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Preface

This volume contains the papers presented at the 12th Annual International
Conference on REsearch in COmputational Molecular Biology (RECOMB 2008)
held in Singapore, March 30-April 2, 2008. The RECOMB conference series
was founded in 1997 by Sorin Istrail, Pavel Pevzner and Michael Waterman.
Its history is summarized in the table herein. The general development of the
RECOMB conference series is guided by a Steering Committee. RECOMB 2008
was hosted by the National University of Singapore and held at the University
Cultural Centre. The Conference Chair was Limsoon Wong, who was supported
by a 16-member-strong Organizing Committee.

Out of 193 papers submitted to RECOMB 2008, the Program Committee
(PC) selected 34 papers for presentation at the conference. The PC consisted
of 46 members, who could further draw on the help of subreviewers. Three PC
members with possible help of the external reviewers first reviewed each paper,
subsequently a Web-based discussion led to the final selection of papers.

This year, RECOMB and the journal Genome Research teamed up to of-
fer authors Genome Research as an alternative forum for publication. Approxi-
mately 55 of the RECOMB submissions, selected by a subset of the PC headed
by Serafim Batzoglou, were forwarded to Genome Research for consideration.
The reviewing procedures by RECOMB and Genome Research were conducted
independently, leading to the acceptance of a small number of papers to both
RECOMB and Genome Research. Other papers were accepted to Genome Re-
search but not to RECOMB. The papers accepted by both were presented at the
conference and are also summarized in this volume. Their final versions appear
in Genome Research.

In addition to the contributed presentations, RECOMB 2008 featured seven
keynote lectures, held by Howard Cedar (Hebrew University, Jerusalem), Vivian
G. Cheung (University of Pennsylvania, Philadelphia), Suzanne Cory (Walter
and Eliza Hall Institute of Medical Research, Melbourne), Sang Yup Lee (Korea
Advanced Institute of Science and Technology, Daejeon), Edison Liu (Genome
Institute of Singapore, Singapore), Andrei Lupas (Max Planck Institute for
Developmental Biology, Tübingen), and Temple F. Smith (Boston University,
Boston). The Ulam Lecture was delivered by Temple Smith, the Distinguished
Technology Lecture by Edison Liu and the Distinguished Biology Lecture by
Suzanne Cory.

In addition to the oral presentations, RECOMB 2008 also provided a forum
for presenting approximately 150 posters. The poster sessions are an integral
part of the conference and foster communication among participants.

A conference like RECOMB lives from the dedication of the people helping
and supporting it. Thanks go to the RECOMB Steering Committee for their
advice and guidance, to the PC and the external reviewers for their efforts, to
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the Poster Committee for going through a large number of posters in short time,
and to the local organizers for their hard work. The reviewing process profited
greatly from the use of the EasyChair conference management system. Patricia
Marquardt’s help in putting together this proceedings volume is greatly appre-
ciated. We are further indebted to the National University of Singapore, the
Institute for Infocomm Research (A*STAR), and the Bioinformatics Institute
(A*STAR) for their support of RECOMB 2008. We also appreciate the gener-
ous sponsorships from the Lilly Singapore Center for Drug Discovery, IBM, the
International Society for Computational Biology, World Scientific Publishing
Company, and Taylor & Francis Asia Pacific. Special thanks go to the partici-
pants, to those who contributed posters or oral presentations, and to the keynote
speakers for their input. It is this community that makes RECOMB such an in-
spiring, lively, and enjoyable conference.

February 2008 Martin Vingron
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Kun-Mao Chao National Taiwan University, Taipei, Taiwan
Dannie Durand Carnegie Mellon University, Pittsburgh, USA
Eleazar Eskin University of California, Los Angeles, USA
Nir Friedman Hebrew University, Jerusalem, Israel
Dan Geiger Technion, Haifa, Israel
Gaston Gonnet ETH Zürich, Switzerland
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Computational Biology:

Its Challenges Past, Present, and Future

Temple F. Smith

Boston University, Boston
tsmith@darwin.bu.edu

Dedication: To a friend and inspiration, Stanislaw Ulam.
I was lucky not only to have known Stan (Dr. Ulam), but to have been be-

friended by him. I would note that it was with his support that my first “com-
putational” biology paper was published and that I was then a physics graduate
student who had not taken or read biology since the sixth grade! I will outline
just a few Ulam anecdotes in his memory.

Abstract. The recognition of the role of mathematics and computer
science in modern biology has led to new terminology, as did chemistry
with biochemistry, and physics with biophysics. We need to think only
of bioinformatics, computational biology, and even system biology and
genomics for example. These terms seem to strongly suggest that this is
all rather new. Yet a short review of the work of those such as J.B.S. Hal-
dane, Sewell Wright, DArcy Thompson and R.A. Fisher, to say nothing
of scientists like Luria and Delbrueck or Hodgkin and Huxley or Thomas
Hunt Morgan, is useful. Their work and foresight set the stage for mod-
ern applications of mathematical modeling and statistics in the biological
sciences.

It has often been said that the only difference between now and then
is the increase in data—a lot more data. This is clearly not the full story.
In addition, we have computational power unimaginable to these ear-
lier researchers, as well as to anyone only forty years ago. So what are
our challenges? Some are clear, including the modeling and analysis of
biologys complex systems such as a cells signaling, metabolic and differ-
entiation. Also needed are analysis and models of complex neural systems
and ecological structures. The latter, for example, will require a nearly
full revamping of the early field of population genetics and evolution in
order to exploit both modern genomics and new field studies of multiple
species and environmental interactions. And there will be more, much of
which will only become apparent as new data and questions arise. One
example would be RNAi and micro-arrays inducing the development of
new analysis tools.

About the keynote speaker. Dr. Temple Smith graduated with a
Ph.D. in Nuclear Physics from University of Colorado. He did a joint
postdoctoral fellowship under the direction of the mathematician, Stanis-
law Ulam and the molecular biologist, John Sadler. He was one of the
founders of GenBank at Los Alamos. Dr. Smith has been the Direc-
tor of the BioMolecular Engineering Research Center in the College of

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 T.F. Smith

Engineering at Boston University since 1991. He is a professor in the
Department of Biomedical Engineering and co-founder of the company,
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Abstract. Protein interactions and complexes are major components
of biological systems. Recent genome-wide applications of tandem affin-
ity purification (TAP) in yeast have increased significantly the available
information on such interactions. From these experiments, protein com-
plexes were predicted with different approaches first from the individual
experiments only and later from their combination. The resulting pre-
dictions showed surprisingly little agreement and all of the correspond-
ing methods rely on additional training data. In this article, we present
an unsupervised algorithm for the identification of protein complexes
which is independent of the availability of additional complex informa-
tion. Based on a bootstrap approach, we calculated intuitive confidence
scores for interactions which are more accurate than previous scoring
metrics. The complexes determined from this confidence network are
of similar quality as the complexes identified by the best supervised ap-
proaches. Despite the similar quality of the latest predictions and our pre-
dictions, considerable differences are still observed between all of them.
Nevertheless, the set of consistently identified complexes is more than
four times as large as for the first two studies. Our results illustrate that
meaningful and reliable complexes can be determined from the purifi-
cation experiments alone. As a consequence, the approach presented in
this article is easily applicable to large-scale TAP experiments for any
organism.

1 Introduction

Cellular processes are shaped by proteins physically associated in complexes. Ac-
cordingly, significant efforts are put into the experimental identification of such
protein interactions. Commonly used techniques are yeast two-hybrid (Y2H)
[1,2] and affinity purification followed by mass spectrometry (e.g. Co-immuno-
precipitation (Co-IP)[3] or tandem affinity purification (TAP)[4,5,6]). Since new
methods are generally first applied to the yeast Saccharomyces cerevisiae, its
interactome is the most thoroughly studied one.

While Y2H identifies only direct physical interactions, affinity purification
can also identify indirect interactions in protein complexes. In the so far only
� Corresponding author.
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genome-scale studies on complexes, the more effective TAP system [7] was ap-
plied to yeast separately by Gavin et al. [5] and Krogan et al. [6]. In the first
experiment, 1,993 distinct TAP-tagged proteins (baits) were purified successfully
and 2,760 distinct proteins (preys) identified in these purifications. In the second
experiment, 2,357 baits were purified and 4,087 preys identified.

Because of the large size of these data sets, sophisticated methods were devel-
oped in both studies to infer individual protein complexes from the purification
data. However, the resulting complexes showed surprisingly little overlap (see
results). After the publication of the original results, improved prediction meth-
ods were developed by Pu et al. [8] based on the scoring method of Collins et al.
[9] and by Hart et al. [10]. These methods used the data from both purification
experiments.

A comparison of the different approaches outlines the important steps in com-
plex determination (see Figure 1 A). First, purification experiments have to
be combined for higher prediction quality. Second, propensities for individual
protein interactions have to be determined from the purifications. Third, these
propensities should be converted to confidence values assessing the likelihood of
each protein interaction. In a fourth step, the network has to be clustered to ob-
tain individual complexes after restricting it to the most confident interactions.
If the corresponding clustering method only produces disjoint complexes, a final
step has to be included to identify proteins shared between complexes. This is
necessary because in biological systems proteins can be involved in more than
one complex. Apart from the combined method by Collins et al. [9] and Pu et
al. [8], all previous approaches leave out at least one of these steps. Figure 1 A
gives an overview on which methods implement which steps in a supervised or
unsupervised way.

All previous approaches rely more or less heavily on the availability of addi-
tional training data for at least one step. For yeast, hand-curated complexes can
be taken from MIPS [11] and the study of Aloy et al. [12]. Furthermore, com-
plexes can be automatically extracted from GO annotations [13]. Unfortunately,
the resulting complexes are of lower quality than the hand-curated ones (see re-
sults). Recently, hand-curated complexes have become available for human and
other mammals which cover about 12% of the protein-coding genes in human
[14]. For other organisms, such complex information is not available which limits
the applicability of the supervised approaches significantly.

Even if reference sets are available as for yeast, a large fraction of them have
to be set aside as independent test sets to evaluate the quality of predicted com-
plexes. Although most of the above mentioned approaches distinguished between
test and training set by choosing one of the yeast reference sets for training and
a different one for testing, these sets are not sufficiently disjoint to guarantee a
reliable performance estimate. Indeed, generally more than half of the complexes
in each reference set have a significant overlap to at least one complex in each
of the other sets.

In this article, we present an unsupervised algorithm for the identification of
protein complexes from the purification data alone which implements all steps
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A
GA KR CP HA BT

Experiment combination - - S U U

Propensity calculation U S S U U

Confidence values - S S - U

Clustering S S S S U

Shared Proteins S - S - U

B

Complex identification

MCL

Identification of 
shared proteins

Purifications

Socio-affinity
networks

Bootstrap
network

Sampling

Complex identification

bootstrap network

…

Complex identification

preliminary networks

Fig. 1. Table A lists the major steps involved in complex identification and if they are
realized by the approaches of Gavin et al. [5] (GA), Krogan et al. [6] (KR), Collins et al.
and Pu et al. [9,8] (CP), Hart et al. [10] (HA) and the approach described in this article
(BT).Furthermore,we indicate if a supervised approach based on additional trainingdata
is used (S, red) or an unsupervised approach (U, green). Figure B illustrates the major
steps of the bootstrap approach described in this article. See methods for more details.

described above. Since no additional information on protein complexes is re-
quired, our approach is not limited to yeast but can be applied easily to large-
scale purification experiments for other organisms.

Our results show that this approach is equivalent to the best supervised meth-
ods both with regard to functional and localization similarity observed in the
resulting complexes as well as predictive performance with regard to known yeast
complexes. We find that our predictions and the Pu and Hart predictions are
much more consistent than the original Gavin and Krogan complexes. However,
although the latest predictions are of similar quality, significant divergences be-
tween the predicted complexes are still observed. This clearly illustrates the need
for further investigations of the individual protein complexes.

2 Methods

The algorithm we propose for the unsupervised identification of protein complexes
implements all five necessary steps (see Figure 1 A). Purification experiments
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are combined by pooling them. Interaction confidences are determined by first
identifying preliminary complexes for bootstrap samples from the set of purifica-
tions [15,16]. The resulting confidence network is then clustered with the MCL
algorithm [17] and proteins shared between complexes are identified in a post-
processing step. Here, all necessary parameters are tuned based on intrinsic mea-
sures calculated from the networks and complexes alone. The last two steps are
also used to determine the preliminary complexes for the bootstrap samples (see
Figure 1 B). Details of the algorithm are described in the following.

2.1 Bootstrap Sampling

To determine reliable confidence scores, the bootstrap technique [15,16] is used to
estimate how stable interactions are under perturbations of the data. A similar
approach is utilized successfully for assigning confidence to phylogenetic trees
[18]. For this purpose, 1,000 bootstrap samples are created from the set of N
purifications. A purification consists of one bait protein and its preys in this
purification. To create one bootstrap sample, N purifications are drawn with
replacement. Each purification can be contained in a bootstrap sample once,
multiple times or not at all. Multiple copies of the same purification are treated
as separate purifications.

For each bootstrap sample, we then calculate preliminary interaction propen-
sities in the form of socio-affinity scores as described by Gavin et al. [5]. These
scores compare the number of co-occurrences of two proteins against the random
expectation using a combination of spoke and matrix model [19]. No additional
training data is required to compute them from a set of purifications. From
these preliminary networks, we then determine preliminary complex predictions
for each individual bootstrap sample with the algorithm described in the follow-
ing section. To allow for reasonably fast computation, only edges are included
in the preliminary networks whose weight exceeds a certain threshold τ .

2.2 Identification of Protein Complexes

The algorithm for the prediction of complexes from a network consists of two
steps: clustering of the network and subsequent identification of shared proteins.

Clustering. Networks are clustered using the Markov clustering algorithm
(MCL) developed by van Dongen [17]. In a recent study [20], this algorithm
was found to be superior to a selection of other graph clustering algorithms for
the identification of protein complexes. Apart from the approach of Gavin et
al., all previous approaches to complex identification from purification data use
this method. The running-time of the MCL procedure is in O(Nk2) for a net-
work with N nodes and a maximum degree of k. Thus, it is reasonably fast for
sparse networks. Its most important parameter is the inflation parameter which
influences the granularity of the identified clusters, i.e. their size and number.
The higher the inflation parameter, the smaller are the resulting clusters and
the more clusters are identified.
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All previous approaches used additional training data in the form of known
complexes to chose the optimal inflation parameter. In this article, we suggest to
use an intrinsic measure which compares the resulting clusters against the origi-
nal network. For this purpose, we use a performance measure for graph clustering
proposed by van Dongen, the so-called efficiency. Details for the calculation of
efficiency can be found in [17]. Basically, a clustering is highly efficient if proteins
in the same cluster are connected by edges with high weights and proteins in
different clusters have no or only low weight connections.

To determine the optimal inflation parameter, we clustered the socio-affinity
networks for each sample using several, gradually increasing inflation parameters.
For each inflation parameter we then calculated the average efficiency over all
samples. We found that the efficiency always reaches a maximum for a certain
inflation parameter and decreases on either side of this value if the socio-affinity
networks were reasonably sparse. Accordingly, the optimal inflation parameter
is chosen as the one with the highest average efficiency across all samples. This
inflation parameter is then used to cluster the preliminary networks for the
bootstrap samples.

Identification of shared proteins. The MCL algorithm, as most clustering
methods, identifies only disjoint clusters. In real biological systems, however,
proteins can be contained in more than one complex. If a protein has such
strong associations with two complexes, the MCL procedure will either cluster
those two complexes together or, if further associations between the complexes
are missing, cluster this protein with only one of these complexes. We address
this problem in a similar way as Pu et al. [8] by post-processing the clusters
obtained from the MCL algorithm. Contrary to them, we do not optimize this
step based on proteins shared between known yeast complexes, but again use an
intrinsic measure based on the original network.

The following criteria are used for adding shared proteins. First, a protein is
only added to another complex if it has sufficiently strong interactions to this
complex. Second, the tighter the associations within this complex, the stronger
have to be the interactions of the protein to this complex. Third, for large com-
plexes strong interactions are only required to some of the complex proteins or,
alternatively, weaker interactions to most of them. As a consequence, a protein
pi can be added to a complex C if

s(pi, C) ≥ α · s(C) ·
(
|C|−γ/ 2−γ

)
(1)

with s(pi, C) the average interaction score of pi to proteins of C and s(C) the
average interaction score within the complex. Interactions not contained in the
network are given a weight of zero.

The threshold for adding a protein to a complex decreases both with complex
size and with complex confidence. To control the influence of complex size, a
power function was chosen since it decreases steeply at first but then levels off
for larger values. The power function is normalized to yield 1 for complexes of
size 2. In this case the threshold depends only on the strength of the interaction
between the two proteins.
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This threshold definition has two parameters, α and γ. Here, α defines how
much weaker than s(C) the connections to the complex are allowed to be and
γ controls to which fraction of the complex sufficiently strong interactions have
to exist. Both parameters are set such that the weighted average score over
all complexes after the post-processing is at least as high as a fraction λ of
the original average score. For this purpose, α is set to λ and γ to the largest
possible value such that this requirement is still met. Here, λ was set to 0.95
to add proteins only to complexes to which they have a strong association.
Note that proteins are added to complexes in parallel. Accordingly, the complex
memberships and the average complex score are not updated until all proteins
have been processed and the result does not depend on the order of the proteins.

2.3 Calculation of Confidence Scores and Final Complexes

The final confidence scores are then determined by calculating the so-called boot-
strap network from the complexes identified for each bootstrap sample. In the
bootstrap network, two proteins are connected by an edge if they are clustered
together in at least one sample. The fraction of samples for which they are con-
tained in the same complex provides the weight for the corresponding edge and
the confidence for this association (between 0 and 1).

Final complexes are then obtained by applying the complex identification
algorithm on this bootstrap network. For this purpose, the optimal inflation pa-
rameter determined in the previous step is chosen. No threshold is applied to
the network before complex identification but the size of the network is lim-
ited beforehand by choosing stringent cut-offs for the preliminary socio-affinity
networks.

More confident predictions can be obtained from the original complexes in
the following way. First, all edges are removed from the network with weight
lower than a specific threshold and then connected components are calculated for
each complex separately in this restricted network. As a consequence, complexes
can either shrink, be subdivided or be removed completely. This approach is
more efficient than the alternative approach of first restricting the network and
then repeating complex identification but yields almost identical complexes (see
results).

2.4 Criteria for the Evaluation of Complex Quality

Functional co-annotation within complexes. Since protein complexes are
formed to carry out a specific function, the functions of proteins in the same
complex should be relatively homogeneous. We evaluate the functional similarity
between proteins predicted to be in the same complex by using the protein
annotations of the Gene Ontology (GO) [13]. The functional similarity of two
proteins is quantified in terms of the semantic similarity of GO terms annotated
to these proteins. Several variations of semantic similarity have been described
[21,22,23,24]. Here, we use the relevance similarity proposed recently by Schlicker



Bootstrapping the Interactome 9

at al. [24]. This measure is based both on the closeness of two GO terms to their
common ancestors as well as the level of detail of these ancestors.

The GO score of a complex is the average relevance similarity of all protein
pairs in this complex. The GO score for a set of complexes is the weighted mean
over all complex scores and determined separately for the “biological process”
and “molecular function” taxonomies. The final co-annotation score is then cal-
culated as the geometric mean of the two values.

Co-localization within complexes. Since complexes can only be formed if the
corresponding proteins are actually located together in the cell, a second quality
measure is based on the similarity of protein localizations within a complex. For
this purpose, we used the localization assignments and categories determined
experimentally in yeast by Hu et al. [25].

The co-localization score for a complex is defined as the maximum fraction of
proteins in this complex which are found at the same localization. The average
co-localization score is calculated as the weighted average over all complexes and
is defined as

L =

∑
j maxi li,j
∑

j |Cj |
(2)

Here, lij is the number of proteins of complex Cj assigned to the localization
group i and |Cj | is the number of proteins in the complex Cj with localization
assignments.

Sensitivity and positive predictive value. To evaluate the accuracy of the
predictions, sensitivity (Sn) and positive predictive value (PPV) were calculated
with regard to the following reference sets: (a) hand-curated complexes from
MIPS [11] (214 complexes after removing redundant complexes) and Aloy et al.
[12] (101 complexes) as well as (b) complexes extracted from the SGD database
[26] based on GO annotations (189 complexes). To compile the SGD set, GO-slim
complex annotations to all yeast genes were taken from the SGD ftp site.

We used the definition of sensitivity and PPV for protein complexes by Brohee
and van Helden [20]. Both measures are calculated from the number Ti,j of
proteins shared between a reference complex Ri and a predicted complex Cj :

Sn =
∑

i maxj Ti,j∑
i |Ri|

and PPV =

∑
j maxi Ti,j

∑
j

∑
i Ti,j

. (3)

3 Results

Bootstrap confidence values were calculated from the combined Krogan and
Gavin purification experiments. This combined set contains 6498 purifications
with 2995 distinct baits, more than half of which (1617) were purified more
than once. On average, separate purifications of the same bait agree in about
27% of the retrieved preys between the two experiments. This is similar to the
agreement between purifications of the same bait within the Krogan data set,
but significantly smaller than within the Gavin set.
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From these purifications the final bootstrap network was calculated. Only
socio-affinity scores of at least 8 were included in the preliminary networks for
the bootstrap samples. We chose a more stringent threshold than the one rec-
ommended by Gavin et al. for two reasons. First, the preliminary networks are
much denser for the combined data than for the Gavin data alone and, as a con-
sequence, the runtime of the MCL algorithm is increased considerably. Second,
the final bootstrap network contains many more interactions than each individ-
ual preliminary network (in our case 20 time as many). Thus, the more stringent
threshold both reduces runtime of the bootstrapping step and at the same time
limits the size of the resulting bootstrap network.

The final bootstrap network contains 62,876 interactions between 5195 dis-
tinct proteins. Protein complexes were then determined from the bootstrap net-
work with our method, resulting in 893 complexes (denoted as BT-893) which
contain 5187 distinct proteins (397 of those shared between complexes).

To compare our results against the smaller Pu and Hart predictions, more
confident complexes were extracted from the original set at a threshold of 0.32.
This set contains 409 complexes with 1692 distinct proteins (101 shared between
complexes) and will be referred to as BT-409 in the following. It is comparable
in size with the Pu predictions of 400 complexes with 1914 distinct proteins (141
shared) and the Hart predictions of 390 complexes with 1689 distinct proteins
(none shared). We also extracted a second set of 217 complexes (BT-217) at a
threshold of 0.69 which has a similar size as the MIPS complexes. We compared
our selection approach against the less efficient method of first restricting the
network and clustering afterwards and found that the differences observed were
negligible with mutual sensitivities of 0.97 on average.

3.1 Evaluation of Interaction Networks

The quality of the bootstrap network in comparison to previously suggested
interaction propensities was evaluated using a receiver operating characteristic
(ROC) curve [27]. In a ROC curve, true positive rates are plotted against false
positive rates for gradually decreasing thresholds. True positive interactions were
defined as interactions between proteins in the same MIPS complex. The large
and small ribosomal subunits were excluded since they would otherwise make
up 44% of the true positive interactions. A set of true negative interactions was
defined by randomly selecting interactions between proteins assigned to different
MIPS complexes and cellular localizations by Hu et al. [25].

Figure 2 A shows the resulting ROC curves for the Gavin, Krogan, Collins,
Hart and bootstrap scores as well as socio-affinity scores calculated from the com-
bined experiments. We see that for all networks calculated from the combined
data, the curve is steeper and reaches a higher level than for the propensities
calculated from each experiment alone. Furthermore, the bootstrap scores cal-
culated with our method performed best at separating true interactions from
noise. Among the scoring methods proposed after the publication of the origi-
nal purification studies, the Collins scores performed worst. Nevertheless, they
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Fig. 2. ROC curves (A) are given for the Bootstrap, Hart and Collins scores, the socio-
affinity scores for the combined data (SA combined) and the Gavin and Krogan scores
(from top to bottom). True positive rates on the y coordinate are plotted against
false positive rates on the x coordinate for gradually decreasing thresholds. Figure
B illustrates co-annotation (dark blue) and co-localization (light blue) scores for the
MIPS, Aloy and SGD complexes and the highly confident BT-217 complexes on the
left hand side and the Pu, Hart, Gavin core and BT-409 predictions on the right hand
side.

still perform slightly better for the given range than the socio-affinity scores
computed from the combined experiments.

3.2 Co-annotation and Co-localization within Complexes

To assess the quality of the predicted complexes, we calculated the co-annotation
and co-localization scores for the MIPS, Aloy and SGD complexes as well as
for the Pu, Hart, Gavin and Krogan predictions and the BT-409 and BT-217
complexes (see Figure 2 B). Furthermore, the Gavin core set was evaluated which
contains only the core components defined by Gavin et al. [5].

The lowest functional and localization similarity is observed for the Gavin and
Krogan complexes (data not shown). By restricting to the more confident core
components in the Gavin predictions, both co-annotation and co-localization
can be increased significantly by 17% and 25%, respectively. Among all previous
approaches, the highest co-annotation scores are obtained by the Pu and Hart
predictions and the highest co-localization scores by the Hart predictions and
the Gavin core set.

Functional and localization similarity is highest in the MIPS, Aloy and BT-217
complexes. Among the reference complexes, the SGD complexes perform worst.
While co-annotation is still higher than in the best predictions, co-localization
is significantly lower. This suggests that these automatically derived complexes
are considerably less reliable than hand-curated ones.

When evaluating the complexes identified by our approach, we find that the
BT-409 complexes perform significantly better than the Pu and Gavin core
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complexes with regard to functional and localization similarity and slightly
better than the Hart complexes. Moreover, the highly confident BT-217 com-
plexes show similar co-annotation and higher co-localization scores than the
hand-curated MIPS and Aloy complexes. It should be noted though that a large
fraction of the BT-217 complexes is already well-known as 64% of these com-
plexes share at least two proteins with one of the reference complexes. In the
BT-409 set, this applies only to 43% of the complexes.

3.3 Validation on Reference Complexes

By comparing the predicted complexes against the current knowledge on protein
complexes in the form of the MIPS, Aloy and SGD reference complexes, the
sensitivity and and the PPV of the corresponding methods can be estimated.
One should keep in mind, though, that these estimates may be unprecise due to
the incompleteness of current knowledge.

Results for the comparison against the MIPS complexes are shown in Figure 3
A. Similar trends are observed for the comparison against all reference sets. The
worst results are obtained by the original Gavin complexes, followed by the
Krogan complexes. Here, the Gavin complexes are generally more sensitive but
less accurate in their predictions than the Krogan complexes. By restricting the
Gavin complexes to the core components, the PPV can be increased beyond that
of any other prediction. However, this improvement comes at the cost of a very
low sensitivity.

When comparing the performance of the BT-409, Pu and Hart complexes, we
observe that none of the predictions is clearly superior to the other two. Although
the sensitivity of the Pu complexes is slightly higher than for the other two
approaches, the corresponding PPV is in return lower. Thus, it appears that all
predictions cover the reference complexes with similar quality. The PPV of the
BT-409 complexes can be increased slightly by restricting to the more confident
BT-217 complexes, however the loss of sensitivity again is considerable.

3.4 Towards a Consensus of Complex Predictions

Although functional and localization similarity within complexes is slightly higher
for the BT-409 predictions than for the Pu and Hart predictions, the comparison
against the reference complexes yielded very similar results for all three sets. In
order to appreciate how much these predictions agree or diverge, we compared
them at the level of the individual complexes.

First, we calculated pairwise PPV and sensitivity values by taking either set
of complexes once as prediction and once as reference for each possible pairwise
combination. Here, we observed an average PPV of 0.85 and sensitivity of 0.72.
This suggests that the agreement between each pair of these new predictions
is much higher than between the Gavin and Krogan complexes for which we
observe a mutual PPV of 0.26 and a sensitivity of 0.29.

In a second step, we calculated for each pair of predictions the number of
complexes with (a) no significant overlap (at least 2 proteins) to the other set,
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(b) a significant overlap to exactly one complex in the other set which again
has no other overlaps and (c) significant overlaps but without an one-to-one
correspondence as in (b). In the second case, we also distinguished between
complexes with an exactly matching counterpart and complexes which contain
additional proteins in at least one of the predictions. The same analysis was also
performed for all three sets together.

For the second group of complexes, results are shown in Figure 3 B. For more
than half of complexes in this group the predictions agree exactly. For the remain-
ing complexes, each prediction adds on average 28-34% proteins to the proteins
common to all two or three predictions. As can be seen, the consensus of each pair
of predictions is much higher than for all predictions taken together. Neverthe-
less, even in the latter case the consensus is still larger at 46% (185 complexes)
than between the Gavin and Krogan complexes where less than ten percent (45
complexes) have a clear one-to-one correspondence between the predictions.

Furthermore, 42% of the Gavin complexes and 64% of the Krogan complexes
have no significant overlap to the respective other set. Contrary to that, only
about 25% of complexes in the pairwise comparisons of the BT-409, Pu and Hart
complexes and 16% in the comparison of all three predictions are unique to the
corresponding prediction. These complexes are also characterized by consider-
ably lower scores in the respective network and by smaller sizes than complexes
in the other groups. Highest confidence values and medium complex sizes are
observed for the second group while the last group generally contains the largest
complexes.

4 Discussion

In this article, we presented an algorithm for the prediction of protein com-
plexes from purification experiments alone. It implements all necessary steps in
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an unsupervised manner from the combination of different experiments up to the
identification of shared proteins. Accordingly, it does not depend on the avail-
ability of additional information on protein complexes and interactions and is not
limited to organisms for which such an extensive knowledge exists as in the case
of yeast. Therefore, our method can be applied to large-scale TAP experiments
for any organism.

Intuitive and accurate confidence scores for protein interactions were obtained
by an application of the bootstrap technique. For this purpose, our complex iden-
tification method was applied to preliminary networks calculated from bootstrap
samples to estimate the stability of interactions. The resulting confidence scores
distinguished better between correct and wrong interactions than all previous
scoring methods, in particular also better than the scoring method used for the
preliminary networks.

The same complex identification method was then applied to the complete
bootstrap network to yield a large set of complex predictions. From this large
set, we extracted approximately the same number of high-confidence complexes
(BT-409) as the so far best methods by Pu et al. and Hart et al. The compar-
ison of functional and localization similarity within complexes showed slightly
better results for the BT-409 complexes compared to the Pu and Hart predic-
tions. Furthermore, the predictive performance with regard to known reference
complexes proved to be equivalent. This suggests that meaningful complexes
can be derived from the purification experiments without additional training
data.

When analyzing the individual BT-409, Pu and Hart complexes, we found
that about 60% of the complexes have a one-to-one correspondence in pairwise
comparisons. Here, each prediction shows approximately the same agreement
with each of the other predictions. When combining all three predictions, the
fraction of complexes identified consistently drops to 46%. This shows, that the
consensus between each pair of predictions is larger than between all three of
them. Nevertheless, the degree of agreement is still significantly higher than
observed between the original Gavin and Krogan predictions.

In general, complexes in the consensus set are assigned higher confidence val-
ues by each method than more diverging complexes. A possible explanation is
that these complexes are most stable and strongly connected and thus are de-
tected more consistently by all methods than more transient or weakly connected
complexes. Furthermore, low confidence scores may be an indication for a higher
degree of uncertainty. Thus, the confidence of complexes should be taken into
account for any analysis based on these protein complexes. However, since the
more confident complexes tend to be already covered to a large degree by ex-
isting biological knowledge, new information may be found preferentially in the
less confident ones. Thus, these should not be discounted per se but validated in
additional experiments. Here, the original large set of complexes (BT-893) iden-
tified in this study can be a valuable resource for biological hypothesis generation
and testing.
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5 Availability

Bootstrap scores for the combined purification experiments, as well as the BT-
893, BT-409 and BT-217 complexes can be downloaded from
http://www.bio.ifi.lmu.de/Complexes.
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Abstract. A major hindrance to studies of microbial diversity has been
that the vast majority of microbes cannot be cultured in the laboratory
and thus are not amenable to traditional methods of characterization.
Environmental shotgun sequencing (ESS) overcomes this hurdle by se-
quencing the DNA from the organisms present in a microbial community.
The interpretation of this metagenomic data can be greatly facilitated
by associating every sequence read with its source organism. We report
the development of CompostBin, a DNA composition-based algorithm
for analyzing metagenomic sequence reads and distributing them into
taxon-specific bins. Unlike previous methods that seek to bin assembled
contigs and often require training on known reference genomes, Com-
postBin has the ability to accurately bin raw sequence reads without
need for assembly or training. CompostBin uses a novel weighted PCA
algorithm to project the high dimensional DNA composition data into
an informative lower-dimensional space, and then uses the normalized
cut clustering algorithm on this filtered data set to classify sequences
into taxon-specific bins. We demonstrate the algorithm’s accuracy on a
variety of low to medium complexity data sets.

Keywords: Metagenomics, Binning, Feature Extraction, Normalized
Cut, weighted PCA, DNA composition metrics, Genome Signatures.

1 Introduction

Microbes are ubiquitous organisms that play pivotal roles in the earth’s bio-
geochemical cycles. Their most visible effects on human well-being arise through
their roles as mutualistic symbionts and hazardous pathogens. The study of mi-
crobes is crucial to our understanding of the earth’s life processes and human
health. Most of our knowledge about microbes has been obtained through the
study of organisms cultured in artificial media in the laboratory. Although this
approach has provided profound biological insights, it is inadequate for studying
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the structure and function of many microbial communities. One obstacle has
been that the vast majority of microbes have not been cultured and may not
be culturable [1]. Even though culture independent methods such as 16S rRNA
surveys [2] have been developed, they are unable to simultaneously answer two
fundamental questions: Who is out there? and What are they doing? The ap-
plication of genome sequencing methods is revolutionizing this field by enabling
us for the first time to address those two questions for unculturable microbial
communities [3,4,5]. These techniques, called environmental genomics or metage-
nomics, study microbial communities by analyzing the pooled genomes of all the
organisms present in the community.

In one specific metagenomic method, environmental shotgun sequencing (ESS),
DNApooled fromamicrobial community is sampled randomlyusingwhole genome
shotgun sequencing. Thus, ESS data is made up of sequence reads from multiple
species. This adds an additional layer of complexity compared to single-species
genome sequencing, as it requires analysis of the metagenomic data in order to
associate each sequence read with its source organism. Therefore, a critical first
step in many metagenomic analyses is the distribution of reads into taxon-specific
bins.

The difficulty of accurately binning ESS reads from whole genome data
remains a significant hurdle in metagenomics. The taxonomic resolution achiev-
able by the analysis depends on both the binning method and the complex-
ity of the community. For instance, binning into species-specific bins can be
achieved in low-complexity microbial communities (e.g., the dual-bacterial sym-
biosis of sharpshooters [6]). However, the problem becomes more difficult in
high-complexity communities with hundreds of species, such as ocean microbial
communities [7] and the human distal gut [5]. Because of these difficulties, many
metagenomic studies (e.g., [8]) have resorted to analyzing at the level of the
metagenome, essentially treating a microbial community as a bag of genes. This
is not a satisfactory solution. Identifying and characterizing individual genomes
can provide deeper insight into the structure of the community [6].

A variety of approaches have been developed for binning: assembly, phyloge-
netic analysis [9], database search [10], alignment with reference genome [7] and
DNA composition metrics [11,12,13] Most current binning methods suffer from
two major limitations: they require closely related reference genomes for train-
ing/alignment and they perform poorly on short sequences. To overcome the
second difficulty, almost all current binning methods are applied to assembled
contigs. However, most of the current generation assemblers can be confounded
by metagenomic data since they implicitly assume that the shotgun data is from
a single individual or clone. Therefore, we believe that assembly is risky when
binning and that it is necessary to analyze raw sequence reads to get an unbiased
look at the data.

To overcome the above-mentioned disadvantages of other binning methods,
we have developed CompostBin, a binning algorithm based on DNA compo-
sition. CompostBin can bin raw sequence reads into taxon-specific bins with
high accuracy and does not require training on currently available genomes.



CompostBin: A DNA Composition-Based Algorithm 19

Fig. 1. High-level overview of the CompostBin algorithm. Principal Component Anal-
ysis is used to project the data into a lower-dimensional space. A semi-supervised nor-
malized cut algorithm is used to segment the data set into two subsets. The algorithm
is applied iteratively on the subsets to obtain the desired number of bins.

Like other composition-based methods, it seeks to distinguish different genomes
based on their characteristic DNA compositional patterns, termed ”signatures.”
For example, one of the most commonly used metrics measure the frequency
of occurrence of Kmers (oligonucleotides of length K) in a sequence. Biases in
Kmer frequencies were analyzed extensively by Karlin and colleagues (e.g. [14]).

These biases have been extensively used for binning metagenomic sequences.
For instance, TETRA[11] uses z-scores from tetramer frequencies to classify
metagenomic sequences. A related program, MetaClust uses a combination of
Kmer frequency metrics to score metagenomic sequences and was used to clas-
sify sequences from the endosymbionts of a gutless worm [15]. However, the final
assignment of sequences to bins in both these programs involve a significant
manual component. Another class of methods [12,13] train their classifier using
existing whole genome sequences and these classifiers can be even used to classify
sequences from closely related novel genomes. However, as we discuss later, a seri-
ous drawback of these methods is that the pool of available genomes is very small
and biased. Finally, the interpolated Markov model of the genefinder Glimmer
can be used for binning in specific cases and has been used to distinguish sym-
biont sequences from the host sequences [16]. Unfortunately, these composition-
based binning algorithms do not perform well on short fragments. Poor per-
formance in shorter fragments is caused by the noise associated with the high
dimensionality of the feature space and the associated curse of dimensionality.
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Fig. 2. Figure illustrating the separation of sequences according to species by using
PCA. This data set contains sequences from two alphaproteobacteria, Gluconobacter
oxydans (in red) and Rhodospirillum rubrum (in blue), which have GC content of 0.65
and 0.61, respectively. The data set is projected into the first two principal components.

When measuring the frequency of Kmers, the feature vector has 4K dimensions
(associated with measuring the frequencies of 4K possible oligonucleotides of
length K). Thus, for instance, if one looks at the frequency of hexamers in 2kb
fragments, the dimensionality of the feature space is twice the length of the
sequenced fragments.

CompostBin employs a new approach to deal with the noise arising from
the high dimensionality of the feature vector (Figure 1). Instead of treating all
components of the noisy feature space equally, we extract the most ”important”
directions and use these components for distinguishing between taxa. We use a
weighted version of the standard Principal Component Analysis technique[17]
to extract a “meaningful” lower dimensional sub-space. As shown in Figure 2,
the algorithm can distinguish sequences from various species using just these
first three principal components. The normalized cut clustering algorithm used
to classify sequences into taxon-specific bins works on the lower dimensional
sub-space and is guided by information from phylogenetic markers. We tested
CompostBin on a wide variety of data sets and demonstrated that it is highly
accurate in separating sequences into taxon-specific bins, even when processing
raw reads of short sequences.

2 Methods

2.1 The CompostBin Algorithm

The input to CompostBin consists of raw sequence reads, along with mate pair
information and the taxonomic assignment of reads containing phylogenetic
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markers. Either the number of abundant species or the number of taxonomic
groups in the data set is provided to help the algorithm determine the number
of bins in the output. This information can be obtained by analyzing the reads
containing genes for ribosomal RNA or other marker genes [7]. In the simulation
experiments, the number of bins is set to the number of species in the simulation.
An overview of the algorithm is provided in Figure 1.

Feature Extraction by weighted PCA: Mate pairs are joined together and
treated as a single sequence because they are highly likely to have originated from
the same organism. Each sequence being analyzed is initially represented as a
4, 096-dimensional feature vector, with each component denoting the frequency
of one of the 4, 096 hexamers. A weighted version of Principal Component Anal-
ysis (PCA) is then used to decrease the noise inherent in this high-dimensional
data set by identifying the principal components of the feature matrix A.

In the standard form of Principal Component Analysis, the principal com-
ponents are the orthogonal directions with highest variance and correspond to
eigenvectors of the covariance matrix. If the relative abundance of various species
is skewed, standard PCA might not be suitable for distinguishing the species.
This is because the within species variance in the more abundant species might
be overwhelming compared to between species variance and therefore the prin-
cipal components cannot be used to distinguish between species. Therefore, we
try to take the relative abundance into account in a weighting scheme that is
used to normalize the effect of skewed relative abundance. We use a generalized
variant of Principal Component Analysis that assigns a weight to each sequence
and uses these weights to calculate the weighted covariance matrix of the data
set. The principal components are the eigenvectors of this weighted covariance
matrix. Further details about this generalization of PCA can be obtained from
Chapter 14 of the book by Jolliffe [17].

We use a novel weighting scheme where the weight of each sequence is cal-
culated by measuring its overlap with other reads in the data set. For each
sequence, BLAT [18] was used to find overlaps with other sequences in the data
set. This overlap information is then used to calculate the number of times a
particular base in the sequence has been sequenced and thus estimate the cover-
age of the sequence (as defined in [19]). The weight of each sequence is set to the
inverse of its coverage. The rationale behind this weighting strategy is that the
sequences from the more abundant species will have higher coverage and thus
will be weighed down. In fact, if there are sufficient number of sequences and
the genome sizes of all species in the sample are equal, the average weight of the
sequences from a particular species will be inversely proportional to the relative
abundance of that species.

Determining the number of principal components required for analysis is cru-
cial to the success of the algorithm. In our case, use of just the first three principal
components is adequate to separate sequences from different species. For exam-
ple, Figure 2 shows that for Data Set S5 which contains two alphaproteobacteria
with similar GC content, almost complete separation is achieved by using only
the first two principal components.
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Fig. 3. Pseudocode describing the bisection and binning algorithm. A is the N ×4, 096
feature matrix, with each 4, 096-length feature vector representing a sequence. L con-
tains labeling information obtained from phylogenetic markers, and K is the the desired
number of bins.

Bisection by Normalized Cuts: The projection of the data matrix A into the
first three principal components produces an N ×3 data matrix Ap. A clustering
algorithm is then applied to Ap to separate the N points into taxon-specific
bins. A bisection algorithm is used to bisect a data set into two bins as detailed
below. If the data set is to be divided into more than two bins, this algorithm
is used recursively. Figure 3(a) shows pseudocode for the bisection algorithm.
Given the projected matrix and phylogenetic markers as inputs, the procedure
first computes the weighted graph over the sequences where the edge weights
measure the similarity between corresponding sequences. Then, the normalized
cut clustering algorithm [22] is employed to bisect the graph such that sequences
from the same taxonomic group stay together.

Computation of Similarity Measure: As described earlier, the 4, 096-dimensional
feature vector is projected into the first three principal components, and each se-
quence is represented as a point in 3-dimensional space. The clustering algorithm
initially creates a 6-nearest neighbor graph G(V, E, W ) to capture the structure
of the data set. The vertices in V correspond to the sequences, and an edge
(v1, v2) ∈ E between two sequences v1 and v2 exists only if one of the sequences
is a 6-nearest neighbor of the other in Euclidean space. The nearest-neighbor
graph reveals the global relation of the data set through this easily-computable
local metric [20]. Each edge between two neighboring sequences v1 and v2 is
weighted by their similarity w(v1, v2), which is defined as the exponential in-
verse of their normalized Euclidean distance:

w(v1, v2) =

{
e−

d(v1,v2)
α if (v1, v2) ∈ E,

0 otherwise,
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where d(v1, v2) is the Euclidean distance between v1 and v2, and α =
max(v,u)∈E d(v, u).

Semi-supervision Using Phylogenetic Markers: Marker genes, such as the genes
that code for ribosomal proteins, are one of the most reliable tools for phylo-
genetically assigning reads to bins. Since these marker genes appear in only a
small fraction of the reads, we used taxonomic information from 31 phylogenetic
markers [21] to improve the clustering algorithm. This taxonomic information
is provided to the binning algorithm as a label for each sequence, with each la-
bel corresponding to a single taxonomic group. Sequences without a taxonomic
assignment are assigned the label ”unknown.”

A semi-supervised approach is then employed to incorporate this information
into the clustering algorithm. Two vertices v1 and v2 are connected with the
maximum edge weight (i.e., w(v1, v2) = 1) if the corresponding sequences are
from the same taxonomic group, and the edge between v1 and v2 is removed
(i.e., w(v1, v2) = 0) if they are from different groups.

Normalized Cut and its approximation: Given a weighted graph G(V, E, W ), the
association between two subsets X and Y of V W (X, Y ) is defined as the total
weight of the edges connecting X and Y : W (X, Y ) =

∑
x∈X,y∈Y w(x, y). The

normalized cut algorithm bisects V into two disjoint subsets U and Ū such that
the association within each cluster is large while the association between clusters
is small, i.e., the normalized cut value NCut is minimized, where

NCut =
W (U, Ū)
W (U, V )

+
W (U, Ū)
W (Ū , V )

.

Since finding the exact solution to minimize NCut is an NP-hard problem, an
approximate solution is computed using a spectral analysis of the Laplacian
matrix of the graph [22].

Generalization to Multiple Bins: If the data set needs to be divided into
more than two bins, an iterative algorithm is used, where the bins are bisected
recursively until the required number of bins is obtained. Figure 3(b) shows the
pseudocode describing the algorithm. A set of bins, B is kept, where each element
of B is a set of data points belonging to the same bin. The set B is initialized
to be the singleton set {A}, where A contains all points in the data set. At each
subsequent step of the algorithm, the bin with the lowest normalized cut value
is bisected. The bisection continues until either B has the required number of
bins or we no longer have a good bisection as measured by the normalized cut
value.

2.2 Generation of Test Sets

In our experiments, we simulated the sequencing of low- to medium-complexity
communities in which the number of species ranged from two to six and their
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Table 1. Test Data Sets and Binning Accuracy

ID Species Ratio
Taxonomic

Error
Differences

S1 Bacillus halodurans [0.44] & Bacillus subtilis [0.44] 1:1 Species 6.48%

S2 Gluconobacter oxydans [0.61] & Granulobacter bethesdensis [0.59] 1:1 Genus 3.39%

S3 Escherichia coli [0.51] & Yersinia pestis [0.48] 1:1 Genus 10.0%

S4 Rhodopirellula baltica [0.55] & Blastopirellula marina [0.57] 1:1 Genus 2.05%

S5 Bacillus anthracis [0.35] & Listeria monocytogenes [0.38] 1:2 Family 5.49%

S6
Methanocaldococcus jannaschii [0.31] &

1:1 Family 0.51%
Methanococcus mariplaudis [0.33]

S7 Thermofilum pendens [0.58] & Pyrobaculum aerophilum[0.51] 1:1 Family 0.28%

S8 Gluconobacter oxydans [0.61] & Rhodospirillum rubrum [0.65] 1:1 Order 0.98%

S9
Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59], &

1:1:8
Family

7.7%
Nitrobacter hamburgensis [0.62] Order

S10
Escherichia coli [0.51], Pseudomonas putida [0.62], &

1:1:8
Order

1.96%
Bacillus anthracis [0.35] Phylum

S11
Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59],

1:1:4:4
Family

4.44%
Nitrobacter hamburgensis [0.62], & Rhodospirillum rubrum [0.65] Order

S12
Escherichia coli [0.51], Pseudomonas putida [0.62], 1:1: Species, Order

4.52%Thermofilum pendens [0.58], Pyrobaculum aerophilum [0.51], 1:1: Family, Phylum
Bacillus anthracis [0.35], & Bacillus subtilis [0.44] 2:14 Kingdom

R1 Glassy-winged sharpshooter endosymbionts - - 9.04%

relative abundance ranged from 1:1 to 1:14. ReadSim [23] was used to simu-
late paired-end Sanger sequencing from isolate genomes with an average read
length of 1, 000 bp. The reads from various isolates were then combined in ra-
tios corresponding to their relative species abundance in the data set to yield a
simulated metagenomic data set of known composition. The 12 simulated data
sets are described in Table 1. The GC content of each species’ genome is listed
in squared-brackets and can be used for assessing the diversity of DNA com-
position. The taxonomic levels are obtained from IMG[24] and can be used for
assessing the phylogenetic diversity.

In addition, we tested the algorithm on a metagenomic data set containing
reads obtained from gut bacteriocytes of the glassy-winged sharpshooter. The
original study [7] had used phylogenetic markers to classify the sequence reads
into three bins: reads from Baumannia cicadellinicola in Bin 1, reads from Sulcia
muelleri in Bin 2, and reads from the host and miscellaneous unclassified reads
in Bin 3. Due to the heterogeneity of Bin 3, the accuracy of the algorithm was
tested only on its ability to distinguish between reads from Bin 1 and Bin 2.

3 Results

CompostBin was coded in C and Matlab. It is publicly available for download
from http://bobcat.genomecenter.ucdavis.edu/souravc/compostbin/.
CompostBin was tested on a variety of low-to-medium complexity data-sets.
Details of the test data sets and CompostBin’s performance are provided in the
next two sections.

http://bobcat.genomecenter.ucdavis.edu/souravc/compostbin/
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3.1 Test Data Sets

Metagenomics being a relatively new field, very few standard data sets for testing
binning algorithms have been developed [25]. One obstacle to their development
has been that the ”true” solution is still unknown for the sequence data generated
by most metagenomic studies. To test the accuracy of a binning algorithm,
one can instead simulate the shotgun sequences that would be obtained from a
combination of organisms of known genome sequences. Simulated sequence reads
from multiple genomes were pooled to simulate the challenges of metagenomic
sequencing. When designing our simulated data sets, we took into account several
variables that affect the difficulty of binning: the number of species in the sample,
their relative abundance, their phylogenetic diversity, and the differences in GC
content between genomes.

We also tested CompostBin on a publicly available metagenomic data set
whose solution is well accepted. This data Set (R1) contains sequence reads
obtained from gut bacteriocytes of the glassy-winged sharpshooter, Homalodisca
coagulata. The data sets used for testing CompostBin are described in Table 1,
and experimental details are provided in Methods.

3.2 Performance

The most self-evident way of measuring error rates would be to report the per-
centage of reads misclassified by the algorithm. However, this method can arti-
ficially decrease the error-rates of data sets with skewed relative abundance of
species. For example, consider a data set consisting of 90 sequences from species
1 and 10 sequences from species 2. If we classify 5 sequences of species 2 in-
accurately, the error rate would be just 5%, even though 50% of the sequences
have been misclassified. Therefore, we report a normalized error rate, where we
compute the error rate for each bin and the error rate for the whole data set is
the mean of these error rates.

CompostBin’s accuracy in classifying reads from the test data sets is reported
in Table 1. The normalized error rates is bounded by 10% in all the 13 data sets.
The error rates are correlated mostly with the phylogenetic distances between
the species and the relative abundance of species. For example, the highest error
rates measured was 10% for Data Set S3 (sequences from E. coli and Y. pestis),
where the phylogenetic distances between the genomes is small. Similarly, the
error rates are comparatively high in S9 because there are very few sequences
from the less abundant Gluconobacter oxydans and Granulobacter bethesdensis,
which are also phylogenetically very close.

4 Discussion

In this paper, we report the development of CompopstBin, a new algorithm
for the taxonomic binning problem associated with the analysis of metagenomic
data. The principal novel aspect of our method is the observation that the high-
dimensional Kmer frequency data for short sequences is noisy, and that one
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can deal with the noise by projecting the data into a carefully chosen lower-
dimensional space. We illustrate that CompostBin can accurately classify se-
quences from low to medium complexity data sets into taxon-specific bins.

Unlike previous methods, CompostBin doesn’t require training of the al-
gorithm with data from sequenced genomes. This is critical for success when
binning environmental shotgun data because more than 99.9% of microbes are
currently unculturable and unlikely to be represented in the training data set.
Even closely related organisms living in different environments may have diver-
gent genome signatures. For example, Bacillus anthracis and Bacillus subtilis
have widely differing GC content and genome signatures. One should also keep
in mind that the currently available genomes are not a phylogenetically ran-
dom sample, but rather are a highly biased collection of biomedically interesting
genomes combined with an overabundance of strains of model organisms such
as Escherichia coli.

We used the frequencies of hexamers (oligonucleotides of length 6) as the
metric for our analysis of short sequences. The choice of hexamers was moti-
vated by both computational and biological rationale. Since the length of the
feature vector for analyzing Kmers is O(4K), both the memory and the CPU
requirements of the algorithm become infeasible for large data sets when K is
greater than six. Using hexamers is biologically advantageous in that, being the
length of two codons, their frequencies can capture biases in codon usage. Simi-
larly, hexamer frequencies can detect genomic biases resulting from the observed
avoidance of specific palindromic words of lengths 4 and 6 from genomes due to
the presence of restriction enzymes [26]. It should be noted that the frequencies
of lower-length words are linear combinations of hexamer frequencies. For exam-
ple: f(AAAAA) = f(AAAAAA)+f(AAAAAC)+f(AAAAAG)+f(AAAAAT ).
Thus, our PCA-based method implicitly takes into account any biases in the fre-
quencies of lower length words.

CompostBin is a work in progress, with several refinements of the algorithm
planned for the future. Our method of analysis is based primarily on DNA com-
position metrics and, like all such methods, it cannot distinguish between organ-
isms unless their DNA compositions are sufficiently divergent. Thus, our method
would probably be unable to distinguish between strains of the same species.
We believe that an ideal binning algorithm would also utilize additional types
of information, such as assembly (depth of coverage and overlap information)
and population genetics parameters. We have taken an initial step in this di-
rection by using taxonomic information from phylogenetic markers to guide the
clustering algorithm. We intend to develop other hybrid methods in the future
that can tackle the very formidable problem of classifying sequences in complex
metagenomic communities.
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Abstract. Clusters of genes that evolved from single progenitors via re-
peated segmental duplications present significant challenges to the gen-
eration of a truly complete human genome sequence. Such clusters can
confound both accurate sequence assembly and downstream computa-
tional analysis, yet they represent a hotbed of functional innovation,
making them of extreme interest. We have developed an algorithm for
reconstructing the evolutionary history of gene clusters using only human
genomic sequence data. This method allows the tempo of large-scale evo-
lutionary events in human gene clusters to be estimated, which in turn
will facilitate primate comparative sequencing studies that will aim to
reconstruct their evolutionary history more fully.

1 Introduction

Gene clusters in a genome provide substrates for genomic innovation, as gene
duplication is often followed by functional diversification [1]. Also, genomic dele-
tions associated with nearby segmental duplications cause several human genetic
diseases [2]. One surprising discovery emerging from the sequencing of the hu-
man genome was the large extent of recent duplication in the human lineage.
Analysis of the human genome sequence revealed that 5% consists of recent
duplications [3]; subsequent studies have further found extensive copy-number
variation among individuals [4].

Recently duplicated genomic segments are exceedingly difficult to sequence
accurately and completely. Even the “finished” human genome sequence [5] con-
tains about 300 gaps, many of which reflect regions harboring nearly identi-
cal tandemly duplicated segments. The situation with mammalian genomes se-
quenced by a whole-genome shotgun sequencing strategy [6] is typically much
worse, with recently duplicated segments often grossly misassembled. The de-
velopment of computational methods for analyzing gene clusters has therefore
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Fig. 1. Dot-plots of self-alignments of the human UGT2 cluster exceeding thresholds of
percent identity chosen to roughly correspond to the divergence of the human lineage
from great apes (98%), old-world monkeys (93%), new-world monkeys (89%), prosimi-
ans (85%) and dogs and other laurasiatherians (80%). We estimate that 2, 27, 51, 59,
and 82 duplications respectively are needed to produce the current configuration from a
duplication-free sequence (no deletions were predicted), suggesting a sustained growth
of the cluster along the human lineage, with a burst of activity around the time that
humans and apes diverged from old-world monkeys. The sequence alignments were
computed using blastz [11] and post-processed as described in the text.

lagged far behind that for analyzing single-copy regions, due in part to the lack
of accurate sequence data. Even the basic problem of formally defining what
is meant by a multi-species sequence “alignment” of a region harboring a gene
cluster (much less actually generating an accurate alignment of such a region)
has only recently been addressed [7,8]. While the recent testing of several align-
ment methods with comparative sequence data representing 1% of the human
genome [9] suggested adequate performance, a closer examination of the resulting
alignments for those regions containing tandem gene clusters (e.g., both globin
clusters) showed significant imperfections [10].

Here, we describe an algorithm for producing a theoretical ancestral sequence
and a parsimonious set of duplication and deletion events explaining the ob-
served state of a gene cluster. We start by setting a lower bound for the percent
identity in self-alignments of a gene cluster (e.g., 93%; Fig.1). This defines the
set of duplications that have occurred in a given time interval (such as the last 25
million years) and that have not subsequently been deleted. The ancestral config-
uration of each gene cluster is then deduced at several evolutionary points, and
predictions are made about the parsimonious sets of duplications and deletions
that converted the ancestral configuration into the extant one.

Similar problems have been studied before. Elemento et al. [12] and Lajoie et
al. [13] developed algorithms for reconstruction of evolutionary histories of gene
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families allowing tandem duplications and inversions. Their basic assumption
is that a gene is always duplicated as a whole unit and duplicated copies are
always immediately adjacent to their sources. These assumptions are routinely
violated in the real data, and thus their methods have limited applicability in
genome-wide studies. In addition, Elemento et al. do not consider inversions,
while Lajoie et al. only consider single gene duplications. Jiang et al. [14] re-
cently used methods developed for repeat identification to infer ancestral “core
duplicated elements”. Their results provide useful insights about duplication
histories, but without detailed reconstructions. In this paper, we aim to pro-
vide event-by-event reconstructions of duplication and deletion histories using
local sequence alignments, allowing both tandem and interspersed duplications
(potentially with inversions).

We have applied our algorithm to 25 human gene clusters, in each case pre-
dicting the evolutionary scenarios corresponding to five major divergence points
along the lineage leading to human.1 Our results provide distributions of the
predicted sizes of rearranged segments. Also, using percent-identity thresholds
associated with large increases in the estimated number of duplications and dele-
tions, we can estimate dates of rapid cluster expansion.

In future work, we plan to use such estimates to examine a large number of
human gene clusters in conjunction with experimental data on gene-family size
in various primates, as generated by array comparative genome hybridization
(aCGH) [15,16]. Our aim is to design a larger primate comparative sequencing
project that will more deeply examine the evolutionary history of a set of human
gene clusters. In turn, the availability of such comparative sequence data should
provide important insights about primate genome evolution and catalyze the
development of computational methods for analyzing gene clusters.

2 Problem Statement and Data Preparation

Our goal is to reconstruct the evolutionary history that has generated a gene clus-
ter in the human genome. Given the cluster’s DNA sequence in a single species,
we first identify all local self-alignments in both forward and reverse-complement
orientations using blastz [11]. We can visualize the identified alignments using
a dot-plot, and our goal is equivalent to providing a set of instructions for gen-
erating the observed dot-plot from a duplication-free sequence using a series of
evolutionary events (duplications and deletions).

We preprocess the initial dot-plot to satisfy the transitive closure property.
That is, if the dot-plot contains local alignments for region A and B, and for
region B and C, then the dot-plot must also contain a local alignment for region
A and C. We also maximize each alignment, i.e., we ensure that the alignments
cannot be extended at either end. Finally, a local alignment can be broken into
smaller pieces by mutations and interspersed repeats. We have developed an

1 We have also extended this analysis to 165 biomedically interesting clusters and the
results are presented in Appendix C.
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accurate algorithm to determine the transitive closure of a dot-plot and to chain
alignments together if they are broken by these events.

Since after preprocessing the alignments are maximized and have the tran-
sitive closure property, we can represent the original sequence by a sequence
of atomic segments that are separated by boundaries of the alignment (atomic
boundaries). We will denote the atomic segments by letters a, b, c, . . ., and their
reverse complements by a, b, c, . . .. The atomic segments that are aligned to each
other will have the same letter with different subscripts (e.g., xa1yb1c1zc2a2b2w
has 10 atomic segments, two of which are reverse complements; a1 and a2 are
aligned, and so are b1 and b2, and c1 and c2).

We say that the two adjacent atomic segments xy can be collapsed into a
single atomic segment z, if y is always immediately preceded by x, and x is always
immediately followed by y (we also consider x and y in the reverse orientation).
In such case, we can replace all occurrences of xy with z, and all occurrences of
yx with z. Since initially all alignments are maximized, our initial representation
will have no collapsible atomic segments.

We will be looking at sequences of duplication events in reversed order of
time, i.e., starting from the latest duplication. A duplication event copies region
P of the sequence (which can consists of several consecutive atomic segments) to
another location (possibly with reversal). Thus, we can always identify the latest
duplication by a pair of regions (P, D), where D is a region identical to P except
for atomic segment subscripts and perhaps orientation (e.g., (a1b1, b2a4)). If
correctly identified, we can unwind a duplication (P, D) by removing segment D
from the sequence, then collapsing all collapsible atomic segments. By unwinding
all duplications, we obtain an atomic segment representation of the ancestral
sequence. We are now ready to state our problem formally.

Definition 1 (Parsimonious reconstruction of duplicationevents).Given
a representation of the present-day DNA sequence by atomic segments, find the
shortest sequence of duplication events (P1, D1), (P2, D2), . . . , (Pk, Dk) such that
if we unwind these duplications, we obtain a sequence containing only a single
atomic segment.

3 Basic Combinatorial Algorithm

We first present a simple combinatorial algorithm that can correctly reconstruct
all the duplication events (except for their order and orientation) under the
following assumptions:

(1) A duplication event copies (possibly with reversal) a region of the sequence
to any location except inside the originating region.

(2) The sequence evolves only by duplications (including duplications with re-
versal and tandem duplications). In particular, there are no deletions.

(3) No atomic boundaries are reused as duplication boundaries, except in tan-
dem duplications. Here, boundaries of two aligned atomic segments (e.g. a1
and a2) are considered to be the same atomic boundary.
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These assumptions are much more permissible than those of Elemento et al.
[12], yet they are still often violated in the real data. Therefore, we also offer a
more practical solution based on the sequential importance sampling in the next
section. Note that assumption (3) is a stronger version of the commonly used
no-breakpoint-reuse assumption [17] and can be justified by the usual arguments.

Definition 2 (Candidate alignments). We call a pair of regions (P, D) a
candidate alignment if P and D are identical except for subscripts and orienta-
tion, and if, after removing D, the atomic segment pair flanking D and the two
pairs flanking each boundary of P can be collapsed.

For example, for xa1yb1c1zc2a2b2w, the alignment (a1, a2) is a candidate align-
ment. This is because after removing a2, the flanking atomic segment pair, c2b2
can be collapsed into a single atomic segment. Additionally, the atomic segment
pairs flanking boundaries of a1 (xa1 and a1y) can also be collapsed.

Lemma 1. In a sequence of atomic segments that arose by the process satisfying
the assumptions (1)-(3), the latest duplication is always among the candidate
alignments.

Lemma 1 suggests a simple and efficient basic algorithm for reconstructing a
sequence of duplications:

1. Find a candidate alignment (P, D).
2. Output (P, D) as the latest duplication and unwind (P, D) by removing D

from the sequence and collapsing all collapsible atomic segments.
3. Repeat until there is only a single atomic segment left.

Depending on the choice of candidate alignments in step 1, we can produce
several duplication histories that could lead to the present-day sequence as rep-
resented by the sequence of atomic segments. Lemma 1 shows that one of those
possible solutions is the real sequence of duplications. We can further show that
all the other solutions produced by the basic algorithm are equally good solutions
of the problem (proof relegated to Appendix A and B):

Theorem 1. If assumptions (1)-(3) are met then the basic algorithm will al-
ways succesfully recover a sequence of duplications that will collapse the whole
sequence into a single atomic segment, regardless of the order of choice of candi-
date alignments in step 1. Moreover, all of these solutions have the same number
of events and they represent all parsimonious solutions of the duplication event
reconstruction problem.

For example, to apply the basic algoritm to xa1yb1c1zc2a2b2w, we note that
alignment (a1, a2) is the only candidate alignment; (b1, b2) and (c1, c2) do not
satisfy the definition of candidate alignment at this moment. We remove a2 to
obtain a new sequence xa1yb1c1zc2b2w, and we remove the corresponding local
alignment (a1, a2). We collapse the new sequence into a simpler form ue1ze2w,
where u = xa1y,e1 = b1c1, e2 = c2b2. Now only one local alignment remains,
which can be resolved by repeating the above procedure. Since both e1 and e2
can be deleted, deleting either of them leads to a duplication-free sequence with
different configurations.
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4 Sequential Importance Sampling

The assumptions required for the basic algorithm to work are often violated in
practice. In particular, large scale deletions in the gene clusters violating assump-
tion (2) are likely to occur, and atomic boundary reuses violating assumption
(3) are not uncommon. Once a boundary reuse occurs, regardless of its causes,
we can no longer reconstruct the correct evolution history or even predict the
true number of events. Even if assumptions (1)-(3) are satisfied, there are al-
ways multiple ways of reconstructing the history of a gene cluster. The number
of the events will be the same, but the order of the events and the ancestral
duplication-free sequence will be different among solutions. To make inference
about the evolution history of a gene cluster, we need to summarize the feature
of interest from all possible histories. However, enumerating all possible histories
would be computationally expensive.

To address the atomic boundary reuse and to model deletions, we propose a
stochastic algorithm that first samples many possible histories of a gene cluster
from a target distribution, and then makes inference of evolutionary features
from the collected samples. We use the target distribution to define the scope of
histories and their relative contributions. For example, to make inference exclu-
sively from histories that have no atomic boundary reuse, the target distribution
can be uniform on all such histories and 0 otherwise. In practice, we will use
more flexible target distributions to accommodate practical complications. To
reconstruct a possible history from the target distribution, we use sequential im-
portance sampling (SIS) [18]. SIS sequentially samples one event at a time from
a pool of possible events until all local alignments in a dot-plot are resolved. We
represent a history of the gene cluster by a series of T events OT = (O1, . . . , OT )
reconstructed by SIS in reverse order of time. Here, both OT and T are unknown.
The basic algorithm is a special case in which every reconstructed event Oi cor-
responds to a candidate alignment. By repeating the SIS procedure, we obtain
many possible histories. We then summarize the desired features by taking a
weighted average, with weights calculated as the difference between the target
distribution and the actual sampling distribution.

Given a gene cluster X , we specify the target distribution of histories to be
π(OT | X) ∝ eaT+br, where T is the number of events, r is the number of reused
atomic boundaries, and a, b are two penalty parameters. We chose a = b = −5;
thus histories with fewer evolutionary events and boundary reuses will contribute
more to the inference. The penalty (−5) was chosen to allow suboptimal solu-
tions. When the penalty approaches −∞, only the most parsimonious solutions
with the least boundary reuse will influence the result. Note that we only need
to specify the target distribution up to a normalizing constant.

Directly sampling histories from the target distribution is often intractable,
and thus SIS is used. Suppose we already reconstructed t most recent events,
we sample the next event Ot+1 from a trial distribution gt(Ot+1 | Ot). Our goal
in choosing the trial distribution is to allow easy sampling while resembling the
target distribution as closely as possible. By sampling events until all alignments
are resolved, we obtain a possible history OT , and by repeating this procedure we
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collect many possible histories. However, the collected histories will not follow
the target distribution π(OT | X), but instead

∏T−1
t=0 gt(Ot+1 | Ot). To correct

this bias, we calculate weight w = π(OT | X)/
∏T−1

t=0 gt(Ot+1 | Ot) determining
how much reliance we shall put on each reconstructed history. Finally, given m

histories O(1)
T1

, O(2)
T2

, . . . , O(m)
Tm

and their weights w1, . . . , wm, we make a statistical
inference about evolutionary features by approximating the expectation of any
function u(OT ) of histories as E[u(OT )] =

(∑m
i=1 wiu(O(i)

Ti
)
)

/ (
∑m

i=1 wi). For
example, u(OT ) = T gives the number of events.

The choice of the trial distribution directly determines the efficiency of his-
tory reconstruction. For example, if assumptions (1)-(3) are met, we can let
gt(Ot+1 | Ot) be uniform on all events Ot+1 that involve a candidate alignment
and 0 on all other events. As a result, the SIS algorithm will efficiently and
precisely produce the same number of events as the basic algorithm.

We used simulations to choose a set of good trial distributions. In particular,
we used gt(Ot+1 | Ot) = (L−�)−k−2f(s, δ)/Z for duplication, and gt(Ot+1 | Ot) =
(L + �)−1e−�/λf(s, δ)/Z for deletion. For duplication Ot+1 = (P, D), k ∈ {0, 1,
2, 3} denotes the number of reused atomic boundaries, i.e. the number of non-
collapsible atomic segment pairs that flank D and the boundaries of P after
removing D. Furthermore, L and � denote the current sequence length and the
duplication size, respectively. For deletion, � and L denote the actual and the
expected deletion size, respectively. We only consider deletions without atomic
boundary reuse, and λ = 10000. Intuitively, we prefer to sample longer dupli-
cations and shorter deletions in each SIS step. We also prefer alignments with
higher percent identity and those that resolve more local alignments, which is
represented by function f(s, δ) = e(δ−(100−s))/5 of the alignment percentage
identity s ∈ [0, 100] and the number δ of alignments resolved by Ot+1.

We only consider a deletion event if the atomic segment pair flanking a deletion
site appears elsewhere in the sequence. Otherwise, no deletion information is
available. For example, suppose a1b1 flanks a deletion site, and we observe a2
and b2 elsewhere, then the region between a2 and b2 can be inserted in between
a1b1 to unwind a deletion. The relative orientation between a1 and b1 must match
that between a2 and b2, and a1b1 must not be located between a2 and b2. If all
conditions are met, we calculate the percentage identity s from the flanking
alignments (a1, a2) and (b1, b2), and the deletion event can be reconstructed.
Finally, Z denotes the normalizing constant for the trial distribution. Compared
with the normalizing constant for the target distribution, Z is much easier to
calculate, because we can easily enumerate all possible events given Ot.

5 Application to Human Gene Clusters

We have identified 457 duplicated regions in the human genome assembly hg18,
based on alignments from UCSC browser self-chains [19] of length at least 500 bp,
with at least 70% identity, and with both segments located within 500 Kbp of
each other. The regions were defined by clustering overlapping duplications; only
regions of substantial size (at least 50 Kbp) and non-trivial complexity (at least
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Table 1. Estimated numbers of duplications and deletions in 25 human gene clusters
following divergence from great apes (GA), old world monkeys (OWM), new world
monkeys (NWM), prosimians (LG), and dogs and other laurasiatherians (DOG)

Name (possible disease association) Location GA OWM NWM LG DOG gaps
PRAMEF chr1p36.21 7 23 32 48 63 3
HIST2H (asthma; atrial fibrillation) chr1q21.1-2 21 41 68 101 107 6
FCGR (systemic lupus erythematosus) chr1q23.3 3 3 5 6 6 0
CFH (macular degeneration) chr1q31.1 4 6 18 22 25 0
CCDC;CFC1 (left-right laterality defects) chr2q21.1 3 5 12 12 15 0
UGT1A (neonatal hyperbilirubinemia) chr2q37.1 0 2 13 17 23 0
UGT2 (prostate cancer) chr4q13.2-3 2 27 51 59 82 1
SMA;SMN (motor neuron disease) chr5q13.2 23 25 25 25 25 0
HIST1H;BTN (coronary heart disease) chr6p22.2-1 0 1 9 19 35 0
HLA;TRIM (multiple sclerosis) chr6p22.1-21.33 0 2 29 45 58 0
HLA;BAT (type 1 diabetes) chr6p21.33 0 4 12 17 28 0
HLA-D (rheumatoid arthritis) chr6p21.32 0 1 14 21 26 0
HLA-D;COL11A (acute lymphoblastic leukemia) chr6p21.32 0 0 0 7 14 0
CCL;CTF2;PMS2 (rheumatoid arthritis) chr7q11.23 21 31 38 40 45 1
IFN (cervical cancer) chr9p21.3 0 11 15 20 41 0
SFTPA (tuberculosis) chr10q22.3 6 7 8 10 12 1
OR5;HB;TRIM (thalassemia; sickle cell anemia) chr11p15.4 4 6 10 10 27 0
KLR (immunological diseases) chr12p13.2 0 1 1 2 3 0
CHRNA;KIAA (schizophrenia) chr15q13.3-1 15 38 47 56 58 2
CYP1;DKFZ (lung cancer; macular degeneration) chr15q24.1-3 2 14 23 26 28 0
LOC (rheumatoid arthritis) chr16p11.2 3 6 6 6 8 0
NF1;EVI2 (intestinal neuronal dysplasia; autism) chr17q11.2 3 9 10 10 10 0
CYP2 (lung cancer; esophageal cancer) chr19q13.2 0 5 14 17 19 0
KIR;LILR (hepatitis C; liver cancer) chr19q13.42 0 16 30 43 65 0
WFDC chr20q13.12 0 0 0 1 2 0

two duplications) were retained. These regions cover ∼215 Mbp (7%) of the
human genome. We targeted 165 biomedically interesting clusters (∼111 Mbp)
that either overlap genes associated with a human disease (genetic association
database [20]), or contain groups of similarly named genes [21].

Clusters were processed through a pipeline that included: (1) self-alignment
by blastz; (2) production of subsets of the alignments roughly corresponding
to duplications in the human lineage after divergence from great apes (≥ 98%
identity), old-world monkeys (93%), new-world monkeys (89%), lemurs (85%),
and dogs (80%); (3) adjusting alignment endpoints to avoid predicting spurious
tiny duplications; (4) chaining (i.e., local alignments of similar percent identity
broken by small insertions/deletions or post-duplication insertion of interspersed
repeats. For each of the resulting 825 combinations of gene cluster and divergence
threshold, we estimated the number of duplications or deletions in the human
lineage subsequent to the divergence. Selection of the results is shown in Table 1.

Table 1 reveals large differences in the evolutionary tempo among the gene
clusters. For instance, the cluster of SMN genes appears to have been quiescent
through almost all of primate evolution, then experienced an explosion of dupli-
cations in the last six million years. On the other hand, the cluster containing
HLA-D appears to have changed little for 50 million years, while that contain-
ing UGT2 may have accumulated duplications fairly consistently throughout
primate evolution, but with a surge of activity about 10-40 MYA.

We also estimated the size, spacing, and orientation of duplication events.
Fig.2 shows estimated distributions of the size of the duplicated region and the
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Fig. 2. Distribution of duplication lengths (left) and distances between the original
and duplicate segments (right) for duplications with at least 93% sequence identity

spacing between the original and duplicated segments for duplications with at
least 93% identity. For those duplication events, the copy was in the reverse
orientation relative to the original segment in 39% of the cases.

We used these observed distributions and inversion rates to simulate the evo-
lution of gene clusters, providing data to evaluate our pipeline. Starting from
a 500 Kbp sequence, we simulated the formation of gene clusters via 10-100
duplications. For each event, we chose a random left end and length from the
observed distribution. The procedure then chose an insertion point at a distance
selected from the observed spacing distribution, and a copy of the “source” in-
terval (or its reverse complement at a frequency of 0.39) was inserted. We also
simulated deletions with frequency equal to 2% of the duplication rate (the ob-
served frequency), using random left ends and length drawn from the empirical
distribution. By simulating N = 10, 20, 30, . . . , 100 events, we created 10 gene
clusters for each N . The results of our pipeline were compared to the actual num-
ber of simulated events. Fig.3 shows that our algorithm accurately predicted the
true number of events for the simulated gene clusters. The predicted numbers of
events were slightly larger (4% on average) than the true number of events.

6 Discussion

We have designed and implemented a method to predict the duplication history
of a gene cluster using sequence data from only one species. Our goal was to
measure the tempo of cluster expansions throughout primate evolution for every
human gene cluster, so as to help prioritize the selection of notably interesting
gene clusters for more detailed comparative genomics studies. Our future plans
include performing comparative sequence analysis of a series of human gene
clusters, which will involve isolating and accurately sequencing the orthologous
genomic regions in multiple primates.
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Fig. 3. Left: Actual versus reconstructed number of events with standard errors. Right:
Proportion of breakpoint reuses within the reconstructed histories. For each simulated
gene cluster, we used four minimum alignment length thresholds (sz): 10 bp, 50 bp,
100 bp, and 200 bp, as indicated (shorter alignments were omitted).

It will be fascinating to compare cluster dynamics in certain lineages to ob-
served phenotypic differences among primates. For instance, Hurle et al. [22]
look for correlations between differences in the WFDC cluster and several pheno-
types, including female promiscuity. Note that Table 1 indicates a lack of recent
WFDC expansions in the human lineage. Another potential use is illustrated by
the PRAME cluster, where three gaps remain in the human assembly (Table 1).
The rhesus cluster was straightforward to assemble because it lacks recent du-
plications [23], paving the way for evolutionary studies to help understand the
cluster’s function.

In addition, such sequence data should reveal differences among primate
species of possible relevance for selecting species for further biomedical studies.
Sequence data has already been gathered from primate orthologs of the HLA
cluster, showing a large expansion in the macaque lineage [24,23], and effects of
differences among the rhesus, cynomolgus, and pigtail macaque MHC clusters
may be relevant for clinical studies of AIDS progression [25,26]. Similarly, the
KLR cluster has been sequenced in marmoset by Averdam et al. [27] to help de-
termine the value of that species as a primate model for immunological research.
Our planned systematic project will provide a deeper understanding of primate
genome evolution than would piecemeal studies of this sort.

The data should also fuel the development of computational methods for han-
dling the complexities associated with comparative sequence data that include
closely related duplicated segments. The approach described here is just one way
of approaching this fascinating class of problems.

Acknowledgements. This project has been funded in part by NHGRI grant
HG002238 to WM, and in part from support provided to EDG from the NHGRI



Reconstructing the Evolutionary History of Complex Human Gene Clusters 39

Intramural Program. Jian Ma produced a set of 141 clusters used at the start of
this study, and Richard Burhans performed further analysis on those clusters.

References

1. Ohno, S.: Evolution by Gene Dupplication. Springer, Berlin (1970)
2. Lupski, J.R.: Genomic rearrangements and sporadic disease. Nat. Genet. 39(7

Suppl), 43–47 (2007)
3. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Na-

ture 409(6822), 860–921 (2001)
4. Wong, K.K., de Leeuw, R.J., Dosanjh, N.S., Kimm, L.R., Cheng, Z., Horsman,

D.E., MacAulay, C., Ng, R.T., Brown, C.J., Eichler, E.E., Lam, W.L.: A compre-
hensive analysis of common copy-number variations in the human genome. Am. J
Hum. Genet. 80(1), 91–104 (2007)

5. International Human Genome Sequencing Consortium: Finishing the euchromatic
sequence of the human genome. Nature 431(7011), 931–935 (2004)

6. Green, E.D.: Strategies for the systematic sequencing of complex genomes. Nat.
Rev. Genet. 2(8), 573–573 (2001)

7. Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F., Roskin, K.M.,
Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D., Miller, W.:
Aligning multiple genomic sequences with the threaded blockset aligner. Genome
Res. 14(4), 708–715 (2004)

8. Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment
of sequences with repeated and shuffled elements. Genome Res. 14(11), 2336–2336
(2004)

9. Margulies, E.H., et al.: Analyses of deep mammalian sequence alignments and
constraint predictions for 1% of the human genome. Genome Res. 17(6), 760–764
(2007)

10. Hou, M.: (unpublished data, 2007)
11. Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haus-

sler, D., Miller, W.: Human-mouse alignments with BLASTZ. Genome Res. 13(1),
103–107 (2003)

12. Elemento, O., Gascuel, O., Lefranc, M.P.: Reconstructing the duplication history
of tandemly repeated genes. Mol. Biol. Evol. 19(3), 278–278 (2002)

13. Lajoie, M., Bertrand, D., El-Mabrouk, N., Gascuel, O.: Duplication and inversion
history of a tandemly repeated genes family. J Comput. Biol. 14(4), 462–468 (2007)

14. Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X.,
Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications
reveals punctuated cores of human genome evolution. Nat. Genet. 39(11), 1361–
1368 (2007)

15. Wilson, G.M., Flibotte, S., Missirlis, P.I., Marra, M.A., Jones, S., Thornton, K.,
Clark, A.G., Holt, R.A.: Identification by full-coverage array CGH of human DNA
copy number increases relative to chimpanzee and gorilla. Genome Res. 16(2),
173–181 (2006)

16. Dumas, L., Kim, Y.H., Karimpour-Fard, A., Cox, M., Hopkins, J., Pollack, J.R.,
Sikela, J.M.: Gene copy number variation spanning 60 million years of human and
primate evolution. Genome Res. 17(9), 1266–1267 (2007)

17. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81(3), 814–818 (1984)



40 Y. Zhang et al.

18. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York
(2001)

19. Kuhn, R.M., et al.: The UCSC genome browser database: update 2007. Nucleic
Acids Res 35(Database issue), D668–D673 (2007)

20. Becker, K.G., Barnes, K.C., Bright, T.J., Wang, S.A.: The genetic association
database. Nat. Genet. 36(5), 431–432 (2004)

21. Ma, J.: personal communication (2007)
22. Hurle, B., Swanson, W., Green, E.D.: Comparative sequence analyses reveal rapid

and divergent evolutionary changes of the WFDC locus in the primate lineage.
Genome Res. 17(3), 276–276 (2007)

23. The Rhesus Macaque Genome Sequencing and Analysis Consortium: Evolutionary
and biomedical insights from the rhesus macaque genome. Science 316(5822), 222–
224 (2007)

24. Daza-Vamenta, R., Glusman, G., Rowen, L., Guthrie, B., Geraghty, D.E.: Ge-
netic divergence of the rhesus macaque major histocompatibility complex. Genome
Res. 14(8), 1501–1505 (2004)

25. Krebs, K.C., Jin, Z., Rudersdorf, R., Hughes, A.L., O’Connor, D.H.: Unusually
high frequency MHC class I alleles in Mauritian origin cynomolgus macaques. J
Immunol. 175(8), 5230–5239 (2005)

26. Smith, M.Z., Fernandez, C.S., Chung, A., Dale, C.J., De Rose, R., Lin, J., Brooks,
A.G., Krebs, K.C., Watkins, D.I., O’Connor, D.H., Davenport, M.P., Kent, S.J.:
The pigtail macaque MHC class I allele Mane-A*10 presents an immundominant
SIV Gag epitope: identification, tetramer development and implications of immune
escape and reversion. J Med. Primatol 34(5-6), 282–283 (2005)

27. Averdam, A., Kuhl, H., Sontag, M., Becker, T., Hughes, A.L., Reinhardt, R., Wal-
ter, L.: Genomics and diversity of the common marmoset monkey NK complex. J
Immunol. 178(11), 7151–7151 (2007)

A Proof of the Basic Algorithm

Proof of Theorem 1: Denote the present day sequence of atomic segments
S and the series of k duplications that created this sequence O1, O2, . . . , Ok.
To prove the claim, we will first show that for any candidate alignment (P, D),
sequence S can also be created by a sequence of duplications O′

1, O
′
2, . . . , O

′
k of

the same length (also satisfying assumptions (1)-(3)), where the last duplication
O′

k is (P, D). All claims of the theorem are a direct consequence of this claim,
proven simply by induction on the number of duplication events.

Now consider a candidate alignment (P, D) in sequence S. If we look at the
duplication history in reverse, we can show that D will be always a D-segment
of some candidate alignment until one of the following happens (see Lemma 2):
(A) either D is deleted by unwinding a duplication (P ′, D), or (B) all the P -
segments matching D are unwound, and the role D-segment is in fact gained by
a duplication (D, P ′).

In case (A), we can find a segment P ′′ matching D such that there exist a
sequence of k duplications that will create sequence S, where (P ′′, D) is the latest
duplication (Lemma 3). Since both (P ′′, D) and (P, D) are candidate alignments
in S, we can replace (P ′′, D) with (P, D) in the last duplication and still obtain
the same sequence S with k duplications.



Reconstructing the Evolutionary History of Complex Human Gene Clusters 41

In case (B), the role of the D-segment has been gained by a duplication
Oi = (D, P ′) at time i. Immediately after this event, (D, P ′) must be a candidate
alignment (Lemma 1). Since (P ′, D) is also a candidate alignment, we can replace
O1, . . . , Oi with some sequence of duplications O′

1, . . . , O
′
i such that we obtain

the same intermediate atomic segment sequence at time i, where O′
i = (P ′, D)

(Lemma 4). Using the sequence of duplications O′
1, . . . , O

′
i, Oi+1, . . . , Ok, we re-

duce case (B) to case (A), for which we have already proven the claim. �

We present the proofs of the following supporting lemmas in Appendix B.

Lemma 2. If we consider duplication operations in reverse order, the D-segment
of a candidate alignment will remain a D-segment of some (not necessarily the
same) candidate alignment until either this D segment is removed from the se-
quence by unwinding a duplication (P, D), or all segments matching D are deleted,
in which case the segment gains the role of D-segment by duplication (D, P ).

Lemma 3. Let S be a sequence of atomic segments created by k duplications
O1, . . . , Ok, and let Oi = (P, D) for some i. If D is a D-segment of a candidate
alignment in all intermediate sequences after duplication Oi, as well as in S
(possibly with different P -segments, say P ′), we can always find a sequence of
duplications O′

1, . . . , O
′
k leading to S such that O′

k = (P ′, D).

Lemma 4. Let S be a sequence of atomic segments created by k duplications
O1, . . . , Ok, where the last duplication is Ok = (D, P ). If (P, D) is also a can-
didate alignment, there exists a sequence of k duplications O′

1, . . . , O
′
k such that

the last operation is O′
k = (P, D), and it creates the same sequence of atomic

segments S.

B Proofs of Supporting Lemmas

Lemma 5. For a candidate alignment (P, D), with D = u|a1 · · · b1|v and P =
x|a2 · · · b2|y, the D segment will not overlap with any other alignments unless
(P, D) is a forward tandem duplication.

Proof. Without loss of generality, we assume there is a copy of u|a1 in the se-
quence, say u3|a3. If u3|a3 lies within or outside either |a1 · · · b1| or |a2 · · · b2|,
it will remain in the sequence after removing D. Since x|a2 is collapsible af-
ter removing D, u3|a3 must equal to x|a2, which means u = u3 = x, but this
contradicts with the maximum alignment assumption.

Alternatively, either u3|a3 or x|a2 is deleted when removing D. If u3|a3 is
deleted by D, it must lie on the boundary b1|v of D, i.e., either b1|v ≡ u3|a3 or
b1|v ≡ a3|u3; either way we will have the atomic pair flanking D non-collapsible
after removing D. On the other hand, if x|a2 is deleted by D, we must have
either a forward tandem duplication u|a1 · · · b1|a2 · · · b2|y or a backward tandem
duplication v|b1 · · · a1|a2 · · · b2|y. The latter leads to a contradiction because u =
a2 means u3|a3 = a2|a, and hence v|a2 is not collapsible after removing D. �
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Lemma 6. D1 of a candidate alignment (P1, D1) cannot lie within either P2
or D2 of another candidate alignment (P2, D2), but they can represent the same
region, i.e., D1 ≡ D2.

Proof. By Lemma 5, the statement is true if (P1, D1) is not a forward tandem
duplication. When (P1, D1) is a forward tandem duplication, without loss of
generality, assume (P1, D1) has the form D1|P1 = u|a1 · · · b1|a2 · · · b2|y. Suppose
there is another candidate alignment (P2, D2), in which either P2 or D2 covers
D1. If D1 completely lies within either P2 or D2 and shares no boundaries with
them, then there is a second copy of b1|a2, say b3|a3 in the sequence. After
removing D1, we should have u|a2 collapsible, which is impossible due to b3|a3.
On the other hand, suppose D1 lies within either P2 or D2 and they share
the boundary u|a1; then the same arguments apply. Instead, if D1 shares the
boundary b1|a2 with either P2 or D2, there are two situations:

Situation 1: P2 covers D1. In this case, after removing D2, we should have
b1|a2 collapsible, which is impossible due to b2|y in P1.

Situation 2: D2 covers D1. In this case, we must have D2 =p|c1 · · ·ua1 · · · b1|a2,
in which the segment a1 · · · b1 is D1, and P2 = w|c2 · · ·u4a4 · · · b4|z. After
removing D2, we have p|a2 collapsible, which means p = u. After removing
D1, we should have u|a2 collapsible, which means (p|c1) = (u|c1) = (u|a2),
and thus c1 = a2. However, this means w|c2 = w|a2 in P2 must also equal to
u|a2, and thus w = u = p, which contradicts with the maximum alignment
assumption. �

Definition 3 (Coupling). Two candidate alignments (P1, D1) and (P2, D2)
are coupled if P1 ≡ D2 and P2 ≡ D1.

Lemma 7. D1 in a candidate alignment A = (P1, D1) cannot share boundaries
with P2 in another candidate alignment B = (P2, D2), unless either D1 ≡ D2 or
A is coupled with B.

Proof. Let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and D2 ≡ p|c1 · · · d1|q, P2 ≡
w|c2 · · ·d2|z. Without loss of generality, we assume that D1 shares boundaries
with P2. There are two situations:

Situation 1: D1 is adjacent to P2, in which case we have (w|c2)≡(b1|v). Since
w|c2 is collapsible after removing D2, we should have b2|y in P1 equal to
b1|v, and thus y = v. However, this contradicts with the maximum align-
ment assumption. The exception is that either b1|c2 or b2|y is deleted when
removing D2. The former indicates D1 ≡ D2 by Lemma 6. For the latter, if
b2|y is completely removed by D2, there is another copy of b2|y in P2, which
still indicates y = v and leads to a contradiction. If D2 only removes b2 in
b2|y, then D2 covers P1 by Lemma 6. In this case, we have either of the
following:
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1. D2 and P1 are in the same orientation:
In this case, d1 = b2 and q = y. Since b2|y is collapsible after removing
D1, and b2|y = d1|q, we must have d2|z in P2 equal to d1|q, which con-
tradicts with the maximum alignment assumption. The only exception
is that b2|y is deleted when removing D1. In this case, (P1, D1) is either
coupled with (P2, D2), or is a forward tandem repeat in the form P1|D1.
The latter is impossible, otherwise after removing D1, we should have
b2|c2 collapsible, so b2|c2 = p|c1, which contradicts with the maximum
alignment assumption.

2. D2 and P1 are in different orientations:
In this case, p ≡ y and b2 ≡ c1 = c2. However, it indicates that b1|c2 =
b2|b2 at the boundary of D1|P2 is not collapsible after removing D2, and
thus (P2, D2) is not a candidate alignment. The only exception is when
b1 of b1|c2 at the boundary of D1|P2 is deleted when removing D2, which
is impossible due to Lemma 6.

Situation 2: D1 covers P2. After removing D2, (d2|z) ≡ (b1|v) in P2 is collapsi-
ble. However, this contradicts with v �= y, unless either b1|v in P2 or b2|y in
P1 is deleted when removing D2.
1. if b1|v in P2 is deleted, then we either have a forward tandem repeat

P2|D2, or a reverse tandem repeat P2|D2. For the former, we must have
u = w and a = c following similar arguments as in Lemma 6. As a
result, when removing D2, w|c2 is collapsible and thus x = w = u,
which contradicts with the maximum alignment assumption. The only
exception is when (P1, D1) and (P2, D2) are coupled. For the latter,
we have a reverse tandem repeat P2|D2. Similarly, we can show that
y = p = u and d = c. Therefore, w|c in P2 equals to w|d, and will remain
intact after removing D2. However, after removing D2, we should have
d|p collapsible, and thus w = p, which contradicts with the maximum
alignment assumption unless (P1, D1) and (P2, D2) are coupled.

2. if b2|y in P1 is deleted, then first, b2|y cannot be completely deleted by
D2, otherwise there is another copy of b2|y remaining in P2, and the same
arguments that v �= y can be applied to show a contradiction; second,
the y of b2|y cannot be deleted by D2 as proved in Situation 1; third, if
the b2 of b2|y in P1 is removed by D2, we have D2 ⊃ P1, which leads to
coupling because D1 ⊃ P2. �

Lemma 8. Given two candidate alignments (P1, D1) and (P2, D2), if at least
one of them is not a forward tandem repeat, then D1 will neither overlap with
nor be adjacent to D2. D1 and D2 can be coupled (i.e., D1 ≡ P2 and D2 ≡ P1),
separated or representing the same region.

Proof. Let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and D2 ≡ p|c1 · · · d1|q, P2 ≡
w|c2 · · ·d2|z. By Lemma 5 and Lemma 6, D1 cannot overlap with, cover, or lie
within D2, unless both alignments are forward tandem repeats or if D1 ≡ D2.
As a result, we only need to show that D1 and D2 are not adjacent to each
other unless they are coupled. Without loss of generality, assume D1 and D2 are
adjacent in the form D1|D2 = u|a1 · · · b1|c1 · · · d1|q.
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Situation 1: w|c2 in P2 remains intact after removing D1. After removing D1,
u|v = u|c1 should be collapsible, and thus u = w. On the other hand, w|c2
in P2 is collapsible after removing D2 and u|a1 will remain intact, so we
have (u|a1) = (w|a1) = (w|c2), which contradicts with Lemma 5. The only
exception is that w|c2 in P2 is deleted when removing D2, which indicates
either (P2, D2) is coupled with (P1, D1), or (P2, D2) is a forward tandem
repeat in the form D2|P2. The latter is impossible, because q = c1, and after
removing D1, we have u|c1 collapsible (because D1 is adjacent to D2), which
means u = d and thus z = c1 = q, in which case (P2, D2) is not maximized.

Situation 2: w|c2 in P2 is completely deleted when removing D1. In this case,
we must have a copy of w|c2 in P1, and thus the same arguments for Situation
1 apply.

Situation 3: w|c2 in P2 is partially deleted when removing D1, i.e., either w
or c2 is removed. In this case, P2 must share boundaries with D1, which is
impossible due to Lemma 7, except for the coupling relationship or when
D1 ≡ D2. �

Lemma 9. A candidate alignment (P1, D1) cannot be partially deleted or ex-
tended when removing another candidate alignment (P2, D2). Instead, either P1
or D1 can be completely deleted by D2. If P1 is deleted by D2, then there is a
third candidate alignment (P3, D1). If D1 is deleted by D2, then D1 ≡ D2.

Proof. Let A ≡ (P1, D1) and B ≡ (P2, D2) denote the two candidate alignments.
By Lemma 8, D1 and D2 may be identical, coupled, or separated. The exception
is when both A and B are forward tandem repeats, in which case the statement
holds true. If D1 ≡ D2, removing D2 will completely delete D1. If D1 and D2
are coupled, removing D2 will completely delete P1. If D1 and D2 are separated,
deleting D2 will only affect (P1, D1) if D2 strictly covers P1. This is because
neither D2 overlaps with P1 nor D2 lies within but share boundaries with P1,
according to Lemma 6, and by Lemma 7, D2 cannot be adjacent to P1. Assume
D1 and D2 are separated, and let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and
D2 ≡ p|c1 · · ·d1|q, P2 ≡ w|c2 · · · d2|z. Since P1 is strictly within D2, we must
have a copy of P1, denoted by P3 ≡ x3|a3 · · · b3|y3 in P2, which will remain
intact after deleting D2. As a result, the third alignment C = (P3, D1) must be
a candidate alignment. �

Using Lemma 5-9, we are now ready to prove Lemma 2-4 in Appendix A.

Proof of Lemma 2: By Lemma 9, a candidate alignment (P1, D1) cannot
be partially removed or extended when removing other candidate alignments.
We thus only need to show that, when reconstructing duplication in the reverse
order, D1 will continue to be the D segment of some candidate alignments until
either D1 is deleted or all segments matching with D1 are deleted.

Let D1 ≡ u|a1 · · · b1|v and P1 ≡ x|a2 · · · b2|y. Assume D1 becomes an in-
valid D segment after removing a candidate alignment (P2, D2). If removing
D2 deletes P1, then there is a third candidate alignment (P3, D1). If both P1
and D1 remain intact after removing D2, then by Lemma 7 and Lemma 8, the
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flanking segments of P1 and D1 will remain intact as well. Let D2 ≡ p|c1 · · ·d1|q
and P2 ≡ w|c2 · · ·d2|z, removing D2 will produce a new atomic pair p|q. To
invalidate the D-segment role of D1, at least one of x|a2, b2|y, u|v pairs must
become non-collapsible due to p|q. If u|v is affected, without loss of general-
ity, we assume p = u. Since u|v is collapsible after removing D1, p|c1 in D2
must equal to u|v and thus c1 = v. As a result, w|c2 = w|v in P2 must equal
to u|v, indicating p = w = u. This contradicts with the maximum alignment
assumption. The only exception is when P2 and D2 are adjacent in the form
P2|D2 ≡ z|d2 · · · c2|c1 · · ·d1|q, and thus p = u = c2. However, since and v = c1,
we have u|v = c2|c1 non-collapsible. Similar arguments can be applied to show
contradictions when either x|a or b|y becomes non-collapsible due to p|q. In con-
clusion, D1 will always be the D segment of some candidate alignment until
either D1 is deleted or all segments matching with D1 are deleted. �

Proof of Lemma 3: We will prove this lemma by induction on the number
of duplication events. First, the lemma holds trivially for the sequences with a
single duplication (which must be (P, D)). Now, let us assume that the lemma
holds for all duplication sequence of length less than k. We want to prove that
it also holds for a sequence of duplication O1, . . . , Ok of length k.

If Ok = (P, D), then lemma holds trivially. Therefore, assume that Ok �=
(P, D), and thus (P, D) is among one of O1, . . . , Ok−1. Let Sk−1 be the atomic
segment sequence created by O1, . . . , Ok−1, then according to the induction hy-
pothesis, there exists a segment P ′ and a sequence of duplication O′

1, . . . , O
′
k−1 =

(P ′, D) that also creates Sk−1.
Let S be the sequence created by the sequence of duplication O′

1, . . . , O
′
k−1, Ok,

i.e., converted from Sk−1 via one additional duplication Ok. Suppose that Ok =
(P1, D1), then D1 �= D and P1 �= P ′ under the no atomic boundary reuse as-
sumption. Since D is a D-segment in S under the Lemma assumption, we can
always find two alternative events O′′

k−1 = (P ′
1, D1) and O′′

k = (P ′′, D) to replace
O′

k−1 = (P ′, D) and Ok = (P1, D1) (i.e., to switch orders of deleting D and D1),
such that S can also be created by the sequence of duplication O′

1, . . . , O
′′
k−1, O

′′
k .

This is a direct result of Lemma 9 and the fact that D1 �= D. Therefore, S can
be created by k duplications with the last operation being (P ′′, D), even if D is
generated by duplication i(< k) in the real history. �

Proof of Lemma 4: Let P ≡ x|a . . . b|y and D ≡ p|a . . . b|q. If both (P, D) and
(D, P ) are candidate alignments in S, then by Lemma 5, no other alignments
will cover either P or D unless (P, D) is a forward tandem repeat. If (P, D) is
not a forward tandem repeat, (x|a), (b|y), (p|a), (b|q) must all be unique pairs in
the atomic segment sequence S. In addition, we should have x|a collapsible after
removing D, and thus x must be unique in S. Similar arguments can show that y,
p, and q are also unique in S. As a result, the two segments P and D are bounded
within unique atomic segments and thus forms “two islands”. So any previous
duplication related with P or D segments must be completely inside of either
P or D, and they do not share boundaries with P or D. The same conclusion
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applies even if P and D are adjacent to each other. Therefore, to change the
latest duplication from Ok = (D, P ) to O′

k = (P, D), we simply “redirect” all
the duplications that are inside of D to be inside of P , and keep the rest the
same. This will create a new sequence of duplication O′

1, . . . , O
′
k−1, O

′
k = (P, D)

that creates S. �

C Duplication Complexity of Selected Gene Clusters

Name Location GA OWM NWM LG DOG gaps

PRAMEF chr1:12750851-13626366 7 23 32 48 63 3
PADI chr1:17423413-17600526 0 0 0 0 0 0

chr1:22775285-23112635 0 0 0 0 0 0
chr1:25443774-25537798 0 1 1 1 1 0

CYP4 chr1:47048227-47411959 1 5 5 6 11 0
chr1:86662627-86892926 0 0 1 1 1 0

GBP chr1:89244904-89692274 0 5 7 9 22 0
AMY chr1:103898363-104119006 4 10 14 14 14 0

chr1:110861483-111018698 0 0 0 0 0 0
chr1:119739258-119963386 0 0 3 19 20 0

HIST2H chr1:144651745-148125604 21 41 68 101 107 0
chr1:150451947-150599304 0 1 1 1 1 0

LCE chr1:150776235-151067237 0 0 6 7 11 0
SPRR chr1:151220060-151272246 0 0 0 0 1 0
SPRR chr1:151278447-151390171 0 0 1 7 8 0

chr1:153784948-154023311 0 5 14 24 28 0
FCRL chr1:155406878-156042315 0 2 11 30 40 0
CD1 chr1:156417524-156593228 0 0 0 0 1 0
OR chr1:156634961-157053841 0 0 0 0 1 0

chr1:157512882-157835664 0 0 0 0 1 0
FC chr1:159742726-159915333 3 3 5 6 6 0

chr1:167848867-167968738 0 0 0 0 0 0
CFH chr1:194914679-195244603 4 6 18 22 25 0

chr1:205701588-205958677 1 7 12 12 13 0
ZNF chr1:245215980-245486993 2 2 2 2 5 0
OR chr1:245680906-246912147 1 6 23 48 55 0

chr2:79106193-79240545 0 0 0 1 1 0
CCDC; CFC1 chr2:130461934-131153411 3 5 12 12 15 0

chr2:166554904-167039157 0 0 0 1 3 0
chr2:208680310-208736768 0 1 2 2 2 0
chr2:232893923-233063157 0 3 13 21 24 0

UGT1A chr2:234140385-234334547 0 2 13 17 23 0
chr3:38566866-38926662 0 0 0 0 1 0

ZNF chr3:44463068-44751808 0 1 1 2 2 0
CCR chr3:45917359-46425558 0 0 0 0 1 0

chr3:48977485-49396481 0 0 1 1 1 0
OR5 chr3:99254906-99898694 0 1 10 14 27 0

chr3:134863859-134969704 0 0 0 1 1 0
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Name Location GA OWM NWM LG DOG gaps

chr3:152413859-152539276 0 0 0 0 0 0
chr3:196822567-196963470 1 1 1 1 1 1
chr4:38451248-38507567 0 0 0 0 0 0

UGT2 chr4:68830737-70547917 2 27 51 59 82 1
CXCL chr4:74781081-75209572 0 0 0 3 26 0
ADH chr4:100215375-100612366 0 0 3 8 10 0
SMN chr5:68787010-70696078 23 25 25 25 25 0
PCDH chr5:140145736-140851366 0 0 0 1 37 0

chr6:10322043-10743230 0 1 1 1 1 0
HIST1H; BTN chr6:25833812-26617296 0 1 9 19 35 0
HIST1H chr6:27561049-27970197 1 1 3 4 11 0
ZNF; OR chr6:28161149-29664934 0 0 10 19 33 0
TRIM chr6:29786467-30568761 0 2 29 44 58 0
BAT chr6:31267292-31607879 0 4 12 17 28 0
HLA-D chr6:32514542-32891079 0 1 14 21 26 0
HLA-D chr6:33082752-33265289 0 0 0 7 14 0
GSTA chr6:52711832-52960243 0 7 13 27 33 0
TAAR chr6:132951558-133008844 0 0 0 0 0 0

chr6:160794897-161275095 0 0 9 17 18 0
chr6:169347092-169825478 0 0 0 0 0 0

LOC chr7:71966977-72466918 1 5 8 8 8 0
CCL; CTF2; PMS2 chr7:73565093-76526339 21 31 38 40 45 1

chr7:86869277-87034269 0 0 0 1 1 0
chr7:98915207-99500181 0 0 10 20 26 0
chr7:142134143-142186482 0 1 4 4 4 0
chr7:142469761-142919050 0 0 0 0 0 0

OR chr7:143005241-143760083 7 9 9 11 17 0
ZNF chr7:148389924-149094267 0 4 9 15 17 0
GIMAP chr7:149794678-150079280 0 4 4 5 5 0
DEF chr8:6769157-6902786 1 1 1 1 13 0
DEFB10; DEFB chr8:7069563-7953918 5 8 8 10 14 1

chr8:22933046-23139154 0 0 6 21 30 0
chr8:82518183-82604430 0 0 0 0 0 0

ZNF; ZNF chr8:145901725-146244938 0 0 0 0 2 0
IFN chr9:21048760-21471698 0 11 15 20 41 0
OR13 chr9:106305453-106535416 0 0 2 2 3 0
OR chr9:124279100-124603579 0 0 1 1 2 0

chr9:134962296-135122729 0 0 0 0 0 0
AKR1C chr10:4907977-5322660 0 5 7 13 32 0

chr10:26458036-27007198 0 4 7 17 19 0
chr10:53701853-54315804 0 0 0 1 1 0

SFTPA chr10:80936018-81672884 6 7 8 10 12 1
chr10:88319645-89246594 2 2 3 3 3 0

IFIT chr10:91051661-91168336 0 0 0 0 1 0
chr10:96426730-96897127 1 2 18 18 20 0
chr10:118205218-118387999 0 0 1 3 7 0
chr10:135086124-135244057 2 2 2 2 2 0
chr11:1065614-1239359 0 0 0 0 0 1

OR5; HB; TRIM chr11:4124149-6177952 4 6 10 10 27 0
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Name Location GA OWM NWM LG DOG gaps

OR chr11:6745853-6899767 0 0 1 1 2 0
chr11:24900251-25670383 0 0 0 0 1 0

OR4 chr11:48193633-48622537 0 0 7 17 20 0
chr11:48865105-49870196 1 12 15 15 18 0

OR chr11:54833085-56562513 0 1 14 46 61 0
OR chr11:57390332-58032285 0 1 1 1 2 0
OR chr11:58833693-59274730 0 0 2 2 6 0

chr11:66900400-67551984 0 2 4 4 4 0
MMP chr11:102067847-102343167 0 0 0 0 0 0
OR chr11:123129479-123988274 0 3 5 7 15 0

chr12:9099391-9319709 0 0 0 0 0 0
KLR chr12:10446112-10497748 0 1 1 2 3 0
TAS2R chr12:10845284-11475585 0 6 26 36 64 0

chr12:20846959-21313050 0 0 0 11 24 0
KRT chr12:50852169-51586146 0 2 4 8 15 0
OR chr12:53795147-54317866 0 0 1 2 2 0

chr12:55040623-55490902 0 0 0 0 2 0
chr12:111828405-111931464 0 0 0 0 0 0

ZNF; ZNF chr12:132011584-132289534 0 0 0 0 0 0
chr13:19614743-19695656 0 0 0 0 0 0
chr13:51634776-51849914 0 1 1 2 2 0

OR chr14:19250951-19781765 0 0 0 1 3 0
RNASE chr14:20319257-20525050 0 3 6 8 8 0

chr14:20692977-21208956 1 1 1 2 3 0
C14orf chr14:23177922-23591420 1 5 8 9 11 0

chr14:24044573-24173288 0 0 0 0 0 0
C14orf chr14:73073807-73175062 0 1 1 3 3 0
SERPINA chr14:93850088-94034351 0 0 1 1 1 0
SERPINA chr14:94099676-94182828 0 0 0 0 0 0

chr14:105101878-105397048 2 17 20 20 21 0
CHRNA; KIAA chr15:26168691-30570226 15 38 47 56 58 2
CYP1; DKFZ chr15:71687352-74071019 2 14 23 26 28 0

chr16:1211147-1279180 0 2 2 2 2 0
ZNF chr16:3105811-3428601 0 0 0 0 4 0

chr16:20234773-20711192 2 6 6 6 7 0
LOC chr16:28560127-29404514 3 6 6 6 8 0
MT chr16:55181257-55275655 0 0 0 4 18 0

chr16:85101437-85170740 0 0 0 0 0 0
chr16:88526416-88690103 0 0 0 0 1 0

OR chr17:2912380-3289105 1 3 4 5 10 0
chr17:6501152-6854467 0 1 1 1 1 0

MYH chr17:10145620-10499991 1 2 7 11 25 0
chr17:22979762-23370074 0 2 4 4 5 0

NF1; EVI2 chr17:25940349-27337990 3 9 10 10 10 0
CCL chr17:29605831-29711075 0 0 0 0 0 0
CCL chr17:31334805-31886998 4 7 7 8 9 1
KRT chr17:36069761-37038364 0 9 13 20 30 0

chr17:59292402-59355509 0 4 5 5 5 0
ABCA chr17:64375713-64805977 0 1 1 1 3 0
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Name Location GA OWM NWM LG DOG gaps

CD300 chr17:70033428-70220651 0 0 0 0 2 0
DS chr18:26828138-26991601 0 0 0 0 0 0
DS chr18:27160523-27356213 0 0 0 0 0 0

chr18:41459658-41573640 0 0 0 0 0 0
SERPINB chr18:59406881-59805500 0 1 2 2 3 0

chr19:230508-1050902 0 0 0 0 1 0
chr19:6377406-7037708 1 4 5 6 8 0

ZNF; OR chr19:8569586-9765797 3 5 15 24 34 1
OR chr19:14771021-15113863 0 0 0 3 11 0
CYP4F chr19:15508827-15669145 0 0 0 1 9 0
CYP4F; OR10H chr19:15699700-15970865 0 1 2 7 26 0

chr19:39695418-40633289 0 2 13 20 25 0
ZNF chr19:40976726-43450858 0 7 13 18 27 0
CYP2 chr19:46016475-46404199 0 5 14 17 19 0
ZNF chr19:49031476-49676451 0 1 5 9 33 0

chr19:49840790-50069615 0 0 0 0 0 0
chr19:55457577-55842758 0 0 0 2 4 0

KLK chr19:56014236-56276734 0 0 1 1 3 0
KIR; LILR chr19:59404199-60117280 0 16 30 43 65 0
CST chr20:23560786-23885538 0 12 19 26 35 0
C20orf chr20:31084573-31402526 0 1 1 1 1 0
WFDC chr20:43531807-43853954 0 0 0 1 2 0

chr20:44190604-44564928 0 0 0 0 0 0
KRTAP chr21:30642250-30735038 0 0 0 1 2 0
KRTAP chr21:30774233-30910843 0 0 0 1 1 0
KRTAP1 chr21:44783567-44947268 0 0 4 9 15 0

chr22:18594272-19312230 3 4 6 6 6 1
chr22:20705392-23410020 3 26 52 74 118 0
chr22:30379202-31096691 0 4 5 7 8 0

APOBEC3 chr22:37674922-37828933 0 4 12 19 26 0
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Abstract. Next Generation Sequencing (NGS) technologies are capa-
ble of reading millions of short DNA sequences both quickly and cheaply.
While these technologies are already being used for resequencing individ-
uals once a reference genome exists, it has not been shown if it is possible
to use them for ab initio genome assembly. In this paper, we give a novel
network flow-based algorithm that, by taking advantage of the high cov-
erage provided by NGS, accurately estimates the copy counts of repeats
in a genome. We also give a second algorithm that combines the pre-
dicted copy-counts with mate-pair data in order to assemble the reads
into contigs. We run our algorithms on simulated read data from E. Coli
and predict copy-counts with extremely high accuracy, while assembling
long contigs.

1 Introduction

The problem of genome assembly has perhaps been more controversial than any
other topic within computational biology, leading to alternative approaches to
genome sequencing and the creation of two human genomes. Initially, a BAC-
by-BAC approach to genome sequencing was favored for constructing longer
genomes. While this approach was much more expensive than the alternate
whole genome shotgun method, it was considered unlikely that ab initio whole
genome shotgun assembly was feasible. The development of effective shotgun
assembly algorithms capable of assembling a mammalian genome, such as the
Celera assembler[16] and Arachne[3], has revolutionized sequence assembly, al-
lowing large genomes to be sequenced much cheaper than was previously thought
possible. Currently, the field of genome sequencing is undergoing another ma-
jor change, with the development of Next Generation Sequencing (NGS) tech-
nologies, such as Solexa, 454 and AB SOLiD. While the new technologies can
currently yield reads only 25-200 basepairs long, they dramatically reduce the
cost of sequencing per nucleotide and significantly speed up data acquisition,
with nearly 1 billion nucleotides sequenced in one run (2-3 days) on a Solexa
machine. While the novel technologies have already made great improvements
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to the problem of resequencing (the determination of the genomes of various
individuals once the initial, reference, genome has been built), it has not been
shown whether very short reads can be used for ab initio genome sequencing –
the determination of a completely unknown genome.

1.1 Background

One of the original approaches to genome assembly was to find the shortest
common superstring of the reads, that is, to assemble a genome with minimal
length. The problem of modeling genome assembly in this way is that most
genomes have repeats – multiple identical, or nearly identical, stretches of DNA
– while the shortest solution would include each of these repeats only once in the
assembled genome. This problem is known as over-collapsing the repeats. One
way of addressing this problem is to build representative strings or structures
for each repeat and allow the assembly algorithm to use these multiple times.
This intuition led to the development of graph-theoretic methods for sequence
assembly, where the edges of the graph “spell” some string, and by walking the
edges of the graph it is possible to recreate the genome.

In their EULER assembler[19], Pevzner, Tang and Waterman had the insight
that by dividing the reads into shorter k-long stretches (called k-mers), all of
the instances of a repeat collapse into a single set of vertices. They represent
each read as a walk on a de Bruijn graph, and search for a superwalk that
contains all the reads. This approach was later expanded to use A-Bruijn graphs
[18], where the initial subdivision into k-mers is not necessary. Myers introduced
an alternative model of sequence assembly, using a string graph [15]. Instead of
dividing the reads into k-mers, the algorithm starts by building an overlap graph
– a graph where vertices correspond to reads and edges correspond to overlaps.
Through the process of removing redundant edges, he is able to classify all edges
as either unique, required or optional, and the goal of the assembly is to find the
shortest walk which respects all the edge constraints.

Because walks on graphs can be elegantly defined using the concept of bal-
ance around vertices (each vertex must be entered and left an equal number of
times), network flow methods have been suggested for genome assembly. Though
network flow alone is not able to resolve the problem of long repeats, it is able
to estimate the number of times a read appears in the genome (its copy-count).
In the de Bruijn graph formulation, Pevzner and Tang [17] formulate the prob-
lem of determining copy-counts as the minimum cost circulation problem. Myers
suggests a similar method to determine the copy-counts in the context of a string
graph [15]. However, he augments Pevzner and Tang’s approach by placing con-
straints on the copy-counts prior to solving the flow. As in the Celera assembler,
Myers determines whether a contig (represented by an edge) is present uniquely
in the genome by modeling the reads on a contig as a Poisson arrival process and
calculating the probability that the arrival rate for an edge is twice as high as for
the genome as a whole. If this probability is low (p < 10−6), the edge (contig) is
labeled unique, and the flow through this edge is set to be one. Another kind of
constraint is placed on every edge that has an interior vertex. Since it must be
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traversed at least once if the read corresponding to the interior vertex is to take
part in the reconstruction of the genome, the flow is constrained to be at least
one on this edge.

Network flow techniques alone are insufficient to assemble a genome in the
presence of long repeats which are not spanned by any single read. One of the
key pieces that has allowed for whole genome shotgun assembly of mammalian
genomes are matepairs – pairs of reads which come from opposite strands, at
an approximately known distance in the source genome. Matepairs can be gen-
erated by taking a piece of DNA of a known size (called an insert) and gen-
erating reads from its two ends. Matepairs allow for the spanning of repeats,
allowing the assembler to join together long genomic regions even in the pres-
ence of a repeat which is not spanned by any read. The typical approach is to
build initial contigs (chains of edges in the overlap graph), and then attempt
to join them using information from the matepairs. An alternative approach
was demonstrated by Pevzner and Tang in the double-barreled version of the
EULER program (EULER-DB[17]). They search for all paths in the de Bruijn
graph connecting the two reads of a matepair. If there exists only one with a
length approximately equal to the length of the insert, it is replaced by a direct
edge. This approach has the disadvantage that it requires an algorithm to find
all paths of (approximately) a given length between two nodes, which is a dif-
ficult computational problem, and scales poorly with the size of the de Bruijn
graph.

Sequence assembly using NGS data is a rapidly developing area. Several meth-
ods have been recently suggested for ab initio sequencing using short reads; many
of these appeared after this paper was submitted. We briefly describe these here.
SSAKE [20] is an assembler that uses a simple algorithm for building contigs
by greedily extending existing overlaps. VCAKE [12] extended SSAKE to work
with error-prone, rather than perfect, data. Another approach based on elon-
gating existing contigs is the SHARCGS assembler [6]. The Shorty assembler
[11] uses a de Bruijn graph approach in combination with matepairs to assemble
a small bacteria – the 600 Kb Mycoplasma genitalium. Chaisson and Pevzner
[5] have adapted EULER to use short reads. Their approach shows high accu-
racy and contig sizes for the slightly longer (120 bp) reads generated by the 454
sequencers. They also use matepair information in a manner identical to the
EULER-DB algorithm. Another promising, though yet unpublished, tool is the
Velvet assembler [21].

All of the previous work on genome assembly shares a major assumption: the
goal of the assembly problem is to minimize the length of the genome. While
parsimony is usually used to justify this assumption, it is well-known that repeats
are ubiquitous in eukaryotic genomes, and even bacterial genomes have sections
that are present multiple times. Because of over-collapsing, any repeating region
of length longer than the read length may be underrepresented in the assembled
genome. For read lengths of 25 nucleotides, which is what we study in this paper,
the number of such repeats is very large. We therefore propose an alternate
optimization criteria, as we describe below.
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1.2 Contributions

In this paper, we introduce two new methods of genome assembly that are tai-
lored specifically to short read data. First, we believe that the overall goal of
an assembler should be not to minimize the length of the genome, but to maxi-
mize the likelihood that the genome was the source of the various reads. Unlike
the case of sequencing by hybridization, where the only available information
is whether a certain k-mer is present in the genome, whole genome shotgun se-
quencing samples the genome, and hence k-mers that are present more often
in the genome are more likely to be sampled. For an individual read, however,
Sanger style sequencing does not have sufficient coverage to take full advantage
of these frequencies. The greatest advantage that the NGS technologies give is
high coverage – on a single run a bacterial genome can get as much as 250x cov-
erage. This number makes it possible to not only determine whether a particular
read is present in a genome, but also to statistically estimate its copy-count. We
formulate the problem of genome assembly as maximizing the likelihood of the
observed read frequencies, rather than minimizing the length of the genome.
This problem can be formulated as a minimum cost bidirected flow (biflow)
problem with convex costs, and we show that it can be effectively solved with a
generic flow solver for the case of bacterial genomes, achieving copy-counts that
are accurate more than 99.99% of the time.

Second, to improve the lengths of the assembled contigs, we introduce a novel
technique for taking advantage of matepair information. Our method is based
on the simple Dijkstra’s shortest path algorithm. In contrast to EULER-DB, we
do not search for all the paths between mated reads, but rather, we search only
for the existence of short paths between some pairs of reads. Because the paths
we search for are bounded by a small length that is independent of the genome
size (the maximum variation in the insert size), our algorithm scales extremely
well for large genomes and high coverage.

2 Methods

In Sections 2.1 through 2.4, we present the steps of our copy-count prediction
algorithm. In Section 2.5, we give our algorithm for repeat resolution using
matepairs.

2.1 Building the Transitively Reduced Bidirected Overlap Graph

Our algorithm models the double-stranded nature of DNA during genome as-
sembly by using the elegant bidirected graph framework. Bidirected graphs are
a generalization of directed graphs that were introduced by Edmonds in [7]. A
bidirected graph is different from a directed graph in that the edges have orien-
tations on each of the ends, rather than on the whole edge. This leads to three
types of edges:

– edges with one arrow pointing into its vertex and the other pointing out of
it vertex.
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– edges with both arrows pointing out of their respective vertices.
– edges with both arrows pointing into their respective vertices.

A walk in a bidirected graph is defined as a a sequence x1, e1, . . . , ek−1, xk where
ei is an edge incident to vertices xi and xi+1, and for all 2 ≤ i ≤ k − 1, ei−1
and ei have opposite orientations at xi. Informally, if a walk enters a node on an
in-edge, then it must exit on an out-edge, and if it enters an on out-edge, then
it must exist and an in-edge (see Figure 1A for an example).

Bidirected overlap graphs were first introduced by Kececiouglu [13]. An over-
lap graph is a graph where each vertex corresponds to a read and each edge cor-
responds to an overlap between reads. In a bidirected overlap graph, each vertex
corresponds to a double-stranded read (the read and its reverse complement),
and each edge corresponds to one of the three ways that double-stranded reads
can overlap each other. Any walk can be traversed in either of two directions, so
just like a walk in a directed overlap graph spells a string that contains each of the
reads, a walk in a bidirected overlap graph spells a double-stranded string that
contains each of the double-stranded reads. Thus, the original double-stranded
genome corresponds to a walk in the bidirected overlap graph that visits every
vertex at least once (assuming error-free reads and complete coverage). For a
more extended discussion of bidirected graphs in general and bidirected overlap
graphs in particular, we refer the reader to [14].

The first step of our assembly algorithm is to build a bidirected overlap graph.
We add an edge between two reads if they overlap by at least omin characters,
where omin is a parameter to our algorithm. We then perform transitive edge
reduction, where we remove any overlap that is spelled by two shorter overlaps.
This procedure is identical to the one described in [15]. While the set of possible
double-stranded strings spelled by the graph remains unchanged, the reduction
drastically reduces the number of edges. The result is what we refer to as the
transitively reduced bidirected overlap graph.

2.2 Convex Min-Cost Biflow

Given the (transitively reduced bidirected) overlap graph as constructed above,
we now describe how to use convex min-cost biflow to estimate the copy-counts

A’ B’
C’

D’

A B C

D

A B
C

D
W X Y

Z

A  B  C  D

W  1                     

X -1 -1    -1            

Y     1  2

Z          -1            

A B C

Fig. 1. A. This is an example of a bidirected graph. The sequence
W,A, X, B, Y, C, Y, B, X, D, Z is a walk, while W, A, X, D, Z is not. B. The cor-
responding edge incidence matrix, with the zero entries ommited. C. This is the
associated monotonized directed graph.
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of each read. The copy-count of a read is the number of times it appears in the
original genome.

Let G = (V, E) be a bidirected graph. Let l : E → N and u : E → N be lower
and upper bounds associated with the edges. The function f : E → N is called a
flow if for every edge, l(e) ≤ f(e) ≤ u(e), and for every vertex, the flow along the
in-edges is the same as the flow along the out-edges. Given a bidirected graph
with lower and upper bounds on the edges and a cost ce ∈ R associated with
each edge, the (linear) min-cost biflow problem is to find a flow that minimizes∑

cef(e). We discuss algorithms for this problem in Section 2.4.
We take advantage of two additional variations on the min-cost biflow prob-

lem. The first allows for having lower and upper bounds for the flow going
through each vertex, as well as adding a cost function on the vertices as well
as the edges. Such a problem can be reduced to the min-cost biflow problem as
follows. Take every vertex v and split it into two vertices v+ and v−. Reconnect
any edge that was pointing into v to be pointing into v−. Similarly, reconnect
any edge that was pointing out of v to be pointing out of v+. As a final step,
add an edge from v− to v+. Now, assign any lower/upper bounds, as well as
any costs, associated with v to the edge from v− to v+. After repeating this
procedure for every vertex, a flow on the transformed graph corresponds to a
flow on the original graph, and vice-versa. This transformation is based on a
similar transformation on directed graphs [1].

The second equivalent variation is called the convex min-cost biflow problem.
Here, the cost ce associated with an edge e is no longer a real number but
rather a convex function ce : N → R, and the goal is to minimize

∑
e ce(f(e)).

Such a minimization function is called separable convex because it is a sum of
convex functions on each of the variables, independently. In the directed case,
this problem is polynomially equivalent to the linear min-cost flow problem by
modeling each convex function with piecewise-linear approximations. The same
reduction holds in the bidirected case.

Before defining our flow problem, we make a modification to the overlap graph
by adding a supersource and supersink to the graph. This is the standard way
to convert from a flow to a circulation problem.For a thorough discussion of this
method, as well as for descriptions and proofs of the above reductions, we refer
the reader to a text on network flow, e.g. [1].

In our assembly algorithm, we define a convex min-cost biflow problem on the
modified transitively reduced bidirected overlap graph, with bounds and costs
on both the edges and the vertices. Each vertex has a lower bound of 1 since it
represents a read that must be present in the genome at least once. All other
lower bounds are 0 and all upper bounds are infinity. We specify convex costs for
the vertices, which we describe in the next subsection, and add prohibitively large
costs to the edges from/to the supersource/sink so that their usage is minimized.
Next, we solve for the flow (which we describe in detail in Section 2.4). Since any
flow can be decomposed into a collection of walks, our flow represents a (non-
contiguous) assembly of the genome, and the flow going through each vertex
represents the number of time the read is present in the assembly.
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2.3 Maximizing the Global Read-Count Likelihood

Let G be a circular genome of length N(G), and let gi denote the number of times
the k-mer i appears in G. Probabilistically, the dataset of n reads corresponds to
a set of outcomes from n independent trials. In each trial, a position is uniformly
sampled from G and the outcome of the trial is the k-mer beginning at that
position. For a given i, the probability that the outcome of a single trial is i
is simply gi

N(G) . Let the random variable Xi denote the number of trials whose
outcome is i. There are 4k such variables, and when considered independently
of each other, they each follow the binomial distribution. When taken together,
their joint distribution is exactly the multinomial distribution, given by

P[X1 = x1, X2 = x2, . . . , and X4k = x4k ] =
n!

∏
xi

∏

i

(
gi

N(G)

)xi

For the assembly problem, G is not known but the results of the n trials are
known. Thus, we can consider the likelihood of the parameters of the distribution
(gi) given the outcome of the trials (xi), which we call the global read-count
likelihood:

L[g1, . . . , g4k |x1, . . . , x4k ] =
n!

∏
xi

∏ (
gi

N(G)

)xi

In our approach, we attempt to assemble the genome with the maximum
global read-count likelihood. Equivalently, we minimize the negative log of this
likelihood. Within the biflow framework, gi corresponds to the flow through a
vertex (k-mer) in the overlap graph, and we want to find a flow that minimizes
− logL. In order to formulate this as a convex min-cost biflow problem, we
need − log L to be a separable convex function. That is, we need to find convex
functions ci such that − logL =

∑
ci(gi). Unfortunately, since the multinomial

distribution has the constraint that N(G) =
∑

gi, this is not possible.
However, as the number of trials goes to infinity, the Xi random variables

become independent. Because the number of trials (sampled k-mers) is typically
large, we can approximate the multinomial distribution as the product of the
individual binomial distributions of each Xi. Since in the binomial approximation
the length of the genome N(G) is a constant that is independent of each gi,
we can replace it by N , which is the length of the actual genome from which
the reads were sampled. The approximate length of the actual genome can be
ascertained through one of a number of biological experiments, or through an
Expectation-Maximization type approach. For our experiments, we assume that
the genome size is known.

The resulting approximation for L is thus

L[g1, . . . , g4k |x1, . . . , x4k ] ≈
∏

P[Xi = xi] =
∏ (

n

xi

)( gi

N

)xi
(
1 − gi

N

)n−xi

Now we can write − log L = K ·
∑

ci(gi), where K is some positive constant
independent of all gi, and

ci(gi) = −(xi log gi) − (n − xi) log(N − gi)
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We let ci be the convex cost functions for the vertices of our min-cost biflow
problem, and reduce it to a linear min-cost biflow problem by approximating the
convex function, as described in the previous section. We will now describe our
approach for solving the resulting linear min-cost biflow.

2.4 Efficient Algorithm for (Linear) Min-Cost Biflow

The min-cost biflow problem was formulated by Edmonds, who showed that
it is equivalent to perfect b-matchings [7]. Edmonds’ work was later extended
by Gabow [8], who gave the fastest to-date algorithm for sparse graphs, which
runs in time O(|V |2 log2(|V |)) in the worst case. Unfortunately, no efficient im-
plementation of this or similar algorithms exists, and the worst-case running
time is prohibitive for a large graph, such as the overlap graph of a genome. In
this section, we give a much faster 2-approximation algorithm that allows us to
efficiently solve min-cost biflow problems with optimal results in most cases.

One of the easiest ways that directed network flow for a graph G(V, E) can be
solved is through a reduction to a linear program (LP). The reduction is based
on building the |V | × |E| edge incidence matrix I|V ||E| for the graph. Every
column of I corresponds to e ∈ E, and every row corresponds to v ∈ V . The
cell Im,n is 1 if the edge n is an in-edge of vertex m, it is −1 if it is an out-edge
from m, and 0 if it is not incident on m. The edge incidence matrix of a graph
can be viewed as the constraint matrix for an LP where the optimal LP solution
corresponds to the minimum flow in the graph.

Incidence matrices based on directed graphs are Totally Unimodular (TU),
leading to LPs that always have integral solutions. Because in bidirected graphs
an edge may be an in-edge or an out-edge on both of its ends, the resulting
incidence matrix may have two 1s (or two −1s) in a column. It is also possible to
have a 2 or a −2 if it is the only non-zero entry in its column (this corresponds
to a loop). Figure 1b gives an example. The resulting matrices are known as
binet matrices [2], and have the property that the optimal solution of the LP is
guaranteed to be half-integral (a multiple of 0.5).

Our algorithm is based on the recent result by Hochbaum [10], who demon-
strates a reduction from a binet matrix to a TU matrix by monotonization:
doubling the number of columns and rows. Solving the LP defined by the new
TU matrix is equivalent to solving it in the original binet matrix. However the
new TU matrix corresponds to a directed graph, and one can find the min-cost
flow in directed graphs using algorithms that are much faster than general LP
solvers. We now formulate the monotonization procedure of Hochbaum in terms
of the underlying bidirected graph.

For every vertex v of the original bidirected graph we introduce two vertices v1
and v2 in the new directed graph. For every in-edge of v we create two directed
“twin” edges, one of which points into the v1 vertex and the other points out of
the v2 vertex. For all out-edges of v, we again create twin edges, one of which
points out of v1 and the other into v2. An example of the transformation is
given in Figure 1c. We transfer all of the bounds and costs on the original edges
to the respective twin edges, and after finding the min-cost flow in the directed
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D

Fig. 2. A, B, and C demonstrate the three cases of graph simplification described in
Section 2.5. Case A is a chain, case B a loop attached to a chain, and case C is a split
vertex. A join vertex case is symmetrical and is not shown. The three simplifications
are shown to the right. In all cases, the new graph can ”spell” the exact same strings
as the initial graph. D. This is a conflict node. By iterative application of cases A, B
and C, we generate a graph where all remaining vertices are of type D.

graph we transfer the results to the original bidirected graph by adding the flows
through the pairs of twin edges and dividing by two. Because the procedure
above is equivalent to the monotonization procedure of Hochbaum, it has the
same provable properties, e.g. that the optimal result is half integral and that
the monotonized flow is at worst a 2-approximation to the optimal integral flow.
This reduction allows us to convert our bidirected flow problem into a directed
flow problem, for which many efficient algorithms have been developed, e.g. the
network simplex algorithm. We are also able to take advantage of off-the-shelf
packages for solving network flow within our implementation.

2.5 From Flow to Contigs

At this point of our algorithm, we have found a flow on the overlap graph, as
described above. In general, any flow can be decomposed into a collection of
walks, which, in our case, correspond to the assembled contigs. Since there is an
exponential number of decompositions possible, we use a heuristic to find one
where the length of the walks (contigs) is large and the accuracy of the contigs
is high.

Graph simplification. In many cases, it can be inferred that certain walks
will appear as a subwalk in any decomposition. First, we remove all edges with
flow zero from the overlap graph. Next, by applying the following the three rules
to every vertex v, we can greatly simplify the overlap graph (see Figure 2):

Case A. There is exactly one edge going into v and exactly one edge going out
of v. The flow on both edges is the same. We can merge the two edges and
remove v from the graph.

Case B. There are exactly two edges going out of v and two edges going into
v, and exactly one of the edges going out of v is also going into v (a loop).
The flow on all three edges is the same. We can merge the three edges and
remove v from the graph.
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Case C. There is exactly one edge going into v and m > 1 edges going out of
v (v is a split vertex), or there is exactly one edge going out of v and m > 1
edges going into v (v is a join vertex). The flow on the in(out) edge is equal
to the sum of the flows on the out(in) edge. We can split the in(out) edge
into m copies, merge each one with one of the out(in) edges, and remove v
from the graph.

We call a vertex v removable if it falls into one of the above cases, and a con-
flict vertex otherwise. For every removable vertex in the graph, we perform
one of the three operations above. It can be shown that after at most 2|V | op-
erations, all the remaining vertices are conflict vertices. In practice, this process
reduced the number of edges in the overlap graph by over 105 fold.

Conflict node resolution algorithm. Once the graph contains only conflict
vertices, we attempt to resolve each in turn by finding pairs of edges that are in-
cident on the vertex with opposite orientations and are supported by matepairs.
For each vertex we do a breadth first search in both the in and out directions,
recording all of the reads that are within a specified distance threshold. We skip
any read that was initially on an edge that had been split (during case C of the
previous step), as it no longer has a unique position in the overlap graph. We now
have two sets of vertices, L and R, corresponding to reads that were observed
on the in side of a vertex and out side of a vertex respectively (see Figure 3).
The high coverage provided for by NGS methods allows us to concentrate our
analysis on reads only a short distance away from the conflict vertex. For each
of the reads found, we locate their matepairs in the graph (treating the forward
and reverse matepairs separately) and run an all-pairs bounded shortest path
algorithm from all the mates of L to all the mates of R. Because the overlap
graph is sparse, the most efficient algorithm for all-pairs shortest path is to run
Dijkstra’s algorithm from every vertex. Furthermore, we terminate Dijkstra’s
algorithm when all vertices within the bounding distance have been explored:
if we expect that the true size of the insert will vary by at most E from the
expected size, than the bounding distance is 2E.

To resolve conflict vertices we implement a simple greedy matching algorithm.
All of the edges incident on a particular vertex are separated into two classes
depending on their direction at the node – in or out. For every pair of (in, out)
edges, we compute the number of mates that are within the bounding distance
from each other. If a significant fraction of one edge’s matepairs are within this
distance from the matepairs of another edge on the opposite side (a matching
condition), the two edges are joined into a common edge. We handle any half-
integral edges by allowing either of the edges to get matched to the integral edge
incident to the conflict vertex. The process is repeated until no more pairs of
edges that satisfy the matching condition are found at the current vertex.

After every conflict vertex has been considered, the graph simplification steps
described in the previous section are run again, as new removable vertices may
be created during the matching process. The matching procedure is then iterated
for a set number of steps, or until convergence.
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2E

Fig. 3. Resolution of a conflict vertex: we find all reads within a pre-specified distance
from the conflict vertex, and locate their mates on the graph. Because the reads are
close together, if they spell the same path we expect their mates to also be close
together. If the distance between the mates is less than twice the error of the insert
size (2E) we consider the two mates to support each other. In the example the top left
edge will be joined with the top right, and bottom left with the bottom right.

3 Results

We implemented a prototype assembly algorithm for short reads using the algo-
rithms described above. We have experimented with both CPLEX and CS2 [9]
for solving network flow, and found that while the running times are compara-
ble, CS2 uses less memory; consequently we used it for all of the experiments
below. To simplify the implementation, we model the convex cost function using
a three-piece linear approximation (see [1] for details). The overall running time
of our algorithm is approximately 1 hour on a single machine.

3.1 Description of the Dataset

Because we were unable to obtain any real data from the Solexa system, we
generated synthetic read data from the E. coli genome, which has a total length
of 4.6 megabytes. We uniformly sampled the genome to find the location of the
first read of a matepair, and then sampled the second read at a distance within
10% of the expected insert size, also uniformly. The reads generated were always
of length 25 and error-free (the importance of the assumptions of error-free
reads and uniform coverage is elaborated upon in the Discussion). The coverage
rate used was varied from 50 to 100X, though we also tried one test with 200x
coverage (a single run of the Solexa system generates 1Gb of data, or greater
than 200x coverage for E. coli). The minimum overlap length (omin) was varied
from 17 to 21. The exact datasets used are summarized in Table 1.

3.2 Read Count Results

To evaluate the accuracy of our maximum likelihood flow solving algorithm
we compared the flow going through every vertex in the overlap graph to the
number of times that the corresponding read appears in the original genome. The
results are presented in Table 1. For the vast majority of the reads we correctly
predicted their copy count in the genome, with the fraction of misestimated
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Table 1. The first four columns describe the datasets used in the evaluation of the
assembly algorithm. The insert size was simulated with a uniform error of up to 10%.
The right side shows the deviations of the predicted read copy-counts from their true
values. While half-integral flows were observed with some parameter settings (too low
coverage, too low omin), the flow was always integral over all runs with the parameters
shown.

Dataset Coverage Insert Size omin -2 -1 0 +1 +2 +3

50x3k 50 3000 17 4 397 3937038 170 18 6
75x3k 75 3000 19 0 9 4324061 28 3 0
75x6k 75 6000 19 0 7 4324665 22 0 0
100x3k 100 3000 21 0 2 4466328 6 0 0
100x6k 100 6000 21 0 2 4466636 23 0 0
200x6k 200 6000 19 0 0 4547426 4 0 0

Table 2. Evaluation of the assembly quality for the various datasets. Length is the
N50/N90 score, number is the number of contigs longer than the N50/N90 length. The
errors are computed as the total length of errors over the total size of all contigs.

N50 Contig N90 Contig

Data set length(kb) number 1 error per length(kb) number 1 error per Total contigs

50x3k 23.4 53 165k 7.1 189 148k 803
75x3k 25.8 48 177k 7.8 174 154k 731
75x6k 25.1 49 93k 7.9 176 96k 732
100x3k 27.9 48 178k 7.9 171 159k 700
100x6k 25.8 49 106k 7.9 174 109k 736
200x6k 25.8 48 154k 8.0 174 158k 727

counts varying between 10−4 and 10−6, depending on the coverage. When our
algorithm mispredicted the number of occurrences, the error was typically small
compared to the true frequency of the read. We also note that the results show
only slight improvement past 75x coverage.

3.3 Overall Assembly Results

In order to estimate the quality of the assembly resulting from matepair infor-
mation, we take every edge of the graph after the conflict node resolution and
generate the sequence which it spells. As per convention, we compute the N50
and N90 scores as the length of the shortest contig such that 50 and 90 percent
of the original genome is in longer contigs, and the number of such contigs. To
check for the presence of errors in the assembly, each contig was aligned to the
reference E. coli genome. The number of errors in a contig was computed as the
number of local alignments that is required to completely tile it minus one. The
results are summarized in Table 2.

Overall the length of the contigs which contained 50 and 90 percent of the
genome varied between 23-28k and 7-8k, respectively, while the error rate was
about one error every 100-180k in the longer N50 contigs, and one error every
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100-160k for the N90 contigs. These errors illustrate a weakness of a greedy
matching algorithm, which may be mislead by two well-matched edges that con-
tradict many other good matchings. While the contig sizes are short by the
standard of whole genome assembly with Sanger reads, they compare favourably
with the results that Chaisson et al. [4] obtained on Neisseria meningitis (genome
length 2.2Mb) with 70 nucleotide reads, albeit without matepairs: in their exper-
iments they required 344 contigs to achieve 95% coverage of the genome, while
our algorithm required 206 contigs to cover 95% of E. coli, a genome which is
twice as long as N. meningitis. These results demonstrate the power of matepair
information in resolving the proper layout of the genome, even in the case of
very short reads.

4 Discussion

In this paper we explore the potential for ab initio whole genome shotgun se-
quencing with very short, mated reads, similar to those that are produced by
novel sequencing technologies such as Solexa or the AB SOLiD system. We
demonstrate that 25 nucleotide reads, while a significant challenge to assem-
ble, can in fact be used to construct contigs of a reasonable length by using a
combination of a network flow algorithm that is able to accurately capture the
frequencies at which the various reads occur in the genome and the further use
of matepairs to resolve the paths in the resulting graph. While the current algo-
rithm does not yet allow for the sequencing of an unknown bacterial genome us-
ing NGS reads, it does indicate that ab initio whole genome shotgun sequencing
is indeed possible with read data even as short as 25 nucleotides, in the presence
of matepair information. Two potential avenues towards this goal may include
the use of matepair information to connect the various contigs into supercontigs,
and improvements to the algorithm used to resolve the conflict nodes. At the
same time, we believe that the general approach of using convex network flow
to estimate frequencies of strings in a genome is a more general technique with
other applications in computational biology, such as building repeat libraries for
newly-sequenced genomes.

In our experiments we make two major assumptions – that the reads are error-
free, and that the genome sequencing rate is uniform. We believe that the first of
these assumptions is not fundamental, and a limited amount of error in the reads
can be overcome using methods similar to the ones developed for the EULER
assembler [19]. Moreover, the high coverage rate should improve the correction
accuracy of these methods. The second assumption, however, is more essential
to the accuracy of our algorithm. In the case of non-uniform coverage of cer-
tain areas in the genome (in particular it is suspected that the Solexa machines
may under-sample homo-polymer runs) our algorithm may be less accurate at
predicting the copy-counts, which may have significant effects in downstream
analyses. We believe that these effects can be neutralized if the biases of the
sequencing apparatus are known. For example, each read’s observed frequency
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can be adjusted depending on its sequence. The exploration of the exact biases
of the NGS platforms and the correction for these is an important avenue for
future research.
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de novo methylation in cancer.

About the keynote speaker. Dr. Howard Cedar was born in New
York, received a B.Sc. degree in mathematics from M.I.T. and M.D.,
Ph.D. degrees from N.Y.U. After an internship he continued as a Public
health fellow at the N.I.H. In 1973 he immigrated to Israel where he
became a full Professor of Molecular Biology in 1981. Dr. Cedar has
received a number of awards including the Israel Prize and the Wolf
Prize for Medicine, and is a member of the Israel Academy of Sciences.

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, p. 65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



BayCis: A Bayesian Hierarchical HMM for
Cis-Regulatory Module Decoding in Metazoan Genomes

Tien-ho Lin1,�, Pradipta Ray1,� , Geir K. Sandve2, Selen Uguroglu3,
and Eric P. Xing1,��

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
2 Dept of Computer and Information Science, Norwegian University of Science and

Technology, Trondheim, Norway
3 Dept of Computer Science and Engineering, Sabanci University, Istanbul, Turkey

epxing@cs.cmu.edu

Abstract. The transcriptional regulatory sequences in metazoan genomes often
consist of multiple cis-regulatory modules (CRMs). Each CRM contains locally
enriched occurrences of binding sites (motifs) for a certain array of
regulatory proteins, capable of integrating, amplifying or attenuating multiple
regulatory signals via combinatorial interaction with these proteins. The archi-
tecture of CRM organizations is reminiscent of the grammatical rules underlying
a natural language, and presents a particular challenge to computational motif
and CRM identification in metazoan genomes. In this paper, we present BayCis,
a Bayesian hierarchical HMM that attempts to capture the stochastic syntactic
rules of CRM organization. Under the BayCis model, all candidate sites are eval-
uated based on a posterior probability measure that takes into consideration their
similarity to known BSs, their contrasts against local genomic context, their first-
order dependencies on upstream sequence elements, as well as priors reflecting
general knowledge of CRM structure. We compare our approach to five existing
methods for the discovery of CRMs, and demonstrate competitive or superior pre-
diction results evaluated against experimentally based annotations on a compre-
hensive selection of Drosophila regulatory regions. The software, database and
Supplementary Materials will be available at http://www.sailing.cs.
cmu.edu/baycis.

1 Introduction

Rules determining the spatio-temporal variations of gene expression in multi-cellular
organisms are believed to be encoded as “cis-regulatory sequences”, known to account
for a large portion of a metazoan genome [15]. While recent years have seen substantial
progress in in silico prediction of protein coding sequences from metazoan genomes,
our understanding of the vocabulary and rules governing cis-regulatory sequences is
limited, and remains a major open problem.
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Unlike prokaryotes or uni-cellular organisms like yeast, metazoan transcription fac-
tor binding sites (TFBS, also known as motifs) are usually neither located immediately
upstream of the proximal promoter element, nor are they distributed uniformly and
independently in the extended surrounding region. Instead, the distributions of these
motifs exhibit apparent general principles referred to as modular organizations – being
organized into a series of discrete regions of roughly 200-1000 bp in length, each of
which controls a distinct aspect of a gene’s expression pattern [3]. Each CRM consists
of a locally enriched collection of motifs of certain combination and ordering, capable
of integrating, amplifying, or attenuating multiple regulatory signals via combinato-
rial physical interaction with multiple transcriptional regulatory proteins (i.e., TFs) [2].
Furthermore, it is believed that there also exist dependencies among CRMs so that co-
ordinations between regulatory signals can be orchestrated.

Motif models of TFBSs for a single transcription factor have existed for many years,
currently the most common model being the position weight matrix (PWM) introduced
more than twenty years ago [25]. In recent years, focus has shifted from predicting
TFBSs for a single TF towards predicting CRMs comprising several TFBSs, often for
several distinct TFs. Several models have been proposed, making use of certain ar-
chitectural features of the CRMs. Some of these models apply comparative genomic
methods for CRM prediction [12,16,22,23]. These approaches are, however, restricted
to very closely related organisms, because non-coding sequences are hard to align and
more subject to events like duplication and shuffling which make orthology prediction
difficult. A large number of CRM and motif prediction algorithms, including the one
we propose in this paper thus rely on single species data.

One line of methods for the discovery of CRMs count the number of matches (of
some minimal strength) to given motif patterns within a certain window of DNA se-
quence [19,21,20,4]. From a modeling point of view, this family of algorithms assumes
that motifs are uniformly and independently distributed within each window; an ad hoc
window size needs to be specified, and careful statistical analysis of matching strength
is required to determine a good cutoff or scoring scheme [21,10]. Rajewsky et al. ad-
dressed the issue of compensating the matching scores for co-occurring weak motif
sites using an updatable word frequency measure, leading to higher scores for motifs
co-occurring more frequently within a given window size 1 [19].

A second line of methods takes an entirely different approach by modeling the oc-
currences of motifs and CRMs as the output of a first-order hidden Markov process.
This approach alleviates the necessity of both the window size and the score cutoff,
and takes into account not only the strengths of motif matches, but also the spatial
distances between matches (arguably more informative than co-occurrence within a

1 Their algorithm also contains an important extension for unsupervised CRM prediction, where
representations of novel motifs are estimated directly from input DNA sequences. However,
under a modular formulation of the CRM prediction problem (cf. the LOGOS model [30]),
prediction of motif instances from given representations, and estimation of motif representa-
tions from predicted instances, can be treated as two orthogonal sub-problems to be solved
separately and coupled as components of a higher-level joint model with estimates exchanged
in iterative fashion. In this paper, we only focus on CRM prediction given motif representa-
tions and defer implementing the fully autonomous de novo motif-finding program to a later
paper.
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window). The hidden Markov model (HMM) translates to a set of soft specifications of
the expected CRM length and the inter-CRM distance (i.e., in terms of geometric dis-
tributions). However, since training data for fitting the HMM parameters hardly exist,
these parameters typically have to be specified based on empirical guesses. HMMs and
similar models that captures TFBS distributions, as well as intra-CRM and inter-CRM
backgrounds, have been used in several CRM discovery methods, e.g. in Cister [7],
Cluster-Buster [6], CisModule [31] and EMCModule [9]. As these methods employ
a general inter-motif background, they do not infer any ordering between motifs. This
model is extended to include distinct motif-to-motif transition probabilities in the meth-
ods Stubb [24] and Module Sampler [27].

In this paper, we present a new method, BayCis, which implements a Bayesian hier-
archical HMM for CRM search. BayCis represents a step further along the direction of
HMM-based CRM models. It uses a more sophisticated HMM model that is intended
to capture, to a reasonable degree, the detailed syntactic structure of CRM and cis-
regulatory regions containing CRMs. By combining general intra-CRM background,
motif specific background surrounding motif instances, as well as specific motif-to-
motif transitions, it allows couplings between motifs to be captured. We also introduced
more advanced approaches to model the background, using separate inter-CRM, intra-
CRM and motif-specific higher-order Markov backgrounds. Furthermore, inter-motif
distances may be modeled with more flexible distributions (rather than only simple ge-
ometric distributions). Finally, as detailed in the following sections, we treat parameters
of the HMM grammar as stochastic variables for which Bayesian priors are applied, in-
stead of regarding the state-transition parameters of the HMM grammar as fixed param-
eters that solely rely on empirical default values or user specification like in previous
methods. This technique in principle alleviates user specification of model parameters
(although advanced users could choose to decide the “strength” of the priors, or de-
fine their own priors). On the computational front, we developed an efficient variational
inference algorithm for posterior inference of sequence annotation and Bayesian param-
eter estimation. This algorithm enjoys a desirable convergence guarantee and is much
more efficient than the classical Gibbs sampling methods without compromising much
accuracy.

BayCis has several advantages over existing methods for CRM discovery. The ex-
plicit model of CRMs makes architectural assumptions clear, and supports rich inter-
pretation of results by analyzing likelihoods at states and transitions. The sophisticated
modeling, including motif-to-motif specific transitions and several distinct background
states should allow more specific CRM predictions at the same level of sensitivity. Fi-
nally, by relying on soft priors instead of hard specification of model parameters, the
Bayesian approach adds generality and user convenience to the method.

2 Methods

To model the complex architecture of metazoan transcriptional regulatory sequences
(TRS), we propose to use a hierarchical hidden Markov model (hHMM) that can encode
a set of stochastic syntactic rules presumably underlying the CRM organizations and
motif dependencies. A first-order Markov process over a hierarchy of states allows us
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to describe the structure of regulatory regions at different levels of granularity, offering
more modeling power than existing methods.

2.1 A Hierarchical HMM of TRS

As first proposed in [5], the hHMM is an extension of the classical HMM for modeling
domains with hierarchical structures. In an hHMM, all hidden states are not equal, but
follow a hierarchical organization that constrains stochastic transitions among states—
transitions are only permissible for (certain pairs of) states at the same level or adjacent
levels in the hierarchy; different states can emit either single observations or strings of
observations, depending on their position in the state hierarchy; and the strings emitted
from the non-leaf states in the hierarchy are themselves governed by a sub-hHMM
(or more generally, by an arbitrary generative model, which would further extend the
overall model beyond an hHMM).

bg
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motif1 motif2 motifK
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end

endstart
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Fig. 1. The BayCis hHMM state transition diagram with 3-
level hierarchy. Circular nodes represent functional states in
DNA sequences, and round boxes represent start and end
states in each sub-model. CRM and motif states are sub-
models invoked by higher level models. Arrows between
nodes represent permissible state transtions, including hori-
zontal transitions denoted as black arrows, and verticle tran-
sitions denoted as dashed arrows.

An hHMM can explic-
itly capture nested gener-
ative structures (e.g., TRS
→ CRM → Motif → Sin-
gle Nucleotide Site) underly-
ing complex sequential data,
and dependencies among el-
ements at different levels of
granularity (e.g., motif ver-
sus motif, site versus site,
etc.), which makes it a pow-
erful and natural approach to
model genomic regions har-
boring transcriptional regula-
tory sequences. Fig. 1 shows
an example of an hHMM
encoding typical hierarchical
structures of the metazoan
TRSs we are concerned with
in this study. At the top (i.e.,
coarsest) level, this hHMM
represents a TRS as a con-
catenation of long stretches of sequences corresponding to global backgrounds and
CRMs. We can think of this top level as an HMM whose states emit whole CRMs and
inter-CRM (global) background sequences. Formally, we let Q

1 ≡ {bg, c1, c2, . . . , cI}
denote the set of these possible states. At the next level, each CRM is represented as
a sequence of motifs and intra-CRM (local) background states. Accordingly we have
Q

2 ≡ {bc, m1, m2, . . . , mK}. At a finer level below, each motif is represented as a
sequence of buffer states and nucleotide sites. (We will explain shortly why we in-
clude non-motif buffer states at this level.) Accordingly, we define Q

3 ≡ B ∪ (∪iMi),
where B corresponds to the non-motif buffer states padding right before and after
the motif sequences and Mi corresponds to all possible sites within motif i. More
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specifically, we define: Mi ≡ M
f

i ∪ M
r

i , where M
f

i = {1(i) . . . L(i)
i } is the set of all

possible sites within motif i on the forward DNA strand, and M
r

i is the set of all possi-
ble sites within motif i if it is on the reverse complementary DNA strand.; B ≡ B

p ∪B
d,

where B
p = {b(1)

p
, . . . , b(K)

p
} denotes the set of proximal-buffer states associated with

each type of motif 2, and B
d = {b(1)

d , . . . , b(K)
d } denotes the set of distal-buffer states

associated with each type of motif.
The possible transitions between these states are made explicit by the arrows in the

hierarchical state diagram in Fig. 1. (To make the hHMM model well-defined, we also
introduce dummy states START and END at appropriate levels to enable instantiation of
state-traversal, and proper termination of subsequences at each level.) The biological
motivation for such a state hierarchy is that we expect to see occasional motif clusters
in a large ocean of global background sequences (represented by state bg); each motif
instance in a cluster is like an island in a sea of intra-cluster background sequences
(bc); and adjacent motifs may be statistically coupled (we will elaborate on this point
in the next section). Our model assumes that the distance between clusters is geometri-
cally distributed with mean 1/(1 − βg,g), and the span of the intra-cluster background
is also geometrically distributed with mean 1/(1 − βc,c). These modeling choices are
intended to not only reflect our uncertainty about the CRM structure, but also to of-
fer substantial flexibility to accommodate potential 1st-order syntactic characteristics
within the CRMs. In this hHMM, only the bottom-level motif-site and motif-buffer
states, as well as the global and local background states, are capable of emitting in-
dividual nucleotides constituting the TRS, according to a stochastic emission model
(which we will elaborate later). A stochastic traversal of the hHMM states according to
the hHMM state-transition diagram would generate a TRS of arbitrary length but with a
structure consistent with our empirical knowledge of the functional organization of the
metazoan TRS. Note that this hHMM model does not impose rigid constrains on the
number of motif instances or CRMs; the actual number of instances is determined by
the posterior distribution of the hHMM states given the observed sequence. Also note
that we have not included functional states related to gene annotation and basic promot-
ers, but such extensions are straightforward if co-identification of CRMs and genes is
desired.

Given the observed sequences, and proper (i.e., biologically meaningful) construction
of the state space and its hierarchical organization, one can infer the latent state-traversal
path, which correspond to a plausible annotation or segmentation of the input sequence,
using a number of exact posterior inference algorithms. The original algorithms given by
[5] is a variant of the inside-outside algorithm for stochastic context free grammar, and
takes O(T 3QD), where T is the length of the sequence, Q is the total number of states,
and D is the depth of the hierarchy. A linear time algorithm was developed by [17] based
on a transformation of hHMM into an equivalent dynamic Bayesian network. It is also
possible to flatten the hHMM to an HMM with a block-structured sparse transition, and
use a modified forward-backward algorithm for linear-time inference. In section 2.3 and

2 Here, proximal-buffer refers to the background sites immediately next to the proximal-end of
the motif. For consistency, orientations are defined with respect to the initial position of the
input sequence. That is, the 1st position of the input sequence corresponds to the proximal end,
and the last position corresponds to the distal end.
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Supplementary Materials, we exploit this strategy, and develop an efficient algorithm
for inference and learning under a Bayesian extension of hHMM to be described in the
sequel.

Motif bigram via hHMM. An hHMM not only encodes hierarchical segmental struc-
tures in a sequence, but it can also be used to capture dependencies between sequence
elements at different levels of granularity at a cost much smaller than that would be
needed by a “flat” Markovian model which must resort to heavily parameterized high-
order conditional probabilities. For example, we can capture the dependencies between
neighboring CRMs in a TRS by modeling transitions between the CRM states. Of par-
ticular importance in this paper, we use hHMM to capture the dependencies between
occurrences of motifs within a CRM. As discussed earlier, the spatial arrangement of
motifs within a CRM may encode intricate combinatorial transcriptional regulatory sig-
nal. Thus modeling at least 1st-order dependencies between motifs may be beneficial
to the unraveling of motifs in long TRS bearing complex regulatory function, as well-
known in the case of Drosophila enhancers. Note that a direct transition between triv-
ially defined motif states (e.g., last site of motif i and first site of motif j) would suggest
that coupled motifs always occur right next to each other, which is biologically not
always true. To capture possible dependencies between motifs in the vicinity of each
other, we define the emission of a motif state (in Q

2) to contain not only the motif se-
quence itself, but also non-motif sequences denoted as proximal and distal buffers. Such
an emission can be understood as an extended instance of a motif, which we referred
to as a motif envelope. Thus cross-background (i.e., high-order) dependencies between
motifs can be captured by immediate (i.e., 1st-order) dependencies between the motif
envelopes.

We write A2 ≡ {ai,j} as the stochastic matrix for transitions among states in Q
2,

which defines a bigram of motifs (and their local backgrounds) within CRMs. The
length of the proximal and distal buffers of a motif is geometrically distributed with
mean 1/(1 − αi,i) and 1/(1 − βi,i), and can be generated via self-transitions of the
corresponding states at the third level (i.e., in Q

3) with probability αi,i and βi,i, re-
spectively. Then with equal probability αi,m/2, a proximal buffer state b(i)

p reaches the
start states 1(i) (resp. L(i′)

i ) of motif i on the forward (resp. reverse) strand, determin-
istically passes through all internal sites of motif i, and transitions to the distal-buffer
state b(i)

d , thereby stochastically generating a non-empty motif envelope 3. Each bi
d has

probability βi,j of transitioning to the proximal-buffer state of another motif j (or of
the same motif when j = i) to concatenate another motif envelope, or it may choose
to pad with some inter-cluster background before adding more envelopes, with proba-
bility βi,c. All distal-buffer states also have probability βi,g of returning to the global
background, terminating a CRM.

Spacer length distribution via GhHMM. A spacer is the interval seperating adjacent
motif instances, modeled as bc, bp, and bd states in BayCis. It has been suggested that the

3 The distinction between proximal and distal buffers avoids generating empty envelops (other-
wise, a single buffer state wont be able to remember if a motif has been generated beyond k
positions prior to the current position under a k-th order Markov model).
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range of spacer length is under selection forces according to comparative genomics data
of several Drosophila species [13]. Empirically, we found that the distribution of spacer
lengths can be approximated by a negative binomial distribution (see figure in Sup-
plementary Materials), whereas under an hHMM, the state durations of cluster back-
grounds is distributed as a goemetric distribution, which is not a good approximation
of the space length distribution. In Supplementary Materials, we describe a generalized
hierarchical hidden Markov model (GhHMM) which implements an approximate nega-
tive binomial distribution of spacer lengths by joining several geometrically distributed
cluster background states.

The emission models: PWM and higher-order Markov background. Once the
hHMM enters the motif-site states, we resort to a motif model to generate the nu-
cleotides at the corresponding sites. To maintain our focus on the hHMM and relevant
algorithmic issues, we only consider the scenario of searching for known motifs in this
paper (although extending our model for de novo motif detection is straightforward
based on, for example, the LOGOS framework [30]). For motif model we choose the
classical product-multinomial (PM) model, which can be represented by a PWM [25].

Several previous studies have stressed the importance of using a richer background
model for the non-motif sequences [26,11]. In accordance with these results, BayCis
uses a standard global k-th order Markov model for the emission probability of the
global background state. For the intra-CRM states, we used locally estimated Markov
models. Since the models are defined to be local, the conditional probability of a nu-
cleotide at position t is now estimated only from a window of length 2d centered at t.
These probabilities can still be computed off-line and stored for subsequent uses, by us-
ing a careful bookkeeping scheme (i.e., using a “sliding-window” to compute the local
Markov model of each successive position, each with a constant “update cost” based on
the previous one).

2.2 Bayesian hHMM

One caveat of the standard HMM approach for CRM modeling is the difficulty of fit-
ting the model parameters, such as the state-transition probabilities, due to rarity of fully
annotated CRM-bearing genomic sequences. In principle, using the Baum-Welsh algo-
rithm one can learn the maximal-likelihood (ML) estimates of the model parameters di-
rectly from the unannotated sequences while analyzing them. In practice, however, such
a completely likelihood-driven approach tends to result in spurious results, such as over-
estimation of the motif and CRM frequencies and poor stringency of the learned models
for potential motif patterns. Previous methods tried to overcome this by reducing the
number of parameters needed as much as possible, and by setting them according to
some good guesses of the motif/CRM frequencies or CRM sizes [7]. But as a result,
such remedies compromise the expression power of the already simple HMM, and risk
mis-representing the actual CRM structures. In the following, we propose a Bayesian
approach that introduces the desired “soft constraints” and smoothing effect for an
HMM of rich parameterization, using only a small number of hyper-parameters. This
approach defines a posterior probability distribution of all possible value-assignments of
the HMM parameters, given the observed un-annotated sequences and empirical prior
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distributions of the parameters that reflect general knowledge of CRM structures. The
resulting model allows probabilistic queries (i.e., estimating the probability of a func-
tional state) to be answered based on the aforementioned posterior distribution rather
than on fixed given values of the HMM parameters.

We assume that the self-transition probability of the global background state βg,g,
and the total probability mass of transitioning into a motif-buffer state

∑
k∈B

p βg,k (note
that βg,g = 1 −

∑
k∈B

p βg,k), admit a beta distribution, Beta(ξg,1, ξg,2). We choose

a small value for ξg,2
ξg,1+ξg,2

, corresponding to a prior expectation of a low CRM fre-

quency. Similarly, we define a beta prior Beta(ξc,1, ξc,2) for the self- and total motif-
buffer-going transition probabilities [βc,c,

∑
k∈B

p βc,k] associated with the intra-cluster
background state; and another beta prior Beta(ξp,1, ξp,2) for the self- and motif-going
transition probabilities [αi,i, αi,m] associated with the proximal-buffer state of a mo-
tif. Finally, we assume that for the distal-buffer state, the self-transition probability, the
total mass of transition probabilities into a proximal-buffer state, the probability of tran-
sitioning into the intra-cluster background, and the probability of transitioning into the
global background, [βi,i,

∑
k∈B

p βi,k, βi,c, βi,g], admit a 4-dimensional gamma distri-
bution, Gamma(ξd,1, ξd,2, ξd,3, ξd,4).

To define priors for the GhHMM parameters, the GhHMM with a single cluster
background state (bc) is considered as an HMM with several cluster background states
({b1

c, · · · , bgcr
c }) sharing the same self-transition probability βc,c. Similar to other back-

ground states, we define a beta prior Beta(ξc,1, ξc,2) on the total probability mass of
transitions into motif-buffer states

∑
k∈Bp βc,k (note that βc,c =

∑
k∈Bp βc,k).

Note that due to conjugacy between the prior distributions described above and the
corresponding transition probabilities they model, the hyper-parameters of the above
prior distributions can be understood as pseudo-counts of the corresponding transition-
ing events, which can be roughly specified according to empirical guesses of the motif
and CRM frequencies. But unlike the standard HMM approach, of which the transition
probabilities are fixed once specified, the hyper-parameters only lead to a soft enforce-
ment of the empirical syntactic rules of CRM organization in terms of prior distribu-
tions, allowing controlled posterior update of the HMM transition probabilities while
analyzing the un-annotated sequences. For the BayCis hHMM, we specify the hyper-
parameters (i.e., the pseudo-counts) using estimated frequencies of the corresponding
state-transition events, multiplied by a “prior strength” N , which corresponds to an
imaginary “total number of events” from which the estimated frequencies are “derived”.
That is, for the beta priors, we let [ξ[·,1], ξ[·,2]] = [1−ω[·], ω[·]]×N , where the “·” in the
subscript denotes either the g, c, or p state, and ω[·] is the corresponding frequency. For
the gamma prior, we let [ξd,1, ξd,2, ξd,3, ξd,4] = [ωd,1, 1−

∑
j ωd,j, ωd,2, ωd,3]×N . Over-

all, we need to specify 7 hyper-parameters (of course one can use different “strengths”
for different priors, with a few additional parameters), a modest increase compare to,
say, 3 needed in Cister [7].

2.3 Inference and Learning

We have developed an efficient algorithm called modified FB-algorithm for inference
on a “flattened” hHMM, which reduces the time complexity of the standard forward-
backward algorithm from O(K2L̄2T ) to O(K2T ). Identification of motifs/CRMs is
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based on posterior decoding. We also developed a variational EM algorithm for
Bayesian inference and parameter estimation under our Bayesian hHMM and GhHMM,
which is much more efficient than the traditional MCMC sampling approaches. Due to
space limit, details of these algorithmic innovations are given in the Supplementary
Materials.

3 Results

We evaluated BayCis on both synthetic transcriptional regulatory sequences and a rich
set of carefully compiled real genomic TRSs of Drosophila melanogaster (available
at our website). The prediction performance of BayCis was compared with 5 popular
published methods for supervised discovery of motifs/CRMs based on a wide spec-
trum of models: Cister [7], Cluster-Buster [6], MSCAN [1], Ahab [19] and Stubb [24]
(all of which were applied to the real data, and two seemingly superior ones to the
semi-synthetic data), which cover a wide spectrum of different models/algorithms (e.g.,
HMMs, windows) for motif search. We ran other methods with default parameters,
specifying 500 bp CRM window where needed.

Overall, the prediction performance of BayCis is competitive or superior to all cho-
sen benchmark methods on this quite comprehensive selection of data sets, according
to a wide assortment of performance measures. By employing sound and flexible prob-
abilistic modeling of regulatory regions, BayCis is also able to strike a good balance
between precision and recall with its default MAP solution.

3.1 Semi-realistic Synthetic TRS
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Fig. 2. The precision-recall (P/R) curves of two mod-
els of BayCis (hHMM and GhHMM) versus the P/R of
default predictions by CISTER and ClusterBuster

Synthetic TRSs are useful in that
the ground truth for motif/CRM
locations is known exactly. To
generate semi-realistic synthetic
TRSs, we planted selected TFBS
from the Transfac [29] database in
simulated background sequences
according to model assumptions
underlying the background distri-
bution, the inter-TFBS and inter-
CRM spacer length distributions
for Baycis. 30 sequences of length
20,000 bp containing 0 - 3 CRMs
were generated. The CRM length
is uniformly distributed between
200 and 1600 bp, while the aver-
age motif spacer length is 50 bp.
Each CRM contains 3 to 6 motif
types and about 14 motif instances. To simulate motif co-occurrence, about 25% of the
motif instances in each CRM appear as predefined pairs. The background sequences
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inside/outside the CRM are simulated by a 3rd-order Markov model learnt from an
intergenic region.

As shown in Fig. 2, the performance of BayCis using either hHMM or GhHMM
is significantly better than CISTER and ClusterBuster in terms of the overall preci-
sion/recall (P/R) trade-off at the MAP prediction. The P/R curve of BayCis is also well
above the default predictions from other methods. It also shows that GhHMM performs
consistently better than hHMM in both precision and recall, although the difference is
not very large. CISTER and ClusterBuster were chosen for the simulation study based
on their good performance on real data (see next subsection).

3.2 Real Drosophila TRS

Fig. 3. Frontpage screenshot of the motif database

The dataset. The synthetic TRSs
are generated partially based on
the same model assumptions
underlying BayCis, and thus the
results cannot be interpreted as
conclusive. A systematic investiga-
tion of the robustness of BayCis
with respect to a wide spectrum
of simulation conditions can be
highly interesting but is beyond
the scope of this short report; we
will pursue this in a later full ver-
sion of the paper. In this section
we present an empirical evaluation
based on a rich and carefully com-
piled Drosophila TRS dataset, al-
though it is noteworthy that even
though we have tried our best to gather the most complete annotations for each test
sequence based on footprinting results from the literature, this “gold standard” is still
possibly only a subset of the ground truth.

We created a manually curated dataset containing 97 CRMs pertaining to 35 early
developmental genes (see table in Supplementary Materials for details). This collec-
tion was compiled based on a filtering of all known CRMs from a number of pub-
lic databases (e.g., the REDfly CRM database [8] and the Drosophila Cis-regulatory
Database at the National University of Singapore [18]), through which we only chose
CRMs that are at least 200 bp long, and contain at least 5 experimentally confirmed mo-
tif instances (2 CRMs with a borderline count of 4 motif instances were also included).
Each test sequence consists of the CRMs pertinent to a particular gene, all intra-CRM
background inbetween, with flanking regions on either side of the extremally located
CRMs such that the entire sequence is at least 10 kbp long, and the boundaries of the
sequence are at least 2 kbp from the extremal CRMs. We included the exonic regions of
the genes only when they fell in the aforementioned selected region, and not otherwise.
This database is available at http://www.sailing.cs.cmu.edu/BayCis,
where the BayCis software will soon be also released. A snapshot of the interface of
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graphical interface of the database shown in Fig. 3, and more details are available in
Supplementary Materials.

Experimental setup. BayCis is a Bayesian framework based on hHMMs and GhH-
MMs to model the organization and distribution of TFBS. Prior beliefs pertaining to
the parameters of the model thus could be specified by the user before running on ex-
perimental data in the form of hyperparameters (i.e., pseudocounts) of the hHMM or
GhHMM parameters. The PWMs of the motifs to be searched for also need to be pro-
vided because here we are interested in identifying TFBS of existing TF motifs, rather
than de novo motif detection. As mentioned in previous sections, extending BayCis for
this function is straightforward by introducing an EM step for the PWM estimation, and
will be pursued in a later paper.

Hyperparameters: The choice of hyperparameters should in principle be dealt with via
an “empirical Bayes scheme”, which employs maximal likelihood estimates of these
hyperparameters based on some fully labeled training sequences. Upon prediction on
an unannotated sequence, the hHMM or GhHMM parameters themselves can be ad-
justed in an unsupervised fashion via the variational EM algorithm. We specify the
hyperparameters as follows: for the global background, ωg = 0.002; for the inter-CRM
background, ωc = 0.05; for the proximal motif buffer, ωp = 0.25; for the distal buffer
hyperparameters, ωd,1 = 0.125 (distal to global background), ωd,2 = 0.125 (distal to
clustal background), and ωd,3 = 0.25 (distal to proximal buffer). Finally, the “strength”
of the hyperparameters are set to 1/10 of the expected counts of the transitions on a 15
kbp dataset, with the exception of ωg which is set to 10, 000. The background probabil-
ity of the nucleotide at each position was computed locally using a 2nd-order Markov
model from a sliding window of 1100 bp centered at the corresponding position. For
the GhHMM, based on visual inspection of spacer length distributions between motifs,
we choose the parameter as r = 2.

Prediction scheme: BayCis provides three kinds of prediction schemes for motifs. The
maximum a posteriori (MAP) prediction is based on the posterior probabilities of the la-
beling state at each site, which allows overlapping motifs. A Viterbi prediction, which
gives a consistent prediction in the Bayesian setting analogous to an ML prediction
under a classical setting can also be used. A third scheme is based on a simple but
effective thresholding scheme where we directly predict motifs based on whether the
motif states have a higher probability than the specified threshold in the posterior proba-
bilities. For simplicity, in this paper we only present the MAP results and the P/R curve
of the threshold method. Note that unlike many other scoring schemes for motif/CRM
detection, such as logodds (i.e., the PSSM score) or a likelihood score regularized by
word frequencies, our MAP prediction does not require a cutoff value for the scores,
nor a window to measure the local concentration of motif instances, both of which are
difficult to set optimally.

Evaluation measures: There is no unanimous way of evaluating the prediction perfor-
mance of a motif/CRM discovery method against annotations. To avoid reliance on a
single evaluation procedure and measure, we have chosen to present the performance
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Fig. 4. Performance of BayCis (hHMM) on a representative eve TRS. (a) The posterior proba-
bility plot of the global background (blue), cluster background (green) and motif specific (red
and other colors) states. (b) The precision versus recall performance of the MAP and thresholded
predictions of the hHMM and GhHMM algorithms, as compared to those made by other methods.

of BayCis in comparison with other methods using several different evaluation proce-
dures. This also ensures a thorough and objective presentation of results. For an overall
evaluation we compare the prediction performance of BayCis with other methods us-
ing both the F1-score of precision and recall, and the coefficient of correlation (CC)
score at nucleotide-level [28] as single point measures (see Supplementary Materials
B.3 for detailed definitions). We do this by first summing true/false positives/negatives
across datasets at the nucleotide level, and then computing F1/CC from these combined
counts. To present the behavior of BayCis with respect to site-level P/R, we plot the
binding-site level P/R curve from different thresholds in extracting predictions, along
with the P/R at MAP predictions.

Motif prediction performance. As an illustration, Fig. 4a shows a plot of the MAP
prediction along the even-skipped gene TRS, under a particular hyperparameter setting.
As revealed in the ground-truth annotation bar bellow the plot, this region contains 5
CRMs (from left to right): stripe3+7, stripe2, stripe4+6, stripe1, and stripe5. BayCis
picks out all of them, although the CRM boundary appears to be more stringent in most
cases. We believe this can be improved by adopting a more specialized cluster back-
ground model (i.e., local higher-Markov model, better GhHMM model, etc.), which
we have not fully explored yet. BayCis also identifies motif-rich regions proximal and
distal to the stripe3+7 CRM, which is not reported before, and it also finds another
putative motif-rich region spanning the core promoter and the CDS of eve, which can
be a false positive or a putative CRM. The overall MAP prediction score of BayCis,
and the P/R curves resulted from applying different threshold values under BayCis, are
shown in Fig. 4b, along with the scores of 5 other competing algorithms in their default
configurations. The BayCis MAP predictions seem significantly better than other meth-
ods, and strike a good balance between recall and precision. It is important to realize
that although the threshold method can reach high precision or recall at both extremes,
in practice it is very hard to pick the optimal threshold without knowing the prediction
results, and typically a threshold optimal for one sequence is not necessarily good for
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Fig. 5. (a) F1 and CC scores, and (b) P/R performances of the MAP and thresholded predictions
of the hHMM and GhHMM, in comparison with other algorithms on the full Drosophila TRS
dataset (c) A boxplot showing variation in CC across datasets

another sequence; significance-test based determination of threshold is also difficult for
a complex model or large sequence. Thus, a default prediction such as MAP, which
automatically finds an appropriate trade-off between precision and recall, is highly de-
sirable.

The overall CC and F1-scores of running BayCis and five competing methods on the
full set of Drosophila melanogaster sequences are shown in Fig. 5a. According to either
measure, both the hHMM and the GhHMM version of BayCis outperforms all existing
methods. The hHMM version of BayCis performs slightly better overall compared to
GhHMM according to both measures. For both versions of BayCis, the MAP solution
was chosen.

To look at the behavior of BayCis in the P/R landscape on our entire dataset, we
plot the P/R curve resulting from different thresholds for BayCis predictions. For other
methods we provide the single points in P/R landscape corresponding to their default
output. As is apparent from Fig. 5b, the 5 competing methods strike different balances
between precision and recall in their default output. MSCAN focuses on very high
precision predictions, while Cister is geared towards high values of recall. The P/R
curves of both versions of BayCis span a balanced range in the P/R landscape, with
MAP estimates lying in the middle of the curves. Again, in practice the P/R values are
not available for use by methods, so the balance between precision and recall has to be
found based solely on the input data. Thus the ability to appropriately balance precision
and recall automatically is essential.

To further investigate the prediction performance, we look at the variation of individ-
ual dataset prediction performance across all datasets. The boxplot in Fig. 5(c) shows
the median CC-score for each method, as well as upper and lower quartiles and min-
imum/maximum values. We see that prediction scores varies much between datasets
for all methods, and that the overall performance differences between methods is not
very large compared to the variation of individual methods across datasets. This con-
firms what has long been acknowledged in the motif discovery field, that even the best
performing methods will in many cases give misleading predictions (although some
of the low scores may be due to lack of annotations). Among the high scoring meth-
ods (hHMM, GhHMM, Cluster-Buster and Cister), GhHMM and Cister come out as the
most stable with low variance across datasets, a criterion which is useful when handling
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a varied set of data. The posterior expectations of the hHMM/GhHMM parameters also
carry rich architectural information of each TRS we processed, and merits systematic
analyses. We defer this investigation to the full paper.

4 Discussion

BayCis uses an advanced probabilistic framework to accurately model metazoan tran-
scriptional regulatory genomic sequences — which often consist of multiple CRMs,
tandemly joined by long stretches of background DNA, each containing locally en-
riched occurrences of binding motifs for a certain array of transcriptional regulatory
proteins. Thus, we are able to detect many TFBS while avoiding too many false pos-
itives and (slightly) outperform the best of the existing methods on a comprehensive
set of Drosophila regulatory regions. The BayCis software will soon be released on our
website.

Recently, experimental results have shown that sequences immediately flanking a
TFBS may contribute to the binding energy between a TF and the TFBS [14]. This
suggests that sequence composition of the proximal and distal buffers of motifs may
have weak type specificity, which we would like to explore in our future work. Our
current TRS database for performance evaluation is still limited in size and very diverse
in terms of CRM structures and complexity, which could cause BayCis to overfit cer-
tain TRS when it is applied independently to each TRS separately (as we did in this
paper), using a generic set of hyperparameters that are empirically chosen. We intend to
adopt a more systematic approach to fit the hyperparameters based on a small amount
of labeled TRS, e.g., using a k-fold cross validation scheme. But ultimately, we believe
additional TRS data will be needed to attain further performance increase. One direc-
tion of increasing input data is to combine regulatory regions of several genes that are
believed to share similar CRM structure. Such gene sets should be attainable for many
real scenarios where CRM discovery methods are used, could trivially be used as input
to BayCis. We speculate that this could improve predictions. The limitation lies mostly
in collecting such gene sets containing rich, high-quality annotations that could serve
in quantitatively measuring correspondence between computational prediction and ex-
perimental determination.

Another direction is to conjoin BayCis with a phylogenetic model of motifs across
species [16,22,23], and apply the integrant to orthologous TRSs. Although this lim-
its the applicability of the approach to species where valuable orthologous sequence
is available, and to the discovery of regulatory elements shared between species, we
believe it could attain considerably performance gain in the cases for which it is suited.
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Abstract. Methods suggested for reconstructing regulatory networks
can be divided into two sets based on how the activity level of transcrip-
tion factors (TFs) is inferred. The first group of methods relies on the
expression levels of TFs assuming that the activity of a TF is highly cor-
related with its mRNA abundance. The second treats the activity level
as unobserved and infers it from the expression of the genes the TF regu-
lates. While both types of methods were successfully applied, each suffers
from drawbacks that limit their accuracy. For the first set, the assump-
tion that mRNA levels are correlated with activity is violated for many
TFs due to post-transcriptional modifications. For the second, the ex-
pression level of a TF which might be informative is completely ignored.
Here we present the Post-Transcriptional Modification Model (PTMM)
that unlike previous methods utilizes both sources of data concurrently.
Our method uses a switching model to determine whether a TF is tran-
scriptionally or post-transcriptionally regulated. This model is combined
with a factorial HMM to fully reconstruct the interactions in a dynamic
regulatory network. Using simulated and real data we show that PTMM
outperforms the other two approaches discussed above. Using real data
we also show that PTMM can recover meaningful TF activity levels and
identify post-transcriptionally modified TFs, many of which are sup-
ported by other sources.

1 Introduction

Transcriptional gene regulation is a dynamic process which utilizes a network of
interactions. This process is primarily controlled by transcription factors (TFs)
that bind DNA and activate or repress sets of genes. Regulatory networks acti-
vate hundreds of genes as part of a biological system such as the cell cycle [1] and
circadian rhythm [2], in response to internal and external stimuli [3] and during
development [4]. Proper functioning of these networks is essential for all living
organisms. For example, several diseases are associated with partial or complete
loss of appropriate transcriptional regulation [5]. Determining accurate models
for these regulatory networks is thus an important challenge.
� Corresponding author.
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A major source of information regarding these networks is gene expression
data which measures the effects TFs have on their regulated targets. Many meth-
ods have been suggested for using this and other data sources for reconstructing
regulatory networks. One of the key challenges faced by methods aimed at re-
constructing such networks is to infer the activity levels of the factors regulating
the network. While the activity levels for some TFs can be determined by look-
ing at their expression levels, many of the master TFs are post-transcriptionally
regulated and can be active even if their expression levels do not change [6].

So far, methods suggested for reconstructing regulatory networks can be divided
into twomajorgroupsbasedonhowthey infer theactivity levelsof theTFs.Thefirst
set of methods (e.g., [7,8,9,10]) relies on the mRNA levels measured for TFs and
uses these to represent the activity levels ofTFs.The secondgroupofmethods (e.g.,
[6,11,12]) treats theactivity levelsofTFsascompletelyunobservedvaluesandinfers
them from the mRNA levels of their regulated genes.

While both methods have proven useful for many different reconstruction
efforts, each suffers from drawbacks that can limit their ability to accurately
reconstruct the networks. The first set of methods is less appropriate in cases
where TFs are post-transcriptionally modified, which may lead to activity levels
that are not reflected in the mRNA levels measured for these TFs [13]. The
second group of methods overcomes this problem but does not take advantage
of the information from the mRNA levels of the TFs. There are many cases in
which TFs’ activities are reflected in their mRNA levels [10] and ignoring these
levels may reduce the ability to correctly model the activity levels of these TFs.

A possible way to combine the two approaches is to measure protein levels
in addition to gene expression levels [14]. However, this data cannot account for
other post-transcriptional events including phosphorylation and nuclear exclu-
sion [15]. In addition, it requires proteomics measurements that are not always
available and have a limited ability to identify low abundance proteins [16].

Another approach was proposed by Nachman et al. [17] infers regulatory net-
works from expression data using a dynamic Bayesian network. They model the
unobserved TF activity levels by hidden variables and then use a post-processing
step to link these levels to known TFs based on their expression levels. Thus,
this model is a variant of the second set of methods discussed above since the
TF expression levels are not used when reconstructing the network.

Here we present an algorithm combining the two types of methods mentioned
above during the reconstruction phase to get the ‘best of both worlds’: For tran-
scriptionally regulated TFs, we infer their activity levels from their mRNA levels,
and for post-transcriptionally regulated TFs, we rely on the mRNA levels of their
target genes.The key insightwemake is thatwhenusing time series expressiondata
we can compare the mRNA levels of a TF with the expression levels of genes regu-
latedby theTF in consecutive timepoints in order todeterminewhether themRNA
levels correlate with the activity levels for that TF. This allows us to determine
which TFs are post-transcriptionally modified and which are not. For this we de-
velop the Post-TranscriptionalModification Model (PTMM), a variant of factorial
hidden Markovmodel [18] that accounts for the factor-specific correlation between
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TF’s mRNA levels and activity levels. For each TF we maintain a binary indicator
representing whether or not this TF is post-transcriptionally modified. If a TF is
post-transcriptionally modified, we treat its activity levels as unobserved variables
whose values can be inferred from the observed expression levels of genes regulated
by this TF using a Kalman filter based model. If a TF is not post-transcriptionally
modified,weuse its expression levels as prior and combine themwith the expression
levels of its target genes to infer its posterior activity. This posterior accounts for
the noisy measurement of the TF’s expression levels which might lead to slightly
different protein activity levels.

We tested our method and compared it to methods that rely only on target
genes or on TF’s mRNA levels. Using simulated and real expression data we show
that our method has higher accuracy in detecting the post-transcriptional modi-
fication events, in inferring the hidden activity levels of TFs and in predicting the
regulatory relationships between TFs and genes. We also discovered some candi-
date post-transcriptionally modified TFs, which are validated by other sources.

2 Methods

Here we introduce the Post-Transcriptional Modification Model (PTMM) which
combines time series expression data from multiple experimental conditions and
static TF-gene interaction data to reconstruct temporal regulatory networks and
to infer whether a TF is post-transcriptionally modified. We also introduce an
associated EM algorithm to, i) learn the parameters of a PTMM, ii) infer whether
or not each TF is post-transcriptionally modified and iii) infer the hidden activity
levels of each TF. In addition to inferring TF activity levels PTMM can also
determine new TF-gene interactions. For each known or inferred interaction the
learned model assigns a condition independent weight between a TF and the
genes it regulates representing the strength of this interaction.

2.1 Post-Transcriptional Modification Model (PTMM)

Let m be the number of a set of genes whose expression level is measured at a
series of time points under a variety of experimental conditions (datasets). Let n
represent the number of a subset of these m genes that are TFs. A PTMM defines
a joint probability distribution over an observed time series of gene expression
levels, unobserved time series of TF activity levels and the unobserved post-
transcriptional status for each TF (modified or unmodified). We use PTMM
to estimate which TFs are post-transcriptionally modified, to infer the hidden
activity levels of TFs over time, to determine which genes are regulated by each
TFs and to assign a weight to these regulatory interactions.

Let Gi,d,t represent the expression level of gene i (1 ≤ i ≤ m) in dataset d
at time t. Without loss of generality, we assume that the first n (n < m) genes
encode for TFs. Let Tj,d,t denote the (hidden) activity level of TF j (the protein
product of gene j) in dataset d at time t. Each gene may be regulated by zero
or several TFs. Let wi,j denote the weight with which gene i is regulated by TF
j. A positive weight means that TF j is an activator of gene i, a negative weight
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implies that TF j represses gene i. A weight of zero indicates that gene i is not
regulated by TF j. Similar to other methods (e.g., [19]), PTMM models the ob-
served expression level for gene i at each time point t as the linear superposition
of contributions from each of the TFs that regulates this gene. More precisely:

Gi,d,t|T:,d,t ∼

��
�

N (0 , α2
d) if gene i is not regulated by any TF in hand

N (
�n

j=1 wi,jTj,d,t , β2
d) otherwise

(1)

where N (μ, σ2) represents a Gaussian distribution with mean μ and variance σ2.
In Equation 1, the expression profile of a gene over time is a noisy realization
of the weighted sum of activity profiles of the TFs which regulate this gene. At
each time point the expression level is modelled using a Gaussian distribution
whose variance is either α2

d or β2
d , depending on whether the gene is believed

to be regulated by at least one TF. If it is regulated by at least one TF, then
the variance β2

d is used to represent experimental measurement noise. If PTMM
cannot assign a regulator to a gene it may be the case that the gene is regulated
by TF(s) that is/are not included in the model. These genes are assumed to have
a higher variance since some of their variance can be attributed to deficiencies
in the model. Thus we use a different variance, α2

d, for these genes.
For each TF j, we maintain a global binary indicator Zj independent of ex-

perimental conditions and constant over time indicating whether this TF is
post-transcriptionally modified. Zj is a random variable following a Bernoulli
distribution with parameter ρ. We treat ρ as a pre-specified constant represent-
ing the proportion of TFs that are post-transcriptionally modified. Based on this
indicator, we assume that each TF follows one of these two models: i) If TF j is
not post-transcriptionally modified, i.e., Zj = 0, we model the activity profile of
TF j as a noisy realization of its gene’s expression profile with one time point
lag (Figure 1(a)), i.e., Tj,d,t|Gj,d,t−1 ∼ N (Gj,d,t−1, τ

2
d ). τ2

d represents the possible
experimental noise which may lead to slight differences between TF activity lev-
els and mRNA levels. The one time point lag accounts for the time of translation
from mRNA to protein. It also makes the model computationally sound prevent-
ing possible loops in the time slice model (allowing, for example, self-regulation
by TFs). The first time point in each dataset is modelled by a Gaussian distri-
bution with zero mean and variance σ2

d. ii) The second option is that the TF
j is post-transcriptionally modified, i.e., Zj = 1. For these TFs the change in
activity levels over time is modelled as a hidden Markov chain (Figure 1(b)).
The activity level of the TF at time point t (i.e. Tj,d,t) is dependent on the ac-
tivity level of this same TF at time point t−1 (i.e. Tj,d,t−1). This dependency is
modelled as a Gaussian random walk, i.e., Tj,d,t|Tj,d,t−1 ∼ N (Tj,d,t−1, γ

2
d). The

variance γ2
d determines the likely amount of change in the TF’s activity level

between consecutive time points. The activity level of each TF at the very first
time point in dataset d is modelled by a Gaussian distribution with mean 0 and
variance σ2

d. This dataset-specific variance allows integrating multiple datasets
in which the activity levels at the first time point for some TFs may differ from
0, e.g., cell cycle experiments. Figure 1(c) presents the full graphical model of a
PTMM, using indicator variables Zj to select between the two cases.
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Fig. 1. Graphical model representations for
(a) TFs with no post-transcriptional modi-
fication (Zj = 0), (b) Post-transcriptionally
modified TFs (Zj = 1), and (c) The general
case (complete PTMM model). Observed
variables are shaded. Tj,d,t is the (hidden)
activity level of TF j at time point t in
dataset d. Gi,d,t is the observed expression
level for gene i at time point t in dataset
d. The edge from TF j to gene i exists if
and only if gene i is regulated by TF j, i.e.
wi,j �= 0, where wi,j represents the weight of
each edge. The edge from gene j to its pro-
tein product, TF j, exists when there is no
post-transcriptional modification for TF j.
Each TF j has a global binary indicator vari-
able Zj indicating whether the TF is post-
transcriptionally modified. D plates corre-
spond to the D datasets.

T1,d,t-1 T1,d,t T1,d,t+1

Tn,d,t-1 Tn,d,t Tn,d,t+1

G1,d,t-1 G1,d,t G1,d,t+1

Gm,d,t-1 Gm,d,t Gm,d,t+1

Wm,1Wm,n Wm,1 Wm,1Wm,n Wm,n

W1,nW1,n W1,n

Z1 Zn

(c) overall case, all TFs

Note that within a dataset, the expression noise parameters α2
d, β2

d and τ2
d are

shared across genes/TFs, and the TF activity level smoothness term γ2
d is shared

across TFs. We estimate different noise parameters for each dataset d, to allow
for the possibility that noise levels may differ across datasets from different labs
using different array platforms. On the other hand, we assume the regulation
between gene i and TF j is independent of experimental conditions. That is, the
weight parameters wi,j are shared across all datasets.

2.2 Penalized Likelihood Score

Given a set of TFs, a set of genes, and a collection of gene expression datasets,
we train the PTMM by inferring which TFs are post-transcriptionally modified,
the TFs activity levels, which genes are regulated by each TF, and by estimating
the various PTMM parameters wi,j , αd, βd, τd, γd and σd. These estimates are
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chosen to maximize a penalized complete log-likelihood score subject to the
constraint that any gene be regulated by at most C TFs (i.e., it has at most
C incoming edges). This constraint is motivated by the fact that recent high
throughput studies find that most genes are regulated by only a few TFs [20]. The
constrained penalized log-likelihood score is Score(o,h, z : W, θ) where o,h, z
represent observed gene expression levels, hidden TF activity levels and unob-
served post-transcriptional modification (PTM) indicators, respectively, and θ
includes all model parameters other than the regulation weights W .

Score(o,h, z : W, θ) = log(P (z)) +
D�

d=1

log(P (od,hd|z, W, θ)) − λ1

m�
i=1

n�
j=1

|wi,j |

− λ2

� m�
i=1

n�
j=1

δ(wi,j �= 0)
�
Ei,jπ1 + (1 − Ei,j)π0

�

+
m�

i=1

n�
j=1

δ(wi,j = 0)
�
Ei,jπ0 + (1 − Ei,j)π1

�	

subject to : (



{wi,j |wi,j �= 0, 1 ≤ j ≤ n}




 ≤ C) for all i (2)

Here od and hd are the observed expression levels for genes and the unobserved
activity levels for TFs in dataset d, respectively. The score contains two regular-
ization terms. The first imposes an L1 penalty on the weights, encouraging most
TF-gene regulation weights to be zero [21]. The second term incorporates prior
knowledge from binding experiments. Ei,j is a binary indicator which is 1 if gene
i is thought a priori to be bound by TF j and 0 otherwise. δ(·) is 1 if · is true,
and 0 otherwise. π0 is a penalty term paid when the model selects a TF-gene
edge weight that is inconsistent with prior assumptions (including an edge that
is not assumed a priori, or excluding one that is). π1 is a smaller penalty term for
using edges that are supported by prior assumptions from binding experiments,
and for dropping edges that are not supported by binding experiments. Since we
use highly trusted binding data to form our prior assumptions, we set π0 >> π1.
Thus, the learned model is encouraged to assign wi,j weights consistent with
prior knowledge, though it may depart from these priors if the incurred penalty
is offset by improved data likelihood. Such departures might result from incom-
pleteness or noise in prior binding datasets, or from the fact that only a subset
of bound TFs may affect a target gene’s expression [22]. π1 and π0 are user
defined and indicate confidence in the prior assumptions regarding the binding
data. λ1 and λ2 are constants representing the tradeoff between likelihood and
regularization terms, which can be used to control the tradeoff between precision
and recall in predicting TF-gene regulatory relationships.

2.3 Inference and Learning for PTMM

To learn the PTMM we use an approximate EM algorithm to attempt to maxi-
mize Score(o,h, z : W, θ). The algorithm iteratively performs an E step in which
the current model parameters W and θ are used to calculate the expected values
of the hidden TF activity levels h and the most likely values of the unobserved
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PTM indicators z, followed by an M step in which these activity levels h and
indicators z are used to re-estimate the model parameters W and θ. These two
steps are iterated until convergence.

E step: Given all model parameters, we employ a generalized mean field algo-
rithm [23] to iteratively infer the PTM indicators z and the hidden activity levels
h of TFs. This variational inference method is based on non-overlapping clus-
ters of random variables. Specifically in the PTMM, the hidden chain of activity
levels for each TF forms a cluster and each PTM indicator forms an additional
cluster. The E step iterates until convergence by inferring values for one cluster
assuming the current values for all other clusters.

To infer the hidden activity levels for TF j given the most likely assignment
of the PTM indicators z and expected activity levels for all other TFs, we first
examine the current assignment of Zj: i) If Zj = 0, i.e., TF j is not post-
transcriptionally modified, we can compute the posterior distribution of Tj,d,t

independently for each time point t in each dataset d. In this case the prior
of Tj,d,t is a Gaussian distribution whose mean is the expression level of its
corresponding gene at time point t − 1 in dataset d, (i.e., Gj,d,t−1) and whose
variance is τ2

d . The posterior of Tj,d,t depends on the observed expression levels of
genes regulated by TF j as well as the hidden activity levels of other TFs which
have overlapping target genes due to the v-structure in directed graphical model
[24]. Since we have fixed the activity levels for other TFs while inferring the level
for TF j, we subtract out their assumed contributions to the observed expression
levels of the target genes for TF j, in order to estimate the contribution due solely
to TF j: �Gi,d,t = Gi,d,t −

�
k �=j

wi,kTk,d,t (3)

where G̃i,d,t is the adjusted expression level which represents the inferred con-
tribution of TF j to the expression level for gene i at time point t in dataset
d. The posterior of Tj,d,t depends only on these adjusted expression levels. This
posterior is a Gaussian distribution due to the conjugacy of Gaussian distribu-
tion to itself and it is straightforward to obtain the posterior mean and variance.
ii) If Zj = 1, i.e., TF j is post-transcriptionally modified, we first calculate the
adjusted expression levels for the genes regulated by TF j. Given these adjusted
expression levels the posterior for the activity level of TF j is no longer depen-
dent on the activity levels of other TFs and the resulting model is equivalent
to a single hidden Markov chain for TF j regulating multiple genes with their

adjusted expression levels. Let
−−→
G̃d,t denote the m-dimensional column vector for

adjusted expression levels of all genes in dataset d at time point t. We can then
write for TF j:

Tj,d,t = Tj,d,t−1 + Qj,d,t, where Qj,d,t ∼ N (0, γ2
d); (4)

−−→�Gd,t = W:,j × Tj,d,t + Rd,t, where Rd,t ∼ N (0, ΣRd); (5)

where W is the m-by-n regulation weight matrix (0 indicates no edge) and W:,j
represents the jth column of this matrix corresponding to the regulation weights
associated with TF j. Here γ2

d determines the probable rate of change of the TF
activities over time (i.e., Qj,d,t). ΣRd

is a m-by-m diagonal matrix where the ith
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diagonal element is α2
d if wi,j = 0 for all j and β2

d otherwise. It determines the
variance in the noise in the observed expression levels (i.e., Rd,t).

As Equation 4 and 5 show, for post-transcriptionally modified TFs when the
parameters are known the model reduces to a special case of Kalman filter [25]
model with one-dimensional hidden chain. Inference on it can be done efficiently
by computing the posterior of hidden variables Tj,d,t. The probabilities are all
Gaussian distributed and the computation is tractable because of the conjugacy
of the Gaussian distribution.

Inferring the unobserved assignment of the PTM indicator Zj of TF j is in
fact a model selection process. Given the inferred expected values of activity
levels of TF j, we examine which model explains this TF better. That is, if
the no PTM model (Figure 1(a)) has a higher likelihood than the PTM model
(Figure 1(b)) we assign Zj as 0. Otherwise, we assign Zj as 1. This likelihood
can be easily computed as the product of the local conditional probabilities of
all nodes associated with TF j. Along with the assignment of each indicator, we
can also output a confidence score for this assignment which we define as the log
ratio between the likelihood scores of two different models.

Before the iterations in the E step, we need to initialize the hidden variables
in the PTMM. The activity levels of TFs are initialized by a standard Kalman
filter model assuming all TFs are post-transcriptionally modified, and the PTM
indicators for TFs are initialized by computing the correlation between the ini-
tialized TFs’ activity profiles and their corresponding genes’ expression profiles
and setting the less correlated TFs to be post-transcriptionally modified.

M step: Given the expected activity levels of TFs and the most likely assign-
ment of PTM indicators inferred in the E step, we learn new parameters by
attempting to maximize the Score function subject to the constraint discussed
above (number of TFs for each gene). We can calculate exact solutions for the
variance terms γ, σ and τ by zeroing the partial derivatives of the penalized com-
plete log-likelihood of data defined in Equation 2. We also calculate maximum
likelihood estimates for α and β by fixing the regulation weights W .

Unlike the noise parameters the weight parameters W cannot be computed in
closed form because of the limit on the number of incoming edges for each gene.
Instead, we first conduct a greedy search to associate TFs with each gene, and
then solve an optimization problem to obtain estimates for W . See supporting
website[27] for more details.

3 Experiments and Results

We tested PTMM’s performance on both simulated and real gene expression
time series data. Using simulated data we show that our algorithm can indeed
recover the hidden activity levels of TFs and determine whether a TF is post-
transcriptionally modified. Using real data we show that by PTMM we can
reconstruct meaningful TF activity profiles, detect known post-transcriptionally
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Fig. 2. Simulated data results. (a) Mean
squared error (MSE) between actual and
inferred hidden activity levels of TFs. The
three plots correspond to different percent-
ages of post-transcriptionally modified TFs
(5%, 10% and 20%). Red line is the me-
dian. Blue box indicates upper and lower
quantiles. The black bars are the range of
the MSE. Outliers are plotted by “+”. (b)
Comparison of precision-recall curves for
predicting the PTM indicators. (c) Com-
parison of precision-recall curves for pre-
dicting TF-gene regulatory relationships.
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regulated TFs and improve the ability to determine TF-gene regulatory relation-
ships. We also compared PTMM on both simulated and real expression data with
two methods representing the two approaches mentioned in the introduction:

• Kalman Filter model (KF): This model corresponds to methods that assume
that TF activity levels can only be inferred from the expression levels of its
regulated genes. For this we set all PTM indicators in PTMM to 1. Thus, PTMM
reduces to a Kalman filter model. We can infer the hidden activity levels of TFs
efficiently by standard inference method for Kalman filter [25].

• No Post-transcriptional modification model (NP): This model corresponds
to methods that use a TF’s expression levels to infer its activity levels, i.e., all
PTM indicators are fixed to 0 in PTMM.

For comparison of predicting PTM indictors we use a post-processing step for
both methods in which we compute the Pearson correlation between the inferred
activity profile for each TF and the expression profile of its corresponding gene.
A cutoff is applied to turn this correlation score to binary PTM indicators.

The maximum number C of regulating TFs for one gene was set to 3 in all
experiments below.

3.1 Results on Simulated Data

We first synthesized n TF activation profiles using a random walk model and
used a noisy version of these profiles as the mRNA levels for the TFs. Next we
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randomly selected P percent of TFs and set them to be post-transcriptionally
modified. For these TFs we replaced their mRNA level with Gaussian noise with
mean 0 (though we kept their activity levels and used it to generate the profiles
for the regulated genes, see below). Finally we randomly generated a TF-gene
regulation weight matrix. We used the TF activity levels and the weight matrix
to generate the observed expression values for all genes and added i.i.d. random
noise to each time point for each gene.

We varied the percentage of TFs that are post-transcriptionally modified. For
all cases we sampled n = 100 TFs and m = 1000 genes. For noise parameters we
used the values learned from real data to make the simulation realistic. The prior
constants on evidences were set to π0 = 0.7 and π1 = 0.3 by cross validation.

Figure 2(a) presents the mean squared error between the true and inferred
TF activity profiles for each of the methods. As can be seen, PTMM consistently
outperformed all other methods. In all three cases, NP cannot capture the un-
derlying activity profiles as accurately as the two other models because it tends
to predict activity levels of post-transcriptionally modified TFs as their mRNA
expression levels which significantly compromises its performance. KF ignores
all information from a TF’s expression levels and infers its activity levels solely
from its regulated genes. It has better performance than NP because of the way
we constructed the expression levels (linear combination of the activity levels of
TFs). However, since it ignores useful data for many TFs (mRNA levels) the
reconstructed profiles are still not as good as PTMM.

Figure 2(b) shows precision-recall curves of the prediction of PTM indicators.
The precision-recall curves were drawn by increasing the cutoff for the prediction
confidence scores (for PTMM) or correlation coefficients (for KF and NP). Again,
PTMM outperformed other two methods.

We also tested the ability of all methods to predict the regulatory relationships
between TFs and genes by 8-fold cross validation. Since the regulation weights
outputted by all methods are continuous values, we applied a cutoff to turn the
regulation weights into binary predictions of regulation. Figure 2(c) shows the
precision-recall curves of regulatory relationship prediction by all three meth-
ods. Interestingly, the curve for NP starts higher indicating that when mRNA
levels correspond to activity levels this model is very powerful at identifying TF-
gene interactions. However, the KF model is more general and applies to both
transcriptionally and post-transcriptionally regulated TF. Thus the KF curve
crosses the NP curve at a recall of 35%. Our method that utilize both sources of
information acts as the best of both methods. It starts out very strong (similar
to NP method) but unlike NP method it remains strong for higher recall rates
as well.

3.2 Yeast Expression Data

We applied PTMM to saccharomyces cerevisiae microarray time series data col-
lected under 17 experimental conditions including various stresses, cell cycle
and DNA damage (see supporting website [27] for complete list). The number of
time points in these datasets ranges from 8 to 24. To construct the prior binding



92 Y. Shi et al.

0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

recall

pr
ec

is
io

n

 

 
PTMM
KF
NP

0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

recall

pr
ec

is
io

n

 

 

PTMM
KF
NP

(a) λ1 = 0.3, λ2 = 0.3 (b) λ1 = 0.2, λ2 = 0.2

Fig. 3. Results for yeast expression data. Precision and recall curves for recovering
TF-gene interactions in cross validation studies. The tradeoff constants used are (a)
λ1 = 0.3, λ2 = 0.3 and (b) λ1 = 0.2, λ2 = 0.2.

evidence matrix E we used protein-DNA binding data from MacIsaac et al. [28].
Their binding data offers a list of ORFs with binding sites for each transcription
factor at various binding and conservation thresholds. We only used the most
confident data (binding p-value < 0.001 and motifs are conserved in at least 2
additional species). We removed TFs that had less than 5 known targets and
TFs that had more than 50% missing expression values in at least one dataset.
The remaining 72 TFs were used for the analysis. We set the prior knowledge
π0 = 0.7, π1 = 0.3 indicating our belief in the high quality binding data. We
tested our approach using cross-validation. Thus we also removed all genes that
are not known to be bound by any of the 72 TFs we modelled leaving 1069 genes.

Predicting TF-gene regulatory relationships. We first tested the ability of
PTMM to predict TF-gene regulatory relationships by performing 8-fold cross
validation. In each fold we hid the associations of 1/8 of the 1069 genes (i.e.,
set the corresponding entries in the evidence matrix E to zero) and used all
three methods to predict the regulatory relationships for these genes. Again,
by varying a cutoff w0 for all edges between genes and TFs we can generate
precision-recall curves for all methods.

Figure 3(a) presents these curves of all three methods. The results are qual-
itatively similar to the simulated data results. The NP method starts strong
but drops rapidly. The KF method that does not rely on TF expression level
is more robust and holds for longer recall rates. Nicely, our method dominates
both other methods indicating that it is indeed possible to combine both ap-
proaches for modelling regulatory networks. Note that since each gene can only
be assigned to up to 3 out of 72 TFs, a precision rate of close to 50% is quite
impressive. Also, it is important to remember that most ChIP-chip experiments
were carried out in YPD whereas the expression data we used is primarily from
stress conditions. Thus, some of our false positive might be actually correct pre-
diction and the reason they were not identified before is due to the condition
under which the experiments were carried out. This also effects the recall rate
which is low for all methods. Another possible reason for the low recall rate
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Fig. 4. Results for yeast expression data. (a) The precision-recall curves as a function of
the number of expression datasets used for PTMM, ranging from 1 to 16 datasets (DS).
(b) The penalized likelihood score curve for PTMM versus the number of iterations.
(c) Comparison of the precision-recall curves when setting maximum number C of
associated TFs for each gene to be 3 and 4.

is the protein-DNA binding data combined with strict conservation standard
which makes our prior knowledge arguably incomplete. In fact, we can use the
constants λ1 and λ2 to control the level of tradeoff between the precision and
recall. Figure 3(b) shows the precision-recall curves in predicting the TF-gene
regulatory relationships when setting both λ1 and λ2 to 0.2. As can be seen,
using these values the recall rate substantially improved though the precision
drops. Again, the curve of PTMM outperforms the other two methods. In both
plots (Figure 3(a)(b)), the fact that higher weight correlates well with correct
TF-gene associations indicates that the recovered TF activity profiles are a good
representation of the underlying profiles.

To test whether more data can improve the performance of our algorithm we
measured precision-recall curves using different numbers of datasets. Figure 4(a)
shows four curves corresponding to the performance of PTMM with 1, 4, 8 and 16
datasets. Indeed, more datasets improved both precision and recall. Figure 4(b)
shows the penalized likelihood scores versus the number of iterations. As can be
seen, the score converges quickly, reaching a (local) maximum after only a few
iterations. Note that while this convergence may seem fast, it is a direct result
of the fact that we are initializing our model with known TF-gene binding data
rather than random initializations that are common in many EM applications.
Figure 4(c) presents the precision-recall curves for setting the maximum number
C of associated TFs for each gene to be 3 and 4. As can be seen, setting C bigger
does not help improving the coverage of PTMM.

Insights into post-transcriptional modifications. Of the 72 TFs, PTMM
determined that 7 are post-transcriptionally modified in at least some of the
conditions we looked at. We found strong indications for differences between the
transcript level and the activity level of five factors (Gcn4, Msn4, Swi5, Fkh2,
Rap1). Most of these factors are known to be regulated post-transcriptionally.
For example, the master regulator of amino acid starvation, Gcn4, is regulated
at the translational level [12]. The stress response TF, Msn4, is regulated at the
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Fig. 5. The observed mRNA expression levels (blue) v.s. TF activity levels (red)
inferred by PTMM for all 17 experimental conditions (separated by dashed lines) for
(a) Msn4 and (b) Rap1

post-transcriptional level by phosphorylation [30] and by nucleus localization
[31]. Interestingly, we found that the Msn4 activity follows its mRNA level in
stress conditions but differs from them during the cell cycle (Figure 5(a)). This
observation suggests that the main role of the PTMs is to prevent undesired
activation of the stress response pathway. During stress when Msn4 activity is
desired, it is induced and activated, whereas in other conditions such as the cell
cycle, when its activity may be harmful to cell it is kept in a silent form and
fluctuations in its mRNA level seem to be not important. The cell cycle regula-
tors, Swi5 and Fkh2 are regulated by phosphorylation which is important for the
nucleus localization of Swi5 [32] and for the activity of Fkh2 [33]. Finally it has
been shown that the phosphorylation of Rap1 (Figure 5(b)) affects its binding
to DNA [34]. As for the other two factors, we could not confirm, nor reject the
prediction regarding Met32. The last TF predicted to be post-transcriptionally
regulated, Mbp1 is known to be transcriptionally regulated in at least some con-
ditions [1] and may be a false positive result. See supporting website [27] for
more figures.

Validating predictions regarding TF activity levels. To further analyze
the predictions regarding TF activity levels we have looked at a specific condi-
tion, yeast response to methyl-methanesulfonate stress (MMS). For this condi-
tion we have both time series expression data (by which we use to make pre-
dictions) as well as new ChIP-chip data [29] which we did not use to learn the
model. In their paper Workman et al. classified each TF they tested as expanding
in MMS (regulating more genes when compared to general growth conditions),
contracting or not changing. Thus, we can use this new interaction data to de-
termine whether the predictions made by our method agree with the activity
observed by the ChIP-chip experiment, and by the mRNA levels of the TF.

Due to space limitation we only present results for 5 TFs in Table 1. The
complete table can be found on the supporting website [27]. In general, we see a
good agreement between the predicted activity levels and the observed binding
profiles. For example, both Pdr1 and Uga3 are expanded in MMS suggesting that
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Table 1. Summary of agreement between predicted and observed TF activity level in
MMS

TF conf1 ChIp2 post3 activity4 expression 5

Pdr1 213 e 0 ∧ ∧
Uga3 7065 e 0 ∧ ∧
Gcn4 488 n 1 ∧ ∨
Sko1 993 n 0 ∨ ∨
Yap5 1396 c 0 ∨ ∧

1 Confidence score given by PTMM. 2 (e)xpending, (c)ontracting or (n)either, according
to ChIp-chip data in [29]. 3 PTMM result. 0 for factors determined to be transcrip-
tionally regulated, 1 for post-transcriptionally modified. 4 Activity level inferred by
PTMM. 5 Observed gene expression level. For 4,5, up (∧) , down (∨) or flat (-).

they are active. This is accurately predicted by PTMM. Interestingly, there are
two TFs for which PTMM’s prediction differs from their mRNA level. The first
is Yap5. Even though Yap5 is not identified as post-transcriptionally modified its
activity level for this condition is accurately predicted to be lower than its normal
level. In contrast, its expression level is actually higher than baseline. PTMM’s
prediction for Yap5 is validated by the MMS ChIP-chip data which shows that
Yap5 is contracting. The second is Gcn4. While the expression of Gcn4 is slightly
lower than baseline, PTMM predicts that this factor is post-transcriptionally
modified and its activity increases in MMS. While Workman et al. did not find
Gcn4 to be expanding, a more recent study [12] experimentally tested Gcn4’s
binding in a more appropriate time point (15 minutes following MMS treatment)
and found that Gcn4 greatly expands in MMS as predicted by PTMM.

4 Discussion

In this paper we developed, for the first time, a method that utilizes both ex-
pression and interaction datasets for inferring the activity of TFs. Our method
uses a switching model to determine whether a TF is transcriptionally or post-
transcriptionally regulated. This model is combined with a factorial HMM to
fully model interactions in a dynamic regulatory network.

Factorial HMMs and variants of dynamic Bayesian networks have been sug-
gested in the past for modelling regulatory networks [17], for modelling the
activity of neurons in the brain [35] and for determining functional GO anno-
tations in time series expression experiments [36]. However, the ability to use
both interaction and expression data to model the activity of the hidden layer
in these models is a novel aspect of PTMM. As we show using simulated and
real expression data this allows our method to combine the best of both worlds.
PTMM outperforms other methods when comparing their ability to predict new
TF-gene interactions. Many of the factors predicted to be post-transcriptionally
regulated are validated by prior knowledge. Our method is also successful in
predicting TF activity in a new condition.
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Abstract. As an increasing number of eukaryotic genomes are being
sequenced, comparative studies aimed at detecting regulatory elements
in intergenic sequences are becoming more prevalent. Most compara-
tive methods for transcription factor (TF) binding site discovery make
use of global or local alignments of orthologous regulatory regions to
assess whether a particular DNA site is conserved across related organ-
isms, and thus more likely to be functional. Since binding sites are usu-
ally short, sometimes degenerate, and often independent of orientation,
alignment algorithms may not align them correctly. Here, we present a
novel, alignment-free approach for incorporating conservation informa-
tion into TF motif discovery. We relax the definition of conserved sites:
we consider a DNA site within a regulatory region to be conserved in an
orthologous sequence if it occurs anywhere in that sequence, irrespective
of orientation. We use this definition to derive informative priors over
DNA sequence positions, and incorporate these priors into a Gibbs sam-
pling algorithm for motif discovery. Our approach is simple and fast. It
does not require sequence alignments, nor the phylogenetic relationships
between the orthologous sequences, and yet it is more effective on real
biological data than methods that do.

1 Introduction

With recent advances in DNA sequencing technologies, the number of closely
related genomes being sequenced [1, 2, 3] has increased tremendously. Conse-
quently, this has led to an increased emphasis on comparative studies focused
on detecting functional elements in intergenic DNA sequences. Functional ele-
ments, including TF binding sites, are known to evolve at a slower rate than
non-functional elements, and therefore DNA sites that are well conserved in
orthologous regulatory regions are considered good candidates for TF binding
sites.

A plethora of algorithms use evolutionary conservation information for de
novo TF motif discovery, either by filtering the putative regions according to
their conservation levels and then applying conventional motif finders, or by in-
corporating the conservation information into the motif finder itself. The former
� These authors contributed equally to this work.
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approach has a major limitation: motifs that are not well conserved are likely
to be missed. Most conservation-based motif finders therefore take the latter
approach. These methods can be further divided into two main categories: 1)
‘single gene, multiple species’, and 2) ‘multiple genes, multiple species’. Meth-
ods in the first category (e.g., FootPrinter [4], the phylogenetic Gibbs sampler
of Newberg et al. [5]) take as input the regulatory region of a single gene, to-
gether with its orthologs from related organisms. Methods in the second category
(e.g., the method of Kellis et al. [1], Converge [6, 7], PhyloCon [8], PhyME [9],
PhyloGibbs [10], OrthoMEME [11], EMnEM [12], CompareProspector [13]) are
designed to search for motifs that are both over-represented in a set of given se-
quences (from a reference species) and conserved across related organisms. Our
method falls into this category, so for the rest of the paper we will focus only on
‘multiple genes, multiple species’ approaches.

Most conservation-based approaches to TF binding site discovery rely on mul-
tiple or pair-wise alignments of orthologous regulatory regions to assess whether a
particular DNA site is conserved across related organisms [1, 6, 7, 9, 10, 12, 13].
However, since binding sites are usually short, sometimes degenerate, and of-
ten in reverse orientation or even relocated, alignment algorithms may not cor-
rectly align the binding sites within orthologous regulatory sequences. Especially
when the sequences are very divergent, the background ‘noise’ of diverged non-
functional regions may be stronger than the ‘signal’ of conserved motifs, pre-
venting a correct alignment. In Fig. 1 we illustrate four scenarios where motifs
in orthologous sequences are not correctly aligned, and thus would most likely
be missed by alignment-based motif finders. When a motif changes position or
orientation, as in Fig. 1(c,d), correct alignment of motifs may even be impossible.

In consequence, motif finding algorithms based on alignments of orthologous
promoter regions will only work when the promoters in the reference species align
well with the promoters in the related species (e.g., this is not true for many
promoters in S. cerevisiae and their orthologs in the non-sensu stricto Saccha-
romyces species used in our analysis). Even when the orthologous promoters
align well, depending on the exact algorithm used to construct the alignments,
different sites may appear to be conserved. For example, while some studies re-
port a significant number of S. cerevisiae TF binding sites to be conserved in
related Saccharomyces species [14, 15], a study by Siggia [16] found that among
407 experimentally verified binding sites in S. cerevisiae, only about half ap-
pear to be conserved in an alignment of sensu stricto promoter sequences (in his
study, the sequences were aligned using a method by Morgenstern [17]).

Here, we describe a novel, alignment-free method for conservation-based motif
discovery. We relax the definition of conserved DNA sites and consider a site
within a reference regulatory region to be conserved in an orthologous sequence
if it occurs anywhere in that sequence, irrespective of orientation. We start with a
set of sequences believed to be bound by a common TF in the reference organism.
Using orthologous sequences from related organisms, we compute a conservation
score for each word and use it to bias our search towards conserved DNA sites.
Our method outperforms current conservation-based motif discovery methods
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(a) Sequence iYLR213C, bound by Mac1

Scer: ...CGCCGATATTTTTGCTCACCTTTTTTTTTTGCTCATCG-AAAATTGTTATAGCG...
Spar: ...CACCGATATTTTTGCTCACCTTTTTTTT--GCTCATCG-AAAATTGTTA--GCG...
Skud: ...AGTCGATATTTTTGCTCATCTTTTTTTTTTGCTCATTGAAAAATTGCAATGGCG...
Sbay: ...CAGTGAAATTTTTGCTCATCGAATTTTT--GCTCATCG---AAGTGTAAT-GCG...

Scer: ...ATATATATATATATACATTCTATATATTCTTACCCAGATTCTTT-GAGGTAAGA...
Spar: ...ATATATATATATATA-----TGTACATTCTCACCTGGATTCTTTGGGGGTAAAA...

(b) Sequence iYAR014C, bound by Tec1

Scer: ...TGGGGTAATTGGTAAGAGTTT-TT...GCCACTACTTTTTGCCACCATTT-CCC...
Spar: ...TGGGGTAATTGGTAAGAGTTTCTT...GCCACTATTTTTTGCCACCATTT-CCC...
Smik: ...-GGGGTAATTGGTAAGAGTTTCTT...GCCACTGTTTTTTGCCACCATTTTCCC...
Skud: ...TGGGGTAATTGGTAAGAGTTCCTT...GCCACT-TTTTTTGCCACCATTT--CC...
Sbay: ...TGTGGTAATTGGTAAGTTTTTCTT...GCCACT-TTTTTTGCCACCATTTTTCC...
Sklu: ...GTGGGAGGGTGGCAAATTTTTCTC...GACACAGT------CCATAAGCT-GCC...

(c) Sequence iYKL054C, bound by Rpn4

Scer: ...CGCCTAGCCGCCGGAGCCTGCCGGTACCGGCTTGGCTTCAGTTGCTGATCTCGG...
Smik: ...TACCTAACAGCCGG----------TACCGGCTTGAATGCCGCCGTTGGCTTCCG...

(d) Sequence iYMR107W, bound by Leu3 and Ume6

Fig. 1. Examples of conserved TF binding sites in aligned [14] orthologous yeast se-
quences that can be missed by alignment-based motif discovery programs. The sites
matching the motifs of the respective TFs are marked in color. (a) Alignment algo-
rithms may incorrectly insert gaps in orthologous motif occurrences. (b) Non-functional
regions that are conserved in closely related organisms may prevent a correct align-
ment of the binding sites. (c) Binding sites are sometimes free to change orientation,
which is probably the case for the Rpn4 binding site in S. kluyveri. (d) Motifs may
change their position relative to each other, as shown by the Leu3 and Ume6 sites.
(The sequences in the figure correspond to S. cerevisiae, S. paradoxus, S. kudriavzevii,
S. mikatae, S. bayanus, and S. kluyveri. Due to lack of experimental data, we can only
assume the depicted binding sites are functional in organisms other than S. cerevisiae.)

in both speed and accuracy. We further show that if negative examples (i.e.,
sequences believed not to be bound by the TF) are also available, we can further
improve the performance of our algorithm by considering conservation across
those regions as well.

2 Methods

In this section, we describe the generative formulation of motif discovery widely
used to find significant motifs in sets of promoters of co-regulated genes. In earlier
work [18, 19, 20, 21], we have introduced PRIORITY, a framework for incorpo-
rating additional information into motif discovery using informative positional
priors. Here, we develop a method for incorporating conservation information
across multiple species into our framework. It is important to note that the
present paper is not about the PRIORITY framework per se, but rather about
a simple, but clever method for exploiting conservation information for more
accurate motif discovery that is orders of magnitude more efficient than meth-
ods proposed to date. Consequently, the methods introduced here can also be
adapted to other motif finders beyond PRIORITY.
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2.1 Sequence Model and Objective Function

Assume we have n DNA sequences X1 to Xn believed to be commonly bound
by some TF. For simplicity, we model at most one binding site in each sequence.
This is analogous to the zero or one occurrence per sequence (ZOOPS) model
in MEME [22]. Let Z be a vector of length n denoting the starting location of
the binding site in each sequence: Zi = j if a binding site starts at location j in
Xi and we adopt the convention that Zi = 0 if Xi contains no binding site. We
assume that the TF motif can be modeled as a position specific scoring matrix
(PSSM) of length W while the rest of the sequence follows some background
model parameterized by φ0. The PSSM can be described by a matrix φ where
φa,b is the probability of finding base b at location a within the binding site for
1 ≤ b ≤ 4 and 1 ≤ a ≤ W .

Thus if the sequence Xi is of length li, and Xi contains a binding site at
location Zi, we can compute the probability of the sequence given the model
parameters as:

P (Xi | φ, Zi > 0, φ0) = P (Xi,1, . . . Xi,Zi−1 | φ0) ×
�

W�
a=1

φa,Xi,Zi+a−1

�

× P (Xi,Zi+W , . . . Xi,li | φ0)

and if it instead does not contain a binding site as:

P (Xi | φ, Zi = 0, φ0) = P (Xi,1, Xi,2 . . . Xi,li | φ0)

We wish to find φ and Z that maximize the joint posterior distribution of all
the unknowns given the data. Assuming priors P (φ) and P (Z) over φ and Z
respectively, our objective function is:

arg max
φ,Z

P (φ, Z | X , φ0) = arg max
φ,Z

P (X | φ, Z, φ0)P (φ)P (Z) (1)

2.2 Optimization Strategy and Scoring Scheme

We use Gibbs sampling to sample repeatedly from the posterior over φ and
Z with the hope that we are likely to visit those values of φ and Z with the
highest posterior probability. Proceeding analogously to the derivation of Liu
[23], collapsing φ, we get the final distribution for sampling Zi:

P (Zi = j | Z[−i], X ,φ0) =

P (Zi = j) ×
�

W�
a=1

φa,Xi,j+a−1

�
P (Zi = 0) × P (Xi,j , . . . , Xi,j+W−1 | φ0)

for 1 ≤ j ≤ li−W +1, and P (Zi = j | X, φ0) = 1 for j = 0, where φ is calculated
from the counts of the sites contributing to the current alignment Z[−i], which
is the vector Z without Zi. In practice, we run the Gibbs sampler, which we
call PRIORITY [18], for a predetermined number of iterations after apparent
convergence to the joint posterior and output the highest scoring PSSM at the
end. We use the single best motif to evaluate the algorithm and compare it with
other popular methods.
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2.3 Incorporation of Conservation Information

The Gibbs sampling technique described above has been used in several motif
finders, often with additional parameters and heuristics. Usually, these motif
finders assume a uniform prior over the locations Z. We will now show how
conservation information across related organisms can be incorporated as an
informative prior over Z.

Assume that we have sequence information from k related organisms. Thus for
each sequence Xi in the original species, we have an orthologous sequence X

(s)
i

where 1 ≤ s ≤ k. These sequences may be obtained via a genome alignment or
by searching for regions near orthologous genes. A sequence may even be empty
if no such region is found in the genome of the corresponding organism.

In this paper, we apply our method to ChIP-chip data [6] from S. cere-
visiae. We obtain orthologous sequences from six related organisms (S. para-
doxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castelli, and S. kluyveri) based
on the MULTIZ and BLASTZ alignments from Siepel et al. [14]. We describe
two different ways in which this information can be used; the first uses the
alignments, while the second does not.

Alignment-based conservation prior

Using multiple alignments of the seven yeast species mentioned earlier, Siepel
et al. [14] have published a conservation track that is freely available at the
UCSC genome browser. This track reports the probability of every position in
the S. cerevisiae genome being conserved based on a program called PhastCons
that fits a two-state phylogenetic HMM to aligned orthologous sequences by
maximum likelihood. We use these conservation track probabilities to define a
score ST (Xi, j) for the W -mer at position j in the bound sequence Xi as:

ST (Xi, j) =
1

W

W−1�
t=0

Ph(Xi, j + t) (2)

where Ph(Xi, j) is the probability of conservation reported by PhastCons at
position j in sequence Xi. In practice, while computing ST , we scale the output
of the PhastCons program linearly to lie between 0.1 and 0.9 to avoid singu-
larities in the model. We assume that ST (Xi, j) reflects the probability of the
W -mer starting at position j in sequence Xi being a binding site. Note that
the values ST (Xi, j) themselves do not define a probability distribution over j.
As mentioned earlier, we model each sequence Xi as containing at most one
binding site. If Xi has no binding site, then none of the positions in Xi can be
the starting location of a binding site. On the other hand, if Xi has one binding
site at position j, not only must a binding site start at location j, but also no
such binding site should start at any other location in Xi. Using a little algebra,
we can write:

P (Zi = 0) ∝ 1 and P (Zi = j) ∝ ST (Xi, j)

1 − ST (Xi, j)
for 1 ≤ j ≤ li − W + 1 (3)

We then normalize P (Zi) so that under the assumptions of our model we have�li−W+1
j=0 P (Zi = j) = 1 for 1 ≤ i ≤ n. We call this prior T .
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Alignment-free conservation prior

In Section 1, we outlined some of the shortcomings of using alignments to detect
conserved binding sites. Due to the short length of most binding sites, multiple
alignment algorithms are likely to misalign functional sites that are actually
conserved across species (Fig. 1). We therefore describe an alignment-free prior
that searches orthologous sequences X

(s)
i for occurrences of all W -mers present

in Xi. We assume that a W -mer has a high probability of being conserved if
it occurs in most of the orthologous sequences regardless of its orientation or
specific position. We define a conservation score SC for the W -mer at position j
in the bound sequence Xi as:

SC(Xi, j) =
1

k

k�
s=1

I [XW
ij ∈ X

(s)
i ] (4)

where I[·] is an indicator function and XW
ij denotes the W -mer at position j in

sequence Xi. In other words, the score SC(Xi, j) is directly proportional to the
number of orthologous sequences in which the W -mer XW

ij appears. The values
of SC range from 0 to 1. To avoid singularities, as before, we scale SC linearly so
that the values lie between 0.1 and 0.9.

We have also explored refinements of this simple approach that weigh se-
quences based on evolutionary distance, or account for imperfect matches while
searching for occurrences of W -mers in orthologous sequences. These extensions
did not perform better so we stick here to the simplest version (but see Section
4 for further discussion).

As in the case of ST (Xi, j), SC(Xi, j) is only the probability of the W -mer
at position j in sequence Xi being a binding site. To convert these values into a
positional prior, we substitute SC for ST in (3). After normalizing the resulting
P (Zi) as shown earlier, we get a valid prior over Z, which we call C.

Priors with a discriminative perspective

The scores ST and SC used to compute the priors T and C, respectively, reflect
the probability that a W -mer at a certain position is conserved. While it is true
that regions bound by the TF are more likely to be conserved, it does not follow
that every conserved region is more likely to be bound by the profiled TF. Some
conserved regions could be binding sites of other TFs or other functional DNA
elements. We now describe a method for computing a prior that addresses the
issue of conserved regions not specific to the profiled TF.

A ChIP-chip experiment gives rise to sequences X that are bound by the
profiled TF as well as sequences Y that are not bound. Assume we are given m
such unbound sequences. As in the case of X, we have orthologous sequences
Y

(s)
1 to Y

(s)
m where 1 ≤ s ≤ k. We compute a discriminative score SDT (Xi, j)

by taking into account the conservation score ST over both sets X and Y as
follows. For each W -mer in X, we ask the following question: “Of all the con-
served occurrences of this W -mer, what fraction occur in the bound set?”. The
motivation behind this is to ensure a high score for W -mers that are conserved
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only in the bound set but not W -mers that are conserved in general through-
out the genome. Since we only know the probability that a certain location is
conserved, we count the number of conserved W -mers in expectation, weighing
each occurrence of the W -mer according to how conserved it is. Using the score
ST derived over both sets X and Y , we calculate SDT as:

SDT (Xi, j) =

�
(q,r):XW

qr =XW
ij

ST (Xq, r)

�
(q,r):XW

qr =XW
ij

ST (Xq, r) +
�

(q,r):Y W
qr =XW

ij

ST (Yq, r)
(5)

As in the case of ST (Xi, j) and SC(Xi, j), we convert SDT into a positional
prior which we call DT . Similarly, we compute the discriminative score SDC
using the conservation-based score SC across X and Y , by substituting SC for
ST in equation (5). We convert SDC into a positional prior which we call DC.

Fig. 2 shows the scores SC and SDC over an intergenic sequence belonging to
the sequence-set of Ste12. As can be seen, the prior computed with a discrimi-
native perspective is effective in filtering out false peaks. Note that if we assume
a constant level of conservation across all W -mers, then priors C and T simplify
to the widely used uniform prior over Z, which we call U . Priors DC and DT ,
however, simplify to a special prior D that reflects the relative frequency of each
W -mer in X versus both X and Y ; we have shown previously [19] the bene-
fits of using such a discriminative prior. We incorporate these six priors U , T ,
C, D, DT , and DC in PRIORITY and call the resulting programs, respectively,

SDC

0

0.7

SC

0

1

Dal80 Ste12 Ste12 Mcm1iYJL157C

*

*

* *

*

Fig. 2. Scores SC and SDC computed over intergenic region iYJL157C. Binding sites
of Dal80, Ste12, and Mcm1 are shown as annotated by MacIsaac et al. [7]. iYJL157C
belongs to the sequence-set bound by Ste12 during a ChIP-chip experiment [6]. The
score SDC is therefore computed from this sequence-set and a sequence-set that is not
bound (see text). SC has five big peaks, marked with asterisks. Two of them correspond
to the start of Ste12 binding sites, one to the start of the Dal80 binding site. The two
remaining peaks correspond to conserved A-T rich regions. However, the score SDC has
only two large peaks and both correspond to the start of Ste12 binding sites. This shows
that prior DC is more specific to the profiled TF and effectively filters non-specific peaks
corresponding to A-T rich regions or other conserved sites.
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PRIORITY-U , PRIORITY-T , PRIORITY-C, PRIORITY-D, PRIORITY-DT , and
PRIORITY-DC.

3 Results

We compiled ChIP-chip data published by Harbison et al. [6], who profiled the
intergenic binding locations of 203 yeast TFs under various environmental con-
ditions over 6140 intergenic regions. For each TF, we define its sequence-set X
for a particular condition to be those intergenic sequences reported to be bound
with p-value ≤ 0.001 in that condition. Similarly, for each TF we define Y to be
all intergenic sequences bound with p-value ≥ 0.5. We consider all sequence-sets
X of size at least 10 that are bound by TFs with a consensus binding motif in
the literature (as used by Harbison et al. [6], or as reported in [24, 25]). This
leaves us with 156 sequence-sets corresponding to 80 TFs profiled under various
conditions. The analysis that follows is performed on those 156 sequence-sets.

It is common practice for methods to be evaluated on synthetically gener-
ated promoter data. However, in our framework, the informative priors capture
information of biological relevance from true genomic sequences. Therefore, eval-
uating our method on simulated data is not appropriate.

3.1 Comparison of Priors

Table 1 shows the performance of the six priors when incorporated into PRI-

ORITY1, on the 156 ChIP-chip sequence-sets with known motifs. Three main
conclusions can be drawn from the results in Table 1:

1. Overall, it appears that alignment-based conservation information (at least
when used in the form of T ) is only slightly more useful than using no infor-
mation. However, PRIORITY-T finds 10 motifs that PRIORITY-U does not,
and PRIORITY-U finds 8 motifs that PRIORITY-T does not (data available
in Supplementary Material). In examining the former 10 cases, it seems the
information in the alignment helps. In most of the latter 8 cases, however,
we notice that PRIORITY-T reports motifs with low information content. A
closer examination reveals that some of them are weak matches to the litera-
ture consensus but do not satisfy our stringent success criterion. It is possible
that the alignments produce misleading peaks in the prior at regions other
than (or in addition to) the binding sites of the TF, thereby diluting the true
motif signal. In the rest of the cases, we believe the alignment is faulty, i.e.,
the binding sites do not get aligned correctly. Interestingly, one of these 8
sequence-sets corresponds to TF Mac1 and contains the sequence iYLR213C
(see Fig. 1).

1 All the results reported here were obtained with PRIORITY 2.0.0, which implements an
improved sampling strategy compared to PRIORITY 1.0.0. This improves the results
of baseline priors U and D over the results reported earlier [19, 20, 21].
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Table 1. Number of motifs correctly identified by PRIORITY when using the six
priors described in Section 2. Each version of PRIORITY is run with the default
settings (motif width set to 8, and using a third order Markov model to describe the
background). Then, for each of the 156 sequence-sets, the top scoring motif is compared
with the literature consensus. We call an algorithm ‘successful’ on a particular sequence-
set if this motif is less than a distance of 0.25 from the literature consensus according
to the widely used inter-motif distance [6].

Priors U T C D DT DC

Number of successes 58 60 69 68 71 76

2. Our alignment-free approach, PRIORITY-C, does significantly better than
PRIORITY-T and PRIORITY-U . Since the computation of SC depends only
on the presence of W -mers across orthologous sequences, this approach is
impervious to the alignment artifacts described in Fig. 1, and hence seems
to better pick up the true motif signal.

3. In each of the three priors U , T , and C, adopting a discriminative perspective
helps find the true motif in many more instances. PRIORITY-DC does the
best: it finds the true motif in 76 sequence-sets across 50 TFs. In fact, there
is no sequence-set on which PRIORITY-DC fails to find the true motif but
PRIORITY-D or PRIORITY-DT is successful. This shows that, at least on
these sequence-sets, conservation information used in this manner does not
harm motif discovery.

Since PRIORITY-T is not much better than PRIORITY-U (nor is PRIORITY-DT
much better than PRIORITY-D), we will henceforth focus on the performance
of our alignment-free motif finders PRIORITY-C and PRIORITY-DC.

3.2 PRIORITY-C and -DC Are More Accurate than Current
Conservation-Based Methods

In this section we compare the results of PRIORITY-C and PRIORITY-DC with the
results of six conservation-based motif finders: MEME c [6], a method of Kellis
et al. [1], Converge [7], PhyloCon [8], PhyME [9], and PhyloGibbs [10]. All methods
fall into the ‘multiple genes, multiple species’ category, and thus search for motifs
that are both over-represented in a set of bound sequences from a species of refer-
ence, and conserved across related species. We did not compare with other methods
from this category [11, 12, 13, 26] due to one or more of the following reasons: some
are so computationally expensive that running them on all 156 sequence-sets was
practically impossible; some are designed for only two related organisms; somehave
been reported to perform worse than methods we include in our analysis; and some
were simply not available. We provide more detailed descriptions of all algorithms
in the Supplementary Material, along with specific reasons why an algorithm was
not selected for comparison in cases where that applies.
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Table 2. Number of successfully identified motifs for different conservation-based
methods. For each of the 156 sequence-sets, we use the same criterion of success as
in Section 3.1.

Number of
Program Description successes

MEME c
alignment-based; masks non-conserved bases and then

applies MEME
49

Kellis et al.
alignment-based; searches for significantly conserved 3-

gap-3 motifs, then extends them
56

Converge
alignment-based; uses EM; incorporates conservation

and evolutionary distances into the model
66

PhyloCon
locally aligns conserved regions into profiles, compares

profiles and merges them using a greedy approach
19

PhyME
alignment-based; uses EM; evolutionary model ac-

counts for binding site specificities
21

PhyloGibbs
alignment-based; similar to PhyME, but uses Gibbs

sampling; searches for multiple motifs simultaneously
54

PRIORITY-C alignment-free; incorporates a prior based on conserved

W -mers into a Gibbs sampler
69

PRIORITY-DC alignment-free; incorporates a prior based on conserved

W -mers in both bound and unbound sequences
76

Table 2 shows the results of PRIORITY-C and PRIORITY-DC compared to the
six conservation-based methods described above. For MEME c and the method
of Kellis et al. we use the results reported by Harbison et al. [6]; for Converge we
use the results reported by MacIsaac et al. [7]. We ran PhyloCon version 3b with
the default parameter setting and the parameter s set to 0.5, as in [7]. However,
unlike [7], we did not preprocess the data or postprocess the results reported
by PhyloCon. Both PhyME (version 1.2) and PhyloGibbs (version 1.0) were
run with their respective default settings, a motif width of 8, and a third order
Markov model to describe the background. As recommended by the authors of
these programs, we used LAGAN [27] and Sigma [28] to compute alignments for
PhyME and PhyloGibbs, respectively.

These results show that our algorithm PRIORITY-DC is more effective at
finding the true motif than the other methods. Even when negative examples
(i.e., sequences believed not to be bound by the TF) are not available, PRIORITY

with the simple conservation prior C still performs better than all six methods;
when negative examples are available, the performance is higher yet.

3.3 PRIORITY-C and -DC Are Orders of Magnitude Faster than
Current Conservation-Based Methods

PRIORITY with the conservation priors outperforms other methods not only in
terms of accuracy, but also speed. In Fig. 3 we show a log-scale plot of the running
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Fig. 3. Log-scale plot of running times of conservation-based algorithms on sequence-
sets of increasing size. Running times for each algorithm include preprocessing steps
(i.e., alignment computation for PhyME and PhyloGibbs, and prior computation for
PRIORITY-DC). All programs were run on a 3.06GHz Intel Pentium 4 processor.

time of PhyloCon, PhyME, PhyloGibbs, and PRIORITY-DC for sequence-sets
of varying size. Since the running times of PRIORITY-C and PRIORITY-DC are
comparable (with minor differences in the prior computation making PRIORITY-

C slightly faster), we only show the times for PRIORITY-DC.
The running time of PRIORITY-DC varies only slightly with increasing num-

ber of sequences, and PRIORITY-DC is faster than PhyloCon, PhyME, and Phy-
loGibbs on all sequence-sets. On sets of 50 or more sequences, our algorithm
becomes 2-3 orders of magnitude faster than the other three methods.

4 Discussion

We have presented a fast motif discovery algorithm that uses sequence con-
servation across related organisms without relying on alignments. Our method
outperforms currently used conservation-based programs in both speed and ac-
curacy.

We are not the first to use alignment-free conservation across species to find
motifs. Elemento and Tavazoie [29] look for conserved regulatory elements by
scanning a pair of related genomes for highly enriched W -mers, on the order of
400. Then they use a hypergeometric distribution to evaluate the significance
of each of these W -mers in bound ChIP-chip sets. Using this method they are
able to assign a W -mer that matches to the true motif to only 15 TFs. Since
they limit their analysis to reporting W -mers, it is possible that they are not
able to find TF motifs that have greater sequence variation. In contrast, though
our scores SDC are also computed over W -mers, we use them only to construct
positional priors; our Gibbs sampler returns a PSSM. In addition, the approach
of Elemento and Tavazoie is limited to pairs of related organisms, and thus the
choice of organisms becomes crucial for the success of the algorithm.

In this paper, we show how multiple unaligned genomes can be successfully
used for motif discovery. Our method can be applied to any number of genomes.
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For instance, we independently computed six variant DC priors using: only the
single closest species (S. paradoxus); the two closest species (S. paradoxus and
S. mikatae); the three closest species (S. paradoxus, S. mikatae, and S. kudri-
avzevii); and so on. PRIORITY-DC consistently found 69 or more motifs with
each of these variant priors. The general trend indicated that more organisms
improve performance.

The sensu stricto species (S. paradoxus, S. mikatae, S. kudriavzevii, and
S. bayanus) provide most of the conservation information in the priors. However,
since these species are closely related to S. cerevisiae, their intergenic regions may
contain many non-functional conserved sites, simply because not enough evolu-
tionary time has passed since the species diverged from their common ancestor.
This does not pose a problem for our conservation-based algorithm because the
information in the cobound sequences helps reduce the space of putative TF
binding sites to those conserved DNA sites that also appear in most of the
cobound sequences. Furthermore, the more distantly related species S. castelli
and S. kluyveri provide some of the sequence divergence necessary for filtering
out the conserved non-functional sites. According to a study by Cliften et al. [30],
only a small number of the intergenic regions in the S. castelli and S. kluyveri
genomes can be aligned to S. cerevisiae regions, and only after the correspond-
ing orthologous genes have been identified. Even then, the conserved regulatory
sites may be hard, if not impossible, to align correctly. Hence, alignment-based
motif finders may not be able to fully exploit the information provided by the
two distantly related species, while our alignment-free algorithm can.

Our conservation-based approach is much faster than current methods. It only
needed a few minutes to compute a motif, even on the largest sequence-set, while
other methods required days or in some cases months. Interestingly, other meth-
ods become slower precisely because they use conservation information, but our
method actually speeds up: the informative prior computed from conservation
information facilitates rapid convergence to the posterior, as evidenced by the
fact that PRIORITY-DC reaches convergence faster than PRIORITY-U (data not
shown).

In Fig. 3 we showed that PRIORITY-DC scales well with the size of the
sequence-set. A similar analysis can be done by keeping the size of the sequence-
set fixed but varying the number of orthologs for each sequence. The running
time for PRIORITY-DC varies only slightly when we increase the number of or-
thologous sequences, while the running time of other conservation-based methods
increases substantially (data available in the Supplementary Material).

Currently, the derivation of our conservation-based priors does not take phylo-
genetic information into account, mainly because high-quality phylogenetic trees
are usually hard to compute. However, when such a tree is available, our algo-
rithm can easily incorporate the phylogenetic information into the priors, by
weighting the sequences in each organism (and thus the occurrences of W -mers
in these sequences) according to the evolutionary distance between that organ-
ism and the reference organism. We have derived such a weighting scheme for
the Saccharomyces species using the phylogenetic tree reported by Siepel et al.
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[14]. However, conservation priors computed using the weighted sequences did
not show any improvement over the initial conservation priors, C and DC.

One potential limitation of our approach is that the conservation priors are
computed by counting only exact matches between the W -mers in the reference
genome and W -mers in the related genomes. We have also tried computing priors
similar to C and DC that allow for one mismatch when searching for conserved
words. Since we do not know a priori the position in which a mismatch may
occur, we allowed it to be anywhere in the W -mer. For example, an 8-mer was
defined as “conserved” in an orthologous sequence if the sequence contained
either an exact match to that 8-mer or any of the 24 8-mers that differed at
exactly one position. The effect of allowing one mismatch was that the signal
of truly conserved sites was mixed with random noise due to the 24 8-mers,
and overall these priors were not as effective as C and DC. Allowing for more
than one mismatch may further dilute the signal of conserved sites. However,
prior knowledge about the structure of the binding site (for example, when we
know we should be searching for a gapped motif) may be used to restrict the
mismatches to certain positions.

Here, we have successfully applied our algorithm on seven Saccharomyces
species. We believe our approach is even more useful on higher organisms, where
motif finding has proven difficult due to longer promoters and smaller fraction of
functional elements. We are planning to apply our method on data from higher
organisms, including worm, fly, and human.

Supplementary Material can be found at http://www.cs.duke.edu/∼amink/.
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Abstract. One component of the genomic program controlling the tran-
scriptional regulation of genes are the locations and arrangement of
transcription factors bound to the promoter and enhancer regions of
a gene. Because the genomic locations of the functional binding sites of
most transcription factors is not yet known, predicting them is of great
importance. Unfortunately, it is well known that the low specificity of
the binding of transcription factors to DNA makes such prediction, us-
ing position-specific probability matrices (motifs) alone, subject to huge
numbers of false positives. One approach to alleviating this problem has
been to use phylogenetic “shadowing” or “footprinting” to remove un-
conserved regions of the genome from consideration. Another approach
has been to combine a phylogenetic model and the site-specificity model
into a single, predictive model of conserved binding sites. Both of these
approaches are based on alignments of orthologous genomic regions from
two or more species. In this work, we use a simplified, theoretical model
to study the statistical power of the later approach to the prediction
of features such as transcription factor binding sites. We investigate the
question of the number of genomes required at varying evolutionary dis-
tances to achieve specified levels of accuracy (false positive and false
negative prediction rates). We show that this depends strongly on the
information content of the position-specific probability matrix and on the
evolutionary model. We explore the effects of modifying the structure of
the phylogenetic model, and conclude that placing the target genome at
the root of the tree has a negligible effect on the power predicted by the
model. Hence, as it is much easier to calculate, we can use this as an
approximation to phylogenetic motif scanning using real trees. Finally
we perform an empirical study and demonstrate that the performance of
current phylogenetic motif scanning programs is far from the theoretical
limit of their power, leaving ample room for improvement.

1 Introduction

Phylogenetic motif models are probabilistic models of sequence features. They
are a natural extension of the probabilistic motif models used in computational
biology to represent and identify sequence features such as transcription factor
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binding sites (TFBSs), splice junctions and binding domains in DNA, RNA
and protein molecules, respectively (1; 2). Phylogenetic motif models extend
the usefulness of standard motifs by leveraging the knowledge that important
features in biological sequences tend to evolve more slowly than the neutral rate,
a standard assumption of comparative genomics. Phylogenetic motif models are
a refinement of the idea of phylogenetic footprinting (3) and shadowing (4), key
tools in the arsenal of comparative genomics. This study examines the statistical
power provided by phylogenetic motif models for identifying sequence features
as a function of the number of comparative genomes, their average evolutionary
distance and the information content of the motif.

Standard probabilistic motif models assume that sequence features have a
fixed length, and that the frequencies of the letters (e.g., base or residue) that
occur at each position in an occurrence of the feature are independent. This
allows the motif model to be completely described by a single position-specific
probability matrix (PSPM), M , where M j

a gives the probability of observing
letter a at position j in the motif. Thus, the motif model defines the probability
of any sequence, x, of the correct length, as the product of the corresponding
terms in M , written here as Pr(x|M).

Phylogenetic motif models extend standard motif models to allow them to
define the probability of a multiple alignment, rather than of a sequence. In
addition to the motif model, M , they incorporate a model of evolution (substi-
tution model, e.g., Jukes-Cantor or Hasegawa-Kishino-Yano (HKY) (5)), E, and
a phylogenetic tree, T . Each sequence in the alignment is associated with one leaf
in the tree, as they are assumed to be orthologous (descended from a common,
ancestral sequence.) In essence, the model treats each column of the multiple
alignment as though it were a “letter”, and defines the probability of the align-
ment (with the same length as the motif) as the product of the probabilities of
the individual columns. Under the model the probability of an alignment column
is the probability of observing the letters in the column assuming the evolution-
ary substitution model and assuming that the sequences (and their ancestors)
have been under purifying selection to maintain the frequencies given in the cor-
responding column of the motif, M j. Thus, the model is a direct generalization
of the standard probabilistic motif model and it defines the probability of the
multiple alignment column, σ, corresponding to the jth position in the motif,
here written Pr(σ|M j , E, T ). (Since our model assumes that alignment columns
are independent, this is easily generalized to the probability of the complete
alignment of length L by taking the product of the column probabilities.)

The focus of this paper is on the theoretical limits on the utility of phylo-
genetic motif models for identifying genomic features when the motif is known,
here referred to as “motif search”. In the past few years, algorithms have been
developed that use phylogenetic motifs for motif search, notably the Monkey
algorithm (6; 7) and Motiph (unpublished, available as part of the Meta-MEME
software http://metameme.sdsc.edu). These tools make more sophisticated use
of the information implicit in an alignment of orthologous sequences than tools
such as the UCSC Genome Browser (8), the ECR Browser (9), and ConSite (10),

http://metameme.sdsc.edu
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because they explicitly use a model of substitution and the evolutionary rela-
tionships and distances specified by a phylogenetic tree.

Despite the existence of such tools and their intuitive usefulness, little is known
about the limits of their ability to detect genomic features. This is mainly due
to the difficulty and expense of obtaining “gold standard” sets of all known,
functional instances of a feature in a genome. Lacking such a gold standard,
it is difficult to validate the “false positive” (FP) rate of a model since one
doesn’t know how many of the supposed false positive predictions may be real.
Similarly, if true instances of a feature are missing from the validation set, one
cannot accurately estimate the “false negative” (FN) rate of a model.

An important biological application where this problem is particularly acute
is in the identification of transcription factor binding sites (TFBSs), where it is
well known that standard probabilistic motif search suffers from overwhelming
numbers of false positive predictions (the so-called “Futility Theorem” (11).)
The evolutionary motif search algorithms already mentioned were developed in
large part specifically to overcome this problem, but little or no data is available
as to the extent to which they succeed.

In this paper we develop a theoretical framework for analyzing the statistical
power of an evolutionary motif model used in motif search in a “target” genome.
We assume that the search uses the standard approach for scoring putative sites
in the multiple alignment–the log-odds score–the logarithm of the ratio of the
probability of the site given the evolutionary motif model or given the neutral
(“background”) model, respectively. Our framework allows us to compute, for
any specified motif and evolutionary model, the number of comparative genomes
required in order to achieve given FP and FN rates. Conversely, we can compute
a theoretical ROC-like curve for a motif, plotting FN rate as a function of FP
rate for a given number of genomes at a given evolutionary distance from the
target genome.

To compute the theoretically achievable FN and FP rates of a motif, we must
estimate the distributions of the log-odds scores under the motif and background
models, respectively. To make this computation feasible, we make the following
simplifying assumption–that each of the comparative genomes is at the same
evolutionary distance from the target genome. This assumption allows the phy-
logeny to be represented by a star topology, and makes the probabilities of the
letters in each of the genomes independent, given the letter at the root of the
tree. It also makes the contributions to the log-odds score from each genome
additive, and allows us to parameterize a problem with a single distance, D, the
length of each of the branches in the star tree.

This is the same approach as taken by Eddy (12), who studied the simpler
problem of determining if a column or set of columns in a multiple alignment was
conserved, as opposed to our goal of identifying if a set of columns is a conserved
instance of the particular feature type defined by the motif model. We show the
validity of the simplifying assumption of a phylogenetic star by computing FP
and FN rates for an actual species tree for four yeast species. This allows our
results to be directly applicable to existing phylogenetic motif search algorithms
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such as Monkey. In what follows, we will refer to Eddy’s goal as estimating the
statistical power of phylogenetic footprinting.

Our theoretical analysis quantifies the maximum sensitivity and specificity of
phylogenetic motifs during motif search under ideal conditions. We assume that
we have a correct alignment of orthologous sequences. We presume that we know
the substitution rate of the motif, RM , in reference to the neutral substitution
rate, which is our metric of evolutionary distance. In some cases, we add an
additional assumption that the background substitution rate RB, varies from
the neutral rate. This variation allows us to investigate searching for motifs
within sequence regions that are more conserved than neutral sequence. We
assume that the evolutionary substitution model is correct. In these assumptions,
we mirror the analysis of Eddy (12). We further assume that the feature of
interest is accurately represented by the probabilistic motif, M , and the non-site
positions are accurately modeled by a 0-order Markov model with parameters
B. Of course, we also assume that the underlying premise of phylogenetic motif
search is correct–that motif sites (features) are under identical purifying selection
in each of the comparative organisms and their common ancestor. We summarize
our model parameters as θM = {M, E, T, RM} for the motif model, and θB =
{B, E, T, RB} for the background model.

Our framework allows us to explore a number of factors affecting the statistical
power of phylogenetic motif models. We demonstrate that identifying conserved
motifs across phylogenies requires fewer genomes than the number predicted for
phylogenetic footprinting. We show that a small part of the improvement is due
to the use of the Halpern-Bruno modification in the model of the substitution
probabilities, and that the majority of the improvement comes from having site-
specific probability distributions in the model of evolution. We demonstrate that
the information content of a motif has an inverse relationship with the number
of required genomes, up until about 17 bits. We provide estimates of the number
of genomes needed when the motif is less conserved, and we explore the difficulty
encountered when searching for motifs in genomes with large regions evolving
more slowly than the neutral rate. Finally, we also explore the affects of the
topology of the phylogenetic model. Our results suggest that placing the target
genome at the center of the star has little effect on the statistical power estimates,
thus validating the model as a method for estimating the statistical power of
phylogenetic motif scanning with real phylogenetic trees.

2 Methods

2.1 Phylogenetic Motif Model

Our phylogenetic motif model involves computing a log-odds ratio of an align-
ment column σ of N sequences given evolutionary models of the motif and
background θM and θB, respectively. (Since log-odds scores are additive, this
generalizes easily to the score for an alignment of length L by summing the
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Fig. 1. Transformation from a real species tree to the ‘target-centric’ phylogenetic
model

scores of the individual columns.) When aligned with the jth position in the
motif, the log-odds score for this column is written as

S(σ) = log
Pr(σ|θMj )
Pr(σ|θB)

.

The two models θM and θB incorporate the frequencies in the position-specific
probability matrix (PSPM) of the motif, M , the background frequencies of the
residues, B, different substitution rates for the two models RM and RB respec-
tively, and an evolutionary model for calculating the substitution probabilities.
(M j represents the frequencies in position j of the motif.) We use a phyloge-
netic star tree with equal branch lengths, D, to describe the relationship be-
tween the genomes. By placing the first genome in the center of the star (as
Eddy does (12)), we are able to produce a dynamic programming solution that
computes the probability distribution in time linear to the motif parameters. We
verify the accuracy of this in the later part of the study by placing an unknown
ancestor in the center (as has been done in other work (13; 14; 6)) and calculat-
ing the probability distribution by brute force, which is practical only for trees
containing fewer than nine or ten genomes.

When we place the target genome in the center of the star, the score function
is

S(σ) = log
Pr(σ1|M j)

∏N
i=1 Pr(σi|θMj , σ1)

Pr(σ1|B)
∏N

i=1 Pr(σi|θB, σ1)
,

which can be rewritten as

S(σ) = log
Pr(σ1|M j)
Pr(σ1|B)

+
N∑

i=2

log
Pr(σi|θMj , σ1)
Pr(σi|θB, σ1)

,

where σ1 is the target genome’s letter (Fig. 1), and the σi are the letters in
the other genomes. Note that, when the target genome is in the center of the
star, the probability of the site in the target (first) genome is defined completely
by the motif model, M , and background model, B, and does not involve the
evolutionary substitution model. We compute both of these scores using the
“pruning algorithm” of Felsenstein (5).

In this study, we use the HKY (15) substitution model to calculate the substi-
tution probabilities for both the background and the motif evolutionary models.
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(Our analysis allows any of the standard substitution models, and our implemen-
tation incorporates the Jukes-Cantor, Kimura 2-parameter, F81, F84, HKY and
Tamura-Nei models). For the motif evolutionary model, we apply the Halpern-
Bruno modification (16), using the appropriate column of the motif PSPM as
the equilibrium frequencies.

We use the parameter settings of the HKY model employed in MONKEY, so
that the transition-transversion ratio is set to 3.8, and the background distribu-
tion, B, is set to BA = BT = 0.3 and BC = BG = 0.2. These values are very
similar to the ones employed by Eddy in his numerical verification of his phy-
logenetic footprinting study using an HKY-generated sample (12). The scoring
function we use in this study is identical to that of MONKEY (6).

Two assumptions of independence that simplify the process of calculating the
probability distributions required in computing the distribution of the log-odds
score, S. Firstly, the assumption of a phylogenetic star with the target genome in
the center means that each genome evolves from the target independently, hence
the probability of N genomes, is the probability of the first N − 1 genomes
times the probability of seeing the Nth genome. Secondly, the fact that we
assume independence between the positions within the motif, means that the
probability distribution for the score considering only the first m columns in the
multiple alignment is the probability of seeing the first m − 1 columns times the
probability of the mth column.

These assumptions allow us to apply dynamic programming to calculate a
discretized approximation to the score probability distributions (17). We cal-
culate the distribution under both the assumption that we are dealing with a
conserved motif, and under the assumption that we are dealing with a neutral
sequence. We are then able to generate the cumulative distributions under each
model and determine if, for the given number of genomes, there is an S score
threshold that satisfies the false positive and false negative criteria.

Our algorithm is linear in the length of the motif, L, the maximum number of
genomes to be tested, G, however it is quadratic in the size, s, of the discretized
distribution, so it has computational complexity O(LGs2). We found that to
obtain reliable cumulative distributions we needed to use a discretization size,
s, of 2 · 104. Hence, the computation time for long motifs or large numbers of
genomes can be extensive. For example, to produce the two cumulative probabil-
ity distributions for four genomes at evolutionary distances of 0.19 and 0.31 the
algorithm takes on the order of 5 minutes on a 2 gigahertz workstation. How-
ever, to calculate the number of required genomes over 100 different evolutionary
distances with a low information content motif requires 80 hours of computing
time on the same workstation.

We validated the cumulative distributions by generating Q-Q plots, in which
we sample 10,000 alignments generated under the two models, and plotted the
p-values of each log-odds score predicted by our model against those suggested
by the random sampling. The Q-Q plots show that the estimated p-values are
very accurate (data not shown).
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2.2 Motifs and Information Content

In this paper, we use motifs from the JASPAR (18) and SCPD (19) databases.
These databases contain “count” matrices, computed by aligning known TFBSs
and counting the number of occurrences of each nucleotide in each position in the
known sites. We convert these counts to a probability matrix, M , by normalizing
each column to sum to one. To account for small-sample errors, we add a “pseu-
docount”, equal to 0.375, to each count before normalizing. (This value was de-
termined to be optimal for normalizing TFBS motifs by Frith et al. (20).)

To calculate the information content of the motif, we use the same derivation
of the Shannon entropy employed in the calculation of sequence LOGOs (21).
The information content (in bits) of a DNA PSPM, M , of length L, is given as

IC(M) =
L∑

j=1

(
2 +

∑

a∈A
M j

a log2(M
j
a)

)
.

This is equal to the average log-odds score of motif instances when the back-
ground base distribution is uniform.

3 Results

3.1 Required Number of Comparative Genomes for Typical TFBS
Motifs

In our first study, we take two TFBS motifs from the JASPAR database (18),
both of length eight, but with different information contents. We compare the
theoretical number of genomes required for accurately detecting sites of each of
these motifs (computed by our approach) with the number of genomes required
to simply predict the conservation of a length-eight region by phylogenetic foot-
printing. Our chosen motifs are the length-eight motifs with the highest and
lowest information content in the JASPAR database: MA0033 (FOXL1) and
MA0024 (E2F1), respectively. The LOGOs for these two motifs are shown in
the inset in Fig. 2. We use a single setting for the statistical power, which is
the most stringent used in Eddy’s study: an FP rate of 10−4 and an FN rate of
10−2, and we place the target genome in the center of the phylogenetic star.

The results are shown in Fig. 2. For both high and low information content
motifs, fewer genomes are required to predict, at the given level of accuracy,
conserved motif sites than to predict which regions are conserved. As one might
expect, the higher information content motif has more statistical power, requiring
fewer genomes.

We conducted simulations in order to investigate the effects of the main differ-
ences between our approach and the numerical simulations performed by Eddy.
Firstly, that when we use the HKY evolutionary model, we have site specific
probability distributions that affect the substitution probabilities. Secondly, we
use the the Halpern-Bruno (HB) modification when generating the substitution
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Fig. 2. Results for the length-eight motifs: FP = 10−4 and FN = 10−2. The plot of
points is a reproduction of Eddy’s results for a length-eight conserved region. The
middle line shows the results for our model using the low information content JASPAR
motif MA0033. The lower line shows the results of our model using the high information
JASPAR motif MA0024. We place the target genome at the center of the star and use
the parameters outlined in Section 2.1. The x position of first letters of ‘Dog’ and
‘Mouse’ correspond to their approximate evolutionary distances to Human.
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Fig. 3. Results for the length-eight motif MA0033 with different evolutionary models:
FP = 10−4 and FN = 10−2. The plot of points is a reproduction of Eddy’s results for
a length-eight conserved region. The three line plots show the results for our model
using the HKY model or the HKY with the Halpern-Bruno modification. The equi-
librium frequencies for the model(s) are shown in parentheses–“B” (background) or
“M” (motif). The x position of first letters of ‘Dog’ and ‘Mouse’ correspond to their
approximate evolutionary distances to Human.

probabilities. We use the low information content motif MA0033 to test the cu-
mulative effect of adding each of the these features to the evolutionary model. We
first plot results generated using our model with the HKY using the background
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use the HKY model with the Halpern-Bruno modification for the motif substitution
rates.

model as the equilibrium distribution (rather than using the motif). As can be
seen in Fig. 3, these results are barely distinguishable from Eddy’s footprinting
results. This shows, as one would expect, that using a phylogenetic motif model
with no information content is essentially the same as phylogenetic footprint-
ing. When we modify HKY to use the site specific frequencies from the columns
of the model, we see an improvement in statistical power, and an incremental
improvement when we apply the HB modification.

3.2 The Effect of Motif Information Content

In order to obtain a greater indication of the influence of information content
over the number of required genomes, we conduct a second study using all motifs
from the JASPAR database (18). We calculate the number of genomes required
to achieve a FP rate of 10−4 and a FN rate of 10−2 for each of the 123 motifs
and plot it against the information content of the motif.

We place the first genome in the center of the star and we use two different
evolutionary distances (D)–0.19 and 0.31–the values of the independent branch
lengths chosen by Eddy as representative distances corresponding to human-
dog and human-mouse inter-genomic distances. The results are both shown as a
scatter plot in Fig. 4. The most notable result is that there is a strong, general
trend for the number of required genomes to decrease with information content.
However, as the information content reaches and exceeds 17 bits, the plots reach
the limiting value of two genomes for both evolutionary distances.
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3.3 Empirical Validation of the Model

The decision to place the target sequence in the center of a phylogenetic star is
biologically implausible. However, given time-reversible models of evolution, we
can rearrange a phylogenetic tree into a star with the target species in the center,
such that the total independent branch length of the tree is conserved (12).
The rearrangement simplifies the mathematics, permitting the kind of analysis
presented in this paper. However, we wish to verify that the transformation of
the tree does not drastically change the results of phylogenetic motif scanning.
Furthermore, we wish to see how close to the theoretical limits of statistical power
the current phylogenetic motif scanning programs are currently performing.

As a case study for exploring these issues, we chose the problem of identifying
TFBSs within a multiple alignment of four yeast genomes, which has been anal-
ysed in a number of previous studies (22; 23; 12). We use the Kellis et al. (22)
four Yeast genome data set, including phylogenetic tree for our analysis. We take
the total independent branch length of 0.963 for this tree and divide it by three,
giving a branch length of D = 0.321 in the target-centric tree.

In order to evaluate the effect of our target-in-the-center simplification of the
tree, we developed an alternative progam that calculates the theoretical power
of phylogenetic motif scanning on any tree for a (small) specified number of
genomes. We chose a number of TFBSs from the SCPD (19) database (ABF1,
MCM1, RAP1, REB1 and URS1H) and calculated their theoretical statistical
power, using both the real tree and the target-in-center transformed tree. We also
computed the theoretical power of using each of these motifs in a simple motif
scan (without comparative genomes). We use two phylogenetic motif scanning
programs, MONKEY (6; 7) and Motiph, to scan for these same TFBSs in the
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Fig. 5. Comparison of theoretical and empirical power of phylogenetic motifs. The
plot shows ROC-like curves for two of the experiments performed with SCPD motifs.
Panel a shows results for ABF1 and panel b shows results for MCM. The lines show
the theoretical limit of the statistical power using the real tree, the target-in-center
tree (“TIC”), or in a simple motif scan (“1-species”). The points show the empirical
performance of the phylogenetic motif scanning programs Motiph and Monkey, and a
simple motif scan (“1-species”).
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aligned yeast sequences, and we plot the statistical power of the results on the
same graphs. We plot the results as FP versus the FN rate, allowing us to
visualise the tradeoff between these two measures of accuracy.

The results for motifs ABF1 and MCM1 are shown in Fig. 5, and are repre-
sentative of what we see for all five motifs (data not shown). We can draw several
conclusions from these plots. Firstly, the two curves for theoretical power of phy-
logenetic motif scanning are almost identical, and actually overlay each other in
the plots. This demonstrates that using the target-in-the-center transformation
yeilds an excellent estimate of the statistical power of models using the true
tree. Secondly, the theoretical increase in power of phylogenetic motif scanning
over simple motif scanning is close to three orders of magnitude (compare pink
and blue plots in each panel). Thirdly, although simple motif scanning is per-
forming very close to its theoretical limits, the same is not true for phylogenetic
motif scanning. In fact, in the examples we study here, the phylogenetic motif
scanners perform worse than simple motif scanning at low FN (high sensitivity)
thresholds.

The poor emprical performance of the phylogenetic motif model scanning
algorithms in Fig. 5 could be due to any of a number of factors. Firstly, our
“gold standard” of known TFBSs, SCPD, is probably incomplete, which will lead
to erroneous “false positives”. Secondly our alignments are no doubt imperfect,
causing real binding sites to be missed by phylogenetic motif model scanning
(but not by simple motif scanning). Thirdly, it is well known that functional
binding sites are often not conserved (24; 7), once again causing phylogenetic
motif model scanning to miss binding sites. Finally, false positives may be caused
by highly conserved regions that contain sequences that match the motif, but are
not functional binding sites. Whatever, the reason we can surmise that, although
phylogenetic motif scanners may have the ability to take motif scanning from
futility (11) to practicality, they have not yet achieved their potential.

3.4 Identifying Motifs within Conserved Regions

One potential problem for identifying transcription factor binding sites is the
fact that they are often located within a large area of conserved sequence. This
means that the correct background model should be evolving at approximately
the same rate as the motif itself. In the approach taken in our initial case stud-
ies, we use a background model evolving five times faster than the motif model.
This gives a substitution ratio (“S Ratio”) RM

RB
of the motif substitution rate

RM = 0.2 against the background substitution rate RB = 1.0 is equal to 0.2.
To evaluate the effect of allowing the background sequence to be highly con-
served, we generate two alternative versions of the plots shown in Fig. 2 for the
high information content motif MA0024. We keep the motif substitution rate
constant at 0.2 and modify the background substitution rate so that we obtain
substitution ratios of 0.5 and 1.0. The results are shown in Fig. 6.

As would be expected, the number of required genomes increases as we at-
tempt to identify TFBSs within highly conserved sequence. In the worst case
scenario, the background sequence is as conserved as the motif itself (ignoring
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Fig. 6. Effect of changing the background substitution rate. Using the high information
content motif MA0024 we searched for the number of genomes required to satisfy
FP = 10−4 and FN = 10−2. The three curves correspond to three different setting of
the motif to background substitution rates. The value 0.2 is identical to our first study
(Fig. 2), the value 0.5 corresponds to a background rate of 0.4, i.e. a region that is
evolving at twice the rate of the motif and at 40% of the neutral rate. The results for
a value of 1.0 correspond to a background substitution rate of 0.2, i.e. a background
region that is as conserved as the motif being sought, and they are both evolving at
20% of the neutral rate. First letters of ‘Dog’ and ‘Mouse’ correspond to approximate
distance to Human.

the possibility that it might be more conserved) and we require on the order of
3 to 6 times the number of genomes to achieve the same statistical power.

4 Discussion

Phylogenetic motif models are a specialization of profile phylogenetic hidden
Markov models (25). The introduction of phylogenetic relationships has been
responsible for considerable improvement in the performance of de novo motif
discovery algorithms (26; 14; 13). However, the advantages of phylogenetic motif
models for motif search are less clear. Even with the use of phylogenetic motif
models and/or phylogenetic footprinting, transcription factor binding sites have
remained difficult to identify due to their short lengths, low-specificity motifs
and their presence inside highly conserved promoter regions. We have sought
to analyse each of these limiting factors and present theoretical results on the
number of genomes required at a variety of evolutionary distances to achieve
reasonable statistical power.

In the first set of simulations we saw that fewer genomes are required to
achieve given target levels of statistical significance in phylogenetic motif search
than for phylogenetic footprinting. The amount of reduction depends on the
information content of the motif. Compared to phylogenetic footprinting, phy-
logenetic motif search typically requires only about 50% as many genomes with
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high-information TFBS motifs, and 90% as many with low-information motifs.
We showed that the size of the improvement is not merely a matter of the speci-
ficity of the motif, but depends on the particulars of the evolutionary model.
The use of site specific frequencies from the motif provide the majority of the
improvement, and the use of the Halpern-Bruno modification to the substitution
model adds additional power.

In the second set of simulations we explicitly explored the relationship between
the information content of a motif and the number of genomes required to achieve
a given statistical power. We saw the number of genomes required is inversely
proportional to the information content of the motif. However, at an information
content of 17 bits or more, we reach the limiting case of comparing 2 genomes.
This means that for high information content motifs, the evolutionary distance
between comparative genomes is much less important than for low information
content motifs.

In the third study we performed an empirical investigation to validate the model
and test the validity of the target-in-the-center simplification. We observed that
placing the target genome in the center of a phylogenetic star produced results al-
most indistinguishable from the theoretical results using the phylogenetic tree for
four yeast species. When we compared these results with the theoretical power
of performing simple motif scanning, we saw that phylogenetic motif scanners
have the potential to improve performance by up to three orders of magnitude,
which would take the performance of the model from futility (11) to practicality.
However, when we compared these theoretical curves with empirical results of the
accuracy of two phylogenetic motif scanning models MONKEY and Motiph, we
observed that the empirical results are far worse than theory predicts. In fact,
the empirical results are, in general, no better than simple motif scanning. This
disappointing result may be due to a number of factors: bad alignments, incom-
plete knowledge of the real TFBSs (thus false assignment of false positives), diver-
gence or drift (7; 24) of binding sites, or the prevalence of highly conserved regions
that contain sequences that are indistinguishable from functional binding sites. It
remains to be seen whether these problems can be identified and overcome, or
whether they are simply inherent problems with the data.

In the final set of simulations we saw that, under the worst case scenario
where a TFBS is evolving at the same rate as the surrounding promoter region,
the number of genomes required increases significantly to between three and six
times the number required when the motif is evolving five times slower. This
result may explain to some extent the great difficulty that has been encountered
in identifying TFBSs accurately, while at the same time providing an upper
limit on how many genomes we need at a given distance to identify these elusive
features.

We intend to use the tool developed here to create a database of ROC-
like curves for a wide variety of motifs from the JASPAR and transfac SCPD
databases. These will be provided via the WWW, and will provide estimates of
the theoretical false positive versus false negative rates for each motif, on a given
set of genomes at different, fixed evolutionary distances.
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Abstract. The development of high-resolution microscopy makes possible the 
high-throughput screening of cellular information, such as gene expression at 
single cell resolution. One of the critical enabling techniques yet to be devel-
oped is the automatic recognition or annotation of specific cells in a 3D image 
stack. In this paper, we present a novel graph-based algorithm, ARC, that de-
termines cell identities in a 3D confocal image of C. elegans based on their 
highly stereotyped arrangement. This is an essential step in our work on gene 
expression analysis of C. elegans at the resolution of single cells. Our ARC 
method integrates both the absolute and relative spatial locations of cells in a C. 
elegans body. It uses a marker-guided, spatially-constrained, two-stage bipartite 
matching to find the optimal match between cells in a subject image and cells in 
15 template images that have been manually annotated and vetted. We applied 
ARC to the recognition of cells in 3D confocal images of the first larval stage 
(L1) of C. elegans hermaphrodites, and achieved an average accuracy of 
94.91%.  

1   Introduction 

Automatic recognition of the identities of individual cells in 3D microscopy images is 
indispensable for the high-throughput analysis of cellular information, such as gene ex-
pression levels and cell morphology, at the single cell level. One example is our recent 
work on high-throughput whole-animal single-cell gene expression analysis for C. ele-
gans [1] based on a 3D digital atlas of the nuclei of this animal [2]. Currently cell recog-
nition is accomplished by expert manual annotation, which is extremely labor intensive 
and basically untenable for a large number of images. Using a small set of, say a dozen or 
so, manually annotated images of the same organism as templates, we demonstrate that it 
is possible to extract cellular information such as location and relative spatial relationship 
of individual cells from these templates, and automatically assign names to cells in any 
new image of the same organism provided it is sufficiently stereotyped, which C. elegans 
most certainly is. But this is not the only application, for example, the embryonic and 
larval neurons of D. melanogaster are highly stereotyped, as are many other early devel-
opmental patterns. Figure 1 illustrates this problem schematically. 
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It is challenging to develop such automatic cell recognition technique for several 
reasons. First, individual cells in an image need to be segmented to high accuracy as a 
precursor, and this is difficult when the image quality is limited and cells are tightly 
clustered. Second, it is common that an image of an entire organism (e.g. C. elegans), 
or a particular tissue of an organism (e.g. the mushroom body of a fly brain) may 
contain hundreds or thousands of cells. Thus the scale of the problem presents a chal-
lenge to traditional graph matching techniques [4~14], which have been successfully 
applied in applications such as face recognition [11], object tracking [12], image re-
trieval [13], and image registration [14] to find correspondences between two sets of 
spatial points, each usually containing less than a hundred objects. Finally, due to the 
imperfection of staining and the resolution-limit of the imaging, an expert annotator 
can only annotate the subset of cells in a template image that are large enough and 
strongly stereotyped in location. Thus the problem becomes a subset-matching prob-
lem, which is more difficult than the case where both the subject image and the tem-
plate images have the same number of cells.  

)b()a(  

Fig. 1. (a) is a raw image of C. elegans, and in (b) we illustrate the cell recognition problem on 
image stacks where the worm has first been straightened [3], and then size and orientation 
normalized and segmented as described in our earlier work [2]. Cells in a template are colored 
so that locally it is clear which cells have the same identity between instances.  

For this problem, our new method, called Automatic Recognition of Cells (ARC), is 
developed below in three layers of increasing refinement or power as follows. In Section 
2 we introduce a basic framework of a two-stage bipartite matching that first matches 
cells in a subject image against the annotated cells in each template image, and then 
matches cells in the subject image to a unique cell by considering assignment scores 
based on the first-level matching results. In Section 3 we introduce and constrain the 
possible matchings to observe relative spatial invariant relationships discovered in the 
training stacks, specifically, the anterior-posterior (AP), left-right (LR), dorsal-ventral 
(DV) invariant relationships.  In Section 4 we introduce a marker-based strategy in which 
a fiducial framework of alternately-labeled marker cells is automatically annotated with 
very high confidence, and then these are used to triangulate and constrain the annotation 
of the remaining cells. 

We applied ARC to the 3D confocal images of the first larval stage (L1) of C. elegans 
hermaphrodite that has ~558 cells [1]. For this problem we manually annotated 351 cells 
in 15 templates. Most of the un-annotated cells are small neurons in the head of the  
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organism. Our results show that using our marker-guided, AP/LR/DV-constrained, two-
stage bipartite matching, we achieved 94.91% accuracy in searching for these 351 cells in 
an initially unsegmented image stack.  

2   Two-Stage Bipartite Graph Matching 

Given a subject image S in which cells are to be recognized by a computer program 
and a template image T in which cell identities have been annotated by biologists, we 
can formulate our problem as bipartite matching. Consider the directed bigraph G = 
(VS∪VT,E) consisting of two disjoint vertex sets, VS for the subject S and VT for the 
template T, and all edges E = VS×VT from VS to VT. Later we will restrict E to be a 
subset of all the possible pairings. In the first stage we find a minimal cost, maximal 
matching M between VS and VT.  That is, we minimize a cost function 

E1 = D1(s → t)
s→t ∈M

∑                                                    (1) 

over all sets of edges M for which adding another edge to M gives a set of edges 
which is no longer a matching, i.e. ∀s → t out(s) =1 or in(t) =1( ) where out and in 

are the out- and in-degree of a vertex.  D1(s → t)  is the distance between cells s and 
t, i.e., 

D1(s → t) = ps − pt = (xs − xt )
2 + (ys − yt )

2 + (zs − zt )
2                    (2) 

where pc = (xc,yc,zc) is the coordinate of the cell c. We find M by using the Hungarian 
algorithm [15]. 

If we have K template images T1 through TK, we obtain K maximal matchings M1 
through MK against the subject S. Thus a cell in S has anywhere from 0 to K assign-
ments of cell names. Let the set of cell labels 

 L = V Tk

k∪  be the set of all cell names 

used in some template.  Note carefully, that not every cell annotation in L is necessar-
ily labeled in a template.  We then use the second stage bipartite matching to deter-
mine the unique identity of each cell in S, by finding the minimum cost E2, maximal 
match M* ⊆ V S × L  with respect to the cost function D2 defined as follows: 

D2(s → t) = N(s ⇔ t)
s∈V S∑( )− N(s ⇔ t)                                  (3) 

where N(s ⇔ t) = k : s → t ∈ Mk{ }  is the number of times that s is assigned to t.  In 

summary, the first stage finds the best matching of subject cells to the cells of each 
template based on minimizing Euclidean distances, and the second stage finds the best 
matching of subject cells to a label by, in effect maximizing the number of template 
cells that support the assignment. Because the bipartite matching minimizes a global 
cost and guarantees a one-to-one mapping, it is superior to a simple majority vote 
scheme. Note that the result does not depend on the processing order of the templates. 

3   Imposing AP/LR/DV Constraints 

The bipartite matching scheme in §2 does not consider the relative spatial relationship 
among vertices within VS or within VT. For example suppose a pair of cells (a,b) in the 
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subject S should be mapped to a pair of cells (u,v) in the template T, with a to u, b to 
v, where it is always the case that u is anterior to v in all the templates. The uncon-
strained bipartite matching is free to match a to v and b to u and this is likely wrong. 
To solve this problem, we propose using invariant anterior-posterior (AP), left-right 
(LR), and dorsal-ventral (DV) relationships between cells to prune the possible match 
edges, i.e. the set of edges E between VS and VT in the bipartite graph model.  

3.1   Deriving the Intrinsic AP/LR/DV Relationships between Cells  

The intrinsic AP/LR/DV relationships among cells are derived from the template 
images. Let us take the AP relationship as an example. We compute the |L|×|L| adja-
cency matrix APk for each template Tk, where APk(u,v) = 1 if cell u is anterior to cell 
v, or either of u or v is in L −V Tk , and 0 otherwise. Then the consensus AP adjacency 
matrix, denoted AP, can be obtained by applying the simple element-wise AND op-
eration, ∧, on the APk, i.e., AP= AP1 ∧AP2 ∧...∧APK . In this matrix, AP(u,v) = 1 if 
and only if cell u is always anterior to cell v in all K templates, and 0 otherwise (we 
are assuming that every label is used in at least one template).  In the same way, we 
also compute the LR/DV adjacency matrix LR and DV to describe the intrinsic LR 
and DV relationships among cells across different images.  

3.2   Constructing AP/LR/DV Adjacency Matrices for a Subject Image 

Given a matching M that maps cells in the subject S to cells in a template Tk, we may 
construct AP/LR/DV adjacency matrices for S, denoted ap, lr, and dv, as follows. If a 
pair of cells a and b in S are recognized as cells u and v in Tk, respectively, under the 
bipartite matching M, i.e., a→u ∈ M and b→v ∈ M, and cell a is anterior to b in the 
subject image then we set ap(u,v) = 1. We also set ap(u,v) = 1 if u or v is in L −V Tk . 
Otherwise ap(u,v) = 0. Similarly, we compute the LR/DV adjacency matrices lr and 
dv.  In brief, the spatial relationships of the subject are mapped to the template via the 
matching M. 

3.3   Selecting Wrongly Recognized Cells and Pruning Impossible Edges of the 
Bipartite Graph 

Given a→u ∈ M and b→v ∈ M, if ap(u,v)=1 and ap(v,u)=0, but AP(u,v)=0 and 
AP(v,u)=1, then it is the case that cells a and b in the subject, where a is anterior to b, 
are labeled as cells u and v, with u always posterior to v in the templates they occur in. 
Thus at least one of the cells a and b in the subject is matched incorrectly. More gen-
erally, we may compute a contradiction matrix C using the 6 adjacency-matrices: 

C = Cap ∨ Clr ∨Cdv
    (4) 

Cr = [(R)∧ (¬RT ) ∧(¬r) ∧ (r T )]∨[(¬R)∧ (RT ) ∧(r) ∧ (¬r T )]   (5) 

where ∨,∧,¬ are the element-wise OR, AND, and NOT operations, respectively, and 
T is matrix transposition.  R represents adjacency matrices AP, LR, DV, and r repre-
sents adjacency matrices ap, lr, dv respectively. Moreover, when r equals say ap in 
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Eq. (5) then R is AP.  Observe that C(u,v) = 1 if and only if one or more of the AP, 
LR, or DV relationships of cells a and b in the subject image are contradictory to 
those of cells u and v in the template. Thus at least one of a and b is wrongly recog-
nized. 

Based on the contradiction matrix C, we select, with high confidence, the cells in 
the subject that are wrongly labeled by M. We then cut the edges between these cells 
in the subject image and their mappings in the template and rerun the bipartite match-
ing. To select the cells that are most likely to be wrongly recognized, we count, for 
each cell a in the subject S, the number of cells in S that have a contradictory 
AP/LR/DV relationships with cell a, i.e.,  

conflict(a) = |{b | C(u,v) = 1, a→u ∈ M, b→ v ∈ M}|         (6) 

We then take the most conflicted cell and remove the edge between it and its as-
signed vertex in M. We then compute using the Hungarian algorithm [15] a new M 
with respect to the reduced bipartite graph.  This process is repeated until Σa con-
flict(a) does not decrease for tmax sequential steps (tmax=3 for the results reported, but 
other values yielded similar results.).  Once terminated, one takes as the answer the 
matching M that gives the minimum Σa conflict(a). 

We have thus far not identified M as M* or one of the Mk.  We actually find con-
flicts for each stage 1 matching Mk and should technically speak of Ck.  That is, we 
produce the best subject to template matching for each template using the matrices 
AP, DV, and LR that represent the invariant relationships over all the templates.  
Thereafter, we proceed with compute M* in stage 2 as before.  Algorithm 1 in Ap-
pendix shows the pseudo-code of the AP/LR/DV constrained two-stage bipartite 
matching.  

4   Marker-Based Recognition 

The recognition approach above treats each cell equally and matches them all together 
at once. However, biologists usually use markers to aid cell identification. For in-
stance, in the manual annotation of cells in C. elegans, our biologists first assigned 
names to the body wall muscle cells that were stained separately with GFP. With 
these marker cells labeled, the biologists then annotated both the ventral motor neu-
rons and intestinal cells by examining their positions relative to the marker cells. 
After that the biologists used relative triangulation to annotate most other cells in 
trunk. Therefore, in addition to AP/LR/DV-constrained bipartite matching, in the 
following we present a hierarchical strategy similar to that of the biologists by first 
identifying marker cells and then using these marker cells to aid the identification of 
other cells.  

4.1   Recognition of Muscle Cells 

In the L1 larval stage of C. elegans, there are 81 body wall muscle cells and 1 depressor 
cell distributed along the entire worm body from the head to the tail. In our data (see §5 
for details), most muscle cells, lit up by GFP in a separate frequency channel, are well 
separated from each other and thus are easier to segment and recognize, compared to 
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other cells. We thus first use the AP/LR/DV-constrained bipartite matching to recognize 
just these 82 cells in the GFP channel. In this case, the adjacency matrices, AP, LR, DV, 
ap, lr, dv and an assignment are computed only for these 82 cells. 

4.2   Identifications of Additional Markers 

Once the identities of 81 body wall muscle cells and the 1 depressor cell have been 
determined, we use them as markers to identify cells that can be uniquely determined 
according to their relative positions with respect to these muscle cells. For this pur-
pose, we again make use of adjacency matrices of template images and of the subject 
image. However, at this stage we only care about the relative relationship of cells to 
be recognized with respect to the markers. Thus we use sub-matrices of the six adja-
cency matrices. Using AP as an example, we extract 2 sub-matrices, denoted as 
AP(pxq) and AP(qxp). The sub-matrix AP(pxq) contains p rows and q columns. The p 
rows correspond to the p cells in the template to be matched by the cells in the subject 
image. The q columns correspond to the q marker cells (i.e., 82 in this example). Note 
that p+q = NT is the total number of cells annotated in the template images. The sub-
matrix AP(qxp) contains q rows and p columns, corresponding to q marker cells and p 
cells to be matched by cells in the subject image. The combination of AP(pxq) and 
AP(qxp) reflects the relative AP relationship between a cell and a marker. More spe-
cifically, if we denote B1=AP(pxq) ∧ (¬AP(qxp)

T), and B2=(¬AP(pxq)) ∧ (AP(qxp)
T), then 

cell u is anterior to marker v if B1(u,v) =1 and B2(v,u)=0, posterior to marker v if 
B1(u,v)=0 and B2(v,u) = 1, and can be either posterior or anterior to marker v if 
B1(u,v)=0 and B2(v,u)=0. Similarly, we compute LR(pxq), LR(qxp), DV(pxq) and DV(qxp).   

We also extract the sub-matrices of ap, lr, and dv, denoted as ap(rxq), ap(qxr), lr(rxq), 
lr(qxr), dv(rxq) and dv(qxr). The r rows (in ap(rxq), lr(rxq), dv(rxq)) or r columns (in ap(qxr), 
lr(qxr), and dv(qxr)) correspond to the r cells in the subject image to be recognized (note 
that r ≥ p). The q columns (in ap(rxq), lr(rxq), dv(rxq)) or q rows (in ap(qxr), lr(qxr), and 
dv(qxr)) correspond to the q cells in the subject image that have been recognized as 
markers (i.e, 82 muscle cells in this example). Note that r+q = NS is the total number 
of segmented cells in the subject image S. With these adjacency sub-matrices avail-
able, we further derive three matrices: 

H
( r× p )

(r ) = [h(r )](r× p ) = [(r(r×q )) ∧(¬r(q×r ))
T ]× [(¬R( p×q ))

T ∧ (R(q× p ))]

          + [(¬r(r×q )) ∧(r(q×r ))
T ] × [(R( p×q ))

T ∧ (¬R(q× p ))] 
              (7) 

where × is matrix multiplication operation. R represents adjacency matrices AP, LR, 
DV, and r represents adjacency matrices ap, lr, dv respectively, similar to Eq. (5). 

We then binarize H
(r× p )

(r ) , obtaining C
( r× p )

(r ) : 

 C(r× p )
(r ) = [c(r)(a,u)](r× p ) =

1  if h(r )(a,u) > 0

0 if h(r )(a,u) = 0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
   (8) 

If an element  c(ap )(a,u) in  C(r× p )
(ap )  is 1, then the AP relationships between cell a and 

the marker cells in the subject image are different from those between cell u and the 
marker cells in the template. Thus cell a should not be recognized as cell u. The edge 
between a and u in the bipartite graph should be cut. On the contrary, if  c(ap )(a,u)=0, 
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then the AP relationships between cell a and the marker cells in the subject image are 
consistent with those between cell u and the markers in the template. Thus cell a can 
be recognized as cell u. The edge between a and u in the bipartite graph should be 
kept. Similar explanation applies to c(dv )(a,u) and c(lr )(a,u).  

Considering AP, LR, DV relationships all together, the contradictory matrix is 
computed as  

 C(r× p ) = C(r× p )
(ap ) ∨C(r× p )

(lr) ∨C(r× p )
(dv )              (9) 

We then search for pair-wise cells (a,u) in matrix C(rxp), such that C(a,u) = 0, and 
∀x≠u, C(a,x)=1, ∀x≠a, C(x,u)=1. This condition means cell a in the subject image 
can only be recognized as cell u in the template and at the same time cell u can only 
be assigned to cell a. In another word, cell a can be uniquely identified based on its 
relative position with respect to the markers. Cells thus identified are added to the set 
of markers. For those pair-wise cells (a,u) such that C(a,u) = 1, we cut the edge be-
tween them in the bipartite graph by setting the distance between a and u to infinity. 

After expanding the marker set, we repeat the above process until no new marker 
cell can be found. The remaining cells that cannot be uniquely determined according 
to their relative relationship with respect to markers are then recognized using 
AP/LR/DV constrained bipartite matching as described in §3. Algorithm 2 in Appen-
dix shows the pseudocode of the marker-guided, AP/LR/DV constrained, two-stage 
bipartite matching. 

5   Experiments 

We applied our ARC method to the 3D images of newly hatched first larval stage 
hermaphrodites of C. elegans that were acquired using a Leica confocal microscope 
with 63x/1.4 oil lens. We used DAPI to stain the nuclei of all 558 cells, and GFP to 
stain the nuclei of the 81 body wall muscle cells and 1 depressor muscle cell (see 
Figure 1 for example data). As a worm body usually curves in 3D, we developed an 
automated approach to straighten a curved worm body into a canonical rod shape to 
facilitate later image comparison across different individuals [3] (see example in Fig-
ure 1 (b)). We then segmented cells in 3D using adaptive thresholding, the watershed 
algorithm, and a region grouping method (the details of the method [2] are beyond the 
scope of this paper, thus they are omitted). After that, we normalized each worm im-
age, making the sizes and the orientations of different worms the same. This step 
maps the coordinates of the cells into a standard space defined by AP, LR, and DV 
axes. Finally, we annotated cells in a set of images with the aid of a 3D annotation 
tool called WANO developed by us (see Figure 1 (b) for schematic example of 3D 
annotated templates). Cells in the nerve ring of the head are small and tightly clus-
tered and so very difficult to annotate solely based on our current images without 
developmental or cell-specific staining information. We annotated the subset of 351 
cells out of the 558 cells, that exclude most neurons in the pharynx. These annotated 
cells include all the body wall muscle cells distributed along the entire worm body, 99 
cells in the trunk where cell densities are relatively low, and 170 additional cells of 
different types in the head and tail. Thus our purpose was to match a subset of ~558 
segmented regions in a subject image against the 351 annotated cells in templates. 
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One of the key ideas in this paper is to use the relative location relationships 
among cells to constrain the possible matching. We computed and analyzed the AP, 
DV, LR adjacency matrices from template images. Figure 2 illustrates the invariant 
AP relationship. For clarity of displaying, we only show the AP relationships of 181 
cells by plotting the AP adjacency matrix as a graph after transitive reduction. It can 
be seen that many cells have strong AP relationships, apparently due to the stereotypy 
of C. elegans cells. These relationships, as well as the DV and LR relationships were 
used to constrain the possible mappings between cells in a subject image and the 
templates. 

We used 15 image stacks and leave-one-out cross validation scheme to test our rec-
ognition method. In other words, we repeated the experiment 15 times. Each time we 
took one image as the subject image and the remaining 14 as the template images. Our 
purpose was to identify from all the segmented cells in each subject image the 351 
cells that had been annotated in the templates. We compared our three approaches: 
two-stage bipartite matching (BM), AP/LR/DV constrained two-stage bipartite match-
ing, and marker guided AP/LR/DV constrained two-stage bipartite matching.  

 

 

Fig. 2. Illustration of the invariant AP relationship of cells. For clarity of visualization, only the 
transitive reduction of the AP adjacency matrix is shown here for a set of 181 cells, including 
all 82 muscle cell markers and all cells in the trunk of L1-stage C. elegans. In this figure, left is 
anterior and right is posterior. An arrow always points from left to right (i.e. anterior to poste-
rior). 

The results in Table 1 show that using only the spatial coordinates of cells without 
considering the relative relationships between cells, the bipartite matching can only 
achieve an average of 73.79% accuracy in recognizing the 351 cells from the ~558 
segmented regions (the second column in Table 1). When adding AP/LR/DV con-
straints to tailor edges in the bipartite graph, the accuracy improved ~5% (the third 
column in Table 1). With the combined use of marker-guides and AP/LR/DV-
constrained bipartite matching, the average recognition accuracy improved signifi-
cantly to 94.91% (the fourth column in Table 1). In this case, the average recognition 
rate of muscle cells (markers) is 99.81% (all 100% except that for stack S13, which is 
97.56%) (not shown in Table 1). Thus the average recognition rate of the remaining 
269 cells is 93.42%. This indicates that the accuracy improvement is not merely due 
to the increased number of muscle cells that are correctly recognized in a separate 
channel but due to the marker guided scheme.  
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Table 1. Comparison of the recognition rates of the two-stage bipartite matching (BM), 
AP/LR/DV constrained two-stage BM, and marker-guided-AP/LR/DV-constrained-two-stage 
BM. The rates are produced by leave-one-out cross validation on 15 image stacks.  

Image 
stack 

Two-
stage 

BM 

AP/LR/DV 
 con-

strained BM 

Marker 
guided 

AP/LR/DV 
constrained 

BM 
S1 0.7114 0.7771 0.9486 
S2 0.7593 0.8166 0.9341 
S3 0.7607 0.8319 0.9829 
S4 0.7721 0.8205 0.9288 
S5 0.7892 0.8689 0.9259 
S6 0.5244 0.6074 0.9799 
S7 0.8054 0.8084 0.9581 
S8 0.7216 0.7994 0.9731 
S9 0.6161 0.6726 0.9821 
S10 0.9017 0.9153 0.9186 
S11 0.8328 0.8396 0.9147 
S12 0.6944 0.6458 0.9271 
S13 0.7550 0.8177 0.9459 
S14 0.7229 0.7971 0.9571 
S15 0.7009 0.8034 0.9601 

mean 0.7379 0.7881 0.9491 

 
We also compared our method against other conventional approaches such as the 

K-Nearest-Neighbor (KNN) classifier and soft assignment approach [7]. The KNN 
approach finds for each cell in the subject image the K closest cells in the templates 
and then use majority vote to determine cell identities. The method did not yield a 
leave-one-out accuracy higher than 60%, much lower than our results showed in Ta-
ble 1. The soft assignment method is computationally very expensive for big graphs. 
Thus we tested the recognition of 99 trunk cells. Despite the low number and low 
density of these cells which makes the task easier than our original matching problem, 
our results show that the average recognition rate using soft assignment is no higher 
than 68%.  

We further analyzed for each cell to be recognized, how many times in the 15 im-
ages it is wrongly recognized. We then computed distribution of the cells and plotted 
the percentage of cells as a function of the number of images in which a cell was 
wrongly recognized. The result is shown in Figure 3. Among the 351 cells, 71% (the 
left most bar) of them are correctly recognized in all the 15 images, 90% (the sum of 
the three left most bars) are correctly recognized in 13 to 15 of the15 images. In the 
worst cases, there are two cells wrongly recognized in 7 images and another two cells 
wrongly recognized in 9 images (the two right-most bars). Those cells do not have a 
fixed local spatial relationship with respect to their neighboring cells and are in the 
head where cells are more densely clustered in the animal. 
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Fig. 3. The percentage of cells P(k) incorrectly recognized in k of the 15 images 

Overall, the experimental results show that our method can achieve high recogni-
tion accuracy despite the difficulty of the problem. To further improve the recognition 
accuracy, we will use additional cell information, such as size, shape, and gene ex-
pression levels. In fact, although our method currently only uses spatial coordinates 
and the relative spatial relationships between cells, our scheme is general enough to 
incorporate this additional cell information for further improvement.  
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Appendix 

Algorithm 1: Cell recognition using AP/LR/DV constrained two-stage bipartite matching 
Input: A subject image S with NS segmented cell regions and template images Tk, k∈ [1,K], 
with NTk  annotated cells each, and a threshold tmax .   

Output: Matching matrix M* and cost value E2 
1. Compute the intrinsic adjacency matrices AP, LR, DV. 
2. ∀a, ∀u, Set N(a ⇔ u)  = 0 
3. FOR EACH Tk  
4. {  Compute distance D1(a → u) using Eq. (2) 
5.     Set t = 0, minerr = ∞ 
6.     WHILE (t < tmax) 
7.     {  Compute matchings Mk

 using the first stage bipartite matching 
8.         Compute adjacency matrices ap, lr, dv from the subject image S using Mk  
9.         Compute contradiction matrix C using Eqs. (4)~(5) 
10.   Select wrongly matched a and set D1(a → u) = ∞  for a → u ∈ Mk  
11.   IF conflict (a)

a
∑ ≤ minerr  

12.              minerr = conflict(a)
a

∑ , MBk = Mk  

13.   ELSE 
14.              t = t+1} 
15.   Mk = MBk  
16.   N(a ⇔ u)  =  N(a ⇔ u)  + 1, if a → u ∈ Mk } 
17.  Compute D2(a → u)  using Eq. (3) 
18. Compute the matching M* and cost value E2 using D2(a → u)  and the second  

              stage bipartite matching 
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Algorithm 2: Cell recognition using marker guided, AP/LR/DV constrained, two-stage bipar-
tite matching 
Input: A subject image S with NS segmented cell regions and K template images Tk, k∈[1,K], 
each with NTk  annotated cells, and a threshold tmax.   
Output: Matching matrix M* and cost value E2 

1. Compute adjacency matrices AP, LR, DV from template images Tk, k∈[1,K]. 
2. Recognize muscle cells in the GFP channel by calling Algorithm 1. 
3. Let U={all segmented regions in S}, Um={recognized muscle cells in S}, V = {anno-

tated cells in templates}, Vm = {annotated muscle cells in templates} 
4. WHILE (new markers detected) 
5. {  U = U \ Um, r = |U|, V = V \ Vm, p = |V|  
6.     Compute contradiction matrix C(r× p )

 using Eqs. (7)~(9)  

7.     Prune edges in the bipartite graph using C(r× p )
 

8.   Detect new markers,Um = Um∪{new markers in S}, 
                    Vm = Vm∪{new markers in T } 

        } 
9. ∀a∈U \Um, ∀u∈V \Vm, set N(a ⇔ u)  = 0 
10. FOREACH Tk  
11. {Compute distance D1(a → u)using Eq. (2) 
12. Set t = 0, minerr = ∞ 
13. WHILE (t<tmax) 
14. { Compute matching matrix Mk using the first stage bipartite matching 
15. Compute adjacency matrices ap, lr, dv from subject image S using Mk  
16. Compute contradiction matrix C using Eqs. (4)~(5) 
17. Select wrongly matched a’s and set D1(a → u)= ∞ for a → u ∈ Mk  

18. IF conflict(a)
a

∑ ≤ minerr  

19.      minerr = conflict(a)
a

∑ , MBk
= Mk

 

20. ELSE 
21.        t = t+1 } 
22. Mk

= MBk
 

23. N(a ⇔ u)  =  N(a ⇔ u)  + 1, if a → u ∈ Mk
} 

24. Compute D2(a → u)using Eq. (3) 
25. Compute the matching M* and cost value E2 using D2(a → u)and the second 

stage bipartite matching 
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Abstract. We report on a new algorithm for combining the information from
several mass spectra of the same peptide. The algorithm automatically learns pep-
tide fragmentation patterns, so that it can handle spectra from any instrument and
fragmentation technique. We demonstrate the utility of the algorithm, and the
power of multiple spectra, by showing that combining pairs of spectra (one CID
and one ETD) greatly improves de novo sequencing success rates.

1 Introduction

There are two basic approaches to peptide sequencing by tandem mass spectrometry
(MS/MS): database search [11], which identifies the sequence by finding the closest
match in a protein database, and de novo sequencing [3], which attempts to compute
the sequence from the spectrum alone. De novo sequencing actually started first, but
with the explosion of genomically derived protein sequences, database search quickly
became the dominant approach, because it can make identifications from lower-quality
spectra with less complete fragmentation. There are, however, good reasons to continue
the pursuit of de novo sequencing. First, if databases are of low quality, as in the case
of unsequenced organisms [19], then de novo analysis can outperform database search.
Second, sometimes the unknown peptide—rather than a parent protein—is itself the ob-
ject of interest, e.g., toxins [2], neurotransmitters, and hormones. Third, protein design
techniques, such as directed mutation and recombination, often produce proteins with-
out knowing exactly which gene produced them, and the protein sequence may have to
be obtained directly through chemical and mass spectrometric sequencing.

Algorithm designers factor de novo sequencing into two subproblems: candidate
generation and scoring. Candidate generation typically uses a graph algorithm, such as
a longest- or best-path algorithm [6,8,17,22], to compute 1000s of possible sequences.
The scoring phase then scores each of these candidates, using more detailed information
such as the fragmentation propensities of residues [10,16], mass measurement recali-
bration [5], and so forth, that would be difficult to incorporate into the candidate gener-
ation phase. Because de novo sequencing requires essentially complete fragmentation,
new fragmentation techniques (microwave assisted acid hydrolysis, IRMPD, ECD, and
ETD) offer the best hope of performance improvement. The most interesting of the
new techniques is electron-transfer dissociation (ETD) [20], because it is commercially
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available, fast enough to be used with ion-trap instruments, and gives quite different,
and hence complementary, information to the standard technique of collision-induced
dissociation (CID). ETD reduces charge as it induces fragmentation, and hence it gives
good fragmentation for highly charged (+3 and +4) parent ions, not-so-good fragmen-
tation for +2 parents, and neutralizes and loses +1 parents.

In this paper, we give a generic algorithm for spectrum fusion, combining infor-
mation from more than one spectrum of the same peptide. We apply the algorithm to
de novo sequencing of peptides from pairs of spectra collected on a Thermo Electron
LTQ instrument, run in a mode that alternates between CID and ETD fragmentation.
We show significant improvements in de novo sequencing, approximately doubling the
number of sequences that could be identified exactly.

Spectrum fusion has previously been done with special-case algorithms. Zhang and
McElvain [24] used CID MS/MS and MS3 pairs, and Bandeira et al. used overlap-
ping [2] or differentially modified [1] MS/MS spectra, for de novo sequencing. Finally,
and most relevant to the present work, Zubarev and collaborators pioneered the use
of CID/ECD pairs for de novo sequencing [18]. ECD (electron-capture dissociation)
gives similar spectra to ETD, but is less efficient, so it cannot generally be used with
ion-trap instruments, only with expensive FTICR instruments. These instruments have
about 100-fold better mass accuracy and resolution than ion-trap instruments, but take
about 10 times longer to acquire each spectrum. Due to the high mass accuracy, de novo
sequencing on FTICR is much easier than on ion-trap instruments. Indeed, Savitski et
al. [18] achieve reasonable results from CID/ECD pairs using a simple greedy algorithm
to compute a single approximate longest path.

2 Algorithms

We developed a generic algorithm for combining the information from multiple frag-
mentation spectra of the same peptide. The output is a synthetic spectrum with peaks
at integer masses, representing the likelihood that the mass is equal to the sum of the
(integer parts of) amino acid residue masses of a prefix of the peptide sequence. The
synthetic spectrum is used as the input for candidate generation. By building a synthetic
spectrum containing only prefixes, rather than prefixes and suffixes, we use spectrum fu-
sion both to improve fragmentation completeness and to separate prefixes from suffixes.
We previously applied graph partitioning [5] to peak separation; with complementary
spectra (CID/ETD pairs) a global approach like graph partitioning is unnecessary. We
have not yet applied spectrum fusion to scoring; for this phase we used ByOnic [4], our
database-search tool, and scored the multiple spectra independently.

We demonstrate spectrum fusion on CID/ETD pairs, but the algorithm could be ap-
plied to other combinations of spectra and or other types of biomolecules (for example,
glycans). The fusion algorithm is fully automated, so that the algorithm determines the
information in the various spectra and peaks, with minimal dependence on prior knowl-
edge. CID fragmentation patterns and peak intensities have been mapped [10,16,21],
but no such statistical studies have been published for ETD.

At the core of our spectrum fusion algorithm lies a supervised learning phase that
relieves dependence on prior knowledge. A sample consists of C MS/MS spectra and
the corresponding peptide (reliably identified by database search and knowledge of the
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biological material), where C is the number of spectra per peptide. Let us denote by
Si,c, c ∈ {1, · · · , C}, the spectrum of type c for sample i, consisting of mass over
charge (m/z) values and corresponding peak intensities. Let the measured parent mass
be Mi and the “ground truth” peptide string be Pi. (Following convention, Mi denotes
M+H mass, the sum of residue masses + 19 for water + 1 for proton.) Thus our la-
beled data, which can be split into training and test sets, consists of tuples of the form
(Si,1, · · · , Si,C , Mi, Pi); the task is to predict prefix masses of Pi from Si,C and Mi.

We make the simplifying assumption that the parent mass Mi is correct to ±0.5
Daltons (Da). In reality, the estimated parent mass M ′

i from ion-trap instruments may
be off by 1 or 2 Da for peptides of charge +2, and by as much as ±7 Da for peptides with
greater charge. Accurate parent masses, however, can be obtained in various ways: by a
high-resolution single-MS scan with another mass analyzer (e.g, Orbitrap), by a “zoom
scan” with the same ion-trap mass analyzer, or by software parent mass correction.
CID/ETD pairs offer improved software correction; see the Appendix. The training
phase of spectrum fusion consists of two steps (Sections 2.1 and 2.2):

Training: ( Input: Training data (Si,1, · · · , Si,C , M ′
i , Pi), Output: Features, Model)

1. Feature Selection: Pick informative features across the different types of spectra.
2. Statistical Learning: Learn a probabilistic model on the selected features.

Then, an unknown sample (Si,1, · · · , Si,C , M ′
i) is processed through a pipeline which

includes spectrum fusion, candidate generation, and scoring (Sections 2.3 and 2.4):

De Novo Sequencing: ( Input: Test data (Si,1, · · · , Si,C , M ′
i), Output: Guess P ′

i )
1. Parent Mass Correction: Correct the reported parent mass M ′

i to get Mi.

2. Spectrum Fusion: Generate one synthetic spectrum Ŝi from spectra (Si,1, · · · , Si,C);
the synthetic spectrum should ideally contain most integer prefix masses, but few
suffix or noise masses.

3. Candidate Generation: Compute the K best paths in Ŝi to generate candidates.
4. Scoring: Score candidate peptides by summing ByOnic scores for each spectrum.

2.1 Feature Selection Using Offset Frequency Functions

The dominant peaks in CID spectra are well-understood and have known, fixed, rela-
tionships to prefix and suffix masses. For example, if a prefix mass (sum of residue
masses of an initial subsequence of the peptide) is w, then there will usually be a spec-
tral peak (called the “b-ion”) at w + 1 and another peak at w + 2 (the “isotope peak”
containing one 13C). Our goal was to introduce an algorithmic framework that would
automatically “learn” these features. For this problem, machine learning offers many
advantages: it can learn weights and dependencies among features; it can learn features
for new techniques such as ETD; and it can make use of more, and more subtle, features.

Our features were selected from the offset frequency function (OFF), proposed by
Dančik et al. [8]. The OFF is a histogram, giving the number of times a spectral peak
is observed at a given integer mass offset from a known prefix or suffix mass. Suppose
an ETD training-set spectrum S consists of observed peaks at {s1, · · · , sn}, and the
ground-truth peptide contains real-valued prefix masses at w1, w2, · · · , wk. We com-
pute the OFF as follows. If a prefix mass wj is separated from si by an integer mass δ
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Fig. 1. Plots of Offset Frequency Functions for prefix/suffix and CID/ETD fragmentation types

(within a tolerance ε, set to 0.2 Da for our ion-trap data), then we increment the count
for δ for the combination (ETD, prefix). Similarly, if M − 19 − wj , where M is the
parent mass of the peptide, is separated from si by δ, then we increment the count for δ
for (ETD, suffix). With an estimate of M accurate to the closest integer, the suffix OFF
provides valuable corroborating evidence to the presence of a prefix at w. (Without an
accurate M , the suffix OFF would still be useful but somewhat blurry.)

We determine which δ offsets are most informative in an automated manner. For each
combination of prefix/suffix and type of spectrum (CID, ETD, etc.), we generate a per-
turbed OFF in which the theoretical prefix and suffix masses are shifted by a uniform
random sample in the range 1 − 10 Da; this OFF is used to estimate the statistics of in-
significant OFF counts. We limit the computation of both OFFs, true and perturbed, to
±30 Da offsets, since δ values beyond this range are unlikely to be of any interest (Fig-
ure 1). Let the true OFF be {v−30, · · · , v0, · · · , v+30}, and the deliberately perturbed
OFF be {v′−30, · · · , v′0, · · · , v′+30}, where each v or v′ represents a count. We estimate
the mean μ and variance σ2 of insignificant OFF counts from the perturbed OFF, and
compute a z-score for each count in the true OFF to determine informative peaks. More
specifically, we say that δ is an informative offset if its z-score (vδ − μ) / σ exceeds 3,
where μ = 1

61

∑30
j=−30 v′j , and σ2 = 1

60

∑30
j=−30(v

′
j − μ)2. We denote the final

set of informative offsets across prefixes/suffixes and all fragmentation methods by Δ̂,
which is a set of D offsets, {T1, T2, · · · , TD}. Each offset Td is specified by a triple of
fragmentation type (CID, ETD, etc.), orientation (prefix or suffix), and integer offset δ.
These triples comprise our set of selected features, for use in the model-based classi-
fication step that follows. As shown in Table 1, automatic feature selection discovered
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Table 1. Set �Δ of 21 features automatically selected by our algorithm for ETD and CID spectra.
Mass offsets are relative to the sum of residue masses, so that the b-ion has an offset of +1 and
the y-ion an offset of +19. In the interpretations, we use n to denote a neutron (that is, 13C), H
for hydrogen, and so forth. Ion naming follows the standard Biemann naming convention, but we
use z-ion to denote the stable ion with one extra hydrogen (red), which is sometimes called the
“z+1 ion”. Data used consists of 724 peptides with 12,574 prefixes and suffixes.

Frag’n Pref/Suff Offset z-score Interpretation
CID Suffix +19 11.68 y-ion
ETD Suffix +4 10.97 z-ion + n or H
CID Prefix +1 10.44 b-ion
CID Suffix +20 9.45 y-ion + n
ETD Prefix +18 9.39 c-ion
CID Prefix +2 9.15 b-ion + n
ETD Prefix +19 7.68 c-ion + n or H
ETD Suffix +5 7.62 z-ion + 2H, H + n, or 2n
ETD Suffix +3 7.04 z-ion
ETD Suffix +19 6.54 y-ion
CID Prefix −16 6.77 b-ion – H2O + n or NH3

CID Prefix −17 6.36 b-ion – H2O
CID Suffix +2 5.72 y-ion – H2O + n or NH3

ETD Prefix +17 5.71 c-ion – H ??
CID Suffix +1 5.68 y-ion – H2O
CID Prefix −27 4.75 a-ion
CID Suffix +21 4.43 y-ion + 2n
CID Prefix −15 4.24 b-ion – H2O + 2n or NH3 + n
CID Prefix +3 3.93 b-ion + 2n
ETD Suffix +20 3.54 y-ion + n or H
ETD Prefix +20 3.45 c-ion + 2H, H + n, or 2n

C C N C C

R R

H H H

O O

a b

x y z

H
c

Fig. 2. (a) In the naı̈ve Bayes structure, each binary attribute variable Wx(d) (presence/absence
of a peak at offset d) depends only on the class variable C. (b) The TAN structure allows each
attribute variable an in-degree of up to 2, thus generalizing (a) to allow more dependencies.

and ranked all the well-known ions such as b- and y-ions in CID spectra, and also dis-
covered some less-known phenomena, such as the high intensity of isotope (or “neutral-
gain”) peaks and the rarity of neutral losses in ETD spectra.
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2.2 Combining Features with a Tree-Augmented Naı̈ve Bayes Network

With the set Δ̂ = {T1, · · · , TD} of informative offsets automatically determined, the
next step is to use them to learn a statistical model to perform a binary classification:
For each integer x within the range of 1 to parent mass M , decide if x is a prefix mass
or not. The feature vector for this binary classifier consists of a length-D binary vector
Wx, with each element (attribute variable) indicating the absence or presence (0 or 1)
of a peak (within a mass tolerance ε) at the corresponding offset. More specifically, a
CID prefix entry of Wx is set to 1 if there is a peak in the CID spectrum at position
x + δ, and a suffix entry is set to 1 if there is a peak at M − 19 − x + δ, where δ are the
informative integer offsets. ETD entries of Wx are treated analogously.

There is one subtlety in converting real-valued-masses to integer-masses in the spec-
tra. A real-valued mass M should be rounded to the closest integer of 0.9995M in order
to remove the characteristic mass defect (fractional part) of a peptide. Thus 1814.1 Da
rounds to 1813. We used this correction wherever required, so that integer amino acid
residue masses sum to M+H peptide masses (minus 19).

One straightforward approach to the classification problem would be to use a naı̈ve
Bayes classifier [9], meaning that, given the class variable, each feature is assumed con-
ditionally independent of every other feature (Figure 2). Denoting by indicator variable
prf x whether x is a prefix mass or not, the class conditional is written as follows:

Prob(prf x = 1 | Wx) ∝ Prob(prf x = 1) ·
D∏

d=1

Pr(Wx(d) | prf x = 1).

To do away with the proportionality constant, classification can be done based on some
thresholding of the odds Prob(prf x = 1 | Wx)/Prob(prf x = 0 | Wx). This model
is computationally efficient and easy to estimate, but the assumption of conditional in-
dependence of the attributes is too strong. There are obvious dependencies among the
attribute variables, as isotope peaks are almost sure to co-occur with peptide peaks. This
motivated us to explore a generalization of the naı̈ve Bayes classifier to a richer network
structure that allows dependencies. One such generalization is the tree-augmented naı̈ve
Bayes classifier (TAN) [14], shown in Figure 2(b), which allows each attribute variable
to depend on the class variable along with at most one other variable. The TAN model
has many attractive properties: (1) An in-degree of two should capture the most impor-
tant interactions among spectral peaks; an isotope or neutral-loss peak depends on the
monoisotopic peak, but has little dependence upon peaks at other cleavages. (2) Unlike
general Bayes nets, TAN is efficiently estimated in polynomial time, and inferencing is
fast once the structure is known. (3) TAN is simple enough to be visually interpretable.

We estimate the TAN structure based on the polynomial-time Construct-TAN algo-
rithm from [14], which in turn is based on earlier work on second-order product approx-
imation of discrete joint distributions [7]. Learning the TAN structure for prefix/non-
prefix classification is presented in Algorithm 1. The learning time is O(n2D), where n
is the total number of positive and negative examples (binary vectors) used for training.
Note that the TAN so constructed is optimal, in the sense that of all network structures
possible given the TAN restrictions, the one obtained maximizes the likelihood given
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Algorithm 1. Learning a TAN Structure for Prefix/Non-Prefix Classification

Require: Selected features �Δ = {T1, · · · , TD}, spectra of multiple types (Si,1, · · · ,Si,C , M ′
i) for known peptides.

1: To create positive examples, for each peptide Pi , and each prefix position x for it, compute length D binary vector Wx

based on presence/absence of the selected features �Δ → True vectors.
2: To create negative examples, perturb each such true prefix position by a uniformly sampled integer between (1-10)

to simulate non-prefix positions, and compute binary vector W ′
x as before → Perturbed vectors.

3: Empirically compute conditional mutual information between attribute pairs, j, k ∈ {1, · · · , D}, j �= k:

IP (Tj ; Tk |prf )=
�

w(j)∈{0,1}
w(k)∈{0,1}

p∈{0,1}

Prb
�
w(j), w(k), prf=p

� · log Prb
�
w(j), w(k) | prf=p

�
Prb

�
w(j) | prf =p

� Prb
�
w(k) | prf =p

�

where Prb
� − |prf = 1

�
are estimated from true vectors, and Prb

�− |prf = 0
�

from perturbed vectors.

4: Build full undirected graph G with nodes {T1, · · · , TD}, edge weight −IP (Tj ; Tk | prf ) between Tj and Tk .
5: Apply Prim’s Algorithm to find the minimum spanning tree in G (with the -ve edge weights ⇒ a max. spanning tree).
6: Select a node in G arbitrarily and set all edges outward from it, to get directed graph G′.
7: Add class variable prf x to G′ as a node, and direct edges from it to each Tj→desired TAN structure (e.g., Fig. 2 (b))

the training data. The structure can be described by the set of parents of each attribute
Td, which includes the class variable prf , and at most one other attribute, which we
refer to as Td′ . An example TAN structure estimated over CID/ ETD pairs is shown
in Figure 3. It is worth noting that PepNovo [13] also uses a tree of dependencies for
scoring CID spectra; however, PepNovo’s dependencies were determined manually and
only the weights were learned automatically.

Fig. 3. The TAN structure for the CID/ETD spectra pairs, estimated over 724 peptides using Al-
gorithm 1. Dependencies are interpretable, e.g. , the top of the TAN shows that the monoisotopic
z-ion and the +2 isotope both depend upon the +1 isotope. The connection from CIDpref+1 to
CIDpref −27 implies that a-ion depends upon b-ion. Class variable prf is omitted to avoid clutter.

The training process is completed by empirical estimation of Prob
(
W (d) | prf =1

)

and Prob
(
W (d) | prf =0

)
if Td has only one parent, or Prob

(
W (d) | prf =1, W (d′)

)
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and Prob
(
W (d) | prf =0, W (d′)

)
if Td has two parents. As suggested in [14], the em-

pirical estimates are smoothed to avoid poor estimates from a limited sample size N :

Prob
(
W (d) | prf x = 1

)
← N

N + 5
Prob

(
W (d) | prf x = 1

)
+

5
N + 5

Prob
(
W (d)

)
.

Probability estimates for attributes with two parents are smoothed similarly. Here we
have made a reasonable choice of prior for the conditional, the marginal distribution.
The classification of a mass x as prefix or not is ultimately based on the odds φx,

φx =
Prob

(
prf x=1 | Wx

)

Prob
(
prf x=0 | Wx

) =
Prob

(
prf x=1

)

Prob
(
prf x=0

) ·
D∏

d=1

Prob
(
Wx(d) | prf x=1[ , Wx(d′)]

)

Prob
(
Wx(d) | prf x=0[ , Wx(d′)]

) .

2.3 Producing a Fusion Spectrum

The trained classifier can be used to combine multiple spectra, Si,c, c ∈ {1, · · · , C},
with integer parent mass Mi, into a single synthetic spectrum Ŝi (Figure 4), which
contains most prefix masses but as few other types of peaks as possible. The steps:

1. Initialize spectrum Ŝi to be an empty (no-peak) spectrum with mass range 1 to Mi.
2. In each Si,c, c ∈ {1, · · · , C}, the intensities at x are replaced by rank-based inten-

sities, namely max{0, 200 − rk(x)}, where rk(x) is descending order rank.
3. For each integer x in the range 1 to Mi, a binary vector Wx is created based on the

feature set Δ̂ using spectra Si,c, c ∈ {1, · · · , C}, indicating presence/absence of
peaks at the D offsets. The vector Wx is used to compute the odds φx as above.

4. The Mi/10 positions with greatest φx > 1 (odds in favor of position being a prefix
mass) are picked to be synthetic peaks. Peak intensities are set to the sum of inten-
sities corresponding to the D offsets in the various spectra (with nothing added if
no peak is present at a given offset).

5. Some peaks are removed since they cannot be prefix masses: (a) those from 1 to 56
Da, (b) those from Mi − 19 − 56 to Mi, and (c) masses within 250 Da of either 0
or Mi − 19 that cannot be completed with a sum of amino acid residue masses.

6. Each peak x is then compared with its complementary peak Mi − 19 − x, and the
peak with lower intensity is removed. We found this step to be very effective in
eliminating suffixes while retaining prefixes.

0 1000 2000 0 500 1000 0 500 1000 1500 0 500 1000 1500

Fig. 4. Sample synthetic spectra generated by Naı̈ve Bayes (below, inverted) vs. TAN (above,
upright). Note: TAN spectra contain many more true prefix masses (red dots) at high intensity.
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2.4 De Novo Sequencing Steps

The final steps in our de novo sequencing algorithm are standard steps with some minor
modifications. We first construct a spectrum graph [8] on the synthetic integer-mass
spectrum Ŝi. Denoting the peak masses in Ŝi by Vi, we make a node for each integer in
Vi = Vi ∪ {0} ∪ {Mi − 19}. For each a, b ∈ Vi, we add a directed edge a → b if b − a
equals the mass of one of the amino acids, and label it accordingly.

In order to use a standard K-shortest-path algorithm [12] (with implementation [15])
to generate candidates, rather than a special-purpose algorithm [6,17], we devised a
special edge-weighting scheme. Denoting by Int(x) the intensity of a peak in Ŝi at
position x (trivially 0, if a peak is absent), we have

Wt .(a → b) =
50

(b − a)� �� �
Path hop control

− �
Int(a) + Int(b)

�
� �� �
Prefix intensity sum

− 1
2

�
Int(Mi − 19 − a) + Int(Mi − 19 − b)

�
� �� �

Suffix intensity sum

The intensity terms in the equation above are negated to convert a longest path problem
into one of shortest path. The suffix intensities are added (with lower weight 1/2), be-
cause we observed that some suffix peaks remained in the artificial spectrum Ŝi, and we
wanted to take advantage of their presence by treating them as corroborative evidence.
Suppose a peptide is AGPTRK, and let a and b correspond to the mass of prefixes AGP

and AGPT respectively. While the high intensities at a and b do suggest amino acid T,
peaks at their complementary positions (suffixes TRK and PTRK) also support the oc-
currence of T. The first term “path hop control” introduces a small bias toward paths
with fewer hops. This bias helps avoid generating peptide candidates containing long
sequences of low mass amino acids, so that, e.g., N is generally favored over GG (having
same mass) and K over AG and GA. The numerator arbitrarily controls this bias, and a
choice of 50 worked well. The bias toward fewer hops can be explained by the fact that
1
x + 1

y > 1
x+y , when x, y > 0. This means that, everything else remaining same, an

edge of length (x + y) is favored over two edges of lengths x and y.
Each of the K candidate peptides is then scored using ByOnic [4]. ByOnic scores

each candidate against each of the C different original spectra, and we simply sum these
scores and pick the candidate P ′

i with the highest total. While more complex functions
of the C scores can be used, we have not experimented with any variants.

3 Experiments

For a test, we used well-identified CID/ETD pairs of spectra collected by Christopher
Becker and Shanhua Lin (PPD, Inc., Menlo Park) on a Thermo Electron LTQ equipped
with ETD source. The sample material was human blood plasma, digested with either
Lys-C or trypsin, alkylated, reduced, and run through multiple affinity removal system
(MARS) and reverse-phase columns. We trained 4 different TANs, one for each choice
of digestion (Lys-C or trypsin) and parent charge (+2 or +3/+4). The trypsin data set
included 1543 +2 peptides (724 training and 719 test), and 317 +3/+4 peptides (155
training and 162 test). The Lys-C data set included 1025 +2 peptides (520 training and
505 test), 539 +3 peptides (274 training and 264 test), and 178 +4 peptides (50 training
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Fig. 5. Comparison of our candidate generation algorithm using only one type of spectrum versus
the same algorithm using CID/ETD pairs. A successful trial was one in which the correct peptide
was in the list of the top K generated candidates. The average length of the +3 charged peptides
is 17, making this a challenging data set.

and 128 test). In all our tests, we considered L and I interchangeable, since they have
exactly the same mass and similar chemistry, but we considered K and Q different since
their masses differ slightly and chemistries differ considerably.

Figure 5 compares the performance of our candidate generation algorithm run on
single spectra, either CID or ETD, with the performance of the same algorithm using
CID/ETD pairs. Even with a single input spectrum, the TAN output is enriched in prefix
peaks and depleted in suffix and noise peaks, yet candidate generation is much worse
than with CID/ETD pairs. We found that for +2 peptides, CID spectra have better frag-
mentation than ETD spectra, with a median of 75% of the possible b- and y-ions present
among the top 200 peaks compared to 44% of the c- and z-ions for ETD. A median of
90% of the cleavages were represented by either a b- or y-ion for CID compared to
81% represented by either a c- or z-ion for ETD. Separating prefix from suffix peaks is
somewhat easier for ETD spectra than for CID spectra, due to fewer noise peaks and
the frequent co-occurrence of z- and y-ions for ETD suffixes, so that the ETD candi-
date generation catches up with CID when the number of paths K is large (Figure 5,
left). For +3 parents, CID spectra had worse fragmentation, with medians of 44% of
possible b- and y-ions and 71% of cleavages, compared to 64% and 86% for ETD. In
a CID/ETD pair, a median of 93% (respectively, 88%) of cleavages are represented by
at least one of the four possibilities (b-, y-, c-, z-ion) for +2 (respectively +3) parents.
Better fragmentation, along with easier prefix and suffix separation, gave quite dramatic
improvement in candidate generation performance for both +2 and +3 peptides.

Figure 6 compares the results of our complete de novo sequencing pipeline versus
PepNovo [13], which we believe to be the best available de novo sequencing program
for ion-trap spectra. This experiment is not meant to be a fair comparison of algorithms
or software, but rather an assessment of the “bottom-line” advantage of CID/ETD pairs
over single CID spectra. Savitski et al. [18] reported that CID/ECD pairs were advan-
tageous, but did not attempt to quantify the performance improvement offered by mul-
tiple spectra. In Figure 6, we see that the number of exactly correct peptides increases
by about a factor of 2, yet remains at a modest level, and that partially correct peptides



150 R. Datta and M. Bern

5−10 11−15 16+
0

20

40

60

80

100

Length of Peptide

A
cc

ur
ac

y 
(in

 %
)

Exact Match

 

 

5−10 11−15 16+
0

20

40

60

80

100

Length of Peptide

A
cc

ur
ac

y 
(in

 %
)

5 consec. letter match

 

 

5−10 11−15 16+
0

20

40

60

80

100

Length of Peptide

A
cc

ur
ac

y 
(in

 %
)

6 consec. letter match

 

 

5−10 11−15 16+
0

20

40

60

80

100

Length of Peptide

A
cc

ur
ac

y 
(in

 %
)

7 consec. letter match

 

 

CID (PepNovo)
CID/ETD Pairs

CID (PepNovo)
CID/ETD Pairs

CID (PepNovo)
CID/ETD Pairs

CID (PepNovo)
CID/ETD Pairs

Fig. 6. Comparison of the results of our algorithm, which makes use of ETD/CID spectra together,
with the results of PepNovo [13] run on the CID spectra only. We counted exact matches (every
letter correct except for L and I swaps), and longest consecutive sequences of correct letters.

(with 5, 6, or 7 correct consecutive letters) increases by more than 50%. About 70% of
the peptides of lengths 11–15 have 6 or more consecutive letters correct.

4 Discussion

Although de novo sequencing has been used for various experiments, it is unlikely
to become the technique of choice for well-studied complex samples, such as human
plasma or tissue. For these samples, it will continue to play an important niche role by
identifying polymorphisms and alternate splices.

For complex samples from highly variable organisms such as pathogens, de novo
sequencing will likely play a more central role. Savitski et al. [18] argue that ECD/CID
pairs provide the first “proteomics-grade” de novo sequencing, meaning that their pro-
cessing pipeline makes approximately as many peptide identifications as would a CID-
only, database-search strategy employing the same FTICR instrument. The slow duty
cycle of CID/ECD-FTICR, however, limits the number of MS/MS spectra that can be
acquired on one run. We expect de novo sequencing using CID/ETD on LTQ ion-trap
instrument to actually outperform CID/ECD-FTICR, if the measure of success is the
number of distinct peptides with useful sequence tags (say 6+ letters) per unit time.

Finally, de novo sequencing probably is indeed the technique of choice for studies
of relatively simple mixtures of peptides or proteins with high biological activity, such
as toxins and neurotransmitters. Such peptides are often from unsequenced organisms,
have been heavily processed post-translationally, and may vary from strain to strain or
even from individual to individual. Such samples are also important enough to warrant
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extra work, such as the acquisition of multiple fragmentation spectra per peptide, per-
haps many more than two spectra per peptide. The proposed spectrum fusion algorithm
would then be useful in automatically extracting the information in the suite of spectra.
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Appendix: Parent Mass Correction

In the context of spectrum fusion, the problem of parent mass correction is as follows.
The MS instrument outputs a real-valued, nominal parent mass M ′

i for peptide Pi, and
our goal is to correct it to ±0.5 Da. (A precise estimate of the parent mass is not required
by our algorithm.) Once again, we have multiple spectra per peptide available for this
classification problem, and once again, we use the M+H convention, meaning that we
would like the sum of the residue masses plus 19 Daltons, to account for water and one
proton. Empirically, we find that the true parent mass Mi is never beyond ±7 Da of M ′

i .
Therefore, in each case, there are only 15 candidate integers in the neighborhood of M ′

i

that could be the correct answer.

1. Complementary Peak Sums: We take pairwise sums of the 30 tallest peaks in the
original spectra. (We make adjustments for the M+H convention, and the fact that
the sum of an ETD complementary pair is one Dalton greater than the sum of a CID
pair.) For those sums that fall within M ′

i ± 7, we add the sum of intensities for that
pair to the “intensity” of the parent mass candidate.

2. Known Peak Positions: We observed that spectra often contain peaks at positions
that directly reflect the true mass Mi. For example, CID spectra of peptides with
parent charge +2 often contain a peak at (Mi + 1 − 18)/2, representing the entire
peptide minus water, doubly charged. ETD spectra of peptides with parent charge
+3 often contain peaks at Mi + 2 and Mi − 15, for the entire peptide with two
protons reduced to hydrogens, and the entire peptide with two protons reduced,
minus ammonia. We developed a simple method to automatically deduce such mass
cues from different types of spectra, given some training data. Here, we hypothesize
in turn each of the 15 candidates as the actual mass, and seek these known cues in
the spectra. If a cue is found, a score equal to the intensity of that peak is added to
the parent mass candidate.

3. Suffix/Prefix Alignment: As in [23], we complement all the peaks in a spectrum
relative to the candidate parent mass, and thereby create a mirror spectrum. We
expect this spectrum to align with the original spectrum best when the correct mass
candidate was used for complementing. Therefore, we take dot products of the
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intensities of the original and mirror spectra (separately, for each type of spectrum)
and add the dot products as scores for the 15 mass candidates.

Finally, we normalize each of the three scores by the respective maximum values
among the candidates, and sum the scores to determine the winning candidate.

Parent mass correction performed in this manner is fairly effective. For the +2
charged peptides, the closest integer to the nominal M+H parent mass (after correction
for mass defect) matched the correct mass only 28% of the time. In contrast, our cor-
rection leads to about 90% accuracy. For the +3 charged peptides, the nominal mass is
correct only about 4% of the time. (Due to isotopes shifting the center of the single-MS
peak, the nominal mass is most commonly one or two Daltons too high.) In contrast,
our mass correction leads to about 75% accurate parent mass estimation. We also found
out that a majority of the times that our mass correction made wrong estimates, even
a correct mass estimate would not lead to successful de novo sequencing (5 or more
consecutive letters correct), suggesting poor quality of such spectra.
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Abstract. We present in this paper a novel fragmentation event model
for peptide identification by tandem mass spectrometry. Most current
peptide identification techniques suffer from the inaccuracies in the pre-
dicted theoretical spectrum, which is due to insufficient understanding
of the ion generation process, especially the b/y ratio puzzle.

To overcome this difficulty, we propose a novel fragmentation event
model, which is based on the abundance of fragmentation events rather
than ion intensities. Experimental results demonstrate that this model
helps improve database searching methods. On LTQ data set, when we
control the false-positive rate to be 5%, our fragmentation event model
has a significantly higher true positive rate (0.83) than SEQUEST (0.73).
Comparison with Mascot exhibits similar results, which means that our
model can effectively identify the false positive peptide-spectrum pairs
reported by SEQUEST and Mascot.

This fragmentation event model can also be used to solve the problem
of missing peak encountered by De Novo methods. To our knowledge,
this is the first time the fragmentation preference for peptide bonds is
used to overcome the missing-peak difficulty.

Availability: http://www.bioinfo.org.cn/MSMS/.

1 Introduction

Computational proteomics has become an emerging field arising from the de-
mand of high throughput analysis to identify all proteins for creating a catalogue
of information. One of the major technical advances in this newborn field is the
use of an analytical instrument known as a tandem mass spectrometer (MS/MS)
[26, 31]. In an MS/MS experiment, proteins of interest are first selected and di-
gested into peptides by an enzyme, such as trypsin. Next these resultant peptides
are separated in a mass analyzer by their mass to charge ratio (m/z value). Dur-
ing the subsequent collision-induced dissociation (CID) step, the peptides are
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further fragmented into charged ions. The m/z value and intensities of these
ions are measured and recorded as an experimental MS/MS spectrum [1].

To explain the complicated peptide fragmentation process, many hypotheses
have been proposed, amongst which the mobile proton tenet is the most widely
accepted. Under this hypothesis, the most common pathway is charge-directed
backbone fragmentation, where at least one proton is not localized to the argi-
nine side chains. These mobile protons can migrate along the peptide backbone
to an amide carbonyl oxygen, leading to cleavage of the associated peptide bond
and the production of a b ion or a y ion. Both the b ion and y ion can form a set of
derivatives: a ion, b-NH3 ion, b-H2O ion, y-NH3 ion, y-H2O ion, etc. Other the-
oretically possible backbone ions, such as c, x, z ions, are not typically generated
under low energy CID conditions [19, 23, 25, 30]. As in previous works [1, 5, 22],
this paper also adopts the mobile proton hypothesis.

1.1 Related Work

There are two types of approaches for peptide identification through tandem
mass spectrum: database searching [1,4,8,21,24,28] and De Novo method [2,3,5,
10,12,14,16] (See [17] for a recent review). Generally, database searching methods
are considered more accurate than De Novo methods. Recently, sequence tagging
approaches have been proposed to reduce the computation requirement of De
Novo methods. This technique is particularly useful for the peptides with post
transcription modifications [11, 18].

Theoretical spectrum prediction has received intensive studies because of its
importance to both database searching and De Novo methods. Besides the
promising chemical kinetic model [30], several statistical prediction models have
been proposed. For example, V. Dancik et al employed an offset frequency func-
tion to learn the ion types tendency and ion intensity threshold from experimen-
tal spectra [1, 5]. J. R. Yates III et al attempted to identify statistical trends in
spectrum peak intensities and to put them into a chemical context [26]. J. E.
Elias et al applied a probability decision tree approach to identify the important
factors influencing peptide fragmentation from a total of 63 attributes [6]. F.
Schutz fitted a linear model to spectra, in which the influence of amino acid
types and cleavage site are reflected [22].

These efforts are helpful to both understanding and simulating the compli-
cated fragmentation process during mass spectrometry. However, most of these
prediction methods suffer from the following two limitations:

– Ion intensity is difficult to predict. The reason is that when a peptide bond
breaks, it is unclear whether a b ion or an y ion will be generated, needless to
say the other derivative ions. Take, for example, the doubly charged peptides
in the A8 IP dataset [9], the ratio of the intensity of a b ion to that of the
corresponding y ion, called b/y ratio in this paper, varies from spectrum to
spectrum. Therefore, the intensity of b ion or y ion cannot be accurately
estimated even if the sum of these two intensities is known.
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– An appropriate framework that considers the factors influencing peptide
fragmentation remains a challenge to theoretical spectrum prediction. In
essence, peptide fragmentation is a stochastic process governed by compli-
cated physical and chemical rules, and is affected by many factors, such as
the position of the fragmentation site, and the cleavage preference for spe-
cific peptide bonds. It is still unclear to what extent each factor affects the
fragmentation process during the mass spectrometry.

In our previous works [27,29], we designed an iterative algorithm to quantify
the factors influencing peptide fragmentation, and employed relative entropy to
measure the similarity between theoretical spectrum and experimental spectrum.
These earlier works focused on predicting theoretical spectra accurately; the
focus of the current paper is on how to overcome the difficulties of the theoretical
spectrum prediction framework.

1.2 Our Contributions

The above-mentioned limitations have inspired us to directly employ the frag-
mentation pattern rather than the theoretical spectrum prediction framework.
Briefly, for a peptide, we attempt to explore its fragmentation pattern instead
of its theoretical spectrum, and thus our model is based on abundance of frag-
mentation events rather than the ion intensities.

Our contributions within this paper are as follows:
1. We proposed a novel fragmentation event model for peptide identification.

In order to compare one experimental spectrum and one candidate peptide of
length L, we first represented the experimental spectrum as one L-dimension
vector. Also we predict the L-dimension theoretical fragmentation vector by us-
ing a statistical model for the candidate peptide. Finally, we employed Jensen-
Shannon divergence, a variant of relative entropy, to measure the similarity be-
tween the theoretical and experimental fragmentation event vectors.

2. We used this fragmentation event model to improve both database search-
ing and De Novo methods. For database searching methods, we attempt to
validate the peptide-spectrum pairs reported by SEQUEST and Mascot. In this
validation step, the reported peptide-spectrum pairs are re-ranked with respect
to Jensen-Shannon divergence between the theoretical and experimental frag-
mentation patterns. Experimental results on both LTQ and QSTAR data sets
suggest that this re-ranking strategy can effectively identify the false-positive
pairs. In addition, we applied the fragmentation event model to solve the prob-
lem of missing peak that encountered by De Novo methods. To our knowledge,
this is the first time the fragmentation preference for peptide bonds is used to
overcome the missing-peak problem.

We implemented our model and related score scheme into an open source
package PI (Peptide Identifier), which can be downloaded freely from http://
www.bioinfo.org.cn/MSMS/.
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2 Methods

The procedure of our fragmentation event model has three main steps:
Step 1. Deriving the experimental fragmentation event vector from an experi-
mental spectrum;
Step 2. Predicting the theoretical fragmentation event vector for a candidate
peptide;
Step 3. Applying Jensen-Shannon divergence to measure the similarity of these
two vectors.
The details of these three steps are described below.

2.1 Deriving the Experimental Fragmentation Event Vector

Before describing our fragmentation event model, we briefly introduce the nota-
tions used in this paper as follows:

Let A = {a1, a2, ..., a20} be the amino acids set; each amino acid a ∈ A
has a molecular mass m(a). A peptide is a string of amino acids, denoted as
P = p1p2...pL, where pj ∈ A. The breakage of the i-th peptide bond pi-pi+1, i =
1, 2, . . . , L− 1, is referred to the i-th fragmentation event ei. This fragmentation
event will typically generate two ions: one is bi ion from the N-terminal peptide
Pi = p1p2...pi, and the other is yL−i ion from the C-terminal peptide P̄i =
pi+1pi+2...pL. Both of these ions may form a set of derivative ions: the loss of a
carbon monoxide from the C-terminus of bi forms an ai ion; the loss of a water
from bi forms ion bi-H2O; and the loss of an ammonia from side chains of bi

forms ion bi-NH3. The situation is similar for the C-terminal ions.
A spectrum, which consists of a series of peaks, is denoted as S = {(xi, hi)|i =

1, 2, . . . , |S|}, where xi is the m/z value of a peak, and hi is the abundance of
this peak. We say a peak (xi, hi) is explained by an ion with m/z value m if
|xi − m| ≤ δ, where δ is the precision of the mass spectrum S. Note that a peak
may be explained by multiple ions. In this case, the contribution of each ion to
this peak is calculated according to Gaussian mixed model [27].

Given a candidate peptide with length L and the ion precision δ, an exper-
imental spectrum can be converted into an experimental fragmentation event
vector V E =< vE

1 , vE
2 , . . . , vE

L−1, v
E
L >, where vE

i is the abundance of fragmenta-
tion event Ei(i = 1, . . . , L− 1), i.e., the total contributions of the ions generated
by this fragmentation. We use ve

L to represent the noise of this spectrum, i.e., the
total intensity of the unexplained ions divided by L. This vector is normalized
to make

∑L
i=1 vE

i = 1.

2.2 Predicting the Theoretical Fragmentation Event Vector

In this subsection, we will describe the method to predict the theoretical frag-
mentation pattern based on the mobile proton hypothesis. Compared with the
uniform models that SEQUEST [8] and Mascot [21] adopt, we take into account
more factors with significant influence on peptide fragmentation, including the
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fragmentation position and the cleavage preference for specific peptide bonds,
i.e., the possibility that a bond breaks.

In this method, we perform the following learning procedure for different
peptides of lengths L = 7, 8, ..., 18. The other cases were not considered due to
the insufficient number of spectra. For each peptide of length L, the learning
procedure can be described as follows: for a peptide P = p1p2, ..., pL, let fi,
i = 1, . . . , L − 1, denote the preference for fragmentation at position i, and
E(Xaa, Y aa) denote the possibility that the peptide bond Xaa-Y aa breaks.
Under a reasonable assumption that these two factors are mutually independent,
the theoretical abundance of the fragmentation event ei, denoted as vT

i , can be
estimated to be proportional to fi × E(pi, pi+1), i.e.,vT

i = α × fi × E(pi, pi+1),
for i = 1, . . . , L − 1 and vT

L = 0, where α is a scale factor.
The remaining difficulty is how to derive the parameters fi and E(Xaa, Y aa).

Here, a learning formulation is adopted to derive these parameters from a train-
ing set containing peptide-spectrum pairs with high confidence. Furthermore, we
propose an optimization strategy to solve this learning problem. The basic idea
of this strategy is to minimize the difference between the experimental fragmen-
tation event vector V E and the theoretical fragmentation event vector V T . By
minimizing the difference, we can assign reasonable values for the parameters fj

and E(Xaa, Y aa).
More specifically, for the k-th peptide-spectrum pair (P (k), S(k)) in the train-

ing set, we first calculate the experimental event vector V E
k =< vE

k,1, v
E
k,2, . . . , v

E
k,L

>, then estimate the theoretical event vector V T
k =< vT

k,1, v
T
k,2, . . . , v

T
k,L > from

P (k) by vT
k,i = αk ×fi×E(p(k)

i , p
(k)
i+1), where αk is a scale parameter for spectrum

S(k). Our optimization objective is the sum of square of the difference between
the theoretical and experimental event vectors. Now, we can wrap up everything
into the following non-linear programming problem:

min
∑K

k=1

∑L−1

i=1
(vT

k,i − vE
k,i)

2

s.t. vT
k,i = αk × fi × E(p(k)

i , p
(k)
i+1) (1)

∑L−1

i=1
fi = 1 (2)

∑L−1

i=1
αk × fi × E(p(k)

i , p
(k)
i+1) = 1. k = 1, 2, ..., K. (3)

fi ≥ 0, αk ≥ 0, E(Xaa, Y aa) ≥ 0

Here, restriction (1) describes the process to estimate the theoretical fragmen-
tation event vector; restriction (2) and (3) are normalization requirements.

We designed an effective iteration method to solve this high-rank non-linear
optimization problem. The convergence of this iteration strategy is also guaran-
teed. Generally, the iteration method terminates in no more than 10 iteration
loops. Experimental results suggest that this method is both robust and effective.
Please refer to [27] for more details.
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2.3 Applying Jensen-Shannon Divergence to Measure the Similarity
of Two Vectors

In our previous work [29], we utilized the relative entropy to measure the
similarity between theoretical spectrum and experimental spectrum. Relative
entropy can also be employed to measure the similarity of theoretical fragmen-
tation event vector V T and experimental fragmentation event vector V E , i.e.,
H(V E , V T ) =

∑L
i=1 vE

i × ln
vE

i

vT
i

. In fact, relative entropy measures the likelihood

that peptide P exhibits the experimental fragmentation event pattern V E if we
treat the spectrum generating process as a repeat trial.

Relative entropy is an ideal measure; however, we found from practical experi-
ence that this measure suffers from some limitations. Specifically, H(V E , V T ) is
undefined if vE

i �= 0 and vT
i = 0 for any i ∈ {1, 2, . . . , L}. However, this case is

very commondue to the peak-missing in both theoretical spectrumand experimen-
tal spectrum. To overcome this restriction, we adopt Jensen-Shannon divergence
JS(V E , V T ) = 1

2 (H(V E , M)+H(V T , M)), where M = 1
2 (V E +V T ) [13] instead

of relative entropy in this paper.JS(V E , V T ) is nonnegative andequal to zerowhen
V E = V T . The smaller the Jensen-Shannon divergence between V E and V T is, the
more likely that the spectrum was generated by the corresponding peptide.

We also performed comparison of Jensen-Shannon divergence with another
similarity measure, the Cosine Coefficient (CC). CC is defined as:

CC(V E , V T ) =
V E · V T

‖V E‖‖V T ‖ ,

where V E · V T is the inner product of V E and V T , and ‖V E‖ and ‖V T ‖ are
the norm of vector V E and V T , respectively.

3 Results

3.1 Experiments on Improving Database Searching Methods

As one of the applications, our model can be used to validate the peptide identifi-
cation results of SEQUEST and Mascot. During the protein identification process,
SEQUEST compares a given spectrum against peptides in a database, and reports
a set of peptide-spectrum pairs ordered by their confidence scores. However, since
SEQUEST employs a simple theoretical spectrum prediction model, there are al-
ways false positive pairs in the identification results. Here, we adopt the reverse-
database criteria of false-positive [20]; that is, a peptide-spectrum pair is labeled
as a false positive if the peptide appears in the reverse database. Our goal is to im-
prove peptide predictions by distinguishing these false positive pairs.

Based on the fragmentation event model, we apply a re-ranking strategy to
achieve this goal. More specifically, for each spectrum-peptide pair reported by
SEQUEST, we first calculate the experimental and theoretical fragmentation
patterns. Next we sort the peptide-spectrum pairs according to Jensen-Shannon
divergence between these patterns. Ideally, a false positive pair will be given
relatively high score.
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In this experiment, LTQ and QSTAR data sets [7] were used to test the re-
ranking strategy. The data sets have precision δ = 0.5Dalton and δ = 0.2Dalton,
respectively. For the LTQ data set, SEQUEST reported 13,599 peptide-spectrum
pairs. The first 2, 000 pairs, which were reported by SEQUEST with high con-
fidence (Xcorr > 4.194, DeltaCn > 0.29), were used to train our fragmenta-
tion event model. The other 11,599 pairs were used as the testing set, which
contains 186 false positive pairs. Similarly, for the QSTAR data set, we chose
the first 2,000 peptide-spectrum pairs as the training set, and the other 6,414
reported pairs as the testing set, which contains 450 false positive pairs (See
http://www.bioinfo.org.cn/MSMS/ for supplementary material).

We evaluated the performance of the following three combinations of pre-
diction models and scoring functions: the first one being the fragmentation
event model with Jensen-Shannon divergence, the second one being the frag-
mentation event model with cosine coefficient scoring function, and the last
one being the theoretical spectrum model [27] (with b/y ratio assumed to be
1) with Jensen-Shannon divergence. These three combinations are denoted as
PIEvent+JS , PIEvent+CC , and PISpectrum+JS , respectively. For these combina-
tions and SEQUEST, the relationship between the false positive rate and true
positive rate in the testing set is graphically shown in Figure 1 as receiver-
operating characteristic (ROC) plots. From this Figure, we can see that if we
control the false-positive rate to be 5%, PIEvent+JS has a significantly higher
true positive rate (0.8355) than SEQUEST (0.7301), PIEvent+CC (0.7011), and
PISpectrum+JS (0.5906). This demonstrates that Jensen-Shannon divergence is
better than cosine coefficient, and our fragmentation event model is better than
the theoretical spectrum model that assumes b/y ratio to be 1. Hence, this re-
ranking technique can help detect the false-positive pairs reported by SEQUEST.

As a concrete example, a false-positive pair is shown in Figure 2 to demon-
strate the advantage of PIEvent+JS over SEQUEST. SEQUEST reports this
pair with a high confidence (Rank=3384-th, Xcorr = 3.41, DeltaCn = 0.295).
In contrast, among the entire 11, 599 peptide-spectrum pairs, this pair is ranked
9, 906-th by PIEvent+JS . Intuitively, Figure 2 reveals a significant dissimilarity
between the theoretical and the experimental fragmentation patterns. Precisely,
the Jensen-Shannon divergence between these two fragmentation event vectors
is 0.206, which is significantly large with respect to the peptide length L = 13.

To illustrate the advantage of PIEvent+JS over PISpectrum+JS , a true-positive
pair is shown in Figure 3. This pair achieves a rank of 2, 783-th from PIEvent+JS

and a rank of 10, 778-th from PISpectrum+JS . The similarity between the theoret-
ical and experimental fragmentation patterns is clearly demonstrated in Figure
3 (left-hand side, Jensen-Shannon divergence: 0.070 ). However, if we adopt the
assumption that b/y ratio is 1, we will miss this true positive pair due to the
insignificant similarity between the theoretical and experimental spectrum (See
Figure 3, right-hand side. Jensen-Shannon divergence: 0.441).

We compared the above three combinations with Mascot, and obtained similar
observations (See Figure 4). These observations suggest that our model can help
improve theaccuracyofSEQUESTandMascotonbothLTQandQSTARdata sets.
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ROC Curves on LTQ Data
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Fig. 1. Performance of Validating SEQUEST’s Results on LTQ Data Set (left-hand
side) and QSTAR Data Set (right-hand side). The relationship between the false posi-
tive rate and true positive rate is graphically shown as receiver-operating characteristic
(ROC) plots for SEQUEST, PIEvent+JS, PIEvent+CC and PISpectrum+JS.

Fig. 2. A False Positive Peptide-spectrum Pair Reported by SEQUEST (Peptide Se-
quence: MSKDNEISPSLLR, Spectrum ID: Band7c.1890.1890.3.dta, Xcorr = 3.41,
DeltaCn = 0.295). This pair achieves a rank of 3384-th from SEQUEST; however, this
pair is ranked 9, 906-th by PIEV ENT+JS due to the insignificant similarity between ex-
perimental and theoretical fragmentation patterns (Jensen-Shannon divergence: 0.206).

3.2 Experiments on Improving De Novo Sequencing Methods

In this subsection, we describe the application of fragmentation event model to
improve De Novo methods. The dataset used to test our algorithm is A8 IP [9].
Each spectrum in A8 IP has been annotated with a matched peptide. In this
proof-of-concept experiment, we restricted our analysis to the doubly charged
peptides (2744 peptide-spectrum pairs in total). These pairs are further ran-
domly divided into two parts: one is a training set with 1803 peptide-spectrum
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Fig. 3. A True Positive Peptide-spectrum Pair Reported by SEQUEST (Peptide Se-
quence: NGLDDIPQLLDDIK, Spectrum ID: Band5b.3108.3108.2.dta, Xcorr = 2.57,
DeltaCn = 0.315). The fragmentation pattern (left-hand side, Jensen-Shannon diver-
gence: 0.070) exhibits more significant similarity than the spectrum model (right-hand
side, Jensen-Shannon divergence: 0.441). On both sides, the experimental patterns are
shown above the axis, while the theoretical ones are shown below the axis.

ROC Curves on LTQ Data
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ROC Curves on QSTAR Data
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Fig. 4. Performance of Validating Mascot Results on LTQ Data Set (left-hand side)
and QSTAR Data Set (right-hand side). The relationship between the false positive
rate and true positive rate is graphically shown as receiver-operating characteristic
(ROC) plots for Mascot, PIEvent+JS, PIEvent+CC and PISpectrum+JS.

pairs, and the other is a testing set with 941 peptide-spectrum pairs
(See http://www.bioinfo.org.cn/MSMS/ for supplementary material).

On the training set, we applied the optimization approach described in Sec-
tion 2.2 to learn the fragmentation preference for bonds. In the testing set, we
focused on a total of 181 bonds suffering from the missing-peak difficulty; that
is, the fragmentation abundance of this bond is zero while the fragmentation
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Fig. 5. A Missing-peak Example in Spectrum of Peptide ELDEHELDYDEEVPEEPA-
PAVQEDEAEK. The gap between y10 and y12 is equal to the sum of the mass of amino
acid P and A. However, the relative order of these two amino acids is undetermined
since no cleavage event at this site is observed.

abundance of the neighboring bonds are not zero. Intuitively, this means there is
a gap of W Daltons in the spectrum. In such cases, most De Novo methods can
easily determine these two amino acids Xaa and Y aa based on the restriction
m(Xaa) + m(Y aa) = W . However, a De Novo method itself generally cannot
determine the relative order of these two amino acids, i.e., whether the bond is
Xaa-Y aa or Y aa-Xaa [15]. An example is shown in Figure 5, where the abun-
dance of the fragmentation event between P and A, represented as (P+A), is
zero.

Here, we apply our event model along with Jensen-Shannon divergence to
determine the order of these two neighboring amino acids. The basic idea can be
described as follows: suppose the unknown bond is the i-th one of peptide P =
p1p2 . . . pipi+1 . . . pL, and we attempt to determine whether pi-pi+1 = Xaa-Y aa
or pi-pi+1=Y aa-Xaa. These possible peptide choices are denoted as PXaaY aa

and PY aaXaa, respectively. Notice that these two peptide choices differ in 3
bonds, i.e., peptide PXaaY aa has bonds pi−1-Xaa, Xaa-Y aa, and Y aa-pi+2,
while peptide PY aaXaa has bonds pi−1-Y aa, Y aa-Xaa, and Xaa-pi+2. Since
peptide bonds show a significant heterogeneity in cleavage preference (See Table
1 in [27]), we can determine which one of the possible peptides is more likely
based on the fragmentation patterns. In detail, for these two possible peptides,
we predict the theoretical fragmentation event vector, and calculate the Jensen-
Shannon divergence between the theoretical fragmentation event vector and the
experimental counterpart. Finally, the relative order can be determined by using
the following rule:

pipi+1 =
{

XaaY aa, if JS(V E , V T
XaaY aa) < JS(V E , V T

Y aaXaa) − ε
Y aaXaa, if JS(V E , V T

Y aaXaa) < JS(V E , V T
XaaY aa) − ε

Here, ε is a threshold to control the significance of the difference between
the two Jensen-Shannon divergence scores. We achieve a prediction accuracy of
69.10% when ε is 0, and a prediction accuracy of 82.86% when ε is 0.008.
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These experiments suggest that our event model can help determine the rel-
ative order of two neighboring amino acids with high accuracy, even if there is
no peak available to directly determine the bond type. Thus, our fragmenta-
tion event model can improve De Novo methods because the existing De Novo
methods alone cannot determine this order [15].

4 Conclusion and Discussion

In this paper, we proposed a novel fragmentation event model to overcome the
difficulties in theoretical spectrum predicting. Experimental results demonstrate
that this model can help to identify the false-positive results of both SEQUEST
and Mascot. Moreover, our event model can also help to solve the problem of
missing peak encountered by De Novo methods.

An interesting question arises about the reason why fragmentation event
model performs better than the traditional theoretical spectrum model. The ad-
vantage of fragmentation event model seems counterintuitive since a theoretical
spectrum contains more items than a fragmentation event vector. We attempt
to explain as follows:

First, fragmentation pattern is more robust than theoretical spectrum. Though
there are more information in a theoretical spectrum than that in a fragmenta-
tion event vector, the information in a theoretical spectrum is difficult to restore
because of the long-standing b/y ratio puzzle (from personal communication
with Vicki H. Wysocki). Our survey of A8 IP [9] data set suggests that the b/y
ratio varies a lot from ion to ion. In particular, 50% of ions have a b/y ratio
below 1

2 or over 2, and 20% of ions have a b/y ratio of 0 or infinity. In contrast,
fragmentation pattern is more robust since b/y ratio is not necessary in this
framework.

Second, a potential advantage of fragmentation event model is that setting
threshold is much easier relative to the theoretical spectrum framework. Jensen-
Shannon divergence under our fragmentation event model is related to the pep-
tide length only, and independent of the peptide mass and the number of ions.
Therefore, the similarities of different peptide-spectrum pairs are comparable so
long as these peptides share the same length. Thus we need only to set a thresh-
old for each possible peptide length, which is much easier compared with setting
the threshold under the theoretical spectrum framework.

In summary, although at the current stage the ion generating process is still
unclear, the coarse-grained fragmentation pattern framework appears to be a
robust strategy.
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Abstract. The protein inference problem represents a major challenge
in shotgun proteomics. Here we describe a novel Bayesian approach to
address this challenge that incorporates the predicted peptide detectabil-
ities as the prior probabilities of peptide identification. Our model re-
moves some unrealistic assumptions used in previous approaches and
provides a rigorious probabilistic solution to this problem. We used a
complex synthetic protein mixture to test our method, and obtained
promising results.

1 Introduction

In shotgun proteomics, a complex protein mixture derived from a biological
sample is directly analyzed via a sequence of experimental and computational
procedures [1,2,3,4]. After protease digestion, liquid chromatography (LC) cou-
pled with tandem mass spectrometry (MS/MS) is typically used to separate and
fragment peptides from the sample, resulting in a number of MS/MS spectra.
These spectra are subsequently searched against a protein database to identify
peptides present in the sample [5,6]. Many peptide search engines have been
developed, among which Sequest [7], Mascot [8] and X!Tandem [9] are com-
monly used. However, after a reliable set of peptides is identified, it is often not
straightforward to assemble a reliable list of proteins from these peptides. This
occurs because some identified peptides, referred to as the degenerate peptides,
are shared by two or more proteins in the database. As a result, the problem of
determining which of the proteins are indeed present in the sample, known as the
protein inference problem [10], often has multiple solutions and can be compu-
tationally intractable. Nesvizhskii and colleagues first addressed this challenge
using a probabilistic model [11], but different problem formulations and new
solutions have recently been proposed as well [10,12,13].

Previously, we introduced a combinatorial approach to the protein inference
problem that incorporates the concept of peptide detectability, i.e. the probabil-
ity of a peptide to be detected (identified) in a standard proteomics experiment,
with the goal of finding the set of proteins with the minimal number of missed
peptides [12]. As in the other combinatorial formulations [13], the parsimony
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condition was chosen only for convenience reasons, without theoretical justifica-
tion. Furthermore, parsimonious formulations often lead to the minimum cover
set problem, which is NP-hard. Thus, heuristic algorithms following greedy [12]
or graph-pruning strategies [13] are used to solve the protein inference problem
without performance guarantee.

In this paper, we address protein inference by proposing two novel Bayesian
models that take as input a set of identified peptides from any peptide search en-
gine, and attempt to find a most likely set of proteins from which those identified
peptides originated. The basic model assumes that all identified peptides are cor-
rect, whereas the advanced model also accepts the probability of each peptide to
be present in the sample. Compared with the previous probabilistic models, such
as ProteinProphet [11], both of our models differ in two key aspects. First, our
approach incorporates peptide detectability [14] since it has been recently shown
that even among the peptides that belong to the same protein, some peptides are
commonly observed, while some others are not [14,15]. This results in the fact
that the peptides not identified by peptide search engines may have significant
impact on the final solution. Second, previous models assume that the posterior
probability of each peptide is independent of other peptides and can be computed
separately. Although this assumption significantly simplifies the computation of
the protein posterior probabilities, it is inconsistent with the Bayesian model of
a shotgun proteomics experiment (see Materials and Methods). We relax this as-
sumption and adopt Gibbs sampling approach to estimate protein posterior prob-
abilities. The results of this study provide evidence that our models achieve sat-
isfactory accuracy and can be readily used in protein identification.

2 Materials and Methods

To illustrate the challenge of protein inference, we define the protein config-
uration graph (Fig. 1(a)), i.e. a bipartite graph in which two disjoint sets of
vertices represent the proteins in the database and the peptides from these pro-
teins, respectively, and where each edge indicates that the peptide belongs to
the protein. We emphasize that the protein configuration graph is independent
of the proteomics experiment, and thus can be built solely from a set (database)
of protein sequences. Therefore, in constrast to the bipartite graph used previ-
ously [13], where only the identified peptides and the proteins that contain those
peptides were represented, our model also considers the non-identified peptides.
Protein configuration graph is partitioned into connected components, each rep-
resenting a group of proteins (e.g. homologous protein families) sharing one or
more (degenerate) peptides. If there are no degenerate peptides in the database,
each connected component will contain exactly one protein and its peptides. In
practice, however, the protein configuration graph may contain large connected
components, especially for protein databases of higher animals or those contain-
ing closely related species.

Given that the protein configuration graph can be interpreted as a Bayesian
network with edges pointing from proteins into peptides, it is straightforward



A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics 169

Proteins

Peptides

(a)

Proteins

Peptides

Proteins

Peptides

Proteins

Peptides

Proteins

Peptides

Scores

(b) (c)

Fig. 1. (a) A protein configuration graph consisting of two connected components;
(b) basic Bayesian model for protein inference, in which peptides are represented as
a vector of indicator variables: 1 (grey) for identified peptides, and 0 (white) for non-
identified peptides; (c) advanced Bayesian model for protein inference, in which each
peptide is associated to an identification score (0 for non-identified peptides). Sizes of
circles reflect prior/posterior probabilities.

to show that protein inference can be addressed separately for each individual
connected component. In this approach, the peptide identification results are
first mapped to the protein configuration graph. We use a vector of indicator
variables (y1, ..., yj, ..., yn), referred to as the peptide configuration to denote a set
of identified peptides. Given the peptide configuration, a connected component
of the protein configuration graph is called trivial if it contains no identified
peptides. Clearly, in this case protein inference is simple – none of the proteins
should be present in the sample. Therefore, the protein inference problem can
be reduced to finding the most likely protein configuration (x1, ..., xi, ..., xm) by
analyzing non-trivial components only. In the basic model, all identified peptides
are assigned equal probabilities (= 1) (Fig. 1(b)), whereas in the advanced model
different probabilities are considered for different identified peptides depending
on the associated identification scores (s1, ..., sj , ..., sn) (Fig. 1(c)). Notation and
definitions used in this study are summarized in Table 1.

2.1 Basic Bayesian Model

In the basic probabilistic model, we assume that each identified peptide has an
equally high prior probability to be present in the sample and low false discovery
rate (FDR) in the results of peptide identification. In practice, even though this
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Table 1. Notations and definitions

Notation Definition

(1, ..., i, ..., m) m proteins within a non-trivial connected component
of the protein configuration graph

(x1, ..., xi, ..., xm) protein configuration: indicator variables of proteins’ presences
(1, ..., j, ..., n) all n peptides from m proteins being considered
(Z11, ..., Zij , ..., Zmn) indicator variables of peptide j belonging to protein i

if peptide j is a peptide from protein i, Zij = 1;
otherwise Zij = 0

(y1, ..., yj , ..., yn) peptide configuration: indicator variables of peptides’ presences
if peptide j is present, yj = 1; otherwise yj = 0

(s1, ..., sj , ..., sn) assigned scores of peptides
if peptide j is not identified (i.e. yj = 0), sj = 0

(r1, ..., rj , ..., rn) probabilities of peptide being correctly identified
also the estimated probabilities of peptides’ presences

(LR1, ..., LRj , ..., LRn) likelihood ratio between peptides’s presences and absences
(d11, ..., dij , ..., dmn) prior probabilities of peptides to be identified from proteins

if Zij = 1, dij = the detectability of peptide j from protein i;
otherwise, dij = 0

assumption does not completely hold, peptide FDRs are usually controlled at a
low level (e.g. 0.01) by either a heuristic target-decoy search strategy [16,13,17]
or by probabilistic modeling of random peptide identification scores [18,19,20].
In the next section, we extend this basic model to a more realistic model in
which we incorporate different probabilities for different identified peptides that
are estimated based on the peptide identification scores.

Consider m proteins and n peptides from these proteins within a non-trivial
connected component of the protein configuration graph. Each protein i is ei-
ther present in the sample or absent from it, which can be represented by an
indicator variable xi. Therefore, any solution of the protein inference problem
corresponds to a vector of indicator variables, (x1, ..., xm), referred to as a protein
configuration. Given the set of identified peptides from peptide search engines
(peptide configuration (y1, ..., yn)), our goal is to find the maximum a posteriori
(MAP) protein configuration, that is the configuration that maximizes the pos-
terior probability P (x1, ..., xm|y1, ..., yn). Using the Bayes’ rule, this posterior
probability can be expressed as

P (x1, ..., xm|y1, ..., yn) = P (x1,...,xm)P (y1,...,yn|x1,...,xm)∑
(x1,...,xm)

[P (x1,...,xm)P (y1,...,yn|x1,...,xm)]

=
P (x1,...,xm)

∏
j
[1−Pr(yj=1|x1,...,xm)]1−yj Pr(yj=1|x1,...,xm)yj

∑
(x1,...,xm)

P (x1,...,xm)
∏

j
[1−Pr(yj=1|x1,...,xm)]1−yj Pr(yj=1|x1,...,xm)yj

(1)
where P (x1, ..., xm) is the prior probability of the protein configuration. Assum-
ing the presence of each protein i is independent of other proteins, this prior
probability can be computed as

P (x1, ..., xm) =
∏

i

P (xi) (2)
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Pr(yj = 1|x1, ..., xm) is the probability of peptide j to be identified by shotgun
proteomics given the protein configuration (x1, ..., xm). Assuming that different
proteins are present in the sample independently of one another and ignoring
the competition of peptides for ionization and MS/MS fragmentation, we can
compute it as

Pr(yj = 1|x1, ..., xm) = 1−
∏

i

[1−xiPr(yj = 1|xi = 1, x1 = ... = xi−1 = xi+1 = ... = xm = 0)]

(3)

where Pr(yj = 1|xi = 1, x1 = ... = xi−1 = xi+1 = ... = xm = 0) is the probabil-
ity of peptide j to be identified if only protein i is present in the sample. As we
previously showed, for a particular proteomics platform (e.g. LC-MS/MS consid-
ered here), this probability, referred to as the standard peptide detectability dij , is
an intrinsic property of the peptide (within its parent protein), and can be pre-
dicted from the peptide and protein sequence prior to a proteomics experiment
[14]. Combining equations above, we can compute the posterior probabilities for
protein configurations as

P (x1, ..., xm|y1, ..., yn) =

∏
i P (xi)

∏
j{[

∏
i(1 − xidij)]1−yj [1 −

∏
i(1 − xidij)]yj}

∑
(x′

1,...,x′
m)

∏
i P (x′

i)
∏

j{[
∏

i(1 − x′
idij)]1−yj [1 −

∏
i(1 − x′

idij)]yj}

(4)

Hence, protein inference is equivalent to finding the MAP protein configura-
tion by maximizing the above function

(x1, ..., xm)MAP = argmax(x1,...,xm)P (x1, ..., xm|y1, ..., yn) (5)

Sometimes, we are also interested in the marginal posterior probability of a
specific protein i to be present in the sample, which can be expressed as,

P o(xi) = P (xi|y1, ..., yn) =
∑

x1,...,xi−1,xi+1,...,xm

P (x1, ..., xm|y1, ..., yn) (6)

2.2 Advanced Bayesian Model

The basic model described above assumes all identified peptides have equal prob-
ability (= 1) of being correctly identified. Here we relax this assumption by in-
troducing a peptide identification score sj for each peptide j, which is output
by peptide search engines. We assume the peptide identification score is highly
correlated with the probability of a peptide being correctly identified and their
relationship (denoted by rj = Pr(yj = 1|sj)) can be approximately modeled
using probabilistic methods adopted by some search engines such as Mascot [8]
or post-processing tools such as PeptideProphet [18]. Our goal is to compute
P (x1, ..., xm|s1, ..., sn) by enumerating all potential peptide configurations
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P (x1, ..., xm|s1, ..., sn) =
∑

(y1,...,yn)[P (x1, ..., xm|y1, ..., yn)P (y1, ..., yn|s1, ..., sn)]
=

∑
(y1,...,yn)[

P (x1,...,xm)
P (s1,...,sn) P (y1, ..., yn|x1, ..., xm)P (s1, ..., sn|y1, ..., yn)]

(7)
Assuming that sj is independent of the presences of the other peptides (i.e.

(y1, ..., yj−1, yj+1, ..., yn)) and applying Bayes’ rule, we have

P (s1, ..., sn|y1, ..., yn) =
∏

j

P (yj|sj)P (sj)
P (yj)

=
∏

j

(1 − rj)(1−yj)r
yj

j P (sj)
P (yj)

(8)

Combining these equations, we can compute the posterior probability of pro-
tein configurations as

P (x1, ..., xm|s1, ..., sn) =
�

(y1,...,yn){
�

i P (xi)
�

j{[
�

i(1−xidij)]
1−yj [1−�i(1−xidij)]

yj
(1−rj)

(1−yj )
r

yj
j

P(yj ) }}
�

(x′
1,...,x′

m)(y1 ,...,yn){
�

i P (x′
i)
�

j{[
�

i(1−x′
idij)]1−yj [1−�i(1−x′

idij)]yj
(1−rj )

(1−yj )
r

yj
j

P (yj ) }}
(9)

For most of the work presented here, we do not assume any prior knowledge
about the protein presence in the sample. Therefore, in equations 4 and 9, P (xi)
is regarded as constant (i.e. 0.5) for all proteins. In practice, prior knowledge,
such as the species which the sample is from, the number of candidate proteins,
and known protein relative quantities or protein families that are likely present
in the sample, can be directly integrated into our Bayesian models (see results
section for a simple demonstration).

Similar to the basic model, we can also compute the posterior probability of
a specific protein i present in the sample as

P (xi|s1, ..., sn) =
∑

x1,...,xi−1,xi+1,...,xm

P (x1, ..., xm|s1, ..., sn) (10)

and the marginal probability of a peptide j in the sample (see Appendix).

2.3 Adjustment of Peptide Detectabilities

An adjustment of the predicted peptide detectabilities is necessary when apply-
ing them here, since the predicted standard peptide detectabilities (denoted as
d0

ij) reflect the detectability of a peptide under a standard proteomics experi-
mental setting, in particular, under fixed and equal abundances (i.e. q0) for all
proteins [14]. Assuming that the abundance of protein i in the sample mixture is
qi instead of q0, the effective detectability of peptide j from this protein should
be adjusted to

dij = 1 − (1 − d0
ij)

qi/q0
(11)

Although we do not know qi explicitly, since the total probability of observing
a peptide j is given by rj (or yj for basic model), we can estimate qi by solving
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the equation
∑

j dij =
∑

j Zijrj for a specific protein i. We note that this ad-
justment method may immediately lead to a new approach to absolute protein
quantification [15]. However, we will address the evaluation of its performance in
our future work. Here, our goal is to utilize it to adjust the predicted standard
peptide detectabilities based on the estimated protein abundances.

2.4 Gibbs Sampling

Given a protein configuration graph, the peptide detectabilities (dij) and the
probabilities of peptide presence in the sample (rj), the posterior distribution
of protein configurations can be computed directly from equations 4 or 9, de-
pending on which Bayesian model is used. This brute force method, which has
computational complexity of O(2m), is very expensive and only works for small
connected components in the protein configuration graph.

Gibbs sampling is a commonly used strategy to rapidly approximate a high di-
mensional joint distribution that is not explicitly known [21,22]. We adopted this
algorithm to achieve the optimal protein configuration with the MAP probabil-
ity. The original Gibbs sampling algorithm considers one individual variable at
a time in the multi-dimentional distribution. It, however, often converges slowly
and is easily trapped by local maxima for long time. Several techniques have
been proposed to improve the search efficiency of Gibbs sampling algorithm,
such as random sweeping, blocking and collapsing [22]. Because in our case each
variable xi to be sampled has small search space (i.e. {0, 1}), we applied the
blocking sampling technique in our Gibbs sampler algorithm.

Without increasing the computational complexity, we adopt a novel memo-
rizing strategy that keeps a record of all (as well as the maximum) posterior
probabilities (and the corresponding protein configurations) among all configu-
rations we evaluated during the sampling procedure, and report the maximum
solution in the end. The memorized posterior probabilities are also used to cal-
culate the marginal posterior protein probabilities in equation 6 and 10. Due
to the page limits, the sketch of the block Gibbs sampling algorithms and the
memorizing approach for the basic and advanced Bayesian models are described
in the Appendix.

2.5 Datasets

We used two datasets from different sources that are both generated using mix-
tures of model proteins. Therefore, we know the proteins in these samples. The
first dataset is used only for the training of the detectability predictor, while
the other dataset was used for testing the protein inference methods. The first
dataset from a mixture (Sample A) of 13 standard proteins was prepared at 1 μM
final digestion concentration for each protein except human hemoglobin which
is at 2 μM, combined with buffer, reduced, alkylated, and digested overnight
with trypsin [14]. Peptides were separated by nano-flow reversed-phase liquid
chromatography gradient and analyzed by mass spectrometry and tandem mass
spectrometry in a Thermo Electron (San Jose, CA) LTQ linear ion trap mass
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spectrometer. The second mixture (Sample Sigma49) was cleaned up by gel
electrophoresis, reduced, alkylated, and digested in-gel with trypsin. Tandem
mass spectra for doubly-charged precursor ions were obtained from the website
at Vanderbilt University website [13] and searched against human sequences in
Swiss-Prot using Sequest [7].

3 Results

We implemented two Bayesian approaches described in the Methods section and
tested them on the Sigma49 sample. The peptide detectability predictors were
trained using Sample A following the method described previously [14]. Simi-
larly as in [13], prior to the protein inference, 13388 MS/MS spectra acquired
from Sigma49 sample in one LC/MS experiment were searched against the hu-
man proteome in Swiss-Prot database (version 54.2). PeptideProphet [18] was
then used to assign a probability score for each identified peptide. For the basic
Bayesian model, 152 unique peptides with minimum PeptideProphet probability
score 0.95 were retained as identified peptides, while for the advanced model,
we retained 443 peptides with minimum probability score 0.05. We tried two
methods to set the probability rj for each peptide identification. In the first
method, we directly use the probability for each identified peptide reported by
PeptideProphet. Since PeptideProphet does not consider peptide detectability,
we implemented the second method which converts the PeptideProphet proba-
bility into a likelihood ratio LRj and then apply our models.

The conversion is done by LRj = PrPP (yj = 1)/[c × (1 − PrPP (yj = 1))],
where PrPP (yj = 1) is the PeptideProphet probability, and c is the ratio between
the prior probabilities of the peptide’s presence and absence. For both models,
we used block size 3 in the Gibbs sampler.

Table 2 compares the results for the Sigma49 sample from the basic and
advanced Bayesian models with that from ProteinProphet [11] and the minimum
missed peptide (MMP) approach we proposed previously [12] on the Sigma49
sample. Sigma49 sample was prepared by mixing 49 human proteins, among
which 44 proteins contain at least one peptide that can be identified by shotgun
proteomics. In addition, 9 keratin proteins and 4 other proteins are categorized as
the “keratin contamination” and “bonus” proteins, respectively, and are believed
to be present in the sample due to contamination.

From the results, we observed that using detectabilities to adjust Peptide-
Prophet probability improves the performance of the probabilitic models. For
example, the advanced model (ABLA) achieved 0.83 and 1.0 for the precision and
recall, respectively, whereas directly using ProteinProphet probability (ABPA)
achieved 0.66 and 0.98. This indicates that peptide detectability is a useful con-
cept in protein inference. The adjustment of detectability also improves accuracy
(see F measures) of the protein inference (e.g. BBA vs. BB or ABLA vs. ABL),
implying that the predicted peptide detectabilities need to be adjusted by pep-
tide quantities in real proteomics experiments. We also tried to incorporate a
simple method for estimating protein prior probabilisties. In ABLA, we set the
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Table 2. Protein inference results on the Sigma49 dataset using minimum missed
peptide approach (MMP), ProteinProphet (PP), basic Bayesian model (BB), basic
Bayesian model with detectability adjustment (BBA), advanced Bayesian model using
raw PeptideProphet probabilities (ABP), ABP after detectability adjustment (ABPA),
advanced Bayesian model using converted probability scores (ABL), ABL after de-
tectability adjustment (ABLA), and ABLA with estimated protein prior probabilities
(ABLAP). All results are evaluated based on the true positive (TP), false positive (FP)
and false negative (FN) numbers of proteins, and the precision (PR), recall (RC) and
F-measure (F) in two categories of true proteins in the sample: model proteins, and
model proteins plus all contaminations. MAP solutions were used as positive proteins
for our probabilistic models; and 0.5 cutoff was used for ProteinProphet.

MMP PP BB BBA ABP ABPA ABL ABLA ABLAP

TP 39/45 41.5/47.5 39/47 37/43 35/39 43/49 37/41 44/50 43/49

FP 6/0 7.5/1.5 16/8 6/0 4/0 22/16 4/0 9/3 6/0

FN 5/12 2.5/9.5 5/10 7/14 9/18 1/8 7/16 0/7 1/8

PR 0.87/1 0.85/0.97 0.71/0.85 0.86/1 0.9/1 0.66/0.75 0.9/1 0.83/0.94 0.88/1

RC 0.89/0.79 0.94/0.83 0.89/0.82 0.84/0.75 0.8/0.68 0.98/0.86 0.84/0.72 1/0.88 0.98/0.86

F 0.88/0.88 0.89/0.90 0.79/0.84 0.85/0.86 0.84/0.81 0.79/0.81 0.87/0.84 0.91/0.91 0.92/0.92
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Fig. 2. Protein inference using ABLA method from 5 (A-E) connected components
in the protein configuration graph built from Sigma49 dataset. Proteins in the same
components are ordered in the same column based on their marginal posterior proba-
bilities. Proteins in the MAP configuration are highlighted in black. The true proteins
in Sigma49 sample are labelled by “***” for model proteins, “**” for non-karetin con-
taminations and “*” for karetin contaminations.

protein prior probabilities as 0.5 for all proteins, whereas in ABLAP, we set it as
0.2, i.e. the ratio of the expected number of proteins in the sample (i.e. 48) and
the total number of candidate proteins. Comparing their results, we observed
that incorporating protein prior probabilities further improves the performance
of protein inference, in which the F measure improves from 0.91 to 0.92. Overall,
ABLAP and ABLA models outperform the other methods. However, it is hard
to draw a firm conclusion from the experiments on a relatively simple protein
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mixture. Further comparative analysis of these models using more complex (e.g.
with hundreds of proteins), but well elucidated samples like Sigma49, is needed.

Fig. 2 illustrates the results of ABLA on 5 connected components in the pro-
tein configuration graph built from the Sigma49 dataset. The model proteins
and likely contaminant proteins in the sample received higher marginal poste-
rior probabilities than the other proteins, and the MAP configuration contains
mostly true proteins. PeptideProphet cannot resolve the correct protein assign-
ment in component A and C. We note that component A consists of three pro-
teins (P51965, Q96LR5 and Q969T4) which share only one identified peptide
(often referred to as “single-hit wonders”). ABLA algorithm correctly assigns
the true model protein (P51965) as the MAP configuration over the other two
proteins.

4 Discussion

In this study we proposed and evaluated a new methodology for protein infer-
ence in shotgun proteomics. The two Bayesian models proposed herein attempt
to find the set of proteins that is most likely to be present in the sample. The
new approach has three advantages over the existing methods: (1) it calculates
or, if global optimum is not reached, approximates a MAP solution for the set of
proteins present in the sample and can also output the probability of each pro-
tein to be present in the sample; (2) it can output the marginal probabilities of
the identified peptides to be present in the sample, given the entire experiment;
(3) the Gibbs sampling approach used to approximate the posterior probabili-
ties of protein configuration is a proven methodology, and its performance and
convergence has been well-studied.

It is common in proteomics for a sample to be analyzed multiple times in
order to increase coverage of the proteome as well as to increase confidence in low
sequence coverage proteins [23]. While not specifically addressed, the application
of the Bayesian models described here adequately accommodates such data since
peptide detectability, used to calculate prior probabilities, should assign lower
values to those peptides not identified in all the replicate analyses. In addition,
higher mammals often contain multiple very similar homologous proteins due to
recent gene duplications. These proteins are almost impossible to differentiate
using shotgun proteomics, if some but not all of these proteins are present in
the sample. As a result, although the MAP protein configuration will contain at
least one of these proteins, they each can receive a low marginal probability (e.g.
< 0.5). While we have not explicitly addressed this problem here, we note that
the proposed models can be easily modified to consider a given set of proteins
as a group and then compute the probability of their presence as a whole. We
will test this functionality in future implementation of the models.

While we show that the new methodology is accurate and useful, we note
that the current detectability predictor, which was trained on a small number
of doubly-charged fully tryptic peptide ions, poses a limitation of this approach.
Therefore, it does not fully accommodate the results of all shotgun proteomics
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experiments, which are known to produce singly- and triply-charged ions as well
as peptide ions with missed cleavages that are readily identified. Furthermore,
we are currently using an inaccurate method to adjust detectability with differ-
ent peptide quantities. Future improvements in detectability prediction, peptide
confidence estimation, as well as the detectability adjustment may lead to further
improvement of the Bayesian models described here.
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Appendix

Note: In the two algorithms presented below, we have

F (xv1 , ..., xvc , yw1 , ..., ywd
) =

∏

i∈v

P (xi)
∏

j∈N+(v)∪w

P (yj |xN−(j))
∏

j∈w

P (yj|sN+(j))
P (yj)

(12)
where N+(.) and N−(.) refer to the nodes that the current node(s) are linked to
and linked from, respectively; v = (v1, ..., vc) and w = (w1, ..., wd) are the block
indices for x and y, repectively; w is empty for the basic model; P (yj |xN−(j))
can be computed by 6; and Pr(yj = 1|sN+(j)) = rj .

P (yj) =
∑

(x1,...,xm)[P (yj |x1, ..., xm)P (x1, ..., xm)]
= [1 −

∏
i(1 − Pr(xi = 1)dij)]yj [

∏
i(1 − Pr(xi = 1)dij)](1−yj) (13)

Algorithm 1. Gibbs sampler for protein inference using the basic model

Input : Peptide configuration (y1, ..., yn) and peptide detectabilities {dij}
Output: MAP protein configuration (x1, ..., xm)

Initialize (x1, ..., xm) randomly ;
MaxPr ← 0 ;
Normalizing factor T ← 1 ;
while not converge do

v = (v1, ..., vt) ← a random t-block from (1, ..., m) ;

T ← V alue(x1,...,xm)
F (xv1 ,...,xvt ) ;

for all (v1, ..., vt) do
Compute F (xv1 , ..., xvt) ;
V alue(x1, ..., xm) ← F (xv1 , ..., xvt) × T ;
if V alue(x1, ..., xm) > MaxPr then

MaxPr ← V alue(x1, ..., xm) ;
(xMax

1 , ..., xMax
m ) ← (x1, ..., xm) ;

(xMax
v1 , ..., xMax

vt
) ← (xv1 , ..., xvt) ;

end
end
Sample (x′

v1 , ..., x′
vt

) from normalized F (xv1 , ..., xvt) ;
(xv1 , ..., xvt) ← (x′

v1 , ..., x′
vt

) ;

end
Report MaxPr, (xMax

1 , ..., xMax
m ), and compute marginal probabilities ;
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Algorithm 2. Gibbs sampler for protein inferencing using the advanced model

Input : Peptide prior probabilities (r1, ..., rn) and peptide detectabilities {dij}
Output: MAP protein configuration (x1, ..., xm)

Initialize (x1, ..., xm) and (y1, ..., yn) randomly ;
MaxPr ← 0 ;
Normalizing factor T ← 1 ;
while not converge do

c ← a random number between 0 and t ;
(v1, ..., vc) ← a random c-block from (1, ..., m) ;
d ← t − c ;
(w1, ..., wd) ← a random d-block from (1, ..., n) ;

Compute normalizing factor T ← V alue(x1,...,xm;y1,...,yn)
F (xv1 ,...,xvc ,yw1 ,...,ywd

) ;

for all (xv1 , ..., xvc) and (yw1 , ..., ywd ) do
Compute F (xv1 , ..., xvc ; yw1 , ..., ywd ) ;
memorizing: V alue(x1, ..., xm, y1, ..., yn) ← F × T ;
if V alue(x1, ..., xm, y1, ..., yn) > MaxPr then

MaxPr ← V alue(x1, ..., xm, y1, ..., yn) ;
(xMax

1 , ..., xMax
m ) ← (x1, ..., xm) ;

(xMax
v1 , ..., xMax

vc
) ← (xv1 , ..., xvc) ;

(yMax
1 , ..., yMax

n ) ← (y1, ..., yn) ;
(yMax

w1 , ..., yMax
wd

) ← (yw1 , ..., ywd) ;

end
end
Sample (x′

v1 , ..., x′
vc

; y′
w1 , ..., y′

wd
) from normalized F (xv1 , ..., xvc ; yw1 , ..., ywd) ;

(xv1 , ..., xvc) ← (x′
v1 , ..., x′

vc
) ;

(yw1 , ..., ywd) ← (y′
w1 , ..., y′

wd
) ;

end
Report MaxPr, (xMax

1 , ..., xMax
m ), and compute marginal probabilities ;
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Abstract. While nonribosomal peptides (NRPs) are of tremendous
pharmacological importance, there is currently no technology capable
of high-throughput sequencing of NRPs. Difficulties in sequencing NRPs
slow down the progress in elucidating the non-ribosomal genetic code
and negatively affect various screening programs aimed at the discov-
ery of natural compounds of medical importance. We propose to employ
multi-stage mass-spectrometry (MSn) for the data acquisition, followed
by alignment-based heuristic algorithms for data analysis. Since mass
spectrometry based analysis of NRPs is fast and inexpensive, this ap-
proach opens the possibility of high-throughput sequencing of many un-
known NRPs accumulated in large screening programs.

Keywords: Cyclic Peptides Sequencing De novo Algorithm.

1 Introduction

The classical protein synthesis pathway (translation of template mRNA into
proteins/peptides) is not the only mechanism for cells to assemble amino acids
into peptides. The alternative Non Ribosomal Peptide Synthesis is performed
by a large multi-enzyme complex (called Non Ribosomal Peptide Synthetase or
NRPS) that represents both the biosynthetic machinery and the mRNA-free
template for the biosynthesis of secondary metabolites (see [1,2,3] for recent re-
views). NRPS gene clusters produce relatively short (up to 50 aa) nonribosomal
peptides (NRP) that are not directly inscribed in the genomic DNA and thus
cannot be inferred with traditional DNA-based sequencing techniques. NRPs
are of tremendous pharmacological importance since they were optimized dur-
ing millions of years of evolution to play important roles in chemical defense
and communication for producing organisms. Starting from penicillin, NRPs
and other natural products have an unparallel track record in pharmacology:
9 out of the top 20 best-selling drugs were either inspired by or derived from
natural products. NRPs have some naturally evolved features that are appli-
cable to the modulation of protein function in human systems, making them
excellent lead compounds for the development of novel pharmaceutical agents.
In particular, NRPs include antibiotics (penicillin, cephalosporin, vancomycin,
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etc.), immunosuppressors (cyclosporin), antiviral agents (luzopeptin A), antitu-
mor agents (bleomycin), toxins (thaxtomin), and many peptides with yet un-
known functions.

When DNA sequencing is not available, biologists use either Edman degrada-
tion or tandem mass spectrometry (MS2) to sequence ribosomal peptides. How-
ever, neither of these approaches works for nonribosomal peptides since they dif-
fer from ribosomal peptides in many respects: (i) they often represent non-linear
structures of amino acids, e.g., cyclic, tree-like, and branch-cyclic peptides, (ii)
they often contain non-standard amino acids increasing the number of possible
building blocks from 20 to several hundreds, (iii) they often have a non-standard
backbone, and (iv) they are often modified. Each of these complications renders
traditional Edman degradation and MS2 peptide sequencing approaches useless,
leaving NMR as the only technology capable of analyzing NRPs [4,5,6,7]. The
use of NMR for NRP sequencing is time-consuming, difficult to automate (there
are currently no software tools for automatic interpretation of NRPs from NMR
data), and error-prone (see [7,8] for examples of errors in NMR sequencing). As
a result, the extremely difficult total chemical synthesis remains the only reliable
way to sequence and validate NRPs [9]. For example, Patrick Harran won the
2007 Hackerman Award in Chemical Research for his pioneering work on dia-
zonamide A, a rare marine NRP. In the process of synthesizing diazonamide A,
he discovered that the initial structure reported for the molecule was flawed [10].

An efficient and automated way to sequence NRPs will immediately benefit
all searches for natural compounds of medical importance as well as studies of
the still poorly understood mechanisms of the nonribosomal peptide synthesis.
Currently, the prediction of the chemical structure of the unknown NRPs is not
possible even if all genes involved in non-ribosomal synthesis are identified [11].
Furthermore, efficient NRP sequencing will aid biosynthetic engineering efforts
to reprogram the NRP assembly lines in E. coli (most microbes producing NRPs
are not amenable to cultivation). For example, the recent success in production of
antitumor NRPs in E. coli required analysis of genetically engineered NRPs [12].

This paper introduces a combination of experimental and computational pro-
tocols that enable a mass-spectrometry based approach to sequencing NRPs. To
the best of our knowledge, it is the first attempt to de novo sequence NRPs using
mass spectrometry. Previous studies were limited to detection or resequencing
of NRP, i.e., sequencing of new NRP variants when the major NRP variant was
known. In an early attempt to use mass spectrometry for NRP analysis, Barber
et al., 1992 [13] analyzed variants of tyrothricin, an antimicrobial agent pro-
duced by Bacillus brevis. Tyrothricin is a mixture of different NRPs and three
major components of this mixture were previously identified. These three com-
ponents were used as reference points to derive six other variant NRPs using
mass spectrometry. In a recent study, Hitzeroth et al., 2005 [14] resequenced
new variations of streptocidins on a MALDI-TOF-MS using information about
previously sequenced streptocidins [15,16]. However, as the authors of [14] re-
marked this resequencing strategy is limited to peptides with pure amino acid
sequence but grows more difficult when modifications are present. In another
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application of mass spectrometry to NRP analysis, Redman et al., 2003 [17]
developed an algorithm for identification of cyclic peptides from combinatorial
libraries. This approach amounts to accurate scoring of all candidates from the
predefined library and cannot be applied to de novo sequencing since the set of
all possible peptides grows exponentially with the length of peptide.

In the following sections, we employ multi-stage mass-spectrometry (MSn) for
de novo sequencing of cyclic peptides. We first describe the NRP-Sequencing al-
gorithm for reconstructing cyclic peptides from a single MS3 spectrum. We then
extend the experimental protocol by incorporating MS4 and even MS5 spectra
to score putative MS3 reconstructions against all MS4/MS5 spectra. Finally, we
describe the NRP-Assembly approach that assembles MS4/MS5 spectra and fur-
ther integrates the resulting contig with all non-assembled spectra. The choice
of a particular approach for analyzing NRPs depends on the specifics of the pep-
tide, its fragmentation properties, accuracy of the mass spectrometer, etc. In the
remainder of the paper, we do not distinguish between MS4 and MS5 spectra and
refer to them as MSn spectra. We note that although multi-stage mass spectrom-
etry recently emerged as a valuable tool for peptide identification [18,19], this
is the first report on using multi-stage mass-spectrometry for de novo peptide
sequencing and sampling as many as 5 stages of mass-spectrometry (previous
studies were mainly limited to 2 stages).

2 Sequencing Cyclic Peptides

We start by analyzing the simplest version of the NRP sequencing problem
when the NRP is a cyclic peptide. Below we use NRP Seglitide, a somatostatin
receptor antagonist, as an illustration. Seglitide is more potent than somatostatin
for inhibition of insulin, glucagon and growth hormone release, and it is used
experimentally in the treatment of Alzheimer’s disease. The structure of Seglitide
is Cyclic(N-methyl-Ala-Tyr-D-Trp-Lys-Val-Phe).1

For a cyclic peptide P = p1 . . . pn it results in n possible linear peptides
Pi = pi . . . pnp1 . . . pi−1 with the same parent mass (Fig.1). The mixture of these
peptides is further subjected to the next stage of mass spectrometry (MS3)
resulting in the difficult problem of interpreting an MS3 spectrum of n different
(but related) peptides. The theoretical MS3 spectrum Spectrum(P ) of the cyclic
peptide P is thus the superposition of the theoretical spectra Spectrum(Pi) of
linear peptides Pi as shown in Figure 1. Therefore, reconstructing the circular
peptide P from its theoretical spectrum Spectrum(P ) amounts to the circular
version of the classical Partial Digest Problem (PDP) [20].

While the complexity status of linear PDP remains unknown (a pseudo-
polynomial algorithm for PDP is described in [21]), a simple branch-and-bound
algorithm works well in practice [20]. However, it appears that the circular
version of PDP may be harder than its linear version, in particular, the
Rosenblatt-Seymour pseudo-polynomial algorithm for linear PDP [21] does not
1 We remark that tandem mass-spectrometry (MS2) amounts to simply breaking (lin-

earizing) the cyclic peptide and does not generate any useful information.
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generalize for circular PDP. While reconstructing the cyclic peptide P from its
theoretical Spectrum(P ) is already a hard problem, reconstructing P from its
experimental MS3 spectrum S is much more difficult. In practice, the contribu-
tions of different linear versions of P to the experimental spectrum are highly
non-uniform. For example, if a certain bond (e.g., before pi) has a low propensity
for breakage in the mass spectrometer, the spectrum Pi may not contribute any
peaks to the MS3 spectrum S. Such missing peaks combined with many noise
peaks make the reconstruction very hard (the PDP problem is known to be NP-
hard for noisy inputs [22]) and lead to the following Cyclic Peptide Sequencing
Problem that is similar to the NP-hard problem of peptide sequencing in the
presence of internal ions [23].

Fig. 1. Analysis of the cyclic peptide Seglitide. a) The circular structure of Seglitide
is schematically illustrated with each residue represented by a different color (slice
sizes not scaled to corresponding masses of the residues). A+14 denotes a non-standard
residue with integer mass 71+14=85 Da. b) MS2 fragmentation of Seglitide generates
up to 6 linear peptides representing different rotated variants of the same cyclic pep-
tide. c) Theoretical spectrum for Seglitide by superposition of the fragment masses of
the linearized peptides. For simplicity, only prefix masses (b-ions) are shown here. d)
Experimental spectrum of Seglitide resulting from a mixture of 6 linear peptides (the
peaks corresponding to prefix ions are shown in red).

Cyclic Peptide Sequencing Problem (CPSP). Given an experimental MS3 spec-
trum S, find a cyclic peptide P maximizing the number of shared masses between
S and the theoretical spectrum of P .

Since the branch-and-bound approach to solving CPSP is prohibitively time-
consuming, we describe some alignment-based heuristics that take advantage of
the specifics of the particular CPSP instances arising in NRP studies.

Sequencing cyclic peptides using MS3 spectra. Pevzner et al., 2000 [24]
introduced spectral convolution and spectral alignment for revealing similarities
between related but different spectra. We argue that since an experimental MS3

spectrum of a cyclic peptide is a superposition of multiple spectra of linearized
peptides, spectral auto-convolution and auto-alignment should reveal key fea-
tures (e.g. amino acid composition and true peaks) for the identification of the
peptide.
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The spectral convolution between spectra S and S′ is defined as the number of
masses s in S such that s−x is also a mass in S′ (for every parameter x).2 Also,
the cyclic convolution Conv(S, S′, x) of spectra S and S′ is defined as the num-
ber of masses s in S such that either (s−x) or (s−x)+ParentMass(S) is also a
mass in S′. The auto-convolution Conv(S, x) of a spectrum S is simply the cyclic
convolution of S with itself. Figure 2c presents the auto-convolution of the MS3

spectrum for Seglitide, a 6 amino acid long cyclic peptide A+14YWKVF (inte-
ger residue masses are 85, 163, 186, 128, 99 and 147, respectively). As expected,
peaks of the auto-convolution reveal neutral losses (e.g., the peak at 18 corre-
sponds to H2O losses). However, in the case of cyclic peptides, there are many
other high-scoring peaks. For example, the largest peak Conv(S, 85) = 14 corre-
sponds to the mass of amino acid A+14 (auto-alignment of the spectrum S with
offset A+14 reveals many aligned peaks). Other amino acids in Seglitide also cor-
respond to high peaks: Conv(S, 163) = 10, Conv(S, 186) = 8, Conv(S, 128) = 8,
Conv(S, 99) = 8, and Conv(S, 147) = 8. We remark that in the interval between
50 and 200Da there are only 4 other peaks with Conv(S, x) ≥ 8 (at offsets 78,
81, 103 and 191) indicating that spectral convolution can be used to derive the
set of amino acid masses present in the circular peptide.

The auto-alignment of the spectrum S with offset x is defined as the set of
peaks {s : (s − x) ∈ S}. We view auto-alignment (denoted Sx) as a virtual
spectrum with parent mass equal to ParentMass(S) − x. The auto-alignment
of Seglitide’s MS3 spectrum of with offset 85Da (maximum peak revealed by
spectral convolution) corresponds to the alignment between A+14YWKVF and
YWKVFA+14. Similarly to the spectral alignment of spectra from different pep-
tides [25], one would expect auto-alignment to mostly reflect either prefix or suf-
fix ion fragments from the linearized peptides A+14YWKVF and YWKVFA+14

(with the number of noisy peaks greatly reduced). The separation of prefix (e.g.,
b-ions) and suffix (e.g., y-ions) ladders by spectral alignment is important since
it significantly simplifies spectral interpretation and enables accurate de novo
peptide sequencing [26,27]. However, it turns out that interpretation of auto-
alignments (of cyclic peptides) is more complex than interpretation of spectral
alignments of different (linear) peptides. While auto-alignment reduces the noise,
it does not separate prefix and suffix ladders, i.e., auto-alignment contains both
prefix and suffix ladders. This is caused by the fact that the MS3 spectrum con-
tains peaks from both A+14YWKVF and YWKVFA+14. Thus, the b-ions from
A+14YWKVF match the b-ions of YWKVFA+14 and, moreover, the y-ions from
YWKVFA+14 match the y-ions of A+14YWKVF (with the same offset 85 for
both b- and y-ions).

When the set of possible amino acid masses is known in advance (like in tradi-
tional peptide sequencing), one can interpret the auto-alignment Sx of the MS3

spectrum S using either the anti-symmetric path approach [28] or the spectral

2 While the standard spectral convolution simply counts the number of peaks sepa-
rated by mass x, in the case of scored spectra (represented as vectors S = (s1 . . . sn)
and S′ = (s′

1 . . . s′
n) reflecting peak intensities or other characteristics) the spectral

convolution is defined as
�

i=1,n si · s′
i−x.
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Fig. 2. Auto-convolution of MS3 spectra of Seglitide. a) A single fragmentation of
Seglitide generates up to six linear peptides overlapping in a circular fashion. b) The
auto-convolution between a base spectrum (peptide 1) and another spectrum S rep-
resents the matching peaks in the overlapping part as well as matching peaks in the
non-overlapping part between suffix of S (after the line marked with •) and the prefix
of S (after the line marked with †). c) Since the MS3 spectrum of Seglitide is a su-
perposition of multiple linearized peptides (see Figure 1), the auto-convolution of this
spectrum has prominent peaks for all offsets corresponding to masses of amino acids
(shown in red). Some additional offsets with comparable numbers of matched peaks
are caused by the presence of neutral losses from peptide fragments (H2O water at
18Da) or spurious matches. The peak at 0 is truncated.

partitioning approach [27]. Indeed, de novo peptide sequencing of Sx (with offset
85) promptly returns YWKVF as the top scoring de novo reconstruction (assum-
ing that the overlapping portion is formed by standard amino acids as in the case
of Seglitide). However, in practice the amino acid composition of cyclic peptides
is hardly ever known since almost all NRPs contain non-standard amino acids
and unknown modifications. While Marfey’s analysis [29] for deriving amino acid
composition can alleviate this problem, it only recovers the masses of the residues
that react with Marfey’s reagent. Spectral auto-convolution (Fig. 2c) represents
a computational (rather than experimental) approach to deriving amino acid
composition (residue masses) of cyclic peptides. In contrast to Marfey’s ap-
proach, which typically misses some amino acids, it tends to over-predict the
set of amino acids in the cyclic peptide. However, combined with de novo pep-
tide sequencing, spectral auto-convolution leads to the successful reconstruction
of cyclic peptides. For Seglitide, considering all x with Conv(S, x) ≥ 8 in the
interval from 50 to 200 Da3 results in the alphabet of only 10 amino acid masses
{78, 81, 85, 99, 103, 128, 147, 163, 186, 191} including the masses of all amino acids
in Seglitide (shown underlined). Considering all x with Conv(S, x) ≥ 7 increases
the size of the alphabet by another 3 masses but still brings the correct recon-
struction to the top of the list of de novo reconstructions.

3 In most cases, the masses of amino acids found in NRPs fall into this interval.
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The text box below outlines the NRP-Sequencing algorithm, which operates
in different modes depending on the knowledge of the possible amino acids com-
position of the cyclic peptide. In particular NRP-Sequencing can accept as input
the standard amino acid masses (Mode 1), derived amino acid masses from the
auto-convolution functions (Mode 2), and the set of all integer amino acid masses
from 50 to 200Da (Mode 3).

Input: MS3 spectrum S of an (unknown) cyclic peptide, set of MSn spectra, parameter
k (maximum number of candidate amino acid masses) and p (minimum percentage of
top de novo score to report a suboptimal peptide)
Output: Ranked list of candidate peptide reconstructions

PeptideList = ∅
Select top k peaks x1 . . . xk in the auto-convolution Conv(S, x) in the [50, 200] interval
For i = 1 to k

Set x = xi and construct the auto-alignment Sx

De novo sequence Sx using masses x1 . . . xk and find highest scoring peptide P
For every suboptimal peptide P ′ such that Score(P ′) ≥ p · Score(P )

Append x to P ′ and add the resulting circular peptide to PeptideList
Re-score each peptide P ′ in PeptideList by matching P ′ against all MSn spectra
Output peptides from PeptideList in the decreasing order of their scores
Algorithm for de novo NRP sequencing.

Assembling MSn spectra. In this section we describe the reconstruction of
cyclic peptides by assembling MSn spectra (rather than just matching MSn spec-
tra against putative interpretations of the MS3 spectrum). MSn spectra are less
likely to contain a mixture of peptides, as opposed to MS3. The only cases of
mixture peptides in MSn is when two fragments of the cyclic peptide have iden-
tical parent masses. In particular, mixed MSn spectra are common if there are
repeated amino acid masses in the cyclic peptide as illustrated in Figure A-1a.
However, MSn spectra are typically of lower quality than MS3 spectra (lower
proportion of b- and y-ions and increased noise) and the assembly result might
not cover the entire cyclic peptide. Therefore, it still remains a challenge to fill
in the gaps where there is low coverage by MSn spectra.

In the absence of noise and in the presence of perfect b- and y- ladders,
pairwise alignment separates b-ions from y-ions [30,26]. However, missing peaks,
noise peaks and mixed MSn spectra result in spurious pairwise alignment that
may confuse the assembly process. Our analysis of Seglitide spectra revealed
that, although we do obtain many correct pairwise alignments, it is not easy to
separate them from spurious alignments. Given that we only generated a limited
amount of mass spectrometry data, we cannot train a rigorous statistical model
to separate true alignments from spurious ones.

NRP-Assembly attempts to combine pairwise alignments into multiple align-
ment by finding pairwise alignments with compatible offsets (see [30]). The triple
alignments (3-contigs) can be constructed from pairwise alignments by adding
a third spectrum that aligns with compatible offsets to both spectra in pair-
wise alignments (Figure A-1b). This process can be iteratively applied to form
larger and larger contigs. In practice, we found that this method works better
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than any score cutoff approach to filter out spurious alignments. For example, a
spurious pairwise alignment ends up in a spurious 3-contig only if there are two
other spurious pairwise alignments with compatible offsets (an unlikely event).
NRP-Assembly constructs contigs of size 5, in which all pairwise alignments
have compatible shifts. A consensus spectrum is constructed from these contigs
and candidate sequences are derived by de novo sequencing. These candidate
sequences are re-scored using the remaining MSn spectra that were not part of
the initial contig.

Results. Figure 3 shows the results of the NRP-Sequencing and NRP-Assembly
algorithm applied to the Seglitide data. The tests were performed in 3 modes
(“known”, “discovered”, and “unknown”) for selecting the alphabet of amino
acid masses for the de novo sequencing stage of the algorithms. Not surpris-
ingly, the best sequencing results are achieved in the computational experiment
when the set of amino acid masses is known - constraining the set of amino acid
masses greatly reduces the number of possible peptides. The number of gen-
erated peptides grows significantly in the “discovered” and “unknown” modes.
Although it was always possible to generate the correct peptide, it turns out that
the correct peptide tends to score lower than some incorrect peptides. However,
the high-scoring incorrect peptides are similar to the correct peptide. The main
reason behind the high-ranking incorrect peptides returned by NRP-Assembly
is the presence of high intensity unexplained peaks in the consensus spectrum
(see Figure 3a), a consequence of the low signal-to-noise ratio in MSn spectra
for n > 3. In addition, both NRP-Sequencing and NRP-Assembly generate large
numbers of putative peptides in the “unknown” mode since in this case the un-
restrained use of amino acid masses, noise peaks, and missing b/y-ions relegate
the correct peptide to low ranks.

While these problems may later be mitigated by a more realistic scoring
scheme, using additional MSn spectra to re-rank all putative de novo peptides
readily singles out the correct de novo peptide. Most surprisingly, the “strength
in numbers” of this MSn-matching approach is discriminating enough to even
select the correct peptide from the large sets of of possible peptides generated
in the “unknown” mode.

The results of NRP-Sequencing and NRP-Assembly applied to a novel pep-
tide (Compound X4) are shown in Figure 4. While the overall shape of the
auto-convolution is similar to Seglitide, the larger set of possible reconstruc-
tions and the slightly larger set of amino acid masses used by the top de novo
sequences are consistent with the larger parent mass of Compound X. In con-
trast with Seglitide, the cyclic peptides recovered by NRP-Sequencing and NRP-
Assembly were mostly but not completely identical: the LNG subpeptide re-
turned by NRP-Sequencing was replaced by MF+6 subpeptide (of the same mass)
in the peptide returned by NRP-Assembly. Nevertheless, the consensus spectrum

4 We name this Compound X for the lack of a better name. Initial NMR experiments
revealed that this cyclic peptide contains the following masses Cyclic(161.08-141.08-
71.04-131.04-163.07-127.10-57.02-113.08)
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Sequencing approach # peptides De novo MSn

rank rank
NRP-Sequencing

known aa masses† 20 1 1
discovered aa masses‡ 290 2 1
unknown aa masses� 173894 23388 1

NRP-Assembly
known aa masses† 60 45 1

discovered aa masses‡ 2793 2203 1
unknown aa masses� 104430 31589 1

Fig. 3. De novo sequencing of Seglitide performed either by self-aligning the MS3 spec-
trum (NRP-Sequencing) or by assembling MSn spectra (NRP-Assembly) as illustrated
on the left. The statistics are given for “known”(†), “discovered”(‡), and “unknown”
(�) modes of generating the alphabet of amino acid masses. The first column shows the
total number of generated peptides; the second column shows the rank of the correct
peptide; the third column shows the rank of a correct de novo sequence after re-ranking
the generated sequences by their match scores to the MSn spectra.

Fig. 4. De novo sequencing of the Compound X. The sequenced spectrum was obtained
by aligning the MS3 spectrum to itself (NRP-Sequencing) or by assembling MSn spectra
(NRP-Assembly). The set of residue masses can (†) be discovered by our approach or
(‡) considered unknown. The first column indicates the total number of generated de
novo sequences; the second column indicates the recovered peptide (modifications are
used in place of the unknown residues of the same mass); the third column shows the
highest rank of a correct de novo sequence after reranking the generated sequences by
their match scores to the MSn spectra.

returned by NRP-Assembly also has strong support for the sequence recovered
by NRP-Sequencing - almost all b-ions are present with intensities well above
the background noise. This support is also evidenced by the fact that the top
NRP-Sequencing peptide achieves rank 12 when generated by NRP-Assembly. In
fact, a closer inspection of the NRP-Assembly consensus spectrum reveals that
the discrepancy between the two methods is caused by a single high intensity
peak. The first sequence recovered by NRP-Assembly that does not use this peak
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is exactly the top sequence returned by NRP-Sequencing. Since the converse
is not true (i.e. the top NRP-Assembly sequence is not generated by NRP-
Sequencing) and high intensity unexplained peaks were also found in the con-
sensus spectrum obtained for Seglitide, one would tend to prefer T+26GLR+5H+4

ALNG (NRP-Sequencing) over T+26GLR+5H+4AMF+6 (NRP-Assembly). In
fact, initial NMR experiments support the result returned by the NRP-
Sequencing algorithm. We further note that the analysis (NRP-Sequencing/
NRP-Assembly) of Seglitide and Compound X took only 3-7 minutes on a reg-
ular desktop computer (Redhat Linux, Pentium IV, 3.2 GHz, 2 Gb RAM).

3 Discussion

There is a catch-22 when it comes to using mass spectrometry for NRP inter-
pretation. On the one hand, there is hardly any MS data for NRPs because
nobody knows how to interpret the spectra automatically, thus providing little
incentive for generating large datasets. On the other hand, absence of MS data
for NRPs slows down development of algorithms for NRP interpretation because
large MS datasets are needed to develop such algorithms. This catch-22 is fur-
ther complicated by the high cost of many NRPs and by the unavailability of
many compounds (often analyzed in the pharmaceutical industry) to academic
researchers. This paper presents a collaboration between bioinformatics, mass
spectrometry, and NMR researchers that tries to break this vicious cycle. While
we acknowledge that the small sample size makes it difficult to estimate how
NRP-Sequencing and NRP-Assembly will perform in larger tests, our work rep-
resents a first attempt to address the problem and may motivate the natural
products community to start generating mass spectrometry data. As has been
the case with de novo sequencing of ribosomal peptides, large MS samples can
be used to derive elaborate statistical models [31,32,33].

Sequencing NRPs adds two fundamental difficulties to the already challeng-
ing task of de novo peptide sequencing: the amino acid masses are not known
in advance and the peptides are cyclic. rather than linear. Current de novo se-
quencing algorithms cannot address these difficulties and standard tandem mass
spectrometry (MS2) provides insufficient information because MS2 simply re-
sults in the linearization of the cyclic peptide. Using additional stages of mass
spectrometry leads to spectra containing either a mixture of masses from all lin-
earized versions of the peptide (MS3 spectrum) or multiple lower-quality spectra
from shorter subpeptides (MSn spectra). Although the theoretical problem of se-
quencing an MS3 spectrum is difficult, we have shown that an alignment-based
heuristic approach works in practice. An alternative approach that may lead
to better results in some cases, is to assemble MSn spectra and derive the pu-
tative peptide sequences from the resulting consensus. Finally, the reliance of
both NRP-Sequencing and NRP-Assembly on the alignment of spectrum masses
indicates that the accuracy and efficiency of both methods should be greatly
increased when applied to high-accuracy mass spectrometry data.
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A Supplementary Materials

A.1 Data Acquisition and Preprocessing

Seglitide was purchased from Aldrich. Compound X was isolated from marine
cyanobacteria. Solutions of Seglitide (20 μM in water) and Compound X (50
μg/mL in 50:49:1 water:methanol:acetic acid) underwent nano-electrospray ion-
ization on a Biversa Nanomate (pressure: 0.3 psi, spray voltage: 1.4-1.8 kV) and
were analyzed on a Finnigan LTQ-MS by running MSn ion-tree experiments
with Tune Plus and Xcalibur software. 1 The mass spectrometry data for Segli-
tide contained 400 scans. The scans were grouped by their parent masses and
merged into a single spectrum per group. The peaks in the merged spectrum
are the average of all peaks in the spectra with the same parent mass. The re-
sulting merged spectra are ranked by their total intensity, defined as the sum of
all the averaged peaks. The resulting 41 spectra were selected as the input for
the NRP-sequencing algorithm. Among the top 41 spectra, there was one MS3

spectrum with parent mass of 808 Da and 40 MSn spectra. The mass spectrom-
etry data for compound X contained 2078 scans, but only 19 different spectra
emerged after merging (one MS3 spectrum with parent mass of 955 Da and 18
MSn spectra). Only the top 15 MSn spectra were chosen as the input for the
NRP-Assembly algorithm for both Seglitide and Compound X.

A.2 Details on NRP-Sequencing

Below we use Seglitide as an example to illustrate the execution of NRP-
Sequencing. We apply the following preprocessing steps before invoking NRP-
Sequencing. Let the L-rank of a peak x be the number of peaks in the interval
[x − L, x + L] with intensity larger or equal to the intensity of x. We remove all
peaks whose L-rank exceeds a threshold γ and make the spectrum S symmetric
by combining S with ParentMass � S = {ParentMass − s : s ∈ S}. For
L = 25 and γ = 10 it results in 140 peaks (as compared to 100 peaks in the
original Seglitide MS3 spectrum).

– Auto-convolution. While we implicitly assume that each of the offsets
x1 . . . xk corresponds to the mass of a single amino acid, it is straightfor-
ward to extend NRP-Sequencing to the case when some of the top peaks
corresponds to the mass of 2 or more amino acids. In practice, offsets from

1 Order: breadth-first; max breadth: 25 for Seglitide, 20 for Compound X; max MSn

depth n=5; additional μ-scans: 2, 4, 8 at n = 3, 4, 5; normalized energy for Seglitide:
40, 20, 20 at n = 3, 4, 5; normalized energy for Compound X: 50, 25, 25 at n =
3, 4, 5; isolation width: 3 for Seglitide, 4 for Compound X; exclusion mass width
low/high: 2/3.
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double/triple masses do not lead to the deterioration of NRP-Sequencing as
long as the masses of all single amino acids are present among the top peaks
(like in the case of Seglitide). For Seglitide, the maximum peak x1 = 85
corresponds to the mass of A+14.

– Auto-alignment. After auto-aligning the MS3 spectrum with offset x, we
construct the consensus spectrum Sx containing only matching masses in the
overlapping portion of the auto-alignment. The resulting consensus spectrum
is scored with the summed intensities of the corresponding matched masses.
For Seglitide, the consensus spectrum Sx1 contains all prefix and suffix (b/y)
ions for the peptide (YWKVF) in the overlapping region.

– De novo peptide sequencing. We solve the de novo peptide sequencing
problem for the consensus spectrum using the anti-symmetric path algo-
rithm. Since for cyclic peptides the set of amino acid masses is not known
in advance we use the top k peaks in auto-convolution as the first approxi-
mation for the masses of amino acids.

After selecting the alphabet, NRP-Sequencing generates all de novo peptide
reconstructions of Sx with scores above p ·Score(P ), where p is a parameter and
P is the highest scoring peptide representing a solution of the de novo peptide
sequencing problem. For Seglitide this approach results in the generation of 290
peptides (in Mode 2 with p = 0.5). NRP-Sequencing further scores each candi-
date peptide by matching all MSn spectra against it. Finally, NRP-Sequencing
reranks cyclic peptides according to their matches to the MSn spectra.

A.3 Details on NRP-Assembly

The NRP-Assembly algorithm is summarized as follows:

– Pairwise spectral alignment. Pairwise spectral alignments are computed
for all pairs of preprocessed MSn spectra by selecting offset maximizing the
number of matching peaks.

– Assembly of pairwise alignments. Assembly into contigs of size k + 1 is
done iteratively by adding an additional spectrum to existing contigs of size
k. The new contig is formed only if the new spectrum has compatible offsets
with the members of the existing contig.

– Consensus Construction. A consensus spectrum is derived for each contig
using a threshold α to filter the peaks. For instance, for a peak to be in the
consensus of Seglitide, we require it to be present in at least α out of all
spectra in the contig. The score of a contig is computed by simply summing
the percent intensity of all the peaks that are used to construct the consensus.
The intensity of each consensus peak is the sum of the peaks that originated
it. The peaks at position 0 and ParentMass of each spectrum in the contig
are directly imported to the final consensus after the spectrum is aligned.

– De novo peptide sequencing. The resulting consensus generally contains
more than just b-ion peaks because of neutral loss peaks and occasionally
noise peaks. De novo sequencing is used to generate all possible peptide
reconstructions from the consensus and these are ranked by matching them
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to the MSn spectra that are not part of the contig, as described in the
previous section (NRP-Sequencing).

A.4 Additional Figures
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Fig.A-1. a) MSn spectra may represent a mixture of various subpeptides, when the
parent masses of two different linear peptides happen to be the same. In particular,
mixed MSn spectra are common if there are repeated amino acid masses in the cyclic
peptide as illustrated by two labeled spectra covering a hypothetical peptide that
contains the subpeptide LCQPSI (mass of L equal to the mass of I). This results in an
MS4 spectrum (bottom) that represents a mixture of these two peptides. b) The three
possible pairwise alignments of three spectra (red, green and blue) in two scenarios.
The offsets of the pairwise alignments are compatible (left) and consequently a contig
of size three is formed. When the given offsets are incompatible (right), no contig is
formed from this triplet.
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metabolic and cellular network towards achieving several goals includ-
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genes and pathways based on known literature information and our ra-
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knowledge that had not been possible to obtain using traditional ap-
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Abstract. In this paper, we propose a pattern-based protein function annotation 
framework, employing protein interaction networks, to predict annotation func-
tions of proteins. More specifically, we first detect patterns that appear in the 
neighborhood of proteins with a particular functionality, and then transfer anno-
tations between two proteins only if they have similar annotation patterns. We 
show that, in comparison with other techniques, our approach predicts protein 
annotations more effectively. Our technique (a) produces the highest prediction 
accuracy of 70-80% precision and recall for different organism specific data-
sets, and (b) is robust to false positives in protein interaction networks. 

1   Introduction 

Discovering protein functions is a major task in computational biology. Despite a 
large number of genome annotation projects, even one of the most well-studied model 
organisms, S. cerevisiae, is reported [SGD] to have more than 3,000 genes, i.e., 40% 
of its genome, with unknown molecular functions.  

Traditionally, in silico protein function annotation is achieved through sequence ho-
mology, which has the following limitations. First, it requires homologs with known 
functions in genome databases. Second, transferring functional assignments between 
proteins with low sequence identity is unreliable [R02, LK03, TS03]. Third, high se-
quence similarity does not necessarily imply function similarity [V05, F06, BL06]. Thus, 
a complementary research direction is to assign functional annotations to proteins (and 
genes) based on biological network information, more specifically, protein interaction 
network information. 

Recently, three distinct network-centric function annotation categories have emerged:  

1. Direct annotation schemes [SUS07] infer protein functions based on functional-
ity prevalent across neighbors of proteins. Examples of such schemes include (a) 
assigning the most frequent function among interaction partners [HN+01, SUF00], (b) 
global assignment that minimizes the number of protein interactions between protein 
pairs that are annotated with different functions [VF+03], (c) probabilistic function 
assignment via graph labeling (binary classification of proteins with respect to exis-
tence or non-existence of a function) [LK03, DT+04], and (d) function assignment via 
propagating functions using links of the network [NJ+05].  
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2. Module-assisted schemes [SUS07] first identify clusters of functionally related pro-
teins based on protein connectivity in the network, and then, assign the most recurrent 
function of a cluster to its members. Major network clustering algorithms [BH06] include 
Markov Clustering [D00] which simulates the flow among network elements, and sepa-
rates clusters by no-flow boundaries; Restricted Neighborhood Search Clustering [KPJ04] 
which minimizes a cost function involving the numbers of intra-cluster and inter-cluster 
edges; Super Paramagnetic Clustering [BWD96] and Molecular Complex Detection 
[BH03] which detect and isolate densely connected regions as clusters.  

3. Pattern-based approaches [KOY06] learn annotation patterns from a network, 
and annotate proteins via the patterns found among neighbors of proteins. Techniques 
such as PST (Probabilistic Suffix Trees) [KOY06] and Correlation Mining [KOY06] 
are in this category. 

Direct and module-assisted annotation schemes have three limitations. 

1. Common annotation assumption: Two interacting proteins are assumed likely to 
share a function. Such an assumption does not hold for all interaction and annotation 
types. For instance, components of a protein complex probably share the functionality of 
the complex, whereas receptor and signal transduction proteins have totally different 
molecular functionalities, despite their physical interactions. To illustrate this, for each 
Gene Ontology (GO) term [GO], we computed the percentage of interactions that the 
term annotates both interaction partners over all interactions of proteins that the term 
annotates. We found that only 18.2%, 18.8%, and 16.5% of GO terms annotate both 
interaction partners in yeast interactome for molecular function, biological process, and 
cellular component ontologies, respectively. Moreover, these percentages increase to 
25.8%, 39.8%, and 43.6% for the top 100 most frequent GO terms, and to 37.8%, 68.9%, 
and 83.8% for the top 10 most frequent GO concepts in molecular function, biological 
process, and cellular component ontologies (after eliminating the root terms), respec-
tively. These percentages indeed explain why direct and module-assisted annotation 
schemes work well only for “informative”, i.e., frequently assigned, function annotations 
[ZKW02, DT+04], and that accuracy of these techniques are usually presented for only 
the biological process ontology (vs. molecular function ontology) [SUS07]. 

2. Connected network assumption: Annotations are transferred between proteins 
through interaction paths. This implies that annotation transfer is prevented when 
there are gaps (i.e., disconnected protein pairs) in interaction networks, and the accu-
racy of such methods reduce dramatically when the network has several disjoint com-
ponents. Accuracy of many direct and module-assisted annotation schemes are evalu-
ated only on the largest component of the interactome [NJ+05, SUS07].  

3. Underutilized cross-species information: Direct annotation methods aim ge-
nome-scale functional annotation using network data from single species, and are 
unable to utilize richly annotated network of a model organism to assign functions to 
a newly sequenced organism. Module-assisted methods can utilize cross-species data; 
however, they do not offer any annotation prediction for a protein which is not part of 
a frequent protein interaction motif conserved among several organisms. 

In this paper, we develop and evaluate a new pattern-based function annotation 
framework. Our goal is to assign GO terms to non-annotated proteins in a given pro-
tein interaction network. Proteins within some distance from a given protein U, and 
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their interactions with each other, form a network fragment, namely, the P-P (protein-
protein) neighborhood of protein U.  When, in a P-P neighborhood, proteins are  
replaced by their annotations, we have a domain transformation from proteins to func-
tional annotations, resulting in an annotation neighborhood. We use the frequently-
referred observation [LR+02, MS+02, OM+02, BL04, KGS04, Ki04, TL+04, YL+04, 
SS+05, PK+07] that proteins that are assigned the same GO term usually have similar 
annotation neighborhoods as follows. For each GO term t, we form a set St of annota-
tion neighborhoods of proteins that the term t annotates. The set St represents consen-
sus information of annotation neighborhoods related to the GO term t. Finally, we 
provide a pairwise graph alignment algorithm that measures the similarity between an 
annotation neighborhood and neighborhood set of a GO term. We then assign to the 
non-annotated protein U the GO term whose annotation neighborhoods are the most 
similar to the annotation neighborhood of U. 

Example 1.1. In Figure 1.1, P1 to P6 denote proteins, and lower case letters represent GO 
terms. Graphs in A and B are protein neighborhoods of proteins P1 and P4, respectively. 
Transforming the protein neighborhoods into (protein) annotation neighborhoods, we 
obtain the graphs in C and D. E and F are annotation neighborhoods of the term a, and 
are extracted from C and D by updating their roots. 

 

Fig. 1.1. Protein neighborhood and annotation neighborhood examples 

Our pattern-based annotation scheme has unique features in comparison with direct 
and module-assisted annotation schemes. 

1. Collective evidence: To assign the functionality F to protein U, annotation 
neighborhood of U needs to significantly overlap with the annotation neighborhoods 
of F (i.e., annotation neighborhoods of proteins annotated by F). In other (direct and 
module-assisted) schemes, a single interaction is sometimes misleadingly employed 
as evidence for annotation transfer. 

2. Utilization of disjoint network components: Annotations are transferred between pro-
teins through annotation neighborhood similarity; thus two proteins do not need to be 
connected in a protein-protein (PP) network in order to relate one annotation to another. 

3. Utilization of cross-species network information: Cross-species network infor-
mation can be utilized, since annotation neighborhoods of a GO term may be ex-
tracted from a well-known organism to annotate a newly sequenced one.  

On the negative side, discovery and storage of patterns can be expensive for some 
instances. For example, the PST technique [KOY06] involves only sequential patterns 
(vs. graph patterns), restricts the number of protein functions to a certain number, and 
is trained via random sampling (vs. employing the complete dataset) since there are 
exponential numbers of sequential patterns in a network. In this paper, we employ 
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patterns more complex than sequences, namely, annotation graphs. In addition, this 
new approach can work with a large number of annotations.    

The rest of the paper is organized as follows. Section 2 presents details of our 
methodology. In Section 3, we experimentally evaluate our proposed approach, i.e., 
the pattern-based function annotation technique. Finally, Section 4 discusses and 
summarizes our results. 

2   Methods 

2.1   Protein Annotation Prediction as a Probabilistic Classification Problem 

Our goal is to assign GO terms to proteins in protein interaction networks. We formu-
late our pattern-based protein function prediction as a (multi-class) classification 
problem: GO terms are classes; proteins are items to be categorized into classes; and 
network information of proteins corresponds to features of items. We denote network 
and annotation information of all proteins by single parameter Γ. 

Def’n. (Protein Interaction Network): Γ = (V, E, ς, W) is a vertex-labeled, edge-
weighted, undirected graph, called  protein interaction network, where V is the set of 
vertices (proteins), E is the set of edges (interactions), ς is a finite alphabet of 
(annotation) terms (from a function vocabulary, e.g., GO), and l(v)={t| t∈ ς}, v∈V. 
Weights of edges are reals: W: <u, v>→(0, 1], u, v∈V, <u,v>∈E. 

Edge weights in Γ represent reliability scores of protein interactions, obtained 
computationally [GR03, SSH03, LD+04, NJ+05].  

We employ a Bayesian classifier that assigns GO terms to proteins, utilizing anno-
tation and interaction information of other proteins. We are interested in computing 
the probability that “protein v is associated with GO term t, with respect to given 
protein interaction network Γ”, namely Prob(t∈l(v) | Γ). We define a scoring function 
ft(v) to be a function of this probability, in order to assign top-k GO terms with highest 
scores to a given protein. Applying Bayes’ rule in log space, we obtain the following: 

F1
t (v) = log[Prob(t∈l(v)|Γ)] = log[Prob(Γ|t∈l(v))] + log[Prob(t∈l(v))] – ln[Prob(Γ)]. (1) 

Since Prob(Γ) is independent of t and v, it has the same value for all GO terms and 
proteins. Thus, we eliminate it from the scoring function: 

F2
t (v) = log[Prob(Γ|t∈l(v))] + log[Prob(t∈l(v))]. (2) 

Thus, the scoring function has been reduced to two factors, namely Prob(t∈l(v)) 
and  Prob(Γ|t∈l(v)). Prob(t∈l(v)) depends only on the GO term t, and the protein that 
the term annotates, namely v. Since v is declared separately from a protein interaction 
network, v can be considered as an arbitrary protein. A protein having one GO term 
annotation does not prevent it from having other GO term annotations [KF+03]. 
Hence, different GO terms independently annotate the same protein. As a result, 
Prob(t∈l(v)) is uniform (for different instances of v), and it can be estimated from a 
given protein interaction network as follows: Prob(t∈l(v)) = nt / nV, where nt is the 
number of proteins that t annotates, nV is the number of all proteins in a given protein 
interaction network.  
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Prob(Γ|t∈l(v)) can be defined as “the likelihood of observing Γ as the protein in-
teraction information of v, given the fact that t annotates v”. Direct estimation of this 
probability from a given protein interaction network is a difficult task due to unknown 
dependencies between interacting proteins, their annotations, and given protein v. We 
approximate this probability by incorporating observations from previous work. The 
function of a protein manifests itself in its neighborhood in the network [SUS07]. In 
previous protein function prediction models, both direct [LK03] and indirect 
[CSW07] neighbors of a protein v (within a short distance) are employed to predict 
functionality of v. On the other hand, distant protein neighbors have little or no effect 
in determining functionality of a protein [KOY06]. As a result, we approximate 
Prob(Γ|t∈l(v)) by employing a subset of the protein interaction network, namely, only 
the annotation neighborhood of v.  

Def’n. (Annotation neighborhood as a rooted graph, rank of vertex): A rooted-graph 
γ = (U, E’, ρ, W’) is obtained from a subgraph  Γ’(V, E, ς, W) of  Γ, by replacing v∈V 
with its label set u=l(v), and designating the label set of  a node in V as the root ρ, i.e., 
U={u | u=l(v), v∈V}, E’ ⊆ U×U, W’: <u1,u2>→(0,1], and ρ in U is the root of γ. Rank 
of a vertex u in rooted-graph γ, namely rank(u, γ), is defined as the distance (i.e., of 
the length of the path with the highest product of edge weights) between u and the 
root ρ. Annotation neighborhood of a protein P is a rooted-graph with root l(P). An 
annotation neighborhood of a GO term t is a rooted-graph γ with root ρ such that the 
label set l(P)-{t} where t∈l(P) replaces l(P). 

Example 2.1. From Figure 1.1,  in protein interaction graphs, vertices have unique 
labels corresponding to protein identifiers. In comparison, in annotation neighborhood 
of a protein, vertices are labeled with sets of GO terms, and, a vertex is not necessar-
ily uniquely identified by its label. In annotation neighborhood of a GO term t, the 
root corresponds to a protein annotated by t, but t is removed from its label set. 

Def’n. (Depth of a graph):  Let γ be an annotation neighborhood graph rooted at ρ, 
and d be the maximum rank of any node in γ, denoted as γρ

d. Then, d is called the 
depth of the rooted graph γρ

d.  

We approximate Prob(Γ|t∈l(v)) by including only a subset of the protein interaction 
network (i.e., an annotation neighborhood), since additional information in the protein 
interaction network other than the annotation pattern of a protein does not signifi-
cantly change its value for some neighborhood of depth d: 

Prob(Γ|t∈l(v)) = Prob(γv
d |t∈l(v)) + εt,v,d (3) 

where εt,v,d is the residual error of the approximation, and is considered to be negligi-
ble.  Prob(γv

d |t∈l(v)) can be described as the likelihood of observing γv
d as an annota-

tion neighborhood of t. In the rest of the paper, we employ a global d value for all 
annotation neighborhoods, and omit d from future definitions. 

The core idea of the paper is that proteins annotated by the same GO term have 
similar annotation patterns. When two proteins A and B have a similar annotation, 
neighboring proteins of A and B, namely NA and NB, are also similar in terms of the 
annotations of proteins in NA and NB [LR+02, MS+02, OM+02, BL04, KGS04, Ki04, 
TL+04, YL+04, SS+05, PK+07]. Given a protein v annotated by GO term t, we want 
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to estimate the “likelihood of observing γv as the annotation neighborhood of v, in a 
situation that the annotation neighborhood information of v is unknown”, namely 
Prob(γv |t∈l(v)). If γv is similar to one of the annotation neighborhoods of t, it is in-
deed likely to observe γv as the annotation neighborhood of v, since annotation of v 
determines its neighborhood. Otherwise, i.e., if γv is not similar to any of the annota-
tion neighborhoods of t, probability of observing γv is close to observing a random 
annotation neighborhood, in other words, the probability becomes very small. There-
fore, we say that Prob(γv |t∈l(v)) is proportional to the similarity of γv to an annotation 
neighborhood of t.  

Annotation neighborhood set St of t can be perceived as consensus information of 
term t. If an annotation neighborhood sub-graph recurs frequently in annotation 
neighborhoods of t in slightly modified forms, the sub-graph is named a conserved 
subgraph. On the other hand, a sub-graph that occurs only in the annotation neighbor-
hood of a particular protein is named a discriminative subgraph. Conserved subgraphs 
are more likely to represent annotation neighborhoods of a GO term than discrimina-
tive subgraphs, therefore Prob(γv |t∈l(v)) should be estimated as the similarity of γv to 
a subgraph conserved among the annotation patterns of t. Let sim be a function that 
detects regions of annotation neighborhoods conserved in a given set St of annotation 
neighborhoods, and measures similarity between annotation neighborhood γv and the set 
St as a real value in the range [0, 1] (i.e., 0 for no similarity, and 1 for exact similar-
ity). Then, we approximate Prob(γv |t∈l(v)) by sim(γv, St). Finally, putting approxi-
mated values back to their places in the discriminative function formula, we obtain 
the following formula: 

F3
t(v) = log[sim(γv, St)] + log [nt / nV] = log [sim(γv, St)] + log [nt] - log [nV]. (4) 

And then, by eliminating the independent term -log[nV] from the formula, we ob-
tain the simplified scoring function: 

ft(v) = log[sim(γv, St)] + log[nt]. (5) 

In the next section, we present our protein annotation prediction algorithm that 
employs ft(v) as the scoring function. 

2.2   Protein Annotation Prediction Algorithm 

First, we give a sketch of our prediction algorithm in Figure 2.1. 

Algorithm 1: Protein Annotation Prediction
Input: Protein interaction network , target protein v, an integer k to obtain top-k predictions, 

an integer d as the depth of annotation neighborhoods.  
Output:  A set T of GO terms as v’s annotations. 
1. Extract sub-graph ’ from  that consists of v, and v’s neighbors within distance d.
2. Construct annotation neighborhood v from the protein graph ’.
3. For every GO term t, place annotation neighborhoods of t into set St.   
4. For each St, compute ft(v) = log[sim( v, St)] + log[nt], and add <t, ft(v)> pair in a scoring table S.
5. Sort S by its scores in descending order. Place top k terms in S into set T, and return T.  

Fig. 2.1. Sketch of our protein annotation prediction algorithm 
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The following section describes the construction of St and the computation of 
sim(γv, St). 

2.3   Computation of Similarity with an Annotation Neighborhood Set 

In this section we describe a procedure to compute the similarity of an annotation 
neighborhood γv to the annotation neighborhood set St of a GO term t. Similarity be-
tween γv and St is maximized when a sub-graph of γv is found to be conserved (i.e., 
recurring in a slightly modified form) among the annotation neighborhoods in St. 
Thus, in order to detect whether a sub-graph of γv  is recurring in St, we need to know 
the correspondence of every vertex and every edge of γv to the vertices and edges of 
annotation neighborhoods in St.  We represent such correspondences by pairwise 
alignments.   

Def’n. (Pairwise alignment): Given two annotation patterns γ1 and γ2, for every pro-
tein u of γ1, pairwise alignment PA(u, γ1, γ2) maps u to a set of vertices in γ2. 

Initially, suppose that annotation neighborhood set St of term t, an annotation neighbor-
hood γv, and pairwise alignments between γv and every annotation neighborhood in St are 
given. We compute the similarity between γv and St as the sum of weights of edges that 
are conserved among annotation neighborhoods of t: 

,  (6) 

where 〈m, n〉 is an edge of γv, W[m, n] is the weight of the edge 〈m, n〉, and 
tot_conserve(〈m, n〉, St) measures how well the edge 〈m, n〉  is conserved among the 
annotation neighborhoods in St: 

.  (7) 

κ is an annotation neighborhood in St, and conserve(〈m, n〉, κ) measures how well 
an edge is conserved in a given annotation neighborhood, and nt is the number of 
annotation neighborhoods of t. Basically an edge 〈m, n〉 is conserved in an annotation 
neighborhood κ if there is an edge 〈p, q〉 where the labels of p and m, and the labels of q 
and n are similar, and weights of edges are also arithmetically close. Suppose that 
GOSim(l(u), l(u′)) computes the GO-based similarity between two label sets (i.e., GO 
terms). Then conserve(〈m, n〉, κ) is defined as follows. 

.
 

(8) 

Finally, similarity between two edges is defined as follows. 

.  (9) 

2.4   GO-Based Similarity 

Similarity between two GO terms (i.e., vertex label symbols) is more than a simple 
binary value corresponding to match or mismatch between GO terms. Intuitively, GO 
terms that annotate a large number of proteins offer little biological insight into the 
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functionality of proteins, whereas GO terms that annotate few proteins are more spe-
cific, yet informative. The probability of observing a GO term t can be stated as 
Prob(t) = nt / nV, where nt is the number of proteins that t annotates, nV is the number 
of all annotated proteins. Then the information content IC(t) of term t is denoted as 
IC(t)=–log(Prob(t)) [CSC07]. In other words, the more specific a GO term is, the 
higher IC value it gets.  

GO annotations of proteins constitute the nodes of the GO ontology; thus, a protein 
with more than one GO annotation will have more than one node in the “induced” GO 
ontology graph.  

Def’n (induced GO ontology graph for a protein): Given a protein P with its multiple 
annotation set S, the induced GO graph consists of those nodes in the GO correspond-
ing to the annotations in S, and all of their ancestors (due to the true path rule which 
states that any protein annotated with the GO term g is also annotated with all the 
terms that are the ancestors of g in the GO ontology).  

The common nodes in two induced GO ontology graphs of two proteins constitute the 
annotation intersection graph of the proteins. The GO ontology graph induced from 
the union of two proteins’ annotations is the annotation union graph of the two pro-
teins. Then the GO-based similarity between two annotation neighborhood vertices is 
expressed as follows. 

GOSim (l(u), l(v)) = GOSim (T1, T2) = Σt∈T1∩T2 IC(t) / Σt∈T1∪T2 IC(t), (10) 

where T1 and T2 denote induced GO graphs of the GO term sets l(u) and l(v) of two 
proteins u and v, respectively. T1∩T2 is the annotation intersection graph, and T1∪T2 
is the annotation union graph of T1 and T2, respectively.  

Example 2.2. In Figure 2.2, from left to right, graph (a) illustrates an example GO term 
hierarchy. Labels of the first graph are GO terms and number of their annotations. 
Graph (b) is the same with the graph (a), but its labels display information contents of 
GO terms corresponding to the frequencies in the first graph. Graphs (c) and (d) are 
annotation intersection and union graphs of annotations T1 and T2, respectively. As a 
result, GOSim({c,d}, {b,f}) = GOSim({a,b,c,d}, {a,b,d,f}) = .72/2.11= .34. 
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b d
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c f

c,d b,f
P1 P2

 

Fig. 2.2. Examples of GO ontology, (a) term frequencies, (b) term information content, (c) 
annotation intersection graph, and (d) annotation union graph 

2.5   Mapping Annotation Neighborhoods Via Pairwise Rooted-Graph 
Alignment 

This section describes our pairwise (graph) alignment algorithm that finds a mapping 
PA from the vertices of one annotation neighborhood to the other. PGA algorithm is 
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employed to provide the pairwise alignment required by annotation neighborhood 
similarity computation (See Section 2.3).  

Given two annotation neighborhoods γ1 and γ2, PGA algorithm aims to find the op-
timal mapping PA from the vertices of γ1 to the vertices of γ2, so that (a) the mapping 
preserves edges as much as possible, i.e., edge 〈m, n〉 in γ1 corresponds to an edge 
〈p∈PA(m), q∈PA(n)〉 in γ2, and (b) the mapping is aware of vertex labels, i.e., value 
of edgesim(〈m,n〉, 〈p∈PA(m), q∈PA(n)〉) is subject to be maximized. Since the graph 
alignment problem is NP-complete [RC77], we have developed an efficient heuristic 
that computes an alignment between given two annotation patterns in quadratic time, 
by ignoring (some) structural properties of annotation neighborhoods. We employ an 
alignment scoring function align(u, v) to find the best matching vertex v in γ2 from a 
given vertex u in γ1.  

Def’n (relationship between annotation neighborhood vertices): Suppose that u is a pro-
tein in the annotation neighborhood γ. For another protein v in γ; u is an ancestor of v if 
rank(u, γ) < rank(v, γ), u is a parent of v if rank(u, γ) = rank(v, γ)-1, u is a successor of v if 
rank(u, γ) > rank(v, γ), u is a child of v if rank(u, γ) = rank(v, γ)+1, and u is a sibling of v  
if rank(u, γ) = rank(v, γ). The vertices with highest ranks in an annotation neighborhood 
are called the leaves. 

Let vi and vj be two vertices in different annotation neighborhoods. Also let vm be a 
child of vi, and vn be a child of vj. W[vi, vm] is the weight of edge 〈vi, vm〉. We consider 
three cases for mapping vi to vj: 

Case 1: vi is mapped to vj, and their children are mapped to each other, recursively. In 
this case, label similarity GOSim(vi, vj) is directly added to the alignment score. Every 
child vm of vi is mapped to a child vn of vj. For each child vm of vi, we find the child vn 
of vj that gives the best alignment score: 

Case 2: vi is mapped to a child vn of vj. Since this case skips a vertex (i.e., vj) and maps 
vi to a protein with higher rank, we penalize the alignment score by some factor Φ. 

Case 3: vj is mapped to a child vm of vi. This step is the same with Case 2 by exchang-
ing vi and vj. 

Note that we require two root vertices to be aligned by case 1 only, so that one of 
them is not aligned on a child of the other even when it would generate a higher 
alignment score. This constraint ensures that the roots of the annotation neighbor-
hoods of a GO term correspond to each other. 

During the alignment of annotation neighborhoods, alignment of the same sub-
graph pairs may be repeated several times. To prevent re-computations of alignments, 
we apply a bottom-up dynamic programming approach, and compute align(u,v) with-
out recursion. Our alignment algorithm is shown in Figure 2.3. 

The alignment algorithm finds alignment scores for all pairs of vertices in the input 
annotation neighborhoods. We employ the bottom-up dynamic programming ap-
proach, i.e., we start computing the alignment scores of leaf vertices, and then con-
tinue iteratively aligning vertices with higher ranks, and finally aligning the roots. 
During the alignment of two vertices vi and vj, only the children of vi and vj whose 
alignment scores are already computed at a previous iteration contribute to the  
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alignment score of vi and vj. As a heuristic, we ignore edges between siblings, and do 
not consider ancestors of vertices while computing the alignment score. Edges be-
tween siblings do not connect any vertex to the root via some shortest path. Employ-
ing only the shortest path edges to represent functional relationship between genes 
and proteins is a common approach [Wag01, ZCA07]. As a result, our algorithm 
requires O(|γ1| × |γ2| × ε2) (where ε is the expected number of a vertex’s children)  
space and time to find an optimal mapping producing the highest alignment score. 
Note that there may be different alignments with the same maximum score. Our algo-
rithm arbitrarily generates one of the optimal alignments. 

Algorithm 2: Pairwise Annotation Neighborhood Alignment

2, 1) between vertices of 1 and 2, and 2

atrices M, C, and D of size | 1|  | 2|, where | 1| and | 2| are number of 

 right hand corner in the matrix: 

, //case 1 
of vj

2 (or 3) 

 = 
. // roots are being aligned. 

else .

n(vi,vj) = align1(vi,vj) then Ci,j = true //if case 1 alignment  
i,j is the list of mappings between children of vi and vj.

vj ) 
vn of vi ) 

atrices, and find vertex mappings that result in the highest alignment 

 not empty do 

ings PA(v , , 2)  vn, and PA(vn, 2, 1) vm.

, 2, 1).

Input: Two annotation neighborhoods 1 and 2.
Output:  Two mappings PA(vm, 1, 2) and PA(vn,
and 1, respectively. 
1. Prepare three m

vertices in input annotation patterns 1 and 2, respectively. Each entry of M, C, and D is a 
real number corresponding to alignment scores, a binary value corresponds whether the 
alignment is done via case 1, and a list of integer pairs that correspond to mapped children. 
Rows and columns of these matrices correspond to vertices of annotation neighborhoods 
ordered by their distances to the roots. 

2. Fill matrices by starting from the lower
        for i = | 1| downto 1 do
            for j = | 2| downto 1 do                                 
               
                    where vm is a child of vi and vn is a child 
               ,  // case 
                   where vm is a child of vi and vn is a child of vj

                       

                if (i=1, j=1) then
                
                Mi,j = align(vi,vj)
                if alig
                if (Ci,j=true) then D
                else Di,j is assigned the following: //case 2 or case 3 alignments 
                   if align(vi,vj) = align2(vi,vj), Di,j = {<i,m>} (i.e., vi is mapped to child vm of 

d to child                    else if align(vi,vj)= align3(vi,vj), Di,j = {<n,j>} (i.e., vj is mappe
            end for // j loop 
        end for // i loop 
3. Trace back the m

scores. 
        Push vertex pair <1,1>, i.e., mapping of roots, to stack Q. 
        while Q is
            Pop a vertex mapping <m,n> from Q. 
            if (Cm,n) then add mapp m 1
            Push all vertex pairs in Di,j to Q. 
        end while // while loop 
4. Return PA(vm, 1, 2), and PA(vn

 

Fig. 2.3. Sketch of our pairwise annotation neighborhood alignment algorithm 
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3   Results 

3.1   Data Preparation 

For our experiments, we built protein interaction networks from organism-specific 
protein interaction information provided by the BioGrid database [SB+06]. We em-
ployed three datasets, namely YEAST (Saccharomyces cerevisiae), WORM (Caenor-
habditis elegans), and FLY (Drosophila melanogaster). YEAST, WORM, and FLY 
datasets contain 5197, 2778, and 7542 proteins, and 70772, 4351, and 25325 interac-
tions, respectively. In addition, we employed the dataset of Lee et al. [LR+02] to 
assign weights to interactions in the YEAST dataset. We downloaded GO annotations 
of proteins from the gene ontology website [GOW]. 

3.2   Measuring Prediction Accuracy 

Having prepared the datasets, we evaluated our pattern-based annotation prediction 
(PAP) method. We compare our method to the correlation mining (CM) technique 
[KOY06] and the neighbor counting (NC)  technique [SUF00]. CM method is chosen 
to illustrate how much improvement is gained by the utilization of additional 
neighborhood information, since CM employs only direct neighbors of proteins, and 
is shown to have reasonable accuracy in comparison with other methodologies 
[KOY06]. NC method is chosen as a baseline in order to contrast with its assumption 
that interacting protein pairs have common annotations [SUF00].  Given a protein 
interaction network, and annotations of proteins, these techniques generate a predic-
tion set of GO terms that are likely to annotate a target protein. We evaluate the pre-
diction accuracy of each technique via cross-validation. We remove annotations of 
each protein (with known annotations), and then run one of these techniques on the 
protein interaction network to obtain a prediction set P for the protein. Then, we com-
pare P with the true annotation set T of the protein, and compute the precision and 
recall of the predictions. To achieve high prediction accuracy, the technique should 
have high precision and recall values. Since there is a tradeoff between having high 
precision and high recall, we evaluate the accuracy of different techniques by the F-
values of predictions, instead.  We employ the standard definitions of precision and 
recall [KOY06], and F-value is defined [SBH97] as the harmonic mean of precision 
and recall of a prediction set.  

For NC, CM, and our technique PAP, we computed the F-values of GO term pre-
dictions on FLY, WORM, and YEAST datasets. For this experiment, we generate 
annotation neighborhoods of depth 1, i.e., we consider only the first level neighbor-
hood of proteins. Impact of different depth values on the prediction accuracy are 
evaluated in Section 3.5.  

We computed the F-value for each k value in top-k prediction tests. To sum up the 
prediction results, for each individual protein, we picked the k value that produces the 
highest F-value for that protein. Therefore F-values of techniques represent the high-
est possible accuracy of the technique, rather than the accuracy specific to the value of 
k. In table 3.1, we list the F-values of NC, CM, and PAP techniques on three  
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different datasets, employing the molecular functionality GO annotations of proteins. 
Our method PAP performs better than NC and CM, in FLY and WORM datasets. In 
the YEAST dataset, although F-values are very close to each other, best prediction 
accuracy is obtained by the NC method.  

In this experiment, we also merged data from the three species to observe how the 
prediction accuracy changes. We tested each technique on FLY+YEAST and 
FLY+YEAST+WORM (ALL) combinations, using molecular function annotations 
only. See Table 3.2 for the results of this experiment. The accuracy of our method 
does not decrease by the integration of cross-species information. In comparison, 
accuracies of NC and CM techniques decrease. Next, we employ the FLY dataset, and 
test the three techniques for different k values (picking the top k GO terms with high-
est scores). See Figure 3.3 for a plot of F-values against increasing values of k. Our 
method generates F-values higher than NC and CM techniques for every value of k, 
except k =1. 

3.3   Ontology Comparison 

Next, we test the accuracy of PAP, NC, and CM techniques on FLY and WORM 
datasets for Biological Process (BP), Molecular Function (MF), and Cellular Compo-
nent (CC) sub-ontologies of GO. Tables 3.4(a-c) display the results of this experi-
ment. We find that all three techniques produce best results on the CC ontology. We 
explain this observation as follows. Protein-protein interactions usually occur in the 
same cellular location; therefore protein interaction partners are usually annotated by 
the same CC annotations. Direct annotation methods (e.g., NC), can correctly transfer 
a CC term from an interaction partner of a protein. Similarly, our technique also pro-
duces its most accurate annotations for the CC ontology. An exception is the FLY 
dataset, where our method performs better with MF ontology in comparison with BP 
and CC ontologies. In FLY and WORM datasets, our method annotates MF terms 
better than NC and CM techniques. In these datasets, MF terms are not frequently 
annotated to both partners of interactions (low accuracy of NC) and the only way of 
correctly predicting an MF annotation is to propagate it from a distant (or discon-
nected) protein via annotation neighborhood similarity (see Section 2.1). An excep-
tion to this is the YEAST dataset, which has the largest number of interactions per 
protein (in comparison with FLY and WORM datasets); therefore annotation 
neighborhoods of sticky proteins (i.e., proteins with a large number of interactions) 
generate noise. 

Table 3.1. Comparison of NC, CM and PAP 
on different organism specific interaction 
datasets 

 FLY WORM YEAST 
NC 39.6% 41.3% 80.7% 
CM 54.2% 55.8% 76.3% 
PAP 70.7% 79.2% 78.3%  

Table 3.2. Accuracy of NC, CM, and PAP in 
cross-species interaction datasets. 

 FLY+YEAST ALL 
NC 74.7% 70.0% 
CM 71.9% 68.6% 
PAP 78.3% 78.9%  
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Fig. 3.3. Accuracy of NC, CM, and PAP for 
different values of k in top-k prediction 
experiments 

Table 3.4(a-c). Ontology comparison on FLY 
(a), WORM (b), and YEAST (c) datasets 

FLY MF BP CC 
NC 39.6% 41.5% 46.2% 

CM 54.2% 50.2% 58.6% 
PAP 70.7% 62.7% 60.6% 

 

WORM MF BP CC 
NC 41.3% 44.3% 64.7% 
CM 55.8% 59.2% 80.4% 
PAP 79.2% 84.6% 93.0% 

 

YEAST MF BP CC 
NC 80.7% 79.0% 89.7% 
CM 76.3% 67.6% 86.6% 
PAP 78.3% 91.2% 92.4%  

3.4   Pattern Size and Gap Penalty Factor 

In this experiment we observe how our method performs when we limit the size of 
annotation neighborhoods. We employed the FLY dataset, and MF annotations only. 
When the depths of annotation neighborhoods are limited, we employ only the nodes 
whose ranks are lower than or equal to the depth threshold (i.e., parameter d in Algo-
rithm 1). We limit the maximum number of children that a vertex can have during 
pairwise alignment. When the number of children is limited to a constant number, say 
n, we compute the alignment scores of two nodes by employing their only top-n best 
aligning children. Our results show that increasing the number of children increases 
the accuracy of the method (See Table 3.5). In addition, we observe that increasing 
the depth improves the prediction accuracy (See Table 3.6). Finally when we test the 
impact of the value of Φ, namely the gap penalty factor (see Section 2.5), we find that 
the optimal value of Φ is between 2 and 3 (See Table 3.7). 

Table 3.5. Accuracy of PAP by fixed depth 
(i.e., 1) and varying number of vertex children 

#Children Accuracy 
1 59.8% 
4 70.7% 

10 71.0% 
20 71.2%  

Table 3.6. Accuracy of PAP by fixed number of 
vertex children (i.e., 1) and varying depth 

Depth Accuracy 
1 59.8% 
2 60.3% 
3 62.2% 
4 63.3%  

Table 3.7. Accuracy of PAP by different Φ 
values, when depth = 4, #children =1  

Φ Accuracy 
1 60.5% 
2 63.3% 
3 62.5% 
5 60.4%  

Table 3.8. Robustness of PAP in different per-
turbation conditions 

 WORM FLY 
Original 79.2% 70.7% 
Weights 64.4% 67.4% 
33% pert. 77.1% 72.8% 
67% pert. 66.4% 65.0%  
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3.5   Robustness Test 

Next, we test the robustness of our approach by (a) randomly inserting/deleting inter-
actions, and (b) assigning random weights on edges. Table 3.8 displays at the top row 
the accuracy of our technique on WORM and FLY datasets without any perturbation. 
Second row of this table shows how the accuracy changes when random weights 
between 0 and 1 are assigned to each interaction. Third and fourth rows display re-
sults of our perturbation experiments. We randomly delete an interaction, and insert 
another one between a pair of random proteins (so that the total number of interac-
tions remain unchanged). Perturbation of a fraction (i.e., .33 and .67) of all interac-
tions changes the accuracy as displayed in the third and the fourth rows of Table 3.8. 
We find that the accuracy of our method is not significantly affected by random per-
turbations. Thus, we conclude that our method is robust to false positives in the inter-
action data. More interestingly, the accuracy of our method using the FLY dataset is 
actually improved by perturbation, similar to the results of Chua et al. [CSW07].  

4   Discussion 

In this paper, we have proposed a pattern-based function annotation framework which 
formulates protein function prediction as a (multi-class) classification problem. Es-
sentially, we define a classification function via probabilistic reasoning. Then, we 
translate the protein function prediction task to pattern-detection and pattern-matching 
tasks. We detect annotation neighborhoods, i.e., patterns that appear in the protein 
interaction neighborhood of proteins with a particular functionality. Then we match 
the annotation patterns to neighborhoods of proteins to be annotated. We provide a 
pairwise graph alignment algorithm that ignores some structural elements of annota-
tion neighborhoods in order to reduce the computational complexity of pattern match-
ing. In addition, since we allow a vertex (i.e., a protein) to have more than one label 
(i.e., GO term), pattern matching task gains an additional level of complexity. We 
reduce this complexity by exploiting the GO hierarchy and computing the similarity 
between two label sets in a single operation, rather than comparing every possible 
subset of vertex labels.  

In our experiments, we have applied our methodology to predict annotations of 
proteins from yeast, fly, and worm protein interaction networks. We have shown that 
our approach effectively predicts protein annotations, and performs with better accu-
racy in comparison to the NC and the CM techniques, despite the fact that the accu-
racy of our method reduces in a densely connected network, e.g., the yeast protein 
interaction network. In addition, we have shown that our approach is robust to false 
positives in protein interaction networks. 

5   Related Work 

Our work differs from the previous work in two aspects. First, the previous research 
on protein function prediction focuses on a particular protein function set, and builds 
models based on the direct interactions of proteins [TD+03, SL03, DT+04, SUF00, 
HN+01, VF+03]. In comparison, we process protein interaction network as a whole in 
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order to locate patterns of annotation. We assign a GO term annotation to a protein P 
if the annotation is implied by the existing annotation patterns of proteins that interact 
with P. Our prediction of a GO term requires a statistically significant usage of that 
GO term in a particular pattern, reducing the effects of false interactions/false annota-
tions as long as the corrupt data does not span a major portion of the interaction data, 
causing our framework to generate fake patterns. 

Our method is closely related to alignment-based graph classification approaches 
[WH+07]. Other graph classification methods include kernel-based [KI02], and frequent 
pattern-based [CK+07] classification. Weskamp et al. [WH+07] provides an alignment-
based graph classification methodology to classify a given graph with respect to its 
similarity to consensus of a group of graphs of the same class. Our approach is not clas-
sifying graphs as a whole, but prediction of vertex labels based on the similarity of a 
sub-graph that contain an unclassified vertex, to another sub-graph where labels of ver-
tices are known. In addition, we provide heuristics to reduce the complexity of pairwise 
graph alignments, and we consider multiple vertex labels (i.e., GO terms).  
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Abstract. We developed Græmlin 2.0, a new multiple network aligner
with (1) a novel scoring function that can use arbitrary features of a
multiple network alignment, such as protein deletions, protein duplica-
tions, protein mutations, and interaction losses; (2) a parameter learning
algorithm that uses a training set of known network alignments to learn
parameters for our scoring function and thereby adapt it to any set of
networks; and (3) an algorithm that uses our scoring function to find
approximate multiple network alignments in linear time.

We tested Græmlin 2.0’s accuracy on protein interaction networks
from IntAct, DIP, and the Stanford Network Database. We show that, on
each of these datasets, Græmlin 2.0 has higher sensitivity and specificity
than existing network aligners. Græmlin 2.0 is available under the GNU
public license at http://graemlin.stanford.edu.

1 Introduction

This paper describes Græmlin 2.0, a multiple network aligner with a novel scoring
function, a fully automatic algorithm that learns the scoring function’s parame-
ters, and an algorithm that uses the scoring function to align multiple networks
in linear time. Græmlin 2.0 significantly increases accuracy when aligning pro-
tein interaction networks and aids network alignment users by automatically
adapting alignment algorithms to any network dataset.

Network alignment compares interaction networks of different species [1]. An
interaction network contains nodes, which represent genes, proteins, or other
molecules, as well as edges between nodes, which represent interactions. By
comparing networks, network alignment finds conserved biological modules or
pathways [2,3]. Because conserved modules are usually functionally important,
network alignment research growth [1] has paralleled interaction network dataset
growth [4,5].

Network alignment algorithms use a scoring function and a search algorithm.
The scoring function assigns a numerical value to network alignments—high
values indicate conservation. The search algorithm searches the set of possible
network alignments for the highest scoring network alignment.
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Most network alignment research has focused on pairwise network alignment
search algorithms. PathBLAST uses a randomized dynamic programming algo-
rithm to find conserved pathways [6] and uses a greedy algorithm to find con-
served protein complexes [7]. MaWISh formulates network alignment as a max-
imum weight induced subgraph problem [8]. MetaPathwayHunter uses a graph
matching algorithm to find inexact matches to a query pathway in a network
database [9], and QNet exactly aligns query networks with bounded tree width
[10]. Other network alignment algorithms use ideas behind Google’s PageRank
algorithm [11] or cast network alignment as an Integer Quadratic Programming
problem [12]. Two network aligners can perform multiple network alignment.
NetworkBLAST extends PathBLAST to align three species simultaneously [13].
Græmlin 1.0 can align more than 10 species at once [14].

Scoring function research has focused on various models of network evolution.
MaWISh [8] scores alignments with a duplication-divergence model for protein
evolution. Berg et. al. [15] perform Bayesian network alignment and model net-
work evolution with interaction gains and losses as well as protein sequence
divergences. Hirsh et. al. [16] model protein complex evolution with interaction
gains and losses as well as protein duplications.

Despite these advances, scoring functions still have several limitations. First,
existing scoring functions cannot automatically adapt to multiple network
datasets. Because networks have different edge densities and noise levels, which
depend on the experiments or integration methods used to obtain the networks,
parameters that align one set of networks accurately might align another set of
networks inaccurately.

Second, existing scoring functions use only sequence similarity, interaction
conservation, and protein duplications to compute scores. As scoring functions
use additional features such as protein deletions and paralog interaction conser-
vation, parameters become harder to hand-tune.

Finally, existing evolutionary scoring functions do not apply to multiple net-
work alignment. Existing multiple network aligners either have no evolutionary
model (NetworkBLAST) or use heuristic parameter choices with no evolutionary
basis (Græmlin 1.0).

In this paper, we first present a scoring function that addresses these limita-
tions. We next present an algorithm that uses a training set of known alignments
to automatically learn parameters for our scoring function. We then present an
algorithm that uses our scoring function to perform approximate global net-
work alignment in linear time. Finally, we present benchmarks comparing Græm-
lin 2.0, a new multiple network aligner that includes these three pieces, to existing
network aligners.

2 Methods

2.1 Network Alignment Formulation

The input to multiple network alignment is d networks G1, . . . , Gd. Each network
represents a different species and contains a set of nodes Vi and a set of edges
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Fig. 1. A network alignment is an equivalence relation. In this example, four protein
interaction networks are input to multiple alignment. A network alignment partitions
proteins into equivalence classes (indicated by boxes).

Ei linking pairs of nodes. One common type of network is a protein interaction
network, in which nodes represent proteins and edges represent interactions,
either direct or indirect, between proteins.

A multiple network alignment is an equivalence relation a over the nodes
V = V1 ∪ · · · ∪ Vd. An equivalence relation is transitive and partitions V into
a set of disjoint equivalence classes [14]. A local alignment is a relation over a
subset of the nodes in V ; a global alignment [11] is a relation over all nodes in V .
Figure 1 shows an example of an alignment of four protein interaction networks.

Network alignments have a biological interpretation. Nodes in the same equiv-
alence class are functionally orthologous [17]. The subset of nodes in a local
alignment represents a conserved module [2] or pathway.

A scoring function for network alignment is a map s : A → R, where A is the
set of potential network alignments of G1, . . . , Gd. The global network alignment
problem is to find the highest-scoring global network alignment. The local network
alignment problem is to find a set of maximally-scoring local network alignments.

In this paper, we restrict attention to global network alignment. Many ideas
that apply to global network alignment also apply to local alignment. In addition,
a local alignment algorithm can use global network alignment as a first step and
then segment the global alignment into a set of local alignments [6,7].

2.2 Scoring Function

General Definition. Our scoring function computes “features” [18,19] of a net-
work alignment. Formally, we define a vector-valued feature function f : A → R

n,
which maps a global alignment to a numerical feature vector. More specifically,
we define a node feature function fN that maps equivalence classes to a feature
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vector and an edge feature function fE that maps pairs of equivalence classes to
a feature vector. We then define

f(a) =

⎡

⎢
⎢
⎢
⎢
⎣

∑

[x]∈a

fN ([x])

∑

[x],[y]∈a
[x] �=[y]

fE([x], [y])

⎤

⎥
⎥
⎥
⎥
⎦

(1)

with the first sum over all equivalence classes in the alignment a and the second
sum over all pairs of equivalence classes in a.

Given a numerical parameter vector w, the score of an alignment a is s(a) =
w · f(a). The parameter learning problem is to find w. We discuss our parameter
learning algorithm below.

The feature function isolates the biological meaning of network alignment.
Our learning and alignment algorithms make no further biological assumptions.
Furthermore, one can define a feature function for any kind of network. Our scor-
ing function therefore applies to any set of networks, regardless of the meaning
of nodes and edges.

Implementation for Protein Interaction Networks. We implemented a
feature function that computes evolutionary events. We first describe our fea-
ture function for the special case of pairwise network alignment (the align-
ment of two networks), and we then generalize our feature function to multiple

Given an alignment and a 
phylogenetic tree...

.22.2

.467

.7

.89

Edge features for
each pair of equivalence classes

E. coli V. cholerae C. crescentus H. pylori

Node features for
each equivalence class

C1B2A1 B1

Paralog Mutation
based on (B1,B2) BLAST

bitscore

Edge Deletion
No edge in C. crescentus

Protein Deletion
no protein in H. pylori

Protein Duplication
two proteins in V. cholerae

Protein Mutation
based on BLAST bitscores 
(C1,A1), (C1,B1), (C1,B2)

Paralog Edge Deletion
Edge present in only one of 

two V. cholerae paralogs

Fig. 2. Alignment feature functions compute evolutionary events. This figure shows
the set of evolutionary events that our node and edge feature functions compute. We
use a phylogenetic tree with branch lengths to determine the events. The appendix
gives precise definitions of the evolutionary events.
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network alignment. Figure 2 illustrates the evolutionary events our feature func-
tion computes.

Our pairwise node feature function computes the occurrence of the following
four evolutionary events between the species in an equivalence class:

– Protein deletion is the loss of a protein in one of the two species.
– Protein duplication is the duplication of a protein in one of the two species.
– Protein mutation is the divergence in sequence of two proteins in different

species.
– Paralog mutation is the divergence in sequence of two proteins in the same

species.

Our pairwise edge feature function computes the occurrence of the following
two evolutionary events between the species in a pair of equivalence classes:

– Edge deletion is the loss of an interaction between two pairs of proteins in
different species.

– Paralog edge deletion is the loss of an interaction between two pairs of pro-
teins in the same species.

The value of each event is one if the event occurs and zero if it does not. The
entries in the feature vector are the values of the events.

We take two steps to generalize these pairwise feature functions to multiple
network alignment. First, we use a phylogenetic tree to relate species and then
sum pairwise feature functions over pairs of species adjacent in the tree, including
ancestral species. Second, we modify the feature functions to include evolutionary
distance.

Our pairwise feature functions generalize to ancestral species pairs. We first
compute species weight vectors [20] for each ancestral species. Each species
weight vector contains numerical weights that represent the similarity of each
extant species to the ancestral species. We use these species weight vectors, to-
gether with the proteins in the equivalence class, to approximate the ancestral
proteins in the equivalence class. We then compute pairwise feature functions
between the approximate ancestral proteins. The appendix describes the exact
procedure.

In addition, our pairwise feature functions generalize to include evolutionary
distance. We augment the feature function by introducing a new feature fi × b,
where b is the distance between the species pair, for each original feature fi.
Effectively, this transformation allows features to have linear dependencies on b.
Additional terms such as fi×b2, fi×b3, . . . have more complex dependencies on b.

The appendix contains precise definitions of our feature function, as well as
precise definitions of all evolutionary events.

2.3 Parameter Learning Algorithm

Inputs. Our algorithm to find w requires a training set of known alignments.
The training set is a collection of m training examples; each training example i

specifies a set of networks {G(i) = G
(i)
1 , . . . G

(i)
d } and their correct alignment a(i).
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Our learning algorithm requires a loss function Δ : A × A → R
+. By def-

inition, Δ(a(i), a) must be 0 when a(i) = a and positive when a(i) �= a [21].
Intuitively, Δ(a(i), a) measures the distance of an alignment a from the train-
ing alignment a(i); the learned parameter vector should therefore assign higher
scores to alignments with smaller loss function values.

To train parameters for our feature function, we used a training set of KEGG
Ortholog (KO) groups [22]. Each training example contained the networks from
a set of species, with nodes removed that did not have a KO group. The correct
alignment contained an equivalence class for each KO group.

We also defined a loss function that grows as alignments diverge from the
correct alignment a(i). More specifically, let [x]a(i) denote the equivalence class
of x ∈ V (i) =

⋃
j V

(i)
j in a(i) and [x]a denote the equivalence class of x in a. We

define Δ(a(i), a) =
∑

x∈V (i) |[x]a \ [x]a(i) |, where A \ B denotes the set difference
between A and B. This loss function is proportional to the number of nodes
aligned in a that are not aligned in the correct alignment a(i).

We experimented with the natural opposite of this loss function – the number
of nodes aligned in the correct alignment a(i) that are not aligned in a. As
expected, this alternate loss function resulted in a scoring function that aligned
more nodes. We found empirically, however, that our original loss function was
more accurate.

Theory. We pose parameter learning as a maximum margin structured learning
problem. We find a parameter vector that solves the following convex program
[21]:

min
w,ξ1,...,ξm

λ

2
||w||2 +

1
m

m∑

i=1

ξi

s.t. ∀i, a ∈ A(i),w · f(a(i)) + ξi ≥ w · f(a) + Δ(a(i), a).

The constraints in this convex program encourage the learned w to satisfy a
set of conditions: each training alignment a(i) should score higher than all other
alignments a by at least Δ(a(i), a). The slack variables ξi are penalties for each
unsatisfied condition. The objective function is the sum of the penalties with a
regularization term that prevents overfitting. Given the low risk of overfitting the
few free parameters in our model, we set λ = 0 for convenience. In more complex
models with richer feature sets, overfitting can be substantially more severe
when the amount of training data is limited; employing effective regularization
techniques in such cases is a topic for future research.

We can show [21] that this constrained convex program is equivalent to the
unconstrained minimization problem

c(w) =
1
m

m∑

i=1

r(i)(w) +
λ

2
||w||2 , (2)

where r(i)(w) = maxa∈A(i)

(
w · f(a) + Δ(a(i), a)

)
− w · f(a(i)).
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This objective function is convex but nondifferentiable [21]. We can therefore
minimize it with subgradient descent [23], an extension of gradient descent to
nondifferentiable objective functions.

A subgradient of equation (2) is [21]

λw +
1
m

m∑

i=1

(
f(a(i)

∗ ) − f(a(i))
)
,

where a
(i)
∗ = arg maxa∈A(i) w · f(a) + Δ(a(i), a) is the optimal alignment, deter-

mined by the loss function Δ(a(i), a) and current w, of G(i).

Algorithm. Based on these ideas, our learning algorithm performs subgradient
descent. It starts with w = 0. Then, it iteratively computes the subgradient g
of equation (2) at the current parameter vector w and updates w ← w − αg,
where α is the learning rate. The algorithm stops when it performs 100 iterations
that do not reduce the objective function. We set the learning rate to a small
constant (α = 0.05).

The algorithm for finding argmaxa∈A(i) w · f(a) + Δ(a(i), a) is the inference
algorithm. It is a global alignment algorithm with a scoring function augmented
by Δ. Below we present an efficient approximate global alignment algorithm that
we use as an approximate inference algorithm.

Our learning algorithm has an intuitive interpretation. At each iteration it uses
the loss function Δ and the current w to compute the optimal alignment. It then
decreases the score of features with higher values in the optimal alignment than
in the training example and increases the score of features with lower values in

Learn({G
(i)
1 , . . . , G

(i)
d , a(i)}m

i=1 : training set , α : learning rate , λ : regularization )
1 var w ← 0 // the current parameter vector
2 var c∗ ← ∞ // a measure of progress
3 var w∗ ← w // the best parameter vector so far
4 while c∗ updated in last 100 iterations
5 do
6 var g ← 0 // the current subgradient
7 var c = 0 // the current objective function
8 for i = 1 : m
9 do // sum over all training examples

10 var a
(i)
∗ = Align(G

(i)
1 , . . . , G

(i)
d ,w, Δ)

11 g ← g + f(a(i)
∗ ) − f(a(i)) // update the subgradient

12 c ← c + w · f(a(i)
∗ ) + Δ(a(i), a

(i)
∗ ) − w · f(a(i)) // update the margin

13 g ← 1
m

g − λw; c ← 1
m

c + λ
2 ||w||2 // add in regularization

14 if c < c∗
15 then
16 c∗ ← c;w∗ = w // update the best parameter vector so far
17 w ← w − αg // update current parameter vector
18 return w∗

Fig. 3. Our parameter learning algorithm
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the optimal alignment than in the training example. Figure 3 shows our learning
algorithm.

Our learning algorithm also has performance guarantees. If the inference al-
gorithm is exact, and if the learning rate is constant, our learning algorithm
converges at a linear rate to a small region surrounding the optimal w [24,21].
A bound on convergence with an approximate inference algorithm is a topic for
further research.

2.4 Global Alignment Algorithm

Our global alignment algorithm serves two roles. It finds the highest scoring
global alignment once the optimal parameter vector has been learned, and it
performs inference as part of our learning algorithm.

We implemented a local hillclimbing algorithm for global alignment [25]. Our
alignment algorithm is approximate but efficient in practice. It requires that the
alignment feature function decomposes into node and edge feature functions as
in equation (1).

Our alignment algorithm (Figure 4) iteratively performs updates of a current
alignment. The initial alignment contains every node in a separate equivalence
class. Our algorithm then proceeds in a series of iterations. During each iteration,
it processes each node and evaluates a series of moves for each node:

– Leave the node alone.
– Create a new equivalence class with only the node.
– Move the node to another equivalence class.
– Merge the entire equivalence class of the node with another equivalence class.

For each move, our algorithm computes the alignment score before and after
the move and performs the move that increases the score the most. Once our
algorithm has processed each node, it begins a new iteration. It stops when an
iteration does not increase the alignment score.

Our alignment algorithm performs inference as part of our learning algorithm.
It can use any scoring function that decomposes as in equation (1). Therefore,
to perform inference, we need only augment the scoring function with a loss
function Δ that also decomposes into node and edge feature functions. The loss
function presented above has this property.

Our alignment algorithm depends on the set of candidate equivalence classes
to which processed nodes can move. As a heuristic, it considers as candidates
only equivalence classes with a node that has homology (BLAST [26] e-value
< 10−5) to the processed node.

Our alignment algorithm also depends on the order in which it processes
nodes. As a heuristic, it uses node scores—the scoring function with the edge
feature function set to zero—to order nodes. For each node, our algorithm com-
putes the node score change when it moves the node to each candidate equiv-
alence class. It saves the maximum node score change for each node and then
considers nodes in order of decreasing maximum node score change.

In practice, our alignment algorithm runs in linear time. To align networks
with n total nodes and m total edges, our algorithm has b iterations that each
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Align(G1, . . . , Gd : set of networks ,w : parameter vector , Δ : optional loss function )
1 var a ← an alignment with one equivalence class per node
2 while true
3 do
4 var δt = 0 // the total change in score of this iteration
5 for each node p ∈

S
i Gi

6 do
7 var δ∗ ← 0 // best score
8 var o∗ ← undef // best move
9 for each move o of node p

10 do
11 var at ← o(a) // alignment after move o
12 δ ← w · f(at) + Δ(at) −

`
w · f(a) + Δ(a)

´
// change in score after move o

13 if δ > δ∗

14 then
15 δ∗ = δ; o∗ = o // new best move
16 a ← o∗(a) // do best move on alignment
17 δt ← δt + δ∗ // update total change in score of this iteration
18 if δt = 0
19 then break
20 return w

Fig. 4. Our global alignment algorithm

process n nodes. For each node our algorithm computes the change in score
when it moves the node to, on average, C candidate classes. Because the feature
function decomposes as in equation (1), to perform each score computation our
algorithm needs only to examine the candidate class, the node’s old class, and the
two classes’ neighbors. Its running time is therefore O(bC(n + m)). Empirically,
b is usually a small constant (less than 10). While C can be large, our algorithm
runs faster if it only considers candidate classes with high homology to the
processed node (BLAST e-value 	 10−5.)

3 Results

Experimental Setup. We tested our aligner on three different network datasets:
IntAct [27], DIP [28], and the Stanford Network Database [29] (SNDB). We ran
pairwise alignments of the human and mouse IntAct networks, yeast and fly DIP
networks,Escherichia coli K12 andSalmonella typhimurium LT2SNDBnetworks,
and E. coli and Caulobacter crescentus SNDB networks. We also ran a three-way
alignment of the yeast, worm, and fly DIP networks, and a six-way alignment of
E. coli, S. typhimurium, Vibrio cholerae, Campylobacter jejuni NCTC 11168, He-
licobacter pylori 26695, and C. crescentus SNDB networks.

We used KO groups [22] for our alignment comparison metrics. To compute
each metric, we first removed all nodes in the alignment without a KO group
and we then removed all equivalence classes with only one node. We then defined
an equivalence class as correct if every node in it had the same KO group.

To measure specificity, we computed two metrics:

1. the fraction of equivalence classes that were correct (Ceq)
2. the fraction of nodes that were in correct equivalence classes (Cnode)
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To measure sensitivity, we computed two metrics:

1. the total number of nodes that were in correct equivalence classes (Cor)
2. the number of equivalence classes that contained k species, for k = 2, . . . , n

We used cross validation to test Græmlin 2.0. For each set of networks, we
partitioned the KO groups into ten equal sized test sets. For each test set, we
trained Græmlin 2.0 on the KO groups not in the test set as described in the
Methods section. We then aligned the networks and computed our metrics on
only the KO groups in the test set. Our final numbers for a set of networks were
the average of our metrics over the ten test sets.

To limit biases we used cross validation to test all aligners. For aligners other
than Græmlin 2.0 we aligned the networks only one time. However, we did not
compute our metrics on all KO groups at once; instead, we computed our metrics
separately for each test set and then averaged the numbers.

As a final check that our test and training sets were independent, we com-
puted similar metrics using Gene Ontology (GO) categories [30,13] instead of
KO groups. We do not report the results of these tests because they showed no
change in the relative performance of the aligners.

We compared Græmlin 2.0 to the local aligners NetworkBLAST1 [13], MaW-
ISh [8], and Græmlin 1.0 [14], as well as the global aligner IsoRank [11] and
a global aligner (Græmlin-global) that used our new alignment algorithm with
Græmlin 1.0’s scoring function.

While we simultaneously compared Græmlin 2.0 to IsoRank and Græmlin-
global, we compared Græmlin 2.0 to each local aligner separately. Local aligners
may have lower sensitivity than global aligners simply because local aligners
only consider nodes in conserved modules while global aligners consider all nodes.
Therefore, for each comparison to a local aligner, we removed equivalence classes
in Græmlin 2.0’s output that did not contain a node in the local aligner’s output.

Performance Comparisons. Table 1 shows that Græmlin 2.0 is the most
specific aligner. Across all datasets, it produces both the highest fraction of
correct equivalence classes as well as the highest fraction of nodes in correct
equivalence classes.

Table 2 shows that Græmlin 2.0 is also the most sensitive aligner. In the SNDB
pairwise alignments, Græmlin 2.0 and IsoRank produce the most number of
nodes in correct equivalence classes. In the other tests, Græmlin 2.0 produces
the most number of nodes in correct equivalence classes.

Figure 5 shows that Græmlin 2.0 also finds more cross-species conservation
than Græmlin 1.0 and Græmlin-global. Relative to Græmlin 1.0 and Græmlin-
global, Græmlin 2.0 produces two to five times as many equivalence classes with
four, five, and six species.

1 We used the latest C++ version of NetworkBLAST available at the time of writing,
dated Dec. 1, 2007. For the eukaryotic networks, the number of homologs was too
large for this version, so we used an older Java implementation, NBlast-0.5. On the
SNDB data, the two versions produced virtually identical results.
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Table 1. Græmlin 2.0 has higher specificity. As described in the text, we measured
the fraction of correct equivalence classes (Ceq) and the fraction of nodes in correct
equivalence classes (Cnode). We compared Græmlin 2.0 (Gr2.0) to NetworkBLAST
(NB), MaWISh (MW), Græmlin 1.0 (Gr), IsoRank (Iso), and Græmlin-global (GrG).
Abbreviations: eco = E. coli ; stm = S. typhimurium; cce = C. crescentus; hsa = human;
mmu = mouse; sce = yeast; dme = fly.

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way

Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode

Local aligner comparisons

NB 0.77 0.49 0.78 0.50 – – 0.33 0.06 0.39 0.14 – –
Gr2.0 0.95 0.94 0.79 0.78 – – 0.83 0.81 0.58 0.58 – –

MW 0.84 0.64 0.77 0.54 – – 0.59 0.36 0.45 0.37 – –
Gr2.0 0.97 0.96 0.77 0.76 – – 0.88 0.86 0.90 0.91 – –

Gr 0.80 0.77 0.69 0.64 0.76 0.67 0.59 0.53 0.33 0.29 0.23 0.15
Gr2.0 0.96 0.95 0.82 0.81 0.86 0.85 0.86 0.84 0.61 0.61 0.57 0.57

Global aligner comparisons

GrG 0.86 0.86 0.72 0.72 0.80 0.81 0.64 0.64 0.68 0.68 0.71 0.71
Iso 0.91 0.91 0.65 0.65 – – 0.62 0.62 0.63 0.63 – –

Gr2.0 0.96 0.96 0.78 0.78 0.87 0.87 0.81 0.80 0.73 0.73 0.76 0.76

Table 2. Græmlin 2.0 has higher sensitivity. We measured the number of nodes in
correct equivalence classes (Cor), as described in the text. To show the number of
nodes considered in each local aligner comparison, we also measured the number of
nodes aligned by each local aligner (Tot). Methodology and abbreviations are the same
as in Table 1.

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way
Cor Tot Cor Tot Cor Tot Cor Tot Cor Tot Cor Tot

Local aligner comparisons

NB 457
1016

346
697

–
–

65
1010

43
306

–
–

Gr2.0 627 447 – 258 155 –

MW 1309
2050

458
841

–
–

87
241

10
27

–
–

Gr2.0 1611 553 – 181 20 –

Gr 985
1286

546
847

1524
2287

108
203

35 122 27
180

Gr2.0 1157 608 2216 151 75 86
Global aligner comparisons

GrG 1496
–

720
–

2388
–

268
–

384
–

564
–Iso 2026 1014 – 306 534 –

Gr2.0 2024 1012 3578 350 637 827

These results suggest that a network aligner’s scoring function is more impor-
tant than its search algorithm. Græmlin 2.0 performs better than existing align-
ers, despite its simple search algorithm, because of its accurate scoring function.
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Fig. 5. Græmlin 2.0 finds more cross-species conservation. We counted the number of
equivalence classes that contained k species for k = 2, 3, 4, 5, 6 as described in the text.
We compared Græmlin 2.0 (Gr2.0) to Græmlin 1.0 (Gr) and a global aligner (GrG)
that used our new alignment algorithm with Græmlin 1.0’s scoring function. We ran
the six-way alignment described in the text.

For pairwise alignment, Græmlin 2.0, MaWISh, Græmlin 1.0, and Græmlin-
global each ran for less than a minute, while NetworkBLAST and IsoRank ran
for over an hour. For each pairwise alignment training run, Græmlin 2.0 ran for
under ten minutes. On the six-way alignment, Græmlin 2.0, Græmlin 1.0, and
Græmlin-global each ran for under three minutes, and Græmlin 2.0 trained in
under forty-five minutes.

4 Discussion

In this paper we presented Græmlin 2.0, a multiple network aligner with a new
feature-based scoring function, an algorithm that automatically learns the scor-
ing function’s parameters, and an algorithm that uses the scoring function to
approximately align multiple networks in linear time. We implemented Græm-
lin 2.0 for protein interaction network alignment, with a feature function that
computes evolutionary events. Græmlin 2.0 has higher accuracy than existing
network alignment algorithms across multiple network datasets.

Græmlin 2.0 allows users to easily apply network alignment to their network
datasets. Our learning algorithm automatically learns parameters specific to
any set of networks. In contrast, existing alignment algorithms require manual
recalibration to adjust parameters to different datasets.

Græmlin 2.0 also extends in principle beyond protein interaction network
alignment. As more experimental data gathers and network integration algo-
rithms improve, network datasets with multiple data types will appear, such as
regulatory networks with directed edges and metabolic networks with chemi-
cal compounds [31]. With redefined feature functions, our scoring function and
parameter learning algorithm apply to these kinds of networks.

Future research can analyze our learning algorithm. In particular, Græm-
lin 2.0 might yield better results with a different learning rate or more robust
convergence criteria.
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Future research can also extend our approach to local alignment. One option is
to segment a global alignment into a set of local alignments. With an appropriate
feature function and inference algorithm, our learning algorithm can learn a
scoring function for segmentation.
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A Feature Function Definition

This section presents precise definitions of our feature function and the evolu-
tionary events that our feature function computes.

We define evolutionary events for possibly ancestral species. We assume that
we have n extant species 1, . . . , n and m ancestral species n + 1, . . . , n + m,2 all
related by a phylogenetic tree.

Each species i ∈ [1 : n + m] is represented by a species weight vector si ∈
R

n, where
∑n

j=1 si
j = 1 and si

j represents the similarity of species j ∈ [1 : n]
to species i. We can use a phylogenetic tree to compute the weight vectors
efficiently [20,32]. Each extant species j ∈ [1 : n] has a species weight vector
[sj

1 = 0, . . . , sj
j−1 = 0, sj

j = 1, sj
j+1 = 0, . . . , sj

n = 0].

We denote an equivalence class [x] as a set of proteins
⋃n

i=1 Π
[x]
i , where Π

[x]
i

is the projection of [x] to species i.

A.1 Node Feature Function

We compute the node feature function fN for an equivalence class [x] as follows.
First, we compute events for species r at the phylogenetic tree root.

Protein Present. We define p ∈ R
n as pi = 1 if Π

[x]
i �= ∅ and 0 otherwise.

– fN
1 = sr · p is the probability that species r has a protein in [x].

– fN
2 = 1 − sr · p is the probability that species r does not have a protein in

[x].

Protein Count. We define c ∈ R
n as ci = |Π [x]

i |, the number of proteins that
species i has in [x].

– fN
3 = sr ·c

sr·p is the expected number of proteins species r has in [x], given that
r has a protein.

– fN
4 = (fN

3 )2

The protein present and protein count features describe the most recent common
ancestor of the extant species in the equivalence class.

Next, we compute events for all pairs of species i, j ∈ [1 : n+m], i �= j adjacent
in the tree.
2 In the appendix, the symbols n and m have different meanings than in the main

text.
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Protein Deletion. We define p(k) = sk · p as the probability that species k
has a protein in [x].

– fN
5 (i, j) = p(i) ×

(
1 − p(j)

)
+

(
1 − p(i)

)
× p(j) is the probability a protein

deletion occurs between species i and j.
– fN

6 (i, j) = p(i) × p(j) is the probability a protein deletion does not occur
between species i and j.

Protein Duplication. We define c(k) = sk·c
sk·p as the expected numbers of

proteins that species k has in [x].

– fN
7 (i, j) = |c(i) − c(j)| is the expected number of proteins gained between

species i and j.

Protein Mutation. We define a species pair weight matrix Sij ∈ R
n×n as

Sij
kl = si

ksj
l . We define B ∈ R

n×n as

Bkl =
1

|Π [x]
k ||Π [x]

l |

∑

p∈Π
[x]
k

∑

q∈Π
[x]
l

b(p, q)

where b(p, q) is the BLAST bitscore [26] of proteins p and q. Bkl is the average
bitscore among the proteins in species k and l. Bkl equals 0 if either species k
or l has no proteins in [x].

– fN
8 (i, j) = tr(SijT B), the sum of entry-wise products, is the expected bitscore

between the proteins in species i and j.
– fN

9 (i, j) = (fN
8 )2

– fN
10(i, j) = (fN

8 )−1

– fN
11(i, j) = (fN

8 )−2

Features fN
9 through fN

1 1 allow our scoring function to include nonlinear depen-
dencies on the BLAST bitscore of the proteins.

Finally, we compute events for all extant species i ∈ [1 : n].

Paralog Mutation

– fN
12(i) = Bii is the expected average bitscore between a protein in species i

and its paralogs.
– fN

13(i, j) = (fN
12)

2

– fN
14(i, j) = (fN

12)
−1

– fN
14(i, j) = (fN

12)
−2

A.2 Edge Feature Function

We compute the edge feature function fE for equivalence classes [x] and [y] as
follows. First, we compute events for all pairs of species i, j ∈ [1 : n + m], i �= j
adjacent in the tree.
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Edge Deletion. For k ∈ [1 : n], p ∈ Π
[x]
k , q ∈ Π

[y]
k , we define e(k, p, q) = 1 if

there is an edge between p and q and 0 otherwise. We then define e ∈ R
n as

ek =
1

|Π [x]
k ||Π [y]

k |

∑

p∈Π
[x]
k

∑

q∈Π
[y]
k

e(k, p, q)

which represents the average probability that species k has an edge. We define
ek as null if Π

[x]
k or Π

[y]
k is empty. We define

e(l) =

⎛

⎜
⎜
⎝

1
∑

k:ek �=null

ek

⎞

⎟
⎟
⎠

∑

k:ek �=null

eksl
k l ∈ {i, j}

which represent the probabilities that species i and j have edges.

– fE
1 (i, j) = e(i)×

(
1− e(j)

)
+

(
1− e(i)

)
× e(j) is the probability that an edge

is lost between species i and j.
– fE

2 (i, j) = e(i)∗e(j) is the probability that an edge is not lost between i and
j.

Next, we compute events for all extant species i ∈ [1 : n].

Paralog Edge Deletion. We define ẽ(k, p, q) = 1, for k ∈ [1 : n], p ∈ Π
[x]
k , q ∈

Π
[y]
k as

ẽ(k, p, q) =
1

|Π [x]
k ||Π [y]

k |

∑

p′∈Π
[x]
k

q′∈Π
[y]
k

(p′,q′) �=(p,q)

e(k, p′, q′)

which represents the probability, ignoring p and q, that species k has an edge.

– fE
3 (i) =

∑
p∈Π

[x]
k

∑
q∈Π

[y]
k

(
e(i, p, q)×

(
1−ẽ(i, p, q)

)
+

(
1−e(i, p, q)

)
×ẽ(i, p, q)

)

is the average probability an edge is lost between a pair of proteins in species
i and all other pairs of proteins in species i.

– fE
4 (i) =

∑
p∈Π

[x]
k

∑
q∈Π

[y]
k

e(i, p, q) × ẽ(i, p, q) is the average probability an
edge is not lost between a pair of proteins in species i and all other pairs of
proteins in species i.

For pairwise alignment of two species s and t, the final node feature function
is

fN ([x]) =
[
fN
1 , fN

2 , fN
3 , fN

4 , fN
5 (s, t), fN

6 (s, t), fN
7 (s, t), fN

8 (s, t), fN
9 (s, t), fN

10(s, t),

fN
11(s, t), f

N
12(s) + fN

12(t), f
N
13(s) + fN

13(t), f
N
14(s) + fN

14(t), f
N
15(s) + fN

15(t)
]
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and the final edge feature function is

fE([x], [y]) =
[
fE
1 (s, t), fE

2 (s, t), fE
3 (s) + fE

3 (t), fE
4 (s) + fE

4 (t)
]

For multiple alignment, the final node feature function is

fN ([x]) =
[
fN
1 , fN

2 , fN
3 , fN

4 ,
∑

(i,j)

fN
5 (i, j),

∑

(i,j)

fN
5 (i, j) × b,

∑

(i,j)

fN
6 (i, j),

∑

(i,j)

fN
6 (i, j) × b,

∑

(i,j)

fN
7 (i, j),

∑

(i,j)

fN
7 (i, j) × b,

∑

(i,j)

fN
8 (i, j),

∑

(i,j)

fN
8 (i, j) × b,

∑

(i,j)

fN
8 (i, j) × b2,

∑

(i,j)

fN
8 (i, j) × b3,

∑

(i,j)

fN
9 (i, j),

∑

(i,j)

fN
9 (i, j) × b,

∑

(i,j)

fN
9 (i, j) × b2,

∑

(i,j)

fN
9 (i, j) × b3,

∑

(i,j)

fN
10(i, j),

∑

(i,j)

fN
10(i, j) × b,

∑

(i,j)

fN
10(i, j) × b2,

∑

(i,j)

fN
10(i, j) × b3,

∑

(i,j)

fN
11(i, j),

∑

(i,j)

fN
11(i, j) × b,

∑

(i,j)

fN
11(i, j) × b2,

∑

(i,j)

fN
11(i, j) × b3,

n∑

i=1

fN
12(i),

n∑

i=1

fN
13(i),

n∑

i=1

fN
14(i),

n∑

i=1

fN
15(i)

]

and the final edge feature function is

fE([x], [y]) =
� �

(i,j)

fE
1 (i, j),

�
(i,j)

fE
1 (i, j) × b,

�
(i,j)

fE
2 (i, j),

�
(i,j)

fE
2 (i, j) × b,

n�
i=1

fE
3 (i),

n�
i=1

fE
4 (i)

�

where the sums over (i, j) are taken over branches of the phylogenetic tree and
the sums i are taken over the leaves of the tree.
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Abstract. Although many studies have been successful in the discov-
ery of cooperating groups of genes, mapping these groups to phenotypes
has proved a much more challenging task. In this paper, we present the
first genome-wide mapping of gene coexpression modules onto the phe-
nome. We annotated coexpression networks from 136 microarray datasets
with phenotypes from the Unified Medical Language System (UMLS).
We then designed an efficient graph-based simulated annealing approach
to identify coexpression modules frequently and specifically occurring
in datasets related to individual phenotypes. By requiring phenotype-
specific recurrence, we ensure the robustness of our findings. We discov-
ered 9,183 modules specific to 47 phenotypes, and developed validation
tests combining Gene Ontology, GeneRIF and UMLS. Our method is
generally applicable to any kind of abundant network data with defined
phenotype association, and thus paves the way for genome-wide, gene
network-phenotype maps.

1 Introduction

The fundamental aim of genetics is to link phenotype to genotype, and tra-
ditional genetic studies have sought to associate single genes to a particular
phenotypic trait. However, it has become clear that complex diseases, such as
cancer, autoimmune disease, or heart disease, are effected by the interaction of
many different genes. For this problem, genetic association studies lack power.
Locus heterogeneity, epistasis, low penetrance, and pleiotropy all contribute to
mask or reduce the detectable signal [1,2].

In recent years, high-throughput approaches have been used to study the in-
teraction of groups of genes. In a gene network, nodes represent genes (or gene
products), and links between nodes represent functional relationship between
the nodes. Examples include protein-protein interaction networks, genetic in-
teraction networks, and gene coexpression networks. Borrowing or expanding
tools from the fields of network analysis and graph theory, researchers have
devised numerous ways to use these networks to determine which genes work to-
gether [3,4,5,6,7,8]. However, virtually all of this work fails to complete the link
between genotype and phenotype. Genes and gene products are grouped into
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modules and complexes, but these are not linked to phenotypes. We note two
remarkable exceptions: Butte and Kohane used differential expression analysis
[9] to systematically associate genes with specific phenotypes and environments,
using data from the Gene Expression Omnibus [10]; and Lage and colleagues
[11] used OMIM protein annotations to associate protein complexes with dis-
ease phenotypes. However, the former approach does not consider genes in a
network context, while the latter approach only considers annotated nodes in
a single static network. Neither approach, nor any other, has systematically
mapped gene networks to the experimental phenotype conditions under which
they are activated.

In this paper, we introduce the first approach to explicitly bridge this gap.
Like Butte and Kohane, we used the large amount of microarray gene expres-
sion data from the Gene Expression Omnibus. Here, instead of gene-phenotype
associations, we used integrative network analysis to infer network module to
phenotype associations. A series of microarray datasets can be modeled as a
series of coexpression networks as follows: each node represents a gene, and a
link is placed between two nodes if their expression profiles in that dataset are
highly similar. The crucial advantage of this approach is that each generated
network can be labeled with the phenotypic information of that dataset, such as
the type of biological sample, the disease state, drug treatment, etc. The Unified
Medical Language System (UMLS) [12] provides an extensive catalog of med-
ical concepts and their relationships, as well as language processing tools that
enable the automated mapping of text onto UMLS concepts. This allowed us to
automatically annotate each microarray dataset with UMLS phenotype classes
by using the associated MEDLINE reference.

For each phenotype, we partitioned the datasets into a phenotype class, con-
sisting of datasets annotated with that phenotype, and a background class, con-
sisting of the rest of the datasets. We designed a graph-based simulated an-
nealing [13] approach to efficiently identify groups of genes which form dense
subnetworks preferentially and repeatedly in the phenotype class. Note that a
dense subnetwork in a coexpression graph represents a coexpression cluster. Al-
though microarray data is noisy, we have shown in our previous work [14,15] that
coexpression clusters recurrent across multiple datasets represent true functional
or transcriptional modules with high probability. Here, we further show that if
a frequent coexpression cluster additionally is specific to a phenotype class, it is
likely to effect that phenotype.

We applied our approach to the analysis of 136 microarray datasets, covering
60 phenotype conditions. We discovered approximately 9,000 modules specific
to 47 of these phenotypes, and developed a novel way to validate this speci-
ficity by integrating gene and dataset annotations from Gene Ontology [16],
Gene Reference Into Function (GeneRIF) [17], and UMLS. Our method lays the
foundation for a genome-wide, gene network-phenotype map, which will ben-
efit our understanding of complex diseases and their treatment. Our present
map of network patterns to phenotypes has many applications, such as predict-
ing the phenotypic effects of multiple interacting genetic perturbations, in silico
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testing of genetically complex hypotheses, and prioritization of candidate genes
for targeted intervention. Furthermore, the concept of our approach is general,
and can be easily extended to incorporate any standardized phenomic proce-
dures, as suggested, for example, by the Human Phenome Project [18].

2 Methods

2.1 Dataset Preparation

Dataset Selection. We selected every microarray dataset from NCBI’s Gene
Expression Omnibus that met the following criteria: all samples were of human
origin; the dataset had at least 8 samples (a minimum for accurate correlation
estimation); and the platform was either GPL91 (corresponding to Affymetrix
HG-U95A) or GPL96 (Affymetrix HG-U133A). Throughout this study, we only
considered the genes shared by the two platforms (and therefore all datasets), of
which there are 8,635. The 136 datasets that met these criteria on 28 Feb 2007
were used for the analysis described herein.

Dataset Annotation. We determined the phenotypic context of a microarray
dataset based on the Medical Subject Headings (MeSH) of its corresponding
PubMed record, mapped to UMLS concepts. This is more refined than attempt-
ing to scan the abstract or full text of the paper, and in practice it results in
much cleaner and more reliable annotations [9,19]. UMLS is the largest available
compendium of biomedical vocabularies, spanning approximately one million in-
terrelated concepts, including diseases, treatments, and phenotypic concepts at
different levels of resolution (molecules, cells, tissues and whole organisms). In
order to infer higher-order links between datasets, we annotated datasets with
the matched UMLS concept and, in addition, all its ancestor concepts. This re-
sulted in a total of 467 annotations, of which 80 mapped to more than 5 datasets,
or 60 after merging annotations that mapped onto identical sets of datasets.

Correlation Estimation and Graph Generation. For each dataset, we used
the Jackknife Pearson correlation as a measure of similarity between two genes
(the minimum of the leave-one-out Pearson correlations). To determine the coex-
pression network, we selected a cutoff corresponding to the top-ranking 150,000
correlations of the total

(8635
2

)
≈ 3.73 × 107 gene pairs (0.4%). The cutoff was

generated by exploring the statistical distribution of pairwise correlations, which
we do not detail here.

Once a cutoff has been determined, we defined that dataset’s coexpression
network as the graph Gi = (V, Ei), where V corresponds to the set of genes
being investigated, and (ga, gb) ∈ Ei if the correlation between ga and gb is
higher than the cutoff.

Differential Coexpression Graphs. To dramatically increase the probabil-
ity of finding optimal modules across the many massive networks, we wished
narrow down the search space. We therefore constructed a weighted differential
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coexpression graph for each phenotype, which summarizes the differences be-
tween the gene coexpression networks in the phenotype class and those in the
background class. This graph was used by the simulated annealing algorithm
to create neighboring states (see “Neighbor Selection” under Section 2.2). We
describe it formally as follows.

To begin, we define G as the set of all graphs constructed from the microarray
datasets. For each phenotype P , we partition G into the phenotype graphs GP ,
corresponding to datasets annotated with P , and the background graphs Gc

P =
G \ GP , corresponding to the rest of the datasets.

We then construct a weighted differential coexpression graph GΔ = (V, EΔ)
to reflect edges (coexpression relationships) that are present frequently in GP
but not in Gc

P . This specificity can be measured by the significance p of a hyper-
geometric test, assessing the abundance of an edge in GP relative to its overall
abundance in G. In GΔ, the vertex set V is the same as in every graph in G,
and the weight associated with (ga, gb) is then wΔ (ga, gb) = − log (p). Edges of
weight 0 are not in EΔ. In this way, heavier edges in this graph represent pairs
of genes that exhibit elevated coexpression highly specific to GP .

2.2 Simulated Annealing Design

Goal and Rationale. Our aim was to find sets of genes that satisfy three
criteria: first, the genes must be coexpressed in multiple datasets; second, the
annotations of these datasets must be enriched in some specific phenotype; and
third, the gene set must be maximally large while meeting the first two criteria.

As explained in section 2.1, from each annotated dataset we derived a coex-
pression graph. For a set of vertices V ′ ⊂ V having m edges between them, the
density is δ(V ′) = m/

(|V ′|
2

)
= 2m/(|V ′|(|V ′| − 1)). This is exactly the propor-

tion of gene pairs from V ′ that are coexpressed, taken over all possible pairs
{(u, v) : u ∈ V ′, v ∈ V ′}. We say that a vertex set is dense if δ is large (typically
greater than 0.6). Then, for each phenotype, we wanted to find a set of vertices
that is dense in a large proportion of datasets annotated with that phenotype,
and that is not dense in datasets not annotated with it.

As we demonstrated in our earlier work [15], the problem of identifying
frequent dense vertex sets is NP-complete. It is easy to show that the addi-
tional requirement of phenotype specificity does not decrease the complexity of
the problem. Hence, we decided to use simulated annealing, a well-established
stochastic algorithm with successful application in other NP-complete problems
[20]. Our design for the simulated annealing (SA) algorithm follows.

Search Space. A state in our SA design is defined as a set of vertices, and
the search space is the set of all sets of vertices, although for simplicity and
for computational considerations we limited ourselves to sets smaller than 50
vertices. We believe this to be an ample margin for phenotypically relevant gene
sets. Formally, we define the search space as S = {x : x ⊂ V, |x| ≤ 50, |x| ≥ 3}.

Objective Functions. Recall from “Goal and Rationale” in this section that
we needed to maximize three different objectives: size, density, and specificity.
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Therefore, we used three objective functions, which we combined into a single
function using a weighted sum. Much work has been done to generalize the
simulated annealing process to multiple objectives, collectively known as MOSA
(Multiple Objective Simulated Annealing). The simplest strategy is to create
an energy function fi for each objective i, and then combine them into a single
energy function by using a weighted sum f(x) =

∑k
i=1 wifi(x). The key difficulty

with this approach is determining an appropriate set of weights. In previous
studies, this has been accomplished empirically [21], and this is the approach
that we take for the following reasons: we were interested in a single optimal
combination of objective functions, rather than exploring the extremes of each;
our design for individual functions was such that overall effectiveness of the
algorithm was consistent throughout a range of weights; and the parameters
we chose based on performance on simulated data behaved well on the real
data. The weights we chose for size, density and specificity were 1, 0.5, and 0.25
respectively.

For the three objectives, we knew hard thresholds that we had determined
in past studies: size of 5 or more, specificity p-value of less than 0.001, and
density greater than 0.6. For simulated annealing, however, we want to accept
intermediate states that may be unfavorable. We therefore designed the energy
functions to have soft thresholds, by using an exponential increase in energy
for unfavorable values of the three objectives. Since we combine the functions
using a linear weighted sum, for any arbitrary set of non-zero weights, extreme
solutions will be rejected by the exponential energy increase. The individual
energy functions that we designed take the following forms:

fsize(x) =
(

1 − |x|
50

)
·
(

1 + exp
{

−γ

(
|x|
50

− os

)})
(1)

fdens(x) = exp
{

−α

(
min
i∈GA

(δi(x)) − oδ

)}
(2)

fspec(x) = log (P (Y ≥ |GA ∩ GP |)) (3)
where

GP is the set of datasets annotated with the current phenotype,
GA is the set of datasets in which the gene cluster is dense,
and Y ∼ hypergeometric (|GA|, |GP |, |Gc

P |).

Equation 1 shows the size objective function, which contains both a linear
component (first expression) and an exponential component (second expression):
this sets a soft threshold at low sizes (4-5 vertices), but continues to reward size
increases above the threshold, due to the linear component. Equation 2 shows
that the density objective function consists only of the soft threshold. Finally,
equation 3 shows the specificity objective function, which favors low p-values of
specificity to the phenotype at an exponential rate.

Because of the exponential component of these functions, extreme cases (such
as a single triangle that is very dense and specific, but very small) are rejected
on the basis of just one of the energy functions, but improvements to existing
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cases are rewarded, and intermediate cases are accepted with good probability.
We selected the parameters γ = 15, os = −0.5, α = 15 and oδ = 0.5 based
on our experience with biologically validated clusters compared with clusters
arising from random chance.

Initial State. A SA approach aims to find a global optimum during each run.
Therefore, if we were to use random initial states and run the algorithm for a
long enough time, we will always find approximately the same set of vertices,
representing the largest set having the most evidence for coexpression and phe-
notype specificity. We were, however, interested in a large number of vertex sets
showing evidence for coexpression and phenotype specificity. To this end, we de-
signed a systematic way of generating initial states, or seeds, and we restricted
the SA search space to clusters containing these seeds.

We define a triangle as a set of three vertices that is fully connected in at least
one dataset. The hypothesis underlying our strategy is that, if a set of genes is
coexpressed specifically in datasets annotated with the phenotype of interest,
then at least one recurrent triangle will appear in the phenotype datasets and it
is unlikely to appear in many of the background datasets.

Therefore, for each phenotype, we tested every possible gene triplet for en-
richment (using the hypergeometric test) of triangles in the phenotype datasets
with respect to the background datasets. For each seed having a hypergeometric
p-value less than 0.01, we ran the SA algorithm, with the constraint that states
in that run must be supersets of the initial triplet.

Selection of Neighboring States. We defined a neighbor as a state that
contains either one more or one less vertex than the current state. We created
neighboring states by first determining whether to add to or remove a vertex,
then choosing the vertex based on the appropriate probability distribution.

If a cluster has size 3, it consists only of the initial seed, and so a vertex must
be added. Conversely, if a cluster has size 50, it has reached the maximum size,
and a vertex must be removed. For intermediate values, we proceeded as follows.

Let x be the current cluster. We narrowed the search space of vertices to
be added by considering only vertices that have at least one edge to a vertex
in x in at least one of the phenotype datasets. This is easily justified because
vertices not meeting this criterion could not possibly contribute to x as a dense,
phenotype-specific cluster, even as an intermediate step. It can be shown that this

set corresponds exactly to Nx =

{

g : g /∈ x,
∑

h∈x

wΔ(g, h) > 0

}

(See “Differential

Coexpression Graphs” under section 2.1).
The probability of removing a vertex is then given by prem = s0/|Nx| , where

s0 is an estimate of how many vertices will improve the cluster. This is to allow
the SA process ample time to consider many neighbors before attempting to
remove a vertex, since the number of neighboring vertices vastly outnumbers the
number of vertices in a cluster. We heuristically used s0 = 10 as an appropriate
average number. In the future, an iterative estimation of s0 as the average size
of the returned clusters might improve the performance of the algorithm.
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In the event that a gene is to be removed, it is chosen uniformly from the
cluster. When adding a gene, however, we made the probability that a vertex
g ∈ Nx is added proportional to the sum of the weights of edges from g to
the members of x in the differential coexpression graph. Formally, we have:
P (ga is added) =

∑
a∈x wΔ (ga, a)/

∑
b∈Nx

∑
a∈x wΔ (a, b).

Annealing Schedule. We used the schedule Tk = Tmax/ log (k + 1), where k
is the iteration number and Tk is the temperature at that iteration, as suggested
by Geman and Geman [22]. The initial temperature was 10. This schedule form
guarantees optimality for long running times. Although it can be argued that the
exponential running times required makes this schedule impractical, we found
that for an identical number of SA iterations, it resulted in lower-energy clusters
than the often-used exponential schedule, Tk+1 = αTk = αkTmax. We ran the
algorithm for 700,000 iterations per run.

Post-filtering. Recall that we enforced the inclusion of the initial seed triangle
in the final result. Clearly, some seeds will result from noise alone, and therefore
the final output will not be biologically significant. To remove these clusters,
we filtered the SA output clusters by discarding any vertex set not meeting
the following criteria: size greater than 6; density greater than 0.66; phenotype-
specificity p-value less than 0.0066; and dense in at least 3 datasets related to
the target phenotype. After filtering, we merged redundant clusters, defined as
pairs clusters for which intersection/union was higher than 0.8.

3 Results

3.1 Functional Homogeneity

We applied our simulated annealing approach to the 136 microarray datasets
covering 60 phenotype classes. These included a range of diseases (e.g. leukemia,
myopathy, and nervous system disorders) and tissues (e.g. brain, lung, and mus-
cle). Starting from the recurrent triangle seeds for each of the 60 distinct pheno-
types, we identified 9,183 clusters that satisfied our criteria for a concept-specific
coexpression cluster. The number of clusters we found for a given phenotype in-
creased with the number of datasets annotated with it: most of the phenotypes
with only a few associated datasets yielded few clusters. The most represented
phenotype we studied was “Hemic and Lymphatic Diseases,” which had 19 as-
sociated datasets and a total of 322 clusters.

We used two different methods to evaluate cluster quality. First, we assessed
cluster functional homogeneity by testing for enrichment for specific Gene On-
tology [16] biological process terms. If a cluster is enriched in a GO term with a
hypergeometric p-value less than 0.01, we declare the cluster functionally homo-
geneous. Of the 9,183 clusters derived from all phenotypes, 74.8% were function-
ally homogenous by this measure. An advantage of our approach is demonstrated
by this validation: since we identified clusters specific to only subsets of all our
datasets, we were less likely to detect constitutively expressed clusters, such as
those consisting of ribosomal genes or genes involved in protein synthesis.
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While the GO approach provides information about gene function, it fails to
describe its phenotypic implications. To map individual genes to phenotypes,
we used GeneRIF [17]. The GeneRIF database contains short statements de-
rived directly from publications describing functions, processes, and diseases in
which a gene is implicated. We annotated genes with phenotypes by mapping
the GeneRIF notes to UMLS metathesaurus terms as we did with the dataset
MeSH headings (see Section 2.1). Similar to GO annotations, we assessed the
conceptual homogeneity of gene clusters in specific UMLS keywords with the
hypergeometric test, enforcing a minimum p-value of 0.01. The proportion of
modules that were conceptually homogeneous was 48.3%. Clusters usually show
less conceptual homogeneity than functional homogeneity, which is likely due
to the sparsity of GeneRIF annotations. There are cases, however, in which
GeneRIF performs better. For example, many of the cancer related phenotypes,
such as “Carcinoma,” “Neoplasm Metastasis,” and “Neoplastic Processes,” show
higher GeneRIF homogeneity, which could be attributed to the abundance of re-
lated literature. The functional and conceptual homogeneity of clusters derived
from different phenotype classes is summarized in Figure 1.
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Fig. 1. Functional homogeneity of clusters by phenotype. The dotted lines show the
overall homogeneity across all phenotypes. The dendrogram shows the distance between
phenotypes in dataset overlap.

3.2 Phenotype Specificity

In addition to testing for functional and conceptual homogeneity, we assessed
whether the returned clusters were involved in the phenotype condition in which
they were found. Again, we used both GO and GeneRIF independently for this.



240 M.R. Mehan et al.

Recall that each functionally homogeneous module is associated with one or
more GO biological functions, and that it is also associated with the phenotype
in which it was found. We summarized these GO functions by mapping them to
“informative nodes,” which we introduced in our earlier work [3], and then tested
them for overrepresentation in that phenotype class. This gave us, for each of
31 phenotypes (out of 47 phenotypes having at least one module), a list of gene
module functions that are active in that phenotype more often than expected
by chance. Many of these GO functions are clearly related to the phenotype in
which they were found. For example, the phenotype “Lymphoma,” which is a
cancer of immune system cells, has 3 coupled GO biological processes related
to cell proliferation – “cell cycle process” (7e-36), “cell cycle” (3e-27), and “cell
division” (9e-17) – as well as “immune system process” (5e-6). Furthermore, our
approach identified biological processes related not only to disease phenotypes,
but also to tissue phenotypes. For example, the “Muscle” phenotype is signifi-
cantly enriched with modules homogeneous for the biological function “muscle
contraction.”

We show in Table 1 the full list of phenotypes and the functions overrep-
resented in their modules. The functional association between a module’s GO
function and the phenotype in which it is active suggests that our clusters are
indeed linked to the phenotype conditions under which they were identified.
Notwithstanding, the preceding analysis relies on our subjective evaluation of
matches between UMLS and GO terms. We reasoned that we could make a
more objective analysis with GeneRIF, as it can be mapped directly to the same
UMLS terms as the dataset phenotypes.

We thus counted the modules that were conceptually homogeneous for the
same UMLS annotation as the datasets in which they were identified, and 16
phenotypes had one or more matching modules. The proportions of match-
ing modules to total modules among these 16 phenotypes ranged from 0.75%
to 7.88%. Although these numbers may not sound immediately impressive, we
showed that these proportions are larger than expected by chance. As with the
conceptual homogeneity figures, it appears that these numbers are low due to a
dearth of GeneRIF annotations.

We used a permutation test to assess the statistical significance of our analy-
sis. For each of 1,000,000 permutations, we randomly assigned existing clusters
to the 47 phenotypes that had at least one cluster, maintaining the number
of clusters assigned to each phenotype constant. The five phenotypes with sta-
tistical significance after Bonferonni correction were “Lymphoma” (<4.7e-5),
“Lymphoproliferative Disorders” (<4.7e-5), “Musculoskeletal Diseases” (4.7e-5),
“Hematological Disease” (9.2e-3), and “Hemic and Lymphatic Diseases” (0.01).

Although these five phenotypes do not represent the majority of the pheno-
types, they show that our results are statistically significant for some phenotypes.
The lack of consistent validation of phenotype specificity can be attributed to
limitations in the GeneRIF-UMLS mapping as well as lack of gene phenotype
annotations.
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Table 1. Gene Ontology biological processes that are overrepresented in dataset UMLS
phenotypes (hypergeometric enrichment p-value < 0.001 after Bonferroni correction).
The concept name appears as in the UMLS metathesaurus. The number of Functionally
Homogeneous Clusters (FHC) is listed along with the total number of clusters (TC)
identified for that phenotype.

Concept Name FHC (TC) Overrepresented GO biological functions (Bonferroni-corrected p-value)
Bone Marrow 406 (417) biosynthetic process(4e-30), cell cycle(3e-20), cell cycle process(9e-17), response to bi-

otic stimulus(5e-15), cell division(2e-14), multi-organism process(2e-14), DNA metabolic
process(3e-4)

Bone Marrow Diseases 40 (51) generation of precursor metabolites and energy(1e-7)
Carcinoma 65 (78) ion transport(8e-16), biological adhesion(4e-10), anatomical structure development(2e-5), im-

mune system process(1e-4)
Chromosome abnormal-
ity

132 (145) biosynthetic process(4e-21)

Connective and Soft Tis-
sue Neoplasm

25 (45) RNA metabolic process(1e-4)

Disease Progression 169 (176) DNA metabolic process(1e-132), response to endogenous stimulus(8e-65), cell cycle process(4e-
48), response to stress(5e-43), cell cycle(2e-34), cell division(2e-13)

DNA Damage 42 (46) biosynthetic process(1e-4)
Dysmyelopoietic Syn-
dromes

228 (277) RNA metabolic process(5e-6)

Hemic and Lymphatic
Diseases

204 (322) response to external stimulus(4e-9), defense response(2e-5)

Immune System Diseases 441 (474) biosynthetic process(1e-124)
Immunoproliferative Dis-
orders

517 (702) defense response(2e-24), multi-organism process(2e-23), response to biotic stimulus(2e-23), im-
mune system process(1e-12), response to external stimulus(1e-11), catabolic process(2e-10),
protein folding(2e-4), carbohydrate metabolic process(3e-4)

Inflammation 18 (23) anatomical structure morphogenesis(2e-4)
leukemia 438 (592) RNA metabolic process(7e-23), protein folding(5e-16), defense response(8e-9), immune system

process(6e-8), response to external stimulus(4e-6)
Leukemia, Myelocytic,
Acute

216 (259) biosynthetic process(1e-11), RNA metabolic process(2e-5)

Lung 64 (69) response to biotic stimulus(1e-20), immune system process(2e-20), multi-organism process(7e-
18), cell-cell signaling(2e-5), regulation of transcription from RNA polymerase II promoter(3e-
4)

Lung diseases 159 (186) biosynthetic process(4e-20), establishment of protein localization(6e-9), establishment of cel-
lular localization(7e-6)

Lymphatic Diseases 229 (322) RNA metabolic process(5e-8)
Lymphoblastic Leukemia 107 (113) biosynthetic process(2e-43)
Lymphoma 363 (381) cell cycle process(7e-36), cell cycle(3e-27), cell division(9e-17), intracellular signaling

cascade(7e-15), multi-organism process(8e-10), response to biotic stimulus(9e-10), DNA
metabolic process(7e-9), biosynthetic process(1e-7), organelle organization and biogenesis(1e-
6), immune system process(5e-6), phosphorus metabolic process(5e-5), response to stress(2e-4)

Muscle 58 (79) muscle contraction(6e-6), biosynthetic process(7e-5)
Musculoskeletal Diseases 410 (685) negative regulation of biological process(4e-5), cell motility(2e-4)
Myeloid Leukemia 279 (334) biosynthetic process(2e-5), DNA metabolic process(3e-5), cell cycle(8e-4)
Myopathy 387 (668) proteolysis(1e-7), ion transport(2e-6), cell motility(8e-6)
Neoplasm Metastasis 118 (150) cellular developmental process(5e-35), regulation of multicellular organismal process(3e-26),

keratinization(2e-23), biopolymer modification(1e-18), muscle contraction(2e-14), anatomical
structure development(4e-7)

Neoplasms, Germ Cell
and Embryonal

35 (37) cell cycle process(4e-40), cell cycle(1e-30), cell division(2e-28), organelle organization and
biogenesis(1e-11), DNA metabolic process(4e-7)

Neoplastic Processes 484 (668) cellular developmental process(3e-144), keratinization(1e-91), biopolymer modification(8e-83),
anatomical structure development(4e-71), biological adhesion(5e-40), ion transport(9e-18), reg-
ulation of multicellular organismal process(7e-4)

nervous system disorder 197 (336) hydrogen transport(4e-4), cofactor metabolic process(4e-4)
Nutrition Disorders 27 (27) biosynthetic process(3e-11)
Nutritional and
Metabolic Diseases

47 (51) biosynthetic process(5e-8)

sarcoma 34 (52) cell cycle process(5e-6)
Skeletal muscle structure 600 (871) ion transport(2e-5), cell motility(6e-5)

3.3 Example Modules Identified by Our Algorithm

Below we illustrate two examples of identified phenotype-specific modules, one
from a disease phenotype and another from a tissue phenotype.

The first example is a 7-gene module (CSF3R, CD14, ITGB2, FCGR3B,
LST1, S100A9, S100A12) which is specific to the phenotypes “Immunoprolifera-
tive Disorders” and “Lymphoproliferative Disorders”, which annotate the same
set of datasets (Figure 2a). The module has density higher than 0.66 in 5 out of
the total 136 datasets. Of those 5 datasets, 4 are annotated with the phenotype
“Lymphoproliferative Disorders” (GDS1067, GDS1284, GDS1388, GDS1454),
which gives a specificity p-value of 6.2e-4. Two of these datasets study B-cell
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chronic lymphocytic leukemia and the other two study multiple myeloma. The
fifth dataset, GDS1021, is not annotated with that phenotype, but, somewhat
consistently with the four other datasets, it studies gene expression in peripheral
blood mononuclear cells in renal cancer patients.

Strikingly, all 7 genes are annotated as “defense response,” “immune system
process,” or both, in the GO biological process database. Additionally, 3 of the
genes are associated with the UMLS concept “Lymphoproliferative Disorders,”
including LST1 and ITGB2, which have been used as diagnostic predictors of
lymphoproliferative diseases. Further evidence of the cluster’s validity as a bio-
logical module comes in the form of a direct protein-protein interaction between
ITGB2 and CD14 in vitro. Multiple genes used for lymphoproliferative disorder
diagnosis, interactions between module members, and complete immune system
functional homogeneity all suggest a role for this module in lymphoproliferative
diseases. Knowledge of this module can guide further experiments in the study
of these diseases, as well as to elucidate the module’s regulators.

The second example module consists of 9 genes, and is specific to the “Skele-
tal muscle structure” phenotype (Figure 2b). Three of the five active datasets
study expression in muscle tissue (GDS268, GDS563, GDS1259). This cluster is
highly functionally enriched, containing six genes that are annotated with a GO
biological process related to muscle contraction. Specifically, in muscle fibers,
troponin genes (TNNI1, TNNT1) along with tropomyosin (TPM3) associate
with actin (ACTA1) to regulate muscle contraction via binding to the myosin
complex (MYL2, MYH2, MYLPF). The module also contains SLN, which cat-
alyzes the ATP-dependent transport of Ca2+ in muscle cells. In total, eight of
the nine genes in the cluster are related to muscle, providing strong evidence for
its phenotypic specificity.

a                    b

TPM3

TNNT1

TNNI1
MYL2

MYLPF

MYH2

ACTA1
SLN

RPS23

S100A12

S100A9

CD14

ITGB2

CSF3R

LST1

FCGR3B

Fig. 2. Two examples of phenotype-specific modules. The opacity of an edge is pro-
portional to the recurrence of the edge in the active datasets. a) A module specific to
“Lymphoproliferative Disorders” datasets. Genes represented as rectangles are anno-
tated with the GO term “immune system process.” Gene represented as diamonds are
annotated with the GO term “defense response.” Shaded nodes represent genes impli-
cated in “Lymphoproliferative Disorders” b) A module specific to the “Skeletal muscle
structure” datasets. Genes represented as diamonds and rectangles are annotated with
GO terms “regulation of muscle contraction” and “muscle contraction” respectively.
The shaded genes are implicated in “Musculoskeletal Diseases.”
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Availability. The complete catalog of phenotype-specific gene clusters can be
found at our website: http://zhoulab.usc.edu/Phenotype/

4 Discussion

The importance of considering the phenotypic context of gene modules can-
not be overstated. Ultimately, molecular understanding is most useful when its
macroscopic effects are well understood. In this paper, we described a graph-
based approach integrating many microarray datasets to derive a genome-wide
mapping of coexpression modules to phenotypes.

The provable computational complexity of this problem drew us to stochastic
algorithms, and as a result we developed a number of useful graph-mining opti-
mizations to the simulated annealing method. Firstly, we devised a strategy to
divide the search space effectively by defining fully connected triplet (triangle)
seeds. Secondly, we designed highly robust energy functions that could be lin-
early combined over a range of weights. And thirdly, we designed a method to
prioritize neighbor searching. Overall, we have demonstrated that simulated an-
nealing is a highly effective and adaptable strategy for pattern-mining in graphs.

We associated gene modules with human diseases on a genome-wide scale.
The resulting map emphasizes that multiple genes must act together to effect
phenotype, and, more specifically, that a gene in different contexts may partici-
pate in the manifestation different phenotypes. It has not escaped our notice that
our map may represent the largest collection of examples of genetic pleiotropy
to date. We reserve the results of this analysis for a future work. [23,24,25]

In this study, we applied our method to microarray data, which is so far
the most abundant data measuring the genome-wide molecular activity under
different phenotype conditions. We are well aware that microarray data has
limitations, and that not all module activities can be assessed with expression
profiling. We emphasize, however, that our method is generally applicable to any
kind of abundant network data having clearly defined phenotype annotations.
One possibility is a dynamically-annotated protein-protein interaction network
consisting of conditional interactions. [26] Given the current unrelenting pace of
technological innovation in the biological sciences, we envision that a vast amount
of genome-wide, phenome-annotated profiling data will soon complement our
current view of the genome-phenome association, for not only mRNA but also
other molecules, such as protein and miRNA.
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Abstract. Comparative analysis of protein networks has proven to be a
powerful approach for elucidating network structure and predicting pro-
tein function and interaction. A fundamental challenge for the successful
application of this approach is to devise an efficient multiple network
alignment algorithm. Here we present a novel framework for the prob-
lem. At the heart of the framework is a novel representation of multiple
networks that is only linear in their size as opposed to current expo-
nential representations. Our alignment algorithm is very efficient, being
capable of aligning 10 networks with tens of thousands of proteins each
in minutes. We show that our algorithm outperforms a previous strategy
for the problem that is based on progressive alignment, and produces
results that are more in line with current biological knowledge.

1 Introduction

Recent technological advances enable the systematic characterization of protein-
protein interaction (PPI) networks across multiple species. Procedures such as
yeast two-hybrid ([1]) and protein co-immunoprecipitation ([2]) are routinely
employed nowadays to generate large-scale protein interaction networks for hu-
man and most model species ([3,4,5,6,7]). Key to interpreting these data is the
inference of cellular machineries. As in other biological domains, a compara-
tive approach provides a powerful basis for addressing this challenge, calling for
algorithms for protein network alignment.

In the network alignment problem one has to identify network regions that are
conserved in their sequence and interaction pattern across two or more species.
While the general problem is hard, generalizing subgraph isomorphism, heuristic
methods have been devised to tackle it. One heuristic approach for the problem
creates a merged representation of the networks being compared, called a network
alignment graph, facilitating the search for conserved subnetworks. In a network
alignment graph, the nodes represent sets of proteins, one from each species, and
the edges represent conserved PPIs across the investigated species.

The network alignment paradigm has been applied successfully by a number of
authors to search for conserved pathways [8] and complexes [9,10,11]. However,
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its extension to more than a few (3) networks proved difficult due to the ex-
ponential growth of the alignment graph with the number of species. Recently,
an algorithm was suggested to overcome this difficulty, proposing the idea of
imitating progressive sequence alignment techniques [12]. The latter algorithm
was successfully applied to align up to 10 microbial networks. Very recently,
Dutkowsky and Tiuryn [13] proposed another framework for efficient alignment
of multiple networks, but this approach was applied to date to three networks
only.

Here we propose a new algorithm for multiple network alignment that is based
on a novel representation of the network data. The algorithm allows avoiding
the explicit representation of every set of potentially orthologous proteins (which
form a node in the network alignment graph), thereby achieving dramatic reduc-
tion in time and memory requirements. We compare our algorithm to previous
approaches using various data sets, showing that it is extremely fast and accu-
rate, outperforming the progressive alignment approach. For lack of space, some
proofs are shortened or omitted.

2 Methods

2.1 Data Representation

Given k protein-protein interaction networks, we represent them using a k-layer
graph, which we call a layered alignment graph. Each layer corresponds to a
species and contains the corresponding network. Additional edges connect pro-
teins from different layers if they are sequence similar. Formally, layer i has a
set Vi of vertices and a set Ei of edges. For exposition purposes, assume that
|Vi| = n for all i. Additionally, we have a set of inter-layer denoted by EH . Let
GH = (∪iVi, EH) denote the graph restricted to the inter-layer edges. Let δ be
the largest degree in GH . The relation between an alignment graph and a lay-
ered alignment graph should be clear: while in the former every set of potentially
orthologous proteins is represented by a vertex; in the latter such a set is repre-
sented by a subgraph of size k which includes a vertex from each of the layers.
We call such a subgraph a k-spine. Key to the algorithmic approach presented
below is the assumption that a k-spine corresponding to a set of truly orthol-
ogous proteins must be connected and, hence, admits a spanning tree. Thus,
we can identify all potential vertex sets inducing k-spines by looking for trees
instead.

A collection of (connected) k-spines induces a candidate conserved subnet-
work. We score it using a likelihood ratio score as described in [11]. The score
evaluates the fit of the protein-protein interactions within this subnetwork to a
conserved subnetwork model versus the chance that they arise at random. The
conserved subnetwork model assumes that each pair of proteins from the same
species in the subnetwork should interact, independently of all other pairs, with
high probability β. The random model assumes that each species’ network was
chosen uniformly at random from the collection of all graphs with the same ver-
tex degrees as the ones observed. This random model induces a probability of
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occurrence puv for each edge (u, v) of the graph. To accommodate for informa-
tion on the reliability of interactions, the interaction status of every vertex pair is
treated as a noisy observation, and its reliability is combined into the likelihood
score. Overall, for a subnetwork with vertex set U , the likelihood ratio score
factors over the vertex pairs in it: L(U) =

∑
(u,v)∈U×U w(u, v) where w(v, v) = 0

and for u �= v,

w(u, v) = log
βPr(Ouv |Tuv) + (1 − β)Pr(Ouv |Fuv)

puvPr(Ouv |Tuv) + (1 − puv)Pr(Ouv |Fuv)
,

Here Ouv denotes the set of experimental observations on the interaction status
of u and v, Tuv denotes the event that u and v truly interact, and Fuv denotes
the event the u and v do not interact. The computation of Pr(Ouv |Tuv) and
Pr(Ouv |Fuv) is based on the reliability assigned to the interaction between u
and v (see [11] for further details).

This notion of a conserved subnetwork is extended easily to a layered align-
ment graph. If we considered every k-spine to be a (super-)node in a graph, then
an m-node subgraph is a subgraph of m k-spines, with a dense interconnection
of PPI edges. Formally, define an m-subnet as a collection U of k multi-sets
Ui = {ui[1], . . . , ui[m]} with the following properties:

– For all 1 ≤ i ≤ k and 1 ≤ j ≤ m, ui[j] ∈ Vi.
– For all 1 ≤ j ≤ m, the set U [j] = {u1[j], u2[j], . . . , uk[j]} is a k-spine.

The score S (U) of the m-subnet is given by S (U) =
∑k

i=1 L(Ui).

2.2 The Search Algorithm

The main algorithmic task is to look for high scoring m-subnets, for a fixed m.
This problem is computationally hard even when there is only a single network,
and edge-weights are restricted to +1 for all edges, and −1 for all non-edges [14].
Thus, we resort to a greedy heuristic which starts from high weight seeds and
expands them using local search. Such greedy heuristics have been successfully
applied to search for conserved subnetworks in a network alignment graph [11].

There are two sub-tasks we need to tackle: (i) computing high weight seeds;
and (ii) extending a seed. We provide algorithmic solutions for both tasks below.

Computing seeds: We start by computing d-subnets as seeds, where d << m.
Notably, even when d = 2, we do not know of any algorithm better than the
naive approach, which involves looking at all pairs of k-spines. This O(ndk) time
algorithm is intractable for typical sized networks, so we consider two assump-
tions on the inter-layer edges that reduce the computational complexity while
retaining sensitivity.

The first assumption asserts that the k-spines of a seed support the same
topology of inter-connections. This is motivated by the observation that pro-
teins within the same pathway or complex are typically present or absent in the
genome as a group [15]. Thus, we consider the following problem:
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Problem 1. d-identical-spine-subnet : Compute a set of d k-spines with iden-
tical topologies and maximum score.

Theorem 1. The d-identical-spine-subnet problem admits an O((nδ)dk3k) so-
lution.

Proof. Recall that a d-subnet can be described as a collection U of size d multi-
sets U1, U2, . . . Uk. Let (Ui1 , Ui2) ∈ EH iff (ui1 [j], ui2 [j]) ∈ EH for all 1 ≤ j ≤ d.

First, consider the case where each of the d k-spines is restricted to be a path
(Figure 1). This implies that the d-subnet itself can be considered as a path
Ui1 , Ui2, . . . , Uik

. For a subset of species S, let S (U, S) denote the score of the
best d-subnet that uses only species in S, and consists of a path that ends with
U . Let s(U) be the species corresponding to U . To compute S (U, S), note that
we only need to recurse using the predecessor of U in the path. Formally:

S (U, S) =

⎧
⎪⎪⎨

⎪⎪⎩

max
(U,W )∈EH

s(W )∈S\{s(U)}

S (W, S \ {s(U)}) + L(U) if |S| > 1

L(U) if |S| = 1

Thus, for paths, the overall complexity is O((nδ)dk2k).
A similar recursion can be applied when searching for k-spines that are trees

with identical topology. For a subset of species S, let S (U, S) denote the score
of the best d-subnet that uses only the species in S, and consists of a tree rooted
at U . Then for |S| > 1:

S (U, S) = max
(U,W )∈EH ,S1⊂S

s(U)∈S1,s(W )∈S\S1

S (U, S1) + S (W, S \ S1)

The overall complexity is O((nδ)dk3k). ♣

A second, slightly different assumption is based on the phylogeny (described
as a rooted, binary tree T ) of the investigated species. Consider a set of nodes

k−spine U[3] 
1U1 U2 U3 Uk

Species 2 Species kSpecies 1

inter−layer edge

PPI edge

U

Fig. 1. A seed defined by a d-identical-spine subnet, where the k-spines are restricted
to be paths with identical topology. The dashed line encloses one of the three k-spines.
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a, b, c whose underlying species follow the phylogenetic triple (s(a), (s(b), s(c))).
We make the following phylogenetic assumption: if a, b, c are connected via inter-
layer edges, then b and c must be connected. This implies that we can restrict
our attention to k-spines that are guided by the phylogeny T in the following
sense: any restriction of the k-spine to species that form a clade in T is a subtree
of the k-spine. Note that two guided spines can have very different topologies
(see Figure 2).

T

1

T

V2 V8V3 V4 V5 V6 V7

L

TLL
TLR

TR

TRL TRR

a
i

b

j

c d e g h

ponmlk

f

V

Fig. 2. Sketch of a 2-guided-spine-subnet . Note that while the paths of the two k-
spines have different topologies, they are both guided by the underlying tree. Follow-
ing the notation in the proof of Theorem 2, let U = {a, j}, W = {h, m}, and consider
two possible distant sets X = {d, k} and Y = {e, p}. By definition, TLL(U ∪ X) =
{a, j}, TLR(U ∪ X) = {d, k}, TRL(Y ∪ W ) = {e, m}, TRR(Y ∪ W ) = {h, p}. Hence,
S (U, W,T ) ≥ S ({a, j}, {d, k}, TL) + S ({e, m}, {h, p}, TR) ≥ S ({a, i}, {b, j}, TLL) +
S ({c, k}, {d, l}, TLR) +S ({e, m}, {f, n}, TRL) + S ({g, o}, {h, p}, TRR) ≥ L(a, i) +
L(b, j) + L(c, k) + L(d, l) +L(e, m) + L(f, n) + L(g, o) + L(h, p).

Problem 2. The d-guided-spine-subnet problem: Compute a set of d k-
spines guided by the underlying phylogeny, with maximum score.

Unfortunately, we do not know of any efficient algorithm better than the naive
O(nkd) for this problem. However, we show a better solution for d-guided-paths,
where the k-spines are restricted to be paths guided by the phylogeny.

Theorem 2. The d-guided-path-subnet problem can be solved in O(k3(n3δ)d).

Proof. Consider a subtree T of the phylogeny with subtrees TL, TR, respectively.
Clearly, each of the d paths will have one end-point in TL, and the other in TR.
However, the species topology of these paths is not identical. Therefore, we work
with size d subsets U which are not restricted to be within a single species, but
instead can span any species in T .

Let S (U, W, T ) denote the best score of a d-guided-path-subnet restricted to
a subtree T of the phylogeny such that s(U) ⊆ TL, s(W ) ⊆ TR are the end nodes.
At the base of the recursion T consists of a single node and S (U, U, T ) = L(U).
Otherwise, let U = 〈u[1], u[2] . . . u[d]〉 ∈ TL, and W = 〈w[1], w[2] . . . w[d]〉 ∈ TR.
Denote the root of T by root(T ).
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For a node u, s.t. s(u) ∈ T , define its distant set DT (u) = {x|LCAT (s(u),
s(x)) = root(T )}, where LCAT (a, b) is the least common ancestor of a and b in
T . Extend this to d elements by defining DT (U) = {X | LCAT (s(u[j]), s(x[j])) =
root(T ) ∀j} The key idea to note is that if X ∈ DT (U), then for all j s(x[j]) ∈
TL, s(u[j]) ∈ TR or s(x[j]) ∈ TR, s(u[j]) ∈ TL. Define TL(U ∪X) (TR(U ∪X)) as
the set of all vertices in U ∪ X with species in TL (TR). Then,

S (U, W, T ) = max
X∈DTL

(U)

Y ∈DTR
(W )

(X,Y )∈EH

(S (TLL(U ∪X), TLR(U ∪ X), TL) + S (TRL(Y ∪W ), TRR(Y ∪W ), TR))

For an example see Figure 2. For the running time, note that there are k2n2d

cells in the table S . For each cell, there are knd choices for the set X and for
each there are δd choices for a set Y s.t. (X, Y ) ∈ EH . The total time is therefore
O(k3(n3δ)d). ♣

In fact, we can improve the running time to O((k2n2δ)d) (the proof will appear
in the full version of the paper), but this is still not practical for reasonable
values of n.

Extending a seed: The next phase of the algorithm is performing an iterative
expansion of the seed by adding, in each iteration, the k-spine that contributes
the most to the score. Let us denote by H = (V ′, E′) the current seed, and
by S (v, S) the score of the best partial extension of H by a subtree that is
rooted at vertex v and visits the species in S. Further denote by s(v) the species
corresponding to vertex v, and let W (v) =

∑
u∈V ′ w(u, v). Then S (v, S) can be

computed using the following recursive relation:

S (v, S) =

⎧
⎪⎪⎨

⎪⎪⎩

max
(v,w)∈EH ,S1⊂S

s(v)∈S1,s(w)∈S\S1

S (v, S1) + S (w, S \ S1) if |S| > 1

L(v) if |S| = 1

The overall complexity is O(nδk3k).
There are two speedups one can introduce to this basic extension scheme. The

first is to constrain k-spines to paths (rather than trees), obtaining an O(nδk2k)
time algorithm. The second is to set in advance the order of the species along the
tree, eliminating the 3k factor. We term this variant restricted order as opposed
to the previous relaxed order variant.

2.3 Implementation Notes

We have designed a software package, NetworkBLAST-M, implementing the mul-
tiple network alignment approach outlined above. The implementation allows
looking for 2-identical-spine seeds with spines constrained to trees with relaxed
and restricted topologies. For efficiency reasons, we restricted the seed vertices
in each network to be of distance at most 2 from one another.
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To verify that using 2-identical-spines is adequate for our problem, we analyzed
alignment nodes within conserved network regions output by NetworkBlast [11]
for different networks sets. When aligning yeast, worm and fly networks, in 85% of
the cases, the pertaining alignment nodes respected the yeast-worm-flyphylogeny-
based orientation. In two additional microbial network sets (C. jejuni, E. coli, H.
pylori and C. crescentus, V. cholerae and H. pylori) more than 95% of the align-
ment nodes respected the same phylogeny-based orientation. Moreover, 72% of
the alignment nodes actually formed cliques in GH .

The final collection of conserved subnetworks was filtered to remove redundant
solutions. This was done using an iterative greedy procedure that selects each
time the highest scoring subgraph and removes all subgraphs intersecting it by
more than 50%. For two conserved subnetworks A and B, containing |A| and
|B| proteins, respectively, the intersection rate is computed as the number of
common proteins over min{|A|, |B|}.

3 Results

We applied our algorithm to eukaryotic and microbial PPI networks, summarized
in Table 1. The three eukaryotic networks were taken from [11] and the microbial
networks were taken from [12]. As in [11], we used a BLAST E-value threshold
of 10−7 for sequence similarity, ensuring a corrected significance value of 0.01.

We evaluated the identified conserved subnetworks by computing the func-
tional coherency of their member proteins with respect to the biological pro-
cess annotation of the gene ontology (GO) [16], for each species separately. To
this end, we used the GO TermFinder tool [17] to compute empirical enrich-
ment p-values, and corrected for multiple testing using the false discovery rate
procedure [18]. For each species we report the percent of process coherent sub-
networks discovered, and the number of distinct GO categories they cover. The

Table 1. A summary of the PPI networks analyzed in this study

Species (tax id) #Proteins #PPIs

S. coelicolor (100226) 6678 230409
E. coli E12 (83333) 4087 216326
M. tuberculosis (83332) 3457 128932
S. typhimurium (99287) 4239 94609
C. crescentus (190650) 3341 40524
V. cholerae (243277) 2948 36038
S. pneumoniae (170187) 1843 25726
C. jejuni (192222) 1442 22116
H. pylori (85962) 1070 12943
Synechocystis sp. (1148) 2371 69439

S. cerevisiae (4932) 4738 15147
C. elegans (6239 2853 4472
D. melanogaster (7227) 7165 23484
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first measure quantifies the specificity of the method, and the second provides
an indication on the sensitivity of the method.

To establish the validity of our method, we first compared it to Network-
BLAST [11]. NetworkBLAST is an exhaustive approach that relies on explicitly
constructing a network alignment graph and, hence, is limited in application to
the alignment of up to 3 networks. Both methods use same scoring function and
scoring parameters were set equal for both methods for fair comparison. The
results in Table 2 show that the performance of NetworkBLAST-M is compara-
ble to that of NetworkBLAST. The latter has higher specificity, but fewer GO
categories enriched. The sensitivity of NetworkBLAST-M further improves when
using the relaxed-order variant. Notably, the application of NetworkBLAST-M
took less than 30 seconds in both configurations, while NetworkBLAST’s run
took more than six hours.

Table 2. A comparison of NetworkBLAST-M and NetworkBLAST on three eukaryotic
networks. For these networks NetworkBLAST produced 59 conserved regions, while
NetworkBLAST-M identified 64 regions in the restricted-order variant and 92 in the
relaxed-order variant.

Species Specificity (%) # GO categories
enriched

NetworkBLAST
S. cerevisiae 100.0 14
C. elegans 88.0 13
D. melanogaster 94.9 16

NetworkBLAST-M restricted order
S. cerevisiae 100.0 29
C. elegans 68.8 32
D. melanogaster 98.4 37

NetworkBLAST-M relaxed order
S. cerevisiae 94.6 45
C. elegans 67.0 29
D. melanogaster 90.1 41

Next, we compared the performance of NetworkBLAST-M to that of Graem-
lin [12] on a set of 10 microbial networks. Graemlin’s results were taken from
the original publication, considering only alignments which contain all 10 species
(a total of 21 conserved regions). NetworkBLAST-M was applied only in the
restricted-order variant due to the high computation burden. The algorithm
detected a total of 33 conserved network regions. As summarized in Table 3,
NetworkBLAST-M outperforms Graemlin, providing uniformly higher specificity
and sensitivity.

Statistics on the running times of NetworkBLAST-M on different sets of mi-
crobial networks with 3-10 species are given in Table 4. As evident, the restricted-
order variant is considerably faster and can process up to 10 networks in minutes.
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Table 3. A comparison of NetworkBLAST-M and Graemlin on 10 microbial networks.
Results are provided for nine of the ten species for which we had gene ontology infor-
mation (for Synechocystis we did not have functional information readily available).

Species Specificity (%) # GO categories
enriched

NetworkBLAST-M restricted order
S. coelicolor 100 17
E. coli E12 90 16
M. tuberculosis 87.9 17
S. typhimurium 93.1 14
C. crescentus 84.8 15
V. cholerae 90.6 16
S. pneumoniae 97.0 14
C. jejuni 96.2 12
H. pylori 92.3 13
Synechocystis N/A N/A

Graemlin
S. coelicolor 71.4 12
E. coli E12 76.5 10
M. tuberculosis 76.9 8
S. typhimurium 81.3 10
C. crescentus 86.7 11
V. cholerae 80.0 9
S. pneumoniae 71.4 8
C. jejuni 76.9 9
H. pylori 56.3 8
Synechocystis N/A N/A

Table 4. NetworkBLAST-M run-time as a function of the number of species and
the size of the layered alignment graph. All the tests were performed on Intel Xeon
3.06GHz 3GB memory machine.

#Species #Nodes #PPI edges #Sequence similarity Restricted order Relaxed order
edges run time (sec) run time (sec)

3 8132 102288 26834 40 44
5 11945 193843 57142 72 1587
7 17236 301365 103887 83 46686
10 31458 877032 327219 140 N/A

4 Conclusions

We have provided a fast and accurate framework for multiple network alignment.
Our framework is based on a novel representation of multiple protein-protein in-
teraction networks and the orthology relations among their proteins. The frame-
work performs comparably to an exhaustive approach while allowing dramatic
reduction in running time and memory requirements. It is shown to outperform
a previous approach based on progressive alignment ideas.
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Future research includes a more extensive comparison of the different seed
computation variants presented here. Our initial experiments in this regard in-
dicate that the relaxed-order yields higher sensitivity on eukaryotic data sets,
while the two perform similarly on microbial networks (data not shown). This
may reflect the fact that sequence similarity among the pertaining microbial
proteins tends to be transitive and, hence, any order of the species will form
a tree in GH . The development of efficient network alignment techniques, such
as the one described here, is crucial to the study of protein network evolution
and is expected to become increasingly important as protein-protein interaction
databases continue to grow in size and species coverage.

Acknowledgments

VB was supported in part by a research gift from Glaxo SmithKline. This re-
search was supported by the Israel Science Foundation (grant no. 385/06).

References

1. Ito, T., Chiba, T., Yoshida, M.: Exploring the yeast protein interactome using
comprehensive two-hybrid projects. Trends Biotechnology 19, 23–27 (2001)

2. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–
207 (2003)

3. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Sac-
charomyces cerevisiae. Nature 403, 623–627 (2000)

4. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

5. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

6. Gavin, A., et al.: Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415, 141–147 (2002)

7. Stelzl, U., et al.: A human protein-protein interaction network: a resource for an-
notating the proteome. Cell 122, 830–832 (2005)

8. Kelley, B., et al.: Conserved pathways within bacteria and yeast as revealed by
global protein network alignment. Proc. Natl. Acad. Sci. 100, 11394–11399 (2003)

9. Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.: Identification of protein
complexes by comparative analysis of yeast and bacterial protein interaction data.
Journal of Computational Biology 12, 835–846 (2005)

10. Koyuturk, M., et al.: Pairwise local alignment of protein interaction networks
guided by models of evolution. Journal of Computational Biology 13, 182–199
(2006)

11. Sharan, R., et al.: Conserved patterns of protein interaction in multiple species.
Proc. Natl. Acad. Sci. 102, 1974–1979 (2005)

12. Flannick, J., Novak, A., Srinivasan, B., McAdams, H., Batzoglou, S.: Graem-
lin:general and robust alignment of multiple large interaction networks. Genome
Research 16, 1169–1181 (2006)

13. Dutkowsky, J., Tiuryn, J.: Identification of functional modules from conserved
ancestral protein-protein interactions. Bioinformatics 23, 149–158 (2007)



256 M. Kalaev, V. Bafna, and R. Sharan

14. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144, 173–182 (2004)

15. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: As-
signing protein functions by comparative genome analysis: Protein phylogenetic
profiles. PNAS 96, 4285–4288 (1999)

16. Ashburner, M., et al.: The gene ontology consortium. gene ontology: Tool for the
unification of biology 25, 25–29 (2000)

17. Boyle, E., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J., Sherlock, G.:
Go:termfinder–open source software for accessing gene ontology information and
finding significantly enriched gene ontology terms associated with a list of genes.
Bioinformatics 20, 3710–3715 (2004)

18. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society 57
(1), 289–300 (1995)



High-Resolution Modeling of Cellular Signaling

Networks

Michael Baym1,2,�, Chris Bakal3,4,�, Norbert Perrimon3,4,
and Bonnie Berger1,2,��

1 Department of Mathematics, MIT, Cambridge, MA 02139
2 Computer Science and Artificial Intelligence Laboratory, MIT, 02139
3 Department of Genetics, Harvard Medical School, Boston, MA 02115

4 Howard Hughes Medical Institute, Boston MA 02215
bab@mit.edu

Abstract. A central challenge in systems biology is the reconstruction
of biological networks from high-throughput data sets. A particularly dif-
ficult case of this is the inference of dynamic cellular signaling networks.
Within signaling networks, a common motif is that of many activators
and inhibitors acting upon a small set of substrates. Here we present a
novel technique for high-resolution inference of signaling networks from
perturbation data based on parameterized modeling of biochemical rates.
We also introduce a powerful new signal-processing method for reduction
of batch effects in microarray data. We demonstrate the efficacy of these
techniques on data from experiments we performed on the Drosophila
Rho-signaling network, correctly identifying many known features of the
network. In comparison to existing techniques, we are able to provide sig-
nificantly improved prediction of signaling networks on simulated data,
and higher robustness to the noise inherent in all high-throughput experi-
ments. While previous methods have been effective at inferring biological
networks in broad statistical strokes, this work takes the further step of
modeling both specific interactions and correlations in the background
to increase the resolution. The generality of our techniques should allow
them to be applied to a wide variety of networks.

1 Introduction

Biological signaling networks regulate a host of cellular processes in response
to environmental cues. Due to the complexity of the networks and the lack of
effective experimental and computational tools, there are still few biological sig-
naling networks for which a systems-level, yet detailed, description is known [1].
Substantial evidence now exists that the architecture of these networks is highly
complex, consisting in large part of enzymes that act as molecular switches to
activate and inhibit downstream substrates via post-translational modification.
These substrates are often themselves enzymes, acting in similar fashion.
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In experiments, we are able to genetically inhibit or over-express the levels
of activators, inhibitors and the substrates themselves, but rarely are able to
directly observe the levels of active substrate in cells. Without the ability to
directly observe the biochemical repercussions of inhibiting an enzyme in real-
time, determining the true in vivo targets of these enzymes requires indirect
observation of genetic perturbation and inference of enzyme-substrate relation-
ships. For example, it is possible to observe downstream transcription levels
which are affected in an unknown way by the level of active substrate [2].

The specific problem we address is the reconstruction of cellular signaling
networks studied by perturbing components of the network, and reading the
results via microarrays. We take a model-based approach to the problem of
reconstructing network topology. For every pair of proteins in the network, we
predict the most likely strength of interaction based on the data, and from this
predict the topology of the network. This is computationally feasible as we are
considering a subset of proteins for which we know the general network motif.

We demonstrate the efficacy of this approach by inferring from experiments
the Rho-signaling network in Drosophila, in which some 40 enzymes activate and
inhibit a set of approximately seven substrates. This network plays a critical
role in cell adhesion and motility, and disruptions in the orthologous network in
humans have been implicated in a number of different forms of cancer [3]. This
structure, with many enzymes and few substrates (Fig. 1), is a common motif
in signaling networks [4, 5].

To complicate the inference of the Rho-signaling network further, not every
enzyme-substrate interaction predicted in vitro is reflected in vivo [6]. As such,
we need more subtle information than is provided by current high-throughput
protein-protein interaction techniques such as yeast two-hybrid screening [7, 8].

+ + ++ - - --

Activators Inhibitors

Substrates

Fig. 1. The many enzyme-few substrate motif. A triangular arrowhead represents ac-
tivation, a circular arrowhead inhibition.

To probe this network, we have carried out and analyzed a series of knockout
and overexpression experiments in the Drosophila S2R+ cell line. We measure
the regulatory effects of these changes using DNA microarrays. It is important
to note that microarrays measure the relative abundance of the gene transcript,
which can be used as a rough proxy for the total concentration of gene product.
What they do not elucidate, however, is the relative fraction of an enzyme in an
active or inactive state, which is crucial to the behavior of signaling networks.
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To reconstruct the network from measurement, rather than directly use the
microarray features corresponding to the proteins of interest, we instead use
correlations in observations of the affected downstream gene products.

A number of related techniques for inferring global patterns based on high-
throughput data exist. Many of these utilize the technique of probabilistic graph-
ical models [9, 10, 11, 12, 13]. While these techniques are effective for inferring
networks in broad statistical strokes, we increase the resolution and model the
rate coefficients of individual reactions. The mathematics of our methodology
is in fact isomorphic to a probabilistic graphical model approach; however as
our parameters correspond directly to physical quantities or coefficients, we are
able to dramatically narrow our model space when compared to a more general
technique such as Bayesian or Markov networks [9]. In doing so we are able to
gain both greater sensitivity, specificity, and robustness to noise. A related tech-
nique, based on modeling of rate kinetics in the framework of Dynamic Bayesian
Networks has been effective in modeling genetic regulatory networks [14]. Tech-
niques from information theory, such as ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks) [15,16] and nonparameteric statistics,
such as GSEA (Gene Set Enrichment Analysis) [17] have also been used to infer
connections in high-throughput experiments. While not generally used for sig-
naling network reconstruction, GSEA notably has been popular recently [18,19],
in part for its efficacy in overcoming batch effect noise.

We take the novel approach of constructing and optimizing a detailed param-
eterized model, based on the biochemistry of the network we aim to reconstruct.
For the first part of the network model, namely the connections of the enzymes
to substrates, we know the specific rate equations for substrate activation and
inhibition. By modeling the individual interactions in like manner to the well-
established Michaelis-Mentin rate kinetics [20, 21, 14], we are able to construct
a model of the effects of knockout experiments on the level of active substrate.
Lacking prior information, we model the effect of the level of active substrate
on the microarray data by a linear function. If the only source of error were
uncorrelated Gaussian noise in the measurements, we could then simply fit the
parameters of this model to the data to obtain a best guess at the model’s
topology.

However, noise and “batch effects” [18] in microarray data are a real-world
complication for most inference methods, which we address in a novel way. Noise
in microarrays is seemingly paradoxical. On one hand, identical samples plated
onto two different microarrays will yield almost identical results [22,23]. On the
other hand, with many microarray data sets, when one simply clusters experi-
ments by similarity of features, the strongest predictor of the results is to group
by the day on which the experiment was performed. We hypothesize, in this
analysis, that the batch effects in microarrays are in fact other cellular processes
in the sample unrelated to the experimental state. Properly filtering the ever-
present batch effects in microarray data requires more than simply considering
them to be background noise. Specifically, instead of the standard approach of
fitting the data to our signal and assuming noise cancels, we consider the data
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to be a combination of the signal we are interested in and a second, structured
signal of the batch effects.

Fitting this many-parameter model with physical constraints to the actual
data optimizes our prediction for the signaling network, with remarkably good
results.

To test this method we have constructed random networks with structure
similar to the expected biology, and used these to generate data in simulated
experiments. We find that when compared to reconstructions based on näıve
correlation, GSEA, and ARACNE, we were able to obtain significantly more
accurate network reconstructions. That is to say, at every specificity we obtained
better sensitivity and vice-versa. The details of how GSEA and ARACNE were
used in this manner can be found in Sec. 3.1.

We have also reconstructed the Rho-signaling network in Drosophila S2R+
cells from a series of RNAi and overexpression experiments we performed. While
very little is experimentally known about this network, of the 40 pairs for which
we have any biological evidence, we were able to predict 26 correctly, considerably
better than chance (a p-value of 0.0079). It is important to remember that this
standard is far from certain, and the known data represents a small fraction
of the over 180 connections we aim to predict. Notably, many of the global
features of the predicted network are in line with what is believed from biological
experiments. While there is little doubt that with further experiments we will
predict a more accurate network, this is the first detailed systems-level model of
the Drosophila Rho-signaling network.

Contributions. We have introduced a novel parameterized model-based ap-
proach to signaling network inference from high-throughput data. We use this to
provide testable predictions for connections in the Drosophila Rho-signaling net-
work. Large-scale general statistical techniques have painted networks in broad
strokes. Given the broad generality of such modeling, and the prevalence of sim-
ilar motifs to the example studied here, the present approach is a crucial step in
the program of systems biology.

Additionally we have developed a method for incorporating a noise model into
this fit so as to greatly reduce the impact of batch effects in microarray data.
This approach to noise in microarrays is widely applicable.

2 Models and Algorithms

In broad terms, we first aim to derive a model of the effects of our perturbations
on the data whose parameters correspond to the edge weights of the cellular
signaling network we wish to reconstruct. We first model how the level of active
substrate changes in response to perturbations of the activators or inhibitors.
To do this we derive an equilibrium condition based on well-known biochemical
rate kinetics. We then make a linear model of how this affects the experimental
data.

To fully understand the data, however, requires more than simply a model
of the network. We need, as pointed out earlier, to model the noise, in order
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Inactive

Substrate

Active

Substrate

Activator

Inhibitor

Fig. 2. The dynamics of an activator-inhibitor-substrate trio. The circled variables are
proportional to protein concentrations.

to account for correlations in the background levels on unperturbed repeat ex-
periments; we take a low-dimensional linear approximation of the batch effects
present in microarray data. By fitting the parameters of the resultant model to
the experimental data, we are able to predict both the topology and edge weights
of the signaling network.

2.1 Biochemical Model

We first illustrate our approach for a single activator-inhibitor-substrate trio be-
fore extending to the many-node case. We start by deriving the time dependence
of the concentration1 ρ of active substrate in terms of the concentrations ρ̄ of
inactive substrate, η of activator, α of inhibitor, and the base rates γ̄ of activa-
tion and γ of de-activation. Fig. 2 depicts these kinetics. As the rate at which
inactive substrate becomes active is proportional to its concentration times the
rate of activation and vice-versa,

dρ

dt
= −dρ̄

dt
= ρ̄ (γ̄ + η) − ρ (γ + α) . (1)

We are primarily interested in ρ, the level of active substrate, as the down-
stream effects of the substrate are dependent on this concentration. As the mea-
surements are taken several days after perturbation and are an average over
the expression levels of many individual cells, by ergodicity we expect to find
approximately the equilibrium (dρ/dt = 0) concentration of substrate.

Solving for ρ at equilibrium yields:

ρ =
κ (γ̄ + η)

γ̄ + η + γ + α
. (2)

where κ = ρ + ρ̄ is total concentration of the substrate, approximately available
from the microarray data. By choice of time units we can let γ̄ = 1. This result,
by no coincidence, is similar to the familiar Michaelis-Mentin rate kinetics.

1 Choice of units of concentration is absorbed by scalar factors of the fit once the xjk

and yjk coefficients are added; see Eq. 3.
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We now generalize the model to multiple substrates κk, interchangeable acti-
vators ηj with relative strength xkj , and inhibitors αj with relative strength ykj .
The equilibrium concentration of the level of active substrate ρk then becomes:

ρk =
κk

(
1 +

∑
j xkjηj

)

1 +
∑

j xkjηj + γk +
∑

j ykjαj
. (3)

Lacking more detailed biological information, and aiming to avoid the intro-
duction of unnecessary parameters, we assume a linear response from features in
the microarray. Specifically, for a vector of microarray feature data ϕ, we model
the effect as a general linear function of the levels of active substrate, of the form
aρ + r. Additionally we introduce a superscripted index z for those variables
which vary by experiment. The level, ϕz

i , of the ith feature in microarray z is in
our model:

ϕz
i =

∑

k

aik

⎛

⎝
κz

k

(
1 +

∑
j xkjη

z
j

)

1 +
∑

j xkjηz
j + γk +

∑
j ykjαz

j

⎞

⎠ + ri + βz
i + εz

i , (4)

where the batch effects β and noise ε are considered additively.

2.2 Noise Filtration

As batch effects in microarrays are highly correlated, our approach is to construct
a linear model of their structure. Empirically, batch effects tend to have a small
number, s, of significant singular values (from empirical data s � 4). In the
singular vector basis, we can model the batch effects as a (features×s) matrix c.
To determine the background as a function of experiment batch, we rotate by an
(s × batches) rotation matrix u. Thus cu =

∑
j cijujd is a (features × batches)

matrix whose columns are the background signal by batch. Finally to extract the
batch effect for a given experiment z, we multiply by the characteristic function
of experiments by batches, χ, where χz

d = 1 if experiment z happened in batch
d and is 0 otherwise. Our model of batch effects is then:

βi =
∑

l,d

ciluldχ
z
d. (5)

All together, our detailed model for experimental data based on the network,
experiments, and noise becomes:

ϕz
i =

∑

k

aik

⎛

⎝
κz

k

(
1 +

∑
j xkjη

z
j

)

1 +
∑

j xkjηz
j + γk +

∑
j ykjαz

j

⎞

⎠ + ri +
∑

l,d

ciluldχ
z
d + εi. (6)

2.3 Model Fitting

Having now constructed a model of our system, we minimize the least-squares
difference between the model predictions and observed data (detailed in Sec. 3.2),
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to obtain optimal model parameters. The resultant values of x and y predict
the relative strengths of the activator-substrate interactions.

It is important to keep in mind which parameters are known and which we
must fit. We know s and χ from experiment. In lieu of detailed knowledge of
the activity levels of the activator and inhibitor, we take κz

k, ηz
j and αz

j to be 1
normally, 0 on those experiments for which the gene is silenced, and 2 for those
in which it is overexpressed. The remaining fitting parameters of our model are
x, y, a, γ, r, c, and u.

For a vector of experimental data d, we construct, as above, a model for the
predicted data ϕ. Fitting the model to data is done by minimizing:

f(x, y, a, γ, r, c, u) =
∑

i,z

(dz
i − ϕz

i )
2
, (7)

where ϕz
i is given in Eq. 6, subject to the constraints

xkj , ykj , δk, κk ≥ 0 (8)

and the additional constraint that u is a rotation matrix. As the solution space
is non-convex and likely has local minima, we use a general trust-regions [24]
method for minimization starting at multiple starting points. The fit with lowest
objective value is taken to be the best predictor of the network.

To verify that we have more data than parameters, we consider a microarray
with Φ features and a network model with a total of θ activators and inhibitors
and σ substrates. Additionally we consider a 4-dimensional noise model for λ
batches. Then for ζ experiments, we have more data than parameters precisely
when:

ζ > σ + 4 +
(θ + 3)σ + 4λ − 10

Φ
(9)

In a realistic setting, for 26 enzymes, six substrates, with on average six experi-
ments per batch, and assuming each experiment has at least 50 features, then we
need to perform at least 14 experiments in order to have more data than param-
eters. As the batch effect model has substantially lower rank than the number
of batches, as long as there are at least five batches, over-fitting is unlikely.

In the above setting with 70 experiments, network optimization takes ap-
proximately 8 hours on a Powerbook G4 using an off-the-shelf constrained local
nonlinear optimization routine in the MATLAB Optimization Toolbox [25] to a
convergence tolerance of 1e−6. While we aim to find the network which globally
minimizes f , this trust-regions based local search technique occasionally reaches
the convergence threshold at a demonstrably sub-optimal value. Continuing to
optimize on a subset of the variables followed by repeated total optimization is
often sufficient to pass these obstacles. Nevertheless, this still yields a good net-
work prediction (see below). With more refined optimization tools, we will likely
make even more accurate predictions. While we find that in very noisy cases the
global minimum of f is smaller than that predicted by the actual connections,
an overfit of the data, in practice this is a good guess.
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3 Results

3.1 Simulations

We have generated simulated data on randomly created networks. The density
of activator-substrate and inhibitor-substrate connections was chosen to reflect
what is expected in the Rho-signaling network described in Sec. 3.2. From this,
we have generated model experiment sets consisting of one knockout twice of
each of the substrates and a single knockout of each activator and inhibitor in
batches in random order. To further mimic our biological data set we included
at least one baseline experiment in each batch. From this model we simulated
experimental data with both noise and a batch-effect signal and attempted to
fit the generated data.

To test against other techniques, we applied the statistics used by GSEA and
ARACNE, modified for use on our model data sets. While GSEA is not typically
used for signaling network reconstruct, its general usefulness in microarray anal-
ysis necessitates the comparison. ARACNE, on the other hand, while designed
for a similar situation, does not directly apply, and so needs to be modified to
make a direct comparison. As a baseline, we also computed the näıve (Pearson)
correlation of experimental states.

GSEA starts by constructing, for each experimental condition, two subsets
(“gene sets”) of the features, one positive and one negative, which are used as
indicators of the condition. To test whether a specific state is represented in a
new experiment, the Kolmogorov-Smirnov enrichment score of those subsets in
the new data is calculated (for details, see [17]). If the positive set is positively
enriched and the negative set negatively enriched, the test state is said to be
represented in the data. Likewise if the reverse occurs, the state is said to be
negatively represented. If both are positively or negatively enriched, GSEA does
not make a prediction. We are able to apply GSEA by computing positive and
negative gene sets based on perturbation data for the substrates and then testing
for enrichment in each of states in which we perturb an activator or inhibitor.

ARACNE, on the other hand, begins by computing the kernel-smoothed
approximate mutual information (AMI) of every pair of features (for details,
see [15]). In order to remove transitive effects, for every trio of features A, B, C,
the pair with the smallest mutual information is marked to not be an edge. The
remaining set of all unmarked edges is then a prediction of the network. As
already discussed, we do not have features in our experiment that correspond
directly to the levels we wish to measure. However, treating each experimental
state as a feature, we are able to apply the AMI metric to obtain the relative
efficacies of the activator and inhibitor perturbation experiments as predictors of
the substrate perturbations. We know from the outset that the network we are
trying to predict has no induced triangles, and so ARACNE would not remove
any of the edges. However, the relative strengths of these predictions yield a
predicted network topology.
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On noiseless data, with only a minimal set of experiments and batch effects
of comparable size to the perturbation signal, we are able to achieve a perfect
network reconstruction which was not achieved by any of the other methods we
consider. On highly noisy data, we cannot reconstruct the network perfectly; how-
ever we consistently outperform the other methods in both specificity and sensitiv-
ity (Fig. 3). Moreover, we find that while the model alone out-performs other tech-
niques (comparably to AMI), the batch effect fit is of crucial importance. While
this is clearly a biased result, as the simulated data is generated by the same model
we assume in the fit, it does show that we are able to obtain a partial reconstruc-
tion even under high noise conditions. As this is a best-guess model from prior
biological knowledge, the assumptions are far from unreasonable.
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Fig. 3. Typical ROC curve for highly noisy simulated data. Our model (dark blue)
is closest to the actual network, which would be a point at [0, 1]. Model fitting with-
out batch effects (purple) is also considered. The other lines represent the predictions
obtained by a GSEA-derived metric (red), an ARACNE-derived metric (light blue),
and näıve correlation (green). The diagonal black line is the expected performance
of random guessing. This particular set of simulated data has no repeat experiments
for GAPs or GEFs, a batch signal of half the intensity of the perturbations, and an
approximate total signal-to-noise ratio of 1.5.

3.2 Biological Data

We used our method, discussed above, on forthcoming microarray data col-
lected from RNAi and overexpression experiments to predict the structure of
the Rho-signaling network in Drosophila S2R+ cells. This network consists of
approximately 47 proteins, divided roughly as 7 GTPases, 20 Guanine Nucleotide
Exchange Factors (GEFs) and 20 GTPase Activating Proteins (GAPs). Impor-
tantly, we have the additional information that, despite their misleading names,
the GEFs serve to activate certain GTPases and the GAPs serve to inhibit them.
The exact connections, however, are for the vast majority, unknown.
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Labeled aRNA, transcribed from cDNA, was prepared from S2R+ Drosophila
cells following five days incubation with dsRNA or post-transfection of overex-
pression constructs. The aRNA was then hybridized to CombiMatrix 4x2k Cus-
tomArrays designed to include those genes most likely to yield a regulatory effect
from a perturbation to the Rho-signaling network. After standard spatial and
consensus Lowess [26] normalization, we k-means clustered [27] the data into
50 pseudo-features to capture only the large-scale variation in the data.2

After fitting, we have computed the significance of our fit using the Akaike
and Bayesian Information Criteria (AIC and BIC) [28, 29]. These measure pa-
rameter fit quality as a function of the number of parameters, with smaller
numbers being better. AIC tends to under-penalize free parameters while BIC
tends to over-penalize, thus we computed both. As a baseline, we computed the
AIC/BIC of the null model. While a direct fit of the pseudo-features yielded a
lower AIC but not BIC, an iterative re-fit and solve technique, not unlike EM,
produced a significant fit by both criteria (Table 1, prediction in Fig 5). This
re-fitting was done by greedily resorting the groupings for meta-features based
on the model fitness and refitting the model to the new meta-features. As each
step strictly increases fit quality, and there are only finitely many sets of meta-
features, this is näıvely guaranteed to converge in O(nk) iterations for n features
and k meta-features. We find, however that the convergences generally to hap-
pens in around 5 iterations, leaving feature variance intact (an indication that
this is not converging to a degenerate solution).

Table 1. AIC/BIC of the null model, best näıve fit, and best fit

Model Fit (f) AIC BIC
Null Model (ϕz

i = 0) 0.9885 -8.389 -8.387

Best Fit 0.2342 -9.480 -8.366

Adapted Features 0.0328 -11.446 -10.332

To further test the accuracy of our model, we fit the model to four subsets
of the 87 experiments and tested the prediction quality on the remaining ex-
periments. The prediction error is calculated as the mean squared error of the
predicted values divided by the mean standard deviation by feature. We tested
on four sets: Sets 1 and 2 were chosen randomly to have nine (10.3% of exper-
iments) and seventeen (19.5% of experiments) elements respectively, of which
four of each are unduplicated experiments. Sets 3c and 4c were chosen randomly
to have nine elements but were constrained not to have two elements from the
same batch or experimental condition. We find that the model accurately pre-
dicts test set data (Table 2) for repeated experiments. Note that in Set 1, when

2 The fact there are fewer than 50 significant singular values in the data and the
linearity of a, r and β, indicates that we can not get more information from more
clusters.
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Table 2. Prediction error on test data.

Test Set Size #Unduplicated Total Fit (f) Test Set Fit Error
1 9 4 0.0280 0.1307 14.6%

2 17 4 0.0288 0.0632 6.10%

3c 9 0 0.0302 0.0371 3.13%

4c 9 0 0.0301 0.0517 4.06%

44% of the experiments in the test set are non-duplicated, the prediction error is
significantly higher. This indicates the necessity of both the batch and network
components of the model.

While very little is known about the actual structure of the network, our
reconstruction performed well when compared to previous biological data from
in vivo experiments [30, 31, 32, 33, 34, 35, 36, 37] or mammalian homology,
[38, 39, 40, 41, 42, 43, 44, 45, 46]. We predicted the existence of 57 of the 156 pos-
sible connections. Of the 23 known connections, both from in vivo experiments
and inferred by orthology, we successfully predicted 11. Of the 17 pairs of pro-
teins for which there is evidence they do not interact, we correctly predicted
15. This compares quite favorably to the predictions of other methods (Fig. 4).
On this set of known interactions and non-interactions, the probability that our
set of predicted connections overlapped correctly at least 26 times by chance is
0.0079. It is important to keep in mind that the known data represents less than
a quarter of the testable connections predicted by our method.
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Fig. 4. ROC curve of network predictions vs. known data. Our model (dark blue) is
closest, the curve discontinuity is on account of many of the predictions being zero.
The other lines represent the predictions obtained by our model without a batch effect
model (green), a GSEA-derived metric (purple), an ARACNE-derived metric (red),
and näıve correlation (light blue).
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Fig. 5. The predicted Rho-signaling network in Drosophila

Two global network features of note, that the GTPase Rho1 is more highly
connected than either Rac1/2 or Cdc42, and that the GEF Ephx has broad
specificity, were reflected in our predictions as well. We also note that the pre-
diction quality is not substantially different for GEFs (7 of 12 positives and 8 of
10 negatives) or GAPs (4 of 7 positives and 7 of 7 negatives).

4 Conclusion

In this paper we infer a signaling network from microarray data on perturbation
experiments. We do so by constructing a detailed model of both the network
and experimental background noise. We demonstrate the effectiveness of this
technique on simulated data, and use it to make testable predictions of the
connections in the Drosophila Rho-signaling network.

There are several natural extensions to our model. First, it is possible to
backtrack errors in prediction in order to guide future experiments. We can
also obtain a better fit on the unknown connections by incorporating further
biological knowledge. For example, if it is known that a given enzyme-substrate
pair does or does not interact, we can limit our model space to reflect this with an
appropriate constraint on xjk in Eq. 8. Recent advances in optimization promise
greater efficiency and scalability than the method we used.

Our approaches have more general applicability. Since the many enzyme-few
substrate motif is so common, we can use similar techniques to elucidate more
networks as the data sets become available. Furthermore, microarray data is used
in many contexts beyond network inference. The method of filtering batch effects
proposed here will provide a potentially very useful tool for future exploration.
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Abstract. We introduce the first exact and efficient algorithm for Guigó et al.’s
problem that given a collection of rooted, binary gene trees and a rooted, binary
species tree, determines a minimum number of locations for gene duplication
events from the gene trees on the species tree. We examined the performance
of our algorithm using a set of 85 genes trees that contain genes from a total
of 136 plant taxa. There was evidence of large-scale gene duplication events in
Populus, Gossypium, Poaceae, Asteraceae, Brassicaceae, Solanaceae, Fabaceae,
and near the root of the eudicot clade. However, error in gene trees can produce
erroneous evidence of large-scale duplication events, especially near the root of
the species tree. Our algorithm can provide hypotheses for precise locations of
large-scale gene duplication events with data from relatively few gene trees and
can complement other genomic approaches to provide a more comprehensive
view of ancient large-scale gene duplication events.

1 Introduction

Polyploidy is a major component of plant genome evolution [27,14]. Analyses of ge-
nomic data from numerous plants such as grasses [16,24], Arabidopsis or Brassicaceae
[30,26,3], poplar [28], cotton [4], Physcomitrella [25], and Vitis [10] have revealed ev-
idence of ancient genome duplications. Yet the number of ancient genome duplications
and their precise location in the evolutionary history of plants is still unclear. We de-
scribe the first exact polynomial time algorithm for Guigó et al.’s problem [15] that maps
large-scale gene duplications, such as polyploidy, on a species tree, and we demonstrate
its ability to identify and place ancient polyploidy events in plants.

The presence of large, duplicated chromosomal segments within a genome provided
the first evidence of ancient polyploidy (e.g. [30,26,3,5,16,24,10]). These duplications
can be dated based on the sequence divergence between paralogous genes on dupli-
cated blocks. However, rapid gene loss and gene rearrangements after a polyploidy
event can make it difficult or impossible to detect ancient duplicated chromosomal seg-
ments [20,26], and few plant taxa have adequate gene mapping data. It is also possible
to detect ancient polyploidy based solely on the age distributions of pairs of duplicated
(paralogous) genes (e.g. [20,30,4,28,8,25]). The date of the inferred duplications is es-
timated from amino acid or, more commonly, silent (synonymous) substitution rates,
using molecular clock assumptions. Examining genomic data from multiple taxa in a
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comparative phylogentic context has the potential to improve estimates of the timing of
large-scale duplication events (e.g. [5,7]). In the simplest approach, a phylogenetic tree
is constructed with a pair of paralogous genes from one taxon, and the best homolog
from a second taxon and from an outgroup taxon [5,7]. This allows one to date the dupli-
cation from the first taxon relative to the divergence with the second taxon. Yet placing
a duplication event relative to a single taxonomic divergence is not very specific.

Guigó et al. [15] first addressed a more comprehensive phylogenetic approach that
maps duplication events from a collection of rooted, binary gene trees onto a rooted,
binary species tree. Later on, Page and Cotton [22] refined this problem and used it
to examine gene duplication events in vertebrates. We refer to the refined problem as
the Episode Clustering problem. An alternative version of this problem was introduced
by Fellows et al., which they proved to be intrinsically difficult [9]. Hence, we direct
the focus of this work to the Episode Clustering problem. This problem determines
duplication events using the Gene Duplication Model from Goodman et al. [13]. Each
duplication can be placed on any species on a path between the two (not necessarily
distinct) most recent species that could have contained the duplication and its parent
respectively. In case the parent does not exist, the path runs between the most recent
species for the duplication and the root of the species tree. An example is depicted
in Fig. 1. The duplications in gene tree G are represented by the three bold nodes.
Associated with each bold node is its path represented by an interval. For example,
the interval [5, 3] represents the path 5, 4, 3 in the species trees S. Let g denote the
node corresponding to the interval [5, 3]. Species 5 is the most recent species that could
have contained g and the parent of species 3, i.e. 2, is the most recent species that
could have contained the parent of g. The Episode Clustering (EC) problem is, given
a collection of gene trees and a species tree, find a minimum number of locations in
the species tree where all duplications in the gene trees can be placed. For example, all
three duplications in Fig. 1 can be placed on species nodes 2 and 3. Page and Cotton [22]
observed that the EC problem can be efficiently reduced to the set-cover problem [11].
They approach the EC problem using a heuristic for the intrinsically difficult set-cover
problem. In this paper we present an efficient and exact solution for the EC problem,
which is based on established graph theoretical results. Note, that the gene duplications
and the paths where duplications can be placed are computable in linear time using
efficient least common ancestor computations [2,31].

Fig. 1. A gene tree G and a comparable species tree S is depicted. The bold nodes in G are
duplications and their intervals represent their allowed locations in the species tree S.
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2 Methods

2.1 Basic Definitions, Notation, and Preliminaries

In this section we first introduce basic definitions and notation that we will be dealing
with and then define preliminaries required for this work.

Basic Definitions and Notation. A tree T is a connected graph with no cycles, con-
sisting of a node set V (T ) and an edge set E(T ). T is rooted if it has exactly one
distinguished node called the root which we denote by Ro(T ). Let T be a rooted tree.
We define ≤T to be the partial order on V (T ) where x ≤T y if y is a node on the path
between Ro(T ) and x. We denote by x �T y that x, y are related by ≤T , and by <T the
strict counterpart of the relation ≤T . The set of minima under ≤T is denoted by Le(T )
and its elements are called leaves. If x ≤T y and {x, y} ∈ E(T ), then we call y the
parent of x denoted by Pa(x) and we call x a child of y. The set of all children of y is
denoted by ChT (y). The least common ancestor (lca) of a non-empty subset L ⊆ V (T )
denoted as lca(L), is the unique smallest upper bound of L under ≤T . A subtree of T
rooted at node y ∈ V (T ), denoted by Ty, is the tree induced by {x ∈ V (T ) : x ≤T y}.
T is called (fully) binary if every node has either zero or two children.

The interval for a ≤T b is defined as [a, b] = {x ∈ V (T ) | a ≤T x ≤T b}. Let I
be a collection of intervals in ≤T . The node cover of a node v ∈ V (T ) is defined as
cover(v) := {I ∈ I | v ∈ I} and the node cover of a node set V ⊆ V (T ) is defined as
cover(V ) =

⋃
v∈V cover(v). A set V ⊆ V (T ) is called a cover of I, if cover(V ) = I.

If V is a cover of minimum cardinality, we call V a minimum cover of I.
The intersection graph of a collection of intervals I, denoted int(I), is the graph

(I, E) where {I, I ′} ∈ E precisely if I ∩ I ′ �= ∅. Let G = (V, E) be a graph, then
V (G) = V and E(G) = E. A clique in G is a set C ⊆ V which induces a completely
connected subgraph in G. A clique cover of a G is a set of cliques C in G such that⋃

C∈C C = V . A minimum clique cover is a clique cover of minimum size.

Problem 1. Tree Interval Cover (TIC)
Instance: A collection of intervals I in the order ≤T .
Find: A minimum cover of I.

The Episode Clustering problem is a special case of the TIC problem.

The Episode-Clustering (EC) Problem. The EC problem is to place duplications onto
a minimum number of species in a species tree, where each duplication is associated
with an interval in the species tree describing the locations where that duplication can
be placed. The definition of duplication and its associated interval are based on the Gene
Duplication (GD) model [23] introduced by Goodman et al. [13]. Here we only provide
definitions necessary to state the EC problem.

The GD model is based on a gene and species tree from which gene duplications
and their associated intervals can be derived. A species tree is a tree that depicts the
evolutionary relationships of a set of species. Given a gene family for a set of species,
a gene tree is a tree that depicts the evolutionary relationships among the sequences
encoding only that gene family in the given species. Thus the nodes in a gene tree
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represent genes. To compare a gene tree G with a species tree S a mapping from each
gene g ∈ V (G) to the most recent species in S that could have contained g is required.

Definition 1 (Mapping). A leaf-mapping LG,S : Le(G) → Le(S) specifies, for each
gene g the species from which it was sampled. The extension MG,S : V (G) → V (S)
of LG,S is the mapping defined by MG,S(g) = lca(LG,S(Le(Gg)).

Definition 2 (Comparability). The trees G and S are comparable if there exists a
leaf-mapping LG,S . A set of gene trees G and S are comparable if each gene tree in G
is comparable with S.

Throughout the remainder of this paper, G denotes a collection of input gene trees, S a
comparable species tree, and G denotes an arbitrary gene tree in G.

Definition 3 (Duplication). A node v ∈ V (G) is a (gene) duplication if MG,S(v) =
MG,S(u) for some u∈Ch(v) and we define Dup(G, S)={g∈V (G) |g is a duplication}.

Definition 4. For every g ∈ V (G) we define the interval

I(g) =

⎧
⎪⎨

⎪⎩

[M(g), Ro(S)], if g = Ro(G),
[M(g), M(g)], if M(g) = M(Pa(g)),
[M(g), M(Pa(g))] − {M(Pa(g))}, otherwise.

(1)

Problem 2. Episode Clustering (EC)
Instance: A collection of gene trees G and a comparable species tree S.
Find: A solution to the TIC instance

⋃
g∈Dup(G,S){I(g)} in the order ≤S .

The TIC instance
⋃

g∈Dup(G,S){I(g)} can be computed in linear time [31] using effi-
cient lca computation (e.g. [2]). To solve the EC problem we give an efficient solution
for the TIC problem in the following section.

2.2 Solving the TIC Problem

Let I be a collection of intervals in the order ≤T . In the interest of brevity, proofs for
Lemmas 1 and 2, Theorems 1 and 2, and Corollary 1 appear in the Appendix.

Lemma 1. Let C be a clique in the intersection graph int(I). Then,
⋂

I∈C I is an
interval in the order ≤T . In particular

⋂
I∈C I = [a, b] where a = lca(

⋃
[x,y]∈C x) and

b = min(
⋃

[x,y]∈C y).

Lemma 2. Let I be a collection of intervals over ≤T and V ⊆ V (T ) covers I. Then,
C :=

⋃
v∈V {cover(v)} forms a clique cover of the intersection graph int(I).

Theorem 1. Let I be a collection of intervals over ≤T , and C be a minimum clique
cover of the intersection graph int(I). Define the function f : C → V (T ) that maps
f(C) to some element in

⋂
I∈C I . Note, f is well defined by Lemma 1. Then, the node

set f(C) is a minimum interval cover of I.
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The following two results are well known (see [21], and [12]).

Lemma 3. If G is the intersection graph of a family of paths on a tree, then G is
triangulated.

Every interval in ≤T is equivalent to a path on T . Thus, the intersection graph int(I)
is triangulated.

Lemma 4. Given a triangulated graph G with n nodes and m edges, a minimum clique
cover for G can be computed in O(n + m) time.

Theorem 2. Given a collection of intervals I in ≤T that are presented through paths
on the tree T . Then, the TIC problem can be solved in O(n2 + nm + l) where n =
|V (int(I))|, m = |E(int(I))| and l = | Le(T )|.

Corollary 1. Let G be a collection of gene trees and S a comparable species tree,
where k = ΣG∈G | Le(G)| and l = | Le(S)|. Then, the EC problem for the instance G
and S can be solved in O(k2 + km + l) time, where m is the number of intersecting
intervals that are associated with the duplications in the collection of gene trees G.

2.3 Plant Gene Analysis

We tested our algorithm using a set of plant gene family trees made from alignments
obtained from Phytome, an online comparative genomics database for plants [18]. We
selected the masked amino acid alignments from all 85 gene families in Phytome that
contain sequences from at least 100 of the 136 total taxa. The gene trees were inferred
with maximum likelihood (ML) phylogenetic analyses using RAxML-VI-HPC version
2.2.3. The ML analyses used the JTT amino acid substitution model [19] with the
PROTMIX option for modeling rate variation among sites. The ML gene trees were
first rooted using mid-point rooting. However, if any alternate rootings of the gene trees
decreased the minimum number of gene duplications needed to reconcile the gene trees
with the species tree, we chose a rooting that minimizes the number of duplications. Fi-
nally, since it is difficult to distinguish allelic variants of a single gene from paralogs, if
a gene tree had any clades that contain only sequences from a single taxon, we removed
all but a single leaf from the clade. We used a species tree based on currently accepted
plant phylogenetic hypotheses (e.g. [1]).

Inferring Gene Duplications Events. We used our EC algorithm to infer the minimum
number of duplication locations for the set of ML gene trees on the specified species
tree. Our algorithm provides a solution for the minimum number of duplication loca-
tions that also includes the total number of duplications at each node, the number of
duplication episodes at each node, and the number of genes with duplications at each
node. In order to examine the performance of our algorithm in the absence of phyloge-
netic signal, we also performed 10 replicates our analysis after randomly permuting the
leaf labels from each of the gene trees. This experiment will provide an expectation of
the results of our algorithm if there was no phylogenetic signal in the gene trees, or if
the gene trees were essentially random.
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3 Results

Plant Duplication Analysis. We found that gene duplication events involving at least
one of the 85 gene trees occur on a minimum of 119 of the 135 internal nodes. While
some nodes show evidence of many duplications, others have evidence of very few du-
plications. For example, 51 nodes have evidence of ≤ 10 duplications, and 4 nodes have
evidence of ≥ 1000 duplications. Since we are most interested in identifying large-scale
duplications, we focus on the 25 nodes with duplications involving at least half (≥ 43)
of the gene trees (Table 1 and Fig. 2). These are especially abundant among the root
nodes (Fig. 2). However, they are also common at the base of major clades including
Poaceae, Solanaceae, Asteraceae, Brassicaceae, as well as Populus and Gossypium (Ta-
ble 1 and Fig. 2). Each analysis of the 85 gene data set took approximately 15 minutes
on a Macintosh Power PC laptop computer with a 1.5 GHz G4 processor and Mac OSX
10.4 operating system.

Random Leaves Analysis. The 10 analyses using gene trees with randomly permuted
leaf labels found evidence for gene duplication events on only between 25 and 33 (ave.
28.3) internal nodes. In all replicates there was evidence for gene duplications involving
many if not all genes in the root nodes (A-C, F-I in Fig. 2) of the species tree as well as
the root nodes of the eudicots (nodes L, M, N, and R in Fig. 2), but generally few genes
in the other nodes of the species tree (Table 1 and Fig. 2).

4 Discussion

Gene and Genome Duplications in Plants. Our analyses first emphasize the ubiquity
of gene duplications throughout the evolutionary history of plants. While we examined
only 85 gene families with incomplete sampling, there is evidence of gene duplications
on nearly 90% of the internal nodes. Our analyses also provide a hypothesis for the his-
tory of large-scale gene duplications in plants that is generally consistent with previous
hypotheses (e.g., [8]). Our focus on the 25 nodes with evidence of duplications in at least
half of the gene families identified many previously hypothesized ancient polyploidy
events. These include events at the base of the Poaceae (node J [16,24]), Brassicaceae
(node T [30,26]), and Asteraceae (node Q [8]), within Solanaceae (nodes O and P [8])
and Fabaceae (node W [6]), and in Populus (nodes X and Y [28]) and Gossypium
(node V [4] Fig. 2). In some cases, our analyses provide more precise hypotheses of
the phylogenetic location of these duplications because of our higher taxon sampling.
For example, while there has been evidence of a large-scale gene duplication common
to many grasses (e.g. [29,24]), our analysis places it between the divergence of Ananas
and the Poaceae (node J, Fig. 2). There is little evidence for large-scale duplications at
the root nodes (nodes A-C, F-I Fig. 2), and at most of the early eudicot nodes (nodes L-
N, R-S; Fig. 2); yet, these also are the nodes where large numbers of duplications map
in our analysis of the randomly permuted gene trees (Table 1; Fig. 2). When mapping
duplications from a single gene tree to a species tree, error in the gene trees erroneously
places duplications towards the root of the species tree [17]. Our results suggest that
erroneously placed genes in gene trees also provide erroneous evidence of large-scale
duplications at the root nodes. Thus, we advise interpreting evidence of large-scale
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Acorus americanus
Aspergales (4)
Ananas comosus
Avena sativa
Schedonorus a.
Puccinellia tenuiflora
Hordeum vulgare
Secale cereale
Triticum (3)
Leymus chinensis
Oryza (2)
Panicum virgatum
Pennisetum glaucum
Saccharum offcinarum
Sorgum (3)
Zea mays
Elaeis guineensis
Zantedeschia aethiopica
Antirrhinum majus
Triphysaria versicolor
Avicennia marina
Mentha piperita
Salvia miltiorrhiza
Mimulus guttatus
Sesamum indicum
Coffea arabica
Hedyotis (2)
Capsicum annutum
Lycopersicon e.
Solanum tuberosum
Nicotiana (3)
Petunia hybrida
Ipomoea (2)
Apium graveolens
Panax ginseng
Gerbera hybridcultivar
Helianthus (3)
Zinnia elegans
Stevia rebaudiana
Lactuca sativa
Camellia sinensis
Vaccinium corymbosum
Arabidopsis thaliana
Descurainia sophia
Brassica (2)
Thellungiella halophila
Gossypium (3)
Theobroma cacao
Citrus (2)
Poncirus trifoliata
Arachis hypogaea
Glycine (2)
Phaseolus (2)
Robinia pseudoacacia
Lotus corniculatus
Medicago (2)
Pisum sativum
Lupinus albus
Cucumis sativus
Betula pendula
Juglans regia
Fragaria ananassa
Rosa chinensis
Malus domestica
Prunus (3)
Bruguiera gymnorhiza
Euphorbia (2)
Ricinus communis
Hevea brasiliensis
Manihot esculenta
Linum usitatissimum
Populus euphratica
Populus sp. (7)
Vitis (4)
Ribes americanum
Beta vulgaris
Mesembryanthemum c.
Limonium bicolor
Plumbago zeylanica
Tamarix androssowii
Eschscholzia californica
Magnoliids (3)
Nuphar advena
Amborella trichopoda
Cryptomeria japonica
Gnetales (2)
Picea (2)
Pinus (2)
Pseudotsuga menziesii
Ginkgo biloba
Cycads (2)
Non-Seed Plants (5)
Chlamydomonas reinhardtii
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Fig. 2. Species tree with potential locations of large-scale gene duplication events. The species
tree used in the analysis contains 136 taxa, and in some cases, multiple (usually congeneric)
species in a clade were combined into a single taxon for this figure. In these cases, the total
number of species in the combined group is written in parentheses beside the leaf name. The
internal nodes with duplications from ≥ 43 of the 85 gene trees have letters under the branch
leading to the node, and the number of gene trees with duplications on top of the branch. Stars on
top of the branch denote nodes where the analyses using gene trees with randomly permuted leaf
labels identified gene duplications from as many gene trees as the analysis with ML gene trees.
In other words, the estimated number of duplicated genes at the nodes with stars may be greatly
influenced by, if not totally due to, error in the gene trees.

duplications near the root of a tree with great caution. If we disregard the potentially
erroneous events at the root nodes, our analysis provides an overall picture of ancient
polyploidy in angiosperms that is largely consistent with the recent data from the Vitis
genome [10]. We hypothesize that the two genome duplications in Arabidopsis since its
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Table 1. Internal nodes in the species tree with duplications from at least 43 gene trees. The letter
in the Node column denoted the location of the node on the species tree figure (Fig. 2). Dup.
Genes shows the number of genes (out of 85) with duplications located at the specified node,
and Random Dup. Genes shows the number of duplicated genes in the 10 replicates that used the
gene trees with randomly permuted leaf labels. Taxa are the taxa in the clade descending from
the specified node.

Node Dup. Genes Random Dup. Genes Taxa
A 85 85 All Taxa
B 72 84-85 Land Plants
C 83 84-85 Seed Plants
D 51 0 Pinaceae
E 43 0 Pinus, Abies
F 61 45-65 Angiosperms
G 52 49-58 Angiosperms except Amborella
H 76 79-83 Magnoliids + Monocots + Eudicots
I 79 85 Monocots + Eudicots
J 78 0-20 Poaceae
K 52 0 Secale + Triticum
L 44 26-36 Eudicots
M 74 55-69 Core Eudicots
N 77 84-85 Rosids + Asterids
O 48 0 Solanaceae
P 45 0 within Solanaceae
Q 63 0 Asteraceae
R 72 62-68 Eurosid I + Eurosid II
S 43 28-44 Eurosid I
T 64 0-5 Brassicaceae
U 46 0 Brassica
V 74 0 Gossypium
W 53 0-18 within Fabaceae
X 66 0-8 Populus
Y 58 0 within Populus

common ancestor with Vitis occurred at the base of the Brassicaceae (node T; Fig. 2)
and at the base of the eurosid I + eurosid II clade (node R; Fig. 2). The ancestral hexi-
ploidization of the Vitis and Arbaidopsis genomes occured at nodes L and/or M (Fig. 2),
after the divergence of eudicots and monocots.

Algorithm Performance and Limitations. The results of analysis of plant gene trees
also suggest some weaknesses in our approach and directions for future research. First,
though our analysis uses only 85 gene trees, we find evidence of duplications on nearly
all of the internal nodes. With more gene trees, there will doubtlessly be evidence for
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duplications on every node of the tree. In this case, an algorithm that seeks to find the
minimum number of nodes with duplications will cease to be informative. It may be
more informative to find the duplication mappings that minimize the overall number
of duplication episodes. The randomized leaf analysis also suggests that gene tree er-
ror can produce evidence of apparently anomalous large-scale gene duplication events.
Unfortunately, some error is likely inherent in any gene tree inference. Even if the un-
rooted gene tree topology is correct, it is extremely difficult to determine the correct
rooting when there is a history of duplications. It may be useful to develop methods for
mapping large-gene duplication events that can account for possible error in the gene
trees, either by utilizing unresolved or unrooted gene trees or by allowing small changes
in the topology of the gene trees if they will lead to better solutions.

5 Conclusion

We introduce a new exact algorithm that solves a biological problem: how can we re-
construct the history of gene duplications across a phylogeny in a way that minimizes
the locations of the duplications. By placing large-scale duplication events in such a
phylogenetic context, we can help specify the precise location and timing of the dupli-
cations. Unlike other methods, our approach does not require gene map data and does
not rely on molecular clock assumptions. Furthermore, it can be used with relatively few
gene family trees. However, error in the gene trees, and possibly the species tree, can
confound the results from our approach, creating evidence for apparently anomalous
large-scale duplication events. Thus, our approach may be most effective as a comple-
ment to other methods for detecting large-scale duplications from genomic data of one
or few taxa.
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A Appendix

Proof (Lemma 1). The proof is by induction on |C|. Clearly, the result holds for |C| ≤
1. Now, assume that |C| ≥ 2 and that the result holds for all cliques with fewer nodes.
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Let V = [v, v′] be an interval in C. Then, for C′ = C − {V } it holds by the inductive
assumption that

⋂
I∈C′ I is an interval, say U = [u, u′] where u = lca(

⋃
[x,y]∈C′ x)

and u′ = min(
⋃

[x,y]∈C′ y).
We first show that u′ �T v′. Any interval W ∈ C′ intersects with V since V, W ∈ C,

and thus there exists x ∈ V ∩ W where x ≤ v′. The interval W also contains the
interval U and especially the element u′, since U =

⋂
I∈C′ I . Since x, u′ ∈ W it

follows x �T u′. Thus either x ≤T u′ or x >T u′. In the first case x is a lower bound
on u′ and a lower bound on v′, since x ≤T v′. Thus v′ �T u′. In the latter case it
follows v′ ≤T u′ from x >T u′ and v′ ≥T x.

Now, consider the following two cases:

Case V ∩ U �= ∅ We show that
⋂

I∈C I is an interval in ≤T . From V ∩ U �= ∅ and
u′ �T v′ follows that V ∩ U = [lca(u, v), min(u′, v′)]. With our hypothesis u =
lca(

⋃
[x,y]∈C′ x) and u′ = min(

⋃
[x,y]∈C′ y), the desired statement follows.

Case V ∩ U = ∅ We show that this case is not possible. Consider the two possible
cases for u′ �T v′:

Case u′ ≤T v′ Thus [u′, v′] is an interval, and [u′, v′] ∩ V is an interval with the
minimum element v′′ := lca(u′, v). With U ∩ V = ∅ follows that u′ < v′′

and further that v′′ /∈ U . We show that v′′ is an element in every W ∈ C′

and thus v′′ ∈ U , a contradiction. Consider any W ∈ C′, then u′ ∈ W , and
there exists x ∈ W ∩ V , since W, V ∈ C. With u′ < v′′T we follow that
w ≤ u′ <T v′′ ≤T x ≤T w′ and further v′′ ∈ W as desired.

Case v′ <T u′ Thus [v′, u′] is an interval. We show that v′ is an element in every
W ∈ C′ and thus v′ ∈ U , a contradiction to V ∩U = ∅. Consider any W ∈ C′

we have u′ ∈ W , and there exists x ∈ V ∩ W where x ≤T v′. Therefore we
have w ≤T x ≤T v′ < u′′ ≤T u′ ≤T w′ from which follows that v′ ∈ W as
desired. 
�

Proof (Lemma 2). We first show that cover(v) forms a clique in the intersection graph
int(I) for any v ∈ V . Let U, V be distinct intervals in cover(v), then v ∈ (U ∩ V ).
Thus {U, V } ∈ E(int(I)) and it follows that int(I) is a clique.

From the proven statement above follows that C is a collection of cliques in int(I).
To show that C covers int(I) consider an interval I ∈ V (int(I)). Since V covers I,
there exists an element v ∈ V such that I ∈ cover(v). We have shown that cover(v) is
a clique in C. Hence, C covers int(I). 
�

Proof (Theorem 1). We first show that f(C) is an interval cover of I, and then we show
the minimality of the interval cover f(C).

f(C) is an interval cover for I: Let I ∈ I. Since C is a clique cover of int(I), there
exists a clique C ∈ C where I ∈ C. Thus f(C) is an element in I and therefore
covers I . Hence, every interval I ∈ I is covered by f(C).

f(C) is a minimum interval cover for I: We first prove that |f(C)| = |C| by showing
that f is injective. Suppose that there exist distinct cliques C, C′ ∈ C such that
f(C) = f(C′). Then, f(C) ∈ I for every interval I ∈ (C ∪C′). Therefore, C ∪C′

forms a clique in int(I), and C′ = C − {C, C′} ∪ {C ∪ C′} is a clique cover
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of int(I) where |C′| < |C|. Hence, C is not a minimum clique cover of int(I), a
contradiction.
Now, suppose for the purpose of a contradiction that there exists an interval cover
V ⊆ V (T ) such that |V | < |f(C)|. By Lemma 2, C′ :=

⋃
v∈V {cover(v)} is a

clique cover and |C′| ≤ |V | < |f(C)| = |C|. Hence, C is not a minimum clique
cover, a contradiction. 
�

Proof (Theorem 2). Theorem 1 states that the TIC problem for an instance I can be
solved by finding a minimum clique cover C in the intersection graph int(I) and then
constructing an interval cover by selecting for every clique C ∈ C a node v ∈ [a, b]
where a = lca(

⋃
[x,y]∈C x) and b = min[x,y]∈C y.

The intersection graph int(I) can be constructed naively through a tree traversal of
T in time O(n2 + l). A minimum clique cover C of int(I) can be found in O(n + m)
by Lemma 4. Also naively the node a (using [2] for the lca computation) or b can be
computed in O(n) time for each clique in C. This results in O(nm) time to construct
an interval cover from C. In summary the TIC problem can be solved in time O(n2 +
nm + l). 
�

Proof (Corollary 1). The EC problem for the instance (G, S) is the TIC problem for the
instance I =

⋃
g∈Dup(G,S) I(g). Therefore, the overall time to solve the EC problem

is the time to compute the instance I in addition to the running time to solve the TIC
problem for the instance I.

After O(l) preprocessing time, the mapping M for all gene trees in G can be com-
puted in O(k) time [31] (using [2]). Traversing all trees G ∈ G the gene duplications
and their intervals can computed in O(k) time. Hence, the desired TIC problem instance
can be computed in O(k + l) time. The TIC problem for the O(k) intervals over ≤S

can be solved in time O(k2 + km + l) by Theorem 1. In summary the EC problem can
be solved in time O(k2 + km + l). 
�
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Abstract. High-accuracy protein structure modeling demands accurate
and very fast side chain prediction since such a procedure must be re-
peatedly called at each step of structure refinement. Many known side
chain prediction programs, such as SCWRL and TreePack, depend on the
philosophy that global information and pairwise energy function must be
used to achieve high accuracy. These programs are too slow to be used
in the case when side chain packing has to be used thousands of times,
such as protein structure refinement and protein design.

We present an unexpected study that local backbone information can
determine side chain conformations accurately. LocalPack, our side chain
packing program which is based on only local information, achieves equal
accuracy as SCWRL and TreePack, yet runs 4-14 times faster, hence pro-
viding a key missing piece in our efforts to high-accuracy protein struc-
ture modeling.

Keywords: side chain prediction, local backbone features, multiclass
Support Vector Machines.

1 Introduction

Protein side chain packing is a key step towards accurate protein structure mod-
eling and has been studied for three decades [1, 2, 3, 4]. Given the backbone
conformation of a protein, side chain prediction determines the coordinates of
all the side chain atoms. Accurate and very fast side chain prediction is vital
to accurate protein structure modeling since such a procedure needs to be re-
peatedly called at each step of the entire protein structure refinement process,
which usually samples a very large number of backbone conformations. Protein
side chain packing is also an indispensable component of protein design, which
finds a protein sequence that can fold into a given three-dimensional protein
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structure [5, 6]. Whenever a protein backbone conformation (in protein struc-
ture modeling) or its primary sequence (in protein design) is changed, side chain
packing has to be conducted to re-determine the coordinates of the affected side
chain atoms or even all the side chain atoms. Many known side chain predic-
tion programs, such as SCWRL [7] and TreePack [8, 9], predict the positions of
side chain atoms using global information and pairwise energy function, in order
to achieve high accuracy. Thus these programs are too slow to be called tens
of thousands of times in high-accuracy protein structure modeling or protein
design. Therefore, an ultra-fast side chain prediction method is urgently needed.

An important discovery on side chain conformation is that the side chains have
a few frequently occurred conformations (referred to as rotamers) [1,3,7,10,11].
Thus, most side chain prediction methods assume side chains can only take
several highly probable rotamers, while others consider conformations sampled
around rotamers.
Problem Description. Given a finite set of side chain rotamers for each amino
acid type, and a backbone conformation b. Let p denote a possible side chain con-
formation vector indicating the rotamer choice for each residue position. Tradi-
tional side chain prediction problem can be formulated as a combinatorial search
problem:

p∗ = arg min
p

[ESS(p, p) + ESB(p, b) + EBB(b, b)] (1)

where p∗ denotes the optimal side chain conformation, ESS(p, p) is a pairwise en-
ergy item representing interactions among side chain atoms, ESB(p, b) represents
interaction energy between side chain atoms and backbone atoms, and EBB(b, b)
represents backbone-backbone interaction energy. Among them, EBB(b, b) can
be considered as a constant since the backbone conformation is fixed.

Following this formulation, almost all side chain prediction methods employ
a pairwise energy function and a rotamer library, then apply a global or local
search strategy to find the optimal solution for this combinatorial problem.
Rotamer Libraries. A rotamer library is a finite set of rotamers, each of which has
an occurring probability. Rotamer libraries can be either backbone-independent
[2, 12, 13, 14, 15, 16] or backbone-dependent [1, 3, 7, 10, 17, 18, 19], according to
whether the occurring probability of a rotamer is estimated based on backbone
information. Chandrasekaran et al. developed the first backbone-independent li-
brary [12]. Janin et al. [1] and McGregor et al. [3] examined the relationship
between side chain conformation and secondary structure, and then developed
a secondary-structure-dependent rotamer library. Dunbrack et al. developed the
first backbone dihedral angle based rotamer library [17] and refined it by Bayesian
statistical analysis [10].

Backbone-dependent rotamer library is widely used to predict side chain con-
formations [8,9,20,21,22,23,24,25,26]. Rotamer library not only can make side
chain prediction a discrete-optimization problem, but also can provide the prob-
ability of each rotamer in energy function calculation. However, since many side
chain prediction methods use rotamer probabilities in their energy functions,
their performance is sensitive to these values which are hard to be estimated
accurately.
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Energy Functions. The energy functions are considered to be a bottleneck of
existing side chain prediction methods. Although many studies aim to improve
the accuracy of side chain packing energy functions [20, 26, 27, 28, 29], all side
chain predictors claim that their methods can perform much better if the energy
function is more accurate. As mentioned above, energy functions used in side
chain prediction contain both side chain-backbone interaction energy and side
chain-side chain interaction energy.

Roitberg et al. [27] used a mean field approximation, which probably has the
same global minimum as the original system, to direct their search strategy. A
much more accurate energy function was developed by Liang et al [20]. Their
energy function contains contact surface, volume overlap, backbone dependency,
electrostatic interactions, and desolvation energy. In [26], ROSETTA’s energy
function [30], which is the sum of Lennard-Jones potential, rotamer energy,
atomic clash penalty, and hydrogen-bonding potential, was improved by the
tree-reweighted belief propagation (TRBP) technique.

Search Methods. A large number of search methods have been developed to
optimize the energy function and find the side chain conformation with the
minimum energy, such as Metropolis Monte Carlo [31], Gibbs sampling Monte
Carlo [32], genetic algorithm [33], dead-end elimination (DEE) [16, 34], neural
networks [35], simulated annealing [35, 36], graph theory methods [8, 9, 21],
semidefinite programming [23], and integer linear programming [24, 37].

Besides the energy function, search strategy is another bottleneck for side
chain prediction. The side chain prediction problem has been proved to be NP-
hard [38, 39] if pairwise or multi-body energy function is used. Heuristics such
as Monte Carlo or genetic algorithm can find local minimum of an energy func-
tion relatively quickly, but cannot guarantee to find the optimal solution of the
energy function. On the other hand, some global search methods can find the
global optimal solution at the cost of running time. For example, the widely-used
program, SCWRL3.0 [21], can optimize its energy function to its global optimum
by first decomposing a protein backbone structure into some substructures and
then employing a divide-and-conquer strategy to determine the positions of side
chain atoms. SCWRL is not fast enough to be used for iterative refinements and
protein design. Another global search method, TreePack [8, 9], achieves similar
accuracy as SCWRL3.0, but runs much faster. In contrast to SCWRL, TreePack
can decompose a protein structure into much smaller substructures without los-
ing accuracy, and thus reduce running time dramatically. However, both SCWRL
and TreePack are likely to fail in the case when the backbone conformation im-
plies heavy steric atomic clashes and thus cannot be cut into small substructures
without losing accuracy.

In this paper, we present a study on the relationship between local backbone
information and side chain conformations, and develop a side chain packing
program LocalPack. LocalPack predicts the side chain conformations using lo-
cal backbone information only and is as accurate as SCWRL, a program that
uses pairwise energy function and global search method. We first reformulate
side chain packing problem and then solve it using multi-class Support Vector
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Machines (multi-class SVM). Our method has the following three features: 1)
Instead of using the occurring probabilities contained in a rotamer library, our
method only uses the angle values of rotamer candidates. 2) Our method does
not use any pairwise energy function. Instead, only local backbone information
is employed to predict side chain positions. Furthermore, these local backbone
features can be calculated extremely fast. 3) We do not need to optimize an en-
ergy function. By contrast, our method generates a set of linear classifiers based
on local backbone features and then use these classifiers to predict side chain
positions.

The rest of this paper is organized as follows: In Section 2, we introduce our
new formulation of side chain prediction problem. Section 3 describes our multi-
class SVM model and the features used to construct the classification rule. A
cutting plane algorithm is proposed to obtain solutions to the multi-class SVM.
In Section 4, we present some experimental results and compare our method
to existing methods on both native and nonnative backbones. We also analyze
the relative importance of the features in our model. Finally, Section 5 discusses
potential applications and future development of our method.

2 New Formulation for Side Chain Prediction

Given a position on a protein backbone sequence, we can calculate a set of
backbone related local features on this position. Starting from a rotamer library,
our basic assumption is that a certain set of local features can determine the
correct rotamer of the side chain on this position.

Table 1. An example of the basic assumption of this paper: a backbone related feature
vector A can determine the rotamer choice. Except for the last column, the first 6
columns show examples of possible backbone related feature vectors. The last column
shows χ1 rotamer values corresponding to the feature vectors.

Residue Type φ ψ Secondary Stru. Solvent Access. # Contacts χ1 Rotamer

ARG 60◦ 45◦ Helix 82.75% 11 63◦

PHE 112◦ 42◦ Helix 10.23% 4 114◦

GLN 34◦ 16◦ Loop 8.65% 6 125◦

MET 156◦ 107◦ Sheet 65.22% 19 178◦

Let A = {A1, A2, . . . , An} denote the set of feature vectors for a given protein
with length n, where vector Aj = {aj

1, a
j
2, . . . , a

j
k} denote the set of backbone

related features on the j-th position, either continuous values, such as solvent
accessibility, or discrete values, such as secondary structure and amino acid type.
Let R = {r1, r2, ...., rm} denote an arbitrary rotamer set. Table 1 shows some
examples of feature vectors, according to which the rotamer choice for each
residue position is determined.
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Based on our assumption, given a rotamer set R, we can consider side chain
predictor as a function f(Aj) that maps from a given feature vector Aj to a
rotamer. f(Aj) is defined to be

f(Aj) = arg max
i,ri∈R

h(Aj , ri), j = 1, . . . , m (2)

where h(Aj , ri) is a scoring function that evaluates the score of assigning the
rotamer ri to the j-th position with feature vector Aj ∈ A. We aim to find a
function h(Aj , ri) such that f(Aj) matches the correct rotamer choices as well
as possible for all the position j.

The formulation 2 is based on a general rotamer libraryR. Studies on backbone-
dependent rotamer libraries [7, 10, 17, 19] show that side chains do prefer some
rotamers for a fixed amino acid type and a fixed pair of φ, ψ backbone dihedral
angles. This kind of rotamer libraries can also fit into our model easily by removing
the features (amino acid type, φ, ψ) from vector Aj and finding h on a rotamer
library which is a (amino acid type, φ, ψ)-dependent subset of the original rotamer
library R. We will introduce how to find the scoring function h in the next section.

3 A Multi-class SVM Model for the Side Chain
Prediction Problem

3.1 A Multi-class SVM Model

In this paper, we consider side chain prediction problem as described in formu-
lation 2 that is a linear function on feature vector A. That is, h(Aj , ri) = wi ·Aj ,
where wi is a parameter vector for rotamer i that we want to learn. Thus, ac-
cording to formulation 2, side chain prediction problem can be formulated as a
classification problem:

f(Aj) = arg max
i,ri∈R

wi · Aj , j = 1, . . . , n, (3)

in which we want to find such a f that matches correct rotamer choices as well
as possible.

To learn the parameter vectors wi from a training example set S = {(A1,
r1), . . . , (Ap, rp)} with size p, where Aj is the feature vector of a residue and rj

is the experimentally determined rotamer of this residue, we applied a multi-
class Support Vector Machine (multi-class SVM) model. Multi-class Support
Vector Machines provide powerful approaches to deal with the general problem
of learning a mapping from a high dimensional feature space to a discrete set [40].
However, traditional multi-class SVM do not directly fit into the side chain
prediction problem. The reason is that the number of rotamer labels is usually
very large in the real world, which will result in a large number of constraints in
multi-class SVM. This will make the traditional quadratic programming based
algorithm unfeasible to solve the side chain prediction problem.

To solve this large class problem, we applied the idea of loss function � from
structured SVM [41,42], a generalized version of multi-class SVM. Different from
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multi-class SVM, which were developed to solve classification problems on dis-
crete set Y = {1, . . . , k}, structured SVM were developed to solve classification
problems that involve features extracted jointly from the inputs and the outputs,
such as sequences, strings, graphs, or labeled trees. Loss function � is widely
used in structured SVM [41,42] to deal with the case in which |Y| is large. In our
side chain prediction problem, we used the concept of loss function and defined
it to be: � : R×R → {0, 1}, where �(y′, y) returns 0 if y′ = y, and 1 otherwise.
�(y′, y) quantifies how “bad” it is to predict y′ when y is the correct label.

Here we use the loss function � to re-scale the margin as proposed by Taskar et
al. [43] and formulate the problem of finding parameter vectors wi, i = 1, . . . , m
in the form of the following optimization problem:

min
wi,ξj

1
2

m∑

i=1

‖wi‖2 +
C

p

p∑

j=1

ξj (4)

∀j, l wrj · Aj − wl · Aj ≥ �(l, rj) − ξj

where m is the size of rotamer library, p is the size of training set, ξj ≥ 0 are
called slack variables. ‖wi‖ is the norm of vector wi, which determines the size
of margin in SVM. C > 0 is a tradeoff between training error minimization and
margin maximization.

We then apply a cutting plane algorithm described in [41] to solve this op-
timization problem. The basic idea of the algorithm is to find a relatively small
set of constraints without losing too much accuracy. They achieved this goal by
building a nested sequence which successively tights relaxations of the original
problem. It can be proved that:

– Accuracy: the cutting plane algorithm can compute arbitrarily close approx-
imation to the optimal solution.

– Efficiency: the number of steps that the cutting plane algorithm needs to
converge is polynomial on the number of data points.

In practice, the cutting plane algorithm works very well on solving our side
chain prediction problem, which we will show later. For more details about the
algorithm, please refer to [41].

3.2 Model Features

The relationship between side chain conformations and backbone dihedral an-
gles (φ, ψ) has been well studied. Many side chain prediction programs use a
backbone-dependent or backbone-independent rotamer library. This work uses
the backbone-dependent rotamer library [7, 10] developed by Dunbrack et al..
The major problem to be addressed is what kind of backbone structure features
a side chain conformation depends on. Many works [3,19,44] have been done to
analyze the relationship between side chain dihedral angles and local backbone
features, such as backbone dihedral angles, secondary structure and solvent ac-
cessibility. Here we introduce the local structure features used in our prediction
and show how to use them in training and testing.
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backbone dihedral angles. Given an amino acid and a pair of (φ, ψ) angles,
the backbone-dependent rotamer library can provide a set of candidate side
chain conformations. We do not use backbone dihedral angles as features in the
training. Instead, we divide training data point into many groups according to
the amino acid types and φ, ψ angles, and develop a classifier for each group
based on its corresponding rotamer subset.

secondary structure. Secondary structure is local conformation of a protein
backbone. Previous works [3] have shown that secondary structure is highly
relevant to the distribution of side chain dihedral angles. We use P-SEA [45]
to calculate the secondary structure of a given protein backbone. P-SEA can
generate the secondary structure type for each backbone position. Since SVM can
only take numerical values as input, we use the expected occurring probability
of each secondary structure type as its feature value. Let N(α), N(β), N(loop)
denote the numbers of residues in α-helices, β-sheets and loops in a training
data group, and N denote their sum. The expected occurring probabilities are
calculated as N(α)/N , N(β)/N and N(loop)/N , respectively.

solvent accessibility. The accessible surface area is the area of a biomolecule’s
surface that is accessible to a solvent. It can be calculated by using a sphere of a
certain radius to probe the surface of the molecule. A typical radius value is 1.4Å,
which approximates the radius of a water molecule. Solvent-accessible surface of
atoms have been used to predict conformations of side chains in [44], where they
added this term into the energy function during the global optimization and
calculated it iteratively. Their results show that the prediction accuracy can be
significantly improved by adding the solvent term. This implies the importance of
solvent accessibility in modeling side chain conformations. We use Naccess [46] to
calculate the backbone solvent accessibility. The output of Naccess is normalized
value and we use it as one of our features directly.

contact number. The contact number of a residue in a protein structure is a
quantity similar to, but different from solvent accessible surface area. The con-
tact number of a given residue is defined as the number of Cα atoms within a
predefined distance D(= 8Å) to the Cα atom of this given residue. The contact
numbers are scaled to values between 0 and 1 using a standard max-min nor-
malization method, such that the smallest contact number becomes zero and the
largest number becomes one.

4 Results

4.1 Implementation Details

We implemented LocalPack with C++. To improve the efficiency of feature cal-
culation, we used a quick K-nearest-neighbor (KNN) algorithm [47,48] to calcu-
late contact numbers. After extracting backbone related features, such as solvent
accessibility, secondary structure, and contact number, we encoded these features
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into a multi-class SVM model as described in Section 3.1. The SVM model is
trained using SV Mmulticlass [49] with linear kernel function, a program that
solves multi-class SVM problem by applying cutting plane algorithm described
in [41].

We applied 10-fold cross-validation on our training set to estimate the best C
(see Equation 4), a tradeoff between model parameter complexity and tolerable
model training errors. A big C indicates that a small training error is tolerated
but a big model parameter complexity allowed. A model trained using such a
C may not generalize well to the test data. Hsu et al. showed in [50] that by
testing on a sequence of exponentially growing C values, a good model can be
identified in practice. Thus, we tried C = 2−5, 2−4, ..., 220 for each training case,
and determined its best C value.

4.2 Training and Test Set

Selecting reasonable training and test sets is very important for fairly evaluating
the performance of machine learning methods. We used PDB20 as our training
set, in which any two proteins do not share more than 20% sequence identity. We
also removed those proteins in this set with resolution worse than 2Å. This results
in a data set of 3060 proteins. For test set, we used Dunbrack’s benchmark set [7],
which consists of 180 proteins. Since we also used the rotamer library extracted
from a set of 800 proteins [10], we examined the overlap among PDB20, the set
of 800 proteins for rotamer library generation, and Dunbrack’s benchmark set.
It turns out that Dunbrack’s benchmark set contains 87 proteins in PDB20 and
102 in the set of proteins for rotamer library generation. Thus, we removed all
the overlapping proteins from Dunbrack’s benchmark set and obtain a reduced
benchmark set of 78 proteins. It can be seen from Fig.1 that both our PDB20
training set and the reduced test set are good samples of real world proteins in
terms of amino acid composition.
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Fig. 1. The amino acid compositions on PDB20 training set(a), reduced 78 bench-
mark test set(b), and the UniProtKB/Swiss-Prot protein knowledgebase(c), respec-
tively. UniProtKB/Swiss-Prot protein knowledgebase [51] is one of the largest protein
sequence databases. The statistics of UniProtKB/Swiss-Prot was taken on 283,454
protein sequences on Sep.11, 2007.
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We evaluated the performance of our method on both this reduced benchmark
set and Dunbrack’s original benchmark set which has overlapping proteins to our
training set. Not surprisingly, the accuracy of our method is approximately 8%
higher on the Dunbrack’s benchmark set than on the reduced set, while the
accuracy of SCWRL3.0 is consistent on the two benchmark sets. Thus, in the
following experimental studies, we will only evaluate our method on this reduced
benchmark set.

4.3 Prediction Accuracy on Native Backbones

We compared the accuracy of our method to the most widely used program
SCWRL3.0 in terms of χ1 and χ1+2 accuracy. Other widely used programs,
such as Modeller [52], SCAP [11], and TreePack [8, 9], performs no better than
SCWRL3.0 on both the 180 benchmark set and the 78 benchmark set. Due to
the page limitations, we only show the comparison between our method and
SCWRL3.0 in Table 2. A prediction is considered to be correct if its value is
within 40◦ from its experimental value. The prediction accuracy of one amino
acid is calculated as the ratio of the number of correctly predicted side chains
to the total number of side chains of this amino acid type.

As shown in Table 2, the overall accuracy of our method is very close to
that of SCWRL3.0. In fact, the χ1 accuracy of our method is only 0.61% lower
than that of SCWRL3.0, while the χ1+2 accuracy is 0.51% lower. Although our
method is based on local backbone information only, it does not lose any accu-
racy while is much more computationally efficient, which we will show later. In
fact, the χ1 accuracy of our method is higher than SCWRL3.0 on nine out of
the eighteen amino acids, especially LYS, SER and THR. However, our method
is much worse than SCWRL3.0 on CYS, LEU, PHE and TRP. Meanwhile, the
χ1+2 accuracy of our method is higher than SCWRL3.0 on eight out of the
eighteen amino acids. This means local backbone information can also deter-
mine χ2 conformation accurately. On the other hand, results shown in Table 2
also demonstrate that the accuracy of our method is not worse than any global
optimization methods.

We further examined the eight amino acids on which our method did not per-
form well (with χ1 accuracy ≤ 82%). They are ARG, ASN, GLN, GLU, LEU,
LYS, MET and SER. Except for SER, all the other seven amino acids have large
side chain groups as shown in Fig. 2. This result is consistent with the model on
which our method is built. Our method assumes that local backbone informa-
tion can determine side chain conformations. However, if a side chain group is
large, its position will be more likely to be impacted by other side chain groups
around it and thus cannot be completely determined using only local informa-
tion. Thus, for such cases, we probably need more information to determine side
chain conformations. Interestingly, the global optimization method, SCWRL3.0,
which considers all side chain and backbone atoms around one side chain, did
worse than our method on four out of these seven amino acids as shown in red
boxes in Fig. 2.



294 J. Zhang et al.

Table 2. Prediction accuracy of LocalPack and SCWRL 3.0 on the 78 benchmark set.
A prediction of a side chain is correct if its deviation from the experimental value is no
more than 40◦. χ1 accuracy of one amino acid is the ratio of the number of correctly
predicted χ1 angles to the total number of this amino acid type, while χ1+2 accuracy
of one amino acid is the ratio of the number of side chains with both χ1 and χ2 being
predicted correctly to the total number of this amino acid type.

LocalPack SCWRL 3.0

amino acid χ1 accuracy χ1+2 accuracy χ1 accuracy χ1+2 accuracy

ARG 0.7701 0.6060 0.7558 0.6226

ASN 0.7888 0.7011 0.7956 0.6882

ASP 0.8322 0.7337 0.8218 0.6974

CYS 0.8497 0.8497 0.8915 0.8915

GLN 0.7493 0.5416 0.7449 0.5319

GLU 0.6841 0.5077 0.7084 0.5128

HIS 0.8226 0.7551 0.8382 0.7745

ILE 0.9172 0.7884 0.9114 0.8060

LEU 0.7851 0.7321 0.8996 0.8142

LYS 0.7678 0.5768 0.7199 0.5444

MET 0.8169 0.6097 0.8160 0.6720

PHE 0.8410 0.7740 0.9361 0.8774

PRO 0.8426 0.7701 0.8517 0.7879

SER 0.7556 0.7556 0.6883 0.6883

THR 0.9193 0.9193 0.8855 0.8855

TRP 0.8328 0.6851 0.8843 0.6688

TYR 0.9239 0.8616 0.9171 0.8615

VAL 0.8922 0.8922 0.9075 0.9075

overall 0.8205 0.7314 0.8266 0.7365

Fig. 2. The χ1 accuracy of LocalPack on amino acid types ARG, ASN, GLN, GLU,
LEU, LYS, and MET. The four amino acids on which the accuracy of LocalPack is
higher than that of SCWRL3.0 are marked in red boxes.
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4.4 Feature Importance Analysis

A key step in feature based machine learning study is to evaluate the impor-
tance of each feature encoded. We evaluated the importance of each feature by
removing it from the whole set of features, and testing the accuracy on the rest
feature set. Table 3 shows the χ1 accuracy on different feature sets on amino acid
arginine (ARG). The comparisons on other amino acids or on χ1+2 are similar.
Due to the page limits, we only show the results on χ1 accuracy of ARG here.

Table 3. Feature importance analysis on ARG. The 1st column is the χ1 accuracy
of LocalPack with all 3 features. Starting from the 2nd column, the χ1 accuracy on
feature sets without solvent accessibility, without secondary structure, and without
contact number are listed, respectively.

with all 3 features without solvent accessibility without secondary structure without contact number

χ1 Accuracy 0.7701 0.7226 0.7352 0.7320

It can be seen from Table 3 that all of the three features are important to
our method. More specifically, removing solvent accessibility feature will reduce
the accuracy by 4.8%, while removing secondary structure and contact number
will reduce the accuracy by 3.5% and 3.8%, respectively. This means that sol-
vent accessibility is the most important feature in our method, while secondary
structure is the least. This makes sense becuase the backbone-dependent ro-
tamer library [10] we used has already partially encoded secondary structure
information by considering backbone φ, ψ angles in their statistics.

4.5 Performance on Non-native Backbones

We further evaluated the accuracy of our method on nonnative backbones. We
compared the χ1 accuracy of our method to four commonly used side chain pre-
diction methods: MODELLER, TreePack, SCWRL3.0, and SCAP, on a nonna-
tive backbone test set provide by Xu et al. in [9]. The test set contains prediction
models generated by a protein threading program, RAPTOR [53], on 24 CASP6
test proteins [54]. RAPTOR generated good alignments for most of these tar-
gets. MODELLER [52] was called by RAPTOR to generate model backbones
according to the alignments. Besides, MODELLER is also able to predict side
chains based on a statistical method. SCAP was tested using the CHARMM
force field with the heavy atom model and the largest rotamer library available
to SCAP.

The overall χ1 accuracy is shown in Table 4. The prediction accuracy of our
method is the same as TreePack, and slightly worse than SCWRL3.0, while much
better than MODELLER and SCAP. This indicates that our method also works
well on nonnative backbones.

4.6 Computational Efficiency

Since our method is based on only local backbone features, it can be expected
that our method is much more computationally efficient. TreePack has been
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Table 4. The overall χ1 accuracy of MODELLER, TreePack, SCWRL3.0, SCAP, and
LocalPack on the 24 nonnative test proteins

MODELLER TreePack SCWRL3.0 SCAP LocalPack

χ1 Accuracy 0.428 0.520 0.530 0.488 0.520

Table 5. CPU time comparison of TreePack, SCWRL3.0, and LocalPack on the 78
protein benchmark set

TreePack SCWRL3.0 LocalPack

Time 186 seconds 657 seconds 46 seconds

reported as one of the fastest methods for side chain prediction. Table 5 shows
the total CPU time comparison of TreePack, SCWRL3.0, and our method on
the 78 benchmark set. All three programs are tested on a Debian Linux box with
a 1.7GHz CPU.

From Table 5, it is clear that our method is much faster than both TreePack
and SCWRL3.0. In fact, we are more than 14 times faster than SCWRL3.0,
and more than 4 times faster than TreePack. The average CPU time of our
method on one test protein is 0.58 seconds. We also tested the CPU time of our
method on the original 180 benchmark set, the results are consistent with the
78 benchmark set.

5 Discussions

This paper formulated protein side chain packing as a classification problem and
developed a multi-class SVM method for protein side chain prediction. As far as
we know, this is the first attempt to apply multi-class SVM method to the side
chain prediction problem. Our experimental results demonstrate that this new
method works very well.

This paper demonstrated that protein side chain positions can be predicted
using local backbone information to the same accuracy as those programs em-
ploying pairwise energy functions and computationally-intensive optimization
algorithms, such as SCWRL and TreePack. We hope our discovery will change
the way researchers look at this problem and lead to rapid and accurate protein
side chain packing programs, which are indispensable in high-accuracy protein
structure modeling.

One of the major bottlenecks in protein structure refinement is how to quickly
generate a huge number of possible full-atom conformations so that a full-atom
energy function can be used to pick up the energetically most favorable confor-
mations. Our method enables us to generate a good side chain packing extremely
fast after a change of backbone conformation. Since our method depends on lo-
cal backbone information only, our method can be made even much more faster
when only a local part of a protein structure is refined. This allows us to do
side chain packing at each step of protein structure refinement and thus makes
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it feasible to apply an accurate full-atom energy function to each generated con-
formation.

We plan to further examine the features used in our method to see if more
improvement can be achieved. For example, we only used a feature “contact
number” to describe how many residues are in contact with a given residue.
This feature does not capture the types of amino acids that are in contact with
this given residue. We can extend this single “contact number” to a vector of
twenty contact numbers, each of which is the number of residues, of the same
amino acid type, in contact with this given residue. We only used three types
of secondary structure in our model. This may be enriched by eight types of
secondary structure.
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Abstract. In engineering protein variants by constructing and screen-
ing combinatorial libraries of chimeric proteins, two complementary and
competing goals are desired: the new proteins must be similar enough
to the evolutionarily-selected wild-type proteins to be stably folded, and
they must be different enough to display functional variation. We present
here the first method, Staversity, to simultaneously optimize stability
and diversity in selecting sets of breakpoint locations for site-directed re-
combination. Our goal is to uncover all “undominated” breakpoint sets,
for which no other breakpoint set is better in both factors. Our first al-
gorithm finds the undominated sets serving as the vertices of the lower
envelope of the two-dimensional (stability and diversity) convex hull con-
taining all possible breakpoint sets. Our second algorithm identifies addi-
tional breakpoint sets in the concavities that are either undominated or
dominated only by undiscovered breakpoint sets within a distance bound
computed by the algorithm. Both algorithms are efficient, requiring only
time polynomial in the numbers of residues and breakpoints, while char-
acterizing a space defined by an exponential number of possible break-
point sets. We applied Staversity to identify 2–10 breakpoint sets for
three different sets of parent proteins from the purE family of biosyn-
thetic enzymes. The average normalized distance between our plans and
the lower bound for optimal plans is around 1 percent. Our plans domi-
nate most (60–90% on average for each parent set) of the plans found by
other possible approaches, random sampling or explicit optimization for
stability with implicit optimization for diversity. The identified break-
point sets provide a compact representation of good plans, enabling a
protein engineer to understand and account for the trade-offs between
two key considerations in combinatorial chimeragenesis.

1 Introduction

Protein engineering by site-directed recombination (Fig. 1(a)) generates libraries
of hybrid proteins (or “chimeras”) by mimicking the mixing and inheritance that
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occur in natural reproduction. A set of homologous parent genes are recombined
at defined breakpoint locations, yielding a combinatorial set of hybrids [1,2,3,4].
In contrast to stochastic library construction methods (e.g., [5,6,7]), site-directed
approaches explicitly choose breakpoint locations to optimize expected library
quality (e.g., predicted disruption [2,8,9] or library diversity [10]). In contrast
to mutagenesis, the mutations introduced by site-directed recombination are
known to be compatible with each other in parent proteins with a similar struc-
tural context (due to homology), and are thus expected to be less disruptive.
Without requiring precise modeling or prediction of the effects of mutation, site-
directed recombination can produce variant proteins with improved properties
and activities [2,3,11,12].

There are two competing goals in recombination experiment planning. We
want the resulting hybrids to be stably folded, which is easiest to achieve if they
are just like wild-type proteins. At the same time, we want the hybrids to have
different activity, which of course requires that they be different from wild-type.
By construction, site-directed recombination preserves single-position conserva-
tion statistics, since each residue position in the hybrid library is simply taken
from one of the parents, and all parents are equally represented within the com-
binatorial library. Thus evaluation of stability typically focuses on correlation
statistics between interacting residues [1,13,14,15,9]. The key insight (middle
of Fig. 1(a)) is that recombination “perturbs” the distributions of amino acid
types for interacting residues, thereby potentially disrupting the interactions
underlying stable folding. Models of residue correlation have been shown to cap-
ture important information in a number of applications, including prediction of
free energy changes caused by hydrophobic core mutations [16], prediction and
recognition of native-like protein structure [17], and functional classification of
members of protein families [18]. Pairwise [1] and higher-order [9] models have
been used in algorithms to plan site-directed recombination experiments mini-
mizing perturbation (and thereby maximizing expected stability), and have led
to the creation of variant proteins with improved or novel activities [2,3,11,12].

In addition to stable hybrids, we also want a diverse hybrid library in order to
obtain hybrids with improved or novel activities. Under various methodologies
and on a number of systems, including cytochromes P450 [14], β-lactamases [19],
and single chain Fv antibodies [20], functional change from wild-type has been
correlated with the number of mutations in protein variants. Earlier work on site-
directed recombination optimizes for stability while indirectly forcing diversity
by constraining the minimum fragment length [14]. Our recent work developed
the first approach to explicitly optimize for diversity, by finding breakpoint lo-
cations that sample protein sequence space relatively uniformly [10] (right of
Fig. 1(a)). However, since diversity competes with stability, it is desirable to
explicitly consider both criteria simultaneously.

This paper presents Staversity (a hybrid word with both “stability” and
“diversity”), the first method to explicitly optimize both stability and diversity
in planning site-directed recombination experiments. A set of breakpoints de-
fines a hybrid library that can be evaluated by metrics we call “perturbation”
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Fig. 1. Stability and diversity are two competing criteria for selecting breakpoint loca-
tions for site-directed recombination. (a) Given a family of homologous proteins (here
just a cartoon fragment of a multiple sequence alignment), we select a small number
of parents to be recombined at specific locations, generating a library of hybrids. Mid-
dle: recombination may perturb the previously observed correlations between amino
acid types for interacting residues, here at positions 1 and 8, thereby possibly affecting
stability. Right: the resulting library may have more or less diversity; the choice of
breakpoint location on the top yields hybrids that are identical to the parents, while
that on the bottom results in sequence space being sampled relatively uniformly, with
an equal number of mutations between each hybrid and each parent. (b) Diversity
variance (x-axis) and perturbation (y) for completely enumerated 2-breakpoint sets for
three purE proteins, from E. coli, G. gallus, and M. thermautotrophicus. Blue dots are
all possible breakpoint sets (for larger numbers of breakpoints, we would not be able
to enumerate them all); red diamonds (to the lower left, minimizing one objective for
a fixed value of the other) are the undominated ones.

and “diversity variance” (Fig. 1(a)). We seek to minimize perturbation as a
way to ensure stable hybrids, and we seek to minimize diversity variance as a
way to evenly spread out hybrids in sequence space. Using diversity variance
and perturbation values as two dimensions, we can consider possible breakpoint
sets as points in a two-dimensional space (Fig. 1(b)). Since it is difficult for an
experimenter to decide a priori upon the “best” combination of these two incom-
mensurate factors, our methods provide insights into the trade-offs by finding
undominated sets of breakpoints—those for which no other set of breakpoints
is better for both factors (“Pareto optimal”, in economics jargon). Our goal
is to find the undominated sets efficiently, without explicitly enumerating the
exponential number of possible plans.

The problem of finding optimal trade-offs between competing desired criteria
is a common one. For example, in considering how to segment records in a large
shared database, Eisner and Severance studied the optimal trade-off between the
cost of storage and the benefit of retrieval [21]. The goal was assumed to be either
a linear or non-linear combination of cost and benefit, and parametric analysis
was applied to find the optimal trade-off under all possible parameter values. In
computational biology, such ideas are also at the heart of a parametric approach
to sequence alignment, e.g., trading off match scores and gap penalties [22].
A comprehensive analysis of parameteric sequence alignment [23] showed that
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for both global and local alignment, the number of parametric regions to be
considered is bounded, and that fast algorithms [24] can be employed to perform
the alignment.

In the present case, there is no underlying notion of an optimal trade-off;
instead, we want to provide the experimenter with an overview of all possibilities
worth considering (because they are undominated). We prove that the results of
convex optimization (breakpoint sets on the lower convex hull) are undominated,
and develop the natural polynomial-time algorithm to find those breakpoint sets
(similar to the parametric analysis in [21,22,23]). We also develop a polynomial-
time algorithm to uncover many of the breakpoint sets in the concavities which
are either undominated or can be shown by the algorithm to be within a small
distance of any undiscovered set that would dominate them.

We present planning results for cases with from 2 to 10 breakpoints and three
different sets of parents from the purE family of biosynthetic enzymes that we
are currently studying by site-directed recombination. Overall, our plans can be
proved to be quite good—the average normalized distance between our plans and
the lower bound on optimal plans is around 1 percent. Other possible methods
(either sampling breakpoint sets randomly, or explicitly optimizing for stability
while implicitly optimizing for diversity) don’t do nearly as well—on average for
each parent set, our plans dominate 60–90% of those.

2 Methods

Let P = {P1, P2, . . . , Pn} represent a multiple sequence alignment of n par-
ent proteins, with each sequence of length l including residues and gaps. A
recombination experiment with λ breakpoints is defined by a set of breakpoint
locations X = {x1, x2, . . . , xλ | 1 ≤ x1 < x2 < . . . < xλ < l}. The breakpoints
partition each parent Pa into λ + 1 fragments with sequences Pa[1, x1], Pa[x1 +
1, x2], . . . , Pa[xλ, l], where in general we use Pa[r, r′] to denote the amino acid
string from position r to r′ in sequence Pa, and Pa[r] to denote the single amino
acid at position r. A hybrid protein Hi is a concatenation of chosen parental
fragments, assembled in the original order. Thus it is also of length l. Then a
hybrid library H(P , X) = {H1, H2, . . . , Hnλ+1} includes all combinations.

Given a breakpoint set X , we can evaluate the perturbation and diversity vari-
ance of the resulting hybrid library with metrics vp(X) and vd(X) (see below).
We assume, without loss of generality, that both vd and vp are to be minimized.
For two breakpoint sets X and X ′, if vp(X) ≤ vp(X ′) and vd(X) ≤ vd(X ′), and
one of the two inequalities is strict, we say that X ′ is dominated by X . Let Xλ

be the set of all possible λ-breakpoint sets. If for some breakpoint set X there
is no X ′ ∈ Xλ that dominates it, we say that X is undominated. If X is not
dominated by any X ′ ∈ X ′

λ for some subset X ′
λ ⊂ Xλ of possible breakpoint sets,

we say that X is locally undominated. Our goal is then:

Goal: Given parent proteins P and number of breakpoints λ, find the
set Uλ of undominated λ-breakpoint sets.
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Once undominated breakpoint sets have been computed, the experimenter
can readily evaluate trade-offs between diversity variance and perturbation. For
example, the minimal perturbation experiment X∗ for a given maximum diver-
sity variance threshold θd is readily found as X∗ = arg minX∈Uλ : vd(X)≤θd

vp(X)
= argmaxX∈Uλ : vd(X)≤θd

vd(X). If desired, appropriate data structures can be
established to efficiently support such queries.

2.1 Metrics

To evaluate diversity and perturbation, we adopt here the metrics from our
previous work [9,10]. However, the method presented below is generic enough
to support other metrics, including the perturbation scores of Arnold and co-
workers [1] or Moore and Maranas [13].

Perturbation vp is computed according the hypergraph model of pairwise
and higher-order interactions, developed to characterize stability of hybrid li-
braries [9]. A hyperedge e is defined for each set of residue positions that are
in mutual contact. A “hyperresidue” R represents a tuple of amino acids for
the residues. An edge-specific potential score Φe(R) is calculated for each hyper-
residue for each hyperedge, based on occurrence statistics in a multiple sequence
alignment of the specific protein family, as well as in proteins in general. The
potential score captures the degree of “hyperconservation” for the edge—how
important it appears to be to preserve the combination of amino acid types.
Then, given a set of parent proteins P and a breakpoint set X defining a hy-
brid library H, we can compute the perturbation as the difference in amino acid
distributions (see again Fig. 1(a)), weighted by the potentials:

vp(X) =
∑

e

(
fe,P(R)

|P| · Φe(R)
)

−
∑

e

(
fe,H(R)

|H| · Φe(R)
)

, (1)

where fe,P(R) and fe,H(R) are the number of occurrences of R at e in the parent
proteins and hybrid library, respectively.

We introduced the idea of evaluating diversity in a library according to the
variance in the number of mutations between each hybrid–parent pair (illustrated
in Fig. 1(a)) [10]. (Hybrid–hybrid diversity variance can likewise be calculated,
and is highly correlated with the hybrid–parent metric.) We have shown that
the total number of mutations is a constant determined only by the parents, but
that by assessing the squared-differences in the numbers, we are optimizing for a
relatively uniform sampling of sequence space. We use here the average diversity
variance, the original metric divided by the number of hybrids (of course these
have the same minima):

vd(X) = 1/nλ+2 ·
n∑

a=1

nλ+1
∑

i=1

m(Hi, Pa)2 (2)

where m(Hi, Pa) =
∑

1≤r≤l I{Hi[r] �= Pa[r]} is the number of positions at which
hybrid Hi and parent Pa have different residues. To ignore conservative sub-
stitutions, we test “equality” according to standard sets of amino acid classes
{{C},{F,Y,W},{H,R,K},{N,D,Q,E},{S,T,P,A,G},{M,I,L,V}}.
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Fig. 2. Finding undominated breakpoint sets on the convex hull, for the completely
enumerated 2-breakpoint test system of Fig. 1(b). In practice, we would not enumer-
ate all the points within the hull. (Left) Undominated breakpoint set X below and
farthest from the line connecting Xp and Xd, the sets optimizing perturbation alone
and diversity variance alone. (Middle) Undominated breakpoint set between Xd and
X. (Right) All undominated breakpoint sets on the hull.

2.2 Finding Undominated Breakpoint Sets on the Convex Hull

Based on vp and vd, we equate breakpoint set X with its location in the two-
dimensional space with axes for perturbation and diversity variance. If break-
point set X ′ is dominated by X , then for any line passing through X with a
negative slope, X ′ must be above the line. Thus we know X is undominated if
we can find a negative-slope line through it such that all other breakpoint sets
are on or above the line.

This insight leads us to the basis for our first algorithm (see Fig. 2), which
constructs the lower convex hull connecting the breakpoint sets Xp and Xd mini-
mizing perturbation and diversity variance alone, respectively. For simplicity, we
assume throughout the paper that there is a unique Xp minimizing perturbation
and a unique Xd minimizing diversity. The extensions to handle non-unique min-
ima are straightforward, requiring us to consider inequalities that aren’t strict.

Claim. Let Xp and Xd be the (unique) breakpoint sets minimizing perturbation
alone and diversity variance alone, respectively. Then any breakpoint set X
on the lower envelope of the convex hull of all breakpoint sets, below the line
connecting Xp and Xd, is undominated.

Proof. Consider such an X , and let X ′ be an adjacent breakpoint set on the
convex hull (X ′ could be Xp or Xd). By the definition of convex hull, all other
breakpoint sets must be on one side of the line connecting X and X ′. In fact,
they must be above the line since otherwise Xp or Xd would be below the line,
contradicting the definition. The line connecting Xp and Xd must have a negative
slope. Otherwise, since vd(Xd) < vd(Xp), we would also have vp(Xd) < vp(Xp),
contradicting Xp’s optimality. It similarly follows that vd(Xd) < vd(X) < vd(Xp)
and that the line connecting X and X ′ has a negative slope. Thus, all breakpoint
sets lie on or above a negative-slope line through X , so X is undominated. ��

Of course we want to find the breakpoint sets on the convex hull without enumer-
ating the exponential number of breakpoint sets inside the hull. Our algorithm,
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initialize Q to be an empty queue
enqueue (Xp, Xd) into Q
BH ← {Xp, Xd}
repeat

dequeue one pair of breakpoint sets (X1, X2) (vd(X1) < vd(X2)) from Q
find breakpoint set X below and farthest from the line connecting X1 and X2

(by dynamic programming, Eq. 3)
if X �= X1 and X �= X2

BH ← BH + {X}
enqueue (X1, X) or (X, X2) into Q

end if
until Q is empty
return BH

Fig. 3. Algorithm for finding undominated breakpoint sets on the convex hull

illustrated in Fig. 2 and described in Fig. 3, is similar to the quickhull algorithm
[25] but efficiently finds the hull points without knowing the interior points. The
algorithm starts with Xp and Xd, and recursively finds hull points between an
existing pair of hull points. The key is finding the intermediate hull breakpoint
set X below and farthest from the line connecting hull breakpoint sets X1 and
X2. (The same method can find the initial Xp and Xd as special cases.) Let
α = vp(X1) − vp(X2) and β = vd(X1) − vd(X2), so that α/β is the slope of the
line connecting X1 and X2. For the X we seek, all other breakpoint sets must
be above the line passing through X with slope α/β. Thus X is the breakpoint
set minimizing the value of αvp(X) + βvd(X).

To find X , we adopt the dynamic programming frameworks from our earlier
methods for perturbation alone and diversity variance alone, to handle convex
combinations. The idea is to add breakpoints one-by-one from left to right in the
sequence (N- to C-terminus), at each point considering the change to αvp + βvd

for this breakpoint given previous breakpoints. Optimal substructure holds since
a hybrid library with breakpoints Xk = {x1, . . . , xk−1 = r′, xk = r} extends a
hybrid library with breakpoints Xk−1 = {x1, . . . , xk−1 = r′} by concatenating
each of the hybrids with each parent fragment Pa[r′ + 1, r]. The best choice for
xk depends only on the best choice for xk−1.

Let dpd(r, k) be the optimal value for the linear combination αvp + βvd with
k breakpoints, with the last breakpoint at residue position r. The structure of
the recurrence to compute dpd(r, k) is as follows:

dpd(r, k) =
{

Cpd(r) if k = 1,
minr′<r{dpd(r′, k − 1) + Δdpd(r′, r)} if k > 1.

(3)

where Cpd is the initialization value for only one breakpoint and Δdpd(r′, r) is the
increment when one more breakpoint is put after residue position r. Straightfor-
ward algebraic manipulations to derive Cpd and Δdpd(r′, r) have been omitted
due to lack of space; the resulting formulas are as follows:
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Cpd(r) = αvp({r}) +
β

n2 ·
n�

a=1

n�
b=1

m(Pa[1, r], Pb[1, r])2, (4)

Δdpd(r
′, r) = α

�
vp

�
{r′, r}

�
− vp

�
{r′}

��
+

β

n2 ·
n�

a=1

n�
b=1

m(Pa[r′ + 1, r], Pb[r
′ + 1, r])2 +

β

n3 ·
n�

a=1

�
n�

b=1

m(Pa[1, r′], Pb[1, r′]) ·
n�

b=1

m(Pa[r′ + 1, r], Pb[r
′ + 1, r])

�
(5)

To compute this recurrence by dynamic programming requires a table of size
λl (recall that λ is the number of breakpoints and l is the sequence length) and
each entry depends on O(l) previous entries in computing the minimum. Based
on previous derivations [9,10], the complexity of calculating Δdpd(r′, r) (done
in a preprocessing step, for look up during the dynamic programming) includes
O(lE) for the increment in perturbation (where E is the number of hyperedges)
and O(n2l2) for the increment in diversity variance (where we have n sequences).
Thus the complexity for dynamic programming is O(lE + n2l2 + λl2). We run
this algorithm once to find each undominated breakpoint set on the convex hull,
so to compute the whole set BH requires O(BH(lE + n2l2 + λl2))—polynomial
in each of the input variables and output size.

2.3 Finding Locally Undominated Breakpoint Sets in Concavities

The algorithm of Fig. 3 finds all undominated breakpoint sets on the convex
hull, but as Fig. 1 illustrates, many undominated breakpoint sets (45/59 in
that example) lie in the concavities. Since our underlying dynamic programming
framework (Eq. 3) is limited to convex combinations of vp and vd, in order to use
it we must focus on smaller regions whose convex hulls intersect the concavities.
We can then find breakpoint sets that are locally undominated with respect to
the various regions. While these breakpoint sets are not necessarily undominated
globally, in the next section we develop an approach to evaluate their optimality.

Let us consider how to constrain our optimization to regions within the
perturbation-diversity space. Consider the effect of moving from a breakpoint
set X with breakpoint i fixed to residue position r, to breakpoint set X ′ with
i fixed to r + 1. The contribution to the perturbation score vp is changed only
for those edges incident on r + 1. If we assume a constant degree in the con-
tact graph (since physically each residue can only contact a limited number of
other residues), then the expected change in perturbation, |vp(X ′) − vp(X)|, is
bounded by a constant fraction of the overall perturbation range. Similarly, the
contribution to diversity variance vd is changed only for the fragments from po-
sition Xi−1 to Xi and from Xi to Xi+1. While we omit the details, which aren’t
essential here, it follows that the expected difference |vd(X ′)−vd(X)| is bounded
by a linear function of the total number of mutations in those fragments, a small
amount compared to the range of diversity variance. Thus each time we advance
a single breakpoint location, we take a small step in perturbation-diversity space.

Based on this insight, our algorithm for exploring the concavities iterates over
all possible (breakpoint, position) pairs. With a breakpoint fixed to a position,
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we apply a variant of our dynamic programming algorithm, changing the for-
mulas appropriately for vp and vd to account for the fixed breakpoint. After
obtaining the locally undominated breakpoint sets for each (breakpoint, loca-
tion) pair, we take the union of the sets and eliminate those that are dominated.
The dynamic programming framework is used to find each point on the local
lower convex hull. Thus to find a multiset (including duplicates) BL of locally
undominated breakpoint sets, the total complexity is O(BL(lE+n2l2+λl2)). By
fixing more breakpoint locations (e.g., pairs), we would explore the concavities
even better, but of course at increased cost. We could also consider variations,
such as sampling positions rather than trying each one. However, our results
show that fixing each breakpoint at each position is fast enough and yields high
quality results.

2.4 Optimality Guarantees

Suppose that for a particular experiment, we want to find the optimal breakpoint
set X minimizing perturbation such that vd(X) ≤ θd, for some diversity variance
threshold θd (minimizing diversity subject to a perturbation threshold can be
handled similarly). In our concavity-exploring algorithm, when we fix breakpoint
i to be at residue position r, we obtain a “local” convex hull. This hull may
have a lower convex chord X1X2 (connecting consecutive points on the lower
hull) that intersects the θd line (i.e., the vertical line vd = θd) at some point
with perturbation value p (see Fig. 4(left)). We represent this convex chord as
c = (i, r, p). We can use the set C of all convex chords that intersect the θd line
over the various local hulls, to bound the best possible perturbation for X .

Claim. Given diversity variance threshold θd and set C of all convex chords
intersecting the line for θd, let Si = {(r, p) | (i, r, p) ∈ C} (1 ≤ i ≤ λ) and let
T = {{(r1, p1), (r2, p2), . . . , (rλ, pλ)} ∈ S1 × S2 × . . . × Sλ | r1 < r2 < . . . rλ}. If
T is empty, the experiment plan provided by Staversity is optimal. Otherwise,
the undiscovered optimal undominated breakpoint set Xo = {xo,1, xo,2, . . . , xo,λ}
has vp(Xo) ≥ minT∈T max(r,p)∈T p.

Proof. Suppose Xo is the optimal undominated breakpoint set and is not found
by Staversity. Then for each local hull fixing breakpoint i at residue position
xo,i, Xo is not found, implying that it is inside the hull and above a lower
convex chord. Let X1 and X2 be the breakpoint sets at the left and right ends,
respectively, of the convex chord below Xo (i.e., vd(X1) < vd(Xo) < vd(X2)),
as in Fig. 4(left). Since the line through X1 and X2 has a negative slope (as in
the proof in Sec. 2.2), we have vp(X1) > vp(X2) and vp(Xo) > vp(X2). Thus
the line of θd must intersect the convex chord X1X2, since otherwise either
vd(X1) > θd and vd(Xo) > θd (contradicting its satisfaction of the threshold), or
vd(X2) < θd and vp(X2) < vp(Xo) (contradicting its optimality). Furthermore,
the perturbation value of the intersection is less than vp(Xo) as the convex chord
has a negative slope and vd(Xo) ≤ θd.

Thus, if Xo exists, for each local hull fixing breakpoint i at residue posi-
tion xo,i, we have a convex chord c = (i, xo,i, pi) such that c is below Xo
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Fig. 4. Illustration of optimality guarantees. (Left) The dashed line representing a
diversity threshold θd intersects convex chords below Xo. (Right) Bounding the optimal
perturbation for a 2-breakpoint set with respect to the θd threshold. Each (breakpoint,
position) pair generates one convex chord (blue line segment) intersecting the θd line.
The lower bound for perturbation is the maximum perturbation from a set of convex
chords for a consistent breakpoint set, here x1 = 6 and x2 = 8.

and intersects the line of θd at perturbation pi. So vp(Xo) > max {pi} and
{(xo,1, p1), (xo,2, p2), ..., (xo,λ, pλ)} ∈ T . As a result, if T is empty, no Xo exists,
and the plan is optimal. Otherwise, following the argument above, we can bound
the perturbation for any missed Xo by vp(Xo) ≥ minT∈T max(r,p)∈T p. ��

This claim suggests an approach for computing the perturbation bound: consider
convex chords for the local hulls in order of perturbation, moving up the line
of θd. When we have found a set of chords, one for each breakpoint, such that
the corresponding breakpoint locations are in increasing order, then we have the
best possible perturbation value. Fig. 4(right) gives an example.

To efficiently compute the lower bound of vp(Xo), we develop another dynamic
programming algorithm. Let Tk,γ be the valid breakpoint sets from Si with
breakpoint k (≤ λ) at position γ, i.e., Tk,γ = {(r1, pi), (r2, p2), . . . , (rk, pk) ∈
S1 × S2 × . . . × Sk | r1 < r2 < . . . < rk = γ}. We can then define the minimum
perturbation with breakpoint k at position γ as:

de(γ, k) = min
T∈Tk,γ

max
(r,p)∈T

p. (6)

If Tk,γ is empty, then the k-breakpoint set cannot be constructed, and de(γ, k) =
∞. Otherwise, we can form a k-breakpoint set by extending a valid k − 1-
breakpoint set ending at residue position τ < γ. Optimal substructure holds,
and to compute the perturbation we have the recurrence:

de(γ, k) =
{

max {p, minτ<γ de(τ, k − 1)} if ∃(r, p) ∈ Sk with r = γ,
∞ otherwise. (7)

And we get the lower bound of vp(Xo) from the final column:

vp(Xo) ≥ min
T∈Tλ

max
(r,p)∈T

{p} = min
γ

de(γ, λ). (8)
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If minγ de(γ, λ) is larger than the perturbation value of the experiment plan
provided by Staversity, Xo does not exist and the experiment plan provided
by Staversity must be optimal.

In the dynamic programming of Eq. 7, the table is of size λl, and each entry
depends on O(l) previous entries in computing the minimum, for a total com-
plexity of O(λl2). The preprocessing to put the chords into the Si buckets and
order them within the buckets can be done in linear time, since we have small
ranges of integers ([1, λ] and [1, l], respectively).

3 Results and Discussion

We have been studying by site-directed recombination homologous proteins of
the purE family (COG 41 and pfam 731), which catalyze steps in the de novo
synthesis of purines. While clear homologs, purE proteins carry out substantially
different enzymatic activities in different organisms: in eubacteria, fungi and
plants (as well as probably most archaebacteria), the purE product functions
as a mutase in the second step of a two-step reaction, while in metazoans and
methanogenic archaebacteria, the purE product functions as a carboxylase in a
single-step reaction that yields the same product [26,18]. This striking difference
in activity makes the purE family a valuable target in protein engineering—by
exploring sequence space through site-directed recombination, we seek to find
the features of the “boundaries” enclosing the distinct activities.

To identify a set of possible purE parents, we created a multiple sequence
alignment of the purE family, then eliminated columns not mapped to the struc-
ture of E. coli purE (PDB id: 1qcz) and eliminated sequences with more than
20% gaps. This yielded a diverse set of 367 sequences of 162 residues each, includ-
ing 28 of the rarer class of metazoans and methanogens with inferred carboxylase
activity. The average pairwise sequence identity is 65.8%. We selected three par-
ent sets, each consisting of three purE parents with varying diversity—medium
diversity (average identity 55%): Escherichia coli, Gallus gallus, Methanother-
mobacter thermautotrophicus; high diversity (31%): Drosophila melanogaster,
Bdellovibrio bacteriovorus, Treponema denticola; low diversity (80%): Gib-
berella zeae, Magnaporthe grisea, Saccharomyces cerevisiae.

For each parent set, and for 2 to 10 breakpoints, we applied Staversity to
find breakpoint sets. On average, it took around 5 minutes for 2 breakpoints.
The running time increased according to the number of breakpoints, and it took
around 2 hours for 10 breakpoints.

To assess the completeness of Staversity, we enumerated for the medium di-
versity parents all 2-breakpoint sets (plotted in Fig. 1) and all 3-breakpoint sets,
deeming it impractical to enumerate plans with more breakpoints. Staversity

finds 55 of the 59 undominated 2-breakpoint sets in the enumeration and 77 of
the 115 undominated 3-breakpoint sets. In both cases, the breakpoint sets that
Staversity missed were quite close to others that it found. For missed set X and
found sets B, we compute the distance as minX′∈B : vd(X′)<vd(X) vp(X ′) − vp(X),
divided by the range of perturbation values over all breakpoint sets. The
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Table 1. Comparison of Staversity with Rand and Implicit for three different
parent sets and from 2 to 10 breakpoints

2 3 4 5 6 7 8 9 10
Medium diversity

Staversity 55 89 112 134 180 215 229 263 284
Rand 36 44 39 36 45 37 37 24 33
Implicit 43 63 68 78 71 65 61 47 64
Staversity dom. Rand 72.2% 90.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Staversity dom. Implicit 14.0% 41.3% 58.8% 76.9% 85.9% 92.3% 90.2% 87.2% 89.1%
Rand dom. Staversity 0.0% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Implicit dom. Staversity 0.0% 9.0% 2.7% 0.7% 0.0% 0.5% 0.0% 0.0% 0.0%

High diversity
Staversity 79 104 160 179 230 263 300 352 369
Rand 63 62 55 55 49 50 52 43 45
Implicit 86 82 106 107 106 120 98 122 109
Staversity dom. Rand 82.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Staversity dom. Implicit 4.7% 23.2% 49.1% 55.1% 70.8% 83.3% 81.6% 85.2% 85.3%
Rand dom. Staversity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Implicit dom. Staversity 0.0% 1.9% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Low diversity
Staversity 20 26 34 38 62 68 79 87 106
Rand 14 12 21 25 25 29 29 31 30
Implicit 6 6 10 14 17 20 23 24 27
Staversity dom. Rand 35.7% 83.3% 81.0% 100.0% 96.0% 100.0% 100.0% 100.0% 100.0%
Staversity dom. Implicit 33.3% 33.3% 70.0% 78.6% 82.4% 85.0% 87.0% 87.5% 88.9%
Rand dom. Staversity 5.0% 0.0% 5.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Implicit dom. Staversity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

average value for the 4 missed 2-breakpoint sets is 0.5%, as is that for the 38
missed 3-breakpoint sets.

The only other method available for optimizing stability and diversity, based
on RASPP [8], does so implicitly while optimizing perturbation. The lengths
of the fragments to be recombined are constrained to lie between minimum and
maximum values; a perturbation-optimal library is generated for each minimum-
maximum pair. This restriction does provide some sampling of various levels of
diversity, since larger fragments generally lead to greater diversity. For compar-
ison, we implemented a version of this approach (called Implicit below) using
our metrics and returning only the locally undominated breakpoint sets (i.e.,
not dominated by any others in the set). For a baseline for comparison, we also
applied a simple random selection method (called Rand below), in which we
randomly sample sets of breakpoints and return the locally undominated ones.

Tab. 1 summarizes the results on the different tests. To put the methods on
a relatively equal footing and avoid saturation by random sampling (which hap-
pens with small numbers of breakpoints), the number of random samples for each
test case was set as the total number of breakpoint sets found by Staversity

in the local convex hulls. (We also tested a large number of random samples;
see below.) In each table, the rows of “Staversity”, “Rand” and “Implicit”
give the numbers of breakpoint sets found by each method. The rows of the
form “Staversity dom. Rand” give the percentage of breakpoint sets found
by the second method that are dominated by those found by the first method
(not counting the breakpoint sets common to both methods).
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Fig. 5. Optimality guarantees: breakpoint sets found by Staversity (green diamonds)
compared to lower bounds on optimal perturbation for 100 different diversity variance
values (red crosses), for (left) 2, (middle) 6, and (right) 10 internal breakpoint sets

On average, for the medium diversity parents, Rand finds only 28 percent as
many breakpoint sets as Staversity does, and 96 percent of the Rand ones are
dominated by Staversity ones. Implicit finds 45 percent as many, of which
71 percent are dominated. Rand performs similarly badly on the high diversity
parents, finding 32 percent as many with 98 percent dominated, and improves a
little on the low diversity set, at 48 percent with 88 percent dominated. Implicit

improves a little on the high diversity set, finding 56 percent with 60 percent
dominated, but for the low diversity parents finds only 29 percent with 72 per-
cent dominated. Staversity always finds more and better breakpoint sets than
Rand and Implicit. One possible explanation for the variation of Implicit’s
performance with parent diversity level is that when parents become more di-
verse (in the limit, being entirely different), the fragment length (the implicit
diversity control) is increasingly important for generating diversity. When par-
ents become less diverse, longer fragment length does not necessarily mean more
diversity, so the impact of fragment length on diversity is not so significant. The
performance of random selection is clearly subject to the curse of dimensionality.

We tried using a large number of samples (> 107) for the different parent sets
with 10 breakpoints. Even with this large number of samples, Staversity still
significantly outperforms random selection. For the medium diversity parents,
Rand finds only 83 breakpoints, all of which are dominated by Staversity ones,
while with the high diversity parents, it finds only 117, again all dominated. It
does relatively better for the low diversity parents, finding 101 breakpoints of
which 94% are dominated, and it dominates 2 of the Staversity breakpoints.

In addition to finding more, better breakpoint sets, Staversity can pro-
vide optimality guarantees. To evaluate how close our results are to optimal
perturbation-diversity trade-offs, we tested 100 diversity variance thresholds θd

for the bound on the optimal perturbation value. As Fig. 5 illustrates, our plans
are very close to optimal. Quantitatively, we can compute the average distance
between the vector of perturbation bounds and corresponding actual perturba-
tion values, normalized by the range of perturbation values as above. For the
medium diversity parents, the difference is 0.9% for 2 breakpoints, 1.0% for 6,
and 0.9% for 10. The results are similar for the high diversity set (1.2%, 1.4%,
and 1.3%) and low diversity set (3.4%, 1.1%, and 1.4%). The one outlier, 3.4%
for low-diversity parents with 2 breakpoints, comes mainly from the extreme
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ends of the diversity range. Overall (and even in that case), the breakpoint sets
are provably close to providing optimal trade-offs.

4 Conclusion

We present a method to optimize breakpoint selection for site-directed protein
recombination considering stability and diversity simultaneously. Our method
is generic in metrics for stability and diversity, and by finding undominated
breakpoint sets, it allows the experimenter to assess the trade-offs between these
factors. Unlike other methods, we can provide optimality guarantees on identi-
fied breakpoint sets. In practice, our method significantly outperforms existing
alternatives, finding more and better breakpoint sets. Staversity should be a
valuable tool enabling protein engineers to choose experiments that better ex-
plore sequence space, improving the “hit-rate” of finding proteins that are stably
folded and have novel activity.

Acknowledgments. This work was supported in part by an NSF CAREER award
to CBK (IIS-0444544) and an NSF SEIII grant to CBK, AMF, and Bruce Craig
(IIS-0502801).
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Abstract. This paper presents an algorithm to detect lateral gene trans-
fer (LGT) on the basis of pairwise evolutionary distances. The prediction
is made from a likelihood ratio derived from hypotheses of LGT versus no
LGT, using multivariate normal theory. In contrast to approaches based
on explicit phylogenetic LGT detection, it avoids the high computational
cost and pitfalls associated with gene tree inference, while maintaining
the high level of characterization obtainable from such methods (species
involved in LGT, direction, distance to the LGT event in the past). We
validate the algorithm empirically using both simulation and real data,
and compare its predictions with standard methods and other studies.

1 Introduction

Lateral gene transfer (LGT), or horizontal gene transfer (HGT), is widely rec-
ognized as a major force in prokaryotic genome evolution, but the study of its
nature and extent is constrained by the limitations of current methods for LGT
detection [1,2]. These methods can be divided in two broad categories: paramet-
ric methods and phylogenetic methods. In parametric methods, sequence prop-
erties such as nucleotide composition [3,4], dinucleotide frequencies [5], codon
usage biases [6,7,8], or, more recently, nucleotide substitution matrices [9] are
calculated for a specific gene and compared with the rest of the genome. A
transferred gene has parameter values typical for its donor genome, which makes
it distinguishable from the recipient genome. For this reason, the method can
only detect LGT events taking place between organisms with significantly dif-
ferent patterns of evolution. Furthermore, parametric methods are limited to
recent LGT transfers because the transfered sequences adapt to their new host
relatively rapidly [3]. Lastly, some native genes may have atypical nucleotide
composition for reasons other than LGT.

Phylogenetic methods identify LGT events by analyzing the discrepancy be-
tween the phylogeny of laterally transfered genes and their host genomes. There-
fore, most phylogenetic methods consist of inference of gene and species trees,
� Corresponding author.
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and their reconciliation [10,11]. Other methods, such as Lawrence’s rank cor-
relation test [12] or Clarke’s phylogenetic discordance test [13] use unexpected
sequence similarity scores to detect LGT, and do not require the inference of gene
trees. To distinguish between the two types, we refer to the former by explicit,
the latter by implicit phylogenetic methods. Explicit methods have the poten-
tial of describing in detail LGT events (involved species, direction of transfer,
time of the transfer), but suffer from the difficulties associated with the inference
of gene trees, a task both computationally expensive and error-prone. On the
other hand, the two implicit phylogenetic methods mentioned here are fast and
robust, though limited by their reliance on similarity scores, which do not always
reflect phylogeny [14] in the first place, and by the relative coarseness of their
underlying models, which limits their detection power.

In this manuscript, we introduce a new phylogenetic method for LGT de-
tection, which we call DLIGHT (Distance Likelihood based Inference of Genes
Horizontally Transfered). Based on evolutionary distances and applied in a prob-
abilistic framework, it combines the speed, the lack of gene tree requirement,
and the robustness of implicit methods with the high level of details obtained
by explicit methods. The next section presents the algorithm, and is followed by
validation using simulation and biological data.

2 Method

2.1 Preliminaries

Definition (family of orthologs). A set of sequences (genes or proteins1)
f = {x1, x2, ...} is a family of orthologs if all pairs of sequences (xi, xj) in f are
either orthologs or xenologs through orthologous replacement. We denote the set
of all such families by F .

DLIGHT’s objective is to detect LGT in such families of orthologs. In the above
definition, we require that the families have no paralogs (paralogy detection
is beyond the scope of this article). This also ensures that there is at most
one sequence per species in any family of orthologs. Thus, a sequence is also
uniquely referenced by the pair (f, g), where f is a family that contains the
sequence and g the species it belongs to (or the genome – the two terms are
used here interchangeably). We denote by G(f) the set of species of sequences
of f . We denote the evolutionary distance between sequences of species i and j
in family f by df (i, j).

Assumption 1 (interspecies distance, family-specific rates). We assume
that, in the absence of LGT, all distances between orthologs of species i and j are
proportional to an interspecies distance d(i, j), with a family-specific proportion-
ality constant τf . Formally, df (i, j) = τf · d(i, j). Furthermore, we require that
on average, the proportionality constant be one ( 1

|F |
∑

f∈F τf = 1). This model
is refered to as proportional branch lengths by [15].
1 In this work, we consider at most one protein sequence per gene.
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Estimator d̂f(i, j). The evolutionary distance df (i, j) can be estimated from
a pairwise alignment by maximum likelihood (ML) under a model of amino-acid
substitution. We call this estimator d̂f (i, j). The ML estimator is asymptotically
unbiased and asymptotically normally distributed. The ML procedure also pro-
vides an estimate of its variance σ2(d̂f (i, j)). Furthermore, covariance estimation
is shown in [16].

Estimator d̂(i, j). We estimate the interspecies distance d(i, j) using the un-
weighted sample average over all |F | families of orthologs:

d̂(i, j) =
1

|F |
∑

f∈F

d̂f (i, j)

The estimator is unbiased, because:

E(d̂(i, j))=
1

|F |
∑

f∈F

E(d̂f (i, j))=
1

|F |
∑

f∈F

τf · d(i, j) = d(i, j)
1

|F |
∑

f∈F

τf

︸ ︷︷ ︸
=1

= d(i, j)

Assumption 2. In the following, we will consider d̂(i, j) to be a point estimate,
that is, we assume that σ2(d̂(i, j)) = 0.

This assumption may appear to be quite strong, especially if the number of
families under consideration is small. In most cases, however, the number of
families is relatively large (larger than the size of a typical family), and the
variances of interspecies distances are much smaller than those of the other
estimators under consideration here. In terms of computation, the assumption
considerably reduces the time complexity of our approach.

Estimator τ̂f . We estimate the rate τf of family f using the following estimator:

τ̂f =
1

nf (nf−1)

∑
i,j∈G(f),i�=j d̂f (i, j)

1
nf (nf−1)

∑
i,j∈G(f),i�=j d̂(i, j)

=

∑
i,j∈G(f),i�=j d̂f (i, j)

∑
i,j∈G(f),i�=j d̂(i, j)

where nf = |G(f)|. Due to assumption 2, the denominator is constant, and thus
τ̂f follows a normal distribution with variance

σ2(τ̂f ) =

∑
i,j,k,l∈f,i�=j,k �=l cov(d̂f (i, j), d̂f (k, l))

(
∑

i,j∈f,i�=j d̂(i, j))2

Lateral Gene Transfer

Definition (lateral gene transfer). In the present work, a lateral gene trans-
fer (LGT) event is the transfer of a gene from a donor species d (or an ancestor
thereof) to a recipient species r (or an ancestor thereof).
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Assumption 3. Since the divergence of d and r, at most one LGT event per
family of orthologs took place between the two lineages.

Assumption 4. The rate of evolution (the branch length on the phylogenetic
tree) of a sequence after LGT is homogeneous among all donor and recipient
lineages.

Definition (δ). Given a LGT event in family f between lineages of d and r, the
evolutionary distance between the transfered sequence and the current sequences
in r or d is expressed by δ (Fig. 1). The distance since LGT is the same for both
species due to assumption 4.

x4

d

x3

r

x2

x1

Fig. 1. Distance to LGT event as captured by the parameter δ. The LGT event is
represented by the arrow.

Consequently, the expected distance between sequences in f of d and r is 2δ.
For instance, if δ = 0, the two proteins have not diverged since the LGT event,
and thus the LGT is very recent.

2.2 Algorithm

DLIGHT identifies LGT events by considering, in all families of orthologs, all
potential pairs of donor and recipient species. For each configuration, a likelihood
ratio test is performed between the hypothesis of a LGT (alternative hypothesis)
and the hypothesis of no LGT (null hypothesis). Formally, the set of significant
LGT events is given by:

LGT =
{
(f, d, r) |f ∈ F ; d, r ∈ G(f); argmax

δ≥0∈R

(
2ln

l(f, d, r, δ)
l(f, d, r, δ = ∞)

)
> χ2(α, 1)

}

where F is the set of all families of orthologs, d a potential donor species, r a
potential recipient species and l(f, d, r, δ) is the likelihood of an LGT in f from
lineages of d and r at distance δ in the past. l(f, d, r, δ = ∞) is the likelihood
under the null hypothesis (in which δ is fixed to ∞, see below), and χ2(α, 1) is
the critical value of the chi-square distribution with significance level α and one
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degree of freedom. This test is known as the likelihood ratio test (see e.g. [17]).
The ratio follows a chi-square distribution if the two models are nested, which
is the case here, as we shall see below.

Below, we show how the likelihood of a LGT event l(f, d, r, δ) can be com-
puted. The process can be split in three parts: first, given (f, d, r, δ), we infer
which species of G(f) belong to the set of donor species D and of recipient
species R. From these sets, we show how to compute the expected values of all
2|f | − 3 evolutionary distances of pairs in f that involve r and/or d, as well as
their variances and covariances. Finally, we compute the likelihood of the event,
which is based on the deviation of the observed distances from the expected
distances.

Step 1 – Assignment of Species to Sets of Donors (D) and Recipients
(R). First, given a quartet (f, d, r, δ), we infer members of G(f) belonging to
the donor and recipient lineages, that is, the set of species that directly descend
from the donor (set D) and recipient species (set R). These subsets of G(f) can
be defined as follows:

D = {j ∈ G(f) | τf · d(j, d) ≤ 2δ}

R = {j ∈ G(f) | τf · d(j, r) ≤ 2δ}

We shall now justify these definitions (illustrated in Fig. 1). First, note that as
could be reasonably expected, d ∈ D, r ∈ R, because in both cases the distance
to themselves is 0, and δ being a distance is non-negative. As for the other species
of G(f), the definitions use assumption 4 (we focus on the definition of D; the
rational for R is similar): if all sequences from the donor lineage in f evolve
at the same rate, they will all be δ away from the LGT. Further, by definition,
members of the donor lineage have speciated after the LGT event, and therefore,
their sequences in f are separated by a distance of at most 2δ.

To build these sets, we must rely on the estimators τ̂f and d̂(j, d) (or d̂(j, r) in
the case of R). Since the interspecies distances are point estimates (assumption
2), we only need to consider the distribution of τ̂f (see Sect. 2.1): the sets of
donors and recipients differ depending on the value of the estimator τ̂f . Fig. 2
depicts the distribution with the critical values of τ̂f for the assignment of a
species j to D and R.

Thus, if we consider the two critical values for all species j in G(f), the
distribution of τ̂f will be partitioned into 2|f | + 1 ranges. Each of these ranges
map to particular Di and Ri, whose probability is the area of the density function
pdf(τ̂f ) in that particular range. We refer to the probability of the ith range as pi.
We will compute for each of these sets of donors and recipients the corresponding
likelihood, and then average them according to their probability. The next step
is therefore repeated for all 2|f | + 1 possible assignments of D, R.

Step 2 – Pairwise Distance Statistics. Given a sextet (f, d, r, δ, Di, Ri), the
computation of the likelihood of a particular LGT event is based on the 2|f | − 3
pairwise distances in f that involve d or r. These distances are of interest because
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Fig. 2. The assignment of sequence j to sets D, R depends on τ̂f . For instance, at the
point τ̂∗

f , j is in R, but not in D.

they are particularly altered by the LGT event, but the procedure could trivially
be extended to all

(|f |
2

)
pairs in f .

The observed distances are simply the ML estimators for the relevant pairs
of sequences of f . Estimators for the expected distances are provided in Table 1.
Most distances involving the donor species d are unaffected by the LGT event,
i.e. they are expected to follow the interspecies distances scaled by the family
rate. Distances to the recipient species r however are mostly expected to follow
the scaled interspecies distance to the donor d, because the sequence originated
from the donor lineage, and after the LGT event, they evolved at the same rate as
in the donor lineage (assumption 4). The special cases are: (i) distances between
two recipients: they are unaffected by the LGT because the transfer happened
before they speciated; (ii) distances between recipient and donor species: they are
expected to be 2δ per definition; (iii) distances involving inconsistent species:
the estimators and parameters can be such that a species is in both Di and
Ri, for instance if δ is particularly large. In those cases, we treat the distance
the same way as under the null hypothesis (no LGT transfer) and assign it an
expected value that corresponds to the scaled interspecies distance. In terms of
the model, this also has the advantage that the null hypothesis of no LGT is
equivalent to the special case of a LGT with parameter δ = ∞. This means
that the models are nested, and therefore that the likelihood ratio follows a chi-
square distribution with number of degree of freedom given by the difference in
free parameters (one in our case).

Note that in our model, both observed and expected pairwise distances are
normally distributed random variables, which can be expressed using two 2|f |−3
dimensional vectors x and y. In both case, we have estimators for their variance-
covariance matrices Σx and Σy : for observed distances, the diagonal entries can
be obtained by ML theory, and the covariances can be computed as described in
[16]. As for the expected distances, the variance is either that of τ̂f scaled appro-
priately, or else null when τ̂f does not appear in the expression. The expected
distances do not covary, and thus all off-diagonal entries are null.
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Table 1. LGT event: expected distances to r and d in f . Note that the last row
(inconsistent) can occur in our model if δ is large; the adverse impact of such inherently
inconsistent case is limited by using the same expected distances as under the null
hypothesis (no LGT event).

label ∈ Di ∈ Ri Ê(d̂f (j, d)) Ê(d̂f (j, r))
outgroup no no τ̂f · d̂(j, d) τ̂f · d̂(j, d)

donor yes no τ̂f · d̂(j, d) 2δ

recipient no yes 2δ τ̂f · d̂(j, r)
inconsistent yes yes τ̂f · d̂(j, d) τ̂f · d̂(j, r)

Let z = x − y. The vector z is normally distributed, with expected value
E(z) = 0. If we now assume that x, y are independent, Σz = Σx + Σy. In
reality, they are not strictly independent, because x is a component (albeit a
minor one) of τ̂f , which itself is used in the computation of y.

Step 3 – Computation of the Likelihoods, and Estimation of δ. The
likelihood of the LGT event (f, d, r, δ, Di, Ri) can be computed from the multi-
variate normal probability density function of the vector z and covariance matrix
Σz from the previous section:

l(f, d, r, δ, Di, Ri) =
exp(− 1

2zT Σ−1
z z)

√
(2π)2|f |−3|Σz|

We can now marginalize over the 2|f |+1 different sets of donors and recipients
(see step 1) to compute the likelihood of the LGT event (f, d, r, δ):

l(f, d, r, δ) =
∑

i

pi · l(f, d, r, δ, Di, Ri)

Furthermore, the parameter δ can be estimated by maximizing the likelihood.
As mentioned above, the likelihood for the null hypothesis of no LGT event is
obtained by the special case with parameter δ = ∞.

2.3 Model Violations and Test of Multivariate Normality

DLIGHT is based on assumptions that do not always hold, in particular when
dealing with biological sequences whose evolution strongly deviates from the
markovian model. To limit the adverse effect of such model violations, we test the
multivariate normality of the data by computing a p-value based on the squared
Mahalanobis distance zT Σ−1

z z, which is known to be chi-square distributed if z
is multivariate normal. Data falling in extreme quantiles are considered dubious.
In experiments reported here, predictions with data falling in the (1 − 10−10)
quantile were considered artifacts due to model violation, and were disregarded.

Furthermore, in case of poorly estimated variances or covariances, the matrix
Σz may not be positive definite, or it may be singular if the sequences of two
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species are identical. In our implementation, we still try to identify LGT events
by working with a subset of the family that constitute a well-posed problem (the
problematic sequences are excluded on the basis of a simple greedy approach).

2.4 Combination of Results and Correction for Multiple Testing

As we presented above, DLIGHT computes a likelihood ratio test in all fami-
lies of orthologs, for all different possible pairs of potential donor and recipient
species. This raises the issues of combining results and correcting for multiple
testing. Currently, we take the conservative approach of combining results that
are consistent, for instance when a LGT event happened before speciation of the
recipient species into two species g1 and g2: the algorithm may detect a transfer
when run with both species as recipient, but if in both cases the estimated δ
suggests a transfer prior to their speciation, the prediction is consistent and can
be combined. Another common case for combination are pairs of results that
report LGT between consistent sets of donor and recipient genomes, but with
reverse direction. The direction of some LGT events, such as transfers between
close species, is inherently difficult to assess. Nevertheless, if one direction has a
significantly higher probability, and provided that the estimated parameter δ is
consistent, the direction of the LGT can be infered.

We address the issue of multiple testing by using the Bonferroni adjustment,
a common approach that discounts the significance by a factor corresponding
to the total number of tests. If the tests are not independent from each other,
which is the case here, the correction is excessive and some sensitivity is wasted.

3 Validation and Results

DLIGHT was tested using four different approaches: simulation, artifical LGT
events, real biological data and comparison with previous results from the litera-
ture. The results of simulation are also reported for three simple LGT detection
methods that serve as benchmark: methods based on GC-content, best-hits, and
perturbed-distances. They are described in the Appendix.

3.1 In Silico Evolution Scenarios

Although a simulation will never fully capture the complexity and diversity
of natural evolutionary processes, it allows the evaluation of algorithms with
knowledge of the history of events, and therefore constitutes a tracable base-
line. Synthetic genomes were generated using the software EVA (manuscript
in preparation). EVA starts from a single organism and simulates the follow-
ing evolutionary mechanisms: codon mutation based on empirical substitution
probabilities [18], with biased genome-specific GC contents and gene-specific
mutation rates, codon insertion and deletion, gene duplication, gene loss, LGT
(both orthologous replacement and novel gene acquisition), and speciation. The
probabilities of LGTs, gene duplications and gene loss were set to a proportion
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of 1:2:3, thereby keeping the expected number of genes constant (as suggested
in [19]). The two types of LGT events, novel gene acquisition and orthologous
replacement, were set to have an equal probability of occurence. Table 2 details
the remaining parameters of the two different evolutionary scenarios investigated
here. Genes from the resulting genomes were grouped in orthologous familes us-
ing the OMA algorithm [20].

Table 2. Overview of the simulation parameters. In simulation 1 closely related or-
ganisms are used while in simulation 2 more distantly related organisms are analysed.

Name # of Avg. # Avg. genome distance # LGT # of
species of genes (expect. identity) families

simulation 1 9 197 16 PAM (85.4%) 50 241
simulation 2 9 202 74 PAM (50.7%) 42 295

The different algorithms were run on the two datasets and the performances
were analysed in terms of both sensitivity and specifity, at three levels of pre-
cision: first, the ability to report families of orthologs that contain at least one
laterally transfered gene; second, the ability to identify the protein involved in a
LGT event, that is, either report a donor or a recipient species; and third, the
ability to correctly identify the direction of the LGT, in addition to the species
involved. The six resulting ROC curves are presented in Fig. 3. Overall, DLIGHT
showed significantly higher sensitivity and specificity than the other methods. It
also performed more consistently than the other methods, with curves of similar
shape across all experiments. The significance threshold is rather conservative (a
consequence of the stringent Bonferoni correction) and led to 100% specifity in
most cases. In the case in which the direction of LGTs was required, in distantly
related species, the GC content and the perturbed distance approach outper-
formed DLIGHT. This may be due to the difficulties in estimating distances and
variances when organisms are so far apart. In those cases, simpler methods may
prove to be more robust.

3.2 Artificial LGT Events in Real Data

LGT events between real biological genomes can be simulated by introducing a
gene from one species into another, either as substitute for its ortholog (“orthol-
ogous replacement”) or as additional sequence. Such artificially introduced LGT
event allows the testing of the algorithm on real biological data while having a
positive control. However, only the specific case of very recently introduced genes
can be simulated. Furthermore, real occurences of LGTs may already be present
in the dataset and their signals may conflict with the artificially introduced ones.

The biological data consisted of 15 archaea with 2273 gene families, of which
727 families had at least 6 genes. 200 cases of LGT events from random donors
to random recipients were introduced, as orthologous replacement, in families
with at least 6 genes. Fig. 4 presents the results of the tests. The 200 top scoring
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Fig. 3. ROC analyses. Sensitivity is ploted along the X axis, specifity along the Y axis.
Plots on the first line were obtained from a simulation with closer species, plots on the
second line from more distantly related ones. The left column shows results of identify-
ing families with LGT events. The middle column shows results of identifying families
with LGT events and the involved species. The right column shows results of identifying
families with LGT events, the involved species and the direction of the transfers.

predictions were compared to the set of artificially introduced LGTs. Of all four
methods, our performed best. Given the relatively good results obtained with
the perturbed-distance approach in the previous test, its performance here is
surprisingly poor, with only 7 artificial LGTs recovered. Note also that being
recent, transfers introduced here constitue ideal conditions for both the GC
method (the composition has not had time to adapt to the new host) and the
best-hit approach (transfer after all speciations).

Fig. 4. Artificially introduced LGT. The
number of such LGTs among the top 200
predictions is given.
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run with the same parameters on both
datasets individually.
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3.3 Real Biological Data

LGT events are believed to happen throughout the prokaryotes, but not uni-
formly so. Some organisms are considered to be little affected by LGT while
others are thought to have acquired many genes from distant species. Endosym-
bionts and endoparasites are micro-organisms that spend most of their life inside
a host cell. As a consequence, for an LGT event to happen, foreign DNA would
need to cross the membrane and defensive system of both the organism and its
host. Therefore, such organisms are expected to have very few genes aquired
through LGT compared to free living micro-organisms [21].

Our algorithm was verified against these observations by comparing predic-
tions of two different datasets. We inferred LGTs for 9 endosymbionts2 and for 9
free living pathogenic proteobacteria3. The organisms were classified according
to HAMAP [22].

DLIGHT detected between 1 and 22 foreign genes (6.3 in average) in en-
dosymbionts, and between 2 and 70 genes (40.7 in average) in free living bac-
teria. Normalized with the genome sizes, this gives between 0.15% and 0.89%
percent of foreign genes in endosymbionts, versus 0.12% to 2.43% in free living.
Thus, endosymbionts appear indeed to have lower LGT rates than their free
living counterparts. In figure 5 the LGT events are indicated in both trees as
thin lines and there too, the difference in LGT occurences is clearly visible.

The detected percentages of foreign genes is much lower than the values of
2% to 60% found in previous reports [23,24,25]. However, these higher numbers
represent all genes received by any organism outside the vertical genealogy, while
our data reflect only gene transfer among 9 bacteria.

A larger set with 15 archaea4 consisting of 2273 orthologous families was
analysed in a similar way. The average LGTs per gene was at 1.07%, with 292
detected LGT events in all 15 archaea. The number of acquired genes varies
from 1 for Nanoarchaeum equitans to 37 for Methanosarcina mazei . Looking at
the relative gene uptake with regard to the genome size, Nanoarchaeum equitans
still recieved the fewest genes with 0.19%. Thermoplasma volcanium received
the most genes with 2.4%. It has been proposed previously that LGT is common
between Thermoplasmatales and Sulfolobales [1]. In our dataset, Thermoplasma
2 Candidatus Blochmannia floridanus, Blochmannia pennsylvanicus (strain BPEN),

Buchnera aphidicola (subsp. Schizaphis graminum), Lawsonia intracellularis (strain
PHE/MN1-00), Sodalis glossinidius (strain morsitans), Vibrio fischeri (strain ATCC
700601 / ES114), Wigglesworthia glossinidia brevipalpis, Wolbachia pipientis wMel,
Wolbachia sp. (subsp. Brugia malayi) (strain TRS)

3 Campylobacter jejuni, Escherichia coli O6, Escherichia coli, Haemophilus influen-
zae (strain 86-028NP), Neisseria meningitidis serogroup A, Pasteurella multocida,
Pseudomonas aeruginosa, Shigella flexneri, Vibrio cholerae

4 Methanocaldococcus jannaschii, Methanosarcina mazei, Pyrobaculum aerophilum,
Sulfolobus solfataricus, Methanosarcina acetivorans, Aeropyrum pernix, Ar-
chaeoglobus fulgidus, Halobacterium salinarium, Methanobacterium thermoau-
totrophicum, Methanopyrus kandleri, Pyrococcus horikoshii, Thermoplasma vol-
canium, Nanoarchaeum equitans, Thermoplasma acidophilum, Methanococcus
maripaludis
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volcanium exchanged 14 genes with Sulfolobus solfataricus and Thermoplasma
acidophilum also 14 genes with Sulfolobus solfataricus. This is significantly more
than the 3.6 average LGTs between archaea.

In addition to these tests, DLIGHT was applied to a dataset of 10 mam-
mals5. Although LGT between higher eukaryotes and bacteria are found by
some authors, we are not aware of any case of LGT between two mammals.
Mammals serve therefore as negative control for our LGT detection method.
Indeed, DLIGHT did not detect any LGT among the 10 mammals.

3.4 Comparision with Previous Results

Results from different LGT inference approaches can be very inconsistent, with
overlaps at times smaller than expected by random [26]. This is particularily
true when comparing the results of parametric and phylogenetic methods. Thus,
the results of DLIGHT were compared with two studies based on phylogenetic
approaches.

Comparison with Zhaxybayeva et al. (2006). In [27], the authors used
an embedded quartet decomposition analysis to search events of LGT in 11
completey sequenced cyanobacteria. Orthologs were grouped via reciprocal top-
scoring blast hits, resulting in families with few paralogs. A set of 1128 ortholgous
genes was found to be present in at least nine of the 11 cyanobacterial genomes
and taken as input for the LGT search. Within the group of cyanobacteria, 135
LGTs were detected, mostly between Gloeobacter violaceus and Synechococcus
elongatus (45) and Prochlorococcus marinus SS120 and Prochlorococcus marinus
(strain MIT 9313) (28).

We tried to confirm the predictions of LGT in these 135 families using
DLIGHT. In 54 families (40%), significant LGTs were reported. In 32 of them,
the species predicted to be involved were either the same, or in agreement with
the trees constructed by [27]. The 22 other predictions were conflicting with their
trees. Additionally, it should be noted that the interspecies distances estimated
by DLIGHT were computed on the basis of these 135 families, none of which is
congruent to the species tree according to [27]; this suggests that DLIGHT is
relatively robust with respect to perturbations in the data.

Comparison with Beiko et al. (2005). DLIGHT was compared with re-
sults from [10], a large scale LGT inference study using an explicit phylogenetic
method. For 22,437 families of proteins in 144 genomes, they constructed gene
trees and compared in each tree all bifurcations to a reference species tree. They
reported bifurcations with significant posterior probability (PP), classified in
either consistent or conflicting with the species tree.

A subset of their 8,315 protein families of size up to 15 sequences was randomly
selected. Based on their bifurcation analysis, these familes were partitioned in
5 Homo sapiens, Mus musculus, Canis familiaris, Rattus norvegicus, Bos taurus, Pan

troglodytes, Monodelphis domestica, Macaca mulatta, Loxodonta africana, Orycto-
lagus cuniculus
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four categories: i. 28.5% families with strong support of no LGT (all bifurcations
consistent with species tree with PP ≥ 0.95), ii. 38.4% families with mild sup-
port of no LGT (no conflicting bifurcation with PP ≥ 0.5), iii. 15.2% families
with mild support of LGT (at least one conflicting bifurcation with PP ≥ 0.5,
none with PP ≥ 0.95), and iv. 17.8% families with strong support of LGT
(PP ≥ 0.95).

DLIGHT was run on this dataset, with, as sole input, the protein sequences
labeled with family and species identifiers. The computation of all pairwise evolu-
tionary distances within families required about 2 days on a single AMD Opteron
1.8 GHz. DLIGHT used another day to predict significant LGT events, which
were found in 634 families. The distribution of inferred LGT events among the
four categories defined from their predictions was as follows: i. 7.1%, ii. 13.1%,
iii. 19.2%, and iv. 60.6%. As almost 80% of the predictions are the same, the
level of agreement between the two methods is quite high, especially considering
the large differences in methodologies.

4 Conclusion

In this article, we introduce a new implicit phylogenetic method for LGT detec-
tion, based on pairwise evolutionary distances in a probabilistic framework. Val-
idation shows that it compares favorably with existing parametric and implicit
phylogenetic methods. Furthermore, its advantages over explicit phylogenetic
methods include speed and lack of reliance on multiple sequence alignments and
gene tree inference.

There are, though, a number of aspects that could be the object of further
improvement: the sensitivity could be increased by the computation of the likeli-
hoods using all pairwise distances within gene families, and not only the distances
to the transfered genes; confidence intervals in the estimation of the interspecies
distances. Instead of the approximation of multivariate normality, and at expense
of increased time complexity, the distribution of the distances could possibly be
estimated in an MCMC framework.
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Appendix

4.1 Benchmark Methods

The three benchmark methods used in the validation section are described here.
All three consist of a scoring function which is used to rank all genes as poten-
tially laterally transfered candidates.

GC Content. The GC method used in this paper is a basic implementation
of this common parametric approach. A more advanced implementation can be
found in [3]. The version used here considers the GC content on the first and
third codon position, without performing a codon usage analysis. The score for
a gene x in a species X is computed as follows:

SGC(x) =
(GC(x, 1) − μGC(X, 1))2

σ2
GC(X, 1)

+
(GC(x, 3) − μGC(X, 3))2

σ2
GC(X, 3)

where GC(x, i) is the average GC content of the gene x at its ith codon position,
and μGC(X, i), σ2

GC(X, i) the average and variance of GC content among all ith
codon position of genes in species X .

Best Hit Approach. The best hit method infers LGT when the highest scoring
hit of a particular sequence is in a distant species [13]. Our implementation
improves this idea by considering the shortest evolutionary distance rather than
the top similarity score. More precisely, the score of a gene x from a species X
and family of orthologs f is computed as follows:

SBH(x) =
Rankf (T )

|f |
where T is the organism in which x has its closest homolog, Rankf (T ) the rank of
T among the species represented in f ordered by increasing average interspecies
distance to X .
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Perturbed-Distances Approach. The third method detects LGT using the
same underlying idea as DLIGHT – the discrepancy between gene and inter-
species pairwise distances that results from an LGT event – but in a much
cruder way: the score of a gene x from an species X , in family f is

SPD(x) =
1

|f | − 1

∑

y∈f,y �=x

(d(x, y) − d(X, Y ))

where d(x, y) denotes the evolutionary distance between genes x and y, d(X, Y )
the interspecies distance between X and Y .
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Abstract. Whole genome comparison based on gene order has become
a popular approach in comparative genomics. An important task in this
field is the detection of gene clusters, i.e. sets of genes that occur co-
localized in several genomes. For most applications it is preferable to ex-
tend this definition to allow for small deviations in the gene content of the
cluster occurrences. However, relaxing the equality constraint increases
the computational complexity of gene cluster detection drastically. Ex-
isting approaches deal with this problem by using simplifying constraints
on the cluster definition and/or allowing only pairwise genome compar-
ison. In this paper we introduce a cluster concept named median gene
clusters that improves over existing models and present efficient algo-
rithms for their computation that allow for the detection of approximate
gene clusters in multiple genomes.

1 Introduction and Related Work

The increasing availability of completely sequenced and assembled genomes
opens the opportunity to compare whole genomes based on their gene order.
It is well known that, during the course of evolution, rearrangement events, gene
loss and gene duplications lead to a divergence of genomes that initially had
the same gene order and gene content. If no selective pressure was acting on
these processes, gene order and content would be randomized over time. There-
fore, the existence of conserved regions is used as a source of information for
comparative genomics [5]. For that purpose genomes are modeled as strings or
permutations of integers so that genes belonging to the same gene family are en-
coded by the same integer. A recent approach in this context is the computation
of gene clusters, which are sets of genes that occur as single contiguous blocks in
several genomes. Variable gene order and multiple occurrences of the same gene
within the blocks are usually allowed. Gene clusters of this type are known as
common intervals and there exist efficient algorithms for their computation, for
example [2,6,10,11,14,15].
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However, for most applications the requirement of exact occurrences of gene
clusters in the genomes turned out to be too strict. Hence, the concept of ap-
proximate gene clusters arose recently, which allows for small deviations in the
gene content of cluster locations. The problem of this model extension is that the
search space of approximate gene cluster detection increases exponentially - de-
pending on the cluster concept - either with the number of allowed deviations [4]
or the number of compared sequences [9].

One approach to handle deviations of the gene content is by imposing con-
straints on the cluster locations: For example, max-gap clusters [3,9] allow for
an arbitrary number of gaps in the cluster locations, each up to a certain length,
but find no approximate locations that have lost some genes of the cluster. De-
spite these restrictions the complexity of this problem increases exponentially
with the number of sequences, but is in O(n2) for two sequences, where n is the
length of the longest sequence.

Another approach with a constrained cluster definition is an algorithm pre-
sented in [1] that computes gene clusters with a perfect location (reference in-
terval) in one genome and an approximate occurrence in another sequence in
O(n3 + occ) time using O(n3) space. Computation of gene clusters restricted in
this way is a subproblem of our approach to median gene cluster computation.
We introduce an algorithm that solves this problem in O(n2(1 + δ)2) time and
O(n2) space, where δ � n.

A less constrained model was presented in [13], resulting in a very general gene
cluster model, including most other existing ones. In their approach the authors
solve the approximate gene cluster problem by an integer linear program.

In this paper we introduce a new cluster concept, named median gene clus-
ters, that constrains only the sum of errors that may occur in the approximate
occurrences of a gene cluster. This means that we take from each genome the
best location of a gene cluster and sum over the missing and interrupting genes
in these locations. In the main part of this paper (Sections 3–6) we present
an approach for the efficient computation of all median gene clusters in an arbi-
trary number of genomes, in Section 7 we apply our method to different genomic
datasets, compare it to the approaches presented in [9] and [13] and show its
applicability to multiple genomes.

2 Basic Definitions

In our context a genome is a string of integers over a finite alphabet Σ =
{1, . . . , σ}. Genes belonging to the same gene family are represented by the
same integer value. Given a string S, |S| denotes the length of the string and
S[i] refers to its ith character. By S[i, j] we refer to the substring of S that
starts with its ith and ends with its jth character, 1 ≤ i ≤ j ≤ |S|. We define
the character set of a substring S[i, j] of S as

CS(S[i, j]) = {S[m] | i ≤ m ≤ j}.

Inversely, a substring S[i, j] is called a location of a character set C ⊆ Σ if and
only if C = CS(S[i, j]). Substrings S1[i1, j1], . . . , Sk[ik, jk] of two or more strings
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S1, . . . , Sk of equal character content CS(S1[i1, j1]) = . . . = CS(Sk[ik, jk]) are
called common intervals of S1, . . . , Sk.

To simplify the notation of the following definitions we assume that a sequence
S of length n is extended by a terminal character S[0] = S[n + 1] /∈ Σ. A
substring S[i, j] is left-maximal if S[i−1] /∈ CS(S[i, j]), right-maximal if S[j+1] /∈
CS(S[i, j]) and maximal if it is both left- and right-maximal.

We define the following metric on two character sets C, C′ ⊆ Σ, called the
symmetric set distance:

D(C, C′) = |C \ C′| + |C′ \ C|.

A d-location of a character set C in a string S is a substring S[i, j] such that
D

(
C, CS(S[i, j])

)
≤ d.

A character set C ⊆ Σ is a median of a set of k character sets C1, . . . , Ck ⊆ Σ if
and only if

∑k
l=1 D(C, Cl) ≤

∑k
l=1 D(C′, Cl) for all C′ ⊆ Σ. Note that a median

in this context is not necessarily unique. This is due to the fact that for even k
a character occurring in the median can occur in exactly half of the k character
sets. When removing this character from the median, the total distance to the
character sets stays unchanged and the remaining characters form an alternative
median.

The problem considered in this paper is the following.

Problem 1. Given k sequences S1, . . . , Sk, a minimum cluster size s and a dis-
tance threshold δ, we want to compute all sets C ⊆ Σ with |C| ≥ s for which
there exist S1[i1, j1], ..., Sk[ik, jk] with pairwise intersecting character sets and C
is a median of CS(S1[i1, j1]), ..., CS(Sk[ik, jk]) with

k∑

l=1

D(C, CS(S[il, jl])) ≤ δ. (1)

Such a set C is called a median gene cluster of S1, . . . , Sk.

Defining gene cluster properties that are biologically meaningful and algo-
rithmically feasible is a delicate task (a survey of different cluster properties
can be found in [12]). Therefore, variants of the above problem formulation and
additional cluster properties will also be discussed in the Appendix.

3 A Three Step Approach to Median Gene Clusters

Our strategy for finding all median gene clusters is based on the observation
that whenever inequality (1) holds, the distances between the character sets of
the involved substrings are limited by the following upper bound:

Lemma 1. Let S1, . . . , Sk be sequences with substringsS1[i1, j1], ..., Sk[ik, jk] such
that for agiven δ ≥ 0 there exists aC ⊆ Σ with

∑k
l=1 D(C, CS(S[il, jl])) ≤ δ.Then,
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there is at least one substring Sm[im, jm], 1 ≤ m ≤ k, with C′ = CS(Sm[im, jm])
and

k∑

l=1

D(C′, CS(Sl[il, jl])) ≤ 2
k − 1

k
δ. (2)

Proof. Among the substrings S1[i1, j1], . . . , Sk[ik, jk] chose Sm[im, jm], 1 ≤ m ≤
k, such that D(C, CS(Sm[im, jm])) ≤ δ

k . Let C′ = CS(Sm[im, jm]). From the
triangle inequality we infer:

k∑

l=1

D
(
C′, CS(Sl[il, jl])

)
≤

∑

l �=m

(
D(C′, C) + D

(
C, CS(Sl[il, jl])

))

≤ (k − 2)
δ

k
+

k∑

l=1

D
(
C, CS(Sl[il, jl])

)

≤ (k − 2)
δ

k
+ δ ≤ 2

k − 1
k

δ.

��

Character sets such as the above C′ are used to filter the search space of potential
median gene clusters and are therefore named cluster filters.

Lemma 1 gives rise to the following approach, consisting of three steps:

1. First, we compute the set of all cluster filters C′ for S1, . . . , Sk. For that pur-
pose we test for all substrings of the k sequences whether their corresponding
character sets meet the conditions given by lemma 1.

2. In the second step, for each cluster filter C′ we compute k-tuples of the form
(S1[i1, j1], . . . , Sk[ik, jk]) where at least one of the elements is a location of
C′ and inequality (2) holds.

3. Finally we compute for each k-tuple from Step 2 the median(s) of the cor-
responding character sets. Medians that comply with the distance threshold
of inequality (1) are reported as median gene clusters.

4 Computation of Cluster Filters (Step 1)

In k sequences of length at most n there are O(kn2) substrings. A naive algorithm
can determine the cluster filters in O(k2n4) time by computing the pairwise
distances between all pairs of substrings. In this section we present two better
approaches that are based on the algorithm Connecting Intervals (CI) [14] for
the computation of common intervals in a pair of sequences.

For simplicity we give the detailed description of our algorithm for just two
sequences. The extension to multiple sequences is straightforward and will be
briefly addressed in Section 4.4. In the following let d = 2k−1

k δ. For k = 2
sequences this cancels out to d = δ. At first, we will review the basic concepts
of the original algorithm CI, before we show in Sections 4.2 and 4.3 how it can
be adapted to find cluster filters.
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4.1 The Connecting Intervals Algorithm

Algorithm CI, presented in [14], finds all common intervals of two sequences S1
and S2 of length at most n in O(n2) time and space.

In a preprocessing step an array called POS and a table called NUM are
computed. POS is of length |Σ| and lists for each character c ∈ Σ all positions
where it occurs in S2. NUM is a |S2| × |S2| table such that entry NUM [i, j]
contains the number of different characters that occur in the substring S2[i, j].
For an example, see Figure 1.

NUM [i, j] :

POS[1] = 1
POS[2] = 4, 7, 11
POS[3] = 2, 9
POS[4] = 5, 8
POS[5] = 3, 6, 12
POS[6] = 10

i\j 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 5 5 5 5 6 6 6
2 1 2 3 4 4 4 4 4 5 5 5
3 1 2 3 3 3 3 4 5 5 5
4 1 2 3 3 3 4 5 5 5
5 1 2 3 3 4 5 5 5
6 1 2 3 4 5 5 5
7 1 2 3 4 4 5
8 1 2 3 4 5
9 1 2 3 4
10 1 2 3
11 1 2
12 1

Fig. 1. For S2 = (1, 3, 5, 2, 4, 5, 2, 4, 3, 6, 2, 5) with Σ = {1, . . . , 6}, the positions of each
occurrence of a character c are stored in POS[c]. The entries of the table NUM [i, j]
equal |CS(S2[i, j])|.

The basic idea of the main algorithm is that while going systematically
through all maximal substrings S1[i, j] of the first sequence, using the array
POS one generates and iteratively extends marked intervals in the second se-
quence that consist only of characters occurring in the current interval S1[i, j].

Common intervals are detected by comparing the character content of S1[i, j]
and the marked intervals in S2. Since by construction the character sets of the
marked intervals are subsets of CS(S1[i, j]), this can be tested by comparing their
size, using the table NUM , and keeping track of the current size of CS(S1[i, j]).
Only those intervals in S2 that were extended by the latest character of the cur-
rent S1[i, j] need to be considered for this test. (Other intervals do not contain
this character and thus have a different character set.) Because of the system-
atic traversal of the maximal substrings of S1, where for a fixed i the maximal
substrings starting at i are processed one after the other for increasing values of
j, each character is at most |S1| times the latest character of a substring of S1.
Hence, each position in S2 becomes marked at most |S1| times and each time ex-
tends one marked interval, or merges two intervals or constitutes a new marked
interval if its neighbors are not yet marked. Thus there are at most |S1| · |S2|
interval extensions and the same number of character set comparisons. In total
this algorithm takes O(n2) time and O(n2) space.



336 S. Böcker et al.

Algorithm 1. Connecting Intervals with Errors (CIE)
1: build data structures POS and NUM for S2

2: resultSet ← ∅
3: for i = 1, . . . , |S1| do
4: for each c ∈ Σ let OCC[c] ← 0
5: |OCC| ← 0
6: minDist ← 0
7: j = i
8: while j ≤ |S1| and S1(i, j) is left-maximal do
9: c ← S1[j]

10: OCC[c] ← 1
11: |OCC| ← |OCC| + 1
12: while S1[i, j] is not right-maximal do
13: j ← j + 1
14: end while
15: minDist ← minDist + 1
16: for each position p in POS[c] do
17: mark position p in S2

18: find positions l1, . . . , lδ+1 and r1, . . . , rδ+1

19: for each pair (lx, ry) with 1 ≤ x, y ≤ δ + 1 do
20: z ← the number of different unmarked characters in S2[lx + 1, ry − 1]
21: dist ← |OCC| − NUM [lx + 1, ry − 1] + 2z
22: if dist < minDist then
23: minDist ← dist
24: end if
25: end for
26: end for
27: if minDist ≤ d then
28: resultSet ← resultSet ∪ (i, j))
29: end if
30: j ← j + 1
31: end while
32: end for

4.2 An O(n2(n + δ2)) Time Algorithm for Cluster Filter Detection

Our first algorithm for cluster filter detection is a straightforward extension of
Algorithm CI that we call Connecting Intervals with Errors (CIE). Pseudocode
is given in Algorithm 1. It uses the same preprocessing tables NUM and POS
for S2 as described above.

In the main part of the algorithm we iterate through all maximal substrings
S1[i, j] of S1. We refer to the current S1[i, j] as reference interval. With array OCC
and counter |OCC| we keep track of the characters occurring in the current ref-
erence interval. In variable minDist we store the minimal distance found so far
between CS(S1[i, j]) and S2. Like in the Connecting Intervals algorithm for each
latest character c in S1[i, j] we mark each position p where this character occurs
in the other sequence (lines 16, 17 of Algorithm 1). But then we have to do some
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extra work: While marking a position p in S2, there is no need to keep track of
maximal intervals of marked positions. Instead, positions to the left and right of
p with increasing numbers x, y ≥ 1 of unmarked characters are computed:

lx(p) = max({l | S2[l, p] contains x different unmarked characters} ∪ {0})
ry(p) = min({r | S2[p, r] contains y different unmarked characters} ∪ {|S2| + 1})

By definition, the intervals S2[lx + 1, ry − 1] then contain at most x + y − 2
characters not occurring in S1[i, j] and are maximal. Hence, in order to find
all occurrences of S1[i, j] around p with up to δ errors, it suffices to consider
intervals S2[lx + 1, ry − 1] with 1 ≤ x, y ≤ δ + 1. An example is illustrated in
Fig 2.

1 2 3 4 5 6 7 8 9 10 11 12

S2 = (1 3 5 2 4 5 2 4 3 6 2 5)

l2 l1 p r1 r2

Fig. 2. For a substring of S1 with character set {2, 3, 4}, its characters are marked in
S2. For c = 2 being the latest marked character and position p = 7, we have l1(7) = 6,
l2(7) = 1 and r1(7) = 10, r2(7) = 12. Occurrences around p with up to δ = 1 errors
that need to be checked are S2[2, 9], S2[2, 11], S2[7, 9] and S2[7, 11].

In line 21 we compute the distance of each of these (δ + 1)2 intervals to
CS(S1[i, j]), i.e. D(CS(S1[i, j], CS(S2[lx + 1, ry − 1])). This is equal to the value
of |OCC| − NUM [lx + 1, ry − 1] plus twice the number of different unmarked
characters in S2[lx +1, ry −1]. In case this value is smaller than the current value
of minDist we update minDist.

Since we are also interested in intervals with missing characters, we need to
consider intervals that do not contain c at all. But for these we know that their
distance to the current substring S1[i, j] equals the distance to the previous
S1[i, j′] plus 1, with j′ < j. We account for this in line 15 by increasing the value
of minDist by 1 after each extension of the reference interval. When we have
finished all occurrences of c we check the value of minDist to decide whether
the current S1[i, j] qualifies as a cluster filter.

The crucial part in the analysis of Algorithm CIE is the for loop in line 16.
From the analysis of Algorithm CI it follows immediately that each position p
in S2 is marked O(n) times so that in total we mark O(n2) times a position.
For each such position we search for the positions l1, . . . , lδ+1 and r1, . . . , rδ+1
(line 18). Performing this search in single steps takes O(n) time. Then we test
for each of the (δ +1)2 pairs whether it fulfills the distance constraints (line 22),
which can be done in constant time if we keep track of the number of unmarked
characters in the substrings S2[lx + 1, ry − 1] while going through the for loop
in line 19. In total we thus have an O(n2(n + δ2)) time algorithm, using O(n2)
space for table NUM .
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Remark 1. If we assume an upper bound b for the number of repetitions of each
character in sequence S2, the number of steps to locate the positions l1, . . . , lδ+1
and r1, . . . , rδ+1 for a position p is bounded by O(min{n, bδ}). Hence, the overall
runtime decreases to O(n2(1 + min{n, bδ} + δ2)). This is especially relevant for
genetic sequences, where the value of b is usually very small as it refers to the
number of copies of a single gene in a genome.

4.3 An O(n2(1 + δ2)) Time Algorithm for Cluster Filter Detection

The runtime of the algorithm introduced in the previous section can be reduced
to O(n2(1 + δ2)) when additional space of size O(nδ) is available. The speed-up
is based on the observation that for each position p in sequence S2 the values lx
and ry are the same for all reference intervals S1[i, j] with a common left border.
In a preprocessing step we compute for the left-most left border in S1, i.e. i = 1,
for each position p in S2 the values l1, . . . , lδ+1 and r1, . . . , rδ+1. These are stored
in two tables L and R of size δ ×|S2| each. The values of these arrays need to be
updated each time the left border i in S1 is moved to the right which happens
O(n) times.

The details of the initialization and update of the arrays L and R are given
in the following. For simplicity, as in [6] we re-name the characters in the se-
quences S1 and S2 by the rank of their first occurrence in the concatenated
string S1[i, |S1|]S2, initially for i = 1, and after each shift of the left border i.
This re-naming is a bijection Rank : Σ → {1, . . . , |Σ|}. The consequence of the
re-naming is that at the time the positions of a character c in S2 are marked,
the remaining unmarked characters c′ are such that Rank(c′) > Rank(c).

The initialization of tables L (and R) is as follows: For each position p in S2,
we go to its left (and right) and look for the first δ + 1 different characters with
a rank greater than Rank(S2(p)). We store as l1, . . . , lδ+1 (and r1, . . . , rδ+1) the
positions where a new different character is found. An example for Rank and
the tables L and R is given in Fig. 3.

(a) (b)
Rank[1] = 4
Rank[2] = 1
Rank[3] = 3
Rank[4] = 2
Rank[5] = 5
Rank[6] = 6

1 2 3 4 5 6 7 8 9 10 11 12
L\S′

2 4 3 5 1 2 5 1 2 3 6 1 5

l1 0 1 0 3 3 0 6 6 6 0 10 10

l2 0 0 0 2 2 0 5 2 1 0 9 0

l3 0 0 0 1 1 0 2 1 0 0 8 0

R\S′
2 4 3 5 1 2 5 1 2 3 6 1 5

r1 3 3 10 5 6 10 8 9 10 13 12 13

r2 10 10 13 6 9 13 9 10 12 13 13 13

r3 13 13 13 9 10 13 10 12 13 13 13 13

Fig. 3. Initialization of (a) the rank for all characters and (b) the tables L and R. The
characters of S1 = (2, 4, 2, 3, 4, 1, 4, 5, 4, 3, 6) and S2 = (1, 3, 5, 2, 4, 5, 2, 4, 3, 6, 2, 5) are
re-named by the bijection Rank, defined by their first occurrence in the concatenated
string S1[1, 11]S2. The tables L and R are computed for the re-named sequence S′

2.
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When the left border in the substring of S1 is shifted from i to i+1, the rank
for all characters occurring between i and the next occurrence of the character
S1[i] decreases by one while the rank of cold = S1[i] increases by the number of
different characters between the two occurrences. The tables L and R change in
the following way. At positions belonging to occurrences of cold in S2 the table
entries can change completely due to a possibly large change in the character
number. We compute these entries anew by going through S2 once from left to
right and once from right to left and remembering the positions of the δ + 1 last
read different characters with a rank greater than the new number of cold. If a
character is read more than once we only remember its latest occurrence. Once
we reach a position of cold in S2 we fill the corresponding entries in L (respectively
R) with the remembered positions. For positions in S2 with a character different
from cold the entries in L and R can only change if the rank of the character is
smaller than the new value of cold. For these positions we need to check whether
an occurrence of cold is close enough to become an entry in L and/or R. We
test this by going through S2 once from left to right and once from right to left
and remembering the latest position of the character cold in S2. Once we reach
a position with a character of smaller rank than the new value of cold, we go
through its entries in L (respectively R) and insert the remembered position of
cold at the right position in the field.

The initialization takes O(n2δ) time and the update O(nδ) time for each
increment of i. Combined with the unmodified rest of Algorithm CIE, the overall
runtime becomes O(n2δ + n2(1 + δ2)) = O(n2(1 + δ2)). The space consumption
is O(nδ + n2) = O(n2).

4.4 Extension to Multiple Genomes

In this section we show how the computation of cluster filters can be generalized
to more than two genomes. First note that in order not to miss any possible
cluster filter C′ we have to consider all substrings of any of the strings S1, . . . , Sk

as reference intervals, and not just substrings of S1.
A reference interval Sl[i, j] qualifies as a cluster filter if the sum of the minimal

distances to the other k−1 sequences does not exceed d = 2k−1
k δ. The threshold

for pairwise distances is still δ, otherwise the total distance to the median exceeds
δ due to the triangle inequality of symmetric set distance. Hence, we need to
examine for the most recently added character Sl[j] all its occurrences in the
other k − 1 sequences and compute for each occurrence the distance of the
corresponding (δ + 1)2 intervals to Sl[i, j]. While doing so, we keep track of the
minimum distances found in each of the k −1 sequences separately. If in the end
they sum up to a value smaller or equal to d we have found a new cluster filter.
Due to this approach we have to store the data structures POS and NUM and,
if required, also L and R for k − 1 sequences at a time.

From these modifications it follows that the runtime multiplies by O(k2) for
each of the presented algorithms while space requirements increase to O(kn2).
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5 Collection of δ-Locations of Cluster Filters (Step 2)

In the second step of the overall algorithm, for each cluster filter C′ its maximal
δ-locations in each of the sequences S1, . . . , Sk are searched in order to form
k-tuples (S1[i1, j1], . . . , Sk[ik, jk]) with pairwise intersecting character sets that
satisfy

k∑

l=1

D(C′, CS(Sl[il, jl])) ≤ d.

Maximal δ-locations of C′ can be found efficiently by a modified version of
Algorithm 1 that iterates through a location of C′ and generates uniquely all
maximal δ-locations. Details of the algorithm are left to the reader.

While the number of maximal δ-locations is in O(kn2), the number of k-tuples
can be exponential in k even for small δ as the following example shows: For δ = 0,
s = 3 and k sequences of the form Sl = (abcxl)n, 1 ≤ l ≤ k and xi �= xj for i �= j,
there are O(nk) k-tuples. However, for gene sequences where |Σ| is in Θ(n) our
experience shows that this approach is feasible for reasonable values of δ.

6 Computation of Median Gene Clusters from k-Tuples
(Step 3)

The computation of the median of a k-tuple consists of a simple majority vote
of the characters occurring as its elements, i.e. a gene occurring in at least half
of the tuple elements becomes an element of the median. The median of each k-
tuple is checked whether it fulfills inequality (1) and in case it fulfills the distance
constraint it is reported as a median gene cluster.

Note that there can be several medians that have to be tested: If k is even,
there may be ties when some character occurs in exactly k/2 of the elements.
However, since each tie adds k/2 to the sum of distances, a median exists only
if the number of ties is less than or equal to 2δ

k . In this case, there exist 2
2δ
k

different medians as the example of Fig. 4 illustrates.

S1 = (1 2 1 3 1 4 1 5)

S2 = (1 2 4 1 2 1 3)

S3 = (1 3 3 1 2 1 2)

S4 = (1 4 1 1)

1 2 3 4 5

1 1 0 0 0

1 1 0 1 0

1 1 0 0 0

1 0 0 1 0

1 1 0 T 0

Fig. 4. For δ = 3 and the cluster filter C′ = {1, 2}, one of its 3-locations in each of
the sequences is given by the underlined substrings. The tie of the fourth character
(denoted by T ) yields the two medians {1, 2} and {1, 2, 4}.



Computation of Median Gene Clusters 341

Moreover it can happen that the same character set is generated more than
once either by duplicate k-tuples if more than one of the k-tuple elements is a
cluster filter or by different k-tuples that have the same median by chance. In
our implementation we filter away such multiple occurrences.

7 Experimental Results

In an initial test we compared the performance of our two algorithms on sev-
eral datasets. Surprisingly, we found that running times are highly similar be-
tween these algorithms in practice (data not shown). The following results were
achieved using the second of the two algorithms.

To demonstrate the ability of our method we applied it to approximate gene
cluster detection in various genomic datasets. We compared it to previous ap-
proaches for gene cluster detection in two sequences and additionally show its
applicability to multiple genomes. All computations reported in this section were
performed with a 1.66 GHz Intel R©Core Duo T2300 processor with 520 Mb of
main memory running under the Suse Linux operating system.

7.1 Comparison to HomologyTeams

We reproduced the gene clusters reported in [9] with our program. The dataset
consisting of the genomes of E. coli and B. subtilis annotated with COG numbers
was downloaded from http://euler.slu.edu/∼goldwasser/homologyteams/.
Setting the parameters of our method to s = 4 and δ = 1 we detected 1070 median
gene clusters in this dataset, among them the ten operons studied in [9]. These
findings show that our method finds a superset of the gene clusters detected
by the HomologyTeams software. A biological evaluation of the additional gene
clusters is currently in progress.

7.2 Comparison to ILP Approach

We downloaded the genome datasets from http://gi.cebitec.uni-bielefeld.
de/comet used in [13]. The dataset consists of the annotated genomes of
C. glutamicum and M. tuberculosis where labeling of genes according to gene
family membership already took place.

Our program found the gene cluster reported in [13] in 17 seconds using
appropriate values for the parameters δ and s while the ILP using CPLEX 9.03
took more than one hour on a superior processor. In order to detect this cluster,
an approach based on max-gap clusters needs to set its gap-size threshold as big
as twelve such that the longest gap of unmatched genes can be bridged.

To evaluate our method on a broader basis, we conducted a similar series
of experiments as reported in [13] to find optimal gene clusters for each size
between 5 and 150. Since our method finds gene clusters based on a distance
threshold and not for a certain size, we had to run our algorithm several times
for different minimal cluster sizes and distance thresholds. Despite this overhead

http://euler.slu.edu/~goldwasser/homologyteams/
http://gi.cebitec.uni-bielefeld.de/comet
http://gi.cebitec.uni-bielefeld.de/comet
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our method was able to find all optimal gene clusters in this size range within 3
hrs and 4 min.

7.3 Experimental Results on Multiple Genomes

Although both of the approaches above are in general applicable to multiple
genomes, no experimental results on the comparison of more than two genomes
were shown in the respective publications. To show the applicability of our
method to multiple genomes, we searched for approximate gene clusters in three
bacterial genomes: Bacillus subtilis, Buchnera aphidicola and Escherichia coli
with different combinations of s and δ. Results are shown in Table 1.

Table 1. The number of distinct median gene clusters found for different combinations
of s and δ in three bacterial genomes and the corresponding computation times

s=10, δ=0 s=20, δ=5 s=25, δ=10 s=30, δ=15 s = 35, δ=25

distinct medians 91 152 101 21 1

computation time in sec. 4.7 7.2 12.0 26.1 186.2

Many of the gene clusters found in this experiment belong to well-conserved
ribosomal protein operons. In order to find other gene clusters, genes associated
with ribosomal proteins were masked in the genomes for an additional test. Dis-
tance thresholds needed to be chosen larger for a fixed s in this setting in order to
find gene clusters. For example, with s = 13 and δ = 10, we found five distinct gene
clusters, among them the following gene cluster involved in flagellar biosynthesis:

ylxFfliJfliIfliE fliF fliG fliH fliK ylxG flgE fliL fliM fliY cheY fliZ fliP fliQ fliRB. subtilis

fliP fliK fliMfliJfliE fliF fliG fliH fliI fliN fliO fliQfliL fliRfliPE.coli

fliQyba1 fliMfliJfliE fliF fliG fliH fliI fliN fliP fliRfliKB. aphidicola

Fig. 5. A gene cluster involved in flagellar biosythesis, detected by our method with
parameters set to δ = 10 and s = 13

8 Conclusion

In this paper we introduced the concept of median gene clusters for the detection
of approximate gene clusters in a set of k genomes based on gene order. We
applied a filter method to narrow down the search space of potential clusters
efficiently, allowing for fast detection of gene clusters in multiple genomes.

Our cluster model improves over max-gap clusters [3,9] in two ways: The prob-
lem of low global cluster density reported in [12] does not arise as no fixed gap
length needs to be specified. Unlike max-gap clusters our method is capable of find-
ing approximate clusters that contain genes that are missing in some cluster oc-
currences. This becomes important in particular for multiple genome comparison.
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We also compared our method to an approach using an ILP program for
approximate gene cluster detection. While the underlying cluster models are
similar, gene cluster computation was shown to be more efficient with our ap-
proach.

We believe that the main advantage of our method is its applicability to
multiple genomes. Initial results show that the detection of gene clusters in
multiple genomes is feasible, supporting our conjecture that the combinatorial
explosion in Step 2 of our method does not occur with real-world data when
parameters are chosen reasonably. A broader analysis of the influence of s and δ
on sensitivity, specificity, and running time of our method is currently in progress.
As the method is fastest when δ is small, we propose for practical applications
to iteratively increase δ for some fixed s until clusters are detected that are
potentially biologically meaningful.

In the future, we want to extend our method to detect median gene clusters
that occur only in a subset of the input genomes. We also want to provide a
statistical analysis of the detected clusters to rank the reported clusters according
to their significance.
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Appendix: Alternatives

Some variations of the model described in the main part of this paper are dis-
cussed in the following.

Transformation Set Distance

We can define a set distance based on the maximal set difference instead of the
symmetric set difference:

DT (C, C′) = max{|C \ C′|, |C′ \ C|}.

This distance measure is called the transformation set distance between C
and C′ and is also a metric. It is easy to derive a simple linear time algorithm
that finds for a given character set C and a sequence S all starting positions of
substrings in S that have a transformation set distance that is smaller or equal
to a given distance threshold d. Therefore, we can compute gene cluster candi-
dates for the transformation set distance in time O(k2n3). But the problem with
respect to application in gene cluster detection is that we lack efficient methods
to compute the median of character sets under transformation set distance.

Center Representative

While being computationally tractable, selection of median representatives is
probably not the best approach for gene cluster computation. The problem with
median representatives is that the distances between the median and single ob-
jects (in our case sequences) are not directly restricted, but only via the sum of
all distances. Hence, a rather large distance to a single sequence can be compen-
sated by less than average distances to other sequences. Apparently, this effect
can be the stronger the larger the number of sequences becomes. In an evolu-
tionary context it makes possibly more sense to limit the distance between each
of the sequences and their common ancestor:

max
1≤l≤k

{D′(C, Sl)} ≤ δ.

Such a set C is called a center representative.
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The approach described in Sections 4 and 5 is compatible with this new dis-
tance threshold. Step 1 is modified such that we search for substrings withdis-
tance at most 2δ to each other sequence, and in Step 2 we compute the k-tuples
according to this distance threshold. This threshold is stronger than the one for
median gene clusters since the value of δ will be chosen relatively small compared
to the one for the median representative because it refers to a single distance
and not to the sum of k distances.

However, the crucial point is that in Step 3 median computation needs to be
replaced by the computation of the center sequence, which is known to be NP-
hard [7]. There exist fixed-parameter algorithms that run in polynomial time for
a fixed distance [8], but these are of limited use for this application.
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Abstract. We present a method for identifying connected gene subnetworks sig-
nificantly enriched for genes that are dysregulated in specimens of a disease.
These subnetworks provide a signature of the disease potentially useful for diag-
nosis, pinpoint possible pathways affected by the disease, and suggest targets for
drug intervention. Our method uses microarray gene expression profiles derived
in clinical case-control studies to identify genes significantly dysregulated in dis-
ease specimens, combined with protein interaction data to identify connected sets
of genes. Our core algorithm searches for minimal connected subnetworks in
which the number of dysregulated genes in each diseased sample exceeds a given
threshold. We have applied the method in a study of Huntington’s disease cau-
date nucleus expression profiles and in a meta-analysis of breast cancer studies.
In both cases the results were statistically significant and appeared to home in on
compact pathways enriched with hallmarks of the diseases.

1 Introduction

Systems biology has the potential to revolutionize the diagnosis and treatment of com-
plex disease by offering a comprehensive view of the molecular mechanisms underlying
the pathology. To achieve these goals, a computational analysis extracting mechanis-
tic understanding from the masses of available data is needed. To date, such data in-
clude mainly microarray measurements of genome-wide expression profiles, with over
160,000 profiles stored in GEO alone as of August 2007. A wide variety of approaches
for elucidating molecular mechanisms from expression data have been suggested [1].
However, most of these methods are effective only when using expression profiles ob-
tained under diverse conditions and perturbations, while the bulk of data currently avail-
able from clinical studies are expression profiles of groups of diseased individuals and
matched controls. The standard “pipeline” for analysis of such datasets involves the
application of statistical and machine learning methods for identification of the genes
that best predict the pathological status of the samples [2]. While these methods are
successful in identifying potent signatures for classification purposes, the insights that
can be obtained from examining the gene lists they produce are frequently limited [3].

It is thus desirable to develop computational tools that can extract more knowledge
from clinical case-control gene expression studies. A challenge of particular interest
is to identify the pathways involved in the disease, as such knowledge can expedite
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development of directed drug treatments. One strategy of solution to this problem uses
predefined gene sets describing pathways and quantifies the change in their expression
levels [4]. The drawback of this approach is that pathway boundaries are often difficult
to assign, and in many cases only part of the pathway is altered during disease. To
overcome these problems, the use of gene networks has been suggested [5]. The appeal
of using network information increases as the quality and scale of experimental data on
such interaction networks improve.

Several approaches for integrating microarray measurements with network knowl-
edge were described in the literature. Some (including us) proposed computational
methods for detection of subnetworks that show correlated expression [6,7]. A suc-
cessful method for detection of ‘active subnetworks’ was proposed by Ideker et al.
and extended by other groups [8,9,10,11,12]. These methods are based on assigning a
significance score to every gene in every sample and looking for subnetworks with sta-
tistically significant combined scores. Breitling et al. proposed a simple method named
GiGA which receives a list of genes ordered by their differential expression signif-
icance and extracts subnetworks corresponding to the most differentially expressed
genes [13]. Other tools use network and expression information together for classifi-
cation purposes [5,14].

Methods based on correlated expression patterns do not use the sample labels, and
thus their applicability for case-control data is limited, as correlation between tran-
script levels can stem from numerous confounding factors not directly related to the
disease (e.g., age or gender). The extant methods that do use the sample labels rely
on the assumption that the same genes in the pathway are differentially expressed
in all the samples (an exception is jActiveModules which can identify a subset of
the conditions in which the subnetwork is active [8]). This assumption may hold in
simple organisms (e.g., yeast or bacteria) or in cell line studies. However, in human
disease studies, the samples are expected to exhibit intrinsic differences due to ge-
netic background, environmental effects, tissue heterogeneity, disease grade and other
confounding factors. Here we propose a new viewpoint for analysis of clinical gene
expression samples in the context of interaction networks, which avoids the above
assumption.

Our approach aims to detect subnetworks in which multiple genes are dysregulated
in the diseased specimens, while allowing for distinct affected gene sets in each patient.
We call such modules dysregulated pathways (DPs). Specifically, we look for minimal
connected subnetworks in which the number of dysregulated genes in each diseased
sample exceeds a given threshold. By comparing to statistics of randomized networks,
we can identify statistically significant DPs. As finding such modules is NP-hard, we
propose heuristics and algorithms with provable approximation ratios and study their
performance on real and simulated data. Our approach has several important advan-
tages over the existing methods: (a) the dysregulated genes in a DP can vary between
patients; (b) the method is robust to outliers (i.e., patients with unusual profiles); (c) the
DPs can contain relevant genes based on their interaction pattern, even if they are not
dysregulated; (d) it has only two parameters, both of which have an intuitive biological
interpretation; (e) while not guaranteeing optimality, the algorithmic backbone of the
method has a provable performance guarantee.
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Fig. 1. From case-control profiles to dysregulated pathways. (A) The first input to our method
is the gene expression matrix where the columns correspond to samples taken from case/control
subjects and rows correspond to genes. (B) In a preprocessing step, differential expression is an-
alyzed and, for each gene, the set of cases in which it is differentially expressed (up-regulated,
down-regulated or both) is extracted. (C) A second input is a protein interaction network with
nodes corresponding to genes and edges to interactions. The row next to each gene is its dys-
regulation pattern (its row from B). The goal is to find a smallest possible subnetwork in which,
in all but l cases, at least k genes are differentially expressed. In this example, the circled sub-
network satisfies the condition with k = 2, l = 1: (i) A and C are dysregulated in case 1; (ii)
A and B are dysregulated in case 3. (D) The bipartite graph representation of the data. Genes
(left) are connected to the cases (right) in which they are differentially expressed. Edges between
genes constitute the protein interaction network. The genes of the minimal cover and the samples
covered by them are in green.

We first tested the performance of our method on simulated data. We then used it
to dissect the gene expression profiles of samples taken from the caudate nucleus of
Huntington’s Disease (HD) patients. We reveal specific subnetworks that are up and
down regulated in cases in comparison to controls, and show that they are significantly
enriched with known HD-related genes. Finally, we performed a network-based meta-
analysis of six breast cancer datasets, extracting DPs associated with good and poor
outcome of the disease. In all cases, the DPs are significantly enriched with genes from
relevant pathways and contain both known and novel potential drug targets.

For lack of space, some details and proofs are not included in this manuscript.

2 Methods

2.1 Problem Formulation

In this section we describe the theoretical foundations of our methodology (Fig. 1). The
known gene network is presented as an undirected graph, where each node (gene) has
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a corresponding set of elements (samples) in which it is differentially expressed. Our
goal is to detect a DP, which is a minimal connected subnetwork with at least k nodes
differentially expressed in all but l analyzed samples (l thus denotes of the number of
allowed ‘outliers’).

We formalize these notions as follows. We are given an undirected graph G = (V, E)
and a collection of sets {Sv}v∈V over the universe of elements U , with |U | = n. For
ease of representation, we will use, in addition to G, a bipartite graph B = (V, U, EB)
where (v, u) ∈ EB, v ∈ V, u ∈ U if and only if u ∈ Sv (Fig. 1D). A set C ⊆ V is
a connected (k, l)-cover (denoted CC(k, l)) if C induces a connected component in G
and a subset U ′ ⊆ U exists such that |U ′| = n− l and for all u′ ∈ U ′, |N(u′)∩C| ≥ k,
i.e., in the induced subgraph (C, U ′) the minimal degree of nodes in U ′ is at least k
(N(x) is the set of neighbors of x in B). We are interested in finding a CC(k, l) of the
smallest cardinality. We denote this minimization problem by MCC(k,l).

2.2 Similar Problems and Previous Work

If G is a clique, MCC(1, 0) is equivalent to the Set Cover problem [15]. For this classi-
cal NP-hard problem, Johnson proposed a simple greedy algorithm with approximation
ratio O(ln(n)) [15]. If k > 1 and G is a clique, the MCC(k, 0) problem is equivalent
to the set multicover problem, also known as the set k-cover problem, a variant of the
Set Cover problem in which every element has to be covered k times. The set multicover
problem can be approximated to factor of O(p), where p is the number of sets covering
the element that appears in the largest number of sets [15]. The greedy algorithm for set
multicover was shown to achieve an approximation ratio of O(log(n)) [16]. See [15]
for a comprehensive review of the available approximation results on set cover and set
multicover problems.

For a general G, MCC(1, 0) is the Connected Set Cover problem, which has been
recently studied in the context of wavelength assignment of broadcast connections in
optical networks [17]. It was shown to be NP-Hard even if at most one vertex of G has
degree greater than two, and approximation algorithms were suggested for the cases
where G is a line graph or a spider graph. Both of these special cases are not applicable
in our biological context.

2.3 Greedy Algorithms for MCC(k, l)

We tested two variants of the classical greedy approximation for Set Cover. For simplic-
ity we will describe them for MCC(1, 0). The first algorithm, ExpandingGreedy works
as follows: Given a partial cover W ⊆ V and the set of corresponding covered elements
X ⊆ U , the algorithm picks a node v ∈ V that is adjacent to W and that covers the
largest number of elements of U \ X , adds v to the cover and adds N(v) ∩ U to X .
Initially W = ∅, X = ∅ and the first node is picked without connectivity constraints.
Unfortunately, ExpandingGreedy can be shown to give a solution that is O(|V |) times
the optimal solution. Specifically, it runs into difficulties in cases where all the nodes
in the immediate neighborhood of the current solution have equal benefit, and the next
addition to the cover is difficult to pick. The second algorithm, ConnectingGreedy, first
uses the simple greedy algorithm [15] to find a set cover that ignores the connectivity
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constraints and then augments it with additional nodes in order to obtain a proper cover.
The diameter of a graph is the maximum length of a shortest path between a pair of
nodes in V . It can be shown that ConnectingGreedy guarantees an approximation ratio
of O(D log n) for MCC(1, 0), where D is the diameter of G.

2.4 The CUSP Algorithm

We next describe an algorithm called Covering Using Shortest Paths (CUSP).
Let d(v, w) be the distance in edges between v and w in G. For each root node r
and for each element u ∈ U the algorithm computes distances (M [r, u]1, ..., M [r, u]k)
and pointers (P [r, u]1, ..., P [r, u]k) to the k nodes closest to r that cover u. This can
be done by computing the distances from r to all the nodes in V that cover u, and
then retrieving the k closest nodes, which is an instance of the selection problem and
can be solved in expected linear time [18]. Now take Xr, the union of the paths to the
nodes covering the n − l elements for which maxq{d(r, P [r, u]q), 1 ≤ q ≤ k} are the
smallest. Xr is a proper CC(k, l): (a) it is a subtree of T and thus induces a connected
component in G; (b) n − l elements of U are covered k times by the corresponding
{P [r, u]i}. The final solution is X = arg minv |Xv|. This algorithm can be proved to
give a k(n − l)-approximation for MCC(k, l).

In terms of computational complexity, the total amount of work for each choice of r
is O(|V | + |E| + |EB|) and the overall complexity is O(|V |(|V | + |E| + |EB|)). Note
that it is not necessary to execute the algorithm from every root node, but only from the
l + 1 nodes that cover elements from U ′ ⊆ U for which maxu′∈U ′ |N(u′)| is minimal.

2.5 Practical Heuristics and Implementation Details

In order to improve the performance of the proposed algorithms, we implemented sev-
eral practical heuristics.

CUSP∗ - starting from high coverage cores: A drawback of CUSP is that it ignores
the number of elements covered by each node, and treats the coverage of every element
separately. We therefore also implemented the CUSP∗ heuristic: For each root, it uses
dynamic programming to identify a subnetwork of k nodes that offers a good coverage
of the elements, and then extends it to a proper CC(k, l) as in CUSP.

Clean-up: The DPs produced by all the described algorithms may contain superfluous
nodes that are not necessary neither for the cover requirements nor for subnetwork con-
nectivity. In all algorithms we therefore perform a clean-up step that iteratively removes
such nodes until no further reduction is possible.

Shortest path tree construction: While the approximation bound of CUSP holds re-
gardless of the shortest paths used, some sets of such paths may eventually give rise
to smaller covers than others. We used the following heuristic in the BFS algorithm: at
each level of the constructed BFS tree, we sort the nodes in descending order based on
the added coverage they offer. The nodes are then scanned in this order and the next
level of the tree is built.
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Starting points: The performance of the algorithms depends on the number of starting
points/seeds used. In all the results described here we executed all algorithms starting
from the 30 nodes that had the highest degrees in B.

Assessment of DP significance: CUSP produces a set of DPs for a range of k values.
To select the most significant DP, 200 random networks were generated by degree-
preserving randomization [19]. CUSP was executed on each network, for a range of k
values, and an empirical p-value was computed. The k value for which the size of the
DP was most significant was subsequently used. In case of a tie, a normal distribution
was fitted to the random scores, and k yielding the subnetwork with the most significant
z-score was selected.

Finding multiple DPs: After recovering the first DP V1, we seek additional DPs by
removing all the edges adjacent to V1 from EB and reapplying the search procedure.
This is repeated until no significant DP is found.

Our algorithms were implemented in Java, and source code of the implementation is
available upon request. A user-friendly graphical interface for the algorithms described
here is currently in development.

3 Results

Human Protein Interaction Network: We compiled a human protein-protein interac-
tion network encompassing 7,384 nodes corresponding to Entrez Gene identifiers and
23,462 interactions. The interactions are based mostly on small-scale experiments and
were obtained from several interaction databases. The network and the sources infor-
mation are available at our website http://acgt.cs.tau.ac.il/clean.

3.1 Simulation

We first evaluated the algorithms on simulated data in which a single DP is planted.
We used the human protein interaction network as G, created a biclique between a con-
nected subgraph of G and a specified number of elements in U and added noise to
B by randomly removing and inserting edges. In the simulations (results not shown)
ExpandingGreedy generally found the smallest covers. The results produced by CUSP
and CUSP∗ were only slightly inferior. However, the covers produced by CUSP and
CUSP∗ were much more compact, giving a much lower mean shortest path length be-
tween nodes in the cover.

3.2 Analysis of Huntington’s Disease Caudate Nucleus Expression Profiles

Huntington’s disease (HD) is a devastating autosomal dominant neurological disorder
caused by an expansion of glutamine repeats in the ubiquitously expressed huntingtin
(htt) protein. HD pathology is well understood at a histological level but its effect on the
molecular level in the human brain is poorly understood. Recent studies have shown that
mutant huntingtin interferes with the function of widely expressed transcription factors,
suggesting that gene expression may be altered in a variety of tissues in HD. Hodges

http://acgt.cs.tau.ac.il/clean
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Fig. 2. Subnetwork identified by the CUSP algorithm as down-regulated in the caudate nu-
cleus of HD patients. (A) Comparison of the minimal cover size obtained by the greedy and the
CUSP algorithms. (B) Comparison of the average shortest path length between nodes in the min-
imal cover obtained by the greedy and the CUSP algorithms. (C) The subnetwork obtained for
k = 25 and l = 8. HD modifiers described in [21] are in yellow. KEGG HD pathway genes are
drawn with thick border. Note that HD is the official name of huntingtin (htt). (D) Heat map of
the normalized expression values of the subnetwork genes in the control and HD groups. (E) The
subnetwork genes and their differential expression in each HD samples. Red cells correspond to
significantly down-regulated genes.

et al. reported gene expression profiles in grade 0-2 HD brains obtained using oligonu-
cleotide arrays [20]. We focused our analysis on 38 patient samples and 32 unaffected
control samples from that study, all taken from the caudate nucleus region of the brain,
as this is the region where the disease is manifested the most. For every sample (patient),
differentially expressed genes were selected based on comparison to the controls. The
expression pattern of each gene was first standardized to mean 0 and standard deviation
of 1. For every gene v, a normal distribution was fitted to its expression values in the
control group, and for every HD sample u, a one-tailed p-value pu

v was computed. We
then introduced an edge (v, u) to EB if and only if pu

v < 0.05. At this significance
level, 1,073 (1,696) genes were selected as down (up) regulated in a sample on average.
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We first describe the results on down-regulation (Fig. 2), using l = 8. While CUSP,
CUSP∗ and ExpandingGreedy found minimal covers of similar size (Fig. 2A), the cov-
ers found by CUSP were the most compact, as evident from the average shortest path
length between a pair of nodes in the subnetwork (Fig. 2B). As compact and dense sub-
networks are more likely to correspond to real biological pathways, we used the results
of CUSP in further analysis.

Our significance evaluation of the results showed that for values of k between 10
and 40 the cover found was significantly smaller than the one obtained at random, in-
dicating that genes dysregulated in HD are indeed clustered in the network. The most
significant DP was obtained for k = 25 (p < 0.005). It contained 34 genes (Fig. 2C-E),
with the htt protein as the major hub. Indeed, mutations in htt are the cause of the HD
pathology. Moreover, the network contains six additional genes identified as genetic
modifiers of the HD phenotype in a fly model of the disease [21] (the modifiers are
highlighted in Fig. 2C). The network is also enriched with genes from the KEGG HD
pathway (p = 7.95 · 10−7). Furthermore, the network contains at least six genes related
to regulation of calcium levels (data taken from MSigDB [4], p = 9.23 · 10−7), which
is known to be intimately related to HD [22]. An inspection of the expression patterns
(Fig. 2D) indicates the importance of the outlier parameter l. A few of the samples (pa-
tients 16,103,86) have profiles that differ from those of the other patients, but this fact
does not affect the algorithm.

A comparison of the DP we identified with gene sets identified using other methods
(Table 1) reveals that the subnetwork produced by our method is more significantly
enriched with most hallmarks of HD. The subnetwork identified by jActiveModules is
also enriched for these hallmarks, but this subnetwork is an order of magnitude larger,
and thus less focused. The output of jActiveModules consists of (i) the ‘active’ subnet-
work; and (ii) the samples in which the subnetwork is active. In this dataset, the active
subnetwork produced by this algorithm was based on a single sample, and thus it does
not reflect common dysregulation across most patients in the study.

The running time on this dataset, for k = 25, was 10.6 seconds on a PC with two
2.67GHz processors and 4GB of memory. A search for additional down-regulated DPs
(see Methods) did not produce significant networks.

Similar analysis of genes up-regulated in HD samples identified a marginally signifi-
cant subnetwork (k = 10, p = 0.11) of 14 nodes centered at BRCA1 and p53, which are
master regulators of DNA damage response, and are known to be hyperactive in HD af-
fected cells [24]. Interestingly, p53 and BRCA1 are not differentially expressed in most
HD samples, and the functional category ‘DNA damage response’ is not enriched in the
100 genes most significantly up-regulated in the HD samples (as obtained by a t-test).
This further underlines the ability of our method to extract relevant pathways even if
only part of the pathway is differentially expressed in diseased specimens. Another hub
in this focused subnetwork is HDAC1, a histone deacetylase known to be elevated in
HD neurons [25]. Sodium phenylbutyrate, a histone deacetylase inhibitor, is currently
tested as a potent drug for HD [26], and was shown to revert HD transcriptional dys-
regulation in mouse and human brain and blood tissues [27,28]. Hence, the inclusion of
HDAC1 in a focused subnetwork identified as up-regulated in diseased caudate nuclei
demonstrates the ability of our method to detect potential therapeutic targets.
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Table 1. Comparison of gene sets identified as down-regulated in HD caudate nucleus using
different methods. GiGA was implemented as described in [13] and used to produce a subnet-
work of 34 nodes. jActiveModules [8] was executed from Cytoscape and yielded five subnet-
works. The reported results are for the highest scoring subnetwork. ‘t-test top’ refers to the 34
down regulated genes with the most significant t-scores. HD modifiers are taken from [21]. HD
relevant genes are taken from [23]. Calcium signalling genes are taken from MSigDB [4].

CUSP GiGA jActiveModules t-test top t-test FDR < 0.05

Number of genes 34 34 282 34 1762

Contains Huntingtin? Yes No No No Yes

HD modifiers 6 (7.7 · 10−10) 3 (1.55 · 10−4) 12 (3.15 · 10−11) 2 (0.001) 16 (3.47 · 10−5)

HD relevant 7 (4.29 · 10−11) 2 (0.008) 14 (1.42 · 10−9) 1 (0.124) 18 (6.06 · 10−5)

KEGG HD pathway 4 (7.95 · 10−7) 0 4 (0.003) 0 8 (0.03)

Calcium signaling 6 (9.23 · 10−7) 5 (1.99 · 10−5) 10 (5.68 · 10−4) 3 (0.005) 49 (2.97 · 10−12)

3.3 Meta-analysis of Breast Cancer Studies

In order to test our methodology on other diseases and on inter-study comparisons we
performed meta-analysis of six breast cancer studies, spanning together expression pro-
files of 1,004 patients. Full details on the studies are available at our website. These
studies compared breast cancer tumor samples, for which follow-up outcome informa-
tion was available. We focused on comparison of tumors with good and poor prognosis
(defined as development of distant metastases within five years [2]). In each study, us-
ing a one-tailed t-test, we extracted a set of differentially expressed genes between good
and poor prognosis patients (p = 0.05 was used as a threshold). Here we applied CUSP
to the genes vs. studies matrix. The most significant DP up-regulated in poor prognosis
cancers is shown in Fig. 3A (k = 40, l = 2, p < 0.005). This network is highly en-
riched with cell-cycle genes (28 out of 51 genes are associated with cell-cycle in GO,
p = 2.44 · 10−26). Cell cycle and proliferation genes are known to be associated with
higher grade, poor prognosis tumors in numerous studies (see [29] and the references
therein). In addition, this DP contains 15 genes shown to be regulated by YY1 (as found
in [30], p = 2.42 · 10−16), known to be associated with overexpression of the ERBB2
oncogene and with poor prognosis of breast cancer [31]. We recovered an additional
significant DP which is described on our website.

The most significant DP down-regulated in poor prognosis cancers (k = 25, p <
0.005, Fig. 3B) is enriched with genes associated with drug resistance and metabolism
(Source:MSigDB, p = 3.54 · 10−9), p53 signalling (p = 3.54 · 10−9) and the JAK-
STAT signalling pathway (p = 3.68 · 10−4). The latter pathway mediates the signals of
a wide range of cytokines, growth factors and hormones, making its aberrant activation
prone to lead to malignancy. This pathway was also linked specifically to breast cancer
[32]. Our results indicate the down-regulation of this pathway on the expression level
is associated with cancers with poor prognosis. Interestingly, this subnetwork, but not
the up-regulated one, was enriched with genes that are frequently mutated in cancer in
general (p = 1.14 · 10−7) and in breast cancer in particular (p = 3.2 · 10−4, both sets
taken from [33]). A search for additional DPs did not yield significant results.
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Fig. 3. DPs identified in breast cancer meta-analysis. In the differential expression maps (right)
red cells correspond to differentially expressed genes. (A) a DP up-regulated in poor prognosis
breast cancers (k = 40, p < 0.005). Cell cycle genes (from GO) are in yellow. YY1 regulated
genes are drawn with thick border. (B) DP with a lower expression in poor prognosis breast
cancers (k = 25). Drug resistance pathway genes appear in pink. JAK-STAT signalling pathway
genes are drawn with thick border.

4 Discussion

We have developed a novel computational technique for network-based analysis of clin-
ical gene expression data. The method is aimed at identifying pathways in the interac-
tion network that exhibit ample evidence of disruption of transcription that is specific
to diseased patients. Application of the method to a large-scale human protein-protein
interaction network and a Huntington’s disease study as well as meta-analysis of six
breast cancer studies has shown its potential in outlining subnetworks with a high rele-
vance to the mechanisms of pathogenesis. Comparison to extant techniques for analysis
of gene expression data highlights the advantages of our approach in identifying clini-
cally sound pathways.

While the results presented here are encouraging, there is certainly room for further
development of these methods. Currently, we look for multiple subnetworks by itera-
tively finding and removing the most significant DP from the network. Better methods
are needed to detect overlapping DPs. Furthermore, one can obtain significance scores
for individual nodes in the DPs using established statistical methods such as bootstrap-
ping [34].

Our problem formulation used a fixed k value, thus requiring that the same least
number of genes is altered in all patients (or studies). All the algorithms and proofs pre-
sented are generalizable to the scenario where different samples have different thresh-
olds. This case can be attractive if, for example, the number of differentially expressed
genes varies significantly among patients or studies, and the goal is to detect subnet-
works covering a fixed percentage of the differentially expressed genes. The value of l
used in the examples presented here was set to 20% of the elements (cases or studies) in
the dataset. While we observed that our method is rather robust to l values in the range
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of 15-40% of the cases, the methodology for a more rigorous selection of the l value is
also an interesting subject for further research.

One of the main goals of case-control studies using microarrays is the detection of
biomarkers, leading to an improved characterization of the pathologies of each patient.
We believe that the fact that the subnetworks that we identified for HD and breast cancer
contain numerous established therapeutic targets carries the promise that an integrative
analysis of such studies with complementary molecular datasets can also indicate spe-
cific points for medical intervention.
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Abstract. A key problem of interest to biologists and medical researchers is the
selection of a subset of queries or treatments that provide maximum utility for
a population of targets. For example, when studying how gene deletion mutants
respond to each of thousands of drugs, it is desirable to identify a small subset
of genes that nearly uniquely define a drug ‘footprint’ that provides maximum
predictability about the organism’s response to the drugs. As another example,
when designing a cocktail of HIV genome sequences to be used as a vaccine, it
is desirable to identify a small number of sequences that provide maximum im-
munological protection to a specified population of recipients. We refer to this
task as ‘treatment portfolio design’ and formalize it as a facility location prob-
lem. Finding a treatment portfolio is NP-hard in the size of portfolio and number
of targets, but a variety of greedy algorithms can be applied. We introduce a new
algorithm for treatment portfolio design based on similar insights that made the
recently-published affinity propagation algorithm work quite well for clustering
tasks. We demonstrate this method using the two problems described above: se-
lecting a subset of yeast genes that act as a drug-response footprint, and selecting
a subset of vaccine sequences that provide maximum epitope coverage for an
HIV genome population.

1 Treatment Portfolio Design (TPD)

A central question for any computational research collaborating with a biologist or
medical researcher is in what form computational analyses should be handed over to
the experimentalist or clinician. While application-specific predictions are often most
appropriate, we have found that in many cases what is needed is a selection of potential
options available to the biologist/medical researcher, so as to maximize the amount of
information gleaned from an experiment, which often can be viewed as consisting of
independently assayed targets. If the number of options is not too large, these can be
discussed and selected by hand. On the other hand, if the number of possibilities is
large, a computational approach may be needed to select the appropriate options. This
paper describes the framework and approaches that emerged while trying to address
problems of this type with our collaborators. In particular, we show how the affinity
propagation algorithm [1] can be used to effectively to approach this task.

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 360–371, 2008.
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For concreteness, we will refer to the possible set of options as ‘treatments’ and the
assays used to measure the suitability of the treatments as ‘targets’. Each treatment has
a utility for each target and the goal of what we will refer to as treatment portfolio de-
sign (TPD) is to select a subset of treatments (the portfolio) so as to maximize the net
utility of the targets. The terms ‘treatment’, ‘target’ and ‘utility’ can take on quite differ-
ent meanings, depending on the application. Treatments might correspond to queries,
probes or experimental procedures, while targets might correspond to disease condi-
tions, genes or DNA binding events.

Example 1: The treatments are a set of potential yeast gene deletion strains used to
query drug response, the targets are all ∼6000 yeast gene deletion strains, the util-
ity is the number of gene-drug interactions in all strains that are predicted by the
selected portfolio of strains.

Example 2: The treatments are a large set of potential vaccines derived from HIV
genomes, the targets are a population of HIV epitopes likely to be present in a
demographic with high infection risk, the utility is the level of immunological pro-
tection, i.e., number of epitopes present in the selected portfolio of HIV vaccines.

Example 3: The treatments are a set of baseline demographic, anthropometric, bio-
chemical and DNA SNP variables thought to be predictive of cardiovascular end-
points and postulated to form a clinical set of risk factors, the targets are ∼4,000,000
disease end-point targets comprising ∼20,000 patients and ∼200 conditions, the
utility is the predictability of disease end-points, including risk.

Example 4: The treatments are a set of laboratory procedures used to synthesize bio-
logically active compounds, the targets are a list of desired compounds to be syn-
thesized, the utility is the negative financial cost needed to synthesize all target
compounds using the selected portfolio of laboratory procedures.

Example 5: The treatments are a large set of microRNAs potentially involved in reg-
ulating the expression of disease-associated genes, the targets are a list of gene-
disease pairs, the utility is the net corrected correlation between gene expression
and expression of microRNAs in portfolio for all disease conditions.

The input to TPD is a set of potential treatments or queries T , a representative pop-
ulation of targets R and a utility function u : T × R → R, where u(T, R) is the utility
of applying treatment T ∈ T to target R ∈ R. This utility may be based on a variety
of factors, including the benefit of the treatment, the cost, the time to application, the
time to response, the estimated risk, etc. The goal of computational TPD is to select a
subset of treatments P ⊆ T (called the ‘portfolio’) so as to maximize their net utility
for the target population. A defining aspect of the utility function is that it is additive;
for portfolio P , the net utility is

∑

R∈R max
T∈P

u(T, R).

To account for the fact that some treatments are preferable to others regardless of their
efficacy for the targets (e.g., different setup costs), we use a treatment-specific cost
function c : T → R. The net utility, including the treatment cost is

U(P) =
∑

R∈R max
T∈P

u(T, R) −
∑

T∈P c(T ). (1)
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Provided with T , R, u and c, the computational task is to find maxP⊆T U(P). Note
that the number of treatments in the portfolio will be determined by balancing the utility
with the treatment cost.

1.1 Relationship to K-Medians Clustering and Facility Location

Under certain conditions, TPD can be viewed as a K-medians clustering problem or
facility location problem (a.k.a. the p-median model) [3, 4, 5]. Given a set of points X
and a pairwise distance measure d : X ×X → R, the goal of K-medians clustering is to
select a subset of points as centers and assign every other point to its nearest center, so as
to minimize the sum of distances. To control the number of identified centers, either the
number of centers is pre-specified or a cost is associated with each center. Because of
the combinatorics involved in selecting K centers, the K-medians clustering problem
is NP-hard (c.f. [5]). TPD can be viewed as K-medians clustering, if the treatment set
equals the target set (T = R). The application of K-medians clustering algorithms to
TPD is discussed below.

In general, the treatment set does not equal the target set. Then, TPD can be viewed
as a facility location problem, which is framed as opening up facilities or warehouses
to service customers. Given a set of facilities that can potentially be opened F , a set of
customers C, a distance function d : C × F → R and a facility opening cost function
c : F → R, the facility location problem [5] consists of identifying a subset of facilities
and assigning every customer to a facility so as to minimize the net facility opening cost
and distance of customers to facilities. Because the number of possible combinations of
facilities to choose from is exponential in the number of potential and chosen facilities,
the facility location problem is NP-hard.

Most work on approximation algorithms for K-medians clustering and facility loca-
tion relies on d being metric (convex) (c.f. [5] for a review), but this is not necessary.
Both problems can be formulated as binary-valued integer programs and then relaxed to
linear programs. If the linear program solution is non-integer, it can be rounded, giving
rise to various approximations. Unfortunately, these approximation algorithms are of
limited practical value. We have experimented extensively with a data set of 400 Eu-
clidean points derived from images of faces and found that CPLEX 7.1 takes several
hours and gigabytes of memory to find solutions that can be found in less than one
minute using a couple megabytes of memory via the affinity propagation algorithm [1]
(data available at www.psi.toronto.edu/affinitypropagation).

2 Standard Algorithms Adapted to TPD

A variety of non-iterative and iterative algorithms for optimizing the objective func-
tions can be formulated in a straight-forward fashion. A simple method is to start with
an empty portfolio and add the single treatment T1 that maximizes the net utility (in-
cluding the treatment cost). All targets are assigned to that treatment and the current
utility v(R) for target R is set to u(T1, R). Next, another treatment is added to the
portfolio and this treatment is chosen so as to maximize the net utility. This involves
examining every treatment T not currently in the portfolio, computing a net utility gain
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∑
R∈R max(u(T, R) − v(R), 0) − c(T ), and selecting the treatment with maximum

utility gain. This treatment, denoted T2, is added to the portfolio. This procedure is
repeated until another treatment cannot be added to the portfolio without decreasing
the net utility. Note that in the absence of a treatment cost (i.e., c = 0, assuming that
all utilities are non-negative), all treatments would be added to the portfolio. Then,
the number of treatments K may instead be specified, in which case the algorithm is
terminated when K treatments have been added to the portfolio.

ALGORITHM 1: K-TREATMENTS CLUSTERING

Input: T , R, u, c, K, M

Repeat M times:

P ′ ← random subset of T of size K
∀R ∈ R, p(R) ← argmaxT∈P′u(T, R)

Repeat until convergence:
Select T ∈ P ′ (in order)
∀T ′ ∈ T \ P ′, compute

g(T ′) ←
∑

R:p(R)=T u(T ′, R) − u(T, R) − c(T ′) + c(T )
T alt ← argmaxT ′∈T \P′g(T ′)
If g(T alt) > 0 then set P ′ ← (P ′ \ {T }) ∪ {T alt}
∀R ∈ R, p(R) ← argmaxT∈P′u(T, R)

If first repetition, then P ← P ′; else if U(P ′) > U(P), then P ← P ′

Output: P

One problem with the above method is that after the subsequent addition of a treat-
ment, previously-added treatments may no longer be the ones that maximize the utility.
A natural extension is to initially find K treatments and then iteratively revisit treat-
ments and consider replacing them with other treatments not in the current portfolio,
until the portfolio converges. Alternatively, instead of deterministically initializing the
portfolio, it can be randomly initialized to K treatments and then iteratively refined.
The advantage of this approach is that a large number, M , of random initializations
can be tried and the refined portfolio with highest net utility can be selected. To re-
flect the similarity of this approach to the standard K-means clustering and K-medians
clustering algorithms [3], we will refer to it as ‘K-treatments clustering’. Note that
K-treatments clustering is not identical to K-means clustering or K-medians cluster-
ing, because treatments are neither means nor medians – in fact, they generally lie in a
different space than the targets that are assigned to them. See Alg. 1 for details.

3 Modified Affinity Propagation for TPD

The recently-introduced affinity propagation algorithm is an exemplar-based clustering
algorithm that operates by exchanging messages between data points until a subset of
data points emerge as the cluster centers (exemplars) [1]. Unlike most other clustering
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algorithms, affinity propagation does not store and refine a fixed number of potential
cluster centers, but instead simultaneously considers all data points as potential cluster
centers. Data points exchange two kinds of message: the responsibility sent from point
i to point k indicates how well-suited point k is as the exemplar for point i in contrast
to other potential exemplars; the availability sent from point k to point i indicates how
much support point k has received from other points for being an exemplar. As the
message-passing procedure proceeds, responsibilities and availabilities become more
extreme until a clear set of exemplars and clusters emerges.

In [1], affinity propagation was shown to find better solutions than other frequently-
used methods, including K-medians (K-centers) clustering and hierarchical agglomer-
ative clustering. It should be kept in mind that for small problems, e.g. < 500 points,
linear programming [5] can often be used to find an exact solution. Also, when the
number of sought-after exemplars is quite low (e.g., < 10), methods that use random
initialization (e.g., K-centers clustering) can work quite well. One randomly-initialized
method that works quite well is the vertex substitution heuristic. Recently in [2], affinity
propagation was shown to be significantly faster than the vertex substitution heuristic
for moderately large problems. For example, 20 randomly-initialized runs of the ver-
tex substitution heuristic took ∼10 days to find 454 clusters in 17,770 Netflix movies,
whereas affinity propagation took ∼2 hours and achieved lower error.

The input to the affinity propagation algorithm is a set of similarities {s(i, k)}, where
s(i, k) is the similarity of point i to k, and a set of preferences {p(k)}, where p(k) is the
a priori preference that point k be chosen as an exemplar. After exchanging messages,
affinity propagation identifies a set of exemplars K so as to maximize the net similarity∑

i/∈K maxk∈K s(i, k) +
∑

k∈K p(k). Viewing treatments as potential exemplars, we
can adapt affinity propagation to TPD: if point i is a target and point k is a treatment,
we can set s(i, k) to the utility of that treatment for that target; if point k is a treatment,
we can set p(k) to the negative cost for that treatment.

However, one important difference between the problem statements for exemplar-
based clustering and TPD is the distinction between treatments and targets. The orig-
inal affinity propagation algorithm treats all points as potential exemplars and every
non-exemplar point must be assigned to an exemplar. In TPD, only treatments can be
selected as exemplars, and only targets have utilities for being assigned to exemplars
(treatments). Treatments that are not selected for the portfolio (exemplar set) are nei-
ther exemplars nor assigned to another exemplar (treatment).

To allow some treatments to not be selected for the portfolio and also not be assigned
to any other points, we introduce a special ‘garbage collector’ point and set the similar-
ities of treatments to this point to zero. So, unless there is a net benefit in utility minus
cost when including a treatment in the portfolio (exemplar set), it will be assigned to
the garbage collector point. In summary, the following similarity constraints account
for the bipartite structure of TPD:

s(target, treatment)=u(treatment, target) and s(target, target′)=s(target, garbage)=−∞
s(treatment, garbage)=0 and s(treatment, target)=s(treatment, treatment′)=−∞

s(garbage, target)=s(garbage, treatment)=−∞
p(treatment)=−c(treatment) and p(target)=p(garbage)=∞
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The last constraints ensure that targets cannot be selected as exemplars and that the
garbage collection point is always available as an exemplar.

It turns out that when the above constraints are inserted into the original affinity
propagation updates, certain simplifications occur and the garbage collection point need
not be explicitly represented. In fact, many messages need not be computed and the
algorithm reduces to messages exchanged on a bipartite graph connecting treatments
and targets. The resulting algorithm is provided in Alg. 2 – note that messages need
only be exchanged between a treatment and target if the utility is not −∞. The input
λ ∈ (0, 1) is a damping factor that is used to improve convergence.

ALGORITHM 2: BIPARTITE AFFINITY PROPAGATION

Input: T , R, u, c, λ

Initialization: ∀T, R : u(T, R) > −∞, set a(T, R) ← 0, r(T, R) ← 0

Repeat until convergence:

Update responsibilities: ∀T, R : u(T, R) > −∞, set

r(T, R)←λr(T, R)+(1−λ)·(u(T, R)−max
T ′∈T\{T}:

u(T ′,R)>−∞

{u(T ′, R)+a(T ′, R)}
)

(2)
Update availabilities: ∀T, R : u(T, R) > −∞, set

a(T, R)←λa(T, R)+(1−λ)·min{0,
∑

R′∈R\{R}:
u(T,R′)>−∞

max(0, r(T, R′))−c(T )}

(3)
Output:

P ← {T :
∑

R∈R:
u(T,R)>−∞

max(0, r(T, R)) > c(T )} (4)

This algorithm can be derived as an instance of the max-product algorithm in a fac-
tor graph describing Eq. 1. Here, we provide some intuition for why the updates make
sense. Initially, the availabilities a(·, ·) are zero and Eq. 2 indicates that the responsibil-
ity of treatment T for target R is set to its utility minus the largest competing utility of
another treatment for the same target. In subsequent iterations, the utilities of competing
treatments are modulated by their availabilities. As indicated in Eq. 3, the availability
of treatment T for target R is set to the sum of its responsibilities for other treatments
minus its cost. Only positive responsibilities are included in this sum, because for a
treatment to be deemed useful, it is only necessary that some targets yield high utility,
not that all targets yield high utility. The availability is not allowed to rise above zero;
this acts to prevent a treatment that accounts for a large number of targets from dominat-
ing other potential treatments. After convergence, Eq. 4 compares the net responsibility
of target T with its cost, and includes it in the portfolio if the benefit outweighs the cost.
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(a) (b)

(c) (d)

Fig. 1. Performance with affinity propagation and K-treatments clustering on finding yeast strains
that are representative of gene-drug interaction profiles. (a) and (b) show training and test results,
for a held-out test set of randomly-selected drugs; (c) and (d) show similar results, but where the
held-out test drugs consisted of a small number of drugs with different dosage levels and exposure
times. (a) and (c) show that affinity propagation maximizes the net utility of the training set better
than the best of hundreds of thousands of random restarts of K-treatments clustering. (b) and (d)
show that on the test drug set, affinity propagation has better sensitivity at a given specificity than
K-treatments clustering.

4 Application 1: Selecting Yeast Gene Deletion Queries for Drug
Profiling

We applied TPD to a data set showing the interaction of 1259 different drug-dosage-
exposure combinations (called just drugs hereon in for brevity) with yeast gene-deletion
strains. Our goal was to find a small query set of genes (a subset of the 5985 yeast genes)
on which new drugs could be tested for the purpose of predicting interactions between
the drug and genes not in the query set. The selection of a query set would avoid needing
to test all genes on new drugs, which can be costly, especially when expanding tests,
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e.g., to include proteomic profiling. In this application, the treatment set equals the
target set (T = R); in the next section, we describe results on an application where the
treatment set and target set are disjoint.

Gene-drug interactions were measured using TAG3 molecular barcode arrays [6].
z-scores were calculated by standardizing the rank-normalized intensity for each strain
under the given drug against the intensity from a set of untreated controls. We imposed
a threshold score of 5 for there to be an interaction between the strain and drug, which
yielded roughly 150, 000 interactions of a possible 7.5 million combinations (2%). The
utility of a potential query gene deletion strain (treatment) for representing another gene
deletion strain (target) was set to the number of drug responses that were active for both.
To test the predictive power of TPD, this utility was computed using a training set of
drugs consisting of only 90% of the original; results are reported for both uniformly
sampling the 10% test set of drugs and using a non-random test set consisting of all
different dosage levels and exposure times for a smaller set of drugs (still 10% of the
total number of conditions).

TPD was performed using both affinity propagation and K-treatments clustering (us-
ing a huge number of random restarts), with results shown in Fig. 1. All runs of affinity
propagation took less than five hours whereas the many runs of K-treatments clustering
took over 3 days. Results for the uniformly-sampled test set are shown in Fig. 1(a) and
(b), whereas similar results are shown in Fig. 1(c) and (d) for the test set with fewer
drugs with varying dosages and exposure times. Fig. 1(a) and (c) plot the net utility (to-
tal number of drug-gene interactions in the training set accounted for by the portfolio)
versus the number of treatments. Affinity propagation finds better representative yeast
strains than K-treatments clustering, for both training sets.

Additionally, Fig. 1(c) and (d) plot sensitivity vs. specificity curves for both al-
gorithms, using the held-out test sets. At any given specificity (proportion of non-
interactions correctly predicted in the test data), affinity propagation achieves a higher
sensitivity (proportion of interactions correctly predicted in the test data) than K-treat-
ments clustering. Note that as the size of the portfolio (K) increases, both specificity
and sensitivity experience corresponding increases.

It is evident from Fig. 1 that many thousands of random restarts of K-treatments clus-
tering are needed to find good solutions. For example, for all data points shown in both
plots, we found that the portfolios found by affinity propagation never represented fewer
than 7 target genes, whereas in all but one case for K-treatments clustering (the lowest,
K = 16), the portfolios included singleton genes, leading to less-accurate predictions.

Exemplar genes found by both affinity propagation and the K-treatments algorithm
were also analyzed for functional enrichment [7]. In nearly all cases, the list of exem-
plars was not over-enriched for any functional category, indicating that these represen-
tatives were well dispersed in terms of biological function.

5 Application 2: Selecting HIV Strains that Maximize Immune
Target Coverage

Next, we pose the problem of HIV vaccine cocktail design as a TPD. The idea here
is to find a set of optimal HIV strains for the purpose of priming the immune systems
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of many patients. The treatments T are thousands of HIV strain sequences (available
at www.hiv.lanl.gov). The targets R are a set of short sequences (patches, fragments)
that correspond to the epitopes that immune systems respond to (we use all nonamers
or 9-mers). The utility u(T, R) of a strain T for a fragment R would ideally be set to
its potential for immunological protection, but following [8, 9, 10, 12] we set it to the
frequency of the fragment in the database of HIV sequences, if fragment R is present
in strain T and 0 otherwise. The net utility is also referred to as ‘coverage’.1

Fig. 2 shows aligned pieces of Gag protein from several different strains, with two vari-
able sites marked by arrows as well as known or predicted T-cell epitopes for the MHC
molecules of five different patients taken from the WA cohort [11]. Epitopes recognizable
by a single patient are shown in a single color, and each patient is assigned a different
color. The white patient could be immunized against three forms of the same epitope:
KKYKLKHIV, KKYQLKHIV, KKYRLKHIV. In this small example, we can design a
vaccine consisting of the following segments which epitomizes in an immunological
sense the seven strains shown in the figure: VLSGGKLDKWEKIRLRPGGKKKYK-
LKHIVWASRELERF LSGGKLDRWEKIRLR KKKYQLKHIVW KKKYRLKHIVW.

A lot of discussion among HIV vaccine experts has been focused on the need for
constraining vaccine constructs optimized for coverage to resemble naturally occur-
ring strains [10, 9]. This is motivated by several pieces of evidence that deviation from
naturally occurring strains often reduces efficacy in animal models as well as in vac-
cine trials, both in terms of the cellular and antibody responses. Thus, [9] proposes
enrichment of the vaccine with a sequence that sits in the center of the HIV phyloge-
netic tree, so that this single native-like (but still artificially derived) strain is used to
provide high coverage of immune targets in as natural way as possible, while the ad-
ditional coverage is achieved with an epitome fragment or fragments. In contrast, in
their recent paper [10] Fischer et. al. avoid the use of fragments altogether, and propose
building the entire vaccine out of multiple strain-like constructs optimized by simu-
lated strain recombination, dubbed ‘mosaics’. A mosaic vaccine is therefore a cocktail
of artificially-derived strains, not existent among the observed strains of the virus, but
achievable by recombining many times the existing strains. These vaccine components
resemble natural strains, but have higher nonamer coverage than what would be ex-
pected from a cocktail of natural strains. Mosaics can always achieve higher coverage

1 Despite its simplicity, this problem set-up is quite biologically relevant. The immune system
recognizes pathogens by short protein segments called epitopes. These targets are recognized
both on the surface of the free viral particles, as well as on the surface of the infected cells,
where the peptide targets are presented by the cell’s own MHC molecules in charge of signaling
about the normal or abnormal protein expression in the cell. Due to a need for efficiency, the
immune system takes longer to recognize a new pathogen the first time it is encountered than
in subsequent infections. To prime such an adaptive system against foreign intruders, various
vaccination strategies have been developed, all essentially with the same goal — to expose
the patient to a harmless vaccine that shares similarities with a targeted pathogen, so that in
the immune system gets prepared for the true infection. For many pathogens, with HIV being
a prime example, genetic diversity poses a significant problem for vaccine design. The goal
of vaccine design is to load the vaccine with targets that would work for multiple strains and
multiple patients [8, 9, 10, 12].
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Fig. 2. Fragments of Gag protein with epitopes recognized by several HIV-infected patients. Epi-
topes recognizable by a single patient are shown in a single color; mutations marked by red arrows
escape MHC I binding.

than natural strains, so while they may not be viable as vaccines, they provide an upper
bound on potential coverage.

As the data set of known HIV sequences is constantly growing, the potential for
achieving high coverage with a cocktail of true natural strains is growing as well. Newly
discovered strains differ from existing ones mostly by the combination of previously
seen mutations, rather than by the presence of completely new nonamers. In fact, Fis-
cher et. al. have increased the Gag vaccine coverage by their use of mosaic by some
4–5% in comparison to natural strain cocktails for Gag and Nef protein vaccines con-
sisting of 3–5 components. This is not much larger than the differences of around 2% of
all nonamers that they report among coverage scores of mosaics optimized on different
datasets (even within the same HIV clade). Furthermore, as the problem is NP-hard, the
natural strain cocktails (treatment portfolios) in their paper are found by a greedy tech-
nique (a combination of K-treatments clustering and the vertex substitution heuristic),
which may further decrease the perceived potential of natural strain cocktails, espe-
cially for a larger number of components. For a large M -clade dataset consisting of
1755 Gag proteins from the LANL database, a Gag sequence consisting of the best 4
natural strains we could find had only 3% lower coverage than the mosaic of the same
size optimized on the same data (69% vs 66%); the differences in the Pol gene were
even lower. Obviously, as the dataset grows, the computational burden for finding the
optimal cocktail grows exponentially, as is the case for the general TPD problem.

Furthermore, while potentially important for the cellular arm of the immune system,
a vaccine components’ closeness to natural strains is even more important for properly
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presenting potential targets of the humoral (antibody) arm of the immune system. As
opposed to the T-cell epitopes, antibody epitopes are found on the surface of the folded
proteins. It has been shown that slight changes in the HIV Env protein can cause it to
mis-fold, and so naturally occurring HIV strains are more likely to function properly
than artificially derived Env proteins.

In our experiments, we solve the TPD problem for the Gag vaccine cocktail opti-
mization for larger cocktails, where the coverage approaches 80% or more, and where
exhaustive search is computationally out of the question. Instead, we used the affin-
ity propagation algorithm described above, and compare its achieved utility (coverage)
with that of the greedy method and the mosaic upper bound [10]. Table 1 summarizes
our results on 1755 strains from M -clade (combination of all clades, and thus the most
diverse).

Table 1. The utility (“epitope coverage”) of vaccine portfolios found by affinity propagation and
a greedy method, including an upper bound on utility (found using mosaics)

Natural strains Artificial mosaic strains
Problem Affinity propagation Greedy (upper bound)

Gag, K = 20 77.54% 77.34% 80.84%
Gag, K = 30 80.92% 80.14% 82.74%
Gag, K = 38 82.13% 81.62% 83.64%
Gag, K = 52 84.19% 83.53% 84.83%

These results show that affinity propagation achieves higher coverage than the greedy
method. Importantly, these results also suggest that the sacrifice in coverage necessary
to satisfy the vaccine community’s often-emphasized need for natural components, may
in fact be bearable if large datasets and appropriate algorithms are used to optimize
coverage.

6 Summary

We introduced a computation problem called ‘treatment portfolio design’, which is a
key problem for biologists and medical researchers who need select a set of options
useful for extracting maximum information or utility from a set of targets. This prob-
lem is equivalent to the non-metric K-medians problem or facility location problem, but
while these problems are not new, practical algorithms that produce good solutions are
still elusive. We showed how the recently-introduced affinity propagation algorithm can
be modified to perform treatment portfolio design. We demonstrated a greedy algorithm
for TPD and affinity propagation on the problem of identifying a yeast gene-deletion
query set for the purpose of drug profiling and identifying strains of HIV that together
maximize coverage of epitopes. Both methods were useful for identifying treatment
sets, but we found that affinity propagation achieved significantly higher utility val-
ues and better test set performance (in terms of sensitivity and specificity), even when
the greedy method was re-run hundreds of thousands of times using different random
initializations.
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Abstract. Eukaryotic splicing structures are known to involve a high
degree of alternative forms derived from a premature transcript by al-
ternative splicing (AS). With the advent of new sequencing technologies,
evidence for new splice forms becomes more and more easily available—
bit by bit revealing that the true splicing diversity of “AS events” of-
ten comprises more than two alternatives and therefore cannot be suffi-
ciently described by pairwise comparisons as conducted in analyzes hith-
erto. Further challenges emerge from the richness of data (millions of
transcripts) and artifacts introduced during the technical process of ob-
taining transcript sequences (noise)—especially when dealing with single-
read sequences known as expressed sequence tags (ESTs). We describe
a novel method to efficiently predict AS events in different resolutions
(i.e., dimensions) from transcript annotations that allows for combina-
tion of fragmented EST data with full-length cDNAs and can cope with
large datasets containing noise. Applying this method to estimate the
real complexity of alternative splicing, we found in human thousands of
novel AS events that either have been disregarded or mischaracterized in
earlier works. In fact, the majority of exons that are observed as “mutu-
ally exclusive” in pairwise comparisons truly involve at least one other
alternative splice form that disagrees with their mutual exclusion. We
identified four major classes that contain such “optional” neighboring
exons and show that they clearly differ from each other in characteris-
tics, especially in the length distribution of the middle intron.

General Terms: Alternative Splicing, ESTs, New Sequencing Technolo-
gies, Algorithms, Graph Theory.

Keywords: exon-intron structure, splicing variation, alternative splic-
ing event, expressed sequence tags, high-throughput sequencing, parallel
sequencing, directed acyclic graph, galled network, blob, bubble.

1 Introduction

Alternative splicing (AS), a fundamental molecular process regulating eukaryotic
gene expression, generates a substantial part of the human proteome diversity [1]
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and is involved in numerous human diseases [2,3,4]. Over the recent years splic-
ing variations for several organisms have been collected in various databases and
several attempts to analyze the complexity of AS throughout different genomes
have been undertaken [17,18,19,20]. Usually, splicing diversity is classified ac-
cording to the observed pattern of exon-intron variation into structurally dif-
ferent events. However, all works hitherto focused on alternative splicing in a
limited context by considering only pairwise comparisons—either of a reference
transcript to other splice forms, or by comparing the transcript data in an all-
against-all fashion. By focusing exclusively on pairs of transcripts one may—
although describing the atomary elements of a pattern—separate alternatives
that actually form more complex splicing structures into different events. Imag-
ine for instance the effort to reconstruct the mutual exclusion of 3 (or more)
neighboring exons from a set of pairwise events. It has already been noticed that
comparing transcripts one by one is not satisfactory for describing such complex
variations and novel ways to deal with this shortcoming have been postulated
[21].

In this work, we describe a technique to exhaustively and efficiently describe
arbitrarily large splicing variations in annotations, i.e. transcript data aligned
to the genome. W.r.t. the quality of the sequenced transcript data, such align-
ments are usually not free of artifacts, i.e., sequencing errors can lead to mis-
alignments of the transcripts to the genome. Consequently, gaps introduced in
the transcript sequence during alignment and misaligning nucleotides that are
arbitrarily distributed to the left or right of an intron lead to the observation
of wrong or shifted introns and artificially suggest variations of the exon-intron
structure (so-called noise). Another source of noise is due to technical difficulties
in obtaining 5’- and 3’-complete transcript sequences, and especially single read
sequences—typically not longer than one half kbase—without subsequent assem-
bly usually represent fragments of transcribed genes called expressed sequence
tags (ESTs). In contrast, ESTs that have been assembled to larger transcript
sequences and contain part of an (hypothetical) open reading frame (i.e., a sub-
sequence of the transcript that does not exhibit a stop codon in one of the 3
possible frames) are usually considered as messenger RNAs (mRNAs) although
they often are still truncated parts of the real mRNA molecules. Based on these
EST and mRNA data, curated reference transcripts are built (e.g., the NCBI
mRNA reference sequence collection [25]) which are considered to be full-length
but normally do not comprise all evidence for differential splicing. Naturally
there is much more EST evidence available than mRNA sequences and full-length
transcripts are the minority, e.g., Genbank [26] currently contains ∼ 8 million
human ESTs, ∼ 260, 000 mRNAs and ∼ 25, 000 RefSeq transcripts. Consider-
ing these—continuously growing—numbers and the advent of new sequencing
technologies that already have been applied to explore transcript diversity in a
new dimension [27,28], the need for efficient methods to analyze huge annotation
datasets becomes evident.
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The rest of the paper is organized as follows: in Section 2 we define AS events
that involve two or more alternatives (Section 2.1) and the terminology that
we subsequently use for splicing graphs inferred from annotations (Section 2.2).
In these graphs, we describe the properties of bubbles, specific graph substruc-
tures that imply potential AS events (Section 2.3). We show how AS events are
obtained from the bubble subgraphs (Section 2.4) and we propose an efficient
algorithm to exhaustively and non-redundantly extract all AS events reflected by
a splicing graph—w.r.t. possible artifacts from the upstream annotation pipeline
(Section 2.5). In Section 3, we exemplarily demonstrate that the time complex-
ity of our method is dominated by the linear dependence on the number of
transcripts in the annotation (Section 3.1) s.t. even the biggest datasets can be
analyzed within few hours. From the number of AS events that we find to have
more than two alternatives, we derive the fraction of AS events that have either
been disregarded or misjudged in analyzes hitherto (Section 3.2). This fraction
turns out to be extremely high for the “mutually exclusive exons” observed
in pairwise transcript comparisons and further analysis of the different groups
that cluster these events reveals attributes that clearly distinguish between the
groups and that may allow for conclusions on different underlying molecular
mechanisms (Section 3.3).

2 Methods

2.1 AS Events of Arbitrary Dimension d

An RNA sequence aligned to the genome (here after called transcript) can be de-
scribed by a sequence of exon boundaries (i.e., sites) rna = 〈si〉n

i=1, n � 2 ordered
by their position pos(si) from 5’ to 3’ (Fig. 1a). Genomic coordinates of sites that
align to the negative strand are inverted−pos(si) to preserve the 5’→3’ directional-
ity when ordering them. Furthermore, a site s = (pos(s), transcripts(s), class(s),
type(s)) is characterized by its functional role type(s) ∈ {root, start, donor,
acceptor, end, leaf}, the set of supporting transcripts transcripts(s) and their re-
spective category class(s) ∈ {RefSeq, mRNA, EST}. The category class(s) is as-
signed in a hierarchical manner, i.e., it is RefSeq if at least one RefSeq transcript is
in transcripts(s), if not it is mRNA if at least one of the mRNAs is supporting s,
else class(s) = EST. When investigating AS, we compare all sets of k transcripts
{rnai}k

i=1 that overlap in the genomic region they align to on the same strand (a
locus) and we distinguish differences observed in the exonic structure as variants.

Definition 1. A “variant” is a sequence of sites 〈si〉m
i=1 shared by a non-empty

set of transcripts X =
⋂m

i=1 transcripts(si). We refer to X as the “partition”
of supporting transcripts because different variants between pos(s1) and pos(sm)
split the k transcripts of the corresponding locus into disjoint sets. A variant p =
(s1, sm, Xp) can equivalently be described by the delimiting sites (s1, sm) and its par-
tition Xp because for each rnaj ∈ Xp holds 〈si〉m

i=1 = 〈rnaj [xj ], . . . , rnaj [yj]〉, 1 �
xj < yj � nj.
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AS events involve d � 2 variants, where d is said the dimension of the event.
To delineate AS events of dimension d in a locus, we extend an earlier described
definition for pairwise AS events (d = 2, Appendix A.1) as follows:

Definition 2. An AS event of dimension d � 2 comprises {pi}d
i=1 different

variants, such that (i) the first and the last site of each variant pi coincide
(“common sites”) or the first/last site of each variant is the first/last site of the
supporting transcripts, (ii) any site besides common first/last sites of a variant
pi is not used in at least one other variant (“variable sites”), and (iii) amongst
these variable sites there is at least one splice site overlapping the genomic region
of all variants (“alternative splice site”).

In other words, Def. 2 characterizes an AS event as a sequence of variable sites
(ii), delimited upstream and downstream either by a common site of all variants
(i) or by the start/end of the respective transcripts, disregarding in the latter
case variations in the exon-intron structure caused by alternative transcription
start/termination rather than by different choices of the splicing machinery (iii).
Parameter d � 2 is determined a priori, hitherto to our knowledge only pairwise
events have been considered in AS analyzes. If d includes all variants shown by
the annotation in the corresponding genomic region, we call the event “complete”
w.r.t. the given annotation.

2.2 Splicing Graphs

As described previously in [29], we define a splicing graph G(V, E) on a ge-
nomic locus as a directed acyclic graph (DAG) with each vertex s ∈ V de-
scribing non-redundantly a site of the transcripts in a locus. Now each edge
s → t ∈ E consequently represents an exon (type(s) ∈ {start, acceptor}) or
an intron (type(s) = donor) with transcript support transcripts(s → t) =
transcripts(s) ∩ transcripts(t). In order to deal with alignment errors, introns
with unusual splice site sequences are marked by valid(s → t) = false. In this
work, introns have been considered as “trustworthy” (valid (s → t) = true)
if they matched the sequence combinations (donor/acceptor) GT/AG, GC/AG,
ATATC/AG, ATATC/AC, ATATC/AT, GTATC/AT or ATATC/AA as these constitute over
90% of the human introns—including introns spliced by the U12 spliceosome.
However, other criteria may be applied to distinguish introns from alignment er-
rors, for instance involving their length or class(s) and class(t) of the delimiting
sites.

Subsequently, V is completed by inserting two virtual sites, root =
(−∞, T, RefSeq, root) and leaf = (+∞, T, RefSeq, leaf), which are connected
to/from each transcription start/end site: E ∪ (root → s) ∪ (t → leaf ) for all
s, t ∈ V with type(s) = start and type(t) = end. Furthermore, w.r.t. trun-
cated transcripts, all edges si → t at the transcript extremities with type(si) =
start, class(si) = EST are coalesced into one edge s → t, s = minargsi (pos(si)),
and correspondingly all edges s → tj with type(tj) = end, class(tj) = EST into
one edge s → t, t = maxargtj (pos(tj)). This removes variants that only dif-
fer from each other in the truncation point of the first/last exon. Additionally,
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Fig. 1. (a) A cutoff showing 8 sites 〈s1, . . . , s8〉 from a locus with k = 3 transcripts
(rna1, rna2 and rna3). The exon-intron structure is shown schematically, i.e., exons
(green boxes) and introns (lines) are not drawn to scale. Different variants can be ob-
served, for instance (s1, s5, {rna1, rna2}). (b) The corresponding splicing graph struc-
ture after contracting uninformative vertices. Dotted lines indicate the paths supported
by single transcripts rna1 (red), rna2 (green) and rna3 (blue). (c) Ovals highlight all
3 bubbles, that is (s1, s6, {{rna2}, {rna3}}) (yellow), (s5, s8, {{rna1}, {rna2}}) (red)
and (s1, s8, {{rna1}, {rna2}, {rna3}}) (blue). The orange area in contrast does not
represent a bubble because between s5 and s6 only exists one variant (i.e., rna2).

in order to compensate for truncations at exon boundaries, transcription starts
(respectively ends) s are replaced by acceptors (donors) if there is evidence for
such in other transcript data at pos(s). Finally, adopting the technique described
in [30], vertices with outdeg(s) = indeg(s) = 1 are collapsed because they are
uninformative w.r.t. the subsequently described technique (Appendix A.2). On
the remaining vertices s ∈ V (Fig. 1b) we define a preorder � by extending the
natural total order of their genomic position pos(s) as follows:

Definition 3. The preorder � on the sites s ∈ V orders them by the total or-
der on their genomic position pos(s) from 5’ to 3’ and their type, s.t. 5’ exon
boundaries precede 3’ exon boundaries at the same genomic position s ≺ t:
pos(s) < pos(t) ∨ (pos(s) = pos(t) ∧ type(s) ∈ {start, acceptor}).

Note that by the properties of the graph construction, there exist no two vertices
s, t ∈ V, pos(s) = pos(t) with type(s) = start, type(t) = acceptor nor with
type(s) = end, type(t) = donor. Obviously, for all s ∈ V, s /∈ {root , leaf }, it
holds root ≺ s ≺ leaf .

2.3 Subgraphs Describing AS Events: Bubbles

In G, a variant p = (s, t, Xp) is a path (s, . . . , t) with a non-empty set of transcript
support Xp (Def. 1), which excludes all paths in G describing splicing structures
that have not been observed in nature. Subsequently, the variants between two
vertices s, t ∈ V are described by paths with s as common tail vertex, t as
common head vertex and a set of non-empty partitions Xs,t.

Observation 1. For every pair of vertices with transcripts(s) ∩
transcripts(t) = ∅, where s ≺ t there exists at least one variant p = (s, t, Xp)
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with Xp ⊆ transcripts(s) ∩ transcripts(t). An edge u → v, s � u ≺ v � t with
(transcripts(u → v) ∩ Xp) � Xp splits Xp into the partitions Xp′ = transcripts
(u → v)∩Xp and Xp′′ = Xp \Xp′ . Recursive splitting of partitions across all edges
between s and t results in the “partition set” Xs,t describing all variants. For the
union of transcripts in the partitions of Xs,t it naturally holds:

⋃

rna∈X,X∈Xs,t

rna = transcripts(s) ∩ transcripts(t) .

Consequently, if |Xs,t| > 1 there exist different variants between s and t (Obs. 1).
The subgraphs of G constituted by these variants are called bubbles (Fig. 1c).

Definition 4. A “bubble” (s, t, Xs,t) is a subgraph of G delimited by the vertices
s ≺ t that comprises the maximal set of variants between s and t defined by the
partition set Xs,t, |Xs,t| � 2 (maximality criterion for the number of variants) s.t.
there exists no Xu,v with Xs,t ⊆ Xu,v for any s � u ≺ v � t with (s, t) = (u, v)
(minimality criterion for the boundaries). We say s to be the “source” and t to
be the “sink” of the bubble.

By Def. 4, bubbles are subgraphs that involve cycles in the undirected graph
underlying G. However, to our knowledge no graph structure described earlier on
DAGs matches the requirements for a bubble.1 Note that (s, t, Xs,t) is equivalent
to the notation of an AS event {pi}d

i=1 for pi = (s, t, Xpi), Xs,t =
⋃

pi
(Xpi). It

is straightforward to show that each d-dimensional AS event according to Def. 2
is reflected by a combination of variants {Xpi}d

i=1 ⊆ Xs,t in a bubble of G
(Lemma 1, proof in Appendix A.3).

Lemma 1. For each AS event {pi}d
i=1 there exists a bubble (s, t, Xs,t) with a

combination of partitions {Xpi}d
i=1 ⊆ Xs,t that describe the different variants of

the event.

Moreover, the following can directly be deduced from Def. 4:

Corollary 1. Bubbles can intersect in vertices and edges.

Corollary 1 (proof in Appendix A.4) outlines the complexity of overlaps between
bubbles. Fig. 1c for instance shows 3 edge-intersecting bubbles. Theorem 1 how-
ever shows that there is a unique set of bubbles in G.

Theorem 1. The set of all bubbles contained in G is unique.

Proof. Def. 4 implies that—given a pair of vertices (s, t), s ≺ t—there exists none
(|Xs,t| < 2) or exactly one bubble (containing all |Xs,t| variants) between them.
The complete set of bubbles as obtained from all tuples (s, t) ∈ V is therefore
unique and can be obtained by any arbitrary iteration over all s ≺ t. ��
1 Blobs described earlier [31] in phylogenetic networks with recombination cycles are

defined as subgraphs involving all edge-intersecting cycles of the underlying undi-
rected graph—thus a blob may coincide with an isolated bubble, but comprises
multiple edge-intersecting bubbles. Whereas, a single recombination cycle—a gall
[32]—does not necessarily describe the complete substructure of a bubble as by the
maximality criterion for the number of variants in Def. 4 a bubble contains more
than one cycle iff there are >2 variants between its source and sink.
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2.4 AS Events Reflected by Bubbles

In the preceding section we show that each d-dimensional AS event is reflected
by a variant combination in a bubble (Lemma 1). However, the mapping from AS
events to d-tuple combinations of variants is not injective, hence not necessarily
every combination of d variants in a bubble results in an AS event according to
Def. 2. A bubble (s, t, Xs,t) maximally harbors

(
|Xs,t|

d

)
events of dimension d,

i.e., combinations {Xpi}d
i=1. Obviously, for d > |Xs,t| there exists none and for

d = |Xs,t| there exists exactly one AS event. However, in the case of d < |Xs,t|
variant combinations may occur that are all intersecting in one or more sites
u /∈ {s, t} additional to the source/sink (Lemma 2, proof in Appendix A.5).

Lemma 2. Some variants in a bubble (s, t, Xs,t), |Xs,t| > 2 may be intersecting
in vertices (in addition to {s, t}) or in edges. Such variants imply the presence
of at least one other bubble (u, v, Xu,v) with s � u ≺ v � t, (s, t) = (u, v). In this
specific geometry of overlapping bubbles (s, t, Xs,t) is said the “outer bubble” that
contains the “inner bubble” (u, v, Xu,v).

In Fig. 1c, the red and the yellow bubble are inner bubbles of the blue bubble.
Further examples of outer and inner bubbles are shown in Fig. 2a and b. Note
that inner bubbles comprise variants that are sub-paths of variants in the outer
bubble and neither vertex-intersection (e.g., the yellow and the red bubble in
Fig. 2b) nor edge-intersection (e.g., the yellow and the red bubble in Fig. 1c)
nor the order of the source/sink vertices s � u ≺ v � t (e.g., the blue bubble in
Fig. 2c) alone is sufficient for the geometry described in Lemma 2. Subsequently,
Theorem 2 shows that for a combination of variants in an outer bubble that
violates condition (ii) of Def. 2 there exists a combination of variants in an inner
bubble containing the corresponding partitions that does not.

(a) (b) (c)

s1

s2

s3 s4

s5

s6

s2

s1

s3

s4

s1
s2

s3

rna1

rna1

rna1
rna1

rna2

rna2

rna2
rna2

rna2

rna3

rna3

rna4

rna3
rna3

rna1

rna2 rna2

rna1
rna2

rna3

Fig. 2. Subgraphs showing different constellations of edge-intersecting bubbleswith sites
si numberedaccording topos(si). (a)Theouterbubble (s1, s4, {{rna1}, {rna2}, {rna3}})
(blue) contains the inner bubble (s2, s3, {{rna1}, {rna2}}) (yellow). (b) The inner bub-
bles (s1, s2, {{rna1}, {rna2}}) (yellow) and (s2, s3, {{rna1}, {rna2}}) (red) are both con-
tained in the outer bubble (s1, s3, {{rna1}, {rna2}, {rna3}}) (blue). (c) Although bub-
ble (s3, s4, {{rna2}, {rna3}}) (blue) edge-intersects with (s2, s6, {{rna1}, {rna2}}) (red)
and (s1, s5, {{rna3}, {rna4}}) (yellow), it is not an inner bubble because neither the par-
titions in Xs2,s6 nor in Xs1,s5 are all subsets of partitions in Xs3,s4 .
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Theorem 2. Given an outer bubble (s, t, Xs,t), for any combination {Xpi}d
i=1,

Xpi ∈ Xs,t that corresponds to a set of variants {p1, . . . , pd} intersecting in more
vertices than s and t, there exists a combination of partitions {Xp′

i
}d

i=1, Xp′
i

∈
Xu,v of an inner bubble (u, v, Xu,v) s.t. Xpi ⊆ Xp′

i
and

⋂
p′i = {u, v}.

Proof. By Lemma 2, an outer bubble (s, t, Xs,t) contains i � 2 variants pi that in
G are super-paths of variants p′i of its inner bubble (u, v, Xu,v). As the partition
Xp of a variant p is given by the intersection of the transcript support of all sites
in p, it holds Xpi ⊆ Xp′

i
. ��

For instance, for d = 2 the blue bubble in Fig. 1c gives rise to three partition com-
binations. Variants (s1, s8, {rna1}) and (s1, s8, {rna2}) contradict condition (ii)
in Def. 2 because they intersect in {s1, s5, s8}, but the variants (s5, s8, {rna1})
and (s5, s8, {rna2}) of the red inner bubble describe an AS event. Similarly the
variants (s1, s8, {rna2}) and (s1, s8, {rna3}) are super-paths of variants
(s1, s6, {rna2}) respectively (s1, s6, {rna3}) (yellow bubble) that represent an
AS event. The partition combination {{rna1}, {rna3}} in the blue bubble fi-
nally represent an AS event as there is no inner bubble (u, v, Xu,v) with {rna1} ⊆
Xi, {rna3} ⊆ Xj , (Xi, Xj) ∈ Xu,v. Correspondingly, variants with the partition
combination {{rna1}, {rna2}} in the blue bubbles in Fig. 2a and 2b do not
describe AS events.

2.5 An Exact Method for the Exhaustive Extraction of AS Events
with Arbitrary Dimension

We now present an algorithm to extract all events of dimension d from a splicing
graph G. Algorithm 1 iterates for all possible sinks of bubbles t over preceding
edges s → u, s ≺ t according to the order in Def. 3, until the 5’most source ver-
tex with transcripts(s) ⊇ transcripts(t) is reached. During the inner iteration,
X stores the current set of partitions which is constantly subdivided by inter-

sect() as new vertices s with outdeg(s) � 2 are iterated (Obs. 1). Initially, X
consists of one partition containing all transcripts supporting t. C administrates
d-tuples of partitions that are excluded from generating AS events in a hierar-
chical data-structure which ensures to also exclude tuples comprising subsets of
these partitions as the splitting of X proceeds (consider the relation of partitions
between variants of outer and inner bubbles in Theorem 2).

For any vertex s, transcript support of valid outedges s → u is intersected with
the earlier found partitions in X to collect the partition set Xs,t (Obs. 1). Subse-
quently, extractEvents() outputs AS events as implied by all d-tuples in Xs,t

that are not yet contained in C and for which the corresponding variants describe
an alternative splice site (condition (iii) in Def. 2). In this subroutine, the partition
d-tuples of all successfully extracted AS events are added to C in order to exclude
them from generating AS events in further iterations of the inner loop.

Lemma 3. The partition set Xs,t between two vertices s and t generated by Al-
gorithm 1 is complete and corresponds to the partition set of all different variants
from s to t.
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Input : A DAG G(V, E) and the dimension of the AS events d.
Output: All AS events of dimension d reflected by G.

for all vertices t ∈ V, indeg(t) � d (in genomic order ≺) do
X ← {transcripts(t)}
C ← ∅
for all inedges v → t do

C ← transcripts(v → t)

for all vertices s ≺ t, outdeg(s) � 2 (in reverse genomic order 	) do
Xs,t ← ∅
for all s → u ∈ E do

if valid(s → u) then
Xs,t ← Xs,t ∪ intersect(transcripts(s → u), X )

remove(transcripts(s → u), X )

if |Xs,t| � d then
extractEvents(s, t, Xs,t, d, C)

X ← X ∪ Xs,t

if transcripts(t) ⊆ transcripts(s) then
break

Algorithm 1. RetrieveASevents(V, E, d)

By Theorem 2 partitions of outer bubbles that are included in partitions of
inner bubbles (i.e., super-paths in G) do not give rise to AS events. To prove the
correctness of Algorithm 1, it remains to be shown how such combinations are
prevented:

Lemma 4. Algorithm 1 does not consider variant combinations of outer bubbles
with sub-paths that are part of an inner bubble.

Given Lemma 3 (proof in Appendix A.6) and Lemma 4 (proof in Appendix A.7),
it can be shown that the set of bubbles found by Algorithm 1 is complete and
non-redundant:

Theorem 3. Algorithm 1 finds all bubbles in G with at least d partitions and
extracts AS events that comply with Def. 2.

Proof. The main double loop considers all possible boundaries (s ≺ t) of bubbles
with dimension d. Every boundary pair (s, t) is iterated exactly once, hence no
bubble is found twice by the procedure. Given Lemma 3, it can be concluded that
Algorithm 1 iterates all bubbles in G (Theorem 1). For each bubble (s, t, Xs,t),

all
(

|Xs,t|
d

)
variant combinations satisfying condition (i) of Def. 2 are considered.

Lemma 4 shows how tuples contradicting condition (ii) are excluded. The check
for the presence of at least one alternative splice site in extractEvents()
ensures that the extracted AS events fulfill condition (iii) of Def. 2 and concludes
the proof. ��
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To estimate the complexity of Algorithm 1, we consider that in each of the
O(|V |) iterations of the outer loop, the transcripts of at most O(|E|) edges have
to be compared to the transcripts in the current partition-set X . Let outdeg(s)
be the average out-degree of a vertex s ∈ V , | transcripts(s → t)| be the av-
erage number of transcript support for an edge, and |X | be the average size
of the partition set between two vertices. Assuming the comparison of tran-
script sets to be possible in (sub-)linear time (Appendix B), time complexity for
retrieving all bubbles can be estimated by O (|V | · | transcripts(s → t)| · |X |)
which, considering the reciprocal relation | transcripts(s → t)| ∼ k

|X | , can be
approximated by O (|V |k). Disregarding the update time of C and X , and as-
suming the check for valid partition combinations in C to be feasible in con-
stant time, the complexity of extractEvents() is determined by the output
size

∑
(s,t)∈V

(
|Xs,t|d

)
plus some additional iterations for variants at the tran-

script extremities that are lacking an alternative splice. Space requirements for
storing the splicing graph as given in Algorithm 1 are O (k(|V | + |E|)), but
can technically be reduced to max (O (k|V |) , O (k|E|)). Additionally, another
O(|X | · | transcripts(s → t)|) ∼ O(k) is required to store the current partition
set in the double main loop of Algorithm 1.

3 Results

For our analysis, we used human and mouse annotations as downloaded from the
UCSC genome browser [33] that contain transcripts of the NCBI reference se-
quence database (RefSeq) [25], the mRNAs in GenBank [26] and ESTs from the
GenBank subset called dbEST [34] aligned to the genomes (reference sequence
hg18 as generated by the centers of the Human Genome Sequencing Consor-
tium [35], respectively mm8 by the Mouse Genome Sequencing Consortium [36])
using the program blat [23]. These two organisms have the largest amount of
EST data available in dbEST (8,134,045 ESTs for human, respectively 4,850,243
for mouse), of which we took the subset of ESTs that show signs of splicing –
as specified by UCSC (i.e., “intronESTs”—the “spliced ESTs” track). Subse-
quently, Algorithm 1 has been applied iteratively for each locus in the datasets.

3.1 The Information of mRNAs and ESTs about New Splice Forms
Is Highly Redundant

As a proof of principle, we applied our program to transcript annotations of dif-
ferent sizes (i.e., RefSeq, RefSeq+mRNAs and RefSeq+mRNAs+ESTs in human
and mouse) and observed the time needed to explore the AS diversity found for
different dimensions d ∈ {2, 3, 4}. Detailed characteristics of these test runs are
shown in Appendix B Tab. 2, from which we summarize here the dependency of
the running time on the number of transcripts in the input (Fig. 3).

Obviously, the time effort grows linear with the number of transcripts k in
the dataset—independent of different values for d. These characteristics indicate
the following attributes for the input: first, there is a high degree of redundancy
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Fig. 3. Relation between the number of transcripts in the input and the running time of
our implementation of Algorithm 1 for the datasets RefSeq (yellow), RefSeq+mRNAs
(red) and RefSeq+mRNAs+ESTs (blue). The datapoints (circles for human and crosses
for mouse) are taken from the extraction of events with dimension d = 2, d = 3 and
d = 4 in the respective dataset. Clearly, the running time shows a linear dependency
on the number of transcripts in the input (dashed line for human and dotted line for
mouse). Packages from the R software [37] have been used when creating the plot.

in new splice forms because the comparatively big amount of transcript data
in mRNAs and the even bigger one in ESTs does not add many more informa-
tive sites |V |. Second, the time complexity does not depend on dimension d of
the extracted events which suggests that—when retrieving AS events of higher
dimension—the time needed for additional combinations is about compensated
by the time gained by disregarding all bubbles with |Xs,t| < d. Indeed, the num-
ber of complete AS events with d variants decreases in an exponential manner
when considering higher dimensions d (Appendix B Fig. 5).

3.2 More than a Quarter of the AS Events in Human Involve More
than 2 Variants

From the results of Section 3.1 we observe in human 24,904 new events—in 6,945
different structures—that describe splicing variations comprising more than 2 al-
ternatives and constituting >27% of all events. Motivated by the large fraction
of events with a true dimension d > 2, we set off to explore up to which degree
pairwise transcript comparison conducted usually provides an adequate picture
of the true splicing complexity. To this end, we compare for the human anno-
tation the number of the 5 hitherto analyzed AS patterns found in complete
events with the number obtained by projecting all splicing variations to events
of dimension d = 2 (Tab. 1).
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Table 1. For each of the 5 types of AS events usually considered in literature, the
number of corresponding structures found in pairwise events (d = 2) is shown in com-
parison to the fraction of them obtained when considering complete events. As can be
seen, the fraction of exons that are erroneously observed as “mutually exclusive” in the
pairwise projection is especially high.

structure d = 2 events complete events fraction
skipped exon 42,054 24,547 58.4%
alt. acceptors 19,382 14,315 73.9%
alt. donors 17,727 13,647 77.0%
retained intron 7,939 5,990 75.5%
mutually exclusive exons 5,567 327 5.9%

As can be seen from Tab. 1, the fraction of splicing variations that are correctly
described by a single pairwise event varies substantially amongst the different
AS patterns. Whereas ∼ 1

4 of the pairwise AS events that describe retained in-
trons or alternative donors/acceptors are part of variations between more than
two transcripts, this holds > 40% of the skipped exons. Strikingly, most (∼94%)
of the splicing variations that in pairwise transcript comparisons lead to the ob-
servation of “mutually exclusive exons” are in reality part of events with d > 2.
Fig. 6 (Appendix C) summarizes the most abundant complete AS events with
d > 2. Obviously, the majority of alleged exon skipping events in reality is part
of a variations where another exon upstream or downstream is also missing in
some transcript evidence. These events are located in the red area of Fig. 6 and
constitute in total 4, 928 (∼28%) of the “wrong” pairwise events. Another sub-
stantial part of d = 2 skipped exons (∼26%= 4, 425 events) indeed co-occurs with
splice donor/acceptor variations in the upstream/downstream exon (orange area
in Fig. 6). The latter events also make up about half of the erroneously observed
alt. donors/acceptors of which the rest mainly involves structures exhibiting
more than one option for the donor/acceptor site (3, 646 events, yellow area
in Fig. 6). Retained introns in events with d > 2 often co-occur with variable
donors/acceptors (886, that is nearly half of the retained introns observed when
projecting to d = 2, are in the green and cyan areas of Fig. 6). 2, 032 presumptive
mutually exclusive exons are in AS events that show optional inclusion of 2 or
3 neighboring exons (violet area in Fig. 6). In the next section we elaborate on
interesting differences in properties between these groups.

3.3 Characteristics of Events with Mutually Exclusive Exons
Distinguish from Events Describing 2 Optionally Included
Exons

Amongst the variations that involve 2 neighboring exons that are optionally in-
cluded, 4 major groups that differ in structure can be distinguished: group 1 –
events that include strictly one of the exons (327 cases,∼6%), group 2 – events that
show inclusion of none or exclusively one of the alternative exons (849 cases, 15%),
group 3 – events that include one or both of them (460 cases, ∼8%) and group 4 –
events that include one, both or none of the alternative exons (377 cases, ∼7%).
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Usually, the picture of “mutually exclusive exons” fits the structure of group 1,
however, one may still term the exons of events in group 2 as “mutually exclusive”
since there is no transcript evidence including both of them.

Fig. 4 shows the distribution of intron lengths separately for the 3 introns of
events in group 1 to 4 (in coding regions of the human genome)—which clearly
differs: events of group 1 show significantly shorter 2nd introns (median 1, 100
nt, p-value∼ 5e−7 two-sample Kolgomorov-Smirnov test) than the two flanking
introns (median 1, 929 nt). In contrast, middle introns in group 4 are only slightly
shorter (median 2, 059 vs 2, 246 nt, p-value> 0.69). Events of group 2 exhibit
2nd introns that are a bit, but not significantly, longer (median 2, 897 vs 2, 342
nt, p-value> 0.13), whereas group 3 contains more longer such introns (3, 288 vs
2, 305 nt, p-value∼ 1.3−4).

To get a deeper resolution on the differences, we analyzed the histograms of the
length distributions for the middle introns in each of the 4 groups (Appendix C
Fig. 7). Group 1 shows > 50% of events (91) with short 2nd introns (< 1, 500
nt, the median intron length in human) and ∼ 1

3 (59 introns) very short introns
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Fig. 4. Distribution of intron lengths occurring in AS events with two neighboring
exons that are optionally included in coding regions of the human genome: mutually
exclusive exons (exactly one exon included, red), events that include one of the two
exons or none (number of included exons={0, 1}, yellow), events that include one of the
two exons or both (green) and events that include one of the two exons, none or both
(blue). Distributions are shown separately for the intron upstream of the first (i.e., the
most 5’) exon (“intron 1”), the intron between the two optional exons (“intron 2”) and
the intron downstream of the second exon (“intron 3”). The figure has been generated
involving the boxplot() function of the R package [37] where the boxes represent the
lengths for the 2nd and 3rd quartile of the distribution, separated by the median (bold
vertical line). The 1st respectively the 4th quartile are shown as dashed lines.
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(< 500 nt). Also group 2 exhibits several events with short (124) and very short
(67) middle introns, still about twice as many as in group 3 and 4 (66 short and
33 very short introns). These observations support the hypothesis that events
in group 1 and 2 (in contrast to events of group 3 and 4) may involve common
molecular mechanisms to ensure mutual exclusion of the exons.

4 Discussion

We have developed an algorithm that efficiently retrieves arbitrarily complex AS
events non-redundantly from large datasets, combining full-length cDNAs with
highly fragmented ESTs. Due to an intrinsic clustering of transcripts into loci,
no preliminary EST-clustering is required. Furthermore, by disregarding introns
that appear to stem from technical artifacts in the transcript annotation, vari-
ations in the exon-intron structure are reduced to presumptive AS events. The
method—comprising the steps of parsing the file with the annotated transcripts,
clustering them into loci, retrieving the splice site sequence for all introns and
extracting the events—copes with the to our knowledge biggest dataset of ∼ 4
million spliced transcripts in human in about 2 1

2 hours and retrieves more than
90,000 bona fide AS events. With the area of new sequencing technologies having
just begun, ESTs can be produced rapidly (about a week from tissue harvest-
ing to completion of DNA sequencing) and at very low costs (e.g., <$0.03 per
EST using pyrosequencing). Therefore, we see a high potential of our method in
high-throughput systems to explore rapidly splicing variations reflected by the
transcriptome of different organisms, tissues, cells or cell states.

In human, our method describes a plethora (> 24, 000) AS events that involve
actually more than two alternatives and that have hitherto not been described in
their real complexity. Consequently, we estimated that at least ∼ 1

4 of the splicing
variation has been ignored or miscategorized in previous works. Especially when
regarding the alternative inclusion of two neighboring exons, we find that only the
minority of these are what fits the common understanding of “mutually exclusive
exons”. We show that each of the most frequent of those patterns exhibits unique
characteristics in the length distribution of the introns located between the two op-
tional exons: many events that include exclusively one exon comprise (very) short
such middle introns in contrast to events that alternatively include both exons.
One could hypothesize that the common property of the former events could stem
from a common molecular mechanism as described by steric blocking effects in
the splicing process of mutually exclusive exons [38]. However, additional analyzes
have to be conducted to support this hypothesis as literature describes a wide spec-
trum of mechanisms that can lead to mutual exclusion of exons, e.g., the relative
strengths of 5’ and 3’-splice sites [39,40,41], the pyrimidine content of a 3’-splice
site [42,41], the location and number of branchpoints [43,44,45,46,38,47,46,48],
branchpoint sequences [49,50,41], intron sequences between branchpoint and 3’-
splice site [48,51,47], exon sequences [52,53,54,55,56,57,58,59,60] and trans-acting
factors such as ASF or SF2 [61,62].
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A Complementary Definitions and Proofs

A.1 A General Definition for Pairwise AS Events

Without restricting the molecular mechanism acting during the splicing process
on a premature transcript a priori to exon or intron definition and—by this—to
allow for possible interactions of parts of the splicing machinery across all exons
and introns when delimiting AS events in exon-intron variations, we earlier have
proposed a definition for pairwise (d = 2) AS events as stated in Def. 5 (Sammeth
et al., to appear).

Definition 5. Comparing two transcripts (rna1, rna2), an AS event is a se-
quence of sites A = 〈sA

i 〉g
i=1 satisfying the following conditions: (i) (consecu-

tiveness of sites) all sites sA
i that are supported by rna1 = 〈srna1

i 〉n1
i=1 form a

consecutive subsequence
⋃

si
{si : rna1 ∈ transcripts(sA

i )} = 〈srna1
j 〉b

j=a with
1 � a < b � n (and correspondingly all sites of A that are in rna2). (ii) (mini-
mality of common flanks) with the exception of the common sites at the flanks of
the event, all sites are variable: {rna1, rna2} ⊂ transcripts(sA

i ) for all 1 < i < g.
(iii) (prerequisite of an alternative splice site) A contains an alternative splice
site si, 1 < i < g (Def. 6).

Note that by Def. 5 there can exist different pairwise AS events with the same set
of variable splice sites but different common sites at their flanks, which are not
to be treated identical as the flanking splice sites delimit the first/last variable
exon/intron. Furthermore, an AS event requires the presence of an alternative
splice site in the pair of transcripts (Def. 6).
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Definition 6. Comparing any two transcripts rna1 = 〈srna1
i 〉n1

i=1 and rna2 =
〈srna2

i 〉n2
i=1, an alternative splice site s is a variable site (i.e., | transcripts(s) ∩

{rna1, rna2}| = 1) that (i) is a splice site (type(s) ∈ {donor, acceptor}), and (ii)
is contained within the common genomic region of both transcripts.

A.2 Uninformative Vertices

When constructing the splicing graph G = (V, E), we collapse vertices that are
uninformative for delimiting bubbles in G as demonstrated by Lemma 5.

Lemma 5. Vertices v with indeg(v) = outdeg(v) = 1 are uninformative for de-
limiting bubbles in splicing graphs and can be collapsed without loss of generality
of Algorithm 1.

Proof. From the minimality criterion for the boundaries in Def. 4 can directly be
deduced that for a bubble (s, t, Xs,t) holds outdeg(s) > 1 and indeg(t) > 1. Ver-
tex v therefore can neither be source nor sink of a bubble. Let s � u ≺ v ≺ w � t
be contained in the bubble and u → v be the inedge and v → w be the outedge
of v. Then naturally transcripts(u → v) = transcripts(v) = transcripts(v →
w) = transcripts(u) ∩ transcripts(w) holds and the corresponding partition is
equivalently described by a single edge v → w. ��

A.3 Proof of Lemma 1

Proof. Clearly, there exists a set of paths in G according to the variants of an AS
event {pi}d

i=1. As by Def. 2, an AS event of dimension d is a set of sites that are not
common to all of the d compared transcripts, flanked by splice sites (s, t) contained
in all of them or the transcript start/end. Since the completion of G by (root , leaf )
ensures common vertices also in AS events including variable transcript extremi-
ties,

⋂
pi

(Xpi) = {s, t}holds for all AS events according to Def. 2 and consequently
there exists a bubble (s, t, Xs,t) with {Xpi}d

i=1 ⊆ Xs,t. ��

A.4 Proof of Corollary 1

Proof. As different splicing structures may involve common splice sites, exons or
introns, two variants (p1, p2) with p1[1] = p2[1] ∨ p1[m1] = p2[m2] can intersect
in vertices or edges. Given additionally the variants p3 and p4 with p3 ∩ p1 =
{p1[1], p1[m1]} and p4 ∩ p2 = {p2[1], p2[m2]}, p1, p3 and on the other hand p2, p4
are part of different bubbles. ��

A.5 Proof of Corollary 2

Proof. Let the bubble (s, t, {Xp1 , Xp2 , Xp3}) contain 3 variants s.t. p1 ∩p2 ∩p3 =
{s, t} and without violating Def. 4 p1 ∩ p2 = {s, t, u}. By p1 = p2 and s ≺ u ≺ t
(Def. 3), p1 and p2 differ between s and u or between u and t (or in both parts).
Correspondingly, there exists a bubble (s, u, Xs,u), {Xp1 , Xp2} ⊂ Xs,u and/or a
bubble (u, t, Xu,t), {Xp1 , Xp2} ⊂ Xu,t. The argumentation can straightforwardly
be extended if p1 and p2 intersect in more than one vertex and hence differ at
least between two vertices u and v. ��
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A.6 Proof of Lemma 3

Proof. Algorithm 1 initializes the partition sets with transcripts(t) and subse-
quently subdivides them by intersect() with the transcript sets Xs,u along
out-edges of s. Thus, all variants are found based on Obs. 1. ��

A.7 Proof of Lemma 4

Proof. Given an outer bubble (s, t, Xs,t) and an inner bubble (u, v, Xu,v), we
distinguish two cases. (i) v = t (e.g., the red and the blue bubble in Fig. 2b):
by the iteration order over sink vertices in genomic order ≺ and over source
vertices in reverse genomic order �, (u, v, Xu,v) is iterated before (s, t, Xs,t) and
partition combinations are stored in C accordingly. (ii) v ≺ t: if v → t ∈ E,
the initialization of C with the transcript support of all in-edges of t prevents
from variant combinations that are super-paths of variants in the inner bubble
(e.g., the yellow and the blue bubble in Fig. 2a); otherwise (e.g., the yellow and
the blue bubble in Fig. 2b) there exists a bubble (v, t, Xv,t) (the red bubble in
Fig. 2b) as inner bubble of (s, t, Xs,t) and the problem is reduced to case (i). ��

B Implementation and Benchmark Details

Algorithm 1 has been implemented as described in JAVA (compliance level 1.5).
Technical optimizations include the separation of operations in Algorithm 1 from
program parts that handle the I/O by different JAVA threads. Parsing the input
data and performing the clustering of genes into loci may take a considerable
amount of time—given that the input file including EST data in human is nearly
as big as the complete sequence of the human genome—as does the writing of
the found AS events to disk if output size is big. Time benchmarks with this
parallelized program therefore reflect about the algorithmic time effort. Fur-
thermore, partition comparisons (e.g., intersection operations) are optimized by
encoding the respective transcript support in 64-bit number arrays where each
bit indicates whether a corresponding transcript of the locus is contained in the
partition or not. Memory requirements of storing a bit for every transcript in
the input are negligible compared to the speed up gained in partition compar-
isons. In this way, the current implementation runs optimally on a 64-bit system
architecture with two or more CPUs.

Tab. 2 shows characteristics of the running time for different input annota-
tions and varying projection level d ∈ {2, 3, 4}, or when describing every vari-
ation in its true dimension as reflected in the annotation (complete events).
To give a comparison on the times measured, we extracted pairwise events
using the Astalavista web server [63] (reference). The time complexity of this
technique is quadratic with the number of transcripts in the input (since an
all-against-all comparison is performed on them) as well as quadratic with the
number of AS events found in each locus (as they are compared 1-by-1 for non-
redundancy). Note that the number of events found by this reference method dif-
fers as (i) events are filtered for introns with non-canoncial (GT/AG) introns in the
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variable part of an AS event, and (ii) the method does not perform the confi-
dence check for the transcription start/end sites of mRNAs or ESTs and there-
fore finds a magnitude of variations that stem from truncated transcript data.
Thereforetimes for runs of the reference method are not directly comparable to
our method, but it is clear that—although performing faster in the RefSeq data
set of human and mouse, the reference is much slower then the here described
technique when including mRNA data, and inapplicable to EST data.

Table 2. From the human and the mouse annotation the RefSeq transcripts (yellow),
a dataset containing RefSeq transcripts and mRNAs (“+mRNA”, red) and a dataset
containing RefSeq transcripts, mRNAs and ESTs (“+ESTs”, blue) have been applied in
order to benchmark our method in the extraction of AS events with varying dimension
d. The number of transcripts and the time (hh:mm:ss) of a reference method for pairwise
AS event extraction is additionally shown.

human mouse
dataset RefSeq +mRNA +ESTs RefSeq +mRNA +ESTs
transcripts 25,161 206,779 4,093,918 20,618 244,882 2,219,200

time (reference) 0:00:30 1:10:24a –b 0:00:14 1:19:58c –b

events d = 2 9,477 34,603 134,875 2,638 19,127 52,508
time 0:01:04 0:05:30 2:28:36 0:00:30 0:04:23 0:32:02

events d = 3 7,173 17,294 97,193 2,669 4,839 15,896
time 0:00:58 0:05:10 1:51:34 0:00:26 0:04:00 0:30:54

events d = 4 21,620 43,476 153,292 9,321 10,570 17,025
time 0:01:02 0:05:12 1:57:22 0:00:26 0:04:21 00:27:30

complete events 6,493 26,412 91,117 1,787 16,184 42,198
time 0:00:58 0:05:10 1:55:12 0:00:32 0:04:42 0:29:53

a Skipping 5 loci with > 1000 transcripts, i.e., a locus on chr2 (88,937,526–89,411,301)
encoding parts of antibodies—mostly variable regions (2,645 transcripts), the lo-
cus on chr14 (21,180,949–22,090,938) encoding the T-cell receptor α chain (1,493
transcripts), a locus on chr14 (104,896,270–106,354,328) containing genes for sev-
eral immunoglobulin heavy α, β and γ chains (9,766 transcripts), the locus on chr7
(141,647,256–142,210,559) coding for the T-cell receptor β chain (2,934 transcripts)
and the locus on chr22 (20,710,462–21,595,078) encoding the immunoglobulin λ chain
(1,931 transcripts).

b Test run exceeded memory (>16GB) or time limits (5 days).
c Skipping 9 loci with > 500 transcripts, i.e., 5 loci on chr6 (with 629, 866, 878,

1,167 respectively 1,198 transcripts) encoding parts of antibodies (IgG kappa chain,
variable regions, etc. ...), the locus of the Trpm1 gene on chr7 (510 transcripts),
the locus of the Eef2 gene on chr10 (548 transcripts), an immunoglobulin locus on
chr12 (10,275 transcripts), and a locus with several olfactory receptor genes on chr14
(1,196 transcripts).
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As can be observed, running times increase mostly linear with the number of
transcripts in the input. The expected exponential increase of the output size
(and therefore, of the running time) is compensated by an exponential decrease
of the number of events found for increasing dimension size (Fig. 5).
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Fig. 5. Exponentially decreasing relation between the dimension d of an event and the
number of complete AS events with d variants in the human (black curve) and the
mouse (red curve) transcriptome
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C AS Events of Arbitrary Dimension
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Fig. 6. AS events with d > 2 found in the 50 most abundant complete events of the
human transcriptome. In pairwise projections these examples show multiple instances
of alternative donors/accecptors (yellow area), skipped exons (red area), alternative
donors/acceptors and skipped exons (orange area), skipped exons and mutually exclu-
sive exons (violet area), alternate donors/acceptors and retained introns (green area)
and of alternate donors/acceptors, skipped exons and retained introns (cyan area).
Above each pictogram the number of events with the corresponding structure is given.
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Fig. 7. Distribution of lengths exhibited by the 2nd intron of events that involve alter-
native neighboring exons, of which either strictly one is included (mutually exclusive
exons, red), or one of them or none (number of included exons= {0, 1}, yellow), one or
both are included (number of included exons= {1, 2}, green), or, none, one or both are
included (number of included exons= {0, 1, 2}, blue). Red bars mark introns between
1nt and 500nt, yellow bars mark introns between 501nt and 5, 000nt, and green bars
show introns between 5, 000nt and 20, 000nt. Mutually exclusive exons show a large
number of small and some very small middle introns that is partially present in events
where none or one exon is included, but missing in the other variations.
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Abstract. The closest string and substring problems find applications
in PCR primer design, genetic probe design, motif finding, and antisense
drug design. For their importance, the two problems have been extensively
studied recently in computational biology. Unfortunately both problems
are NP-complete. Researchers have developed both fixed-parameter algo-
rithms and approximation algorithms for the two problems.

In terms of fixed-parameter, when the radius d is the parameter, the
best-known fixed-parameter algorithm for closest string has time com-
plexity O(ndd+1), which is still superpolynomial even if d = O(log n).

In this paper we provide an O
�
n|Σ|O(d)

�
algorithm where Σ is the al-

phabet. This gives a polynomial time algorithm when d = O(log n) and
Σ has constant size. Using the same technique, we additionally provide
a more efficient subexponential time algorithm for the closest substring
problem.

In terms of approximation, both closest string and closest substring
problems admit polynomial time approximation schemes (PTAS). The

best known time complexity of the PTAS is O(nO(ε−2 log 1
ε
)). In this paper

we present a PTAS with time complexity O(nO(ε−2)).
At last, we prove that a restricted version of the closest substring has

the same parameterized complexity as closest substring, answering an
open question in the literature.

1 Introduction

The closest string and substring problems have been recently studied extensively
in computational biology [16,18,22,13,24,12,23,15,7,11,29,4,26,30]. The two prob-
lems have a variety of applications in bioinformatics, such as universal PCR
primer design [20,16,5,27,12,31], genetic probe design [16], antisense drug de-
sign [16,4], finding unbiased consensus of a protein family [2], and motif find-
ing [16,12,30,3,9]. In all these applications, a common task is to design a new
DNA or protein sequence that is very similar to (a substring of) each of the given
sequences. In the first three applications, the designed DNA sequence can bind

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 396–409, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to each of the given DNA sequences in order to perform its designated functions.
In the last two applications, the designed sequence acts as an unbiased repre-
sentative of all the given sequences. The common task has been formulated as
the closest string problem and the closest substring problem.

Given n length-m strings s1, s2, . . ., sn, and a radius d, the closest string
problem seeks for a new length-m string s such that d(s, si) ≤ d. Here d(·, ·)
is the Hamming distance. The closest substring problem seeks for a length L
(L ≤ m) string t such that for every i = 1, 2, . . . , n, there is a substring ti of
si with length L such that d(t, ti) ≤ d. The problems may also be described as
optimization problems where the objectives are to minimize the radius d.

Unfortunately, both of these two problems are NP-complete [10,16]. In ad-
dition to many heuristic algorithms without any performance guarantee (for
example [19,23,24]), researchers have developed approximation algorithms and
fixed-parameter algorithms for the two problems. Approximation algorithms sac-
rifice the quality of the solution in order to achieve polynomial time [14]. A poly-
nomial time approximation scheme (PTAS) achieves ratio 1 + ε in polynomial
time for any fixed ε > 0. Fixed-parameter algorithms find optimal solutions with
time complexity f(k) · nc for a constant c and any function f [6]. Here k is a
parameter naturally associated to the input instance.

For fixed-parameter algorithms, Stojanovic et al. [29] provided a linear time
algorithm for d = 1. Gramm et al. [13] provided the first fixed-parameter algorithm
for closest string with running time O(nm + ndd+1). Therefore, for small values
of d their algorithm can solve closest string in acceptable time. In this paper we
present a novel algorithm that finds the optimal solution of closest string problem
with running time O

(
nm + nd · (16|Σ|)d

)
. This is exponentially better than the

previous fixed-parameter algorithm when the alphabet has constant size.
The closest substring problem appeared to be harder than closest string in

terms of parameterized complexity. For unbounded alphabet size, it has been
shown that the problem is W [1]-hard even if all d, n, L are parameters [8,9]. The
W [1]-hardness indicates that the problem unlikely has a fixed-parameter poly-
nomial time algorithm [6]. For |Σ| being a constant or a parameter, the problem
is W [1]-hard even if both d and n are parameters [22]. For a more complete re-
view of the parameterized complexities of the closest substring problem, we refer
the readers to [9,22,25]. Marx [22] gave a |Σ|d(log d+2)(nm)log d+O(1) algorithm
for the closest substring problem. In this paper we present a new algorithm for
closest substring with improved time complexity O

(
(16|Σ|)d · nm�log d�+1

)
.

For approximation algorithms, Lanctot et al. [16] gave the first polynomial
time approximation algorithm with approximation ratio 4

3 + o(1). Li et al. [17]
provided a PTAS for closest string with time complexity O(mnO(ε−5)). Ma [21]
provided a PTAS for closest substring problem. These two PTAS results were
collected in [18]. There have been many negative comments regarding the large
exponent of the PTAS [9,3,11,13,22]. By using a lemma in [22] and an idea of [17],
Andoni et al. [1] proposed a PTAS to obtain a much better time complexity
O(mnO(ε−2 log 1

ε )). By combining our new fixed-parameter algorithm, in Section 5
we provide a simpler PTAS with further improved time complexity O(mnO(ε−2)).
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Noticing the hardness of closest substring problem, Moan and Rusu [25] stud-
ied a more restricted version of closest substring. They put a diameter constraint
on top of the original closest substring problem by further requiring the pairwise
distances between substrings in the solution do not exceed a diameter D for
some D < 2d. They hoped that such a constraint may reduce the parameterized
complexity of closest substring when D is close enough to d. The condition for
this to happen is left as a main open problem in [25]. In this paper we answer
this question by proving that such condition does not exist. That is, for any
given ε > 0, all parameterized complexity results of closest string preserve in the
constrained instances for D < (1 + ε)d.

2 Preliminaries and Notations

Let Σ be an alphabet with constant size |Σ|. Suppose s is a string over Σ.
|s| denotes the length of s. s[i] denotes the i-th letter of s. Therefore, s =
s[1]s[2] . . . s[m], where m is the length of s. Let s and t be two strings with
the same length m, d(s, t) denotes the Hamming distance between s and t. Use
[1, m] to denote the set {1, 2, . . . , m}. For P = {i1, i2, . . . , ik} ⊆ [1, m], define
s|P = s[i1]s[i2] . . . s[ik] and dP (s, t) = d(s|P , t|P ). Let Q = [1, m] \ P . From
the definition of Hamming distance, clearly d(s, t) = dP (s, t) + dQ(s, t). Let
Q(s, t) denote the set of positions where s and t agree, i.e., Q(s, t) = {j | s[j] =
t[j]}. Similarly, for k given strings s1, s2, . . . , sk of same length, Q(s1, s2, . . . , sk)
denotes the position set where all strings agree. Let P (s, t) denote the position
set where s and t disagree.

Let s1, s2, . . ., sn be n strings of length m. The closest string problem asks
for a string center s such that d = maxn

i=1 d(s, ti) is minimized. The minimum
value of d is called the radius of the n input strings. D = max1≤i,j≤n d(si, sj)
is called the diameter of the n input strings. Let L ≤ m. The closest substring
problem asks for a length-L string center s and a length-L substring ti of each
si, such that d = maxn

i=1 d(s, ti) is minimized.
In this paper we will also study a more generalized version of closest string

problem, the neighbor string problem: Given n strings s1, s2, . . ., sn with length
m, and n nonnegative integers d1, d2, . . ., dn, the neighbor string problem seeks
for a length m string s such that d(s, si) ≤ di for every 1 ≤ i ≤ n. An instance
of the neighbor string problem is given by 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.

3 O
(
nm + nd · (16|Σ|)d

)
Algorithm for Closest String

Problem

Parameterized complexity has been used to tackle NP-hard problems [6]. In prin-
ciple, a fixed-parameter polynomial time algorithm is a well-structured super-
polynomial algorithm such that the superpolynomial factor is only with respect
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to one parameter of the given instance. Many NP-hard problems have been
found to be fixed-parameter tractable, which means that an algorithm with
running time f(k)·nc exists to solve the problem. Here k is a parameter naturally
associated with the problem; n is the size of the input and c is a constant. Clearly
f(k) must be superpolynomial if P �= NP. The hope is that this f(k) will not
grow too fast, and parameter k is small for practical instances; and hence the
problem can be solved efficiently in practice.

Gramm et al. [13] provided a fixed-parameter polynomial time algorithm for
closest string when the radius d is used as the fixed parameter. For a given
instance {s1, s2, . . . , sn} and a given value d, their algorithm finds a center string
s such that d(s, si) ≤ d in O(nm + ndd+1) time, if such a string exists.

In this section we provide a new algorithm for closest string problem with
time complexity O(nm + nd · (16|Σ|)d). When the alphabet size is a constant,
our algorithm is exponentially faster than the previous algorithm. In order to
design the algorithm for closest string, let us focus on the more generalized
neighbor string problem.

Lemma 1. 1 Let 〈(s1, d1), . . . , (sn, dn)〉 be an instance of the neighbor string
problem. If j satisfies d(s1, sj) > dj, then for Q = Q(s1, sj) and any solution s
of the neighbor string problem, dQ(s, s1) < d1

2 .

Proof. Let s be a solution, i.e. d(s, si) ≤ di for i = 1, 2, . . . , n. Let P = [1, m]\Q.
Then

dP (s, s1) + dP (s, sj) ≥ dP (s1, sj) = d(s1, sj) > dj . (1)

On the other hand,

dP (s, s1) + dP (s, sj)
=

(
d(s, s1) − dQ(s, s1)

)
+

(
d(s, sj) − dQ(s, sj)

)

= d(s, s1) + d(s, sj) − 2 dQ(s, s1)
≤ d1 + dj − 2 dQ(s, s1)

The second equation in the above derivation is because s1|Q = sj |Q. Combining
with (1), we get d1 + dj − 2 dQ(s, si) > dj . Consequently, dQ(s, s1) < d1

2 . The
lemma is proved. �

Theorem 1. Let d = max1≤i≤n di. If there is a solution s such that d(s, si) ≤ di

(1 ≤ i ≤ n), then algorithm StringSearch in Fig. 1 outputs a solution s′ such
that d(s′, si) ≤ di in time O(mn+nd ·T (d, d1)), where the size of the search tree

T (d, d1) ≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 22d1 .

Proof. First let us prove the correctness of the algorithm. It is easy to verify
that when the algorithm returns a non-null string in either line 2 or line 4.3,
1 Lemma 1 uses a similar idea as Lemma 2.2 in [22]. However the lemma in [22] cannot

be directly used in our algorithms.
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Algorithm StringSearch
Input: An instance of neighbor string 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.
Output: String s such that d(s, si) ≤ di (i = 1, . . . , n), or NULL if there is no
solution.
1. Try to find i0 such that d(s1, si0) > di0 .
2. If step 1 fails, return s1.
3. Let Q = Q(s1, si0), P = [1, |s1|] \ Q.
4. For every possible string t of length |P | such that d(t, s1|P ) ≤ d1 and
d(t, si0 |P ) ≤ di0

4.1 Let ei = di −d(t, si|P ) for i �= 1, and e1 = min{d1 −d(t, s1|P ), �d1/2�−1};
4.2 Use StringSearch to find the solution u of
〈(s1|Q, e1), (s2|Q, e2), . . . , (sn|Q, en)〉;
4.3 If u �= NULL then let s|P = t and s|Q = u and return s.
5. Return NULL.

Fig. 1. The algorithm StringSearch

the string is a solution of the input instance. Let us prove that when there is
a solution of the input instance, then the algorithm can find it. We prove this
by using induction on d1. If d1 = 0 then clearly the algorithm is correct. When
d1 > 0 and line 1 finds i0 successfully, by Lemma 1, the Q and P defined in line
3 are such that there is a solution s satisfying d(s|Q, s1|Q) ≤ e1. Therefore, this
s is such that d(s|Q, si|Q) ≤ ei for 1 ≤ i ≤ n. As a result, when t = s|P in line
4, by induction, the recursive call to Algorithm StringSearch at line 4.2 will
find u such that d(u, si|Q) ≤ ei for 1 ≤ i ≤ n. Then it is easy to verify that the
s returned in line 4.3 is a desired solution.

Next let us examine the time complexity of the algorithm StringSearch. We
estimate the size (number of leaves) of the search tree first. In line 4, assume t is
an eligible string and d(t, s1|P ) = k. Then |P | = d(s1|P , si0 |P ) ≤ d(t|P , s1|P ) +
d(t|P , si0 |P ) ≤ di0 + k ≤ d + k. Therefore, there are at most

(|P |
k

)
(|Σ| − 1)k ≤(

d+k
k

)
(|Σ| − 1)k such strings t. For each of them, the size of the subtree rooted

at t of the search tree is bounded by T (d, min{d1 − k, �d1/2	 − 1}). k can take
values from 0 to d1. Therefore, the search tree size satisfies

T (d, d1) ≤
d1∑

k=�d1/2�+1

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

+
�d1/2�∑

k=0

(
d + k

k

)
(|Σ| − 1)kT (d, �d1/2	 − 1) (2)

= I1 + I2 (3)

Clearly T (d, 0) = 1 because in this case s1 is the solution. We prove by
induction that for d̃ ≥ 1,

T (d, d̃) ≤ 22d̃

(
d + d̃

d̃

)
(|Σ| − 1)d̃. (4)
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It is easy to verify that when d̃ = 1, T (d, 1) ≤ (d+1)(|Σ|−1)+1, the statement
is true. When d̃ = 2, because of (2), T (d, 2) ≤

(
d+2
2

)
(|Σ| − 1)2 + (d + 1)(|Σ| −

1) + 1 ≤ 2
(
d+2
2

)
(|Σ| − 1)2, the statement is also true. Next we suppose d1 > 2

and eq. (4) is true for 0 ≤ d̃ < d1. We bound the two terms of (3) separately.
Let k0 = 
d1/2� + 1.

I1 =
d1∑

k=k0

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)k ·

(
d + d1 − k

d1 − k

)
(|Σ| − 1)d1−k · 22(d1−k)

=
(

d + d1

d1

)
(|Σ| − 1)d1

d1∑

k=k0

(
d1

k

)
· 22(d1−k)

≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 2d1−1

d1∑

k=k0

(
d1

k

)

≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 22d1−2. (5)

The rest is to bound I2 by 3
(
d+d1

d1

)
(|Σ| − 1)d1 · 22d1−2.

I2 =
k0−1∑

k=0

(
d + k

k

)
(|Σ| − 1)k0T (d, d1 − k0)

≤
k0−1∑

k=0

(
d + k

k

)
(|Σ| − 1)k0 ·

(
d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1−k0 · 22(d1−k0)

=
(

d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

k0−1∑

k=0

(
d + k

k

)

≤
(

d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

(
d + k0

k0

)
.

So we only need to prove
(

d + d1 − k0

d1 − k0

)(
d + k0

k0

)
2−2k0 ≤ 3

4
·
(

d + d1

d1

)
,

or equivalently,
(

d + d1 − k0

d1 − k0

)(
d1

k0

)
≤ 3

4
· 22k0

(
d + d1

d1 − k0

)
. (6)
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(6) is true because
(

d + d1 − k0

d1 − k0

)
≤

(
d + d1

d1 − k0

)
,

(
d1

k0

)
≤ 1

2
· 2d1+1 <

3
4

· 22k0 .

Hence (4) is correct.
At each leaf, the time complexity of line 1 is O(nm). By carefully remembering

the previous distances and only update the O(d) positions changed, this can
be done in O(nd) time. The total running time is dominated by the leaves.
Therefore, the time complexity of the algorithm is O(nm + nd · T (d, d1)). �

Corollary 1. StringSearch solves the closest string problem in time

O
(
nm + nd · 24d(|Σ| − 1)d

)
.

4 More Efficient Algorithm For Closest Substring

In [22], a |Σ|d(log2 d+2)N log2 d+O(1) algorithm is given, where N is the total length
of the input strings. In this section we improve it to O

(
n|Σ|O(d)m�log2 d�+1

)
.

That is, the log2 d factor at the exponent of |Σ|d(log2 d+2) is removed. Moreover,
the total length N is replaced by the length m of the longest input string.

Again, in order to develop an algorithm for closest substring, we attempt to
solve a more generalized version of closest substring. For convenience, we call
the new problem partial knowledge closest substring. An instance of the partial
knowledge closest substring problem is given by 〈{s1, s2, . . . , sn}, d, d1, L, O, t̃〉,
where O ⊂ [1, L] and t̃ is a string of length |O|. The problem is to find a string
t of length L, such that t|O = t̃, d[1,L]\O(t, s1) ≤ d1, and for every i, d(t, ti) ≤ d
for at least one substring ti of si.

Theorem 2. Algorithm SubstringTry in Fig. 2 finds a solution for closest
substring with time complexity

O
(
(nL + nd · 24d|Σ|d · m�log2 d�+1

)
.

Sketch of Proof. When all the input strings have the same length L, a careful
comparison between Algorithm SubstringSearch and the previous Algorithm
StringSearch can see that the two algorithms are equivalent. The only differ-
ence is made when |si| > L. Then the “guess” operation in line 4 requires the
algorithm to try all possible substrings of si0 . This expands the search tree size
by a factor of at most m. Because of Lemma 1, the recursion of Algorithm Sub-
stringSearch is at most �log2 d	 levels. This increases the search tree size by a
factor of m�log2 d�. Combining with Corollary 1, the theorem is proved. �

5 More Efficient PTAS for Closest String

In [17,18], a PTAS for closest string problem was given. To achieve approximation
ratio 1 + ε, the running time of the algorithm was O

(
mnO(ε−5)

)
. Apparently
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Algorithm SubstringSearch
Input: 〈{s1, s2, . . . , sn}, d, L, O, t̃〉 such that |s1| = L.
Output: A solution t of the partial knowledge closest substring, or NULL if there
is no solution.
1. Let O′ = [1..L] \ O. Let s be a string such that s|O = t̃ and s|O′ = s1|O′ .
2. Try to find i0 such that d(s, ti0) > di0 for every substring ti0 of si0 .
3. If line 1 fails, return s.
4. Guess a substring ti0 of si0 .
5. Let P = P (s1, ti0) \ O.
6. For every possible string t of length |P | such that d(t, s1|P ) ≤ d1 and
d(t, ti0 |P ) ≤ d − d(t̃, ti0 |O)
6.1 Let t′ be a string such that t′|O = t̃ and t′|P = t.
6.2 Let e1 = min{d1 − d(t, s1|P ), �d1/2� − 1}.
6.3 Use SubstringSearch to find solution u of 〈{s1, s2, . . . , sn}, d, e1, L, O ∪
P, t′|O∪P 〉.
6.4 If 6.3 is successful then return u.
7. Return NULL.

Algorithm SubstringTry
Input: 〈{s1, s2, . . . , sn}, d, L〉.
1. for every length L substring t1 of s1,
1.1 call SubstringSearch with 〈{t1, s2, . . . , sn}, d, d, L, ∅, e〉.

Fig. 2. The algorithms SubstringSearch and SubstringTry

this PTAS has only theoretical value as the degree of the polynomial grows very
fast when ε gets small. By using the Lemma 2.2 in [22] and an idea of [17,18],
Andoni et al. [1] proposed a PTAS in [17] to get much better time complexity
O(mnO(ε−2 log 1

ε )). The proof in [1] argued that when d = Ω(n/ε2), a standard
linear programming relaxation method can solve the closest string problem with
good approximation ratio. When d = O(n/ε2), one can exhaustively enumerate
all the possibilities of positions in the solution where r of the input strings do not
agree. However, by using Lemma 2.2 of [22], r can be reduced from the original
O(1

ε ) in [18] to O(log 1
ε ).

With our new fixed-parameter algorithm that runs O
(
mn + nd · (16|Σ|d)

)

time, we can further reduce the time complexity by the following algorithm: Use
the fixed-parameter algorithm to solve d = O(n/ε2), and use the standard linear
programming relaxation to solve the case d = Ω(n/ε2). It is easy to verify that
this provides a simple O(m · nO(ε−2)) PTAS.

Theorem 3. Closest string has a PTAS that achieves approximation ratio 1+ ε
with time O(m · nO(ε−2)).

6 Hardness Result

Together with the development of fixed-parameter polynomial time algorithms,
W-hierarchy has been developed to prove fixed-parameter intractability [6]. The
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W[1]-hardness results reviewed in Section 1 indicate that the closest substring
problem unlikely has fixed-parameter polynomial time algorithms even if both
d and n are fixed-parameters. More parameterized complexity results about the
closest substring problem can be found in [9,22,25].

Moan and Rusu [25] studied a variant of the closest substring problem by adding
a constraint on the diameter of the solution, and hoped that the constraint can
help reduce the parameterized complexity of the problem. The constraint is called
the bounded Hamming distance (BHD) constraint in their paper. Then the BHD-
constrained closest substring (BCCS) problem is defined as follows.

BCCS Given a set of n strings s1, s2, . . . , sn, substring length L, radius d,
and diameter D. Find length-L substring ti of each si, i = 1, 2, . . . , n, and a new
length-L string t, such that d(ti, tj) ≤ D, and d(t, ti) ≤ d.

Clearly, d ≤ D ≤ 2d. For any c ≥ 4
3 , Moan and Rusu proved that the diameter

constraint D ≤ c ·d does not reduce the complexity of closest substring problem.
More precisely, with any c ≥ 4

3 , all parameterized complexity results for closest
substring preserve for BCCS when using any non-empty subset of the following
values as parameters: the radius d, the alphabet size |Σ|, the number of input
strings n, the length of desired substrings L.

However, Moan and Rusu pointed out that in computational biology, D is
usually significantly smaller than 2d. Therefore, they hoped that when D

d is very
close to 1, the BCCS problem might become easier than the original closest
substring problem. If this is true, BCCS can be used to solve the practical
closest substring problems. The finding of the necessary condition for that BCCS
problem becomes easier is left as the “main open question” of the paper [25]. In
this section, we answer this question negatively with the following theorem.

Theorem 4. For any constant ε > 0, with the diameter constraint D ≤ (1 +
ε)d, all parameterized complexity (W [l]-hardness) results for closest substring
preserve for BCCS when using any non-empty subset of the following values as
parameters: the radius d, the alphabet size |Σ|, the number of input strings n,
the length of desired substrings L.

Proof. The proof is done in three steps: First, we construct an instance of closest
string with radius d̃ and diameter D̃ = (1 + o(1))d̃. Then, we show that an
instance of closest substring with radius d and diameter D can be “merged”
with an instance of the closest string with radius d̃ and diameter D̃, so that the
new instance has radius d+ d̃ and diameter D+D̃. Thirdly, by letting d̃  d and
D̃  D, we get an instance such that the diameter is very close to the radius.
Thus, we reduce the closest substring problem to BCCS, and hence prove the
theorem. The detailed proof can be found in the appendix. �

7 Discussion

The closest string and closest substring are two problems motivated and well-
studied in computational biology. We proposed a novel technique that leads to
more efficient fixed-parameter algorithm for closest string. This is also the first
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polynomial algorithm for the problem when d = O(log n). The same technique
is then used to give a more efficient algorithm for closest substring. As a con-
sequence of the fixed-parameter algorithm, we presented a more efficient PTAS
of the closest string problem. At last, we showed that a restricted version of the
closest substring problem has the same parameterized complexity as the original
closest substring problem. This answers an open question raised in [25].

An interesting observation is that the approximation and fixed-parameter
strategies work complementarily for different d values. For smaller d < log2 n
and binary strings, our fixed-parameter algorithm has time complexity O(nm +
nd · 24d) = O(nm + n5 log2 n). For larger d > c ln n/ε2 for some constant c, the
linear programming relaxation’s time complexity is dominated by the time to
solve a linear programming of m variables and nm coefficients, which is again
a low-degree polynomial. This scenario can be intuitively explained as follows.
When d is small and n is large, each input string puts a strong constraint on
the solution, and consequently removes a large portion of the search space in a
fixed-parameter algorithm. Therefore, it is easier to design a fixed-parameter al-
gorithm. Conversely, when d is large and n is small, the constraint superimposed
by each input string is weaker and there are fewer constraints. Therefore, it is
easier to find an approximate solution to roughly satisfy those constraints.

But when d falls in between log2 n and c ln n/ε2, the polynomial will have
high degree for the fixed-parameter algorithm, and the approximation ratio of
the linear programming relaxation may exceed 1 + ε. The instances with d in
this range seem to be the “hardest” instances of the closest string problem.
However, because the fixed-parameter algorithm has polynomial (although with
high degree) running time on these instances, a proof for the “hardness” of
these instances seem to be difficult too. We leave the finding of more efficient
(approximation) algorithm for log2 n < d < c ln n/ε2 as an open problem.
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Appendix - Proof of Theorem 4

Step I

First let us construct an instance I1 of the closest string problem with very close
radius and diameter. Let k be an even number. Examine the instance with k
binary strings x1, x2, . . . , xk. Each xi has length L̃ =

(
k

k/2

)
. For each column j,

exactly half of x1[j], x2[j], . . . , xk[j] take value 0 and the other half take value
1. Hence there are in total

(
k

k/2

)
ways to assign values to a column. Each of the

(
k

k/2

)
columns takes a distinct way.

Claim 1. The radius of the constructed instance is d̃ = L̃/2.

Proof. Because of the construction, each string has half of the L̃ letters as 0.
Therefore, d(0L̃, xi) = L̃/2 for every xi. Therefore, the radius is at most L̃/2.

On the other hand, for any center string x, at each column, the total number
of differences between xi (i = 1, 2, . . . , k) and the center string is exactly k/2.
Therefore,

∑k
i=1 d(x, xi) = kL̃/2. Consequently, maxk

i=1 d(x, xi) ≥ L̃/2. The
claim is proved. �

Now let us examine the diameter of the constructed instance. For every two
strings xi and xj , the Hamming distance is the number of columns such that
xi and xj take different values. This is equivalent to the number of ways to
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split k elements into two equal-sized subsets, ensuring that elements i and j are
separated. With simple combinatorics, this number is 2

(k−2
k
2−1

)
. Therefore,

D̃

d̃
=

2
(k−2

k
2 −1

)

L̃/2
=

4
(k−2

k
2−1

)

(
k

k/2

) =
k

k − 1

In order to avoid the exponential growth of D̃ and d̃ with respect to k, we
note that D̃ and d̃ can be enlarged while keeping the same ratio D̃

d̃
by replacing

each xi by xixi . . . xi︸ ︷︷ ︸
K

, i.e., the concatenation of K copies of xi. In the rest of

the proof we consider I1 as such an enlarged instance, and the value K is to
be determined later. The notations diameter D̃, radius d̃, input string xi, and
string length L̃ all correspond to the enlarged instance.

Step II

Let I = 〈{s1, . . . , sn}, L, d〉 be an instance of the closest substring. We construct
a new instance in the following.

Let X be an i.i.d. random binary string with length 7(L + L̃). Then by using
Chernoff’s bound, it is easy to verify that with positive probability,

d(X[1..j], X[|X|−j+1, |X|])+d(X[j+1..|X|], X[1..|X|−j]) > 3(L+L̃) for j �= 0 and|X|.
(7)

By using the standard derandomization techniques such as conditional proba-
bility [28], we can easily design a polynomial time deterministic procedure to
construct the binary string X satisfying (7). Here we omit the detail.

For each si (i = 1, . . . , n) and each xj (j = 1, . . . , k), let

sij = X si[1..L]xj XX si[2..L + 1]xj XX . . . XX si[m − L + 1..m]xj X

The new instance is then

I2 = 〈{sij |i = 1, . . . , n, j = 1, . . . , k}, 15(L + L̃), d + d̃〉.

Claim 2. I has a solution with radius ≤ d and diameter ≤ D if and only if I2
has a solution with radius ≤ d + d̃ and diameter ≤ D + D̃.

Proof. Suppose I has a solution si[li..li + L − 1], i = 1, . . . , n with radius d and
diameter D. Then the substrings Xsi[li..li+L−1]xjX , i = 1, . . . , n, j = 1, . . . , k
are a solution of I2. It is easy to verify that the radius and diameter are bounded
by d + d̃ and D + D̃, respectively.

Now we prove the other direction. We first show that the solution of I2 is such
that X from different strings are aligned exactly together. Otherwise, because
of 7, the inexact overlaps between X from two input strings will cause at least
3(L + L̃) minus two times of the length of si[k..k + L]xj . This gives a diameter
at least L + L̃ > D + D̃, contradicting the condition.

Further, without making the solution worse, we can easily modify the solution
by “sliding” so that every substring has the form Xsi[li..li + L − 1]xjX for some
li. Next we show that si[li..li +L − 1] (i = 1, 2, . . . , n) is the desired solution for I.
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Let Xss̃X be the center of Xsi[li..li + L − 1]xjX with radius d + d̃. Be-
cause d̃ is the radius of I1, there is j0 such that d(s̃, xj0) = d̃. Therefore,
d(Xss̃X, Xsi[li..li + L − 1]xj0X) ≤ d + d̃ derives that d(s, si[li..li + L − 1]) ≤ d
for every i.

Similarly, there are j0 and j1 such that d(xj0 , xj1 ) = D̃. Therefore, d(Xsi[li..li+
L − 1]xj0X, Xsi′ [li′ ..li′ + L − 1]xj0X) ≤ D + D̃ derives that d(si[li..li + L −
1], si′ [li′ ..li′ + L − 1]) ≤ D for every i and i′.

The claim is proved. �

Step III

For any ε > 0, we let k = � 2
ε + 1	 and K =

⌈
4D

( k
k/2)ε

⌉
in the construction of I1.

Then d̃ = K
2 ·

(
k

k/2

)
≥ 2D

ε . Then in instance I2, the ratio between the diameter
and radius is

D + D̃

d + d̃
≤ D

d̃
+

D̃

d̃
≤ ε

2
+

k

k − 1
≤ 1 + ε

Thus, we successfully reduce the closest substring problem to the closest sub-
string problem with the constraint that the diameter is within 1 + ε times the
radius. The number n, length m of the input strings are increased only by a con-
stant factor determined by ε. The new length L and radius d of the substrings
are polynomials of the old L and d. Therefore, all the W -complexities of the
closest substring problem still hold with the diameter constraint D ≤ (1 + ε)d
for any small ε > 0. The theorem is proved. �
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Abstract. Ataxia Telangiectasia, AT, is a recessive disorder caused
by mutations in the ATM gene. Although it is a recessive disorder,
population-based studies have shown that carriers of AT have increased
risks of breast cancer and other diseases compared to non-carriers. The
goal of this study is to characterize phenotypes in AT carriers. Since ex-
pression level of genes is a major determinant of cellular phenotypes, we
studied gene expression in AT carriers and identified regulatory mecha-
nisms that influence these expression phenotypes.

We found gene expression phenotypes that showed a recessive pattern,
where AT carriers are similar to non-carriers but differ from AT patients.
However, there are also expression phenotypes that showed a dominant
pattern where AT carriers are similar to AT patients but differ from
non-carriers. One of the dominant gene expression phenotypes is that of
TNFSF4. We showed that ATM regulates TNFSF4 expression through
a transcriptional regulatory pathway that includes transcription factors
and miRNAs. In AT carriers and AT patients, this pathway is disrupted,
resulting in higher expression of TNFSF4. In this presentation, I will
describe this ATM-mediated pathway, and show that the disruption of
this pathway leads to increased risk of breast cancer and cardiac death
in AT carriers. The integration of molecular and computational analyses
of gene and microRNA expression revealed the complex consequences of
a human gene mutation.
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Abstract. The recent availability of large scale data sets profiling sin-
gle nucleotide polymorphisms (SNPs) and gene expression across differ-
ent human populations, has directed much attention towards discovering
patterns of genetic variation and their association with gene regulation.
The influence of environmental, developmental and other factors on gene
expression can obscure such associations. We present a model that ex-
plicitly accounts for non-genetic factors so as to improve significantly
the power of an expression Quantitative Trait Loci (eQTL) study. Our
method also exploits the inherent block structure of haplotype data to
further enhance its sensitivity. On data from the HapMap project, we
find more than three times as many significant associations than a stan-
dard eQTL method.

1 Introduction

Discovering patterns of genetic variation that influence gene regulation has the
potential to impact a broad range of biological endeavours, such as improving our
understanding of genetic diseases. Recent advances in microarray and genotyping
methods have made it feasible to investigate complex multi-gene associations on
a genome-wide level, through expression Quantitative Trait Loci (eQTL) studies
(see [1] and references therein). The vast number of potential associations and
relatively small numbers of individuals in current data sets makes it challenging
to discover statistically significant associations between genome and transcript.
Methods for improving the sensitivity and accuracy of such studies are therefore
of considerable interest.

In this paper, we describe a method to improve substantially the number of
significant associations found in an eQTL study. The main insight is that much
of the variation in gene expression is due to non-genetic factors, such as differing
environmental conditions or developmental stages [2]. By explicitly accounting
for non-genetic variation, we can greatly improve the statistical power of eQTL
methods as most of the non-genetic variation is removed and real associations
stand out to a greater extent.
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Fig. 1. Example results of (a) standard eQTL, (b) our proposed method FA-eQTL
which accounts for non-genetic factors and (c) the same method applied to haplotype
blocks. In this region, standard eQTL does not find any significant associations but our
proposed methods finds a cis association for the gene SLC35B4. The significance of
the association is improved when haplotype blocks are considered instead of individual
SNPs.

Following [3], we also improve the accuracy of eQTL by exploiting the inherent
block structure present in haplotype data. By jointly considering all SNPs in a
haplotype block, it is possible to detect weaker associations than can be found
using single SNPs. For example, if the relevant SNP lies between the measured
marker SNPs, a haplotype block model can effectively perform imputation of
this missing SNP value leading to a stronger detected association.

The contributions of this paper are best illustrated by the plots of Fig. 1
showing the results of different eQTL methods over the same region of chromo-
some 7. The top plot demonstrates that no associations have been found using
a standard eQTL method, whilst the second plot shows a significant cis associa-
tion which only becomes visible when non-genetic factors are accounted for. The
bottom plot shows that, when haplotype blocks are used instead of individual
SNPs, the significance of this association is further increased to well above the
0.01% False Positive Rate (FPR) level.

The structure of this paper is as follows. In Section 2, we compare several
models of how non-genetic factors influence gene expression. The best of these
models is incorporated into an eQTL method in Section 3 and their power
demonstrated on data from the HapMap project [4]. Section 4 describes how
this eQTL approach can be extended to exploit the block structure of haplotype
data. Section 5 concludes with a discussion.
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2 Modelling Non-genetic Factors

In addition to variation due to genomic differences, human gene expression lev-
els vary because of differing developmental stages, environmental influences and
other physiological and biological factors. In principle, when collecting gene ex-
pression data sets for eQTL, non-genetic factors should be controlled to be con-
stant across all samples, but in practice this can only be achieved to a limited
degree. Indeed, it is reasonable to expect that a substantial amount of the vari-
ation in gene expression is still due to non-genetic factors. Hence, eQTL studies
face the challenge of distinguishing the expression variation due to genetic causes
from the variation due to all non-genetic ones. Previous eQTL methods have ad-
dressed this issue by modelling non-genetic variation as independent noise [1],
neglecting the fact that non-genetic causes can have widespread influence on
large sets of genes, jointly promoting or inhibiting their expression. An alterna-
tive approach used by [2] is to ignore those genes whose measured expression
level may be due to environmental factors (a heuristic score is used to represent
the heritability component of a gene probe). However, this approach faces prob-
lems when non-genetic factors affect many of the gene expression levels since
it would lead to discarding most of the data. We instead choose to model the
non-genetic factors so as to account for their influence.

One of the difficulties in modelling non-genetic expression variation is that hu-
man gene expression data sets for eQTL currently include little or no information
about the environmental, physiological or developmental factors that may have
affected the expression measurements. Lacking this information, we treat non-
genetic factors as unobserved latent variables and aim to estimate their influence
on the gene expression values. Previously, linear Gaussian models [5] such as prin-
cipal components analysis [6] have been used to describe the expression levels of
genes as linear functions of hidden variables. Such models have been used to rep-
resent causes of variation such as cellular function [7], regulation of gene expres-
sion [8], co-expression of genes [9] or environmental conditions [10]. We use such a
model to capture non-genetic variation so that it can be explained away, thereby
significantly improve the power of our eQTL study.

Our model assumes the existence of K non-genetic factors x = {x1 . . . xK}
which linearly influence the observed gene expression levels y = {y1 . . . yG}
through a weight matrix W:

y = Wx + v (1)

where v represents Gaussian-distributed observation noise. We considered three
Bayesian variants of this model,

– Principal Components Analysis (PCA) where the prior on x is Gaus-
sian and the prior noise variance is the same for each gene probe (each
element of v),

– Factor Analysis (FA) where the prior on x is also Gaussian but a separate
prior noise variance is learned for each gene probe,

– Independent Components Analysis (ICA) is like PCA except that the
prior on each component xk is a mixture of two Gaussian distributions.
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Fig. 2. Comparative performance of various linear Gaussian models for filling-in miss-
ing gene expression values for X chromosome genes. The plot shows the mean squared
error in the fill-in predictions against the fraction of missing data ρ, averaged over four
runs with different training/test splits. Error bars show one standard deviation. The
factor analysis model gives the lowest fill-in error over a range of missing data rates.

For each method, we use an Automatic Relevance Determination (ARD) prior
on the variance of each column of W, so that the number of latent non-genetic
factors is learned automatically [11].

2.1 Investigation on HapMap Expression Data

We investigated these three models on gene expression measurements of individ-
uals from the HapMap project, consisting of the expression profiles for 47,294
gene probes profiled in EBV-transformed lymphoblastoid cell lines [12]. The
parameters of each model were learned from the expression levels of 512 X chro-
mosome gene probes from a randomly-selected 75% of the HapMap individuals,
with the maximum number of non-genetic factors set to 40 (during learning sev-
eral of these factors were switched off by ARD). Bayesian learning was achieved
with a fully-factorised variational approximation using the VIBES software pack-
age [13]. For the 25% of individuals not used for training, we removed a fraction
ρ of the expression measurements and applied each learned model to fill-in these
missing values. The idea behind this experiment is that models which better cap-
ture the latent causes of the observed gene expression levels, will better predict
missing expression levels from partial observations. The accuracy of the fill-in
predictions for each model was assessed in terms of mean squared error. The re-
sults are shown in Figure 2, along with a baseline prediction given by the mean
expression across the training individuals. These results show that the factor
analysis model gives the best fill-in performance, even when large fractions of
the data are missing. Hence, we use factor analysis to model non-genetic effects.
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3 Accounting for Non-genetic Factors in eQTL

Standard eQTL methods assess how well a particular gene expression level is
modelled when genetic factors are taken into account, compared to how well it
is modelled by a background model that ignores genetic factors [14]. The relevant
quantity is the log-odds (LOD) score,

log10

⎧
⎨

⎩

∏

j

P (ygj | sj, θg)
P (ygj | θbck)

⎫
⎬

⎭
(2)

where sj is a SNP measurement and ygj the gene expression level of probe g, for
the jth individual. The terms θg, θbck are parameters for probe g of the genetic
and background models respectively. The LOD scores can then be plotted against
the location of the SNP over a large genomic region to give an eQTL scan for
each gene expression g.

To account for non-genetic factors, we modify this approach to use the factor
analysis model of the previous section, denoting the new method FA-eQTL. In
FA-eQTL, the LOD score compares a full model of both genetic and non-genetic
factors to a background model which only includes non-genetic factors,

log10

⎧
⎨

⎩

∏

j

P (ygj | sj , θg,wg,xj)
P (ygj |wg,xj)

⎫
⎬

⎭
(3)

where xj are the latent non-genetic causes for the jth individual and wg is the
gth row of the weight matrix W described in the previous section. For the full
model, which incorporates both genetic and non-genetic factors, we model the
expression value of gene g for the jth individual by

P (ygj | sj , θg,wg,xj) = N
( genetic

︷ ︸︸ ︷
sj.θg +

non−genetic
︷ ︸︸ ︷
wgxj , ψg

)
, (4)

where N (m, τ) represents a Gaussian distribution with mean m and variance
τ . The variable sj encodes the state of a particular SNP whose relevance we
want to assess, and θg captures the change in gene expression caused by this
SNP. The SNP state sj is the sum of two indicator vectors encoding the two
alleles measured for this SNP. Each indicator vector has a one at the location
corresponding to the measured allele and zeroes elsewhere. The noise is Gaussian
with learned variance ψg. The full model is shown graphically in the Bayesian
network of Figure 3.

For the background model, we use exactly the factor analysis model of the
previous section. Hence, P (ygj |wg,xj) also has the Gaussian form of Eqn. 4, but
where the mean consists of only the non-genetic term. For completeness, we also
tested ICA and PCA as alternatives to FA but found that these led to weaker
associations, showing that the results of the fill-in experiments of Section 2 do
indeed indicate how well each model accounts for non-genetic effects.
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Fig. 3. The Bayesian network for the full model that includes both genetic (green)
and non-genetic factors (red) when explaining gene expression levels. The rectangle
indicates that contained variables are duplicated for each individual. See the text for
a detailed explanation of this model.

When there is extra information about each individual, it can also be incorpo-
rated into the full and background models. For example, the HapMap individuals
are divided into three distinct populations with African ancestry (YRI), Euro-
pean ancestry (CEU) and Asian ancestry (CHB,JPT). Certain SNP and probe
measurements have differing statistics in each population, which can lead to
false associations. To avoid such false associations, we introduce an additional
three-valued ‘virtual’ SNP measurement encoding the population each individ-
ual belongs to, and extend the sum in the mean of Eqn. 4 to include a linear
relation to this measurement. For similar reasons, we also include a binary mea-
surement encoding each individual’s gender. If desired, we can investigate the
association of a probe to multiple SNPs jointly by extending Eqn. 4 to a sum
over all SNPs in a region (or in multiple disjoint regions) as described in [3].

3.1 FA-eQTL on HapMap Data

We applied both the standard eQTL method and the FA-eQTL method to the
HapMap Phase II genotype data [4] and corresponding gene expression measure-
ments [12]. Both methods were applied to chromosomes 2, 7, 11 and X. For each
chromosome, only probes for genes within that chromosome were included, so
that only within-chromosome associations were tested.

An issue with using the FA-eQTL model for chromosome-wide scans is the
very high computational cost of re-learning the factor analysis model at each
locus. To avoid this, we learned each wg and xj once for the background model
and kept them fixed when learning the full model. This approximation is accurate
only if the genetic and non-genetic models are nearly orthogonal. To test this
assumption, we estimated the contribution to the gene expression levels due to
the non-genetic factors alone, given by Wx, and treated it as expression data
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Fig. 4. Examples of the improved association significance for FA-eQTL over standard
eQTL. The plots a) and b) give two example regions where FA-eQTL increases the
significance of cis associations found by standard eQTL and also finds additional cis
associations. Horizontal lines indicate the threshold value corresponding to 0.01% FPR
for relevant genes. Arrows indicate gene coding regions. The table shows associations
ranked how much the eQTL score is above the FPR threshold (ΔeQTL) along with the
corresponding score above threshold for FA-eQTL (ΔFA-eQTL). For the associations
found by both methods, the FA-eQTL score is on average 21.8 higher than the eQTL
score, demonstrating the advantage of accounting for non-genetic factors.

in standard eQTL. If the genetic and non-genetic models are nearly orthogonal,
then we would expect that no significant association would be found between
any SNP and these reconstructed expression levels. This was indeed the case,
for example, the highest LOD score over the entirety of chromosome 2 was just
11.4 which is not statistically significant. Also for computational reasons, we
apply maximum likelihood methods to estimate the parameters θ, rather than
the variational approach which is Bayesian but much more expensive. Because
maximum likelihood methods perform poorly with little data, we remove SNPs
where two or fewer individuals have the minor allele.

Fig. 4 shows the results of FA-eQTL and standard eQTL applied to the
HapMap data. The table lists associations ranked by the difference between
the eQTL score and the 0.01% FPR threshold. For comparison the correspond-
ing FA-eQTL score difference (computed from the highest score within 50 loci of
the eQTL peak) is also listed. We consider all associations found in any 100kbp
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window as a single association, so as not to over count associations due to link-
age disequilibrium between SNPs. Across all associations found by eQTL, the
FA-eQTL scores are higher in all but five cases, with an average score change of
+21.8. The plot of Fig. 4a gives an example of the improvement gained, where
FA-eQTL increases the LOD score of four cis associations found by eQTL. The
plot of Fig. 4b illustrates that some weaker cis associations missed by eQTL are
picked up by FA-eQTL, for the genes SLC38A5, FTSJ1 and SUV39H1.

To quantify the improvement in power given by the FA-eQTL model, we
counted the number of associations found at a 0.01% FPR for each model (Ta-
ble 1). Using the factor analysis model to explain away non-genetic effects more
than doubles the number of significant associations found (from 81 to 222).

Table 1. Number of associations found at a 0.01% FPR and corresponding FDR

Chr 2 Chr 7 Chr11 Chr X Total FDR

eQTL 24 13 39 5 81 2%
FA-eQTL 82 44 84 12 222 2%

False Positive Rates (FPRs) were estimated empirically for each chromosome
using 30,000 permutations across randomly selected regions of length 500 SNPs.
For each gene the threshold score was set to give a FPR of 0.01%. False Discovery
Rates were calculated from this fixed FPR, the number of conducted tests and
the number of associations found for a specific gene. Since almost all of the
associations we find are cis each gene generally has either exactly one or no
association, leading to the False Discovery Rate listed above for all cis associated
genes. The reduction in irrelevant variation for FA-eQTL meant that a particular
FPR was normally achieved at a lower LOD score than for standard eQTL and
hence a higher number of the genes exceeded the significance threshold.

The majority of the discovered associations were cis associations, typically
SNPs within 100kb of the interrogated probe. A small number of potential trans
associations (ten in total) were found with SNPs further than 5MB from the ex-
pression probe. However, these were all weak associations with LOD scores close
to the estimated 0.01% FPR threshold and so are most likely false associations.

4 Haplotype Block eQTL

The performance of our method can be further improved by relating expression
values to haplotype blocks rather than to individual SNPs. A haplotype block,
being a genomic region which has been inherited in its entirety from an an-
cestral genome, can be used as an intermediary for the values of missing SNP
measurements. In addition, haplotype blocks are more correlated with popula-
tion structure than individual SNPs. Hence, we would expect stronger evidence
for association with blocks than SNPs if either:

– the true association is with an unmeasured ‘missing’ SNP,
– the association is only present in a particular sub-population of individuals,
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– there is an epistatic interaction within the haplotype block where the ances-
tral genome captures the interaction better than any individual SNP.

In the case where the true association is with a measured marker SNP, the
use of haplotype blocks could potentially reduce the evidence for the association.
However, this reduction would typically be small since a SNP and its haplotype
ancestor label are normally very strongly correlated.

We applied a method for discovering haplotype blocks that explains each
individual’s haplotype using pieces of a small number of learned ‘ancestor’ hap-
lotypes, where the pieces break at block boundaries. The particular model we
used is the recently proposed piSNP model [15] which accounts for population
structure to give increased accuracy when learning the ancestral haplotypes. The
learning process discovers the haplotype block boundaries and indicates which
ancestral haplotype is used for each block. We define Block FA-eQTL to be the
FA-eQTL method previously described but where the measurements sj are over
ancestors rather than alleles and are measured for each block rather than each
locus. Also, as there are fewer blocks than SNPs, it is computationally affordable
to enhance the noise model for Block FA-eQTL. To do this, we model v as a
mixture of a Gaussian distribution and a uniform distribution. This heavy tailed
noise model is more robust to outliers and considerably reduces the false positive
rate, at the cost of around a fifty-fold increase in computation time.

4.1 Block FA-eQTL on HapMap Data

Due to the computational expense of Block FA-eQTL, it was only applied to 500
SNP regions within each chromosome, with the number of ancestors set to ten. A
region was analysed if it was in the top 100 regions ranked by a soft-max criterion,

S = 1
N1/p

(∑N
n=1(LODn)p

)1/p

with p = 3. This criterion identifies both regions
with high single-locus peaks and regions where the LOD score is high over an
extended area. The selected regions contained all the associations found with
FA-eQTL in the previous section. Figure 5 illustrates the benefits of learning
associations using haplotype blocks. The plot of Fig. 5a shows the LOD scores
for FA-eQTL and Block FA-eQTL for a region containing a strong association.
The form of this association is shown in Fig. 5b where the expression level of the
AMOT gene plotted against the SNP allele and haplotype block at the locations
marked with red arrows. The block model is able to pull out population-specific
associations which are not apparent in the single SNP plot.

This difference is shown more clearly in the second example of Fig. 5 c,d where
blocking causes a cis association to move from just above to well above the 0.01%

Table 2. Number of associations found at a 0.01% FPR and corresponding FDR

Chr 2 Chr 7 Chr11 Chr X Total FDR

FA-eQTL 82 44 84 12 222 2%
Block FA-eQTL 117 57 86 14 274 2%
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Fig. 5. Left: FA-eQTL scores for SNPs and haplotype blocks, showing the 0.01% FPR
threshold for the gene corresponding to the strongest association. Blocking leads to
improved association significance. Right: Scatter plots of mRNA levels against the
SNP allele and block ancestor at the locations marked with red arrows in the left plots.

FPR significance threshold. Table 2 shows that for each of the four chromosomes
tested we identify more significant associations using haplotype blocks compared
to the single SNP approach. Out of the total of 274 associations at the 0.01%
FPR level, only five are trans, all at sufficiently low significance levels to suggest
that they are false associations.

Transcription factor study. We selected a subset of 960 gene probes listed
as transcription factors in the BDB database ver 2.0 [16]. FA-eQTL was then
applied genome-wide to search for trans associations to these probes. Only one
significant trans association was found: between DPF2 and a region in chro-
mosome 12 (54.5Mb). Testing for associations of all expression levels to this
genomic region, we identified an additional cis association with RPS26 and a
second trans association with FLT1. The expression profiles of RPS26 and FLT1
show strong correlation whilst RPS26 and DPF2 are strongly anti-correlated. A
plausible biological explanation is that the ribosomal protein RBS26 is mediat-
ing the expression of both FLT1 (vascular endothelial growth factor) and DPF2
(apoptosis response zinc finger protein).

5 Conclusion

In [17], Sen and Churchill described two effects that act to obscure QTL as-
sociations, “First is the environmental variation inherent in most quantitative
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phenotypes. Second is the incomplete nature of the genotype information, which
can only be observed at the typed markers”. By explicitly modelling non-genetic
variation and by using a haplotype block model, we have accounted for both of
these effects. Our results on HapMap data demonstrate that countering these
effects leads to a more than threefold increase in the number of significant asso-
ciations found. Given this performance of Block FA-eQTL, we now plan to scale
it so that it can be applied exhaustively across all probes and SNPs.

Acknowledgments. The authors would like to thank Barbara Stranger and
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Human population migration, adaptation, and admixture have a chaotic and mostly 
undocumented history, but we are at the cusp of an era where we will be able to unlock 
these records from our genomes. An admixed individual’s genome with ancestors from 
isolated populations is a mosaic of chromosomal blocks, each following the statistical 
properties of variation seen in those populations. By analyzing polymorphisms in the 
admixed individual against those seen in representatives from the populations, we can 
infer the ancestral source of the individual’s haploblocks. Several methods have emerged 
recently that use SNPs as a basis for variation to infer the ancestral population 
composition of admixed individuals. 

In this paper we describe a novel approach for ancestry inference, HAPAA (HMM-
based Analysis of Polymorphisms in Admixed Ancestries), that models the allelic and 
haplotypic variation in the populations and captures the signal of correlation due to 
linkage disequilibrium. We benchmarked HAPAA against the current best-performing 
method, the Markov-HMM-based SABER by Tang et al. on the HapMap dataset, 
consisting of three populations: North-Western Europeans, Yoruban-Africans, and 
East Asians. We first partitioned each population into a set used for training and a set 
used for test individual construction. Then, we constructed admixed test individual 
genotypes by simulating recombination and mating for up to 20 generations. Finally, 
we show that HAPAA significantly outperforms SABER with approximately half the 
mean-square-error. 

Next, we introduce a methodology for studying the limitations of inference as a 
function of the genetic divergence between ancestral populations and time-to-admixture. 
Via simulation, we construct pairs of populations separated by 100…2000 generations of 
recombination, and partition them into individuals used for modeling and training and 
individuals for test set construction. For this dataset, we measure the ability of our 
inference algorithm to detect a single admixture event 1…20 generations ago. Our results 
show the connection between genetic divergence of populations, the number of 
generations of admixture, and the accuracy of inference, and indicate that with high 
probability we can detect admixture events of 10 or more generations using our 
methodology. 

The full manuscript may be found in the Genome Research RECOMB issue. 

                                                           
* These authors contributed equally to the work. 



On the Inference of Ancestries in Admixed

Populations

Sriram Sankararaman1,�, Gad Kimmel1,2,�,
Eran Halperin2, and Michael I. Jordan1,3

1 Computer Science Division, University of California, Berkeley, CA 94720, USA
2 International Computer Science Institute, Berkeley, CA 94704, USA

3 Department of Statistics, University of California, Berkeley, CA 94720, USA

Abstract. Inference of ancestral information in recently admixed popu-
lations, in which every individual is composed of a mixed ancestry (e.g.,
African Americans in the US), is a challenging problem. Several previ-
ous model-based approaches have used hidden Markov models (HMM) to
model the problem, however, the Markov Chain Monte Carlo (MCMC)
algorithms underlying these models converge slowly on realistic datasets.
While retaining the HMM as a model, we show that a combination of an
accurate fast initialization and a local hill-climb in likelihood results in
significantly improved estimates of ancestry. We studied this approach in
two scenarios—the inference of locus-specific ancestries in a population
that is assumed to originate from two unknown ancestral populations,
and the inference of allele frequencies in one ancestral population given
those in another.

1 Introduction

The recent advances in genotyping and sequencing technologies have resulted
in exciting discoveries of links between genes and diseases via whole-genome
association studies [1]. In these studies, cases and controls are collected and
single nucleotide polymorphisms (SNPs) are genotyped across the entire genome
of these two populations. A discrepancy in the allele distribution across the cases
and the controls serves as evidence for an association between the SNP and the
condition studied.

One of the main caveats of such association studies is their sensitivity to
confounding effects. In particular, the ancestral background of the cases and the
controls may affect the results. In order to overcome this problem, one could
infer the ancestral background of each individual using the genotypes, and then
apply a correction to the statistical tests based on this information [2].

The inference of ancestral information is a non-trivial problem, and the ac-
curacy of existing methods on this task is currently limited. The problem is
especially difficult when recently admixed populations are considered, in which
every individual is composed of a mixed ancestry (e.g., African Americans in the

� These authors contributed equally to this paper.
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US, Hispanic populations, and recently mixed populations in large metropolitan
areas such as New York or the San Francisco bay area). These populations origi-
nate from two or more ancestral populations that were separated for a long time,
and then started mixing a small number of generations ago (e.g., 10-20 gener-
ations ago). Due to recombination events, the genome of every such admixed
individual is a mosaic of haplotypes that originated from the original ancestral
populations. Thus, in order to describe their overall ancestry, we have to find
the locus specific ancestry for each individual, or the ancestral origin of every
locus in the genome of each of the individuals.

Given the genetic underpinnings of the ancestral origin problem it is natural
to consider inference methods based on probabilistic models. Indeed, most previ-
ous work has made use of hidden Markov models (HMMs), where the states are
ancestries, the transitions roughly correspond to historical recombination events
and the emission matrix models population-specific allele frequencies [3,4,5,6].
Due to their assumption that alleles are independent once the ancestries are
known, such models fail to capture population-specific background linkage dise-
quilibrium (LD), but it is possible to augment the HMM to include additional
Markovian dependencies among the observed alleles to attempt to account for
this (short-range) form of LD [7].

The HMM is amenable to dynamic programming and therefore inference of
ancestry is tractable under the HMM once its parameters are determined. But
the need to estimate various hyperparameters of the admixture models has led
researchers to Markov chain Monte Carlo (MCMC) procedures; these procedures
have desirable properties in the limit of large numbers of samples, but in practice
they can be overly slow for realistic data sets.

A rather different, non-model-based approach to inferring locus-specific an-
cestries has recently been proposed by Sankararaman, et al. [8]. This method
(referred to as “LAMP”) is based on running a window over the genome, com-
puting the local ancestry of each individual within each window based on a
local-likelihood model, and combining the results from the windows overlapping
a given SNP using a majority vote. This method has been shown empirically
to provide accurate estimates, improving on the HMM-based methods described
above.

Practical applications of HMMs in other literatures, most notably the speech
and signal processing literatures [9], emphasize the critical need for effective
initialization of the parameter estimation procedure for HMMs. LAMP may yield
an improvement over the HMM methods simply because the latter are being
initialized randomly and the MCMC procedures are not mixing on a practical
time scale. This suggests using the solution from LAMP to initialize the HMM.
Hill-climbing in likelihood from the LAMP solution may provide an effective
way to retain the advantages of a model-based method while not sacrificing
performance. One of the goals of the current paper is to explore this possibility.

Another goal of the current paper is to consider an augmented form of the
standard HMM for admixture [4] which includes explicit indicators of recombi-
nation events. Specifically, if a recombination event occurs between SNPs, then
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the ancestry of the SNPs are chosen independently; if recombination does not
occur, then the ancestries are set equal. Treating these indicators as explicit
latent variables in the model, we can attempt to infer historical recombinations.

Admixture models include a number of biologically-motivated parameters. In
principle, all of these parameters can be estimated via an MCMC algorithm or an
expectation-maximization (EM) algorithm, or some combination. It is also pos-
sible to integrate out parameters that are “nuisance parameters” for a particular
inferential problem. Given, however, the biologically-interpretable of several of
our parameters, it is also possible to use the model in settings in which estimates
of some of the parameters are available from previous analyses. In particular, one
of the scenarios we consider involves inferring locus-specific ancestries in a pop-
ulation that is assumed to originate from two unknown ancestral populations.
This is the case for African-Americans, and other similar populations. This sce-
nario has been investigated by earlier researchers (e.g., [8], [7]), and provides a
point of comparison for the analyses that we present here.

In a second scenario, we assume that one of the ancestral populations is com-
pletely unknown, or its genotypes are not given. We show that it is possible to
infer the allele frequencies in the unknown population. This scenario may be
appropriate in situations in which it is difficult to obtain external estimates of
the allele frequencies of one of the ancestral populations. This is the case, for
example, in admixed populations that contain native Americans as one of the
ancestries, such as the Puerto Rican population.

2 Methods

In this section, we describe the hidden Markov model that serves as the basis of
our experiments. We then describe various forms of inference algorithms for this
HMM, emphasizing the use of the EM procedure for parameter estimation.

2.1 Probabilistic Model

To simplify our presentation, let us assume that the number of populations that
have been admixed is two (the notation is slightly more involved in the case
of more than two populations but no new ideas are needed). Also, again for
simplicity of presentation, we restrict our attention to haplotypes; genotypes
can be handled in a straightforward manner

Let m denote the number of haploytpes, and let n denote the number of SNPs.
Let X be the observed binary matrix of SNPs; i.e., Xi,j is the j-th SNP of the i-
th haplotype. Let ppp and qqq be the vectors of the allele frequencies in the ancestral
populations. Hence, pj is the probability to obtain ‘1’ in the j-th SNP in the
first population and qj is the corresponding probability in the second population.
The matrix Z denotes the ancestry information of each haplotype at each SNP:
Zi,j ∈ {0, 1} holds the ancestry of haplotype i of the j-th SNP (0 if SNP j of
haplotype i originated from the first population and 1 if it originated from the
second). We use the matrix W to denote recombination events. Specifically, Wi,j
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equals ‘1’ if a recombination event occurred during the history of the admixture
process in the i-th haplotype between the j − 1-th SNP and the j-th SNP,
and ‘0’ otherwise. The n − 1-dimensional vector θθθ denotes the probability for a
recombination event, with θj corresponding to the j − 1-th and the j-th SNPs.
The fraction of the first population in the ancestral population, which we call the
admixture fraction, is denoted by α. Finally, g denotes the number of generations
of the admixed process (in the sense that 1

g−1 models the average length of
ancestral chromosome blocks in the current admixed population).

Given the parameters g, α, ppp, qqq, and θθθ, a haplotype is generated as follows:
recombination points are generated on each chromosome based on a Poisson
process whose rate parameter depends on g and the recombination rate r. This
process corresponds to setting some of the W ’s to 1. Then the ancestries of the
resulting chromosomal blocks are determined independently for each block with
α being the probability to choose the first ancestry. We assume that the mating
is random across the populations. Given the ancestry at a particular position, an
allele is generated using the corresponding ancestral allele frequency. We assume
that the alleles are generated independently in a block.

We now describe the marginal and conditional distributions of the model. We
assume a uniform prior over the interval [0, 1] for each of the parameters α, ppp, qqq.
g is assumed to be distributed uniformly over the interval [gmin, gmax] for some
gmax > gmin > 1. Given the ancestry and the allele frequencies of a specific SNP
j in haplotype i, Xi,j is a Bernoulli random variable with distribution:

Pr(Xi,j = 1|Zi,j, pj , qj) =
{

pj Zi,j = 0
qj Zi,j = 1 . (1)

The distribution of the ancestry of a specific SNP depends on the occurrence
of a recombination event. On the occurrence of a recombination between SNPs
j and j − 1 of haplotype i, the ancestry Zi,j is chosen with probability α to be 0
and 1 otherwise. If there was no recombination, the ancestry stays the same as
that at the previous SNP:

Pr(Zi,j |Zi,j−1, Wi,j , α) =
{

δ(Zi,j , Zi,j−1) Wi,j = 0
(1 − α)Zi,j α(1−Zi,j) Wi,j = 1

.

where δ(x, y) = 1, iff x = y.
Since we assume that the recombination process is a Poisson process, the Wi,j ,

Wi,k, k �= j are independent and the probability for a specific location between
SNPs j − 1 and j to have at least one recombination depends solely on θj . For
j > 1, we have Pr(Wi,j = 1|θj) = θj and θj = 1 − e−(g−1)ljrj , where lj is the
distance between the j − 1-th SNP and the j-th SNP and rj is the recombination
rate in that region. In our specific problem, θj is a deterministic function of g. In
other situations, it may be more appropriate for g to parameterize a prior over θj .

2.2 Inference Problems

In this section, we focus on two inferential problems that can be framed based
on the HMM. In both the problems, we seek the maximum a posteriori (MAP)
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estimates of a subset of the variables in the model and we find parameter es-
timates via the EM algorithm. We assume that the number of generations g is
constant and known, and therefore θθθ is known. This is often the case for admixed
populations. The two problems that we consider are: (1) The admixture fraction
is known, the allele frequencies are unknown, and the goal is to find the local
ancestries for each SNP in each haplotype. The optimization problem is to find
W, Z such that Pr(W, Z|X, α, g) is maximized. We refer to this problem as the
local ancestries inference problem. (2) The allele frequencies are known for one
of the ancestral populations, and the goal is to find the allele frequencies of the
other as well as the admixture fraction. Here, the local ancestries are missing
variables. The optimization problem is to find q, α such that Pr(qqq, α|X,ppp) is
maximized. We refer to this problem as the ancestral allele frequencies inference
problem.

Local Ancestries Problem. To compute the local ancestries, we would like
to compute the MAP estimates of Z, W by solving the following optimization
problem:

argmax
Z,W

log[Pr(W, Z|X, α,θθθ)]. (2)

In each iteration of EM, the updates to Z and W are computed by a Viterbi algo-
rithm with the emission probabilities Pr(Xi,j |Zi,j , pj , qj) replaced by an integral
over pj , qj . The E-step involves computing the posterior probabilities of pj , qj ;
i.e., Pr(pj , qj|X.,j , Z

(t)
.,j ). This can be done easily using Bayes’ theorem. The M-

step involves solving m separate optimization problems in ZiZiZi,WiWiWi, i ∈ {1, . . . , m}
where ZZZi denotes the vector of ancestries for the i-th haplotype and WWW i denotes
the corresponding vector of recombination events:

{log[Pr(Zi,1|α)] + I1,i(Zi,1)} +
n∑

j=2

{Ij,i(Zi,j) + fi,j−1,j(Zi,j−1, Zi,j, Wi,j)} (3)

where fi,j−1,j(Zi,j−1, Zi,j, Wi,j) ≡ log[Pr(Zi,j |Zi,j−1, Wi,j , α)] + log[Pr(Wi,j |θj)]
correspond to log transition probabilities and Ij,i(Zi,j) ≡

∑m
i=1∑n

j=1

∫
{log[Pr(Xi,j |Zi,j , pj, qj)] Pr(pj , qj |X.,j, Z

(t)
.,j )dpjdqj} are expectations of

the log emission probabilities.
Generally, the values of Ij,i(z) can be tabulated for each i, j, z by comput-

ing the integral over a grid on pj, qj . For our setting, we have a uniform prior
over pj , qj which permits the integral to be evaluated analytically. We can maxi-
mize (3) by dynamic programming. The values obtained for Z, W are then used
to recompute the integrals Ij,i(Zi,j) and the procedure is iterated.

Ancestral Allele Frequencies Problem. To compute the ancestral allele
frequencies, we compute the MAP estimates of qqq and α:

argmax
qqq,α

log Pr(qqq, α|X,ppp,θθθ) = argmax
qqq,α

log Pr(X |ppp,qqq, α,θθθ)
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since we have a uniform prior on qqq and α. We assume g and ppp, to be known. Let
qqq(t), α(t) denote the current estimates of qqq, α. The EM algorithm produces new
estimates qqq(t+1), α(t+1) that improve the objective function.

q
(t+1)
j =

∑m
i=1 Xi,jdi,j(z)
∑m

i=1 di,j(1)
, α(t+1) =

∑m
i=1 di,1(0) +

∑n
j=2 ci,j(1, 0)

m +
∑m

i=1
∑n

j=2
∑

z∈{0,1} ci,j(1, z)

Here ci,k(w, z) ≡ Pr(Wi,k =w, Zi,k = z|Xi, qqq
(t), α(t), ppp,θθθ) and di,j(z) ≡ Pr(Zi,j =

z|Xi, qqq
(t), α(t), ppp,θθθ) are the posterior probabilities of (W, Z) and Z at the j-th SNP

of haplotype i respectively and are computed by an application of the forward-
backward algorithm in the E-step.

These updates have an intuitive interpretation. At each position j, the new
value of qj is the fraction of SNPs that are 1 out of all SNPs belonging to the
second population (weighted by their posterior probabilities). The update for
α is the fraction of ancestries chosen from the first population whenever a new
haplotype is chosen (weighted by their posterior probabilities).

3 Results

The implementation of the HMM and the EM algorithm that we have described
has been provided in a program that we term “SWITCH.” In this section, we
describe experiments aimed at evaluating SWITCH. These experiments were
run on datasets generated from HapMap data [10]. We used SNPs found in
the Affymetrix 500K GeneChip Assay R© [11] from chromosome 1 for each of
the HapMap populations; i.e., Yorubans (YRI), Japanese (JPT), Han Chinese
(CHB), and western Europeans (CEU). For a pair of populations, we simulated
admixture by picking individuals from two ancestral populations in the ratio
α : 1 − α. In each generation, individuals mate randomly and produce offspring.
The rate of the recombination process is set to 10−8 per base pair per gen-
eration [12]. The mixing process is repeated for g generations. We generated
datasets consisting of admixtures of YRI-CEU, CEU-JPT and JPT-CHB pop-
ulations. We set g to 7 and α to 0.20 since these roughly correspond to the
admixing process in African-American populations [5,4,13]. To ensure that the
SNPs are (roughly) independent, we greedily remove SNPs that have a high cor-
relation coefficient, r2 > 0.1, with any other SNPs. For each of the problems, we
use only genotype data.

3.1 Local Ancestries Problem

We first compare the estimates of the ancestries obtained from SWITCH to the
estimates obtained from SABER and LAMP. In these experiments, the methods
are given g and α. We consider two settings depending on whether the ances-
tral frequencies, (ppp,qqq), are available. Even when the frequencies of the ancestral
populations are available, it is still advantageous to use the data to update the
frequency estimates, which may have drifted from the ancestral frequencies.
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Table 1. Accuracies of ancestry estimates averaged over 100 datasets. The methods
are compared under two settings. When the ancestral allele frequencies are known, the
methods compared are LAMP-ANC, SWITCH-ANC, and SABER. When the ancestral
allele frequencies are not known, the methods compared are SWITCH and LAMP.

Method YRI-CEU CEU-JPT JPT-CHB

SWITCH-ANC 97.6±0.3 94.5±0.8 66.4±2.7
LAMP-ANC 94.9±0.6 93.7±0.7 69.9±2.1
SABER 89.4±0.8 85.2±1.2 68.2±1.9

SWITCH 96.0± 0.6 83.2±5.6 51.4±2.8
LAMP 94.0±0.8 82.9±5.5 50.6±2.5

When they are available, SWITCH uses a maximum-likelihood classification
based on these frequencies as initialization. We refer to this variation of SWITCH
as SWITCH-ANC. SABER also requires the ancestral allele frequencies. The
version of LAMP that uses ancestral frequencies is termed LAMP-ANC.

When the ancestral allele frequencies are not known, LAMP can still be used.
We use the resulting estimates of ancestries to initialize the EM algorithm.

For each individual i and SNP j, each method finds an estimate âp
ij ∈ {0, 0.5, 1}

for the true ancestry ap
ij . We measure the accuracy of a method as the fraction of

triplets (i, j, p) for which ap
ij = âp

ij . The first half of Table 1 compares the accu-
racies of SABER, LAMP-ANC and SWITCH-ANC on 100 random datasets of
YRI-CEU, CEU-JPT and JPT-CHB. SWITCH-ANC improves significantly over
LAMP-ANC and SABER on the YRI-CEU dataset. On the CEU-JPT, SWITCH-
ANC and LAMP-ANC have comparable performance, and both methods are more
accurate than SABER. All methods perform poorly on the JPT-CHB dataset due
to the closeness of the two populations. The second half of Table 1 compares the ac-
curacies of SWITCH and LAMP. On the YRI-CEU data, SWITCH, with an accu-
racy of 96.0%, improves significantly over LAMP, which has an accuracy of 94.0%
(Wilcoxon paired signed rank test p-value of 3.89×10−18). Interestingly, SWITCH
improves significantly over LAMP-ANC even though the latter uses the ancestral
allele frequencies. On the CEU-JPT and the JPT-CHB datasets, SWITCH seems
to have slightly higher accuracies than LAMP. We believe that using more infor-
mative priors on the variables ppp,qqq, should yield further improvements by improv-
ing the estimation of low-frequency alleles. These results indicate that the HMM
is most useful when the mixing populations can be easily distinguished as is the
case with the YRI-CEU admixture.

Although the versions of SWITCH have a factor of 5− 10 increase in running
time compared to LAMP, they still run under an hour on large datasets making
them feasible for genome-scale problems.

3.2 Role of the Inference Algorithm

To understand the impact of the inference algorithm and the initialization, we
compared SWITCH to STRUCTURE. While the model used in SWITCH is
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the same as the model introduced in STRUCTURE (with additional switching
variables W ), the inference algorithms differ. SWITCH obtains the posterior
mode of the ancestries Z using an EM algorithm with LAMP providing the
initialization. STRUCTURE computes the posterior marginals of each Zi,j using
an MCMC algorithm to integrate out the unknown parameters. We compared
the ancestry estimates produced by the two methods on the YRI-CEU dataset.
STRUCTURE was run for 10000 burn-in and 50000 MCMC iterations (see below
for further discussion of this choice). The linkage model was used. STRUCTURE
was run on non-overlapping sets of 4000 SNPs covering 36000 of the 38000 initial
SNPs due to numerical instabilities when larger number of SNPs were used.

On theYRI-CEUdataset, SWITCHachieved an accuracyof 97%while STRUC-
TURE achieved an accuracy of 84%. To isolate the reason for this difference, we
evaluated MCMC algorithms which differ from STRUCTURE in varying degrees.
First, we ran MCMC from a random starting point for 1000 iterations with 100
iterations of burn-in and used the posterior mean as the ancestry estimates. This
yielded estimates with an accuracy of 91.13%. When the LAMP estimates were
used as a starting point, the accuracy was 94.9%. This suggests that the chain has
not mixed. To test if the chain has converged, we simulated five such chains each
from different random starting points. We then computed a multivariate potential
scale reduction factor (PSRF) [14] for random sets of 100 p’s and q’s and found it to
be consistently large (> 1.2). When the Markov chain is unable to converge quickly,
the initialization influences the ancestry estimates. Given that the MCMC algo-
rithms do not converge even after being run for several days (e.g., STRUCTURE
was run for a little less than three days on a set of 4000 SNPs while the MCMC
runs described took about a day to run), good initialization becomes essential.

Two other differences between STRUCTURE and the MCMC algorithm that
we implemented are that the latter discards correlated SNPs and fixes the hy-
perparameters. We modified the MCMC to retain the correlated SNPs and the
accuracy falls to 74.9%. We conclude that removing highly correlated SNPs has
a large impact on the accuracy when the models do not account for such SNPs.

3.3 Predicting Recombinations

The switching variables W denote historic recombinations created by the mixing
process after the initial admixture event. While a change in the ancestry between
two SNPs implies a recombination event, many of the recombination events do
not result in a change in the ancestry. When α is small, this happens quite often.
Here we measured the accuracy of SWITCH in predicting such recombinations. If
a predicted recombination falls within 30 Kbases of the SNPs flanking a true re-
combination, it is called a true positive. If multiple recombinations are predicted
within this window, only one is counted as a true positive. False positives and
false negatives are defined similarly. The precision and recall of the predictions
are then computed as Precision = TP

TP+FP and Recall = TP
TP+FN . As a baseline,

we use a null model that predicts recombinations based on the exponentially-
distributed lengths of the haplotypes. The total number of recombinations in the
null model is set to the number of predicted recombinations and the precision
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Table 2. Average L1 error in the estimates of qqq. The methods compared are SWITCH
(which estimates q and α jointly) and two naive algorithms that are given the true
α = 0.20 and α estimated from the data respectively.

Method YRI-CEU CEU-JPT JPT-CHB

SWITCH 7.7±0.5 8.5±0.6 11.7±1.3
Naive1 11.8±0.5 12.2±0.5 12.5±0.5
Naive2 11.8±1.2 12.3±1.2 12.6±1.2

and recall of the predictions are computed similarly. On the YRI-CEU dataset,
SWITCH attains a precision of 83.1% with a recall of 57.9% while the null model
attained a precision of 67.6% with a recall of 43.0%. SWITCH was found to be
consistently more accurate than the null model on the CEU-JPT and JPT-CHB
datasets as well (data not shown).

3.4 Ancestral Allele Frequencies Problem

We now turn to the problem of inferring ancestral allele frequencies. To obtain a
benchmark, we implemented a naive algorithm. The naive algorithm is given the
true value of α (which is not available to the model). The idea behind the naive
algorithm is as follows. For a position j with minor allele frequency fj , and allele
frequencies pj and qj in the two populations, if the number of individuals is large,
fj can be written as fj = (1−α)pj+αqj . So we compute the allele frequency qj at
position j as qj = max (min(fj−(1−α)pj

α , 1), 0). We used two different estimates
of α, yielding algorithms that we refer to as Naive1 and Naive2. Naive1 uses
the value of α = 0.20 which is the admixture fraction in the first generation of
admixture. Naive2 uses an α measured from each dataset. We calculated the L1
error between the estimated q̂qq and the true qqq. The L1 error averaged over 100
datasets of YRI-CEU, CEU-JPT and JPT-CHB is shown in Table 2. SWITCH
reduces the L1 error by about 30% in the YRI-CEU and the CEU-JPT datasets
while there is no significant difference for the JPT-CHB dataset.

4 Conclusions

While HMMs provide a reasonable approach to the modeling of admixture, the
use of MCMC algorithms to estimate the model hyperparameters can be imprac-
tical on realistic datasets. By using an accurate initialization based on LAMP,
and using an EM algorithm to hill-climb in likelihood from this initialization, we
found that we were able to obtain highly accurate solutions in reasonable time.
Thus we are able to retain the advantages of the model-based framework within
a practical procedure. These advantages include the ability to infer location-
specific ancestries, to predict historic recombinations, and to infer ancestral allele
frequencies in an unknown population when one ancestral population is known.

It is interesting to note that SWITCH is more accurate than SABER which
tries to model the background LD in the populations. This may be due in part
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to the fact that SABER has a larger number of parameters to estimate than the
HMM and again there may be practical limitations on obtaining these estimates.
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Using Linkage Disequilibrium Structure and
Molecular Function as Prior Information

Eleazar Eskin
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The availability of various types of genomic data provide an opportunity to incor-
porate this data as prior information in genetic association studies. This informa-
tion includes knowledge of linkage disequilibrium structure as well as knowledge
of which regions are likely to be involved in disease. In this paper, we present an
approach for incorporating this information by revisiting how we perform multi-
ple hypothesis correction. In a traditional association study, in order to correct
for multiple hypothesis testing, the significance threshold at each marker, t, is
set to control the total false positive rate. In our framework, we vary the thresh-
old at each marker ti and use these thresholds to incorporate prior information.
We present a novel Multi-threshold Association Study Analysis (MASA) method
for setting these threshold to maximize the statistical power of the study in the
context of the additional information. Intuitively markers which are correlated
with many polymorphisms will have higher thresholds than other markers. The
simplest approach for encoding prior information is through assuming a causal
probability distribution. In this setting, we assume that the causal polymorphism
is chosen from this distribution and only one polymorphism is causal. We refer
to the probability that the polymorphism i is causal as its causal probability, ci.
Given the causal probabilities, using the approach presented in this paper, we
can numerically solve for the marker thresholds which maximize power. By tak-
ing advantage of this information, we show how our multi-threshold framework
can significantly increase the power of association studies while still controlling
the overall false positive rate, α, of the study as long as

∑
ti = α. We present a

numerical procedure for solving for thresholds that maximize association study
power using prior information. We present the results of benchmark simulation
experiments using the HapMap data which demonstrate a significant increase in
association study power under this framework.

Our optimization algorithm is very efficient and we can obtain thresholds for
whole genome associations in minutes. We also present an efficient permutation
procedure for correctly adjusting the false positive rate for correlated markers
and show how the this approach increases computational time only slightly rel-
ative to performing permutation tests for traditional association studies.

We provide a webserver for performing association studies using this method
at http://masa.cs.ucla.edu/. On the website, we provide thresholds optimized
for the the Affymetrix 500k and Illumina HumanHap 550 chips.
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Abstract. Mapping by Admixture Linkage Disequilibrium (MALD) is
an economical and powerful approach for the identification of genomic
regions harboring disease susceptibility genes in recently admixed pop-
ulations. We develop an information-theory based measure, called EMI
(expected mutual information), that computes the impact of a set of
markers on the ability to infer ancestry at each chromosomal location.
We then present a simple and effective algorithm for the selection of
panels that strives to maximize the EMI score. Finally, we demonstrate
via well established simulation tools that our panels provide considerably
more power and accuracy for inferring disease gene loci via the MALD
method in comparison to previous methods.

1 Introduction

Mapping by admixture linkage disequilibrium (MALD) is an economical and
powerful approach for the identification of genomic regions harboring disease
susceptibility genes in recently admixed populations [11,9]. For the method to
be useful, the prevalence of the disease under study should be considerably dif-
ferent between the ancestral populations from which the admixed population
was formed.

Myeloma, for example, is a type of cancer that is approximately three times
more prevalent in Africans than in Europeans [11]. Hepatitis C clearance is ap-
proximately five times more prevalent in Europeans than in Africans. Stroke, lung
cancer, prostate cancer, dementia, end-stage renal disease, multiple-sclerosis, hy-
pertension and manymore diseases all exhibit a highermorbidity in either Africans
or Europeans, when the two ethnically-different populations are compared [11].
This difference in susceptibility to a specific disease is also evident in other ethnic
populations. Native Americans suffer from a high prevalence of type 2 diabetes,
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obesity and gallbladder disease, while showing a lower prevalence of asthma, rel-
ative to Europeans [8].

When examining an individual that originated from several ancestral popu-
lations, such as African-Americans, the likelihood that this individual will carry
a given disease is influenced by the susceptibility to the disease in the ancestral
populations. When such an admixed individual carries a hereditary disease, the
chances are higher that the disease gene or genes are harbored in chromosomal
segments that originated from the ancestral population with the higher risk.

The MALD method screens through the genome of either affected or both
affected and healthy admixed individuals, looking for chromosomal segments
with an unusually high representation of the high-risk ancestry population for the
disease. MALD requires 200 to 500-fold fewer markers, in comparison to genome-
wide association mapping, while offering the same power [9]. Consequently, the
method has an economical advantage over alternative methods. Lately, successful
results from admixture mapping have begun to emerge. For example, the usage
of MALD led to the discovery of multiple risk alleles (gene variants) for prostate
cancer [2].

In this paper, we develop an information-theory based measure, called EMI
(expected mutual information), to select an effective panel of markers to be used
in MALD. Our measure, presented in Section 4, computes the total impact of
a set of markers on the ability to infer ancestry at each chromosomal location,
averaged over all possible admixture related recombinations. This method im-
proves previous measures such as the Shannon Information Content (SIC)[10],
and Fisher Information Content (FIC)[6]. We then present, in Section 5, a simple
and effective algorithm for the selection of panels that strives to maximize the
EMI score. In Section 6, we demonstrate via well established simulation tools
used in previous studies, that our panels provide considerably more power for
inferring disease gene loci. For example, our simulations show that in the chal-
lenging case of a disease with an ethnicity risk ratio of 1.6 between two ancestral
populations, the power increased from 50% to 68%, namely, an increase of about
36% in the ability to detect the loci of disease susceptibility genes. The detection
accuracy has also significantly improved with the use of our new panels. The in-
crease in power is particularly important in the detection of weak signals that
underlie complex diseases. Section 7 concludes with extensions and discussion.

2 Background

The MALD method consists of three steps. First, an admixed population with a
significantly higher risk for a specific disease in one of the ancestral populations is
identified. Ancestry informative markers that effectively distinguish between the
relevant ancestral populations are selected, and either cases or both cases and
controls are genotyped. Second, the ancestry along the chromosomes of every
individual is computed based on the sampled genotypes. Third, chromosomal
regions with an elevated frequency of the ancestral population with the higher
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Fig. 1. Ancsetry informative markers are used to compute the ancestry across the
chromosomes of cases and controls. The region indicated by the bar shows elevated
frequency of one ancestral population in the cases versus the expected distribution of
ancestry in the controls, suggesting a disease susceptibility locus.

disease prevalence are identified. Figure 1 shows the ancestral profile of eight
individuals, of which half are cases and half controls. The ancestral profiles are
indicated as dark and light segments along the chromosomes. The excess of one
ancestral population in the cases at the locus marked by the bar suggests that
the locus contains the disease susceptibility gene. In the controls, the ancestry at
the same locus matches the expected distribution of ancestry, strengthening the
hypothesis. The detection of suspected regions can be followed by methods such
as high density SNP-based association studies, or a study of nearby candidate
genomic regions.

Choosing ancestry informative markers (AIM) for the construction of MALD
panels has been pursued in several studies. AIM panels were constructed for
African-American [12,15], Mexican-American [14] and Hispanic/Latino [4,8] pop-
ulations. The construction of such panels requires three ingredients: a database
of markers, a measure for the informativeness of a set of markers regarding an-
cestry, and an algorithm that selects informative markers for the MALD panel.

The work of Rosenberg et. al. [10] introduced a measurement for the informa-
tion multialleleic markers provide on ancestry, based on the Shannon Informa-
tion Content. Pfaff et. al. [6] based their measurement on the Fisher Information
Content.

The algorithms used for panel construction in the studies that followed were
driven by two prime objectives: (1) choose markers with the highest ancestry-
informativeness (2) choose evenly spread markers. These guidelines were set to
provide informative panels for the estimation of ancestry at each point along
the genome. Current panel construction algorithms are “greedy”, attempting
to locally maximize an informativeness criterion, whilst investing less effort in
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ensuring that the chosen markers are evenly spaced or that the informativeness
along the genome is well balanced. Smith et. al. used a purely greedy algorithm
for marker selection [12]. Tian et. al. divided the chromosome into windows,
choosing multiple highly-informative markers within every such window [15].

When considering the informativeness of a set of markers regarding the an-
cestry at an arbitrary point, previous work offered rough approximations. Smith
et. al. considered the informativeness of a set of markers within a constant-size
window centered on the point examined as an approximation to the informa-
tiveness at that point. Tian et. al. used the mean informativeness between two
adjacent markers bounding the point examined. It is this deficiency that is ad-
dressed in the current paper. In the next section we develop an improved measure
and demonstrate through simulations that panels constructed using our measure
provides increased power in the detection of disease susceptibility gene loci.

3 Admixed Individuals Model

The genome of a recently admixed individual is a mosaic of large chromosomal
segments, where each segment originated from a single ancestral population. We
use the following definitions to describe these segments in admixed individuals.

Definition 1. An admixed chromosome is a chromosome that originated
from more than one ancestral population.

Definition 2. A Post Admixture Recombination point (abbreviated PAR)
is a recombination point in which either two chromosomes from different popula-
tions crossed, or two chromosomes crossed when at least one of the chromosomes
is an admixed chromosome.

Definition 3. A (PAR) block is a chromosomal segment limited by two con-
secutive PAR points, or by a chromosome edge and its closest PAR point.

An immediate implication of these definitions is that every PAR block originated
from a single ancestral population, designated as the ancestry of the block, for
otherwise the block would have been further divided.

Figure 2 illustrates the propagation of PAR points along three generations
of admixture, and the PAR blocks they induce. In particular, Figure 2 shows
a grandmother originating from one population, and a grandfather originating
from two populations, yielding a parent with one admixed chromosome (with one
PAR point) and one non-admixed chromosome. As the parent’s chromosomes
recombine to produce the child’s admixed chromosome, a second PAR point is
added. Hence, three recombination points reside on the child’s chromosome, of
which only two are PAR points (colored black). Three PAR blocks are defined
rather than four as the leftmost recombination point is not a PAR point.

We denote the set of all observed markers by J , and the vector of an individ-
ual’s PAR-blocks ancestries as Q. The set of an individual’s PAR points defines
a partition (denoted π) of the chromosomes into blocks. We use the random
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Fig. 2. Three generations admixture example. PAR blocks are limited only by PAR
points and the chromosomes’ ends.

variable Qπ to denote the vector of ancestries corresponding to the PAR-blocks
determined by π, Qπ,i to denote the ancestry (out of K possible ancestral pop-
ulations) of the ith PAR block in the given partition π, and the random vector
Jπ,i = {Jπ,i,1, Jπ,i,2, ..., Jπ,i,mi} to denote the haplotype assignment of the set
of mπ,i observed markers within this block. Reference to subscript π will be
omitted whenever π is clear from the context.

Markers within a PAR block are assigned according to the probability function
of the corresponding ancestral population. We further assume that the ancestries
of all PAR blocks of a given partition π are mutually independent. A graphical
model showing these assumptions is given in Figure 3.

Fig. 3. Graphical model for P (Q,J) assuming markers Ji within a PAR block are
independent conditioned on ancestry Qi. Ancestries of PAR blocks are mutually inde-
pendent.
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The joint probability distribution described via the graphical model is given by

P (Q, J) =
∑

π

P (π) ·
|Qπ|∏

i=1

P (Qπ,i)
mπ,i∏

j=1

P (Jπ,i,j |Qπ,i) (1)

In particular, when considering a specific point x on the genome, the joint prob-
ability for the ancestry Qx at that point is given by

P (Qx, J) =
∑

π

P (π) · P (Qx, Jπ,x) · P (Jπ,x) (2)

where Jπ,x are the markers within the same PAR-block as location x, and Jπ,x

is the complementary set of markers outside this block. We use this joint distri-
bution to derive our panel informativeness measure.

4 Informativeness of Panels

In this section we develop a measure for the contribution of a set of observed
markers to the ability to infer the ancestry of a block conditioned on a partition
π. We then extend this measure to account for the fact that π is unknown by
computing the expectation over all possible partitions, while focusing on the
inference of a single location x.

We start by exploring the relationship between observed markers and the
ancestries of PAR blocks under the assumption that the partition is known. Using
information-theory, we estimate the extent to which a set of markers contribute
to the ability to infer ancestry by measuring the informativeness of a set of
markers regarding ancestry. The information gain for ancestry due to observing a
set of markers can be described by the well known Shannon Information Content
(SIC)

I(Qi; Ji) = H(Qi) − H(Qi|Ji) (3)

=
∑

Qi

∑

Ji

P (Ji|Qi) · P (Qi) · log
P (Ji|Qi)

P (Ji)

where H(Qi) is the entropy (or the amount of uncertainty) of the PAR block’s
ancestry, given by

H(Qi) = −
K∑

Qi=1

P (Qi) · log P (Qi)

and H(Qi|Ji) is the conditional entropy on ancestry once the markers observa-
tions are accounted for, given by

H(Qi|Ji) = −
∑

Qi

∑

Ji

P (Ji, Qi) · log P (Qi|Ji).
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In other words, the markers’ informativeness is measured by the reduction in
uncertainty regarding the ancestry of a given location due to observing these
markers. This reduction in uncertainty originates from the fact that each ances-
tral population has a distinct distribution over the haplotype. The information
gain in each PAR block is computed separately through Equation 3 due to our
assumption of mutual independence.

The possible presence of linkage disequilibrium between markers within a
block raises difficulties partially stemming from the need to estimate the joint
probability of a haplotype Ji that contains multiple markers conditioned on the
ancestry (i.e., P (Ji|Qi)). To reduce computational cost, we assume conditional
independence between all markers given ancestry, yielding a simpler form of
mutual-information Iind(Qi; Ji), explicated in Lemma 1. The relaxation of this
assumption is pursued in Section 7.

Lemma 1. For a given PAR Block, let Qi be its ancestry, and Ji,j be its jthmarker
(out of mi markers). Under the assumption that the markers are conditionally in-
dependent given Qi, the mutual information of Qi and Ji is:

Iind(Qi; Ji) = H (Ji) −
mi∑

j=1

H (Ji,j |Qi) (4)

Given a partition π, all PAR blocks are determined, and the informativeness of
markers regarding ancestry Qi, and in particular regarding ancestry Qx of an
arbitrary location x within the ith PAR block, is the informativeness of the mark-
ers in Ji alone. All other markers are not informative regarding Qx. However, π
is not known, and for every π a different block contains a location x. Hence, for
each π, a different set of markers is informative. The expected informativeness
of all markers regarding ancestry at location x is given, in principle, by

EMI(Qx; J) =
∑

π

P (π) · I(Qx; J |π) (5)

We call this measure EMI for Expected Mutual Information. Since summing over
all possible partitions is not feasible, the rest of this section rewrites Equation 5
and explicates how to compute it.

Observe that for any two partitions π1 and π2 such that the PAR block that
contains location x also contains the same set of markers Jπ,x ⊆ J , the term
I(Qx; J |π) in Equation 5 is equal. The probability for a partition π to contain a
block that contains both location x and markers Jπ,x is defined by three events:

1. The minimal segment [l, r] that spans over Jπ,x and x does not contain a
PAR point.

2. The segment between l and the marker to its left (at l′), if such exists,
contains a PAR point.

3. The segment between r and the marker to its right (at r′), if such exists,
contains a PAR point.
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Assuming PAR points are distributed independently, the aforementioned three
events are independent as well. This holds because the corresponding three seg-
ments are mutually exclusive. Hence, the probability of a partition π to contain a
PAR block containing location x and markers Jπ,x alone is given by the product

P(l,r) = P (N[l′,l] �= 0) · P (N[l,r] = 0) · P (N[r,r′] �= 0) (6)

where N[a,b] is a random variable of the number of PAR points in segment
[a, b], and [l, r] is the minimal segment containing location x and markers Jπ,x.

The term P (N[l′,l] �= 0) depends on the existence of a marker at l′, hence the
term will not appear in Equation 6 in case there is no marker to the left of l.
Similarly, P (N[r,r′] �= 0) will not appear in Equation 6 if there is no marker to
the right of r.

Let J[l,r] denote a sequence of markers within a segment [l, r], and location(j)
denote the location of a marker j ∈ J . To compute EMI, we weight the potential
contribution I(Qx; J[l,r]) by the probability of such a contribution, namely the
probability P(l,r) of a partition π to contain location x and markers J[l,r] within
the same block.

Theorem 1. Let Qx be the ancestry at location x, and J the set of observed
markers. The expected mutual information between Qx and J is

EMI(Qx; J) =
∑

l∈L

∑

r∈R

P(l,r) · I(Qx; J[l,r]) (7)

where

L = {location(j) ≤ x|j ∈ J} ∪ {x},

R = {location(j) ≥ x|j ∈ J} ∪ {x}.

The common realization of the term P(l,r) in Equation 7 is via the exponential
distribution. In particular P (N[a,b] = 0) = e−λ·|b−a|, where λ is the rate of PAR
points in admixed individuals, as derived from the admixture model being used.
Consequently,

P(l,r) = (1 − e−λ·|l−l′|) · e−λ·|r−l| · (1 − e−λ·|r′−r|). (8)

Equation 7 defines the EMI at a specific location x. The average information
gain regarding the entire chromosome is given by

EMIavg(J) =
1

|N | ·
∑

x∈N

EMI(Qx, J) (9)

which measures the the average EMI along the chromosome. The set N consists
of all locations x on an evenly spaced grid with a specific resolution. For example,
for chromosome 1, a set N of 280 points means about one location per cM .

In the task of mapping disease genes in admixed populations using the MALD
method, panels of high EMIavg are shown in Section 6 to outperform previous
panels.
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5 Panel Construction

We employ a greedy algorithm that constructs panels of markers for which the
EMIavg is high. In principle, the algorithm iterates over the candidate markers,
selecting the marker with the highest EMIavg gain given the markers chosen so
far. Namely, in each iteration the algorithm chooses a marker j that maximizes

EMIavg(J ∪ {j}) − EMIavg(J) (10)

where J is the set of markers selected so far.
The evaluation of EMIavg is a computationally intensive task that is repeated

with every iteration, and for every candidate marker. To reduce execution time,
for each examined candidate we locally evaluate EMIavg on a set of points located
in a segment of length w centered on the candidate marker. Equation 11 evaluates
the EMIavg on a subset of points wj ⊆ N

EMIavg(J) =
1

|wj |
·

∑

x∈wj

EMI(Qx, J) (11)

where

wj = {p ∈ N | location(j) − w

2
≤ p ≤ location(j) +

w

2
}

rather than on the entire chromosome. Once a marker j is chosen, the EMIavg

gain in the next iteration is computed only for those markers that are within
wj , as the last chosen marker mostly affects their potential gain.

The most computationally dominant factor in EMI is the evaluation of H(J)
(Equation 4), as it is exponential in the number markers |J |. However, for a given
PAR-block, a small number of ancestry informative markers suffice to nearly
eliminate the uncertainty regarding its ancestry; the information gain regard-
ing the ancestry of the PAR-block saturates rapidly as the number of markers
within the PAR-block increases. Hence, limiting the number of markers used in
the evaluation of Equation 4 yields an eligible approximation. In our implemen-
tation, we limited the number of markers in the evaluation of Equation 4 to a
maximum of 17 markers, offering a plausible tradeoff between performance and
approximation accuracy.

6 Evaluation

In this section we demonstrate the power of panels produced by our algorithm
and EMI. We compare performance with the works of Smith et. al. [12], and
Tian et. al. [15].

Similarly to the panels of Smith et. al. and Tian et. al., we constructed a
panel for the African-American admixed population. The International HapMap
Project [13] was used as the SNP allele frequencies source for the two ancestral
populations, namely the west-African and European populations. HapMap has
been shown to reflect these two distinct populations well [1].
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We constructed a panel of 148 markers (denoted EMI-148) for chromosome 1,
matching the number of corresponding markers in the screening panel of Tian
et. al.. The panel of Smith et. al. contains 238 markers. We further constructed
a more economical panel of 100 markers for chromosome 1 (denoted EMI-100)
which is two thirds the number of markers in the panel constructed by Tian
et. al. Based on the admixture-dynamics of African-Americans as described in
[3,11,12], we used λ = 6 (Equation 8), a proportion of 0.8 African/0.2 European
contribution to the admixed population, and w = 45cM (Equation 11).

We first examine the performance of the four panels according to the EMI
measure. The maximal EMI value is derived from the admixed-population char-
acteristics, namely the number of admixed populations and the admixture co-
efficient. In the case of African-Americans, the maximal value is approximately
0.5. As illustrated in Figure 4, the proportion of chromosome 1 above most EMI
thresholds is higher in the panels constructed in the current work. Moreover, the
EMI-148 panel constructed by our algorithm has a low EMI standard-deviation
of 0.0041 in comparison to the screening panel of Tian et. al. (0.0142) and the
panel of Smith et. al. (0.0178); indeed, our algorithm strives to balance the infor-
mativeness of markers across the chromosome. It is interesting to note that our
lighter panel, EMI-100, has good performance as well, with a low EMI standard-
deviation of 0.0056.

ANCESTRYMAP [5] is a tool we used for the estimation of the ancestral
origin of a locus on the basis of sampled genotypes. Given genotypes of cases
and controls, the tool can compute the likelihood of each point along the genome
to be the disease locus, under a specified disease model. ANCESTRYMAP can
also generate admixed-individual genotypes for cases and controls under a given
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Fig. 4. Proportion of chromosome above an EMI threshold. For most levels of infor-
mativeness, our panel covers larger segments of the chromosome.
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disease model. This software was used in [12] and [15] to evaluate the power of
the Smith and Tian panels, respectively.

In the experiments conducted, we generated 5761 admixed-individual cases
per experiment through the use of ANCESTRYMAP. In each experiment, a
single location on chromosome 1 was used as the disease predisposition locus. In
order to evaluate the performance of the panel across the entire chromosome, a
set of disease predisposition loci were chosen using a resolution of 4 points per
cM; above 900 uniformly selected locations across chromosome 1 were used in the
experiments. Multiple disease models were examined, all with higher prevalence
in the European population. A range of ethnicity relative risk (ERR) factors,
between 1.4 and 1.8, were set as the disease model parameters. We focused on
this range as it captures diseases such as stroke and lung cancer [11], which
are considered mild in their ERR, hence harder to detect. We proceeded by
employing ANCESTRYMAP to locate the disease gene. Similar to the threshold
used for the evaluation of Tian’s panel [15], we used a LOD score above 4.0
as an indicator for successful detection. Figure 5 shows the power, namely, the
detection success-rate, in a total of 5500 experiments per panel.
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Fig. 5. EMI-148 achieves a significantly higher power in all tested disease models

Measuring the distance between the highest detection signal and the actual
disease predisposition locus reveals that our panel also has a high detection accu-
racy, as illustrated in Figure 6. Approximately 55% of the experiments conducted
on the entire range of ERR using our EMI-148 panel detected a signal within a
3 cM distance from the actual disease predisposition locus, whilst the other two
panels achieved approximately 42% (Tian et. al.) and 37% (Smith et. al.). The
EMI-100 panel achieved a 46% detection-rate within 3 cM.
1 Commercial panel infrastructure requires sample size to be a multiplicative of 96.
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Fig. 6. Experiments percentage above accuracy threshold for each of the four panels. A
higher percentage of the experiments yield higher accuracy for EMI-148, in comparison
to the other three panels.

Detailed information regarding our panel can be found at bioinfo.cs.technion.
ac.il/MALD.

7 Extensions and Discussion

The EMI measure, introduced in Section 4, provides an estimate for the informa-
tiveness of a set of markers regarding ancestry at a specific location. It improves
upon previous measures as it takes into account the expected informativeness of
a set of markers with respect to ancestry, over all possible partitions. The higher
accuracy of EMI, especially in regions between markers, enables the creation of
panels that are well balanced in terms of the informativeness provided by the set
of markers across the genome. Finally, the panels constructed by our algorithm
demonstrated significantly higher power and accuracy.

An immediate extension of EMI that we pursued addresses possible dependen-
cies between markers given ancestry. Lemma 1 disregards LD within ancestral
population in favor of a lower computational cost. We now use a first-order
Markov-chain to model marker dependencies within ancestral populations in
order to provide a more accurate model. Under this model, the transition prob-
abilities are derived from the LD present between every two adjacent markers
given the ancestry. Such a model still yields a computationally plausible form,
as shown in the next lemma.

Lemma 2. For a given PAR Block, let Qi be the ancestry, and Ji,j be the
jthmarker (out of mi markers). Under the assumption that each marker is
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dependent on the preceding marker and conditionally independent of the rest
of the markers given Qi, the mutual information of Qi and Ji is:

Ichain(Ji; Qi) = H(Ji) − H(Ji,1|Qi) −
mi∑

j=2

H(Ji,j |Qi, Ji,j−1) (12)

However, we have not employed this extension in the panel constructed because
the public data of LD categorized by ancestral population is still too sparse.
In addition, as our algorithm inherently yields a balanced panel in terms of
EMIavg, the selected markers tend to be evenly spaced (hence with a large inter-
distance), decreasing the probability for LD between two consecutive markers,
given ancestry.

Another extension of EMI relaxes the assumption that the rate of PAR points,
used in Equation 8, is constant across the chromosomes. Recombinational hot-
spots can be taken into account by using a PAR point rate as a function of
location λ(x) instead of the constant rate λ. For example, assume that a chro-
mosome is divided into regions of different PAR point rates λ1, λ2, ..., λn. For a
segment [l, r] that spans two consecutive regions with PAR rates λi and λi+1,
the term P (N[l,r]) in Equation 6 equals e−(λi·t+λi+1·(1−t))·|r−l|, where t is the
proportion of segment [l, r] with PAR rate λi. Furthermore, the framework pro-
vided in this paper can address the effect on EMI of different admixture models,
such as continuous-gene-flow [7], by considering a different realization of Equa-
tion 6.

We note that EMI assumes a model for haplotypes rather than genotypes,
and that the allele frequencies P (J |Q) are definite. In reality these frequencies
are derived from a small set of samples (60, barring missing data, in the case of
HapMap). In its current form, EMI lacks an appropriate treatment for the uncer-
tainty involving allele frequencies. It is advisable to validate the allele frequencies
by taking more samples for candidate markers, as done in [15].

The approach presented in this paper for panel construction also applies to
the second phase of the MALD method. This second step currently employs a
Markov chain model that assigns the most probable ancestry for each location,
given the model and marker data [5,3]. By conditioning on possible partitions
π, one can compute the expected ancestry P (Qx|J = j) of a point x given mea-
surements J = j via Equation 2, similarly to our computation of the expected
informativeness. It would be interesting to see whether this approach yields
higher accuracy in ancestry inference.

Finally, further research could determine the relative contribution of each of
the following three ingredients to the reported increase in power: the richer set of
SNP markers available in the current HapMap project, the validity of the EMI
measure, and the success of our proposed algorithm. Nevertheless, we clearly
showed that the panel produced using EMI has a well balanced high score in
terms of informativeness of markers, yielding a significant improvement in both
power and accuracy, compared to previous work.
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Abstract. Jansson and Sung showed that, given a dense set of input
triplets T (representing hypotheses about the local evolutionary rela-
tionships of triplets of taxa), it is possible to determine in polynomial
time whether there exists a level-1 network consistent with T , and if so
to construct such a network [18]. Here we extend this work by showing
that this problem is even polynomial-time solvable for the construction
of level-2 networks. This shows that, assuming density, it is tractable to
construct plausible evolutionary histories from input triplets even when
such histories are heavily non-tree like. This further strengthens the case
for the use of triplet-based methods in the construction of phylogenetic
networks. We also implemented the algorithm and applied it to yeast
data.

1 Introduction

Phylogenetics is the field at the interface of biology, mathematics and computer-
science which studies the (re-)construction of plausible evolutionary scenarios
when confronted with incomplete and/or error-prone biological data. Until re-
cently almost all research effort was directed at finding evolutionary trees. How-
ever, biologically, especially for lower order species, evolution does not necessarily
exhibit a tree structure. Thus, the quest for models and methods for more gen-
eral evolutionary structures than trees has emerged naturally. This forms the
subject of this paper.

Many algorithmic strategies for constructing evolutionary trees have been
proposed in the literature. The most well-known techniques are Maximum Par-
simony (MP), Maximum Likelihood (ML), Bayesian methods, Distance-based
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methods (such as Neighbour Joining and UPMGA) and quartet-based methods,
as well as various (meta-)combinations of these [3][10][19][24].

Quartet methods apply to the construction of unrooted evolutionary trees; less
well studied is the problem of constructing rooted evolutionary trees, where the
edges of the tree are directed to reflect the direction of evolution. The analogue
of quartet methods in the case of rooted evolutionary trees are triplet methods:
here we are given not unrooted trees on four leaves, but rooted binary trees on
three leaves, as in Figure 1. The unique rooted triplet (triplet for short) on a
leaf set {x, y, z} in which the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of x and z is denoted by xy|z (which
is identical to yx|z). The triplet in the figure is xy|z.

Fig. 1. One of the three possible triplets on the leaves x, y and z. Note that, as with
all figures in this article, all arcs are directed downwards, away from the root.

Aho et al. studied the problem of constructing a tree from a set of triplets. They
showed that, given a set of triplets, it is possible to construct in polynomial time
a rooted tree consistent with all the input triplets, or decide that no such tree
exists [1]. This contrasts favourably with the corresponding quartet problem,
which is NP-hard [25]. Various authors [2][6][14][15][26] have studied variations
of the problem in cases where the algorithm of Aho et al. fails to return a tree.
A well-studied one, albeit NP-hard [14], is to find a tree that maximises the
number of input triplets it is consistent with.

In recent years attention has turned towards the construction of evolutionary
scenarios that are not tree-like. This has been motivated by the fact that biolog-
ical phenomena such as hybridisation, horizontal gene transfer, recombination,
and gene duplication can cause lineages, which earlier in time diversified from a
common ancestor, to once again intersect with each other later in time. These
kind of evolutionary events are called reticulation events and lead to evolution-
ary scenarios where the underlying undirected graph potentially contains cycles.
Rather than attempt to summarise this extremely varied area we refer the reader
to [11], [22] and [23], all outstanding survey articles.

Informally, a level-k network is an evolutionary network where each bicon-
nected component of the network contains at most k reticulation events. Jans-
son, Sung and Nguyen considered the problem of deciding whether, given a set
of input triplets, it is possible to construct a level-1 network (otherwise known
as a galled tree [8] or a galled network [4][9][16]) consistent with all those triplets
[16][18]. They showed that, in general, the level-1 problem is NP-hard. (In con-
trast, the algorithm of Aho et al. always runs in polynomial time.) However,
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they show that the problem can be solved in polynomial time when the input
is dense, meaning that for each set of three taxa there is at least one triplet
in the input. Density is a reasonable assumption if high-quality triplets can be
constructed for all subsets of three taxa. The authors also give various upper
bounds, lower bounds and approximation algorithms for the general case [16].
Related problems studied comprise the construction of level-1 networks from
ultrametric distance matrices [4] and building level-1 networks where certain in-
put triplets are forbidden [9]. Huson and Klöpper [12] consider a generalisation
of level-1 networks that they call galled networks (defined differently than in
[4][9][16]).

In this paper we extend considerably the work of Jansson and Sung by show-
ing that, when the input set is dense, we can construct in polynomial time a
level-2 network consistent with all input triplets or decide that no such network
exists. In case of a general (possibly non-dense) input triplet set, we claim that
it is NP-complete to decide whether a level-2 network consistent with the input
exists [13]. The proof of this claim, omitted here, is a nontrivial extension of the
proof that this problem is NP-hard for level-1 networks [16]. In Section 3 we
present our algorithm for constructing level-2 networks from dense triplet sets
that runs in (slightly better than) cubic time in the number of input triplets.
This significantly extends the power of triplet methods because it further ex-
tends the complexity of the evolutionary scenarios that can be constructed. For
example, networks of the complexity shown in Figure 2 can be constructed by
our algorithm. Our result and the way it is proved make it tempting to conjecture
that, for fixed k, the level-k problem with dense triplet sets is polynomial-time
solvable. However, it is not yet clear that the pivotal theorem in Section 3,
Theorem 2, generalises easily to level-3 networks and higher.

Fig. 2. An example of a level-2 network

An implementation of our algorithm in Java has been made publicly avail-
able [21]. We applied it to sequences from the yeast Cryptococcus gattii. We
constructed a level-2 network for different isolates of this, potentially danger-
ous, yeast and are planning to use this network to find the origin of a C. gattii
outbreak on the Westcoast of Canada. The results are reported in Section 4. In



Constructing Level-2 Phylogenetic Networks from Triplets 453

Section 5 we discuss our conclusions and the many fascinating open problems
that still remain in this area.

2 Preliminaries

A phylogenetic tree is a rooted binary tree with directed edges (arcs) and dis-
tinctly labelled leaves. A triplet xy|z is thus a phylogenetic tree on three leaves.
A phylogenetic network (network for short) is defined as a directed acyclic graph
in which exactly one vertex has indegree 0 and outdegree 2 (the root) and all
other vertices have either indegree 1 and outdegree 2 (split vertices), indegree 2
and outdegree 1 (reticulation vertices) or indegree 1 and outdegree 0 (leaves),
where the leaves are distinctly labelled. In general directed acyclic graphs a retic-
ulation vertex is a vertex with indegree 2. A directed acyclic graph is connected
(also called “weakly connected”) if there is an undirected path between any two
vertices and biconnected if it contains no vertex whose removal disconnects the
graph. A biconnected component of a network is a maximal biconnected sub-
graph.

Definition 1. A network is said to be a level-k network if each biconnected
component contains at most k reticulation vertices.

A tree can thus be considered a level-0 network. A network that is level-k but
not level-(k − 1) is called a strict level-k network.

Denote the set of leaves in a network N by LN . For any set T of triplets define
L(T ) =

⋃
t∈T Lt and let n = |L(T )|. A set T of triplets is called dense if for each

{x, y, z} ⊆ L(T ) at least one of xy|z, xz|y and yz|x belongs to T . Furthermore,
for a set of triplets T and a set of leaves L′ ⊆ L(T ), we denote by T |L′ the
triplets t ∈ T with Lt ⊆ L′. We use L as shorthand for L(T ).

Definition 2. A triplet xy|z is consistent with a network N (interchangeably:
N is consistent with xy|z) if N contains a subdivision of xy|z, i.e. if N contains
vertices u �= v and pairwise internally vertex-disjoint paths u → x, u → y, v → u
and v → z.

By extension, a set of triplets T is said to be consistent with N (interchangeably:
N is consistent with T ) if every triplet in T is consistent with N . To clarify triplet
consistency we observe that the network in Figure 2 is consistent with (amongst
others) ab|c, bc|a and dg|k but not consistent with (for example) ah|f or hk|i.

We will now define SN-sets, introduced in [18], which will play a crucial role
in the rest of the paper. For a triplet set T , let σT be the operation on subsets
X of L(T ) defined by σT (X) = X ∪ {c ∈ L(T )|∃x, y ∈ X : xc|y ∈ T }. The
set SNT (X) is defined as the closure of X w.r.t. the operation σT . Define an
SN -set of T as a set of the form SNT (X) for some X ⊆ L(T ), i.e. SN-sets are
the subsets of L(T ) that are closed under the operation σT . An SN-set X is
maximal with respect to a triplet set T if X �= L(T ) and L(T ) is the only SN-set
that is a strict superset of X . In [18] it is shown that the maximal SN-sets of T
partition L(T ) if T is dense.
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We call an arc a = (u, v) of a network N a cut-arc if its removal disconnects
N and call it trivial if v is a leaf. A cut-arc is highest if there does not exist a
cut-arc a′ = (u′, v′) such that u is reachable from v′. We say that a vertex is
below (u, v) if it is reachable from v. A little thought should make it clear that
for each cut-arc a in a network N consistent with a dense triplet set T , the set
S of leaves below a is an SN-set of T and that the sets of leaves below highest
cut-arcs partition LN . The following lemma reveals a crucial characteristic that
we exploit in our algorithm.

Lemma 1. Let N be a network consistent with dense triplet set T . Each maxi-
mal SN-set S in T can be expressed as the union of the leaves below one or more
highest cut-arcs in N .

Fig. 3. Constructing a level-2 network by recursively constructing “simple” networks,
given the partition L = S1 ∪ . . . ∪ S7

3 Constructing Level-2 Networks from Dense Triplet Sets

This section describes our main result, a polynomial time algorithm that con-
structs a level-2 network from a dense triplet set T if such a network exists. The
algorithm is recursive. The main idea is visualised in Figure 3. Suppose that we
know the correct partition L = S1 ∪ . . .∪S7 of the leaves. Then an algorithm can
replace each set Si by a single (meta-)leaf and start with constructing this “sim-
ple” level-2 network (in black). In Subsection 3.1 we formally introduce simple
level-2 networks and show how they can be constructed. The complete level-2
network can then be obtained by replacing each meta-leaf Si by a recursively
created level-2 network. In spirit, this procedure resembles that for level-1 net-
works [18]. However, besides the fact that the simple level-2 networks are more
complex, it also turns out that finding the right partition (and especially the
proof of correctness) is far more involved than in the level-1 version of the prob-
lem. There does for example not always exist a level-2 network where the sets
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of leaves below highest cut-arcs correspond to the maximal SN-sets, as is the
case for level-1 networks. How the recursion works in detail and how the correct
partition can be found is explained in Subsection 3.2. Due to space constraints
we have to defer all proofs to a full version of the paper.

3.1 Simple Level-2 Networks

We now introduce the class of level-2 networks that we name simple level-2
networks. Informally these are the basic building blocks of level-2 networks in
the sense that each biconnected component of a level-2 network is in essence a
simple level-2 network. We first introduce a simple level-k generator :

Definition 3. A simple level-k generator is a directed acyclic biconnected multi-
graph, which has a single root (indegree 0, outdegree 2), precisely k reticulation
vertices (indegree 2, outdegree at most 1) and apart from that only split vertices
(indegree 1, outdegree 2).

In simple level-k generators, vertices with indegree 2 and outdegree 0 as well as all
arcs are labelled and called sides. A simple case-analysis shows that there is only
one simple level-1 generator and that there are four simple level-2 generators,
depicted in Figure 4.

Fig. 4. The only simple level-1 generator and all four simple level-2 generators

Definition 4. A simple level-k network N is a network obtained by applying the
following transformation to some simple level-k generator such that the resulting
graph is a valid network:

1. replace each arc X by a path and for each internal vertex v of the path add
a new leaf x and an arc (v, x); and

2. for each vertex Y of indegree 2 and outdegree 0 add a new leaf y and an arc
(Y, y).

Note that in the above definition a path used to replace an edge possibly contains
no internal vertices. An exception to this, however, is that whenever there are
multiple arcs, we replace at least one of them by a path of at least three vertices.
There is a nice and simple characterisation of simple level-k networks.
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Lemma 2. A strict level-k network is a simple level-k network if and only if it
contains no nontrivial cut-arcs.

All simple level-1 networks on dense triplet sets can be found by an algorithm by
Jansson, Nguyen and Sung [16]. We designed Algorithm SL2 to find all simple
level-2 networks consistent with a dense set of triplets T . Before describing the
algorithm, we will first give an analysis of the structure of simple level-2 networks,
whereon the algorithm is based. We use the notion reticulation leaf for a leaf
whose parent is a reticulation vertex and say that a network is a caterpillar if
the deletion of all leaves gives a directed path. We call a subset of the leaves L′

a caterpillarset if there exists a network consistent with the input triplets that
contains a caterpillar with leaves L′ as subgraph. We prove that there are only
O(n) caterpillarsets and designed a routine to construct all of them from the
triplets in O(n5) time. Now consider any simple level-2 network. If we remove a
reticulation leaf and its parent, there is one reticulation vertex y left and below it
is a caterpillar. If we now remove this last reticulation vertex and the caterpillar
below it, we obtain a tree, which is unique [17] and can be constructed using the
algorithm of Aho et al. [1]. The algorithm SL2 will first identify this tree and
then reconstruct the simple level-2 network from it as follows.

Algorithm 1. SL2 (sketch)
1: for each leaf x ∈ L do
2: delete all triplets containing x
3: for each caterpillarset Q do
4: delete all triplets containing a leaf in Q
5: build the unique tree consistent with the remaining triplets
6: for every two arcs a1 and a2 in this tree do
7: subdivide a1 and a2 by new vertices and put the caterpillar consistent with

T |Q below below both new vertices by introducing a reticulation vertex y
8: for every two arcs a3 and a4 in the resulting level-1 network do
9: subdivide a3 and a4 by new vertices and make x a new reticulation leaf

below both new vertices
10: if the obtained network N is a simple level-2 network consistent with T

then
11: output N .

Now suppose that triplet set T is consistent with some simple level-2 network
N . At some iteration the algorithm will choose the right leaf and caterpillarset
to remove and the right arcs to subdivide and the algorithm will construct the
network N . Furthermore, for each constructed network the algorithm checks
whether it is a simple level-2 network consistent with T . We conclude that the
algorithm finds exactly all simple level-2 networks consistent with T .

For several reasons the actual algorithm is more complicated than the sketch
above. Firstly, some special cases occur when there are no leaves on certain
sides of the simple level-2 network. These cases can be dealt with by introducing
dummy vertices. Secondly, we can improve the running time of the algorithm
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slightly if we loop through only a part of all combinations of arcs. Finally, we
present an O(n3) routine that checks whether a given network N is a simple
level-2 network consistent with a given triplet set T . This leads to an overall
running time of O(n8).

Theorem 1. Algorithm SL2 finds all simple level-2 networks consistent with a
dense triplet set and can be implemented to run in time O(n8). �

3.2 From Simple to General Level-2 Networks

This section explains how to build general level-2 networks by recursively build-
ing simple level-1 and -2 networks. The following theorem will be crucial.

Theorem 2. Let T be a dense triplet set consistent with some level-2 network
N . Then there exists a level-2 network N ′ consistent with T such that at most
one maximal SN-set of T equals the union of the sets of leaves below two highest
cut-arcs and each other maximal SN-set is equal to the set of leaves below just
one highest cut-arc.

For a collection S = {S1, . . . , Sq} of SN-sets let T∇S denote the induced set of
triplets SiSj |Sk such that there exist x ∈ Si, y ∈ Sj , z ∈ Sk with xy|z ∈ T and
i, j and k all distinct. The above theorem implies that, after possibly splitting
one SN-set, we can replace each SN-set by a single leaf and the problem then
essentially reduces to constructing a simple level-1 or -2 network for the induced
triplet set. Given that there is at most one maximal SN-set that needs to be split
into two subsets, we can simply try splitting each maximal SN-set of T in turn,
as well as considering the case where no maximal SN-set of T is split. There
are only O(n) maximal SN-sets. The following lemma tells us how to split the
chosen maximal SN-set into two subsets.

Lemma 3. Let T be a dense set of triplets and N ′ a network with the properties
described in Theorem 2. Suppose T contains a maximal SN-set X which occurs
as the union of the sets S1 and S2 of leaves below two highest cut-arcs. Then
T |X contains precisely two maximal SN-sets and these are S1 and S2.

The general outline of our algorithm LEVEL2, which constructs level-2 networks
from dense triplet sets, is as follows. First we compute the maximal SN-sets. If
there are precisely two maximal SN-sets then we recursively create two level-2
networks for the two maximal SN-sets and connect their roots to a new root.
Otherwise, we try splitting each maximal SN-set in turn and we try the case
where no maximal SN-set is split. If S is the obtained set of SN-sets then we
compute the induced set of triplets T∇S and try to construct a simple level-
1 or -2 network N consistent with T∇S using algorithm SL2. We recursively
create level-2 networks for each SN-set in S and replace each leaf of N by the
corresponding, recursively created, level-2 network.

It can furthermore be proven that if it is necessary to split an SN-set X
then the simple level-2 network must be of type 2c and X must be below the
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two reticulation leaves. Exploiting this fact we can prove that LEVEL2 can
be implemented to run in time O(n8), which is equal to O(|T | 8

3 ). A simplified
version of the algorithm is displayed below.

Algorithm 2. LEVEL2 (sketch)
1: compute the set SN of maximal SN-sets of T
2: if |SN | = 2 then
3: N consists of a root connected to two leaves: the elements of SN
4: else
5: if T∇SN is consistent with a simple level-1 network then
6: let N be such a network
7: else if T∇SN is consistent with a simple level-2 network then
8: let N be such a network
9: else

10: for X ∈ SN do
11: compute the set of maximal SN-sets SN ′ of T |X
12: if |SN ′| = 2 then
13: S := SN \ {X} ∪ SN ′

14: if T∇S is consistent with a simple level-2 network of type 2c where the
elements of SN ′ are the two reticulation leaves then

15: let N be such a network
16: replace each leaf X of N by a recursively created level-2 network for T |X.

Theorem 3. Algorithm LEVEL2 constructs, in O(|T | 8
3 ) time, a level-2 network

consistent with a dense set of triplets T if and only if such a network exists.

4 Experimental Results

The algorithm from the previous section has been implemented in Java and
applied to experimental data. The implementation was made publicly available
[21]. The data of this application consists of sequences from different isolates of
the yeast Cryptococcus gattii. This yeast is potentially dangerous and an ongoing
outbreak on the Westcoast of Canada [20], which started in 1999, has caused
many infections and even some fatalities. We have constructed a phylogenetic
network for these isolates as a tool to find the origin of this C. gattii outbreak.
We have blinded the names of the isolates here since the biological part of the
research has not yet reached a conclusion.

Given the C. gattii sequences we have constructed a set of triplets as follows.
Firstly, all identical sequences are combined into a single sequence type (ST). One
of the sequence types (that is only distantly related to the others) is used as an
outgroup and we have applied the Maximum Likelihood method of PHYML [7] to
each subset of four sequence types that includes the outgroup. Each output tree
of PHYML gives us one input triplet for our algorithm LEVEL2. Running our
algorithm for all ST’s tells us that there exists no level-2 network consistent with
all triplets. Therefore, we have applied our algorithm to a set containing as many
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ST’s as possible (where certain important ST’s get priority over others) without
destroying level-2-realisability. This set has been found by searching through
all subsets. Given this subset and all triplets the execution of the algorithm
LEVEL2 took 0.8 seconds on a Pentium IV, 3 GHz PC with 1GB memory. The
resulting level-2 network is displayed in Figure 5. This network is consistent with
all 1330 triplets that were generated over this set of taxa. The figure displays
both a reticulate pattern and a dichotomous and tree-like structure. Our method
is able to differentiate and visualise these.
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Fig. 5. The network constructed by the algorithm LEVEL2 for the triplets based on
the yeast data set

A great advantage of our algorithm is that it is extremely fast. However, for data
for which not all triplets can be found accurately or for which there are many
reticulations that do not fit into a level-2 network, it might only be possible to
find a phylogenetic network for a subset of the taxa. On the positive side, even
in such cases, our level-2 networks could possibly give a better representation of
reality than a tree or a level-1 network.
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5 Conclusion and Open Questions

In this paper we have shown that in polynomial time we can decide whether a
dense triplet set is consistent with a level-2 network, and if so construct such
a network. In this way we have brought more complex, interwoven forms of
evolution within reach of triplet methods. The described method has shown to be
useful in practice. There remain, of course, many open questions and challenges,
which we briefly list here.

1. Applicability. First practical experiments, one of which we reported in
Section 4, show that the implementation we have made is fast and accurate.
It remains interesting to test it on other phylogenetic data. We also wonder
in how far the critique from certain parts of the community on the validity of
many quartet-based methods is also relevant here. This critique in essence
rests on the argument that it is in practice far harder to generate high-
quality input quartets than is often claimed. The short quartet method [5]
has been discussed as a way of addressing this critique. This debate needs
to be addressed in the context of this paper.

2. Complexity. Is the non-dense level-k problem NP-hard for all fixed k ≥ 1?
Is the dense version polynomial-time solvable for all fixed k? In this regard
it would be helpful to generalise Theorem 2, which captures the behaviour of
SN-sets, and the algorithm that constructs simple level-2 networks. General-
ising Theorem 2 will probably be difficult, because it is at this moment not
clear whether the technique of “pushing” maximal SN-sets below cut-arcs
generalises to level-3 and higher. It is also interesting to see how far the run-
ning time of our algorithm can be improved and/or how far this is necessary
for further applications. At the moment the running time is O(|T | 8

3 ), which
seems fast enough in practice. Finally, we would like to know the computa-
tional complexity of computing the smallest k for which there exists a level-k
network that is consistent with a dense set of triplets.

3. Bounds. In [16] the authors determine constructive lower and upper bounds
on the value τ for which the following statement is true: for each set of
triplets T , not necessarily dense, there exists some level-1 network N which
is consistent with at least τ |T | triplets in T . It is interesting to explore this
question for level-2 networks and higher.

4. Building all networks. It is not clear whether it is possible to adapt our
algorithm to generate all level-2 networks consistent with the input triplet
set. If so, then such an adaptation could (even in the case that exponentially
many networks are produced) be very useful for comparing the plausibility
and/or relative similarity of the various solutions.

5. Properties of constructed networks. Under what conditions on the
triplet set T is there only one network N consistent with T ? Under what
conditions does T permit some solution N such that the set of all triplets
consistent with N , is exactly equal to T ? These questions are also valid for
level-1 networks.

6. Different triplet restrictions. Density is only one of very many possible
restrictions on the input triplets. Interesting alternatives are what we have
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named minimal density and extreme density. A minimally dense triplet set
has exactly one triplet for every combination of three leaves. In the extreme
dense case we assume that the set of input triplets is exactly equal to the
set of triplets consistent with some network.

7. Confidence. At the moment all input triplets are assumed to be correct.
Is there scope for attaching a confidence measure to each input triplet, and
optimising on this basis? This is also related to the problem of ensuring that
certain triplets are excluded from the output network, as explored in [9].

8. Exponential-time exact algorithms. It could be interesting, and use-
ful, to develop exponential-time exact algorithms for solving the NP-hard
problems for non-dense triplet sets.

Acknowledgements. We thank Katharina Huber for her useful ideas and many
interesting discussions.
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Abstract. Understanding the variation of recombination rates across a
given genome is crucial for disease gene mapping and for detecting signa-
tures of selection, to name just a couple of applications. A widely-used
method of estimating recombination rates is the maximum likelihood
approach, and the problem of accurately computing likelihoods in the
coalescent with recombination has received much attention in the past.
A variety of sampling and approximation methods have been proposed,
but no single method seems to perform consistently better than the rest,
and there still is great value in developing better statistical methods for
accurately computing likelihoods. So far, with the exception of some two-
locus models, it has remained unknown how the true likelihood exactly
behaves as a function of model parameters, or how close estimated like-
lihoods are to the true likelihood. In this paper, we develop a determin-
istic, parsimony-based method of accurately computing the likelihood
for multi-locus input data of moderate size. We first find the set of all
ancestral configurations (ACs) that occur in evolutionary histories with
at most k crossover recombinations. Then, we compute the likelihood
by summing over all evolutionary histories that can be constructed only
using the ACs in that set. We allow for an arbitrary number of crossing
over, coalescent and mutation events in a history, as long as the transi-
tions stay within that restricted set of ACs. For given parameter values,
by gradually increasing the bound k until the likelihood stabilizes, we
can obtain an accurate estimate of the likelihood. At least for moder-
ate crossover rates, the algorithm-based method described here opens
up a new window of opportunities for testing and fine-tuning statistical
methods for computing likelihoods.

1 Introduction

Estimating evolutionary parameters and making ancestral inference are an im-
portant part of molecular evolutionary genetics. Often, at the core of these stud-
ies is the problem of computing the probability of observing sample sequences
for given parameter values. In the context of the coalescent model and its various
extensions, closed-form formulas are generally not known for such likelihoods,
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and therefore several computationally intensive statistical methods have been
proposed for approximating them. Most of these statistical approaches fall into
one of two categories, one based on Markov chain Monte Carlo methods—for
examples, see [3, 25, 26, 44]—and the other on importance sampling methods,
some notable examples being [5, 6, 9, 12, 13, 14, 15, 41]. Both approaches involve
sampling genealogies to estimate a sum over the genealogies consistent with the
input data.

The problem of estimating recombination rates has received particular at-
tention in the past and various methods have been proposed so far [9, 10, 11,
12, 23, 26, 28, 30, 42]. (Henceforward, when we say recombination, we will mean
crossover recombination.) Since computing the full likelihood in the coalescent
with recombination is difficult, several approximation methods have been pro-
posed. Hudson’s [23] composite likelihood method is a popular approximation
method which treats pairs of loci as being independent and takes a product of
two-locus full likelihoods over all pairs of loci. (Different versions of the compos-
ite likelihood idea have also been suggested. E.g, see [10, 11].) This method has
been generalized to study the fine-scale crossover rate variation in the human
genome [24,32, 33].

On the algorithms side, much recent attention has focused on the problem of
estimating the minimum number Rmin(D) of recombinations needed to derive a
given set D of sequences, using some specified model of mutations. A commonly
adopted model is the infinite-sites model, which implies that each site can mutate
at most once in the entire evolutionary history of the sequences. Assuming that
mutation model, it has been shown that computing Rmin(D) is NP-hard [4,43],
and previous algorithms that compute it exactly either work only on relatively
small data sets [36, 38], or on problems with special structure [16, 17, 18]. Since
there are no efficient algorithms to compute Rmin(D) for an arbitrary D, several
papers have considered efficient computation of lower bounds on Rmin(D) [22,
19, 20, 34, 37, 1, 2, 17, 18, 16, 40], as well as practical upper bounds [40].

In a recent paper [29], we have made progress in making the exact computation
of Rmin(D) more practical, significantly increasing the size of data sets that can
be handled. Here, we extend some of the algorithmic ideas developed in that
paper to address the aforementioned problem of computing likelihoods in the
coalescent with recombination. To our knowledge, this is the first application of
a parsimony-based algorithm to likelihood computations in the coalescent.

The main idea behind our approach goes as follows. Instead of attempting to
sum over all genealogies, we sum only over a restricted subset of genealogies. To
each genealogy, there corresponds a sequences of events, consisting of mutations,
coalescences, and recombinations. When an event happens, going backwards in
time, there is a change in ancestral configuration (AC) [39], defined as the set
of all DNA sequences present at a particular point in time in the genealogy.
Summing over all genealogies for D corresponds to summing of all paths of ACs
consistent with D, i.e., with each path starting from the input data D and ending
at an AC in which every site in the input data has found a common ancestor.
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In our work, we first find the set of all ACs that occur in evolutionary histories
with at most k recombinations. Then, we compute the likelihood by summing
over all evolutionary histories that can be constructed only using the ancestral
configurations in that set. We allow for an arbitrary number of recombination,
coalescent and mutation events in the evolutionary history, as long as the transi-
tions stay within that restricted set of ancestral configurations. By starting with
k = Rmin(D) and incrementing the bound k gradually until the change in likeli-
hood satisfies some stopping criteria, we can compute the likelihood accurately.

There exist well-defined recursions relating the probability of a given AC ψ
to the probabilities of those ACs that can be reached from ψ using one event
back in time [7, 8, 13, 14, 15, 12, 35]. Solving the system of recursion relations to
evaluate the probability of ψ = D effectively sums over all possible genealogies
consistent with D. In our work, we systematically solve the system of recursion
relations involving the probabilities of the ACs in the restricted set described
above. Note that this effectively sums not only over genealogies with at most k
recombinations, but over all genealogies that can be constructed using the ACs
in the restricted set with an arbitrary number of recombination events.

Although our deterministic approach can currently handle only small data
sets—say, with about ten sequences and half as many sites—the work described
here should prove useful for evaluating the performance of Monte-Carlo-based
methods. Further, some pseudo-likelihood methods [23,32,33] are based on accu-
rate likelihood calculations for few (typically 2) sites, and the method presented
here significantly extends this capability.

2 Methods

We use D to denote a set of single nucleotide polymorphisms (SNPs) with two
alleles at each site. We assume that the ancestral allele type is known. (This
assumption is only made for ease of exposition. The approach presented here
has a straightforward generalization to the case in which the ancestral allele
type is unknown, albeit with steeper time and space complexity. Our software
handles both cases.) In what follows, the ancestral allele is denoted by 0, while
the mutant allele type is denoted by 1. For given mutation and recombination
rates, our goal is to compute the probability of observing D under the coalescent
with recombination and the infinite sites model of mutation.

2.1 Possible Events Back in Time

We assume that D contains m segregating sites with positions s1, . . . , sm. We
rescale the region to a unit interval between 0 and 1 so that 0 = s1 < s2 < · · · <
sm = 1. We use θ and ρ to denote, respectively, the population-scaled mutation
and recombination rates for the unit interval. We assume that both recombina-
tion and mutation rates are constant over the interval. For given θ and ρ, the
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probability of observing D is obtained by integrating over the probabilities of all
evolutionary histories that derive D. Tracing an evolutionary history backwards
in time gives a path of ancestral configurations, reached from D through the
following types of events back in time:

Mutation. We assume the infinite sites model of mutation. So, for any partic-
ular site, if there is exactly one sequence carrying a 1 at that site, it may
change to the ancestral type 0.

Recombination. A sequence x breaks up into two new sequences with a break-
point between sites i and i+1. One new sequence carries the prefix of x up to
site i, followed by a suffix of length m−i carrying non-ancestral material, de-
noted by ∗s. The other new sequence carries the suffix of x starting from site
i +1, preceded by a prefix of length i carrying non-ancestral material, again
denoted by ∗s. Recombination events where there is no ancestral material (0
or 1) either to the left or to the right of the breakpoint are ignored.

Coalescent Type 1. Two identical sequences find a common ancestor.
Coalescent Type 2. Two distinct sequences find a common ancestor if there

is no site in which one sequence carries a 1 and the other a 0. Suppose that
two sequences x and y are replaced by a single sequence z via coalescence.
Then, z contains a 1 (respectively, 0) at site i if either x or y contains a 1
(respectively, 0) at site i. Otherwise, z has a “∗” at site i.

See [12] for a more detailed description of the coalescent with recombination.

2.2 The Full Recursion

Griffiths and Marjoram [12] constructed a system of recursion relations satisfied
by ancestral configurations, assuming a continuous model of recombination. Ob-
taining a closed-form solution to the recursions is out of reach, so they proposed
using an importance sampling method to obtain numerical solutions. More effi-
cient importance sampling approaches now exist for computing coalescent likeli-
hoods by sampling genealogies [41, 9, 5, 6], but the recursions found by Griffiths
and Marjoram still provide a transparent framework for computation. In what
follows, we devise a deterministic algorithm for numerically solving the recur-
sions accurately. To make the problem tractable, we assume a discrete model of
recombination such that breakpoints occur only at the midpoints between con-
secutive segregating sites. Such a discretized model of recombination has been
adopted by others in the past [9, 27].

To describe the recursions in more detail, we first need to define some notation.
An ancestral configuration is a multiset of strings from X = {0, 1, ∗}m \ {∗m}.
With a chosen ordering on X , we use n ∈ Z≥0

3m−1 to uniquely specify an
AC by listing the multiplicity of each element in X . A subscript (respectively,
superscript) on n denotes decreasing (respectively, increasing) the multiplicity
of string i by 1. For example, ni denotes changing the component ni to ni + 1,
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Fig. 1. Graph of all ACs for D = {01, 11}. Each node (box) corresponds to an AC,
with “ ” denoting an ancestral segment, “ ” a non-ancestral segment, and “ ” a site
carrying the mutant allele. The highlighted node at the bottom left corresponds to D.
A directed edge joins an AC x to an AC y if there is an event (coalescence, mutation,
or recombination) that transforms x to y. Each node is labeled with the minimum
value of k for which that AC is in Ck(D), i.e. Ck(D) consists of all the nodes labeled k
or less. ACs connected by horizontal bi-directional arrows form a strongly connected
component of the graph. The probability of D for θ = 2 and ρ = 1 is 0.125 when
only ACs from C0(D) are used, 0.193 when ACs from C1(D) are used, and 0.202 when
the full equation system is used. If cyclic structures of the recursions are eliminated
by requiring that coalescing sequences have at least one site where they both carry
ancestral material, as proposed in [31], the above probabilities reduce to 0.125, 0.172,
and 0.174, respectively. This suggests that our parsimony-based approximation method
of restricting the set of ACs is more accurate than forbidding certain classes of events.

while keeping nj for j �= i unchanged. Then, the recursion relation satisfied by
the probability Q(n) of an AC n can be schematically written as

Z(n, θ, ρ) Q(n) =
∑

coalescent type 1
xi with xi

c(n, i) Q(ni) +
∑

coalescent type 2
xi with xj → xk

c(n, i, j, k) Q(nk
ij)

+ θ
∑

mutation
xi → xk

c(n, k) Q(nk
i ) + ρ

∑

recombination
xk → xi and xj

c(n, s1, . . . , sm, , i, j, k) Q(nij
k ),

(1)

where c(·) denote combinatorial coefficients that depend on the factors specified
in the argument; Z(n, θ, ρ) is a normalization constant; xi, xj , xk ∈ X ; and
summations are performed over the events described in the previous subsection.
Shown in Fig. 1 is an example of “unwrapping” the above recursion for an input
data set D containing two length-2 sequences 01 and 11. In total there are 23
ACs for D, shown as rectangular boxes in Fig. 1, explained further below.
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2.3 Restricting the Recursion

The discretized recombination model described above considerably reduces the
number of possible ACs, from infinite to finite. Since (1) describes a system of
linear equations, we could in principle find the probability of D by construct-
ing and solving this equation system. It would correspond to summing over all
genealogies that can derive D. However, although finite, the number of possible
ACs for a given data set grows extremely fast with the size of the data set [39],
and exact computation remains infeasible for practical purposes. As mentioned
in Sect. 1, the main idea behind our work is to sum over a restricted subset of
genealogies, rather than over all genealogies. We achieve this by solving a re-
stricted system of recursions. First, we find the set of all ACs each occurring in
at least one possible evolutionary history for D with at most k recombinations,
but with arbitrary coalescent and mutation events. Then, solving the system
of recursions restricted to that set of ACs corresponds to computing the likeli-
hood by summing over all evolutionary histories that can be constructed only
using the ACs in that set. Note that this is more general than summing over
the genealogies with at most k recombinations. As long as transitions remain
within the restricted set of ACs, our method allows for an arbitrary number of
recombination events in a genealogy.

The method can be used either with a fixed value of k determined from
Rmin(D), or increasing k until a stopping criteria is met. The simplest stop-
ping criteria is to continue until the change in likelihood becomes less than some
specified small number ε. From our experiment, we suggest using a stopping
criteria based on diminishing returns, stopping when the change in likelihood
begins to decrease.

Formally, we define the k-neighborhood Nk(n) of an AC n to be the set of
all ACs reachable from n with no more than k recombinations. The inverse
k-neighborhood of n is defined as N−1

k (n) = {n′ | n ∈ Nk(n′)}. Finally, the
k-configurations for D is defined as Ck(D) :=

⋃k
i=0

[
Ni(D) ∩ N−1

k−i(A)
]
, where

A denotes the set of ACs in which every site has found a common ancestor and
N−1

i (A) :=
⋃

a∈A N−1
i (a). Note that Ck(D) is the set of ACs that can occur in

histories with at most k recombinations. Fig. 2 illustrates these concepts.
Our proposed method of computing the probability of the input data set D

is to set Q(n) = 0 if n �∈ Ck(D) and apply the recursion in (1) if n ∈ Ck(D).
For a data set with n sequences and m segregating sites, C2n(m−1)(D) will be
equal to the set of all ACs for D, since any AC can be reached from D using
at most n(m − 1) recombinations and an AC in A can then be reached using at
most n(m − 1) additional recombinations. Therefore, for sufficiently large k, our
method becomes equivalent to solving the full equation system.

2.4 Algorithmic and Implementation Details

The k-neighborhoods Nk(D) can be computed incrementally by increasing k one
by one. However, in our work the entire k-neighborhood Nk(D) is not needed;
only the k-configurations Ck(D) =

⋃k
i=0

[
Ni(D) ∩ N−1

k−i(A)
]

are needed. First,
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Fig. 2. Illustration of k-neighborhoods Nk(D) and k-configurations Ck(D). Neighbor-
hoods around the input data D are shown as solid ellipses and inverse neighborhoods
N −1

i (a) around a particular most-recent-common-ancestor AC a ∈ A are shown with
dashed ellipses. The minimum number of recombinations required for the data set is 3,
and the regions corresponding to the set C3(D) of 3-configurations are shaded in gray.

note that we can determine whether n ∈ N−1
k−i(A) by checking whether the

minimum number of recombinations needed to derive n is at most k − i. To
compute that minimum number, we can employ the algorithm described in [29].
Second, n ∈ Ni(D) ∩ N−1

k−i(A) only if there exists an AC n′ ∈ Ni−1(D) ∩
N−1

k−i+1(A) such that n ∈ N1(n′). Using these ideas, we can find Ck(D) without
having to explore the entire set Nk(D), which can be significantly larger than
Ck(D). Pictorially, in Fig. 2 we enumerate only the ACs in the shaded areas and
their one-event neighbors, rather than the full k-neighborhoods of D. In this
way, we can achieve a large reduction in both time and space requirement.

A dependency graph corresponding to the systems of recursions in (1) is a
graph with one node for each AC and a directed edge from n to n′ if n′ appears
on the right hand side of the recursion (1) for n. Once Ck(D) has been found, we
determine the strongly connected components of the dependency graph and the
directed acyclic graph connecting them. Then, subsystems of recursions corre-
sponding to the strongly connected components are solved in reverse topological
order. This reduces the time complexity from O(|Ck(D)|3) to O(|Ck(D)| × M2),
where M is the size of the largest strongly connected component.

In our implementation, a coarse grained a priori separation and sorting of
connected components is obtained by sorting the ACs in Ck(D) by their total
number of 0s and 1s. Going backwards in time in any evolutionary history, the
total number of 0s and 1s will be non-increasing. This means that if the total
number of 0s and 1s in n is larger than that in n′, then Q(n′) does not depend
on the value of Q(n), thus allowing the recursions to be solved slice by slice in
the order of increasing total number of 0s and 1s.

We have implemented our algorithm in C, using the UMFPack library. Our
software is called cob, available at http://www.stats.ox.ac.uk/~lyngsoe/
section26/ under the Lesser Gnu Public License.

http://www.stats.ox.ac.uk/~lyngsoe/section26/
http://www.stats.ox.ac.uk/~lyngsoe/section26/
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Fig. 3. Likelihood surfaces for D = {010, 010, 101, 101, 110} computed using the ACs
in C1(D) (light gray), C2(D) (medium gray), C3(D) (dark gray) and C11(D) (black).
Both θ and ρ range from 0.0 to 2.5.

3 Results

When facing a hard computational problem, one usually needs to choose the
right balance between accuracy and speed. In this section we explore these two
aspects of our method. We will assess the quality of the approximation proposed
in the previous section, by characterizing the behavior of the likelihood itself and
also by studying the accuracy of the maximum likelihood estimates (MLEs) of
the population-scaled mutation and recombination rates θ and ρ, respectively.

3.1 Comprehensive Analysis of Small Data Set

We first study a small data set D = {010, 010, 101, 101, 110} with segregating
sites at positions 0, 0.75 and 1. The minimum number Rmin(D) of recombi-
nations for this data set is 1, and the size of C1(D) is 74. It turns out that all
possible ACs can occur in evolutionary histories with at most 11 recombinations.
The size of C11(D) is 400,820. This is sufficiently small that the full system of
recursions can be solved in a reasonable time, allowing us to track the accuracy
and resource requirement for the approximation based on Ck(D), as k is varied
from 1 to 11.

For a grid of θ and ρ values between 0.0 and 2.5, Fig. 3 shows four likeli-
hood surfaces computed using four different levels of approximation: based on
C1(D), C2(D), C3(D), and the full equation system (i.e., C11(D)). The likelihood
surfaces for the remaining Ck(D) have been left out as they are sandwiched be-
tween the C3(D)-surface and the C11(D)-surface, and these are already very sim-
ilar. Numerical values of the likelihood obtained from the C3(D)-based equation
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Fig. 4. The likelihood of D = {010, 010, 101, 101, 110}, the number of ACs (or vari-
ables), the size of the largest strongly connected component, and the running time,
each plotted against the value of k in Ck(D), as a fraction of the corresponding val-
ues for the full recursion system. The full recursion system produced a likelihood of
4.05 × 10−4 and had 400, 820 ACs in total. The largest strongly connected component
contained 15, 998 ACs and the computation took 404.2 seconds.

system and that from the C11(D)-based system differ by little, at least for the
range of θ and ρ shown in Fig. 3. Consequently, MLEs θ∗, ρ∗ for the two cases
are very similar, with θ∗ = 1.1426, ρ∗ = 0.9631 for C3(D) and θ∗ = 1.1426,
ρ∗ = 0.9753 for C11(D). Even the C2(D)-surface is not far off from the C11(D)-
surface, with MLEs θ∗ = 1.1523 and ρ∗ = 0.8240, which is beginning to show a
trend of underestimating ρ. This trend becomes even more pronounced with the
C1(D)-based equation system, with estimates θ∗ = 1.2427 and ρ∗ = 0.4370. This
C1(D)-based method also significantly underestimates the likelihood for most
values of θ and ρ. As our heuristic is based on ignoring ACs that only contribute
to the likelihood through evolutionary histories with many recombinations, for
fixed θ, not surprisingly the difference between the approximated and the true
likelihoods increases with increasing ρ. For fixed ρ and varying θ, the difference
between the approximated and the true likelihoods tend to correlate more with
the magnitude of the likelihood than with the value of θ.

As k in Ck(D) varied from 1 to 11, the change in some key features of the
computation is plotted in Fig. 4 where the likelihood was computed at the MLEs
θ∗ = 1.1426, ρ∗ = 0.9753 from the full equation system. All plots exhibit an S-
curve behavior. A very encouraging feature of these plots is that the turning
point for the likelihood plot occurs much earlier than the turning points for the
time, the largest strongly connected component, and the equation system size
plots. In fact, the likelihood all but coincides with the exact value before any of
the other features shows any increasing tendency. Identifying the turning point
of an assumed S-curve behavior of the likelihood is the basis of our diminishing-
returns stopping criteria described before.

3.2 Average Behavior on Simulated Data Sets

The data set analyzed above is just one example. To study the average behav-
ior, we used Hudson’s [21] program ms to generate simulated data under the
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Table 1. Average behavior of maximum likelihood estimation based on the near-
minimal history restriction. For a given n and m, 100 data sets with n sequences and
m sites were simulated using Hudson’s [21] program ms. LR denotes the estimated like-
lihood relative to the true likelihood (denoted LH) computed using the full equation
system, while |Δθ∗| and |Δρ∗| denote average absolute deviation from the true MLEs
(θ∗ and ρ∗) obtained using the full equation system. Running times are given in sec-
onds. The columns under “Diminishing Returns” are for incrementing the number of
recombinations until differences of likelihoods between increments no longer increases.
The column labeled “k” lists the average value of k for which the final solution was
obtained using Cr+k(D)-configurations, where r := Rmin(D).

Cr(D) Cr+1(D) Cr+2(D)
n × m LR |Δθ∗| |Δρ∗| Time LR |Δθ∗| |Δρ∗| Time LR |Δθ∗| |Δρ∗| Time

2 × 2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.0000 0.0000 0.02
3 × 2 0.99 0.01 0.06 0.00 1.00 0.01 0.03 0.10 1.00 0.0000 0.0003 0.12
4 × 2 1.00 0.01 0.09 0.00 1.00 0.01 0.05 0.16 1.00 0.0000 0.0014 0.19
5 × 2 0.98 0.02 0.12 0.02 1.00 0.01 0.06 0.21 1.00 0.0002 0.0018 0.36
6 × 2 0.98 0.02 0.17 0.09 0.99 0.01 0.08 0.33 1.00 0.0002 0.0034 0.56

2 × 3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.10 1.00 0.0000 0.0000 0.10
3 × 3 0.99 0.02 0.05 0.00 1.00 0.01 0.03 0.24 1.00 0.0007 0.0031 0.31
4 × 3 0.98 0.03 0.10 0.05 1.00 0.01 0.05 0.45 1.00 0.0016 0.0057 0.88
5 × 3 0.99 0.01 0.07 0.09 1.00 0.01 0.04 0.59 1.00 0.0000 0.0036 0.90

Diminishing Returns Full Equation System
n × m LR |Δθ∗| |Δρ∗| Time k LH θ∗ ρ∗ Time

2 × 2 1.00 0.0000 0.0000 0.002 1.00 0.15 5.08 0.00 0.10
3 × 2 1.00 0.0000 0.0000 0.15 1.27 0.06 3.88 0.07 0.19
4 × 2 1.00 0.0000 0.0000 0.28 1.29 0.05 4.16 0.09 0.50
5 × 2 1.00 0.0002 0.0002 0.70 1.76 0.03 3.41 0.14 1.12
6 × 2 1.00 0.0000 0.0014 0.94 1.57 0.02 3.45 0.21 2.34

2 × 3 1.00 0.0000 0.0000 0.10 1.00 0.16 5.86 0.00 1.20
3 × 3 1.00 0.0000 0.0000 0.62 1.16 0.04 4.55 0.05 18.7
4 × 3 1.00 0.0000 0.0004 2.11 1.28 0.02 3.91 0.13 326
5 × 3 1.00 0.0000 0.0000 2.28 1.18 0.01 3.10 0.07 11918

coalescent with recombination. We generated 100 data sets for a given number
of sequences and a given number of sites. We considered two to six sequences
with either two or three sites. Hudson’s program actually uses a finite-sites model
of recombination, requiring the user to specify the number of sites. In our study,
all simulations were carried out with 10, 000 sites in the recombination model.
We set ρ = 5 and used -s option to fix the number of segregating sites. For each
data set, we determined the MLE of θ and ρ by iterating eight times the likeli-
hood computation on a five-by-five grid of θ and ρ, refining around the (θ, ρ) pair
that yielded the highest likelihood. For each simulated data set, four different
computations were done: using Ck(D)-configurations, for k = r, r+1, r+2, where
r := Rmin(D), or using the diminishing returns stopping criteria. Simulated data
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Fig. 5. Logarithm of running times in seconds as function of number of sequences for
data sets with two segregating sites (top), three segregating sites (bottom left) and four
segregating sites (bottom right). For each data set the likelihood at θ = 2 and ρ = 5
was computed based on Cr(D) (shown in “ ”), on Cr+1(D) (“ ”), on Cr+2(D)
(“ ”), and using the diminishing returns stopping criteria (“ ”). Average running
times of less than 0.1 second were truncated to 0.1 second.

sets were sufficiently small that it was possible to solve the full equation system,
thus allowing approximations to be compared with the true value.

Results are summarized in Table 1. Both the likelihood itself and MLE of
θ are quite accurate even for the computation based on Cr(D)-configurations,
while MLE of ρ becomes quite accurate when the equation system is expanded to
Cr+2(D)-configurations. Applying the diminishing returns stopping criteria does
slightly better than using Cr+2(D)-configurations, both in terms of accuracy and
time. All in all, our method is quite accurate, while being substantially faster
than using the full equation system.

Being able to compare results to the true values severely limits the data set
sizes that can be investigated. Even for data sets with just five sequences and
three segregating sites, we experienced an average running time of more than
three hours to solve the full equation system at 200 (θ, ρ) grid points to obtain
the MLEs. (In contrast, our method required only a few seconds on average
to obtain very accurate estimates. See Table 1.) To investigate how large of a
data set our method can handle, we simulated data sets with more number of
sequences, while keeping the number of segregating sites to two, three or four. We
again used Hudson’s [21] program ms with ρ = 5. For each data set, we computed
the likelihood for θ = 2 and ρ = 5. Average computation times averaged over
ten simulated data sets are plotted in Fig. 5.
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4 Discussion

In this paper, we have developed a novel parsimony-based, deterministic ap-
proach for accurately computing the likelihood under the coalescent with re-
combination. Given enough computation time and memory, our method can, in
principle, compute the exact likelihood, by finding all ancestral configurations
for a given data set and then solving the full system of recursions. However, the
size of the input data for which this can actually be done is severely limited.
For a data set with only five sequences and three segregating sites, it currently
takes several hours to obtain accurate MLEs of θ and ρ by computing the exact
likelihood. Perhaps this is not so surprising, given that the total number of ACs
grows very rapidly with the number of sequences and more so with the number
of sites [39].

Our approximation method is based on restricting the probability recursions
to certain ACs, namely those that occur in evolutionary histories with a near-
minimal number of recombinations. The restricted system of recursions can be
solved several orders of magnitude faster than the full recursion system, with
no noticeable loss of accuracy. It dramatically increases the size of data sets
for which one can compute the likelihood by solving the recursion system. For
example, our approximation method takes only a few minutes to compute the
probability of a data set with twenty sequences and three sites, while, in the same
amount of time, one can only compute the probability of a data set with five
sequences and three sites using the full equation system. However, even with the
techniques introduced here, our method is limited to moderate-sized data sets.
Despite the enormous reduction in time requirement of our method compared to
the exact computation, the complexity of the problem grows so astronomically
fast with data size that the speedup is dwarfed in comparison. For further details
on this matter, we again refer to our previous work [39], where the growth of
CRmin(D) as a function of data size was also investigated. We believe that new
insights—e.g., regarding symmetries in the recursion structure, allowing ACs
to be lumped together—are required for making this kind of algorithm-based
approach applicable to large data sets.

Even so, the work presented here should be useful to the researchers in sta-
tistical genetics. For moderate-sized data sets, our method can be used to de-
velop benchmarks with very well-characterized likelihoods. Such studies can be
valuable for evaluating the performance of existing and new sampling-based
approaches, and for fine-tuning them. Further, as some pseudo-likelihood meth-
ods [23,32,33] use likelihood calculations for few (typically 2) sites, the method
developed here should be useful for improving such methods.
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