the
theorem. We then use Slivnyak’s theorem (Theorem 3.5.9) for the stationary
marked Poisson process Xz̃. Since we view P0,K as a measure on B(F(K′)),
as described in the proof of Theorem 4.2.4, Slivnyak’s theorem gives

P0,K(A) = P(X ∪ {K} ∈ A)

for A ∈ B(F(K′)) and Q̃-almost all K ∈ K̃, hence∫
Ns(K′)

g(η) P0,K(dη) =
∫

Ns(K′)
g(η ∪ {K}) PX(dη)

for all measurable functions g ≥ 0. By the definition of χ+(Z), we thus obtain

χ+(Z) = E
∑

K∈X

f(z̃(K),K,X)

= γ

∫
R2

∫
K̃

∫
Ns(K′)

f(x,K + x, η + x) P0,K(dη) Q̃(dK)λ(dx)

=
γ

π

∫
R2

∫
K̃

∫
Ns(K′)

1B2(x)1Z(K,η)c(0) P0,K(dη) Q̃(dK)λ(dx)

= γ

∫
K̃

∫
Ns(K′)

1Z(K,η)c(0) PX(dη) Q̃(dK)

= γ

∫
K̃

∫
Ns(K′)

1Zc
η
(0) PX(dη) Q̃(dK)

= γP(0 /∈ Z)

= γe−A(X),
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where Zη :=
⋃

K∈ηK and where we have used that, for fixed K, the relation
K /∈ η holds for PX -almost all η. ��

Combining (9.39) with (9.6) we obtain a simple estimator for the intensity,
namely by counting the number χ+(Z ∩W ) of lower tangent points of Z in
the window W and dividing by the area of the uncovered part,

γ̂ :=
χ+(Z ∩W )
A(Zc ∩W )

.

This estimator is ratio-unbiased and strongly consistent, but depends very
much on the convexity of the grains.

We next describe a method for stationary Boolean models Z in the plane,
which may have arbitrarily shaped compact grains, but they should be con-
nected and their circumradius should be bounded from above by some con-
stant r0. We make use of the formula

P(Z ∩ C = ∅) = 1− TZ(C) = e−Θ(FC)

for C ∈ C.
For ε > 0, we put

C1 := [0, 2r0 + ε]× [0, ε],

C2 := [0, ε]× [0, 2r0 + ε],

C0 := ([0, 2r0 + ε]× {0}) ∪ ({0} × [0, 2r0 + ε]).

Then

ln
P(Z ∩ (C0 ∪ C1 ∪ C2) = ∅)P(Z ∩ C0 = ∅)

P(Z ∩ (C0 ∪ C1) = ∅)P(Z ∩ (C0 ∪ C2) = ∅)
= Θ(FC0∪C1) +Θ(FC0∪C2)−Θ(FC0∪C1∪C2)−Θ(FC0)

= Θ(F C0
C1,C2

). (9.40)

In order to calculate Θ(F C0
C1,C2

), we use Theorem 4.2.1 with the lower left
corner z′ as center function. Let Q′ be the corresponding mark distribution.
Due to our assumptions, we have r(C) ≤ r0 for Q′-almost all C ∈ Cz′,0 :=
{D ∈ C′ : z′(D) = 0}. Therefore, for these C and for x ∈ R2, the condition
C + x ∈ F C0

C1,C2
is equivalent to x ∈ (0, ε]2 (here we need the assumption that

C is connected). From this, we obtain

Θ(F C0
C1,C2

) = γ
∫
Cz′,0

∫
R2

1(0,ε]2(x)λ(dx) Q′(dC) = γε2.

Since ε is known, this can be used for the estimation of γ. Because of
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P(Z ∩ C = ∅) = 1− P(0 ∈ Z − C),

one would have to estimate the area densities of Z − C0, Z − (C0 ∪ C1), Z −
(C0 ∪ C2) and Z − (C1 ∪ C2). The resulting estimator only makes sense if
the observed area fractions of these four outer parallel sets of Z are smaller
than one or even bounded away from one, since otherwise the logarithm of
the quotient above is not defined or rather unstable. This implies that the
estimation method requires that both the intensity has to be small and the
particles need to be small, in comparison to the observation window W .

Now we return to restricted shapes and describe an estimation method
based on the formulas of Theorem 9.1.5. We assume a stationary Boolean
model Z in R2 and, since Theorem 9.1.5 was formulated for convex grains,
we make the same assumption, although the method also works for simply
connected polyconvex grains. We recall the density formulas for this case:

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)
(
γ −A(X,−X)

)
.

If the densities on the left side are estimated, we obtain estimators for
A(X), L(X) and γ − A(X,−X). However, A(X,−X) cannot be expressed
in terms of L(X) or A(X). We therefore replace the second equation above
by its local counterparts (9.12),

S1(Z, ·) = e−A(X)S1(X, ·),

and (9.13),
h(Z, ·) = e−A(X)h(X, ·).

The connection with A(X,−X) is given by

A(X,−X) =
1
2
γ2

∫
K0

∫
K0

∫
S1
h(K1, u)S1(−K2,du) Q(dK1) Q(dK2)

=
1
2

∫
S1
h(X,u)S1(−X,du).

Hence, we can estimate A(X,−X), and therefore also γ, if we can es-
timate h(X, ·) and S1(X, ·). Fortunately, it is sufficient to estimate only
one of these quantities. Namely, the Blaschke body B(X) of X, satisfying
S1(B(X), ·) = S1(X, ·), is identical with the mean body of X, since in the
plane, Blaschke addition coincides with Minkowski addition. It follows that
h(X, ·) = h(B(X), ·). Therefore, S1(X, ·) determines B(X) and thus h(X, ·),
and conversely.

It is obvious that a corresponding analysis of higher-dimensional Boolean
models becomes more and more complicated. We refer to the Notes of this
section, for a corresponding analysis of the three-dimensional case.
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The Wicksell Problem

Let X be a stationary process of balls in Rd, that is, a stationary particle
process with intensity measure concentrated on the set of balls with positive
radius. The radius distribution G of X can be defined by

G(A) :=
1
γ

E
∑

K∈X

1B(c(K))1A(r(K))

for B ∈ B with λ(B) = 1 and A ∈ B(R+), where c(K) is the center and
r(K) is the radius of the ball K, and where γ > 0 denotes the intensity of
X. We assume that G({0}) = 0. Of course, G is also the image of the grain
distribution Q under the mappingK �→ r(K). If we representX as the marked
point process

X̃ :=
∑

K∈X

δ(c(K),r(K))

(with mark space R+), the radius distribution of X is just the mark distribu-
tion of X̃. For a k-dimensional linear subspace L ∈ G(d, k), k ∈ {1, . . . , d−1},
the section process X ∩ L is a stationary process of (k-dimensional) balls;
we denote its radius distribution by GL. We shall now establish a connection
between G and GL.

For x ∈ Rd we use the orthogonal decomposition x = xL +xL with xL ∈ L
and xL ∈ L⊥. The Euclidean norm in Rd is denoted by ‖ · ‖. For a ball
K ⊂ Rd, the intersection K∩L is a ball in L with radius

√
r(K)2 − ‖c(K)L‖2,

if ‖c(K)L‖ ≤ r(K) (otherwise K ∩L = ∅). With the section process X ∩L we
therefore associate the marked point process

X̃L :=
∑

K∈X, ‖c(K)L‖≤r(K)

δ(
c(K)L,

√
r(K)2−‖c(K)L‖2

)

in L with mark space R+ (assuming here that it is simple); it is stationary
in L. The radius distribution GL of the section process X ∩ L is the mark
distribution of X̃L. The intensity γX∩L of X ∩ L is also the intensity of X̃L.
By Theorem 3.5.1, the intensity measure of X̃ is given by γλ ⊗ G, and the
intensity measure of X̃L is given by γX∩LλL ⊗ GL. Therefore, for B ∈ B(L)
and A ∈ B(R+) we obtain

γX∩LλL(B)GL(A)

= E
∑

(x,a)∈X̃L

1B×A(x, a)

= E
∑

(x,a)∈X̃

1B×A

(
xL,

√
max{0, a2 − ‖xL‖2}

)

= γ
∫

R+

∫
Rd

1B(xL)1A

(√
max{0, a2 − ‖xL‖2}

)
λ(dx) G(da)
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= γλL(B)
∫

R+

∫
L⊥

1[0,a](‖z‖)1A

(√
a2 − ‖z‖2

)
λL⊥(dz) G(da)

= γλL(B)
∫

L⊥

∫
R+

1(‖z‖,∞)(a)1A

(√
a2 − ‖z‖2

)
G(da)λL⊥(dz)

= γλL(B)(d− k)κd−k

∫ ∞

0

∫ ∞

t

1A

(√
a2 − t2

)
G(da)td−k−1 dt.

In particular, for A = [x,∞) with x > 0, we get

γX∩LGL([x,∞)) = γ(d− k)κd−k

∫ ∞

0

G

([√
x2 + t2,∞

))
td−k−1 dt. (9.41)

With x→ 0 we obtain
γX∩L = κd−kγMd−k,

where Md−k is the (d− k)th moment of the radius distribution G.
The Wicksell corpuscle problem of stereology is the task to determine,

in the case d = 3, k = 2, the distribution G from the distribution GL. If we
denote (as is common in stereology) by DV and DA the distribution function
of G and GL, respectively, and if dV denotes the first moment of G, then
(9.41), for d = 3, k = 2, is equivalent to

DA(r) = 1− 1
dV

∫ ∞

0

(
1−DV

(√
r2 + x2

))
dx for r > 0.

Thus, to determine DV from DA, one has (besides the determination of dV )
to solve an Abel type integral equation. An inversion formula exists, but is nu-
merically unstable. In practice, where DA can only be estimated, this inverse
problem presents considerable difficulties.

Boolean Models with Spherical Grains

As a second situation, where an estimation of the radius distribution is pos-
sible, we consider a stationary Boolean model Z where the primary grain Z0

is a random ball with radius distribution G (again, we assume G({0}) = 0).
We recall the contact distribution function HB (with structuring element B)
which we have discussed earlier (see Sections 2.4 and 9.1). For a Boolean
model of balls and t > 0,

HB(t) = P(dB(0, Z) ≤ t | 0 /∈ Z)

= 1− exp

⎛⎝−γ d∑
j=1

κd−jVj(B)tj
∫ ∞

0

rd−j G(dr)

⎞⎠ . (9.42)

We shall consider a variant of HB which includes the radii of the observable
boundaries of the balls.
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Namely, if 0 /∈ Z, the set dB(0, Z)B touches Z almost surely at a boundary
point of precisely one grain. We state this fact, for later use, in a more general
form.

Lemma 9.5.1. Let X = {(ξ1, Z1), (ξ2, Z2), . . .} be an independently marked
Poisson process on Rd with mark space K0 and intensity measure

Θ =
(∫

hdλ
)
⊗Q.

Let x ∈ Rd. Then

P(0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞) = 0, m �= n.

Proof. Using Campbell’s theorem and then Corollary 3.2.4, we obtain

P

⎛⎝ ⋃
m �=n

{0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞}

⎞⎠
≤ E

⎛⎝1
2

∑
m �=n

1{0 < dB(x, ξm + Zm) = dB(x, ξn + Zn) <∞}

⎞⎠
=

1
2

∫
(Rd×K0)2

1 {y ∈ bd(x−K + dB(x, z +M)B)}

×1{0 < dB(x, z +M) <∞}Λ(2)(d((y,K), (z,M)))

=
1
2

∫
K0

∫
K0

∫
Rd

∫
Rd

1 {y ∈ bd(x−K + dB(x, z +M)B)}h(y)h(z)

×1{0 < dB(x, z +M) <∞}λ(dy)λ(dz) Q(dK) Q(dM).

The last expression vanishes, since the boundary of a convex body has
Lebesgue measure zero. ��

We return to our stationary Boolean model Z with spherical grains and
assume that x /∈ Z. Applying the lemma to the underlying (stationary) Pois-
son process X of balls, we almost surely obtain a unique grain Z̃ in X with
dB(x,Z)B ∩ Z̃ �= ∅. We define rB(x,Z) as the radius r(Z̃) of Z̃. Then the
following result holds.

Theorem 9.5.2. Let Z be a stationary Boolean model in Rd with spherical
grains and with intensity γ and radius distribution G. Let g ≥ 0 be a measur-
able function on R+ × R+. Then we have

E(g(dB(0, Z), rB(0, Z)) | 0 /∈ Z)

= γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)
∫ ∞

0

∫ ∞

0

rd−1−jtj(1−HB(t))g(t, r) dtG(dr).
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Proof. We use
Z = U(X),

whereX = {Z1, Z2, . . .} is a measurable enumeration of the stationary Poisson
process of balls underlying Z, with intensity γ and radius distribution G, and
where U(Y ), for a particle process Y , denotes the union set,

U(Y ) :=
⋃

K∈Y

K.

For n ∈ N, we define the events

An := {0 < dB(0, Zn) <∞}

and
Bn := {dB(0, U(X \ {Zn})) > dB(0, Zn)}.

Then
(dB(0, Z), rB(0, Z)) = (dB(0, Zn), r(Zn))

on An ∩Bn and

{0 < dB(0, Z) <∞} =
∞⋃

n=1

(An ∩Bn) a.s.

Using this and Theorem 3.2.5, we obtain

E (1{0 < dB(0, Z) <∞}g(dB(0, Z), rB(0, Z)))

= E

∞∑
n=1

1An∩Bn
g(dB(0, Zn), r(Zn))

= E

( ∑
K∈X

1{0 < dB(0,K) <∞}g(dB(0,K), r(K))

×1{dB(0, U(X \ {K})) > dB(0,K)}
)

=
∫
K′

1{0 < dB(0,K) <∞}g(dB(0,K), r(K))

×P (dB(0, U(X)) > dB(0,K)) Θ(dK)

= P(0 /∈ Z)γ
∫ ∞

0

∫
Rd

1{0 < dB(0, z + rBd) <∞}g(dB(0, z + rBd), r)

× (1−HB(dB(0, z + rBd)))λ(dz) G(dr).

To the inner integral, we can apply formulas (14.27) (with K = rBd) and
(14.25). Using dB(0, z + rBd) = dB(−z, rBd) and the reflection invariance of
λ, we obtain
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Rd

1{0 < dB(0, z + rBd) <∞}g(dB(0, z + rBd), r)

× (1−HB(dB(0, z + rBd)))λ(dz)

=
∫

Rd

1{0 < dB(z, rBd) <∞}g(dB(z, rBd), r)

× (1−HB(dB(z, rBd)))λ(dz)

=
d−1∑
m=0

(d−m)κd−m

∫ ∞

0

∫
Rd×Rd

g(t, r)(1−HB(t))td−1−m

×Ξm(rBd;B; d(y, b)) dt

=
d−1∑
j=0

(
d− 1
j

)
dV (Bd[d− 1− j], B[j + 1])rd−1−j

∫ ∞

0

(1−HB(t))tjg(t, r)dt.

Since (9.42) implies P(dB(0, Z) < ∞) = 1, division by P(0 /∈ Z) and formula
(14.18) yield

E(g(dB(0, Z), rB(0, Z)) | 0 /∈ Z)

= γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)
∫ ∞

0

∫ ∞

0

rd−1−jtj(1−HB(t))g(t, r) dtG(dr).

This proves the theorem. ��

For g(t, r) := 1{t ≤ s}, s ≥ 0, the theorem yields

HB(s) =
∫ s

0

hB(t)(1−HB(t)) dt

with

hB(t) := γ
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)tj
∫ ∞

0

rd−1−j G(dr).

Equation (9.42) shows that HB(s) < 1 and that HB is a continuous function
satisfying HB(0) = 0. Using the monotonicity of HB , we obtain that∫ s

0

hB(t) dt ≤ HB(s)
1−HB(s)

<∞

for all s ≥ 0. Hence, the exponential formula of Lebesgue–Stieltjes calculus
(see, for example, Last and Brandt [434, Theorem A4.12]) shows that

HB(s) = 1− exp
{
−

∫ s

0

hB(t) dt
}
.

Consequently, formula (9.42) is contained in Theorem 9.5.2 as a special case.
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We now exploit the result for other suitable functions g. Let W ∈ K be a
sampling window with λ(W ) > 0. Choosing

g(t, r) :=
f(t)
h(t, r)

1C(r)

for a Borel set C ⊂ R+, a measurable function f ≥ 0 and

h(t, r) :=
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)rd−1−jtj ,

we see that

Ĝ(C) :=

∫
W\Z

1C(rB(x,Z))f(dB(x,Z))h(dB(x,Z), rB(x,Z))−1
λ(dx)∫

W\Z
f(dB(x,Z))h(dB(x,Z), rB(x,Z))−1

λ(dx)

is a ratio-unbiased estimator of G(C). In fact,

E

∫
W\Z

1C(rB(x,Z))
f(dB(x,Z))

h(dB(x,Z), rB(x,Z))
λ(dx)

= γλ(W )P(0 /∈ Z)
∫ ∞

0

(1−HB(t))f(t) dt ·G(C)

and (putting C = R+)

E

∫
W\Z

f(dB(x,Z))
h(dB(x,Z), rB(x,Z))

λ(dx) = γλ(W )P(0 /∈ Z)
∫ ∞

0

(1−HB(t))f(t) dt.

It should be emphasized that this estimator uses information outside the sam-
pling windowW . Namely, for each x ∈W \Z, the B-distance dB(x,Z) and the
radius rB(x,Z) of the grain determined by the corresponding contact point
have to be observed and the latter may lie outside W .

However, the above considerations show that the generalized contact dis-
tributions which we considered give sufficient information to determine the
radius distribution G.

We discuss a special case, where the estimator Ĝ has a simpler form.
Namely, we consider a planar Boolean model, choose a square as sampling
window and B = [0, u], where the unit vector u is parallel to one side of W .
Then h(t, r) = 2r, hence

Ĝ =
1∑n

i=1 wi

n∑
i=1

wiδri
. (9.43)

Here, r1, . . . , rn are the radii of the arcs C1, . . . , Cn in bdZ which appear as
projections from points in W in direction u. If Ai is the region that ‘projects’
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onto Ci, namely the union of all segments xy, x ∈W \Z, y = x+d[0,u](x,Z)u ∈
Ci, the weights wi are given by

wi =
1

2ri

∫
Ai

f(d[0,u](z, Ci))λ(dz), i = 1, . . . , n.

In the simplest case, f = 1, the weights are proportional to the area of Ai.
On the other hand, if f(t) = 1

ε1{t ≤ ε} with ε → 0, we get in the limit an
estimator of the form (9.43) where the weights are proportional to the lengths
of the arcs. This estimator is studied in the book by Hall [317].

Notes for Section 9.5

1. The estimation of the parameters of a stationary Boolean model (with or without
isotropy) is discussed in the books of Serra [729], Cressie [185], Stoyan, Kendall
and Mecke [743] and, in particular, in Molchanov [544, 546]. The method of fitting a
polynomial to the logarithm of the (empirical) spherical contact distribution function
is known as minimum contrast method. As a variant, one can investigate the
contact distribution function HM (r), for a fixed value r = 1, say, but for different
structuring elements M . For example, in the planar case, M can be chosen to be
0-dimensional (point), 1-dimensional (segment) and 2-dimensional (square). The
resulting equations can then be solved for γ. In this way, an estimation method for
γ was constructed in Hall [316], which is based on counting the number of cells, edges
and vertices of a square lattice which are intersected by the given planar Boolean
model.

2. Formula (9.39) for the intensity of the uncovered lower tangent points in The-
orem 9.5.1 seems to occur first in Serra [729]. The uncovered lower tangent points
are dependent, so they no longer form a Poisson process. However, the following
result holds. Consider the stationary Boolean model Z with convex grains and with
intensity γ in the half plane

R
2
+ := {(x1, x2) ∈ R

2 : x1 ≥ 0}.

The Laslett transform L : R2
+ → R2

+ (depending on Z) shifts the points of R2
+ to

the ‘left’ as far as possible, treating Z as ‘empty space’ and its complement as solid.
More precisely, L(x1, x2) := (x̂1, x2) with

x̂1 := λ1(([0, x1] × {x2}) ∩ Zc).

The images of the uncovered lower tangent points of Z under this transformation
form the restriction to R2

+ of a stationary Poisson process with intensity γ. This
was first explained in Cressie [185]; a short and elegant proof based on a martingale
argument was given by Barbour and Schmidt [78]. They mention that the approach
also holds in the d-dimensional setting. A further proof in Rd was given by Černý
[168].

For the estimator γ̂ based on the uncovered lower tangent points, asymptotic
normality was shown by Molchanov and Stoyan [549].

3. The estimation method for γ based on formula (9.40) is due to Schmitt [670]; it
has been extended to non-stationary Boolean models as well (Schmitt [671]).
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4. The use of Theorem 9.1.4 for the estimation in stationary and isotropic Boolean
models Z is classical (see Molchanov [546]). The procedure is sometimes called the
method of moments since it yields estimators for all the specific intrinsic vol-
umes V0(X), . . . , Vd(X). Because of V0(X) = γ (in the case of convex grains), this
determines the mean values∫

K0

Vj(K) Q(dK), j = 1, . . . , d.

If the grains are balls, we thus obtain the first d moments of the distribution of the
radii. The extension of the method of moments to non-isotropic Boolean models in
the plane is due to Weil [794], based on earlier results in [793]. As we mentioned
already, a corresponding analysis in R3 is still possible. We sketch the corresponding
approach from Weil [798].

For d = 3, we consider the density equations

V (Z) = 1 − e−V (X),

S2(Z, ·) = e−V (X)S2(X, ·),

h(Z, ·) = e−V (X) (
h(X, ·) − h2(X, X, ·)

)
,

χ(Z) = e−V (X)
(
γ − V

(0)
1,2(X, X) + V

(0)
2,2,2(X, X, X)

)
.

Here, the first equation is the usual one, and the fourth results from Theorem 9.1.5.
The second equation is (9.12), and the third is the three-dimensional analog of (9.13).
It involves the specific mixed support function

h2(X, X, ·) := γ2

∫
K0

∫
K0

h∗
2(K, M ; ·) Q(dM) Q(dK)

(see Theorem 6.4.6). The first equation serves to remove the exponential expres-
sion, so we can assume that the quantities S2(X, ·), h(X, ·) − h2(X, X, ·) and

γ − V
(0)
1,2(X, X) + V

(0)
2,2,2(X, X, X) are determined by the left sides. Using the repre-

sentation (6.30) of h∗
2(K, M ; ·) for polytopes K, M , we obtain

h∗
2(K, M ; u) =

∫
S2

∫
S2

f(−u, v, w) S2(K, dv) S2(M, dw), u ∈ S2,

with a function f , given explicitly by (6.30). By approximation, this representation
extends to all convex bodies K, M , therefore we get

h2(X, X; u) =

∫
S2

∫
S2

f(−u, v, w) S2(X, dv) S2(X, dw), u ∈ S2.

It follows that h2,2(X, X, ·) is determined and thus also h(X, ·). It remains to show

that V
(0)
1,2(X, X) and V

(0)
2,2,2(X, X, X) can be expressed in terms of h(X, ·), h2(X, X, ·)

and S2(X, ·), since then we obtain γ. For the first density, this is easy since (9.10)
immediately yields

V
(0)
1,2(X, X) =

∫
S2

h(X, u) S2(X, du).

For the second density, it turns out that similarly
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V
(0)
2,2,2(X, X, X) =

∫
S2

h2(X, X,−u) S2(X, du)

=

∫
S2

∫
S2

∫
S2

f(u, v, w) S2(X, dv) S2(X, dw) S2(X, du)

holds.
In Weil [801], these estimation problems for d = 2 and d = 3 were reviewed from

the point of densities of mixed volumes (compare Theorem 9.1.6). It was shown
that, for d = 2, the densities V0(Z), V (Z[1], M [1]) for all M ∈ K′, and V 2(Z),
determine γ uniquely, whereas in dimension d = 3, the densities V0(Z), V (Z[1], M [2])
and V (Z[2], M [1]), for all M ∈ K′, as well as V3(Z) are needed. In [801], also
the four-dimensional situation was discussed and it was claimed that the intensity
γ is determined by the densities of mixed volumes of Z. The proof, however, is

incomplete, since a summand V
(0)
2,2(X, X) is missing in the formula for the specific

Euler characteristic (see the remarks in Goodey and Weil [280]). Therefore, the
four-dimensional case is still open, as are all the higher-dimensional situations.

The approach with local densities (of surface area measures and support func-
tions) or specific mixed volumes can be applied also to non-stationary Boolean mod-
els. The specific intrinsic volumes and their local counterparts, the specific surface
area measure and the specific support function, then also depend on the location in
space. For their definition and further details, see Section 11.1 and the corresponding
Note 2.

5. The estimation procedure described before the Wicksell problem requires in prac-
tice an estimation of the densities h(Z, ·) and/or S1(Z, ·) from measurements in an
observation window. Methods to achieve this are described, for h(Z, ·) in Weil [794,
p. 112 ff], and for S1(Z, ·) in Rataj [612], Kiderlen and Jensen [407].

6. The Wicksell corpuscle problem is a classic of stochastic geometry, since Wicksell
[813] first treated it and gave an explicit solution of the corresponding Abel type
integral equation. The use of marked point processes for the derivation of (9.41)
goes back to Mecke and Stoyan [502]. For more details on the Wicksell problem, we
refer to Stoyan, Kendall and Mecke [743, sect. 11.4]; see also Ripley [644, sect. 9.4].
Limit distributions of stereological estimators in Wicksell’s problem were studied by
Heinrich [327]. Zähle [830] treated Wicksell’s corpuscle problem in spherical space.

7. Theorem 9.5.2 is a special case of more general results in Hug, Last and Weil
[358]. We shall present some of them in Section 11.2. In [358] also various situations
are discussed where (generalized) contact distributions of a Boolean model can be
used to obtain information on the underlying grain distribution Q. The particular
case of spherical grains in the plane, which we presented here, was explained in Weil
[802] and is based on work in progress by Hug, Last and Weil.

8. Estimating the intensity of stationary flat processes. Let X be a stationary
process of k-flats in Rd (k ∈ {1, . . . , d−1}) with intensity γ . Let W ∈ K be a convex
sampling window with Vd−k(K) > 0. The ‘weighted estimator’

γ̂ :=
∑

E∈X∩FW

1

Vd−k(W |E⊥)

is an unbiased estimator for the intensity γ, as follows immediately from the Camp-
bell theorem and (4.25). On the other hand, if X has a known directional distribution
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Q, then

γ̂ :=
1

VQ

∑
E∈X∩FW

1 with VQ :=

∫
G(d,k)

Vd−k(W |L⊥) Q(dL)

can be used as an unbiased estimator. Schladitz [666] has interpolated between these
two extreme cases (of no knowledge and of complete knowledge about the directional
distribution), defining an unbiased estimator for the intensity, the ‘R-estimator’, in
the case where the directional distribution of X is known to belong to a given
family R of probability measures on G(d, k). She gave sufficient conditions for the
R-estimator to be the uniformly best unbiased estimator for the intensity of sta-
tionary Poisson k-flat processes with directional distribution in R. For stationary
ergodic flat processes, the R-estimator is still uniformly better than the ‘naive’ one
based on Theorem 4.4.3, that is (for Vd(W ) > 0),

γ̂ :=
1

Vd(W )

∑
E∈X

Vk(E ∩ W ).

9. Estimating the Euler characteristic. The system of formulas (9.36)–(9.38)
(as well as the corresponding system in other dimensions) does not include an inter-
section formula for the specific Euler characteristic χ(Z). In fact, this density, as well
as the mean particle number for processes of convex particles, cannot be estimated
from the information provided by lower-dimensional sections. To overcome this dif-
ficulty, estimators have been suggested that use the information coming jointly from
two close parallel hyperplane sections, or from the slab between them. Unbiasedness
of these estimators is only guaranteed if the sets under investigation satisfy addi-
tional assumptions. We refer to the papers by Ohser and Nagel [588] and by Rataj
[616] and to the literature quoted there.

10. Estimating the directional distribution of fiber processes. If X is a
stationary fiber process in Rd, with specific length V1(X) and spherical directional
distribution ϕ, then (4.40) says that

V0(X ∩ v⊥) = V1(X)

∫
Sd−1

|〈u, v〉|ϕ(du)

for v ∈ Sd−1. If the specific length has already been estimated, this can be used
to estimate the directional distribution by means of intersection point counts in
hyperplanes v⊥. (The function v �→ V0(X∩v⊥) is known as the ‘rose of intersections’,
and the even probability measure ϕ as the ‘rose of directions’.) Although the measure
ϕ is uniquely determined by the rose of intersections, there are practical difficulties,
since the inversion of the cosine transform is unstable, and only finitely many values
of the rose of intersections will be available. Different methods of nonparametric
estimation to overcome these difficulties have been described by Kiderlen [403] and
by Kiderlen and Pfrang [408].

11. Estimating mean normal measures. Similar problems to those described
in the previous note arise if one wants to use (4.41) for the estimation of the di-
rectional distribution of a stationary hypersurface process. A related notion is the
mean normal measure of a stationary process X of convex particles or of a stationary
standard random set Z, denoted by Sd−1(X, ·) and Sd−1(Z, ·), respectively. Since
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outer normal vectors are used in their definitions, these measures are also called
oriented mean normal measures, to distinguish them from their even parts,
which are called unoriented mean normal measures and correspond to the di-
rectional distributions of the boundaries. Various estimation procedures for both
oriented and unoriented mean normal measures, by means of lower-dimensional sec-
tions, have been investigated; we refer to Schneider [704], Kiderlen [404, 406] and
the literature quoted there.

12. Estimating particle orientation. If the Blaschke body B(X) of a stationary
process X of convex particles is distinctly non-spherical, it reveals anisotropy of
X. It may, therefore, be of interest to estimate the Blaschke body by stereological
means. Weil [796] has shown that B(X) is uniquely determined by the statistical
properties of two-dimensional sections of X, but in practice an estimation based on
this fact may be difficult. If only mean particle orientation is of interest, one can
replace the Blaschke body by a suitable ellipsoid (equivalently, a positive definite
symmetric matrix), which is more accessible to stereological estimation. For a convex
body K ∈ K with interior points, the area moment tensor T (K) is the symmetric
tensor of rank two with cartesian coordinates Tij(K) given by

Tij(K) :=

∫
Sd−1

uiuj Sd−1(K, du).

The eigenvalues and eigendirections of the matrix (Tij(K))d
i,j=1 can be used to

describe the anisotropy of K. The specific area moment tensor of the stationary
particle process X (with convex particles, intensity γ and grain distribution Q) is
defined by

T (X) := γ

∫
K0

T (K) Q(dK) = lim
r→∞

1

Vd(rW )
E

∑
K∈X

T (K ∩ rW ),

for arbitrary W ∈ K with Vd(W ) > 0. It turns out that T (X) = T (B(X)). A method
for estimating T (X) from sections with hyperplanes was described by Schneider and
Schuster [714].

13. Estimation from digitized images. Practical estimation in two and three di-
mensions may meet the additional difficulty that only digitized images are available,
or the sets under investigation are accessible only via their intersections with suffi-
ciently fine scaled grids. Estimation can then be based, for example, on pixel or voxel
configuration counts. Methods for the estimation from digitized images have been
developed in several investigations, for the Euler characteristic by Nagel, Ohser and
Pischang [573], Ohser, Nagel and Schladitz [589, 590], Kiderlen [405], for specific
intrinsic volumes by Lang, Ohser and Hilfer [431], and for directional distributions
and oriented mean normal measures by Jensen and Kiderlen [381], Kiderlen and
Jensen [407], Gutkowski, Jensen and Kiderlen [302], Ziegel and Kiderlen [835].
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Random Mosaics

By a mosaic we understand a system of convex polytopes in Rd that cover
the whole space and have pairwise no common interior points. A random
mosaic can alternatively be described as a special random closed set (formed
by the boundaries of the cells of the mosaic), or as a special point process
of convex polytopes. The k-dimensional faces of these polytopes themselves
generate point processes of k-dimensional sets. Thus, a random mosaic is in a
natural way associated with d+1 particle processes (the processes of vertices,
edges, . . . , cells). This special structure and the copious relations between the
intensities and specific intrinsic volumes of the various face processes make
random mosaics a rich topic for mathematical studies. The planar case has
been investigated most thoroughly, but also for three-dimensional random
mosaics there are many particular results. In this chapter, we maintain the
general frame as before and study random mosaics in Rd, though on some
occasions we restrict ourselves to the two- or three-dimensional case, when
general results are not known or would be too complicated.

After a general treatment of random mosaics in Section 10.1, we study two
special types of random mosaics in more detail, namely the Voronoi mosaics
(together with the Delaunay mosaics arising by duality) and the hyperplane
mosaics.

A random Voronoi mosaic X is generated by an ordinary point process X̃
in Rd, by associating with each point x ∈ X̃ its Voronoi cell with respect to
the Euclidean metric, that is,

C(x, X̃) := {z ∈ Rd : ‖z − x‖ ≤ ‖z − y‖ for all y ∈ X̃}.

Under suitable assumptions on X̃ (for instance, stationarity), each cell C(x, X̃)
is bounded and hence a convex polytope. If X̃ is, in particular, a stationary
Poisson process, then all the mean values of X are determined by the intensity
of X̃. Some formulas of this type are proved in Section 10.2. Corresponding
results for Delaunay mosaics are obtained by duality.
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The second special class of mosaics, to be considered in Section 10.3, are
the hyperplane mosaics. Such a mosaic consists of the cells that are induced
by a hyperplane process X̂ in Rd, where suitable assumptions on X̂ have to
guarantee that the cells are bounded. Again, the Poisson hyperplane mosaics
play a prominent role.

In Section 10.4, we collect various results about zero cells and typical cells
of general and special random mosaics. Section 10.5 is devoted to mixing
properties of mosaics.

10.1 Mosaics as Particle Processes

Generally, one may speak of a mosaic in Rd whenever the space is covered
by d-dimensional closed sets (the cells of the mosaic) which have pairwise no
common interior points. In principle, one could allow unbounded, non-convex
and even multiply connected cells and still develop certain parts of the theory.
Here, however, we restrict ourselves to mosaics which are defined by locally
finite systems of compact convex cells.

Definition 10.1.1. A mosaic in Rd is a countable system m of subsets sat-
isfying the following conditions:

(a) m ∈ F�f (F ′), that is, m is a locally finite system of nonempty closed sets.
(b)The sets K ∈ m are compact, convex and have interior points.
(c) The sets of m cover the space, ⋃

K∈m

K = Rd.

(d) If K,K ′ ∈ m and K �= K ′, then intK ∩ intK ′ = ∅.

According to this definition, a mosaic is a special element of the set

F�fc(F ′) := F�f (F ′) ∩ F(K′).

On the subset K′ ⊂ F of nonempty convex bodies in Rd occurring here, the
topology induced by F coincides with the topology derived from the Hausdorff
metric (cf. Theorem 12.3.4). The space K′ is locally compact. The elements of
F�fc(F ′) are sets of convex bodies and at the same time locally finite subsets
of F ′. Hence, in every such set of convex bodies only finitely many of them
meet a given compact subset of Rd.

The elements of a mosaic m are often called the cells of m. They are
necessarily of a special type.

Lemma 10.1.1. The cells of a mosaic are convex polytopes.
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Proof. Let m be a mosaic and K ∈ m. Due to the local finiteness of m, there
are only finitely many cells K1, . . . ,Km ∈ m \ {K} such that Ki ∩ K �= ∅.
From Rd =

⋃
K′∈mK

′ it follows that

bdK =
m⋃

i=1

(Ki ∩K).

Let i ∈ {1, . . . ,m}. Since intK ∩ intKi = ∅, the convex bodies K and Ki can
be separated by a hyperplane Hi, that is, the closed halfspaces H+

i and H−
i

bounded by Hi satisfy, say, K ⊂ H+
i and Ki ⊂ H−

i (i = 1, . . . ,m). We assert
that this implies

K =
m⋂

i=1

H+
i . (10.1)

The inclusion K ⊂
⋂m

i=1H
+
i is trivial. Let x ∈

⋂m
i=1H

+
i , and suppose that

x /∈ K. There is a point y ∈ intK ⊂ int
⋂m

i=1H
+
i . The line segment with

end points y and x contains a boundary point x′ of K. Since x′ �= x, we have
x′ ∈ int

⋂m
i=1H

+
i . On the other hand, x′ ∈ Kj for some j ∈ {1, . . . ,m}, a

contradiction. Hence, (10.1) holds, and K, being compact and an intersection
of finitely many closed halfspaces, is a polytope. ��

The (proper) faces of a convex polytope P are the intersections of P
with its supporting hyperplanes. A face of dimension k is called a k-face,
k ∈ {0, . . . , d−1}. The 0-faces are the vertices (here we identify {x} with x),
the 1-faces are the edges, and the (d−1)-faces of a d-dimensional polytope are
its facets. If the polytope P is represented, as in (10.1), by the intersection of
finitely many closed halfspaces H+

i , then each k-face of P is the intersection
of P with suitable d−k of the corresponding hyperplanes Hi. Every boundary
point of P is a relatively interior point of a uniquely determined face of P .
Sometimes it is convenient to consider the d-dimensional polytope P as the
d-face of P . We write Fk(P ) for the set of all k-faces of P , k = 0, . . . , d, and
put F•(P ) :=

⋃d
k=0 Fk(P ).

A mosaic can have the property that faces of different cells overlap; for
example, a vertex of some cell P can be a relatively interior point of a facet of
a neighboring cell. In the following, we exclude this phenomenon and consider
only mosaics m which induce cell complexes, that is, satisfy

P ∩ P ′ ∈ (F•(P ) ∩ F•(P ′)) ∪ {∅} for all P, P ′ ∈ m. (10.2)

A mosaic satisfying condition (10.2) is called face-to-face. For such a mosaic,
we write

Fk(m) :=
⋃

P∈m

Fk(P ) for k = 0, . . . , d

and F•(m) :=
⋃d

k=0 Fk(m).
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We denote the set of all mosaics in Rd by M and the subset of all face-
to-face mosaics by M∗. It is for reasons of simplicity that in the treatment of
random mosaics we restrict ourselves to face-to-face mosaics; for the partic-
ular mosaics considered in Sections 10.2 and 10.3, this condition is satisfied
automatically.

A face-to-face mosaic m is called normal if every k-face of m is contained
in the boundary of precisely d−k+1 cells, k = 0, . . . , d−1. For k = d−1, this
condition is always satisfied; every facet of a mosaic belongs to two neighboring
cells. The further conditions are, for example, not satisfied by a hyperplane
mosaic. In the planar case (d = 2), normality means that every vertex of m is
contained in exactly three cells, and hence in exactly three edges. Generally,
for a normal mosaic every j-face belongs to

(
d−j+1

k−j

)
k-faces, 0 ≤ j ≤ k ≤ d.

The definition and treatment of random mosaics require some measurabil-
ity assertions.

Lemma 10.1.2. The set M of all mosaics and the set M∗ of face-to-face
mosaics in Rd are Borel sets in F(F ′). The map

ϕk : M∗ → F(F ′)
m �→ Fk(m)

is measurable, k = 0, . . . , d− 1.

Proof. By Lemma 3.1.4, the set F�fc(F ′) is a Borel set in F(F ′). For r ∈ N,
the set K(d−1)

r := {K ∈ K′ : dimK ≤ d − 1, K ⊂ rBd} is closed in F ′. We
have

M =

{
m ∈ F�fc(F ′) :

⋃
K∈m

K = Rd

}
∩

∞⋂
r=1

{
m ∈ F�fc(F ′) : m ∩ K(d−1)

r = ∅,
∑
K∈m

Vd(K ∩ rBd) = Vd(rBd)

}
.

The mapping m �→
⋃

K∈mK from F�fc(F ′) into F ′ is measurable, as follows
from the proof of Theorem 3.6.2. The mapping m �→ m∩K(d−1)

r is measurable
by Theorem 12.2.6, and the measurability of the mapping m �→

∑
K∈m Vd(K∩

rBd) follows as in the proof of Theorem 3.1.2. Hence, M is a Borel set in F(F ′).
The set P ′ of all nonempty convex polytopes in Rd is a Borel set in F ′.

We assert that the map
ψk : P ′ → F(F ′)

P �→ Fk(P )

is measurable. For the proof we consider, for r, s, t ∈ N, the set Pr,s,t ⊂ P ′ of
polytopes P with the following properties: P ⊂ rBd, P has exactly s vertices,
for q ∈ {1, . . . , d} and any q + 1 vertices x1, . . . , xq+1 of P we have either
Vq(conv {x1, . . . , xq+1}) = 0 or Vq(conv {x1, . . . , xq+1}) ≥ 1/t. It is easy to
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see that Pr,s,t is closed and that the restriction of ψk to Pr,s,t is continuous.
From

⋃
r,s,t∈N Pr,s,t = P ′ we now see that ψk is measurable.

In particular, the map ψ : P �→ F•(P ) is measurable. Therefore, the set

A := {(P,Q) ∈ P ′ × P ′ : P ∩Q = ∅ or P ∩Q ∈ F•(P ) ∩ F•(Q)}
= {(P,Q) ∈ P ′ × P ′ : P ∩Q = ∅ or ψ(P ) ∩ ψ(Q) = ψ(P ∩Q)}

is a Borel set. For m ∈ M, let ηm denote the simple counting measure on F ′

with support m. By Lemma 3.1.4, the mapping m �→ ηm is measurable. Now
from

M∗ = {m ∈M : ηm ⊗ ηm(F ′ ×F ′ \A) = 0}

the measurability of M∗ follows.
Let k ∈ {0, . . . , d − 1}. For a polytope P , let ηP,k be the simple counting

measure on F ′ with support ψk(P ) = Fk(P ). By Lemma 3.1.4, the mapping
P �→ ηP,k is measurable. For m ∈M∗, the (non-simple) counting measure

νm,k :=
∑
P∈m

ηP,k

has support Fk(m). The mapping m �→ νm,k from M∗ into N(F ′) is measurable,
by the Campbell theorem (observe that the measurability of m �→ νm,k is
equivalent to the measurability of m �→ νm,k(A) for all Borel sets A ∈ B(F ′)).
Now Lemma 3.1.4 yields the measurability of the mapping ϕk. ��

Definition 10.1.2. By a random mosaic in Rd we understand a particle
process X in Rd satisfying X ∈M∗ almost surely.

Thus, a random mosaic in our terminology is a point process of convex
polytopes, pairwise not overlapping, covering the whole space, and satisfy-
ing condition (10.2). The random mosaic X is called normal if P-almost all
realizations of X are normal.

For a random mosaic X,

X(k) := Fk(X), k ∈ {0, . . . , d},

(with X(d) := X) defines a particle process, more precisely, a point process of
k-dimensional polytopes. The measurability follows from Lemma 10.1.2. The
local finiteness of X(k)(ω) is a consequence of the corresponding property of
X(ω). We denote the intensity measure of X(k) by Θ(k). It must be stressed
that the local finiteness of Θ(d) does not imply the local finiteness of the
intensity measures Θ(k) for k < d (cf. Note 2 of this section).

Convention. For the random mosaics X treated in this section we make
the general assumption that all their face processes X(k), k = 0, . . . , d, have
locally finite intensity measures.
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From now on, we consider only stationary random mosaics X. Then also
the face processes X(k), k = 0, . . . , d, are stationary. We denote by γ(k) the
intensity and by

d
(k)
j := Vj(X(k)), j = 0, . . . , k,

the density of the jth intrinsic volume of X(k) (thus, γ(k) = d
(k)
0 ). Further,

Q(k) denotes the grain distribution of X(k). In particular, intensity and grain
distribution of the particle process X itself are now denoted by γ(d) and
Q(d), for reasons of greater clarity, and not by γ and Q, as formerly. For X(d),
however, we continue to write X, partly because the mosaic X, independently
of its definition as a cell process, is meant to comprise the whole collection
X(d), . . . , X(0).

A random polytope Z(k) with distribution Q(k) is called the typical k-face
(for k = d, the typical cell) of X. With this terminology, the expectation

EVj(Z(k)) =
d
(k)
j

γ(k)
=

∫
K0

Vj(K) Q(k)(dK) (10.3)

represents the mean jth intrinsic volume of the typical k-face Z(k) of X. The
typical cell Z(d) is often denoted by Z.

The volume density d(d)
d seems to be of little interest, since Theorem 9.2.2

yields Vd(X) = 1. However, from (4.37) we obtain the equation

EVd(Z) =
1
γ(d)

, (10.4)

and hence the information that the mean volume of the typical cell of a sta-
tionary random mosaic X is the reciprocal intensity of X.

To motivate the subsequent considerations, we begin with a few elemen-
tary geometric observations, which will then be generalized. For further inves-
tigations of the specific intrinsic volumes d(k)

j we employ the representation
(14.14),

Vj(P ) =
∑

S∈Fj(P )

γ(S, P )Vj(S),

for the intrinsic volume Vj(P ) of a polytope P (j ∈ {0, . . . , d}). Here γ(S, P )
denotes the external angle of the polytope P at its face S. By Theorem 9.2.2,

d
(k)
j = lim

r→∞

1
rd

E
∑

K∈X(k)

Vj(K ∩ rCd). (10.5)

For every polytope K we have

Vj(K ∩ rCd) ≥
∑

S∈Fj(K)

γ(S,K)Vj(S ∩ rCd).

The monotonicity of Vj on K implies
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Vj(K ∩ rCd)−
∑

S∈Fj(K)

γ(S,K)Vj(S ∩ rCd) ≤ Vj(K ∩ rCd) ≤ rjVj(Cd).

For j ≤ k this gives

d
(k)
j = lim

r→∞

1
rd

E
∑

K∈X(k)

∑
S∈Fj(K)

γ(S,K)Vj(S ∩ rCd)

= lim
r→∞

1
rd

E
∑

S∈X(j)

Vj(S ∩ rCd)
∑

K∈X(k)

γ(S,K).

The measurability that was used here can be shown as in the proof of Lemma
10.1.2. Further, we have made use of the fact that the set of all j-faces of X(k)

is equal to X(j).
In the case k = d, j = d−1 we have γ(S,K) = 1

2 , hence
∑

K∈X γ(S,K) =
1. This gives

d
(d)
d−1 = lim

r→∞

1
rd

E
∑

S∈X(d−1)

Vd−1(S ∩ rCd) = d(d−1)
d−1 , (10.6)

by (10.5), a relation which is intuitively plausible.
In the case k = 1, j = 0 we also have γ(S,K) = 1

2 , hence 2
∑

K∈X(1) γ(S,K)
is the number of edges of X emanating from the vertex S, which we denote
by N1(S,X). We obtain

γ(1) = lim
r→∞

1
2rd

E
∑

S∈X(0)

V0(S ∩ rCd)N1(S,X). (10.7)

If the mosaic X is normal, then N1(S,X) = d+ 1, hence in this case we get

γ(1) =
d+ 1

2
γ(0). (10.8)

Such observations are a motivation for considering, besides the specific
intrinsic volumes of the face processes, further quantities of random mosaics
that depend on the ‘combinatorial neighborhood’ of the faces of a given di-
mension. A simple example is the mean number, n01, of edges emanating from
a (typical) vertex. Another example is the mean total edge length of a typical
cell. More generally, we consider for a mosaic the totality of the k-faces that
are incident with a given j-face, and functions on pairs of incident j-faces and
k-faces.

It will be convenient to use marked particle processes, where the particles
are the j-faces of the mosaic and some aspects of the combinatorial neigh-
borhood of the j-faces are considered as marks. We prepare this by some
definitions.

We denote by Ff (K′) the system of all finite sets of nonempty convex
bodies in Rd. In the following, the letter S is used as a variable. There is no
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danger of confusion with the extended convex ring, since the latter is not used
in the present chapter. Recall that we use c as center function, where c(C) is
the center of the circumball of the compact set C.

Definition 10.1.3. For j, k ∈ {0, . . . , d}, a (j, k)-face star is a pair (T,S) ∈
K′ × Ff (K′), where T is a j-dimensional polytope and S is a finite set of
k-dimensional polytopes satisfying the following conditions:

S = Fk(T − c(T )) if j ≥ k,
T − c(T ) ∈ Fj(S) for all S ∈ S if j < k.

If m ∈M∗ is a mosaic and T is a j-face of m, then

Fk(T,m) := Fk(T − c(T )) for j ≥ k,
Fk(T,m) := {S − c(T ) : S ∈ Fk(m), T ⊂ S} for j < k.

Thus, (T,Fk(T,m)) is a (j, k)-face star. We call it a (j, k)-face star of
the mosaic m, and we denote by

Tjk(m) := {(T,Fk(T,m)) : T ∈ Fj(m)}

the set of all (j, k)-face stars of m. Again, we prove a measurability statement.

Lemma 10.1.3. The mapping

ϕjk : M∗ → F(K′ ×F(K′))
m �→ Tjk(m)

is measurable, j, k = 0, . . . , d.

Proof. Let f : K′ ×F(K′)→ R ∪ {∞} be nonnegative and measurable. Then
the function defined by

m �→
∑

T∈Fj(m)

f(T,m), m ∈M∗,

is measurable. For a proof, we may restrict ourselves to functions of the form
f = 1A1×A2 with A1 ∈ B(K′), A2 ∈ B(F(K′)) and then apply Lemma 10.1.2
and Lemma 3.1.4.

Suppose, first, that j ≥ k. For T ∈ K′, the set

K⊂(T ) := {K ∈ K′ : K ⊂ T}

is closed. The map T �→ K⊂(T ) from K′ into F(K′) is continuous and, hence,
measurable.

For A ∈ B(K′ ×F(K′)) we define
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ρjk(m, A) :=
∑

T∈Fj(m)

1A(T, [Fk(m) ∩ K⊂(T )]− c(T )) for m ∈M∗.

Then ρjk(m, {(K,S)}) > 0 holds if and only if (K,S) ∈ Tjk(m). By the
preceding observations and by Lemma 10.1.2, the mapping ρjk(·, A) is mea-
surable. For every fixed m ∈M∗, the function ρjk(m, ·) is a counting measure
on K′×F(K′). The mapping M∗ → N(K′×F(K′)), defined by m �→ ρjk(m, ·),
is measurable. From

Tjk(m) = supp ρjk(m, ·)
and Lemma 3.1.4, we now deduce the measurability of ϕjk.

The case j < k can be treated analogously, using the set

K⊃(T ) := {K ∈ K′ : K ⊃ T},

which is closed in K′. Also the map T �→ K⊃(T ) from K′ into F(K′) is con-
tinuous. ��

Let X be a stationary random mosaic. For j, k ∈ {0, . . . , d}, the set

X (j,k) := Tjk(X)

of all (j, k)-face stars of the mosaic defines, by Lemma 10.1.3, a point process
in the space K′ × F(K′); it is concentrated on K′ × Ff (K′). Here we may
identify X (j,j) with X(j). The process X (j,k) is a stationary marked particle
process in K′ with mark space Ff (K′). The intensity of X (j,k) is equal to γ(j).
The grain-mark distribution Q(j,k) can be considered as a probability measure
on K0×Ff (K′). It is concentrated on the (j, k)-face stars in K0×Ff (K′), more
precisely, on those appearing in face-to-face mosaics.

The marginal distribution of the grain-mark distribution Q(j,k) with re-
spect to projection to the first factor of K0 ×Ff (K′) is nothing but the grain
distribution Q(j) of the face process X(j). Hence, for every nonnegative mea-
surable function f on K0 we have∫

K0×Ff (K′)
f(T ) Q(j,k)(d(T,S)) =

∫
K0

f dQ(j). (10.9)

In view of EX (j,k)(·×Ff (K′)) = EX(j), this follows from the definition of the
distributions Q(j,k) and Q(j). In particular, for every nonnegative measurable
function f : K ×K0 → R and for 0 ≤ k ≤ j ≤ d, the equation∫

K0×Ff (K′)

∑
S∈S

f(S, T ) Q(j,k)(d(T,S))

=
∫
K0

∑
S∈Fk(T )

f(S, T ) Q(j)(dT ) (10.10)

holds.
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For the process X (j,k) of the (j, k)-face stars of a stationary random mosaic
X we define quantities analogous to the specific intrinsic volumes. For i =
0, . . . , d and for S ∈ Ff (K′), we put

Vi(S) :=
∑
S∈S

Vi(S)

and define
v
(j,k)
i :=

∫
K0×Ff (K′)

Vi(S) Q(j,k)(d(T,S)) (10.11)

and
d
(j,k)
i := γ(j)v

(j,k)
i .

From the assumptions made so far one cannot conclude that the quantities
v
(j,k)
i are finite, as simple examples show (see Note 2, second paragraph, of

this section). Although some of the relations to be proved below hold also
for infinite values of these parameters, for simplicity we make the following
assumption.

Convention. For the considered stationary random mosaics, the parameters
v
(j,k)
i are assumed to be finite.

For some of these quantities, we use a special notation. Namely, we write
Nk(T,S) := V0(S) for the number of k-faces in a (j, k)-face star (T,S), and
we put njk := v

(j,k)
0 . Thus, njk is the expectation of Nk with respect to

Q(j,k), in other words, the mean number of k-faces of the typical (j, k)-face
star (njj = 1). For j > k, the number njk is, therefore, the mean number of
k-faces of the typical j-face of the random mosaic X.

The various numbers thus defined are connected by many relations. Some
of these can be obtained immediately.

First we note that equation (10.7) can be written in the form

γ(0)n01 = 2γ(1), (10.12)

by applying (4.10) to the marked particle process X (0,1). Intuitively, equation
(10.12) is obvious. It is obtained by ‘counting’ the incident pairs (vertex, edge)
in two different ways, summing first either over the vertices or over the edges.
Below, this principle will be elaborated. For the number

!01 := v(0,1)
1 ,

the mean length of the typical edge star (that is, (0,1)-face star), the relation

γ(0)!01 = 2d(1)1 (10.13)

is plausible for similar reasons; it can be proved as above.
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Now we apply (10.10) with f ≡ 1, j ∈ {0, . . . , d} and k ∈ {0, . . . , j}.
For a (j, k)-face star (T,S), the sum

∑
S∈S f(S, T ) = Nk(T,S) = fk(T ) is

the number of k-faces of the j-polytope T . Using Euler’s relation (14.63), we
therefore obtain

j∑
k=0

(−1)knjk =
j∑

k=0

(−1)k

∫
K0×Ff (K′)

∑
S∈S

f(S, T ) Q(j,k)(d(T,S))

=
j∑

k=0

(−1)k

∫
K0

∑
S∈Fk(T )

f(S, T ) Q(j)(dT )

=
∫
K0

j∑
k=0

(−1)kfk(T ) Q(j)(dT ) = 1,

hence
j∑

k=0

(−1)knjk = 1 (10.14)

for j = 0, . . . , d. The special cases j = 1 and j = 2 are

n10 = 2, (10.15)

n20 = n21. (10.16)

A counterpart to (10.14) is the relation

d∑
k=j

(−1)d−knjk = 1 (10.17)

for j = 0, . . . , d, with the special cases

nd−1,d = 2, (10.18)

nd−2,d = nd−2,d−1. (10.19)

The proof of relation (10.17) uses the limit representation (4.11) for densities
and relation (14.65):

γ(j)
d∑

k=j

(−1)d−knjk

=
d∑

k=j

(−1)d−k lim
r→∞

1
Vd(rBd)

E
∑

(T,S)∈X (j,k), T⊂rBd

V0(S)

= lim
r→∞

1
Vd(rBd)

E

d∑
k=j

(−1)d−k
∑

T∈X(j), T⊂rBd

Nk(T,Fk(T,X))
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= lim
r→∞

1
Vd(rBd)

E
∑

T∈X(j), T⊂rBd

1

= γ(j).

Now we turn to a more systematic study of relations such as (10.12) and
(10.13).

Theorem 10.1.1. Let X be a stationary random mosaic in Rd, and let the
function f : K × K → R be nonnegative, measurable and jointly translation
invariant (that is, satisfying f(K + x, L + x) = f(K,L) for x ∈ Rd). Then,
for j, k ∈ {0, . . . , d},

γ(j)

∫
K0×Ff (K′)

∑
S∈S

f(S, T ) Q(j,k)(d(T,S))

= γ(k)

∫
K0×Ff (K′)

∑
T∈T

f(S, T ) Q(k,j)(d(S, T )).

(Observe that one side of the equation can be simplified by means of (10.10).)

Proof. For s > 0, let fs(S, T ) := f(S, T ) if the diameters of S and T are not
larger than s, and put fs(S, T ) := 0 otherwise. The sum

∑
S∈S fs(S, T ) con-

verges increasingly to
∑

S∈S f(S, T ) as s→∞ (and similarly
∑

T∈T fs(S, T )
to

∑
T∈T f(S, T )), hence it suffices to prove the assertion for the function fs.

We make use of Theorem 4.1.5. First, we apply the limit relation (4.11) to
the marked particle process X (j,k) and the function defined by

ϕ(T,S) :=
∑
S∈S

fs(S + c(T ), T ),

which is translation invariant in its first variable. Then we use the relation

{(S + c(T ), T ) : T ∈ Fj(m), S ∈ Fk(T,m)}
= {(S, T + c(S)) : S ∈ Fk(m), T ∈ Fj(S,m)},

valid for m ∈ M∗, and apply (4.11) to the marked particle process X (k,j). In
this way we get, observing that c(T ) = 0 if (T,S) is in the support of Q(j,k),

γ(j)

∫
K0×Ff (K′)

∑
S∈S

fs(S, T ) Q(j,k)(d(T,S))

= lim
r→∞

1
Vd(rBd)

E
∑

T∈X(j), T⊂rBd

∑
S∈Fk(T,X)

fs(S + c(T ), T )

≤ lim
r→∞

1
Vd(rBd)

E
∑

S∈X(k), S⊂(r+s)Bd

∑
T∈Fj(S,X)

fs(S, T + c(S))

= γ(k)

∫
K0×Ff (K′)

∑
T∈T

fs(S, T ) Q(k,j)(d(S, T )).
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In a similar way, we obtain the inequality

γ(k)

∫
K0×Ff (K′)

∑
T∈T

fs(S, T ) Q(k,j)(d(S, T ))

≤ γ(j)

∫
K0×Ff (K′)

∑
S∈S

fs(S, T ) Q(j,k)(d(T,S)),

and thus the assertion. ��

We mention an alternative approach to Theorem 10.1.1, which is based on
Neveu’s exchange formula (Theorem 3.4.5). For this, we choose the canonical
setting (Ω,A,P) = (N(K′),N (K′),PX). For a particle process Y , let c(Y )
be the point process of center points c(K), K ∈ Y . We consider the point
processes Yj := c(X(j)) and Yk := c(X(k)). Both are stationary and have
intensities γ(j) > 0 and γ(k) > 0, respectively. If we denote the corresponding
Palm distributions by P0,j and P0,k, Theorem 3.4.5 yields

γ(j)

∫
Ω

∑
y∈Yj

g(y,X − y) dP0,j = γ(k)

∫
Ω

∑
x∈Yk

g(−x,X) dP0,k, (10.20)

for any nonnegative measurable function g on Rd ×Ω. We consider X (j,k) as
a marked point process on Rd; then the underlying unmarked point process
is Yj and the marks are face stars (T,S) with c(T ) = 0. For x ∈ Rd, the
mapping ζx : η̃ �→ ζx(η̃), introduced after Theorem 3.5.5, maps X (j,k) to the
face star ζx(X (j,k)) = (T,S) such that (x, (T,S)) ∈ X (j,k), if x ∈ Yj (and
ζx(X (j,k)) = (T0,S0), for a fixed face star (T0,S0), otherwise). The image
measure of P0,j under ζ0 is Q(j,k) (see again the remark after Theorem 3.5.5).
If

g(0, X) =
∑

(T,S)∈ζ0(X (j,k))

f(S, T )

and g(x,X) = 0, for x �= 0, and if f is the nonnegative, measurable and
translation invariant function f on K × K given in Theorem 10.1.1, then on
the left side of (10.20) we obtain∫

Ω

∑
y∈Yj

g(y,X − y) dP0,j =
∫
K0×Ff (K′)

∑
S∈S

f(S, T ) Q(j,k)(d(T,S)).

Similarly, on the right side we get∫
Ω

∑
x∈Yk

g(−x,X) dP0,k =
∫
K0×Ff (K′)

∑
T∈T

f(S, T ) Q(k,j)(d(S, T )).

Thus, (10.20) implies the assertion of Theorem 10.1.1.
Relation (10.12) is the special case j = 0, k = 1, f = 1 of Theorem 10.1.1,

and (10.13) is obtained if we put f(S, T ) := V1(S). The choice
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f(S, T ) := Vi(S)Vl(T ) yields relations for expected values of products of in-
trinsic volumes. We note only the special case l = 0, where f(S, T ) := Vi(S);
this gives the following result.

Theorem 10.1.2. For a stationary random mosaic X in Rd and for i, j, k ∈
{0, . . . , d},

d
(j,k)
i = γ(k)

∫
K0×Ff (K′)

Vi(S)Nj(S, T ) Q(k,j)(d(S, T ))

and especially, for i = 0,
γ(j)njk = γ(k)nkj .

For another consequence of Theorem 10.1.1, we use the internal angles
β(F, P ) of a polytope P at a face F . The internal angle of the d-dimensional
polytope P at its face F is defined by

β(F, P ) := λ(S(P, F ) ∩Bd)/κd,

where S(P, F ) is the cone spanned by P at an arbitrary relatively interior
point z of F , thus S(P, F ) := {α(x − z) : x ∈ P, α ≥ 0}. Gram’s relation
(see, for example, Grünbaum [299]) says that

d∑
i=0

(−1)i
∑

F∈Fi(P )

β(F, P ) = 0.

Theorem 10.1.3. Let X be a stationary random mosaic in Rd, let the func-
tion g : K′ → R be translation invariant, nonnegative, and measurable, and
let j ∈ {0, . . . , d}. Then

γ(d)

∫
K0

∑
S∈Fj(P )

β(S, P )g(S) Q(d)(dP ) = γ(j)

∫
K0

g dQ(j),

in particular (case g = 1),

γ(j) = γ(d)

∫
K0

∑
S∈Fj(P )

β(S, P ) Q(d)(dP ).

Moreover,
d∑

i=0

(−1)iγ(i) = 0. (10.21)

Proof. In Theorem 10.1.1, we choose k = d and f(S, T ) := β(T, S)g(T ) (with
β(T, S) := 0 unless S is a d-polytope and T is a face of S). The measurability
of the function f can be proved with the methods employed in the proof of
Lemma 10.1.2. The (j, d)-face stars (T,S) on which the distribution Q(j,d) is
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concentrated belong to face-to-face mosaics and hence satisfy
∑

S∈S β(T, S) =
1. Therefore, we obtain

γ(j)

∫
K0×Ff (K′)

g(T ) Q(j,d)(d(T,S))

= γ(d)

∫
K0×Ff (K′)

∑
T∈Fj(S)

β(T, S)g(T ) Q(d,j)(d(S, T ))

and thus, in view of (10.9) and (10.10), the first equation of the theorem.
Then the second equation for j = 0, . . . , d and Gram’s relation yield the third
equation. ��

Equation (10.21) is the special case j = 0 of a more general relation for
the densities of the intrinsic volumes.

Theorem 10.1.4. If X is a stationary random mosaic in Rd and if j ∈
{0, . . . , d− 1}, then

d∑
i=j

(−1)id
(i)
j = 0. (10.22)

Proof. First we consider a fixed mosaic m. Let S1, . . . , Sp be the different cells
of m that meet the ball Bd. Let j ∈ {0, . . . , d− 1}. Since the intrinsic volume
Vj is additive on the convex ring, the inclusion–exclusion principle gives

Vj(Bd) = Vj

(
Bd ∩

p⋃
i=1

Si

)

=
p∑

r=1

(−1)r−1
∑

i1<...<ir

Vj(Si1 ∩ . . . ∩ Sir
∩Bd)

=
d∑

i=j

∑
F∈Fi(m)

Vj(F ∩Bd)
p∑

r=1

(−1)r−1ν(F, r).

Here ν(F, r) denotes the number of r-tuples (Si1 , . . . , Sir
) with Si1∩. . .∩Sir

=
F . We have used the fact that every nonempty intersection Si1 ∩ . . . ∩ Sir

is
a face of m and that every face of m meeting Bd is of this type. Moreover,
Vj(F ) = 0 for dimF < j was used. By (14.66),

p∑
r=1

(−1)r−1ν(F, r) = (−1)d−dim F .

Thus we obtain

Vj(Bd) =
d∑

i=j

(−1)d−i
∑

F∈Fi(m)

Vj(F ∩Bd).
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Now let X be a stationary random mosaic. Then

d∑
i=j

(−1)d−i
∑

F∈Fi(X)

Vj(F ∩Bd) = Vj(Bd) a.s. (10.23)

Because of Vj(F ∩ Bd) ≤ Vj(Bd)χ(F ∩ Bd) and the generally assumed local
finiteness of the intensity measure of X(i), we have E

∑
F∈Fi(X) Vj(F ∩Bd) <

∞. Here and in (10.23), we may replace Bd by rBd with r > 0. Since j < d,
we obtain

0 = lim
r→∞

Vj(rBd)
Vd(rBd)

= lim
r→∞

1
Vd(rBd)

E

d∑
i=j

(−1)d−i
∑

F∈X(i)

Vj(F ∩ rBd)

=
d∑

i=j

(−1)d−iVj(X(i))

=
d∑

i=j

(−1)d−id
(i)
j ,

by Theorem 9.2.2. The integrability condition required by that theorem is
satisfied, since the process X(i) has convex particles and locally finite intensity
measure. ��

For normal mosaics, there are further relations between the intensities.

Theorem 10.1.5. Let X be a stationary normal random mosaic in Rd, and
let k ∈ {1, . . . , d}. Then

(1− (−1)k)γ(k) =
k−1∑
j=0

(−1)j

(
d+ 1− j
k − j

)
γ(j).

Proof. For j ≤ k, every j-face of a normal mosaic is contained in exactly(
d+1−j

k−j

)
k-faces. Hence, for X we have

njk =
(
d+ 1− j
k − j

)
.

Theorem 10.1.2 therefore yields

k∑
j=0

(−1)j

(
d+ 1− j
k − j

)
γ(j) =

k∑
j=0

(−1)jγ(j)njk
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= γ(k)
k∑

j=0

(−1)jnkj

= γ(k)

∫
K0

k∑
j=0

(−1)jfj(Q) Q(k)(dQ)

= γ(k),

where the Euler relation (14.63) for k-dimensional polytopes was applied. ��

For k = 1, we obtain equation (10.8) again.
For dimensions 2 and 3, we shall now collect the obtained results, with

some reformulations and supplements. We use some special notation, similar
to earlier terminology. First let d = 2. Then we put

d
(2)
2 = V2(X) =: γ(2)a, d

(2)
1 = V1(X) =:

1
2
γ(2)p,

d
(1)
1 = V1(X(1)) =: γ(1)l1

and collect the interpretations of the introduced parameters in the following
list:

γ(2), γ(1), γ(0) intensities (of cells, edges, vertices, respectively),
a, p mean area, mean perimeter of the typical cell,
l1, l01 mean length of the typical edge or the typical edge star,
n20 = n21 mean number of vertices (= mean number of edges) of

the typical cell,
n01 = n02 mean number of edges of the typical edge star

(= mean number of cells of the typical (0, 2)-star).

Parameters nij that are not listed can be obtained from (10.15), (10.16),
(10.18), (10.19).

The following theorem summarizes the main relations between these pa-
rameters. It shows, in particular, that in the planar case all the considered
parameters of the random mosaic X can be expressed in terms of the inten-
sities γ(0) and γ(2) and the mean edge length l1.

Theorem 10.1.6. The parameters of a stationary random mosaic X in the
plane satisfy

(a) γ(1) = γ(0) + γ(2),

(b) n02 = 2 + 2
γ(2)

γ(0)
, n20 = 2 + 2

γ(0)

γ(2)
,

(c) l01 = 2
γ(1)

γ(0)
l1,
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(d) a =
1
γ(2)

, p = 2
γ(1)

γ(2)
l1,

(e) 3 ≤ n02, n20 ≤ 6.

If X is normal, then n02 = 3 and n20 = 6.

Proof. (a) is equation (10.21) for n = 2. The equations (b) follow from (a)
and from the equations

n02 = n01 = 2
γ(1)

γ(0)
, n20 = 2

γ(1)

γ(2)
,

which result from Theorem 10.1.2 together with (10.15), (10.16), (10.18),
(10.19). Equation (c) is just a reformulation of (10.13). The first equality
in (d) is (10.4) for n = 2, and the second follows from (10.6) or (10.22).

Trivially, every vertex of a planar mosaic is contained in at least three
cells, and every cell has at least three vertices, hence the corresponding mean
values are at least three. From (b) it follows that

1
n02

+
1
n20

=
1
2
,

which gives the second inequality of (e). For a normal mosaic, n02 = 3 holds
by definition, and hence n20 = 6 follows from the last equation. ��

We remark that (b) and (e) together yield the inequalities

1
2
γ(2) ≤ γ(0) ≤ 2γ(2). (10.24)

Equality holds on the right side for normal mosaics and on the left side for
triangle mosaics.

Now let d = 3. We restrict ourselves to a selection of the many possible
parameters, and put

d
(3)
3 = V3(X) =: γ(3)v, d

(3)
2 = V2(X) =:

1
2
γ(3)s, d

(3)
1 = V1(X) =:

1
π
γ(3)m,

d
(2)
2 = V2(X(2)) =: γ(2)a2, d

(2)
1 = V1(X(2)) =:

1
2
γ(2)p2,

d
(1)
1 = V1(X(1)) =: γ(1)l1,

v
(3,1)
1 =: l31, v

(0,1)
1 =: l01, v

(0,2)
2 =: a02, v

(1,2)
2 =: a12.

The interpretations are again collected in a list:
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γ(3), γ(2), γ(1), γ(0) intensities of cells, facets, edges, vertices,
v, s,m, l31 mean volume, mean surface area, mean integral of

mean curvature, mean edge length sum of the
typical cell,

a2, p2 mean area, mean perimeter of the typical facet,
l1, l01 mean length of the typical edge, of the typical

edge star,
a02, a12 mean area of the typical (0, 2)-star, of the typical

(1, 2)-star,
n32, n02, n12 mean facet number of the typical cell, of the typical

(0,2)-star, of the typical (1,2)-star
n31, n21, n01 mean edge number of the typical cell, of the typical

facet, of the typical edge star,
n30, n03 mean vertex number of the typical cell,

mean cell number of the typical (0,3)-star.

Parameters nij that are not listed can again be obtained from (10.15),
(10.16), (10.18), (10.19).

Further, we consider the weighted mean values

w1i :=
∫
K0×Ff (K′)

V1(S)Ni(S, T ) Q(1,i)(d(S, T )), i = 2, 3,

w2i :=
∫
K0×Ff (K′)

V2(S)Ni(S, T ) Q(2,i)(d(S, T )), i = 0, 1.

We have w12 = w13 and w20 = w21, as is easy to see from the limit relations
(4.10)–(4.12); these yield, for example,

γ(1)w1i = lim
r→∞

1
V (rB3)

E
∑

(S,T )∈X (1,i), S⊂rB3

V1(S)Ni(S, T ).

The subsequent theorem collects the most important relations between the
listed parameters.

Theorem 10.1.7. The parameters of a stationary random mosaic X in R3

satisfy

(a) γ(1) + γ(3) = γ(0) + γ(2),

(b) γ(0)n01 = 2γ(1), γ(3)n32 = 2γ(2), γ(0)n03 = γ(3)n30,

γ(0)n02 = γ(1)n12 = γ(2)n21 = γ(3)n31,

(c) n01 − n02 + n03 = 2, n30 − n31 + n32 = 2,

2n02 = n01n12, 2n31 = n21n32, n02n30 = n03n31,
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(d) γ(0)l01 = 2γ(1)l1,

γ(2)p2 = γ(1)w13 = γ(3)l31, γ(0)a02 = γ(2)w21 = γ(1)a12,

(e) v =
1
γ(3)

, s = 2
γ(2)

γ(3)
a2, m =

π

2
γ(2)

γ(3)
p2 − π

γ(1)

γ(3)
l1.

If X is normal, then n01 = n03 = 4, n12 = 3, and n02 = 6.

Proof. Equation (a) is nothing but (10.21) for n = 3. The equations (b) fol-
low from Theorem 10.1.2, in connection with (10.15), (10.16), (10.18), (10.19).
The first two equations of (c) are special cases of (10.14) and (10.17). The re-
maining equations in (c) are obtained by eliminating the intensities in suitable
pairs of equations in (b).

The first equation in (d) is merely a reformulation of (10.13).
In Theorem 10.1.1, we choose d = 3, j = 1, k = 2, f(S, T ) := V1(T ). Then

we obtain
γ(2)u2 = γ(1)w12 = γ(1)w13 = γ(3)v

(3,1)
1 = γ(3)l31

by Theorem 10.1.2 and thus the second equation in (d).
The third equation in (d) results from Theorem 10.1.1 with d = 3, j = 1,

k = 2, f(S, T ) := V2(S). This gives

γ(1)a12 = γ(2)w21 = γ(2)w20 = γ(0)v
(0,2)
2 = γ(0)a02,

where Theorem 10.1.2 was used again.
The first equation in (e) is just (10.4) for = 3; the other two equations

result by reformulating (10.22).
The assertion about normal mosaics is a simple consequence of the

definition. ��

For a stationary random mosaic, our main interest so far has been in the
processes of faces and their combinatorial neighborhoods. Now we consider
the unions of the faces of a fixed dimension, thus obtaining a collection of
random closed sets associated with the random mosaic.

Definition 10.1.4. For a mosaic m and for k ∈ {0, . . . , d− 1}, the set

skelkm :=
⋃

S∈Fk(m)

S

is the k-skeleton of m.

Let X be a random mosaic, and let Zk be its k-skeleton, k ∈ {0, . . . , d}. By
Lemma 10.1.2 and Theorem 3.6.2, Zk is a random closed set. If X is station-
ary, then Zk is stationary. The realizations of Zk are a.s. locally polyconvex.
We cannot guarantee, however, that Zk is a standard random set, since the
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integrability condition (9.16) need not be satisfied. Therefore, we cannot use
Theorem 9.2.1 to obtain the existence of densities for additive functionals,
without additional assumptions. However, the existence of the specific Euler
characteristic (the density of the intrinsic volume V0) of the k-skeleton can be
shown in a direct way, and it can be represented in terms of the intensities
γ(j) of the j-face processes, j = 0, . . . , k.

Theorem 10.1.8. Let X be a stationary random mosaic in Rd, and let Zk be
its k-skeleton, k ∈ {0, . . . , d}. The specific Euler characteristic

χ(Zk) := lim
r→∞

1
rd

Eχ(Zk ∩ rCd) (10.25)

exists and is given by
χ(Zk) = Eχ(Zk ∩ Cd

0 ); (10.26)

it satisfies

χ(Zk) =
k∑

j=0

(−1)jγ(j). (10.27)

Proof. By Theorem 14.4.3 (or Theorem 14.4.5), the Euler characteristic has
an additive extension, also denoted by χ, to the system U(Pro) of finite unions
of relatively open polytopes. If Q is a relatively open polytope of dimension
j, then χ(Q) = (−1)j . In the following proof, we denote the relative interior
of a polytope S by S0. The representation

Zk ∩ rCd =
k⋃

j=0

⋃
S∈X(j)

(S0 ∩ rCd)

is a disjoint union, hence

χ(Zk ∩ rCd) =
k∑

j=0

∑
S∈X(j)

χ(S0 ∩ rCd)

=
k∑

j=0

(−1)j
∑

S∈X(j), S⊂rCd

1 +
k∑

j=0

∑
S∈X(j), S∩bd rCd �=∅

χ(S0 ∩ rCd).

By Theorem 4.1.3(b),

lim
r→∞

1
rd

E
∑

S∈X(j), S⊂rCd

1 = χ(X(j)) = γ(j).

From
S0 ∩ rCd =

⋃
F∈F•(rCd)

(S0 ∩ F 0)
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and χ(S0∩F 0) = ±1 it follows that |χ(S0∩ rCd)| ≤ c(d), where c(d) depends
only on d. Now the relations (b) and (c) of Theorem 4.1.3 together yield

lim
r→∞

1
rd

E
∑

S∈X(j), S∩bd rCd �=∅

χ(S0 ∩ rCd) = 0

(the integrability condition for (c) is satisfied, since X(j) has a locally finite
intensity measure). The obtained limit relations show that the limit (10.25)
exists and is equal to (10.27).

Let n ∈ N, and let Λ ⊂ Zd be the set of integer vectors for which

nCd
0 =

⋃
z∈Λ

(Cd
0 + z).

Then

E
∑

S∈X(j)

χ(S0 ∩ nCd
0 ) =

∑
z∈Λ

E
∑

S∈X(j)

χ(S0 ∩ (Cd
0 + z))

= nd E
∑

S∈X(j)

χ(S0 ∩ Cd
0 ),

by stationarity. This gives

Eχ(Zk ∩ Cd
0 )

=
k∑

j=0

E
∑

S∈X(j)

χ(S0 ∩ Cd
0 )

=
k∑

j=0

1
nd

E
∑

S∈X(j)

χ(S0 ∩ nCd
0 )

=
k∑

j=0

1
nd

E
∑

S∈X(j), S⊂nCd
0

(−1)j +
k∑

j=0

1
nd

E
∑

S∈X(j), S∩bd nCd �=∅

χ(S0 ∩ nCd
0 ).

For n→∞, this proves (10.26). ��

For k = d, equation (10.27) yields (10.21) again.

We conclude this section with a brief comment on the sections of random
mosaics by fixed planes. Let X be a stationary and isotropic random mosaic
in Rd, and let E ∈ A(d, s) be a fixed s-dimensional plane, s ∈ {1, . . . , d− 1}.
Then X ∩E is a random mosaic in E, which is stationary and isotropic with
respect to E. For k ∈ {d−s, . . . , d}, we can apply Theorem 9.4.8 to the process
X(k) of k-faces of X and obtain

Vj(X(k) ∩ E) = cs,d−s+j
j,d Vd−s+j(X(k)) (10.28)
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for j ∈ {0, . . . , k + s− d}. The nonempty sections of E with X(k) are almost
surely precisely the (k+s−d)-faces of the mosaic X∩E. Hence, if Z(k) denotes
the typical k-face of X, Z(m)

E is the typical m-face of X ∩ E, and if γ(m)
E is

the intensity of the process of m-faces of X ∩ E, then (10.28) can be written
in the form

γ
(k+s−d)
E EVj(Z

(k+s−d)
E ) = cs,d−s+j

j,d γ(k)EVd−s+j(Z(k)).

In particular, we have

γ
(k+s−d)
E = cs,d−s

0,d γ(k)EVd−s(Z(k))

and

EVj(Z
(k+s−d)
E ) = c0,d−s+j

j,d−s

EVd+j−s(Z(k))
EVd−s(Z(k))

.

Notes for Section 10.1

1. The systematic study of random mosaics began, after a few sporadic papers
on planar mosaics, essentially with the important investigations of Miles [517, 521,
527] and Matheron [460], [462, ch. 6] on stationary Poisson hyperplane mosaics.
Early papers on more general random mosaics and especially on Voronoi mosaics
are due to Meijering [510], Ambartzumian [32, 33], Miles [522, 526], Cowan [180, 181].
Whereas these papers follow an ergodic approach, Palm methods were predominant
later, beginning with Mecke [478]. A general, comprehensive presentation of random
mosaics in d-dimensional space was given by Møller [551]; we have benefited from this
work at several places in the present chapter. Further general information on random
mosaics and their applications is found in the books by Ambartzumian, Mecke and
Stoyan [36], Stoyan, Kendall and Mecke [743], Mecke, Schneider, Stoyan and Weil
[500]. For a first glimpse, the encyclopedia article by Miles [534] is recommended.

The reader should be warned that in stochastic geometry and in discrete geom-
etry the terminology connected with mosaics is not uniform. Mosaics are also called
tessellations. Instead of ‘face-to-face’, some authors on random mosaics use ‘regu-
lar’, which has a different meaning in discrete geometry. Also ‘normal’ occurs with
different meanings.

We have introduced a random mosaic as a special point process in the space of
convex polytopes and not, as some authors do, as a random closed set (describing the
union of the boundaries of the cells). We feel that this approach facilitates the proof
of some measurability assertions (often neglected in the literature), for example for
the face processes.

2. By a general assumption, we have assured that the k-face processes have locally
finite intensity measures Θ(k). As mentioned, for k < d this local finiteness cannot be
deduced from the local finiteness of Θ(d). We demonstrate this by an example which
is due to Ulrich Brehm. It suffices to sketch the construction in R3. For sufficiently
large k ∈ N, we decompose the unit cube C3 into 2k polytopes, in the following
way. The first k polytopes are ‘horizontal plates’ with a k-fold rotational symmetry
around the vertical axis of the cube, with diameters decreasing towards the center of
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the cube; the last k polytopes are ‘vertical conical plates’. This can be done in such
a way that all polytopes of the decomposition are convex and that each horizontal
plate intersects each vertical plate in a 2-face. By periodic continuation we obtain,
if the construction is suitably done, a mosaic mk. Inside C3, it contains 2k cells and
at least k2 two-dimensional faces. Next, we can construct a random mosaic X such
that each realization of X is a mosaic mk, where k ∈ N, and mk is attained with
probability pk, where the numbers pk are chosen such that

∑
pk = 1,

∑
kpk < ∞,

and
∑

k2pk = ∞. Translating X by a random vector which is uniformly distributed
in C3, we obtain a stationary random mosaic the intensity measures Θ(k) of which
have the property that Θ(3) is locally finite, but Θ(2) is not locally finite.

By another example, we show that the quantities v
(j,k)
i defined by (10.11) need

not be finite, even if the face processes have locally finite intensity measures. Let
mk be the planar mosaic arising from the standard tessellation of the plane into
squares of side length k (k ∈ N). Let (pk)k∈N be a sequence of positive numbers with∑

pk = 1 and
∑

kpk = ∞, and let ξ1, ξ2, . . . be a sequence of independent random
vectors such that ξk is uniformly distributed in kC2. We construct a stationary
random mosaic X, putting X = mk + ξk with probability pk. The face processes of
X have locally finite intensity measures, but v

(0,1)
1 = ∞.

3. The results collected in Theorems 10.1.6 and 10.1.7 are due, in different degrees
of generality, to several authors, among them Matschinski [464], Ambartzumian
[33], Cowan [180, 181], Mecke [478, 481], Radecke [611], Møller [551]. Essentially,
we have followed Møller [551]. This author also applies an exchange formula for
Palm distributions, an approach which we have mentioned after Theorem 10.1.1. In
contrast to this, we have preferred to give a proof of Theorem 10.1.1 which is direct
and only uses the limit relations for densities. We emphasize, however, that more
general versions are possible; see, for example, Proposition 2.2 in Baumstark and
Last [85] which, as the authors point out, holds for general stationary face-to-face
tessellations.

Under stronger assumptions, the considered densities also have ergodic interpre-
tations, as follows, in particular, from sections 9.3 and 10.5. For these, we also refer
to Miles [517, 522, 523], Cowan [180, 181], Zähle [823].

4. A counterpart to Theorem 10.1.5 holds for a stationary random mosaic in Rd

which is simplicial (all faces are simplices). In this case, for k ∈ {0, . . . , d − 1},

(1 − (−1)d−k)γ(k) =

d∑
j=k+1

(−1)d−j

(
j + 1

k + 1

)
γ(j).

This can be proved in a similar way to Theorem 10.1.5.

5. That for a planar mosaic the considered parameters can be expressed in terms of
the three quantities γ(0), γ(1), l1, as in Theorem 10.1.6, goes back to Mecke [481]. The
exact range of these three parameters is given by the inequalities (10.24) together
with the trivial inequalities γ(0), γ(2), l1 > 0. More precisely, every parameter triple
satisfying these inequalities can be realized by a random mosaic which is stationary,
isotropic and ergodic. This was shown by Kendall and Mecke [399].

Nagel and Weiss [574] have extended the system of the three parameters
γ(0), γ(2), l1 by two distributional ‘parameters’: the distribution of the direction of
the typical edge and the ‘rose of directions’ of the segment process of the edges;
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the latter can be interpreted as the distribution of the direction of the typical edge
weighted by its length. The authors found necessary and sufficient conditions on
these five parameters to correspond to a planar stationary tessellation.

In Theorems 10.1.6 and 10.1.7, we have restricted ourselves to selected relations
and to dimensions two and three. The comprehensive paper of Møller [551] elaborates
on random mosaics in Rd and contains further relations. Extensions to mosaics with
not necessarily convex cells are found in Weiss and Zähle [809], Zähle [828], Leistritz
and Zähle [438].

The special case k = 1 of Theorem 10.1.8 was treated and discussed by Mecke
and Stoyan [503]. The general case was mentioned there without proof; a proof was
indicated by Mecke [493].

Intersections of a stationary random mosaic with a fixed plane have been treated
by Miles [533] and Møller [551].

Inequalities of isoperimetric type for planar stationary random mosaics have
been investigated by Mecke [482, 485, 488].

For random mosaics on the sphere, see Miles [524], Arbeiter and Zähle [39].

6. Superpositions. Mecke [481] and Santaló [663] have studied superpositions of
planar random mosaics. Nagel and Weiss [575] have shown that (suitably rescaled)
superpositions of i.i.d. stationary random tessellations in the plane converge weakly
to Poisson line tessellations.

7. Iterations, or nesting. An interesting class of stationary random tessellations,
which are not face-to-face, is obtained by the process of iteration, also called nest-
ing. The idea is to subdivide the cells of a given stationary tessellation independently
by a sequence of other stationary tessellations, and to repeat this process, combined
with rescalings, to keep the density d

(d−1)
d−1 constant. Fundamental results were ob-

tained by Nagel and Weiss [577]. Let Y0 be stationary tessellation of Rd, and for
each k ∈ N let Yk be a sequence of tessellations, such that all involved tessellations,
including Y0, are i.i.d. Assume that the cells of Y0 are numbered, and replace the
ith cell of Y0 by its d-dimensional intersections with the cells of Yi. The result is a
new stationary tessellation, denoted by I(Y0,Y1). Define

I2(Y0) := I(2Y0, 2Y1),

Im(Y0) := I(mY0, mY1, . . . , mYm−1)

:= I(I(mY0, mY1, . . . , mYm−2), mYm−1), m = 3, 4, . . . ,

where the factors denote dilatation. A stationary random tessellation Y is called

stable with respect to iteration (STIT) if Y
D
= Im(Y ) for m = 2, 3, . . . Nagel

and Weiss [577] proved the existence of STIT tessellations, depending on a given
translation invariant, locally finite, nondegenerate measure on the space of hyper-
planes. They are called crack STIT tessellations, because the construction proceeds
by successively ‘cracking’ (that is, dividing by means of random hyperplanes) the
cells within a given polytopal window W , and then showing consistency for increas-
ing windows and using Theorem 2.3.1. If Y is STIT, then trivially In(Y ) ⇒ Y as
n → ∞, where ⇒ denotes weak convergence of the distributions (equivalently, con-
vergence of the capacity functionals) of the (d − 1)-skeletons. Nagel and Weiss had
already proved in [575] that In(Y0) ⇒ Y , for stationary random tessellations Y0 and
Y , implies that Y is STIT. In [577] they showed that any nondegenerate stationary
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tessellation Y (with 0 < d
(d−1)
d−1 < ∞) satisfies In(Y ) ⇒ Y (1), where Y (1) is a crack

STIT tessellation. Moreover, for given Y (1), all tessellations Y with this property
were determined, and the following uniqueness theorem was obtained. A stationary
random tessellation Y in Rd with 0 < d

(d−1)
d−1 < ∞ and given directional distribu-

tion is STIT if and only if Y
D
= Y (1), where Y (1) is the crack STIT tessellation

corresponding to the given data.
Further investigations of STIT tessellations, including global constructions,

structural and distributional properties, are found in Nagel and Weiss [576, 578, 579],
Mecke, Nagel and Weiss [496, 497, 498].

Nagel and Weiss pointed out in [575] that the typical cell of a planar STIT
tessellation has the same distribution as the typical cell of a suitable stationary
Poisson line tessellation. Other stationary tessellations in the plane that share this
property, and also the property that all nodes are T-shaped, but which are not STIT,
were constructed before by Miles and Mackisack [537].

At the same time, a general theory of iterated tessellations, comprising super-
positions and nesting, was developed by Maier and Schmidt [446]. They derived
sufficient conditions for iterated tessellations to be stationary and isotropic and ob-
tained formulas for the intensities of the facet processes of stationary and isotropic
iterated tessellations, in terms of specific intrinsic volumes of the component tessel-
lations. Also obtained were formulas for the expected intrinsic volumes of typical
facets, and many other results. Maier, Mayer and Schmidt [447] investigated distri-
butional properties of the typical cell of stationary iterated tesellations in the plane,
which are generated by Poisson–Voronoi or Poisson line tessellations.

8. Mackisack and Miles [445] investigated a class of homogeneous rectangular tes-
sellations in the plane, which are not face-to-face.

9. Limit theorems. For stationary and ergodic random tessellations with indepen-
dently generated inner cell structures, Heinrich, H. Schmidt and V. Schmidt [331]
have proved a strong law of large numbers and a multivariate central limit theorem,
for measurements in convex sampling windows that increase unboundedly. In [333],
they obtained similar results for tessellations where the random cell structures are
generated in the facets of the cells.

10.2 Voronoi and Delaunay Mosaics

Let A �= ∅ be a locally finite set in Rd. To each x ∈ A, there corresponds the
set

C(x,A) := {z ∈ Rd : ‖z − x‖ ≤ ‖z − a‖ for all a ∈ A}

of all points for which x is the nearest point in A. For x �= y, let H+
y (x) denote

the closed halfspace containing x that is bounded by the mid-hyperplane of
x and y, that is, the hyperplane through (x + y)/2 and orthogonal to y − x;
explicitly

H+
y (x) = {z ∈ Rd : 〈z, y − x〉 ≤ 1

2
(‖y‖2 − ‖x‖2)}.

Then the set C(x,A) can also be written in the form
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C(x,A) =
⋂

y∈A, y �=x

H+
y (x).

From this, it is evident that C(x,A) is a closed convex set with interior points.
It is called the Voronoi cell of x (with respect to A), and x is called the
nucleus of C(x,A). The collection m := {C(x,A) : x ∈ A} is again locally
finite. In fact, suppose that C(xi, A) ∩ rBd �= ∅ for i ∈ I (an index set).
Then, to each i ∈ I there exists yi ∈ C(xi, A) ∩ rBd, and it follows that
‖xi‖ ≤ ‖xi− yi‖+ ‖yi‖ ≤ ‖x1− yi‖+ ‖yi‖ ≤ ‖x1‖+ 2‖yi‖ ≤ ‖x1‖+ 2r, hence
xi ∈ (‖x1‖+ 2r)Bd; thus I is finite.

Therefore, the system m has the properties (a), (c) and (d) of Definition
10.1.1 that are required of a mosaic. Condition (b), however, is in general
not satisfied, since the cells C(x,A) need not be bounded. Sufficient (though
not necessary) for the boundedness of the Voronoi cells is the assumption that
convA = Rd. Suppose that this is satisfied, and assume that some Voronoi cell
C(x,A) is unbounded. By the convexity of C(x,A), there is then a direction
u ∈ Sd−1 so that the ray S := {x + αu : α ≥ 0} is contained in C(x,A).
For every α > 0, the ball with center x + αu and radius α contains x in its
boundary and does not contain a point of A in its interior. Letting α→∞, we
deduce the existence of an open halfspace not containing a point of A. This
is in contradiction to the assumption that convA = Rd.

Theorem 10.2.1. Let A ⊂ Rd be locally finite, nonempty and such that
the corresponding Voronoi cells C(x,A), x ∈ A, are bounded. Then m :=
{C(x,A) : x ∈ A} is a face-to-face mosaic.

Proof. It only remains to show that m is face-to-face. Assume this were false.
Then there exist two cells C1 := C(x1, A) and C2 := C(x2, A) such that
S := C1 ∩ C2 �= ∅, but S is not a face of C1. Therefore, the affine hull of S
contains a point z ∈ C1 such that z /∈ S. This affine hull and the set S both
lie in the mid-hyperplane H+

x2
(x1) ∩H+

x1
(x2) of x1 and x2, hence

〈z, x2 − x1〉 =
1
2
(‖x2‖2 − ‖x1‖2). (10.29)

Since z /∈ C2, there is y ∈ A with z /∈ H+
y (x2), thus

〈z, y − x2〉 >
1
2
(‖y‖2 − ‖x2‖2).

Since z ∈ C1,

〈z, y − x1〉 ≤
1
2
(‖y‖2 − ‖x1‖2).

The latter two inequalities together contradict (10.29). It follows that the
assumption was false, hence m is face-to-face. ��

General assumption. All stationary ordinary point processes X̃ appearing
in this section are assumed to satisfy X̃ �= ∅ a.s.
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Theorem 10.2.2. Let X̃ be a stationary point process in Rd, and let X :=
{C(x, X̃) : x ∈ X̃} be the collection of the corresponding Voronoi cells. Then
X is a stationary (face-to-face) random mosaic, provided that X has locally
finite intensity measure.

Proof. By Theorem 2.4.4 we have convX = Rd almost surely, hence the
sets C(x, X̃(ω)), x ∈ X̃(ω), are bounded for almost all realizations X̃(ω).
Now Theorem 10.2.1 implies that X is a (face-to-face) random mosaic. The
stationarity is evident. ��

The mosaic X defined by Theorem 10.2.2 is called a Voronoi mosaic
(with generating point process X̃).

Remark. The local finiteness of the intensity measure of the process X in
Theorem 10.2.2 must be assumed and does not follow automatically from the
fact that X̃ has locally finite intensity measure, even if X̃ is stationary and
isotropic (see the counterexample in Note 1). Further, the mosaic X is not
necessarily normal. For example, if X̃(ω) = Zd, the cells of the corresponding
Voronoi mosaic are cubes, and every vertex of the mosaic is contained in 2d

of the cubes. However, we shall see in a moment that X has locally finite
intensity measure and is almost surely normal if the generating point process
X̃ is Poisson. In that case, X is called a Poisson–Voronoi mosaic.

In the following, it will be essential that for a stationary Poisson process
the points are almost surely in general position, that is, any k + 1 of the
points are not contained in a (k − 1)-dimensional plane, k = 1, . . . , d. If
m ∈ {1, . . . , d} and the m + 1 points x0, . . . , xm ∈ Rd are in general po-
sition, there is a unique m-dimensional ball, Bm(x0, . . . , xm), containing
these points in its relative boundary. Let z(x0, . . . , xm) denote the center of
this ball, and let F (x0, . . . , xm) be the (d − m)-dimensional affine subspace
through z(x0, . . . , xm) and orthogonal to Bm(x0, . . . , xm). If A ⊂ Rd and
x0, . . . , xm ∈ A are points in general position, we define

S(x0, . . . , xm;A) := {y ∈ F (x0, . . . , xm) : B0(y, ‖y − x0‖) ∩A = ∅},

where B0(y, r) denotes the open ball with center y and radius r. If x0, . . . , xm

are not in general position, we put z(x0, . . . , xm) := 0 and S(x0, . . . , xm;A) :=
∅.

If now X is the Poisson–Voronoi mosaic generated by the point process
X̃ and if (x0, . . . , xm) ∈ X̃m+1

�= , then the affine subspace F (x0, . . . , xm) is the
affine hull of some (d−m)-face S of X if and only if S(x0, . . . , xm; X̃) �= ∅. If
this is the case, we have S = S(x0, . . . , xm; X̃), and every (d −m)-face S of
X is obtained in this way.

Theorem 10.2.3. Every Poisson–Voronoi mosaic in Rd is normal.
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Proof. Let S be a k-face of X, k ∈ {0, . . . , d − 2}. Let S be in the boundary
of precisely the cells C(x0, X̃), . . . , C(xm, X̃) of X. Then the affine hull of S,
aff S, is the set of all points y ∈ Rd having the same distance from x0, . . . , xm.
Since almost surely no d + 2 points of X̃ are on the same sphere, we must
have m ≤ d. Now it follows that aff S = F (x0, . . . , xm), hence k = d−m. ��

A stationary Poisson process X̃ is uniquely determined, up to stochastic
equivalence, by its intensity γ. Hence, all distributional parameters of the gen-
erated Poisson–Voronoi mosaic depend on γ alone. We shall provide explicit
formulas for the densities d(j,k)

k of the (j, k)-face stars of X with k ≤ j. The
finiteness of these quantitites, and with it the local finiteness of the inten-
sity measures of all face processes (including the mosaic itself), follows from
the finiteness of γ, as the proof shows. Thus, the finiteness conventions made
earlier are now unnecessary.

Theorem 10.2.4. Let X be a Poisson–Voronoi mosaic of (cell ) intensity γ
in Rd. Then, for k ∈ {0, . . . , d},

d
(k)
k =

2d−k+1π
d−k

2

d(d− k + 1)!

Γ
(

d2−kd+k+1
2

)
Γ

(
1 + d

2

)d−k+ k
d Γ

(
d− k + k

d

)
Γ

(
d2−kd+k

2

)
Γ

(
d+1
2

)d−k
Γ

(
k+1
2

) γ
d−k

d

and

d
(j,k)
k =

(
d− k + 1
j − k

)
d
(k)
k (10.30)

for j ∈ {k, . . . , d}.

Proof. By Theorem 10.2.3, X is normal, hence for (S, T ) ∈ X (k,j) we have
Nj(S, T ) =

(
d−k+1

j−k

)
. Therefore, Theorem 10.1.2 yields

d
(j,k)
k = γ(k)

∫
K0×Ff (K′)

Vk(S)Nj(S, T ) Q(k,j)(d(S, T ))

=
(
d− k + 1
j − k

)
γ(k)

∫
K0×Ff (K′)

Vk(S) Q(k,j)(d(S, T ))

=
(
d− k + 1
j − k

)
γ(k)

∫
K0

Vk(K) Q(k)(dK)

=
(
d− k + 1
j − k

)
d
(k)
k

by (10.3). Thus (10.30) holds.
Let X̃ be the Poisson point process generating X. Before Theorem 10.2.3

we have explained how the k-faces of X correspond to (d − k + 1)-tuples of
points from X̃ in general position. This gives
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d
(k)
k =

1
κd(d− k + 1)!

E
∑

(x0,...,xd−k)∈X̃d−k+1

Vk(S(x0, . . . , xd−k; X̃) ∩Bd).

Now we apply the Slivnyak–Mecke formula (Corollary 3.2.3) and get

E
∑

(x0,...,xd−k)∈X̃d−k+1

Vk(S(x0, . . . , xd−k; X̃) ∩Bd)

= γd−k+1

∫
Rd

. . .

∫
Rd

EVk(S(x0, . . . , xd−k; X̃ ∪ {x0, . . . , xd−k}) ∩Bd)

×λ(dx0) · · ·λ(dxd−k).

For points x0, . . . , xd−k ∈ Rd in general position, we have

EVk(S(x0, . . . , xd−k; X̃ ∪ {x0, . . . , xd−k}) ∩Bd)

=
∫

F (x0,...,xd−k)∩Bd

P(X̃ ∩B0(y, ‖y − x0‖) = ∅)λk(dy)

=
∫

F (x0,...,xd−k)∩Bd

e−γκd‖y−x0‖d

λk(dy),

hence altogether we get

d
(k)
k =

1
κd(d− k + 1)!

γd−k+1

∫
Rd

. . .

∫
Rd

∫
F (x0,...,xd−k)∩Bd

e−γκd‖y−x0‖d

×λk(dy)λ(dx0) · · ·λ(dxd−k).

The outer (d− k+ 1)-fold integral can be transformed by means of the affine
Blaschke–Petkantschin formula (Theorem 7.2.7). Thus we obtain

d
(k)
k =

1
κd(d− k + 1)!

γd−k+1[(d− k)!]kbd(d−k)

∫
A(d,d−k)

∫
E

. . .

∫
E∫

(z(x0,...,xd−k)+E⊥)∩Bd

e−γκd‖y−x0‖d

∆d−k(x0, . . . , xd−k)k

×λk(dy)λE(dx0) · · ·λE(dxd−k)µd−k(dE),

with the constant bd(d−k) as given in Theorem 7.2.7.
Let y0 be the projection of the origin to E. We apply Theorem 7.3.1 to the

(d− k+1)-fold integration over E, replacing d by d− k and interpreting E as
Rd−k, with y0 as origin. Let Sd−k−1

E be the unit sphere in the linear subspace
parallel to E, and let σE be the spherical Lebesgue measure on Sd−k−1

E . Then
we obtain∫

E

. . .

∫
E

∫
(z(x0,...,xd−k)+E⊥)∩Bd

e−γκd‖y−x0‖d

∆d−k(x0, . . . , xd−k)k λk(dy)
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×λE(dx0) · · ·λE(dxd−k)

= (d− k)!
∫

E

∫ ∞

0

∫
Sd−k−1

E

. . .

∫
Sd−k−1

E

∫
(z+E⊥)∩Bd

e−γκd‖y−(z+ru0)‖d

rd(d−k)−1∆d−k(u0, . . . , ud−k)k+1

×λk(dy)σE(du0) · · ·σE(dud−k) dr λd−k(dz).

Using the abbreviations

A :=
[(d− k)!]k+1bd(d−k)

(d− k + 1)!κd
γd−k+1

and

J(E, u0) :=
∫

E

∫ ∞

0

∫
(z+E⊥)∩Bd

e−γκd‖y−(z+ru0)‖d

rd(d−k)−1

×λk(dy) dr λd−k(dz)

for E ∈ A(d, d− k) and u0 ∈ Sd−k−1
E , we get

d
(k)
k = A

∫
A(d,d−k)

∫
Sd−k−1

E

. . .

∫
Sd−k−1

E

J(E, u0)∆d−k(u0, . . . , ud−k)k+1

×σE(du0) · · ·σE(dud−k)µd−k(dE).

The integral J(E, u0) has the same value for all u0 ∈ Sd−k−1
E . The (d−k+1)-

fold integral over Sd−k−1
E can be evaluated by means of Theorem 8.2.3. Thus,

denoting by uE an arbitrary unit vector parallel to E, we get

d
(k)
k = A

∫
A(d,d−k)

J(E, uE)S(d− k, d− k, k + 1)µd−k(dE),

where the constant S(d−k, d−k, k+1) is given by Theorem 8.2.3. The function
E �→ J(E, uE) is invariant under rotations, hence with a fixed subspace L ∈
G(d, d− k) we get

I :=
∫

A(d,d−k)

J(E, uE)µd−k(dE)

=
∫

L⊥
J(L+ y0, uL)λk(dy0)

=
∫

L⊥

∫
L

∫ ∞

0

∫
(z+L⊥)∩Bd

e−γκd‖y−(y0+z+ruL)‖d

rd(d−k)−1 λk(dy)

×dr λd−k(dz)λk(dy0)

=
∫

Rd

∫ ∞

0

∫
(x+L⊥)∩Bd

e−γκd‖y−(x+ruL)‖d

rd(d−k)−1λk(dy) dr λ(dx)

=
∫

Rd

∫ ∞

0

∫
L⊥∩(Bd−x)

e−γκd‖y−ruL‖d

rd(d−k)−1λk(dy) dr λ(dx).
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The condition y ∈ Bd − x is equivalent to x ∈ Bd − y, hence we obtain

I = κd

∫ ∞

0

∫
L⊥

e−γκd(‖y‖2+r2)
d
2 rd(d−k)−1λk(dy) dr

= κdωk

∫ ∞

0

∫ ∞

0

e−γκd(r2+s2)
d
2 rd(d−k)−1sk−1 dsdr.

Here we substitute
s = u

√
1− t, r = u

√
t

with t ∈ [0, 1], u ∈ [0,∞); the Jacobian is equal to u/2
√
t(1− t). Thus we get

I =
κdωk

2

(∫ 1

0

t
d(d−k)

2 −1(1− t) k
2−1dt

)(∫ ∞

0

e−γκdud

ud2−dk+k−1du
)
.

The integrals are Euler’s Beta integral and, after a substitution, Euler’s
Gamma integral; explicitly,∫ 1

0

t
d(d−k)

2 −1(1− t) k
2−1dt =

Γ(d(d−k)
2 )Γ(k

2 )

Γ(d(d−k)+k
2 )

and ∫ ∞

0

e−γκdud

ud2−dk+k−1du =
Γ(d2−dk+k

d )

d(γκd)
d2−dk+k

d

.

Collecting the results and inserting the values of the constants bd(d−k) and
S(d− k, d− k, k + 1), we obtain the assertion. ��

The case k = 0 of Theorem 10.2.4 gives

γ(0) =
2d+1π

d−1
2

d2(d+ 1)

Γ
(

d2+1
2

)
Γ

(
d2

2

) [
Γ

(
1 + d

2

)
Γ

(
d+1
2

) ]d

γ (10.31)

and (as can also be deduced from Theorem 10.1.2 and the normality)

γ(j)nj0 =
(
d+ 1
j

)
γ(0)

for j = 1, . . . , d. In particular, we obtain (10.3) again, that is,

2γ(1) = (d+ 1)γ(0).

Further, we have
γ(d) = γ. (10.32)

In fact, (4.8) gives γ(d) ≤ γ, and (4.9) gives γ ≤ γ(d). The equality (10.32) also
follows directly from Note 1 of Section 4.2, since the nucleus is a generalized
center function.
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For d = 3, we obtain the value of γ(2) from Theorem 10.1.5 or from (10.21).
Now, for planar or spatial Poisson–Voronoi mosaics, all the mean values ap-
pearing in Theorems 10.1.6 and 10.1.7 can be expressed in terms of the inten-
sity γ, by applying Theorem 10.2.4 for k > 0 and then Theorems 10.1.6 and
10.1.7, and using the normality. In the following theorem, we collect only a
selection of these mean values.

Theorem 10.2.5. Let X be a Poisson–Voronoi mosaic of intensity γ in Rd.
Then, for d = 2,

γ(0) = 2γ, γ(1) = 3γ, γ(2) = γ,

n02 = 3, n20 = 6,

l1 =
2

3
√
γ
, a =

1
γ
, p =

4
√
γ
,

and for d = 3,

γ(0) =
24π2

35
γ, γ(1) =

48π2

35
γ, γ(2) =

(
24π2

35
+ 1

)
γ, γ(3) = γ,

n01 = n03 = 4, n02 = 6, n12 = 3,

n21 =
144π2

24π2 + 35
" 5.23, n30 =

96π2

35
" 27.07,

n31 =
144π2

35
" 40.61, n32 =

48π2

35
+ 2 " 15.54,

l1 =
7Γ

(
1
3

)
9(36πγ)

1
3
, a2 =

35 · 2 8
3 Γ

(
2
3

)
π

1
3

(24π2 + 35)(9γ)
2
3
, p2 =

7 · 2 10
3 Γ

(
1
3

)
π

5
3

(24π2 + 35)(9γ)
1
3
,

v =
1
γ
, s =

2
11
3 Γ

(
2
3

)
π

1
3

(9γ)
2
3

, m =
23Γ

(
1
3

)
π

8
3

15(36γ)
1
3
.

Now we turn to Delaunay mosaics. They are, in a sense, dual to suitable
Voronoi mosaics. We start with a locally finite set A ⊂ Rd for which convA =
Rd. It induces a Voronoi mosaic m = {C(x,A) : x ∈ A}. For e ∈ F0(m) we
put

D(e,A) := conv {x ∈ A : e ∈ F0(C(x,A))}.

Theorem 10.2.6. Let A ⊂ Rd be a locally finite set with convA = Rd, and
let m be the corresponding Voronoi mosaic. Then

d := {D(e,A) : e ∈ F0(m)}

is a face-to-face mosaic.
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Proof. Since {x ∈ A : e ∈ F0(C(x,A))} is finite, the sets D(e,A), e ∈ F0(m),
are compact; further, they have interior points. Since F0(m) is locally finite,
also d is locally finite. The points x ∈ A for which e is a vertex of C(x,A) have
the same distance from e, hence they lie in the boundary of a ball K(e) with
center e and circumscribed to D(e,A); they are vertices of D(e,A). There are
no points of A in the interior of K(e), and each point of A ∩ bdK(e) is a
vertex of D(e,A).

For e, e′ ∈ F0(m), e �= e′, we consider the intersection D(e,A) ∩D(e′, A)
and assume that it is not empty. Then all vertices of D(e,A) lie in K(e) \
intK(e′), and all vertices of D(e′, A) lie in K(e′) \ intK(e). Let z be the
center of K(e) ∩K(e′) and let E be the hyperplane through z orthogonal to
e− e′. Then each point of D(e,A) ∩D(e′, A) lies in E, and it follows that

D(e,A) ∩D(e′, A) = conv {x ∈ A : x ∈ bdK(e) ∩ bdK(e′)}.

From this, we see that D(e,A) ∩D(e′, A) has no interior points and that d is
face-to-face.

Let y ∈ Rd. Since y ∈ convA, there are affinely independent points
x1, . . . , xd+1 ∈ A with y ∈ conv {x1, . . . , xd+1}. We suppose that these points
are chosen so that the ball K with x1, . . . , xd+1 ∈ bdK has minimal radius.
Assume there is a point x ∈ A ∩ intK. Then one of the points x1, . . . , xd+1,
say x1, can be replaced by x in such a way that still y ∈ conv {x, x2, . . . , xd+1}
and x, x2, . . . , xd+1 are affinely independent. The ball containing x, x2, . . . , xd

in its boundary has radius smaller than that of K, a contradiction. Thus,
the interior of K does not contain a point of A. Therefore, the center e of K
satisfies e ∈ C(xi, A), i = 1, . . . , d+1, hence e ∈ F0(m) and y ∈ D(e,A). This
proves that ⋃

e∈F0(m)

D(e,A) = Rd,

which completes the proof. ��

We call d the Delaunay mosaic corresponding to the set A. If the points
of A are in general position and if any d + 2 of them do not lie on a sphere,
then the corresponding Voronoi mosaic m is normal. In this case, every cell of
d has d+1 vertices and hence is a d-simplex. Then all faces of d are simplices.
A mosaic with this property is called simplicial.

In order to emphasize the duality between m and d, we now restrict our-
selves to the case where m is normal, and hence d is simplicial. For the De-
launay mosaics coming from stationary Poisson processes, which will be con-
sidered below, this condition is satisfied almost surely, by Theorem 10.2.3.

Now let m ∈ {0, . . . , d}, and let F ∈ Fm(m) be an m-face of the Voronoi
mosaic m. With a notation introduced earlier in this section, we have F =
S(x0, . . . , xd−m;A) for suitable pairwise different points x0, . . . , xd−m ∈ A,
which are uniquely determined up to order. We define

Σ(F ) := conv {x0, . . . , xd−m}.



10.2 Voronoi and Delaunay Mosaics 479

Lemma 10.2.1. If the Voronoi mosaic m corresponding to the set A is nor-
mal, then Σ is an antitone (inclusion reversing) bijection from F•(m) to
F•(d).

Proof. First, let F = {e} be a vertex of m. For {e} = S(x0, . . . , xd;A) we have
e ∈ F0(C(xi, A)), i = 0, . . . , d. Due to the normality of m this implies

D(e,A) = conv {x ∈ A : e ∈ F0(C(x,A))} = conv {x0, . . . , xd},

hence Σ({e}) ∈ Fd(d), and the map Σ : F0(m)→ Fd(d) is bijective.
Now let m > 0, and let F = S(x0, . . . , xd−m;A) be an m-face of m.

We choose a vertex e of F . Then {e} = S(x0, . . . , xd;A) holds with suitable
xd−m+1, . . . , xd ∈ A. Thus Σ(F ) = conv {x0, . . . , xd−m} is a (d −m)-face of
D(e,A) = conv {x0, . . . , xd}. It is evident that Σ : Fm(m) → Fd−m(d) is
bijective, hence the map Σ : F•(m) → F•(d) is bijective, and it is obviously
antitone. ��

Now we consider random Delaunay mosaics. From Theorems 10.2.6 and
10.2.3, we immediately obtain the following assertion.

Theorem 10.2.7. Let X̃ be a stationary point process in Rd, let X be the
corresponding Voronoi mosaic and

Y := Σ(X(0)) = {D(e, X̃) : e ∈ F0(X)}.

Then Y is a stationary (face-to-face) random mosaic. If X̃ is a Poisson
process, then Y is simplicial.

We restrict ourselves again to stationary Poisson processes X̃ (of intensity
γ > 0) in Rd. The corresponding Delaunay mosaic Y is called the Poisson–
Delaunay mosaic of intensity γ. As before, X(j), j = 0, . . . , d, are the face
processes of X, and γ(j) are the corresponding intensities. The face processes
of Y and their intensities are denoted by Y (j) and β(j), respectively.

Theorem 10.2.8. Let γ(j), j = 0, . . . , d, be the face intensities of the Poisson–
Voronoi mosaic corresponding to the stationary Poisson process X̃ in Rd,
and let β(j), j = 0, . . . , d, be the face intensities of the associated Poisson–
Delaunay mosaic Y . Then

β(j) = γ(d−j)

for j = 0, . . . , d.

Proof. For j ∈ {0, . . . , d} we consider the (stationary) marked point process

X̂(d−j) := {(z(x0, . . . , xj), S(x0, . . . , xj ; X̃)− z(x0, . . . , xj)) :

(x0, . . . , xj) ∈ X̃j+1, S(x0, . . . , xj ; X̃) �= ∅}.

The corresponding particle process is X(d−j), hence X̂(d−j) has intensity
γ(d−j). This is also the intensity of the unmarked, ordinary point process
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Ỹ (j) := {z(x0, . . . , xj) : (x0, . . . , xj) ∈ X̃j+1, S(x0, . . . , xj ; X̃) �= ∅}.

In evaluating the intensity of Y (j), we may choose as a center function the
mapping that associates with every j-dimensional simplex the center of the
(j− 1)-dimensional sphere through its vertices. Now it is clear that the inten-
sity of Y (j) is the same as that of Ỹ (j). ��

The next theorem collects the most important quantities of the planar
Poisson–Delaunay mosaic.

Theorem 10.2.9. Let Y be a stationary planar Poisson–Delaunay mosaic,
corresponding to the intensity γ, and let β(0), β(1), β(2) be its face intensities.
Then

β(0) = γ, β(1) = 3γ, β(2) = 2γ,

n02 = 6, n20 = 3,

l1 =
32

9π
√
γ
, a =

1
2γ
, p =

32
3π
√
γ
.

Proof. The equations for the intensities follow from Theorems 10.2.8 and
10.2.5. From these values and the formula for the mean edge length, the re-
maining values are obtained according to Theorem 10.1.6. The mean edge
length is given by

l1 =
1
3

EL(Z)

(where L is the perimeter). Its computation can be reduced to Theorem 10.4.4,
which is proved in Section 10.4. From that theorem, one obtains

l1 =
d2
3
γ2

∫ ∞

0

∫
S1

∫
S1

∫
S1
L(conv {u0, u1, u2})e−γπr2

r4∆2(u0, u1, u2)

×σ(du0)σ(du1)σ(du2) dr

=
1

48π2√γ

∫
S1

∫
S1

∫
S1
L(conv {u0, u1, u2})A(conv {u0, u1, u2})

×σ(du0)σ(du1)σ(du2).

For reasons of symmetry, the integral

I :=∫
S1

∫
S1

∫
S1
L(conv {u0, u1, u2})A(conv {u0, u1, u2})σ(du0)σ(du1)σ(du2)

can be written in the form

I = 6π
∫

S1

∫
S1
‖u1 − u2‖A(conv {e1, u1, u2})σ(du1)σ(du2),
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with a fixed unit vector e1. Let (e1, e2) be an orthonormal basis of R2. We
put

ui = e1 cosϕi + e2 sinϕi, 0 ≤ ϕi ≤ 2π, i = 1, 2.

Then

‖u1 − u2‖ = 2
∣∣∣∣sin ϕ1 − ϕ2

2

∣∣∣∣
and

A(conv {e1, u1, u2}) =
1
2
|det (u1 − e1, u2 − e1)|

with

det(u1 − e1, u2 − e1)

= det

(
cosϕ1 − 1 sinϕ1

cosϕ2 − 1 sinϕ2

)
= − sin(ϕ1 − ϕ2) + sinϕ1 − sinϕ2

= −2 sin
ϕ1 − ϕ2

2
cos

ϕ1 − ϕ2

2
+ 2 sin

ϕ1 − ϕ2

2
cos

ϕ1 + ϕ2

2
.

Since
cos

ϕ1 − ϕ2

2
− cos

ϕ1 + ϕ2

2
= 2 sin

ϕ1

2
sin
ϕ2

2
≥ 0,

we get

A(conv {e1, u1, u2}) =
∣∣∣∣sin ϕ1 − ϕ2

2

∣∣∣∣ (
cos

ϕ1 − ϕ2

2
− cos

ϕ1 + ϕ2

2

)
and thus

I = 12π
∫ 2π

0

∫ 2π

0

sin2 ϕ1 − ϕ2

2

(
cos

ϕ1 − ϕ2

2
− cos

ϕ1 + ϕ2

2

)
dϕ1 dϕ2 =

29π

3
.

This yields the value of l1 as stated. ��

Notes for Section 10.2

1. As announced after Theorem 10.2.2, we give an example of a stationary, isotropic
point process X̃ for which the induced process of Voronoi cells does not have locally
finite intensity measure. For k ∈ N, consider the lattice Lk := {(km, n/k} ∈ R2 :
m, n ∈ Z}, let ξk be a uniform random vector in the rectangle [0, k] × [0, 1/k], and
let ϑk be a uniform random rotation, independent of ξk. Let Xk := ϑkLk + ξk. Let
p1, p2, . . . be a sequence of positive numbers with

∑∞
k=1 pk = 1 and

∑∞
k=1 kpk = ∞.

There exists a point process X̃ in R2 such that X̃ = Xk with probability pk. The
process X̃ is stationary and isotropic and has intensity one. Let X be the system of
Voronoi cells induced by X̃. With probability pk, the ball B2 is hit by at least 2k
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cells of X. Therefore, the number of cells of X hitting B2 has infinite expectation,
thus the intensity measure of X is not locally finite.

2. For Poisson–Voronoi mosaics, already Meijering [510] has calculated some of the
mean values listed in Theorem 10.2.5. The variance of the cell volume and other dis-
tributional parameters were considered by Gilbert [261]. More systematically, two-
and three-dimensional Poisson–Voronoi mosaics were studied by Miles [522, 526],
and extensions to higher dimensions by Møller [551, 553]. This work we have used
here.

3. Theorem 10.2.4 can be found already, without proof, in Miles [521]; proofs were
later provided by Miles [533] and Møller [551]. Much material about Voronoi mosaics
is found in the book by Okabe, Boots, Sugihara and Chiu [591], which contains also
a chapter on Poisson–Voronoi mosaics. For random Voronoi mosaics, see also the
survey of Møller [554].

4. Planar sections of Voronoi mosaics were studied by Miles [526, 533], Møller [551],
and others. Chiu, van de Weygaert and Stoyan [172] have proved that the intersection
of a d-dimensional stationary Poisson–Voronoi mosaic with a fixed k-plane, k ∈
{2, . . . , d − 1}, is almost surely not a k-dimensional Voronoi mosaic of any point
process. (That the section cannot be a Poisson–Voronoi mosaic, can be seen more
easily, for example, from Theorem 10.2.4 in connection with the Crofton type formula
of Theorem 9.4.8; compare also Mecke [481].) Indeed a stronger result is proved in
[172]: in a sectional Poisson–Voronoi tessellation, almost surely each cell is a non-
Voronoi cell.

5. For several characteristic quantities of stationary Poisson–Voronoi and –Delaunay
mosaics, more precise information on distributional properties is available. Without
going into details, we mention papers by Muche and Stoyan [566], Rathie [622],
Zuyev [838], Muche [561, 562, 563, 564, 565], Møller [553], Mecke and Muche [494],
Schlather [668], Heinrich and Muche [330]. Very general distributional results were
obtained by Baumstark and Last [85]; see Note 7 of Section 10.4.

Heinrich [325] investigated contact distributions for more general stationary
Voronoi mosaics.

6. Limit theorems. Central limit theorems for Poisson–Voronoi tessellations in the
plane were established by Avram and Bertsimas [42], and in arbitrary dimensions by
Heinrich and Muche [330]. A general approach to central limit theorems in geometry,
yielding also results for a quite large class of functionals related to Poisson–Voronoi
tessellations, is presented by Penrose and Yukich [600].

7. Approximation of Borel sets. For a Poisson process X in Rd and a Borel set
A ⊂ Rd, let vX(A) be the union of all Voronoi cells C(x, X) with x ∈ A. This set can
be considered as an approximation of A. If X has intensity measure Θ = n

∫
f dλ,

where the density f is supported by Cd and is positive in the interior (0, 1)d, let
vn(A) := vX(A)∩Cd, for n ∈ N and A ⊂ Cd. Khmaladze conjectured a strong law of
large numbers, in the sense that λ(vn(A)�A) → 0 a.s., as n → ∞ (here � denotes
the symmetric difference). For d = 1, this was shown in Khmaladze and Toronjadze
[402]. Penrose [599] proved the result for arbitrary dimension d under the additional
assumption that f is bounded from below by some constant c > 0. The general case
is apparently still open.
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Reitzner and Heveling [634] considered stationary X and convex bodies A with
interior points. They gave formulas for the expectations and variances of λ(vX(A))
and λ(vX(A)�A) and estimates for large deviations.

8. The construction of random Voronoi mosaics can be generalized in different di-
rections. The Voronoi mosaic of order k ∈ N corresponding to a locally finite set
A ⊂ Rd is obtained if the set of points of Rd having the same k nearest neighbors
in A is defined as a cell. For stationary Poisson point processes, such mosaics have
been studied by Miles [522], Miles and Maillardet [538]. Voronoi mosaics with an
anisotropic growth were investigated by Scheike [665]. The underlying idea of the
Johnson–Mehl model is cell growth starting at kernels which are randomly gen-
erated at different times. A comprehensive investigation of random Johnson–Mehl
mosaics (the cells of which are in general not convex) is provided by Møller [552]; see
also the fifth chapter, written by Møller, in the book edited by Barndorff–Nielsen,
Kendall and van Lieshout [80].

9. Random Laguerre mosaics. A further generalization of the Voronoi mosaics
are the Laguerre mosaics, where the generating points carry weights. With a pair
(x, w) ∈ Rd × R+ one can associate the sphere S(x,

√
w) with center x and radius√

w, and then the power of a point y ∈ Rd with respect to this sphere is defined by

pow(y, (x, w)) := ‖y − x‖2 − w.

If S ⊂ Rd ×R+ is a countable set such that min(x,w)∈S pow(y, (x, w)) exists for each
y ∈ Rd, the Laguerre cell of (x, w) ∈ S is defined by

C((x, w), S) := {y ∈ R
d : pow(y, (x, w)) ≤ pow(y, (x′, w′)) for all (x′, w′) ∈ S}.

The Laguerre mosaic induced by S is the set of all nonempty Laguerre cells arising
in this way. If w = 0 for all (x, w) ∈ S, a Voronoi mosaic is obtained. In contrast to
this case, the Laguerre cell of some (x, w) can be empty, and if it is not, it need not
necessarily contain the ‘nucleus’ x. Laguerre mosaics are very general: every normal
mosaic in Rd for d ≥ 3 is a Laguerre mosaic.

Let X be a stationary marked Poisson process in Rd with mark space R+ and
mark distribution F, satisfying

∫ ∞
0

rd F(dr) < ∞. Then the Laguerre mosaic induced
by X almost surely exists; it is called a Poisson–Laguerre mosaic. A thorough
investigation of these random tessellations is due to Lautensack [436]. Many results
from the Voronoi case can be extended, though often in a less explicit form.

10. Let X̃ be a stationary Poisson process in Rd. The Stienen ball associated with
a point x of X̃ is the ball with center x and radius equal to half the distance from x
to the nearest point in X̃. The random set defined by the union of all Stienen balls
is known as the Stienen model. Olsbo [592] has established an integral formula
for the correlation between the volume of the typical cell of the Poisson–Voronoi
tessellation and the volume of the Stienen ball in the typical cell. He proved that
this correlation is positive (not surprisingly, but the proof is not easy).

11. Poisson–Voronoi tessellations in three-dimensional hyperbolic space were inves-
tigated by Isokawa [377]. He derived formulas for the expected area, perimeter, and
vertex number of the typical cell.
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10.3 Hyperplane Mosaics

Let H be a locally finite system of hyperplanes in Rd. The connected com-
ponents of the complement of the union

⋃
H∈HH are open polyhedral sets.

Their closures are the cells induced by H. A mosaic m (in the sense of
Section 10.1) in Rd is called a hyperplane mosaic if its cells are induced by
a system of hyperplanes. It is said to be in general position if the system H
is in general position, and this means that every k-dimensional plane of Rd is
contained in at most d− k hyperplanes of the system, k = 0, . . . , d− 1.

In the present section, we study random hyperplane mosaics. These are
random mosaics induced by hyperplane processes. If the random mosaic X
is induced by the hyperplane process X̂, we call X̂ the hyperplane process
generating X, and X is said to be in general position if X̂ is almost surely
in general position. The mosaic X is stationary if and only if this holds for
X̂. For stationary random hyperplane mosaics the parameters introduced in
Section 10.1 satisfy additional relations. After deriving some general relations
of this type, we turn to mosaics induced by stationary Poisson hyperplane
processes. These mosaics, and in particular their zero cells, have interesting
properties, and they permit the treatment of some extremal problems (in
Section 10.4).

We begin with a result holding for general distributions.

Theorem 10.3.1. Let X be a stationary random hyperplane mosaic in gen-
eral position in Rd and assume that the generating hyperplane process has
intersection processes with finite intensities. For 0 ≤ j ≤ k ≤ d,

d
(k)
j =

(
d− j
d− k

)
d
(j)
j , (10.33)

in particular

γ(k) =
(
d

k

)
γ(0) (10.34)

and

nkj = 2k−j

(
k

j

)
. (10.35)

Proof. For the stationary hyperplane process X̂ generating X, let X̂d−k be
the intersection process of order d − k (X̂1 = X̂); this is a stationary k-flat
process, k = 0, . . . , d− 1.

We show first that the face process X(k) of X has locally finite intensity
measure, k = 0, . . . , d. For given r > 0, let νk be the number of k-dimensional
faces of X that meet the interior of the ball rBd. From (14.67) we have

νk =
d∑

j=d−k

(
j

d− k

)
αj ,



10.3 Hyperplane Mosaics 485

where αj is the number of j-tuples from X̂ whose intersection meets the
interior of rBd (with α0 := 1). Since X̂ is in general position, the number αj ,
for j > 0, is the number of (d− j)-flats from X̂j meeting the interior of rBd.
By assumption, this number has a finite expectation. Hence E νk <∞, which
implies that the intensity measure of X(k) is locally finite.

Now let k ∈ {1, . . . , d−1} (the case k = 0 is trivial). Let j ∈ {0, . . . , k−1}
and r > 0. In every k-plane E ∈ X̂d−k, a mosaic is induced by X̂ ∩ E. From
(10.23), applied in E instead of Rd, we get that almost surely

∑
E∈X̂d−k

Vj(E ∩ rBd) =
k∑

i=j

(−1)k−i
∑

E∈X̂d−k

∑
F∈X(i), F⊂E

Vj(F ∩ rBd)

=
k∑

i=j

(−1)k−i

(
d− i
d− k

) ∑
F∈X(i)

Vj(F ∩ rBd). (10.36)

Here we have used the fact that every i-face of X is almost surely contained
in exactly

(
d−i
d−k

)
planes of the intersection process X̂d−k, since X is in general

position.
In (10.36) we take the expectation and divide by Vd(rBd). On the left side

we get

1
Vd(rBd)

E
∑

E∈X̂d−k

Vj(E ∩ rBd) ≤ 1
Vd(rBd)

E
∑

E∈X̂d−k

rjVj(Bk)χ(E ∩ rBd)

=
rjVj(Bk)
rdκd

E X̂d−k(FrBd)

=
rjVj(Bk)
rdκd

κd−kr
d−kγ̂d−k,

by (4.27), for rBd instead of Bd. Here, γ̂d−k is the intensity of X̂d−k. Since
j < k, the latter expression converges to 0 as r →∞. Hence, (10.36) together
with Theorem 9.2.2 gives

k∑
i=j

(−1)k−i

(
d− i
d− k

)
d
(i)
j =

k∑
i=j

(−1)k−i

(
d− i
d− k

)
Vj(X(i)) = 0.

This is true for 0 ≤ j < k ≤ d, since for k = d it holds by Theorem 10.1.4.
For j ∈ {0, . . . , d− 1}, the obtained system of linear equations,

k∑
i=j

(−1)i

(
d− i
d− k

)
d
(i)
j = 0, k = j + 1, . . . , d,

has the solution
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d
(i)
j =

(
d− j
d− i

)
d
(j)
j , i = j, . . . , d.

These are the relations (10.33). For j = 0, we get (10.34).
Theorem 10.1.2 gives γ(k)nkj = γ(j)njk. For a hyperplane mosaic in general

position, every j-face with j ≤ k lies in precisely 2k−j
(

d−j
d−k

)
k-faces. This leads

to

γ(k)nkj = 2k−j

(
d− j
d− k

)
γ(j).

Together with (10.34), this yields (10.35). ��

We point out that Theorem 10.3.1 does not require special assumptions
on the distribution of X, except the stationarity and the finiteness of the
intensities of the intersection processes (the latter is satisfied in the case of a
Poisson process, by Theorem 4.4.8). In contrast to this, we now restrict the
distributions considerably, namely, we consider hyperplane mosaics generated
by stationary Poisson hyperplane processes.

Let X̂ be a stationary Poisson hyperplane process in Rd with intensity
γ̂ > 0 and spherical direction distribution ϕ̂. We assume that it is nonde-
generate, which means that ϕ̂ is not concentrated on a great subsphere. This
is equivalent to the assumption that there does not exist a line to which al-
most surely all the hyperplanes of X̂ are parallel. Every realization of X̂ is
a.s. a locally finite system of hyperplanes and induces a decomposition of Rd

into d-dimensional cells, as explained at the beginning of this section.

Theorem 10.3.2. If X̂ is a nondegenerate stationary Poisson hyperplane
process in Rd, then the system X of its induced cells is a random mosaic
in general position.

Proof. If X̂ is as described, then the origin 0 lies almost surely in no hy-
perplane of the process; it is, therefore, contained in a uniquely determined
induced cell Z0, which is again called the zero cell. We show first that it
is almost surely bounded. Let U ⊂ Sd−1 denote the support of the spherical
directional distribution ϕ̂ of X̂. The even measure ϕ̂ is not concentrated on a
great subsphere, hence 0 ∈ int convU . By the theorem of Steinitz (see, for ex-
ample, Schneider [695, p. 15]), there exist 2d (not necessarily distinct) points
u1, . . . , u2d ∈ U such that 0 ∈ int conv {u1, . . . , u2d}. To each i ∈ {1, . . . , 2d},
we can choose a neighborhood Ui ⊂ Sd−1 of ui such that

0 ∈ int conv {v1, . . . , v2d} for all (v1, . . . , v2d) ∈ U1 × . . .× U2d. (10.37)

Since U is the support of ϕ̂, we have ϕ̂(Ui) > 0 for i = 1, . . . , 2d. Let Ai be
the set of hyperplanes H ∈ A(d, d− 1) with 0 /∈ H for which the unit normal
vector pointing away from 0 belongs to Ui, i = 1, . . . , 2d. For the intensity
measure Θ̂ of X̂ we have, by (4.25),
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Θ̂(Ai) = γ̂
∫

Sd−1

∫ ∞

−∞
1Ai

(u⊥ + τu) dτ ϕ̂(du) =∞.

Since X̂ is a Poisson process, this implies P(X̂(Ai) =∞) = 1 for i = 1, . . . , 2d
and thus

P(X̂(Ai) > 0 for i = 1, . . . , 2d) = 1. (10.38)

If (H1, . . . , H2d) ∈ A1× . . .×A2d, then the zero cell induced by {H1, . . . , H2d}
is bounded, by (10.37). Hence, (10.38) implies that the zero cell Z0 of X̂ is
bounded almost surely. By definition, it is closed.

Next we show that Z0 is a random closed set. Since B(F) is generated by
the system {FG : G ∈ G} (Lemma 2.2.1), for the proof of the measurability
it is sufficient to show that for every open set G ⊂ Rd the set A := {ω ∈ Ω :
Z0(ω) ∩G �= ∅} is measurable. Let G ∈ G, let (xi)i∈N be a dense sequence in
G, and let

Ai := {ω ∈ Ω : H ∩ [0, xi) = ∅ for H ∈ X̂(ω)}.
Then A =

⋃
i∈NAi. With Ei := {H ∈ A(d, d − 1) : H ∩ [0, xi) �= ∅} we have

Ei ∈ B(A(d, d−1)) and Ai = {ω ∈ Ω : X̂(ω)∩Ei = ∅}. Thus Ai and, therefore,
A are measurable. This proves that Z0 is measurable.

Now we choose a dense sequence (zi)i∈N in Rd. By the same argument as
applied above to the origin, almost surely to each i ∈ N there is a uniquely
determined cell Zi containing zi, and it is bounded. Hence, almost surely all
cells Zi, i ∈ N, are bounded. Each map Zi : Ω → K′ is measurable.

The set X(ω) := {Zi(ω) : i ∈ N} belongs to Flfc(F ′) = Flf (F ′) ∩ F(K′).
The map X : Ω → Flfc(F ′) defined in this way is measurable, since the
measurability of Zi implies that for every compact set C ∈ C(F) the set

{ω ∈ Ω : X(ω) ∩ C = ∅} =
⋂
i∈N

{ω ∈ Ω : Zi(ω) /∈ C}

is measurable.
It follows that X is a random mosaic in the sense of Section 10.1, since

the defining properties of mosaics, including the face-to-face property, are
satisfied. As X̂ is a stationary Poisson process, one also sees (with similar
arguments to those in the proof of Theorem 4.4.5) thatX is in general position.

The local finiteness of the intensity measures of the face processes X(k),
k ∈ {0, . . . , d}, has already been obtained in the proof of Theorem 10.3.1. ��

We remark that without an additional assumption such as the Poisson
property, the boundedness of the cells in Theorem 10.3.2 cannot be proved.
As an example, we consider a stationary line process in the plane with the
property that with probability 1

2 a realization contains only horizontal lines,
and with probability 1

2 it contains only vertical lines. Such a process is non-
degenerate, but it does not generate a mosaic.

A random mosaic generated by a stationary Poisson hyperplane process, as
in Theorem 10.3.2, is called a (stationary) Poisson hyperplane mosaic. The
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parameters of such a mosaic depend only on the intensity and the spherical
directional distribution of the generating Poisson hyperplane process. We shall
now derive corresponding representations of the most important quantities.
For this, we use the associated zonoids introduced in Section 4.6.

To the nondegenerate stationary Poisson hyperplane process X̂ in Rd with
intensity γ̂ and spherical directional distribution ϕ̂, the associated zonoid ΠX̂
is, according to (4.59), defined by its support function

h(ΠX̂ , ·) =
γ̂

2

∫
Sd−1

|〈·, v〉| ϕ̂(dv). (10.39)

The random mosaic X generated by X̂ is a stationary process of convex
particles and, therefore, has an associated zonoid, too; this is denoted by ΠX .
By (4.47), its support function is given by

h(ΠX , ·) =
1
2

∫
Sd−1

|〈·, v〉|Sd−1(X,dv), (10.40)

where
Sd−1(X, ·) = γ(d)

∫
K0

Sd−1(K, ·) Q(d)(dK).

Here, as in Section 10.1, γ(d) is the intensity and Q(d) is the grain distribution
of X = X(d). We shall establish a connection between the two associated
zonoids.

For a hyperplane H, we denote by ±uH its two unit normal vectors. Let
A ∈ B(Sd−1) and r > 0. By Campbell’s theorem,

E
∑

H∈X̂

λH(rBd)
1
2
[1A(uH) + 1A(−uH)]

= γ̂
∫

Sd−1

∫ ∞

−∞
λu⊥+τu(rBd)

1
2
[1A(u) + 1A(−u)] dτ ϕ̂(du)

= γ̂λ(rBd)ϕ̂(A). (10.41)

For the mean normal measure Sd−1(X, ·) of the particle process X, we use
the representation

Sd−1(X, ·) = lim
r→∞

1
λ(rBd)

E
∑

K∈X

Sd−1(K ∩ rBd, ·), (10.42)

which follows from Theorem 9.2.2. This yields

Sd−1(X,A)

= lim
r→∞

1
λ(rBd)

E

⎛⎝ ∑
H∈X̂

λH(rBd)[1A(uH) + 1A(−uH)] +O(rd−1)

⎞⎠ ,
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where the term O(rd−1) comprises the contributions coming from the curved
boundary parts of the bodies K ∩ rBd, K ∈ X. Together with (10.41), this
gives

Sd−1(X, ·) = 2γ̂ϕ̂,

and this together with (10.39) and (10.40) yields

ΠX = 2ΠX̂ .

Now, some parameters of the mosaic X can conveniently be expressed in terms
of functionals of the associated zonoid ΠX̂ .

Theorem 10.3.3. Let X be a stationary Poisson hyperplane mosaic in Rd,
let γ̂ be the intensity and let ΠX̂ be the associated zonoid of the generating
Poisson hyperplane process X̂. Then the intensities γ(k) and specific intrinsic
volumes d(k)

j of the face processes X(k) of X are given by

d
(k)
j =

(
d− j
d− k

)
Vd−j(ΠX̂) (10.43)

for 0 ≤ j ≤ k ≤ d, in particular for j = 0,

γ(k) =
(
d

k

)
Vd(ΠX̂). (10.44)

If X is isotropic, then

d
(k)
j =

(
d− j
d− k

)(
d

j

)
κd−j

d−1

dd−jκd−j−1
d κj

γ̂d−j (10.45)

and especially

γ(k) =
(
d

k

)
κd

d−1

ddκd−1
d

γ̂d. (10.46)

Proof. Let j ∈ {0, . . . , d − 1}. Let X̂d−j be the intersection process of order
d − j corresponding to the stationary Poisson hyperplane process X̂. Thus,
X̂d−j is a stationary process of j-flats, and by (4.63) its intensity γ̂d−j is given
by

γ̂d−j = Vd−j(ΠX̂).

By Theorem 4.4.3,
E

∑
E∈X̂d−j

λE = γ̂d−jλ.

On the other hand,

lim
r→∞

1
Vd(rBd)

E
∑

E∈X̂d−j

λE(rBd) = lim
r→∞

1
Vd(rBd)

E
∑

K∈X(j)

Vj(K ∩ rBd)

= d
(j)
j .
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This gives d(j)j = Vd−j(ΠX̂) for j ∈ {0, . . . , d} (trivially for j = d). Now
(10.33) yields (10.43).

If X is isotropic, then ΠX̂ is a ball, thus ΠX̂ = rBd, and the radius r is
determined by

γ̂ = γ̂1 = V1(ΠX̂) =
dκd

κd−1
r,

by (14.8). From (10.43) and (10.44) we now get (10.45) and (10.46). ��

In the isotropic case, a slight reformulation will allow easier comparison
with other literature. If Z(k) denotes again the typical k-face of the stationary
and isotropic Poisson hyperplane mosaic X, then (10.3), (10.45) and (10.46)
lead to

EVj(Z(k)) =
(
k

j

)(
dκd

κd−1

)j 1
κj γ̂j

.

Similarly to Section 4.6, we now want to consider a hyperplane mosaic
inside a convex observation window K ∈ K′ with interior points. If H is a
locally finite system of hyperplanes in Rd, we denote by νk(H,K) the number
of k-dimensional cells that this system induces in K; more precisely, this is the
number of k-faces of the mosaic generated by H in Rd that meet the interior
of K. The following theorem collects some results about the expectation of
the random variable

νk(X̂,K) := card{F ∈ Fk(X) : F ∩ intK �= ∅},

where X̂ is a stationary Poisson hyperplane process in Rd andX is the induced
mosaic.

Theorem 10.3.4. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd, let K ∈ K′ be a convex body with interior points, and let
νk(X̂,K) be the number of k-dimensional faces of the induced hyperplane mo-
saic X meeting the interior of K. Then, for k ∈ {0, . . . , d} and r > 0,

E νk(X̂, rBd) =
d∑

j=d−k

(
j

d− k

)
κjr

jVj(ΠX̂).

For given intensity of X̂, this expectation is maximal if and only if X̂ is
isotropic.

If X̂ is isotropic, then

E νk(X̂,K) =
d∑

j=d−k

(
j

d− k

) (
κd−1

dκd

)j

κj γ̂
jVj(K).

If the intensity of X̂ is given, then for given mean width of K this expectation
is maximal if and only if K is a ball, and for k > 0 and given volume of K,
the expectation is minimal if and only if K is a ball.



10.3 Hyperplane Mosaics 491

Proof. Let Θ̂ be the intensity measure of X̂, and let k ∈ {0, . . . , d}. By
Theorem 3.2.3, we have (taking A = FK ∩A(d, d− 1))

E νk(X̂,K)

= e−Θ̂(FK)
∞∑

m=1

1
m!

∫
FK

. . .

∫
FK

νk({H1, . . . , Hm},K) Θ̂(dH1) · · · Θ̂(dHm).

If H1, . . . , Hm are hyperplanes in general position meeting K, then (14.67)
says that

νk({H1, . . . , Hm},K) =
d∑

j=d−k

(
j

d− k

)
αj(H1, . . . , Hm).

Here, αj(H1, . . . , Hm) denotes the number of j-tuples of hyperplanes from
H1, . . . , Hm with the property that their intersection meets intK (with α0 :=
1). For j ∈ {1, . . . , d}, let pj(K, Θ̂) denote the probability that j independent,
identically distributed random hyperplanes with distribution Θ̂ FK/Θ̂(FK)
have a common point in K, thus

Θ̂(FK)jpj(K, Θ̂) =
∫
FK

. . .

∫
FK

χ(K ∩H1 ∩ . . . ∩Hj) Θ̂(dH1) · · · Θ̂(dHj).

Then∫
FK

. . .

∫
FK

αj(H1, . . . , Hm) Θ̂(dH1) · · · Θ̂(dHm) =
(
m

j

)
Θ̂(FK)mpj(K, Θ̂)

and hence

E νk(X̂,K) =
d∑

j=d−k

(
j

d− k

)
1
j!
Θ̂(FK)jpj(K, Θ̂).

Let γ̂ be the intensity and ϕ̂ the spherical directional distribution of X̂. As in
the proof of Theorem 4.4.8 we get

Θ̂(FK)jpj(K, Θ̂)

= γ̂j

∫
Sd−1

. . .

∫
Sd−1

Vj(K| lin {u1, . . . , uj})∇j(u1, . . . , uj) ϕ̂(du1) · · · ϕ̂(duj).

In particular, we have

Θ̂(FrBd)jpj(rBd, Θ̂) = κjr
jj!Vj(ΠX̂)

by (14.35), hence
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E νk(X̂, rBd) =
d∑

j=d−k

(
j

d− k

)
κjr

jVj(ΠX̂).

If X̂ is isotropic, the directional distribution ϕ̂ is the normalized spherical
Lebesgue measure. Therefore, we can use (14.39) and Theorem 6.2.2 and get

Θ̂(FK)jpj(K, Θ̂) =
(
κd−1

dκd

)j

κjj!γ̂jVj(K).

Thus we obtain the stated identities.
The extremal properties follow from (14.31) where, in the first case,

V1(ΠX̂) = γ̂ has to be observed. ��

Notes for Section 10.3

1. The main sources for results about stationary Poisson hyperplane mosaics are
the thesis of Miles [517], his papers [521, 523], and the sixth chapter of the book by
Matheron [462]. Poisson line mosaics in the plane were investigated by Goudsmit
[283], Miles [518, 519, 527, 535], Richards [642], Solomon [731, ch. 3], Tanner [752,
753]. These papers contain many further results, which have not been treated here.

2. Equations (10.34) and (10.35) are due to Mecke [483]. The fact that they do
not require special distributional assumptions points to a purely geometric kernel.
In fact, there are counterparts for deterministic hyperplane systems, see Schneider
[691], where also the assumption of general position is weakened. The equations
(10.33) (as well as Theorem 10.1.4) go back to Weiss [807], with a different proof.

Equations (10.42) and similar representations of the measure Sd−1(X, ·) can be
found in Weil [796].

Theorem 10.3.3 determines the expected values EVj(Z
(k)) = d

(k)
j /γ(k) for the

typical k-face Z(k) of a stationary Poisson hyperplane process. For the typical cell
Z = Z(d) (with an ergodic interpretation), a number of related expectations have
been determined. Miles [517] has considered the following quantities (with different
normalization). For a convex d-polytope P in Rd and for 0 ≤ j ≤ k ≤ d, let

Yj,k(P ) :=
∑

F∈Fk(P )

Vj(F ).

In particular, Yj,j(P ) = Lj(P ) is the total j-dimensional volume of the j-faces,
Yj,d(P ) = Vj(P ) is the jth intrinsic volume, and Y0,k(P ) = fk(P ) is the number of
k-faces of P . Miles has determined, also in the non-isotropic case, the expectation
EYj,k(Z). Special cases are the expectations EVj(Z), also found in Matheron [462];
further, ELj(Z) and ENk(Z), for which, by (10.35), no Poisson assumption is nec-
essary. Moreover, Miles has obtained an equation equivalent to (10.49) and thus (by
Theorem 10.4.1) the expectation EV 2

d (Z). In the isotropic case he has determined
ELr(Z0) (for the zero cell Z0), which yields E[Vd(Z)Lr(Z)], and finally the expec-
tation E[Lj(Z)Lk(Z)] for 0 ≤ j, k ≤ d. For further moments of second and higher
order in dimensions two and three, we refer to the list and the references in Santaló
[662, pp. 57–58, 297]; cf. also Weiss [808], Favis and Weiss [226].
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Theorem 10.3.4 transfers a result of Schneider [686] from finitely many random
hyperplanes to Poisson hyperplane processes.

3. Limit theorems. For stationary Poisson hyperplane processes, central limit
theorems for measurements in increasing convex sampling windows were obtained
by Paroux [596] (in the plane), by Heinrich, H. Schmidt and V. Schmidt [332], and
by Heinrich [328].

10.4 Zero Cells and Typical Cells

In this section, we study properties of zero cells and typical cells, for general
and for special stationary random mosaics, and under various aspects. Recall
that the typical cell Z of a stationary random mosaicX is a random polytope
with distribution Q(d), the grain distribution of the particle process X. The
zero cell Z0 of X is defined by

Z0 :=
⋃

K∈X

1int K(0)K

(observe that, due to the stationarity of X, there is almost surely a cell K ∈ X
with 0 ∈ intK). The zero cell, too, is a.s. a random polytope with interior
points.

First we investigate relations between the typical cell and the zero cell of
a stationary random mosaic in Rd.

Theorem 10.4.1. Let X be a stationary random mosaic in Rd with typical
cell Z and zero cell Z0. If f : K′ → R is a translation invariant, nonnegative,
measurable function, then

Ef(Z0) = γ(d)E[f(Z)Vd(Z)].

This can be expressed by saying that the distribution of the zero cell is,
up to translations, the volume-weighted distribution of the typical cell. More
precisely: the distribution of Z0 − c(Z0) has, with respect to the distribution
of Z, a density which is given by γ(d)Vd = Vd/EVd(Z).

Proof. An application of Campbell’s theorem gives

Ef(Z0) = E
∑

K∈X

f(K)1int K(0)

= γ(d)

∫
K0

∫
Rd

f(K + x)1int (K+x)(0)λ(dx) Q(d)(dK)

= γ(d)

∫
K0

f(K)Vd(K) Q(d)(dK)

= γ(d)E[f(Z)Vd(Z)],

as stated. ��
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A consequence of Theorem 10.4.1 is, for example, the fact that the zero
cell Z0 has stochastically larger volume than the typical cell Z. A more precise
formulation involves the distribution functions of Vd(Z) and Vd(Z0).

Theorem 10.4.2. Let X be a stationary random mosaic in Rd with typical
cell Z and zero cell Z0, let F be the distribution function of Vd(Z) and F0 the
distribution function of Vd(Z0). Then

F0(x) ≤ F (x) for 0 ≤ x <∞.

Proof. For x ≥ 0 we have∫ x

0

(F (x)− F (t)) dt =
∫ x

0

[P(Vd(Z) ≤ x)− P(Vd(Z) ≤ t)] dt

=
∫ x

0

E[1[0,x](Vd(Z))− 1[0,t](Vd(Z))] dt

= E

∫ x

0

[1[0,x](Vd(Z))− 1[0,t](Vd(Z))] dt

= E[Vd(Z)1[0,x](Vd(Z))]

= (γ(d))−1E1[0,x](Vd(Z0))

= F0(x)EVd(Z),

by Theorem 10.4.1 and (10.4). Now

EVd(Z) =
∫ ∞

0

(1− F (x)) dx,

which gives

F0(x)EVd(Z)

=
∫ x

0

(F (x)− F (t)) dt

= F (x)
∫ x

0

(1− F (t)) dt− (1− F (x))
∫ x

0

F (t) dt

= F (x)EVd(Z)− F (x)
∫ ∞

x

(1− F (t)) dt− (1− F (x))
∫ x

0

F (t) dt.

We conclude that

(F (x)− F0(x))EVd(Z)

= F (x)
∫ ∞

x

(1− F (t)) dt+ (1− F (x))
∫ x

0

F (t) dt

≥ 0,

which completes the proof. ��
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Theorem 10.4.3. Let X be a stationary random mosaic in Rd with typical
cell Z and zero cell Z0. Then, for k ∈ N,

EV k
d (Z0) ≥ EV k

d (Z).

Proof. This follows from Theorem 10.4.2 and the identities

EV k
d (Z0) = k

∫ ∞

0

xk−1(1− F0(x)) dx,

EV k
d (Z) = k

∫ ∞

0

xk−1(1− F (x)) dx

for kth moments of nonnegative real random variables. ��

The Typical Cell of a Poisson–Delaunay Tessellation

For a stationary Poisson–Delaunay mosaic Y , it is possible to give an explicit
integral expression for the distribution of the typical cell, with respect to a
suitable center function. For this, we consider Y as a particle process (with
all particles being d-simplices) and choose a particular center function z for
d-simplices, namely the center of the sphere through the vertices. More pre-
cisely, let ∆(d) be the set of d-dimensional simplices in Rd. For K ∈ ∆(d), let
x0 = x0(K), . . . , xd = xd(K) be the vertices of K, say in lexicographic order.
With the notation introduced before Theorem 10.2.3, let Bd(x0, . . . , xd) be the
unique ball having x0, . . . , xd in its boundary, and let z(K) := z(x0, . . . , xd)
be its center. The map K �→ (x0(K), . . . , xd(K)) is measurable. Let Q0 denote
the grain distribution of Y with respect to the center function z. Thus, Q0

is a probability measure on ∆(d)
0 := {K ∈ ∆(d) : z(K) = 0}. The following

theorem describes Q0 according to the dependence of the intensity γ of X̃,
the underlying point process.

Theorem 10.4.4. Let Y be a stationary Poisson–Delaunay mosaic in Rd cor-
responding to the intensity γ, and let A ⊂ ∆(d)

0 be a Borel set. Then

Q0(A) = adγ
d

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

1A(conv {ru0, . . . , rud})e−γκdrd

rd
2−1

×∆d(u0, . . . , ud)σ(du0) · · ·σ(dud) dr

with

ad :=
d2

2d+1π
d−1
2

Γ
(

d2

2

)
Γ

(
d2+1

2

) [
Γ

(
d+1
2

)
Γ

(
1 + d

2

)]d

.

Proof. From the definition of Q0 and from Campbell’s theorem we get
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β(d)Q0(A)

= E
∑
K∈Y

1A(K − z(K))1Cd(z(K))

=
1

(d+ 1)!
E

∑
(x0,...,xd)∈X̃d+1

�=

1A(conv {x0, . . . , xd} − z(x0, . . . , xd))

×1Cd(z(x0, . . . , xd))1{X̃ ∩ intBd(x0, . . . , xd) = ∅}.

As in the proof of Theorem 10.2.4, we apply the Slivnyak–Mecke formula
(Corollary 3.2.3) to the Poisson process X̃. Using the transformation theorem
7.3.1, we obtain

β(d)Q0(A)

=
γd+1

(d+ 1)!

∫
Rd

. . .

∫
Rd

1A(conv {x0, . . . , xd} − z(x0, . . . , xd))

×1Cd(z(x0, . . . , xd))P(X̃ ∩Bd(x0, . . . , xd) = ∅)λ(dx0) · · ·λ(dxd)

=
γd+1

(d+ 1)!
d!

∫
Rd

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

1A(conv {ru0, . . . , rud})1Cd(z)

× e−γκdrd

rd
2−1∆d(u0, . . . , ud)σ(du0) · · ·σ(dud) dr λ(dz).

Here β(d) = γ(0) by Theorem 10.2.8, and this value is given by (10.31). This
completes the proof. ��

A random closed set Z with distribution Q0 is called a Poisson–Delaunay
simplex (corresponding to the intensity γ). By Theorem 10.4.4, the distri-
butions of all geometric quantities of Z are determined, in principle. Their
explicit calculation, however, will only be possible in special cases. As an ex-
ample, we consider the volume of a Poisson–Delaunay simplex. For this, all
the moments can be computed.

Theorem 10.4.5. Let Z be the Poisson–Delaunay simplex in Rd correspond-
ing to the intensity γ. Then

EVd(Z)k = adS(d, d, k + 1)
(d+ k − 1)!
dκd+k

d

1
γk

for k = 1, 2, . . ., where S(d, d, k + 1) is given by Theorem 8.2.3.

Proof. By Theorem 10.4.4,

EVd(Z)k = adγ
d

∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

e−γκdrd

rd
2+dk−1∆d(u0, . . . , ud)k+1

×σ(du0) · · ·σ(dud) dr

= adγ
dS(d, d, k + 1)

∫ ∞

0

e−γκdrd

rd
2+dk−1 dr,
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from which the assertion follows. ��

In the rest of this section, we restrict ourselves to a stationary Poisson
hyperplane mosaic X. The zero cell Z0 of X is known as the Poisson zero
polytope or Crofton polytope. In contrast to this, the typical cell of X
is called the Poisson polytope. We want to determine some distributional
properties or parameters of the Poisson polytope or the Poisson zero poly-
tope. We assume again that the mosaic X is generated by the nondegenerate
stationary Poisson hyperplane process X̂.

Typical Cells and Zero Cells of Poisson Hyperplane Tessellations

We want to represent the distribution of the typical cell of a stationary Poisson
hyperplane mosaic in a similar manner to that for Poisson–Delaunay mosaics
in Theorem 10.4.4. There can, however, only be a partial analogy, since the
Poisson polytope may have arbitrarily many facets, therefore the process X̂
cannot be eliminated from the representation. The analogy consists in the
fact that the center of the inball is used as a center function, and the inradius
enters the representation. At first, we restrict ourselves to the isotropic case; a
possible extension is explained after the proof. First we collect some notation
for the subsequent proof.

For u ∈ Sd−1 and τ ∈ R, we write

H−(u, τ) := {x ∈ Rd : 〈x, u〉 ≤ τ}

for the closed halfspace with outer normal vector u that is bounded by the
hyperplane H(u, τ). If H is a hyperplane and z ∈ Rd \H, then H+

z denotes
the closed halfspace bounded by H that contains z.

Let H0, . . . , Hd be hyperplanes in Rd in general position (that is, with
linearly independent normal vectors and not all passing through one point).
Let ∆(H0, . . . , Hd) be the unique simplex for which H0, . . . , Hd are the facet
hyperplanes. We denote by z(H0, . . . , Hd) the center and by r(H0, . . . , Hd)
the radius of its inball. We denote by B0(z, r) the open ball with center z and
radius r. The set P ⊂ (Sd−1)d+1 is the set of all (d+ 1)-tuples of unit vectors
not lying in a closed hemisphere.

Theorem 10.4.6. Let X̂ be a stationary, isotropic Poisson hyperplane process
in Rd of intensity γ̂, and let Q0 be the distribution of the typical cell of the in-
duced hyperplane mosaic X with respect to the inball center as center function.
Then, for Borel sets A ∈ B(K),

Q0(A) =
1

(d+ 1)γ(d)

(
γ̂

ωd

)d+1 ∫ ∞

0

∫
Sd−1

. . .

∫
Sd−1

e−2γ̂r

× P

⎛⎝ ⋂
H∈X̂∩FB0(0,r)

H+
0 ∩

d⋂
j=0

H−(uj , r) ∈ A

⎞⎠
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× ∆d(u0, . . . , ud)1P(u0, . . . , ud)σ(du0) · · ·σ(dud) dr,

where the cell intensity γ(d) is given by (10.46).

Proof. As in the proof of Theorem 4.4.5 one shows that almost surely any d+1
hyperplanes of X̂ are in general position. Therefore, the inballs of the cells of
X are almost surely unique. It is also easy to show that almost surely every
inball of a cell is touched by precisely d + 1 hyperplanes of X̂. In the proof,
we denote the inball center by ζ. In the subsequent formulas, the arguments
H0, . . . , Hd of the functions ∆, z, r are omitted, but have to be kept in mind.
For A ∈ B(K) we obtain, using the Slivnyak–Mecke formula (Corollary 3.2.3),

γ(d)Q0(A) = E
∑

K∈X

1A(K − ζ(K))1Cd(ζ(K))

=
1

(d+ 1)!
E

∑
(H0,...,Hd)∈X̂d+1

�=

1{X̂ ∩ FB0(z,r) = ∅}1Cd(z)

× 1

⎧⎨⎩ ⋂
H∈X̂∩FB0(z,r)

H+
z − z ∈ A

⎫⎬⎭
=

1
(d+ 1)!

∫
A(d,d−1)

. . .

∫
A(d,d−1)

E1{X̂ ∩ FB0(z,r) = ∅}1Cd(z)

× 1

⎧⎨⎩ ⋂
H∈X̂∩FB0(z,r)

(∆ ∩H+
z )− z ∈ A

⎫⎬⎭ Θ̂(dH0) · · · Θ̂(dHd),

where Θ̂ is the intensity measure of X̂. Since X̂ ∩ FB0(z,r) and X̂ ∩ FB0(z,r)

are independent, and

P(X̂ ∩ FB0(z,r) = ∅) = exp{−Θ̂(FB0(z,r))} = e−2γ̂r,

we obtain

γ(d)Q0(A)

=
1

(d+ 1)!

∫
A(d,d−1)

. . .

∫
A(d,d−1)

e−2γ̂r1Cd(z)

× P

⎛⎝ ⋂
H∈X̂∩FB0(z,r)

(∆ ∩H+
z )− z ∈ A

⎞⎠ Θ̂(dH0) · · · Θ̂(dHd).

Recall that ∆, z, r all have the arguments H0, . . . , Hd; further, Θ̂ = γ̂µd−1.
Now we apply the transformation of Theorem 7.3.2 (r, z then becoming inde-
pendent variables). Making use of the fact that, due to the stationarity of X̂,
the events
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H∈X̂∩FB0(z,r)

H+
z ∩

d⋂
j=0

H−(uj , 〈z, uj〉+ r)

⎞⎠− z ∈ A
and ⋂

H∈X̂∩FB0(0,r)

H+
0 ∩

d⋂
j=0

H−(uj , r) ∈ A

are stochastically equivalent, we obtain the stated result. ��

In the first step of the proof, essential use was made of the fact that almost
surely every cell of X is in one-to-one correpondence with a (d + 1)-tuple of
hyperplanes of X touching the inball of the cell. This is not the case for
general stationary Poisson hyperplane mosaics. However, the above theorem
and its proof extend easily to the non-isotropic case if it is assumed that
the directional distribution of the generating hyperplane process is absolutely
continuous with respect to the invariant measure µd−1.

We derive now a second representation of the typical cell of a stationary
Poisson hyperplane mosaic X, using as center function the highest vertex with
respect to a given height function. Let ξ ∈ Sd−1 be fixed. For a polyhedral
set P , the highest vertex t(P ) in direction ξ is the vertex of P at which
〈ξ, ·〉 attains its maximum on P , if this vertex exists and is unique. To discuss
the uniqueness, we say that the vector ξ is admissible for a system H of
hyperplanes ifH is in general position and any d−1 different hyperplanes from
H have normal vectors which together with ξ are linearly independent. Let ξ be
admissible for the hyperplanes H1, . . . , Hd. We denote by s = s(H1, . . . , Hd)
the intersection point of H1, . . . , Hd. The hyperplanes H1, . . . , Hd decompose
Rd into 2d simplicial cones with apex s. For precisely one of these cones, the
point s is the highest vertex; let Tξ(H1, . . . , Hd) be this cone. In fact, there
is a unique choice of unit normal vectors u1, . . . , ud of H1, . . . , Hd such that
ξ ∈ pos{u1, . . . , ud}, then

Tξ(H1, . . . , Hd) =
d⋂

i=1

H−(ui, 〈s, ui〉).

For linearly independent unit vectors u1, . . . , ud−1, let w(u1, . . . , ud−1) be
the unit vector orthogonal to lin{u1, . . . , ud−1} and such that the d-tuple
(u1, . . . , ud−1, w(u1, . . . , ud−1)) is positively oriented. We denote by w(ϕ̂d−1)
the image measure of the product measure ϕ̂d−1, restricted to linearly inde-
pendent (d − 1)-tuples, under the mapping w. We say that ξ is admissible
for ϕ̂ if w(ϕ̂d−1)(ξ⊥ ∩ Sd−1) = 0. If ξ is admissible for ϕ̂, then a.s. ξ is ad-
missible for X̂ (this can be proved by similar arguments to those in the proof
of Theorem 4.4.5), hence all cells of the tessellation X have a unique highest
vertex. Clearly, there are vectors that are admissible for ϕ̂.
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We define a probability measure on the space of d-tuples of hyperplanes
through 0. For A ∈ B(G(d, d− 1)d), let

φd(A) :=
γ̂d

d!γ̂d

∫
(Sd−1)d

1A(u⊥1 , . . . , u
⊥
d )∇d(u1, . . . , ud) ϕ̂d(d(u1, . . . , ud)).

Here γ̂d is the intensity of the intersection process of order d of X̂. It follows
from Theorem 4.4.8 that φd is indeed a probability measure.

Theorem 10.4.7. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd with intensity γ̂ and spherical directional distribution ϕ̂. Let
ξ ∈ Sd−1 be a vector which is admissible for ϕ̂, and let Q0 be the distribution
of the typical cell of the induced hyperplane mosaic X with respect to the highest
vertex in direction ξ as center function. Then, for Borel sets A ∈ B(K),

Q0(A) =
∫

G(d,d−1)d

P (Z0 ∩ Tξ(H1, . . . , Hd) ∈ A)φd(d(H1, . . . , Hd)).

Proof. Let P be a cell of X. Its highest vertex t(P ) is the intersection of d
hyperplanes H1, . . . , Hd of X̂ with linearly independent normal vectors, thus
t(P ) = s(H1, . . . , Hd) and

P =
⋂

H∈X̂\{H1,...,Hd}

H+
s(H1,...,Hd) ∩ Tξ(H1, . . . , Hd). (10.47)

Conversely, almost surely for every choice of different hyperplanes H1, . . . , Hd

from X̂, the right side of (10.47) is a cell of X, and s(H1, . . . , Hd) is its highest
vertex.

We define 1Cd(s(H1, . . . , Hd)) := 0 if the normal vectors of H1, . . . , Hd

are not linearly independent. In the subsequent formulas, the arguments
H1, . . . , Hd of s and Tξ are omitted, but have to be kept in mind. For Borel
sets A ∈ B(K) we obtain, again using the Slivnyak–Mecke formula,

γ(d)Q0(A)

= E
∑
P∈X

1A(P − t(P ))1Cd(t(P ))

=
1
d!

E
∑

(H1,...,Hd)∈X̂d
�=

1A

⎛⎝ ⋂
H∈X̂\{H1,...,Hd}

(H+
s ∩ Tξ)− s

⎞⎠1Cd(s)

=
1
d!

∫
A(d,d−1)

. . .

∫
A(d,d−1)

E1A

⎛⎝ ⋂
H∈X̂

(H+
s ∩ Tξ)− s

⎞⎠1Cd(s)

× Θ̂(dH1) · · · Θ̂(dHd)

=
1
d!

∫
A(d,d−1)

. . .

∫
A(d,d−1)

P(Z0 ∩ (Tξ − s) ∈ A)1Cd(s) Θ̂(dH1) · · · Θ̂(dHd),
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where we have used the stationarity of X̂ and the fact that
⋂

H∈X̂ H
+
0 is

the zero cell Z0 of X. We insert the representation of the intensity measure
given by (4.33). Further, we observe that γ(d) = γ(0) by Theorem 10.3.1 and
γ(0) = γ̂d. Thus, we obtain

Q0(A) =
γ̂d

d!γ̂d

∫
(Sd−1)d

∫ ∞

−∞
. . .

∫ ∞

−∞
P

(
Z0 ∩ Tξ(u⊥1 , . . . , u

⊥
d ) ∈ A

)
× 1Cd(s(H(u1, t1), . . . , H(ud, td)))1{∇d(u1, . . . , ud) �= 0}
× dt1 · · · dtd ϕ̂d(d(u1, . . . , ud)).

For fixed linearly independent unit vectors u1, . . . , ud, let

F (t1, . . . , td) := s(H(u1, t1), . . . , H(ud, td)).

This defines a bijective mapping F from Rd to Rd. Its inverse has Jacobian
∇d(u1, . . . , ud). Therefore, we obtain

Q0(A) =
γ̂d

d!γ̂d

∫
(Sd−1)d

P
(
Z0 ∩ Tξ(u⊥1 , . . . , u

⊥
d ) ∈ A

)
∇d(u1, . . . , ud)

× ϕ̂d(d(u1, . . . , ud))

=
∫

G(d,d−1)d

P (Z0 ∩ Tξ(H1 . . . , Hd) ∈ A) φd(d(H1, . . . , Hd)),

which completes the proof. ��
Corollary 10.4.1. Under the assumptions of Theorem 10.4.7, there is a ran-
dom polytope Z ′ stochastically equivalent to the typical cell Z of X such that
Z ′ ⊂ Z0 a.s.

Proof. Let (H1, . . . , Hd) be a random element of G(d, d−1)d with distribution
φd such that (H1, . . . , Hd) and X̂ are stochastically independent. Then it fol-
lows from Theorem 10.4.7 that the random polytope Z ′ := Z0∩Tξ(H1, . . . , Hd)
ist stochastically equivalent to Z. ��

From Theorem 10.4.6, we can obtain the distribution of the inradius of
the typical cell, but only under the conditions on the directional distribution
under which that theorem holds. The following alternative approach works for
general nondegenerate stationary Poisson hyperplane processes. Recall that
the inradius r(K) of a convex body K is the maximal radius of the balls
contained in K. In general, a maximal ball contained in K need neither be
unique nor be touched by d+ 1 supporting hyperplanes of K.

Theorem 10.4.8. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd of intensity γ̂, and let Z be the typical cell of the induced hyper-
plane mosaic X. Then

P(r(Z) ≤ a) = 1− e−2γ̂a for a ≥ 0.
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Proof. Let a ≥ 0. First we prove a particular reproduction property of the
Poisson hyperplane process X̂. As always, (Ω,A,P) denotes the underlying
probability space. We put

Ωa := {ω ∈ Ω : X̂(ω)(FaBd) = 0},

then P(Ωa) = e−2γ̂a. For ω ∈ Ωa, every hyperplane of X̂(ω) has a dis-
tance from the origin 0 that is larger than a, hence it can be represented
in the form H(u, τ) = {x ∈ Rd : 〈x, u〉 = τ} with u ∈ Sd−1 and τ > a.
For such hyperplanes, we put TaH(u, τ) := H(u, τ − a). On the probabil-
ity space (Ωa,Aa,Pa), where Aa is the trace σ-algebra of A on Ωa and
Pa := e2γ̂aP Ωa, we define a simple hyperplane process X̂a by

X̂a(ω) := {TaH : H ∈ X(ω)}

(where, as usual, simple counting measures are identified with their supports).
We shall show that X̂a and X̂ are stochastically equivalent. For the proof, let
A ∈ B(A(d, d− 1)) and suppose, without loss of generality, that 0 /∈ H for all
H ∈ A. For k ∈ N0 we have, due to the independence properties of Poisson
processes (Theorem 3.2.2(a)), that

Pa(X̂a(A) = k) = e2γ̂aP

(
X̂

(
T−1

a (A)
)

= k, X̂(FaBd) = 0
)

= P

(
X̂

(
T−1

a (A)
)

= k
)

= e−Θ̂(T−1
a (A)) Θ̂

(
T−1

a (A)
)k

k!
.

Let ϕ̂ be the spherical directional distribution of X̂. From

Θ̂
(
T−1

a (A)
)

= 2γ̂
∫

Sd−1

∫ ∞

a

1T−1
a (A)(H(u, τ)) dτ ϕ̂(du)

= 2γ̂
∫

Sd−1

∫ ∞

a

1A(H(u, τ − a)) dτ ϕ̂(du)

= 2γ̂
∫

Sd−1

∫ ∞

0

1A(H(u, τ)) dτ ϕ̂(du)

= Θ̂(A)

we get Pa(X̂a(A) = k) = P(X̂(A) = k) and hence X̂a
D= X̂, as stated.

Now we replace every hyperplane H ∈ X̂ by the strip Ha := H+aBd. The
connected components of the complement of

⋃
H∈X̂ Ha are open polyhedral

sets; their closures are called the cells induced by X̂ and a. The system
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Xa of the cells induced by X̂ and a is a stationary particle process (but not a
mosaic, if a > 0). Let γ(d)

a denote the intensity and Q
(d)
a the grain distribution

of Xa. The typical cell Z(a) of Xa is defined as the random polytope with
distribution Q

(d)
a (thus X0 = X, γ(d)

0 = γ(d), Z(0) = Z). Conditionally upon
0 /∈

⋃
H∈X̂(ω)Ha (which is equivalent to ω ∈ Ωa), the zero cell Z(a)

0 of Xa is
defined as the uniquely determined polytope P ∈ Xa with 0 ∈ P .

Let f be a translation invariant, nonnegative, measurable function on K′.
By Campbell’s theorem,∫

Ωa

f(Z(a)
0 ) dP = E

∑
K∈Xa

f(K)1K(0)

= γ(d)
a

∫
K0

∫
Rd

f(K + x)1K+x(0)λ(dx) Q(d)
a (dK)

= γ(d)
a

∫
K0

f(K)Vd(K) Q(d)
a (dK).

Choosing f = 1/Vd, we obtain

γ(d)
a =

∫
Ωa

V −1
d (Z(a)

0 ) dP = e−2γ̂a

∫
Ωa

V −1
d (Z(a)

0 ) dPa.

The case a = 0 reads
γ(d) =

∫
Ω

V −1
d (Z0) dP.

Due to the stochastic equivalence of X̂a and X̂ shown above, the random poly-
topes Z(a)

0 (defined on (Ωa,A ∩ Ωa,Pa)) and Z0 have the same distribution,
hence ∫

Ωa

V −1
d (Z(a)

0 ) dPa =
∫

Ω

V −1
d (Z0) dP.

This gives
γ(d)

a = e−2γ̂aγ(d). (10.48)

In the following, we use as a center function the incenter. For a convex
body K ∈ K′, the incenter z(K) is the center of the inball of K, if this
is unique. If the inball is not uniquely determined, we define z(K) as the
circumcenter of the set of centers of all inballs of K; the latter set is a convex
body and hence contains its circumcenter.

Now let B ∈ B(Rd) and λ(B) = 1. We have

P(r(Z) > a) =
∫
K0

1(a,∞)(r(K)) Q
(d)
0 (dK)

=
1
γ(d)

E
∑

K∈X, z(K)∈B

1(a,∞)(r(K))
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by Theorem 4.1.3. By Theorem 4.2.1, the replacement of the circumcenter by
the incenter is legitimate, since the inradius is translation invariant. Now, the
cells K ∈ X with r(K) > a are in bijective correspondence with the cells
Ka ∈ Xa, so that z(Ka) = z(K) (and r(Ka) = r(K)− a). It follows that

P(r(Z) > a) =
1
γ(d)

∑
Ka∈Xa, z(Ka)∈B

1 =
1
γ(d)

γ(d)
a = e−2γ̂a,

by (10.48). ��

Parameters of the Poisson Zero Polytope

For the Poisson zero polytope, some parameters can be computed explicitly.
The expected volume of the zero cell can be determined in the same way as the
mean visible volume of a stationary Boolean model was computed (Theorem
4.6.1). For the radius function ρ(Z0, ·) of Z0 we have, for u ∈ Sd−1 and r > 0,

P(ρ(Z0, u) ≤ r) = P(X̂(F[0,ru]) > 0)

= 1− exp (−EX̂(F[0,ru]))

= 1− exp (−2rh(ΠX̂ , u)),

by (4.60). Thus, ρ(Z0, u) has an exponential distribution with parameter
2h(ΠX̂ , u), and as in the proof of Theorem 4.6.1 we get

EVd(Z0) = 2−dd!Vd(Πo
X̂

). (10.49)

Further quantities for which the expected values can be determined, are
the total k-dimensional volumes of the k-faces of the zero cell. For a polytope
P and for k ∈ {0, . . . , d}, let

skelkP :=
⋃

F∈Fk(P )

F

be the k-skeleton of P , and let Hk denote the k-dimensional Hausdorff mea-
sure. We put

Lk(P ) := Hk(skelkP ) =
∑

F∈Fk(P )

Vk(F ).

To determine the expected value of Ld−k(Z0), we note that almost surely
each (d− k)-face of Z0 is the intersection of Z0 with precisely k hyperplanes
of X̂. We use the Slivnyak–Mecke formula (Corollary 3.2.3) and the decom-
position (4.33) of the intensity measure Θ̂ of X̂ (which has intensity γ̂ and
spherical directional distribution ϕ̂). Thus we obtain
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ELd−k(Z0)

=
1
k!

E
∑

(H1,...,Hk)∈X̂k
�=

Hd−k(Z0 ∩H1 ∩ . . . ∩Hk)

=
1
k!

∫
A(d,d−1)

. . .

∫
A(d,d−1)

EHd−k(Z0 ∩H1 ∩ . . . ∩Hk) Θ̂(dH1) · · · Θ̂(dHk)

=
γ̂k

k!

∫
Sd−1

. . .

∫
Sd−1

∫ ∞

−∞
. . .

∫ ∞

−∞
EHd−k(Z0 ∩H(u1, τ1) ∩ . . . ∩H(uk, τk))

× dτ1 · · · dτk ϕ̂(du1) · · · ϕ̂(duk)

=
γ̂k

k!
EVd(Z0)

∫
Sd−1

. . .

∫
Sd−1

∇k(u1, . . . , uk) ϕ̂(du1) · · · ϕ̂(duk)

= d(d−k)
d−k EVd(Z0),

where we have used (14.35) and (10.43).
We collect the obtained results, together with corresponding inequalities.

Theorem 10.4.9. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd of intensity γ̂, and let Z0 be the zero cell of the induced hyper-
plane mosaic. Then

EVd(Z0) = 2−dd!Vd(Πo
X̂

) ≥ d!κd

(
2κd−1

dκd
γ̂

)−d

, (10.50)

with equality if and only if X̂ is isotropic.
For k = 0, . . . , d− 1,

ELk(Z0) = d(k)
k EVd(Z0) = 2−dd!Vd−k(ΠX̂)Vd(Πo

X̂
). (10.51)

In particular, the vertex number f0(Z0) of the zero cell satisfies

2d ≤ Ef0(Z0) ≤ 2−dd!κ2
d. (10.52)

Equality holds on the left side if and only if the hyperplanes of X̂ are almost
surely parallel to d fixed hyperplanes. Equality on the right side holds if and
only if there is a nondegenerate linear transformation α of Rd such that the
hyperplane process αX̂ is isotropic.

Proof. The inequality in (10.50) is analogous to (4.52) and is in the same way
a consequence of (14.43). If equality holds, then ΠX̂ is a ball. From this, we
can deduce that X̂ is isotropic, since ΠX̂ determines the intensity and the
directional distribution and thus the intensity measure of X̂; for a Poisson
process, the latter determines the distribution. Conversely, if X̂ is isotropic,
then ΠX̂ is a ball, and equality holds in (10.50).
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The inequalities (10.52) are analogous to (4.56) and are obtained in a
similar way from (14.45). Equality on the left side holds if and only if ΠX̂
is a parallelepiped. This is the case if and only if the spherical directional
distribution of X̂ is concentrated in d pairs of antipodal unit vectors, and
these are a.s. the normal vectors of the hyperplanes occurring in X̂. Equality
on the right side of (10.52) holds if and only if ΠX̂ is an ellipsoid. This is
equivalent to the existence of a nondegenerate linear transformation α of Rd

such that α−tΠX̂ is a ball. From (4.60) we get, for u ∈ Rd,

2h(ΠαX̂ , u) = E(αX̂)(F[0,u])) = EX̂(α−1F[0,u])) = EX̂(F[0,α−1u])

= 2h(ΠX̂ , α
−1u) = 2h(α−tΠX̂ , u),

hence ΠαX̂ = α−tΠX̂ . This yields the remaining assertion. ��

By the theorem, the expected vertex number of the zero cell of a sta-
tionary Poisson hyperplane mosaic attains its minimal value 2d precisely for
parallel mosaics (where the generating hyperplanes belong to d translation
classes). In contrast to this, for the typical cell Z of a stationary hyperplane
mosaic, the expected vertex number is always equal to 2d, independently of
the distribution, by Theorem 10.3.1.

The inequality for the expectation of the volume of the Poisson zero poly-
tope given by (10.50) can be extended to higher moments of this volume. For
a nondegenerate Poisson hyperplane process X̂ with intensity γ̂ and spherical
directional distribution ϕ̂, we write

Mk(γ̂, ϕ̂) := EV k
d (Z0) for k ∈ N0.

We obtain

Mk(γ̂, ϕ̂) =
∫

Rd

. . .

∫
Rd

E[1Z0(x1) · · ·1Z0(xk)]λ(dx1) · · ·λ(dxk)

=
∫

Rd

. . .

∫
Rd

exp
[
−Θ̂(Fconv {0,x1,...,xk})

]
λ(dx1) · · ·λ(dxk)

=
∫

Rd

. . .

∫
Rd

exp
[
−γ̂

∫
Sd−1

b(Kx, u) ϕ̂(du)
]
λ(dx1) · · ·λ(dxk),

where we have putKx := conv {0, x1, . . . , xk} and where b(Kx, u) = h(Kx, u)+
h(Kx,−u) is the width of the convex body Kx in direction u.

For every rotation ϑ ∈ SOd, we have

b(conv {0, ϑ−1x1, . . . , ϑ
−1xk}, u) = b(conv {0, x1, . . . , xk}, ϑu).

The rotation invariance of the Lebesgue measure gives

Mk(γ̂, ϕ̂) =
∫

Rd

. . .

∫
Rd

exp
[
−γ̂

∫
Sd−1

b(Kx, ϑu) ϕ̂(du)
]
λ(dx1) · · ·λ(dxk).
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We integrate this over all ϑ ∈ SOd with respect to the invariant probability
measure ν on SOd. Using Fubini’s theorem and Jensen’s integral inequality,
which can be applied due to the convexity of the exponential function, we
obtain

Mk(γ̂, ϕ̂)

=
∫

Rd

. . .

∫
Rd

∫
SOd

exp
[
−γ̂

∫
Sd−1

b(Kx, ϑu) ϕ̂(du)
]
ν(dϑ)λ(dx1) · · ·λ(dxk)

≥
∫

Rd

. . .

∫
Rd

exp
[
−γ̂

∫
SOd

∫
Sd−1

b(Kx, ϑu) ϕ̂(du) ν(dϑ)
]
λ(dx1) · · ·λ(dxk).

Here the equality sign holds if ϕ̂ is rotation invariant and thus coincides with
the normalized spherical Lebesgue measure σ := σ/σ(Sd−1). Since∫

SOd

∫
Sd−1

b(Kx, ϑu) ϕ̂(du) ν(dϑ) =
∫

Sd−1
b(Kx, u)σ(du),

we have proved the inequality

Mk(γ̂, ϕ̂) ≥Mk(γ̂, σ). (10.53)

A similar inequality holds if the Poisson zero polytope is replaced by the
Poisson polytope. For k ∈ N let

mk(γ̂, ϕ̂) := EV k
d (Z),

where Z denotes the typical cell of the mosaic induced by X̂. From Theorem
10.4.1, we have

Mk−1(γ̂, ϕ̂) = γ(d)mk(γ̂, ϕ̂).

By (10.34), γ(d) = γ(0), and this is the dth intersection density γ̂d of X̂. By
Theorem 4.6.5 it becomes maximal, given the intensity, if X̂ is isotropic; thus

mk(γ̂, ϕ̂) ≥ mk(γ̂, σ).

Suppose that equality holds in (10.53) for a number k ∈ N. Then in the
inequality ∫

SOd

exp
[
−γ̂

∫
Sd−1

b(Kx, ϑu) ϕ̂(du)
]
ν(dϑ)

≥ exp
[
−γ̂

∫
SOd

∫
Sd−1

b(Kx, ϑu) ϕ̂(du) ν(dϑ)
]
,

equality holds for almost all (x1, . . . , xk) ∈ (Rd)k, and by continuity for all
(x1, . . . , xk). Since the exponential function is strictly convex, equality in the
latter inequality implies that the integral
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Sd−1

b(Kx, ϑu) ϕ̂(du)

is independent of ϑ. Let v ∈ Sd−1, and choose x1, . . . , xk = v, then b(Kx, ϑu) =
|〈v, ϑu〉|. For given ϑ ∈ SOd, let ϑϕ̂ be the image measure of ϕ̂ under ϑ. Then∫

Sd−1
|〈v, u〉|(ϑϕ̂− ϕ̂)(du) = 0.

Since this holds for all v ∈ Sd−1, we deduce that ϑϕ̂ − ϕ̂ = 0, by Theorem
14.3.4. Since ϑ ∈ SOd was arbitrary, we conclude that ϕ̂ = σ.

We collect these observations in the following theorem.

Theorem 10.4.10. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd with intensity γ̂ and spherical directional distribution ϕ̂. Let
Mk(γ̂, ϕ̂) be the kth moment of the volume of the zero cell, and mk(γ̂, ϕ̂) the
kth moment of the volume of the typical cell of the induced hyperplane mosaic.
Then

Mk(γ̂, ϕ̂) ≥ Mk(γ̂, σ),

mk(γ̂, ϕ̂) ≥ mk(γ̂, σ)

for k ∈ N. Equality for some k ∈ N in one of these inequalities holds if and
only if the process is isotropic.

Finally we prove, in analogy to Theorem 4.6.9, the following extremal
assertion.

Theorem 10.4.11. Let X̂ be a nondegenerate stationary Poisson hyperplane
process in Rd, and let Z0 be the zero cell of the induced hyperplane mosaic.
Among all convex bodies K ∈ K with 0 ∈ K and given volume Vd(K) > 0,
precisely the homothets of the Blaschke body B(X̂) of X̂ yield the maximal
value for the probability P(K ⊂ Z0).

Proof. Because of 0 ∈ K, the inclusionK ⊂ Z0 holds if and only ifH∩intK =
∅ for all H ∈ X̂. With probability one, every hyperplane from X̂ meeting K
also meets intK, hence

P(K ⊂ Z0) = P(X̂(FK) = 0) = e−EX̂(FK),

where

EX̂(FK) = E
∑

H∈X̂

V0(K ∩H) = 2dV (K,B(X̂), . . . , B(X̂))

by (4.69). Now the assertion follows from (14.30). ��
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Notes for Section 10.4

1. The equation of Theorem 10.4.1 can be found (for hyperplane mosaics) in Miles
[517, 521] and Matheron [462]. Theorems 10.4.2 and 10.4.3 are due to Mecke [492].

A very general version of Theorem 10.4.1 for stationary partitions appears in
Last [433].

2. Theorems 10.4.4 and 10.4.5 on the typical cell of a Poisson–Delaunay mosaic are
due to Miles [521]. Theorem 10.4.4 is now a very special case of distribution results
of Baumstark and Last [85].

Direct constructions of random polytopes equivalent to the typical cell of a
stationary, isotropic Poisson hyperplane mosaic have been described repeatedly in
the literature. We refer to Miles [517, sect. 8.4], [521, p. 220], Ambartzumian [35,
sect. 9.3], Mecke [492], Calka [148, 149]. Theorems 10.4.6 and 10.4.7 collect and
extend these results; the proof of 10.4.7 is essentially taken from Hug and Schneider
[373].

3. Theorem 10.4.8 goes back to Miles [517], who has proved the corresponding result
for ergodic distributions. The proof given here can be considered as an elaboration
of the hints given in Miles [519]. The result has also been deduced, at least in
the isotropic case, from the ‘Complementary Theorem’ of Miles; see Miles [523,
sect. 5.3], and Møller and Zuyev [555] for a version of this theorem using Palm
distributions. This general theorem yields a number of conditional distributions
for Poisson hyperplane mosaics. Its application to the distribution of the inradius
requires that the inball of the typical cell touches a.s. d + 1 facets of the typical
cell; this is not satisfied, for example, if the spherical directional distribution of the
generating hyperplane process is concentrated in d pairs of antipodal points.

4. Theorem 10.4.9 is essentially due to Wieacker [817]. He computed E Lk(Z0) in a
different way; the present approach is taken from Favis and Weiss [226].

The double-sided inequality (10.52) has quite an interesting history. In a different
but equivalent form, the right side was first proved by Schneider [685], by applying
the Blaschke–Santaló inequality to an auxiliary zonoid. The proof gave Reisner [625]
an idea for proving his reverse Blaschke–Santaló inequality for zonoids, which could
then again be applied in stochastic geometry (see Schneider [689]) and yields, for
instance, the left side of (10.52).

Theorem 10.4.11 is Theorem 7.2 of Weil and Wieacker [806].
Theorem 10.4.10 and its proof are due to Mecke [490] (except the equality con-

dition). There it is shown, more generally, that the moments Mk(γ̂, ϕ̂) and mk(γ̂, ϕ̂)
are not increased if one passes from the (spherical) directional distribution ϕ̂ to
a directional distribution which is a mixture of rotational images of ϕ̂. A further
generalization to certain Cox processes of hyperplanes is found in Mecke [491]. This
raises the question whether Mecke’s [490] results on moments of the volume have
counterparts for the distributions (with respect to a suitable order) of the volume of
the typical or the zero cell, or for the other intrinsic volumes. For orthogonal parallel
mosaics, corresponding assertions have been proved by Favis [224, 225].

5. Corollary 10.4.1 was emphasized by Mecke [492]; see also the references given
there.
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6. Typical Poisson–Voronoi cells in the plane. Let ZPV denote the typical
cell (with respect to the nucleus) of a planar Poisson–Voronoi mosaic, generated
by a stationary Poisson process of intensity γ. Calka [151, 152] has derived integral
formulas for the distributions of the vertex numbers and the area of ZPV . Hilhorst
[343, 344] has given an asymptotic expansion for the probability that ZPV has n sides
and has deduced that, as n → ∞, the n-sided typical cell behaves asymptotically
like a circle of radius (n/4πγ)1/2.

Let Rm (RM ) denote the largest (smallest) radius of a disk centered at 0 con-
tained in (containing) ZPV . Calka [150] has obtained an explicit formula for the
joint distribution of the pair (Rm, RM ), and has drawn several conclusions. For Rm

tending to infinity, Calka and Schreiber [153] have proved a law of large numbers for
the vertex number and for the area of ZPV outside the indisk. For the latter, they
have also established a central limit theorem.

7. Distributional properties connected with typical faces. In the generaliza-
tion of the typical cell and the zero cell, the typical k-face Z(k) and the typical
k-weighted k-face Z

(k)
0 of a stationary random mosaic X can be considered, for

k ∈ {0, . . . , d}. The typical k-face Z(k) of a stationary mosaic X is a random (k-
dimensional) polytope with distribution Q(k). Alternatively, Z(k) can be described
as the (a.s. unique) k-face of X containing the origin, under the Palm distribution
P0

Nk
of X with respect to the stationary point process Nk of centers of X(k). The

distribution Q
(k)
0 of the typical k-weighted k-face arises from the Palm distribution

P0
Mk

of X with respect to the stationary random measure that is defined by the
restriction of the k-dimensional Hausdorff measure Mk to the union of all k-faces
of X. Under P0

Mk
, there is almost surely a unique k-face of X containing 0, and

this is Z
(k)
0 . In analogy to Theorem 10.4.1 one gets that, for a translation invariant,

nonnegative, measurable function f : K′ → R,

d
(k)
k Ef(Z

(k)
0 ) = γ(k)

E[f(Z(k))Vk(Z(k))].

For typical faces of Poisson–Voronoi mosaics, a rather general investigation was
undertaken by Baumstark and Last [85, 86]. In the context of typical (k-weighted)
k-faces, it is convenient to use a generalized center function (instead of the cir-
cumcenter); compare Note 1 for Section 4.2. Using the terminology introduced be-
fore Theorem 10.2.3, for a k-face S of the Voronoi mosaic generated by the set A,
this generalized center of S is z(x0, . . . , xd−k) where S = S(x0, . . . , xd−k; A). The
points x0, . . . , xd−k ∈ A which determine the k-face S are also called the neigh-
bors of S. Assume that 0 ∈ S, then ‖xi‖ = R, i = 0, . . . , d − k. Let R′ be the
radius of the k-dimensional ball Bk(x0, . . . , xd−k), z = z(x0, . . . , xd−k) the mid-
point and Ui := (xi − z)/R′, i = 0, . . . , d − k, the corresponding directions. Finally,
R′′ := (R2 − R′2)1/2 is the distance from 0 to z and (if R′′ > 0) V := z/R′′ is the
corresponding direction.

For the Poisson–Voronoi mosaic X, under the Palm distribution P0
Mk

, the neigh-

bors x0, . . . , xd−k of Z
(k)
0 are random points and so Ui, z, V, R, R′, R′′ are random,

too. We have 0 ∈ S(x0, . . . , xd−k; X̃) and z(x0, . . . , xd−k) �= 0 a.s., hence R′′ > 0.
Under the Palm distribution P0

Nk
, the xi, Ui, R are again random variables (and

z = 0, R′ = R, R′′ = 0).
For the typical k-weighted k-face, the following distributional results are shown

in Baumstark and Last [85].
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Theorem.

(a) The random variables (X̃ (Rd \ RBd), R), R′2/R2 and (U0, . . . , Ud−k, V ) are
independent.

(b) Rd is gamma distributed with shape parameter d − k + k/d and scale parameter
γκd.

(c) The conditional distribution of X̃ (Rd \RBd), given R = r, is the distribution
of a Poisson process restricted to Rd \ rBd.

(d) For k ∈ {1, . . . , d−1}, R′2/R2 has a beta distribution with parameters d(d−k)/2
and k/2.

(e) The joint distribution of U0, . . . , Ud−k, V is given by

c

∫
SOd

∫
Sk−1

L⊥

∫
Sd−k−1

L

. . .

∫
Sd−k−1

L

1{(ϑu0, . . . , ϑud−k, ϑv) ∈ ·}

×∆d−k(u0, . . . , ud−k)k+1 σL(du0) · · ·σL(dud−k) σL⊥(dv) ν(dϑ),

where L is a fixed (d − k)-space and c is an explicitly given constant.

The proof of these results uses similar arguments to those employed in the proof
of Theorem 10.2.4. Utilizing the connection between the distributions of Z

(k)
0 and

Z(k), one obtains similar distributional results for the typical k-face. We mention
the case of the typical vertex (k = 0), where Z

(0)
0 = Z(0). Here, the above results

show that:

(a) Rd is gamma distributed with shape parameter d and scale parameter γκd.

(b) The joint distribution of U0, . . . , Ud has density c∆d with respect to σd+1, where
c is an explicitly given constant.

For the typical edge (the case k = 1), more specific results are obtained.
For a k-face S = S(x0, . . . , xd−k; A) of a Voronoi mosaic generated by the set

A, the fundamental region or Voronoi flower F (S) of S is the union of all
balls centered at the vertices of S and containing the neighbors x0, . . . , xd−k in the
boundary. F (S) is an example of a stopping set associated with A. From more
general results about stopping sets, Baumstark and Last [86] (see also Baumstark

[84]) deduce that the volume λ(F (Z
(k)
0 )) of the fundamental region of the typical k-

weighted k-face of a stationary Poisson–Voronoi mosaic X has a gamma distribution.
There are also results for the typical k-face, for functionals other than the volume
and for stopping sets associated with Poisson processes of k-flats (k ≥ 1).

8. Scaled vacancies. The Poisson zero polytope Z0 also appears in a limit theorem
for scaled vacancies of Boolean models. The following is a special case of a more
general result in Molchanov [545]. Let Z be a stationary Boolean model in Rd with
convex grains and let ν be the expected surface area measure of the typical grain.
Let Y denote the connected component of the complement of Z which contains the
origin. Then, as the intensity γ of Z tends to infinity, the open random set γY
converges in distribution to the interior of the zero polytope Z0, generated by the
Poisson hyperplane process with direction measure ν.

Michel and Paroux [514] prove a corresponding result for a Boolean model of
shells (parallel sets of boundaries of convex bodies) and the zero polytope of a
thickened Poisson hyperplane process.
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9. D.G. Kendall’s problem on the asymptotic shape of large cells. In his
foreword to the first edition (1987) of the book by Stoyan, (W.S.) Kendall and
Mecke [743], D.G. Kendall recalled a conjecture that he had made decades ago
and which has later become widely known as Kendall’s conjecture. He considered
a stationary, isotropic Poisson line process in the plane and its zero cell Z0, and
said in equivalent words: ‘One would have preferred to be able to say something
about . . .my conjecture that the conditional law for the shape of Z0, given the area
A(Z0) of Z0, converges weakly, as A(Z0) → ∞, to the degenerate law concentrated
at the circular shape. Unfortunately nothing substantial is known about either of
these questions even today . . . ’ Contributions to the conjecture, though not leading
to a complete proof, are due to Miles [535] and Goldman [270]. Miles also suggested
measuring the size of the zero cell not only by the area, but also by other functionals,
such as the perimeter or the width in a given direction, and pointed out in the latter
case that asymptotic shapes other than the circular one were to be expected. A
proof of Kendall’s original conjecture was given by Kovalenko [425], and a simpler
proof in [427]. Kovalenko [426] also obtained a similar result for the typical cell of
a stationary Poisson–Voronoi tessellation in the plane. In higher dimensions, Mecke
and Osburg [499] treated the shape of large Crofton parallelotopes (generated by a
stationary Poisson hyperplane process with a directional distribution concentrated
on pairwise orthogonal directions). In a series of papers, Hug, Reitzner and Schneider
[366, 367] and Hug and Schneider [370, 371, 372, 373] treated very general higher-
dimensional versions, variants and analogs of Kendall’s problem. The following is a
brief description of their main results.

In Hug and Schneider [372], the following situation is considered. A Poisson
hyperplane process X in Rd is given, with an intensity measure of the form

Θ(A) = 2γ

∫
Sd−1

∫ ∞

0

1A(H(u, t)) tr−1 dt ϕ(du) (10.54)

for Borel sets A ⊂ A(d, d − 1) (with H(u, t) as in (4.32)). Here γ > 0 is a constant
(the intensity of X in the case where X is stationary), r ≥ 1 is a given number, and
the directional distribution ϕ is a probability measure on Sd−1, not concentrated on
a closed hemisphere. The object of study is the random polytope

Z0 :=
⋂

H∈X

H−,

where H− denotes the (a.s. unique) closed halfspace bounded by H ∈ X that con-
tains the origin 0. The general form of the intensity measure includes two special
cases of particular geometric interest: for r = 1 and even ϕ, the random polytope
Z0 is the zero cell of a (not necessarily isotropic) stationary Poisson hyperplane
tessellation, and for r = d and rotation invariant ϕ, the distribution of Z0 is that of
the typical cell of a stationary Poisson–Voronoi tessellation.

The size of Z0 can be measured by any functional Σ : K′ → R satisfying the
following axioms: Σ is increasing under set inclusion, homogeneous of some degree
k > 0, continuous, and not identically zero. Any such Σ is called a size functional.
Examples are volume, surface area, mean width, diameter, thickness, inradius, cir-
cumradius, width in a given direction, and many others.

The Poisson hyperplane process X determines a second functional Φ : K′ → R,
by
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Φ(K) :=
1

2γ
E card {H ∈ X : H ∩ K �= ∅}.

For obvious reasons, Φ is called the hitting functional. Due to the assumed form
(10.54) of the intensity measure Θ of X, the hitting functional is given by

Φ(K) =
1

r

∫
Sd−1

h(K, u)r ϕ(du).

For reasons of homogeneity and continuity, the size functional and the hitting func-
tional satisfy a sharp inequality of isoperimetric type, namely

Φ(K) ≥ τΣ(K)r/k. (10.55)

Here ‘sharp’ means that there are extremal bodies, that is, bodies which contain
more than one point and for which equality holds (this equality determines the
number τ). The extremal bodies have a probabilistic characterization: among all
convex bodies K containing 0 and of size Σ(K) = 1, precisely the extremal bodies
maximize the probability P(K ⊂ Z0). A main observation is now that the extremal
bodies of (10.55) determine the asymptotic shape of the random polytope Z0 under
the condition that it has large Σ-size. We make this more precise in some typical
cases. Let G denote either the group of similarities, or of homotheties, or of pos-
itive dilatations of Rd. The G-shape sG(K) of a convex body K is defined as its
G-equivalence class {gK : g ∈ G}. The space of all G-shapes, with the quotient
topology, is denoted by SG. The conditional law of the G-shape of Z0, given the
lower bound a > 0 for the size Σ, is the probability measure µa on SG defined by

µa(A) := P(sG(Z0) ∈ A | Σ(Z0) ≥ a)

for A ∈ B(SG).

Theorem. Suppose that (for some group G as above) the extremal bodies of (10.55)
belong to a unique G-shape sG(B). Then sG(B) is the limit shape of Z0 for increasing
Σ, in the sense that

lim
a→∞

µa = δsG(B) weakly,

where δsG(B) denotes the Dirac measure concentrated at sG(B).

This follows from a stronger result, estimating the probability of large deviations
of Z0 from the class of extremal bodies. To measure the deviation, we denote by K0

the set of convex bodies in Rd containing 0 and consider a function ϑ : {K ∈ K0 :
Σ(K) > 0} → R which is continuous, nonnegative, homogeneous of degree zero, and
satisfies ϑ(K) = 0 for K ∈ K0 if and only if K is an extremal body of (10.55). Such
functions always exist and are called deviation functionals (for given Σ and Φ).
Further, there exists a continuous function f : R+ → R+ with f(ε) > 0 for ε > 0
and f(0) = 0 such that

ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + f(ε))τΣ(K)r/k (10.56)

for K ∈ K0. In the following, we assume that X (and thus Φ and γ), Σ, ϑ and f are
given.

Theorem. For ε > 0 and a > 0,

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c exp
(
−c0f(ε)ar/kγ

)
(10.57)
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with positive constants c (depending on X, Σ, f, ε) and c0 (depending only on τ).

This estimate shows clearly the crucial role of the extremal bodies of the isoperi-
metric inequality (10.55): the probability that the random polytope Z0 deviates by
some given amount from the class of extremal bodies, under the condition that the
size of Z0 is at least a, becomes exponentially small if a tends to infinity.

As a byproduct of the proof, one can obtain information on the asymptotic
behavior of the distribution function of the size of the zero cell, namely

lim
a→∞

a−r/k ln P(Σ(Z0) ≥ a) = −2τγ.

A special case (d = 2, X stationary and isotropic, Σ two-dimensional volume) goes
back to Goldman [270]

Kendall’s original question involved ‘the conditional law for the shape of Z0,
given the area A(Z0) of Z0’ (and not a lower bound for the area). The methods
leading to the preceding result (10.57) are strong enough to yield also such results.
The random variable Z0 takes its values in K′, which is a Polish space. Hence, the
regular conditional probability distribution of Z0 with respect to Σ(Z0) exists. In
Hug and Schneider [372], also the estimate

P(ϑ(Z0) ≥ ε | Σ(Z0) = a) ≤ c exp
(
−c0f(ε)ar/kγ

)
was obtained.

The applicability of the preceding general results to concrete cases, that is, spe-
cial hyperplane processes X and size functionals Σ, depends on the nature of the
isoperimetric inequality (10.55), for which the extremal bodies have to be determined
and an explicit stability improvement (10.56) has to be established. In Hug, Reitzner
and Schneider [366], the zero cell of a stationary (not necessarily isotropic) Poisson
hyperplane process X was considered, with its size measured by the volume; this is
the extension of Kendall’s original problem to higher dimensions and non-isotropic
processes. In that case, one uses Minkowski’s existence theorem from the theory of
convex bodies to obtain a 0-symmetric convex body B for which the spherical di-
rectional distribution of X is the surface area measure. With this body, the hitting
functional can be expressed as a mixed volume, namely Φ(K) = dV (K, B, . . . , B),
and the crucial isoperimetric inequality becomes Minkowski’s inequality

V (K, B, . . . , B) ≥ Vd(B)1−1/dVd(K)1/d.

It is known that here the extremal bodies are precisely the homothets of B, and also
a suitable stability estimate is known. Thus, the homothety class of B is the limit
shape for zero cells of large volume, and the deviation estimate holds (with a simple
explicit deviation functional ϑ and with f(ε) = εd+1). If X is isotropic, then B is a
ball. In Hug, Reitzner and Schneider [367], the typical cell of a stationary Poisson–
Voronoi tessellation was treated, with its size measured by the kth intrinsic volume.
The limit shape is that of a ball with center 0. The paper by Hug and Schneider
[372] lists several more specific examples, including some where the limit shapes are
classes of segments. For typical cells (in contrast to zero cells) of stationary Poisson
hyerplane processes and for selected size functionals, similar results were obtained
in Hug and Schneider [373].

Large typical cells of Poisson–Delaunay tessellations were investigated by Hug
and Schneider [370, 371].
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10.5 Mixing Properties

For the most important of the previously considered special mosaics, namely
those induced by stationary Poisson processes, we shall now show that they
are mixing, and hence ergodic. For this, we use Theorem 9.3.2; therefore, we
prove relation (9.25) for the considered stationary mosaics X. For these, the
crucial relation can be written in the form

lim
‖x‖→∞

P(X ∩ C1 = ∅, X ∩ (C2 + x) = ∅)

= P(X ∩ C1 = ∅)P(X ∩ C2 = ∅) (10.58)

for all C1, C2 ∈ C(F ′(Rd)). If this is proved, the mixing property is obtained,
in each of the considered cases, by arguments similar to those in the proof of
Theorem 9.3.6.

Theorem 10.5.1. Stationary Poisson–Voronoi mosaics are mixing.

Proof. Let X be the Voronoi mosaic corresponding to the stationary Poisson
process X̃ in Rd. Every cell P ∈ X contains a uniquely determined point of
X̃, which we denote by k(P ). Let K1, . . . ,Km be a covering of the ball 5Bd

by balls of radius 1.
For r > 0, we consider the event

Er := {there exists P ∈ X with P ∩ rBd �= ∅ and P �⊂ 5rBd}.

If P ∈ X has the property required by Er, then there are points x ∈ P ∩ rBd

and y ∈ P ∩ bd 5rBd. The distance between x and y is at least 4r, hence at
least one of the two points has distance at least 2r from k(P ). If this holds for
x, then the interior of rBd does not contain a point of X. The probability of
the latter event is e−γκdrd

. If, on the other hand, ‖y − k(P )‖ ≥ 2r, then y is
contained in one of the balls rK1, . . . , rKm, and the interior of that ball does
not contain a point of X. The probability of the latter event can be estimated
from above by me−γκdrd

. Altogether we get

P(Er) ≤ (1 +m)e−γκdrd

. (10.59)

In order to prove (10.58), we start with given C1, C2 ∈ C(F ′(Rd)) and
ε > 0 and choose r > 0 sufficiently large so that

Ci ⊂ FrBd for i = 1, 2

and
P(Er) < ε;

this is possible by (10.59). Let ω ∈ Ω\Er and P ∈ X(ω)∩C1. Then P∩rBd �= ∅
and P ⊂ 5rBd. The Voronoi cell P is of the form
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P =
⋂

y∈X̃(ω), y �=x

H+
y (x)

with x = k(P ) ∈ P ⊂ 5rBd. This implies y ∈ 15rBd for all points y ∈ X̃(ω)
that are required for the determination of P , that is, for which the boundary
of H+

y (x) contains a facet of P . Therefore, the Voronoi cells meeting rBd that
belong to the point sets X̃(ω) (respectively X̃(ω)∩ 15rBd), are identical. We
denote by V the system of the Voronoi cells induced by the point process
X̃ ∩ 15rBd; then we have shown that

X(ω) ∩ C1 = V (ω) ∩ C1 for ω ∈ Ω \ Er.

Now let x ∈ Rd and ‖x‖ > 30r. For the event

Ex
r := {there exists P ∈ X(ω) with P ∩ (rBd + x) �= ∅ and P �⊂ 5rBd + x}

we also have P(Ex
r ) < ε. Let Vx denote the system of Voronoi cells induced by

X̃ ∩ (15rBd + x). As above, we have

X(ω) ∩ (C2 + x) = Vx(ω) ∩ (C2 + x) for ω ∈ Ω \ Ex
r .

Since 15rBd ∩ (15rBd + x) = ∅, the point processes X̃ ∩ 15rBd and X̃ ∩
(15rBd + x) are independent, by Theorem 3.2.2. This gives

P(V ∩ C1 = ∅, Vx ∩ (C2 + x) = ∅) = P(V ∩ C1 = ∅)P(Vx ∩ (C2 + x) = ∅).

The events A := {X ∩ C1 = ∅}, B := {X ∩ (C2 + x) = ∅}, A := {V ∩ C1 =
∅}, B := {Vx ∩ (C2 + x) = ∅}, E := (Er ∪ Ex

r )c satisfy A ∩ E = A ∩ E,
B ∩ E = B ∩ E and hence |P(A)− P (A)| ≤ P(Ec) < 2ε, |P(B)− P(B)| < 2ε,
|P(A ∩B)− P(A ∩B)| < 2ε. We deduce that

|P(A ∩B)− P(A)P(B)|
≤ |P(A ∩B)− P(A ∩B)|+ |P(A)P(B)− P(A)P(B)|
≤ |P(A ∩B)− P(A ∩B)|+ |P(A)− P(A)|+ |P(B)− P(B)|
< 6ε.

The assertion (10.58) now follows from the stationarity of X. ��

Theorem 10.5.2. Stationary Poisson–Delaunay mosaics are mixing.

Proof. Let X be the Delaunay mosaic corresponding to the stationary Poisson
process X̃. Almost surely all its faces are simplices. For a d-simplex P , we
denote by B(P ) the ball whose boundary contains the vertices of P . Then,
for P ∈ X we have X̃ ∩ intB(P ) = ∅ (cf. the proof of Theorem 10.2.6). Let
K1, . . . ,Km be a covering of bd 2Bd by balls of radius 1/2.

For r > 0, we consider the event
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Er := {there exists P ∈ X with P ∩ rBd �= ∅ and B(P ) �⊂ 3rBd}.

Let ω ∈ Er, and let P ∈ X(ω) be a simplex with P ∩ rBd �= ∅ and B(P ) �⊂
3rBd. Since B(P ) ∩ rBd �= ∅ and B(P ) ∩ (Rd \ 3rBd) �= ∅, there exists z ∈
bd 2rBd with B(z, r) ⊂ B(P ), hence with X̃(ω)∩ intB(z, r) = ∅. There exists
a number i ∈ {1, . . . ,m} with rKi ⊂ B(z, r) and thus with X̃(ω)∩int rKi = ∅.
This gives

P(Er) ≤ me−γκd( r
2 )d

.

Now let X̃3r := X̃ ∩ 3rBd. By a Delaunay cell of X̃3r we understand a
d-simplex P with vertices in X̃3r and the property that X̃3r ∩ intB(P ) = ∅. If
ω ∈ Ω \Er and P ∈ X(ω) is a cell with P ∩rBd �= ∅ and thus P ⊂ 3rBd, then
P is a Delaunay cell of X̃3r(ω). Conversely, every Delaunay cell of X̃3r(ω) that
meets rBd belongs to X(ω), because the cells of X(ω) meeting rBd cover an
open neighborhood of rBd.

Now the proof can be completed in a similar way to that of Theorem 10.5.1,
using the fact that the point processes X̃3r and X̃3r + x are stochastically
independent if ‖x‖ > 6r. ��

Theorem 10.5.3. Let X̂ be a stationary Poisson hyperplane process of in-
tensity γ̂ > 0 in Rd, and suppose that its spherical directional distribution is
zero on every great subsphere of Sd−1. Then the hyperplane mosaic X induced
by X̂ is mixing.

Proof. Let U be the support of the spherical directional distribution ϕ̂ of X̂.
As in the proof of Theorem 10.3.2, we choose points u1, . . . , u2d ∈ U with
0 ∈ int conv {u1, . . . , u2d}. We can find a number s > 0 and neighborhoods
Ui ⊂ Sd−1 of ui, i = 1, . . . , 2d, so that s−1Bd ⊂ conv {v1, . . . , v2d} for all
(v1, . . . , v2d) ∈ U1 × . . .× U2d. For r > 0, let

Ei,r := {H(u, τ) : u ∈ Ui, r < τ < 2r}

(with H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ}); then

Θ̂(Ei,r) = γ̂
∫

Sd−1

∫ 2r

r

1Ei,r
(u⊥ + τu) dτ ϕ̂(du) = γ̂rϕ̂(Ui) > 0.

For the event

Er := {X̂(Ei,r) = 0 for some i ∈ {1, . . . , 2d}}

this yields

P(Er) ≤
2d∑

i=1

P(X̂(Ei,r) = 0) =
2d∑

i=1

e−γ̂rϕ̂(Ui). (10.60)

For the hyperplane H = H(u, τ) with τ > 0, we put H− = H−(u, τ) :=
{x ∈ Rd : 〈x, u〉 ≤ τ}. Define
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Q :=
⋂
{H− : H ∈ X̂, H ∩ rBd = ∅, H ∩ 2rBd �= ∅}.

Let ω ∈ Ω \ Er. Then X̂(ω) contains, to each i ∈ {1, . . . , 2d}, a hyperplane
H(vi, τi) with vi ∈ Ui and r < ri < 2r. This implies

Q(ω) ⊂ 2r
2d⋂

i=1

H−(vi, 1).

Here,
⋂2d

i=1H
−(vi, 1) is the polytope polar to conv {v1, . . . , v2d}. Because of

s−1Bd ⊂ conv {v1, . . . , v2d}, it is contained in sBd, thus Q(ω) ⊂ 2rsBd.
For v ∈ Sd−1 and α ≥ 0, let

S(v, α) := {u ∈ Sd−1 : |〈u, v〉| ≤ α}.

For the spherical directional distribution ϕ̂ of the hyperplane process X̂ we
have assumed that ϕ̂(S(v, 0)) = 0 for every great sphere S(v, 0). This implies
that for every ε > 0 there exists α > 0 such that ϕ̂(S(v, α)) < ε for all
v ∈ Sd−1.

For r > 0, z ∈ Sd−1 and a > 2r, let

Br,z,a := {H ∈ A(d, d− 1) : H ∩ rBd �= ∅, H ∩ (rBd + az) �= ∅}.

For H(u, τ) ∈ Br,z,a we have |〈u, z〉| ≤ 2r/a, hence

Θ̂(Br,z,a) ≤ γ̂ · 2rϕ̂(S(z, 2r/a)

and therefore
P(X̂(Br,z,a) > 0) ≤ 1− e−2rγ̂ϕ̂(S(z,2r/a)). (10.61)

In order to prove (10.58), let C1, C2 ∈ C(F ′(Rd)) and ε > 0 be given. By
(10.60) we can choose r > 0 so large that

Ci ⊂ FrBd(Rd) for i = 1, 2

and
P(Er) < ε.

The numbers s > 0, ε > 0, r > 0 being given, we can choose the number a so
large that a > 4rs and

P(X̂(B2rs,z,a) > 0) < ε

for all z ∈ Sd−1; this is possible by (10.61).
Let x ∈ Rd be a vector with ‖x‖ > a, and let z := x/‖x‖. The event

Ex
r := {X̂(Ei,r + x) = 0 for some i ∈ {1, . . . , 2d}}

also satisfies P(Ex
r ) < ε. For
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E := Er ∪ Ex
r ∪ {ω ∈ Ω : X̂(B2rs,z,a) > 0}

we get P(E) < 3ε.
Now let ω ∈ Ω \E. Every cell of X(ω)∩C1 is contained in the ball 2rsBd.

Hence, for its determination only the hyperplanes of X̂(ω) in the set

E := {H ∈ Ed
d−1 : H ∩ 2rsBd �= ∅}

are needed. Analogously, the determination of a cell from X(ω) ∩ (C2 + x)
requires only the hyperplanes of X̂(ω) in the set

Ex := {H ∈ Ed
d−1 : H ∩ (2rsBd + x) �= ∅}.

Because of X̂(ω)(B2rs,z,a) = 0, no hyperplane of X̂(ω) belongs to E ∩ Ex,
hence every cell of X(ω)∩ (C2 + x) depends only on the hyperplanes of X̂(ω)
belonging to Ex\E . Since the processes X̂∩E and X̂∩(Ex\E) are stochastically
independent, a similar argument to that in the proof of Theorem 10.5.1 yields
the estimate

|P(X ∩ C1) = ∅, X ∩ (C2 + x) = ∅)− P(X ∩ C1 = ∅)P(X ∩ C2 = ∅)| < 9ε.

This yields (10.58) and thus the assertion. ��
Finally, we remark that the assumption on the directional distribution

made in Theorem 10.5.3 is necessary for the mixing property. To see this, let X̂
be a nondegenerate stationary Poisson hyperplane process in Rd, the spherical
directional distribution ϕ̂ of which satisfies ϕ̂(S(z, 0)) > 0 for some vector
z ∈ Sd−1. Let X be the hyperplane mosaic generated by X̂. By definition,
X is mixing if and only if the dynamical system (N,N ,PX , T ) defined after
Theorem 9.3.3 is mixing, which means that

lim
‖x‖→∞

PX(A ∩ TxB) = PX(A)PX(B)

for A,B ∈ N . We consider the set A := {η ∈ N : supp η ∈M∗, supp η contains
a cell Z having a facet F with normal vector in S(z, 0), and F ∩ intBd �= ∅}.
With

Ez := {H(u, τ) : u ∈ S(z, 0), |τ | < 1},
the condition X ∈ A is equivalent to X̂(Ez) > 0, hence

p := PX(A) = P(X̂(Ez) > 0) = 1− e−2γ̂ϕ̂(S(z,0))

and 0 < p < 1. For all vectors x ∈ Rd which are multiples of z we have
Ez + x = Ez and hence

PX(A ∩ TxA) = P(X ∈ A,X − x ∈ A) = P(X̂(Ez) > 0, X̂(Ez + x) > 0) = p.

This gives
lim

t→∞
PX(A ∩ TtzA) = p �= PX(A)2.

Hence, X is not mixing.
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Non-stationary Models

Although the main theme of this book is random geometric structures with
invariance properties, such as stationarity or isotropy, we conclude with an
outlook to some of the extensions that are possible without such assumptions.
The invariance properties in previous chapters allowed us to employ integral
geometric formulas for obtaining results on geometric mean values. Our set-up
followed also the historical development of the field, where from the beginning
stationarity and isotropy seemed to be natural and convenient conditions to
get simple and applicable formulas. Their counterparts for non-isotropic ran-
dom sets and particle processes are necessarily more complicated, as we have
seen in some of the previous sections. However, once the step from isotropic
to non-isotropic structures is made, the question arises whether a similar gen-
eralization from stationary to non-stationary structures is possible. Although
random sets and point processes without any invariance properties have been
studied by many authors under different aspects, one might get the impression
that, for example, the mean value formulas for Boolean models, which are at
the heart of stochastic geometry, rely on the invariance of the model. Surpris-
ingly, this is not the case. As the dissertation of Fallert [222] showed (see also
[223]), specific intrinsic volumes for Boolean models with convex or polycon-
vex grains can be introduced without any invariance requirements, and the
formulas obtained in Section 9.1 transfer to this situation in a suitably gen-
eralized form. Even more astonishing is the fact that these local mean value
formulas for non-stationary Boolean models (and Poisson particle processes)
make heavy use of the iterated formulas of translative integral geometry, as we
have discussed in Section 6.4. Thus, although we do not require that the distri-
butions of our random structures are invariant with respect to the translation
group, the corresponding integral geometric setting still plays an essential role.

Fallert’s dissertation, which contained results on several non-stationary
models (particle processes, Boolean models, processes of flats, random mo-
saics), initiated various further publications in which counterparts to formulas
in the stationary case were established without the assumption of stationarity.
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In this chapter, we present some of these generalizations, mostly concentrating
on results which are in analogy to the ones discussed in previous sections.

11.1 Particle Processes and Boolean Models

We consider a particle process X on C′ in Rd. Although we do not assume any
invariance of the distribution of X, we require some regularity of the intensity
measure Θ (which is assumed to be locally finite, as always). Namely, we
assume that a decomposition

Θ(A) =
∫
C0

∫
Rd

1A(C + x)η(C, x)λ(dx) Q(dC), A ∈ B(C′), (11.1)

exists, with a probability measure Q on C0 and a measurable function η ≥ 0 on
C0×Rd. How restrictive is this assumption? Due to the topological properties
of C′, respectively those of C0 × Rd, a locally finite measure Θ on C′ always
has a decomposition

Θ(A) =
∫
C0

∫
Rd

1A(C + x) ρ(C,dx) Q(dC), A ∈ B(C′), (11.2)

with a probability measure Q on C0 and a kernel ρ : C0 × B → R+, that
is, a function that is measurable in the first variable and is a locally finite
measure in the second variable. This follows from the disintegration result
for probability measures (see, e.g., Kallenberg [386, Th. 6.3]) by a simple
extension argument (compare Kallenberg [387, Lemma 3.1]). Our additional
assumption is that ρ(C, ·) be absolutely continuous with respect to λ, for
each C. In fact, if we assume this and denote the density by η(C, ·), then the
decomposition (11.2) transforms into (11.1).

We say that a locally finite measure Θ on C′ admitting a decomposition
(11.1) is translation regular. This name is chosen since Θ is translation
regular if and only if it is absolutely continuous with respect to some transla-
tion invariant, locally finite measure Θ̃. In fact, for a given translation regular
measure Θ with decomposition (11.1), one can choose Θ̃ as

Θ̃(A) =
∫
C0

∫
Rd

1A(C + x)λ(dx) Q(dC), A ∈ B(C′).

The other direction follows from Theorem 4.1.1. One should be aware of the
fact that the decomposition (11.1) is not unique, in general. In fact, if f > 0
is a measurable function on C0 with

∫
fdQ = 1, then we can replace η by η/f

and Q by A �→
∫
f1A dQ, and (11.1) remains valid. We therefore say that the

translation regular measure Θ is represented by the pair (η,Q) if (11.1)
holds.

It is sometimes convenient to modify this set-up slightly by imposing ad-
ditional conditions. For example, we may require that η is continuous or that
η depends only on the location, so that we have
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Θ(A) =
∫
C0

∫
Rd

1A(C + x)η(x)λ(dx) Q(dC), A ∈ B(C′). (11.3)

The former condition is sometimes helpful, since it implies that densities of
geometric functionals exist at every point and not only almost everywhere.
The latter condition has the advantage that it ensures that η and Q are
uniquely determined. Namely, if we interpret X as a marked point process X̂
on Rd with mark space C0 (such that X is the image of X̂ under (x,C) �→ C+
x), then A �→

∫
η1A dλ is the intensity measure of the underlying unmarked

point process in Rd, and Q is the mark distribution. It is therefore natural to
call the measure Q in (11.3) the distribution of the typical grain and η the
(spatial) intensity function of X. If X is stationary, η = γ is a constant.

If X is a Poisson process, (11.3) implies that X̂ is independently marked,
whereas (11.1) allows dependencies between the marks (or between the marks
and the points).

Up to here, we did not impose additional conditions on the shape of the
particles and, in fact, some of the following results hold in this generality,
for compact particles. This is particularly the case for the results on contact
distributions of Boolean models, and we shall comment on these in the Notes.
But since we now aim at defining specific intrinsic volumes, the restriction to
convex particles seems natural. Some of the results can be generalized easily
to particles in the convex ring, using the additivity of the functionals involved.
This would require additional integrability conditions, therefore we leave such
generalizations to the reader and assume convex grains, from now on. If the
intensity measure Θ of a process X of convex particles has a representation
(11.1), then its local finiteness is equivalent to∫

K0

∫
Rd

1{(K + x) ∩ C �= ∅}η(K,x)λ(dx) Q(dK) <∞ for C ∈ C. (11.4)

If X is stationary, (11.4) is equivalent to (4.4).

General assumption. We assume throughout Sections 11.1 and 11.2 that
the occurring particle processes satisfy (11.1) with locally finite Θ, and thus
also (11.4).

In analogy to Sections 4.1 and 9.2, we now want to define densities of
translation invariant and measurable functionals ϕ for the particle process X.
Since these densities will depend on the location in space, they will be func-
tions and not constants. Therefore, we need an appropriate local concept. As
in Section 9.2, we start with a translation invariant, additive, and measurable
functional ϕ : R → R. In addition, we require that the restriction of ϕ to K is
continuous and nonnegative. For simplicity, in this chapter, we call ϕ a stan-
dard functional. We say that ϕ has a local extension Φ if Φ : R×B → R

is a kernel, in the sense that Φ(·, A) is a measurable function on R for each
A ∈ B and Φ(K, ·) is a finite signed Borel measure on Rd for each K ∈ R, and
if Φ has the following properties:
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• ϕ(K) = Φ(K,Rd) for all K ∈ R,
• Φ(K, ·) ≥ 0 for K ∈ K,
• Φ(K, ·) is additive in K, for K ∈ K,
• Φ is translation covariant, that is, satisfies Φ(K + x,A+ x) = Φ(K,A) for
K ∈ R, A ∈ B, x ∈ Rd,

• Φ is locally determined, that is, Φ(K,A) = Φ(M,A) for K,M ∈ R, A ∈ B,
if there is an open set U ⊂ Rd with K ∩ U =M ∩ U and A ⊂ U ,

• K �→ Φ(K, ·) is weakly continuous on K′.

Typical examples of standard functionals having a local extension are, of
course, the intrinsic volumes, but there are many others.

For a standard functional ϕ with local extension Φ, we define the ϕ-
density ϕ(X, ·), as a function on Rd, by

ϕ(X, z) :=
∫
K0

∫
Rd

η(K, z − x)Φ(K,dx) Q(dK).

If X is stationary, then

ϕ(X, z) = γ
∫
K0

ϕ(K) Q(dK) = ϕ(X)

is the ϕ-density defined in Section 9.2.

Theorem 11.1.1. Let X be a process of convex particles in Rd, and let ϕ be
a standard functional with local extension Φ. Then

E
∑

K∈X

Φ(K, ·)

is a locally finite measure on Rd which is absolutely continuous with respect
to λ, and ϕ(X, ·) is a corresponding density.

Moreover, we have

ϕ(X, z) = lim
r→0

1
Vd(rW )

E
∑

K∈X

Φ(K, z + rW ) (11.5)

for λ-almost all z ∈ Rd and all W ∈ K with Vd(W ) > 0.

Proof. In order to show the local finiteness, let B ∈ B be a bounded Borel set.
Choose r > 0 with B ⊂ int rBd. Then, using Campbell’s theorem, the facts
that Φ is locally determined and that ϕ is continuous on K′, we obtain

E
∑

K∈X

Φ(K,B)

=
∫
K0

∫
Rd

Φ(K + y,B)η(K, y)λ(dy) Q(dK)
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≤
∫
K0

∫
Rd

ϕ((K + y) ∩ rBd)1{(K + y) ∩ rBd �= ∅}η(K, y)λ(dy) Q(dK)

≤ c(rBd)
∫
K0

∫
Rd

1{(K + y) ∩ rBd �= ∅}η(K, y)λ(dy) Q(dK)

<∞,

by (11.4).
In a similar manner, we get

E
∑

K∈X

Φ(K,B) =
∫
K0

∫
Rd

Φ(K + y,B)η(K, y)λ(dy) Q(dK)

=
∫
K0

∫
Rd

∫
Rd

1B−y(x)η(K, y)Φ(K,dx)λ(dy) Q(dK)

=
∫
K0

∫
Rd

∫
Rd

1B(z)η(K, z − x)Φ(K,dx)λ(dz) Q(dK)

=
∫

B

(∫
K0

∫
Rd

η(K, z − x)Φ(K,dx) Q(dK)
)
λ(dz)

which proves the absolute continuity and the stated form of the density.
The limit relation follows from Lebesgue’s differentiation theorem (see,

e.g., Rudin [654, Th. 8.8] or Wheeden and Zygmund [811, Th. 7.2]). ��

If η(K, ·) is continuous, uniformly in K, then the function ϕ(X, ·) is con-
tinuous and, therefore, the limit relation (11.5) holds for all z.

As a first example of the application of Theorem 11.1.1, we choose ϕ = Vj ,
the jth intrinsic volume. The local extension of Vj is given by the curvature
measure Φj . Thus, we obtain the following generalization of Corollary 9.4.2.

Corollary 11.1.1. Let X be a process of convex particles in Rd and let j ∈
{0, . . . , d}. Then

E
∑

K∈X

Φj(K, ·)

is a locally finite measure on Rd which is absolutely continuous with respect
to λ, and a density is given by

Vj(X, z) :=
∫
K0

∫
Rd

η(K, z − x)Φj(K,dx) Q(dK) (11.6)

= lim
r→0

1
Vd(rW )

E
∑

K∈X

Φj(K, z + rW )

for λ-almost all z ∈ Rd and all W ∈ K with Vd(W ) > 0.
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One could have expected that a locally defined intrinsic volume Vj(X, z)
should satisfy

Vj(X, z) = lim
r→0

1
Vd(rW )

E
∑

K∈X

Vj(K ∩ (z + rW )),

but, for j ∈ {0, . . . , d − 1}, this does not even make sense for stationary and
isotropic X, since the limit on the right side does not exist in general, as one
can see from (9.32).

For the second example, we choose ϕ(K) =
(
d
j

)
V (K[j],−M [d − j]), j ∈

{1, . . . , d− 1}, with fixed M ∈ K′. According to (6.25), the local extension is
given by the mixed measure Φ(0)

j,d−j(K,M ; · × Rd).

Corollary 11.1.2. Let X be a process of convex particles in Rd, let M ∈ K′

and j ∈ {0, . . . , d}. Then

E
∑

K∈X

Φ
(0)
j,d−j(K,M ; · × Rd)

is a locally finite measure on Rd which is absolutely continuous with respect
to λ, and a density is given by(

d

j

)
V (X[j],−M [d− j]; z)

:=
∫
K0

∫
Rd

η(K, z − x)Φ(0)
j,d−j(K,M ; dx× Rd) Q(dK)

= lim
r→0

1
Vd(rW )

E
∑

K∈X

Φ
(0)
j,d−j(K,M ; (z + rW )× Rd)

for λ-almost all z ∈ Rd and all W ∈ K with Vd(W ) > 0.

For M = Bd, Corollary 11.1.2 reduces to Corollary 11.1.1.
However, we may also letM vary and apply Theorem 11.1.1 a second time.

Since this would involve independent copies of X, we state the corresponding
result only for Poisson processes, to which Corollary 3.2.4 applies. Then we
get a density for mixed volumes of the particle process X2

�=. For simplicity, we
also omit the corresponding local limit relations in the following results.

Corollary 11.1.3. Let X be a Poisson process of convex particles in Rd and
let j ∈ {0, . . . , d}. Then

E
∑

(K,M)∈X2
�=

Φ
(0)
j,d−j(K,M ; ·)

is a locally finite measure on (Rd)2 which is absolutely continuous with respect
to λ2, and a density is given by
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d

j

)
V (X[j],−X[d− j]; z1, z2)

:=
∫
K0

∫
K0

∫
(Rd)2

η(K1, z1 − x1)η(K2, z2 − x2)Φ
(0)
j,d−j(K1,K2; d(x1, x2))

×Q(dK1) Q(dK2)

for λ2-almost all (z1, z2) ∈ (Rd)2.

As a further generalization of all three corollaries, we may consider the
mixed functional V (j)

m1,...,mk(K1, . . . ,Kk) introduced in Section 6.4. We can
keep some of the Ki fixed and let the others vary in X. Repeated application
of Theorem 11.1.1 to the Poisson process X, where the local extension at each
step uses the mixed measures Φ(j)

m1,...,mk(K1, . . . ,Kk; ·) in a suitable way, yields
the existence of the density V

(j)

m1,...,mn,mn+1,...,mk
(X, . . . ,X,Kn+1, . . . ,Kk; ·) as

a function on (Rd)n. We formulate this result only for the case n = k.

Corollary 11.1.4. Let X be a Poisson process of convex particles in Rd, let
k ∈ N, j ∈ {0, . . . , d} and m1, . . . ,mk ∈ {j, . . . , d} with

k∑
i=1

mi = (k − 1)d+ j.

Then,
E

∑
(K1,...,Kk)∈Xk

�=

Φ(j)
m1,...,mk

(K1, . . . ,Kk; ·)

is a locally finite measure on (Rd)k which is absolutely continuous with respect
to λk, and a density is given by

V
(j)

m1,...,mk
(X, . . . ,X; z1, . . . , zk)

:=
∫
K0

. . .

∫
K0

∫
(Rd)k

η(K1, z1 − x1) · · · η(Kk, zk − xk)

×Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)) Q(dK1) · · · Q(dKk)

for λk-almost all (z1, . . . , zk) ∈ (Rd)k.

We remark that the densities V
(j)

m1,...,mk
(X, . . . ,X; ·, . . . , ·) inherit the im-

portant properties of the mixed functionals and mixed measures, namely they
are symmetric with respect to a permutation of the indices m1, . . . ,mk (and
the corresponding variables), and they obey a decomposition property: if
m1 = d, then

V
(j)

m1,...,mk
(X, . . . ,X; z1, . . . , zk)

= Vd(X, z1)V
(j)

m2,...,mk
(X, . . . ,X; z2, . . . , zk). (11.7)
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We now turn to Boolean models Z = ZX , where X is a Poisson process
on K′ (we still assume that X satisfies (11.1) and (11.4)). Let Z be a Boolean
model with convex grains in Rd, let K ∈ K′ and ϕ : R → R be a measurable,
additive and conditionally bounded functional. Then we have

E |ϕ(Z ∩K)| <∞ (11.8)

and (recall that Kx := K + x)

Eϕ(Z ∩K)

=
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k

ϕ(K ∩Kx1
1 ∩ . . . ∩Kxk

k ) (11.9)

× η(K1, x1) · · · η(Kk, xk)λk(d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk).

This follows from (9.8), together with the special form of the intensity mea-
sure.

In addition, we now assume that ϕ is a standard functional (hence transla-
tion invariant) with local extension Φ. As in Section 6.4, we can infer that there
are uniquely determined kernels Φ(k) : Kk × B((Rd)k)→ R+, for k = 1, 2, . . .,
such that∫

(Rd)k−1
Φ(K1 ∩Kx2

2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 ∩ . . . ∩Axk

k )λk−1(d(x2, . . . , xk))

= Φ(k)(K1, . . . ,Kk;A1 × . . .×Ak) (11.10)

holds for all k ∈ N, K1, . . . ,Kk ∈ K, A1, . . . , Ak ∈ B. Namely, (11.10) for all
Borel sets A1, . . . , Ak is equivalent to∫

(Rd)k−1

∫
Rd

g(x1, x1 − x2, . . . , x1 − xk)Φ(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk))

=
∫

(Rd)k

g(x1, . . . , xk)Φ(k)(K1, . . . ,Kk; d(x1, . . . , xk)) (11.11)

for all continuous functions g on (Rd)k, provided that the measure on the
right side exists. Due to the properties of Φ, the mapping

g �→
∫

Rd

g(x1, x1 − x2, . . . , x1 − xk)Φ(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

is continuous on Cc((Rd)k), for λk−1-almost all (x2, . . . , xk). Therefore, the
left side of (11.11) defines a positive linear functional T on Cc((Rd)k) through

T (g) :=
∫

(Rd)k−1

∫
Rd

g(x1, x1 − x2, . . . , x1 − xk)Φ(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k ,dx1)

×λk−1(d(x2, . . . , xk)).
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The existence and uniqueness of the measure Φ(k)(K1, . . . ,Kk; ·) now follows
from the Riesz representation theorem. Since

(K1, . . . ,Kk) �→ Φ(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k , ·)

is continuous on (K′)k, for λk−1-almost all (x2, . . . , xk) ∈ (Rd)k−1 (and by our
assumptions on Φ), we obtain the continuity (and hence measurability) of

(K1, . . . ,Kk) �→ Φ(k)(K1, . . . ,Kk; ·).

Finally, Φ(k)(K1, . . . ,Kk;A1 × . . .×Ak) is invariant under simultaneous per-
mutations of the bodies Ki and the sets Ai.

We call Φ(1), Φ(2), . . . the associated kernels of Φ. We remark that, since
Φ is locally determined, the same is true for the kernel Φ(k). Therefore, we
can replace the convex body Ki by an unbounded convex set, as long as the
corresponding Borel set Ai is bounded. Also, the translation covariance of Φ
implies that Φ(k) is translation covariant in each variable Ki (with associated
Borel set Ai).

Since ϕ and the local extension Φ are defined for sets K ∈ R and since Φ is
locally determined, the value Φ(Z,A) exists for bounded Borel sets A ∈ B and
yields a (random) signed Radon measure Φ(Z, ·). We now show that EΦ(Z, ·)
is absolutely continuous and prove a representation of the density.

Theorem 11.1.2. Let Z be a Boolean model in Rd with convex grains and
ϕ a standard functional with local extension Φ and associated kernels Φ(k),
k ∈ N. Then

EΦ(Z, ·)
is a signed Radon measure on Rd which is absolutely continuous with respect
to λ. For λ-almost all z ∈ Rd, its density ϕ(Z, ·) satisfies

ϕ(Z, z) =
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k

η(K1, z − x1) · · · η(Kk, z − xk)

×Φ(k)(K1, . . . ,Kk; d(x1, . . . , xk)) Q(dK1) · · · Q(dKk).

Proof. For the local finiteness, let B ∈ B be a bounded Borel set with B ⊂
int rBd, for some r > 0. Applying (11.8) with ϕ = Φ(·, B) and K = rBd, we
obtain

E |Φ(Z,B)| <∞.
Moreover, from (11.9) and (11.10), it follows that

EΦ(Z,B)

=
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k

∫
Rd

1B(x0)Φ(rBd ∩Kx1
1 ∩ . . . ∩Kxk

k ,dx0)

× η(K1, x1) · · · η(Kk, xk)λk(d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk)
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=
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k+1

1B(x0)η(K1, x0 − x1) · · · η(Kk, x0 − xk)

×Φ(k+1)(rBd,K1, . . . ,Kk; d(x0, . . . , xk)) Q(dK1) · · ·Q(dKk)

=
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k+1

1B(x0)η(K1, x0 − x1) · · · η(Kk, x0 − xk)

×Φ(k+1)(Rd,K1, . . . ,Kk; d(x0, . . . , xk)) Q(dK1) · · ·Q(dKk).

Here we have used that Φ(k+1) is locally determined.
The translation covariance of Φ(k+1) in the first variable shows that

Φ(k+1)(Rd,K1, . . . ,Kk; ·) = λ⊗ Φ(k)(K1, . . . ,Kk; ·).

In fact, for bounded A ∈ B,

Φ(k+1)(Rd,K1, . . . ,Kk;A×A1 × . . .×Ak)

=
∫

(Rd)k

Φ(Kx1
1 ∩ . . . ∩Kxk

k , A ∩A
x1
1 ∩ . . . ∩Axk

k )λk(d(x1, . . . , xk))

=
∫

(Rd)k−1

∫
Rd

Φ(K1 ∩Kx2
2 ∩ . . . ∩Kxk

k , (A− x) ∩A1 ∩Ax2
2 . . . ∩Axk

k )

×λ(dx)λk−1(d(x2, . . . , xk))

= λ(A)
∫

(Rd)k−1
Φ(K1 ∩Kx2

2 ∩ . . . ∩Kxk

k , A1 ∩Ax2
2 . . . ∩Axk

k )

×λk−1(d(x2, . . . , xk)),

by Theorem 5.2.1.
Hence, we conclude from Fubini’s theorem that

EΦ(Z,B)

=
∞∑

k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k

×
∫

Rd

1B(x0)η(K1, x0 − x1) · · · η(Kk, x0 − xk)λ(dx0)

×Φ(k)(K1, . . . ,Kk; d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk)

=
∫

B

( ∞∑
k=1

(−1)k−1

k!

∫
K0

. . .

∫
K0

∫
(Rd)k

η(K1, z − x1) · · · η(Kk, z − xk)

×Φ(k)(K1, . . . ,Kk; d(x1, . . . , xk)) Q(dK1) · · ·Q(dKk)

)
λ(dz).

This confirms the result. ��
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We apply Theorem 11.1.2 with ϕ = Vj . The local extension of Vj(K) is the
jth curvature measure Φj(K, ·). For the associated kernel (Φj)(k), Theorem
6.4.1 yields

(Φj)(k)(K1, . . . ,Kk; ·) =
d∑

m1,...,mk=j

m1+...+mk=(k−1)d+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk; ·).

Hence, EΦj(Z, ·) is absolutely continuous with density a.e. given by

Vj(Z, z)

=
∞∑

k=1

(−1)k−1

k!

d∑
m1,...,mk=j

m1+...+mk=(k−1)d+j

∫
K0

. . .

∫
K0

∫
(Rd)k

η(K1, z − x1) · · ·

× η(Kk, z − xk)Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)) Q(dK1) · · · Q(dKk).

From Corollary 11.1.4 we obtain

Vj(Z, z)

=
∞∑

k=1

(−1)k−1

k!

d∑
m1,...,mk=j

m1+...+mk=(k−1)d+j

V
(j)

m1,...,mk
(X, . . . ,X; z, . . . , z).

We use the decomposition property (11.7) and get, with arguments similar to
those in the deduction of Theorem 9.1.3,

Vj(Z, z)

=
d−j∑
s=1

∞∑
r=0

(
r + s
r

)
(−1)r+s−1

(r + s)!
Vd(X, z)r

×
d−1∑

m1,...,ms=j

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X; z, . . . , z)

= −e−Vd(X,z)

d−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X; z, . . . , z)

= e−Vd(X,z)

(
Vj(X, z)−

d−j∑
s=2

(−1)s

s!

×
d−1∑

m1,...,ms=j+1
m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X; z, . . . , z)

)
.

Hence, we arrive at the following result.
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Theorem 11.1.3. Let Z be a Boolean model in Rd with convex grains. Then,
for λ-almost all z,

Vd(Z, z) = 1− e−Vd(X,z), (11.12)

Vd−1(Z, z) = e−Vd(X,z)Vd−1(X, z),

and

Vj(Z, z) = e−Vd(X,z)

(
Vj(X, z)−

d−j∑
s=2

(−1)s

s!

×
d−1∑

m1,...,ms=j+1
m1+...+ms=(s−1)d+j

V
(j)

m1,...,ms
(X, . . . ,X; z, . . . , z)

)
,

for j = 0, . . . , d− 2.

If Z is stationary, this reduces to Theorem 9.1.5, and if Z is also isotropic,
we get Theorem 9.1.3.

Notes for Section 11.1

1. As we have already mentioned, specific intrinsic volumes for non-stationary (Pois-
son) particle processes and Boolean models were introduced by Fallert [222, 223].
There, one also finds Corollaries 11.1.1, 11.1.4 and Theorem 11.1.3. Corollaries
11.1.2, 11.1.3 are special cases of more general results in Weil [801]. Theorem 6
in [801] gives formulas for the density of mixed volumes,

V (Z[j], M [d − j], z)

for a Boolean model Z with polyconvex grains and a fixed body M ∈ K′, which
are in analogy to Theorem 11.1.3. The proof of Theorem 6 contains some misprints
(z1, . . . , zk have to be replaced by z, . . . , z and λ(dz1) · · ·λ(dzk) by λ(dz)). The paper
[801] also presents more explicit formulas for the densities Vi(Z, ·), i = 0, 1, 2, for a
planar Boolean model with circular grains.

Formulas for densities of some of the intrinsic volumes (volume density, surface
area density) for non-stationary Boolean models of (deterministic or random) balls
have also been obtained by Hahn, Micheletti, Pohlink and Stoyan [314], K. Mecke
[505, 506], Micheletti and Stoyan [516], Quintanilla and Torquato [609, 610].

2. In Note 4 to Section 9.1 we have remarked that, for a stationary Boolean model
Z with convex grains in dimensions 2 and 3, densities for mixed volumes of Z
determine the intensity γ uniquely. For non-stationary Boolean models in R2, a cor-
responding result was obtained by Weil [799]. It was shown that the values V0(Z, z),
V (Z[1], M [1]; z), for all M ∈ K′ and V 2(Z, z), determine the specific Euler character-
istic V0(X, z) at z uniquely. The corresponding three-dimensional case was settled
in Goodey and Weil [280] under a symmetry condition. Without this, a unique-
ness result for V0(X, z) was shown, if instead of the local mean mixed volumes
V (Z[1], M [2]; z) and V (Z[2], M [1]; z) the densities of support functions and surface
area measures for Z at z are given (see also the following note).
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3. We have applied formula (11.9) mainly to real functionals ϕ. It can also be applied
to measure- or function-valued functionals. In particular, this yields the existence
of the density h(Z, u; z) of the centered support function h∗(K, u), u ∈ Rd, and a
formula expressing it in terms of densities of mixed centered support functions of
the particles in X. In view of (6.28), the necessary local extension is given by the
support kernel ρ(K, u; ·), defined as

ρ(K, u; B) = Φ
(0)
1,d−1(K, u+; B × Au⊥),

for u ∈ Sd−1 and B ∈ B. This notion was first studied by Goodey and Weil
[281]. Similarly, the existence of the density S(Z, B; z) of the surface area mea-
sure Sd−1(K, B), B ∈ B(Sd−1), follows. Its relation to the corresponding notion for
X is given by

S(Z, ·; z) = e−Vd(Z,z) S(X, ·; z).

The local extension is given here by a suitable support measure. These results were
obtained in Goodey and Weil [280]. In contrast to the stationary case and due to
the occurrence of the intensity function η, the function h(Z, ·; z) need no longer
be centered (and for d ≥ 3 also not convex), and the measure S(Z, ·; z) need no
longer be a surface area measure. This indicates some of the difficulties arising in
the non-stationary setting.

4. For a non-stationary particle process X and a functional ϕ, the densities ϕ(X, z)
were introduced as functions depending on the location z ∈ Rd, whereas, for sta-
tionary X, they do not depend on z. Conversely, one can ask whether invariance
properties of X can be inferred from invariance properties of ϕ(X, z), for suitable
functionals ϕ. Results of this type were obtained by Hoffmann [345, 347]. Assume
that the intensity measure of the particle process X is of the form (11.3) with a
continuous function η. Hoffmann defined the generalized local mean normal
measure of X at z ∈ Rd by

µz(A, B) :=

∫
K0

1B(K)

∫
Rd

η(z − x) Ξd−1(K, dx × A) Q(dK)

for A ∈ B(Sd−1), B ∈ B(K0). An intuitive interpretation is obtained from

E
∑

K∈X

1B(K − c(K))Hd−1(C ∩ τ(K, A)) =

∫
C

µz(A, B) λ(dz)

for C ∈ B, where τ(K, A) denotes the set of boundary points of K for which an
outer normal vector belongs to A. Under the assumption that dim K ≥ d − 1 for
Q-almost all K ∈ K0 and that the support of Q contains some strictly convex body,
Hoffmann proved that X is weakly stationary and weakly isotropic if and only if
µz is rotation invariant, which means that µz(ϑA, ϑB) = µz(A, B) for all z ∈ Rd,
A ∈ B(Sd−1), B ∈ B(K0) and ϑ ∈ SOd. Hoffmann also showed a corresponding result
for processes of convex cylinders. This comprises Theorem 1 of Schneider [707] (see
Theorem 11.3.2 below), which was the motivation for Hoffmann’s investigation.

5. Theorem 11.1.3 has been extended to Boolean models of cylinders by Hoffmann
[345, 348]. Due to the local nature of the mixed measures, such an extension seems
natural; the main effort went into finding the special form of the mixed measures
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for cylinders. Special cylinder processes were also studied by Spiess and Spodarev
[732].

6. For a stationary Poisson process X on K′ and the corresponding Boolean model Z
the intersection density γd(X) and the mean visible volume Vs(Z) were introduced
and studied in Section 4.6, and sharp lower and upper estimates for the product
γd(X)Vs(Z) were given in Theorem 4.6.3. Hoffmann [345] has studied intersection
densities and mean visible volumes for non-stationary Poisson processes and Boolean
models and has obtained some generalizations of Theorem 4.6.3. He has also con-
sidered intersection densities of a different kind, where the Hausdorff measure is
replaced by a curvature measure.

11.2 Contact Distributions

We continue the investigation of general Boolean models Z with convex grains
and consider generalized contact distributions. As an immediate generalization
of the function introduced in Section 2.4, in the stationary case, we define the
contact distribution function HB(x, ·) of a random closed set Z ⊂ Rd as
the distribution function of the B-distance dB(x,Z) from a point x /∈ Z to Z,
hence, for r ≥ 0,

HB(x, r) := P((x+ rB) ∩ Z �= ∅ |x /∈ Z)

= P(dB(x,Z) ≤ r |x /∈ Z).

Here the gauge body (or structuring element) B is a convex body containing
0, and we assume that the local volume fraction P(x ∈ Z) = Vd(Z, x) is less
than one (so that P(x /∈ Z) > 0).

For the Boolean model Z = ZX , we use the same notations as in the
previous section. Since

HB(x, r) =
Vd(Z − rB, x)− Vd(Z, x)

1− Vd(Z, x)
,

we obtain from (11.12) and (11.6)

HB(x, r) =
e−Vd(X,x) − e−Vd(X−rB,x)

e−Vd(X,x)

= 1− exp

(
−

∫
K0

∫
(K−rB)\K

η(K,x− y)λ(dy) Q(dK)

)
. (11.13)

To the inner integral, we apply formula (14.26) involving the relative support
measures Ξj(K;B; ·) and get∫

(K−rB)\K

η(K,x− y)λ(dy) (11.14)

=
d−1∑
j=0

(d− j)κd−j

∫ r

0

∫
(Rd)2

td−1−jη(K,x− y − tb)Ξj(K;B; d(y, b)) dt.
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The definition of the relative support measures requires that K and B have
independent support sets (see Section 14.3). This is satisfied, for example, if
one of the bodies K,B is strictly convex.

Inserting (11.14) into (11.13), we obtain the following theorem.

Theorem 11.2.1. Let Z be a Boolean model in Rd with convex grains and let
B be a gauge body. Assume that K and B have independent support sets, for
Q-almost all K. Then

HB(x, r) = 1− exp
(
−

∫ r

0

hB(x, t) dt
)

for r ≥ 0, with

hB(x, t) :=
d−1∑
j=0

(j + 1)κj+1t
j

∫
K0

∫
(Rd)2

η(K,x− y − tb)

×Ξd−1−j(K;B; d(y, b)) Q(dK).

If B = Bd, the measure Ξj(K;B; ·) is the (ordinary) support measure
Ξj(K, ·) of K. Hence, we obtain a formula for the spherical contact distri-
bution function H(x, ·) of Z.

Corollary 11.2.1. For a Boolean model Z with convex grains, we have

H(x, r) = 1− exp
(
−

∫ r

0

h(x, t) dt
)

for r ≥ 0, with

h(x, t) :=
d−1∑
j=0

(j+1)κj+1t
j

∫
K0

∫
(Rd)2

η(K,x−y−tb)Ξd−1−j(K,d(y, b)) Q(dK).

Theorem 11.2.1 shows that HB(x, ·) is differentiable. In particular, if for
Q-almost all K the function η(K, ·) is continuous, we get

∂

∂r
H(x, r)

∣∣∣
r=0

= h(x, 0)

= 2
∫
K0

∫
Rd

η(K,x− y)Φd−1(K,dy) Q(dK)

= 2Vd−1(X,x)

and thus
2Vd−1(Z, x) = (1− Vd(Z, x))

∂

∂r
H(x, r)

∣∣∣
r=0
.

Now we consider generalized contact distribution functions, involving di-
rections and local geometric information in the contact points. As we have
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shown in Lemma 9.5.1, the distance dB(x,Z) is almost surely attained at a sin-
gle particle Zi of the underlying Poisson processX, thus dB(x,Z) = dB(x,Zi).
This implies x ∈ bd (Zi − rB) with r := dB(x,Z). If Zi and B have almost
surely independent support sets (as we shall assume below), the decomposition
x = z + rb, z ∈ bdZi, b ∈ bd (−B), is unique. With the notation introduced
before Theorem 14.3.2, we have z =: pB(Z, x) and b =: uB(Z, x), thus

pB(Z, x) = x− dB(x,Z)uB(Z, x).

We call pB(Z, x) the B-contact point in Z and −uB(Z, x) the B-direction
from x to Z. For simplicity, we just speak of the contact point and the direc-
tion.

It is possible to exploit additional local information at the contact point.
For this, we assume that a mapping ρ : S ×Rd → R (where S is the extended
convex ring) is given which is measurable and translation covariant, that is,
satisfies ρ(F + y, x + y) = ρ(F, x) for F ∈ S and x, y ∈ Rd. Moreover, we
assume that ρ(F, x) = 0 if x /∈ bdF and that ρ is ‘local’ in the sense that, for
any x ∈ Rd and any neighborhood U of x, we have ρ(F, x) = ρ(F ∩U, x). For
example, ρ(F, x) could be the value of a curvature function of bdF at x, and
0 if this is not defined. In the following, we write

lB(Z, x) := ρ(Z, pB(Z, x)).

As a generalization of Theorem 11.2.1 (and also of Theorem 9.5.2) we show
the following result.

Theorem 11.2.2. Let Z be a Boolean model in Rd with convex grains and let
B be a gauge body. Assume that K and B have independent support sets, for
Q-almost all K. Let g ≥ 0 be a measurable function on R+ × Rd × R. Then,
for x ∈ Rd with P(x /∈ Z) > 0, we have

E (1{dB(x,Z) <∞}g(dB(x,Z), uB(Z, x), lB(Z, x)) |x /∈ Z)

=
d−1∑
j=0

(j + 1)κj+1

∫ ∞

0

tj(1−HB(x, t))
∫
K0

∫
(Rd)2

g(t, b, ρ(K, y))

× η(K,x− y − tb)Ξd−1−j(K;B; d(y, b)) Q(dK) dt.

Proof. We fix x with P(x /∈ Z) > 0. The following arguments are quite similar
to those employed in the proof of Theorem 9.5.2; we even use some of the
notation introduced there. Namely, for an enumeration X = {Z1, Z2, . . .} we
define the events

An := {0 < dB(x,Zn) <∞},
Bn := {dB(x,U(X \ {Zn})) > dB(x,Zn)}

and
Cn := {(B,Zn) ∈ K2

ind},
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where K2
ind denotes the set of pairs (K,M) ∈ (K′)2 of convex bodies with

independent support sets. Then

(dB(x,Z), uB(Z, x), lB(Z, x)) = (dB(x,Zn), uB(Zn, x), lB(Zn, x))

on An ∩Bn ∩ Cn and almost surely

{0 < dB(x,Z) <∞} =
∞⋃

n=1

(An ∩Bn ∩ Cn).

We abbreviate

g̃(K) := g(dB(x,K), uB(K,x), lB(K,x))

for K ∈ K′. Using Theorem 3.2.5 and formula (14.27), we obtain

E (1{0 < dB(x,Z) <∞}g(dB(x,Z), uB(Z, x), lB(Z, x)))

= E

∞∑
n=1

1An∩Bn∩Cn
g̃(Zn)

= E

( ∑
K∈X

1{0 < dB(x,K) <∞}1{(B,K) ∈ K2
ind}g̃(K)

×1{dB(x,U(X \ {K})) > dB(x,K)}
)

=
∫
K′

1{0 < dB(x,K) <∞}1{(B,K) ∈ K2
ind}g̃(K)

×P(dB(x,U(X)) > dB(x,K))Θ(dK)

= P(x /∈ Z)
∫
K0

∫
Rd

1{0 < dB(x, z +K) <∞}g̃(z +K)

× (1−HB(x, dB(x, z +K)))η(K, z)λ(dz) Q(dK)

= P(x /∈ Z)
d−1∑
j=0

(j + 1)κj+1

∫ ∞

0

∫
K0

∫
(Rd)2

g(t, b, ρ(K, y))η(K,x− y − tb)

× (1−HB(x, t))tj Ξd−1−j(K;B; d(y, b)) Q(dK) dt.

Here we have used that (y, b) ∈ suppΞd−1−j(K;B; ·) implies g̃(x−y−tb+K) =
g(t, b, ρ(K, y)). Division by P(x /∈ Z) yields the assertion. ��

We mention some special cases of this result. First, if g depends only on
the distance dB(x,Z), Theorem 11.2.2 reduces to Theorem 11.2.1. This fol-
lows from the exponential formula of Lebesgue–Stieltjes calculus (see the cor-
responding more detailed argument given in Section 9.5). Next, for B = Bd,
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we obtain a result for the spherical contact distribution function, as a gener-
alization of Corollary 11.2.1. Note that, for the spherical contact distribution,
the condition d(x,Z) <∞ is satisfied almost surely.

Corollary 11.2.2. For a Boolean model Z with convex grains, a point x ∈ Rd

with P(x /∈ Z) > 0, and a measurable function g ≥ 0 on R+×Rd×R, we have

E (g(d(x,Z), u(Z, x), l(Z, x)) |x /∈ Z)

=
d−1∑
j=0

(j + 1)κj+1

∫ ∞

0

tj(1−H(x, t))
∫
K0

∫
Rd×Rd

g(t, u, ρ(K, y))

× η(K,x− y − tu)Ξd−1−j(K,d(y, u)) Q(dK) dt.

If Z is stationary, the formulas in Theorem 11.2.2 and Corollary 11.2.2
simplify only slightly, in that x can be replaced by 0 and the function η
by the constant γ. Theorem 11.2.1 and Corollary 11.2.1 then reduce to the
corresponding results in Theorem 9.1.1. A further simplification of Corollary
11.2.2 is possible if, for stationary Z (and x = 0), the function g depends
only on d(0, Z) and u(Z, 0). Then, the support measure Ξd−1−j(K, ·) can be
replaced by its image under (y, u) �→ u, the area measure Ψd−1−j(K, ·).

Corollary 11.2.3. For a stationary Boolean model Z with convex grains and
a measurable function g ≥ 0 on R+ × Sd−1, we have

E (g(d(0, Z), u(Z, 0)) | 0 /∈ Z)

= γ
d−1∑
j=0

(j + 1)κj+1

∫ ∞

0

tj(1−H(t))
∫
K0

∫
Sd−1

g(t, u)

×Ψd−1−j(K,du) Q(dK) dt.

Notes for Section 11.2

1. The results on contact distributions for non-stationary Boolean models and their
generalized versions have been obtained in Hug [356], Hug and Last [357], and Hug,
Last and Weil [358]; a survey with additional results is Hug, Last and Weil [359]
(see also shorter presentations in Weil [802, 803]). In Hug, Last and Weil [358], an
even more general version of Theorem 11.2.1 and the subsequent results is obtained,
where the point x is replaced by a test body L ∈ K′. The considered function g can
then also depend on the contact point pB(L, Z) in which the B-distance of L from
Z is realized (provided this point is unique). The formula is proved in exactly the
same way, but uses a more general Steiner-type result which involves mixed relative
support measures depending on three convex bodies.

2. As was shown in Hug and Last [357] and Hug, Last and Weil [358], [359], the re-
sults on generalized contact distributions, which we proved here for Boolean models,
hold true for random closed sets Z which are the union of a point process X on K′,
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where the intensity measure Θ of X satisfies (11.4) and the second factorial moment
measure Λ(2) of X has a certain smoothness property. The resulting formulas for
Z are then formulated and proved with the Palm distribution of X. In this general
framework, (generalized) contact distributions of Gibbs processes, Cox processes,
Poisson cluster processes and more general cluster models (grain models where the
underlying ordinary point process is a Poisson cluster process) can be subsumed;
the results are surveyed in Hug, Last and Weil [359].

3. In Section 9.5, we have already stated and proved a special case of Theorem 11.2.1,
namely Theorem 9.5.2. The latter result concerned a stationary Boolean model Z,
where the grains are balls with random radius. In the discussion, we remarked that
the intensity γ and the radius distribution G are determined by the generalized
contact distributions of Z. One may expect that this result holds for more general
Boolean models Z. The question, which information on the intensity function η and
the distribution of the typical grain Q can be inferred from the generalized contact
distributions of Z, is discussed in detail in Hug, Last and Weil [358, §4], and several
uniqueness results are given.

4. Boolean models with compact grains. For the spherical contact distribution
function and its variants, a far-reaching generalization was obtained by Hug, Last
and Weil [361]. They proved a Steiner formula for arbitrary closed sets F ⊂ Rd,
by which support measures Ξj(F, ·), j = 0, . . . , d − 1, of F are defined. The latter
are signed Radon-type measures on the normal bundle Nor F of F ; they are defined
on Borel sets A ⊂ Nor F , for which the reach function δ(F, ·) is bounded away
from 0 and ∞. Here, the reach δ(F, x, u), (x, u) ∈ Nor F , is the largest r ≥ 0
such that x+ ru has a unique projection point x in F . With the help of this Steiner
formula, Boolean models with arbitrary compact grains can be considered (satisfying
a condition analogous to (11.1)). The following is one of the results obtained in Hug,
Last and Weil [361] (ddj are given constants).

Let Z be a stationary Boolean model with compact grains. Then

H(r) = 1 − exp

(
−

∫ r

0

h(t) dt

)
, r ≥ 0,

with

h(t) :=

d−1∑
j=0

ddjt
jγ

∫
C0

∫
Rd×Sd−1

1{t < δ(C, x, u)}Ξd−1−j(C, d(x, u)) Q(dC).

5. The general Steiner formula also yields results for (generalized) contact distribu-
tions of arbitrary stationary random closed sets Z ⊂ Rd. Namely, let

H(t, A) := P(d(0, Z) ≤ t, u(0, Z) ∈ A | 0 /∈ Z), t ≥ 0, A ∈ B(Sd−1).

Then,

(1 − p)H(t, A) =

d−1∑
j=0

cdj

∫ t

0

sjΓd−1−j(A × (s,∞]) ds

with constants cdi and
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Γi(·) := E

∫
Cd×Sd−1

1{(u, δ(Z, x, u)) ∈ ·}Ξi(Z, d(x, u)).

Thus, H(·, A) is absolutely continuous and we have an explicit formula for the den-
sity.

Moreover, H(·, A) is differentiable with the exception of at most countably many
points, but it need not be differentiable at 0. If

E|Ξi|(Z, B × Sd−1) < ∞ for some B ∈ B(Rd), λ(B) > 0, i = 0, . . . , d − 1,

(which excludes fractal behavior, for example), then

lim
t→0+

t−1(1 − p)H(t, A) = Sd−1(Z, A),

for A ∈ B(Sd−1), where

Sd−1(Z, A) := 2E Ξd−1(Z; Cd × A) < ∞.

In particular, for such random closed sets we have

(1 − p)H ′(0) = 2Vd−1(Z) := Sd−1(Z, Sd−1).

Hence, for a stationary random set Z fulfilling the expectation condition above,
the surface area density is defined and, even more, a mean surface area measure
Sd−1(Z, ·) exists. The normalized measure

R(Z, ·) =
Sd−1(Z, ·)

Sd−1(Z, Sd−1)

is called the rose of directions of Z. It is the distribution of the (outer) normal in
a typical point of bd Z.

6. Characterization of convex grains. For a stationary Boolean model Z with
convex grains and a gauge body B, Theorem 9.1.1 shows that

− ln(1 − HB(r))

is a polynomial in r ≥ 0 (of degree d). As we have mentioned earlier, this can be
used, for B = Bd or B = [0, u], to obtain simple estimators for the intensity γ, the
specific intrinsic volumes Vj(X) and other mean functionals, such as Sd−1(X, ·). For
non-convex grains, the occurrence of the reach function in the formula, explained in
Note 4 above, shows that we can no longer expect a polynomial behavior of contact
distributions. This was made more precise by Heveling, Hug and Last [338] and Hug,
Last and Weil [362] and yields a possibility to check the convexity of the grains.

Namely, let us consider a stationary Boolean model Z with compact and regular
grains (the latter means that C = cl int C holds for Q-almost all C). We assume
that ∫

C0

Vd(conv K + Bd) Q(dK) < ∞ (11.15)

and define the ALLC-function (average logarithmic linear contact distribution
function) L of Z by
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L(r) := −
∫

Sd−1
ln(1 − H[0,u](r)) σd−1(du), r ≥ 0.

The following result was presented in Hug, Last and Weil [362].

Let Z be a stationary Boolean model in Rd with regular compact grains satisfying
(11.15). Then the ALLC-function L of Z is linear if and only if the grains are almost
surely convex.

We sketch the proof of the non-obvious direction. Thus, we assume that L is
linear. Then

f := Vd(X) + L

is a polynomial and

f(r) = γ

∫
Sd−1

∫
C0

λ(K + r[0, u]) Q(dK) σd−1(du).

We have

f(r) ≤ f̃(r) := γ

∫
Sd−1

∫
C0

λ(Ku + r[0, u]) Q(dK) σd−1(du)

= γ

∫
Sd−1

∫
C0

(
λ(Ku) + λd−1(K |u⊥)r

)
Q(dK) σd−1(du)

= ã + b̃r,

where Ku is the convexification of K in direction u (for each line l in direction u,
we replace K ∩ l by its convex hull). Hence,

f(r) = a + br with a ≤ ã, b ≤ b̃.

For sufficiently large r, we have K + r[0, u] = Ku + r[0, u], uniformly in u. This

implies f = f̃ , for large r and therefore for all r ≥ 0. But then K = Ku, for all u,
which implies convexity. (Notice that in some of these arguments the regularity of
the grains is used.)

There is a corresponding result in Hug, Last and Weil [362] for the two-
dimensional unit disk B2, which concerns the ALDC-function (average logarithmic
disk contact distribution function) D of Z,

D(r) := −
∫

SOd

ln(1 − HϑB2(r)) ν(dϑ), r ≥ 0.

Instead of (11.15), we need the stronger assumption of uniformly bounded grains.

Let Z be a stationary Boolean model in Rd with regular, uniformly bounded compact
grains. Then the ALDC-function D of Z is a polynomial if and only if the grains
are almost surely convex.

The proof is more complicated and is based on the following steps.
First, by Fubini’s theorem, it is sufficient to show the result for d = 2 and a

fixed (regular) grain K ∈ C′. More precisely, it is sufficient to show that K ⊂ R2 is
convex if λ2(K + rB2) is a polynomial in r ≥ 0.
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As in the linear case, we compare λ2(K(r)) =
∑m

i=0 air
i, K(r) := K +rB2, with

the volume of the convex hull K̄(r) := K̄ + rB2, K̄ := convK,

λ2(K̄(r)) = V2(K̄) + 2rV (K̄, B2) + r2V2(B
2).

Since λ2(rB
2) ≤ λ2(K(r)) ≤ λ2(K̄(r)), we obtain

λ2(K(r)) = a0 + a1r + a2r
2, r ≥ 0,

with a2 = V2(B
2) and a0 + a1r ≤ V2(K̄) + 2rV (K̄, B2).

For λ1-almost all r ≥ 0, we have

d

dr
V2(K(r)) =

∫
bd K(r)

h(B2, uK(r)(x))H1(dx),

where uK(r) is the (H1-almost everywhere existing) outer unit normal vector in
x and h(M, ·) is the support function of the convex body M . Moreover, K(r) is
star-shaped, for sufficiently large r. Hence,∫

bd K(r)

h(B2, uK(r)(x))H1(dx) ≤
∫

bd K̄(r)

h(B2, uK̄(r)(x))H1(dx),

which, under the spherical image map, transforms to∫
S1

h(B2, u) S1(K(r), du) ≤
∫

S1 h(B2, u) S1(K̄(r), du). (11.16)

Here, the image measure S1(K̄(r), ·) is the surface area measure of K̄(r) and
S1(K(r), ·) is, by Minkowski’s theorem, also the surface area measure of some convex

body K̃(r), the convexification of K(r).

As one can show, K(r) ⊂ K̃(r), after a suitable translation, and therefore K̄(r) ⊂
K̃(r). This implies h(K̄(r), ·) ≤ h(K̃(r), ·). On the other hand, (11.16) and the
symmetry of planar mixed volumes yield∫

S1
h(K̄(r), u) σ1(du) =

∫
S1

h(B2, u) S1(K̄(r), du)

≥
∫

S1
h(B2, u) S1(K(r), du)

=

∫
S1

h(B2, u) S1(K̃(r), du)

=

∫
S1

h(K̃(r), u) σ1(du).

Therefore h(K̄(r), ·) = h(K̃(r), ·), hence K̄(r) = K̃(r), which implies that K(r)
and the convex hull K̄(r) have the same boundary length, H1(K(r)) = H1(K̄(r)).
For a planar star-shaped set this implies K(r) = K̄(r). Consequently, K = K̄ =
conv K.

The result holds in a more general version, with the unit disk B2 replaced by a
smooth planar body B, and the proof is essentially the same.

However, as was shown in Heveling, Hug and Last [338], a corresponding result
for three-dimensional gauge bodies B is wrong. In particular, for d = 3 and B = B3,
ln(1−H) can be a polynomial without Z having convex grains. An example is given
by a Boolean model Z, the primary grain of which is the union of two touching balls
of equal radius.
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11.3 Processes of Flats

Our aim in this section is to see how some of the results on flat processes
obtained in Sections 4.4 and 4.6 carry over to the non-stationary case. For
simplicity, we assume that all k-flat processes occurring in the following are
simple. If we omit the stationarity assumption, some regularity property of the
intensity measure will be necessary, similarly to Section 11.1, to get smooth
results. We say that a measure on the space A(d, k) of k-flats in Rd is trans-
lation regular if it is absolutely continuous with respect to some translation
invariant, locally finite measure on A(d, k).

Let k ∈ {1, . . . , d−1}, and letX be a k-flat process in Rd with a translation
regular intensity measure Θ �= 0 (assumed to be locally finite, as always). By
assumption, there exist a locally finite, translation invariant measure Θ̃ on
A(d, k) and a nonnegative, locally Θ̃-integrable function η on A(d, k) such
that

Θ(A) =
∫

A

η dΘ̃

for A ∈ B(A(d, k)). The density η is only determined Θ̃-almost everywhere. If
Θ̃ and η can be chosen such that η is continuous on A(d, k), then we say that
Θ is translation regular with continuous density.

By Theorem 4.4.1, the measure Θ̃ has a decomposition

Θ̃(A) =
∫

G(d,k)

∫
L⊥

1A(L+ x)λL⊥(dx) Q(dL)

for A ∈ B(A(d, k)), with a finite measure Q on G(d, k), without loss of gen-
erality a probability measure (since Q �= 0, and Θ̃ and η can be changed by
constant factors). For the intensity measure of X, this yields the representa-
tion

Θ(A) =
∫

G(d,k)

∫
L⊥

1A(L+ x)η(L+ x)λL⊥(dx) Q(dL). (11.17)

As in Section 11.1 we say that Θ is represented by the pair (η,Q) (which,
nota bene, is not uniquely determined).

For a stationary k-flat process X, the intensity γ, given by

E
∑
E∈X

λE = γλ

(Theorem 4.4.3), and the directional distribution determine the intensity mea-
sure, by (4.25). For a k-flat process with a translation regular intensity mea-
sure there are corresponding quantities, but depending on the location. They
are obtained from the following result. For E ∈ A(d, k) we denote here by
E0 ∈ G(d, k) the translate of E through 0.



544 11 Non-stationary Models

Theorem 11.3.1. Let X be a k-flat process in Rd with a translation regular
intensity measure represented by (η,Q). Let A ∈ B(G(d, k)). Then

E
∑
E∈X

1A(E0)λE =
∫

(·)

∫
G(d,k)

1A(L)η(L+ z) Q(dL)λ(dz).

In particular, the measure
E

∑
E∈X

λE

has a density with respect to Lebesgue measure, given by

γ(z) :=
∫

G(d,k)

η(L+ z) Q(dL) (11.18)

for almost all z ∈ Rd.

Proof. Let B ∈ B(Rd). Using Campbell’s theorem and (11.17), we obtain

E
∑
E∈X

1A(E0)λE(B)

=
∫

A(d,k)

1A(E0)λE(B)Θ(dE)

=
∫

G(d,k)

∫
L⊥

1A(L)λL+x(B)η(L+ x)λL⊥(dx) Q(dL)

=
∫

G(d,k)

∫
L⊥

∫
L

1B(y + x)1A(L)η(L+ x)λL(dy)λL⊥(dx) Q(dL)

=
∫

G(d,k)

∫
B

1A(L)η(L+ z)λ(dz) Q(dL)

=
∫

B

∫
G(d,k)

1A(L)η(L+ z) Q(dL)λ(dz),

which completes the proof. ��

The function γ is called the intensity function of the k-flat process X.
It replaces the constant intensity appearing in the stationary case.

If the density η is continuous on A(d, k), then it follows from the compact-
ness of G(d, k) and the finiteness of Q that there is a uniquely determined
continuous version of the intensity function on Rd. In this case an intuitive
interpretation is easily obtained as follows. If K is a convex body with interior
points, then, for z ∈ Rd and r > 0,

E
∑
E∈X

λE(rK + z) =
∫

A(d,k)

λE(rK + z)Θ(dE)
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=
∫

G(d,k)

∫
L⊥
λL+x(rK + z)η(L+ x)λL⊥(dx) Q(dL)

=
∫

G(d,k)

∫
L⊥

∫
L

1rK+z(x+ y)η(L+ x)λL(dy)λL⊥(dx) Q(dL)

=
∫

G(d,k)

∫
Rd

1rK+z(t)η(L+ t)λ(dt) Q(dL).

Since η is continuous, the inner integral is equal to η(L+zr,L)Vd(rK) for some
point zr,L ∈ rK + z. The continuity of η now gives

γ(z) = lim
r→0

1
Vd(rK)

E
∑
E∈X

λE(rK + z).

It is also easy to see that

γ(z) = lim
r→0

1
κd−krd−k

EX(FrBd+z)

holds for all z ∈ Rd. This extends (4.27).
As a counterpart to the directional distribution in the stationary case, we

define a measure ϕ(z, ·) on G(d, k) by

ϕ(z, ·) :=
∫

(·)
η(L+ z) Q(dL)

for z ∈ Rd, which is finite almost everywhere. From Theorem 11.3.1 it follows
that

E
∑
E∈X

1A(E0)λE(B) =
∫

B

ϕ(z,A)λ(dz)

for A ∈ B(G(d, k)) and B ∈ B(Rd). This relation, together with the fact that
the σ-algebra B(G(d, k)) is countably generated, shows that for λ-almost all
z the measure ϕ(z, ·) is uniquely determined and hence depends only on the
process X and not on the choice of Θ̃ and η. The measure ϕ(z, ·) is called the
directional measure of X at z. At the points z with 0 < γ(z) < ∞, the
directional distribution ϕ(z, ·)/γ(z) can be defined.

If X is stationary, then the directional measure ϕ(z, ·) does not depend on
z. If X is also isotropic, then ϕ(z, ·) is rotation invariant. We prove a certain
converse statement. Here we use the terminology introduced in the remark at
the end of Section 9.2.

Theorem 11.3.2. Let X be a k-flat process in Rd whose intensity measure is
translation regular with a continuous density. If the directional measure ϕ(z, ·)
is rotation invariant for all z ∈ Rd, then X is weakly stationary and weakly
isotropic.
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Proof. Under the assumptions, the intensity function γ is continuous, hence
the set

M := {z ∈ Rd : γ(z) > 0}
is open (and not empty). Let z ∈ M . The finite, rotation invariant measure
ϕ(z, ·) is a multiple of νk. Since ϕ(z,G(d, k)) = γ(z), it follows that

ϕ(z, ·) = γ(z)νk,

hence from (11.18) we get

νk(A) =
∫

A

η(L+ z)
γ(z)

Q(dL) (11.19)

for A ∈ B(G(d, k)). Let also y ∈M , then∫
A

η(L+ z)
γ(z)

Q(dL) =
∫

A

η(L+ y)
γ(y)

Q(dL)

for A ∈ B(G(d, k)), hence

η(L+ z)
γ(z)

=
η(L+ y)
γ(y)

(11.20)

for all L ∈ supp Q, by the continuity of η. By (11.19), supp Q = G(d, k), since
νk(A) > 0 for every nonempty open set A ⊂ G(d, k).

The set
Nz := {L ∈ G(d, k) : η(L+ z) = 0}

satisfies νk(Nz) = 0, by (11.19). Let U ⊂ M be a neighborhood of y. The
directions E0 of the k-flats E through z and a point of U fill a nonempty
open set in G(d, k). Therefore, y1 ∈ U can be chosen such that there exists a
subspace L ∈ G(d, k) with L+ z = L+ y1 and η(L+ z) > 0. Relation (11.20)
implies that γ(y1) = γ(z), and since y1 can be chosen arbitrarily close to y,
we deduce that γ(y) = γ(z), by the continuity of γ.

We have proved that the continuous intensity function γ is constant on the
set M where it is positive. Hence, γ is constant on Rd. From (11.17), (11.19)
and (11.20) we conclude that

Θ(A) = γ
∫

G(d,k)

∫
L⊥

1A(L+ x)λL⊥(dx) νk(dL)

for A ∈ B(G(d, k)). This shows that Θ is invariant under translations and
rotations and thus completes the proof. ��

The rest of this section is devoted to Poisson hyperplane processes. We
want to extend Theorem 4.6.5 on intersection densities to the non-stationary,
translation regular case. This requires the introduction of associated zonoids
depending on the location.
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For hyperplanes, we use the representation (4.32), but we consider only
hyperplanes not passing through 0. Every such hyperplane has a unique rep-
resentation

H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ}
with u ∈ Sd−1 and τ > 0.

Let X be a hyperplane process in Rd with a translation regular intensity
measure represented by the pair (η,Q). It is convenient to use the function
g : Sd−1 × (0,∞)→ [0,∞) defined by

g(u, τ) := η(H(u, τ))

for u ∈ Sd−1 and τ > 0 and by g(u, τ) := 0 for τ ≤ 0 or if η(H(u, τ)) is
not defined. Instead of Q, we use the measure φ on the sphere Sd−1 with the
property

φ(A) =
1
2

Q({H(u, 0) : u ∈ A}

for A ∈ B(Sd−1) without antipodal points. The intensity measure of X is then
given by

Θ(A) = 2
∫

Sd−1

∫ ∞

0

1A(H(u, τ))g(u, τ) dτ φ(du) (11.21)

for A ∈ B(A(d, d− 1)).
We assume now in addition that X is a Poisson process. For k ∈ {1, . . . , d},

let Xk be the intersection process of order k of the process X. Modifying the
method of proof for Theorem 4.4.5, one can show that Xk is a.s. simple. Let
Θk be its intensity measure. As in the proof of Theorem 4.4.8 (where the
stationarity assumption is not needed in the beginning), one obtains

Θk(A) =
1
k!

∫
A(d,d−1)k∗

1A(H1 ∩ . . . ∩Hk)Θk(d(H1, . . . , Hk)) (11.22)

for A ∈ B(A(d, d − k)), where A(d, d − 1)k∗ denotes the set of k-tuples of
hyerplanes with linearly independent normal vectors. Thus, k!Θk is the image
measure of Θk A(d, d−1)k∗ under the intersection mapping (H1, . . . , Hk) �→
H1 ∩ . . . ∩Hk. It follows that Θk is locally finite. Since Θ is absolutely con-
tinuous with respect to a translation invariant measure Θ̃ on A(d, d− 1), the
measure Θk is absolutely continuous with respect to the image measure of
Θ̃k A(d, d− 1)k∗ under the same intersection mapping. Hence, the intersec-
tion process Xk has a translation regular intensity measure, too. We compute
its intensity function. Let B ∈ B(Rd) and λ(B) <∞. Then, using (11.22) and
(11.21),

k!E
∑

E∈Xk

λE(B)

= k!
∫

A(d,d−k)

λd−k(B ∩ E)Θk(dE)
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=
∫

A(d,d−1)k∗
λd−k(B ∩H1 ∩ . . . ∩Hk)Θk(d(H1, . . . , Hk))

= 2k

∫
(Sd−1)k∗

∫
(0,∞)k

λd−k(B ∩H(u1, τ1) ∩ . . . ∩H(uk, τk))

× g(u1, τ1) · · · g(uk, τk) d(τ1, . . . , τk)φk(d(u1, . . . , uk)),

where (Sd−1)k∗ denotes the set of k-tuples of linearly independent unit vectors.
We use the same transformation as at the end of the proof of Theorem 4.4.8. If
u1, . . . , uk ∈ Sd−1 are linearly independent andH(u1, τ1)∩. . .∩H(uk, τk) =: L,
then ∫

(0,∞)k

λd−k(B ∩H(u1, τ1) ∩ . . . ∩H(uk, τk))g(u1, τ1) · · · g(uk, τk)

×d(τ1, . . . , τk)

=
∫

L⊥
λd−k(B ∩ (L+ x))g(u1, 〈u1, x〉) · · · g(uk, 〈uk, x〉)λL⊥(dx)

×∇k(u1, . . . , uk)

=
∫

B

g(u1, 〈u1, z〉) · · · g(uk, 〈uk, z〉)λ(dz) · ∇k(u1, . . . , uk).

Since ∇k(u1, . . . , uk) = 0 if u1, . . . , uk are linearly dependent, we conclude
that

E
∑

E∈Xk

λE(B) =
2k

k!

∫
(Sd−1)k

∫
B

g(u1, 〈u1, z〉) · · · g(uk, 〈uk, z〉)∇k(u1, . . . , uk)

×λ(dz)φk(d(u1, . . . , uk))

=
∫

B

γk(z)λ(dz)

with

γk(z) =
2k

k!

∫
(Sd−1)k

∇k(u1, . . . , uk)

× g(u1, 〈u1, z〉) · · · g(uk, 〈uk, z〉)φk(d(u1, . . . , uk)). (11.23)

This is the intensity function of the intersection process Xk. We rewrite it,
using the measure ϕ̃z on Sd−1 defined by

ϕ̃z(A) := 2
∫

A

g(u, 〈u, z〉)φ(du)

for A ∈ B(Sd−1). Then
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γk(z) =
1
k!

∫
(Sd−1)k

∇k(u1, . . . , uk) ϕ̃k
z(d(u1, . . . , uk)). (11.24)

Now we define the local associated zonoid ΠX(z) of X at z as the
convex body with support function given by

h(ΠX(z), u) :=
1
2

∫
Sd−1

|〈u, v〉| ϕ̃z(dv)

for u ∈ Rd.
From (11.24) and (14.35) we obtain the generalization of formula (4.63)

to Poisson hyperplane processes with translation regular intensity measure,
namely

γk(z) = Vk(ΠX(z)) (11.25)

for z ∈ Rd. We can state the following result.

Theorem 11.3.3. Let X be a Poisson hyperplane process in Rd with a trans-
lation regular intensity measure. Let k ∈ {2, . . . , d}, and let Xk be the inter-
section process of X of order k. Let γ be the intensity function of X and γk

the intensity function of Xk. Then

γk(z) ≤
(

d
k

)
κk

d−1

dkκd−kκ
k−1
d

γ(z)k (11.26)

for almost all z ∈ Rd.
If the intensity measure of X is translation regular with a continuous den-

sity and if equality holds in (11.26) for all z, then the process X is stationary
and isotropic.

Proof. The inequality (11.26) follows from (11.25) in the same way as in the
stationary case (see Theorem 4.6.5). Assume that X is translation regular
with a continuous density and that equality holds in (11.26) for all z ∈ Rd.
Then, for each z, the local associated zonoid ΠX(z) is a ball (possibly one-
pointed). Hence, the even part of the measure ϕ̃z is proportional to the spher-
ical Lebesgue measure. Since

ϕ(z,A) = ϕ̃z({u ∈ Sd−1 : H(u, 0) ∈ A} for A ∈ B(G(d, d− 1)),

it follows that ϕ(z, ·) is rotation invariant. Now Theorem 11.3.2 shows that
X is weakly stationary and weakly isotropic. Since the intensity measure of a
Poisson process determines its distribution, X is stationary and isotropic. ��

A remarkable aspect of Theorem 11.3.3 can be seen in the fact that to-
gether with isotropy also the stationarity, and thus invariance under all rigid
motions, is characterized by an extremal property.
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Notes for Section 11.3

1. The results of this section are taken from Schneider [707]. Fallert [222] has studied
k-flat processes which instead of (11.17) satisfy

Θ(A) =

∫
G(d,k)

∫
L⊥

1A(L + x)f(x) λL⊥(dx) Q(dL)

with a locally integrable nonnegative function f . For 0 < k < d−1, this assumption
is more restrictive than the assumption (11.17) with a locally integrable nonnegative
function η.

2. Intersections with fixed flats. Let X be a translation regular k-flat process,
let j ∈ {0, . . . , k − 1}, and let S ∈ A(d − k + j). The intersection process X ∩ S,
defined by

X ∩ S :=
∑

Ei∩S 
=∅
δEi∩S if X =

∑
δEi ,

is a translation regular j-flat process in S. Its intensity function at z ∈ S is given by

γX∩S(z) =

∫
G(d,k)

[L, S] ϕ(z, dL),

where ϕ(z, ·) is the direction measure of X at z. See Schneider [707], also for some
results on the determination of translation regular flat processes from information
on section processes.

3. Hoffmann [346] has given a common generalization of results of Schneider [707]
and of Wieacker [817], by investigating intersection densities and local associated
zonoids for non-stationary Poisson processes of hypersurfaces, which are cylinders
with (Hk, k)-rectifiable bases.

4. Hug, Last and Weil [360] study generalized contact distribution functions, in the
sense of Section 11.2, for Poisson networks Z. The latter are union sets of Pois-
son k-flat processes X with translation regular intensity measures. They prove an
analog of Theorem 11.2.2. As a consequence, it is shown that, for processes X with
continuous density η and z ∈ Rd, the distribution of (d(z, Z), u(Z, z)) determines
the Radon transform Rk,d−1ϕ(z, ·). Hence for line or hyperplane networks, the direc-
tional measure ϕ(z, ·) is determined by measuring the distance and direction from
the point z to Z. Various generalizations are also treated in [360]. For example, the
point z is replaced by a flat F ∈ A(d, j), with k + j < d, and the intensity measure
ΘF of the process of midpoints m(E, F ), E ∈ X, is assumed to be given. As another
generalization, z is replaced by a flag of (linear) subspaces with increasing dimension
and a uniqueness result for stationary Poisson networks is proved.

11.4 Tessellations

The purpose of this section is to extend from the stationary to the non-
stationary case a basic result on random hyperplane mosaics, namely the
relations of Theorem 10.3.1 between the specific intrinsic volumes of the face



11.4 Tessellations 551

processes. However, for reasons explained later, we do this only under Poisson
assumptions.

Let X̂ be a Poisson hyperplane process in Rd with a translation regular
intensity measure. It generates a random tessellationX of Rd, and our first aim
will be to formulate a condition which ensures that the cells of the tessellation
are a.s. bounded. A given point x is a.s. contained in a unique cell, denoted
by Zx, of the mosaic; this follows from the translation regularity.

Definition 11.4.1. The hyperplane process X̂ is nondegenerate if the fol-
lowing holds.
(a) With positive probability, the zero cell Z0 is bounded.

(b) If U ⊂ Sd−1 is a measurable set and if X̂ contains with positive prob-
ability a hyperplane with normal vector in U , then X̂ contains with positive
probability infinitely many such hyperplanes.

This is an appropriate geometric condition for obtaining a random mosaic,
as the following theorem shows.

Theorem 11.4.1. Let X̂ be a nondegenerate Poisson hyperplane process in
Rd with a translation regular intensity measure. The system X of the induced
cells is a random mosaic in general position. The process X(k) of the k-faces
of X has a translation regular intensity measure, for k = 1, . . . , d.

Proof. The intensity measure Θ̂(A) of X̂ has the representation (11.21),

Θ̂(A) = 2
∫

Sd−1

∫ ∞

0

1A(H(u, τ))g(u, τ) dτ φ(du)

for A ∈ B(A(d, d− 1)), with a locally integrable, nonnegative function g and
a finite measure φ. We put

P :=
{
u ∈ Sd−1 :

∫ ∞

0

g(u, τ) dτ > 0
}

and assume without loss of generality that the measure φ is reduced, in the
sense that

φ(Sd−1 \ P ) = 0.

Let U := suppφ and suppose that 0 /∈ int convU . Then convU and 0
can be separated weakly by a hyperplane, hence there is a vector v ∈ Sd−1

with 〈u, v〉 ≤ 0 for u ∈ U . We denote by M the set of hyperplanes H(u, τ),
τ > 0, meeting the ray R := {λv : λ > 0}. If H(u, τ) ∩ R �= ∅ and (w.l.o.g.)
R �⊂ H(u, τ), then 〈u, v〉 > 0, hence

Θ̂(M) = 2
∫

Sd−1

∫ ∞

0

1M (H(u, τ))g(u, τ) dτ φ(du) = 0.

But then R ⊂ Z0 a.s., which contradicts the assumption that Z0 is bounded
with positive probability. It follows that 0 ∈ int convU . As in the proof of
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Theorem 10.3.2, this implies the existence of vectors u1, . . . , u2d ∈ U and
neighborhoods Ui of ui in Sd−1 for i = 1, . . . , 2d such that

0 ∈ int conv{v1, . . . , v2d} for all (v1, . . . , v2d) ∈ U1 × . . .× U2d.

Let x ∈ Rd, and let Ai(x) be the set of all hyperplanes H(u, τ) with u ∈ Ui

and τ > max{〈x, ui〉, 0} for i = 1, . . . , 2d. Then

Θ̂(Ai(x)) = 2
∫

Ui

∫ ∞

〈x,ui〉
g(u, τ) dτ φ(du).

We have
Θ̂(Ai(0)) = 2

∫
Ui

∫ ∞

0

g(u, τ) dτ φ(du) > 0,

since φ(Ui) > 0, which follows from ui ∈ suppφ and the assumption that φ is
reduced. Since X̂ is nondegenerate, this implies Θ̂(A(0)) =∞, thus

Θ̂(Ai(x)) + 2
∫

Ui

∫ 〈x,ui〉

0

g(u, τ) dτ dφ(u) =∞.

Here the second summand is finite since Θ̂ is finite on compact sets. We
conclude that Θ̂(Ai(x)) =∞.

Now we can continue as in the proof of Theorem 10.3.2 and deduce that
the cell Zx is almost surely bounded. The rest of that proof also carries over,
showing that the system of induced cells is a random mosaic in general posi-
tion.

Let X(k) be the system of k-faces of X, k ∈ {0, . . . , d}. As in Section 10.1
one sees that X(k) is a particle process. Since the intersection processes of X̂
have locally finite intensity measures, the proof of Theorem 10.3.1 shows that
X(k) has locally finite intensity measure. It remains to show that this measure
is translation regular.

Let X̂s be the stationary Poisson hyperplane process with spherical direc-
tional distribution φ and with intensity 1. It exists by Theorem 4.4.4 and has
intensity measure

Θ̂s(A) = 2
∫

Sd−1

∫ ∞

0

1A(H(u, τ)) dτ φ(du),

for A ∈ B(A(d, d − 1)). The random hyperplane mosaic generated by X̂s is
denoted by Xs, and the particle process of its k-faces by X(k)

s . Let Θ(k)
s be the

intensity measure of X(k)
s . We will show that Θ(k) is absolutely continuous

with respect to Θ(k)
s .

Let A ∈ B(K′) be a set with

Θ(k)
s (A) = 0. (11.27)
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In order to show that
Θ(k)(A) = 0, (11.28)

it is sufficient to show that Θ(k)(Ar) = 0 for each r ∈ N, where Ar := {K ∈
A : K ⊂ rBd}. Let Hr be the set of hyperplanes meeting rBd. To prove
(11.28), it is sufficient to prove for r,m ∈ N that

E(X(k)(Ar) | X̂(Hr) = m) = 0.

We choose r so large that Θ̂(Hr) �= 0, which is possible since Θ̂ �= 0. The
process X̂ restricted to Hr and under the condition X̂(Hr) = m is stochas-
tically equivalent to the process defined by m independent, identically dis-
tributed hyperplanes with distribution Θ̂ Hr/Θ̂(Hr) (Theorem 3.2.2). We
denote by f(u1, . . . , um, τ1, . . . , τm) the number of k dimensional polytopes in
the set Ar that are faces of the tessellation of Rd generated by the hyperplanes
H(u1, τ1), . . . , H(um, τm). Then

E(X(k)(Ar) | X̂(Hr) = m)

= Θ̂(Hr)−m2m

∫
(Sd−1)m

∫
(0,∞)m

f(u1, . . . , um, τ1, . . . , τm)

× g(u1, τ1) · · · g(um, τm) d(τ1, . . . , τm)φm(d(u1, . . . , um)).

Similarly, for the stationary Poisson hyperplane process X̂s we get

E(X(k)
s (Ar) | X̂s(Hr) = m)

= Θ̂s(Hr)−m2m

∫
(Sd−1)m

∫
(0,∞)m

f(u1, . . . , um, τ1, . . . , τm)

×d(τ1, . . . , τm)φm(d(u1, . . . , um)).

Let M be the set of all m-tuples (u1, . . . , um) ∈ (Sd−1)m for which∫
(0,∞)m

f(u1, . . . , um, τ1, . . . , τm)g(u1, τ1) · · · g(um, τm) d(τ1, . . . , τm) > 0.

For (u1, . . . , um) ∈M we also have∫
(0,∞)m

f(u1, . . . , um, τ1, . . . , τm) d(τ1, . . . , τm) > 0.

Since E(X(k)
s (Ar) | X̂s(Hr) = m) = 0 by (11.27), it follows that φm(M) = 0

and, therefore, that E(X(k)(Ar) | X̂(Hr) = m) = 0. This proves (11.28).
Thus Θ(k) is absolutely continuous with respect to the translation invariant
measure Θ(k)

s . This shows that the face process X(k) has a translation regular
intensity measure. ��
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Let X̂ and Θ̂ be as in the previous theorem. Since the induced hyper-
plane mosaic X = X(d) and its processes X(k) of k-faces (k = 0, . . . , d − 1)
have (locally finite) translation regular intensity measures, they admit specific
intrinsic volumes Vj(X(k), z) =: d(k)

j (z), j = 0, . . . , k, satisfying

d
(k)
j (z) = Vj(X(k), z) = lim

r→0

1
Vd(rW )

E
∑

K∈X(k)

Φj(K, rW + z) (11.29)

for λ-almost all z, where W ∈ K with Vd(W ) > 0; see Corollary 11.1.1. We
write

γ(k)(z) := d(0)j (z)

and call γ(k) the intensity function of the k-face process X(k).
The following result extends Theorem 10.3.1, for Poisson processes. This

restriction was made since it allows us to deduce the translation regularity of
the intensity measures of the face processes, which otherwise would have to
be an additional assumption.

Theorem 11.4.2. Let X̂ be a nondegenerate Poisson hyperplane process in
Rd with a translation regular intensity measure, let X be the induced hy-
perplane mosaic, and let X(k) be its k-face process, for k = 0, . . . , d. For
0 ≤ j ≤ k ≤ d, the relation

d
(k)
j =

(
d− j
d− k

)
d
(j)
j

holds λ-almost everywhere, in particular

γ(k) =
(
d

k

)
γ(0).

Proof. Let j ∈ {0, . . . , d − 1}, z ∈ Rd, and r > 0. Given a realization of X̂
inducing a mosaic X in general position (without loss of generality), we can
choose finitely many cells S1, . . . , Sp of X such that P :=

⋃p
i=1 Si is a convex

polytope with rBd +z ⊂ intP . Then Φj(P, rBd +z) = 0 since j < d. Since the
curvature measure Φj is additive on the convex ringR, the inclusion–exclusion
principle gives

0 = Φj(P, rBd + z)

= Φj

(
p⋃

i=1

Si, rB
d + z

)

=
p∑

m=1

(−1)m−1
∑

i1<...<im

Φj(Si1 ∩ . . . ∩ Sim
, rBd + z).

Each intersection Si1∩. . .∩Sim
is either empty or an i-face of the mosaicX and

thus an element of X(i) for some i ∈ {1, . . . , d}. Conversely, each element of
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X(i) meeting the ball rBd +z is obtained in this way. For a face F , let ν(F,m)
denote the number of m-tuples (Si1 , . . . , Sim

) with Si1 ∩ . . .∩Sim
= F . Taking

into account the fact that Φj(F, ·) = 0 if dimF < j, we deduce that

0 =
d∑

i=j

∑
F∈X(i)

Φj(F, rBd + z)
p∑

m=1

(−1)m−1ν(F,m)

=
d∑

i=j

(−1)d−i
∑

F∈X(i)

Φj(F, rBd + z) (11.30)

(compare the proof of Theorem 10.1.4). Taking the expectation, dividing by
Vd(rBd) and letting r tend to 0, we obtain from (11.29) the relation

d∑
i=j

(−1)d−id
(i)
j (z) = 0

for almost all z ∈ Rd and for j = 0, . . . , d− 1.
Let k ∈ {1, . . . , d − 1}, j ∈ {0, . . . , k − 1}, and r > 0. Let E be a k-plane

of the intersection process X̂d−k. We apply (11.30) to the mosaic induced in
the k-plane E. This gives

0 =
k∑

i=j

(−1)k−i
∑

F∈X(i), F⊂E

Φj(F, rBd + z).

We sum over all k-planes E ∈ X̂n−k and observe that X is almost surely
in general position. Hence, each i-face of X is contained in precisely

(
d−i
d−k

)
k-planes of X̂d−k. This gives

0 =
k∑

i=j

(−1)k−i

(
d− i
d− k

) ∑
F∈X(i)

Φj(F, rBd + z).

As above, (11.29) yields

k∑
i=j

(−1)i

(
d− i
d− k

)
d
(i)
j (z) = 0

for almost all z ∈ Rd. The remaining part of the proof is identical to that of
Theorem 10.3.1. ��

Finally, we observe that the specific j-volume d(j)j of the j-faces can be
expressed in a different way. Let X̂d−j be the intersection process of order
d − j of the hyperplane process X̂, and let γ̂d−j be the intensity function of
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X̂d−j . It is the Radon–Nikodym derivative of the measure E
∑

E∈X̂d−j
λE and

hence can be obtained by differentiation, in particular

lim
r→0

1
Vd(rBd

E
∑

E∈X̂d−j

λE(rBd + z) = γ̂d−j(z)

for almost all z. Since∑
E∈X̂d−j

λE(rBd + z) =
∑

K∈X(j)

Φj(K, rBd + z),

we deduce that d(j) = γ̂d−j almost everywhere. Together with (11.26), this
yields the inequality

d
(k)
j (z) ≤

(
d− j
d− k

)(
d

j

)
κd−j

d−1

dd−jκjκ
d−j−1
d

γ̂(z)d−j .

Equality holds if the hyperplane process X̂ is stationary and isotropic.

Notes for Section 11.4

1. The results of this section are taken from Schneider [707]. The proof of Theorem
11.4.2 uses ideas from Weiss [807] and Weiss and Zähle [809].

2. Fallert [222, chap. 6] has investigated Voronoi and Delaunay mosaics induced by
Poisson processes in Rd with translation regular intensity measures.
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Facts from General Topology

Throughout this book, we have to use various facts from general topology, the
theory of invariant measures, and the geometry of convex sets. In order not
to delay the access to stochastic geometry by lengthy preparations, we have
collected them here in the Appendix, so that we can refer to the results when
they are needed.

The present chapter deals with topological notions and results, includ-
ing some basic facts on Borel measures. Invariant measures are the topic of
Chapter 13, and the necessary material from convex geometry is presented in
Chapter 14.

12.1 General Topology and Borel Measures

Most of the topological spaces used in this book are locally compact and have a
countable base. By convention, the notions locally compact and compact
are understood to include the Hausdorff separation property. Every locally
compact and second countable space is metrizable.

Let E be a topological space. We use the abbreviations clA, bdA, intA
and Ac, in this order, for the closure, the boundary, the interior and the
complement of a set A ⊂ E. We denote by F(E), C(E), G(E), respectively,
the system of closed, compact, or open subsets of E (always including the
empty set ∅). When there is no danger of ambiguity, we simply write F , C, G
for these set systems. We denote by F ′, C′, G′ the corresponding systems of
nonempty sets.

The subsequent theorem collects a number of topological facts which are
used frequently.

Theorem 12.1.1. The following assertions hold for every locally compact
space E with a countable base.
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(a) The topology of E has a countable base D consisting of open, relatively
compact sets such that every open set G ⊂ E is the union of the sets
D ∈ D satisfying clD ⊂ G.

(b)There is a sequence (Gi)i∈N of open, relatively compact sets in E satisfying
clGi ⊂ Gi+1 for i ∈ N and

⋃
i∈NGi = E.

(c) For every compact set C ⊂ E there exists a decreasing sequence (Gi)i∈N of
open, relatively compact neighborhoods of C in E such that to every open
set G ⊂ E with C ⊂ G there is an i ∈ N with Gi ⊂ G.
Further, there is a decreasing sequence (Hi)i∈N of open, relatively compact
sets with clHi+1 ⊂ Hi and

⋂
i∈NHi = C.

(d) If C ⊂ E is compact and G1, G2 ⊂ E are open sets with C ⊂ G1 ∪ G2,
then there are compact sets C1 ⊂ G1 and C2 ⊂ G2 with C = C1 ∪ C2.

Proof. (a) Let D′ be a countable base of the topology of E and let D ⊂ D′

be the subsystem of the relatively compact sets in D′. Let G ⊂ E be open.
For x ∈ G there is an open neighborhood U such that clU is compact. The
locally compact space E is regular, hence there is an open neighborhood V
of x with clV ⊂ U ∩ G. A suitable base set D ∈ D′ satisfies x ∈ D ⊂ V .
From clD ⊂ clV it follows that clD ⊂ G and clD ⊂ clU , thus D is relatively
compact and, therefore, an element of D. This proves (a).

We fix the system D for the following.

(b) Let D = {Di : i ∈ N}. Put G1 := D1. If the open, relatively compact set
Gm has been defined, choose a number k > m with clGm ⊂

⋃k
j=1Dj ; this is

possible due to the compactness of clGm. Then put
⋃k

j=1Dj =: Gm+1. The
sequence (Gm)m∈N thus defined has the required properties.

(c) Let C ⊂ E be compact. Let (Uk)k∈N be the sequence (in any order) of all
finite unions of sets from D that cover C. Put Gm :=

⋂m
k=1 Uk. Then (Gm)m∈N

is a decreasing sequence of open neighborhoods of C. Let G ∈ G(E) be an
open set with C ⊂ G. To each x ∈ C there exists Dx ∈ D with x ∈ Dx ⊂ G.
Finitely many of these Dx cover C, their union is a set Uk, and Gk ⊂ Uk ⊂ G.

To construct (Hi)i∈N, letH1 := G1 and suppose thatHm has been defined.
To each x ∈ C there exists Dx ∈ D with x ∈ Dx ⊂ clDx ⊂ Hm. Finitely many
of these Dx cover C, their union is a set Uk, put Hm+1 := Gk ∩ Gm. Then
clHm+1 ⊂ clUk ⊂ Hm.

(d) Let K1,K2 ⊂ E be disjoint compact sets, w.l.o.g. nonempty. Let x ∈ K1.
To each y ∈ K2 there are disjoint open neighborhoods Uy of x and Vy of
y. Since K2 is compact, there are finitely many points y1, . . . , yn ∈ K2 with
K2 ⊂

⋃n
i=1 Vyi

=: Vx. The sets Vx and Ux :=
⋂n

i=1 Uyi
are open and disjoint.

Since K1 is compact, there are finitely many points x1, . . . , xk ∈ K1 with
K1 ⊂

⋃k
i=1 Uxi

=: U1. Put U2 :=
⋂k

i=1 Vxi
.

If now C,G1, G2 are sets as described in (d), then put Ki := C \ Gi

(i = 1, 2). The sets K1 and K2 are disjoint and compact. For these sets,
choose U1, U2 as above, and let Ci := C \ Ui. Then Ci is compact, Ci ⊂ Gi

(i = 1, 2), and C = C1 ∪ C2 (since U1 ∩ U2 = ∅). ��
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Products of topological spaces always carry the product topology. For a
topological space E we denote by C(E) the vector space of continuous real
functions on E, and if E is locally compact, Cc(E) is the subspace of C(E)
of functions with compact support.

By a Borel measure ρ on the topological space E we understand a mea-
sure (nonnegative, σ-additive set function) on the σ-algebra B(E) of Borel
sets of E (the smallest σ-algebra containing the open sets of E). It is called
locally finite if it satisfies ρ(K) <∞ for every compact set K ⊂ E. Instead
of ‘Borel measure’, we often say ‘measure’, for short. The notion ‘measurable’,
without extra specification, means ‘Borel measurable’.

In a locally compact space E with a countable base, the values of a locally
finite Borel measure ρ are determined by the integrals of continuous functions
with compact support, in the following way. For open sets A ⊂ E,

ρ(A) = sup
{∫

E

f dρ : f ∈ Cc(E), 0 ≤ f ≤ 1A

}
, (12.1)

and for arbitrary Borel sets A ∈ B(E),

ρ(A) = inf{ρ(U) : A ⊂ U, U open} (12.2)

(see, e.g., Cohn [177, sect. 7.2]).
Concerning the application of Fubini’s theorem for Borel measures, we re-

mark the following. Whenever this theorem is used in this book, the topolog-
ical spaces occurring are locally compact and second countable, thus they are
σ-compact. Moreover, all the measures that occur are locally finite. Therefore,
all measure spaces under consideration are σ-finite, so that Fubini’s theorem
can be applied in its usual form (for example, [177, p. 159]). If E and Y
are topological spaces with countable bases, then B(E × Y ) = B(E) ⊗ B(Y )
(see, e.g., [177, p. 242]). This has to be observed occasionally in measurabil-
ity proofs. For example, in the proof of Theorem 13.1.2, the measurability of
the function (x, y) �→ f(y−1x) with respect to B(G)⊗ B(G) follows from the
continuity of the map (x, y) �→ y−1x and the measurability of the function f .
If in applications of Fubini’s theorem the measurability of the integrand with
respect to the product σ-algebra is not mentioned explicitly, it can be verified
in a similar manner.

The following auxiliary results are used occasionally in order to verify the
measurability of some maps.

Lemma 12.1.1. Let E be a locally compact space with a countable base, let
(T, T ) be a measurable space and

ψ : T × B(E)→ R

a map such that ψ(t, ·) is a Borel measure for every t ∈ T . Suppose that for
every function f ∈ Cc(E) the map
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t �→
∫

E

f(x)ψ(t,dx) (12.3)

is T -measurable. Then, for every nonnegative measurable function f on E the
map (12.3) is T -measurable; in particular, ψ(·, B) is a T -measurable function
for every B ∈ B(E).

Proof. First let B ⊂ E be compact. Since E is locally compact and second
countable, the indicator function 1B is the limit of a decreasing sequence
(fi)i∈N in Cc(E). Thus we have

ψ(t, B) = lim
i→∞

∫
E

fi(x)ψ(t,dx)

for all t ∈ T , which implies the T -measurability of ψ(·, B).
Let D be the system of all sets A ∈ B(E) for which ψ(·, A) is a T -

measurable function. Since ψ(t, ·) is a Borel measure and E is a σ-compact
space, it is easy to see that D is a Dynkin system. It contains the intersec-
tion stable system of compact sets and therefore the σ-algebra generated by
these sets, which is B(E). Thus the function ψ(·, A) is T -measurable for all
A ∈ B(E). The T -measurability of the map (12.3) for nonnegative measurable
functions f on E is now obtained by a standard argument. ��

In typical applications of Lemma 12.1.1, also T is a topological space
(with its Borel σ-algebra), and the map (12.3) is continuous if f ∈ Cc(E).
The function f may also depend on t.

Lemma 12.1.2. If E and T are locally compact spaces with countable bases
and if ψ satisfies the assumptions of Lemma 12.1.1 with T = B(T ), then for
every nonnegative measurable function f on T × E the mapping

t �→
∫

E

f(t, x)ψ(t,dx)

is measurable.

Proof. By Lemma 12.1.1, for B ∈ B(E) the function ψ(·, B) is measurable.
For g(t, x) = 1A(t)1B(x) with A ∈ B(T ) and B ∈ B(E) we deduce the
measurability of the map

t �→ 1A(t)ψ(t, B) =
∫

E

g(t, x)ψ(t,dx).

Since B(T ×E) = B(T )⊗B(E) (Cohn [177, p. 242]), the assertion is obtained
by a standard argument. ��
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12.2 The Space of Closed Sets

The standard treatment of random closed sets makes use of a suitable topology
on the system of closed subsets of a given locally compact topological space.
We collect here the basic notions and results on this topology which are used
in the present book.

Throughout this section, E is a locally compact space with a countable
base.

The following subsystems of the system F = F(E) of closed subsets of E
play an important role. For A,A1, . . . , Ak ⊂ E one defines

FA := {F ∈ F : F ∩A = ∅},
FA := {F ∈ F : F ∩A �= ∅}

and
FA

A1,...,Ak
:= FA ∩ FA1 ∩ . . . ∩ FAk

, k ∈ N0

(with FA
A1,...,Ak

:= FA if k = 0). In particular, FA = F ∅
A and (FA)c = FA.

Notice that always ∅ ∈ FA, but ∅ /∈ FA
A1,...,Ak

for k ≥ 1. Occasionally in
proofs, this fact requires the consideration of different cases.

On F we introduce the topology generated by the set system

{F C : C ∈ C} ∪ {FG : G ∈ G}. (12.4)

Because of the relation

F C
G1,...,Gk

∩ F C′
G′

1,...,G′
m

= F C∪C′
G1,...,Gk,G′

1,...,G′
m
,

the system

τ := {F C
G1,...,Gk

: C ∈ C, G1, . . . , Gk ∈ G, k ∈ N0}

is ∩-stable (stable under intersections), and F = F ∅ ∈ τ , hence τ is a base
of the topology generated by (12.4). Thus, the open sets of this topology are
the unions of the sets of τ . This topology is called the topology of closed
convergence or the Fell topology. In this book, the set F is always equipped
with this topology, unless stated otherwise.

Theorem 12.2.1. F is a compact space with a countable base.

Proof. Let D be a countable base of the topology of E with the properties
listed in Theorem 12.1.1(a).

To prove the Hausdorff separation property, let F, F ′ be distinct elements
of F . Without loss of generality, there exists a point x ∈ F \F ′. There is a set
D ∈ D with x ∈ D and F ′ ∩ clD = ∅. Thus FD is a neighborhood of F , while
F cl D is a neighborhood of F ′, and FD ∩ F cl D = ∅. Hence, F is a Hausdorff
space.
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For the proof of the compactness it suffices by Alexander’s theorem (see,
for example, Kelley [393, p. 139]) to prove that every covering of F by sets of
the subbasis (12.4) contains a finite covering of F . Suppose, therefore, that⋃

i∈I

F Ci ∪
⋃
j∈J

FGj
= F

with a pair of families

(Ci)i∈I , Ci ∈ C, and (Gj)j∈J , Gj ∈ G.

Taking complements, we get⋂
i∈I

FCi
∩

⋂
j∈J

F Gj = ∅.

Writing G :=
⋃

j∈J Gj , we have
⋂

j∈J F Gj = F G, hence our assumption gives⋂
i∈I

F G
Ci

= ∅.

There is an index i0 ∈ I with Ci0 ⊂ G, since otherwise Gc ∩ Ci �= ∅ for all
i ∈ I, which would imply

Gc ∈
⋂
i∈I

F G
Ci
,

a contradiction. For the compact set Ci0 ⊂ G =
⋃

j∈J Gj , there is a finite
subcovering and hence a finite subset J0 ⊂ J with Ci0 ⊂

⋃
j∈J0

Gj . This
implies ⋂

j∈J0

F Gj

Ci0
= ∅

and thus
F Ci0 ∪

⋃
j∈J0

FGj
= F .

This proves the compactness of F .
To show the existence of a countable base, we consider the countable

system

τ ′ :=
{
F cl D′

1∪...∪ cl D′
m

D1,...,Dk
: Di, D

′
j ∈ D, k ∈ N0, m ∈ N

}
.

It satisfies τ ′ ⊂ τ . Now let F ∈ F and

F ∈ F C
G1,...,Gk

∈ τ.

It suffices to show the existence of a set A ∈ τ ′ with

F ∈ A ⊂ F C
G1,...,Gk

.



12.2 The Space of Closed Sets 565

Since F ∩ C = ∅, to every x ∈ C there exists a set D(x) ∈ D with x ∈ D(x)
and F ∩clD(x) = ∅. The family (D(x))x∈C is an open covering of the compact
set C, hence there exist D′

1, . . . , D
′
m ∈ D with C ⊂ clD′

1 ∪ . . . ∪ clD′
m and

F ∩ clD′
i = ∅. If k = 0, then

F ∈ F cl D′
1∪...∪ cl D′

m ⊂ F C .

If k ≥ 1, then for each i ∈ {1, . . . , k} there exist xi ∈ F ∩Gi and Di ∈ D with
xi ∈ Di ⊂ Gi. This gives

F ∈ F cl D′
1∪...∪ cl D′

m

D1,...,Dk
⊂ F C

G1,...,Gk
.

Hence, also the system τ ′ is a base of the topology of F . ��

Remarks. (a) Due to Theorem 12.2.1, in convergence or continuity arguments
it is sufficient to work with sequences instead of nets or filters. By Urysohn’s
theorem, F is metrizable.

(b) The space F ′ := F \ {∅} is locally compact, but for non-compact E it is
not compact. This is seen from the fact that⋃

D∈D
FD = FE = F \ {∅} = F ′,

but no finite subfamily of {FD : D ∈ D} covers F ′.

(c) The point ∅ ∈ F has the system {F C : C ∈ C} as a base of neighborhoods.
The space F is the one-point (Aleksandrov) compactification of F ′.

Now we consider convergence in F and give, in the next theorem, useful
equivalent descriptions. As usual, ‘almost all j ∈ N’ means: all j ∈ N with at
most finitely many exceptions.

Theorem 12.2.2. Let (Fj)j∈N be a sequence in F , and let F ∈ F . Then the
following assertions (a), (b), (c) are equivalent:

(a) Fj → F as j →∞.
(b)Conditions (b1) and (b2) hold:

(b1) If G ∈ G and G ∩ F �= ∅, then G ∩ Fj �= ∅ for almost all j.
(b2) If C ∈ C and C ∩ F = ∅, then C ∩ Fj = ∅ for almost all j.

(c) Conditions (c1) and (c2) hold:
(c1) If x ∈ F , then for almost all j there is xj ∈ Fj so that xj → x as

j →∞.
(c2) If (Fjk

)k∈N is a subsequence and the points xjk
∈ Fjk

are such that
x := limk→∞ xjk

exists, then x ∈ F .

Proof. By definition, Fj → F holds if and only if every neighborhood from
the system τ contains almost all Fj . Therefore, the definition of τ implies the
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equivalence of (a) and (b). We prove now the equivalence of (b1) with (c1)
and that of (b2) with (c2).

(b1)⇒ (c1): Let x ∈ F . Let G1 ⊃ G2 ⊃ . . . be a base of open neighborhoods of
x. Then Gi∩F �= ∅, hence (b1) implies the existence of ki ∈ N with Gi∩Fk �= ∅
for k ≥ ki (i ∈ N). W.l.o.g., we may assume that k1 < k2 < . . . Hence, there
exists a sequence (xp)p≥k1 such that

xp ∈ Gi ∩ Fp for p = ki, . . . , ki+1 − 1, i ∈ N.

Thus xp → x.

(c1)⇒ (b1): Let G ∈ G and G ∩ F �= ∅. There exists x ∈ G ∩ F . By (c1), for
almost all j there is xj ∈ Fj so that xj → x. Then xj ∈ G and thus G∩Fj �= ∅
for almost all j.

(b2) ⇒ (c2): Let (Fjk
)k∈N be a subsequence, xjk

∈ Fjk
for k ∈ N, and

limk→∞ xjk
= x. If x /∈ F , then there exists a compact neighborhood C

of x with C ∩ F = ∅, and (b2) yields C ∩ Fj = ∅ for almost all j, a contradic-
tion.

(c2) ⇒ (b2): Suppose that (b2) is false. Then there is C ∈ C with C ∩ F = ∅
and C ∩ Fj �= ∅ for infinitely many j. Hence, there is a subsequence (Fjk

)k∈N

with corresponding points xjk
∈ C ∩ Fjk

. A suitable subsequence of (xjk
)k∈N

converges to some x ∈ C. Then x /∈ F , which contradicts (c2). ��

In the treatment of random closed sets, the required measurability of set-
theoretic operations often follows from their continuity or semicontinuity. For
that reason, we now consider assertions of the latter type.

Theorem 12.2.3. The union map

F × F → F
(F, F ′) �→ F ∪ F ′

is continuous.

Proof. Let (Fi)i∈N and (F ′
i )i∈N be convergent sequences in F with Fi → F

and F ′
i → F ′. We have to show that Fi ∪ F ′

i → F ∪ F ′. Corresponding to
Theorem 12.2.2, we proceed in two steps.

(α) Let x ∈ F∪F ′, w.l.o.g. x ∈ F . For almost all i there exists xi ∈ Fi ⊂ Fi∪F ′
i

with xi → x.

(β) Suppose (w.l.o.g.) that xi → x with xi ∈ Fi ∪ F ′
i . Then there is a

subsequence (xjk
)k∈N satisfying xjk

∈ Fjk
, say. This implies x ∈ F , hence

x ∈ F ∪ F ′.

It follows that Fi ∪ F ′
i → F ∪ F ′. ��
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Other set operations, such as intersection or forming the closure of the
complement, are not continuous. If, for example, (Fi)i∈N is a sequence of
singletons Fi = {xi} with Fi → F = {x} (which is equivalent to xi → x) and
Fi ∩F = ∅, then it is not true that Fi ∩F → F ∩F . If (Fi)i∈N is a convergent
sequence of finite sets with Fi → E, then clF c

i = E, hence it is not true that
clF c

i → clEc. Also the boundary operation is not continuous. Semicontinuity
properties, however, can be proved.

Let ϕ : T → F be a map from some topological space T into F . The map
ϕ is called upper semicontinuous if ϕ−1(F C) is open (in T ) for all C ∈ C;
it is called lower semicontinuous if ϕ−1(FG) is open for all G ∈ G. The
following notions are helpful in the treatment of semicontinuity. For a sequence
(Fi)i∈N in F , one denotes by lim supFi the union of all accumulation points
(in F) of the sequence (Fi)i∈N, and by lim inf Fi the intersection of all these
accumulation points (recall that a ‘point’ in F is a set in E). These two sets
can be characterized as follows.

Theorem 12.2.4. Let (Fi)i∈N be a sequence in F . Then

lim supFi

= {x ∈ E : every neighborhood of x meets infinitely many Fi}, (12.5)

lim inf Fi

= {x ∈ E : every neighborhood of x meets almost all Fi}. (12.6)

Both sets are closed.

Proof. We denote the right side of (12.5) by A and that of (12.6) by B.
Let x ∈ A. Then there are a subsequence (Fij

)j∈N and points xij
∈ Fij

with xij
→ x as j → ∞. Since F is compact and second countable, the

sequence (Fij
)j∈N has a subsequence converging to some F ∈ F . By Theorem

12.2.2, x ∈ F ⊂ lim supFi. Conversely, suppose that x ∈ lim supFi. Then
there is a convergent subsequence (Fij

)j∈N with limit F such that x ∈ F .
Theorem 12.2.2 implies that x = limxij

for suitable xij
∈ Fij

and j ≥ j0, say.
It follows that x ∈ A. Thus A = lim supFi. This also shows that lim supFi is
closed.

Let x ∈ B. Then there are points xi ∈ Fi (i ≥ i0) with limxi = x. If F is
the limit of a convergent subsequence of (Fi)i∈N, then it follows that x ∈ F .
Thus x ∈ lim inf Fi. Conversely, let y ∈ E be a point such that y /∈ B. Then
there is a neighborhood U of y and a subsequence (Fij

)j∈N with U ∩ Fij
= ∅

for j ∈ N. This sequence has a subsequence converging to some F ∈ F .
Theorem 12.2.2 gives y /∈ F , hence y /∈ lim inf Fi. This completes the proof of
B = lim inf Fi. Clearly lim inf Fi is closed. ��

Remark. For a sequence (Fi)i∈N in F we obviously have limFi = F if and
only if

lim supFi = lim inf Fi = F. (12.7)
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More generally, one can define lim supFi and lim inf Fi by (12.5) and (12.6)
for sequences (Fi)i∈N of not necessarily closed subsets of E, and one can
then define the convergence of (Fi)i∈N to F by (12.7). Since lim supFi and
lim inf Fi are always closed, one calls F the closed limit of the sequence
(Fi)i∈N. This explains the name ‘topology of closed convergence’ for the
topology introduced on F .

The following is a useful criterion for semicontinuity.

Theorem 12.2.5. Let T be a topological space with a countable base and ϕ :
T → F a mapping.

(a) ϕ is upper semicontinuous if and only if

lim supϕ(ti) ⊂ ϕ(t) for all t, ti ∈ T with ti → t.

(b)ϕ is lower semicontinuous if and only if

lim inf ϕ(ti) ⊃ ϕ(t) for all t, ti ∈ T with ti → t.

Proof. (a) The set ϕ−1(F C) is open for all C ∈ C if and only if ϕ−1(FC) is
closed for all C ∈ C. This is equivalent to the following condition:

(a1) If C ∈ C, ti → t in T and ϕ(ti) ∩ C �= ∅ for all i, then ϕ(t) ∩ C �= ∅.
On the other hand, (a1) is equivalent to (a2):

(a2) If ti → t in T , then lim supϕ(ti) ⊂ ϕ(t).

To prove this latter equivalence, assume that (a1) holds. If ti → t in T and
x ∈ lim supϕ(ti), then every neighborhood of x, in particular every compact
neighborhood C, meets infinitely many ϕ(ti). By (a1) (applied to a subse-
quence) this implies ϕ(t) ∩ C �= ∅ and hence x ∈ ϕ(t), since every neighbor-
hood of x contains a compact neighborhood of x. Conversely, suppose that
(a2) holds. Under the assumptions of (a1) there are xi ∈ ϕ(ti)∩C, and since C
is compact, there exists a subsequence (xij

)j∈N with xij
→ x ∈ C for j →∞.

It follows that x ∈ lim supϕ(ti) ⊂ ϕ(t), hence ϕ(t) ∩ C �= ∅.
The equivalence of (a1) and (a2) settles (a). Assertion (b) can be proved sim-
ilarly. ��

Now we can show the semicontinuity of some maps.

Theorem 12.2.6. (a) The map

F × F → F
(F, F ′) �→ F ∩ F ′

is upper semicontinuous.
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(b)The map
F → F
F �→ clF c

is lower semicontinuous.
(c) If E is locally connected, the map

F → F
F �→ bdF

is lower semicontinuous.

Proof. For the proof of (a), let (Fi)i∈N and (F ′
i )i∈N be convergent sequences

in F with Fi → F and F ′
i → F ′. According to Theorem 12.2.5(a), it suffices

to show that lim sup(Fi ∩ F ′
i ) ⊂ F ∩ F ′. Let x ∈ lim sup(Fi ∩ F ′

i ). Then there
are a subsequence (Fik

∩F ′
ik

)k∈N and points xik
∈ Fik

∩F ′
ik

with xik
→ x. By

Theorem 12.2.2(c), this implies x ∈ F and x ∈ F ′, hence x ∈ F ∩ F ′.
For the proof of (b), let c : F → F be defined by c(F ) := clF c. For G ∈ G

we have

c−1(F G) = {F ∈ F : G ∩ clF c = ∅}
= {F ∈ F : G ∩ F c = ∅}
= {F ∈ F : G ⊂ F}.

The set {F ∈ F : G ⊂ F} is closed (since Fi → F , G ⊂ Fi, x ∈ G implies
xi := x ∈ Fi and xi → x, hence x ∈ F ); therefore, its complement c−1(FG) is
open. Thus c is lower semicontinuous.

For the proof of (c), let ∂ : F → F be defined by ∂(F ) := bdF . First let
B ⊂ E be an open connected set. For F ∈ F the condition B ∩ bdF �= ∅ is
equivalent to B ∩ F �= ∅ and B ∩ F c �= ∅. Therefore,

∂−1(FB) = {F ∈ F : B ∩ bdF �= ∅}
= {F ∈ F : B ∩ F �= ∅ and B ∩ F c �= ∅}
= FB ∩ {F ∈ F : B ⊂ F}c.

The set {F ∈ F : B ⊂ F} is closed, hence ∂−1(FB) is open. Since E is
locally connected, an arbitrary open set G ∈ G can be written as the union
G =

⋃
Bi of open connected sets Bi. It follows that ∂−1(FG) = ∂−1(

⋃
FBi

) =⋃
∂−1(FBi

) is open. Thus ∂ is lower semicontinuous. ��

Recall that 1F is the indicator function of the set F .

Theorem 12.2.7. The map

F × E → R

(F, x) �→ 1F (x)

is upper semicontinuous.
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Proof. Suppose that (Fi, xi) → (F, x) in F × E. If lim sup1Fi
(xi) = 1, then

there is a subsequence (Fij
, xij

)j∈N with xij
∈ Fij

for j ∈ N, and Theorem
12.2.2 implies x ∈ F . Hence,

lim sup
i→∞

1Fi
(xi) ≤ 1F (x).

If lim sup1Fi
(xi) = 0, this inequality holds trivially. ��

Note for Section 12.2

The topology of closed convergence for sequences of sets appears already in the work

of Hausdorff [323]. The name ‘Fell topology’ became common after the generalization

established in Fell [230]. For general treatments of topologies on spaces of subsets

of a topological space, we refer to Michael [513], Klein and Thompson [419], Beer

[87]. Convergence of subsets of Rd is thoroughly treated in Chapter 4 of Rockafellar

and Wets [646]. The use of the Fell topology in stochastic geometry, where it is

sometimes called the hit-and-miss topology, was emphasized by Matheron [462].

12.3 Euclidean Spaces and Hausdorff Metric

The special case where the underlying space E is Rd, the d-dimensional Euclid-
ean space, shows additional features, due to the linear structure of Rd and the
properties of its standard metric. In this subsection, F ,G, C denote, respec-
tively, the spaces F(Rd), G(Rd), C(Rd).

Theorem 12.3.1. The maps

F → F
F �→ −F

and
R+ ×F → F
(α, F ) �→ αF

are continuous. The maps

F → F
F �→ cl convF

and
F × F → F
(F, F ′) �→ cl (F + F ′)

are lower semicontinuous.

Proof. The proofs of the first two assertions are analogous to the proof of
Theorem 12.2.3.

For the proof of the third assertion, let h : F → F denote the map defined
by h(F ) := cl convF . Let (Fi)i∈N be a sequence in F with Fi → F . We
have to show that h(F ) ⊂ lim inf h(Fi). For this, let x ∈ convF . There is a
representation
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x =
m∑

k=1

λkxk with xk ∈ F, λk ≥ 0,
m∑

k=1

λk = 1,

with some m ∈ N. For each k ∈ {1, . . . ,m} we have, by Theorem 12.2.2,

xk = lim
j→∞

xk,j

with suitable xk,j ∈ Fj (j ≥ j0). Defining xj :=
∑m

k=1 λkxk,j , we get xj ∈
convFj ⊂ h(Fj) and xj → x. By Theorem 12.2.4, this gives x ∈ lim inf h(Fj).
This shows that convF ⊂ lim inf h(Fj). Since the inferior limit of a sequence
of sets is always closed, we also have h(F ) = cl convF ⊂ lim inf h(Fj). Hence,
the map h is lower semicontinuous.

The remaining assertion is proved in a similar manner. ��

Now we take into account the Euclidean metric d(·, ·) on Rd, which is
defined via the standard scalar product 〈·, ·〉 and the corresponding norm ‖·‖,
by d(x, y) := ‖x− y‖ for x, y ∈ Rd. It induces the Hausdorff metric on the set
C′ := C \ {∅} of nonempty compact subsets of Rd, and we want to compare
the corresponding topology on C′ with the one induced by the topology of F .
This could be done for more general metric spaces, but it is sufficient for our
purposes to consider only Rd.

For C,C ′ ∈ C′, the Hausdorff distance δ(C,C ′) is defined by

δ(C,C ′) := max
{

max
x∈C

min
y∈C′

d(x, y), max
x∈C′

min
y∈C

d(x, y)
}
.

Writing
d(x,C) := min

y∈C
d(x, y)

for the distance of x from C and

Cε := {x ∈ Rd : d(x,C) ≤ ε}

for ε ≥ 0, we have

δ(C,C ′) = min{ε ≥ 0 : C ⊂ C ′
ε, C

′ ⊂ Cε}.

This can also be written as

δ(C,C ′) = min{ε ≥ 0 : C ⊂ C ′ + εBd, C ′ ⊂ C + εBd},

where Bd is the closed unit ball with center at the origin. It is easy to see
that δ is a metric on C′. We extend it to a (R ∪ {∞}-valued) metric on C by
putting δ(C,C ′) :=∞ if precisely one of the sets C,C ′ is the empty set, and
δ(∅, ∅) := 0.

In the following, we equip C with the topology induced by the (extended)
Hausdorff metric. In this topology, ∅ is an isolated point of C, but not in the
topology induced by F .
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Theorem 12.3.2. The topology of the Hausdorff metric on C is strictly finer
than the trace topology induced by F . On every set

{C ∈ C : C ⊂ K}, K ∈ C,

both topologies are the same.

Proof. Suppose that Ci → C in the Hausdorff metric, where C,Ci ∈ C′,
w.l.o.g. We have to show that Ci → C also in the topology of F .

(α) Let x ∈ C. Since d(x,Ci)→ 0, there exist xi ∈ Ci with xi → x.

(β) Let (Cij
)j∈N be a subsequence, let xij

∈ Cij
and xij

→ x. Since δ(Ci, C)→
0, there are yij

∈ C with d(xij
, yij

) → 0. It follows that yij
→ x and hence

that x ∈ C.

Now Theorem 12.2.2 shows that Ci → C in F . Thus the topology of the
Hausdorff metric on C is finer than the topology induced by F . That it is
strictly finer follows from the fact that there are sequences (Ci)i∈N in C that
converge in F , but not in (C, δ). An example is given by ({x, xi}), where (xi)
is a sequence of points with ‖xi‖ → ∞.

Let K ∈ C, and suppose that Ci → C in F with C,Ci ∈ C′ and C,Ci ⊂ K.
Let 0 < ε < 1 and C̃ := cl (K \ Cε); then C̃ ∈ C. Since C ∩ C̃ = ∅, Theorem
12.2.2 implies Ci∩C̃ = ∅ for almost all i. For these i we have Ci ⊂ Cε. Assume
that C ⊂ (Ci)ε does not hold for almost all i. Then, for infinitely many i there
exists xi ∈ C with d(xi, Ci) ≥ ε. Since C is compact, there is a subsequence
(xij

)j∈N with xij
→ x ∈ C. By Theorem 12.2.2, there are yi ∈ Ci with yi → x.

We conclude that ε ≤ d(xij
, yij

) ≤ d(xij
, x) + d(x, yij

) → 0, a contradiction.
Thus C ⊂ (Ci)ε and, therefore, δ(C,Ci) ≤ ε for almost all i. Since ε < 1 was
arbitrary, we deduce that Ci → C in the Hausdorff metric, thus the second
assertion holds. ��

When working with C in this book, we often make use of the metric space
(C, δ). Here the metric δ is induced by the Euclidean metric of Rd. The latter
could be replaced by any metric generating the topology of Rd, without chang-
ing the topology of (C, δ); this follows from Theorem 12.3.2. As an immediate
consequence of Theorem 12.3.2, we have:

Theorem 12.3.3. The convergence of a sequence (Ci)i∈N in (C, δ) is equiva-
lent to (a) and (b):

(a) (Ci)i∈N converges in F .
(b) (Ci)i∈N is uniformly bounded, that is, there exists a set K ∈ C with Ci ⊂ K

for all i.

Since F is compact, Theorem 12.3.3 implies in particular that every uni-
formly bounded sequence in C′ possesses a convergent subsequence (hence
every uniformly bounded set in C′ is relatively compact). This assertion (to-
gether with the observation that a limit of compact convex sets is convex) is
often called the Blaschke selection theorem.
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For special sequences in C′, no distinction between convergence in F and
in (C, δ) is necessary.

Theorem 12.3.4. If Ci → C in F for Ci, C ∈ C′ and if each Ci is connected,
then Ci → C in the Hausdorff metric.

On the set K′ of nonempty compact convex sets, the topology of the Haus-
dorff metric and the trace topology induced by F coincide.

Proof. Let B be a ball containing C in its interior. Choose x ∈ C. Since
Ci → C in F , there exist xi ∈ Ci with xi → x, and we have xi ∈ intB
for almost all i. Assume that Ci �⊂ B for infinitely many i. Then there is
a sequence (yij

)j∈N such that yij
∈ Cij

\ B and xij
∈ intB. Since Cij

is
connected, we can choose a point zij

∈ Cij
∩ bdB. The sequence (zij

)j∈N has
a subsequence converging to some z ∈ bdB. Then z ∈ C by Theorem 12.2.2,
a contradiction. Thus Ci ⊂ B for almost all i, and Theorem 12.3.3 completes
the proof of the first assertion.

The second assertion follows from the first one together with Theorem
12.3.2. ��

Next, we show the continuity of some set operations with respect to the
Hausdorff metric.

Theorem 12.3.5. If C is equipped with the topology of the Hausdorff metric,
then the maps

C × F → F C × C → C
(C,F ) �→ C ∪ F (C,C ′) �→ C ∪ C

C × F → F C′ × C → C
(C,F ) �→ C + F (C,C ′) �→ C + C ′

C → C R+ × C → C
C �→ −C (α,C) �→ αC

and
C → C
C �→ convC

are continuous.

Proof. We treat only the third and the last map; for the remaining ones, the
proofs are similar.

For the proof of the third assertion we first remark that for C ∈ C and
F ∈ F we indeed have C + F ∈ F . Now suppose that Ci → C in C and
Fi → F in F . We use Theorem 12.2.2.

(α) Let x ∈ C + F , thus x = y + z with y ∈ C and z ∈ F . Then y = lim yi

holds with suitable yi ∈ Ci and z = lim zi with zi ∈ Fi (i ≥ i0). It follows
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that yi + zi ∈ Ci + Fi and yi + zi → x.

(β) Let (Cij
+Fij

)j∈N be a subsequence, let xij
∈ Cij

+Fij
and xij

→ x. Then
xij

= yij
+ zij

with yij
∈ Cij

and zij
∈ Fij

. By Theorem 12.3.3, there is a
set K ∈ C with Ci ⊂ K for all i. Hence, (yij

)j∈N has a subsequence (ymj
)j∈N

converging to some y ∈ K. By Cmj
→ C we have y ∈ C, and it follows that

zmj
= xmj

− ymj
→ x− y =: z and z ∈ F , hence x ∈ C + F .

We conclude that Ci + Fi → C + F .
For the proof of the last assertion we first remark that C ∈ C implies

convC ∈ C, by Carathéodory’s theorem. Suppose that Ci → C in C. Then
δ(C,Ci) ≤ ε implies

Ci ⊂ C + εBd and C ⊂ Ci + εBd,

hence
convCi ⊂ convC + εBd, convC ⊂ convCi + εBd

and thus
δ(convC, convCi) ≤ ε.

The assertion follows. ��

We note a semicontinuity property of the volume. The volume functional
Vd on F is defined by

Vd : F → R ∪ {∞}
F �→ λ(F )

,

where λ is the Lebesgue measure on Rd. On F , the volume functional is neither
upper nor lower semicontinuous, but on (C, δ) the situation is different.

Theorem 12.3.6. On (C, δ), the volume functional is upper semicontinuous.

Proof. Let Ci → C in (C, δ), and let x ∈ Rd. By Theorems 12.2.7 and 12.3.2,

lim sup 1Ci
(x) ≤ 1C(x).

This gives

Vd(C) =
∫

Rd

1C(x)λ(dx) ≥
∫

Rd

lim sup1Ci
(x)λ(dx)

≥ lim sup
∫

Rd

1Ci
(x)λ(dx) = lim supVd(Ci),

by Fatou’s lemma. Since Ci ⊂ C + εBd for suitable ε > 0 and all i, we have
1Ci

≤ 1C+εBd and thus ∫
Rd

1C+εBd(x)λ(dx) <∞,

which justifies the application of Fatou’s lemma. ��
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Invariant Measures

Integral geometry, as it is used in this book for the treatment of random
geometric structures with stationarity or isotropy properties, is based on the
notion of an invariant measure. Here invariance refers to a group operation
and thus to a homogeneous space. Invariant measures on topological groups
and homogeneous spaces are known as Haar measures. The general theory
of such measures can be found, for example, in Hewitt and Ross [342] and
Nachbin [571]. However, we do not presuppose here any knowledge of the
theory of Haar measure (with the exception of Section 13.3, which is rarely
used in this book and could be dispensed with). For the topological groups
and homogeneous spaces that are relevant for integral geometry in Euclidean
spaces, the existence and uniqueness of invariant measures will be proved in
Section 13.2 in a direct and elementary way, starting from Lebesgue measure
and assuming only basic facts from measure theory.

13.1 Group Operations and Invariant Measures

A topological group is a group G together with a topology on G such that
the map from G×G to G defined by (x, y) �→ xy (the product of x and y) and
the map from G to G defined by x �→ x−1 are continuous. The topologies of all
topological groups occurring in this book are assumed to be locally compact
and second countable.

Let G be a group and E a nonempty set. An operation of G on E is a
map ϕ : G× E → E satisfying

ϕ(g, ϕ(g′, x)) = ϕ(gg′, x), ϕ(e, x) = x

for all g, g′ ∈ G, the unit element e of G, and all x ∈ E. One also says
that G operates on E, by means of ϕ. For ϕ(g, x) one usually writes gx,
provided that the operation is clear from the context. The group G operates
transitively on E if for any x, y ∈ E there exists g ∈ G such that y = gx.
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If G is a topological group, E is a topological space, and the operation ϕ is
continuous, one says that G operates continuously on E.

The following situation often occurs: E is a nonempty set and G is a group
of transformations (bijective mappings onto itself) of E, with the composition
as group multiplication; the operation of G on E is given by (g, x) �→ gx :=
image of x under g. When transformation groups occur in the following, mul-
tiplication and operation are always understood in this sense.

A basic situation considered in integral geometry is the operation of a
transformation group on some space together with the induced operation on
a space of geometrically significant subsets. Generally, let the space E be
as in Section 12.2, that is, locally compact and second countable, and let F
be the space of closed subsets of E. Let G be a topological group operating
continuously on E. For g ∈ G and F ⊂ E, let

gF := {gx : x ∈ F}. (13.1)

For each g ∈ G, the bijective map x �→ gx is continuous, and so is its inverse,
thus it is a homeomorphism. It follows that gF ∈ F for F ∈ F . Hence, (13.1)
defines an operation of G on the space F . This operation is continuous.

Theorem 13.1.1. If the topological group G operates continuously on E, then
the map

G×F → F
(g, F ) �→ gF

is continuous.

Proof. Suppose that (gi, Fi)→ (g, F ) in G×F . We have to show that giFi →
gF in F , and for this we use Theorem 12.2.2.

(α) Let x ∈ gF , thus x = gy with y ∈ F . Since Fi → F in F , there are yi ∈ Fi

with yi → y. For xi := giyi we have xi ∈ giFi and xi → x.

(β) Let (gik
Fik

)k∈N be a subsequence and let xik
= gik

yik
with yik

∈ Fik
be

such that xik
→ x. Then yik

→ y := g−1x, and y ∈ F , hence x = gy ∈ gF . ��

Let G be a topological group. A homogeneous G-space is a pair (E,ϕ)
with the following properties: E is a topological space, ϕ : G × E → E is a
transitive continuous operation of G on E, and for (one and hence for all)
p ∈ E, the mapping ϕ(·, p) is open. Up to isomorphism, all homogeneous G-
spaces are obtained in the following way. Let H be a subgroup of G (with
the trace topology) and let G/H be the factor space, that is, the space {aH :
a ∈ G} of left cosets of H in G, equipped with the quotient topology. The
map π : G → G/H defined by π(a) := aH for a ∈ G is called the natural
projection. The quotient topology on G/H is characterized by the properties
that π is continuous and open. By

ζ(g, aH) := gaH for g ∈ G, aH ∈ G/H,
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one obtains a transitive continuous operation ζ of G on G/H; it is called the
natural operation of G on G/H. The pair (G/H, ζ) is a homogeneous G-
space. Conversely, let (E,ϕ) be a homogeneous G-space. For an arbitrarily
chosen point p ∈ E let Sp be the stability group of p, that is, the subgroup
Sp := {g ∈ G : gp = p} (with gp := ϕ(g, p)). Then the map

β : G/Sp → E

gSp �→ gp

is a homeomorphism from G/Sp onto E with the property that β(gaSp) =
gβ(aSp) for all g ∈ G and all aSp ∈ G/Sp. In this sense, the homogeneous G-
spaces (E,ϕ) and (G/Sp, ζ) are isomorphic. Hence, if a homogeneous G-space
is given, one can always assume that it is of the form G/H with a subgroup
H and that the operation is the natural one. The subgroup H is closed if and
only if G/H is a Hausdorff space.

We turn to invariant measures. Let the topological group G operate con-
tinuously on the topological space E. A Borel measure ρ on E is called G-
invariant (or briefly invariant, if G is clear from the context) if

ρ(gA) = ρ(A) for all A ∈ B(E) and all g ∈ G.

This definition makes sense: for each g ∈ G, the mapping x �→ gx is a homeo-
morphism, hence A ∈ B(E) implies gA ∈ B(E). An invariant regular Borel
measure on a locally compact homogeneous space which is not identically zero
is called a Haar measure.

For a measure on a group, several notions of invariance are natural. A
topological group G operates on itself by means of the mapping (g, x) �→ gx
(multiplication in G) for (g, x) ∈ G × G. The corresponding invariance of a
measure on G is called left invariance. More generally, for g ∈ G and A ⊂ G
we write

gA := {ga : a ∈ A},
Ag := {ag : a ∈ A},
A−1 := {a−1 : a ∈ A}.

If A ∈ B(G), then also gA,Ag,A−1 are Borel sets, because multiplication from
the left or the right and taking the inverse are homeomorphisms. Now let ρ
be a measure on G. It is called left invariant if ρ(gA) = ρ(A), and right
invariant if ρ(Ag) = ρ(A), for all A ∈ B(G) and all g ∈ G. The measure ρ
is inversion invariant if ρ(A−1) = ρ(A) for all A ∈ B(G). If ρ has all three
invariance properties, it is called invariant. A left invariant (right invariant,
invariant) regular Borel measure which is not identically zero is called a left
Haar measure (right Haar measure, Haar measure).

Invariance properties of measures are equivalent to invariance properties
of integrals. Let ρ be a regular Borel measure on the topological group G. If
ρ is left invariant, then every measurable function f ≥ 0 on G satisfies



578 13 Invariant Measures∫
G

f(ag) ρ(dg) =
∫

G

f(g) ρ(dg) (13.2)

for all a ∈ G. This follows immediately from the definition of the integral.
Conversely, if (13.2) holds for all continuous functions f ≥ 0 with compact
support, then the left invariance of ρ is obtained from (12.1), (12.2). Similarly,
the right invariance of ρ is equivalent to∫

G

f(ga) ρ(dg) =
∫

G

f(g) ρ(dg)

for all a ∈ G, and the inversion invariance of ρ is equivalent to∫
G

f(g−1) ρ(dg) =
∫

G

f(g) ρ(dg),

in each case for all nonnegative functions f ∈ Cc(G).

We prove some uniqueness results for invariant measures. They are only
needed for the groups and homogeneous spaces of Euclidean geometry, but
without additional effort we can prove them in a more general setting.

Theorem 13.1.2. Every left Haar measure on a compact group G with a
countable base is invariant.

Proof. Let ν be a left Haar measure on a group G satisfying the assumptions.
Since ν is finite on compact sets, we may assume ν(G) = 1, without loss of
generality. For a continuous function f ≥ 0 on G and for x ∈ G we have∫

f(y−1x) ν(dy) =
∫
f((x−1y)−1) ν(dy) =

∫
f(y−1) ν(dy). (13.3)

Here the integrations extend over all of G; similar conventions will be adopted
in the following. Fubini’s theorem gives∫

f(y−1) ν(dy) =
∫ ∫

f(y−1x) ν(dy) ν(dx)

=
∫ ∫

f(y−1x) ν(dx) ν(dy) =
∫
f(x) ν(dx).

Hence, the measure ν is inversion invariant. Using this fact and (13.3), we
obtain for x ∈ G that ∫

f(yx) ν(dy) =
∫
f(y−1x) ν(dy)

=
∫
f(y−1) ν(dy) =

∫
f(y) ν(dy),

which shows that ν is also right invariant. ��
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Clearly, in Theorem 13.1.2 the assumption ‘left invariant’ can be replaced
by ‘right invariant’.

The following uniqueness result for invariant measures makes special as-
sumptions, but in this form it is sufficient for our purposes and is easy to
prove.

Theorem 13.1.3. Let G be a locally compact group with a countable base, let
ν be a Haar measure and µ a left Haar measure on G. Then µ = cν with a
constant c.

Proof. For measurable functions f, g ≥ 0 on G we have∫
f dν

∫
g dµ =

∫ ∫
f(xy)g(y) ν(dx)µ(dy)

=
∫ ∫

f(xy)g(y)µ(dy) ν(dx) =
∫ ∫

f(y)g(x−1y)µ(dy) ν(dx)

=
∫
f(y)

∫
g(x−1y) ν(dx)µ(dy) =

∫
g dν

∫
f dµ.

Here we have used, besides Fubini’s theorem, the right and inversion invariance
of ν and the left invariance of µ.

Since ν �= 0, there is a compact set A0 ⊂ G with ν(A0) > 0. For arbitrary
A ∈ B(G) we put f := 1A0 and g := 1A and obtain ν(A0)µ(A) = ν(A)µ(A0),
hence µ = cν with c := µ(A0)/ν(A0). ��

Next, we prove a formula of integral geometric type, generalizing Theo-
rem 5.2.1, which is useful for obtaining uniqueness results. It is slightly more
general than needed.

Theorem 13.1.4. Suppose that the compact group G operates continuously
and transitively on the Hausdorff space E and that G and E have countable
bases. Let ν be a Haar measure on G with ν(G) = 1.

Let ρ �= 0 and α be locally finite Borel measures on E, let ρ be G-invariant.
Then ∫

G

α(A ∩ gB) ν(dg) = α(A)ρ(B)/ρ(E)

for all A,B ∈ B(E).

Proof. If ϕ denotes the operation of G on E and if x ∈ E, the mapping
ϕ(·, x) : G→ E is continuous and surjective, hence E is compact. Therefore,
the measures α and ρ are finite. Let A,B ∈ B(E). The mapping (g, x) �→ g−1x
from G × E to E is continuous and thus measurable, hence the mapping
(g, x) �→ 1B(g−1x) is measurable. From

α(A ∩ gB) =
∫

E

1A∩gB α(dx) =
∫

E

1A(x)1B(g−1x)α(dx)
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it follows that g �→ α(A ∩ gB) is a measurable mapping. Fubini’s theorem
yields ∫

G

α(A ∩ gB) ν(dg) =
∫

E

1A(x)
∫

G

1B(g−1x) ν(dg)α(dx). (13.4)

The integral
∫

G
1B(g−1x) ν(dg) does not depend on x, since for y ∈ E there

exists h ∈ G with y = hx and therefore∫
G

1B(g−1y) ν(dg) =
∫

G

1B((h−1g)−1x) ν(dg) =
∫

G

1B(g−1x) ν(dg).

Hence, we obtain

ρ(E)
∫

G

1B(g−1x) ν(dg) =
∫

E

∫
G

1B(g−1x) ν(dg) ρ(dx)

=
∫

G

∫
E

1B(g−1x) ρ(dx) ν(dg) =
∫

G

ρ(gB) ν(dg) = ρ(B).

Inserting this in (13.4), we complete the proof. ��

Theorem 13.1.5. Suppose that the compact group G operates continuously
and transitively on the Hausdorff space E and that G and E have countable
bases. Let ν be a Haar measure on G with ν(G) = 1.

Then there exists a unique G-invariant Borel measure ρ on E with ρ(E) =
1. It can be defined by

ρ(B) = ν({g ∈ G : gx0 ∈ B)}, B ∈ B(E),

with arbitrary x0 ∈ E.

Proof. Let ρ be a G-invariant Borel measure on E with ρ(E) = 1. We choose
x0 ∈ E and let α be the Dirac measure on E concentrated at x0. Then
Theorem 13.1.4 with A := {x0} gives

ρ(B) = ν({g ∈ G : g−1x0 ∈ B})

for B ∈ B(E). Thus ρ is unique. Conversely, if ρ is defined in this way, it is
clear that it is a G-invariant normalized measure. ��

Notes for Section 13.1

1. For an extensive treatment of topological groups and homogeneous spaces, we
refer to Hewitt and Ross [342], Nachbin [571], Gaal [242]. Information on invariant
measures is also found in Bourbaki [119] and Cohn [177].

2. Results in the spirit of Theorem 13.1.4 (which extends Theorem 5.2.1) go back
to Balanzat [55]. More general versions and further references are in Groemer [290]
and Schneider [683].
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13.2 Homogeneous Spaces of Euclidean Geometry

In this section we introduce the transformation groups and homogeneous
spaces that occur in Euclidean integral geometry. Our main aim is to construct
their Haar measures in an elementary way, presupposing only the knowledge
of Lebesgue measure and its properties.

We consider three groups of bijective affine maps of Rd onto itself, the
translation group Td, the rotation group SOd, and the rigid motion
group Gd. The translations t ∈ Td are the maps of the form t = tx with
x ∈ Rd, where tx(y) = y + x for y ∈ Rd. The mapping τ : x �→ tx is an
isomorphism of the additive group Rd onto Td. Hence, we can identify Td

with Rd, which we shall often do tacitly. In particular, Td carries the topology
inherited from Rd via τ . Since tx ◦ ty = tx+y and t−1

x = t−x, composition
and inversion are continuous, hence Td is a topological group. In view of the
topological properties of Rd we can thus state the following.

Theorem 13.2.1. The translation group Td is an abelian, locally compact
topological group with countable base. The operation of Td on Rd is continuous.

The elements of the rotation group SOd are the linear mappings ϑ : Rd →
Rd that preserve scalar product and orientation; they are called (proper)
rotations. With respect to the standard (orthonormal) basis of Rd, every
rotation ϑ is represented by an orthogonal matrix M(ϑ) with determinant 1.
The mapping µ : ϑ �→ M(ϑ) is an isomorphism of the group SOd onto the
group SO(d) of orthogonal (d, d)-matrices with determinant 1 under matrix
multiplication. If we identify a (d, d)-matrix with the d2-tuple of its entries, we
can consider SO(d) as a subset of Rd2

(this identification defines the topology
of SO(d)). This set is bounded, since the rows of an orthogonal matrix are
normalized, and it is closed in Rd2

, hence compact. The mappings (M,N) �→
MN from SO(d)×SO(d) to SO(d) andM �→M−1 from SO(d) to SO(d) are
continuous, and so is the mapping (M,x) �→ Mx (where x is considered as a
(d, 1)-matrix) from SO(d) × Rd into Rd. Using the mapping µ−1 to transfer
the topology from SO(d) to SOd, we thus obtain the following.

Theorem 13.2.2. The rotation group SOd is a compact topological group with
countable base. The operation of SOd on Rd is continuous.

The elements of the motion group Gd are the affine maps g : Rd → Rd

that preserve the distances between points and the orientation; they are called
(rigid) motions. Every rigid motion g ∈ Gd can be represented uniquely as
the composition of a rotation ϑ and a translation tx, that is, g = tx ◦ ϑ, or
gy = ϑy + x for y ∈ Rd. The mapping

γ : Rd × SOd → Gd

(x, ϑ) �→ tx ◦ ϑ
(13.5)

is bijective. We employ it to transfer the topology from Rd×SOd to Gd. Using
Theorems 13.2.1 and 13.2.2, it is then easy to show the following.
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Theorem 13.2.3. Gd is a locally compact topological group with countable
base. Its operation on Rd is continuous.

After these topological groups, we consider the homogeneous spaces that
play a role in Euclidean integral geometry.

The unit sphere Sd−1 is obviously a homogeneous SOd-space.
For q ∈ {0, . . . , d}, let G(d, q) be the set of all q-dimensional linear sub-

spaces of Rd, and let A(d, q) be the set of all q-dimensional affine subspaces
of Rd. The natural operation of SOd on G(d, q) is given by (ϑ,L) �→ ϑL :=
image of L under ϑ. Similarly, the natural operation of Gd on A(d, q) is given
by (g,E) �→ gE := image of E under g. We introduce suitable topologies on
G(d, q) and A(d, q). For this, let Lq ∈ G(d, q) be a fixed subspace and L⊥

q its
orthogonal complement. The mappings

βq : SOd → G(d, q)
ϑ �→ ϑLq

(13.6)

and
γq : L⊥

q × SOd → A(d, q)
(x, ϑ) �→ ϑ(Lq + x)

(13.7)

are surjective (but not injective). We endow G(d, q) with the finest topology
for which βq is continuous, and A(d, q) with the finest topology for which γq

is continuous. Thus, a subset A ⊂ A(d, q), for example, is open if and only if
γ−1

q (A) is open. It is an elementary task to prove the following.

Theorem 13.2.4. G(d, q) is compact and has a countable base, the map βq

is open, and the operation of SOd on G(d, q) is continuous and transitive.

Theorem 13.2.5. A(d, q) is locally compact and has a countable base, the
map γq is open, and the operation of Gd on A(d, q) is continuous and transi-
tive.

It should be remarked that the topologies on G(d, q) and A(d, q), as well
as the invariant measures to be introduced soon, do not depend on the special
choice of the subspace Lq. This follows easily from the fact that SOd operates
transitively on G(d, q) and Gd operates transitively on A(d, q).

The topological spaces G(d, q) are called Grassmann manifolds or
Grassmannians, and the spaces A(d, q) are called affine Grassmannians.

It was convenient here to introduce the topologies on G(d, q) and A(d, q)
as described. Generally in this book, we equip F(Rd), the set of closed subsets
of Rd, with the topology of closed convergence, as summarized in Section 12.2.
The trace of this topology on G(d, q) or A(d, q) coincides with the topology
introduced above. To see this, for example for the case of A(d, q), we first note
that the mapping g �→ gLq from Gd into F is continuous, by Theorem 13.1.1.
In order to show that the topology of closed convergence on A(d, q) coincides
with the one introduced above, it therefore suffices to show the following. If
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Ei, E ∈ A(d, q) and Ei → E in F , then there exist motions gi, g ∈ Gd such
that Ei = giLq, E = gLq and gi → g (in Gd). This is easy to see with the aid
of Theorem 12.2.2.

By Theorem 13.1.1, the induced operation of the motion group Gd on the
space F = F(Rd) of closed subsets of Rd is also continuous. From this fact we
draw two conclusions, which are used occasionally. First, applying Theorem
13.1.1 again, but now to the space E = F ′ (= F(Rd) \ {∅}), we get:

Theorem 13.2.6. The map

(g,A) �→ gA := {gF : F ∈ A}, g ∈ Gd, A ∈ F(F ′),

is continuous.

The operation of Gd on Rd induces also an operation on the space C′ of
nonempty compact subsets.

Theorem 13.2.7. The map

Gd × C′ → C′

(g, C) �→ gC

where C′ is equipped with the Hausdorff metric, is continuous.

Proof. Suppose that (gi, Ci) → (g, C) in Gd × C′. Then Ci → C in (C′, δ),
hence Ci → C in F by Theorem 12.3.2. From Theorem 13.1.1 it follows
that giCi → gC in F . Since the sequence (Ci)i∈N is uniformly bounded and
gi → g, also the sequence (giCi)i∈N is uniformly bounded. By Theorem 12.3.3,
giCi → gC in (C′, δ). ��

Now we construct invariant measures on the introduced groups and homo-
geneous spaces. (Since these are locally compact, second countable spaces, all
Borel measures on them are regular; see, for example, Cohn [177, Proposition
7.2.3].) We start from Lebesgue measure on Rd and construct further mea-
sures by means of continuous (and hence measurable) mappings. The local
finiteness of the image measures has to be checked in every case. We shall,
however, not mention this fact explicitly, when it is easy to see.

The measures ρ to be considered below will depend on the dimension d of
the space Rd. If different dimensions occur, corresponding measures and other
objects will be distinguished by lower indices. Symbols without lower index
always refer to the dimension d.

We suppose that the reader is familiar with the construction and the prop-
erties of the Lebesgue measure λ on Rd, including the following uniqueness
theorem. Recall that Cd = [0, 1]d is the unit cube in Rd.

Theorem 13.2.8. The Lebesgue measure λ is the only translation invariant
measure on Rd with λ(Cd) = 1.
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Since the Lebesgue measure λ is rigid motion invariant (as well as invariant
under reflections), it is the Haar measure on the homogeneous Gd-space Rd,
normalized in a special way. We note that

λ(Bd) =: κd =
πd/2

Γ
(
1 + d

2

) .
The Haar measure on the homogeneous SOd-space Sd−1, the unit sphere,

is easily derived from the Lebesgue measure. For A ∈ B(Sd−1) we define

Â := {αx ∈ Rd : x ∈ A, 0 ≤ α ≤ 1}.

A standard argument shows that Â ∈ B(Rd), hence we can define σ(A) :=
dλ(Â). This yields a finite measure σ on Sd−1 for which

σ(Sd−1) =: ωd = dκd =
2π

d
2

Γ(d
2 )
.

The rotation invariance of λ implies the rotation invariance of σ. As the
Lebesgue measure, σ is invariant under the full group O(d) of orthogonal
transformations (proper and improper rotations). We call σ the spherical
Lebesgue measure. Up to a constant factor, σ is the only rotation invariant
Borel measure on Sd−1. This follows from Theorem 13.1.5.

The spherical Lebesgue measure can be used to show the existence of the
Haar measure for the rotation group.

Theorem 13.2.9. On the rotation group SOd, there is a unique Haar measure
ν with ν(SOd) = 1.

Proof. The uniqueness follows from Theorem 13.1.3. To prove the existence,
we denote by LId the set of linearly independent d-tuples of vectors from Sd−1.
We define a map ψ : LId → SOd in the following way. Let (x1, . . . , xd) ∈ LId.
By Gram–Schmidt orthonormalization we transform (x1, . . . , xd) into the d-
tuple (z1, . . . , zd); then we denote by (z̄1, . . . , z̄d) the positively oriented d-
tuple for which z̄i = zi for i = 1, . . . , d− 1 and z̄d = zd or −zd. If (e1, . . . , ed)
denotes the standard orthonormal basis of Rd, there is a unique rotation
ϑ ∈ SOd satisfying ϑei = z̄i for i = 1, . . . , d. We define ψ(x1, . . . , xd) := ϑ.

Explicitly, we have zi = yi/‖yi‖ with y1 = x1 and

yk = xk −
k−1∑
j=1

〈xk, yj〉
yj

‖yj‖2
, k = 2, . . . , d.

From this representation, the following is evident. If ρ ∈ SOd is a rotation and
if the d-tuple (x1, . . . , xd) ∈ LId is transformed into (z1, . . . , zd) and then into
(z̄1, . . . , z̄d), then the d-tuple (ρx1, . . . , ρxd) is transformed into (ρz1, . . . , ρzd)
and subsequently into (ρz̄1, . . . , ρz̄d). Thus we have
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ψ(ρx1, . . . , ρxd) = ρψ(x1, . . . , xd).

For (x1, . . . , xd) ∈ (Sd−1)d \ LId we define ψ(x1, . . . , xd) := id. For the
product measure

σd := σ ⊗ . . .⊗ σ︸ ︷︷ ︸
d

,

the set (Sd−1)d \ LId has measure zero; hence for any ρ ∈ SOd the equality
ψ(ρx1, . . . , ρxd) = ρψ(x1, . . . , xd) holds σd-almost everywhere. The mapping
ψ : (Sd−1)d → SOd is measurable, since LId is open and ψ is continuous on
LId and constant on (Sd−1)d \ LId.

Now we define ν̄ as the image measure of σd under ψ, thus ν̄ = ψ(σd).
Then ν̄ is a finite measure on SOd, and for ρ ∈ SOd and measurable f ≥ 0
we obtain ∫

SOd

f(ρϑ) ν̄(dϑ)

=
∫

(Sd−1)d

f(ρψ(x1, . . . , xd))σd(d(x1, . . . , xd))

=
∫

Sd−1
. . .

∫
Sd−1

f(ψ(x1, . . . , xd))σ(dx1) · · · σ(dxd)

=
∫

SOd

f(ϑ) ν̄(dϑ).

Here we have used the rotation invariance of the spherical Lebesgue measure.
We have proved that the measure ν̄ is left invariant and thus invariant, by
Theorem 13.1.2. The measure ν := ν̄/ν̄(SOd) is invariant and normalized. ��

From now on, ν will always denote the normalized invariant measure on
SOd.

The following special result on ν null sets is needed at several instances.
Two linear subspaces L,L′ of Rd are in general position if

dim (L ∩ L′) = max{0,dimL+ dimL′ − d},

otherwise they are said to be in special position. The latter is equivalent to

lin (L ∪ L′) �= Rd and dim (L ∩ L′) > 0.

Lemma 13.2.1. Let L,L′ be linear subspaces of Rd, and let A ⊂ SOd be
the set of all rotations ϑ for which L and ϑL′ are in special position. Then
ν(A) = 0.

Proof. We may assume that dimL+ dimL′ < d, since otherwise we can pass
to orthogonal complements. Let v1, . . . , vm be an orthonormal basis of L′ and
put Li := lin {v1, . . . , vi} for i = 1, . . . ,m and L0 := {0}. Then
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ν({ϑ ∈ SOd : dim (L ∩ ϑL′) > 0})

= ν

(
m⋃

i=1

{ϑ ∈ SOd : dim (L ∩ ϑLi−1) = 0, dim (L ∩ ϑLi) > 0}
)

=
m∑

i=1

ν({ϑ ∈ SOd : ϑvi ∈ lin (L ∪ ϑLi−1)}).

We shall show that here each summand is zero. Let i ∈ {1, . . . ,m} be fixed and
write lin (L∪ϑLi−1) =:M(ϑ). Put H := Li−1 ∩Sd−1 and H ′ := L⊥

i−1 ∩Sd−1.
For x ∈ Sd−1 \ (H ∪H ′) there is a unique decomposition x = tv +

√
1− t2 x′

with v ∈ H, x′ ∈ H ′, t ∈ (0, 1). Since ϑv ∈ M(ϑ) for v ∈ H, we have
ϑx ∈ M(ϑ) if and only if ϑx′ ∈ M(ϑ). Moreover, for x′ ∈ H ′ there exists a
rotation ρx ∈ SOd with ρxvi = x′ and ρxLi−1 = Li−1. We obtain

ν({ϑ ∈ SOd : ϑx ∈M(ϑ)}) = ν({ϑ ∈ SOd : ϑx′ ∈M(ϑ)})
= ν({ϑ ∈ SOd : ϑρxvi ∈M(ϑρx)})
= ν({ϑ ∈ SOd : ϑvi ∈M(ϑ)})

by the invariance of ν. Integration with the spherical Lebesgue measure and
Fubini’s theorem yield

σ (Sd−1)ν({ϑ ∈ SOd : ϑvi ∈M(ϑ)})

=
∫

Sd−1\(H∪H′)
ν({ϑ ∈ SOd : ϑx ∈M(ϑ)})σ(dx)

=
∫

SOd

∫
Sd−1\(H∪H′)

1M(ϑ)(ϑx)σ(dx) ν(dϑ) = 0,

since dimM(ϑ) ≤ dimL+ i− 1 ≤ d− 1. ��

With the aid of the invariant measures λ and σ, we can construct the
Haar measure on the rigid motion group Gd. Since Gd it is not compact, an
invariant measure µ on Gd cannot be finite, as is easy to see. In order to
normalize µ, we specify the compact set A0 := γ(Cd × SOd) and require that
µ(A0) = 1.

Theorem 13.2.10. On the motion group Gd there is a Haar measure µ with
µ(A0) = 1. Up to a constant factor, it is the only left Haar measure on Gd.

Proof. The uniqueness assertion is a special case of Theorem 13.1.3. We define
µ as the image measure of the product measure λ ⊗ ν under the homeomor-
phism γ : Rd × SOd → Gd defined by (13.5). Then µ is a Borel measure on
Gd with µ(γ(Cd × SOd)) = λ(Cd)ν(SOd) = 1.

To show the left invariance of µ, let f ≥ 0 be a continuous function on Gd

and let g′ ∈ Gd. With g′ = γ(t′, ϑ′) we have
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Gd

f(g′g)µ(dg) =
∫

SOd

∫
Rd

f(γ(t′, ϑ′)γ(t, ϑ))λ(dt) ν(dϑ)

=
∫

SOd

∫
Rd

f(γ(t′ + ϑ′t, ϑ′ϑ))λ(dt) ν(dϑ)

=
∫

SOd

∫
Rd

f(γ(t, ϑ))λ(dt) ν(dϑ)

=
∫

Gd

f(g)µ(dg),

where we have used the motion invariance of λ and the left invariance of ν.
Hence, µ is left invariant. Analogously, the right invariance of ν implies via∫

Gn

f(gg′)µ(dg) =
∫

SOd

∫
Rd

f(γ(t+ ϑt′, ϑϑ′))λ(dt) ν(dϑ)

=
∫

SOd

∫
Rd

f(γ(t, ϑ))λ(dt) ν(dϑ) =
∫

Gd

f(g)µ(dg)

the right invariance of µ, and from∫
Gd

f(g−1)µ(dg) =
∫

SOd

∫
Rd

f(γ(−ϑ−1t, ϑ−1))λ(dt) ν(dϑ)

=
∫

SOd

∫
Rd

f(γ(t, ϑ))λ(dt) ν(dϑ) =
∫

Gd

f(g)µ(dg),

where the inversion invariance of ν was used, we obtain the inversion invari-
ance of µ. ��

The notation µ for the Haar measure on Gd, normalized as above, will be
maintained in the following. The decomposition of the measure µ inherent in
its construction is often used in the form∫

Gd

f dµ =
∫

SOd

∫
Rd

f(tx ◦ ϑ)λ(dx) ν(dϑ)

=
∫

SOd

∫
Rd

f(ϑ ◦ tx)λ(dx) ν(dϑ) (13.8)

for µ-integrable functions f on Gd; here tx is the translation by the vector
x. The last equality follows from ϑ ◦ tx = tϑx ◦ ϑ and the invariance of the
Lebesgue measure λ under the rotation ϑ.

Now we turn to invariant measures on the Grassmannian G(d, q) of q-
dimensional linear subspaces and on the affine Grassmannian A(d, q) of q-
dimensional affine subspaces of Rd. As above, we suppose that q ∈ {0, . . . , d}
and Lq ∈ G(d, q) is a fixed q-dimensional linear subspace, and we use the
maps βq and γq defined by (13.6) and (13.7), respectively.
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On G(d, q) and A(d, q), some of the transformation groups introduced
above operate continuously, for example on A(d, q) the groups Td, SOd and
Gd. Only the operations of Gd on A(d, q) and of SOd on G(d, q) are transitive.
Therefore, by an invariant measure on A(d, q) we understand a rigid motion
invariant (Gd-invariant) measure on A(d, q), and an invariant measure on
G(d, q) is rotation invariant (SOd-invariant).

Theorem 13.2.11. On G(d, q) there is a unique Haar measure νq, normalized
by νq(G(d, q)) = 1.

This is just a special case of Theorem 13.1.5. We also notice that νq is the
image measure of ν under the mapping βq.

A corresponding assertion for A(d, q) requires a normalization on a suitable
compact subset Aq

0. We choose

Aq
0 := {E ∈ A(d, q) : E ∩Bd �= ∅}.

Theorem 13.2.12. On A(d, q) there is a unique Haar measure µq, normal-
ized by µq(A

q
0) = κd−q.

It satisfies∫
A(d,q)

f dµq =
∫

G(d,q)

∫
L⊥
f(L+ y)λd−q(dy) νq(dL) (13.9)

for every measurable function f ≥ 0 on A(d, q).

Proof. We define
µq := γq(λd−q ⊗ ν).

If A ⊂ A(d, q) is compact, the sets

γq({x ∈ L⊥
q : ‖x‖ < k} × SOd), k ∈ N,

constitute an open covering of A, hence A is included in one of these sets. It
follows that µq(A) <∞.

Let g = γ(x, ϑ) ∈ Gd and let f ≥ 0 be a measurable function on A(d, q).
Denoting by Π the orthogonal projection to L⊥

q , we obtain∫
A(d,q)

f(gE)µq(dE)

=
∫

SOd

∫
L⊥

q

f(gρ(Lq + y))λd−q(dy) ν(dρ)

=
∫

SOd

∫
L⊥

q

f(ϑρ(Lq + y + Π(ρ−1ϑ−1x)))λd−q(dy) ν(dρ)

=
∫

SOd

∫
L⊥

q

f(ϑρ(Lq + y))λd−q(dy) ν(dρ)
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=
∫

SOd

∫
L⊥

q

f(ρ(Lq + y))λd−q(dy) ν(dρ)

=
∫

A(d,q)

f(E)µq(dE),

where we have used the invariance properties of λd−q and ν. This shows the
invariance of µq.

We observe that we may also write∫
A(d,q)

f dµq =
∫

SOd

∫
L⊥

q

f(ρ(Lq + x))λd−q(dx) ν(dρ)

=
∫

SOd

∫
(ρLq)⊥

f(ρLq + y)λd−q(dy) ν(dρ).

Since νq is the image measure of ν under βq, this can be written in the form
(13.9).

From the representation (13.9) we infer that µq does not depend on the
choice of the subspace Lq. We also deduce that µ(Aq

0) = κd−q.
To prove the uniqueness, we assume that τ is another Haar measure on

A(d, q). Let G̃(d, q) (respectively Ã(d, q)) be the open set of all L ∈ G(d, q)
(respectively E ∈ A(d, q)) that intersect L⊥

q at precisely one point. The map-
ping

δq : L⊥
q × G̃(d, q) → Ã(d, q)

(x, L) �→ L+ x

is a homeomorphism. For fixed B ∈ B(G̃(d, q)) and arbitrary A ∈ B(L⊥
q ) we

define η(A) := τ(δq(A × B)). Then η is a Borel measure on L⊥
q , which is

invariant under the translations of L⊥
q into itself. Theorem 13.2.8 implies that

η(A) = λd−q(A)α(B) with a constant α(B) ≥ 0. Hence we have

τ(δq(A×B)) = λd−q(A)α(B)

for arbitrary A ∈ B(L⊥
q ) and B ∈ B(G̃(d, q)). Obviously this equality defines

a finite measure α on B(G̃(d, q)), and δ−1
q (τ) = λd−q ⊗ α. For a measurable

function f ≥ 0 on Ã(d, q) we obtain∫
Ã(d,q)

f dτ =
∫

G̃(d,q)

∫
L⊥

q

f(L+ x)λd−q(dx)α(dL)

=
∫

G̃(d,q)

∫
L⊥
f(L+ y)λd−q(dy)ϕ(dL) (13.10)

with a new measure ϕ on G̃(d, q), defined by dϕ(L) = D(L⊥
q , L

⊥)−1dα(L),
where D(L⊥

q , L
⊥) is the absolute determinant of the orthogonal projection

from L⊥
q onto L⊥.
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Now let B ∈ B(G(d, q)) and

B′ := {L+ y : L ∈ B, y ∈ L⊥ ∩Bd}.

By β(B) := τ(B′) we define a rotation invariant finite measure β on G(d, q).
According to Theorem 13.2.11 it is a multiple of νq. On the other hand, (13.10)
gives τ(B′) = κd−qϕ(B) for B ⊂ G̃(d, q). Hence there is a constant c with
ϕ(B) = cνq(B) for all Borel sets B ⊂ G̃(d, q). From (13.10) and (13.9) we
deduce that τ(A) = cµq(A) for all Borel sets A ⊂ Ã(d, q). Since µq does not
depend on the choice of the subspace Lq ∈ G(d, q), it is easy to see that
τ = cµq. ��

From the introduced homogeneous spaces of flats and their invariant mea-
sures, we derive other ones, which are used occasionally in integral geometry.

For p, q ∈ {0, . . . , d} and a fixed linear subspace L ∈ G(d, p), let

G(L, q) :=

{
{L′ ∈ G(d, q) : L′ ⊂ L} if q ≤ p,
{L′ ∈ G(d, q) : L′ ⊃ L} if q > p.

Similarly, for E ∈ A(d, p) let

A(E, q) :=

{
{E′ ∈ A(d, q) : E′ ⊂ E} if q ≤ p,
{E′ ∈ A(d, q) : E′ ⊃ E} if q > p.

In the case q ≤ p the spaces G(L, q) and A(E, q) are obviously homeomorphic
toG(p, q) and A(p, q), respectively. For q > p, the situation is slightly different.
Here G(L, q) is homeomorphic to G(d − p, q − p), because each L′ ∈ G(L, q)
is of the form L′ = L+L′′ with a unique subspace L′′ ∈ G(L⊥, q− p), so that
G(L, q) is homeomorphic, in a natural way, to G(L⊥, q−p); the latter space is
homeomorphic to G(d−p, q−p), by the preceding remark. The space A(E, q)
with q > p is evidently homeomorphic to G(L, q), where L is the translate of
E through the origin. Thus A(E, q), too, is homeomorphic to G(d− p, q− p).

On these spaces, we introduce invariant measures in the natural way. For
a linear subspace L ∈ G(d, q) we first put

SO(L) := {ρ ∈ SOd : ρL = L, ρx = x for x ∈ L⊥},

which is the subgroup of all proper rotations of Rd mapping L into itself and
fixing each point of L⊥. Since SO(L) is isomorphic to SOp, it carries a unique
normalized invariant measure, which we denote by νL. As usual, we consider
νL as a measure defined on the whole group SOd. We have

νϑL(ϑAϑ−1) = νL(A) (13.11)

for A ∈ B(SOd) and arbitrary rotations ϑ ∈ SOd; this can be deduced, for
example, from Theorem 13.1.3.
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Let p, q ∈ {0, . . . , d} and L ∈ G(d, q). We fix a subspace Lq ∈ G(L, q). By
means of the map (13.6), that is, βq : SOd → G(d, q), ϑ �→ ϑLq, we define

νL
q := βq(νL)

for q < p and
νL

q := βq(νL⊥)

for q ≥ p. Then we have

νL
q (A) = νL({ρ ∈ SO(L) : ρLq ∈ A})

if q < p and
νL

q (A) = νL⊥({ρ ∈ SO(L⊥) : ρLq ∈ A})

if q ≥ p, in each case for all A ∈ B(G(d, q)). Thus νL
q is a normalized measure

concentrated onG(L, q); it does not depend on the choice of Lq and is invariant
under SO(L) and SO(L⊥). Moreover,

νϑL
q (ϑA) = νL

q (A) (13.12)

for A ∈ B(G(d, q)) and all rotations ϑ ∈ SOd, as follows from (13.11).
For a fixed flat E ∈ G(d, p) we choose t ∈ Rd with E − t =: L ∈ G(d, p)

and then a subspace Lq ∈ G(L, q). If q < p, let λp−q be the Lebesgue measure
on L⊥

q ∩ L. We define

γq,t : (L⊥
q ∩ L)× SO(L) → A(d, q)

(x, ϑ) �→ ϑ(Lq + x) + t

and
µE

q := γq,t(λp−q ⊗ νL).

If q ≥ p, we define
γq,t : SO(L⊥)→ A(d, q)

ϑ �→ ϑLq + t

and
µE

q := γq,t(νL⊥).

The measure µE
q is independent of the choice of t and Lq; it is concentrated

on A(E, q) and is invariant under the rigid motions of Rd that map E into
itself. Moreover,

µgE
q (gA) = µE

q (A)

for A ∈ B(A(d, q)) and all rigid motions g ∈ Gd.
Let L ∈ G(d, q). In analogy to (13.9) we see that for given t ∈ Rd and for

measurable functions f ≥ 0 on A(d, q) we have for q < p the representation∫
A(L+t,q)

f dµL+t
q =

∫
G(L,q)

∫
M⊥∩L

f(M + x+ t)λp−q(dx) νL
q (dM). (13.13)
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The corresponding equality for q ≥ p is∫
A(L+t,q)

f dµL+t
q =

∫
G(L,q)

f(M + t) νL
q (dM). (13.14)

For the following measurability assertion we recall that the measure µF
p

is concentrated on A(F, p), but defined on all of A(d, p). A similar remark
concerns the measure νL

p . We write

A(d, p, q) := {(E,F ) ∈ A(d, p)×A(d, q) : E ⊂ F},
G(d, p, q) := {(L,M) ∈ G(d, p)×G(d, q) : L ⊂M}.

Lemma 13.2.2. Let 0 ≤ p < q ≤ d, and let f : A(d, p, q)→ R be a nonnega-
tive measurable function. Then the maps

F �→
∫

A(F,p)

f(E,F )µF
p (dE), F ∈ A(d, q), (13.15)

and
E �→

∫
A(E,q)

f(E,F )µE
q (dF ), E ∈ A(d, p), (13.16)

are measurable.
Analogous statements hold for the measures νM

p , νL
q and nonnegative mea-

surable functions on G(d, p, q).

Proof. First let f : A(d, p) → R be a continuous function with compact sup-
port. Let (Fi)i∈N be a sequence in A(d, q) converging to F . Then there is a
sequence (gi)i∈N in the motion group Gd, converging to the identity id and
such that g−1

i F = Fi. We have∫
A(d,p)

f(E)µFi
p (dE) =

∫
A(d,p)

f(E)µg−1
i F

p (dE)

=
∫

A(d,p)

f(E)µF
p (dgiE)

=
∫

A(d,p)

f(g−1
i E)µF

p (dE).

The functions fi : E �→ f(g−1
i E) converge to f for i → ∞. If A denotes the

compact support of f and C ⊂ Gd is a compact set with gi ∈ C for all i, then
CA is compact and |f(g−1

i E)| ≤ 1CA(E)max |f |. The dominated convergence
theorem yields ∫

A(d,p)

f(E)µFi
p (dE)→

∫
A(d,p)

f(E)µF
p (dE)
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for i→∞. Thus the map

F �→
∫

A(d,p)

f(E)µF
p (dE), F ∈ A(d, q),

is continuous and hence measurable.
We remark that Lemma 12.1.1 now shows that the function F �→ µF

p (B)
is measurable for each B ∈ B(A(d, p)), hence the mapping (F,B) �→ µF

p (B),
F ∈ A(d, q), B ∈ B(A(d, p)), is a kernel.

Lemma 12.1.2 with E = A(d, p) and T = A(d, q) gives the measurability
of the map (13.15) for nonnegative measurable functions f on A(d, p, q).

The measurability of the map (13.16) and the proofs of the remaining
assertions follow in a completely analogous manner. ��

Notes for Section 13.2

1. The proof of Lemma 13.2.1 was communicated to us by Jürgen Kampf. A different
proof appears in Goodey and Schneider [274]. The point in both cases was to give
an elementary proof, avoiding an explicit representation of the invariant measure ν
and using little more than its invariance.

2. Arguments similar to those used in the uniqueness proof of Theorem 13.2.12
appear, for example, also in the book by Ambartzumian [35].

13.3 A General Uniqueness Theorem

It was our aim in the preceding two sections to treat the special Haar measures
that are needed for the purposes of Euclidean integral geometry, in a direct
and elementary way. We present now a proof of a general uniqueness theorem
for relatively invariant measures. This proof, in which the existence of general
Haar measures is taken for granted, is adapted from Nachbin [571, pp. 138 ff].

In the following, we assume that G is a locally compact topological group
andH is a closed subgroup; then the factor space G/H is locally compact. The
following result is fundamental. On every locally compact group there is a left
Haar measure, and it is unique up to a positive factor. The uniqueness admits
a fairly quick proof (see, for example, Cohn [177], also for a lucid existence
proof). Not every locally compact homogeneous space carries a Haar measure.
This is shown, for example, by the standard operation of the affine group Gaff

on Rd. Any affine-invariant Borel measure on Rd is, in particular, translation
invariant and thus, if it is locally finite, a multiple of the Lebesgue measure
λ, but this is not affine-invariant. The Lebesgue measure satisfies

λ(gA) = |det g|λ(A)

for g ∈ Gaff and A ∈ B(Rd), and here the factor is independent of A. This
motivates the following definition.
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For the rest of this section, a measure on G or G/H is always a locally
finite Borel measure. The measure ρ on the homogeneous space G/H is called
relatively invariant if it is regular and not identically zero and if there exists
a function χ : G→ R such that

ρ(gA) = χ(g)ρ(A) for g ∈ G and A ∈ B(G/H).

In that case, the function χ is called the multiplier of ρ. Obviously, χ is a
homomorphism from G into the multiplicative group of positive real numbers.
It can be shown that χ is continuous (cf. Hewitt and Ross [342, p. 204] or
Gaal [242, p. 265]).

The study of relatively invariant measures is equivalent to the study of
relatively invariant integrals. Here an integral on the locally compact space
E is a positive linear functional on the space Cc(E) that is not identically
zero. For f ∈ Cc(G) and a ∈ G one writes (a.f)(x) := f(a−1x) for x ∈ G;
then a.f ∈ Cc(G). The integral I on G is left invariant if I(a.f) = I(f)
for all f ∈ Cc(G) and all a ∈ G. For f ∈ Cc(G/H) and a ∈ G one defines
(a.f)(xH) := f(a−1xH), then a.f ∈ Cc(G/H). The integral I on G/H is
called relatively invariant with multiplier χ if I(a.f) = χ(a)I(f) for
all f ∈ Cc(G/H) and all a ∈ G. Every measure ρ �= 0 on G/H induces
an integral I via I(f) =

∫
G/H

f dρ for f ∈ Cc(G/H). Conversely, the Riesz
representation theorem implies that each integral I on G/H is generated in
this way, by a uniquely determined regular Borel measure ρ. An integral is
relatively invariant with multiplier χ if and only if the same holds for the
corresponding measure.

We want to show that on a locally compact homogeneous space G/H there
is, up to a constant factor, at most one relatively invariant measure with a
given multiplier. For this, we first establish a relation between the spaces
Cc(G) and Cc(G/H). For a function f ∈ Cc(G) we define

f ′(x) :=
∫

H

f(xy) η(dy) for x ∈ G,

where η is a left Haar measure onH (so here we make use of its existence). The
function f ′ is constant on the left cosets of H, since for x ∈ zH, which means
x = zh with h ∈ H, we have f ′(x) =

∫
f(zhy) η(dy) =

∫
f(zy) η(dy) = f ′(z).

Hence, there is a unique function f+ : G/H → R satisfying f ′(x) = f+(xH)
and thus

f+(π(x)) =
∫

H

f(xy) η(dy).

In this way, a linear map f �→ f+ from Cc(G) into the vector space of real
functions on G/H has been defined.

Lemma 13.3.1. The correspondence f �→ f+ maps Cc(G) onto Cc(G/H).

Proof. Let f ∈ Cc(G). The function f ′ is continuous, because f is uniformly
continuous. Since π is an open map, f+ is continuous. If f+(xH) �= 0, there is
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an element y ∈ H with f(xy) �= 0 and thus xy ∈ supp f (where supp denotes
the support), hence xH ∈ π(supp f). We conclude that supp f+ ⊂ π(supp f)
and therefore f+ ∈ Cc(G/H).

To prove that the mapping f �→ f+ is surjective, let h ∈ Cc(G/H) and
K := supph. Let V be a compact neighborhood of the unit element of G. For
g ∈ G the set π(V g) is a neighborhood of π(g). Since K is compact, there are
finitely many elements g1, . . . , gk ∈ G with K ⊂

⋃k
j=1 π(V gj). Then the set

A := (V g1 ∪ . . . ∪ V gk) ∩ π−1(K) is a compact subset of G with the property
that π(A) = K. We can choose a function u ∈ Cc(G) with u(A) = {1} and
0 ≤ u ≤ 1. For z ∈ G/H we define

ψ(z) :=

⎧⎨⎩
h(z)
u+(z)

if u+(z) �= 0,

0 if u+(z) = 0.

Then ψu+ = h. Since ψ vanishes outside K and K is contained in the open
set {z ∈ G/H : u+(z) = 0}, the function ψ is continuous. Let f := (ψ ◦ π)u;
then f ∈ Cc(G) and

f+(xH) =
∫

H

f(xy) η(dy) =
∫

H

ψ(xyH)u(xy) η(dy)

= ψ(xH)
∫

H

u(xy) η(dy)

= h(xH).

Thus f+ = h, which completes the proof. ��

Theorem 13.3.1. On a locally compact homogeneous space G/H there is, up
to a constant factor, at most one relatively invariant measure with a given
multiplier.

Proof. Let ρ be a relatively invariant measure on G/H with multiplier χ. Let
a ∈ G. The relative invariance of ρ implies that∫

G/H

a.hdρ = χ(a)
∫

G/H

hdρ

for h ∈ Cc(G/H). For f ∈ Cc(G) we have (a.f)+ = a.f+, as follows immedi-
ately from the definitions. Since χ is a homeomorphism, we have χ = χ(a)a.χ
and hence (

a.f

χ

)+

=
1
χ(a)

(
a.f

a.χ

)+

= χ(a−1)a.
(
f

χ

)+

.

Now we define

I(f) :=
∫

G/H

(
f

χ

)+

dρ for f ∈ Cc(G).
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Then I is a positive linear functional on Cc(G). For a ∈ G we get

I(a.f) =
∫

G/H

(
a.f

χ

)+

dρ = χ(a−1)
∫

G/H

a.

(
f

χ

)+

dρ

= χ(a−1)χ(a)
∫

G/H

(
f

χ

)+

dρ = I(f).

Thus I is a left invariant integral on Cc(G) and is, therefore, unique up to a
constant factor; as mentioned, this uniqueness is equivalent to that of the left
Haar measure. If now ρ̄ is another relatively invariant measure on G/H with
multiplier χ, then ∫

G/H

(
f

χ

)+

dρ = c
∫

G/H

(
f

χ

)+

dρ̄

for all f ∈ Cc(G) with some constant c. Since by Lemma 13.3.1 the function
(f/χ)+ can be any element of Cc(G/H), we conclude that ρ = cρ̄. This
completes the proof of the theorem. ��



14

Facts from Convex Geometry

In this book, the more concrete examples of random sets are generated as
unions of random systems of convex bodies. The quantitative description of
such random sets is based on functionals of convex bodies which are partic-
ularly adapted to taking unions: they are additive. In Section 14.2 we collect
the basic facts about the most important of these functionals, the rigid mo-
tion invariant intrinsic volumes, and their local counterparts, the curvature
measures. In Section 14.4 we provide general information about additive func-
tionals, as far as needed.

Aside from their use in the generation of random sets, convex bodies play
an important role in this book, for example as associated convex bodies, and
results from convex geometry find various applications. Section 14.3 lists the
needed notions and results, for the purpose of convenient references.

Another particular class of sets, besides convex bodies, that are used to
construct special particle processes or random sets, are k-dimensional surfaces,
or curves if k = 1. In Section 14.5 we collect a few notions and results from
geometric measure theory, leading to general notions of k-surfaces.

In Section 14.1 we introduce a metric invariant of pairs or more general
tuples of linear subspaces, which appears in several formulas based on integral-
geometric transformations.

14.1 The Subspace Determinant

We introduce a function of linear subspaces that occurs frequently in integral
geometry. We consider k-tuples of linear subspaces L1, . . . , Lk of Rd satisfying
either

k∑
i=1

dimLi =: m ≤ d (14.1)

or
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k∑
i=1

dimLi ≥ (k − 1)d. (14.2)

Linear subspaces L1, . . . , Lk of Rd are said to be in general position, in case
(14.1) if

dim lin (L1 ∪ . . . ∪ Lk) = dimL1 + . . .+ dimLk,

and in case (14.2) if

dim (L1 ∩ . . . ∩ Lk) = dimL1 + . . .+ dimLk − (k − 1)d.

Thus, L1, . . . , Lk are in general position if and only if L⊥
1 , . . . , L

⊥
k are in general

position.
In particular, L1 and L2 are in general position if and only if

L1 ∩ L2 = {0} or lin (L1 ∪ L2) = Rd.

We define a function [L1, . . . , Lk], the subspace determinant, in the
following way. Suppose, first, that (14.1) holds. We choose an orthonormal
basis in each Li (the empty set if dimLi = 0) and let [L1, . . . , Lk] be the m-
dimensional volume of the parallelepiped spanned by the union of these bases
(1, by definition, if dimLi = 0 for i = 1, . . . , k). If (14.2) holds, we define

[L1, . . . , Lk] := [L⊥
1 , . . . , L

⊥
k ].

Note that this is consistent if k = 2 and dimL1 + dimL2 = d. Obviously,
any d-dimensional argument of [L1, . . . , Lk] can be deleted without changing
the value. We also note that [L] = 1 and that [L1, . . . , Lk] = 0 if and only if
L1, . . . , Lk are not in general position.

Let k = 2 and dimL1 + dimL2 = d. Then [L1, L2] is equal to the factor
by which the (dimL1)-dimensional volume is multiplied under the orthogonal
projection from L1 to L⊥

2 , and this is equal to the factor by which the (dimL2)-
dimensional volume is multiplied under the orthogonal projection from L2 to
L⊥

1 . If dimL1 + dimL2 ≥ d, we may choose an orthonormal basis of L1 ∩ L2

and extend it to an orthonormal basis of L1 and also to an orthonormal basis
of L2; then [L1, L2] is the d-dimensional volume of the parallelepiped spanned
by the obtained vectors.

The function [·, ·] is sometimes called the ‘generalized sine function’. Other
notations to be found in the literature are

[L1, L2] = |〈L1, L
⊥
2 〉| = | cos(L1, L

⊥
2 )|.

The following recursion formula for the subspace determinant is needed in
Section 6.4.

Lemma 14.1.1. If k ∈ N and if L1, . . . , Lk are subspaces of Rd satisfying
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k∑
i=1

dimLi ≥ (k − 1)d, (14.3)

then

[L1, . . . ., Lk] = [L1, L2][L1 ∩ L2, L3, . . . , Lk]

= . . . = [L1, . . . , Lk−1][L1 ∩ . . . ∩ Lk−1, Lk]. (14.4)

Proof. We first notice that, if L1, . . . , Lk satisfy (14.3), then

dimL1 + dimL2 ≥ (k − 1)d−
k∑

i=3

dimLi ≥ d

and

dim(L1 ∩ L2) +
k∑

i=3

dimLi ≥
k∑

i=1

dimLi − d ≥ (k − 2)d,

hence the invariants [L1, L2] and [L1 ∩ L2, L3, . . . , Lk] are defined, and the
first equation in (14.4) is equivalent to

[L⊥
1 , . . . , L

⊥
k ] = [L⊥

1 , L
⊥
2 ][L⊥

1 ∨ L⊥
2 , L

⊥
3 . . . , L

⊥
k ],

where L⊥
1 ∨ L⊥

2 denotes the linear hull of L⊥
1 and L⊥

2 . The latter equation is
now a familiar property of determinants.

Iterating the first equation, we get, in the same manner, the other results
in (14.4). ��

For tuples of linear subspaces of dimensions 1 or d − 1, the subspace de-
terminant is more conveniently expressed as a function of vectors.

For k ∈ {1, . . . , d} and x1, . . . , xk ∈ Rd we denote by ∇k(x1, . . . , xk) the
k-dimensional volume of the parallelepiped spanned by the vectors x1, . . . , xk.
For use in affine formulas, it is also convenient to define, for x0, x1, . . . , xk ∈
Rd, the number

∆k(x0, . . . , xk) :=
1
k!
∇k(x1 − x0, . . . , xk − x0).

Thus, ∆k(x0, . . . , xk) is the k-dimensional volume of the convex hull of
{x0, . . . , xk}.

14.2 Intrinsic Volumes and Curvature Measures

By a convex body in Rd we understand here a compact, convex subset of
Rd. The set of all convex bodies in Rd is denoted by K, and K′ is the subset
of nonempty convex bodies. This set is equipped with the Hausdorff metric
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δ (see Section 12.3), and topological statements about K′ always refer to the
topology induced by this metric.

The interior of a nonempty convex set K ⊂ Rd with respect to its affine
hull, affK, is not empty; it is called the relative interior ofK and denoted by
relintK. The boundary of K with respect to affK is the relative boundary
of K and is denoted by relbdK.

Associated with a convex body K ∈ K′ are two useful functions. The
support function of K is defined by

h(K,u) := max{〈x, u〉 : x ∈ K} for u ∈ Rd.

The function h(K, ·) is convex and positively homogeneous, and every function
on Rd with these properties is the support function of a uniquely determined
convex body.

For x ∈ Rd, the point p(K,x) is defined as the unique point in K nearest
to x, thus d(x,K) = ‖x− p(K,x)‖ is the distance of x from K. The mapping
p(K, ·) : Rd → K is the nearest-point map or metric projection onto K;
it is non-expansive.

We introduce a series of basic functionals on convex bodies. For K ∈ K′

and ε > 0, the set

Kε := K + εBd = {x ∈ Rd : d(x,K) ≤ ε}

is the parallel body of K at distance ε. Its volume is a polynomial in ε of
degree at most d. This result, known as the Steiner formula, is commonly
written in either of the forms

Vd(K + εBd) =
d∑

j=0

εd−jκd−jVj(K) (14.5)

=
d∑

i=0

εi
(
d

i

)
Wi(K). (14.6)

This defines the intrinsic volumes V0, . . . , Vd−1 and the quermassintegrals
W0 (= Vd),W1, . . . ,Wd, also often called the Minkowski functionals. Thus,
these two sets of functionals differ only by their normalizations. In this book,
we prefer the first one. One advantage of that normalization is the fact that
Vj(K) depends only on K and not of the dimension of its surrounding space,
that is, if dimK < d, then the computation of Vj(K) in Rd or alternatively in
the affine hull of K (regarded as a Euclidean space) leads to the same result.
We extend the definition by Vj(∅) := 0. The intrinsic volumes inherit from
the volume the important property of being additive. A real function ϕ on K
is called additive if

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)
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for all K,L ∈ K with K ∪ L ∈ K, and ϕ(∅) = 0. Besides additivity, the
functional Vj : K′ → R has the following properties: it is invariant under rigid
motions, continuous, nonnegative, monotone under set inclusion, and locally
bounded. The latter means that Vj is bounded on the set of convex bodies
contained in a given convex body (and thus on every compact subset of K′).
Hadwiger’s characterization theorem (Theorem 14.4.6) says that any additive,
motion invariant, continuous real function on K′ is a linear combination of the
intrinsic volumes.

Additive functions are treated in Section 14.4, but we note here already
some relevant properties of the intrinsic volumes. We denote by R the lattice
generated by K, thus R is the system of all unions of finitely many convex
bodies in Rd; this system is usually called the convex ring, and its elements
are called polyconvex sets. The extended convex ring S consists of all
sets M ⊂ Rd with M ∩ K ∈ R for all K ∈ K; such sets are called locally
polyconvex. The functional Vj has an additive extension to the convex ring
R. This extension, also denoted by Vj , is motion invariant and measurable;
however, the continuity is lost, and V0, . . . , Vd−2 attain also negative values
on R. Concerning the geometric meaning of the extensions, the following can
be said. The extended function Vd is still the volume on R, that is, the d-
dimensional Lebesgue measure. If the set K ∈ R is the closure of its interior,
then

Vd−1(K) =
1
2
Hd−1(bdK),

where Hd−1 is the (d− 1)-dimensional Hausdorff measure. Thus 2Vd−1 is the
surface area. If K ∈ R is the union of finitely many j-dimensional con-
vex bodies, then Vj(K) is the ordinary j-dimensional volume (j-dimensional
Hausdorff measure) of K. On convex bodies, the functional V1 is proportional
to the mean width b; for K ∈ K′,

dκd

2
b(K) = κd−1V1(K) =

∫
Sd−1

h(K,u)σ(du). (14.7)

This connection is no longer valid on the convex ring. The functional V0, which
on K′ is identically equal to one, is called the Euler characteristic; on R it
coincides with the equally coined topological invariant and is, therefore, often
denoted by χ. If all connected components of K ∈ R have characteristic one
(for instance, if they are convex), then V0(K) equals the number of connected
components. In the plane, V0(K) can be described as the number of connected
components minus the number of ‘holes’ (bounded connected components of
the complement) of K ∈ R.

A frequently occurring constant is

Vk(Bd) =
(
d

k

)
κd

κd−k
. (14.8)
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We repeat the geometric meaning of the intrinsic volumes on the convex
ring for dimensions 2 and 3 and add the special symbols which are often used
in the applied literature:

d = 2 V2 area A
2V1 boundary length (perimeter) L
V0 Euler characteristic χ

d = 3 V3 volume V
2V2 surface area S
1
2V1 mean width b (only for convex bodies)
V0 Euler characteristic χ

The following lemma computes the intrinsic volumes of a direct orthogonal
sum. We give a proof, since this does not appear in standard monographs on
convex bodies.

Lemma 14.2.1. If L ∈ G(d, q) with q ∈ {1, . . . , d−1} and if K ⊂ L,M ⊂ L⊥

are convex bodies, then

Vj(K +M) =
j∑

k=0

Vk(K)Vj−k(M)

for j ∈ {0, . . . , d}.

Proof. For a polytope P ∈ P ′, we put

W (P ) :=
∫

Rd

e−πd(x,P )2 λ(dx).

It is not difficult to see (introducing, for each face F of P , generalized cylinder
coordinates on the pre-image p(P, ·)−1(F ); compare also the proof of Lemma
8.5.1) that

W (P ) = Vd(P ) + 2
∫ ∞

0

Vd−1(P + rBd)e−πr2
dr.

With (14.5), this gives

W (P ) = Vd(P ) +
d−1∑
j=0

(d− j)κd−jVj(P )
∫ ∞

0

rd−1−je−πr2
dr =

d∑
j=0

Vj(P ).

Now let K ⊂ L and M ⊂ L⊥ be polytopes, and let P = K +M . If x ∈ Rd

and x = y + z with y ∈ L and z ∈ L⊥, then

d(P, x)2 = d(K, y)2 + d(M, z)2.



14.2 Intrinsic Volumes and Curvature Measures 603

It follows that

W (K +M) =
∫

L⊥

∫
L

e−πd(y,K)2e−πd(z,M)2 λq(dy)λd−q(dz) =W (K)W (M).

Applying this to αK, αM with α > 0, we get

d∑
j=0

αjVj(K +M) =

(
d∑

r=0

αrVr(K)

) (
d∑

s=0

αsVs(M)

)

=
d∑

j=0

αj

j∑
r=0

Vr(K)Vj−r(M).

Comparing the coefficients, we obtain the assertion for polytopes, and by
approximation it is obtained for general convex bodies. ��

The Steiner formula, leading to the intrinsic volumes, can be generalized
in different ways. One possibility, replacing the Minkowski sum K + εBd by a
Minkowski combination λ1K1+. . .+λmKm, leads to the mixed volumes, which
are briefly mentioned in Section 14.3. Another possibility, a local version of the
Steiner formula, leads to the curvature measures and will now be explained.

The parallel bodyKε at distance ε of a convex bodyK consists of all points
x with d(x,K) ≤ ε. Instead, we now take only those points of Kε into account
for which the nearest point p(K,x) in K belongs to some specified Borel set
and, if x /∈ K, the unit vector pointing from p(K,x) to x belongs to some
specified Borel set of directions. Again, the volume of the local parallel set
obtained in this way has a polynomial expansion in ε. The coefficients define
the support measures or generalized curvature measures. By specialization,
one obtains curvature measures and area measures.

Let K ⊂ Rd be a nonempty closed convex set. A support element of K
is a pair (x, u) where x is a boundary point of K and u is an outer unit normal
vector of K at x. The set of all support elements of K is denoted by NorK
and is called the generalized normal bundle of K. It gets its topology as
a subset of the product space Σ := Rd × Sd−1. For x ∈ K, the set

N(K,x) := p(K − x, ·)−1(0)

is the normal cone of K at x. It consists of all outer normal vectors of K
at x, together with the zero vector. For x /∈ K we have d(x,K) > 0, and the
unit vector

u(K,x) :=
x− p(K,x)
d(x,K)

is an outer normal vector to K at p(K,x), thus (p(K,x), u(K,x)) ∈ NorK.

Definition 14.2.1. For a nonempty closed convex set K ⊂ Rd, for ε > 0 and
a Borel set A ⊂ Σ, the set
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Mε(K,A) := {x ∈ Kε \K : (p(K,x), u(K,x)) ∈ A}

is the local parallel set of K at distance ε determined by A.

The following result extends the Steiner formula.

Theorem 14.2.1 (Local Steiner formula). For K ∈ K′, there are finite
measures Ξ0(K, ·), . . . , Ξd−1(K, ·) on Σ such that, for ε ≥ 0 and every A ∈
B(Σ),

λ(Mε(K,A)) =
d−1∑
m=0

εd−mκd−mΞm(K,A). (14.9)

The measures Ξ0(K, ·), . . . , Ξd−1(K, ·) are concentrated on NorK.

The measures Ξ0(K, ·), . . . , Ξd−1(K, ·) are called the support measures
or generalized curvature measures of K.

Results on support measures are often proved for polytopes first, hence we
introduce some relevant notation. For a polyhedral set P ⊂ Rd (a nonempty
intersection of finitely many closed halfspaces), we denote by Fm(P ) the set
of m-dimensional faces of P , m = 0, . . . ,dimP . The set P is considered as a
face of itself. Each face of P is a polyhedral set, and if C is a polyhedral cone,
then each face of C is a polyhedral cone. We write

F•(P ) :=
dim P⋃
m=0

Fm(P )

for the set of all faces of P . If F ∈ F•(P ) and x ∈ relintF , then the normal
cone N(P, x) does not depend on x; it is denoted by N(P, F ) and is called the
normal cone of P at F . For F ∈ Fm(P ), the number

γ(F, P ) :=
λd−m(N(P, F ) ∩Bd)

κd−m
=
σd−m−1(N(P, F ) ∩ Sd−1)

(d−m)κd−m
(14.10)

is the external angle of P at F . By σj we have denoted the j-dimensional
spherical Lebesgue measure. We also put γ(P, P ) = 1 and γ(F, P ) = 0 if either
F = ∅ or F is not a face of P .

Now we sketch the proof of Theorem 14.2.1, to make the reader familiar
with the main arguments, but for the details we refer to Schneider [695, sects.
4.1 and 4.2]. We define

µε(K,A) := λ(Mε(K,A)) for A ∈ B(Σ), ε ≥ 0.

Thus, µε(K, ·) is the image measure of the Lebesgue measure, restricted to
Kε \K, under the map x �→ (p(K,x), u(K,x)) from Kε \K to Σ. This map is
continuous and hence measurable. In particular, µε(K, ·) is a finite measure on
B(Σ). We call it the local parallel volume of K at distance ε. The measure
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µε(K, ·) is concentrated on NorK, that is, µε(K,A) = µε(K,A ∩ NorK) for
A ∈ B(Σ).

We first quote some fundamental properties of the mapping µε : K ×
B(Σ)→ R. In the following, w→ denotes weak convergence of finite measures.

Lemma 14.2.2. If (Kj)j∈N is a sequence in K′ with Kj → K ∈ K′ for j →
∞, then

µε(Kj , ·) w→ µε(K, ·), j →∞,
for every ε > 0.

Lemma 14.2.3. For any Borel set A ∈ B(Σ) and for any ε > 0, the function
µε(·, A) : K′ → R is measurable.

Lemma 14.2.4. For any A ∈ B(Σ) and for any ε > 0, the function µε(·, A)
is additive, that is

µε(K1 ∪K2, A) + µε(K1 ∩K2, A) = µε(K1, A) + µε(K2, A)

whenever K1,K2,K1 ∪K2 ∈ K′.

Now we compute the local parallel volume in the case of a polytope. Let
P ∈ K′ be a polytope. For x ∈ Rd \ P , the nearest point p(P, x) belongs to
the relative interior relintF of a unique face F of P . Therefore,

Mε(P,A) =
d−1⋃
m=0

⋃
F∈Fm(P )

[
Mε(P,A) ∩ p(P, ·)−1(relintF )

]
is a disjoint decomposition of the local parallel set Mε(P,A). For m ∈
{0, . . . , d − 1} and F ∈ Fm(P ) it follows from the properties of the nearest-
point map that

Mε(P,A) ∩ p(P, ·)−1(relintF ) = relintF ⊕ ([N(P, F ) \ {0}] ∩ εBd),

where ⊕ denotes a direct orthogonal sum. An application of Fubini’s theorem
gives

λ(Mε(P,A) ∩ p(P, ·)−1(relintF )) = εd−m

∫
F

λd−m(N(P, F ) ∩Ax)λm(dx)

with
Ax := {ru : (x, u) ∈ A, 0 < r ≤ 1}.

Hence, if we define

Ξm(P,A) :=
1

κd−m

∑
F∈Fm(P )

∫
F

λd−m(N(P, F ) ∩Ax)λm(dx), (14.11)

then we obtain
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µε(P,A) =
d−1∑
m=0

εd−mκd−mΞm(P,A).

This is already a polynomial expansion. Together with approximation by poly-
topes and Lemma 14.2.2 it yields the proof of Theorem 14.2.1.

In the following theorem, we collect some properties of the support mea-
sures. These properties follow from the corresponding properties of µε(K, ·)
and from obvious properties of Ξm(P, ·) for polytopes P , together with the
previous lemmas.

Theorem 14.2.2. For m = 0, . . . , d − 1, the map Ξm : K′ × B(Σ) → R has
the following properties:

(a) Motion covariance: Ξm(gK, g.A) = Ξm(K,A) for g ∈ Gd, where g.A :=
{(gx, g0u) : (x, u) ∈ A}, g0 denoting the rotation part of g,

(b)Homogeneity: Ξm(αK,α · A) = Ξm(K,A) for α ≥ 0, where α · A :=
{(αx, u) : (x, u) ∈ A},

(c) Weak continuity: Kj → K implies Ξm(Kj , ·) w→ Ξm(K, ·),
(d)Ξm(·, A) is additive, for each fixed A ∈ B(Σ),
(e) Ξm(·, A) is measurable, for each fixed A ∈ B(Σ).

It is compatible with the additivity to extend the definition by

Ξm(∅, ·) := 0, m = 0, . . . , d− 1.

In applications, often only the marginal measures of the support measures
are required. Let K ∈ K′. By

Φm(K,A) := Ξm(K,A× Sd−1), A ∈ B(Rd),

one defines the mth curvature measure Φm(K, ·) of K, for m = 0, . . . , d−1.
Thus, Φm(K, ·) is the image measure of the support measure Ξm(K, ·) under
the projection (x, u) �→ x. One extends the definition by

Φd(K, ·) := λ(K ∩ ·),

and then has the local Steiner formula

λ({x ∈ Kε : p(K,x) ∈ A}) =
d∑

m=0

εd−mκd−mΦm(K,A) (14.12)

for A ⊂ B(Rd). Further, by

Ψm(K,B) := Ξm(K,Rd ×B), B ∈ B(Sd−1),

one defines the mth area measure Ψm(K, ·) of K, for m = 0, . . . , d−1. Thus,
Ψm(K, ·) is the image measure of Ξm(K, ·) under the projection (x, u) �→ u.

Clearly, for m = 0, . . . , d− 1 and K ∈ K′,
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Ξm(K,Σ) = Φm(K,Rd) = Ψm(K,Sd−1) = Vm(K).

In the literature, the names curvature measure and area measure are also
used for differently normalized versions of the measures defined here. We in-
troduce only the two frequently used notations

Cd−1(K, ·) := 2Φd−1(K, ·), Sd−1(K, ·) := 2Ψd−1(K, ·).

These measures have simple intuitive interpretations. Let Hd−1 denote the
(d−1)-dimensional Hausdorff measure. If dimK �= d−1, then, for A ∈ B(Rd),

Cd−1(K,A) = 2Φd−1(K,A) = Hd−1(A ∩ bdK).

Therefore, the measure Cd−1(K, ·) is called the boundary measure of K.
For dimK ≤ d− 1, one trivially has Φd−1(K,A) = Hd−1(A∩ bdK). For B ∈
B(Sd−1), let τ(K,B) be the set of boundary points of K at which there exists
an outer normal vector belonging to B. For a convex body K of dimension
dimK �= d− 1,

Sd−1(K,B) = 2Ψd−1(K,B) = Hd−1(τ(K,B)).

The measure Sd−1(K, ·) is called the surface area measure ofK. If dimK =
d − 1, then Sd−1(K,B) = 2Hd−1(K), Hd−1(K), or 0, according to whether
both, one, or none of the unit normal vectors of the affine hull of K belong to
B.

Under special assumptions on the convex bodies, also the curvature mea-
sures and area measures of orders less than d−1 have intuitive interpretations.
If the boundary bdK of the convex body K is a regular hypersurface of class
C2, then the local parallel volume can be computed by differential-geometric
means. Let A ∈ B(Rd). Form = 0, . . . , d−1 one obtains for themth curvature
measure the representation

Φm(K,A) =

(
d
m

)
dκd−m

∫
A∩bd K

Hd−1−m dS,

where Hk denotes the kth normalized elementary symmetric function of the
principal curvatures of bdK and where dS is the volume form on bdK. This,
of course, explains the name ‘curvature measure’. If P is a polytope, the
explicit representation (14.11) specializes to

Φm(P,A) =
∑

F∈Fm(P )

γ(F, P )λm(F ∩A), (14.13)

where γ(F, P ) is the external angle of P at its face F .
An important special case of (14.13) is the representation

Vm(P ) =
∑

F∈Fm(P )

γ(F, P )λm(F ) (14.14)
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for the mth intrinsic volume of a polytope P .
For arbitrary K ∈ K′, it is clear from (14.12) that the curvature measures

Φj(K, ·) are concentrated on the boundary of K, for j = 0, . . . , d− 1.
Let σ(K,A) ⊂ Sd−1 denote the set of all outer unit normal vectors to K

at points of A ∩ bdK; then

Φ0(K,A) =
1
dκd
Hd−1(σ(K,A)).

Thus, the measure Φ0 is the normalized area of the spherical image and is,
therefore, also known as the Gaussian curvature measure.

For the area measures at a Borel set B ∈ B(Sd−1), the following repre-
sentations in special cases are obtained. For a convex body K with a regular
C2 boundary of positive Gauss–Kronecker curvature, the mth area measure
is given by

Ψm(K,B) =

(
d
m

)
dκd−m

∫
B

sm dσ.

Here sm is themth normalized elementary symmetric function of the principal
radii of curvature of bdK, as a function of the outer unit normal vector (recall
that σ := σd−1, by convention). For a polytope P , we get

Ψm(P,B) =
∑

F∈Fm(P )

σd−1−m(N(P, F ) ∩B)
(d−m)κd−m

λm(F ).

For general convex bodies K, the measure Ψ0(K, ·) is independent of K and
is equal to σ/σ(Sd−1).

It is important to notice that the support measure Ξm has an additive
extension to the convex ring R (denoted by the same symbol). Thus, there is
a mapping Ξ : R× B(Σ)→ R extending the mth support measure, which is
additive in the first argument. The existence of the extension follows either
from Theorem 14.4.2, or by an extension of the local Steiner formula (see
Schneider [695, sect. 4.4], and also Note 3 of Section 14.4). IfK = K1∪. . .∪Kk

with Ki ∈ K′, i = 1, . . . , k, then the inclusion–exclusion principle gives

Ξm(K, ·) =
k∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤k

Ξm(Ki1 ∩ . . . ∩Kir
, ·).

This shows that the extension Ξm(K, ·) is a signed measure. In general, it is
not a positive measure, with the exception that always

Ξd−1(K, ·) ≥ 0 for K ∈ R.

As a consequence, also Φm and Ψm, and in particular Cd−1 and Sd−1, have
extensions to the convex ring that are additive in the first argument and signed
measures in the second, and
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Cd−1(K, ·) ≥ 0, Sd−1(K, ·) ≥ 0 for K ∈ R. (14.15)

If K ∈ R is the closure of its interior, then Cd−1(K,A) = Hd−1(A∩bdK), as
for convex bodies. This was proved in [695, Th. 4.4.1], and by extending the
argument, Weil [797] showed (14.15).

The following property is not surprising, but occasionally useful.

Theorem 14.2.3. The curvature measures and the area measures are locally
determined, in the following sense. Let K,M ∈ K′.

(a) If A ⊂ Rd is open and K ∩ A = M ∩ A, then Φm(K,B) = Φm(M,B) for
every Borel set B ⊂ A, m = 0, . . . , d.

(b) If B ∈ B(Sd−1) is a Borel set with τ(K,B) = τ(M,B), then Ψ(K,B) =
Ψm(M,B), m = 0, . . . , d− 1.

Since themth curvature measure is locally determined, the value Φm(M,B)
is well defined for a locally polyconvex set M ∈ S and a bounded Borel
set B. Indeed, we may choose a convex body K with B ⊂ intK, then
Φm(M,B) := Φm(M ∩ K,B) does not depend on the choice of K. We call
this extension of Φm to the extended convex ring a signed Radon measure,
since

f �→
∫

Rd

f(x)Φm(M,dx), f ∈ Cc(Rd),

defines a linear functional on the vector space Cc(Rd) of continuous functions
on Rd with compact support, and this linear functional is bounded on C(C)
for every compact set C ⊂ Rd. If M ∈ S is convex, hence a closed convex
set, the curvature measures Φm(M, ·) are nonnegative, they can therefore be
extended to all Borel sets B, as locally finite measures.

Since the support measures appear in the polynomial expansion (14.9),
they satisfy themselves Steiner type formulas. For ε ≥ 0, we define a map
Tε : Σ → Σ by Tε(x, u) := (x+ εu, u).

Theorem 14.2.4. If K ∈ K′, A ⊂ B(Σ), ε ≥ 0 and k ∈ {0, . . . , d− 1}, then

Ξk(K + εBd, TεA) =
k∑

m=0

εk−m 1
(k −m)!

cd−m
d−k Ξm(K,A).

Special cases are obtained for curvature measures and area measures. If
A ⊂ K is a Borel set, then

Φk(K + εBd, A+ εBd) =
k∑

m=0

εk−m 1
(k −m)!

cd−m
d−k Φm(K,A). (14.16)

If A ⊂ Sd−1 is a Borel set, then

Ψk(K + εBd, A) =
k∑

m=0

εk−m 1
(k −m)!

cd−m
d−k Ψm(K,A).
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Notes for Section 14.2

1. Detailed proofs of the statements of this section are found in Schneider [695]. An
exception is Lemma 14.2.1, for which we gave a proof using an idea of Hadwiger
[308]; see also Federer [229, p. 272].

2. For the early history of the Steiner formula, and for information about the intro-
duction of area measures and curvature measures, we refer to the Notes in Schneider
[695, pp. 211 ff.]. The support measures or generalized curvature measures were first
introduced in Schneider [678] and further studied in Schneider [679].

14.3 Mixed Volumes and Inequalities

The Steiner formula is just a special case of a general polynomial expansion.
For convex bodies K1, . . . ,Km ∈ K′ and numbers λ1, . . . , λm ≥ 0, there is a
representation

Vd(λ1K1 + . . .+ λmKm) =
m∑

i1,...,id=1

λi1 · · ·λid
V (Ki1 , . . . ,Kid

) (14.17)

with uniquely determined symmetric coefficients V (Ki1 , . . . ,Kid
). The func-

tion (K1, . . . ,Kd) �→ V (K1, . . . ,Kd) is called the mixed volume. We use the
notation

V (K[k],M [d− k]) := V (K, . . . ,K︸ ︷︷ ︸
k

,M, . . . ,M︸ ︷︷ ︸
d−k

).

In particular, the intrinsic volumes are given by

Vj(K) =

(
d
j

)
κd−j

V (K[j], Bd[d− j]). (14.18)

Also the volume of the orthogonal projection K|L of a convex body K to a
subspace L ∈ G(d, j), j ∈ {1, . . . , d− 1}, can be expressed as a mixed volume.
If BL⊥ ⊂ L⊥ is a ball of (d− j)-dimensional volume 1, then

Vj(K|L) =
(
d

j

)
V (K[j], BL⊥ [d− j]). (14.19)

A special case of the expansion (14.17), slightly more general than the
Steiner formula, is the expression

Vd(K + εM) =
d∑

j=0

εd−j

(
d

j

)
V (K[j],M [d− j]) (14.20)

for K,M ∈ K′.
The mixed volume has an important integral representation, given by
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V (M,K1, . . . ,Kd−1) =
1
d

∫
Sd−1

h(M,u)S(K1, . . . ,Kd−1,du). (14.21)

Here, S(K1, . . . ,Kd−1, ·) is a uniquely determined finite measure on Sd−1,
the mixed area measure of K1, . . . ,Kd−1. By specializing, one obtains the
surface area measure of K,

Sd−1(K, ·) = S(K, . . . ,K, ·), (14.22)

and the integral representation

V (M,K, . . . ,K) =
1
d

∫
Sd−1

h(M,u)Sd−1(K,du). (14.23)

It is important to know which measures can occur as surface area mea-
sures of convex bodies. The answer is given by the following existence and
uniqueness theorem, which goes back to Hermann Minkowski.

Theorem 14.3.1 (Minkowski). Let ϕ be a finite measure on the sphere
Sd−1 with the properties that ∫

Sd−1
uϕ(du) = 0

and ϕ(S) < ϕ(Sd−1) for every great subsphere S ⊂ Sd−1. Then there exists
a convex body K ∈ K′ with interior points such that Sd−1(K, ·) = ϕ. It is
uniquely determined up to translations.

For some applications, we need a generalization of the support measures,
where the Euclidean distance used in the definition of local parallel sets is
replaced by a (not necessarily symmetric) distance notion defined by some
gauge body B (also called structuring element in certain applications).
By this, we understand here a convex body containing the origin 0. The
B-distance of a point x from a nonempty closed set F is defined by

dB(x, F ) := min{r ≥ 0 : (x+ rB) ∩ F �= ∅}
= min{r ≥ 0 : x ∈ F − rB}

(with min ∅ := ∞). For K ∈ K′ we say that K and B have independent
support sets if

dimF (K −B, u) = dimF (K,u) + dimF (−B, u), u ∈ Sd−1,

where F (K,u) is the intersection of K with its support hyperplane with outer
unit normal vector u. Suppose that this holds. Then, for each x ∈ Rd there
is a unique point y ∈ K for which (x+ dB(x,K)B) ∩K = {y}. This point is
denoted by pB(K,x), and the vector uB(K,x) is defined by
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uB(K,x) :=
x− pB(K,x)
dB(x,K)

.

Note that uB(K,x) ∈ bd (−B). The Minkowski normal bundle of K is
the set

NB(K) := {(pB(K,x), uB(K,x)) : x ∈ bd (K − rB)},
where r > 0 is arbitrary.

For A ∈ B(Rd × Rd) and ε ≥ 0 we define a relative local parallel set by

MB
ε (K,A) := {x ∈ Rd : 0 < dB(x,K) ≤ ε, (pB(K,x), uB(K,x)) ∈ A}.

Its Lebesgue measure has a polynomial expansion in ε,

λ(MB
ε (K,A)) =

d−1∑
m=0

εd−mκd−mΞm(K;B;A). (14.24)

This generalizes the local Steiner formula (14.9) and defines the relative
support measures Ξm(K;B; ·), m = 0, . . . , d− 1, of K with respect to the
gauge body B. The measure Ξm(K;B; ·) is concentrated on the Minkowski
normal bundle NB(K). Notice that

Ξm(K;B; Rd × Rd) =

(
d
m

)
κd−m

V (K[m],−B[d−m]). (14.25)

The polynomial expansion (14.24) can be generalized as follows.

Theorem 14.3.2. Let K,B ∈ K′ be convex bodies with 0 ∈ B and such that
K,B have independent support sets. If f is a nonnegative measurable function
on Rd, then∫

Rd

1{0 < dB(x,K) <∞}f(x)λ(dx) (14.26)

=
d−1∑
m=0

(d−m)κd−m

∫ ∞

0

∫
Rd×Rd

td−1−mf(y + tb)Ξm(K;B; d(y, b)) dt.

The following consequence is formulated in a way that is convenient for
applications.

Theorem 14.3.3. Let K,B ∈ K′ be convex bodies with 0 ∈ B and such that
K,B have independent support sets. If g is a nonnegative measurable function
on [0,∞]× Rd × Rd and f is a nonnegative measurable function on Rd, then∫

Rd

1{0 < dB(x,K) <∞}g(dB(x,K), uB(K,x), pB(K,x))f(x)λ(dx)

=
d−1∑
m=0

(d−m)κd−m

×
∫ ∞

0

∫
Rd×Rd

td−1−mg(t, b, y)f(y + tb)Ξm(K;B; d(y, b)) dt. (14.27)
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In deriving (14.27) from (14.26), one has to observe that for (y, b) in the
support of Ξm(K;B; ·) one has dB(y + tb,K) = t, pB(K, y + tb) = y and
uB(K, y + tb) = b.

The intrinsic volumes and also the mixed volumes have vector-valued coun-
terparts. Of these, we need only the Steiner point s. ForK ∈ K′, it is defined
by

s(K) :=
1
κd

∫
Sd−1

h(K,u)uσ(du). (14.28)

Because of h(K + t, u) = h(K,u) + 〈t, u〉, the Steiner point has the property

s(K + t) = s(K) + t, t ∈ Rd.

The Steiner point is the centroid of the Gaussian curvature measure, thus

s(K) =
∫

Rd

xΦ0(K,dx)

for K ∈ K′. For a polytope P , this reads

s(K) =
∑

e∈vert (P )

γ({e}, P )e, (14.29)

where vert (P ) is the set of vertices of P .

The mixed volumes satisfy a set of inequalities, with many applications.
For arbitrary convex bodies K,M,K3, . . . ,Kd, the Aleksandrov–Fenchel
inequality states that

V (K,M,K3, . . . ,Kd)2 ≥ V (K,K,K3, . . . ,Kd)V (M,M,K3, . . . ,Kd).

Further inequalities can be deduced from this, such as Minkowski’s inequal-
ity

V (M,K, . . . ,K)d ≥ Vd(M)Vd(K)d−1 (14.30)

and the inequalities(
κd−j(

d
j

) Vj(K)

)k

≥ κk−j
d

(
κd−k(

d
k

) Vk(K)

)j

(14.31)

for 0 < j < k ≤ d and, as a special case of the general Brunn–Minkowski
theorem,

Vj(K +M)1/j ≥ Vj(K)1/j + Vj(M)1/j (14.32)

for K,M ∈ K′ and j = 1, . . . , d. Equality in (14.30) for Vd(K) > 0 and
dimM > 0 holds if and only if K and M are homothetic. Equality in (14.31)
for Vj(K) > 0 characterizes balls. For j = d and d-dimensional bodies K,M ,
equality in (14.32) holds if and only if K and M are homothetic.
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In this book, the preceding inequalities are applied to special convex bod-
ies, the zonoids. The convex body Z ∈ K′ is called a (centered) zonoid if its
support function has a representation of the form

h(Z, u) =
∫

Sd−1
|〈u, v〉| ρ(dv), u ∈ Rd, (14.33)

with an even finite measure ρ on the sphere Sd−1. Here the measure ρ is called
even if ρ(A) = ρ(−A) for all A ∈ B(Sd−1). Every translate of a centered
zonoid is called a zonoid. If the measure ρ in (14.33) has finite support, then
Z is a Minkowski sum of finitely many segments. Such a convex body is a
special polytope, called a zonotope. Zonoids are precisely the convex bodies
that can be approximated by zonotopes. When (14.33) holds and ρ is even,
then ρ is called the generating measure of Z. It is uniquely determined,
due to the following theorem.

Theorem 14.3.4. If ρ is an even finite signed measure on Sd−1 with∫
Sd−1

|〈u, v〉| ρ(dv) = 0

for all v ∈ Sd−1, then ρ = 0.

For mixed volumes of zonoids there are special integral representations
in terms of the generating measures. Let Zi be a zonoid with generating
measure ρi (i = 1, . . . , d). For vectors u1, . . . , uj , let ∇j(u1, . . . , uj) denote the
j-dimensional volume of the parallelepiped spanned by these vectors. Then
the mixed volume of Z1, . . . , Zd is given by

V (Z1, . . . , Zd) =
2d

d!

∫
Sd−1

. . .

∫
Sd−1

∇d(u1, . . . , ud) ρ1(du1) · · · ρd(dud).

If some of the zonoids are equal to the unit ball, this formula simplifies. For
j ∈ {1, . . . , d}, we have

V (Z1, . . . , Zj , B
d, . . . , Bd) (14.34)

=
2j(d− j)!κd−j

d!

∫
Sd−1

. . .

∫
Sd−1

∇j(u1, . . . , uj) ρ1(du1) · · · ρj(duj).

(The proof is the obvious modification of the one given in [695, p. 300] for the
subsequent formula (14.35).) In particular, the intrinsic volumes of the zonoid
Z with generating measure ρ have the representation

Vj(Z) =
2j

j!

∫
Sd−1

. . .

∫
Sd−1

∇j(u1, . . . , uj) ρ(du1) · · · ρ(duj) (14.35)

for j = 1, . . . , d− 1.
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It is convenient here to associate with the generating measure ρ a measure
ρ(j) on the Grassmannian G(d, j) of j-dimensional linear subspaces. For this,
let LIj be the set of linearly independent j-tuples of unit vectors in Sd−1, and
define the map Λj : LIj → G(d, j) by

Λj(u1, . . . , uj) := lin{u1, . . . , uj}.

We define ρ(j) as the image measure under Λj , of the measure appearing in
(14.35), thus

ρ(j) := Λj

(
2j

j!κj

∫
(·)
∇j(u1, . . . , uj) ρ j(d(u1, . . . , uj))

)
. (14.36)

Since the function (u1, . . . , uj) �→ ∇j(u1, . . . , uj) vanishes on (Sd−1)j \ LIj ,
we can write

Vj(Z) = κjρ(j)(G(d, j)). (14.37)

The measure ρ(j) on G(d, j) is called the jth projection generating mea-
sure of Z, since

Vj(Z|E) = κj

∫
G(d,j)

|〈E,L〉| ρ(j)(dL) for E ∈ G(d, j). (14.38)

Recall that Z|E denotes the image of Z under the orthogonal projection to
E, and |〈E,L〉| = [E,L⊥] is the absolute j-dimensional determinant of the
orthogonal projection from E to L (or L to E). More general versions of
equation (14.38) are found in Weil [781].

For the preceding results, it is not necessary that ρ is a positive measure.
If the support function of a convex body Z with center 0 has a representation
(14.33) with a finite signed measure ρ, then Z is called a generalized zonoid.
If the signed measure ρ(j) is defined by (14.36), then (14.38) still holds (the
proof given by Weil [781] works also for signed measures).

For the spherical Lebesgue measure σ, the measure σ(j) is rotation invari-
ant and hence a multiple of the invariant measure νj on G(d, j). In fact, with
the notation (5.5),

σ(j) = (2jκd−1)jcd,0
j,d−j νj . (14.39)

Zonoids with nonempty interior can be interpreted as projection bodies.
The projection body of the convex body K ∈ K′ is defined as the convex
body ΠK with support function given by

h(ΠK , u) = Vd−1(K|u⊥), u ∈ Sd−1. (14.40)

Explicitly,

Vd−1(K|u⊥) =
1
2

∫
Sd−1

|〈u, v〉|Sd−1(K,dv), u ∈ Sd−1, (14.41)
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so that the projection body ΠK of K is the zonoid having the even part of
Sd−1(K, ·)/2 as its generating measure. It follows from Theorem 14.3.1 that
every d-dimensional centered zonoid is the projection body of a unique convex
body with 0 as center of symmetry.

Besides the inequalities from the theory of mixed volumes, we employ
volume estimates involving polar bodies. Let K ∈ K′ be a convex body having
0 as an interior point. The polar body Ko of K is defined by

Ko := {x ∈ Rd : 〈x, y〉 ≤ 1 for all y ∈ K}.

It is again a convex body with 0 as an interior point. We have

ρ(Ko, u) =
1

h(K,u)
, u ∈ Sd−1, (14.42)

where ρ is the radius function. It is defined by

ρ(M,u) := sup{λ ≥ 0 : λu ∈M} for u ∈ Sd−1;

hereM can be any set star-shaped with respect to 0, that is, satisfying [0, x] ⊂
M for all x ∈M .

According to (14.42), the volume of the polar body Ko of the convex body
K can be expressed by

Vd(Ko) =
1
d

∫
Sd−1

h(K,u)−d σ(du).

Applying Jensen’s inequality and observing (14.7), we obtain the inequality

Vd(Ko) ≥ κd

(
κd−1

dκd
V1(K)

)−d

. (14.43)

Here equality holds if and only if K is a ball with center 0.
The polar projection body (that is, the polar body of the projection body)

of a convex bodyK ∈ K′ with nonempty interior satisfies Petty’s projection
inequality

Vd((ΠK)o)Vd(K)d−1 ≤
(
κd

κd−1

)d

, (14.44)

with equality if and only if K is an ellipsoid.
If Z is a d-dimensional zonoid with center 0, then

4d

d!
≤ Vd(Z)Vd(Zo) ≤ κ2

d. (14.45)

In the right inequality, which is known as the Blaschke–Santaló inequality
and holds for general convex bodies with 0 as center of gravity, the equality
sign holds if and only if Z is an ellipsoid. In the left inequality, equality holds
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if and only if Z is a parallelepiped (for a short proof, see Gordon, Meyer and
Reisner [282]).

Notes for Section 14.3

1. All results stated here without references, with the exception of those to which
Note 2 refers, can be found in Schneider [695].

2. The relative support measures were introduced independently by Kiderlen and
Weil [409] and (for strictly convex gauge bodies) by Hug and Last [357]. There
one also finds versions of Theorems 14.3.2 and 14.3.3. In the form we presented
them here, both theorems follow from more general results proved in Hug, Last and
Weil [358]. It should be observed that the papers on non-symmetric distances and
relative support measures do not always use the same terminology. In the notation
of Kiderlen and Weil [409], dB(x, K) = d(K,−B, x) and

Ξj(K; B; ·) =
1

dκd−j

(
d

j

)
Θj;d−j(K;−B; ·).

Our distance dB(x, K) is denoted by dB(K, x) in [357], by d−B(K, x) in Hug [356],
and by dB({x}, K) in [358]. Hug and Last [357] denote our Ξj(K; B; ·) by CB

j (K, ·).

14.4 Additive Functionals

A function ϕ on an intersectional family V of sets with values in an abelian
group is called additive or a valuation if it satisfies

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L), (14.46)

whenever K,L,K ∪L ∈ V. If ϕ is an additive function on V, we may assume,
without loss of generality, that ∅ ∈ V and ϕ(∅) = 0. Therefore, if an additive
function on an intersectional family V with ∅ /∈ V is given, we always extend
the definition to V ∪{∅}, putting ϕ(∅) := 0. The extension is then additive on
V ∪ {∅}.

The function ϕ on V is called generally additive if it satisfies the general
version of (14.46), namely

ϕ(K1 ∪ . . . ∪Km) =
m∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤m

ϕ(Ki1 ∩ . . . ∩Kir
), (14.47)

whenever K1, . . . ,Km ∈ V and K1 ∪ . . . ∪Km ∈ V. If ϕ is generally additive,
it is also said to satisfy the inclusion–exclusion principle, (14.47), on V.

We often write (14.47) in the more concise form

ϕ(K1 ∪ . . . ∪Km) =
∑

v∈S(m)

(−1)|v|−1ϕ(Kv), (14.48)
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where we use the following notation: S(m) is the set of nonempty subsets of
{1, . . . ,m}, |v| is the number of elements in v ∈ S(m), and for v ∈ {i1, . . . , ik}
we write

Kv := Ki1 ∩ . . . ∩Kik
.

It is a natural question to ask whether a valuation ϕ on V can be extended
to an additive function on the lattice U(V) consisting of all finite unions of
elements of V. If such an extension (also denoted by ϕ) to U(V) exists, it
satisfies the inclusion–exclusion principle on U(V), as follows from (14.46) by
induction. This implies, in particular, that an additive extension is unique.
However, one cannot simply use (14.47) to define an extension of ϕ from
V to U(V), since the representation of an element K ∈ U(V) in the form
K = K1 ∪ . . . ∪Km with K1, . . . ,Km ∈ V is in general not unique. It is one
of the main purposes of this section to prove some extension theorems for
additive functions. The next two theorems are essentially due to H. Groemer.

If V is an intersectional family, we write E(V) for the union of the sets in
V, and for K ⊂ E(V) we denote (only in this section) by K∗ the indicator
function of K on E(V), that is,

K∗(x) :=

{
1 if x ∈ K,
0 if x ∈ E(V) \K.

The indicator function satisfies

(K1 ∪ . . . ∪Km)∗ =
m∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤m

(Ki1 ∩ . . . ∩Kir
)∗ (14.49)

for arbitrary sets K1, . . . ,Km ⊂ E(V), as follows immediately from the bino-
mial theorem. In particular, the map K �→ K∗ is generally additive on V.

We denote by M(V) the Z-module spanned by the indicator functions of
the elements of V, and U(V) is defined as the family of all subsets of E(V)
whose indicator function belongs to M(V). Then U(V) is intersectional and
closed under finite unions. Clearly U(V) ⊂ U(V), as follows from (14.49).

Theorem 14.4.1 (Groemer). Let ϕ be a function from an intersectional
class V (with ∅ ∈ V) into an abelian group, satisfying ϕ(∅) = 0. The following
statements are equivalent:

(a) ϕ has an additive extension to U(V).
(b)ϕ is generally additive on V.
(c) a1K∗

1 + . . . + amK
∗
m = 0 with Ki ∈ V and ai ∈ Z (i = 1, . . . ,m) implies

a1ϕ(K1) + . . .+ amϕ(Km) = 0.

Proof. The implication (a) ⇒ (b) is clear from the previous remarks.
To prove the implication (b)⇒ (c), we assume that (b) holds, but that (c)

is false. Then there are sets K1, . . . ,Km ∈ V (m ≥ 1) and integers a1, . . . , am

so that
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a1K
∗
1 + . . .+ amK

∗
m = 0, (14.50)

but
a1ϕ(K1) + . . .+ amϕ(Km) �= 0. (14.51)

Let Di := Ki for i = 1, . . . ,m, let Dm+1, . . . , Dm1 be the intersections Ki∩Kj

with i < j (in some order), let Dm1+1, . . . , Dm2 be the intersections Ki∩Kj ∩
Kk with i < j < k, and so on, until Dp = K1 ∩ . . .∩Km. There exist integers
ci so that

p∑
i=r

ciD
∗
i = 0, cr �= 0, (14.52)

p∑
i=r

ciϕ(Di) �= 0, (14.53)

for example by (14.50), (14.51). We choose the coefficients in such a way that r
is maximal. Then r < p, since otherwise cpD∗

p = 0 with cp �= 0, hence Dp = ∅,
but cpϕ(Dp) �= 0, a contradiction. By (14.52), any point of Dr is contained in
some Di with i > r, hence

Dr = (Dr ∩Dr+1) ∪ (Dr ∩Dr+2) ∪ . . . ∪ (Dr ∩Dp).

Since ϕ is generally additive, this gives

ϕ(Dr) =
∑

r<i≤p

ϕ(Dr ∩Di)−
∑

r<i<j≤p

ϕ(Dr ∩Di ∩Dj) +− . . .

By (14.49),

D∗
r =

∑
r<i≤p

(Dr ∩Di)∗ −
∑

r<i<j≤p

(Dr ∩Di ∩Dj)∗ +− . . .

Each intersection appearing here is some set Ds with s > r. Hence, there are
integer coefficients ds such that

D∗
r =

p∑
s=r+1

dsD
∗
s

and

ϕ(Dr) =
p∑

s=r+1

dsϕ(Ds).

If these representations are inserted in (14.52) and (14.53), we obtain expres-
sions of the same type as (14.52), (14.53), again with integer coefficients, but
with r replaced by a larger number. This contradicts the choice of r and thus
proves (c).

Suppose that (c) holds. For given f ∈M(V) we choose a representation
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f =
m∑

i=1

aiK
∗
i

with m ∈ N, Ki ∈ V and ai ∈ Z, and we define

ϕ̃(f) :=
m∑

i=1

aiϕ(Ki).

Since (c) holds, this definition is possible and does not depend on the special
representation of f . In this way, we have defined a map ϕ̃ on M(V) satisfying
ϕ̃(K∗) = ϕ(K) for K ∈ V and ϕ̃(f + g) = ϕ̃(f) + ϕ̃(g) for f, g ∈M(V). Now
we extend ϕ from V to U(V) by setting

ϕ(K) := ϕ̃(K∗) for K ∈ U(V).

For K,L ∈ U(V) we then have

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ̃((K ∪ L)∗) + ϕ̃((K ∩ L)∗)

= ϕ̃((K ∪ L)∗ + (K ∩ L)∗) = ϕ̃(K∗ + L∗)

= ϕ̃(K∗) + ϕ̃(L∗) = ϕ(K) + ϕ(L).

Thus, the extension is additive on U(V). We have proved that (a) holds. ��

From Theorem 14.4.1 we shall draw two important conclusions. Recall that
the convex ring R is the system U(K) of finite unions of convex bodies in Rd.

Theorem 14.4.2 (Groemer’s extension theorem). Every continuous
valuation ϕ : K → X with values in a topological vector space X has an
additive extension to the convex ring R.

Proof. By Theorem 14.4.1 it suffices to show that

m∑
i=1

aiK
∗
i = 0 (14.54)

with m ∈ N, ai ∈ Z, Ki ∈ K implies

m∑
i=1

aiϕ(Ki) = 0.

Assume that this were false. Then there exists a minimal counterexample,
that is, a smallest number m ≥ 2 for which there are integers a1, . . . , am and
convex bodies K1, . . . ,Km ∈ K′ such that (14.54) holds together with

m∑
i=1

aiϕ(Ki) =: c �= 0. (14.55)
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Let H ⊂ Rd be a hyperplane with K1 ⊂ intH+, where H+,H− are the two
closed halfspaces bounded by H. Since (14.54) holds at each point, we have

m∑
i=1

ai(Ki ∩H−)∗ = 0,
m∑

i=1

ai(Ki ∩H)∗ = 0.

By the choice of H, each of these sums has at most m−1 non-zero summands.
Since m was minimal and ϕ(∅) = 0, we conclude that

m∑
i=1

aiϕ(Ki ∩H−) = 0,
m∑

i=1

aiϕ(Ki ∩H) = 0.

Since Ki = (Ki ∩H+) ∪ (Ki ∩H−) and (Ki ∩H+) ∩ (Ki ∩H−) = Ki ∩H,
the additivity of ϕ on K yields

m∑
i=1

aiϕ(Ki ∩H+) = c. (14.56)

We can choose a sequence (Hj)j∈N of hyperplanes with K1 ⊂ intH+
j for j ∈ N

and

K1 =
∞⋂

j=1

H+
j .

Repetition of the argument leading from (14.54) and (14.55) to (14.56) shows
that

m∑
i=1

aiϕ

⎛⎝Ki ∩
k⋂

j=1

H+
j

⎞⎠ = c

for k = 1, 2, . . . We have

lim
k→∞

Ki ∩
k⋂

j=1

H+
j = Ki ∩K1

if Ki ∩K1 �= ∅, and if Ki ∩K1 = ∅, then

Ki ∩
k⋂

j=1

H+
j = ∅

for all sufficiently large k. From the continuity of ϕ and from ϕ(∅) = 0 we
conclude that

m∑
i=1

aiϕ(Ki ∩K1) = c. (14.57)

By (14.54) we still have
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m∑
i=1

ai(Ki ∩K1)∗ = 0. (14.58)

We repeat the procedure leading from (14.54) and (14.55) to (14.58) and
(14.57), replacing the bodies Ki and K1 first by Ki ∩ K1 and K2, then by
Ki ∩K1 ∩K2 and K3, and so on. Finally, this results in the relations

m∑
i=1

ai(K1 ∩ . . . ∩Km)∗ = 0

and
m∑

i=1

aiϕ(K1 ∩ . . . ∩Km) = c.

Now c �= 0 implies
∑m

i=1 ai �= 0, hence (K1 ∩ . . . ∩ Km)∗ = 0 and thus
ϕ(K1 ∩ . . . ∩Km) = 0, a contradiction. This completes the proof. ��

A second extension theorem concerns valuations on polytopes. In this case,
no continuity assumption is required.

We denote by P the set of (compact, convex) polytopes in Rd (including
∅) and by Pro the set of relatively open polytopes, ro-polytopes for short.
By definition, every Q ∈ Pro is the relative interior of a convex polytope. The
system U(Pro) consists of all finite unions of ro-polytopes. The elements of
U(Pro) are called ro-polyhedra. Every polytope P ∈ P is a ro-polyhedron; in
fact, P is the disjoint union of the relative interiors of its faces. We write P ′ for
the set of nonempty polytopes and P ′

ro for the set of nonempty ro-polytopes.

Theorem 14.4.3. Every valuation on P has an additive extension to a valu-
ation on the class U(Pro) of ro-polyhedra.

Proof. Let ϕ be a valuation on P. We shall show that it is generally addi-
tive on P. If that is proved, Theorem 14.4.1 shows that ϕ has an additive
extension to U(P). It follows easily by induction that the indicator function
of a ro-polytope is a linear combination, with integer coefficients, of indi-
cator functions of polytopes, thus Pro ⊂ U(P). Since every ro-polyhedron
can be represented as a finite disjoint union of ro-polytopes, it follows that
U(Pro) ⊂ U(P). Therefore, the additive extension of ϕ to U(P) induces an
additive extension to U(Pro).

The proof that ϕ is generally additive on P follows Volland [771]. If τ =
(P1, . . . , Pm) is a tuple of polytopes with P1 ∪ . . . ∪ Pm = P ∈ P ′, we write

ϕ(P, τ) :=
m∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤m

ϕ(Pi1 ∩ . . . ∩ Pir
).

We have to show that
ϕ(P ) = ϕ(P, τ). (14.59)
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The proof is by induction with respect to dimP . For dimP = 0, there is
nothing to prove. Suppose that P = P1 ∪ . . . ∪ Pm with P, Pi ∈ P ′ and
dimP ≥ 1 and that the assertion is true for polytopes of dimension less
than dimP . Without loss of generality, we can assume dimP = d. We prove
(14.59) by induction with respect to the number m. For m = 1, there is
nothing to prove. Suppose that m > 1 and that the assertion is true for all
representations of d-dimensional polytopes as unions of less thanm polytopes.
First we consider two special cases.

Case 1. At least one polytope of τ , say Pm, is of dimension less than d.

Case 2. At least one polytope of τ , say P1, is equal to P .

Putting Q :=
⋃m−1

i=1 Pi, in either case we have P = Q ∪ Pm and Q ∈ P ′. The
additivity of ϕ gives

ϕ(P ) = ϕ(Pm) + ϕ(Q)− ϕ(Q ∩ Pm).

Inserting Q =
⋃m−1

i=1 Pi and Q∩Pm =
⋃m−1

i=1 (Pi∩Pm) and using the (second)
induction hypothesis, we immediately obtain (14.59).

Now we assume that none of the two cases occurs. Then dimP1 = d, and
there is a hyperplane H such that P1 ∩H is a facet of P1 and H ∩ intP �= ∅.
Let H+,H− be the two closed halfspaces bounded by H, where P1 ⊂ H+. By
additivity,

ϕ(P ) = ϕ(P ∩H+) + ϕ

(
m⋃

i=1

(Pi ∩H−)

)
− ϕ

(
m⋃

i=1

(Pi ∩H)

)
.

Relation (14.59) can be applied to the second term on the right, since dim (P1∩
H−) < d (Case 1). It can also be applied to the third term, since it holds in
lower dimensions, by the first induction hypothesis. Carrying this out, using
that

ϕ(Q ∩H−)− ϕ(Q ∩H) = ϕ(Q)− ϕ(Q ∩H+)

holds for any Q ∈ P ′, and rearranging the terms, we obtain the relation

ϕ(P )− ϕ(P, τ) = ϕ(P ∩H+)− ϕ(P ∩H+, τ+), (14.60)

where τ+ := (P1 ∩ H+, . . . , Pm ∩ H+). By construction, P1 ⊂ P ∩ H+. If
P1 �= P ∩ H+, we can continue the procedure with a different facet of P1.
After finitely many steps, the remaining polytope coincides with P1. This
situation is covered by Case 2, hence in the final relation corresponding to
(14.60), the right side vanishes. This completes the proof. ��

The additive extension of a continuous valuation on K to the convex ring
R, which exists by Groemer’s extension theorem, will in general no longer be
continuous (with respect to the topology induced by the Hausdorff metric on
C). This is already shown by the example of the volume, together with the fact
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that a convex body of positive volume can be approximated, in the Hausdorff
metric, by finite sets, which belong to the convex ring and have volume zero.
More importantly, measurability does extend. This is shown by the following
theorem.

Theorem 14.4.4. Let ϕ : R → R be an additive functional. If the restriction
of ϕ to K is measurable, then ϕ is measurable.

Proof. Every element K ∈ R can be represented in the form K =
⋃m

i=1Ki

with m ∈ N and Ki ∈ K for i = 1, . . . ,m. For k ∈ N we denote by Rk

the set of all elements K ∈ R′ having such a representation with m ≤ k
(and hence also with m = k, admitting Ki = Kj for i �= j, if necessary).
We show first that Rk is closed. Let K ∈ C be in the closure of Rk. Then
there is a sequence (Kj)j∈N in Rk that converges to K. For each j, there is
a representation Kj =

⋃k
i=1Kji with suitable convex bodies Kji ∈ K′. Since

Kj → K for j →∞, the bodies Kji are uniformly bounded. By the Blaschke
selection theorem (mentioned before Theorem 12.3.4) there are a subsequence
(jr)r∈N of N and convex bodies Ki ∈ K such that Kjri → Ki for r → ∞
(i = 1, . . . , k). Using Theorem 12.3.5, we infer that

Kjr
=

k⋃
i=1

Kjri →
k⋃

i=1

Ki

and hence K =
⋃k

i=1Ki ∈ Rk. Thus Rk is closed; in particular, it is a Borel
set.

Now R = {∅} ∪
⋃

k∈NRk, hence it suffices to prove, for given k ∈ N, the
measurability of the restriction of ϕ to Rk. Define γk : Kk → Rk by

γk(K1, . . . ,Kk) :=
k⋃

i=1

Ki for (K1, . . . ,Kk) ∈ Kk.

The mapping γk is continuous and hence measurable. Let

Γk(K) := γ−1
k (K) for K ∈ Rk.

Then Γk(K) is a compact subset of Kk. Let C(Kk) be the space of nonempty
compact subsets of Kk, equipped with the metric induced from the Hausdorff
metric and the corresponding σ-algebra of Borel sets. We assert that the map
Γk : Rk → C(Kk) just defined is measurable. For the proof, let A ⊂ Kk be a
closed set. For m ∈ N we put

Rkm := {K ∈ Rk : K ⊂ mBd},
Am := {(K1, . . . ,Kk) ∈ A : K1, . . . ,Kk ⊂ mBd};

then
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{K ∈ Rkm : Γk(K) ∩ A �= ∅} = Rk ∩ γk(Am).

Since Am is compact and γk is continuous, the intersection Rk ∩ γk(Am) is
closed; therefore the set

{K ∈ Rk : Γk(K) ∩ A �= ∅} =
⋃

m∈N

{K ∈ Rkm : Γk(K) ∩ A �= ∅}

is measurable. Since this holds for all closed sets A ⊂ Kk, the mapping Γk is
measurable (see Castaing and Valadier [165, Theorem III. 2]).

From [165, Theorem III. 6] we now deduce the existence of a measurable
mapping ξk : Rk → Kk with ξk(K) ∈ Γk(K), hence γk(ξk(K)) = K, for all
K ∈ Rk.

Concerning the additive functional ϕ, we know from (14.48) that

ϕ(K) =
∑

v∈S(k)

(−1)|v|−1ϕ(Kv) (14.61)

whenever K =
⋃k

i=1Ki and Ki ∈ K. For each v = {i1, . . . , ij} ⊂ {1, . . . , k},
the map fv : Kk → K defined by

fv(K1, . . . ,Kk) := Kv = Ki1 ∩ . . . ∩Kij

is measurable, as follows from Theorems 12.2.6 and 2.4.1. ForK ∈ Rk, (14.61)
yields

ϕ(K) =
∑

v∈S(k)

(−1)|v|−1ϕ(fv(ξk(K))).

Since ϕ is measurable on K, the measurability of ϕ on Rk is proved. ��

As a first application of Groemer’s extension theorem, we can extend the
trivial valuation χ on K, defined by χ(K) = 1 for K ∈ K′ and χ(∅) = 0, to a
valuation, also denoted by χ, on the convex ringR. This valuation is the Euler
characteristic, known from topology, but obtained here, for polyconvex sets,
in an elementary way. The extension theorem 14.4.3 shows that the Euler
characteristic has also an additive extension to the class of ro-polyhedra. For
both extension results, there are shorter proofs. For the second one, we shall
give such a direct proof, which is independent of Theorems 14.4.1 and 14.4.3.

Theorem 14.4.5. There is a unique additive function χ on U(Pro) with

χ(P ) = 1 for P ∈ P ′.

It satisfies
χ(Q) = (−1)dim Q for Q ∈ P ′

ro.



626 14 Facts from Convex Geometry

Proof. The uniqueness is clear. We prove the existence by induction with
respect to the dimension. In the zero-dimensional space {0}, the set {0} is
the only nonempty polytope and ro-polytope, hence there is nothing to prove.
Let d ≥ 1 and assume that the existence of χ has been proved for real affine
spaces of dimension d − 1. We choose u ∈ Rd \ {0} and use the hyperplanes
Hλ := {x ∈ Rd : 〈x, u〉 = λ}, λ ∈ R. If P is a polytope (a ro-polytope), then
P ∩ Hλ is either empty or a polytope (a ro-polytope). For a ro-polyhedron
Q ∈ U(Pro) we define

χ(Q) :=
∑
λ∈R

[
χ(Q ∩Hλ)− lim

u↓λ
χ(Q ∩Hµ)

]
, (14.62)

where χ on the right side is the function which exists by the induction hypo-
thesis. For Q �= ∅, there is a representation Q = Q1∪. . .∪Qk with ro-polytopes
Q1, . . . , Qk; these generate only finitely many intersections. Hence, there are
numbers λ1 < λ2 < . . . < λm such that each function λ �→ χ(Qi ∩ Hλ)
is constant on each open interval (λr, λr+1), as follows from the induction
hypothesis and the inclusion–exclusion principle. Together with the induction
hypothesis, this shows that the limits in (14.62) exist and that the sum is
finite, so that the definition is possible. The induction hypothesis also implies
that χ is additive on U(Pro). If Q ∈ P ′ is a polytope, the right side of (14.62)
gives (1 − 1) + (1 − 0) = 1 if Q is not contained in some Hλ, and 1 − 0 = 1
otherwise. If Q ∈ P ′

ro is a ro-polytope, the right side of (14.62) gives either
0 − (−1)(dim Q)−1 = (−1)dim Q or (−1)dim Q − 0 = (−1)dim Q. This completes
the induction and thus proves the assertion. ��

An immediate consequence is the Euler relation

n∑
i=0

(−1)ifi(P ) = 1, (14.63)

where P ∈ P ′ is a polytope and fi(P ) denotes the number of its i-dimensional
faces. In fact, since P =

⋃
F∈F•(P ) relintF is a disjoint union, the additivity

of χ on U(Pro) gives

χ(P ) =
∑

F∈F•(P )

χ(relintF ),

where F•(P ) denotes the set of all faces of P (including P ). This yields (14.63).

In the following, the notation F ≤ P for a polytope P means that F is a
face of P (and F < P means that F is a face of P different from P ). Sums of
the form ∑

F≤P

and
∑

G≤F≤P



14.4 Additive Functionals 627

extend over all faces F of P (including P ), respectively over all faces F of P
containing the given face G (including P and G). A similar notation is used
for faces of a mosaic m.

The Euler relation can be extended. If P ∈ P ′ and G < P is a face of P
(possibly the empty face, of dimension −1), then∑

G≤F≤P

(−1)dim F = 0. (14.64)

To prove this, we can assume that dimP = d and 0 ∈ intP and use the dual
polytope P o. The faces of P and P o are in a bijective correspondence F ↔ F̂ ,
where F ≤ G⇔ Ĝ ≤ F̂ and dim F̂ = d− 1− dimF . Therefore,∑
G≤F≤P

(−1)dim F = (−1)d +
∑

G≤F<P

(−1)dim F = (−1)d +
∑
F̂≤Ĝ

(−1)d−1−dim F̂

= (−1)d−1

⎡⎣−1 +
∑
F̂≤Ĝ

(−1)dim F̂

⎤⎦ .
The last sum is equal to 1, by the Euler relation for the polytope Ĝ. This
proves (14.64).

A similar relation holds for face-to-face mosaics (as defined in Section
10.1). Let m be such a mosaic in Rd. Let S be a j-dimensional face of m,
j ∈ {0, . . . , d− 1}, and let fi(m, S) be the number of i-dimensional faces of m
that contain S. Then

d∑
i=j

(−1)d−ifi(m, S) = 1. (14.65)

For the proof, we choose a d-dimensional ro-polytope Q with Q ∩ S �= ∅ and
Q ∩ F = ∅ for every face F of m with S �⊂ F . Then

Q =
⋃

F≤m

(Q ∩ relintF )

is a disjoint decomposition of Q. Using the Euler characteristic χ on U(Pro),
we get

(−1)dim Q = χ(Q) =
∑
F≤m

χ(Q ∩ relintF ) =
∑

S≤F≤m

(−1)dim F ,

which gives (14.65).
We add another combinatorial relation for face-to-face mosaics m. Let F

be a face of such a mosaic, and let S1, . . . , Sm be the cells of m containing F .
For r ∈ N, let ν(F, r) denote the number of r-tuples (Si1 , . . . , Sir

), 1 ≤ i1 <
. . . < ir ≤ m, for which Si1 ∩ . . . ∩ Sir

= F . Then
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m∑
r=1

(−1)r−1ν(F, r) = (−1)d−dim F . (14.66)

For the proof, we consider first the case where dimF = 0, say F = {x}.
We choose a d-polytope P with x ∈ intP and such that P does not meet
a cell of m different from S1, . . . , Sm. We make use of two facts about the
Euler characteristic on finite unions of polytopes. First, χ(bdP ) = 1− (−1)d.
Second, if C is a convex polyhedral cone with a vertex at x, but C �= {x},
then χ(C ∩ bdP ) = 1. Both facts are easy to prove, using the additivity of χ.
Now

χ(Si1 ∩ . . . ∩ Sir
∩ bdP ) =

{
0, if Si1 ∩ . . . ∩ Sir

= {x},
1 otherwise,

and hence
m∑

r=1

(−1)r−1ν({x}, r) =
m∑

r=1

(−1)r−1
∑

i1<...<ir

[1− χ(Si1 ∩ . . . ∩ Sir
∩ bdP )]

= 1− χ(bdP ) = 1− (1− (−1)d) = (−1)d.

If now dimF > 0, we apply the foregoing in a suitable (d−dimF )-dimensional
plane intersecting the relative interior of F and thus obtain (14.66).

Talking of combinatorial formulas, we note a result which is applied in
Section 10.3. It refers to the decomposition of a d-dimensional convex body
K by a finite system H of hyperplanes. Let νk denote the number of k-
dimensional faces of the cell decomposition of Rd induced by H that meet
the interior of K. For j ∈ {1, . . . , d}, let αj be the number of j-tuples from H
whose intersection meets the interior of K; put α0 := 1. If the system H is in
general position, then

νk =
d∑

j=d−k

(
j

d− k

)
αj (14.67)

for k ∈ {0, . . . , d}; see Miles [532].

In Section 14.2 we have already mentioned that the intrinsic volumes can
be characterized by simple geometric properties. We now give a proof for this
celebrated theorem due to Hugo Hadwiger.

Theorem 14.4.6 (Hadwiger’s characterization theorem). If the func-
tion ψ : K′ → R is additive, continuous, and invariant under rigid motions,
then

ψ =
d∑

i=0

ciVi

with constants c0, . . . , cd.

Proof. The core of the proof consists in establishing the following proposition.
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Proposition 14.4.1. If the function ψ : K′ → R is additive, continuous,
motion invariant and satisfies ψ(K) = 0 whenever either dimK < d or K is
a unit cube, then ψ = 0.

Let us first assume that this has been proved. Then Hadwiger’s theorem is
proved by induction with respect to the dimension. For d = 0, the assertion is
trivial. Suppose that d > 0 and the assertion has been proved in dimensions
less than d. Let H ⊂ Rd be a hyperplane. The restriction of ψ to the convex
bodies lying in H is additive, continuous and invariant under motions of H
into itself. By the induction hypothesis, there are constants c0, . . . , cd−1 so
that ψ(K) =

∑d−1
i=0 ciVi(K) holds for convex bodies K ⊂ H. The intrinsic

volume Vi(K) is the same whether computed in H or in Rd. By the motion
invariance of ψ and Vi, the relation ψ(K) =

∑d−1
i=0 ciVi(K) holds for allK ∈ K′

of dimension less than d. It follows that the function ψ′ defined by

ψ′(K) := ψ(K)−
d∑

i=0

ciVi(K)

forK ∈ K′, where cd is chosen so that ψ′ vanishes at a fixed unit cube, satisfies
the assumptions of Proposition 14.4.1. Hence ψ′ = 0, which completes the
proof of Hadwiger’s theorem.

Now we turn to the proof of Proposition 14.4.1. Again we use induction
with respect to the dimension. For d = 0, there is nothing to prove. If d = 1,
the additive function ψ vanishes on one-pointed sets and on segments (that
is, closed line segments) of unit length, hence on segments of length 1/k for
k ∈ N and therefore on segments of rational length. By continuity, ψ vanishes
on all segments and thus on K′.

Now let d > 1 and suppose that the assertion has been proved in dimen-
sions less than d. Let H ⊂ Rd be a hyperplane and I a segment of length 1,
orthogonal to H. For convex bodies K ⊂ H, we define ϕ(K) := ψ(K + I). It
is easy to see that ϕ has, relative to H, the properties of ψ in the proposition,
hence the induction hypothesis yields ϕ = 0. For fixed K ⊂ H, we thus have
ψ(K + I) = 0, and an argument similar to that used above for d = 1 shows
that ψ(K+S) = 0 for any closed segment S orthogonal to H. Thus ψ vanishes
on right convex cylinders.

Let K ⊂ H be a convex body again, and let S = conv {0, s} be a segment
not parallel to H. If m ∈ N is sufficiently large, the cylinder Z := K +
mS can be cut by a hyperplane H ′ orthogonal to S so that the two closed
halfspaces H−,H+ bounded by H ′ satisfy K ⊂ H− and K + ms ⊂ H+.
Then Z := [(Z ∩ H−) +ms] ∪ (Z ∩ H+) is a right cylinder, and we deduce
that mµ(K + S) = µ(Z) = µ(Z) = 0. Thus ψ vanishes on arbitrary convex
cylinders.

By Groemer’s extension theorem 14.4.2, the continuous additive function
ψ has an additive extension to the convex ring, hence
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ψ

(
k⋃

i=1

Ki

)
=

k∑
i=1

ψ(Ki)

whenever K1, . . . ,Kk are convex bodies such that dim (Ki∩Kj) < d for i �= j.
Let P be a polytope and S a segment. The Minkowski sum P + S has a

decomposition

P + S =
k⋃

i=1

Pi

with P1 = P , where the polytope Pi is a convex cylinder for i > 1 and where
dim (Pi ∩ Pj) < d for i �= j. It follows that ψ(P + S) = ψ(P ). By induction,
we deduce that ψ(P + Z) = ψ(P ) if Z is a finite sum of segments. Since
the function ψ is continuous, it follows that ψ(K + Z) = ψ(K) for arbitrary
convex bodies K and zonoids Z.

Let K be a centrally symmetric convex body with a support function of
class C∞ (on Rd \ {0}). Then there exist zonoids Z1, Z2 so that K +Z1 = Z2

(this can be seen from Section 3.5 in Schneider [695], especially Theorem
3.5.3). We conclude that ψ(K) = ψ(K + Z1) = ψ(Z2) = 0. Since every
centrally symmetric convex body K can be approximated by bodies which
are centrally symmetric and have support functions of class C∞ (for example,
[695, Theorem 3.3.1]), it follows from the continuity of ψ that ψ(K) = 0 for
all centrally symmetric convex bodies.

Now let ∆ be a simplex, say ∆ = conv {0, v1, . . . , vd}, without loss of
generality. Let v := v1 + . . .+ vd and ∆′ := conv {v, v − v1, . . . , v − vd}, then
∆′ = −∆ + v. The vectors v1, . . . , vd span a parallelotope P . It is the union
of ∆,∆′ and the part of P , denoted by Q, that lies between the hyperplanes
spanned by v1, . . . , vd and v − v1, . . . , v − vd, respectively. The polytope Q is
centrally symmetric, and ∆∩Q, ∆′∩Q are of dimension d−1. We deduce that
0 = ψ(P ) = ψ(∆) +ψ(Q) +ψ(∆′), thus ψ(−∆) = −ψ(∆). If the dimension d
is even, then −∆ is obtained from ∆ by a proper rigid motion, and the motion
invariance of ψ yields ψ(∆) = 0. If the dimension d > 1 is odd, we decompose
∆ as follows. Let z be the center of the inscribed ball of ∆, and let pi be the
point where this ball touches the facet Fi of ∆ (i = 1, . . . , d+1). For i �= j, let
Qij be the convex hull of the face Fi∩Fj and the points z, pi, pj . The polytope
Qij is invariant under reflection in the hyperplane spanned by Fi ∩ Fj and
z. If Q1, . . . , Qm are the polytopes Qij for 1 ≤ i < j ≤ d + 1 in any order,
then ∆ =

⋃m
r=1Qr and dim (Qr ∩Qs) < d for r �= s. Since −Qr is the image

of Qr under a proper rigid motion (a reflection in a hyperplane followed by
a reflection in a point), we have ψ(−∆) =

∑
ψ(−Qr) =

∑
ψ(Qr) = ψ(∆).

Thus ψ(∆) = 0 for every simplex ∆.
Decomposing a polytope P into simplices, we obtain ψ(P ) = 0. The con-

tinuity of ψ now implies ψ(K) = 0 for all convex bodies K. This finishes the
induction and hence the proof of Proposition 14.4.1. ��

Finally, we prove a characterization of the spherical volume of polytopes in
the sphere Sd−1, by additivity and invariance properties. A subset P ⊂ Sd−1 is
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a spherical polytope (a polytope for short) if it is the nonempty intersection
of finitely many closed hemispheres. We denote by Ps the set of all spherical
polytopes. The dimension of P ∈ Ps is defined by dimP := dim linP − 1
where the linear hull refers to Rd.

Theorem 14.4.7. Let ϕ : Ps → R be a valuation which is simple (that is,
vanishes on spherical polytopes of dimension less than d−1), rotation invariant
and nonnegative. Then there is a constant c ≥ 0 such that ϕ(P ) = cσ(P ) for
all P ∈ Ps.

Proof. Let Qs be the system of all finite unions of elements of Ps. The simple
valuation ϕ has an additive extension to Qs. This can be deduced by proving
the spherical analog of Theorem 14.4.3. But as ϕ is simple, there is also an
easier way, namely arguing similarly to Hadwiger [307, p. 81]. The extension,
also denoted by ϕ, is still rotation invariant and nonnegative. It is increasing
under set inclusion, since to A,B ∈ Qs with A ⊂ B there exists A′ ∈ Qs such
that A ∪ A′ = B and A ∩ A′ is a finite union of polytopes of dimensions less
than d− 1.

We take the following fact for granted. If f is a Riemann integrable real
function on Sd−1, then for every ε > 0 there exist a number k ∈ N and k
rotations ϑi ∈ SOd such that∣∣∣∣∣1k

k∑
i=1

f(ϑix)−
1
ωd

∫
Sd−1

fdσ

∣∣∣∣∣ < ε for each x ∈ Sd−1

(this follows from Pontrjagin [608, §29], where it is obtained for continuous
functions, and approximation, or from Hadwiger [303, §3]).

Let P ∈ Qs, and let ε > 0 be given. Applying the preceding assertion to
the indicator function of P , we obtain∣∣∣∣1kν(x)− 1

ωd
σ(P )

∣∣∣∣ < ε for each x ∈ Sd−1, (14.68)

where ν(x) denotes the number of sets ϑiP containing x.
For j ∈ {1, . . . , k}, let Uj := {x ∈ Sd−1 : ν(x) ≥ j}, then

Uj =
⋃

1≤i1<...<ij≤k

(ϑi1P ∩ . . . ∩ ϑij
P ) ∈ Qs.

Since
k∑

i=1

1ϑiP (x) =
k∑

j=1

1Uj
(x) for each x ∈ Sd−1,

Theorem 14.4.1 implies the right equality in

kϕ(P ) =
k∑

i=1

ϕ(ϑiP ) =
k∑

j=1

ϕ(Uj). (14.69)
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The left equality follows from the rotation invariance of ϕ.
Let y, z ∈ Sd−1 be points at which the function ν attains its mini-

mum and maximum, respectively. Then Uj = Sd−1 for j = 1, . . . , ν(y),
hence

∑k
j=1 ϕ(Uj) ≥ ν(y)ϕ(Sd−1). Further, Uj = ∅ for j > ν(z), hence∑k

j=1 ϕ(Uj) ≤ ν(z)ϕ(Sd−1). Together with (14.68) and (14.69) this gives(
σ(P )
ωd

− ε
)
ϕ(Sd−1) ≤ ϕ(P ) ≤

(
σ(P )
ωd

+ ε
)
ϕ(Sd−1).

Since ε > 0 was arbitrary, we conclude that ϕ(P ) = (ϕ(Sd−1)/ωd)σ(P ). ��

Notes for Section 14.4

1. The important role that valuations play in the geometry of convex bodies can be
seen from the survey articles by McMullen and Schneider [474] and by McMullen
[471].

2. Theorems 14.4.1 and 14.4.2 and their proofs are due to Groemer [289]. Volland
[771] has proved that every valuation on the class P of polytopes has an additive
extension to the class U(P) of polyhedra; his proof is reproduced in our proof of
Theorem 14.4.3, together with the slight (but useful) extension to the class U(Pro) of
ro-polyhedra, which was mentioned in McMullen and Schneider [474, p. 192]. For this
result, it is sufficient to assume that the function ϕ on P is weakly additive, that
is, it satisfies ϕ(P ) = ϕ(P ∩H+)+ϕ(P ∩H−)−ϕ(P ∩H) for every polytope P ∈ P
and every hyperplane H, where H+, H− are the two closed halfspaces bounded by
H; see Schneider [690].

2. We wish to point out that the proof given here for the Euler (or Euler–Schläfli)
relation (14.63) is particularly short. Relation (14.62) was used by Hadwiger for an
elementary existence proof of the Euler characteristic on the convex ring. That the
extension of the Euler characteristic to relatively open polytopes allows a simple
approach to the Euler relation, was pointed out by Nef [580].

3. A local Steiner formula for the convex ring. As a particular case of Groe-
mer’s extension theorem, the curvature measure mapping K �→ Φj(K, ·) has an ad-
ditive extension to the convex ring R; see the end of Section 5.2. This extension can
also be achieved in a more concrete and intuitive way. For a Borel set A ∈ B(Rd) and
for ε ≥ 0, we define Uε(K, A) := Mε(K, A×Sd−1) and put ρε(K, A) := λ(Uε(K, A)).
Then a special case of (14.9) says that

ρε(K, A) =

d∑
j=0

εd−jκd−jΦj(K, A). (14.70)

This local Steiner formula is now extended to the convex ring R, by introducing
local parallel sets with multiplicity. Let B(z, α) denote the closed ball with center z
and radius α. For K ∈ R and points q, x ∈ Rd with q �= x, we define the index of
K at q with respect to x by

j(K, q, x) :=

{
limδ→0+ limε→0+ χ(K ∩ B(x, ‖x − q‖ − ε) ∩ B(q, δ)), if q ∈ K,

0, if q /∈ K.
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Here we use that the Euler characteristic χ has an additive extension to the convex
ring. The existence of the limits in the definition of the index is easy to see. For
A ∈ B and ε > 0 we define

cε(K, A, x) :=
∑

q∈A\{x}
j(K ∩ B(x, ε), q, x),

here only finitely many summands are different from zero. If K is convex, then

cε(K, A, x) = 1Uε(K,A)(x), x ∈ R
d,

and hence

ρε(K, A) =

∫
Rd

cε(K, A, x) λ(dx).

We use this equation to define ρε(K, A) for K ∈ R. We can interpret this as a
local parallel volume with multiplicity. It follows from the additivity of the Euler
characteristic on the convex ring that the function j(·, q, x) is additive on R, hence
the same is true for the functions cε(·, A, x) and ρε(·, A). Now it follows that for-
mula (14.70) holds for all sets K ∈ R, with signed measures Φj(K, ·) which can
be obtained from the curvature measures on K by means of the inclusion–exclusion
formula. Thus, formula (14.70) yields an interpretation of the additive extensions of
the curvature measures as coefficients in a generalized local Steiner formula. This
approach comes from Schneider [679].

4. Theorem 14.4.4 and its proof are taken from Weil and Wieacker [804].

5. Hadwiger proved his characterization theorem for dimension three in [304] and
for general dimensions in [305]; the proof is reproduced in [307]. The simpler proof
of Theorem 14.4.6 as presented here is due to Klain [414]; see also [416].

For analogs of Hadwiger’s characterization theorem, where the rotation group is
replaced by a compact subgroup that is still transitive on the sphere, see Note 4 of
Section 5.1 and the references given there.

6. Theorem 14.4.7 was proved by Schneider [676, Th. (6.2)]. A general version for
invariant measures on compact homogeneous spaces appears in Schneider [682].

It would be interesting to know whether a counterpart to Theorem 14.4.7 is true
where the assumption of nonnegativity of ϕ is replaced by continuity (with respect
to the Hausdorff metric on the sphere).

7. An extension theorem for valuations on the (non-intersectional) class of lattice

polytopes was proved by McMullen [473].

14.5 Hausdorff Measures and Rectifiable Sets

Occasionally in this book, we refer to general notions of a k-dimensional sur-
face. For example, the boundary of a d-dimensional convex body is a (d− 1)-
dimensional surface which is, in general, not smooth. The theory of fiber and
surface processes makes use of general lower-dimensional surfaces. We collect
here briefly some definitions and results from geometric measure theory which
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are suitable for the introduction of quite general classes of k-dimensional sur-
faces. For more information and proofs, we refer to books on geometric mea-
sure theory (Federer [229], Mattila [466]).

Let k ∈ {0, . . . , d}. The k-dimensional Hausdorff measure of a set A ⊂
Rd is defined by

Hk(A) :=
κk

2k
lim inf
δ→0+

⎧⎨⎩
∞∑

j=1

(diamMj)k : A ⊂
∞⋃

j=1

Mj , diamMj ≤ δ

⎫⎬⎭ ,
where the Mj can be arbitrary subsets of Rd, and diam denotes the diame-
ter. This defines an outer measure Hk on Rd. Borel sets are Hk-measurable,
hence the restriction of Hk to B(Rd) is a measure. The k-dimensional Haus-
dorff measure of a k-dimensional C1 submanifold coincides with its usual
differential-geometric k-dimensional volume measure. In particular, H0 is the
counting measure, and Hd coincides on Lebesgue measurable sets with the
Lebesgue measure λd.

A map f from a metric space (E1, δ1) to a metric space (E2, δ2) is a Lip-
schitz map if there exists a constant L such that δ2(f(x), f(y)) ≤ Lδ1(x, y)
for all x, y ∈ E1. For a positive integer k, a subset M ⊂ Rd is called k-
rectifiable if it is the image of some bounded subset of Rk under some Lip-
schitz map. A set M is 0-rectifiable if it is finite.

A setM ⊂ Rd is called (Hk, k)-rectifiable if it is Hk-measurable, satisfies
Hk(M) <∞, and there are countably many k-rectifiable setsM1,M2, . . . such
that

Hk

(
M \

⋃
i∈N

Mi

)
= 0.

The set M is Hk-rectifiable if M ∩C is (Hk, k)-rectifiable for every compact
set C.

Let S ⊂ Rd and a ∈ S. The tangent cone of S at a, denoted by Tan (S, a),
is the closed convex cone consisting of all vectors v ∈ Rd with the property
that, for each ε > 0, there exist x ∈ S and α > 0 with ‖x − a‖ < ε and
‖α(x− a)− v‖ < ε.

LetM be (Hk, k)-rectifiable. The cone of approximate tangent vectors
of M at a is defined by

Tank(Hk M,a) :=
⋂ {

Tan (S, a) : S ⊂ Rd, Θ∗k(M \ S, a) = 0
}
,

where
Θ∗k(A, a) := lim sup

r→0+

1
κkrk

Hk(A ∩B(a, r))

and B(a, r) denotes the closed ball with center a and radius r. Let 0 < k < d.
The (Hk, k)-rectifiable set M has the property that for Hk-almost all a ∈M
the cone Tank(Hk M,a) is a k-dimensional vector subspace of Rd.
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If M is (Hk, k)-rectifiable, there exist C1 submanifolds S1, S2, . . . of Rd

such that

Hk

(
M \

⋃
i∈N

Si

)
= 0.

Let i ∈ N. For Hk-almost all a ∈ Si ∩M , the cone Tank(Hk M,a) coincides
with the tangent space TaSi of Si at a, in the usual sense of differential
geometry. It follows that there is a subset M ′ ⊂ M with Hk(M \M ′) = 0
such that the mapping a �→ Tank(Hk M,a) is an Hk-measurable mapping
from M ′ into the Grassmannian G(d, k).

For many purposes, (Hk, k)-rectifiable Borel sets provide an appropriate
general notion of k-dimensional surfaces.

Note for Section 14.5

Besides the books of Federer [229] and Mattila [466], we recommend the articles by
Zähle [822] and Wieacker [816], for typical applications of the above notions.
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56. Bárány, I.: Intrinsic volumes and f -vectors of random polytopes. Math. Ann.,
285, 671–699 (1989)
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ter Krümmung. VEB Deutsch. Verl. d. Wiss., Berlin (1980)

111. Bokowski, J., Hadwiger, H., Wills, J.M.: Eine Erweiterung der Croftonschen
Formeln für konvexe Körper. Mathematika, 23, 212–219 (1976)

112. Bol, G.: Zur Theorie der Eikörper. Jahresber. Deutsche Math. Ver., 52, 250–
266 (1942)
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laplacien à k dimensions. Publ. Inst. Statist. Univ. Paris X, 3, 213–228 (1961)

255. Gelfand, I.M., Smirnov, M.M.: Lagrangians satisfying Crofton formulas, Radon
transforms, and nonlocal differentials. Adv. Math., 109, 188–227 (1994)

256. Geman, D., Horowitz, J.: Random shifts which preserve measure. Proc. Amer.
Math. Soc., 49, 143–150 (1975)

257. Giannopoulos, A.: On the mean value of the area of a random polygon in a
plane convex body. Mathematika, 39, 279–290 (1992)

258. Giannopoulos, A., Hartzoulaki, M.: Random spaces generated by vertices of
the cube. Discrete Comput. Geom., 28, 255–273 (2002)

259. Giannopoulos, A., Tsolomitis, A.: Volume radius of a random polytope in a
convex body. Math. Proc. Cambridge Philos. Soc., 134, 13–21 (2003)
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432. Laplace, P.S.: Théorie analytique des probabilités. Courcier, Paris (1812);
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observations on parallel sections. J. Microsc., 184, 117–126 (1996)

589. Ohser, J., Nagel, W., Schladitz, K.: The Euler number of discretized sets –
on the choice of adjacency in homogeneous lattices. In: Mecke, K., Stoyan, D.
(eds) Morphology of Condensed Matter, pp. 275–298, Lecture Notes in Physics,
600. Springer, Berlin (2002)

590. Ohser, J., Nagel, W., Schladitz, K.: The Euler number of discretised sets –
surprising results in three dimensions. Image Anal. Stereol., 22, 11–19 (2003)

591. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations; Concepts
and Applications of Voronoi Diagrams. 2nd ed., Wiley, Chichester (2000)

592. Olsbo, V.: On the correlation between the volumes of the typical Poisson–
Voronoi cell and the typical Stienen sphere. Adv. Appl. Prob. (SGSA), 39,
883–892 (2007)

593. Palm, C.: Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics
44, 189 pp. (1943)

594. Pantle, U., Schmidt, V., Spodarev, E.: A central limit theorem for functionals
of germ-grain models. Adv. Appl. Prob. (SGSA), 38, 76–94 (2006)

595. Papaderou–Vogiatzaki, I., Schneider, R.: A collision probability problem. J.
Appl. Prob., 25, 617–623 (1988)
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638. Rényi, A.: Remarks on the Poisson process. Studia Sci. Math. Hungar., 2,

119–123 (1967)
639. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punk-
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672. Schneider, R.: Kinematische Berührmaße für konvexe Körper. Abh. Math. Sem.
Univ. Hamburg, 44, 12–23 (1975)
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722. Schöpf, P.: Gewichtete Volumsmittelwerte von Simplices, welche zufällig in
einem konvexen Körper des Rn gewählt werden. Monatsh. Math., 83, 331–337
(1977)

723. Schreiber, T.: Limit theorems for certain functionals of unions of random closed
sets. Teor. Veroyatnost. i Primenen., 47, 130–142 (2002)
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726. Schütt, C., Werner, E.: Random polytopes with vertices on the boundary of a
convex body. C. R. Acad. Sci. Paris, 331, 1–5 (2000)
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816. Wieacker, J.A.: Translative Poincaré formulae for Hausdorff rectifiable sets.
Geom. Dedicata, 16, 231–248 (1984)

817. Wieacker, J.A.: Intersections of random hypersurfaces and visibility. Probab.
Theory Related Fields, 71, 405–433 (1986)

818. Wieacker, J.A.: Geometric inequalities for random surfaces. Math. Nachr., 142,
73–106 (1989)

819. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Meth-
ods: a Mathematical Introduction. Springer, Berlin (1995)

820. Wu, L.C.: Pairs of non-intersecting random flats meeting two convex bodies.
In: Gu, C.H. (ed) Differential Geometry, Proc. Symp. in honour of Prof. Su
Buchin, pp. 254–261. World Scientific, Singapore (1993)

821. Xie, P., Jiang, J.: Double chord-power integrals of a convex body and their
applications. In: Grinberg, E.L., Li, S., Zhang, G., Zhou, J. (eds) Integral
Geometry and Convexity, pp. 177–188. World Scientific, New Jersey (2006)

822. Zähle, M.: Random processes of Hausdorff rectifiable closed sets. Math. Nachr.,
108, 49–72 (1982)

823. Zähle, M.: Ergodic properties of random fields and images with point imbedded
processes. Theory Probab. Appl., 27, 536–550 (1982)

824. Zähle, M.: Curvature measures and random sets, I. Math. Nachr., 119, 327–339
(1984)

825. Zähle, M.: Integral and current representation of Federer’s curvature measures.
Arch. Math., 46, 557–567 (1986)

826. Zähle, M.: Curvature measures and random sets, II. Probab. Theory Related
Fields, 71, 37–58 (1986)

827. Zähle, M.: Curvatures and currents for unions of sets with positive reach. Geom.
Dedicata, 23, 155–171 (1987)

828. Zähle, M.: Random cell complexes and generalised sets. Ann. Probab., 16,
1742–1766 (1988)

829. Zähle, M.: A kinematic formula and moment measures of random sets. Math.
Nachr., 149, 325–340 (1990)

830. Zähle, M.: Wicksell’s corpuscle problem in spherical space. J. Appl. Prob., 27,
701–706 (1990)

831. Zähle, M.: Nonosculating sets of positive reach. Geom. Dedicata, 76, 183–187
(1999)

832. Zhang, G.: Geometric inequalities and inclusion measures of convex bodies.
Mathematika, 41, 95–116 (1994)

833. Zhang, G.: Dual kinematic formulas. Trans. Amer. Math. Soc., 351, 985–995
(1999)

834. Zhang, G., Zhou, J.: Containment measures in integral geometry. In: Grinberg,
E.L., Li, S., Zhang, G., Zhou, J. (eds) Integral Geometry and Convexity, pp.
153–168. World Scientific, New Jersey (2006)



References 673

835. Ziegel, J., Kiderlen, M.: Estimation of surface area and surface area measure of
three-dimensional sets from digitizations. Thiele Centre Res. Rep., 01, January
(2008)
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Grünbaum, B. 262, 329
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Hostinský, B. 305
Howard, R. 139
Hsing, T. 321, 322
Hueter, I. 321, 327
Hug, D. 140, 178, 199, 200, 202, 244,

245, 263, 286, 324, 327, 334, 442,
509, 512, 514, 538, 540, 550, 617
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Schöpf, P. 372
Schreiber, T. 322, 325, 510
Schuster, R. 199, 444
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upper semicontinuous 19, 567

valuation 7, 617
vertex 447

vertical section 285
visibility region 151
volume density 44
k-volume density 141
volume functional 574
Voronoi cell 471
Voronoi flower 511
Voronoi mosaic 472

weakly additive 632
weakly isotropic 404
weakly stationary 404
weighted random flat 340
weighted typical face 510
Wendel’s theorem 300
Weyl tube formula 202
Wicksell corpuscle problem 435

zero cell 486, 493
zonoid 614

associated 149, 156
generalized 615

zonotope 614
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−A, 11
A � B, 12
A + B, 11
A − B, 11
Ac, 11, 559
Ax, 228
A|E, A|L, K|L, 12, 220, 610
K ∨ M , 249
K|S, 263
[A1, . . . , Ak], 183
[E1, . . . , Eq]s, 279
[L1, . . . , Lk], 183, 598
[L1, . . . , Lq, L0]r, 274
[L1, . . . , Lq]r, 274
[x, y], 249
Ă, 192
〈·, ·〉, || · ||, 11, 571
µ A, 11
∇j , 134, 271
∇q,r, 273
∂+, ∂+Cd, 12, 101, 394
D
=, 19
D→, 320
∆j , 271, 599
u+, 239
1{x ∈ A}, 11
1A, 11
int, 11
Nor, 250, 603
Tank, 634
bd, 11, 559
cl, 11, 559
conv, 12

int, 559
pos, 12
relbd, 600
relint, 249, 600
skelk, 464
supp, 51

A(E, q), 266, 590
A(d, p, q), 266, 592
A(d, q), 13, 39, 168, 582
A, A•, 24, 29

B(C), 100
B(X), 149, 162, 404
B(Z), 399
B0(z, r), 497
Bd, 12
Bd(x0, . . . , xd), 495
Br, 1
B(E), 11, 18
b(K), 601
bdq, 271
β(0, F̆ ), 250
β(F, P ), 458
β(j), 479

C(·), 44
C(x, A), 470
C∗, 257
Cd, 12, 583
Cd

0 , 12
Ck

+, 315
Cd−1(K, ·), 607
C, 72, 80, 84
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C(E), Cc(E), 11, 561
C, C′, C(E), 11, 17, 559
C0, 101
Cc(B), 101
c(C), 100
ck

j , cr1,...,rk
s1,...,sk , 171, 172

χ, 169, 601, 625
χ(Zk), 465
χ+(Z), 431

D(e, A), 477
Dd(K, n), 306
d(K, L), 11
d(·, ·), 11, 571
d(x, K), 11
dB(·, ·), 611

d
(j,k)
i , 454

d
(k)
j , 450

d
(k)
j (z), 554

ds(·, ·), 249
d, 477
∆j , 271, 599
δ(·, ·), 12, 571
δx, 49

Em

= , 55

EZ, 45
E, 11

F , F ′, F(E), 11, 17, 559
FA, FA, FA

A1,...,Ak
, 18, 563

F•(P ), 250, 447, 604
F•(m), 447
Ff (K′), 451
Fk(P ), 250, 447, 604
Fk(T, m), 452
Fk(m), 447
F	fc(F) , 446
Φ, 101, 108
Φ

(j)
m1,...,mk (K1, . . . , Kk; ·), 229

Φ0, 196
Φj(K, ·), 606

Φ
(j)
k (K, M ; ·), 184, 186

Φ(k)(K1, . . . , Kk; ·), 528
Φd−q(K), 373

Φ
(j)
m1,...,mk (K1, . . . , Kk; ·), 229

Φ
(j)
k,d−k+j(X, M ; ·), 403

Φd−q(K), 373

Φ̃d−q(K), 372
ϕ(X), 6, 103, 400
ϕ(X, ·), 524
ϕ(Z), 6, 398
ϕ(K, n), 305
ϕ(µ, n), 305

G(L, q), 132, 266, 590
G(d, p, q), 266, 592
G(d, q), 13, 39, 168, 582
G/H, 576
Gd, 1, 13, 168
Gd(K, M), 350
G∗

d(K, M), 350
G, G′, G(E), 11, 17, 559
Gc, 48
Γ (m), 55
γ, 54, 83, 101, 126
γ(F, G; K, M), 183
γ(F, P ), 250, 604
γ(F1, . . . , Fk; P1, . . . , Pk), 228
γ(k), 450
γ(k)(z), 554
γN−d,N (P, F ), 330
γX(·), 131
γd(X), 153
γk, 134, 157, 549
γX∩S , 130

H(u, τ), 12, 133
H−(u, τ), 497
HB(x, ·), 534
HK , 44
Hk, 607
H+

z , 497
Hk, 12, 634
h(X, u), 146
h(Z, ·), 393, 399
h(K, ·), 146, 600
h∗(K, ·), 146
h∗

k(K, M ; ·), 240

I(K, q, k), 359
I(d, q, k), 301
Ik(K), 363
i, is, 51

J(K, q, k), 359
J(d, q, k), 302
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K∗, 249
K∗(x), 618
Ko, 616
Kε, 600
K̆, 249
Ks, 151
K, K′, 2, 4, 12, 599
K(k), 141
Ks, 249
Kp

s , 249
K, 76
k(·, ·), 43
κj , 2, 13, 584
κ(u), 315
κmax, 318

�01, 454
Λ(m), 55
λ, λj , 2, 12, 583
λ(Bd), 584
λE , λF , 12, 270

M(K), 146
M(X), 404
M(V), 618
Mε(K, A), 251, 604
Mk(K), 241, 246
Mk(γ̂, ϕ̂), 506
M, 48
M, M∗, 448
M, 48
MA,r, 48
m(·), 43
mk(γ̂, ϕ̂), 507
m, 446
µE

q , 591
µ, 1, 168, 586
µ(K, M), 2
µr, 11
µq, 168, 588
µE

q , 266
µ̃j , 176

N(0, 1), 320
N(K), 118
N(K, x), 603
NB(K), 612
Nk(T,S), 454
Ns(K, ·), 250

Ns(P, F ), 250
N , 48
Ns, 51
N, 48
Ns, 51
NG,k, 49
Nsf , 92
njk, 454
νL, 590
ν, 168, 584
νk(X̂, K), 490
νq, 168, 588
νL

q , 266, 591
νp,q, 266
∇j , 134, 271, 599
∇q,r, 273

O(d), 584
(Ω,A, P), 11, 19
Ω(K), 325
ωj , 13, 584

P, 11
P, P ′, 12
Ps, 631
Pro, P ′

ro, 622
P, 11
P(Z ∈ A), 19
P(ξ ∈ A), 11
Px, 75
P0,C , 114

P0,X0
, 87

P0,m, 86
P0, 73, 80, 85
P0

! , 78
PZ , PZ1,...,Zk , 19
Pξ, 11

P
(K,F )
p , 345

P
(K)
r , 345

p, 43
p(K, ·), 600
pB(K, ·), 611
pB(Z, ·), 536
pd(K, Θ), 368
pm(K), 369

p
(d)
n , 298

ps(K, ·), 250
pr,s(K), 366
Ψj(K, ·), 606
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ΠX , 161
Πk(τ), 155
ΠK , 149, 615
ΠK(Q), 161
ΠM , 206
ΠX , 149, 156, 488
ΠX(·), 549
ΠX∩S , 156
ΠX̂ , 488
π(X), 137
π0, 124
ψk(P ), 306

QN , 329
Q, 83, 101
Q(j,k), 453
q
(d)
n , 298

Rij , 242, 268
R, R′, 12, 38, 601
R(k), 141
R, 13
R+, 13
Rd, 1, 11
r(C), 100
ρ(K, u; B), 533
ρ(K, ·), 616
ρ(M, ·), 616
ρ0, 82
ρ(j), 615

S(K1, . . . , Kd−1, ·), 611
S(d, q, k), 302
S(m), 618
S(x0, . . . , xm; A), 472
SOd, 4, 13, 168, 581
Sd−1, 12
S0(C), 21
Sk(C0; C1, . . . , Ck), 21
Sx(F ), 150
Sd−1(K, ·), 607
Sd−1(X, ·), Sd−1(Z, ·), 147, 392
SO(d), 284, 581
S, S ′, 12, 38, 194, 397, 601
S•, 249
Sk, 249
s(K), 146, 613
sm, 608
su(Z), 151

sG(K), 513
Σ, 197, 603
Σs, 250
σ, σj , 12, 584
σ(K, A), 608
σ(Sd−1), 584

T (K), 444
T N , 329
TZ , 21
Tξ, 499
Td, 13, 581
Tk(K, M), 248
TyC, 143
T (X), 444
T, 405
Tjk(m), 452
T, 143
tx, 13
Θ, 53, 126
Θj(K, ·), 251
Θk, 134
ΘX∩S , 132
Θ(k), 449

U(V), 618
Uj(K), 262
U(V), 618
u(K, ·), 603
uB(K, ·), 611
uB(Z, ·), 536
us(K, ·), 250

V (K[j], M [d − j]), 610
V (K1, . . . , Kd), 610
Vi(S), 454
Vj , 2, 12, 169, 600, 610
Vj(B

d), 171, 601

V
(j)

k (K, M), 186, 187

V
(0)

m1,...,mk (K1, . . . , Kk), 245

V
(j)

m1,...,mk (K1, . . . , Kk), 234
V (X[j],−M [d − j]; ·), 526
V (X[j],−X[d − j]; ·, ·), 527
V j(X, ·), 526
Vd(Z), 44
Vj(X), 4, 141
Vj(Z), 5, 388
Vs, 151

V
(j)
m1,...,mk

(X, . . . , X; ·, . . . , ·), 527
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Ṽj , 176
ValG, 180
v
(j,k)
i , 454

vm(K), 256

Wj , 263, 600

W̃j , 201

X0, 83
Xz, 110, 117
X(k), 449, 554
Xk, 133, 549
Xz, 111, 117
Xm


= , 55

X (j,k) , 453

X (k), 140
Ξ

(j)
m1,...,mk (K1, . . . , Kk; ·), 245

Ξj(K, ·), 604

Y (j), 479

Z, 450
Z(k), 450, 510
Z0, 493
Z

(k)
0 , 510

ZX , 96, 117
Zk, 464
z̃(C), 430
z, 116




