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1 Introduction

A large scale dynamical system can have a large number of modes. Like a general
square matrix can be approximated by its largest eigenvalues, i.e. by projecting it
onto the space spanned by the eigenvalues corresponding to the largest eigenvalues,
a dynamical system can be approximated by its dominant modes: a reduced order
model, called the modal equivalent, can be obtained by projecting the state space on
the subspace spanned by the dominant modes. This technique, modal approximation
or modal model reduction, has been successfully applied to transfer functions of
large-scale power systems, with applications such as stability analysis and controller
design, see [16] and references therein.

The dominant modes, and the corresponding dominant poles of the system
transfer function, are specific eigenvectors and eigenvalues of the state matrix. Be-
cause the systems are very large in practice, it is not feasible to compute all modes
and to select the dominant ones. This chapter is concerned with the efficient com-
putation of these dominant poles and modes specifically, and their use in reduced
order modeling. In Sect. 2 the concept of dominant poles and modal approximation
is explained in more detail. Dominant poles can be computed with specialized eigen-
solution methods, as is described in Sect. 3. Some generalizations of the presented
algorithms are shown in Sect. 4. The theory is illustrated with numerical examples
in Sect. 5 and 6 concludes.

Part of the contents of this chapter is based on [15, 16]. The pseudocode
algorithms presented in this chapter are written using Matlab-like [21] notation.

2 Transfer Functions, Dominant Poles and Modal Equivalents

Throughout this section and the next, only single-input single-output (SISO) transfer
functions are considered. In Sect. 4, the theory is generalized to multi-input multi-
output (MIMO) transfer functions.
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The transfer function of a SISO linear, time invariant system{
ẋ(t) = Ax(t) + bu(t)
y(t) = c∗x(t) + du(t),

where A ∈ R
n×n, x(t),b, c ∈ R

n and u(t), y(t), d ∈ R, is defined as

H(s) = c∗(sI −A)−1b + d, (1)

where I ∈ R
n×n is the identity matrix and s ∈ C.

The eigenvalues λi ∈ C of the matrix A are the poles of transfer function (1). An
eigentriplet (λi,xi,yi) is composed of an eigenvalue λi of A and the corresponding
right and left eigenvectors xi,yi ∈ C

n:

Axi = λixi, xi �= 0,
y∗

iA = λiy∗
i , yi �= 0.

Assuming that A is a nondefective matrix, the right and left eigenvectors can be
scaled so that y∗

i xi = 1. Furthermore, it can be shown that left and right eigenvectors
corresponding to distinct eigenvalues are orthogonal: y∗

i xj = 0 for i �= j. The
transfer function H(s) can be expressed as a sum of residues Ri over first order
poles [10]:

H(s) =
n∑

i=1

Ri

s− λi
+ d, (2)

where the residues Ri are

Ri = (c∗xi)(y∗
i b).

A possible definition of a dominant pole follows from inspection of (2):

Definition 1. A pole λi of H(s) with corresponding right and left eigenvectors xi

and yi (y∗
i xi = 1) is called dominant if R̂i=|Ri|/|Re(λi)|=|(c∗xi)(y∗

i b)|/|Re(λi)|
is relatively large compared to R̂j , j �= i.

The quantity R̂i will be referred to as the dominance index of pole λi. It follows
from this definition that a dominant pole is well observable and controllable. This
can also be observed from the Bode magnitude plot of H(s), where peaks occur at
frequencies close to the imaginary parts of the dominant poles of H(s). If the poles
are ordered to decreasing R̂i, a so called transfer function modal equivalent can be
defined as follows.

Definition 2. A transfer function modal equivalent Hk(s) is an approximation of a
transfer function H(s) that consists of k < n terms:

Hk(s) =
k∑

j=1

Rj

s− λj
+ d. (3)



Modal Approximation and Computation of Dominant Poles 179

A modal equivalent that consists of the most dominant terms determines the effective
transfer function behavior [20]. If X ∈ C

n×k and Y ∈ C
n×k are matrices having

the left and right eigenvectors yi and xi of A as columns, such that Y ∗AX = Λ =
diag(λ1, . . . , λk), with Y ∗X = I , then the corresponding (complex) reduced system
follows by setting x = Xx̃:{

˙̃x(t) = Λx̃(t) + (Y ∗b)u(t)
ỹ(t) = (c∗X)x̃(t) + du(t).

For stable systems, the error in the modal equivalent can be quantified as [7]

‖H −Hk‖∞ = ‖
n∑

j=k+1

Rj

s− λj
‖∞

≤
n∑

j=k+1

|Rj |
|Re(λj)|

,

where ‖H‖∞ is the operator norm induced by the 2-norm in the frequency domain
[2,7]. An advantage of modal approximation is that the poles of the modal equivalent
are also poles of the original system.

It should be stressed that there are more definitions of a dominant pole, see [1,7,
22]. The definition often depends on the application: in stability analysis for instance,
the poles with positive real parts are considered as the dominant poles. Throughout
this chapter, Def. 1 is used.

3 Computing Dominant Poles

3.1 Introduction

The poles of transfer function (1) are the λ ∈ C for which lims→λ |H(s)| = ∞.
Consider now the function

G : C −→ C : s �→ 1
H(s)

. (4)

For a pole λ of H(s), lims→λ G(s) = 0. In other words, the poles are the roots of
G(s) and a good candidate to find these roots is Newton’s method. This idea is the
basis of the Dominant Pole Algorithm (DPA) [11]. Because the direct transmission
term d has no influence on the dominance of a pole, d = 0 unless stated otherwise.

3.2 Dominant Pole Algorithm (DPA)

The derivative of G(s) (4) with respect to s is given by

G′(s) = −H ′(s)
H2(s)

. (5)
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The derivative of H(s) (1) to s is

H ′(s) = −c∗(sI −A)−2b, (6)

where it is used that the derivative of the inverse of a square matrix A(s) is given by
d[A−1(s)]/ds = −A−1(s)A′(s)A−1(s). Equations (5) and (6) lead to the following
Newton scheme:

sk+1 = sk − G(sk)
G′(sk)

= sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk − c∗(skI −A)−1b
c∗(skI −A)−2b

. (7)

The formula (7) was originally derived in [3]. Using x = (skI − A)−1b and y =
(skI − A)−∗c, an implementation of this Newton scheme is Alg. 1, also known as
the Dominant Pole Algorithm (DPA) [11]. The two linear systems that need to be
solved in step 3 and 4 of Alg. 1 can be efficiently solved using one LU -factorization
LU = skI − A, by noting that U∗L∗ = (skI − A)∗. It will be assumed in this
chapter that an exact LU -factorization is available, although this may not always be
the case for real-life examples. If an exact LU -factorization is not available, one has
to use inexact Newton schemes, such as Jacobi-Davidson style methods [9, 19].

For nondefective A, Alg. 1 converges asymptotically quadratically, but the so-
lution depends on the initial estimate and hence is not guaranteed to be the most
dominant pole. For defective A, the algorithm may fail, because the left and right
eigenvector of a defective eigenvalue are orthogonal and hence y∗x → 0 in step 5 of
Alg. 1. The update in step 5 can be written as the two-sided Rayleigh quotient [14]

sk+1 =
y∗Ax
y∗x

. (8)

3.3 Subspace Accelerated Dominant Pole Algorithm

While DPA computes a single dominant pole, in practice usually more dominant
poles are wanted. The Subspace Accelerated Dominant Pole Algorithm (SADPA)
[16] is a generalization of DPA to compute more than one dominant pole. SADPA has
three major improvements compared to DPA. Firstly, it uses subspace acceleration,
a well-known technique for iterative methods. Secondly, a new selection strategy is
used to select the most dominant pole approximation and corresponding right and
left eigenvector approximation every iteration. Thirdly, deflation is used to avoid
convergence to eigentriplets that are already found. The ideas, leading to SADPA
(Alg. 2), are described in the following subsections.



Modal Approximation and Computation of Dominant Poles 181

Algorithm 1: The Dominant Pole Algorithm (DPA)
INPUT: System (A,b, c), initial pole estimate s1 ∈ C, tolerance ε � 1
OUTPUT: Approximate dominant pole λ and corresponding right and left eigenvectors

x and y
1: Set k = 1
2: while not converged do
3: Solve x ∈ C

n from

(skI − A)x = b

4: Solve y ∈ C
n from

(skI − A)∗y = c

5: Compute the new pole estimate

sk+1 = sk − c∗x
y∗x

6: The pole λ = sk+1 has converged if

‖Ax − sk+1x‖2 < ε

7: Set k = k + 1
8: end while

Subspace Acceleration

A drawback of DPA is that information obtained in the current iteration is discarded
at the end of the iteration. The only information that is preserved is contained in
the new pole estimate sk+1. The vectors x and y, however, also contain information
about other dominant eigentriplets (i.e., components in the direction of the corre-
sponding eigenvectors) and the idea is to use this information as well. Reasoning
this way leads to a generalization of DPA.

A global overview of SADPA is shown in Alg. 2. Starting with an estimate s1,
the first iteration is equivalent to the first iteration of DPA, but instead of discarding
the corresponding right and left eigenvector approximations x1 and y1, they are kept
in spaces X and Y . In the next iteration, these spaces are expanded orthogonally
(step 5-6), by modified Gram-Schmidt (MGS) [6], with the approximations x2 and
y2 corresponding to the new estimate s2. In Sect. 3.3 it is explained how this new
pole estimate is computed. The subspaces grow in dimension and may contain better
approximations. This idea is known as subspace acceleration.

In the k-th iteration, k approximations λ̂i of the dominant poles are found by
computing the eigentriplets of the projected matrix pencil (Y ∗AX,Y ∗X) (step 7-8).
The question now is to determine which of these k approximations to use as estimate
sk+1 in the next iteration.
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Algorithm 2: Subspace Accelerated DPA
INPUT: System (A,b, c), initial pole estimate s1 and the number of wanted poles pmax,

tolerance ε � 1
OUTPUT: Approximate dominant pole triplets (λi, ri, li), i = 1, . . . , pmax

1: k = 1, pfound = 0, Λ = [ ]1×0, R = L = X = Y [ ]n×0 ([ ]n×0 denotes an empty
matrix of size n × 0)

2: while pfound < pmax do
3: Solve x ∈ C

n from

(skI − A)x = b

4: Solve y ∈ C
n from

(skI − A)∗y = c

5: X = Expand(X, R, L,x) {Alg. 4}
6: Y = Expand(Y, L, R,y) {Alg. 4}
7: Compute T = Y ∗AX and G = Y ∗X
8: (Λ̂, X̂, Ŷ ) = Sort(T, G, X, Y,b, c) {Alg. 3}
9: if ‖Ax̂1 − λ̂1x̂1‖2 < ε then

10: (Λ, R, L, X, Y ) =

Deflate(λ̂1, x̂1, ŷ1, Λ, R, L, X̂2:k, Ŷ2:k) {Alg. 5}
11: pfound = pfound + 1

12: Set λ̂1 = λ̂2, k = k − 1
13: end if
14: Set k = k + 1
15: Set the new pole estimate sk+1 = λ̂1

16: end while

Selection Strategy

In step 8 of Alg. 2, the new pole estimate sk+1 has to be determined. A possible
choice is to use the two-sided Rayleigh quotient (8) as it is used in DPA, but this
choice does not take full advantage of subspace acceleration. Here, however, also
another choice is possible, that is closer to the goal of computing the dominant poles.

Because in iteration k the interaction matrices T ∈ C
k×k and G ∈ C

k×k

are of low order k � n (see step 7 in Alg. 2), it is relatively cheap to com-
pute the full eigendecomposition of the pencil (T,G). This provides k approximate
eigentriplets (λ̂i, x̂i, ŷi). A natural thing to do is to choose the triplet (λ̂j , x̂j , ŷj)
with the most dominant pole approximation: compute the corresponding residues
R̂i = (c∗x̂i)(ŷ

∗
i b) of the k pairs and use the pole with the largest |R̂j |/|Re(λ̂j)|

as new estimate. Numerically, it is more robust to normalize x̂i and ŷi such that
‖x̂i‖2 = ‖ŷi‖2 = 1. Algorithm 3 orders the k approximate eigentriplets in decreas-
ing dominance. The SADPA then continues with the new estimate sk+1 = λ̂1.
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Algorithm 3: (Λ̂, X̂, Ŷ ) = Sort(T,G,X, Y,b, c)

INPUT: T, G ∈ C
k×k, X, Y ∈ C

n×k, b, c ∈ C
n

OUTPUT: Λ̂ ∈ C
n, X̂, Ŷ ∈ C

n×k with λ̂1 the pole approximation with largest scaled
residue magnitude and x̂1 and ŷ1 the corresponding approximate right and left
eigenvectors

1: Compute eigentriplets of the pair (T, G):

(λ̃i, x̃i, ỹi), i = 1, . . . , k

2: Compute approximate eigentriplets of A as (with ‖x̂i‖2 = ‖ŷi‖2 = 1)

(λ̂i = λ̃i, x̂i = Xx̃i, ŷi = Y ỹi), i = 1, . . . , k

3: Λ̂ = [λ̂1, . . . , λ̂k]

4: X̂ = [x̂1, . . . , x̂k]

5: Ŷ = [ŷ1, . . . , ŷk]

6: Compute residues R̂i = (c∗x̂i)(ŷ
∗
i b)

7: Sort Λ̂, X̂ , Ŷ in decreasing |R̂i|/|Re(λ̂i)| order

Deflation

At the end of every iteration, in step 9, a convergence test is done as in DPA: if for the
selected eigentriplet (λ̂j , x̂j , ŷj) the norm of the residual ‖Ax̂j − λ̂jx̂j‖2 is smaller
than some tolerance ε, it is considered to be converged. In general more dominant
eigentriplets are wanted and during the computation of the next eigentriplets, com-
ponents in the direction of already found eigenvectors may enter the search spaces X
and Y again. This may lead to repeated computation of the same eigentriplet. A well
known technique to avoid repeated computation is deflation [18].

If already the right and left eigenvectors xj and yj are found, then it can be
verified that, if the eigenvectors are exact, the matrix

Ã =
∏
j

(I −
xjv∗

j

v∗
jxj

) ·A ·
∏
j

(I −
xjv∗

j

v∗
jxj

)

has the same eigentriplets as A, but with the found eigenvalues transformed to zero
(see also [5, 9]): let x̂ be one of the k found exact right eigenvectors, i.e. x̂ ∈
{x1, . . . ,xk}. Then it follows from the orthogonality relations (see Sect. 2) that∏

j

(I −
xjy∗

j

y∗
jxj

) · x̂ = x̂ − x̂ = 0,

and hence Ãx̂ = 0. On the other hand, let x̂ /∈ {x1, . . . ,xk} be a right eigenvector
of A with eigenvalue λ̂. Then∏

j

(I −
xjy∗

j

y∗
jxj

) · x̂ = x̂,
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and hence Ãx̂ = λ̂x̂. The result for left eigenvectors follows in a similar way. In
finite arithmetic only approximations to exact eigentriplets are available and hence
the computed eigenvalues are transformed to η ≈ 0 (see also Sect. 3.3).

Using this, the space X needs to be orthogonally expanded with∏
j

(I −
xjy∗

j

y∗
jxj

) · x,

and similarly, the space V needs to be orthogonally expanded with∏
j

(I −
yjx

∗
j

x∗
jyj

) · y.

These projections are implemented with modified Gram-Schmidt (MGS) (see
Alg. 4).

Algorithm 4: X = Expand(X,R,L,x)

INPUT: X ∈ C
n×k with X∗X = I , R, L ∈ C

n×p, x ∈ C
n

OUTPUT: X ∈ C
n×(k+1) with X∗X = I and

xk+1 =
∏p

j=1(I − rj l
∗
j

l∗j rj
) · x

1: x =
∏p

j=1(I − rj l
∗
j

l∗j rj
) · x

2: x = MGS(X,x)
3: X = [X,x/‖x‖2]

If a complex eigenvalue has converged, its complex conjugate is also a pole and
the corresponding complex conjugate right and left eigenvectors can also be deflated.
The complete deflation procedure is shown in Alg. 5.

Further Improvements and Remarks

It may happen that the subspaces X and Y become high-dimensional, especially
when a large number of dominant poles is wanted. A common way to deal with this
is to do an implicit restart [18]: if the subspaces X and Y reach a certain maximum
dimension kmax � n, they are reduced to a dimension kmin < kmax by keeping
the kmin most dominant approximate eigentriplets; the process is restarted with the
reducedX and Y (already converged eigentriplets are not part of the active subspaces
X and Y ). This procedure is repeated until all poles are found.

The approximate residues R̂i can be computed without computing the approx-
imate eigenvectors explicitly (step 2 and step 6 of Alg. 3): if the x̃i and ỹi are
scaled so that ‖ỹi‖2 = ‖x̃i‖ = 1, then it follows that the R̂i can be computed
as R̂i = ((c∗X)x̃i)(ỹ

∗
i (Y

∗b)) (= (c∗x̂i)(ŷ
∗
i b)).
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Algorithm 5:
(Λ,R,L, X̃, Ỹ ) = Deflate(λ,x,v, Λ,R, L,X, Y )
INPUT: λ ∈ C, x,y ∈ C

n, Λ ∈ C
p, R, L ∈ C

n×p,
X, Y ∈ C

n×k

OUTPUT: Λ ∈ C
q , R, L ∈ C

n×q ,X̃, Ỹ ∈ C
n×k, where q = p + 1 if λ has zero imagin-

ary part and q = p + 2 if λ has nonzero imaginary part
1: Λ = [Λ, λ]
2: R = [R,x]
3: L = [L,y]
4: if imag(λ) �= 0 then
5: {Also deflate complex conjugate}
6: Λ = [Λ, λ̄]
7: R = [R, x̄]
8: L = [L, ȳ]

9: end if
10: X̃ = Ỹ = [ ]n×0

11: for j = 1, . . . , k do
12: X̃ = Expand(X̃, R, L, Xj)

13: Ỹ = Expand(Ỹ , L, R, Yj)
14: end for

Furthermore, as more eigentriplets have converged, approximations of new
eigentriplets may become poorer or convergence may be hampered, due to round-
ing errors in the orthogonalization phase and the already converged eigentriplets. It
is therefore advised to take a small tolerance ε < 10−10. Besides that, as the esti-
mate converges to a dominant pole, the right and left eigenvectors computed in step 3
and 4 of algorithm 2 are usually more accurate than the approximations computed in
the selection procedure (although in exact arithmetic they are equal). In the deflation
phase, it is therefore advised to take the most accurate of both.

Deflation can be implemented more efficiently in the following way: let x and y
be right and left eigenvectors for eigenvalue λ and scaled such that y∗x = 1, with
residue R = (c∗x)(y∗b). With bd = (I − xy∗)b and cd = (I − yx∗)c, it follows
that the residue of λ in Hd(s) = cd(sI − A)−1bd is transformed to Rd = 0, while
the residues of the remaining poles are left unchanged. Since (sI − A)−1bd ⊥ y
and (sI − A)−∗cd ⊥ x, the orthogonalizations against found eigenvectors in step 5
and 6 of Alg. 2 are not needed any more (provided b and c are replaced by bd and
cd, respectively).

SADPA requires only one initial estimate. If rather accurate initial estimates are
available, one can take advantage of this in SADPA by setting the next estimate after
deflation to a new initial estimate (step 15 of Alg. 2).

Every iteration, two linear systems are to be solved (step 3 and 4). As was
also mentioned in Sect. 3.2, this can be efficiently done by computing one LU -
factorization and solving the systems by using L and U , and U∗ and L∗, respectively.
Because in practice the system matrixA is often very sparse, computation of theLU -
factorization can be relatively inexpensive.
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The selection criterion can easily be changed to another of the several existing
indices of modal dominance [1, 7, 22]. Furthermore, the strategy can be restricted to
considering only poles in a certain frequency range. Also, instead of providing the
number of wanted poles, the procedure can be automated even further by providing
the desired maximum error |H(s) − Hk(s)| for a certain frequency range: the pro-
cedure continues computing new poles until the error bound is reached. Note that
such an error bound requires that the transfer function of the complete model can be
computed efficiently.

4 Generalizations

In this section, three variants of the dominant pole algorithm presented in the pre-
vious section are briefly discussed. Section 4.1 generalizes the theory to descrip-
tor systems. In Sect. 4.2, the theory is extended to multi-input multi-ouput systems.
A variant of DPA that computes the dominant zeros of a transfer function is described
in Sect. 4.3.

4.1 Descriptor Systems

A more general representation of a dynamical system is{
Eẋ(t) = Ax(t) + bu(t)
y(t) = c∗x(t) + du(t),

(9)

where A,E ∈ R
n×n, x(t),b, c ∈ R

n and u(t), y(t), d ∈ R. The corresponding
transfer function is

H(s) = c∗(sE −A)−1b + d.

The case E = I has been discussed already in Sect. 2. The descriptor system (9)
arises for instance in electrical circuit simulation (A = G, E = C) and the sparse de-
scriptor formulation of power systems (see for instance [15, 16]). The pencil (A,E)
is assumed to be regular, that is, A − λE is singular only for a finite number of
λ ∈ C. If E is singular, system (9) is a system of differential-algebraic equations
(DAE). If E is nonsingular, it is a system of ordinary differential equations (ODE).

The algorithms presented in this chapter can easily be adapted to handle (sparse)
descriptor systems of the form (9). The changes essentially boil down to replacing I
by E on most places and noting that for eigentriplets (λj ,xj ,yj) with distinct finite
λj , the relation y∗

iExj = 0, i �= j holds, and that for nondefective finite eigenvalues,
the eigenvectors can be scaled so that y∗

iExi = 1. The modes corresponding to
eigenvalues at infinity do not contribute to the effective transfer function behavior.
For completeness, the changes are given for each algorithm:

• Algorithm 1:
– Replace I by E in step 3 and 4.



Modal Approximation and Computation of Dominant Poles 187

– Step 5 becomes

sk+1 = sk − c∗x + d

y∗Ex
.

– The criterion in step 6 becomes

‖Ax − sk+1Ex‖2 < ε.

• Algorithm 2:
– Replace I by E in step 3 and 4.
– Replace step 5 and 6 by

X = Expand(X,R,E∗ · L,x),
Y = Expand(Y,L,E ·R,y).

– In step 7, use G = Y ∗EX .
– The criterion in step 9 becomes

‖Ax̂1 − λ̂1Ex̂1‖2 < ε.

• Algorithm 5:
– Replace step 12 and 13 by

X̃ = Expand(X̃, R,E∗ · L,Xj),

Ỹ = Expand(Ỹ , L,E ·R, Yj).

4.2 MIMO Systems

For a multi-input multi-output (MIMO) system{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = C∗x(t) +Du(t),

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
n×p, x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p

and D ∈ R
p×m, the transfer function H(s) : C −→ C

p×m is defined as

H(s) = C∗(sE −A)−1B +D. (10)

The dominant poles of (10) are those s ∈ C for which σmax(H(s)) → ∞. For
square transfer functions (m = p), there is an equivalent criterion: the dominant
poles are those s ∈ C for which λmin(H−1(s)) → 0. This leads, for square transfer
functions, to the following Newton scheme:

sk+1 = sk − 1
µmin

1
v∗C∗(skE −A)−2Bu

,

where (µmin,u,v) is the eigentriplet of H−1(sk) corresponding to λmin(H−1(sk)).
An algorithm for computing the dominant poles of a MIMO transfer function can
be readily derived from Alg. 1. The reader is referred to [13] for the initial MIMO
DPA algorithm and to [15] for an algorithm similar to SADPA, generalizations to
non-square MIMO systems and more details.
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4.3 Computing Zeros of a Transfer Function

The zeros of a transfer function H(s) = c∗(sE − A)−1b + d are those s ∈ C for
which H(s) = 0. An algorithm, very similar to Alg. 1, can be derived by noting that
a Newton scheme for computing the zeros of a transfer function is given by

sk+1 = sk +
c∗(skE −A)−1b + d

c∗(skE −A)−2b
.

A slightly different formulation can be found in [12].

5 Numerical Examples

5.1 A Small Test System

For illustrational purposes, SADPA was applied to a transfer function of the New
England test system, a model of a power system. This small benchmark system has
66 state variables (for more information, see [11]). The tolerance used was ε =
10−10 and no restarts were used. Every iteration, the pole approximation λ̂j with
largest |R̂j |/|Re(λ̂j)| was selected. Table 1 shows the found dominant poles and the
iteration number in which the pole converged. Bodeplots of two modal equivalents
are shown in Fig. 1 and Fig. 2. The quality of the modal equivalent increases with
the number of found poles, as can be observed from the better match of the exact and
reduced transfer function.

5.2 A Large-Scale Descriptor System

The Brazilian Interconnected Power System (BIPS) is a year 1999 planning model
that has been used in practice (see [16] for more technical details). The size of the
sparse matrices A and E is n = 13, 251 (the number of states in the dense state
space realization is 1, 664). The corresponding transfer function has a non-zero direct
transmission term d. Figure 3 shows the frequency response of the complete model
and the reduced model (41 states) together with the error. Both the magnitude and
the phase plot show good matches of the exact and the reduced transfer functions
(a relative error of approximately ‖H(s) − Hk(s)‖/‖Hk(s)‖ = 0.1, also for the

Table 1. Results for SADPA applied to the New England test system (s1 = 1i).

#poles #states new pole iteration Bodeplot
1 2 −0.4672 ± 8.9644i 13 -
2 4 −0.2968 ± 6.9562i 18 -
3 5 −0.0649 21 Fig. 1
4 7 −0.2491 ± 3.6862i 25 -
5 9 −0.1118 ± 7.0950i 26 -
6 11 −0.3704 ± 8.6111i 27 Fig. 2
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Fig. 1. Bode plot of modal equivalent, complete model and error for the transfer function of
the New England test system (5 states in the modal equivalent, 66 in the complete model).
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Fig. 2. Bode plot of modal equivalent, complete model and error for the transfer function of
the New England test system (11 states in the modal equivalent, 66 in the complete model).
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Fig. 3. Bode plot of modal equivalent, complete model and error for transfer function
Psc(s)/Bsc(s) of BIPS (41 in the modal equivalent, 1664 in the complete model).

DC-gain H(0)). Figure 4 shows the corresponding step response (step u = 0.01)1.
The reduced model nicely captures the system oscillations. The reduced model (30
poles, 56 states) was computed by SADPA in 341 LU -factorizations (kmin = 1,
kmax = 10). This reduced model could be reduced further to 41 states (22 poles) by
removing less dominant contributions, without decreasing the quality of the reduced
model much.

5.3 A PEEC Example

This descriptor model arises from a partial element equivalent circuit (PEEC) of a
patch antenna structure and the dimension of the matrices A and E is n = 480
(see [4, 17, 23] for more details and the model data). The system is known as a diffi-
cult problem, because it has many poles close to each other [8]. Figure 5 shows the
Bodeplot of the complete model and the reduced model (45 poles, 89 states) com-
puted by SADPA (initial estimate s1 = 100i, kmin = 5, kmax = 15). The approxi-
mation is almost exact for the frequency range [0.1, . . . , 102] rad/sec. For frequencies
higher than 102 rad/sec, the quality is less good.

1 If hk(t) is the inverse Laplace transform of Hk(s) (3), the step response for step u(t) = c
of the reduced model is given by y(t) =

∫ t

0
h(t)u(t) = c(

∑k
i=1(

Ri
λi

(exp(λit)− 1))+d).



Modal Approximation and Computation of Dominant Poles 191

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

5
x 10−5

D
ev

ia
tio

n 
P

ow
er

 F
lo

w
 L

in
e 

(p
u)

Time (s)

Reduced model (k=41)

Complete model

Fig. 4. Step responses for transfer function Psc(s)/Bsc(s) of BIPS, complete model and
modal equivalent (41 states in the modal equivalent, 1664 in the complete model, step distur-
bance of 0.01 pu).
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6 Conclusions

The algorithms presented in this chapter are efficient, automatic methods to compute
dominant poles of large-scale transfer functions. It has been shown how the corre-
sponding left and right eigenvectors can be used to construct a reduced order model,
also known as the modal equivalent, of the original system. Although the methods
may not be successful for every system, the numerical results for real-life systems
and benchmarks indicate that the methods are applicable to a large class of systems.
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