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Abstract. Protein interactions and complexes are major components
of biological systems. Recent genome-wide applications of tandem affin-
ity purification (TAP) in yeast have increased significantly the available
information on such interactions. From these experiments, protein com-
plexes were predicted with different approaches first from the individual
experiments only and later from their combination. The resulting pre-
dictions showed surprisingly little agreement and all of the correspond-
ing methods rely on additional training data. In this article, we present
an unsupervised algorithm for the identification of protein complexes
which is independent of the availability of additional complex informa-
tion. Based on a bootstrap approach, we calculated intuitive confidence
scores for interactions which are more accurate than previous scoring
metrics. The complexes determined from this confidence network are
of similar quality as the complexes identified by the best supervised ap-
proaches. Despite the similar quality of the latest predictions and our pre-
dictions, considerable differences are still observed between all of them.
Nevertheless, the set of consistently identified complexes is more than
four times as large as for the first two studies. Our results illustrate that
meaningful and reliable complexes can be determined from the purifi-
cation experiments alone. As a consequence, the approach presented in
this article is easily applicable to large-scale TAP experiments for any
organism.

1 Introduction

Cellular processes are shaped by proteins physically associated in complexes. Ac-
cordingly, significant efforts are put into the experimental identification of such
protein interactions. Commonly used techniques are yeast two-hybrid (Y2H)
[1,2] and affinity purification followed by mass spectrometry (e.g. Co-immuno-
precipitation (Co-IP)[3] or tandem affinity purification (TAP)[4,5,6]). Since new
methods are generally first applied to the yeast Saccharomyces cerevisiae, its
interactome is the most thoroughly studied one.

While Y2H identifies only direct physical interactions, affinity purification
can also identify indirect interactions in protein complexes. In the so far only
� Corresponding author.

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 3–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



4 C.C. Friedel, J. Krumsiek, and R. Zimmer

genome-scale studies on complexes, the more effective TAP system [7] was ap-
plied to yeast separately by Gavin et al. [5] and Krogan et al. [6]. In the first
experiment, 1,993 distinct TAP-tagged proteins (baits) were purified successfully
and 2,760 distinct proteins (preys) identified in these purifications. In the second
experiment, 2,357 baits were purified and 4,087 preys identified.

Because of the large size of these data sets, sophisticated methods were devel-
oped in both studies to infer individual protein complexes from the purification
data. However, the resulting complexes showed surprisingly little overlap (see
results). After the publication of the original results, improved prediction meth-
ods were developed by Pu et al. [8] based on the scoring method of Collins et al.
[9] and by Hart et al. [10]. These methods used the data from both purification
experiments.

A comparison of the different approaches outlines the important steps in com-
plex determination (see Figure 1 A). First, purification experiments have to
be combined for higher prediction quality. Second, propensities for individual
protein interactions have to be determined from the purifications. Third, these
propensities should be converted to confidence values assessing the likelihood of
each protein interaction. In a fourth step, the network has to be clustered to ob-
tain individual complexes after restricting it to the most confident interactions.
If the corresponding clustering method only produces disjoint complexes, a final
step has to be included to identify proteins shared between complexes. This is
necessary because in biological systems proteins can be involved in more than
one complex. Apart from the combined method by Collins et al. [9] and Pu et
al. [8], all previous approaches leave out at least one of these steps. Figure 1 A
gives an overview on which methods implement which steps in a supervised or
unsupervised way.

All previous approaches rely more or less heavily on the availability of addi-
tional training data for at least one step. For yeast, hand-curated complexes can
be taken from MIPS [11] and the study of Aloy et al. [12]. Furthermore, com-
plexes can be automatically extracted from GO annotations [13]. Unfortunately,
the resulting complexes are of lower quality than the hand-curated ones (see re-
sults). Recently, hand-curated complexes have become available for human and
other mammals which cover about 12% of the protein-coding genes in human
[14]. For other organisms, such complex information is not available which limits
the applicability of the supervised approaches significantly.

Even if reference sets are available as for yeast, a large fraction of them have
to be set aside as independent test sets to evaluate the quality of predicted com-
plexes. Although most of the above mentioned approaches distinguished between
test and training set by choosing one of the yeast reference sets for training and
a different one for testing, these sets are not sufficiently disjoint to guarantee a
reliable performance estimate. Indeed, generally more than half of the complexes
in each reference set have a significant overlap to at least one complex in each
of the other sets.

In this article, we present an unsupervised algorithm for the identification of
protein complexes from the purification data alone which implements all steps
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Fig. 1. Table A lists the major steps involved in complex identification and if they are
realized by the approaches of Gavin et al. [5] (GA), Krogan et al. [6] (KR), Collins et al.
and Pu et al. [9,8] (CP), Hart et al. [10] (HA) and the approach described in this article
(BT).Furthermore,we indicate if a supervised approach based on additional trainingdata
is used (S, red) or an unsupervised approach (U, green). Figure B illustrates the major
steps of the bootstrap approach described in this article. See methods for more details.

described above. Since no additional information on protein complexes is re-
quired, our approach is not limited to yeast but can be applied easily to large-
scale purification experiments for other organisms.

Our results show that this approach is equivalent to the best supervised meth-
ods both with regard to functional and localization similarity observed in the
resulting complexes as well as predictive performance with regard to known yeast
complexes. We find that our predictions and the Pu and Hart predictions are
much more consistent than the original Gavin and Krogan complexes. However,
although the latest predictions are of similar quality, significant divergences be-
tween the predicted complexes are still observed. This clearly illustrates the need
for further investigations of the individual protein complexes.

2 Methods

The algorithm we propose for the unsupervised identification of protein complexes
implements all five necessary steps (see Figure 1 A). Purification experiments



6 C.C. Friedel, J. Krumsiek, and R. Zimmer

are combined by pooling them. Interaction confidences are determined by first
identifying preliminary complexes for bootstrap samples from the set of purifica-
tions [15,16]. The resulting confidence network is then clustered with the MCL
algorithm [17] and proteins shared between complexes are identified in a post-
processing step. Here, all necessary parameters are tuned based on intrinsic mea-
sures calculated from the networks and complexes alone. The last two steps are
also used to determine the preliminary complexes for the bootstrap samples (see
Figure 1 B). Details of the algorithm are described in the following.

2.1 Bootstrap Sampling

To determine reliable confidence scores, the bootstrap technique [15,16] is used to
estimate how stable interactions are under perturbations of the data. A similar
approach is utilized successfully for assigning confidence to phylogenetic trees
[18]. For this purpose, 1,000 bootstrap samples are created from the set of N
purifications. A purification consists of one bait protein and its preys in this
purification. To create one bootstrap sample, N purifications are drawn with
replacement. Each purification can be contained in a bootstrap sample once,
multiple times or not at all. Multiple copies of the same purification are treated
as separate purifications.

For each bootstrap sample, we then calculate preliminary interaction propen-
sities in the form of socio-affinity scores as described by Gavin et al. [5]. These
scores compare the number of co-occurrences of two proteins against the random
expectation using a combination of spoke and matrix model [19]. No additional
training data is required to compute them from a set of purifications. From
these preliminary networks, we then determine preliminary complex predictions
for each individual bootstrap sample with the algorithm described in the follow-
ing section. To allow for reasonably fast computation, only edges are included
in the preliminary networks whose weight exceeds a certain threshold τ .

2.2 Identification of Protein Complexes

The algorithm for the prediction of complexes from a network consists of two
steps: clustering of the network and subsequent identification of shared proteins.

Clustering. Networks are clustered using the Markov clustering algorithm
(MCL) developed by van Dongen [17]. In a recent study [20], this algorithm
was found to be superior to a selection of other graph clustering algorithms for
the identification of protein complexes. Apart from the approach of Gavin et
al., all previous approaches to complex identification from purification data use
this method. The running-time of the MCL procedure is in O(Nk2) for a net-
work with N nodes and a maximum degree of k. Thus, it is reasonably fast for
sparse networks. Its most important parameter is the inflation parameter which
influences the granularity of the identified clusters, i.e. their size and number.
The higher the inflation parameter, the smaller are the resulting clusters and
the more clusters are identified.
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All previous approaches used additional training data in the form of known
complexes to chose the optimal inflation parameter. In this article, we suggest to
use an intrinsic measure which compares the resulting clusters against the origi-
nal network. For this purpose, we use a performance measure for graph clustering
proposed by van Dongen, the so-called efficiency. Details for the calculation of
efficiency can be found in [17]. Basically, a clustering is highly efficient if proteins
in the same cluster are connected by edges with high weights and proteins in
different clusters have no or only low weight connections.

To determine the optimal inflation parameter, we clustered the socio-affinity
networks for each sample using several, gradually increasing inflation parameters.
For each inflation parameter we then calculated the average efficiency over all
samples. We found that the efficiency always reaches a maximum for a certain
inflation parameter and decreases on either side of this value if the socio-affinity
networks were reasonably sparse. Accordingly, the optimal inflation parameter
is chosen as the one with the highest average efficiency across all samples. This
inflation parameter is then used to cluster the preliminary networks for the
bootstrap samples.

Identification of shared proteins. The MCL algorithm, as most clustering
methods, identifies only disjoint clusters. In real biological systems, however,
proteins can be contained in more than one complex. If a protein has such
strong associations with two complexes, the MCL procedure will either cluster
those two complexes together or, if further associations between the complexes
are missing, cluster this protein with only one of these complexes. We address
this problem in a similar way as Pu et al. [8] by post-processing the clusters
obtained from the MCL algorithm. Contrary to them, we do not optimize this
step based on proteins shared between known yeast complexes, but again use an
intrinsic measure based on the original network.

The following criteria are used for adding shared proteins. First, a protein is
only added to another complex if it has sufficiently strong interactions to this
complex. Second, the tighter the associations within this complex, the stronger
have to be the interactions of the protein to this complex. Third, for large com-
plexes strong interactions are only required to some of the complex proteins or,
alternatively, weaker interactions to most of them. As a consequence, a protein
pi can be added to a complex C if

s(pi, C) ≥ α · s(C) ·
(
|C|−γ/ 2−γ

)
(1)

with s(pi, C) the average interaction score of pi to proteins of C and s(C) the
average interaction score within the complex. Interactions not contained in the
network are given a weight of zero.

The threshold for adding a protein to a complex decreases both with complex
size and with complex confidence. To control the influence of complex size, a
power function was chosen since it decreases steeply at first but then levels off
for larger values. The power function is normalized to yield 1 for complexes of
size 2. In this case the threshold depends only on the strength of the interaction
between the two proteins.
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This threshold definition has two parameters, α and γ. Here, α defines how
much weaker than s(C) the connections to the complex are allowed to be and
γ controls to which fraction of the complex sufficiently strong interactions have
to exist. Both parameters are set such that the weighted average score over
all complexes after the post-processing is at least as high as a fraction λ of
the original average score. For this purpose, α is set to λ and γ to the largest
possible value such that this requirement is still met. Here, λ was set to 0.95
to add proteins only to complexes to which they have a strong association.
Note that proteins are added to complexes in parallel. Accordingly, the complex
memberships and the average complex score are not updated until all proteins
have been processed and the result does not depend on the order of the proteins.

2.3 Calculation of Confidence Scores and Final Complexes

The final confidence scores are then determined by calculating the so-called boot-
strap network from the complexes identified for each bootstrap sample. In the
bootstrap network, two proteins are connected by an edge if they are clustered
together in at least one sample. The fraction of samples for which they are con-
tained in the same complex provides the weight for the corresponding edge and
the confidence for this association (between 0 and 1).

Final complexes are then obtained by applying the complex identification
algorithm on this bootstrap network. For this purpose, the optimal inflation pa-
rameter determined in the previous step is chosen. No threshold is applied to
the network before complex identification but the size of the network is lim-
ited beforehand by choosing stringent cut-offs for the preliminary socio-affinity
networks.

More confident predictions can be obtained from the original complexes in
the following way. First, all edges are removed from the network with weight
lower than a specific threshold and then connected components are calculated for
each complex separately in this restricted network. As a consequence, complexes
can either shrink, be subdivided or be removed completely. This approach is
more efficient than the alternative approach of first restricting the network and
then repeating complex identification but yields almost identical complexes (see
results).

2.4 Criteria for the Evaluation of Complex Quality

Functional co-annotation within complexes. Since protein complexes are
formed to carry out a specific function, the functions of proteins in the same
complex should be relatively homogeneous. We evaluate the functional similarity
between proteins predicted to be in the same complex by using the protein
annotations of the Gene Ontology (GO) [13]. The functional similarity of two
proteins is quantified in terms of the semantic similarity of GO terms annotated
to these proteins. Several variations of semantic similarity have been described
[21,22,23,24]. Here, we use the relevance similarity proposed recently by Schlicker
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at al. [24]. This measure is based both on the closeness of two GO terms to their
common ancestors as well as the level of detail of these ancestors.

The GO score of a complex is the average relevance similarity of all protein
pairs in this complex. The GO score for a set of complexes is the weighted mean
over all complex scores and determined separately for the “biological process”
and “molecular function” taxonomies. The final co-annotation score is then cal-
culated as the geometric mean of the two values.

Co-localization within complexes. Since complexes can only be formed if the
corresponding proteins are actually located together in the cell, a second quality
measure is based on the similarity of protein localizations within a complex. For
this purpose, we used the localization assignments and categories determined
experimentally in yeast by Hu et al. [25].

The co-localization score for a complex is defined as the maximum fraction of
proteins in this complex which are found at the same localization. The average
co-localization score is calculated as the weighted average over all complexes and
is defined as

L =

∑
j maxi li,j
∑

j |Cj |
(2)

Here, lij is the number of proteins of complex Cj assigned to the localization
group i and |Cj | is the number of proteins in the complex Cj with localization
assignments.

Sensitivity and positive predictive value. To evaluate the accuracy of the
predictions, sensitivity (Sn) and positive predictive value (PPV) were calculated
with regard to the following reference sets: (a) hand-curated complexes from
MIPS [11] (214 complexes after removing redundant complexes) and Aloy et al.
[12] (101 complexes) as well as (b) complexes extracted from the SGD database
[26] based on GO annotations (189 complexes). To compile the SGD set, GO-slim
complex annotations to all yeast genes were taken from the SGD ftp site.

We used the definition of sensitivity and PPV for protein complexes by Brohee
and van Helden [20]. Both measures are calculated from the number Ti,j of
proteins shared between a reference complex Ri and a predicted complex Cj :

Sn =
∑

i maxj Ti,j∑
i |Ri|

and PPV =

∑
j maxi Ti,j

∑
j

∑
i Ti,j

. (3)

3 Results

Bootstrap confidence values were calculated from the combined Krogan and
Gavin purification experiments. This combined set contains 6498 purifications
with 2995 distinct baits, more than half of which (1617) were purified more
than once. On average, separate purifications of the same bait agree in about
27% of the retrieved preys between the two experiments. This is similar to the
agreement between purifications of the same bait within the Krogan data set,
but significantly smaller than within the Gavin set.
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From these purifications the final bootstrap network was calculated. Only
socio-affinity scores of at least 8 were included in the preliminary networks for
the bootstrap samples. We chose a more stringent threshold than the one rec-
ommended by Gavin et al. for two reasons. First, the preliminary networks are
much denser for the combined data than for the Gavin data alone and, as a con-
sequence, the runtime of the MCL algorithm is increased considerably. Second,
the final bootstrap network contains many more interactions than each individ-
ual preliminary network (in our case 20 time as many). Thus, the more stringent
threshold both reduces runtime of the bootstrapping step and at the same time
limits the size of the resulting bootstrap network.

The final bootstrap network contains 62,876 interactions between 5195 dis-
tinct proteins. Protein complexes were then determined from the bootstrap net-
work with our method, resulting in 893 complexes (denoted as BT-893) which
contain 5187 distinct proteins (397 of those shared between complexes).

To compare our results against the smaller Pu and Hart predictions, more
confident complexes were extracted from the original set at a threshold of 0.32.
This set contains 409 complexes with 1692 distinct proteins (101 shared between
complexes) and will be referred to as BT-409 in the following. It is comparable
in size with the Pu predictions of 400 complexes with 1914 distinct proteins (141
shared) and the Hart predictions of 390 complexes with 1689 distinct proteins
(none shared). We also extracted a second set of 217 complexes (BT-217) at a
threshold of 0.69 which has a similar size as the MIPS complexes. We compared
our selection approach against the less efficient method of first restricting the
network and clustering afterwards and found that the differences observed were
negligible with mutual sensitivities of 0.97 on average.

3.1 Evaluation of Interaction Networks

The quality of the bootstrap network in comparison to previously suggested
interaction propensities was evaluated using a receiver operating characteristic
(ROC) curve [27]. In a ROC curve, true positive rates are plotted against false
positive rates for gradually decreasing thresholds. True positive interactions were
defined as interactions between proteins in the same MIPS complex. The large
and small ribosomal subunits were excluded since they would otherwise make
up 44% of the true positive interactions. A set of true negative interactions was
defined by randomly selecting interactions between proteins assigned to different
MIPS complexes and cellular localizations by Hu et al. [25].

Figure 2 A shows the resulting ROC curves for the Gavin, Krogan, Collins,
Hart and bootstrap scores as well as socio-affinity scores calculated from the com-
bined experiments. We see that for all networks calculated from the combined
data, the curve is steeper and reaches a higher level than for the propensities
calculated from each experiment alone. Furthermore, the bootstrap scores cal-
culated with our method performed best at separating true interactions from
noise. Among the scoring methods proposed after the publication of the origi-
nal purification studies, the Collins scores performed worst. Nevertheless, they
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Fig. 2. ROC curves (A) are given for the Bootstrap, Hart and Collins scores, the socio-
affinity scores for the combined data (SA combined) and the Gavin and Krogan scores
(from top to bottom). True positive rates on the y coordinate are plotted against
false positive rates on the x coordinate for gradually decreasing thresholds. Figure
B illustrates co-annotation (dark blue) and co-localization (light blue) scores for the
MIPS, Aloy and SGD complexes and the highly confident BT-217 complexes on the
left hand side and the Pu, Hart, Gavin core and BT-409 predictions on the right hand
side.

still perform slightly better for the given range than the socio-affinity scores
computed from the combined experiments.

3.2 Co-annotation and Co-localization within Complexes

To assess the quality of the predicted complexes, we calculated the co-annotation
and co-localization scores for the MIPS, Aloy and SGD complexes as well as
for the Pu, Hart, Gavin and Krogan predictions and the BT-409 and BT-217
complexes (see Figure 2 B). Furthermore, the Gavin core set was evaluated which
contains only the core components defined by Gavin et al. [5].

The lowest functional and localization similarity is observed for the Gavin and
Krogan complexes (data not shown). By restricting to the more confident core
components in the Gavin predictions, both co-annotation and co-localization
can be increased significantly by 17% and 25%, respectively. Among all previous
approaches, the highest co-annotation scores are obtained by the Pu and Hart
predictions and the highest co-localization scores by the Hart predictions and
the Gavin core set.

Functional and localization similarity is highest in the MIPS, Aloy and BT-217
complexes. Among the reference complexes, the SGD complexes perform worst.
While co-annotation is still higher than in the best predictions, co-localization
is significantly lower. This suggests that these automatically derived complexes
are considerably less reliable than hand-curated ones.

When evaluating the complexes identified by our approach, we find that the
BT-409 complexes perform significantly better than the Pu and Gavin core
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complexes with regard to functional and localization similarity and slightly
better than the Hart complexes. Moreover, the highly confident BT-217 com-
plexes show similar co-annotation and higher co-localization scores than the
hand-curated MIPS and Aloy complexes. It should be noted though that a large
fraction of the BT-217 complexes is already well-known as 64% of these com-
plexes share at least two proteins with one of the reference complexes. In the
BT-409 set, this applies only to 43% of the complexes.

3.3 Validation on Reference Complexes

By comparing the predicted complexes against the current knowledge on protein
complexes in the form of the MIPS, Aloy and SGD reference complexes, the
sensitivity and and the PPV of the corresponding methods can be estimated.
One should keep in mind, though, that these estimates may be unprecise due to
the incompleteness of current knowledge.

Results for the comparison against the MIPS complexes are shown in Figure 3
A. Similar trends are observed for the comparison against all reference sets. The
worst results are obtained by the original Gavin complexes, followed by the
Krogan complexes. Here, the Gavin complexes are generally more sensitive but
less accurate in their predictions than the Krogan complexes. By restricting the
Gavin complexes to the core components, the PPV can be increased beyond that
of any other prediction. However, this improvement comes at the cost of a very
low sensitivity.

When comparing the performance of the BT-409, Pu and Hart complexes, we
observe that none of the predictions is clearly superior to the other two. Although
the sensitivity of the Pu complexes is slightly higher than for the other two
approaches, the corresponding PPV is in return lower. Thus, it appears that all
predictions cover the reference complexes with similar quality. The PPV of the
BT-409 complexes can be increased slightly by restricting to the more confident
BT-217 complexes, however the loss of sensitivity again is considerable.

3.4 Towards a Consensus of Complex Predictions

Although functional and localization similarity within complexes is slightly higher
for the BT-409 predictions than for the Pu and Hart predictions, the comparison
against the reference complexes yielded very similar results for all three sets. In
order to appreciate how much these predictions agree or diverge, we compared
them at the level of the individual complexes.

First, we calculated pairwise PPV and sensitivity values by taking either set
of complexes once as prediction and once as reference for each possible pairwise
combination. Here, we observed an average PPV of 0.85 and sensitivity of 0.72.
This suggests that the agreement between each pair of these new predictions
is much higher than between the Gavin and Krogan complexes for which we
observe a mutual PPV of 0.26 and a sensitivity of 0.29.

In a second step, we calculated for each pair of predictions the number of
complexes with (a) no significant overlap (at least 2 proteins) to the other set,
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(b) a significant overlap to exactly one complex in the other set which again
has no other overlaps and (c) significant overlaps but without an one-to-one
correspondence as in (b). In the second case, we also distinguished between
complexes with an exactly matching counterpart and complexes which contain
additional proteins in at least one of the predictions. The same analysis was also
performed for all three sets together.

For the second group of complexes, results are shown in Figure 3 B. For more
than half of complexes in this group the predictions agree exactly. For the remain-
ing complexes, each prediction adds on average 28-34% proteins to the proteins
common to all two or three predictions. As can be seen, the consensus of each pair
of predictions is much higher than for all predictions taken together. Neverthe-
less, even in the latter case the consensus is still larger at 46% (185 complexes)
than between the Gavin and Krogan complexes where less than ten percent (45
complexes) have a clear one-to-one correspondence between the predictions.

Furthermore, 42% of the Gavin complexes and 64% of the Krogan complexes
have no significant overlap to the respective other set. Contrary to that, only
about 25% of complexes in the pairwise comparisons of the BT-409, Pu and Hart
complexes and 16% in the comparison of all three predictions are unique to the
corresponding prediction. These complexes are also characterized by consider-
ably lower scores in the respective network and by smaller sizes than complexes
in the other groups. Highest confidence values and medium complex sizes are
observed for the second group while the last group generally contains the largest
complexes.

4 Discussion

In this article, we presented an algorithm for the prediction of protein com-
plexes from purification experiments alone. It implements all necessary steps in
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an unsupervised manner from the combination of different experiments up to the
identification of shared proteins. Accordingly, it does not depend on the avail-
ability of additional information on protein complexes and interactions and is not
limited to organisms for which such an extensive knowledge exists as in the case
of yeast. Therefore, our method can be applied to large-scale TAP experiments
for any organism.

Intuitive and accurate confidence scores for protein interactions were obtained
by an application of the bootstrap technique. For this purpose, our complex iden-
tification method was applied to preliminary networks calculated from bootstrap
samples to estimate the stability of interactions. The resulting confidence scores
distinguished better between correct and wrong interactions than all previous
scoring methods, in particular also better than the scoring method used for the
preliminary networks.

The same complex identification method was then applied to the complete
bootstrap network to yield a large set of complex predictions. From this large
set, we extracted approximately the same number of high-confidence complexes
(BT-409) as the so far best methods by Pu et al. and Hart et al. The compar-
ison of functional and localization similarity within complexes showed slightly
better results for the BT-409 complexes compared to the Pu and Hart predic-
tions. Furthermore, the predictive performance with regard to known reference
complexes proved to be equivalent. This suggests that meaningful complexes
can be derived from the purification experiments without additional training
data.

When analyzing the individual BT-409, Pu and Hart complexes, we found
that about 60% of the complexes have a one-to-one correspondence in pairwise
comparisons. Here, each prediction shows approximately the same agreement
with each of the other predictions. When combining all three predictions, the
fraction of complexes identified consistently drops to 46%. This shows, that the
consensus between each pair of predictions is larger than between all three of
them. Nevertheless, the degree of agreement is still significantly higher than
observed between the original Gavin and Krogan predictions.

In general, complexes in the consensus set are assigned higher confidence val-
ues by each method than more diverging complexes. A possible explanation is
that these complexes are most stable and strongly connected and thus are de-
tected more consistently by all methods than more transient or weakly connected
complexes. Furthermore, low confidence scores may be an indication for a higher
degree of uncertainty. Thus, the confidence of complexes should be taken into
account for any analysis based on these protein complexes. However, since the
more confident complexes tend to be already covered to a large degree by ex-
isting biological knowledge, new information may be found preferentially in the
less confident ones. Thus, these should not be discounted per se but validated in
additional experiments. Here, the original large set of complexes (BT-893) iden-
tified in this study can be a valuable resource for biological hypothesis generation
and testing.
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5 Availability

Bootstrap scores for the combined purification experiments, as well as the BT-
893, BT-409 and BT-217 complexes can be downloaded from
http://www.bio.ifi.lmu.de/Complexes.
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