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1 Introduction

For linear control systems minimal realization theory and the related model reduction
methods play a crucial role in understanding and handling the system. These methods
are well established and have proved to be very successful, e.g., [Antoulas05,OA01,
ZDG96]. In particular the method called balanced truncation gives a good reduced
order model with respect to the input-output behavior, [Moore81, Glover84]. This
method relies on the relation with the system Hankel operator, which plays a central
role in minimal realization theory. Specifically, the Hankel operator supplies a set of
similarity invariants, the so called Hankel singular values, which can be used to quan-
tify the importance of each state in the corresponding input-output system [JS82].
The Hankel operator can also be factored into a composition of observability and
controllability operators, from which Gramian matrices can be defined and the no-
tion of balanced realization follows, first introduced in [Moore81] and further studied
by many authors, e.g. [JS82, ZDG96]. This linear theory is rather complete and the
relations between and interpretations in the state-space and input-output settings are
fully understood.

A nonlinear extension of the state-space concept of balanced realizations has
been introduced in [Scherpen93], mainly based on studying the past input nenergy
and the future output energy. Since then, many results on state-space balancing,
modifications, computational issues for model reduction and related minimality con-
siderations for nonlinear systems have appeared in the literature, e.g., [GS01, HE02,
LMG02, NK00, NK98, SG00, VG00]. In particular, singular value functions which
are a nonlinear state-space extension of the Hankel singular values for linear systems
play an important role for nonlinear balanced realizations. However, the original
characterization in [Scherpen93] was incomplete in a sense that the defined singular
value functions are not unique, the relation with the nonlinear Hankel operator was
not clarified, and the resulting model reduction procedure gives different reduced
order models depending on the choice of different set of singular value functions,
e.g. [GS01].
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Balanced realization and the related model order reduction technique rely on
singular value analysis. This analysis investigates the singular values and the cor-
responding singular vectors for a given operator. The analysis is important since it
extracts the gain structure of the operator, that is, it characterizes the largest input-
output ratio and the corresponding input [Stewart93]. Since linear singular values
are defined as eigenvalues of the composition of the given operator and its adjoint, it
is natural to introduce a nonlinear version of adjoint operators to obtain a nonlinear
counterpart of a singular value. There has been done quite some research on the non-
linear extension of adjoint operators, e.g. [Batt70, SG02, FSG02] and the references
therein. Here we do not explicitly use these definitions of nonlinear adjoint opera-
tors. We rely on a characterization of singular values for nonlinear operators based on
the gain structure as studied in [Fujimoto04]. The balanced realization based on this
analysis yields a realization that is based on the singular values of the corresponding
Hankel operator, and results in a method which can be viewed as a complete ex-
tension of the linear methods, both from an input-output and a state-space point of
view, [FS05].

The related model order reduction technique, nonlinear balanced truncation,
preserves several important properties of the original system and corresponding
input-output operator, such as stability, controllability, observability and the gain
structure [FS03].

This paper gives an overview of the series of research on balanced realization and
the related model order reduction method based on nonlinear singular value analysis.
Section 2 explains the taken point of view on singular value analysis for nonlinear
operators. Section 3 briefly reviews the linear balancing method and balanced trun-
cation in order to show the way of thinking for the nonlinear case. Section 4 treats
the state-space balancing method stemming from [Scherpen93]. Then, in Section 5
we continue with balanced realizations based on the singular value analysis of the
nonlinear Hankel operator. Furthermore, in Section 6 balanced truncation based on
the method of Section 5 is presented. Finally, in Section 7 a numerical simulation
illustrates how the proposed model order reduction method works for real-world
systems.

2 Singular Value Analysis of Nonlinear Operators

Singular value analysis plays an important role in the characterizations of the prin-
cipal behavior of linear operators. Here we formulate a nonlinear counterpart of sin-
gular value analysis. It is a basic ingredient for considering balanced realizations for
nonlinear systems explained further on in this paper.

Let us consider a linear operator A : U → Y with Hilbert spaces U and Y . Then

A∗A v = σ2v (1)

holds with σ(≥ 0) ∈ R and v ∈ U where σ and v are called a singular value and a
(right) singular vector of the operator A. Here A∗ is the adjoint of A satisfying
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〈y,A u〉Y = 〈A∗y, u〉U (2)

for all u ∈ U and y ∈ Y where 〈·, ·〉X denotes the the inner product of the space X .
For a finite dimensional signal space U , the operator A can be described by

A =
n∑

i=1

σi wi v
∗
i

with the singular values σ1 ≥ σ2 ≥ . . . ≥ σn, the corresponding right singular
vectors vi’s. and the left singular vectors wi’s. Then we can obtain an approximation
of A with rank m < n by

Aa :=
m∑

i=1

σi wi v
∗
i .

We can easily observe that this approximation preserves the gain of the original
operator A

‖Aa‖ = σ1 = ‖A‖.

Furthermore, the error bound is obtained by

‖A−Aa‖ = σm+1.

For the generalization to nonlinear systems, we consider the following interpretation
of singular values for linear operators. The largest singular value of the operator A
characterizes the gain of the operator and the corresponding singular vector vmax

represents the input maximizing the input-output ratio. Namely, the following equa-
tions hold.

σmax = sup
u�=0

‖A u‖
‖u‖ , vmax = arg sup

u�=0

‖A u‖
‖u‖ (3)

Now, let us consider a smooth nonlinear operator f : U → Y with Hilbert spaces
U and Y . How to define singular values of the nonlinear operator f(u) is not imme-
diately clear because there does not exist an operator f∗(y) such that Equation (2)
holds with A = f . Several papers define a nonlinear counterpart of an adjoint opera-
tor, e.g., [Batt70, SG02, FSG02]. For our nonlinear balancing purpose we generalize
the linear way of thinking given by Equation (3). More precisely we consider the
following definitions

σc
max = sup

‖u‖=c

‖f(u)‖
‖u‖ , vc

max = arg sup
‖u‖=c

‖f(u)‖
‖u‖ (4)

where the gain of the operator f is characterized for each input magnitude c. The
property that the gain of a nonlinear operator depends on the magnitude of its input
is quite natural in the nonlinear setting and, for instance, this idea can be found in the
input-to-state stability literature, e.g., [JTP94, SW96]. If σc

max is obtained, then we
can calculate the largest singular value σmax and the corresponding singular vector
vmax of f by
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f u(u)

u* u0

Fig. 1. Maximizing input u = u� of f(u)

σmax = sup
c>0

σc
max, vmax = vc

max|c=arg supc�=0 σc
max

. (5)

In the linear case, the largest singular value σmax coincides with σc
max for all c > 0.

Now we are ready to define the singular value σ and the corresponding singular
vector v for the operator f fulfilling the relationship (4). This is obtained by simply
differentiating the condition in Equation (4). Figure 1 depicts the (locally) largest
singular vector u� when f is a mapping of R → R. At the point u = u� where the
input-output takes its maximum value, the derivative of the input-output ratio has to
be 0. Therefore the following equation has to hold for all u satisfying ‖u‖ = c.

d
(
‖f(u)‖
‖u‖

)
(du) = 0 (6)

Here the Fréchet derivative1 is adopted to describe the problem. This equation is
equivalent to

〈(df(u))∗f(u) − ‖f(u)‖2

‖u‖2
u, du〉 = 0. (7)

On the other hand, the derivative of ‖u‖ = c yields

〈u, du〉 = 0. (8)

Combining Equations (7) and (8), we obtain the condition for the singular vector v.

Theorem 1. [Fujimoto04] Consider a nonlinear operator f : U → Y with Hilbert
spaces U and Y . Then the input-output ratio of ‖f(u)‖/‖u‖ has a critical value for
an arbitrary input magnitude ‖u‖ = c if and only if

(df(v))∗f(v) = λ v (9)

with a scalar λ ∈ R and v ∈ U .

1 The Fréchet derivative of an operator T : U → Y is an operator T : U×U → Y satisfying
f(u + v) = f(u) + df(u)(v) + o(‖v‖) such that f(u)(v) depends linearly on v.
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We now define v as a singular vector for a nonlinear operator f if it fulfills
Equation (9). Immediate extension of the linear case by defining the singular value
of f by σ :=

√
λ is not appropriate. This can be seen from the fact that, e.g., λ can

be negative. A better extension is given by using the singular vector v, and defining
the corresponding singular value by

σ =
‖f(v)‖
‖v‖ . (10)

In the remainder of this paper, investigating the solutions of the pair of Equations
(9) and (10) is called singular value analysis of the nonlinear operator f . Here σ is
called a singular value of f , and v is called the corresponding singular vector. It can
be readily observed that

λ = σ2

holds in the linear case. However, this equation does not hold in the nonlinear
case. Although the scalar λ is always real, it can be negative in the nonlinear
case [Fujimoto04].

A more detailed discussion on nonlinear singular value analysis is given
in [Fujimoto04].

3 Balanced Realization for Linear Systems

This section briefly reviews balanced realizations in the linear systems case in order
to show the way of thinking in the nonlinear case. See standard textbooks for the
detail, e.g., [OA01, ZDG96]. Consider the following controllable, observable, and
asymptotically stable linear system

Σ :
{
ẋ = Ax+Bu x(0) = 0
y = Cx

(11)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p. The controllability Gramian P and

the observability Gramian Q of the system Σ in Equation (11) are obtained by the
solutions to the Lyapunov equations

AP + PAT +BBT = 0 (12)
ATQ+QA+ CTC = 0. (13)

It is known that the positive definiteness of the Gramians P and Q is equivalent
to controllability and observability of the system Σ in Equation (11), respectively.
Furthermore, the matrices P and Q themselves are quantitative indicators of the
controllability and observability, that is, P and Q describe the behavior of input-to-
state and that of state-to-output, respectively.

A balanced realization of Σ is a state-space realization which has the following
Gramians
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P = Q = diag(σ1, σ2, . . . , σn) (14)

where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are called Hankel singular values. Here the system
is balanced because P = Q implies that relation between input-to-state and state-
to-output is balanced and diagonalized P and Q implies that the importance of each
coordinate axis is balanced. There is another realization called an input-normal form
which has the following Gramians

P = I, Q = diag(σ2
1 , σ

2
2 , . . . , σ

2
n) (15)

where only the balancing between the coordinate axes is achieved.
If σi > σj then the coordinate axis xi is more important to the input-output

behavior, i.e., better controllable and observable, than the axis xj . Therefore if
σk ) σk+1 holds for a certain k (1 ≤ k < n), then we can obtain a k-dimensional
reduced order model by neglecting the dynamics of xk+1, . . . , xn. This model reduc-
tion procedure is called balanced truncation. More precisely, balanced truncation is
executed as follows. Suppose that the system is in a balanced realization and divide
the coordinate as follows

x = (xa, xb)
xa = (x1, . . . , xk)
xb = (xk+1, . . . , xn).

Further divide the state-space system(
ẋa

ẋb

)
=
(
Aa Aab

Aba Ab

)(
xa

xb

)
+
(
Ba

Bb

)
u

y =
(
Ca, Cb

)(xa

xb

)
.

Then the reduced order model is obtained by

Σa :
{
ẋa = Aaxa +Bau

y = Caxa .

By balanced truncation it is readily obtained that several properties are preserved.
This can be seen by studying the Lyapunov equations (12) and (13), and their trun-
cated versions, e.g.,

Theorem 2. [Moore81] The controllability Gramian P a and the observability
Gramian Qa of the reduced order model Σa are given by

P a = Qa = diag(σ1, . . . , σk).

The controllability operator C and the observability operator O of the system Σ
as in (11) are given by
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C : u �→ x0 :=
∫ ∞

0

eτABu(τ)dτ

O : x0 �→ y := CetAx0.

Furthermore, their composition is defined as the Hankel operator H of the original
system Σ.

H = O C (16)

These operators are closely related to the Gramians, i.e.,

P = C C∗

Q = O∗O

Now consider a linear system given by Equation (11), which is not necessarily ob-
servable and/or controllable. The relation between the Gramians and the observabil-
ity and controllability operator allows one to prove the following theorem.

Theorem 3. [ZDG96] The operator H∗H and the matrix PQ have the same
nonzero eigenvalues.

Proof: The proof of this theorem is easily obtained and instructive for the nonlinear
extension case. We first prove the ‘⇒’ part. Due to (16), the eigenvalue problem of
H∗H reduces to

C∗O∗O C v = λ v, v ∈ U, λ ∈ R

with λ = σ2. Defining ξ := C v ∈ R
n and premultiplying C to the above equation,

we obtain
C C∗O∗O C v = C λ v

which reduces to
PQ ξ = λ ξ (17)

characterizing the eigenvalues of PQ. Furthermore, the ‘⇐’ part can be proved in a
similar way. Suppose that we have the above equation. Then premultiplying C∗O O∗

and defining v̄ := C∗O O∗ξ we obtain

H∗H v̄ = λ v̄

which coincides with the eigenvalue problem of H∗H. �

Thus the singular value problem of the operator H is closely related to the eigen-
value problem of the matrix PQ, and a singular vector v of H is characterized by an
eigenvector ξ of PQ.

Due to this property, the constants σi’s in Equation (14) are called Hankel singu-
lar values. Furthermore, the Hankel norm ‖Σ‖H of the operator Σ is defined by the
L2 gain of the corresponding Hankel operator as

‖Σ‖H := sup
u∈L2[0,∞)

u�=0

‖H(u)‖L2

‖u‖L2

= σ1. (18)
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Theorem 2 implies that the balanced truncation procedure preserves the Hankel norm
of the original system, that is,

‖Σa‖H = ‖Σ‖H . (19)

It is also known that the error bound of this model order reduction procedure is
given by

‖Σ −Σa‖∞ ≤ 2
n∑

i=k+1

σi. (20)

The relation between the Gramians and the Hankel, controllability and observ-
ability operators gives rise to both input-output operator interpretations as well as
state-space interpretations of Hankel singular values and balanced truncation. These
interpretations are crucial for the extension to nonlinear systems.

4 Basics of Nonlinear Balanced Realizations

This section gives a nonlinear extension of balanced realization introduced in the
previous section. Let us consider the following asymptotically stable input-affine
nonlinear system

Σ :
{
ẋ = f(x) + g(x)u x(0) = x0

y = h(x)
(21)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p. The controllability operator C : U →

X with X = R
n and U = Lm

2 [0,∞), and the observability operator O : X → Y
with Y = Lp

2[0,∞) for this system are defined by

C : u �→ x0 :
{
ẋ = −f(x) − g(x)u x(∞) = 0
x0 = x(0)

O : x0 �→ y :
{
ẋ = f(x) x(0) = x0

y = h(x)
.

This definition implies that the observability operator O is a map from the initial
condition x(0) = x0 to the output L2 signal when no input is applied. To interpret
the meaning of C, let us consider a time-reversal behavior of the C operator as

C : u �→ x0 :
{
ẋ = f(x) + g(x)u(−t) x(−∞) = 0
x0 = x(0)

. (22)

Then the controllability operator C can be regarded as a mapping from the input
L2 signal to the terminal state x(0) = x0 when the initial state is x(−∞) = 0.
Therefore, as in the linear case, C and O represent the input-to-state behavior and the
state-to-output behavior, respectively. As in the linear case, the Hankel operator for
the nonlinear operator Σ in (16) is given by the composition of C and O
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f lipping

S

truncation

Fig. 2. Hankel operator H of Σ

H := O ◦ C. (23)

The input-output mapping of a Hankel operator is explained in Figure 2. The
lower side of the figure depicts the input-output behavior of the original operator
Σ in Equation (21). The upper side depicts the input-output behavior of the Hankel
operator of Σ, where the signal in the upper left side is the time-flipped signal of the
lower left side signal. The flipping operator is defined by

F(u(t)) := u(−t).

The upper right side signal is the truncated signal (to the space L2[0,∞)) of the
lower left side signal. The corresponding truncation operator is given by

T (y(t)) :=
{

0 (t < 0)
y(t) (t ≥ 0)

.

The definition of a Hankel operator implies that it describes the mapping from the
input to the output generated by the state at t = 0. Hence we can analyze the rela-
tionship between the state and the input-output behavior of the original operator Σ
by investigating its Hankel operator.

To this end, we need to define certain operators and functions related to Gramians
in the linear case. First a norm-minimizing inverse C† : X → U of C is introduced.

C† : x0 �→ u := arg min
C(u)=x0

‖u‖

The operators C† and O yield the definitions of the controllability function Lc(x)
and the observability function Lo(x) that are generalization of the controllability
and observability Gramians, respectively.
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Lc(x0) :=
1
2
‖C†(x0)‖2 = min

u∈L2(−∞,0]

x(−∞)=0,x(0)=x0

1
2

∫ 0

−∞
‖ u(t) ‖2 dt (24)

Lo(x0) :=
1
2
‖O(x0)‖2 =

1
2

∫ ∞

0

‖ y(t) ‖2 dt, x(0)=x0, u(t)≡0, 0≤t<∞. (25)

These definitions imply that the controllability functionLc(x0) is the minimum input
energy (in the L2 norm sense) required to move from the initial state x(−∞) = 0 to
the terminal state x(0) = x0, and that the observability function Lo(x0) is the output
energy generated by the initial state x(0) = x0 with zero input, respectively. If the
system Σ is linear as in (11), then those functions are described by

Lc(x) =
1
2
xTP−1x, Lo(x) =

1
2
xTQx (26)

with the controllability Gramian P and the observability Gramian Q the solutions of
the Lyapunov equations (12) and (13). Here the inverse of P appears in the above
equation because C† appears in the definition (24), whereas C can be used in the
linear case. In order to obtain those functions Lc(x) and Lo(x), we need to solve a
Hamilton-Jacobi equation and a Lyapunov equation.

Theorem 4. [Scherpen93] Consider the system (21). Suppose that 0 is an asymptot-
ically stable equilibrium point and that a smooth observability function Lo(x) exists.
Then Lo(x) is the unique smooth solution of

∂Lo(x)
∂x

f(x) +
1
2
h(x)Th(x) = 0

with Lo(0) = 0. Furthermore, assume that a smooth controllability function Lc(x)
exists. Then Lc(x) is the unique smooth solution of

∂Lc(x)
∂x

f(x) +
1
2
∂Lc(x)
∂x

g(x)g(x)T
∂Lc(x)
∂x

T

= 0

with Lc(0) = 0 such that 0 is an asymptotically stable equilibrium point of ẋ =
−f(x) − g(x)g(x)T(∂Lc(x)/∂x)T.

Similar to the linear case, the positive definiteness of the controllability and ob-
servability functions implies strong reachability and zero-state observability of the
system Σ in (21), respectively. Combining these two properties, we can obtain the
following result on the minimality of the system.

Theorem 5. [SG00] Consider the system (21). Suppose that

0 < Lc(x) < ∞
0 < Lo(x) < ∞

hold for all x �= 0. Then the system is a minimal realization as defined in [Isidori95].
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Similar to the linear case, Lc(x) and Lo(x) can be used to “measure the minimal-
ity” of a nonlinear dynamical system. Furthermore, a basis for nonlinear balanced
realization is obtained as a nonlinear generalization of the relationship (15) in the
linear case. For that, a factorization of Lo(x) into a semi-quadratic form needs to be
done, i.e., in a convex neighborhood of the equilibrium point 0 we can write

Lo(x) =
1
2
xTM(x)x, with M(0) =

∂2Lo

∂x2
(0). (27)

Now, an input-normal/output-diagonal form can be obtained.

Theorem 6. [Scherpen93] Consider the system (21) on a neighborhood W of 0.
Suppose that 0 is an asymptotically stable equilibrium point, that it is zero-
state observable, that smooth controllability and observability functions Lc(x) and
Lo(x) exist on W , and that (∂2Lc/∂x

2)(0) > 0 and (∂2Lo/∂x
2)(0) > 0 hold.

Furthermore, assume that the number of distinct eigenvalues of M(x) is constant
on W . Then there exists coordinates such that the controllability and observability
functions Lc(x) and Lo(x) satisfy

Lc(x) =
1
2

n∑
i=1

x2
i (28)

Lo(x) =
1
2

n∑
i=1

x2
i τi(x) (29)

where τ1(x) ≥ τ2(x) ≥ . . . ≥ τn(x).

A state-space realization satisfying the conditions (28) and (29) is called an input-
normal form, and the functions τi(x), i = 1, 2, . . . , n are called singular value func-
tions. We refer to [Scherpen93] for the construction of the coordinate transformation
that brings the system in the form of Theorem 6. If a singular value function τi(x) is
larger than τj(x), then the coordinate axis xi plays more important role than the coor-
dinate axis xj does. Thus this realization is similar to the linear input-normal/output-
diagonal realization (15), and it directly yields a tool for model order reduction of
a nonlinear systems. However, a drawback of the above realization is that the the
singular value functions τi(x)’s and consequently, the corresponding realization are
not unique, e.g. [GS01]. For example, if the observability function is given by

Lo(x) =
1
2
(x2

1τ1(x) + x2
2τ2(x)) =

1
2
(2x2

1 + x2
2 + x2

1x
2
2),

with the state-space x = (x1, x2), then the corresponding singular value func-
tions are

τ1(x) = 2 + kx2
2

τ2(x) = 1 + (1 − k)x2
1

with an arbitrary scalar constant k. This example reveals that the singular value func-
tion are not uniquely determined by this characterization. To overcome these prob-
lems, balanced realization based on nonlinear singular value analysis introduced in
Section 2 is investigated in the following section.



262 K. Fujimoto and J.M.A. Scherpen

5 Balanced Realizations Based on Singular Value Analysis
of Hankel Operators

In this section, application of singular value analysis to nonlinear Hankel operators
determines a balanced realization with a direct input-output interpretation whereas
the balanced realization of Theorem 6 is completely determined based on state-space
considerations only. To this end, we consider the Hankel operator H : U → Y as
defined in (23) with U = Lm

2 [0,∞) and Y = Lp
2[0,∞). Then Equation (9) yields

(dH(v))∗ H(v) = λ v, λ ∈ R, v ∈ U. (30)

Since we consider a singular value analysis problem on L2 spaces, we need to find
state trajectories of certain Hamiltonian dynamics, see e.g., [FS05]. In the linear case,
Theorem 3 shows that we only need to solve an eigenvalue problem (17) on a finite
dimensional space X = R

n to obtain the singular values and singular vectors of the
Hankel operator H. Here we provide its nonlinear counterpart as follows.

Theorem 7. [FS05] Consider the Hankel operator defined by Equation (23). Sup-
pose that the operators C† and O exist and are smooth. Suppose moreover that λ ∈ R

and ξ ∈ X satisfy the following equation

∂Lo(ξ)
∂ξ

= λ
∂Lc(ξ)
∂ξ

, λ ∈ R, ξ ∈ X. (31)

Then λ and
v := C†(ξ) (32)

satisfy Equation (9). That is, v defined above is a singular vector of H.

Though the original singular value analysis problem (9) is a nonlinear prob-
lem on an infinite dimensional signal space U = Lm

2 [0,∞), the problem to be
solved in the above theorem is a nonlinear algebraic equation on a finite dimen-
sional space X = R

n which is also related to a nonlinear eigenvalue problem on X ,
see [Fujimoto04].

In the linear case, where Lc(x) and Lo(x) are given by (26), Equation (31) re-
duces to

ξTQ = λ ξTP−1

where P and Q are the controllability and observability Gramians. This equation is
equivalent to (17), i.e., λ and ξ are an eigenvalue and an eigenvector of PQ. Fur-
thermore, Equation (32) characterizes the relationship between a singular vector v of
H and an eigenvector ξ of PQ as in the linear case result. Thus Theorem 7 can be
regarded as a nonlinear counterpart of Theorem 3.

In the linear case, there always exist n independent pairs of eigenvalues and
eigenvectors of PQ. What happens in the nonlinear case? The answer is provided
in the following theorem.
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x2 

x1 

ξ1

ξ2

0

Fig. 3. Configuration of ξ1(s) and ξ2(s) in the case n = 2

Theorem 8. [FS05] Consider the system Σ in (21) and the Hankel operator H in
Equation (23) with X = R

n. Suppose that the Jacobian linearization of the system
has n distinct Hankel singular values. Then Equation (31) has n independent solu-
tion curves ξ = ξi(s), s ∈ R, i = 1, 2, . . . , n intersecting to each other at the origin
and satisfying the condition

‖ξi(s)‖ = |s|.

In the linear case, the solutions of Equation (31) are the lines (orthogonally)
intersecting to each other at the origin. The above theorem shows that instead of
these lines, in the nonlinear case n independent curves x = ξi(s), i = 1, 2, . . . , n
exist. For instance, if the dimension of the state is n = 2, the solution of Equation
(31) is illustrated in Figure 3.

We can relate the solutions ξi(s) to the singular values of the Hankel operator H.
Let vi(s) and σi(s) denote the singular vector and the singular value parameterized
by s corresponding to ξi(s). Then we have

vi(s) := C†(ξi(s))

σi(s) :=
‖H(vi(s))‖L2

‖vi(s)‖L2

=
‖O(ξi(s))‖L2

‖C†(ξi(s))‖L2

=

√
Lo(ξi(s))
Lc(ξi(s))

.

By this equation, we can obtain an explicit expression of the singular values σi(s)’s
of the Hankel operator H. These functions σi(s)’s are called Hankel singular val-
ues. Without loss of generality we assume that the following equation holds for
i = 1, 2, . . . , n in a neighborhood of the origin

min{σi(s), σi(−s)} > max{σi+1(s), σi+1(−s)}. (33)
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As in the linear case, the solution curves ξi(s)’s play the roles of the coordinate
axes of balanced realization. By applying an isometric coordinate transformation
which maps the solution curves ξi(s)’s into the coordinate axes, we obtain a realiza-
tion whose (new) coordinate axes xi are the solution of Equation (31), i.e.,

∂Lo(x)
∂x

∣∣∣∣
x=(0,...,0,xi,0,...,0)

= λ
∂Lc(x)
∂x

∣∣∣∣
x=(0,...,0,xi,0,...,0)

(34)

σi(xi) =

√
Lo(0, . . . , 0, xi, 0, . . . , 0)
Lc(0, . . . , 0, xi, 0, . . . , 0)

. (35)

Equation (35) implies that the new coordinate axes xi, i = 1, . . . , n are the so-
lutions of Equation (31) for Hankel singular value analysis. Therefore the Hankel
norm defined in (18) can be obtained by

‖Σ‖H = sup
u�=0

‖H(u)‖L2

‖u‖L2

= sup
s∈R

max
i

σi(s)

= sup
x1∈R

√
Lo(x1, 0, . . . , 0)
Lc(x1, 0, . . . , 0)

provided the ordering condition (33) holds for all s ∈ R. Furthermore, apply this
coordinate transformation recursively to all lower dimensional subspaces such as
(x1, x2, . . . , xk, 0, . . . , 0), then we can obtain a state-space realization satisfying
Equation (35) and

xi = 0 ⇐⇒ ∂Lo(x)
∂xi

= 0 ⇐⇒ ∂Lc(x)
∂xi

= 0. (36)

This property is crucial for balanced realization and model order reduction. Using
tools from differential topology, e.g. [Milnor65], we can prove that this realization is
diffeomorphic to the following precise input-normal/output-diagonal realization.

Theorem 9. [FS03] Consider the system Σ in (21). Suppose that the assumptions in
Theorem 8 hold. Then the there exists a coordinates in a neighborhood of the origin
such that the system is in input-normal/output-diagonal form satisfying

Lc(x) =
1
2

n∑
i=1

x2
i

Lo(x) =
1
2

n∑
i=1

x2
i σi(xi)2

This realization is much more precise than that in Theorem 6 in the following
senses: (a) The solutions of Equation (31) coincide with the coordinate axes, that is,
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Equation (34) holds. (b) The ratio of the observability function Lo to the controlla-
bility function Lc equals the singular values σi(xi)’s on the coordinate axes, that is
Equation (35) holds. (c) Furthermore, an exact balanced realization can be obtained
by a coordinate transformation

zi = φi(xi) := xi

√
σi(xi) (37)

which is well-defined in a neighborhood of the origin.

Corollary 1. [FS03] The coordinate change (37) transforms the input-normal real-
ization in Theorem 9 into the following form

Lc(z) =
1
2

n∑
i=1

z2
i

σi(zi)

Lo(z) =
1
2

n∑
i=1

z2
i σi(zi).

Since we only use the coordinate transformation (37) preserving the coordinate
axes, the realization obtained here also satisfies the properties (a) and (b) explained
above. The controllability and observability functions can be written as

Lc(z) =
1
2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

P (z)

−1
z

Lo(z) =
1
2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

Q(z)

z

Here P (z) and Q(z) can be regarded as nonlinear counterparts of the controllability
and observability Gramians as observed in Equation (14) with the relation (26) since

P (z) = Q(z) = diag(σ1(z1), σ2(z2), . . . , σn(zn)). (38)

The axes of this realization are uniquely determined. We call this state-space real-
ization a balanced realization of the nonlinear system Σ in Equation (21). As in
the linear case, both the relationship between the input-to-state and state-to-output
behavior and that among the coordinate axes are balanced.

6 Model Order Reduction

An important application of balanced realizations is that it is a tool for model or-
der reduction called balanced truncation. Here, a model order reduction method
preserving the Hankel norm of the original system is proposed. Suppose that the
system (21) is balanced in the sense that it satisfies Equations (35) and (36). Note
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that the realizations in Theorem 9 and Corollary 1 satisfy these conditions. Suppose
moreover that

min{σk(s), σk(−s)} ) max{σk+1(s), σk+1(−s)}

holds with a certain k (1 ≤ k < n). Divide the state into two vectors x = (xa, xb)

xa := (x1, . . . , xk) ∈ R
k

xb := (xk+1, . . . , xn) ∈ R
n−k,

and the vector field into two vector fields accordingly

f(x) =
(
fa(x)
f b(x)

)
g(x) =

(
ga(x)
gb(x)

)
,

and truncate the state by substituting xb = 0. Then we obtain a k-dimensional state-
space model Σa with the state xa (with a (n − k)-dimensional residual model Σb

with the state xb).

Σa :
{
ẋa = fa(xa, 0) + ga(xa, 0)ua

ya = h(xa, 0)
(39)

Σb :
{
ẋb = f b(0, xb) + gb(0, xb)ub

yb = h(0, xb)
(40)

This procedure is called balanced truncation. The obtained reduced order models
have preserved the following properties.

Theorem 10. [FS01, FS06] Suppose that the system Σ satisfies Equations (35) and
(36) and apply the balanced truncation procedure explained above. Then the control-
lability and observability functions of the reduced order models Σa and Σb denoted
by La

c , Lb
c, La

o and Lb
o, respectively, satisfy the following equations

La
c (xa) = Lc(xa, 0), La

o(xa) = Lo(xa, 0)
Lb

c(x
b) = Lc(0, xb), Lb

o(x
b) = Lo(0, xb)

which implies

σa
i (xa

i ) = σi(xa
i ), i = 1, 2, . . . , k

σb
i (x

b
i ) = σi+k(xb

i ), i = 1, 2, . . . , n− k

with the singular values σa’s of the system Σa and the singular values σb of the
system Σb. In particular, if σ1 is defined globally, then

‖Σa‖H = ‖Σ‖H . (41)
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Theorem 10 states that the important characteristics of the original system such
as represented by the controllability and observability functions and Hankel singular
values are preserved. Moreover, by Theorem 5, this implies that the controllabil-
ity, observability, minimality and the gain property is preserved under the model
reduction. These preservation properties hold for truncation of any realization sat-
isfying the conditions (35) and (36), such as the realizations in Theorem 9 and
Corollary 1 [FS01]. Furthermore, concerning the stability, (global) Lyapunov sta-
bility and local asymptotic stability are preserved with this procedure as well. Note
that this theorem is a natural nonlinear counterpart of Theorem 2 and Equation (19).
However, a nonlinear counterpart of the error bound of the reduced order model as
in (20) has not been found yet.

7 Numerical Example

In this section, we apply the proposed model order reduction procedure to a double
pendulum (an underactuated two degrees of freedom robot manipulator) as depicted
in Figure 4.

Here mi denotes the mass located at the end of the i-th link, li denotes the length
of the i-th link, µi denotes the friction coefficient of the i-th link, and xi denotes
the angle of the i-th link. We select the physical parameters as l1 = l2 = 1, m1 =
m2 = 1, µ1 = µ2 = 1, g0 = 9.8 with g0 the gravity coefficient. The dynamics of
this system can be described by an input-affine nonlinear system model (21) with 4
dimensional state-space

x = (x1, x2, x3, x4) := (x1, x2, ẋ1, ẋ2). (42)

The input u denotes the torque applied to the first link at the first joint and the output
y denotes the horizontal and the vertical coordinates of the position of the mass
m2. The potential energy V (x) and the kinetic energy T (x) for this system are de-
scribed by

x1 

x2 

m1

m2

l2

l1

m1

m2

u

Fig. 4. The double pendulum
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V (x) = −m1g0l1 cosx1 −m2g0l1 cosx1 −m2g0l2 cos(x1 + x2)

T (x) =
1
2

(ẋ1, ẋ2)M(x)
(
ẋ1

ẋ2

)
M(x) =(

m1l
2
1 + m2l

2
1 + m2l

2
2 + 2m2l1l2 cos x2 m2l

2
2 + m2l1l2 cos x2

m2l
2
2 + m2l1l2 cos x2 m2l

2
2

)
(43)

where M(x) denotes the inertia matrix. Then the dynamics of this system is obtained
by the Lagrange’s method as follows

d
dt

∂L(x)
∂(ẋ1, ẋ2)

T

− ∂L(x)
∂(x1, x2)

T

=
(
u− µ1ẋ1

−µ2ẋ2

)
(44)

with the Lagrangian L(x) := T (x)−V (x). This equation reduces to the system (21)
with

f(x) =

⎛⎜⎜⎝
x3

x4

M−1

(
∂(T−V )
∂(x1,x2)

T
− Ṁ

(
ẋ1

ẋ2

)
−
(
µ1ẋ1

µ2ẋ2

))
⎞⎟⎟⎠

g(x) =

⎛⎜⎜⎝
0
0

M−1

(
1
0

)
⎞⎟⎟⎠

h(x) =
(

l1 sinx1 + l2 sin(x1 + x2)
l1(1 − cosx1) + l2(1 − cos(x1 + x2))

)
.

See [FT06] for the details of the model.
For computing Lo and Lc, we use the method based on Taylor series expansion

proposed in [Lukes69]. Then we need to solve the nonlinear algebraic equation (31).
Although it is much easier to be solved compared with the original singular value
analysis problem in (30), it is still difficult to obtain a closed form solution. Again
using Taylor series expansion we can prove that the computation of Equation (31)
reduces to solving linear algebraic equations recursively. Applying this procedure
and calculating the balancing coordinate transformation up to the 4-th order terms of
the Taylor series expansion, results in the following Hankel singular value functions.

σ1(x1)2 = 1.98 × 10−1 + 4.14 × 10−4x2
1 + o(|x1|3)

σ2(x2)2 = 1.72 × 10−1 + 3.28 × 10−4x2
2 + o(|x2|3)

σ3(x3)2 = 5.83 × 10−5 + 1.51 × 10−4x2
3 + o(|x3|3)

σ4(x4)2 = 9.37 × 10−6 + 9.22 × 10−6x2
4 + o(|x4|3)

These functions are depicted in Figure 5 where the solid line denotes σ1, the dotted
line denotes σ2, the dashed line denotes σ3 and the dashed and dotted line denotes σ4.
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Fig. 5. Hankel singular value functions σi(s), i = 1, . . . , 4

From this figure, we conclude that in a neighborhood of 0 σ2(x2) ) σ3(x3), and
thus that an appropriate dimension of the reduced order model is 2. We can now
apply the balanced truncation procedure as presented in the previous section.

We have executed some simulations of the original and reduced models to
evaluate the effectiveness of the proposed model order reduction method. Here the
time responses for impulsive inputs are depicted in the figures, i.e., Figure 6 de-
scribes the response of the horizontal movement and Figure 7 describes the response
of the vertical movement. In the figures, the solid line denotes the response of the
original system, the dashed line denotes the response of the linearized reduced or-
der model, and the dashed/dotted line denotes the response of the nonlinear reduced
order model.

In Figure 6, all trajectories are identical which indicates that both linear and non-
linear reduced order models can approximate the behavior of the original model well.
However, in Figure 7, one can observe that the trajectory of the linear reduced order
model is quite different from the original whereas the trajectory of the nonlinear re-
duced order model is almost identical with that of the original system. This is due
to the fact that the linearization of the vertical displacement of the mass m2 is 0
since it consists of a cosine function of the state. These simulations demonstrate the
effectiveness of our nonlinear balanced truncation method. It is noted that the pro-
posed computation algorithm is currently only applicable to systems whose size is
relatively small. A big progress on computation of nonlinear balanced realization is
required to make it be applicable to real-world large scale systems.
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8 Conclusion

In this paper, we have presented an overview of singular value analysis of nonlin-
ear operators and its application to balanced realizations and model order reduction
methods for nonlinear systems. Recent development in this area of research provides
a precise and complete basis for model oder reduction of nonlinear dynamical sys-
tems. A reduced order model derived by this technique preserves many important
properties of the original system such as controllability, observability, stability and
the Hankel norm. Compared with the theoretical results, however, computational de-
velopments are still in their infancy, meaning that large scale nonlinear systems are
still difficult to handle. Future research should thus include a strong focus on the
computational algorithms for making nonlinear balanced truncation a useful tool in
large scale applications.
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