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1 Introduction

In many fields of science and engineering, like fluid or structural mechanics
and electric circuit design, large–scale dynamical systems need to be simulated,
optimized or controlled. They are often given by discretizations of systems of non-
linear partial differential equations yielding high–dimensional discrete phase spaces.
For this reason during the last decades research was mainly focused on the develop-
ment of sophisticated analytical and numerical tools to understand the overall system
behavior. Not surprisingly, the number of degrees of freedom for simulations kept
pace with the increasing computing power. But when it comes to optimal design
or control the problems are in general to large to be tackled with standard tech-
niques. Hence, there is a strong need for model reduction techniques to reduce the
computational costs and storage requirements. They should yield low–dimensional
approximations for the full high–dimensional dynamical system, which reproduce
the characteristic dynamics of the system.

In this work, we present a method known as proper orthogonal decomposition
(POD), which is widely discussed in literature during the last decades. The original
concept goes back to Pearson [28]. The method is also known as Karhunen–Loève
decomposition [15,22] or principal component analysis [13]. Further names are fac-
tor analysis or total least–squares estimation. It provides an optimally ordered, ortho-
normal basis in the least–squares sense for a given set of theoretical, experimental or
computational data [2]. Reduced order models or surrogate models are then obtained
by truncating this optimal basis. Clearly, the choice of the data set plays a crucial
role and relies either on guesswork, intuition or simulations. Most prominent is the
method of snapshots introduced by Sirovich [36]. Here, the data set is chosen as time
snapshots containing the spatial distribution of a numerical simulation at certain time
instances reflecting the system dynamics.

As an a posteriori, data dependent method it does not need a priori knowledge
of the system behavior and can also be used to analyze patterns in data. Due to this
fact, it was intensively used to study turbulence phenomena and coherent structures
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in fluid dynamics [4, 14, 32, 35, 36] as well as in signal analysis and pattern recogni-
tion [9, 33]. More recently, it has been used in optimal control of partial differential
equations [1, 8, 10, 12, 16–19, 31], inverse problems in structural dynamics [6] and
controller design for real–time control [3, 27, 37].

POD falls into the general category of projection methods where the dynamical
system is projected onto a subspace of the original phase space. In combination with
Galerkin projection [12,17,18] it provides a powerful tool to derive surrogate models
for high–dimensional or even infinite dimensional dynamical systems, since the sub-
space is composed of basis functions inheriting already special characteristics of the
overall solution. This is in contrast to standard finite element discretizations where
the choice of the basis functions is in general independent of the system dynamics.

The main advantage of POD lies in the fact that it requires only standard matrix
computations, despite of its application to nonlinear problems. Although projecting
only onto linear or affine subspaces the overall nonlinear dynamics is preserved,
since the surrogate model will still be nonlinear. Nevertheless, it is computationally
more convenient than to reduce the dynamics onto a curved manifold [30], like it is
done in the methods of intrinsic lower–dimensional manifolds (ILDM) for reducing
chemical kinetics [23].

In Section 2 we present the construction of the POD basis which is either based
on data sets or on the method of snapshots. Further, we use Galerkin projections to
reduce the system dimensionality and discuss the connection of POD and singular
value decomposition. Section 3 is dedicated to an numerical test of the POD method
in radiative heat transfer. Finally, we give in Section 4 some conclusions and future
research perspectives.

2 Proper Orthogonal Decomposition

POD can be seen as a model reduction technique or as a method for data represen-
tation. Being a projection method the latter point of view can be translated into the
question [29, 30]:

Find a subspace approximating a given set of data in an optimal least–
squares sense.

This is related to model reduction of dynamical systems by the choice of the data
points, which are either given by samplings from experiments or by trajectories of
the physical system extracted from simulations of the full model.

2.1 Construction of the POD Basis

To put all this into a mathematical framework (see also [30] for a more detailed dis-
cussion) we start with a vector space V of finite or infinite dimension and a given set
of data in V . Considering a dynamical system described by partial differential equa-
tions this resembles the phase space of an ordinary differential system, which one
gets after a spatial discretization via a method of lines, or to the infinite dimensional
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state space in which the solution lies. In the following we will restrict ourself to finite
dimensions and set V = R

n. Then, a set of sampled data Y = {y1(t), . . . , ym(t)} is
given by trajectories yi(t) ∈ R

n, i = 1, . . . ,m and t ∈ [0, T ].
Next, we use a principal component analysis of this data to find a d–dimensional

subspace Vd ⊂ V approximating the data in some optimal least–squares sense, i.e.
we seek an orthogonal projection Πd : V → Vd of fixed rank d that minimizes the
total least–squares distance

||Y −ΠdY ||2 :=
m∑

i=1

∫ T

0

||yi(t) −Πdyi(t)||2 dt.

The solution of this problem relies on the introduction of the correlation matrix
K ∈ R

n×n defined by

K =
m∑

i=1

∫ T

0

yi(t)yi(t)∗ dt, (1)

where the star stands for the transpose (with additional complex conjugation in case
of V = C

n) of a vector or a matrix. By definition, K is a symmetric positive semi-
definite matrix with real, nonnegative ordered eigenvalues λ1 ≥ · · · ≥ λn ≥ 0. Let
uj denote the corresponding eigenvectors given by

Kuj = λjuj , j = 1, . . . , n.

Due to the special structure of the matrix K we can choose them in fact as an ortho-
normal basis of V .

The main result of POD is that the optimal subspace Vd of dimension d repre-
senting the data is given by Vd = span {u1, . . . ,ud}. The vectors uj , j = 1, . . . , d
are then called POD modes. More precisely, we have the following result [20]:

Theorem 1. Let K be the correlation matrix of the data defined by :=correlation
and let λ1 ≥ · · · ≥ λn ≥ 0 be the ordered eigenvalues of K. Then it holds

min
Vd

||Y −ΠdY || =
n∑

j=n−d+1

λj ,

where the minimum is taken over all subspaces Vd of dimension d. Further, the opti-
mal orthogonal projection Πd : V → Vd, with ΠdΠ

∗
d = I , is given by

Πd =
d∑

j=1

uju
∗
j .

Each data vector yi(t) ∈ V can be written as

yi(t) =
n∑

j=1

yij(t)uj ,
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where yij(t) = 〈yi(t), uj〉. Then it holds

Πdyi(t) =
d∑

j=1

uju
∗
j

(
n∑

l=1

yil(t)ul

)
=

d∑
j=1

yij(t)uj ,

since 〈ui, uj〉 = δij .

Remark 1. Often, one is interested in finding rather an approximating affine subspace
than a linear subspace [30]. Consider for example the flow around a cylinder, where
one can observe Karman’s vortex street [12]. Physically speaking, we have then the
superposition of the mean flow, in which we are not interested, and the vortex struc-
tures on which our main focus lies. So, we construct first the mean value of the data
given by

ȳ :=
1
mT

m∑
i=1

∫ T

0

yi(t) dt

and then build–up the covariance matrix K̄ defined by

K̄ :=
m∑

i=1

∫ T

0

(yi(t) − ȳ)(yi(t) − ȳ)∗ dt.

Now, we can proceed in analogy. Let λ1 ≥ · · · ≥ λn ≥ 0 be the ordered eigenvalues
of K̄ and uj the corresponding eigenvectors. We define Vd = span {u1, . . . ,ud}.
Then the optimal affine subspace fixed in ȳ is given by Vd,ȳ = ȳ + Vd and the
optimal orthogonal projection is given by

Πdy := Πd(y − ȳ) + ȳ.

2.2 Choosing the Dimension

Finally, we have to answer the question how to choose the dimension d of the sub-
space Vd such that we get a good approximation of our data set. Here, Theorem 1
can guide us, since it provides the overall least–squares error. Hence, we only have
to study the eigenvalues of K. In terms of a dynamical system, large eigenvalues
correspond to main characteristics of the system, while small eigenvalues give only
small perturbations of the overall dynamics. The goal is to choose d small enough
while the relative information content [1] of the basis for Vd, defined by

I(d) =

∑d
j=1 λj∑n
j=1 λj

,

is near to one. I.e. if the subspace Vd should contain a percentage p of the information
in V , then one should choose d such that

d = argmin
{

I(d) : I(d) ≥ p
100

}
.
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Remark 2. If one wants to significantly reduce the dimension of the problem, i.e.
d � n, one needs clearly that the eigenvalues decrease sufficiently fast. In many ap-
plications like fluid dynamics or heat transfer one observes an exponential decrease
of the eigenvalues, such that one has indeed a good chance to derive low–order ap-
proximate models (see also Section 3).

Remark 3. Note, that the POD modes are optimally approximating a given data set in
the least–squares sense, but they are not constructed to be the modes approximating
the dynamics generating the given the data set. For example, consider a low Mach
number flow where acoustic effects play a crucial role [34]. Due to their small en-
ergy compared to the high energy hydrodynamic pressure fluctuations, they would
be neglected in our reduced model, although being a relevant feature of the full dy-
namical system. Further, although an increase of the number of POD modes leads to
a decrease of the least squares error, it might happen that more POD modes lead to
a worse approximation of the full dynamics. New approaches exploiting the relation
between POD and balanced truncation [21, 34, 37] or dual techniques [24, 25] yield
a way out of this problem.

2.3 POD and Galerkin Projection

To get reduced order models for dynamical systems one uses a Galerkin projection
onto the subspace Vd. This is the standard technique to reduce partial differential
equations with a method of lines to a system of ordinary differential equations. Stan-
dard finite element approaches for the spatial discretization are using basis functions
which are in general not correlated with the overall system dynamics [12, 17]. This
approach holds for any subspace Vd, but having now the POD modes at hand one can
use naturally this optimal approximating subspace. So, let f : V → V be a vector
field and consider the solution y(t) : [0, T ] → V of the dynamical system

ẏ(t) = f(y(t)),

which we e.g. get from a discretization of a partial differential equation via finite el-
ements or finite differences. Further, we construct an approximating d–dimensional
subspace Vd = span {u1, . . . ,ud} via POD. The reduced order model is then
given by

ẏd(t) = Πdf(yd(t)) (2)

with solution yd(t) : [0, T ] → Vd. Here, Πdf(yd(t)) is just the projection of the
original vector field f onto the subspace Vd. To rewrite :=reduced component wise
we use

yd(t) =
d∑

j=1

χj(t)uj

and substitute this into :=reduced. Then, a multiplication with u∗j yields

χ̇j(t) = u∗jf(yd(t)) = u∗jf

⎛⎝ d∑
j=1

χj(t)uj

⎞⎠ , j = 1, . . . , k,
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i.e. we are left with a coupled system of d ordinary differential equations for the
evolution of yd(t). Clearly, also the initial condition has to be projected, i.e.

yd(0) = Πdy(0).

Remark 4. For an affine subspace Vd,ȳ the reduced model for the dynamics of yd :
[0, T ] → Vd,ȳ can be derived in analogy.

2.4 POD and Snapshots

Concerning real world applications like flow problems, one has to encounter many
degrees of freedom, such that the dimension n of the phase space might be very large.
In practical computations this can lead to a phase space with dimension n = 106–
1010. Hence, the calculation of the POD modes would require the solution of a large
eigenvalue problem for a full matrix K ∈ R

n×n, which might be infeasible. To over-
come this problem Sirovich [36] proposed the method of snapshots, which proves
to a powerful tool for the computation of the eigenfunctions. Instead of solving the
eigensystem for the matrixK ∈ R

n×n one only needs to consider a matrix in R
m×m,

where m is the number of snapshots considered (for a more detailed discussion we
refer to [12, 17] and the references therein).

Snapshots are constructed from the trajectories of the dynamical system by eval-
uating them at certain discrete time instances t1, . . . , tm ∈ [0, T ], i.e. they are given
by yi = y(ti) ∈ R

n. Then, we get a new correlation matrix K defined by

K =
m∑

i=1

y(ti)y(ti)∗. (3)

Remark 5. But how many snapshots should one choose? An educated guess would be
to choose less than n, since we cannot expect to get more than n linearly independent
vectors. On the other hand, snapshots should be always taken whenever the dynamics
of the system is changing. Hence, it might happen that m > n. Be aware that the
chosen snapshot vectors might be linearly dependent, such that it is not clear, if one
can reconstruct a suitable basis. Further note that the snapshots depend clearly on the
initial datum and on a given input.

We build the matrix Y = (y(t1), . . . y(tm)) ∈ R
n×m consisting in the columns

of the snapshots. Hence, in each row we find the trajectories of the dynamical system
at discrete time events. Then, the sum (3) can be written as K = Y Y ∗. In the method
of snapshots one considers now instead the matrix Y ∗Y ∈ R

m×m and solves the
eigenvalue problem

Y ∗Y vj = λjvj , j = 1, . . . ,m, vj ∈ R
m.

In the following we will see that the eigenvalues are indeed the same. Again, we can
choose an orthonormal basis of eigenvectors {v1, . . . , vm} and the corresponding
POD modes are given then given by

uj =
1√
λj

Y vj , j = 1, . . . ,m.
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2.5 POD and SVD

The above discussion suggest that there is indeed a strong connection of POD
and singular value decomposition (SVD) for rectangular matrices (for an excellent
overview see [12,16,17]). Consider a matrix Y ∈ R

n×m with rank d. From standard
SVD we know that there exist real numbers σ1 ≥ . . . ≥ σd > 0 and unitary matrices
U ∈ R

n×n and V ∈ R
m×m such that

U∗Y V =
(
Σd 0
0 0

)
= Σ ∈ R

n×m, (4)

where Σd = diag(σ1, . . . , σd) ∈ R
d×d.

The positive numbers σi are called singular values of Y . For U = (u1, . . . , un)
and V = (v1, . . . , vm) we call ui ∈ R

n the left singular vectors and vi ∈ R
m the

right singular vectors, which satisfy

Y vi = σiui and Y ∗ui = σivi, i = 1, . . . , d.

These are eigenvectors of Y Y ∗ and Y ∗Y with eigenvalues σ2
i , i = 1, . . . , d.

The link between POD and SVD lies in the fact that the approximating POD
basis should contain as much information or energy as possible. Mathematically, we
can write the problem of approximating the snapshot vectors yi by a single vector u
as the constrained optimization problem

max
m∑

j=1

| 〈yj , u〉 |2 s.t. |u| = 1. (5)

Using the Lagrangian formalism we derive that a necessary condition for this prob-
lem is given by the eigenvalue problem

Y Y ∗u = σ2u.

The singular value analysis yields that u1 solves this eigenvalue problem and the
functional value is indeed σ2

1 . Now, we iterate this procedure and derive that ui,
i = 1, . . . , d solves

max
m∑

j=1

| 〈yj , u〉 |2 s.t. |u| = 1and 〈u, uj〉 = 0, j = 1 . . . , i− 1 (6)

and the value of the functional is given by σ2
i .

By construction it is clear that for every d ≤ m the approximation of the columns
Y = (y1, . . . , ym) by the first d singular vectors {ui}d

i=1 is optimal in the least–
squares sense among all rank d approximations to the columns of Y .

Altogether, this leads the way to the practical determination of a POD basis of
rank d. If m < n holds, then one can compute the m eigenvectors vi corresponding
to the largest eigenvalues of Y ∗Y ∈ R

n×n. These relate to the POD basis as follows

ui =
1
σi
Y vi, i = 1, . . . d.
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3 POD in Radiative Heat Transfer

In the following we want to test the POD approach for model reduction in a radiative
heat transfer problem given by the so–called Rosseland model [26], which is given
by the nonlinear parabolic partial differential equation

∂ty(x, t) = div
((

kh + kry3(x, t)
)
∇y(x, t)

)
(7)

for the temperature distribution y(x, t). Here, (x, t) is in the space–time cylinder
Q = Ω× (0, T ), where Ω is a bounded domain in R

2. The coefficients kh and kr are
positive constants related to the conductive and radiative heat transfer. This model
has to be supplemented with boundary data

n · ∇y(x, t) = h(b(x, t) − y(x, t)) + α
(
b4(x, t) − y4(x, t)

)
(8)

for (x, t) ∈ ∂Ω × (0, T ) and an initial datum

y(x, 0) = y0(x) (9)

for x ∈ Ω. Here, y0(x) is the initial temperature, b(x, t) a specified boundary temper-
ature, and h and α measure the conductive and radiative heat loss over the boundary,
respectively. For the forthcoming simulations we choose

kh = 1, kr = 10−7, h = 1, α = 5 · 10−7, y0(x) = 500, b(x, t) = 300.

Remark 6. Note, that this model has two nonlinearities: One in the heat conductivity
which models volume radiation and one in the boundary condition which adds addi-
tional surface radiation to the standard Newton cooling law, where the temperature
flux is proportional to the temperature difference. Hence, we can expect that bound-
ary layers will appear in the solution such that the POD modes will significantly
differ from the eigenfunctions of the Laplacian.

This nonlinear partial differential equation is solved using the finite element
package FEMLAB. The computational domain Ω ⊂ R

2 is an ellipse depicted in
Figure 1 with center zero and an aspect ratio of two. There, one also finds the tri-
angular mesh consisting of 1769 degrees of freedom. For the discretization we use
linear finite elements with the nodal basis {ϕi(x)}n

i=1 and write the approximate
solution as

yh(x, t) =
n∑

i=1

yi(t)ϕi(x).

The finite element ansatz for the equation :=RHT yields a dynamical system for
Y (t) = (y1(t), . . . , yn(t))

Ẏ (t) = f(Y (t)),

where the right hand side is computed via the Galerkin projection onto the finite
element space.
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Fig. 1. Computational Domain and Mesh

For the POD analysis we take m = 81 equidistantly distributed snapshots
{Y (tj)}m

j=1 in the interval [0, T ], build up the snapshot matrix

Y =

⎛⎜⎝ y1(t1) · · · y1(tm)
...

...
yn((t1) · · · yn(tm)

⎞⎟⎠ ∈ R
n×m

and introduce the correlation matrix K = Y ∗Y ∈ R
m×m. Using the MATLAB

routine eigs.m one can easily compute the eigenvalues λj and the eigenvectors uj ,
j = 1, . . .m. Despite of the high nonlinearity of our problem, we get exponential
decay of the eigenvalues, which can be seen in Figure 2.

From the eigenvectors we can compute the POD basis {ui}d
i=1 of rank d as

follows

ui =
1√
λi

m∑
j=1

vj
i yj , i = 1, . . . , d,

where vj
i is the j–th component of the eigenvector vi. In the following we will use

the normalized POD basis functions ψi = ui/||ui||. The first eight of these basis
functions can be found in Figure 4. Computing the relative information content for
the first mode yields already I(1) = 99.96%.

To get a reduced POD model we use the POD basis {ψi}d
i=1 in a Galerkin ansatz

yd(x, t) =
d∑

i=1

χi(t)ψi(x),
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Fig. 2. Eigenvalues of the correlation matrix

plug this into the equation and test with χj , which yields

∂tχi(t) = −
∫

Ω

(
kh + kr

(∑d
k=1 χk(t)ψk(x)

)3
)∑d

i=1 χi(t)∇ψi(x) · ∇ψj(x) dx

+
∫

∂Ω

(
kh + kr

(∑d
k=1 χk(t)ψk(x)

)3
)∑d

i=1 χi(t)n · ∇ψi(x)ψj ds

=: g(χ(t)), i = 1, . . . , d, χ = (χ1, . . . , χd).

This gives the ordinary differential system χ̇(t) = g(χ(t)) of size d × d, which can
be solved with an implicit Euler method for example.

Remark 7. Note that the ordinary differential system can be solved quite fast due to
its small size. Nevertheless, one should be aware that building up the system might
need some time since we have to compute the inner products for global basis func-
tions, in contrast to the finite element basis which has compact support. Alternatively,
one can compute the projections of the finite element matrices onto the reduced
space.

To get an idea how well our reduced model approximates the full model,
we measure the difference of yh(x, t) and yd(x, t) in the norm of the space
L2(0, T ;L2(Ω)), i.e.

||yh − yd||2L2(0,T ;L2(Ω)) =
∫ T

0

∫
Ω

(yh(x, t) − yd(x, t))
2
dx dt.
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This error is plotted in Figure 3 for different sizes d of the reduced model. Most re-
markable is that already three POD modes yield a mean error of 1 in the temperature,
which yields a relative mean error of less than 1%.

Remark 8. It is worth noting that in the context of partial differential equations, it is
also possible to build up the correlation matrix using a different inner product, which
is more related to the Galerkin ansatz, i.e. here one could also use the inner product
of H1(Ω). I.e. one replaces the correlation matrix by K = YMY ∗, where M ∈
R

n×n is a symmetric, problem dependent matrix. This yields a different POD basis
which might give even better results (for the linear case see e.g. [11]). Further, it was
pointed out that one may increase the accuracy of the reduced model by adding finite
differences of the snapshots to the snapshot set, i.e. also considering time derivatives
of the snapshots [12, 17]. Clearly, this does not change the space spanned by the
snapshots since we are only adding linearly dependent vectors. Nevertheless, we get
different weights in the correlation and thus again different modes.

4 Conclusions and Future Perspectives

Being a powerful tool for model reduction of large–scale dynamical systems, POD
is acquiring increasing attention in the mathematics and engineering community.
Presently, there is the tendency to test its performance in more and more fields of
application, like fluid and structural dynamics, reducing models based on partial



106 R. Pinnau

Fig. 4. The first 8 POD modes
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differential equations for devices in electric circuits, frequency averaging in radia-
tive heat transfer, or even tire modeling. These different fields clearly will have
different requirements on the POD method. Either, one wants to have structure
preserving reduced models [5, 7, 20] or estimates on the quality of the surrogate
model [11, 24, 25, 29, 30]. In particular, the derivation of error estimates for POD
models is a field of intensive research which follows two lines: First, the combina-
tion of POD and balanced truncation (c.f. [34, 37] and the references therein) and
second exploiting the special structure of Galerkin approximations to partial differ-
ential equations (c.f. [12, 17] and the references therein).
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