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Abstract. Next Generation Sequencing (NGS) technologies are capa-
ble of reading millions of short DNA sequences both quickly and cheaply.
While these technologies are already being used for resequencing individ-
uals once a reference genome exists, it has not been shown if it is possible
to use them for ab initio genome assembly. In this paper, we give a novel
network flow-based algorithm that, by taking advantage of the high cov-
erage provided by NGS, accurately estimates the copy counts of repeats
in a genome. We also give a second algorithm that combines the pre-
dicted copy-counts with mate-pair data in order to assemble the reads
into contigs. We run our algorithms on simulated read data from E. Coli
and predict copy-counts with extremely high accuracy, while assembling
long contigs.

1 Introduction

The problem of genome assembly has perhaps been more controversial than any
other topic within computational biology, leading to alternative approaches to
genome sequencing and the creation of two human genomes. Initially, a BAC-
by-BAC approach to genome sequencing was favored for constructing longer
genomes. While this approach was much more expensive than the alternate
whole genome shotgun method, it was considered unlikely that ab initio whole
genome shotgun assembly was feasible. The development of effective shotgun
assembly algorithms capable of assembling a mammalian genome, such as the
Celera assembler[16] and Arachne[3], has revolutionized sequence assembly, al-
lowing large genomes to be sequenced much cheaper than was previously thought
possible. Currently, the field of genome sequencing is undergoing another ma-
jor change, with the development of Next Generation Sequencing (NGS) tech-
nologies, such as Solexa, 454 and AB SOLiD. While the new technologies can
currently yield reads only 25-200 basepairs long, they dramatically reduce the
cost of sequencing per nucleotide and significantly speed up data acquisition,
with nearly 1 billion nucleotides sequenced in one run (2-3 days) on a Solexa
machine. While the novel technologies have already made great improvements
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to the problem of resequencing (the determination of the genomes of various
individuals once the initial, reference, genome has been built), it has not been
shown whether very short reads can be used for ab initio genome sequencing –
the determination of a completely unknown genome.

1.1 Background

One of the original approaches to genome assembly was to find the shortest
common superstring of the reads, that is, to assemble a genome with minimal
length. The problem of modeling genome assembly in this way is that most
genomes have repeats – multiple identical, or nearly identical, stretches of DNA
– while the shortest solution would include each of these repeats only once in the
assembled genome. This problem is known as over-collapsing the repeats. One
way of addressing this problem is to build representative strings or structures
for each repeat and allow the assembly algorithm to use these multiple times.
This intuition led to the development of graph-theoretic methods for sequence
assembly, where the edges of the graph “spell” some string, and by walking the
edges of the graph it is possible to recreate the genome.

In their EULER assembler[19], Pevzner, Tang and Waterman had the insight
that by dividing the reads into shorter k-long stretches (called k-mers), all of
the instances of a repeat collapse into a single set of vertices. They represent
each read as a walk on a de Bruijn graph, and search for a superwalk that
contains all the reads. This approach was later expanded to use A-Bruijn graphs
[18], where the initial subdivision into k-mers is not necessary. Myers introduced
an alternative model of sequence assembly, using a string graph [15]. Instead of
dividing the reads into k-mers, the algorithm starts by building an overlap graph
– a graph where vertices correspond to reads and edges correspond to overlaps.
Through the process of removing redundant edges, he is able to classify all edges
as either unique, required or optional, and the goal of the assembly is to find the
shortest walk which respects all the edge constraints.

Because walks on graphs can be elegantly defined using the concept of bal-
ance around vertices (each vertex must be entered and left an equal number of
times), network flow methods have been suggested for genome assembly. Though
network flow alone is not able to resolve the problem of long repeats, it is able
to estimate the number of times a read appears in the genome (its copy-count).
In the de Bruijn graph formulation, Pevzner and Tang [17] formulate the prob-
lem of determining copy-counts as the minimum cost circulation problem. Myers
suggests a similar method to determine the copy-counts in the context of a string
graph [15]. However, he augments Pevzner and Tang’s approach by placing con-
straints on the copy-counts prior to solving the flow. As in the Celera assembler,
Myers determines whether a contig (represented by an edge) is present uniquely
in the genome by modeling the reads on a contig as a Poisson arrival process and
calculating the probability that the arrival rate for an edge is twice as high as for
the genome as a whole. If this probability is low (p < 10−6), the edge (contig) is
labeled unique, and the flow through this edge is set to be one. Another kind of
constraint is placed on every edge that has an interior vertex. Since it must be
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traversed at least once if the read corresponding to the interior vertex is to take
part in the reconstruction of the genome, the flow is constrained to be at least
one on this edge.

Network flow techniques alone are insufficient to assemble a genome in the
presence of long repeats which are not spanned by any single read. One of the
key pieces that has allowed for whole genome shotgun assembly of mammalian
genomes are matepairs – pairs of reads which come from opposite strands, at
an approximately known distance in the source genome. Matepairs can be gen-
erated by taking a piece of DNA of a known size (called an insert) and gen-
erating reads from its two ends. Matepairs allow for the spanning of repeats,
allowing the assembler to join together long genomic regions even in the pres-
ence of a repeat which is not spanned by any read. The typical approach is to
build initial contigs (chains of edges in the overlap graph), and then attempt
to join them using information from the matepairs. An alternative approach
was demonstrated by Pevzner and Tang in the double-barreled version of the
EULER program (EULER-DB[17]). They search for all paths in the de Bruijn
graph connecting the two reads of a matepair. If there exists only one with a
length approximately equal to the length of the insert, it is replaced by a direct
edge. This approach has the disadvantage that it requires an algorithm to find
all paths of (approximately) a given length between two nodes, which is a dif-
ficult computational problem, and scales poorly with the size of the de Bruijn
graph.

Sequence assembly using NGS data is a rapidly developing area. Several meth-
ods have been recently suggested for ab initio sequencing using short reads; many
of these appeared after this paper was submitted. We briefly describe these here.
SSAKE [20] is an assembler that uses a simple algorithm for building contigs
by greedily extending existing overlaps. VCAKE [12] extended SSAKE to work
with error-prone, rather than perfect, data. Another approach based on elon-
gating existing contigs is the SHARCGS assembler [6]. The Shorty assembler
[11] uses a de Bruijn graph approach in combination with matepairs to assemble
a small bacteria – the 600 Kb Mycoplasma genitalium. Chaisson and Pevzner
[5] have adapted EULER to use short reads. Their approach shows high accu-
racy and contig sizes for the slightly longer (120 bp) reads generated by the 454
sequencers. They also use matepair information in a manner identical to the
EULER-DB algorithm. Another promising, though yet unpublished, tool is the
Velvet assembler [21].

All of the previous work on genome assembly shares a major assumption: the
goal of the assembly problem is to minimize the length of the genome. While
parsimony is usually used to justify this assumption, it is well-known that repeats
are ubiquitous in eukaryotic genomes, and even bacterial genomes have sections
that are present multiple times. Because of over-collapsing, any repeating region
of length longer than the read length may be underrepresented in the assembled
genome. For read lengths of 25 nucleotides, which is what we study in this paper,
the number of such repeats is very large. We therefore propose an alternate
optimization criteria, as we describe below.
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1.2 Contributions

In this paper, we introduce two new methods of genome assembly that are tai-
lored specifically to short read data. First, we believe that the overall goal of
an assembler should be not to minimize the length of the genome, but to maxi-
mize the likelihood that the genome was the source of the various reads. Unlike
the case of sequencing by hybridization, where the only available information
is whether a certain k-mer is present in the genome, whole genome shotgun se-
quencing samples the genome, and hence k-mers that are present more often
in the genome are more likely to be sampled. For an individual read, however,
Sanger style sequencing does not have sufficient coverage to take full advantage
of these frequencies. The greatest advantage that the NGS technologies give is
high coverage – on a single run a bacterial genome can get as much as 250x cov-
erage. This number makes it possible to not only determine whether a particular
read is present in a genome, but also to statistically estimate its copy-count. We
formulate the problem of genome assembly as maximizing the likelihood of the
observed read frequencies, rather than minimizing the length of the genome.
This problem can be formulated as a minimum cost bidirected flow (biflow)
problem with convex costs, and we show that it can be effectively solved with a
generic flow solver for the case of bacterial genomes, achieving copy-counts that
are accurate more than 99.99% of the time.

Second, to improve the lengths of the assembled contigs, we introduce a novel
technique for taking advantage of matepair information. Our method is based
on the simple Dijkstra’s shortest path algorithm. In contrast to EULER-DB, we
do not search for all the paths between mated reads, but rather, we search only
for the existence of short paths between some pairs of reads. Because the paths
we search for are bounded by a small length that is independent of the genome
size (the maximum variation in the insert size), our algorithm scales extremely
well for large genomes and high coverage.

2 Methods

In Sections 2.1 through 2.4, we present the steps of our copy-count prediction
algorithm. In Section 2.5, we give our algorithm for repeat resolution using
matepairs.

2.1 Building the Transitively Reduced Bidirected Overlap Graph

Our algorithm models the double-stranded nature of DNA during genome as-
sembly by using the elegant bidirected graph framework. Bidirected graphs are
a generalization of directed graphs that were introduced by Edmonds in [7]. A
bidirected graph is different from a directed graph in that the edges have orien-
tations on each of the ends, rather than on the whole edge. This leads to three
types of edges:

– edges with one arrow pointing into its vertex and the other pointing out of
it vertex.
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– edges with both arrows pointing out of their respective vertices.
– edges with both arrows pointing into their respective vertices.

A walk in a bidirected graph is defined as a a sequence x1, e1, . . . , ek−1, xk where
ei is an edge incident to vertices xi and xi+1, and for all 2 ≤ i ≤ k − 1, ei−1
and ei have opposite orientations at xi. Informally, if a walk enters a node on an
in-edge, then it must exit on an out-edge, and if it enters an on out-edge, then
it must exist and an in-edge (see Figure 1A for an example).

Bidirected overlap graphs were first introduced by Kececiouglu [13]. An over-
lap graph is a graph where each vertex corresponds to a read and each edge cor-
responds to an overlap between reads. In a bidirected overlap graph, each vertex
corresponds to a double-stranded read (the read and its reverse complement),
and each edge corresponds to one of the three ways that double-stranded reads
can overlap each other. Any walk can be traversed in either of two directions, so
just like a walk in a directed overlap graph spells a string that contains each of the
reads, a walk in a bidirected overlap graph spells a double-stranded string that
contains each of the double-stranded reads. Thus, the original double-stranded
genome corresponds to a walk in the bidirected overlap graph that visits every
vertex at least once (assuming error-free reads and complete coverage). For a
more extended discussion of bidirected graphs in general and bidirected overlap
graphs in particular, we refer the reader to [14].

The first step of our assembly algorithm is to build a bidirected overlap graph.
We add an edge between two reads if they overlap by at least omin characters,
where omin is a parameter to our algorithm. We then perform transitive edge
reduction, where we remove any overlap that is spelled by two shorter overlaps.
This procedure is identical to the one described in [15]. While the set of possible
double-stranded strings spelled by the graph remains unchanged, the reduction
drastically reduces the number of edges. The result is what we refer to as the
transitively reduced bidirected overlap graph.

2.2 Convex Min-Cost Biflow

Given the (transitively reduced bidirected) overlap graph as constructed above,
we now describe how to use convex min-cost biflow to estimate the copy-counts
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Fig. 1. A. This is an example of a bidirected graph. The sequence
W,A, X, B, Y, C, Y, B, X, D, Z is a walk, while W, A, X, D, Z is not. B. The cor-
responding edge incidence matrix, with the zero entries ommited. C. This is the
associated monotonized directed graph.
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of each read. The copy-count of a read is the number of times it appears in the
original genome.

Let G = (V, E) be a bidirected graph. Let l : E → N and u : E → N be lower
and upper bounds associated with the edges. The function f : E → N is called a
flow if for every edge, l(e) ≤ f(e) ≤ u(e), and for every vertex, the flow along the
in-edges is the same as the flow along the out-edges. Given a bidirected graph
with lower and upper bounds on the edges and a cost ce ∈ R associated with
each edge, the (linear) min-cost biflow problem is to find a flow that minimizes∑

cef(e). We discuss algorithms for this problem in Section 2.4.
We take advantage of two additional variations on the min-cost biflow prob-

lem. The first allows for having lower and upper bounds for the flow going
through each vertex, as well as adding a cost function on the vertices as well
as the edges. Such a problem can be reduced to the min-cost biflow problem as
follows. Take every vertex v and split it into two vertices v+ and v−. Reconnect
any edge that was pointing into v to be pointing into v−. Similarly, reconnect
any edge that was pointing out of v to be pointing out of v+. As a final step,
add an edge from v− to v+. Now, assign any lower/upper bounds, as well as
any costs, associated with v to the edge from v− to v+. After repeating this
procedure for every vertex, a flow on the transformed graph corresponds to a
flow on the original graph, and vice-versa. This transformation is based on a
similar transformation on directed graphs [1].

The second equivalent variation is called the convex min-cost biflow problem.
Here, the cost ce associated with an edge e is no longer a real number but
rather a convex function ce : N → R, and the goal is to minimize

∑
e ce(f(e)).

Such a minimization function is called separable convex because it is a sum of
convex functions on each of the variables, independently. In the directed case,
this problem is polynomially equivalent to the linear min-cost flow problem by
modeling each convex function with piecewise-linear approximations. The same
reduction holds in the bidirected case.

Before defining our flow problem, we make a modification to the overlap graph
by adding a supersource and supersink to the graph. This is the standard way
to convert from a flow to a circulation problem.For a thorough discussion of this
method, as well as for descriptions and proofs of the above reductions, we refer
the reader to a text on network flow, e.g. [1].

In our assembly algorithm, we define a convex min-cost biflow problem on the
modified transitively reduced bidirected overlap graph, with bounds and costs
on both the edges and the vertices. Each vertex has a lower bound of 1 since it
represents a read that must be present in the genome at least once. All other
lower bounds are 0 and all upper bounds are infinity. We specify convex costs for
the vertices, which we describe in the next subsection, and add prohibitively large
costs to the edges from/to the supersource/sink so that their usage is minimized.
Next, we solve for the flow (which we describe in detail in Section 2.4). Since any
flow can be decomposed into a collection of walks, our flow represents a (non-
contiguous) assembly of the genome, and the flow going through each vertex
represents the number of time the read is present in the assembly.
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2.3 Maximizing the Global Read-Count Likelihood

Let G be a circular genome of length N(G), and let gi denote the number of times
the k-mer i appears in G. Probabilistically, the dataset of n reads corresponds to
a set of outcomes from n independent trials. In each trial, a position is uniformly
sampled from G and the outcome of the trial is the k-mer beginning at that
position. For a given i, the probability that the outcome of a single trial is i
is simply gi

N(G) . Let the random variable Xi denote the number of trials whose
outcome is i. There are 4k such variables, and when considered independently
of each other, they each follow the binomial distribution. When taken together,
their joint distribution is exactly the multinomial distribution, given by

P[X1 = x1, X2 = x2, . . . , and X4k = x4k ] =
n!

∏
xi

∏

i

(
gi

N(G)

)xi

For the assembly problem, G is not known but the results of the n trials are
known. Thus, we can consider the likelihood of the parameters of the distribution
(gi) given the outcome of the trials (xi), which we call the global read-count
likelihood:

L[g1, . . . , g4k |x1, . . . , x4k ] =
n!

∏
xi

∏ (
gi

N(G)

)xi

In our approach, we attempt to assemble the genome with the maximum
global read-count likelihood. Equivalently, we minimize the negative log of this
likelihood. Within the biflow framework, gi corresponds to the flow through a
vertex (k-mer) in the overlap graph, and we want to find a flow that minimizes
− logL. In order to formulate this as a convex min-cost biflow problem, we
need − log L to be a separable convex function. That is, we need to find convex
functions ci such that − logL =

∑
ci(gi). Unfortunately, since the multinomial

distribution has the constraint that N(G) =
∑

gi, this is not possible.
However, as the number of trials goes to infinity, the Xi random variables

become independent. Because the number of trials (sampled k-mers) is typically
large, we can approximate the multinomial distribution as the product of the
individual binomial distributions of each Xi. Since in the binomial approximation
the length of the genome N(G) is a constant that is independent of each gi,
we can replace it by N , which is the length of the actual genome from which
the reads were sampled. The approximate length of the actual genome can be
ascertained through one of a number of biological experiments, or through an
Expectation-Maximization type approach. For our experiments, we assume that
the genome size is known.

The resulting approximation for L is thus

L[g1, . . . , g4k |x1, . . . , x4k ] ≈
∏

P[Xi = xi] =
∏ (

n

xi

)( gi

N

)xi
(
1 − gi

N

)n−xi

Now we can write − log L = K ·
∑

ci(gi), where K is some positive constant
independent of all gi, and

ci(gi) = −(xi log gi) − (n − xi) log(N − gi)
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We let ci be the convex cost functions for the vertices of our min-cost biflow
problem, and reduce it to a linear min-cost biflow problem by approximating the
convex function, as described in the previous section. We will now describe our
approach for solving the resulting linear min-cost biflow.

2.4 Efficient Algorithm for (Linear) Min-Cost Biflow

The min-cost biflow problem was formulated by Edmonds, who showed that
it is equivalent to perfect b-matchings [7]. Edmonds’ work was later extended
by Gabow [8], who gave the fastest to-date algorithm for sparse graphs, which
runs in time O(|V |2 log2(|V |)) in the worst case. Unfortunately, no efficient im-
plementation of this or similar algorithms exists, and the worst-case running
time is prohibitive for a large graph, such as the overlap graph of a genome. In
this section, we give a much faster 2-approximation algorithm that allows us to
efficiently solve min-cost biflow problems with optimal results in most cases.

One of the easiest ways that directed network flow for a graph G(V, E) can be
solved is through a reduction to a linear program (LP). The reduction is based
on building the |V | × |E| edge incidence matrix I|V ||E| for the graph. Every
column of I corresponds to e ∈ E, and every row corresponds to v ∈ V . The
cell Im,n is 1 if the edge n is an in-edge of vertex m, it is −1 if it is an out-edge
from m, and 0 if it is not incident on m. The edge incidence matrix of a graph
can be viewed as the constraint matrix for an LP where the optimal LP solution
corresponds to the minimum flow in the graph.

Incidence matrices based on directed graphs are Totally Unimodular (TU),
leading to LPs that always have integral solutions. Because in bidirected graphs
an edge may be an in-edge or an out-edge on both of its ends, the resulting
incidence matrix may have two 1s (or two −1s) in a column. It is also possible to
have a 2 or a −2 if it is the only non-zero entry in its column (this corresponds
to a loop). Figure 1b gives an example. The resulting matrices are known as
binet matrices [2], and have the property that the optimal solution of the LP is
guaranteed to be half-integral (a multiple of 0.5).

Our algorithm is based on the recent result by Hochbaum [10], who demon-
strates a reduction from a binet matrix to a TU matrix by monotonization:
doubling the number of columns and rows. Solving the LP defined by the new
TU matrix is equivalent to solving it in the original binet matrix. However the
new TU matrix corresponds to a directed graph, and one can find the min-cost
flow in directed graphs using algorithms that are much faster than general LP
solvers. We now formulate the monotonization procedure of Hochbaum in terms
of the underlying bidirected graph.

For every vertex v of the original bidirected graph we introduce two vertices v1
and v2 in the new directed graph. For every in-edge of v we create two directed
“twin” edges, one of which points into the v1 vertex and the other points out of
the v2 vertex. For all out-edges of v, we again create twin edges, one of which
points out of v1 and the other into v2. An example of the transformation is
given in Figure 1c. We transfer all of the bounds and costs on the original edges
to the respective twin edges, and after finding the min-cost flow in the directed
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Fig. 2. A, B, and C demonstrate the three cases of graph simplification described in
Section 2.5. Case A is a chain, case B a loop attached to a chain, and case C is a split
vertex. A join vertex case is symmetrical and is not shown. The three simplifications
are shown to the right. In all cases, the new graph can ”spell” the exact same strings
as the initial graph. D. This is a conflict node. By iterative application of cases A, B
and C, we generate a graph where all remaining vertices are of type D.

graph we transfer the results to the original bidirected graph by adding the flows
through the pairs of twin edges and dividing by two. Because the procedure
above is equivalent to the monotonization procedure of Hochbaum, it has the
same provable properties, e.g. that the optimal result is half integral and that
the monotonized flow is at worst a 2-approximation to the optimal integral flow.
This reduction allows us to convert our bidirected flow problem into a directed
flow problem, for which many efficient algorithms have been developed, e.g. the
network simplex algorithm. We are also able to take advantage of off-the-shelf
packages for solving network flow within our implementation.

2.5 From Flow to Contigs

At this point of our algorithm, we have found a flow on the overlap graph, as
described above. In general, any flow can be decomposed into a collection of
walks, which, in our case, correspond to the assembled contigs. Since there is an
exponential number of decompositions possible, we use a heuristic to find one
where the length of the walks (contigs) is large and the accuracy of the contigs
is high.

Graph simplification. In many cases, it can be inferred that certain walks
will appear as a subwalk in any decomposition. First, we remove all edges with
flow zero from the overlap graph. Next, by applying the following the three rules
to every vertex v, we can greatly simplify the overlap graph (see Figure 2):

Case A. There is exactly one edge going into v and exactly one edge going out
of v. The flow on both edges is the same. We can merge the two edges and
remove v from the graph.

Case B. There are exactly two edges going out of v and two edges going into
v, and exactly one of the edges going out of v is also going into v (a loop).
The flow on all three edges is the same. We can merge the three edges and
remove v from the graph.
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Case C. There is exactly one edge going into v and m > 1 edges going out of
v (v is a split vertex), or there is exactly one edge going out of v and m > 1
edges going into v (v is a join vertex). The flow on the in(out) edge is equal
to the sum of the flows on the out(in) edge. We can split the in(out) edge
into m copies, merge each one with one of the out(in) edges, and remove v
from the graph.

We call a vertex v removable if it falls into one of the above cases, and a con-
flict vertex otherwise. For every removable vertex in the graph, we perform
one of the three operations above. It can be shown that after at most 2|V | op-
erations, all the remaining vertices are conflict vertices. In practice, this process
reduced the number of edges in the overlap graph by over 105 fold.

Conflict node resolution algorithm. Once the graph contains only conflict
vertices, we attempt to resolve each in turn by finding pairs of edges that are in-
cident on the vertex with opposite orientations and are supported by matepairs.
For each vertex we do a breadth first search in both the in and out directions,
recording all of the reads that are within a specified distance threshold. We skip
any read that was initially on an edge that had been split (during case C of the
previous step), as it no longer has a unique position in the overlap graph. We now
have two sets of vertices, L and R, corresponding to reads that were observed
on the in side of a vertex and out side of a vertex respectively (see Figure 3).
The high coverage provided for by NGS methods allows us to concentrate our
analysis on reads only a short distance away from the conflict vertex. For each
of the reads found, we locate their matepairs in the graph (treating the forward
and reverse matepairs separately) and run an all-pairs bounded shortest path
algorithm from all the mates of L to all the mates of R. Because the overlap
graph is sparse, the most efficient algorithm for all-pairs shortest path is to run
Dijkstra’s algorithm from every vertex. Furthermore, we terminate Dijkstra’s
algorithm when all vertices within the bounding distance have been explored:
if we expect that the true size of the insert will vary by at most E from the
expected size, than the bounding distance is 2E.

To resolve conflict vertices we implement a simple greedy matching algorithm.
All of the edges incident on a particular vertex are separated into two classes
depending on their direction at the node – in or out. For every pair of (in, out)
edges, we compute the number of mates that are within the bounding distance
from each other. If a significant fraction of one edge’s matepairs are within this
distance from the matepairs of another edge on the opposite side (a matching
condition), the two edges are joined into a common edge. We handle any half-
integral edges by allowing either of the edges to get matched to the integral edge
incident to the conflict vertex. The process is repeated until no more pairs of
edges that satisfy the matching condition are found at the current vertex.

After every conflict vertex has been considered, the graph simplification steps
described in the previous section are run again, as new removable vertices may
be created during the matching process. The matching procedure is then iterated
for a set number of steps, or until convergence.
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2E

Fig. 3. Resolution of a conflict vertex: we find all reads within a pre-specified distance
from the conflict vertex, and locate their mates on the graph. Because the reads are
close together, if they spell the same path we expect their mates to also be close
together. If the distance between the mates is less than twice the error of the insert
size (2E) we consider the two mates to support each other. In the example the top left
edge will be joined with the top right, and bottom left with the bottom right.

3 Results

We implemented a prototype assembly algorithm for short reads using the algo-
rithms described above. We have experimented with both CPLEX and CS2 [9]
for solving network flow, and found that while the running times are compara-
ble, CS2 uses less memory; consequently we used it for all of the experiments
below. To simplify the implementation, we model the convex cost function using
a three-piece linear approximation (see [1] for details). The overall running time
of our algorithm is approximately 1 hour on a single machine.

3.1 Description of the Dataset

Because we were unable to obtain any real data from the Solexa system, we
generated synthetic read data from the E. coli genome, which has a total length
of 4.6 megabytes. We uniformly sampled the genome to find the location of the
first read of a matepair, and then sampled the second read at a distance within
10% of the expected insert size, also uniformly. The reads generated were always
of length 25 and error-free (the importance of the assumptions of error-free
reads and uniform coverage is elaborated upon in the Discussion). The coverage
rate used was varied from 50 to 100X, though we also tried one test with 200x
coverage (a single run of the Solexa system generates 1Gb of data, or greater
than 200x coverage for E. coli). The minimum overlap length (omin) was varied
from 17 to 21. The exact datasets used are summarized in Table 1.

3.2 Read Count Results

To evaluate the accuracy of our maximum likelihood flow solving algorithm
we compared the flow going through every vertex in the overlap graph to the
number of times that the corresponding read appears in the original genome. The
results are presented in Table 1. For the vast majority of the reads we correctly
predicted their copy count in the genome, with the fraction of misestimated
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Table 1. The first four columns describe the datasets used in the evaluation of the
assembly algorithm. The insert size was simulated with a uniform error of up to 10%.
The right side shows the deviations of the predicted read copy-counts from their true
values. While half-integral flows were observed with some parameter settings (too low
coverage, too low omin), the flow was always integral over all runs with the parameters
shown.

Dataset Coverage Insert Size omin -2 -1 0 +1 +2 +3

50x3k 50 3000 17 4 397 3937038 170 18 6
75x3k 75 3000 19 0 9 4324061 28 3 0
75x6k 75 6000 19 0 7 4324665 22 0 0
100x3k 100 3000 21 0 2 4466328 6 0 0
100x6k 100 6000 21 0 2 4466636 23 0 0
200x6k 200 6000 19 0 0 4547426 4 0 0

Table 2. Evaluation of the assembly quality for the various datasets. Length is the
N50/N90 score, number is the number of contigs longer than the N50/N90 length. The
errors are computed as the total length of errors over the total size of all contigs.

N50 Contig N90 Contig

Data set length(kb) number 1 error per length(kb) number 1 error per Total contigs

50x3k 23.4 53 165k 7.1 189 148k 803
75x3k 25.8 48 177k 7.8 174 154k 731
75x6k 25.1 49 93k 7.9 176 96k 732
100x3k 27.9 48 178k 7.9 171 159k 700
100x6k 25.8 49 106k 7.9 174 109k 736
200x6k 25.8 48 154k 8.0 174 158k 727

counts varying between 10−4 and 10−6, depending on the coverage. When our
algorithm mispredicted the number of occurrences, the error was typically small
compared to the true frequency of the read. We also note that the results show
only slight improvement past 75x coverage.

3.3 Overall Assembly Results

In order to estimate the quality of the assembly resulting from matepair infor-
mation, we take every edge of the graph after the conflict node resolution and
generate the sequence which it spells. As per convention, we compute the N50
and N90 scores as the length of the shortest contig such that 50 and 90 percent
of the original genome is in longer contigs, and the number of such contigs. To
check for the presence of errors in the assembly, each contig was aligned to the
reference E. coli genome. The number of errors in a contig was computed as the
number of local alignments that is required to completely tile it minus one. The
results are summarized in Table 2.

Overall the length of the contigs which contained 50 and 90 percent of the
genome varied between 23-28k and 7-8k, respectively, while the error rate was
about one error every 100-180k in the longer N50 contigs, and one error every
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100-160k for the N90 contigs. These errors illustrate a weakness of a greedy
matching algorithm, which may be mislead by two well-matched edges that con-
tradict many other good matchings. While the contig sizes are short by the
standard of whole genome assembly with Sanger reads, they compare favourably
with the results that Chaisson et al. [4] obtained on Neisseria meningitis (genome
length 2.2Mb) with 70 nucleotide reads, albeit without matepairs: in their exper-
iments they required 344 contigs to achieve 95% coverage of the genome, while
our algorithm required 206 contigs to cover 95% of E. coli, a genome which is
twice as long as N. meningitis. These results demonstrate the power of matepair
information in resolving the proper layout of the genome, even in the case of
very short reads.

4 Discussion

In this paper we explore the potential for ab initio whole genome shotgun se-
quencing with very short, mated reads, similar to those that are produced by
novel sequencing technologies such as Solexa or the AB SOLiD system. We
demonstrate that 25 nucleotide reads, while a significant challenge to assem-
ble, can in fact be used to construct contigs of a reasonable length by using a
combination of a network flow algorithm that is able to accurately capture the
frequencies at which the various reads occur in the genome and the further use
of matepairs to resolve the paths in the resulting graph. While the current algo-
rithm does not yet allow for the sequencing of an unknown bacterial genome us-
ing NGS reads, it does indicate that ab initio whole genome shotgun sequencing
is indeed possible with read data even as short as 25 nucleotides, in the presence
of matepair information. Two potential avenues towards this goal may include
the use of matepair information to connect the various contigs into supercontigs,
and improvements to the algorithm used to resolve the conflict nodes. At the
same time, we believe that the general approach of using convex network flow
to estimate frequencies of strings in a genome is a more general technique with
other applications in computational biology, such as building repeat libraries for
newly-sequenced genomes.

In our experiments we make two major assumptions – that the reads are error-
free, and that the genome sequencing rate is uniform. We believe that the first of
these assumptions is not fundamental, and a limited amount of error in the reads
can be overcome using methods similar to the ones developed for the EULER
assembler [19]. Moreover, the high coverage rate should improve the correction
accuracy of these methods. The second assumption, however, is more essential
to the accuracy of our algorithm. In the case of non-uniform coverage of cer-
tain areas in the genome (in particular it is suspected that the Solexa machines
may under-sample homo-polymer runs) our algorithm may be less accurate at
predicting the copy-counts, which may have significant effects in downstream
analyses. We believe that these effects can be neutralized if the biases of the
sequencing apparatus are known. For example, each read’s observed frequency
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can be adjusted depending on its sequence. The exploration of the exact biases
of the NGS platforms and the correction for these is an important avenue for
future research.
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