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Artificial Intel14. Artificial Intelligence and Automation

Dana S. Nau

Artificial intelligence (AI) focuses on getting ma-
chines to do things that we would call intelligent
behavior. Intelligence – whether artificial or oth-
erwise – does not have a precise definition, but
there are many activities and behaviors that are
considered intelligent when exhibited by humans
and animals. Examples include seeing, learning,
using tools, understanding human speech, rea-
soning, making good guesses, playing games, and
formulating plans and objectives. AI focuses on
how to get machines or computers to perform
these same kinds of activities, though not nec-
essarily in the same way that humans or animals
might do them.
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To most readers, artificial intelligence probably brings
to mind science-fiction images of robots or comput-
ers that can perform a large number of human-like
activities: seeing, learning, using tools, understanding
human speech, reasoning, making good guesses, play-
ing games, and formulating plans and objectives. And
indeed, AI research focuses on how to get machines
or computers to carry out activities such as these. On
the other hand, it is important to note that the goal of
AI is not to simulate biological intelligence. Instead,
the objective is to get machines to behave or think
intelligently, regardless of whether or not the internal
computational processes are the same as in people or
animals.

Most AI research has focused on ways to achieve
intelligence by manipulating symbolic representations
of problems. The notion that symbol manipulation is
sufficient for artificial intelligence was summarized by
Newell and Simon in their famous physical-symbol
system hypothesis: A physical-symbol system has the

necessary and sufficient means for general intelligent
action and their heuristic search hypothesis [14.1]:

The solutions to problems are presented as symbol
structures. A physical-symbol system exercises its
intelligence in problem solving by search – that is –
by generating and progressively modifying symbol
structures until it produces a solution structure.

On the other hand, there are several important topics
of AI research – particularly machine-learning tech-
niques such as neural networks and swarm intelligence
– that are subsymbolic in nature, in the sense that they
deal with vectors of real-valued numbers without at-
taching any explicit meaning to those numbers.

AI has achieved many notable successes [14.2].
Here are a few examples:

• Telephone-answering systems that understand hu-
man speech are now in routine use in many
companies.
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250 Part B Automation Theory and Scientific Foundations

• Simple room-cleaning robots are now sold as con-
sumer products.• Automated vision systems that read handwritten zip
codes are used by the US Postal Service to route
mail.• Machine-learning techniques are used by banks and
stock markets to look for fraudulent transactions and
alert staff to suspicious activity.• Several web-search engines use machine-learning
techniques to extract information and classify data
scoured from the web.• Automated planning and control systems are used in
unmanned aerial vehicles, for missions that are too
dull, dirty or dangerous for manned aircraft.• Automated planning and scheduling techniques
were used by the National Aeronautics and Space

Administration (NASA) in their famous Mars
rovers.

AI is divided into a number of subfields that
correspond roughly to the various kinds of ac-
tivities mentioned in the first paragraph. Three
of the most important subfields are discussed in
other chapters: machine learning in Chaps. 12 and
29, computer vision in Chap. 20, and robotics in
Chaps. 1, 78, 82, and 84. This chapter discusses
other topics in AI, including search procedures
(Sect. 14.1.1), logical reasoning (Sect. 14.1.2), reason-
ing about uncertain information (Sect. 14.1.3), planning
(Sect. 14.1.4), games (Sect. 14.1.5), natural-language
processing (Sect. 14.1.6), expert systems (Sect. 14.1.7),
and AI programming (Sect. 14.1.8).

14.1 Methods and Application Examples

14.1.1 Search Procedures

Many AI problems require a trial-and-error search
through a search space that consists of states of the
world (or states, for short), to find a path to a state s
that satisfies some goal condition g. Usually the set of
states is finite but very large: far too large to give a list of
all the states (as a control theorist might do, for exam-
ple, when writing a state-transition matrix). Instead, an
initial state s0 is given, along with a set O of operators
for producing new states from existing ones.

As a simple example, consider Klondike, the
most popular version of solitaire [14.3]. As illustrated
in Fig. 14.1a, the initial state of the game is determined
by dealing 28 cards from a 52-card deck into an arrange-
ment called the tableau; the other 28 cards then go into
a pile called the stock. New states are formed from old
ones by moving cards around according to the rules of
the game; for example, in Fig. 14.1a there are two pos-
sible moves: either move the ace of hearts to one of
the foundations and turn up the card beneath the ace as
shown in Fig. 14.1b, or move three cards from the stock
to the waste. The goal is to produce a state in which all
of the cards are in the foundation piles, with each suit
in a different pile, in numerical order from the ace at
the bottom to the king at the top. A solution is any path
(a sequence of moves, or equivalently, the sequence of
states that these moves take us to) from the initial state
to a goal state.

FoundationsStock

Tableau

Waste pile
a) Initial state

FoundationsStock

Tableau

Waste pile
b) Successor

Fig. 14.1 (a) An initial state and (b) one of its two possible
successors
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Klondike has several characteristics that are typical
of AI search problems:

• Each state is a combination of a finite set of features
(in this case the cards and their locations), and the
task is to find a path that leads from the initial state
to a goal state.• The rules for getting from one state to another
can be represented using symbolic logic and dis-
crete mathematics, but continuous mathematics is
not as useful here, since there is no reasonable way
to model the state space with continuous numeric
functions.• It is not clear a priori which paths, if any, will lead
from the initial state to the goal states. The only
obvious way to solve the problem is to do a trial-
and-error search, trying various sequences of moves
to see which ones might work.• Combinatorial explosion is a big problem. The num-
ber of possible states in Klondike is well over 52!,
which is many orders of magnitude larger than
the number of atoms in the Earth. Hence a trial-
and-error search will not terminate in a reasonable
amount of time unless we can somehow restrict the
search to a very small part of the search space –
hopefully a part of the search space that actually
contains a solution.• In setting up the state space, we took for granted
that the problem representation should correspond
directly to the states of the physical system, but
sometimes it is possible to make a problem much
easier to solve by adapting a different represen-
tation; for example, [14.4] shows how to make
Klondike much easier to solve by searching a dif-
ferent state space.

In many trial-and-error search problems, each so-
lution path π will have a numeric measure F(π) telling
how desirable π is; for example, in Klondike, if we con-
sider shorter solution paths to be more desirable than
long ones, we can define F(π) to be π’s length. In such
cases, we may be interested in finding either an optimal
solution, i. e., a solution π such that F(π) is as small
as possible, or a near-optimal solution in which F(π) is
close to the optimal value.

Heuristic Search
The pseudocode in Fig. 14.2 provides an abstract model
of state-space search. The input parameters include an
initial state s0 and a set of operators O. The procedure
either fails, or returns a solution path π (i. e., a path from
s0 to a goal state).

 1. State-space-search(s0; O)
 2.  Active ← {〈s0〉}
 3.  while Active ≠ 0/ do
 4.   choose a path π = 〈s0 , . . ., sk〉 ∈ Active and remove it from Active
 5.   if sk is a goal state then return π
 6.   Successors ← {〈s0 , . . ., sk, o (sk)〉 : o ∈ O is applicable to sk}
 7.   optional pruning step: remove unpromising paths from Successors
 8.   Active ← Active ∪ Successors
 9.  repeat
 10.  return failure

Fig. 14.2 An abstract model of state-space search. In line 6, o(sk) is
the state produced by applying the operator o to the state sk

As discussed earlier, we would like the search algo-
rithm to focus on those parts of the state space that will
lead to optimal (or at least near-optimal) solution paths.
For this purpose, we will use a heuristic function f (π)
that returns a numeric value giving an approximate idea
of how good a solution can be found by extending π,
i. e.,

f (π) ≈ min{F(π ′) :
π ′ is a solution path that is an extension of π} .

It is hard to give foolproof guidelines for writing heuris-
tic functions. Often they can be very ad hoc: in the worst
case, f (π) may just be an arbitrary function that the
user hopes will give reasonable estimates. However, of-
ten it works well to define an easy-to-solve relaxation of
the original problem, i. e., a modified problem in which
some of the constraints are weakened or removed. If π

is a partial solution for the original problem, then we
can compute f (π) by extending π into a solution π ′ for
the relaxed problem, and returning F(π ′); for example,
in the famous traveling-salesperson problem, f (π) can
be computed by solving a simpler problem called the
assignment problem [14.5]. Here are several procedures
that can make use of such a heuristic function:

• Best-first search means that at line 4 of the al-
gorithm in Fig. 14.2, we always choose a path
π = 〈s0, . . . , sk〉 that has the smallest value f (π) of
any path we have seen so far. Suppose that at least
one solution exists, that there are no infinite paths of
finite cost, and that the heuristic function f has the
following lower-bound property

f (π) ≤ min{F(π ′) :
π ′ is a solution path that is an extension of π} .

(14.1)

Then best-first search will always return a solu-
tion π∗ that minimizes F(π∗). The well-known A*
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search procedure [14.6] is a special case of best-first
search, with some modifications to handle situations
where there are multiple paths to the same state.
Best-first search has the advantage that, if it chooses
an obviously bad state s to explore next, it will not
spend much time exploring the subtree below s. As
soon as it reaches successors of s whose f -values
exceed those of other states on the Active list, best-
first search will go back to those other states. The
biggest drawback is that best-first search must re-
member every state it has ever visited, hence its
memory requirement can be huge. Thus, best-first
search is more likely to be a good choice in cases
where the state space is relatively small, and the dif-
ficulty of solving the problem arises for some other
reason (e.g., a costly-to-compute heuristic function,
as in [14.7]).• In depth-first branch and bound, at line 4 the algo-
rithm always chooses the longest path in Active;
if there are several such paths then the algorithm
chooses the one that has the smallest value for f (π).
The algorithm maintains a variable π∗ that holds
the best solution seen so far, and the pruning step
in line 7 removes a path π iff f (π) ≥ F(π∗). If the
state space is finite and acyclic, at least one solu-
tion exists, and (14.1) holds, then depth-first branch
and bound is guaranteed to return a solution π∗ that
minimizes F(π∗).
The primary advantage of depth-first search is its
low memory requirement: the number of nodes in
Active will never exceed bd, where d is the length
of the current path. The primary drawback is that, if
it chooses the wrong state to look at next, it will
explore the entire subtree below that state before
returning and looking at the state’s siblings. Depth-
first search does better in cases where the likelihood
of choosing the wrong state is small or the time
needed to search the incorrect subtrees is not too
great.• Greedy search is a state-space search without
any backtracking. It is accomplished by replac-
ing line 8 with Active ← {π1}, where π1 is the
path in Successors that minimizes { f (π ′) | π ′ ∈
Successors}. Beam search is similar except that, in-
stead of putting just one successor π1 of π into
Active, we put k successors π1, . . . , πk into Active,
for some fixed k.
Both greedy search and beam search will return very
quickly once they find a solution, since neither of
them will spend any time looking for better solu-
tions. Hence they are good choices if the state space

is large, most paths lead to solutions, and we are
more interested in finding a solution quickly than in
finding an optimal solution. However, if most paths
do not lead to solutions, both algorithms may fail to
find a solution at all (although beam search is more
robust in this regard, since it explores several paths
rather than just one path). In this case, it may work
well to do a modified greedy search that backtracks
and tries a different path every time it reaches a dead
end.

Hill-Climbing
A hill-climbing problem is a special kind of search prob-
lem in which every state is a goal state. A hill-climbing
procedure is like a greedy search, except that Active
contains a single state rather than a single path; this
is maintained in line 6 by inserting a single successor
of the current state sk into Active, rather than all of
sk’s successors. In line 5, the algorithm terminates when
none of sk’s successors looks better than sk itself, i. e.,
when sk has no successor sk+1 with f (sk+1) > f (sk).
There are several variants of the basic hill-climbing ap-
proach:

• Stochastic hill-climbing and simulated annealing.
One difficulty with hill-climbing is that it will ter-
minate in cases where sk is a local minimum but not
a global minimum. To prevent this from happening,
a stochastic hill-climbing procedure does not always
return when the test in line 5 succeeds. Probably the
best known example is simulated annealing, a tech-
nique inspired by annealing in metallurgy, in which
a material is heated and then slowly cooled. In simu-
lated annealing, this is accomplished as follows. At
line 5, if none of sk’s successors look better than sk
then the procedure will not necessarily terminate as
in ordinary hill-climbing; instead it will terminate
with some probability pi , where i is the number of
loop iterations and pi grows monotonically with i.• Genetic algorithms. A genetic algorithm is a mod-
ified version of hill-climbing in which successor
states are generated not using the normal successor
function, but instead using operators reminiscent of
genetic recombination and mutation. In particular,
Active contains k states rather than just one, each
state is a string of symbols, and the operators O are
computational analogues of genetic recombination
and mutation. The termination criterion in line 5 is
generally ad hoc; for example, the algorithm may
terminate after a specified number of iterations, and
return the best one of the states currently in Active.
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Hill-climbing algorithms are good to use in problems
where we want to find a solution very quickly, then
continue to look for a better solution if additional time
is available. More specifically, genetic algorithms are
useful in situations where each solution can be repre-
sented as a string whose substrings can be combined
with substrings of other solutions.

Constraint Satisfaction
and Constraint Optimization

A constraint-satisfaction problem is a special kind of
search problem in which each state is a set of assign-
ments of values to variables {Xi}n

i=1 that have finite
domains {Di}n

i=1, and the objective is to assign values to
the variables in such a way that some set of constraints
is satisfied.

In the search space for a constraint-satisfaction
problem, each state at depth i corresponds to an as-
signment of values to i of the n variables, and each
branch corresponds to assigning a specific value to an
unassigned variable. The search space is finite: the max-
imum length of any path from the root node is n since
there are only n variables to assign values to. Hence
a depth-first search works quite well for constraint-
satisfaction problems. In this context, some powerful
techniques have been formulated for choosing which
variable to assign next, detecting situations where pre-
vious variable assignments will make it impossible to
satisfy the remaining constraints, and even restructur-
ing the problem into one that is easier to solve [14.8,
Chap. 5].

A constraint-optimization problem combines a con-
straint-satisfaction problem with an objective function
that one wants to optimize. Such problems can be
solved by combining constraint-satisfaction techniques
with the optimization techniques mentioned in Heuris-
tic Search.

Applications of Search Procedures
Software using AI search techniques has been devel-
oped for a large number of commercial applications.
A few examples include the following:

• Several universities routinely use constraint-satis-
faction software for course scheduling.• Airline ticketing. Finding the best price for an air-
line ticket is a constraint-optimization problem in
which the constraints are provided by the airlines’
various rules on what tickets are available at what
prices under what conditions [14.9]. An example
of software that works in this fashion is the ITA

software (itasoftware.com) system that is used by
several airline-ticketing web sites, e.g., Orbitz (orb-
itz.com) and Kayak (kayak.com).• Scheduling and routing. Companies such as ILOG
(ilog.com) have developed software that uses search
and optimization techniques for scheduling [14.10],
routing [14.11], workflow composition [14.12], and
a variety of other applications.• Information retrieval from the web. AI search tech-
niques are important in the web-searching software
used at sites such as Google News [14.2].

Additional reading. For additional reading on search
algorithms, see Pearl [14.13]. For additional details
about constraint processing, see Dechter [14.14].

14.1.2 Logical Reasoning

A logic is a formal language for representing informa-
tion in such a way that one can reason about what things
are true and what things are false. The logic’s syntax
defines what the sentences are; and its semantics de-
fines what those sentences mean in some world. The
two best-known logical formalisms, propositional logic
and first-order logic, are described briefly below.

Propositional Logic and Satisfiability
Propositional logic, also known as Boolean algebra, in-
cludes sentences such as A ∧ B ⇒ C, where A, B, and
C are variables whose domain is {true, false}. Let w1
be a world in which A and C are true and B is false, and
let w2 be a world in which all three of the Boolean vari-
ables are true. Then the sentence A ∧ B ⇒ C is false in
w1 and true in w2. Formally, we say that w2 is a model
of A ∧ B ⇒ C, or that it entails S1. This is written sym-
bolically as

w2 | A ∧ B ⇒ C .

The satisfiability problem is the following: given
a sentence S of propositional logic, does there ex-
ist a world (i. e., an assignment of truth values to the
variables in S) in which S is true? This problem is
central to the theory of computation, because it was
the very first computational problem shown to be NP-
complete. Without going into a formal definition of
NP-completeness, NP is, roughly, the set of all compu-
tational problems such that, if we are given a purported
solution, we can check quickly (i. e., in a polynomial
amount of computing time) whether the solution is cor-
rect. An NP-complete problem is a problem that is
one of the hardest problems in NP, in the sense that
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254 Part B Automation Theory and Scientific Foundations

solving any NP-complete problems would provide a so-
lution to every problem in NP. It is conjectured that no
NP-complete problem can be solved in a polynomial
amount of computing time. There is a great deal of evi-
dence for believing the conjecture, but nobody has ever
been able to prove it. This is the most famous unsolved
problem in computer science.

First-Order Logic
A much more powerful formalism is first-order
logic [14.15], which uses the same logical connectives
as in propositional logic but adds the following syn-
tactic elements (and semantics, respectively): constant
symbols (which denote the objects), variable symbols
(which range over objects), function symbols (which
represent functions), predicate symbols (which repre-
sent relations among objects), and the quantifiers ∀x and
∃x, where x is any variable symbol (to specify whether
a sentence is true for every value x or for at least one
value of x).

First-order logic includes a standard set of logical
axioms. These are statements that must be true in every
possible world; one example is the transitive property of
equality, which can be formalized as

∀x ∀y ∀z (x = y ∧ y = z) ⇒ x = z .

In addition to the logical axioms, one can add a set of
nonlogical axioms to describe what is true in a particular
kind of world; for example, if we want to specify that
there are exactly two objects in the world, we could do
this by the following axioms, where a and b are constant
symbols, and x, y, z are variable symbols

a �= b , (14.2a)

∀x ∀y ∀z x = y ∨ y = z ∨ x = z . (14.2b)

The first axiom asserts that there are at least two ob-
jects (namely a and b), and the second axiom asserts
that there are no more than two objects.

First-order logic also includes a standard set of in-
ference rules, which can be used to infer additional
true statements. One example is modus ponens, which
allows one to infer a statement Q from the pair of state-
ments P ⇒ Q and P.

The logical and nonlogical axioms and the rules of
inference, taken together, constitute a first-order the-
ory. If T is a first-order theory, then a model of T
is any world in which T ’s axioms are true. (In sci-
ence and engineering, a mathematical model generally
means a formalism for some real-world phenomenon;
but in mathematical logic, model means something very

different: the formalism is called a theory, and the the
real-world phenomenon itself is a model of the theory.)
For example, if T includes the nonlogical axioms given
above, then a model of T is any world in which there
are exactly two objects.

A theorem of T is defined recursively as follows:
every axiom is a theorem, and any statement that can
be produced by applying inference rules to theorems is
also a theorem; for example, if T is any theory that in-
cludes the nonlogical axioms (14.2a) and (14.2b), then
the following statement is a theorem of T

∀x x = a ∨ x = b .

A fundamental property of first-order logic is com-
pleteness: for every first-order theory T and every
statement S in T , S is a theorem of T if and only if S is
true in all models of T . This says, basically, that first-
order logical reasoning does exactly what it is supposed
to do.

Nondeductive Reasoning
Deductive reasoning – the kind of reasoning used to de-
rive theorems in first-order logic – consists of deriving
a statement y as a consequence of a statement x. Such
an inference is deductively valid if there is no possible
situation in which x is true and y is false. However, sev-
eral other kinds of reasoning have been studied by AI
researchers. Some of the best known include abductive
reasoning and nonmonotonic reasoning, which are dis-
cussed briefly below, and fuzzy logic, which is discussed
later.

Nonmonotonic Reasoning. In most formal logics, de-
ductive inference is monotone; i. e., adding a formula
to a logical theory never causes something not to be
a theorem that was a theorem of the original theory.
Nonmonotonic logics allow deductions to be made from
beliefs that may not always be true, such as the default
assumption that birds can fly. In nonmonotonic logic, if
b is a bird and we know nothing about b then we may
conclude that b can fly; but if we later learn that b is an
ostrich or b has a broken wing, then we will retract this
conclusion.

Abductive Reasoning. This is the process of infer-
ring x from y when x entails y. Although this can
produce results that are incorrect within a formal de-
ductive system, it can be quite useful in practice,
especially when something is known about the proba-
bility of different causes of y; for example, the Bayesian
reasoning described later can be viewed as a combina-
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tion of deductive reasoning, abductive reasoning, and
probabilities.

Applications of Logical Reasoning
The satisfiability problem has important applications
in hardware design and verification; for example,
electronic design automation (EDA) tools include sat-
isfiability checking algorithms to check whether a given
digital system design satisfies various criteria. Some
EDA tools use first-order logic rather than propositional
logic, in order to check criteria that are hard to express
in propositional logic.

First-order logic provides a basis for automated rea-
soning systems in a number of application areas. Here
are a few examples:

• Logic programming, in which mathematical logic
is used as a programming language, uses a par-
ticular kind of first-order logic sentence called
a Horn clause. Horn clauses are implications of
the form P1 ∧ P2 ∧ . . .∧ Pn ⇒ Pn+1, where each Pi
is an atomic formula (a predicate symbol and its
argument list). Such an implication can be inter-
preted logically, as a statement that Pn+1 is true if
P1, . . . , Pn are true, or procedurally, as a statement
that a way to show or solve Pn+1 is to show or
solve P1, . . . , Pn . The best known implementation
of logic programming is the programming language
Prolog, described further below.• Constraint programming, which combines logic
programming and constraint satisfaction, is the ba-
sis for ILOG’s CP Optimizer (http://www.ilog.com/
products/cpoptimizer).• The web ontology language (OWL) and DAML+
OIL languages for semantic web markup are based
on description logics, which are a particular kind of
first-order logic.• Fuzzy logic has been used in a wide variety of
commercial products including washing machines,
refrigerators, automotive transmissions and braking
systems, camera tracking systems, etc.

14.1.3 Reasoning
About Uncertain Information

Earlier in this chapter it was pointed out that AI sys-
tems often need to reason about discrete sets of states,
and the relationships among these states are often non-
numeric. There are several ways in which uncertainty
can enter into this picture; for example, various events
may occur spontaneously and there may be uncertainty

about whether they will occur, or there may be uncer-
tainty about what things are currently true, or the degree
to which they are true. The two best-known techniques
for reasoning about such uncertainty are Bayesian prob-
abilities and fuzzy logic.

Bayesian Reasoning
In some cases we may be able to model such situa-
tions probabilistically, but this means reasoning about
discrete random variables, which unfortunately incurs
a combinatorial explosion. If there are n random vari-
ables and each of them has d possible values, then the
joint probability distribution function (PDF) will have
dn entries. Some obvious problems are (1) the worst-
case time complexity of reasoning about the variables
is Θ(dn), (2) the worst-case space complexity is also
Θ(dn), and (3) it seems impractical to suppose that we
can acquire accurate values for all dn entries.

The above difficulties can be alleviated if some of
the variables are known to be independent of each other;
for example, suppose that the n random variables men-
tioned above can be partitioned into �n/k� subsets, each
containing at most k variables. Then the joint PDF for
the entire set is the product of the PDFs of the subsets.
Each of those has dk entries, so there are only �n/k�nk

entries to acquire and reason about.
Absolute independence is rare; but another prop-

erty is more common and can yield a similar decrease
in time and space complexity: conditional indepen-
dence [14.16]. Formally, a is conditionally independent
of b given c if P(ab|c) = P(a|c)P(b|c).

Bayesian networks are graphical representations of
conditional independence in which the network topol-
ogy reflects knowledge about which events cause other
events. There is a large body of work on these networks,
stemming from seminal work by Judea Pearl. Here is
a simple example due to Pearl [14.17]. Figure 14.3 rep-
resents the following hypothetical situation:

Event a
(alarm sounds)

Event e
(earthquake)

Event m
(Mary calls)

Event b
(burglary)

P (b) = 0.001
P (~b) = 0.999

P (e)  = 0.002
P (~e)  = 0.998

P (m |a)  = 0.70
P (m |~a)  = 0.01

Event i
(John calls)

P ( j |a)  = 0.90
P (i |~a) = 0.05

P (a|b, e)  = 0.950
P (a|b, ~e)  = 0.940
P (a|~b, e)  = 0.290
P (a|~b, ~e) = 0.001

Fig. 14.3 A simple Bayesian network
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My house has a burglar alarm that will usually
go off (event a) if there’s a burglary (event b), an
earthquake (event e), or both, with the probabilities
shown in Fig. 14.3. If the alarm goes off, my neigh-
bor John will usually call me (event j) to tell me;
and he may sometimes call me by mistake even if the
alarm has not gone off, and similarly for my other
neighbor Mary (event m); again the probabilities
are shown in the figure.

The joint probability for each combination of events
is the product of the conditional probabilities given
in Fig. 14.3

P(b, e, a, j, m) = P(b)P(e)P(a|b, e)

× P( j|a)P(m|a) ,

P(b, e, a, j, ¬m) = P(b)P(e)P(a|b, e)P( j|a)

× P(¬m|a) ,

P(b, ¬e, ¬a, j, ¬m) = P(b)P(¬e)P(¬a|b, ¬e)

× P( j|¬a)P(¬m|¬a) ,

. . .

Hence, instead of reasoning about a joint distribution
with 25 = 32 entries, we only need to reason about prod-
ucts of the five conditional distributions shown in the
figure.

In general, probability computations can be done on
Bayesian networks much more quickly than would be
possible if all we knew was the joint PDF, by taking
advantage of the fact that each random variable is con-
ditionally independent of most of the other variables in
the network. One important special case occurs when
the network is acyclic (e.g., the example in Fig. 14.3),
in which case the probability computations can be done
in low-order polynomial time. This special case in-
cludes decision trees [14.8], in which the network is
both acyclic and rooted. For additional details about
Bayesian networks, see Pearl and Russell [14.16].

Applications of Bayesian Reasoning. Bayesian rea-
soning has been used successfully in a variety of
applications, and dozens of commercial and freeware
implementations exist. The best-known application is
spam filtering [14.18, 19], which is available in sev-
eral mail programs (e.g., Apple Mail, Thunderbird, and
Windows Messenger), webmail services (e.g., gmail),
and a plethora of third-party spam filters (probably
the best-known is spamassassin [14.20]). A few other
examples include medical imaging [14.21], document
classification [14.22], and web search [14.23].

Fuzzy Logic
Fuzzy logic [14.24, 25] is based on the notion that, in-
stead of saying that a statement P is true or false, we can
give P a degree of truth. This is a number in the interval
[0, 1], where 0 means false, 1 means true, and numbers
between 0 and 1 denote partial degrees of truth.

As an example, consider the action of moving a car
into a parking space, and the statement the car is in the
parking space. At the start, the car is not in the parking
space, hence the statement’s degree of truth is 0. At the
end, the car is completely in the parking space, hence
the statement’s degree of is 1. Between the start and end
of the action, the statement’s degree of truth gradually
increases from 0 to 1.

Fuzzy logic is closely related to fuzzy set theory,
which assigns degrees of truth to set membership. This
concept is easiest to illustrate with sets that are intervals
over the real line; for example, Fig. 14.4 shows a set S
having the following set membership function

truth(x ∈ S) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 , if 2 ≤ x ≤ 4 ,

0 , if x ≤ 1 or x ≥ 5 ,

x −1 , if 1 < x < 2 ,

5− x , if 4 < x < 5 .

The logical notions of conjunction, disjunction, and
negation can be generalized to fuzzy logic as follows

truth(x ∧ y) = min[truth(x), truth(y)] ;
truth(x ∨ y) = max[truth(x), truth(y)] ;

truth(¬x) = 1− truth(x) .

Fuzzy logic also allows other operators, more linguis-
tic in nature, to be applied. Going back to the example
of a full gas tank, if the degree of truth of g is full is d,
then one might want to say that the degree of truth of
g is very full is d2. (Obviously, the choice of d2 for
very is subjective. For different users or different ap-
plications, one might want to use a different formula.)
Degrees of truth are semantically distinct from proba-
bilities, although the two concepts are often confused;

0 1 2 3 4 5 6 7

x's degree of
membership in S

x

1

0

Fig. 14.4 A degree-of-membership function for a fuzzy set
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WarmModerateCold

Fig. 14.5 Degree-of-membership functions for three over-
lapping temperature ranges

for example, we could talk about the probability that
someone would say the car is in the parking space, but
this probability is likely to be a different number than
the degree of truth for the statement that the car is in the
parking space.

Fuzzy logic is controversial in some circles; e.g.,
many statisticians would maintain that probability is the
only rigorous mathematical description of uncertainty.
On the other hand, it has been quite successful from
a practical point of view, and is now used in a wide
variety of commercial products.

Applications of Fuzzy Logic. Fuzzy logic has been used
in a wide variety of commercial products. Examples
include washing machines, refrigerators, dishwashers,
and other home appliances; vehicle subsystems such as
automotive transmissions and braking systems; digital
image-processing systems such as edge detectors; and
some microcontrollers and microprocessors.

In such applications, a typical approach is to spec-
ify fuzzy sets that correspond to different subranges
of a continuous variable; for instance, a temperature
measurement for a refrigerator might have degrees of
membership in several different temperature ranges, as
shown in Fig. 14.5. Any particular temperature value
will correspond to three degrees of membership, one for
each of the three temperature ranges; and these degrees
of membership could provide input to a control system
to help it decide whether the refrigerator is too cold, too
warm, or in the right temperature range.

14.1.4 Planning

In ordinary English, there are many different kinds of
plans: project plans, floor plans, pension plans, urban
plans, floor plans, etc. AI planning research focuses
specifically on plans of action, i. e., [14.26]:

. . . representations of future behavior . . . usually
a set of actions, with temporal and other constraints
on them, for execution by some agent or agents.

a)
Descriptions of W, the
initial state or states,
and the objectives

Plans Plans

Actions Observations

Events

Planner

Controller

World W

Controller

b)
Descriptions of W, the
initial state or states,
and the objectives

Actions Observations

Events

Planner

Controller

World W

Execution
status

Fig. 14.6a,b Simple conceptual models for (a) offline and
(b) online planning

Figure 14.6 gives an abstract view of the rela-
tionship between a planner and its environment. The
planner’s input includes a description of the world W in
which the plan is to be executed, the initial state (or set
of possible initial states) of the world, and the objectives
that the plan is supposed to achieve. The planner pro-
duces a plan that is a set of instructions to a controller,
which is the system that will execute the plan. In offline
planning, the planner generates the entire plan, gives it
to the controller, and exits. In online planning, plan gen-
eration and plan execution occur concurrently, and the
planner gets feedback from the controller to aid it in
generating the rest of the plan. Although not shown in
the figure, in some cases the plan may go to a scheduler
before going to the controller. The purpose of the sched-
uler is to make decisions about when to execute various
parts of the plan and what resources to use during plan
execution.

Examples. The following paragraphs include several
examples of offline planners, including the sheet-metal
bending planner in Domain-Specific Planners, and all
of the planners in Classical Planning and Domain-
Configurable Planners. One example of an online
planner is the planning software for the Mars rovers
in Domain-Specific Planners. The planner for the Mars
rovers also incorporates a scheduler.

Domain-Specific Planners
A domain-specific planning system is one that is tailor-
made for a given planning domain. Usually the design
of the planning system is dictated primarily by the
detailed requirements of the specific domain, and the
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Fig. 14.7 One of the Mars rovers

system is unlikely to work in any domain other other
than the one for which it was designed.

Many successful planners for real-world appli-
cations are domain specific. Two examples are the
autonomous planning system that controlled the Mars
rovers [14.27] (Fig. 14.7), and the software for planning
sheet-metal bending operations [14.28] that is bundled
with Amada Corporation’s sheet-metal bending ma-
chines (Fig. 14.8).

Classical Planning
Most AI planning research has been guided by a de-
sire to develop principles that are domain independent,
rather than techniques specific to a single planning
domain. However, in order to make any significant
headway in the development of such principles, it has
proved necessary to make restrictions on what kinds of
planning domains they apply to.

In particular, most AI planning research has focused
on classical planning problems. In this class of plan-
ning problems, the world W is finite, fully observable,
deterministic, and static (i.e., the world never changes
except as a result of our actions); and the objective is
to produce a finite sequence of actions that takes the
world from some specific initial state to any of some
set of goal states. There is a standard language, plan-
ning domain definition language (PDDL) [14.29], that
can represent planning problems of this type, and there
are dozens (possibly hundreds) of classical planning al-
gorithms.

One of the best-known classical planning algo-
rithms is GraphPlan [14.30], an iterative-deepening
algorithm that performs the following steps in each iter-
ation i:

Fig. 14.8 A sheet-metal bending machine

1. Generate a planning graph of depth i. Without going
into detail, the planning graph is basically the search
space for a greatly simplified version of the planning
problem that can be solved very quickly.

2. Search for a solution to the original unsimplified
planning problem, but restrict this search to occur
solely within the planning graph produced in step 1.
In general, this takes much less time than an unre-
stricted search would take.

GraphPlan has been the basis for dozens of other
classical planning algorithms.

Domain-Configurable Planners
Another important class of planning algorithms are
the domain-configurable planners. These are plan-
ning systems in which the planning engine is domain
independent but the input to the planner includes
domain-specific information about how to do plan-
ning in the problem domain at hand. This information
serves to constrain the planner’s search so that the plan-
ner searches only a small part of the search space.
There are two main types of domain-configurable
planners:

• Hierarchical task network (HTN) planners such as
O-Plan [14.31], SIPE-2 (system for interactive plan-
ning and execution) [14.32], and SHOP2 (simple
hierarchical ordered planner 2) [14.33]. In these
planners, the objective is described not as a set of
goal states, but instead as a collection of tasks to
perform. Planning proceeds by decomposing tasks
into subtasks, subtasks into sub-subtasks, and so
forth in a recursive manner until the planner reaches
primitive tasks that can be performed using actions
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similar to those used in a classical planning system.
To guide the decomposition process, the planner
uses a collection of methods that give ways of de-
composing tasks into subtasks.• Control-rule planners such as temporal logic plan-
ner (TLPlan) [14.34] and temporal action logic
planner (TALplanner) [14.35]. Here, the domain-
specific knowledge is a set of rules that give
conditions under which nodes can be pruned from
the search space; for example, if the objective is to
load a collection of boxes into a truck, one might
write a rule telling the planner “do not pick up a box
unless (1) it is not on the truck and (2) it is supposed
to be on the truck.” The planner does a forward
search from the initial state, but follows only those
paths that satisfy the control rules.

Planning with Uncertain Outcomes
One limitation of classical planners is that they can-
not handle uncertainty in the outcomes of the actions.
The best-known model of uncertainty in planning is the
Markov decision process (MDP) model. MDPs are well
known in engineering, but are generally defined over
continuous sets of states and actions, and are solved us-
ing the tools of continuous mathematics. In contrast, the
MDPs considered in AI research are usually discrete,
with the relationships among the states and actions be-
ing symbolic rather than numeric (the latest version of
PDDL [14.29] incorporates the ability to represent plan-
ning problems in this fashion):

• There is a set of states S and a set of actions A.
Each state s has a reward R(s), which is a numeric
measure of the desirability of s. If an action a is ap-
plicable to s, then C(a, s) is the cost of executing a
in s.• If we execute an action a in a state s, the outcome
may be any state in S. There is a probabil-
ity distribution over the outcomes: P(s′|a, s) is
the probability that the outcome will be s′, with∑

s′∈S P(s′|a, s) = 1.• Starting from some initial state s0, suppose we ex-
ecute a sequence of actions that take the MDP
from s0 to some state s1, then from s1 to s2, then
from s2 to s3, and so forth. The sequence of states
h = 〈s0, s1, s2, . . .〉 is called a history. In a finite-
horizon problem, all of the MDP’s possible histories
are finite (i. e., the MDP ceases to operate after
a finite number of state transitions). In an infinite-
horizon problem, the histories are infinitely long
(i. e., the MDP never stops operating).

• Each history h has a utility U(h) that can be com-
puted by summing the rewards of the states minus
the costs of the actions

U(h) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n−1
i=0 R(si )−C(si , π(si ))+ R(sn) ,

for finite-horizon problems ,
∑∞

i=0 γ i R(si )−C(si , π(si ))

for infinite-horizon problems .

In the equation for infinite-horizon problems, γ is
a number between 0 and 1 called the discount fac-
tor. Various rationales have been offered for using
discount factors, but the primary purpose is to en-
sure that the infinite sum will converge to a finite
value.• A policy is any function π : S → A that returns an
action to perform in each state. (More precisely, π

is a partial function from S to A. We do not need to
define π at a state s ∈ S unless π can actually gener-
ate a history that includes s.) Since the outcomes of
the actions are probabilistic, each policy π induces
a probability distribution over MDP’s possible his-
tories

P(h|π) = P(s0)P(s1|π(s0), s0)P(s1|π(s1), s1)

× P(s2|π(s2), s2) . . .

The expected utility of π is the sum, over
all histories, of h’s probability times its utility:
EU(π) = ∑

h P(h|π)U(h). Our objective is to gen-
erate a policy π having the highest expected utility.

Traditional MDP algorithms such as value iteration
or policy iteration are difficult to use in AI planning
problems, since these algorithms iterate over the en-
tire set of states, which can be huge. Instead, the focus
has been on developing algorithms that examine only
a small part of the search space. Several such algo-
rithms are described in [14.36]. One of the best-known
is real-time dynamic programming (RTDP) [14.37],
which works by repeatedly doing a forward search from
the initial state (or the set of possible initial states), ex-
tending the frontier of the search a little further each
time until it has found an acceptable solution.

Applications of Planning
The paragraph on Domain-Specific Planners gave
several examples of successful applications of domain-
specific planners. Domain-configurable HTN planners
such as O-Plan, SIPE-2, and SHOP2 have been
deployed in hundreds of applications; for example
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a system for controlling unmanned aerial vehicles
(UAVs) [14.38] uses SHOP2 to decompose high-level
objectives into low-level commands to the UAV’s
controller.

Because of the strict set of restrictions required
for classical planning, it is not directly usable in most
application domains. (One notable exception is a cyber-
security application [14.39].) On the other hand, several
domain-specific or domain-configurable planners are
based on generalizations of classical planning tech-
niques. One example is the domain-specific Mars rover
planning software mentioned in Domain-Specific Plan-
ners, which involved a generalization of a classical
planning technique called plan-space planning [14.40,
Chap. 5]. Some of the generalizations included ways to
handle action durations, temporal constraints, and other
problem characteristics. For additional reading on plan-
ning, see Ghallab et al. [14.40] and LaValle [14.41].

14.1.5 Games

One of the oldest and best-known research areas for
AI has been classical games of strategy, such as chess,
checkers, and the like. These are examples of a class of
games called two-player perfect-information zero-sum
turn-taking games. Highly successful decision-making
algorithms have been developed for such games:
Computer chess programs are as good as the best grand-
masters, and many games – including most recently
checkers [14.42] – are now completely solved.

A strategy is the game-theoretic version of a pol-
icy: a function from states into actions that tells us
what move to make in any situation that we might en-

s9

s2

–4

4

s8

5

–5

Our payoffs:

Opponent's payoffs:

Terminal nodes:

s4Our turn to move:

Opponent's turn to move:

m(s4) = 5

s11

0

0

s10

9

–9

s5

m(s5) = 9

s1 m(s2) = 5

m(s2) = 5

s13

s3

–2

2

s12

–7

7

s6

m(s6) = –2

s15

0

0

s14

9

–9

s7

m(s7) = 9

m(s2) = –2

Our turn to move:

Fig. 14.9 A simple example of a game tree

counter. Mathematical game theory often assumes that
a player chooses an entire strategy in advance. However,
in a complicated game such as chess it is not feasible to
construct an entire strategy in advance of the game. In-
stead, the usual approach is to choose each move at the
time that one needs to make this move.

In order to choose each move intelligently, it is
necessary to get a good idea of the possible future
consequences of that move. This is done by searching
a game tree such as the simple one shown in Fig. 14.9.
In this figure, there are two players whom we will call
Max and Min. The square nodes represent states where
it is Max’s move, the round nodes represent states where
it is Min’s move, and the edges represent moves. The
terminal nodes represent states in which the game has
ended, and the numbers below the terminal nodes are
the payoffs. The figure shows the payoffs for both Max
and Min; note that they always sum to 0 (hence the name
zero-sum games).

From von Neuman and Morgenstern’s famous Mini-
max theorem, it follows that Max’s dominant (i. e., best)
strategy is, on each turn, to move to whichever state s
has the highest minimax value m(s), which is defined as
follows

m(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max’s payoff at s ,

if s is a terminal node ,

max{m(t) : t is a child of s} ,

if it is Max’s move at s ,

min{m(t) : t is a child of s} ,

if it is Min’s move at s ,

(14.3)
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where child means any immediate successor of s; for
example, in Fig. 14.9,

m(s2) = min(max(5, −4) , max(9, 0))

= min(5, 9) = 5 ; (14.4)

m(s3) = min(max(s12) , max(s13) , max(s14) ,

max(s15)) = min(7, 0) = 0 . (14.5)

Hence Max’s best move at s1 is to move to s2.
A brute-force computation of (14.3) requires search-

ing every state in the game tree, but most nontrivial
games have so many states that it is infeasible to explore
more than a small fraction of them. Hence a number of
techniques have been developed to speed up the compu-
tation. The best known ones include:

• Alpha–beta pruning, which is a technique for de-
ducing that the minimax values of certain states
cannot have any effect on the minimax value of s,
hence those states and their successors do not need
to be searched in order to compute s’s minimax
value. Pseudocode for the algorithm can be found
in [14.8, 43], and many other places.
In brief, the algorithm does a modified depth-first
search, maintaining a variable α that contains the
minimax value of the best move it has found so far
for Max, and a variable β that contains the mini-
max value of the best move it has found so far for
Min. Whenever it finds a move for Min that leads to
a subtree whose minimax value is less than α, it does
not search this subtree because Max can achieve at
least α by making the best move that the algorithm
found for Max earlier. Similarly, whenever the algo-
rithm finds a move for Max that leads to a subtree
whose minimax value exceeds β, it does not search
this subtree because Min can achieve at least β by
making the best move that the algorithm found for
Min earlier.
The amount of speedup provided by alpha–beta
pruning depends on the order in which the algorithm
visits each node’s successors. In the worst case, the
algorithm will do no pruning at all and hence will
run no faster than a brute-force minimax computa-
tion, but in the best case, it provide an exponential
speedup [14.43].• Limited-depth search, which searches to an arbitrary
cutoff depth, uses a static evaluation function e(s)
to estimate the utility values of the states at that
depth, and then uses these estimates in (14.3) as if
those states were terminal states and their estimated
utility values were the exact utility values for those
states [14.8].

Games with Chance, Imperfect Information,
and Nonzero-Sum Payoffs

The game-tree search techniques outlined above do ex-
tremely well in perfect-information zero-sum games,
and can be adapted to perform well in perfect-
information games that include chance elements, such
as backgammon [14.44]. However, game-tree search
does less well in imperfect-information zero-sum games
such as bridge [14.45] and poker [14.46]. In these
games, the lack of imperfect information increases the
effective branching factor of the game tree because the
tree will need to include branches for all of the moves
that the opponent might be able to make. This increases
the size of the tree exponentially.

Second, the minimax formula implicitly assumes
that the opponent will always be able to determine
which move is best for them – an assumption that is
less accurate in games of imperfect information than
in games of perfect information, because the opponent
is less likely to have enough information to be able to
determine which move is best [14.47].

Some imperfect-information games are iterated
games, i. e., tournaments in which two players will
play the same game with each other again and again.
By observing the opponent’s moves in the previous
iterations (i. e., the previous times one has played
the game with this opponent), it is often possible
to detect patterns in the opponent’s behavior and
use these patterns to make probabilistic predictions
of how the opponent will behave in the next itera-
tion. One example is Roshambo (rock–paper–scissors).
From a game-theoretic point of view, the game is
trivial: the best strategy is to play purely at random,
and the expected payoff is 0. However, in prac-
tice, it is possible to do much better than this by
observing the opponent’s moves in order to detect
and exploit patterns in their behavior [14.48]. An-
other example is poker, in which programs have been
developed that play nearly as well as human champi-
ons [14.46]. The techniques used to accomplish this are
a combination of probabilistic computations, game-tree
search, and detecting patterns in the opponent’s behav-
ior [14.49].

Applications of Games
Computer programs have been developed to take the
place of human opponents in so many different games
of strategy that it would be impractical to list all of them
here. In addition, game-theoretic techniques have appli-
cation in several of the behavioral and social sciences,
primarily in economics [14.50].
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Highly successful computer programs have been
written for chess [14.51], checkers [14.42, 52],
bridge [14.45], and many other games of strat-
egy [14.53]. AI game-searching techniques are being
applied successfully to tasks such as business sourc-
ing [14.54] and to games that are models of social be-
havior, such as the iterated prisoner’s dilemma [14.55].

14.1.6 Natural-Language Processing

Natural-language processing (NLP) focuses on the use
of computers to analyze and understand human (as op-
posed to computer) languages. Typically this involves
three steps: part-of-speech tagging, syntactic parsing,
and semantic processing. Each of these is summarized
below.

Part-of-Speech Tagging
Part-of-speech tagging is the task of identifying indi-
vidual words as nouns, adjectives, verbs, etc. This is an
important first step in parsing written sentences, and it
also is useful for speech recognition (i. e., recognizing
spoken words) [14.56].

A popular technique for part-of-speech tagging is
to use hidden Markov models (HMMs) [14.57]. A hid-
den Markov model is a finite-state machine that has
states and probabilistic state transitions (i. e., at each
state there are several different possible next states, with
a different probability of going to each of them). The

Start

End

(like, conjunction) (like, noun) (like, verb)(like, adverb)

(Flies, verb)(Flies, noun)

(flower, verb)(flower, noun)

(a, prep)(a, article)

(like, preposition)

(a, noun)

Fig. 14.10 A graphical representation of the set of all state transitions that might have produced the sentence Flies like
a flower.

states themselves are not directly observable, but in each
state the HMM emits a symbol that we can observe.

To use HMMs for part-of-speech tagging, we need
an HMM in which each state is a pair (w, t), where
w is a word in some finite lexicon (e.g., the set of all
English words), and t is a part-of-speech tag such as
noun, adjective, or verb. Note that, for each word w,
there may be more than one possible part-of-speech tag,
hence more than one state that corresponds to w; for ex-
ample, the word flies could either be a plural noun (the
insect), or a verb (the act of flying).

In each state (w, t), the HMM emits the word w,
then transitions to one of its possible next states. As
an example (adapted from [14.58]), consider the sen-
tence, Flies like a flower. First, if we consider each of
the words separately, every one of them has more than
one possible part-of-speech tag:

Flies could be a plural noun or a verb;
like could be a preposition, adverb, conjunction,

noun or verb;
a could be an article or a noun, or a preposition;
flower could be a noun or a verb;

Here are two sequences of state transitions that could
have produced the sentence:

• Start, (Flies, noun), (like, verb), (a, article), (flower,
noun), End
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• Start, (Flies, verb), (like, preposition), (a, article),
(flower, noun), End.

But there are many other state transitions that could also
produce it; Fig. 14.10 shows all of them. If we know the
probability of each state transition, then we can compute
the probability of each possible sequence – which gives
us the probability of each possible sequence of part-of-
speech tags.

To establish the transition probabilities for the
HMM, one needs a source of data. For NLP, these data
sources are language corpora such as the Penn Tree-
bank (http://www.cis.upenn.edu/˜treebank/).

Context-Free Grammars
While HMMs are useful for part-of-speech tagging, it is
generally accepted that they are not adequate for parsing
entire sentences. The primary limitation is that HMMs,
being finite-state machines, can only recognize regu-
lar languages, a language class that is too restricted to
model several important syntactical features of human
languages. A somewhat more adequate model can be
provided by using context-free grammars [14.59].

In general, a grammar is a set of rewrite rules such
as the following:

Sentence → NounPhrase VerbPhrase

NounPhrase → Article NounPhrase1

Article → the | a | an

. . .

The grammar includes both nonterminal symbols
such as NounPhrase, which represents an entire noun
phrase, and terminal symbols such as the and an,
which represent actual words. A context-free grammar
is a grammar in which the left-hand side of each rule is
always a single nonterminal symbol (such as Sentence
in the first rewrite rule shown above).

Context-free grammars can be used to parse
sentences into parse trees such as the one shown
in Fig. 14.11, and can also be used to generate sen-
tences. A parsing algorithm (parser) is a procedure
for searching through the possible ways of combining
grammatical rules to find one or more parses (i. e., one
or more trees similar to the one in Fig. 14.11) that match
a given sentence.

Features. While context-free grammars are better at
modeling the syntax of human languages than regular
grammars, there are still important features of human

Sentence

NounPhrase

The dog

VerbPhrase

NounPhrase

the bone

PrepositionalPhrase

Preposition

to

NounPhrase

the door

Verb

took

Fig. 14.11 A parse tree for the sentence The dog took the bone to the
door.

languages that context-free grammars cannot handle
well; for example, a pronoun should not be plural un-
less it refers to a plural noun. One way to handle these
is to augment the grammar with a set of features that
restrict the circumstances under which different rules
can be used (e.g., to restrict a pronoun to be plural if
its referent is also plural).

PCFGs. If a sentence has more than one parse, one of
the parses might be more likely than the others: for
example, time flies is more likely to be a statement
about time than about insects. A probabilistic context-
free grammar (PCFG) is a context-free grammar that
is augmented by attaching a probability to each gram-
mar rule to indicate how likely different possible parses
may be.

PCFGs can be learned from a parsed language cor-
pora in a manner somewhat similar (although more
complicated) than learning HMMs [14.60]. The first
step is to acquire CFG rules by reading them directly
from the parsed sentences in the corpus. The second
step is to try to assign probabilities to the rules, test
the rules on a new corpus, and remove rules if appro-
priate (e.g., if they are redundant or if they do not work
correctly).

Applications
NLP has a large number of applications. Some ex-
amples include automated language-translation services
such as Babelfish, Google Translate, Freetranslation,
Teletranslator and Lycos Translation [14.61], auto-
mated speech-recogition systems used in telephone call
centers, systems for categorizing, summarizing, and
retrieving text (e.g., [14.62, 63]), and automated eval-
uation of student essays [14.64].
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For additional reading on natural-language pro-
cessing, see Wu, Hsu, and Tan [14.65] and Thomp-
son [14.66].

14.1.7 Expert Systems

An expert system is a software system that performs, in
some specialized field, at a level comparable to a human
expert in the field. Most expert systems are rule-based
systems, i. e., their expert knowledge consists of a set
of logical inference rules similar to the Horn clauses
discussed in Sect. 14.1.2.

Often these rules also have probabilities attached to
them; for example, instead of writing

if A1 and A2 then conclude A3

one might write

if A1 and A2 then conclude A3 with probability p0 .

Now, suppose A1 and A2 are known to have proba-
bilities p1 and p2, respectively, and to be stochastically
independent so that P(A1 ∧ A2) = p1 p2. Then the rule
would conclude P(C) = p0 p1 p2.

If A1 and A2 are not known to be stochastically in-
dependent, or if there are several rules that conclude A3,
then the computations can get much more complicated.
If there are n variables A1, . . . , An , then the worst case
could require a computation over the entire joint dis-
tribution P(A1, . . . , An), which would take exponential
time and would require much more information than is
likely to be available to the expert system.

In some of the early expert systems, the above com-
plication was circumvented by assuming that various
events were stochastically independent even when they
were not. This made the computations tractable, but
could lead to inaccuracies in the results. In more mod-
ern systems, conditional independence (Sect. 14.1.3) is
used to obtain more accurate results in a computation-
ally tractable manner.

Expert systems were quite popular in the early and
mid-1980s, and were used successfully in a wide vari-
ety of applications. Ironically, this very success (and the
hype resulting from it) gave many potential industrial
users unrealistically high expectations of what expert
systems might be able to accomplish for them, leading
to disappointment when not all of these expectations
were met. This led to a backlash against AI, the so-
called AI winter [14.67], that lasted for some years. but
in the meantime, it became clear that simple expert sys-
tems were more elaborate versions of the decision logic
already used in computer programming; hence some of

the techniques of expert systems have become a stan-
dard part of modern programming practice.

Applications. Some of the better-known examples
of expert-system applications include medical diag-
nosis [14.68], analysis of data gathered during oil
exploration [14.69], analysis of DNA structure [14.70],
configuration of computer systems [14.71], as well as
a number of expert system shell (i. e., tools for building
expert systems).

14.1.8 AI Programming Languages

AI programs have been written in nearly every program-
ming language, but the most common languages for AI
programming are Lisp, Prolog, C/C++, and Java.

Lisp
Lisp [14.72, 73] has many features that are useful for
rapid prototyping and AI programming. These features
include garbage collection, dynamic typing, functions
as data, a uniform syntax, an interactive programming
and debugging environment, ease of extensibility, and
a plethora of high-level functions for both numeric
and symbolic computations. As an example, Lisp has
a built-in function, append, for concatenating two lists
– but even if it did not, such a function could easily be
written as follows:

(defun concatenate (x y)
(if (null x)

y
(cons (first x)

(concatenate (rest x) y))))

The above program is tail-recursive, i. e., the recursive
call occurs at the very end of the program, and hence
can easily be translated into a loop – a translation that
most Lisp compilers perform automatically.

An argument often advanced in favor of conven-
tional languages such as C++ and Java as opposed
to Lisp is that they run faster, but this argument is
largely erroneous. As of 2003, experimental compar-
isons showed compiled Lisp code to run nearly as fast
as C++, and substantially faster than Java. (The speed
comparison to Java might not be correct any longer,
since a huge amount of work has been done since 2003
to improve Java compilers.) Probably the misconcep-
tion about Lisp’s speed arose from the fact that early
Lisp systems ran Lisp code interpretively. Modern Lisp
systems give users the option of running their code
interpretively (which is useful for experimenting and
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debugging) or compiling their code (which provides
much higher speed).

See [14.74] for a discussion of other advantages
of Lisp. One notable disadvantage of Lisp is that, if
one has a computer program written in a conventional
language such as C, C++ or Java, it is difficult for
such a program to call a Lisp program as a subroutine:
one must run the Lisp program as a separate process
in order to provide the Lisp execution environment.
(On the other hand, Lisp programs can quite easily in-
voke subroutines written in conventional programming
languages.)

Applications. Lisp was quite popular during the expert-
systems boom of the mid-1980s, and several Lisp
machine computer architectures were developed and
marketed in which the entire operating system was writ-
ten in Lisp. Ultimately these machines did not meet with
long-term commercial success, as they were eventually
surpassed by less-expensive, less-specialized hardware
such as Sun workstations and Intel x86 machines.

On the other hand, development of software sys-
tems in Lisp has continued, and there are many
current examples of Lisp applications. A few of them
include the visual lisp extension language for the Au-
toCAD computer-aided design system (autodesk.com),
the Elisp extension language for the Emacs editor
(http://en.wikipedia.org/wiki/Emacs_Lisp)the Script-Fu
plugins for the GNU Image Manipulation Program
(GIMP), the Remote Agent software deployed on
NASA’s Deep Space 1 spacecraft [14.75], the air-
line fare shopping engine used by Orbitz [14.9], the
SHOP2 planning system [14.38], and the Yahoo Store
e-commerce software. (As of 2003, about 20 000 Ya-
hoo stores used this software. The author does not have
access to more recent statistics.)

Prolog
Prolog [14.76] is based on the notion that a general
theorem-prover can be used as a programming environ-
ment in which the program consists of a set of logical
statements. As an example, here is a Prolog program
for concatenating lists, analogous to the Lisp program
given earlier

concatenate([],Y,Y).
concatenate([First|Rest],Y,[First|Z]) :-

concatenate(Rest,Y,Z).

To concatenate two lists [a,b] and [c], one asks the
theorem prover if there exists a list Z that is their

concatenation; and the theorem prover returns Z if it
exists
?- concatenate([a,b],[c],Z)
Z=[a,b,c].

Alternatively, if one asks whether there are lists X and
Y whose concatenation is a given list Z, then there are
several possible values for X and Y , and the theorem
prover will return all of them

?- concatenate(X,Y,[a,b])
X = []; Y = [a,b]
X = [a]; Y = [b]
X = [a,b]; Y = []

One of Prolog’s biggest drawbacks is that several as-
pects of its programming style – for example, the
lack of an assignment statement, and the automated
backtracking – can require workarounds that feel un-
intuitive to most programmers. However, Prolog can
be good for problems in which logic is intimately
involved, or whose solutions have a succinct logical
characterization.

Applications. Prolog became popular during the the
expert-systems boom of the 1980s, and was used as the
basis for the Japanese Fifth Generation project [14.77],
but never achieved wide commercial acceptance. On
the other hand, an extension of Prolog called constraint
logic programming is important in several industrial ap-
plications (see Constraint Satisfaction and Constraint
Optimization).

C, C++, and Java
C and C++ provide much less in the way of high-level
programming constructs than Lisp, hence developing
code in these languages can require much more effort.
On the other hand, they are widely available and pro-
vide fast execution, hence they are useful for programs
that are simple and need to be both portable and fast; for
example, neural networks need very fast execution in
order to achieve a reasonable learning rate, and a back-
propagation procedure can be written in just a few pages
of C or C++ code.

Java is a lower-level language than Lisp, but is
higher-level than C or C++. It uses several ideas from
Lisp, most notably garbage collection. As of 2003 it
ran much more slowly than Lisp, but its speed has
improved in the interim and it has the advantages of
being highly portable and more widely known than
Lisp.

Part
B

1
4
.1



266 Part B Automation Theory and Scientific Foundations

14.2 Emerging Trends and Open Challenges

AI has gone through several periods of optimism and
pessimism. The most recent period of pessimism was
the AI winter mentioned in Sect. 14.1.7. AI has emerged
from this period in recent years, primarily because of
the following trends. First is the exponential growth im-
provement in computing power: computations that used
to take days or weeks can now be done in minutes or
seconds. Consequently, computers have become much
better able to support the intensive computations that
AI often requires. Second, the pervasive role of comput-
ers in everyday life is helping to erase the apprehension
that has often been associated with AI in popular
culture. Third, there have been huge advances in AI
research itself. AI concepts such as search, planning,
natural-language processing, and machine learning have
developed mature theoretical underpinnings and exten-
sive practical histories.

AI technology is widely expected to become in-
creasingly pervasive in applications such as data min-
ing, information retrieval (especially from the web), and
prediction of human events (including anything from
sports forecasting to economics to international con-
flicts).

During the next decade, it appears quite likely that
AI will be able to make contributions to the behav-
ioral and social sciences analogous to the contributions
that computer science has made to the biological sci-
ences during the past decade. To make this happen,
one of the biggest challenges is the huge diversity

among the various research fields that will be involved.
These include behavioral and social sciences such as
economics, political science, psychology, anthropol-
ogy, and sociology, and technical disciplines such as
AI, robotics, computational linguistics, game theory,
and operations research. Researchers from these fields
will need to forge a common understanding of princi-
ples, techniques, and objectives. Research laboratories
are being set up to foster this goal (one example is
the University of Maryland’s Laboratory for Computa-
tional Cultural Dynamics (http://www.umiacs.umd.edu/
research/LCCD/), which is co-directed by the author
of this chapter), and several international conferences
and workshops on the topic have been recently estab-
lished [14.78, 79].

One of the biggest challenges that currently faces
AI research is its fragmentation into a bewilderingly di-
verse collection of subdisciplines. Unfortunately, these
subdisciplines are becoming rather insular, with their
own research conferences and their own (sometimes id-
iosyncratic) notions of what constitutes a worthwhile
research question or a significant result. The achieve-
ment of human-level AI will require integrating the
best efforts among many different subfields of AI, and
this in turn will require better communication amongst
the researchers from these subfields. I believe that the
field is capable of overcoming this challenge, and that
human-level AI will be possible by the middle of this
century.
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