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Abstract. We present a trusted source translator that transforms to-
tal functions defined in the specification language of the HOL theorem
prover to simple intermediate code. This translator eliminates polymor-
phism by code specification, removes higher-order functions through clo-
sure conversion, interprets pattern matching as conditional expressions,
etc. The target intermediate language can be further translated by proof
to a simple imperative language. Each transformation is proven to be
correct automatically. The formalization, implementation and mechani-
cal verification of all transformations are done in HOL-4.

1 Introduction

Giving realistic programming languages such as C and Java correct semantics
is difficult. It is more difficult to make such semantics tractable so that we
can reason about non-trivial programs in a formal setting. Some widely used
functional languages have been given a formal semantics, e.g. Scheme has a
denotational semantics [19] and ML has a formal operational semantics [14].
However, these semantics do not as yet provide a practical basis for formal
reasoning about programs in the languages, although they are extremely valuable
as reference documents and for proving meta-theorems (like type preservation).

In order to allow formal reasoning to the maximum extent, we can program
applications directly in logic, and then compile the logic to realistic platforms for
execution. Specifically, we can specify both the algorithms and the mathematics
needed for their verification in higher order logic, and then compile the verified
algorithms to low level platforms which are also modeled in the same logic.

The specification language we use is the Total Functional Language (TFL) [20],
which is a pure, total functional programming layer on top of higher order logic
and implemented in both the HOL-4 [17] and Isabelle [16] systems. TFL enables
abstract algorithms to be specified in a mixture of mathematics and programming
idioms and then reasoned about using a theorem prover. Roughly speaking, this
language comprises ML-style pure terminating functional programs, i.e., those
(computable) functions that can be expressed by well-founded recursion in higher
order logic. Features like type inference, polymorphism, higher order functions and
patternmatchingmake it a comfortable setting inwhich to program.This language
can express a very wide range of algorithms. The trade-off is that the compilation
of logic specifications written in this language is fairly complicated.
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We have developed a software compiler [11,12], which produces assembly code,
and a hardware compiler [21], which synthesizes Verilog netlists, for a small sub-
set of TFL. This subset, named HOL-, is a simple monomorphically-typed func-
tional language handling first order equations where variables range over tuples
of booleans and 32-bit words. The software compiler performs normalization, in-
line expansion, nested function hoisting, register allocation and code generation
to convert HOL- programs into assembly. Many transformations are implemented
as rewrite rules [12]. The correctness of each transformation is proven on the fly:
after a program is translated, a theorem is given as by-product that states the
equivalence of the transformed code and this program.

This paper presents an extension of these compilers by strengthening the
front end translation to support polymorphism, higher order functions, alge-
braic datatypes, pattern matching and other advanced features in TFL. As far
as we know, it is the first verified translator that compiles logic specifications
coded in such advanced functional languages as TFL. We also present an ap-
proach to translate HOL- into a simple imperative language. The mechanical
correctness proof is performed deductively by synthesizing functions from im-
perative code and showing that these functions are equivalent to the original
HOL- functions. This enables safe source translations from ML-like functional
languages to imperative languages.

A TFL program is converted into an equivalent HOL- program via a sequence
of transformations, the correctness of each of which is proved automatically in the
logic system. Although standard compilation techniques developed for functional
programming may be applied here, new challenges are posed due to the fact that
(i) the source language is not visible in the logic — it is the logic itself that is
taken as the source language; (ii) TFL programs have a set-theoretic semantics
rather than an operational or denotational semantics; (iii) all transformations
must be formalized and verified in the logic that is compiled. Since TFL and HOL-
programs are not defined as datatypes and do not have an evaluation semantics,
widely-used techniques that base on structural induction on syntax datatypes
and rule-induction over evaluation relations cannot be applied here.

The main contribution of our work is that we construct and verify compilations
for logic specifications written in the term language of a widely-used theorem
prover. Users can model an application directly in HOL and prove properties
about it, then our compilers translate it to low level code with a certificate
(proof) showing that this code correctly implements the application. As a con-
sequence, the execution of this code will always guarantee the properties proven
on the original application.

2 TFL and HOL-

Both TFL and HOL- are subsets of the higher order logic built in HOL, thus
their syntax and the semantics have already been defined. Programs written
in them are simply mathematical functions defined in the HOL logic. It is this
feature that enables us to use standard mathematics to prove properties of these
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programs directly in the logic system. This supports much flexibility and allows
the meaning of a program to be transparent. In particular, two programs are
equivalent when the mathematical functions represented by them are equal.

One immediate advantage of taking TFL as the source language is that many
front end tasks are already provided by the HOL-4 system: lexical analysis, pars-
ing, type inference, overloading resolution, function definition, and termination
proof (needed to admit recursive functions, since HOL is a logic of total func-
tions). The result of all this activity is a valid HOL function definition, embodied
in a possibly recursive equation. From this starting point, a sequence of proof-
based transformations pass through intermediate forms, ending in HOL-.

TFL is a polymorphic, higher order, pure and terminating functional lan-
guage supporting algebraic datatypes and pattern matching. Its syntax is shown
in Figure 1, where [term]separator means a sequence of term’s separated by the
separator. HOL- is a simple typed functional language handling first order equa-
tions over nested tuples of basic types. Clearly HOL- is a subset of TFL.

τ ::= T | t | τ D primitive type, type variable and algebraic type
| τ # τ | τ → τ tuple type and arrow(function) type

atc ::= id | id of [τ ]⇒ algebraic datatype clause
at ::= datatype id = [atc]| algebraic datatype

| [at]; mutually recursive datatype
pt ::= i | v | c

−→
pt pattern

e ::= i : T | v : τ constant and variable
| −→e tuple, i.e.[e],
| p e primitive application
| c e constructor application
| fid function identifier
| e e composite application
| if e then e else e conditional
| case e of [(c e) � e]| case splitting
| let v = e in e let binding
| [λv]. e anonymous function

fdecl ::= fid ([pt],) = e pattern matching clause
| [fdecl]∧ function declaration
| v = e top level variable declaration

Fig. 1. The syntax of the total function language TFL

The translator performs transformations that are familiar from existing func-
tional language compilers except that it does so by proof for the term language
of HOL. TFL’s high-level features such as polymorphism, higher-order functions,
pattern matching and composite expressions need to be expressed in terms of
HOL-’s much lower-level structures:

– The translator removes polymorphism from TFL programs by making dupli-
cations of polymorphic datatype declarations and functions for each distinct
combination of instantiating types.

– The translator names intermediate computation results and makes the
evaluation order explicit by performing a continuation-passing-style (CPS)
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transformation. TFL expressions and functions are simplified to forms suit-
able for subsequent transformations.

– The translator applies defunctionalization to remove higher-order functions
by creating algebraic datatypes to represent function closures and type based
dispatch functions to direct the control to top level function definitions.

– The translator converts pattern matching first into nested case expressions,
then into explicit conditional expressions.

All intermediate forms of a program are still mathematical functions defined
in HOL. The correctness proof of a transformation of a source program p pro-
ceeds, in a translation validation [18] style, by showing the generated program
q computes the same mathematical function as p. Note that the built-in type
checker in HOL will type check both p and q to ensure their type safety. Two
techniques are used to generate correctness proofs:

1. The transformation is implemented as a rewrite rule based on a theorem
that is proven once and for all. In many cases we just need to instantiate
this theorem by the input program. Examples include the normalization.

2. A per-run correctness check is performed to show that the transformation
ensures semantics preserving on the given program. In general, we convert
the source program p into p′ using some algorithm, and then compare p
and p′ w.r.t their semantics. Examples include the monomorphisation and
defunctionalization.

3 Trusted Transformation

In this section we describe algorithms of a series of syntax directed transforma-
tions; we also show how to prove the correctness of them.

3.1 Monomorphisation

This transformation eliminates polymorphism and produces a simply-typed in-
termediate form that enables good data representations. The basic idea is to
duplicate a datatype declaration at each type used and a function declaration
at each type used, resulting in multiple monomorphic clones of this datatype
and function. This step paves the way for subsequent conversions such as the
type based defunctionalization. Although this seems to lead to code explosion in
theory, it is manageable in practice (MLton, a fancy ML compiler, uses similar
techniques and reports maximum increase of 30% in code size).

The first step is to build an instantiation map that enumerates for each
datatype and function declaration the full set of instantiations for each poly-
morphic type. A TFL program will be type checked by the HOL system and be
annotated with polymorphic type identifiers such as ′a,′ b, . . . when it is defined.
In particular, type inference has been done for (mutually) recursive functions.
The remaining task is to instantiate the generic types of a function with the
actual types of arguments at its call sites.
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The notation used in this section is as follows. A substitution rule R = (t ↪→
{T }) maps an abstract type t to a set of its type instantiations; an instantiation
set S = {R} is a set of substitution rules; and an instantiation map M = {z ↪→
S} maps a datatype or a function z to its instantiation set S. We write M.y for
the value at field y in the map M ; if y /∈ Dom M then M.y returns an empty set.
The union of two substitution sets S1 ∪s S2 is {t ↪→ S1.t ∪ S2.t | t ∈ Dom S1 ∪
Dom S2}. We write

⋃
s {S} for the combined union of a set of substitution

rules. The union of two instantiation maps M1
⋃

m M2 is defined similarly. The
composition of two instantiation sets S1 and S2, denoted as S1 or S2, is {t ↪→⋃

{S2.t | t ∈ Dom S1} | z ∈ Dom S1}. And, the composition of an instantiation
map M and a set S is defined as M om S = {z ↪→ M.z or S | z ∈ Dom M}.

The instantiation information of each occurrence of a polymorphic function
and datatype is coerced into an instantiation map during a syntax directed
bottom-up traversal. The main conversion rules Γ and Δ shown in Fig. 2 build
the instantiation map by investigating types and expressions respectively. The
rule for a single variable/function declaration is trivial and omitted here: we just
need to walk over the right hand side of its definition. If a top level function
f is called in the body of another function top level g, then g must be visited
first to generate an instantiation map Mg, and then f is visited to generate Mf ;
finally these two maps are combined to a new one, i.e. ((Mf ◦ Mg.f) ∪m Mg).
The clauses in mutually recursive functions can be visited in an arbitrary order.

Γ [[τ ]] = {}, for τ ∈ {T, t}
Γ [[τ D]] = {D ↪→ match tp (at tp D) τ}
Γ [[τ1 opt τ2]] = Γ [[τ1]] ∪m Γ [[τ2]], for opt ∈ {#,→}
Δ[[i]] = {}
Δ[[v : τ ]] = Γ [[τ ]]
Δ[[[e],]] =

S
m{Γ [[e]]}

Δ[[p e]] = Δ[[e]]
Δ[[(c : τ ) e]] = {con2tp c ↪→ match tp (con2tp c) τ}

∪m Γ [[τ ]] ∪m Δ[[e]]
Δ[[(f : τ ) e]] = {fid ↪→ match tp fid τ} ∪m Γ [[τ ]] ∪m Δ[[e]]
Δ[[if e1 then e2 else e3]] = Δ[[e1]] ∪m Δ[[e2]] ∪m Δ[[e3]]
Δ[[case e1 of [((c : τ ) e2) � e3]|]] = Δ[[e1]] ∪m

S
m{{con2tp c ↪→ match tp (con2tp c) τ}

∪m Δ[[e2]] ∪m Δ[[e3]]}
Δ[[let v = e1 in e2]] = (Δ[[e1]] om Δ[[e2]].v) ∪m Δ[[e2]]
Δ[[[λ v.]∗e]] = Δ[[e]]

Fig. 2. Build instantiation maps for polymorphic components

This algorithm makes use of a couple of auxiliary functions provided by the HOL
system. Function con2tp c maps a constructor c to the datatype to which it be-
longs; at tp D returns σ if there is a datatype definition datatype σ = D of . . .;
when x is either a function name or a constructor, match tp x τ matches the orig-
inal type of x (i.e. the type when x is defined) with τ and returns a substitution
set.
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After the final instantiation map is obtained, we duplicate a polymorphic
datatype/function for all combinations of its type instantiations, and replace
each call of the polymorphic function with the call to its monomorphic clone with
respect to the type. The automatic correctness proof for the transformation is
trivial: each duplication of a polymorphic function computes the same function
on the arguments of the instantiating types.

Now we give a simple example to illustrate the transformation.

datatype σ = C of ′a# ′b f (x :′ a) = x
g (x :′ c, y :′ d) = let (h :′ d → (′c # ′d) σ) = λz :′ d.

(C : (′c # ′d) → (′c # ′d) σ) ((f :′ c →′ c) x, (f :′ d →′ d) z) in h y
j = (g (1 : num, ⊥ : bool), g (⊥ : bool, � : bool))

The algorithm builds the following instantiation maps:

Investigate j : Mj = {g ↪→ {′c ↪→ {bool, num},′ d ↪→ {bool}}}
Investigate g : Mg = {f ↪→ {′a ↪→ {′c,′ d}}, σ ↪→ {′a ↪→ {′c},′ b ↪→ {′d}}}
Compose Mg and Mj : Mg◦j = Mg ◦ Mj .g =
{ f ↪→ {′a ↪→ {bool, num}}, σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }

Union Mg and Mg◦j : M{g,j} = Mg ∪m Mj =
{ f ↪→ {′a ↪→ {bool, num}}, g ↪→ {′c ↪→ {bool, num}, ′d ↪→ {bool}},

σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }
Investigate f : no changes, M{f,g,j} = M{g,j}

Then for datatype σ, function f and function g, a monomorphic clone is created
for each combination of instantiating types. Calls to the original functions are
replaced with the appropriate copies of the right type. For example, function j
is converted to j = (gnum#bool (1, ⊥), gbool#bool (⊥, �)), where gnum#bool and
gbool#bool are the two clones of g. The correctness of j’s conversion is proved
based on the theorems showing that g’s copies compute the same function as g
with respect to the instantiating types: �thm gnum#bool = g ∧ gbool#bool = g.

3.2 Normalization

This transformation bridges the gap between the form of expressions and control
flow structures in TFL and HOL-. A TFL program is converted to a simpler
form such that: (1) the arguments to function and constructor applications are
atoms like variables or constants; (2) discriminators in case expressions are also
simple expressions; (3) compound expressions nested in an expression are lifted
to make new ‘let’ bindings; (4) curried functions are uncurried to a sequence of
simple functions that take a single tupled argument. Primitive expressions such
as arithmetic and logical expressions on atoms need not to be converted.

A continuation-passing-style (CPS) transformation is performed to normalize
TFL programs. The essence is to sequentialize the computation of TFL expres-
sions by introducing variables for intermediate results, and the control flow is
pinned down into a sequence of elementary steps. It extends the one in our soft-
ware compiler [12] by addressing higher level structures specific to TFL. In the
following rules, C e k denotes the application of the continuation k to an expres-
sion e, and its value is equal to k e. After the conversion, we rewrite with the



Trusted Source Translation of a Total Function Language 477

theorem C e k = let x = e in k x to obtain ‘let‘-based normal forms.

C [[e]] k = k e, when e is a primitive expression
C [[λ−→v .e]] = λ−→v . λk. C [[e]] k
C [[(e1, e2)]] k = C [[e1]] (λx.C [[e2]] (λy. k (x, y)))
C [[op e]] k = C [[e]] (λx. k (op x)) when op ∈ {p, c, fid}
C [[(e1 e2)]] k = C [[e1]] (λx.C [[e2]] (λy. k (x y)))
C [[let v = e1 in e2]] k = C [[e1]] (λx. C [[e2]] (λy. k y))
C [[if e1 then e2 else e3]] k =

C [[e1]] (λx. k (if x then C [[e2]] (λx.x) else C [[e3]] (λx.x)))
C [[case e1 of c e21 � e31 | c e22 � e32 | . . .]] k =

C [[e1]] (λx. (C [[e21 ]] (λy1. C [[e22 ]] (λy2. . . . ,
k (case x of c y1 � C [[e31 ]] (λx.x) | c y2 � C [[e32 ]] (λx.x) | . . .)))))

The following example illustrates this transformation, where c1 and c2 are the
two constructors of a datatype.

Original: f (x, y, z) = case x − y − z of c1 a ⇒ f(x − 1, a, y) | c2 b ⇒ b + y
Converted: f (x, y, z) =

let v1 = x − y − z in
case v1 of c1 a ⇒ let v2 = x − 1 in f(v2, a, y) | c2 b ⇒ b + y

3.3 Defunctionalization

In this section we convert higher-order functions into equivalent first-order func-
tions and hoist nested functions to the top level through a type based closure
conversion. After the conversion, no nested functions exist; and function call is
made by dispatching on the closure tag followed by a top-level call.

Function closures are represented as algebraic data types in a way that, for
each function definition, a constructor taking the free variables of this function
is created. For each arrow type we create a dispatch function, which converts the
definition of a function of this arrow type into a closure constructor application.
A nested function is hoisted to the top level with its free variables to be passed as
extra arguments. After that, the calling to the original function is replaced by a
calling to the relevant dispatch function passing a closure containing the values of
this function’s free variables. The dispatch function examines the closure tag and
passes control to the appropriate hoisted function. Thus, higher order operations
on functions are replaced by equivalent operations on first order closure values.

As an optimization, we first run a pass to identify all ‘targeted’ functions
which appear in the arguments or outputs of other functions and record them in
a side effect variable Targeted. Non-targeted functions need not to be closure
converted, and calls to them are made as usual. During this pass we also find out
the functions to be defined at the top level and record them in Hoisted. Finally
Hoisted contains all top level functions and nested function to be hoisted.

The conversion works on simple typed functions obtained by monomorphisa-
tion. We create a closure datatype and a dispatch function for each of the arrow
types that targeted functions may have. A function definition is replaced by
a binding to an application of the corresponding closure constructor to this
function’s free variables. Suppose the set of targeted functions of type τ is



478 G. Li and K. Slind

{fi xi = ei | i = 1, 2, . . . }, then the following algebraic datatype and dispatch
function are created, where tp of and fv return the type and free variables of a
term respectively (and the type builder Γ will be described below):

closτ = consτ
f1 of Γ [[tp of (fv f1)]] | consτ

f2 of Γ [[tp of (fv f2)]] | . . .
(dispatchτ (consτ

f1
, x1, y1) = (f1 : Γ [[τ ]]) (x1, y1)) ∧

(dispatchτ (consτ
f2 , x2, y2) = (f2 : Γ [[τ ]]) (x2, y2)) ∧

. . .

As shown in Fig. 3, the main translation algorithm inspects the references and
applications of targeted functions and replaces them with the corresponding
closures and dispatch functions. Function Γ returns the new types of variables.
When walking over expressions, Δ replaces calls to unknown functions (i.e. those
not presented in Hoisted) with calls to the appropriate dispatch function, and
calls to known functions with calls to hoisted functions. In this case the val-
ues of free variables are passed as extra arguments. Function references are also
replaced with appropriate closures. Finally Redefn contains all converted func-
tions, which will be renamed and redefined in HOL at the top level.

Γ [[v : T ]] = T
Γ [[v : τ1 → τ2]] = if v ∈ Targeted then closτ1→τ2 else τ1 → τ2

Γ [[v : τ D]] = Γ [[τ ]] D
Γ [[[v],]] = [Γ [[v]]],
Δ[[v : τ ]] = if v ∈ Targeted then consτ

v else v : closτ

Δ[[[e],]] = [Δ[[e]]],
Δ[[p e]] = p (Δ[[e]])
Δ[[c e]] = c (Δ[[e]])
Δ[[(f : τ ) e]] = if f ∈ Hoisted then (new name of f) (Δ[[e]], fv f)

else dispatchτ (f : closτ , Δ[[e]])
Δ[[if e1 then e2 else e3]] = if Δ[[e1]] then Δ[[e2]] else Δ[[e3]]
Δ[[case e1 of [c e2 � e3]|]] = case Δ[[e1]] of [(Δ[[c e2]]) � Δ[[e3]]]|
Δ[[let f = λ−→v . e1 in e2]] = (Φ[[f−→v = e1]] ; Δ[[e2]])
Δ[[let v = e1 in e2]] = let v = Δ[[e1]] in Δ[[e2]] when e1 is not a λ expression
Φ[[fid (−→v : τ ) = e]] =

let e′ = Δ[[e]] in
Redefn := Redefn + (fid ↪→ Redefn.fid ∪ {(fid : τ → Γ [[tp of e′]]) −→v = e′}

Φ[[[fdecl]∧]] = [Φ[[fdecl]]];

Fig. 3. Remove higher order functions through closure conversion

Now we show the technique to prove the equivalence of a source function
f to its converted form f ′. We say that a variable v′ : τ ′ corresponds v : τ
iff: (1) v = v′ if both τ and τ ′ are closure type or neither of them is. (2)
∀x∀x′. dispatchτ ′(v′, x′) = v x if v′ is a closure type and v is an arrow type,
and x′ corresponds to x; or vice versa. Then f ′ is equivalent to f iff they corre-
spond to each other. The proof process is simple, as it suffices to simply rewrite
with the old and new definitions of the functions.
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As an example, the following higher order program

f (x : num) = x ∗ 2 < x + 10
g (s : num → bool, x : num) =

let h1 = λy. y + x in if s x then h1 else let h2 = λy. h1 y ∗ x in h2

k (x : num) = if x = 0 then 1 else g (f, x) (k (x − 1))

is closure converted to

datatype closτ1 = consτ1
f

datatype closτ2 = consτ2
h1

of num | consτ2
h2

of num

dispatchτ1 (consτ1
f : closτ1 , x : num) = f ′ x ∧ f ′ x = x ∗ 2 < x + 10

dispatchτ2 (consτ2
h1

y : closτ2 , x : num) = h′
1 (y, x)) ∧

dispatchτ2 (consτ2
h2

y : closτ2 , x : num) = h′
2 (y, x)) ∧

h′
1 (y, x) = y + x ∧ h′

2 (y, x) = h′
1(y, x) ∗ x

g′ (s : closτ1 , x : num) = if dispatchτ1(s, x) then consτ2
h1

x else consτ2
h2

x

k′ (x : num) = if x = 0 then 1 else g (consτ1
f , x), (k′ (x − 1))

where τ1 and τ2 stand for arrow types num → bool and num → num respectively

And the following theorems (which are proved automatically) justify the cor-
rectness of this conversion:

�thm f = f ′ �thm k′ = k
�thm (∀x. dispatchτ1 (s′, x) = s x) ⇒ ∀x∀y. dispatchτ2 (g′ (s′, x), y) = (g (s, x)) y

3.4 Pattern Matching

This conversion to nested case expressions is based on Augustsson’s original
work [1], which was adapted by Slind [20] for function description in HOL. A
pre-processing pass is first performed to deal with incomplete and overlapping
patterns: incomplete patterns are made complete by adding rows for all missing
constructors; and overlapping patterns are handled by replacing a value with
possible constructors. Note that this approach may make the pattern exponen-
tially larger because no heuristics are used to choose the “best” order in which
subterms of any term are to be examined.

The translation rule Δ shown below converts patterns [pati � rhsi]| into
a nested case expression. It takes two arguments: a stack of variables that are
yet to be matched, and a matrix whose rows correspond to the clauses in the
pattern. All rows are of equal length, and the elements in a column should have
the same type.

Conversion Δ proceeds from left to right, column by column. At each step
the first column is examined. If each element in this column is a variable, then
the head variable z in the stack is substituted for the corresponding vi for the
right hand side of each clause. If each element in the column is the application of
a constructor for type τ , and τ contains constructor C1, . . . , Cn, then the rows
are partitioned into n groups of size k1, . . . , kn according to the constructors.
After partitioning, a row (C(p̄) :: pats; rhs) has its lead constructor discarded,
resulting in a row expression (p̄ @ pats; rhs). Here :: is the list constructor, and
@ appends the second list to the first one. If constructor Ci has type τ1 →
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· · · → τj → τ , then a set νi of new variables v1, . . . , vj are pushed onto the stack.
Finally the results for all groups are combined into a case expression on the head
of the stack.

Δ

⎛

⎜
⎜
⎝

z :: stack

v1 :: pats1 � rhs1,
. . .
vn :: patsn � rhsn

⎞

⎟
⎟
⎠ = Δ

⎛

⎜
⎜
⎝

stack

pats1 � rhs1[z ← v1],
. . .
patsn � rhsn[z ← v2]

⎞

⎟
⎟
⎠ , and

Δ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z :: stack

C1 p11 :: pats11 � rhs11,
. . .
Cn p1k1 :: pats1k1 � rhs1k1

Cn pn1 :: patsn1 � rhs11,
. . .
Cn p1kn :: patsnkn � rhsnkn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= tp case (λν1.M1) . . . (λνn.Mn) z

where Mi = Δ

⎛

⎜
⎜
⎝

ν1 :: stack

pi1 @ patsk1 � rhsk1,
. . .
piki @ patsiki � rhsiki

⎞

⎟
⎟
⎠ for i = 0, . . . , n

When a datatype tp with n constructors is declared, a case expression theorem
∀x. tp case f1 . . . fn (Ci x) ≡ fi x for i = 1, . . . , n is stored in HOL. For
example, the case expression for natural number is (num case b f 0 = b) ∧
(num case b f (Suc n) = f n).

For example, this step translates the Greatest Common Divisor function gcd
to a form taking only one argument:

gcd (0, y) = y gcd (Suc x, 0) = Suc x
gcd (Suc x, Suc y) = if y ≤ x then gcd (x − y, Suc y) else gcd (Suc x, y − x)

⇒
gcd z = pair case (λv v1. num case v1(λv2. num case (Suc v2)

(λv3. if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)) v1) v) z

In the next step case expressions are interpreted as conditional expressions
based on the following theorem

tp case (λx.f1 x) (λx.f2 x) . . . z =
if is C1 z then f1 (destructC1 z) else if is C2 z then f2 (destructC2 z) else . . .

where operator is Ci tells whether a variable matches the ith constructor Ci, i.e.
is Ci (Cj x) = � iff i = j; and operator destructCi is the destructor function
for constructor Ci. For example, destructSuc (Suc x) = x. These operators will
be implemented as datatype access operations in later compilation phases. In
addition, an optimization is performed to tuple variables: if an argument x has
type τ1# . . . #τn, then it is replaced by a tuple of new variables (x1, . . . , xn).
Superfluous branches and ‘let’ bindings are also removed. In this manner the
gcd function is converted to
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gcd (z1, z2) = if z1 = 0 then z2

else let v2 = destructSuc z1 in
if z2 = 0 then Suc v2 else let v3 = destructSuc z2 in

if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)

4 Producing-by-Proof Imperative Code

Porting pure and terminating ML programs into TFL is easy due to the high
similarity in the syntax and semantics of ML and TFL. One of the main issues —
the termination proof of the imported ML program — is handled by proving that
the generated TFL function is total. Moreover, the imported programs will be
type checked by HOL. As the translation from TFL to HOL- eliminates features
pertaining to functional languages such as higher order functions and nested
expressions, it is natural to consider translating HOL- to realistic imperative
languages such as C and Java.

We have developed a method in our software compiler [11] that translates
simple normal forms obtained from HOL- programs to a low level imperative
language HSL (Heap and Stack Level). HSL supports various structured control
statements including blocks, sequential compositions, conditionals, tail recur-
sions, and function calls. However, since HSL is designed to couple tightly with
the targeted machine language and accesses registers and heaps directly, it is
not a good candidate as the target imperative language.

We extend HSL to a higher level imperative language IL (for Imperative Lan-
guage). The global variables of IL correspond to top level variables in HOL-;
and local variables in IL correspond to the administrative redexes (i.e. left hand
sides) of ‘let’ expressions in HOL-. IL also inherits the datatypes from HOL-, thus
no datatype representation is needed. What’s more important is our augmenta-
tion of the reasoning mechanism: we maintain a set of separate logic judgments
rather than just one judgment (as we did in [11]) and use them to reason about
programs. The syntax of IL’s control flow structures is shown below.

s ::= v := s assignment
| return v return
| s; s sequential statement
| IF e THEN s ELSE s conditional jump
| WHILE e s loop
| v :=f pid s function call

p ::= pid (−→v ) = s programs
We first define an operational semantics (omitted here due to lack of space)

for IL and then derive an axiomatic semantics from it. Each axiomatic semantics
rule is specified as a Hoare triple {precondition} program {postcondition}:

{P} S1 {Q} {R} S2 {T} Q⇒R
{P} (S1 ; S2) {T}

{P} S {P}
{P} (WHILE C S) {P∧¬C}

{P∧C} St {Q} {P∧¬C} Sf {Q}
{P} (IF C THEN St ELSE Sf ) {Q}

{P} St {Q} {P} Sf {R}
{P} (IF C THEN St ELSE Sf ) {if C then Q else R}
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In order to connect the semantics of a IL program s with that of a HOL- function
f , we introduce the following rule to characterize s’s axiomatic semantics as a set
of predicates (where σ〈x〉 returns the value of variable x in state σ; and eval S σ
returns the new state after S’s execution):

s � {(̄ik, fk īk, ōk)} .= ∀k∀σ∀v̄k.(σ〈̄ik〉 = v̄k) ⇒ ((eval S σ)〈ōk〉 = fk v̄k)

The kth predicate (̄ik, fk īk, ōk) specifies that: if inputs īk have initial values
v̄k, then in the state after the execution of s, the values left in outputs ōk

are equal to applying the function fi to the initial values v̄k. Such a rule is
obtained by instantiating the P and Q in {P} s {Q} to λσ. ∀k.σ〈̄ik〉 = v̄k and
λσ. ∀k.σ〈ōk〉 = fi v̄k respectively. We also write ek for fk īk if the context is
clear. If the judgment embodied by a predicate synthesizes f on inputs ī and
outputs ō, then we claim that s correctly implements f with respect to ī and ō.

In a preprocessing step, tail recursive HOL- functions are rewritten to equiv-
alent ‘while’ forms [12], where while c f

.= λx.if ¬c x then x else while (f x).
Currently this preprocessing admits only tail recursive programs; mutually re-
cursive functions are not supported yet.

We derive a couple of rules to mechanically synthesize for an IL program the
functions it correctly implements. The rules utilize the following definitions. No-
tation Δ converts a HOL- variables and program fragments to TFL terms.

⋃
(̄ik)

constructs a tuple from the union of īk for all k. As usual, [let oi = fk īk]in
stands for a chain of ‘let’ bindings: let o1 = f1 i1 in let o2 = f2 i2 in . . .. Rule
refl, assgn and return build basic predicates in accordance to TFL ’s semantics.
Rule cond, while and application are used to synthesize functions for conditional
statements, loops and function calls respectively. The predicate sets are manip-
ulated by the union rule union and the elimination rule elim. As the inputs and
outputs of s are tuples of arbitrary arity, we provide a shuffle rule to change the
structures of them. This rule is particularly useful when we need to match the
inputs and outputs of a synthesized function with those of the original function.
The sequential composition rule seq is the most complicated one. For each vari-
able o1k in s2’s inputs, this rule looks up a predicate (ī1k, e1k, ō1k) in Σ1, and
inserts a let binding of e1k to ō1k into the composed expression.

� {(̄i, ī, ī)} refl
out := f in � {(Δ in, Δ (f in), Δ out)} assgn

return out � {(Δ out, Δ out, Δ out)} return

s1 � Σ1 s2 � Σ2 {(ī1k, e1k, ō1k)} ⊆ Σ1 (ō1, e2, ō2) ∈ Σ2
s1 ; s2 � {(

⋃
(ī1k), [let o1k=e1k]in e2, ō2)} seq

s1 � Σ1 s2 � Σ2 (̄i, e1, ō) ∈Σ1 (̄i, e2, ō) ∈ Σ2
IF cnd THEN s1 ELSE s2 � {(̄i, if (Δ cnd) then e1 else e2, ō)} cond

s � Σ (̄i, e, ī)∈Σ
WHILE cnd s � {(̄i, while (Δ cnd) e, ī) while

s � Σ ∪ {(callee.̄i, e, callee.ō)} (Δ caller.i)=caller.̄i (Δ caller.o)=caller.ō
caller.o :=f s caller.i � {(caller.̄i, e[callee.̄i←caller.̄i], caller.ō)} application
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s � Σ1 s � Σ2
s � Σ1 ∪ Σ2

union
s � Σ ∪ {(̄i, e, ō)}

s � Σ
elim

s � Σ ∪{(̄i, f ī, ō)} g ī′=f ī

s � (ī′, g ī′, ō) shuffle

Basically, a predicate set records the values of live variables during the exe-
cution by relating them with other variables’ old values. These rules are applied
to build relations between specific inputs and outputs during the execution. The
application of them is syntax directed, and proceeds in a bottom-up manner.
For example, given the following IL program p produced from HOL- function f ,

p (a, b) = c := 2a + b; IF c2 > 1000 THEN return c ELSE {c := c ∗ b; return c}
f (a, b) = let c = 2a + b in if c2 > 1000 then c else let c = c ∗ b in c

we first apply rules refl, assgn and return to get c := c ∗ b � {((b, c), c ∗ b, c)}
and return c � {(c, c, c)}. Then by applying the seq rule once we have (c :=
c ∗ b; return c) � {((b, c), let c = c ∗ b in c, c)}. Similarly return c � {((b, c), c, c)} is
derived. According to the cond rule we have (IF c2 > 1000 THEN return c ELSE {c :=
c ∗ b; return c}) � {((b, c), if c2 > 1000 then c else let c = c ∗ b in c, c)}. For
brevity we denote it as S � {((b, c), e, c)}. Now investigating the remaining state-
ment c := 2a+ b will generate c := 2a+ b � {(b, b, b), ((a, b), 2a+ b, c)}. Then applying
the seq once we have c := 2a + b; S � {((a, b), let b = b in let c = 2a + b in e, c)}.
Finally, after the superfluous ‘let’ binding of b is removed through β-reduction, the
synthesized function is equal to f . The derivation is syntax-directed andautomatic.

This reasoning mechanism can be improved by adopting Myreen and Gordon’s
idea that uses separation logic [15] to reason about assembly language. We are
considering porting their method into our setting to verify the translation from
HOL- to IL.

5 Related Work

There has been much work on translating functional languages; one of the most
influential has been the paper of Tolmach and Oliva [22] which developed a
translation from SML-like functional language to Ada. Our monomorphisation
and closure conversion methods are similar, i.e., removing polymorphism by code
specialization and higher-order functions through closure conversion. However,
we target logic specification languages and perform correctness proofs on the
transformations. Our work can be regarded as an extension of theirs by now
verifying the correctness of these two conversions.

Hickey and Nogin [7] worked in MetaPRL to construct a compiler from a full
higher order, untyped, functional language to Intel x86 code, based entirely on
higher-order rewrite rules. A set of unverified rewriting rules are used to convert
a higher level program to a lower level program. They use higher-order abstract
syntax to represent programs and do not define the semantics of these programs.
Thus no formal verification of the rewriting rules is done.

Hannan and Pfenning [6] constructed a verified compiler in LF for the untyped
λ-calculus. The target machine is a variant of the CAM runtime and differs greatly
from real machines. In their work, programs are associated with operational
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semantics; and both compiler transformation and verifications are modeled as de-
ductive systems. Chlipala [4] further considered compiling a simply-typed
λ-calculus to assembly language. He proved semantics preservation based on de-
notational semantics assigned to the intermediate languages. Type preservation
for each compiler pass was also verified. The source language in these works is the
bare lambda calculus and is thus much simpler than TFL, thus their compilers
only begin to deal with the high level issues we discuss in this paper.

Compared with Chlipala [4] who gives intermediate languages dependent
types, Benton and Benton [2] interprets types as binary relations. They proved a
semantic type soundness for a compiler from a simple imperative language with
heap-allocated data into an idealized assembly language.

Leroy [3,10] verified a compiler from a subset of C, i.e. Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. Several intermediate
languages are introduced and translations between them are verified. The proof
of semantics preservation for the translation proceeds by induction over the
Clight evaluation derivation and case analysis on the last evaluation rule used;
in contrast, our proofs proceed by verifying the rewriting steps.

A purely operational semantics based development is that of Klein and Nipkow
[8] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
The Isabelle/HOL theorem prover is also used to verify the compilation from a
type-safe subset of C to DLX assembly code [9], where a big step semantics and a
small step semantics for this language are defined. In addition, Meyer and Wolff
[13] derive in Isabelle/HOL a verified compilation of a lazy language (called
MiniHaskell) to a strict language (called MiniML) based on the denotational
semantics of these languages. Of course, compiler verification itself is a venerable
topic, with far too many publications to survey (see Dave’s bibliography [5]).

6 Conclusions and Future Work

We have presented an approach to construct and mechanically verify a translator
from TFL to HOL-. The outputs of this translator can be compiled to assembly
code and hardware using the verified compilers for HOL- we developed in pre-
vious work [11,12,21]. Thus users can write logic specifications in an expressive
language TFL and obtain certified low level implementations automatically.

Currently, we are augmenting the compiler to tackle garbage collection, as well
as performing a variety of optimizations on intermediate code. We also consider
translating by proof a large subset of Java into TFL.
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