

Lecture Notes in Computer Science 4963
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

C.R. Ramakrishnan Jakob Rehof (Eds.)

Tools and Algorithms
for the Construction
andAnalysis of Systems

14th International Conference, TACAS 2008
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008
Budapest, Hungary, March 29-April 6, 2008
Proceedings

13

Volume Editors

C.R. Ramakrishnan
Stony Brook University
Department of Computer Science
Stony Brook, NY 11794-4400, USA
E-mail: cram@cs.sunysb.edu

Jakob Rehof
Universität Dortmund
Fachbereich Informatik
Otto-Hahn-Str. 14, 44227 Dortmund, Germany
E-mail: rehof@cs.uni-dortmund.de

Library of Congress Control Number: 2008923178

CR Subject Classification (1998): F.3, D.2.4, D.2.2, C.2.4, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78799-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78799-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12245987 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2008 was the 11th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
22 satellite workshops (ACCAT, AVIS, Bytecode, CMCS, COCV, DCC, FESCA,
FIT, FORMED, GaLoP, GT-VMT, LDTA, MBT, MOMPES, PDMC, QAPL,
RV, SafeCert, SC, SLA++P, WGT, and WRLA), nine tutorials, and seven invited
lectures (excluding those that were specific to the satellite events). The five
main conferences received 571 submissions, 147 of which were accepted, giving
an overall acceptance rate of less than 26%, with each conference below 27%.
Congratulations therefore to all the authors who made it to the final programme!
I hope that most of the other authors will still have found a way of participating
in this exciting event, and that you will all continue submitting to ETAPS and
contributing to make of it the best conference in the area.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2008 was organized by the John von Neumann Computer Society
jointly with the Budapest University of Technology and the Eötvös University,
in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from Microsoft Research and Danubius Hotels.

VI Foreword

The organizing team comprised:

Chair Dániel Varró
Director of

Organization István Alföldi
Main Organizers Andrea Tósoky, Gabriella Aranyos
Publicity Joost-Pieter Katoen
Advisors András Pataricza, Joaõ Saraiva
Satellite Events Zoltán Horváth, Tihamér Levendovszky,

Viktória Zsók
Tutorials László Lengyel
Web Site Ákos Horváth
Registration System Victor Francisco Fonte, Zsolt Berényi,

Róbert Kereskényi, Zoltán Fodor
Computer Support Áron Sisak
Local Arrangements László Gönczy, Gábor Huszerl,

Melinda Magyar, several student volunteers.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig (Berlin),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Kim Larsen (Aalborg), Gerald Luettgen (York) Tiziana Mar-
garia (Göttingen), Ugo Montanari (Pisa), Martin Odersky (Lausanne), Catus-
cia Palamidessi (Paris), Anna Philippou (Cyprus), CR Ramakrishnan (Stony
Brook), Don Sannella (Edinburgh), João Saraiva (Minho), Michael Schwartzbach
(Aarhus), Helmut Seidl (Munich), Perdita Stevens (Edinburgh), and Dániel
Varró (Budapest).

I would like to express my sincere gratitude to all of these people and organi-
zations, the Programme Committee Chairs and members of the ETAPS confer-
ences, the organizers of the satellite events, the speakers themselves, the many
reviewers, and Springer for agreeing to publish the ETAPS proceedings. Finally,
I would like to thank the Organizing Chair of ETAPS 2008, Dániel Varró, for
arranging for us to have ETAPS in the most beautiful city of Budapest

January 2008 Vladimiro Sassone

Preface

This volume contains the proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2008) which took place in Budapest, Hungary, March 31–April 3, 2008. TACAS
is a forum for researchers, developers and users interested in rigorously based
tools and algorithms for the construction and analysis of systems. The conference
serves to bridge the gaps between different communities that share common in-
terests in, and techniques for, tool development and its algorithmic foundations.
The research areas covered by such communities include but are not limited to
formal methods, software and hardware verification, static analysis, program-
ming languages, software engineering, real-time systems, communications pro-
tocols, and biological systems. The TACAS forum provides a venue for such
communities at which common problems, heuristics, algorithms, data structures
and methodologies can be discussed and explored. In doing so, TACAS aims to
support researchers in their quest to improve the utility, reliability, flexibility,
and efficiency of tools and algorithms for building systems.

Topics covered by the conference included, but were not limited to, the follow-
ing: specification and verification techniques for finite and infinite- state systems;
software and hardware verification; theorem-proving and model-checking; system
construction and transformation techniques; static and run-time analysis; ab-
straction techniques for modeling and validation; compositional and refinement-
based methodologies; testing and test-case generation; analytical techniques for
secure, real-time, hybrid, safety-critical, biological or dependable systems; inte-
gration of formal methods and static analysis in high-level hardware design or
software environments; tool environments and tool architectures; SAT solvers;
and applications and case studies.

TACAS traditionally considers two types of papers: research papers that de-
scribe in detail novel research within the scope of the TACAS conference; and
short tool demonstration papers that give an overview of a particular tool and
its applications or evaluation. A total of 121 research papers and 19 tool demon-
stration papers were submitted to TACAS 2008 (140 submissions in total). Of
these, 31 research papers and 7 tool demonstration papers were accepted. Each
submission was evaluated by at least three reviewers. After a seven-week re-
viewing process, the program selection was carried out in a two-week electronic
Program Committee meeting. We believe that the committee deliberations re-
sulted in a strong technical program. The TACAS 2008 Program Committee se-
lected Sharad Malik (Princeton University, USA) as invited speaker, who kindly
agreed and gave a talk entitled “Hardware Verification: Techniques, Methodology
and Solutions,” describing specification and validation techniques for verifying
emerging computing systems.

VIII Preface

We thank the authors of submitted papers, the Program Committee mem-
bers, the additional reviewers, our Tools Chair Byron Cook, and the TACAS
Steering Committee. Martin Karusseit gave us prompt support for the online
conference management service used to prepare this program. TACAS 2008 was
part of the 11th European Joint Conference on Theory and Practice of Software
(ETAPS), whose aims, organization and history are detailed in the separate
foreword by the ETAPS Steering Committee Chair. We would like to express
our gratitude to the ETAPS Steering Committee chaired by Vladimiro Sassone,
and the Organizing Committee led by Dániel Varró for their efforts in making
ETAPS 2008 a successful event.

January 2008 C. R. Ramakrishnan
Jakob Rehof

Organization

Steering Committee

Ed Brinksma ESI and Eindhoven University of Technology,
The Netherlands

Rance Cleaveland University of Maryland, College Park & Fraunhofer
USA Inc, USA

Kim Larsen Aalborg University, Aalborg, Denmark
Bernhard Steffen University of Dortmund, Germany
Lenore Zuck University of Illinois, Chicago, USA

Program Committee

Patricia Bouyer CNRS, Ecole Normale Superieure de Cachan, France
Ed Brinksma ESI & Eindhoven University of Technology,

The Netherlands
Tevfik Bultan University of California, Santa Barbara, USA
Rance Cleaveland University of Maryland, College Park & Fraunhofer

USA Inc, USA
Byron Cook Microsoft Research, Cambridge, UK
Bruno Dutertre SRI, Menlo Park, USA
Patrice Godefroid Microsoft Research, Redmond, USA
Orna Grumberg Technion, Haifa, Israel
Aarti Gupta NEC Laboratories America Inc, USA
Fritz Henglein University of Copenhagen, Denmark
Michael Huth Imperial College, London, UK
Joxan Jaffar National University of Singapore
Kurt Jensen University of Aarhus, Denmark
Jens Knoop Technical University, Vienna, Austria
Barbara König University of Duisburg-Essen, Germany
Marta Kwiatkowska Oxford University, UK
Kim Larsen Aalborg University, Aalborg, Denmark
Nancy Lynch MIT, Cambridge, USA
Kedar Namjoshi Bell Labs, Murray Hill, USA
Paul Pettersson Mälardalen University, Sweden
Sriram Rajamani Microsoft Research, Bangalore, India
C.R. Ramakrishnan Stony Brook University, USA
Jakob Rehof University of Dortmund, Germany
Bill Roscoe Oxford University, UK
Mooly Sagiv Tel Aviv University, Israel
Stefan Schwoon University of Stuttgart, Germany
Bernhard Steffen University of Dortmund, Germany
Lenore Zuck University of Illinois, Chicago, USA

X Organization

Referees

Sara Adams
Daphna Amit
Philip Armstrong
Marco Bakera
Paolo Baldan
Calin Belta
Amir Ben-Amram
Nathalie Bertrand
Per Bjesse
Bruno Blanchet
Ahmed Bouajjani
Glenn Bruns
Sven Bünte
Sebastian Burckhardt
Doron Bustan
Jan Carlson
Chunqing Chen
Ling Cheung
Wei-Ngan Chin
Alexandre David
Cristina David
Leonardo de Moura
Jyotirmoy Deshmukh
Stefan Edelkamp
AnnMarie Ericsson
Javier Esparza
Sami Evangelista
Ansgar Faenker
Harald Fecher
Elena Fersman
Andrzej Filinski
Paul Fleischer
Martin Fraenzle
Laurent Fribourg
Zhaohui Fu
Silvio Ghilardi
Robert Glück
Michael Goldsmith
Dieter Gollmann
Georges Gonthier
Alexey Gotsman
Olga Grinchtein
Marcus Groesser
Radu Grosu

Sigrid Guergens
John H̊akansson
Patrik Haslum
Keijo Heljanko
Espen Højsgaard
Gerard Holzmann
Graham Hughes
Hans Hüttel
Tom Hvitved
Franjo Ivancic
Himanshu Jain
Barbara Jobstmann
Sven Joerges
Colin Johnson
Marcin Jurdzinski
Albrecht Kadlec
Vineet Kahlon
Mark Kattenbelt
Sarfraz Khurshid
Stefan Kiefer
Raimund Kirner
Felix Klaedtke
Nils Klarlund
Gerwin Klein
Pavel Krcal
Lars M. Kristensen
Daniel Kroening
Orna Kupferman
Ken Friis Larsen
Ranko Lazic
Martin Leucker
Tal Lev-Ami
Vlad Levin
Shuhao Li
Birgitta Lindström
Yang Liu
Gerald Luettgen
Kristina Lundqvist
Michael Luttenberger
Sharad Malik
Roman Manevich
Nicolas Markey
Keneth McMillan
Yael Meller

Maik Merten
Marius Mikucionis
Peter Bro Miltersen
Sayan Mitra
Torben Mogensen
Ziv Nevo
Calvin Newport
Long Nguyen
Brian Nielsen
Lasse Nielsen
Mogens Nielsen
Morten Ib Nielsen
Michael Nissen
Thomas Nolte
Tina Nolte
Aditya Nori
Gethin Norman
Ulrik Nyman
Luke Ong
Ghassan Oreiby
Rotem Oshman
Joel Ouaknine
Sam Owre
David Parker
Corina Pasareanu
Nir Piterman
Franz Puntigam
Shaz Qadeer
Harald Raffelt
Venkatesh-Prasad

Ranganath
Jacob Illum Rasmussen
Clemens Renner
Pierre-Alain Reynier
Noam Rinetzky
Abhik Roychoudhury
Oliver Rüthing
Michal Rutkowski
Andrey Rybalchenko
Hassen Saidi
Arnaud Sangnier
Sriram

Sankaranarayanan
Andrew Santosa

Organization XI

Ursula Scheben
Markus Schordan
Carsten Schürmann
Cristina Seceleanu
Sanjit Seshia
Ohad Shacham
Natarajan Shankar
A. Prasad Sistla
Harald Sondergaard
Jeremy Sproston
Jiri Srba
Jan Strejcek
Jun Sun
Daniel Sundmark
Gregoire Sutre

Dejvuth
Suwimonteerabuth

Ashish Tiwari
Simon Tjell
Rachel Tzoref
Shinya Umeno
Viktor Vafeiadis
Wim van Dam
Moshe Vardi
Kapil Vaswani
Martin Vechev
Miroslav Velev
Razvan Voicu
Chao Wang
Michael Weber

Lisa M. Wells
Ingomar Wenzel
Rafael Wisniewski
Uwe Wolter
James Worrell
Michael Westergaard
Ke Xu
Avi Yadgar
Eran Yahav
Roland Yap
Greta Yorsh
Fang Yu
Michael Zolda

Table of Contents

Invited Talk

Hardware Verification: Techniques, Methodology and Solutions
(Abstract) . 1

Sharad Malik

Parameterized Systems

Extending Automated Compositional Verification to the Full Class of
Omega-Regular Languages . 2

Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke,
Yih-Kuen Tsay, and Bow-Yaw Wang

Graph Grammar Modeling and Verification of Ad Hoc Routing
Protocols . 18

Mayank Saksena, Oskar Wibling, and Bengt Jonsson

Proving Ptolemy Right: The Environment Abstraction Framework for
Model Checking Concurrent Systems . 33

Edmund Clarke, Murali Talupur, and Helmut Veith

Model Checking – I

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking . . . 48
J. Barnat, L. Brim, P. Šimeček, and M. Weber

Antichains: Alternative Algorithms for LTL Satisfiability and
Model-Checking . 63

M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin

On-the-Fly Techniques for Game-Based Software Model Checking 78
Adam Bakewell and Dan R. Ghica

Computing Simulations over Tree Automata: Efficient Techniques for
Reducing Tree Automata . 93

Parosh A. Abdulla, Ahmed Bouajjani, Lukáš Hoĺık, Lisa Kaati, and
Tomáš Vojnar

Applications

Formal Pervasive Verification of a Paging Mechanism 109
Eyad Alkassar, Norbert Schirmer, and Artem Starostin

XIV Table of Contents

Analyzing Stripped Device-Driver Executables . 124
Gogul Balakrishnan and Thomas Reps

Model Checking-Based Genetic Programming with an Application to
Mutual Exclusion . 141

Gal Katz and Doron Peled

Model Checking – II

Conditional Probabilities over Probabilistic and Nondeterministic
Systems . 157

Miguel E. Andrés and Peter van Rossum

On Automated Verification of Probabilistic Programs 173
Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

Symbolic Model Checking of Hybrid Systems Using Template
Polyhedra . 188

Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić

Fast Directed Model Checking Via Russian Doll Abstraction 203
Sebastian Kupferschmid, Jörg Hoffmann, and Kim G. Larsen

Static Analysis

A SAT-Based Approach to Size Change Termination with Global
Ranking Functions . 218

Amir M. Ben-Amram and Michael Codish

Efficient Automatic STE Refinement Using Responsibility 233
Hana Chockler, Orna Grumberg, and Avi Yadgar

Reasoning Algebraically About P-Solvable Loops . 249
Laura Kovács

On Local Reasoning in Verification . 265
Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans

Concurrent/Distributed Systems

Interprocedural Analysis of Concurrent Programs Under a Context
Bound . 282

Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas Reps

Context-Bounded Analysis of Concurrent Queue Systems 299
Salvatore La Torre, P. Madhusudan, and Gennaro Parlato

Table of Contents XV

On Verifying Fault Tolerance of Distributed Protocols 315
Dana Fisman, Orna Kupferman, and Yoad Lustig

Tools – I

The Real-Time Maude Tool . 332
Peter Csaba Ölveczky and José Meseguer

Z3: An Efficient SMT Solver . 337
Leonardo de Moura and Nikolaj Bjørner

Computation and Visualisation of Phase Portraits for Model Checking
SPDIs . 341

Gordon Pace and Gerardo Schneider

GOAL Extended: Towards a Research Tool for Omega Automata and
Temporal Logic . 346

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai,
Wen-Chin Chan, and Chi-Jian Luo

Symbolic Execution

RWset: Attacking Path Explosion in Constraint-Based Test
Generation . 351

Peter Boonstoppel, Cristian Cadar, and Dawson Engler

Demand-Driven Compositional Symbolic Execution 367
Saswat Anand, Patrice Godefroid, and Nikolai Tillmann

Peephole Partial Order Reduction . 382
Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta

Abstraction, Interpolation

Efficient Interpolant Generation in Satisfiability Modulo Theories 397
Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani

Quantified Invariant Generation Using an Interpolating Saturation
Prover . 413

K.L. McMillan

Accelerating Interpolation-Based Model-Checking . 428
Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, and
Marc Zeitoun

Automatically Refining Abstract Interpretations . 443
Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and
Sriram K. Rajamani

XVI Table of Contents

Tools – II

SVISS: Symbolic Verification of Symmetric Systems 459
Thomas Wahl, Nicolas Blanc, and E. Allen Emerson

RESY: Requirement Synthesis for Compositional Model Checking 463
Bernd Finkbeiner, Hans-Jörg Peter, and Sven Schewe

Scoot: A Tool for the Analysis of SystemC Models 467
Nicolas Blanc, Daniel Kroening, and Natasha Sharygina

Trust, Reputation

Trusted Source Translation of a Total Function Language 471
Guodong Li and Konrad Slind

Rocket-Fast Proof Checking for SMT Solvers . 486
Micha�l Moskal

SDSIrep: A Reputation System Based on SDSI . 501
Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and
Dejvuth Suwimonteerabuth

Author Index . 517

Hardware Verification: Techniques, Methodology

and Solutions

Sharad Malik

Dept. of Electrical Engineering
Princeton University

Princeton, NJ 08544, USA
sharad@princeton.edu

Abstract. Hardware verification has been one of the biggest drivers
of formal verification research, and has seen the greatest practical im-
pact of its results. The use of formal techniques has not been uniformly
successful here — with equivalence checking widely used, assertion-based
verification seeing increased adoption, and general property checking and
theorem proving seeing only limited use. I will first examine the reasons
for this varied success and show that for efficient techniques to translate
to solutions they must be part of an efficient methodology and be scal-
able. Next I will describe specific efforts addressing each of these critical
requirements for the verification of emerging computing systems.

A significant barrier in enabling efficient techniques to flow into ef-
ficient methodology is the need for human intervention in this process.
I argue that in large part this is due to the gap between functional
design specification, which is still largely in natural language, and struc-
tural design description at the register-transfer level (RTL). This gap is
largely filled by humans, leading to a methodology which is error-prone,
incomplete and inefficient. To overcome this, we need formal functional
specification and a way to bridge the gap from this specification to struc-
tural RTL. In this direction I will present a modeling framework with
design models at two levels — architectural and microarchitectural. The
architectural model provides for a functional specification, and the mi-
croarchitectural model connects this to a physical implementation. I will
illustrate how this enables greater automation in verification.

A major challenge in verification techniques providing scalable solu-
tions is the inherent intractability of the problem. This is only getting
worse with increasing complexity and is reflected in the increasing num-
ber of bug escapes into silicon. I argue that existing verification solutions
need to be augmented with runtime validation techniques, through on-
line error-checking and recovery in hardware. I will illustrate this with
examples from emerging multi-core architectures. I will also discuss the
complementary roles of formal techniques and runtime validation in a
cooperative methodology.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extending Automated Compositional Verification

to the Full Class of Omega-Regular Languages�

Azadeh Farzan1, Yu-Fang Chen2, Edmund M. Clarke1, Yih-Kuen Tsay2,
and Bow-Yaw Wang3

1 Carnegie Mellon University
2 National Taiwan University

3 Academia Sinica

Abstract. Recent studies have suggested the applicability of learning
to automated compositional verification. However, current learning al-
gorithms fall short when it comes to learning liveness properties. We
extend the automaton synthesis paradigm for the infinitary languages
by presenting an algorithm to learn an arbitrary regular set of infinite
sequences (an ω-regular language) over an alphabet Σ. Our main result
is an algorithm to learn a nondeterministic Büchi automaton that recog-
nizes an unknown ω-regular language. This is done by learning a unique
projection of it on Σ∗ using the framework suggested by Angluin for
learning regular subsets of Σ∗.

1 Introduction

Compositional verification is an essential technique for addressing the state ex-
plosion problem in Model Checking [1,7,8,11]. Most compositional techniques
advocate proving properties of a system by checking properties of its compo-
nents in an assume-guarantee style. The essential idea is to model check each
component independently by making an assumption about its environment, and
then discharge the assumption on the collection of the rest of the components. In
the paradigm of automated compositional reasoning through learning [8], system
behaviors and their requirements are formalized as regular languages. Assump-
tions in premises of compositional proof rules are often regular languages; their
corresponding finite-state automata can therefore be generated by learning tech-
niques for regular languages.

In automated compositional reasoning, a compositional proof rule is chosen a
priori. The rule indicates how a system can be decomposed. Below is an example
of a simple rule:

M2 |= A M1||A |= P

M1||M2 |= P

� This research was sponsored by the iCAST project of the National Science Coun-
cil, Taiwan, under the grant no. NSC96-3114-P-001-002-Y and the Semiconductor
Research Corporation (SRC) under the grant no. 2006-TJ-1366.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 2–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extending Automated Compositional Verification to the Full Class 3

for two components M1 and M2, and assumption A, and a property P . In-
tuitively, this rule says that if M2 guarantees A, and M1 guarantees P in an
environment that respects A, then the system composed of M1 and M2 guar-
antees P . The goal is to automatically generate the assumption A by learning.
One naturally wishes to verify all sorts of properties using this framework. How-
ever, all existing algorithms fall short when it comes to learning assumptions
which involve liveness properties. In this paper, we present an algorithm that
fills this gap and extends the learning paradigm to the full class of ω-regular
languages. Soundness and completeness of the above proof rule with respect to
liveness properties remains intact since ω-regular languages share the required
closure properties of regular languages. Automation can be achieved following
the framework of [8]. See [9] for a more detailed discussion.

The active learning model used in automated compositional reasoning involves
a teacher who is aware of an unknown language, and a learner whose goal is to
learn that language. The learner can put two types of queries to the teacher. A
membership query asks if a string belongs to the unknown language. An equiva-
lence query checks whether a conjecture automaton recognizes the unknown lan-
guage. The teacher provides a counterexample if the conjecture is incorrect [2].
More specifically, in the process of learning an assumption, an initial assumption
is generated by the learner through a series of membership queries. An equiva-
lence query is then made to check if the assumption satisfies premises of the com-
positional proof rule. If it does, the verification process terminates with success.
Otherwise, the learner refines the assumption by the returned counterexample
and more membership queries. Since the weakest assumption either establishes
or falsifies system requirements, the verification process eventually terminates
when the weakest assumption is attained. A novel idea in [8] uses model check-
ers to resolve both membership and equivalence queries automatically. By using
Angluin’s L* [2] algorithm, the verification process can be performed without
human intervention.

The product of the learning algorithm L* is a deterministic finite-state au-
tomaton recognizing the unknown regular language [2]. By the Myhill-Nerode
Theorem, the minimal deterministic finite-state automaton can be generated
from the equivalence classes defined by the coarsest right congruence relation of
any regular language [13]. The L∗ algorithm computes the equivalence classes by
membership queries, and refines them with counterexamples returned by equiva-
lence queries. It can, in fact, infer the minimal deterministic finite-state automa-
ton for any unknown regular language with a polynomial number of queries in
the size of the target automaton. The upper bound was later improved in [18].

Unfortunately, the L* algorithm cannot be directly generalized to learn ω-
regular languages. Firstly, deterministic Büchi automata are less expressive than
general Büchi automata. Inferred deterministic finite-state automata require
more than the Büchi acceptance condition to recognize arbitrary ω-regular lan-
guages. Secondly, equivalence classes defined by the coarsest right congruence
relation over an ω-regular language do not necessarily correspond to the states
of its automaton. The ω-regular language (a + b)∗aω has only one equivalence

4 A. Farzan et al.

class. Yet, there is no one-state ω-automaton with Büchi, Rabin, Streett, or even
Muller acceptance conditions that can recognize this language.

Maler and Pnueli [14] made an attempt to generalize L* for the ω-regular
languages. Their algorithm, Lω, learns a proper subclass of ω-regular languages
which is not expressive enough to cover liveness properties. This restricted class
has the useful property of being uniquely identifiable by the syntactic right con-
gruence. Thus, Lω has the advantage of generating the minimal deterministic
Muller automaton (isomorphic to the syntactic right congruence) recognizing a
language in the restricted class. The syntactic right congruence, however, can-
not be used to identify an arbitrary ω-regular language. Attempts to use more
expressive congruences [3,21] have been unsuccessful.

Our main ideas are inspired by the work of Calbrix, Nivat, and Podelski [5].
Consider ultimately periodic ω-strings of the form uvω. Büchi [4] observed that
the set of ultimately periodic ω-strings characterizes ω-regular languages; two
ω-regular languages are in fact identical if and only if they have the same set
of ultimately periodic ω-strings. Calbrix et al. [5] show that the finitary lan-
guage {u$v | uvω ∈ L} (where $ is a fresh symbol) is regular for any ω-regular
language L. These properties help uniquely identify a Büchi automaton for the
regular language corresponding to ultimately periodic ω-strings of an arbitrary
ω-regular language. We develop a learning algorithm for the regular language
{u$v | uvω ∈ L} through membership and equivalence queries on the unknown
ω-regular language L. A Büchi automaton accepting L can hence be constructed
from the finite-state automaton generated by our learning algorithm.

2 Preliminaries

Let Σ be a finite set called the alphabet. A finite word over Σ is a finite sequence
of elements of Σ. An empty word is represented by ε. For two words u = u1 . . . un

and v = v1 . . . vn, define uv = u1 . . . unv1 . . . vm. For a word u, un is recursively
defined as uun−1 with u0 = ε. Define u+ =

⋃∞
i=1{ui}, and u∗ = {ε} ∪ u+. An

infinite word over Σ is an infinite sequence of elements of Σ. For a finite word
u, define the infinite word uω = uu . . . u Operators +, ∗, and ω are naturally
extended to sets of finite words.

A word u is a prefix (resp. suffix) of another word v if and only if there exists
a word w ∈ Σ∗ such that v = uw (resp. v = wu). A set of words S is called
prefix-closed (resp. suffix-closed) if and only if for all v ∈ S, if u is a prefix (resp.
suffix) of v then u ∈ S.

The set of all finite words on Σ is denoted by Σ∗. Σ+ is the set of all nonempty
words on Σ; therefore, Σ+ = Σ∗\{ε}. Let u be a finite word. |u| is the length
of word u with |ε| = 0. The set of all infinite words on Σ is denoted by Σω. A
language is a subset of Σ∗, and an ω-language is a subset of Σω.

A finite automaton A is a tuple (Σ, Q, I, F, δ) where Σ is an alphabet, Q is a
finite set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states,
and δ ⊆ Q × Σ × Q is the transition relation. A finite word u = u1 . . . un is
accepted by A if and only if there exists a sequence qi0u1qi1u2 . . . unqin such that

Extending Automated Compositional Verification to the Full Class 5

qi0 ∈ I, qin ∈ F , and for all j, we have qij ∈ Q and (qij−1 , uj, qij) ∈ δ. Define
L(A) = {u | u is accepted by A}. A language L ⊆ Σ∗ is regular if and only if
there exists an automaton A such that L = L(A).

A Büchi automaton has the same structure as a finite automaton, except that
it is intended for recognizing infinite words. An infinite word u = u1 . . . un . . .
is accepted by a Büchi automaton A if and only if there exists a sequence
qi0u1qi1u2 . . . unqin . . . such that qi0 ∈ I, qij ∈ Q and (qij−1 , uj, qij) ∈ δ (for
all j), and there exists a state q ∈ F such that q = qij for infinitely many j’s.
Again, define L(A) = {u | u is accepted by A}. An ω-language L ⊆ Σω is ω-
regular if and only if there exists a Büchi automaton A such that L = L(A).
For an ω-language L, let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L}. Words of
the form uvω are called the ultimately periodic. Let α be an ultimately periodic
word. A word v ∈ Σ+ is a period of α if there exists a word u ∈ Σ∗ such that
α = uvω.

Theorem 1. (Büchi)[4] Let L and L′ be two ω-regular languages. L = L′ if and
only if UP(L) = UP(L′).

The above theorem implies that the set of ultimately periodic words of an ω-
regular language L uniquely characterizes L. Define L$ (read regular image of
L) on Σ ∪ {$} as

L$ = {u$v | uvω ∈ L}.

Intuitively, the symbol $ marks the beginning of the period and separates it from
the prefix of the ω-word uvω. Note that L$ ⊆ Σ∗$Σ+. We can then say that L$
uniquely characterizes L.

Theorem 2. (Büchi)[4] If L is an ω-regular language, then there exist regular
languages L1, . . . , Ln and L′1, . . . , L

′
n such that L =

⋃n
i=1 Li(L′i)

ω.

Theorem 3. (Calbrix, Nivat, and Podelski)[5] L$ is regular.

Moreover, one can show that the syntactic congruence of the regular language
L$ and Arnold’s congruence [3] for L coincide on the set Σ+ [6].

3 Ultimately Periodic Words

Define an equivalence relation on the words in Σ∗$Σ+:

Definition 1. The equivalence relation � on Σ∗$Σ+ is defined by:

u$v � u′$v′ ⇐⇒ uvω = u′v′ω

u, u′ ∈ Σ∗ and v, v′ ∈ Σ+.

Based on the ω-word abω, we have a$b � ab$b � ab$bb � . . . � abk$bk′
, for all

k, k′. Therefore, the equivalence class [a$b]� is equal to the set of words ab∗$b+.

6 A. Farzan et al.

Definition 2. An equivalence relation ≡ saturates a language L if and only if
for two words u and v, where u ≡ v, we have u ∈ L implies v ∈ L.

Let L be an ω-regular language, and L$ its corresponding regular language as
defined above. Let u$v be a word in L$ and u′$v′ ∈ Σ∗$Σ+ such that u$v �
u′$v′. Since uvω = u′v′ω , we have u′v′ω ∈ L, and therefore (by definition) u′$v′ ∈
L$. This implies the following Proposition:

Proposition 1. The equivalence relation � saturates L$.

Let R ⊆ Σ∗$Σ+ be a regular language. Proposition 1 suggests that saturating
� is a necessary condition for R to be L$ for some ω-regular language L. The
interesting point is that one can show that it is sufficient as well. This can be
done by constructing a Büchi automaton B that recognizes L directly from the
automaton A recognizing R [5]. Since this construction is used in our algorithm,
we describe it here. We first need the following lemma:

Lemma 1. (Calbrix, Nivat, and Podelski) [5] Let L, L′ ⊆ Σ∗ be two regular
languages such that LL′∗ = L and L′+ = L′. Then, α ∈ UP(LL′ω) if and only
if there exist u ∈ L and v ∈ L′ such that α = uvω.

Let R ⊆ Σ∗$Σ+ be a regular language. Let A = (Σ ∪ {$}, Q, I, F, δ) be a
deterministic automaton recognizing R. Define Q$ to be the set of states that
can be reached by starting in an initial state and reading the part of a word
u$v ∈ M that precedes the $. Formally,

Q$ = {q ∈ Q | ∃u$v ∈ R, ∃qi ∈ I, q = δ(qi, u)}

For each state q ∈ Q$, let

Mq = {u | ∃qi ∈ I, δ(qi, u) = q} (1)
Nq = {v | ∃qf ∈ F, δ(q, $v) = qf}. (2)

For each q, Mq and Nq are regular languages; one can easily construct an au-
tomaton accepting each by modifying A. Moreover, the definitions of Mq and
Nq along side the fact R ⊆ Σ∗$Σ+, implies that R =

⋃
q∈Q$

Mq$Nq.
Next, we partition Nq based on the final states of the automaton. For each

final state qf ∈ F and q ∈ Q$, let the regular language Nq,qf
be

Nq,qf
= {v | δ(q, v) = q ∧ δ(q, $v) = qf ∧ δ(qf , v) = qf} (3)

Finally, for the regular language R ⊆ Σ∗$Σ+, we define the ω-regular language
ω(R) as

ω(R) =
⋃

(q,qf)∈Q$×F

MqN
ω
q,qf

. (4)

We call this language ω(R) to indicate the fact that it is the corresponding
ω-regular language of R. Next we show that ω(R) is the ω-regular language
whose regular imgage is indeed R. The following theorem states this result:

Extending Automated Compositional Verification to the Full Class 7

Theorem 4. Let R ⊆ Σ∗$Σ+ be a regular language that is saturated by �.
Then, there exists an ω-regular language L such that R = L$.

Proof. See [9] for the proof. ��

In fact, L = ω(R) in the above theorem. One can directly build a Büchi automa-
ton recognizing L from A. The set Q$ can be effectively computed. For each
state q ∈ Q$, the language Mq is recognized by the automaton (Σ, Q, I, {q}, δ).
For each final state qf , the language Nq,qf

is the intersection of the languages
L(Σ, Q, {q}, {q}, δ), L(Σ, Q, {δ(q, $)}, {qf}, δ), and L(Σ, Q, {qf}, {qf}, δ). For
each pair (q, qf), once we have DFAs recognizing Mq and Nq,qf

, we can eas-
ily construct1 a Büchi automaton recognizing MqN

ω
q,qf

. The Büchi automaton
recognizing L is the union of these automata. Each MqN

ω
q,qf

is recognized by an
automaton of size at most |A| + |A|3, which means that L is recognized by an
automata of size at most |A|3 + |A|5.

A question that naturally arises is what can one say about the result of the
above construction if R is not saturated by �? As we will see in Section 4, we
need to construct Büchi automata from DFAs guessed in the process of learning
which may not be necessarily saturated by �. For a regular language R ⊆ Σ∗$Σ+

which is not saturated by � and L =
⋃

(q,qf)∈Q$×F MqN
ω
q,qf

, it is not necessarily
the case that R = L$ (compare with the statement of Theorem 4). For example,
R = {a$b} is not saturated by � since it contains an element of the class [a$b]�
(namely, a$b), but does not contain the whole class (which is the set ab∗$b+).
But, L has a number of essential properties:

Proposition 2. Let R = U$ for some arbitrary ω-regular language U . Then, we
have ω(R) = U (defined by (4)).

Proof. Direct consequence of Theorem 4. ��

Proposition 3. Assume R ⊆ Σ∗$Σ+ is a regular language. Let [u$v]� denote
the equivalence class of the word u$v by the relation �. For each pair of words
(u, v) ∈ Σ∗ × Σ+, if [u$v]� ∩ R = ∅ then uvω �∈ ω(R).

Proof. If uvω ∈ ω(R), there exist a string u′ in some Mq and a string v′ in some
Nq,qf

such that u′v′ω = uvω (Lemma 1). Since u′ is in Mq and v′ is in Nq,qf
, we

have u′$v′ in R. Because u′v′ω = uvω, we have u′$v′ ∈ [u$v]�, which contradicts
[u$v]� ∩ R = ∅. ��

Proposition 4. Assume R ⊆ Σ∗$Σ+ is a regular language. For each pair of
words (u, v) ∈ Σ∗ × Σ+, if [u$v]� ⊆ R then uvω ∈ ω(R).

Proof. If [u$v]� ⊆ R, we can find k and k′ satisfying uvk(vk′
)ω ∈ ω(R) (follows

from proof of Theorem 4). Since uvω = uvk(vk′
)ω, we have uvω ∈ ω(R). ��

1 One can connect the final states of A(Mq) to the initial states of Aω(Nq,qF) by
ε transitions, and let the final states of Nq,qf be the final states of the resulting
Büchi automaton. Aω(Nq,qF) can be obtained from A(Nq,qF) by normalizing it and
connecting the final state to the initial state by an epsilon transition [17].

8 A. Farzan et al.

4 Learning ω-Regular Languages

In this section, we present an algorithm that learns an unknown ω-regular lan-
guage and generates a nondeterministic Büchi automaton which recognizes L as
the result. There are well-known and well-studied algorithms for learning a de-
terministic finite automaton (DFA) [2,18]. We propose an approach which uses
the L* algorithm [2] as the basis for learning an unknown ω-regular language L.

The idea behind L* is learning by experimentation. The learner has the ability
to make membership queries. An oracle (a teacher who knows the target lan-
guage), on any input word v, returns a yes-or-no answer depending on whether
v belongs to the target language. The learning algorithm thus chooses particular
inputs to classify, and consequently makes progress. The learner also has the abil-
ity to make equivalence queries. A conjecture language is guessed by the learner,
which will then be verified by the teacher through an equivalence check against
the target language. The teacher returns yes when the conjecture is correct, or
no accompanied by a counterexample to the equivalence of the conjecture and
the target language. This counterexample can be a positive counterexample (a
word that belongs to the target language but does not belong to the conjecture
language) or a negative counterexample (a word that does not belong to the the
target language but belongs to the conjecture language). We refer the reader
unfamiliar with L* to [2] for more information on the algorithm.

The goal of our learning algorithm is to come up with a nondeterministic
Büchi automaton that recognizes an unknown ω-regular language L. We assume
that there is a teacher who can correctly answer the membership and equivalence
queries on L as discussed above. The idea is to learn the language L$ instead of
learning L directly. One can reuse the core of the L* algorithm here, but many
changes have to be made. The reason is that the membership and equivalence
queries allowed in the setting of our algorithm are for the ω-regular language L
and not for the regular language L$. One has to translate the queries and their
responses back and forth from the L$ level to the L level.

Membership Queries: The L* algorithm frequently needs to ask questions of
the form: “does the string w belong to the target language L$?”. We need to
translate this query into one that can be posed to our teacher. The following
simple steps perform this task:

1. Does w belong to Σ∗$Σ+? If no, then the answer is “NO”. If yes, then go
to the next step.

2. Let w = u$v. Does uvω belong to L? if no, then the answer is “NO”. If yes,
then the answer is “YES”.

We know that L$ ⊆ Σ∗$Σ+ which helps us filter out some strings without asking
the teacher. If we have w ∈ Σ∗$Σ+, then w is of the form u$v which corresponds
to the ultimately periodic word uvω. The teacher can respond to the membership
query by checking whether uvω belongs to L. The answer to this query indicates
whether u$v should belong to our current conjecture. Note that by the definition
of L$, we have u$v ∈ L$ ⇔ uvω ∈ L.

Extending Automated Compositional Verification to the Full Class 9

Equivalence Queries: L* generates conjecture DFAs that need to be verified,
and therefore a question of the form “Is the conjecture language Mi equivalent
to the target language L$?” needs to be asked. We need to translate this query
into an equivalent one that can be posed to the teacher:

1. Is Mi a subset of Σ∗$Σ+? If no, get the counterexample and continue with
L*. If yes, then go the next step.

2. Is ω(Mi) (the corresponding ω-regular language of Mi) equivalent to L?
If yes, we are done. If no, we get an ultimately periodic word c that is
a (negative or positive) counterexample to the equivalence check. Return
“NO” and a finitary interpretation of c (described below) to L*.

Again, the Mi ⊆ Σ∗$Σ+ check works as a preliminary test to filter out conjec-
tures that are obviously not correct. If a conjecture language (DFA) Mi passes the
first test, we construct its corresponding Büchi automaton ω(Mi). The teacher
can then respond by checking the equivalence between L and ω(Mi). If they
are not equivalent, the teacher will return a counterexample to the equivalence
of the two languages. In order to proceed with L*, we have to translate these
ω-words to finite words that are counterexamples to the equivalence of Mi and
L$. To do this, for the counterexample uvω, we construct a DFA that accepts
[u$v]�. There are two cases for each counterexample uvω:

– The word uvω is a positive counterexample: the word uvω should be in ω(Mi)
but is not. Since uvω �∈ ω(Mi), by Proposition 4, [u$v]� �⊆ Mi and there ex-
ists a word u′$v′ ∈ [u$v]� such that u′$v′ is not in Mi. Then u′$v′ can serve
as an effective positive counterexample for the L* algorithm. To find u′$v′,
it suffices to check the emptiness of the language [u$v]� − Mi. There are
various ways in which one can compute [u$v]�. One way is by direct con-
struction of a DFA accepting [u$v]� from the Büchi automaton that accepts
the language containing a single word uvω. There is a detailed description of
this construction in [5] (note that although this construction has an expo-
nential blow up in general, in this special case it is linear). We use a different
construction in our implementation which is presented in [9].

– The word uvω is a negative counterexample: the word uvω should not be in
ω(Mi), but it is. Since uvω ∈ L, by Proposition 3, [u$v]� ∩Mi �= ∅ and there
exists a word u′$v′ ∈ [u$v]� such that u′$v′ ∈ Mi. One can find this word
by checking emptiness of Mi ∩ [u$v]�. Then u′$v′ works as a proper negative
counterexample for the L* algorithm.

Here is why the above procedure works: A conjecture M may not be saturated
by �. Consider the case presented in Figure 1(a). There are four equivalence
classes: [u1$v1]� is contained in M , [u2$v2]� and [u3$v3]� have intersections
with M but are not contained in it, and [u4$v4]� is completely outside M . Now
assume L′ = ω(M) (as defined by (4)) is the ω-regular language corresponding to
M . Proposition 4 implies that u1v

ω
1 ∈ L′. Proposition 3 implies that u4v

ω
4 �∈ L′.

However, one cannot state anything about u2v
ω
2 and u3v

ω
3 with certainty; they

may or may not be in L′. Let us assume (for the sake of the argument) that

10 A. Farzan et al.

Fig. 1. The Case of Non-saturation

u2v
ω
2 ∈ L′ and u3v

ω
3 �∈ L′. This means that L′$ (which is not equivalent to

M) is actually the shaded area in Figure 1(b). Now, if L′ is not the correct
conjecture (L′ �= L), one will end up with an ω-word uvω as a counterexample.
As mentioned above, we have one of the following two cases:

(1) The word uvω is a negative counterexample (uvω ∈ ω(M) and uvω �∈ L).
There are two possibilities for the class [u$v]�:

• [u$v]� ⊆ M : This case is rather trivial. Any word in [u$v]�, including
u$v, belongs to M while it should not. Therefore, u$v can serve as a
proper negative counterexample for the next iteration of L*.

• [u$v]� �⊆ M : This case is more tricky. This means that u2v
ω
2 was wrongly

included in ω(M). But since some of the strings in [u$v]� do not belong
to M , an arbitrary string from [u$v]� does not necessarily work as a
negative counterexample for the next iteration of L*. One has to find
a string which is in both [u$v]� and M , which means it belongs to
[u$v]� ∩ M . The shaded area in Figure 1(c) demonstrates this set for
the example. Note that [u$v]� ∩ M cannot be empty; by Proposition 3,
[u$v]� ∩ M = ∅ implies that uvω �∈ L which is a contradiction.

(2) The word uvω is a positive counterexample (uvω �∈ ω(M) and uvω ∈ L).
There are two possibilities for the class [u$v]�:

• [u$v]�∩M = ∅: This case is rather trivial. All words in [u$v]�, including
u$v, do not belong to M while they should. Therefore, u$v can serve as
a proper positive counterexample for the next iteration of L*.

Extending Automated Compositional Verification to the Full Class 11

• [u$v]� ∩ M �= ∅: This case is more tricky. This means that u3v
ω
3 was

wrongly left out of ω(M). But since some of the strings in [u$v]� do
belong to M , an arbitrary string from that class is not necessarily going
to work as a proper positive counterexample for the next iteration of L*.
We have to make sure to find one that is in [u$]� but not in M . The
set [u$v]� − M contains such a string which is guaranteed to make L*
progress. The shaded area in Figure 1(d) demonstrates this set for the
example. Note that [u$v]�−M cannot be empty; [u$v]�−M = ∅ implies
that [u$v]� ⊆ M in which case by Proposition 4, we have uvω ∈ L, which
is a contradiction.

Below, we give a more technical description of our algorithm followed by an
example for greater clarity.

Definition 3. An observation table is a tuple 〈S, E, T 〉 where S is a set of prefix-
closed words in Σ∗ such that each word in S represents a syntactic right congru-
ence class of L$, E is a set of suffix-closed strings in Σ∗ such that each word in
E is a distinguishing word, and T : (S ∪ SΣ) × E −→ {−, +} is defined as

T (α, σ) =
{

+ if ασ ∈ L$
− if ασ �∈ L$.

An observation table is closed if for every word s′ ∈ SΣ, there exists a word
s ∈ S such that T (s, •) = T (s′, •) (where T (s, •) indicates the row of the table
which starts with s).

The goal of L* here is to learn L$ for an unknown ω-language L on alphabet
Σ ∪ {$}. Our initial setting is the same as L*; the distinguishing experiment
set E = {λ} and the congruence class set S = {λ}. We fill the table by asking
membership queries for each pair of strings (α, σ) ∈ (S ∪ SΣ) × E; a “NO”
response sets T (α, σ) = −, and a “YES” response sets T (α, σ) = +. Note that
the membership queries are translated as discussed above to a format appropriate
for the teacher.

When the observation table is closed, a conjecture DFA A = (S, Σ, q0, F, δ),
where Q = {u|u ∈ S}, q0 = λ, δ = {(u, a, u′)|u′ ∈ S ∧ T (u′, •) = T (ua, •)}, and
F = {u|T (u, λ) = +} is constructed from the table.

q3 q5

a

b

a, b

b

a

a, b

q2 q4

q1q0

$

$
q7 q2 q3

q4

q5 q6
a b

a, b

a

b a, b

a, b

b

a

(a) DFA. (b) Büchi Automaton.

Fig. 2. First Iteration

12 A. Farzan et al.

We then check if M0 = L(A) is a subset of Σ∗$Σ+. If not, there is a coun-
terexample in L(A$)∩Σ∗$Σ+ from the language containment check, all of whose
suffixes are added to the set of distinguishing words E. If M0 ⊆ Σ∗$Σ+, we con-
struct a Büchi automaton B based on A (see Section 3), and perform the equiv-
alence check. The counterexamples are interpreted (as discussed above) and the
appropriate counterexamples are added to set E. We then proceed to another
iteration of this algorithm, until the target language is found.

Example 1. We demonstrate our algorithm by showing the steps performed on
a simple example. Assume that the target language is ab((a + b)∗a)ω . This ω-
expression corresponds to the liveness property: “a happens infinitely often in
a computation with the prefix ab” which cannot be learned using any of the
existing algorithms.

q0

q5

q1

a

b

a, b

a

b
q4

a, b
a

q2

q6 q3
$

$ q7 q1

q6

ab

a b

q5

a, ba

a, b

b

b

a

b

a

a

q2

q4

(a) DFA. (b) Büchi Automaton.

Fig. 3. Second Iteration

Table 1(a) shows the closed observation from the first iteration of our algo-
rithm. Figure 2(a) demonstrates the DFA that corresponds to this observation
table, and Figure 2(b) demonstrates the Büchi automaton constructed form this
DFA. The first conjecture is not correct; the word ab(a)ω belongs to the target
language, but is not accepted by the automaton in Figure 2(b). Therefore, the
algorithm goes into a second iteration. The counterexample is translated into
one appropriate for the L* (ab$a), and all its suffixes are added to the top row of
the table. Table 1(b) is the closed table which we acquire after adding the coun-
terexample. Figure 3(a) shows the DFA corresponding to this table, and Figure
3(b) shows the Büchi automaton constructed based on this DFA. This Büchi
automaton passes the equivalence check and the algorithm is finished learning
the target language.

Complexity: Note that for the target ω-regular language L, our learning algo-
rithm terminates by learning L$ (and hence L). We can show that our learning
algorithm is polynomial (in terms of number of queries performed) on the size
of L$ (and the size of the counter examples). However, one can show that L$, in
the worst case, can be exponentially bigger that the minimal Büchi automaton
accepting L. We refer the interested reader to [9] for a more detailed discussion.

Extending Automated Compositional Verification to the Full Class 13

5 Optimizations

In this section, we briefly discuss some practical optimizations that we have
added to our implementation of the algorithm presented in Section 4 to gain a
more efficient learning tool.

Equivalence query as the last resort: The equivalence query for an ω-regular
language is expensive, even more than equivalence checking for regular languages.
The main reason is that it requires complementing the Büchi automaton, which
has a proven lower bound of 2O(n log n) [16]. Therefore, having fewer equivalence
queries speeds up the process of learning. For each conjecture DFA A that is built
during an iteration of the algorithm (more specifically, the incorrect conjectures),
L(A) may not be saturated by �. If one could check for saturation and make �
saturate L(A) by adding/removing words, one could avoid going through with
an (expensive) equivalence check that will most probably have a “NO” response.
Unfortunately, there is no known way of effectively checking for saturation. But
all is not lost. One can construct another DFA A′ where L(A′) = (Σ∗$Σ+) ∩
L(A). Since A is deterministic, A′ can easily be constructed. Let B and B′ be
respectively the corresponding Büchi automata for A and A′. If L(B)∩L(B′) �= ∅
then there is uvω ∈ L(B)∩L(B′), and we know that only a part of the equivalence
class [u$v]� is in L(A) and the rest of it is in L(A′). To decide whether the class
should go into L(A) (the conjecture) completely, or be altogether removed from

Table 1. Observation Tables

λ ab b $ab a$ab aba$ab ba$ab
λ − − − + − − +
a − − − − − + −
b − − − − − − −
$ − − + − − − −
ab − − − + + + +
$a − + − − − − −
$ab + + + − − − −
aa − − − − − − −
a$ − − − − − − −
ba − − − − − − −
bb − − − − − − −
b$ − − − − − − −
$b − − − − − − −
$$ − − − − − − −
aba − − − + + + +
abb − − − + + + +
ab$ − − + − − − −
$aa − − − − − − −
a − − − − − − −
$aba + + + − − − −
$abb + + + − − − −
ab − − − − − − −

λ ab b $ab a$ab aba$ab ba$ab a $a b$a ab$a
λ − − − + − − + − − − +
a − − − − − + − − − + −
b − − − − − − − − − − −
$ − − + − − − − − − − −
ab − − − + + + + − + + +
$a − + − − − − − − − − −
$ab + + + − − − − + − − −
ab$ − − + − − − − + − − −
aa − − − − − − − − − − −
a$ − − − − − − − − − − −
ba − − − − − − − − − − −
bb − − − − − − − − − − −
b$ − − − − − − − − − − −
$b − − − − − − − − − − −
$$ − − − − − − − − − − −
aba − − − + + + + − + + +
abb − − − + + + + − + + +
$aa − − − − − − − − − − −
a − − − − − − − − − − −
$aba + + + − − − − + − − −
$abb + + + − − − − + − − −
ab − − − − − − − − − − −
ab$a + + + − − − − + − − −
ab$b − − + − − − − + − − −
ab$$ − − − − − − − − − − −

(a) First Iteration. (b) Second Iteration.

14 A. Farzan et al.

it, we can pose a membership query for uvω to the teacher. If uvω ∈ L, then the
class should belong to the conjecture, and therefore any word in [u$v]� ∩ L(A′)
works as a positive counterexample for the next iteration of L*. If uvω �∈ L then
any word in [u$v]� ∩ L(A) can serve as a negative counterexample for the next
iteration of the L*. This check is polynomial in the size of A, and saves us an
unnecessary equivalence query.

Minimization and Simplification: Our algorithm constructs and handles
many DFAs during the construction of the Büchi automaton from the conjecture
DFA (from Mq’s and Nq,qf

’s). Hence, the algorithm can benefit from minimizing
all those DFAs in order to reduce the overhead of working with them later on.
DFA minimization can be done very efficiently; the complexity is n log n [12],
where n is the size of the source DFA.

When the conjecture Büchi automaton is built, another useful technique is
to simplify the Büchi automaton by detecting a simulation relation between
states [19]. Intuitively, a state p simulates another state q in the Büchi automaton
if all accepting traces starting from q are also accepting traces starting from p.
If p simulates q and both transitions r

a−→ p and r
a−→ q are in the automaton,

then r
a−→ q can be safely removed without changing the language of the Büchi

automaton. Furthermore, if p and q simulate each other, then after redirecting
all of q’s incoming transitions to p, q can be safely removed. This technique is
useful for reducing the size of the result automaton, because the structures of
Mq and Nω

q,qf
are usually very similar, which provides good opportunities for

finding simulation relations.

6 Preliminary Experimental Results

We have implemented our algorithm using JAVA. DFA operations are delegated
to the dk.brics.automaton package, and the Büchi automaton equivalence check-
ing function is provided by the GOAL tool [20].

We check the performance of our tool by learning randomly generated ω-
regular languages. More specifically, we combine the following 5 steps to get a
target Büchi automaton:

1. Randomly generate LTL formulas with a length of 6 and with 1 or 2 propo-
sitions (which produces respectively Büchi automata with |Σ| = 2 and 4).

2. If the formula appeared before, discard it and go back to step 1.

Table 2. Results for Randomly Generated Temporal Formulas

|Σ| = 2 |Σ| = 4
Avg Min Max Avg Min Max

Target BA recognizing L 5.3 5 7 5.34 5 10
Learned DFA 7.98 3 21 8.7 5 16
Learned BA 6.78 3 11 12.92 5 35
Learned BA (after simplification) 5.36 2 8 9.38 3 24

(Unit: number of states)

Extending Automated Compositional Verification to the Full Class 15

3. Use the LTL2BA [10] algorithm to make them Büchi automata.
4. Apply the simplification [19] to make the Büchi automata as small as possible.
5. If the size of the automaton is smaller than 5, discard it and go to step 1.

Note that the combination of these steps does not guarantee the minimality of
the resulting Büchi automaton.

Table 2 presents the performance of our algorithm on these randomly gener-
ated ω-regular languages. The sizes of the learned automata are compared with
the sizes of the target automata. The result shows that the size the learned au-
tomaton is comparable with the size of the target automaton. Table 2 presents
a summary of the results of 100 learning tasks. We have 50 are with |Σ|= 2 and
another half of them with |Σ| = 4.

Table 3. Effectiveness for learning automata from selected temporal formulas

Property Canonical Target Learned Responsive Target Learned ⊆ DB∩
Classes Formulas St Trans St Trans Formulas St Trans St Trans coDB?

Reactive FGp ∨ GFq 5 26 7 37 GFp → GFq 5 26 7 37 No
Persistence FGp 2 4 3 7 G(p → FGq) 4 18 11 43 No
Recurrence GFp 2 12 3 9 G(p → Fq) 3 12 13 65 No
Obligation Gp ∨ Fq 4 15 6 25 Fp → Fq 4 15 6 25 Yes
Safety Gp 2 2 2 3 p → Gq 3 9 9 32 Yes
Guarantee Fp 2 4 3 8 p → Fq 3 12 4 20 Yes

On a different note, we present the performance of our algorithm on learning
properties that are often used in verification. Table 3 presents the result of these
experiments. The target languages are described by temporal formulas selected
from Manna and Pnueli [15] and classified according to the hierarchy of temporal
properties which they proposed in the same paper. We translate those temporal
formulas to Büchi automata by the LTL2BA algorithm. The first column of
the table lists the six classes of the hierarchy. We select two temporal formulas
for each class2. One of them is a formula in “canonical form”3 and the other
is a formula in “responsive form”4. Maler and Pnueli’s algorithm [14] can only
handle the bottom three levels of that hierarchy. Their algorithm cannot handle
some important properties such as progress G(p → Fq) and strong fairness
GFp → GFq, which can be handled by our algorithm.

7 Conclusions and Future Work

We have extended the learning paradigm of the infinitary languages by present-
ing an algorithm to learn an arbitrary ω-regular language L over an alphabet Σ.
2 In this table, p and q are propositions. If one replaces p and q in a formula f with

temporal formulas containing only past operators, f still belongs to the same class.
3 The canonical formula is a simple representative formula for each class.
4 A responsive formula usually contains two propositions p and q. The proposition p

represents a stimulus and q is a response to p.

16 A. Farzan et al.

Our main result is an algorithm to learn a nondeterministic Büchi automaton
that recognizes an unknown ω-regular language by learning a unique projection
of it (L$) on Σ∗ using the L*[2] algorithm. We also presented preliminary exper-
imental results that suggest that algorithms performs well on small examples.

In the future, we would like to extend our experiments by learning bigger
Büchi automata. We would also like to use this learning algorithm as a core of
a compositional verification tool to equip the tool with the capability to check
liveness properties that have been missing from such tools so far. One way of
improving our algorithm is to find an effective way of checking for saturation,
which appears to be difficult and remains unsolved.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Arnold, A.: A syntactic congruence for rational omega-language. Theoretical Com-
puter Science 39, 333–335 (1985)

4. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Pro-
ceedings of the 1960 International Congress on Logic, Methodology and Philosophy
of Science, pp. 1–11 (1962)

5. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes,
S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994)

6. Calbrix, H., Nivat, M., Podelski, A.: Sur les mots ultimement périodiques des lan-
gages rationnels de mots infinis. Comptes Rendus de l’Académie des Sciences 318,
493–497 (1994)

7. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning
for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)

8. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

9. Farzan, A., Chen, Y., Clarke, E., Tsay, Y., Wang, B.: Extending automated compo-
sitional verification to the full class of omega-regular languages. Technical Report
CMU-CS-2008-100, Carnegie Mellon University, Department of Computer Science
(2008)

10. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translations. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for composi-
tional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 420–432. Springer, Heidelberg (2007)

12. Hopcroft, J.E.: A n logn algorithm for minimizing states in a finite automaton.
Technical report, Stanford University (1971)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

Extending Automated Compositional Verification to the Full Class 17

14. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information
and Computation 118(2), 316–326 (1995)

15. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. Technical Report STAN-
CS-87-1186, Stanford University, Department of Computer Science (1987)

16. Michel, M.: Complementation is more difficult with automata on infinite words.
In: CNET, Paris (1988)

17. Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games.
Academic Press, London (2003)

18. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2), 299–347 (1993)

19. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

20. Tsay, Y., Chen, Y., Tsai, M., Wu, K., Chan, W.: GOAL: A Graphical Tool for
Manipulating Büchi Automata and Temporal Formulae. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007)

21. Van, D.L., Le Saëc, B., Litovsky, I.: Characterizations of rational omega-languages
by means of right congruences. Theor. Comput. Sci. 143(1), 1–21 (1995)

Graph Grammar Modeling and Verification

of Ad Hoc Routing Protocols

Mayank Saksena, Oskar Wibling, and Bengt Jonsson

Dept. of Information Technology, P.O. Box 337, S-751 05 Uppsala, Sweden
{mayanks,oskarw,bengt}@it.uu.se

Abstract. We present a technique for modeling and automatic verifica-
tion of network protocols, based on graph transformation. It is suitable
for protocols with a potentially unbounded number of nodes, in which
the structure and topology of the network is a central aspect, such as
routing protocols for ad hoc networks. Safety properties are specified as
a set of undesirable global configurations. We verify that there is no un-
desirable configuration which is reachable from an initial configuration,
by means of symbolic backward reachability analysis.

In general, the reachability problem is undecidable. We implement the
technique in a graph grammar analysis tool, and automatically verify
several interesting nontrivial examples. Notably, we prove loop freedom
for the DYMO ad hoc routing protocol. DYMO is currently on the IETF
standards track, to potentially become an Internet standard.

1 Introduction

The verification of network protocols has been one of the most important driv-
ing forces for the development of model checking technology. Most approaches
(e.g., [15]) analyze finite-state models of protocols, but an increasing number
of techniques are developed for analyzing parameterized or infinite-state models
(e.g., [2]). In this paper, we consider verification of protocols for networks with a
potentially unbounded number of nodes, possibly with a dynamically changing
topology. This is a large class of protocols, including protocols for wireless ad
hoc networks, many distributed algorithms, security protocols, telephone system
services, etc. Global configurations of such protocols are naturally modeled using
graphs, that are transformed by the protocol’s dynamic behavior, and therefore
various forms of graph transformation systems have been used to model and
analyze them [19,7].

In this paper, we present a technique for modeling and verification of pro-
tocols using a variant of graph transformation systems (GTSs) [19,7]. We use
a general mechanism for expressing conditions on the applicability of a rule, in
the form of negative application conditions (NACs). Sets of global configurations
are symbolically represented by graph patterns [7], which are graphs extended
with NACs. Intuitively, a graph pattern represents the set of configurations that
contain it as a subgraph, but none of the NACs. A safety property of a proto-
col is represented by a set of graph patterns that represent undesirable global
configurations.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 18–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Graph Grammar Modeling 19

We consider the problem of verifying safety properties. This can be reduced to
the problem whether an undesirable configuration can be reached, by a sequence
of graph transformation steps, from some initial global configuration. We present
a method for automatically checking such a reachability problem by backward
reachability analysis. Backward reachability analysis is a powerful verification
technique, which has generated decidability results for many classes of parame-
terized and infinite-state systems (e.g., [3,2,13]) and proven to be highly useful
also for undecidable verification problems (e.g., [1]). By fixed point computation,
we compute an over-approximation of the set of configurations from which a bad
configuration can be reached, and check that this set contains no initial config-
uration. The central part of the backward reachability procedure is to compute
the predecessors of a set of configurations in this symbolic representation. Since
the reachability problem is undecidable in general, the fixed point computation
is not guaranteed to terminate. However, we show that the techniques are power-
ful enough for verifying several interesting nontrivial examples, indicating that
the approach is useful for network protocols where the dynamically changing
topology of the network is a central aspect.

A main motivation for our work is to analyze protocols for wireless ad hoc net-
works, including the important class of routing protocols. We have implemented
our technique, and successfully verified that the DYMO protocol [10] will never
generate routing loops. Verifying loop freedom for ad hoc routing protocols has
been the subject of much work [8,12]; several previous protocol proposals have
been incorrect in this respect [9,4]. Our verification method handles a detailed
ad hoc routing protocol model, with relatively little effort. In our work, we have
also found GTSs to be an intuitive and visually clear form of modeling.

For space limitations, proofs are not included in this paper; instead see the
extended version [22].

Related work. There have been several efforts to verify loop freedom of routing
protocols for ad hoc networks. Bhargavan et al. [8] verified AODV [21] to be
loop free, using a combination of SPIN for model checking a finite network
model, and HOL theorem proving for generalizing the proof. In contrast, we
prove the same property automatically for an arbitrary number of nodes. Our
experience is that modeling using GTSs is more intuitive than to separately
construct SPIN models and HOL proofs. Das and Dill [12] developed automatic
predicate discovery for use in predicate abstraction, and proved loop freedom
for a simplified version of AODV, excluding timeouts. The construction of an
abstract system and discovery of relevant abstraction predicates require many
calls to a theorem prover; our method does not need to interact with a theorem
prover. We check the graphs directly for inconsistencies.

There have been several other approaches to modeling and analysis using
variants of GTSs. König and Kozioura [19] over-approximate graph transforma-
tion systems using Petri nets, successively constructed using forward counter-
example guided abstraction refinement. Their technique does not support the use
of NACs. We have found NACs to be an advantage during modeling and veri-
fication. For example, our first approach at verifying the DYMO protocol was

20 M. Saksena, O. Wibling, and B. Jonsson

without NACs, resulting in a more complex model with features not directly
related to the central protocol function.

Kastenberg and Rensink [18] translate GTSs to finite-state models in the
GROOVE tool by putting an upper bound on the number of nodes in a network.
Becker et al. [7] verified safety properties of mechatronic systems, modeled by
GTSs that are similar to ours. However, they only check that the set of non-
bad configurations is an inductive invariant. That worked for their application,
but for verifying safety properties in general it requires the user to supply an
inductive invariant. Bauer and Wilhelm [6,5] use partner abstraction to verify
dynamic communication systems; two nodes are not distinguished if they have
the same labels and the sets of labels of their adjacent nodes are equal, respecting
edge directions. That abstraction is not suited for ad hoc protocols, because
nodes do not have dedicated roles.

Backward reachability analysis has also been used to verify safety properties
in many parameterized and infinite-state system models, with less general con-
nection patterns than those possible in GTSs. Examples include totally homoge-
neous topologies in which nodes can not identify different partners, resulting in
Petri nets with variants (e.g., [13]), systems with linear structure and some ex-
tensions (e.g., [1]), and systems with binary connections between nodes, tailored
for modeling telephone services [17].

Organization of paper. We give a brief outline of the DYMO protocol in Sec-
tion 2. The graph transformation system formalism and the backward reacha-
bility procedure are presented in Sections 3 and 4. In Section 5 we describe how
we modeled DYMO, and present our verification results in Section 6. Finally,
Section 7 concludes the paper.

2 DYMO

We are interested in modeling and verification of ad hoc routing protocols. These
protocols are used in networks that vary dynamically in size and topology. Every
network node that participates in an ad hoc routing protocol acts as a router,
using forwarding information stored in a routing table. The purpose of the ad
hoc routing protocol is to dynamically update the routing tables so that they
reflect the current network topology. DYMO [10] is one of two ad hoc routing
protocols currently considered for standardization by the IETF MANET group
[23]. The latest DYMO version at the time of writing is specified in version 10
of the DYMO Internet draft [11]. This is the version we have used as basis for
our modeling. The following is a simplified description of the main properties of
DYMO. The reader is referred to the Internet draft for the details.

In our protocol model, each DYMO network node A has an address, a routing
table and a sequence number. The routing table of A contains the following fields
for each destination node D.

– RouteNextHopAddressA(D) is the node to which A currently forwards pack-
ets, destined for node D.

Graph Grammar Modeling 21

– RouteSeqNoA(D) is the sequence number that node A has recorded for the
route to destination D. It is a measure of the freshness of a route; a higher
number means more recent routing information. Note that this sequence
number concerns the route to D from A, and is not related to the sequence
number of A.

– RouteHopCntA(D) is the recorded distance between nodes A and D, in terms
of number of hops.

– BrokenA(D) is an indicator of whether or not the route from A to D can
be used. The protocol has a mechanism to detect when a link on a route is
broken [11]. Information regarding broken links is propagated through route
error messages (RERR).

When a network node A wants to send a packet to another network node D,
it first checks its routing table to see if it has an entry with BrokenA(D) = false.
If that is the case, it forwards the packet to node RouteNextHopAddressA(D).
Otherwise, node A needs to find a route to D, which it does by issuing a route
request (RREQ) message. The route request is flooded through the network. It
contains the addresses of nodes A and D, the sequence number of A, and a hop
counter. The hop counter contains the value 1 when the RREQ is issued; each re-
transmitting node then increases it by one. Node A increases its own sequence
number after each issued route request.

When the destination of a route request, D, receives it, it generates a route
reply message (RREP). The route reply contains the same fields as the request.
Route replies are not flooded, but instead routed through the network using
available routing table entries. RREPs and RREQs are collectively referred to as
routing messages (RMs).

Whenever a network node A receives an RM, the routing table of A is com-
pared to the RM. If A does not have an entry pertaining to the originator of
the RM, then the information in the RM is inserted into the routing table of A.
Otherwise, the information in the RM replaces that of the routing table if the
information is more recent, or equally recent but better, in terms of distance to
the originator. The routing table update rules are detailed in Section 5.

3 Modeling Using Graph Transformation Systems

We model systems as transition systems of a particular form, in which config-
urations are hypergraphs, and transitions between configurations are specified
by graph rewriting rules. Constraints on configurations are represented by so-
called patterns, which are hypergraphs extended with a mechanism to describe
the absence of certain hyperedges: negative application conditions (NACs). Our
definitions are similar to the ones used by, e.g., Becker et al. [7], but with a more
general facility for expressing NACs.

Assume a finite set Λ of labels. A hypergraph is a pair 〈N, E〉, where N is a
finite set of nodes, and E ⊆ Λ × N∗ is a finite set of hyperedges. A hyperedge is
a pair (λ, −→n), where λ ∈ Λ is its label and −→n ∈ N∗. The length of −→n is called

22 M. Saksena, O. Wibling, and B. Jonsson

the arity of the hyperedge. A hyperedge is essentially a relation on nodes, and
can be visualized as a box labeled λ, with connections to each node n ∈ −→n .

A pattern is a tuple ϕ = 〈Nϕ, Eϕ, G−ϕ 〉, where 〈Nϕ, Eϕ〉 is a hypergraph, and
G−ϕ is a set of NACs. Each NAC is a hypergraph G− = 〈N−, E−〉, where N− is
a finite set of negative nodes disjoint from Nϕ, and E− ⊆ Λ × (Nϕ ∪ N−)∗ is a
finite set of negative hyperedges. We refer to Nϕ and Eϕ as positive nodes and
edges of ϕ . We define Nodes(E) = {n ∈ −→n | (λ, −→n) ∈ E}.

Example. Figure 1 shows a pattern — the left-hand side of one of the DYMO
model routing table update rules. The pattern models a network node receiving
routing information for a node to which it currently has no route. In the pattern,
positive nodes are drawn as circles and negative nodes as double circles. Nodes
have numeric names for identification. Positive and negative edges are drawn as
boxes and double boxes. Edge connections are numbered, to indicate their order.
The pattern contains a single NAC, consisting of the negative edges labeled
RouteEntry and RouteAddress along with their connected nodes. Without the
possibility to express non-existence, we would need to model traversal through
the entries to conclude the absence of an entry. In more detail, the pattern
consists of a network node A (node 3) and a routing message (node 1). A has a
routing table (node 4) that contains no routing table entry pointing to network
node D (node 6). The message has originator D, a hop count (node 7), a sequence
number (node 5) and an IP source (node 2).

1

23

4

5

6

7

Orig

0

1

OrigSeqNo

0

1

NodeHopCnt 01

RouteTable

0

1

RouteEntry

0

1 RouteAddress0 1

IPSource

0

1

Fig. 1. A pattern containing a NAC

A hypergraph g = 〈Ng, Eg〉 is subsumed by a pattern ϕ = 〈Nϕ, Eϕ, G−ϕ 〉,
written g � ϕ , if there exists an injection h : Nϕ → Ng satisfying:

1. for each (λ, −→n) ∈ Eϕ we have (λ, h(−→n)) ∈ Eg and
2. there exists no 〈N−, E−〉 ∈ G−ϕ and no injection k : N− → Ng such that

(λ, (h ∪ k)(−→n)) ∈ Eg for each (λ, −→n) ∈ E−, where (h ∪ k) is defined as h on
Nϕ and as k on N− .

Intuitively, a pattern ϕ = 〈Nϕ, Eϕ, G−ϕ 〉 is a constraint, saying that a hypergraph
must contain 〈Nϕ, Eϕ〉 as a subgraph, which does not have a “match” for any
NAC in G−ϕ .

Graph Grammar Modeling 23

Above we let f((n1, . . . , nk)) = (f(n1), . . . , f(nk)) for a function on nodes
applied to a vector of nodes. If an injection h satisfying the above conditions
exists, we say that g � ϕ is witnessed by h, written g �h ϕ .

For a pattern ϕ we use [[ϕ]] to denote the set of hypergraphs g such that g � ϕ .
For a set of patterns Φ, we let [[Φ]] = ∪{[[ϕ]] | ϕ ∈ Φ}. We call ϕ consistent if there
is no 〈N−, E−〉 ∈ G−ϕ and no injection k : N− → Nϕ such that (λ, k′(−→n)) ∈ Eϕ

for each (λ, −→n) ∈ E−, where k′ extends k by the identity on Nϕ . Informally,
ϕ is consistent if none of its NACs contradicts its positive nodes and edges. An
inconsistent pattern ψ represents an empty set, as g � ψ is not satisfied by any g.

A pattern ϕ is subsumed by the pattern ψ, denoted ϕ � ψ, if [[ϕ]] ⊆ [[ψ]] . The
relation � on patterns can be checked according to the following Proposition.

Proposition 1. Given patterns ϕ = 〈Nϕ, Eϕ, G−ϕ 〉 and ψ = 〈Nψ, Eψ, G−ψ 〉 which
are consistent, we have that ϕ � ψ iff there exists an injection h : Nψ → Nϕ,
such that 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ , ∅〉 and for each NAC 〈M−, F−〉 ∈ G−ψ there is
a NAC 〈N−, E−〉 ∈ G−ϕ and an injection k : N−→ M− such that

– (Nodes(E−) \ N−) ⊆ h(Nψ), and
– for each (λ, −→n) ∈ E−, we have (λ, (h−1 ∪ k)(−→n)) ∈ F− .
�

Intuitively, ϕ � ψ if and only if the positive part of ψ is a subgraph of the
positive part of ϕ, and for each NAC in G−ψ , there is a corresponding NAC in
G−ϕ which is a subgraph of the former NAC.

In our system model, configurations are represented by hypergraphs. Transi-
tions are specified by actions, which are (hypergraph) rewrite rules.

Definition 1. An action is a pair 〈L, R〉, where L = 〈NL, EL, G−L 〉 is a pattern
and R = 〈NR, ER〉 is a hypergraph with NL ⊆ NR (i.e., actions can create
nodes, but not delete them). The action α = 〈L, R〉 denotes the set [[α]] of pairs
of configurations (g, g′), with g = 〈Ng, Eg〉, g′ = 〈Ng′ , Eg′ 〉 and Ng ⊆ Ng′ such
that there is an injection h : NR → Ng′ satisfying:

– g � L is witnessed by the restriction of h to NL

– Ng′ = Ng ∪ h(NR)
– Eg′ = (Eg \ h(EL)) ∪ h(ER) .
�

Example. Figure 2(a) shows an action α = 〈L, R〉. The pattern L is to the
left of the arrow (=⇒) and R to the right. The action does not create any
nodes, i.e., NL = NR. Figure 2(b) shows a pair (g, g′) ∈ [[α]], i.e., g can be
rewritten via α to g′. The subsumption g � L is witnessed by the injection
h = {1 → a, 2 → b}. The injection h satisfies Ng′ = Ng ∪ h(NR) = {a, b} and
Eg′ = (Eg \ h(EL)) ∪ h(ER) = h(ER). Figure 2(c) shows a configuration g such
that there is no g′ with (g, g′) ∈ [[α]], since g �� L. In other words, g cannot be
rewritten via α.

Definition 2. A system model is a pair 〈γ0, A〉 consisting of an initial config-
uration γ0 together with a finite set of actions A.
�

24 M. Saksena, O. Wibling, and B. Jonsson

(a) Action α

(b) Pair of configurations (g, g′) ∈ [[α]]

(c) Configuration g such that ¬∃g′.(g, g′) ∈ [[α]]

Fig. 2. Example of an action and its semantics

For a set Γ of configurations and an action α, let pre (α, Γ) = {g | ∃g′ ∈
Γ. (g, g′) ∈ [[α]]}, i.e., the configurations which in one step can be rewritten to
Γ using α. Similarly, for a set of actions A, let pre∗(A, Γ) denote the set of
configurations which can reach a configuration in Γ by a sequence of rewritings
using actions in A.

4 Symbolic Verification

We formulate a verification scenario as the problem whether a set of configu-
rations, represented by a set of patterns, is reachable. More precisely, given a
system model 〈γ0, A〉, and a set of patterns Φ, the reachability problem asks
whether there is a sequence of transitions from γ0 to some configuration in [[Φ]].

In our approach, we analyze a reachability problem using backward reachabil-
ity analysis, in which we compute an over-approximation of the set pre∗(A, [[Φ]])
of configurations, and check whether it includes γ0. We clarify why and when the
computation is not exact in the Approximation paragraph below. In general, the
reachability problem is undecidable, and our analysis is not guaranteed to termi-
nate. However, the technique is sufficiently powerful to verify several nontrivial
network protocols (see Section 6).

We attempt to compute pre∗(A, [[Φ]]) by standard fixed point iteration, using
predecessor computation, as shown in Procedure 1. In the procedure, V and W
are sets of patterns whose predecessors already have (V) and have not (W) been
computed. In each iteration of the while loop, we choose a pattern ϕ from W . If
γ0 ∈ [[ϕ]] then we have found a path from γ0 to [[Φ]]. Otherwise, we check whether
ϕ is redundant, meaning that it is subsumed by some other pattern which will be
or has been explored. If not, we add to W a set of patterns over-approximating
pre (A, [[ϕ]]). As a further optimization, not shown in Procedure 1, at line 7 we
also remove patterns from V and W that are subsumed by ϕ; keeping V and W
small speeds up the procedure.

Graph Grammar Modeling 25

Procedure 1. Backward Reachability Analysis
Require: System model 〈γ0, A〉 and a set Φ of (bad) patterns
Ensure: If terminates; answers whether a configuration in [[Φ]] is reachable from γ0

1 V := ∅, W := Φ
2 while W �= ∅ do
3 choose ϕ ∈ W
4 W := W \ {ϕ}
5 if γ0 ∈ [[ϕ]] then
6 return “Reachable”
7 if ∀ψ ∈ (V ∪ W). ¬(ϕ
 ψ) then
8 V := V ∪ {ϕ}
9 for each α ∈ A do

10 W := W ∪ Pre(α, ϕ)
11 return “Unreachable”

The central part of Procedure 1 is the (nontrivial) computation of predecessors
of a pattern; it is done as in Procedure 2, whose description follows. Procedure
2 terminates on any input, as all loops are finite.

Procedure 2. Pre(α, ϕ)
Require: Action α = 〈L, R〉, pattern ϕ = 〈Nϕ, Eϕ, G−

ϕ 〉
Ensure: Φ is a set of patterns satisfying pre (α, [[ϕ]]) ⊆ [[Φ]]

1 Φ := ∅
2 Rename nodes in Nϕ so that Nϕ is disjoint from NR

3 for each partial injection h : NR → Nϕ do
4 Rename each node h(n) in the range of h to n
5 if ∃n ∈ Domain(h) − NL . Edges+(n, ϕ) �⊆ Edges+(n, R) ∨

Inconsistent(ϕ + R) then
6 skip
7 else
8 ϕ′ := (ϕ �αR) + L
9 for each G− ∈ G−

ϕ do
10 if Inconsistent((L �E R) + G−) then
11 ϕ′ = ϕ′− G−

12 if ¬ Inconsistent(ϕ′) then
13 Φ := Φ ∪ ϕ′

14 return Φ

Let a partial injection, or matching, from a set N to a set N ′ be an injection
from a nonempty subset of N to N ′. For two patterns ϕ = 〈Nϕ, Eϕ, G−ϕ 〉 and
ψ = 〈Nψ, Eψ, G−ψ 〉, we use ϕ + ψ to denote 〈Nϕ ∪ Nψ , Eϕ ∪ Eψ , G−ϕ ∪ G−ψ 〉.
When adding patterns, if the node and edge sets are not disjoint, the result is a
“merge”. No automatic renaming is assumed.

We use the following two subtraction operations in Procedure 2. First, for a
pattern ϕ = 〈Nϕ, Eϕ, G−ϕ 〉, and an action α = 〈L, R〉, let ϕ �α R be the pattern

26 M. Saksena, O. Wibling, and B. Jonsson

ψ = 〈Nψ, Eψ, G−ϕ 〉, with Eψ = Eϕ \ ER and Nψ = Nϕ \ (NR \ NL) . Second, for
a pattern ϕ = 〈Nϕ, Eϕ, G−ϕ 〉, and a hypergraph g = 〈Ng, Eg〉, let ϕ �E g be the
pattern ψ = 〈Nψ, Eψ , G−ϕ 〉, with Eψ = Eϕ \ Eg and Nψ = Nodes(Eψ).

For a NAC G−, we use ϕ + G− to denote 〈Nϕ, Eϕ, G−ϕ ∪G−〉 and ϕ−G− to
denote 〈Nϕ, Eϕ, G−ϕ \ G−〉. If n ∈ Nϕ, let Edges+(n, 〈Nϕ, Eϕ, G−ϕ 〉) denote the
set of edges in Eϕ connected to n.

Procedure 2 first renames the nodes (line 2) to avoid unintended node colli-
sions between ϕ and α. Thereafter, the loop starting at line 3 performs a sequence
of operations for each possible matching between some nodes of NR and Nϕ .

On line 4 each node h(n) in the range of h is renamed to n, in order to
“merge” R and ϕ according to h. Since nodes that are created by α must also
have all their edges created by α, we should discard matchings which violate
this (line 5). On line 5 we also discard inconsistent matchings. The procedure
Inconsistent(ϕ) returns true iff pattern ϕ is not consistent.

On line 8 the action α is “executed” backwards to obtain a pattern ϕ′ that is
a potential predecessor of ϕ . Using the special subtraction �α nodes and edges
created by α are removed from ϕ . On lines 9–11, we remove all NACs from ϕ′

which contradict subgraphs removed by α . This may introduce approximation
(see the paragraph below). Since by definition α cannot remove nodes, we use
the special subtraction �E which ignores nodes not connected to edges. On line
12, we discard the resulting predecessor pattern if it is inconsistent – this can
happen if a NAC in L contradicts a positive subgraph of ϕ′. Finally, if we reach
line 13, we have found a predecessor pattern, which is added to Φ.

Approximation. The predecessor computation in Procedure 2 sometimes intro-
duces an approximation at line 11. If α removes a subgraph which is forbidden
by ϕ, then pre (α, [[ϕ]]) should say that there is exactly one subgraph of this
form. However, patterns cannot express “exactly one” occurrence of a subgraph.
In this situation, Procedure 2 therefore lets the resulting pattern say that “there
is at least one occurrence” of this subgraph. As an example, consider the simple
situation in Figure 3, where α, shown in Figure 3(a), removes an RM-edge be-
tween two nodes, and ϕ, the rightmost pattern in Figure 3(b), says that there is
no RM-edge. The exact predecessor of ϕ is: “there is exactly one RM-edge between
two nodes”. However, the resulting predecessor (the leftmost pattern in Figure
3(b)) represents that there is at least one RM-edge connected to graph node 1. To
illustrate the effect of lines 9–11 of Procedure 2, an intermediate pattern, where
the contradiction has not yet been resolved, is shown in Figure 3(b).

Optimizations. To make the analysis more efficient, we have (implemented) two
mechanisms for the user to specify simple type constraints. One is to annotate
nodes with types that are respected in the analysis, with the semantics that
nodes may only “match” nodes of same type. Another is to add patterns that
describe multiplicity constraints on edges. For example, our DYMO models use
“a network node can have at most one routing table”, by specifying a pattern
where a node has two routing tables as “impossible”.

We need to model integer-valued variables, as DYMO uses sequence numbers
and hop counts. This is done by representing integers as nodes, and greater

Graph Grammar Modeling 27

1 2RM0 1 =⇒ 1 2

(a) Idealized action α

1 2RM0 1 ← 1

2RM
0

1

RM

0

1

← 1 RM0 1

(b) Predecessor computation showing intermediate pattern

Fig. 3. Approximation due to upwards-closure

than (>) and equality (=) relations as edges between these nodes. We do not
represent concrete integer values. Hence, we cannot compare integers which are
not connected by a relational edge. We have extended our tool to handle the
transitive closure of > and = , as part of the predecessor computation. For each
predecessor pattern generated, the closure of all transitive numerical relations
present in the pattern is computed. New relational edges are then added to the
pattern accordingly. The reason is that our syntactic subsumption check cannot
deduce such semantic information about relations. The check for created nodes
on line 5 of Procedure 2 was also extended to take into account the transitivity
of numerical relations.

5 Modeling and Verification of DYMO

In this section we describe how we modeled the DYMO protocol (more precisely,
the latest version at the time of writing, version 10 [11], and version 5). See our
project home page [14] for the complete models. In total, our DYMO v10 model
consists of one initial graph (“an empty network”) and 77 actions. Of these, 38
actions model routing table update rules, similar to the one in Figure 4 below.
We have only used unary and binary hyperedges in our models, although our
implementation supports hyperedges of any arity.

Modeling network topology and message transmission. We represent arbitrary
network topologies by letting the initial system configuration be an empty net-
work (i.e., an empty graph), and including an action for creating an arbitrary
network node; thus any initial topology can be formed. We do not explicitly
model connectivity in the network. Instead all nodes can potentially react on
all messages in the network; this reaction on a message can be postponed in-
definitely, corresponding to a node being out of range or otherwise incapable of
receiving the message. Messages can also be non-deterministically removed, cor-
responding to message loss. In our modeling of message transmission, messages
are left in the network after a node has handled them (until they are potentially
dropped): this accounts for messages being duplicated.

28 M. Saksena, O. Wibling, and B. Jonsson

Handling of timeouts and hop limits. DYMO uses timeouts to determine if a
RREQ should be retransmitted, if a link is broken, or if a routing table entry
should be removed. We over-approximate timeouts as “event x can happen at
any time”, which covers all possibilities for a timeout. It is known from previous
work on the AODV protocol [8], that if entries are removed from the routing
table, loops may form. The reason is that obsolete information can then be
accepted. In DYMO, routing table entries are invalidated (set to broken) after
some time, and later removed; temporary loops are thus tolerated. We exclude
removal of routing table entries from our analysis; they can only be invalidated.
In practice, we thus verify loop-freedom under the assumption that routing table
entries are kept “long enough”.

We do not model DYMO hop limits [11], used to limit packet traversal. How-
ever, since we include actions for arbitrary dropping of RMs and RERRs, we
implicitly cover all possible hop limit settings.

Routing table update rules. The DYMO specification [11] prescribes when a node
should update its own routing table upon receiving routing data, i.e., when re-
ceived routing data should replace existing data. Existing data is represented by a
routing table entry, with fields RouteSeqNo, RouteHopCnt, and Broken. Received
data is represented by a routing message with fields OrigSeqNo, NodeHopCnt and
message type RM – either a route request (RREQ) or a route reply (RREP). The
table entry should be updated in the following cases:

1. OrigSeqNo > RouteSeqNo
2. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt < RouteHopCnt
3. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ RM = RREP
4. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ Broken

The rules say that an update is allowed if (1) the message has a higher sequence
number for the destination, or (2) the message has the same sequence number, but
a shorter route, or (3) the message has the same routing metric value, and the mes-
sage is a route reply, or (4) the table entry is broken. See Figure 4 for an illustration
of how we model the update rules. The figure corresponds to rule (2). In our frame-
work, we have to model each combination of network nodes used in the rules, such
as when IPSource equals Orig, or RouteNextHopAddress equals RouteAddress,
etc., as separate actions; however, we have tool support for doing this.

Formalizing the non-looping property. A central property of ad hoc routing pro-
tocols is that they never cause routing loops, as a routing loop prevents a packet
from reaching its intended destination. A routing loop is a nonempty finite se-
quence of nodes n1, . . . , nk such that for some destination D it holds that for all
i : 1 ≤ i ≤ k node n(i+1)(mod k) is the next hop towards D from node ni, and
ni �= D.

We define the ordering <D on nodes in a configuration as: n <D n′ iff
RouteSeqNon(D) > RouteSeqNon′(D)∨(RouteSeqNon(D) = RouteSeqNon′(D)∧
RouteHopCntn(D) < RouteHopCntn′(D)). There can be no routing loops towards
a destination D, if each hop from a node n towards D goes to a node n′ with

Graph Grammar Modeling 29

Fig. 4. Action modeling a routing table update

n′ <D n. Since <D is a partial order, any routing path towards D can contain a
node at most once. The same ordering was used in the proof of loop freedom for
AODV in [8]. The following property, LP , implies the pairwise ordering along
routing paths; if LP is invariant for DYMO, there are no routing loops.

∀ A, B, D
A �= B, B �= D,

A �= D

∣
∣
∣
∣
∣
∣

RouteNextHopAddressA(D) = B =⇒ B <D A (LP)

By negating the loop property (LP), we obtain a characterization of the bad
system configurations. Loops may thus form if the sequence number strictly
decreases, or the sequence number stays the same but the hop count does not
decrease, between a node A and its next hop B on a route towards a destination
node D. In our verification of DYMO, we verify unreachability for a set of six
bad patterns. Three represent a disjunct of (¬LP) under quantification; two
represent a network node with a routing table entry pointing to the node itself;
and one pattern represents that a node has a next hop (which is not D) towards
some destination D, but the next hop has no entry for D. As an example, a
pattern representing one of the disjuncts of (¬LP) is shown in Figure 5.

Fig. 5. Graph pattern representing a set of bad system configurations in DYMO

30 M. Saksena, O. Wibling, and B. Jonsson

6 Experimental Results

We have modeled and verified the DYMO protocol as described in Sections 5
and 4. Recall that the analysis is under an assumption of routing table entries
not being removed. The analysis has been performed using our tool GBT (Graph
Backwards Tool). GBT and the models are available at our project home page
[14]. The tool uses the .dot format for describing hypergraphs and patterns
(input and output). If the initial configuration can be reached, an error trace,
showing a sequence of actions leading to one of the bad patterns, is provided.
Note that this trace may be spurious, due to over-approximation.

We have verified the latest DYMO version at the time of writing, namely
version 10 of the Internet draft [11], as well as an older draft (version 5). Our
results are presented in Table 1. In the “dest. reply” models, only the destination
node replies to an RREQ, whereas in “interm. reply”, intermediate nodes may
also reply (in case they have a fresh enough route, see [11]). Column Actions con-
tains the number of actions in the model. Checked contains the total number of
unique non-impossible patterns generated by the predecessor computation, plus
the ones given as input. Covered contains the patterns which were subsumed (see
Section 4). Left contains the patterns left after the analysis has finished; none of
them contain the initial graph. Time contains the total verification time (GBT
start to end) on a machine with an AMD Opteron 2220 2.8 GHz processor.

Table 1. Measurement results from using GBT

Protocol Actions Checked Covered Left Verified Time
DYMO draft 10
- dest. reply 56 185751 185695 56 Yes 2h 24 min
- interm. reply 77 295164 295108 56 Yes 4h 31 min
DYMO draft 05 50 118685 118637 48 Yes 1h 20 min

Pub/priv srv I 12 498 484 14 Yes 0.73 s
Pub/priv srv II 13 629 609 20 Yes 0.94 s

Firewall I 6 129 126 3 Yes 0.11 s
Firewall II 6 129 126 3 Yes 0.11 s

In Table 1 we have also included GBT verification results for the “Pub-
lic/private servers” and “Firewall” examples, used by König and Kozioura [19].
These examples required modifications to work with our tool: a NAC was added
to the left hand side of an action in “Public/private servers II” and the transi-
tivity handling in our tool was extended to include communication channels.

7 Conclusions and Future Work

We have described and implemented a general framework for modeling and veri-
fication of protocols using a variant of graph transformation systems, and applied

Graph Grammar Modeling 31

it to automatically prove loop freedom of the DYMO v10 ad hoc routing proto-
col. We expect that several of the actions used in our DYMO model need only
small modifications to work for other ad hoc routing protocols categorized as
reactive (i.e., on-demand). The reason is that reactive ad hoc routing protocols
generally use the same kind of flooding route discovery mechanism; examples
include AODV[21], DSR[16], and LUNAR[24] (see [20] for an extensive list).

As GTSs with NACs make up quite a generic modeling framework, there
should be possibilities for interesting case studies, and further development. Di-
rections for future work include further optimizations of the predecessor compu-
tation, e.g., by early detection of unfruitful matchings. We are currently working
on a new DYMO model, to investigate the effect on run-time performance when
using hyperedges of arity greater than two. Termination of the reachability anal-
ysis can be obtained by bounding and truncating the generated patterns, at the
cost of over-approximation, e.g., by enforcing a maximum size. The possibility
of spurious counter-examples, due to approximations in the predecessor compu-
tation, motivates looking at counter-example guided abstraction refinement.

Acknowledgments. We would like to thank Barbara König for valuable help
on the Augur tool and related issues. We also thank Parosh Abdulla, Joachim
Parrow, and the anonymous referees for their many helpful comments.

References

1. Abdulla, P.A., Delzanno, G., Rezine, A., Ben Henda, N.: Regular model check-
ing without transducers (On Efficient Verification of Parameterized Systems). In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736.
Springer, Heidelberg (2007)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-Kuen, T.: Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation 160,
109–127 (2000)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

4. Abolhasan, M., Wysocki, T., Dutkiewicz, E.: A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks 2(1), 1–22 (2004)

5. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. PhD
thesis, Universität des Saarlandes (2006)

6. Bauer, J., Wilhelm, R.: Static Analysis of Dynamic Communication Systems. In:
14th International Static Analysis Symposium, Springer, Heidelberg (2007)

7. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In: Proc. ICSE 2006, 28th

Int. Conf. on Software Engineering, pp. 72–81. ACM Press, New York (2006)
8. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for

distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)
9. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.-C., Jetcheva, J.: A performance

comparison of multi-hop wireless ad hoc network routing protocols. In: Proceedings
of MobiCom 1998 (October 1998)

10. Chakeres, I.D., Perkins, C.E.: DYMO - Dynamic MANET On-demand Routing
Protocol home page (2007), http://www.ianchak.com/dymo/

http://www.ianchak.com/dymo/

32 M. Saksena, O. Wibling, and B. Jonsson

11. Chakeres, I.D., Perkins, C.E.: Dynamic MANET On-demand (DYMO) Routing.
In: Internet draft (July 2007), draft-ietf-manet-dymo-10.txt

12. Das, S., Dill, D.L.: Counter-example based predicate discovery in predicate abstrac-
tion. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp.
19–32. Springer, Heidelberg (2002)

13. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proc. LICS 1999 14th IEEE Int. Symp. on Logic in Computer Science (1999)

14. GBT - Graph Backwards Tool project home page.
http://www.it.uu.se/research/group/mobility/adhoc/gbt

15. Holzmann, G.: The model checker SPIN. IEEE Trans. on Software Engineering SE-
23(5), 279–295 (1997)

16. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The dynamic source routing protocol
for multi-hop wireless ad hoc networks. In: Ad Hoc Networking, ch. 5, pp. 139–172.
Addison-Wesley, Reading (2001)

17. Jonsson, B., Kempe, L.: Verifying safety properties of a class of infinite-state dis-
tributed algorithms. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 42–53.
Springer, Heidelberg (1995)

18. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
SPIN Workshop, pp. 299–305. Springer, Heidelberg (2006)

19. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg (2006)

20. List of ad-hoc routing protocols - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Ad hoc routing protocol list

21. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing. In:
Proc. 2nd Workshop on Mobile Computing Systems and Applications (WMCSA
1999), pp. 90–100. IEEE Computer Society Press, Los Alamitos (1999)

22. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verifica-
tion of ad hoc routing protocols. Technical Report 2007-035, Dept. of Information
Technology, Uppsala University, Sweden (2007)

23. The official IETF MANET working group web page,
http://www.ietf.org/html.charters/manet-charter.html

24. Tschudin, C., Gold, R., Rensfelt, O., Wibling, O.: LUNAR: a lightweight underlay
network ad-hoc routing protocol and implementation. In: Proc. Next Generation
Teletraffic and Wired/Wireless Advanced Networking (NEW2AN) (February 2004)

 draft-ietf-manet-dymo-10.txt
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://en.wikipedia.org/wiki/Ad_hoc_routing_protocol_list
http://www.ietf.org/html.charters/manet-charter.html

Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems�

Edmund Clarke1, Murali Talupur2, and Helmut Veith3,4

1 School of Computer Science, Carnegie Mellon University, USA
2 Intel Strategic CAD Labs, Portland, USA

3 Fachbereich Informatik, Technische Universität Darmstadt, Germany
4 Institut für Informatik, Technische Universität München, Germany

Abstract. The parameterized verification of concurrent algorithms and protocols
has been addressed by a variety of recent methods. Experience shows that there is
a trade-off between techniques which are widely applicable but depend on non-
trivial human guidance, and fully automated approaches which are tailored for
narrow classes of applications. In this spectrum, we propose a new framework
based on environment abstraction which exhibits a large degree of automation and
can be easily adjusted to different fields of application. Our approach is based on
two insights: First, we argue that natural abstractions for concurrent software are
derived from the “Ptolemaic” perspective of a human engineer who focuses on a
single reference process. For this class of abstractions, we demonstrate soundness
of abstraction under very general assumptions. Second, most protocols in given a
class of protocols – for instance, cache coherence protocols and mutual exclusion
protocols – can be modeled by small sets of compound statements. These two
insights allow to us efficiently build precise abstract models for given protocols
which can then be model checked. We demonstrate the power of our method by
applying it to various well known classes of protocols.

1 Introduction

In many areas of system engineering, distributed concurrent computation has become
an essential design principle. For instance, the controllers on an automobile have to be
necessarily distributed. Further, in fundamental areas like chip design, distributed com-
putation often offers the best way to increased performance. Protocols like cache coher-
ence protocols, mutual exclusion protocols, synchronization protocols form the bedrock
on which these distributed systems are built. Experience has shown however that de-
signing such protocols correctly is a non-trivial task for human engineers and should
be supported by computer-aided verification methods. Although non-rigorous verifica-
tion techniques such as testing are very effective in finding many obvious errors, they
cannot explore all interleaving behaviors, and may miss subtle errors. Consequently,

� This research was sponsored by the Gigascale Systems Research Center (GSRC), Semiconduc-
tor Research Corporation (SRC), the National Science Foundation (NSF), the Office of Naval
Research (ONR), the Naval Research Laboratory (NRL), the Defense Advanced Research P
rojects Agency, the Army Research Office (ARO), and the General Motors Collaborative Re-
search Lab at CMU, and the Deutsche Forschungsgemeinschaft (DFG) under grant FORTAS.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 33–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 E. Clarke, M. Talupur, and H. Veith

rigorous formal verification techniques are indispensable in ensuring the correctness of
such protocols.

Important classes of distributed protocols are designed parametrically, i.e., for an
unlimited number of concurrent processes. For example, cache coherence protocols are
designed to be correct independently of the exact number of caches. Verifying a proto-
col parametrically is however difficult, and is known to be undecidable [24]. Nonethe-
less, parameterized verification has received considerable attention in the recent years.
Parameterized verification of cache coherence protocols is a pressing problem for the
hardware industry and has been considered by [11,17,6,4,12]. Another important class
of protocols that has been widely studied is mutual exclusion protocols [18,14,2,20].

The approaches by McMillan [17], Chou et al. [6], which have been successfully ap-
plied to industrial-strength cache coherence protocols require significant human guid-
ance during verification. On the other hand, researchers have not been able to apply
largely automatic methods like the ones by Lahiri et al [14] and Pnueli et al [20,2] to
large protocols. Thus, while the ideal is to have a single automatic method to handle the
whole class of real life protocols, it has come to be accepted that any practically useful
tool will involve some human intervention. The goal then is to minimize the amount of
effort and ingenuity required to guide a verification tool successfully. In this paper, we
are proposing a framework that addresses this issue.

Our method is built around two insights which we describe in the following sub-
sections: (1) humans tend to reason about distributed systems from the “Ptolemaic”
viewpoint of an individual process, and (2) natural classes of protocols can be captured
by a small number of compound statements. Combined, these two insights lead to an
abstraction framework which accounts for the specifics of distributed systems and can
be easily adjusted to different classes of protocols.

Ptolemaic System Analysis. The success of the Ptolemaic system (where earth is the
center of the cosmos) over many centuries reveals an innate reasoning principle which
the human mind applies to complex systems: we tend to imagine complex systems with
the human observer in the center. Although this Ptolemaic intuition is wrong for many
systems we encounter in nature, it is naturally built into the systems we construct.

Let us look more closely at the case of concurrent systems. During the construction
of such a system, the programmer arguably imagines him/herself in the position of one
reference process, around which the other processes – which constitute the environment
– evolve. In fact, we usually consider a program to be well written when its correctness
can be intuitively understood from the Ptolemaic viewpoint of a single process. Thus,
an abstract model that reflects the viewpoint of a reference process is likely to con-
tain sufficient information for asserting system correctness. The goal of environment
abstraction is to put this intuition into a formal and practically useful framework.

Our concrete models are concurrent parameterized systems, where the number of
processes is the parameter, and all processes execute the same program. We write P (K)
to denote a system with K > 1 processes. Thus, the formal verification question is

∀K > 1.P (K) |= ∀x.ϕ(x)

where ∀xϕ(x) is an indexed temporal logic specification [5].

Proving Ptolemy Right: The Environment Abstraction Framework 35

Each abstract state in our framework can be described by a formula Δ(x) where x
stands for the process chosen to act as the reference process. The abstract state Δ(x)
will contain (i) a detailed description of the internal state of process x and (ii) a con-
cise abstract description of x’s environment consisting of other processes. The abstract
transition relation is defined by a new form of existential abstraction which quantifies
over the parameter K and the variable x: If some concrete system P (K) has a process p
and a transition from state s1 to s2 such that Δ1(p) holds in state s1, and Δ2(p) hols in
state s2, then we include a transition from Δ1(x) to Δ2(x) in the abstract model. Thus,
every abstract transition is induced by a concrete transition in some concrete model
P (K). Note that Δ1(x) and Δ2(x) have to satisfy the same process p before and after
the transition, i.e., the Ptolemaic reference point does not change during a transition.

The main mathematical contribution of this paper is a soundness result which shows
that for a suitably chosen language of descriptions Δ(x), environment abstraction pre-
serves universally quantified indexed temporal logic specifications, see Section 4. The
requirements for choosing the Δ(x) are quite general: first, each concrete situation has
to be covered by at least one Δ(x) (coverage), and second, the Δ(x) have to be suffi-
ciently expressive to imply truth or falsity of atomic specifications (completeness). Our
soundness result naturally carries over to the case of multiple reference processes.

While this definition of the abstract model reflects our intuition about distributed
system design and ensures soundness of our approach, it is clearly not operational.
Since the parameter K is unbounded, it is often not possible to compute the abstract
transition relation exactly. It is here that our second insight comes into play.

Abstraction Templates for Compound Statements. The communication and co-
ordination mechanisms between the processes in a distributed system are usually con-
fined to a few basic patterns characteristic for each system type. Thus, when we focus
on a particular class of protocols like cache coherence protocols or mutual exclusion
protocols, the protocols in that class can be described in terms of a small number of
compound transactions or statements. For example, to describe cache coherence pro-
tocols we need at most six compound statements [25], to describe mutex protocols we
need only two statements [8,25], and to describe semaphore based algorithms, we just
need a single statement, cf. Sections 4 and 5.

This insight allows us to approximate the abstract transition relation for a given
parameterized system in an efficient manner. We know that all transitions of the sys-
tem fall under a few compound statements. From the general construction principle for
Ptolemaic environment abstraction we also know the structure of the abstract domain.
Thus, for each of these compound statements, we can provide an abstraction template.
Technically, we describe this abstraction template in terms of an abstract transition in-
variant, i.e., a formula expressing the relationship between the variables for the current
abstract state and the next abstract state. Note that this invariant is given in a generic
fashion, independently of the protocol in which it is used. For each concrete statement,
we just have to plug in the specific parameters of that transition into the template in-
variant. Thus, the template invariants have to be written only once for each statement
type. Since there are only a small number of compound statements for each class of
protocols, writing the abstract template invariants is usually easy.

36 E. Clarke, M. Talupur, and H. Veith

Tool Flow of the Environment Abstraction Framework . Once the compound state-
ments for a protocol class are integrated in the framework, the tool flow is as follows:

1. The user describes P (K) as a program in terms of the compound statements.
2. The user writes an indexed specification ∀x.Φ(x).
3. The abstraction tool computes the abstract model PA from the protocol description.
In our prototype implementation, this abstract model is an SMV model.
4. A model checker verifies PA |= ϕ(x). Note that in PA, x is interpreted as the
reference process. If PA |= ϕ(x), then ∀x.ϕ(x) holds for all P (K), K > 1. Otherwise,
the model checker outputs an abstract counterexample for further analysis.

Structure of the Paper. In Section 3, we describe the environment abstraction frame-
work in a rigorous and general way. In Section 4, we apply environment abstraction to
the semaphore based mutual exclusion algorithms by Courtois et al. [10]; these proto-
cols were posed to us as a challenge problem by Peter O’Hearn. In Section 5 we survey
our experiences with other classes of protocols.

2 Related Work

In previous work, we used a specific instance of environment abstraction for the veri-
fication of the Bakery procotol and Szymanski’s algorithm [8]. Although our paper [8]
contains several seminal ideas about environment abstraction, it is very different in
scope and generality. In particular, the methods in [8] are tailored towards a specific
application and a hardwired set of specifications, without a general soundness result.

The method of counter abstraction [20] inspired our approach, and can be seen as
a specific, but limited form of environment abstraction. Invisible invariants [19,2] pro-
vide another novel method for verifying parameterized systems. Both these methods
are restricted to systems without unbounded integer variables.

The Indexed Predicates method [14,15] is similar to predicate abstraction with the
crucial difference that predicates can contain free index variables (variables that range
over process indices). These indexed predicates are used to construct complex (univer-
sally) quantified invariants for parameterized systems. The abstract descriptions used in
our abstraction are Indexed Predicates in that they contain free index variables. But the
similarity ends there. While we build an abstract transition relation over these descrip-
tions, in the Indexed Predicates method they don’t have an abstract transition relation.
They only have an abstract reachability relation, which specifies what set of abstract
states can one reach starting from another set of abstract states.

The series of papers [16,17,18,6] by McMillan and Chou et al. introduced an impor-
tant and successful approach for parameterized verification. In this approach, which is
based on circular compositional reasoning, a model checker is used as a proof assistant
to carry out parameterized verification. The user however has the burden of coming up
with non-interference lemmas [17] which can be non-trivial and require a deep under-
standing of the protocol under verification.

The TVLA method by Reps et al. [21] is a widely applicable abstract interpreta-
tion based approach for shape analysis, and also for verification of safety properties
of multi-threaded systems, cf. Yahav’s method [26]. TVLA’s canonical abstraction is a

Proving Ptolemy Right: The Environment Abstraction Framework 37

generalization of predicate abstraction similar in spirit to the description formulas in en-
vironment abstraction. To make verification of unbounded systems possible, TLVA uses
summarization, which is related to the idea of counting abstraction. Special predicates
called instrumentation predicates are used to focus on particular processes in detail.

In recent work, [13] proposes a method to find network invariants using finite au-
tomata learning algorithms due to Angluin and Beirmann. The paper [9] uses a new
completion procedure to strengthen split invariants. While parameterized verification is
not their primary aim, the method is able to produce parameterized proofs for proto-
cols like the Bakery protocol. Other classical approaches to parameterized verification
include regular model checking [1] and the WS1S based method [3]. Early work on
parameterized verification was done by Clarke et al [5].

3 A Generic Framework for Environment Abstraction

3.1 System Model

We consider parameterized concurrent systems P (K), where the parameter K ≥ 2
denotes the number of replicated processes. The processes are distinguished by unique
indices in {1, . . . , K} which serve as process id’s. Each process executes the same
program which has access to its process id. We do not make any specific assumptions
about the processes, in particular we do not require them to be finite state processes.

Consider a system P (K) with a set SK of states. Each state s ∈ SK contains
the entire state information for each of the K concurrent processes, i.e., s is a vector
〈s1, . . . , sK〉. Technically, P (K) is a Kripke structure (SK , IK , RK , LK) where IK is
the set of initial states and RK is the transition relation. We will discuss the labeling
LK for the states in SK below.

It is easy to extend our framework to parameterized systems which contain one or
several non-replicated processes in addition. In this case, the states s will be vectors
〈s1, . . . , sK , t1, . . . , tconst〉 where the ti are the states of the non-replicated processes.
In the following exposition, we will for simplicity omit this easy extension.

3.2 Ptolemaic Specifications

The change of focus brought upon by environment abstraction most visibly affects the
specification language: We use a variation of indexed ACTL� where the atomic formu-
las are able to express not only properties of individual processes, but also properties
of processes in the environment. In our practical examples, the following two atomic
formulas (where c is a constant value) have been most relevant:

Formula Meaning
pc[x] = c the program counter of process x has value c
c ∈ env(x) there is a process y �= x with program counter value c

“The environment of x contains a process with program counter value c.”

In this language, we can specify mutual exclusion

∀x. AG (pc[x] = 5 → ¬(5 ∈ env(x)))

38 E. Clarke, M. Talupur, and H. Veith

and many other important properties with a single quantifier ∀x that ranges over the
processes in the system. Intuitively, this is the reason why a single reference process
in the abstract model is able to assert correctness of the specification. Below we will
discuss what properties are expressible with a single quantifier.

3.3 Environment Abstraction

Our examples of atomic formulas motivate the construction of the abstract model: At
each state, we must be able to assert the truth or falsity of the atomic propositions
pc[x] = c and c ∈ env(x). Consequently, the expressions pc[x] = c and c ∈ env(x)
are used as labels in the abstract model. We will write L to denote the finite set of
atomic formulas, and will call them labels further on. Note that L can contain formulas
different from the two examples mentioned above.

The states of the abstract model are formulas Δ(x) (called “descriptions”) which
describe properties of process x and its environment. Similar to the atomic labels, the
Δ(x) also have a free variable referring to the reference process. In contrast to the
atomic labels, however, the descriptions will usually be relatively large and intricate
formulas which give a quite detailed picture of the global system state from the point of
view of reference process x. Intuitively, an abstract state Δ(x) represents all concrete
system states where some process p satisfies Δ(p). In our running example, the simplest
natural choice for the abstract states are descriptions of the form

pc[x] = c ∧ (
∧

i∈A

∃y �= x.pc[y] = i)
︸ ︷︷ ︸

i∈env(x)

∧ (
∧

i∈B

¬∃y �= x.pc[y] = i
︸ ︷︷ ︸

¬(i∈env(x))

)

where c is a program counter position, and A∪̇B is a partition of all program counter
positions. (Note that this simple base case is a form of counter abstraction; the descrip-
tions we use in applications are often much richer – depending on the complexity of the
problem.) Intuitively, this description says that “the reference process x is in program
counter location c, and the set of program counter locations of the other processes in
the system is A”. Since these formulas all belong to a simple syntactic class, it is easy to
identify Δ(x) with a tuple, as usually in predicate abstraction, for instance 〈c, A, B〉. In
the logical framework of this section, it is more natural to view descriptions as formulas.
In the applications, however, we will usually prefer an appropriate tuple notation.

In the rest of this section, we will assume that we have a fixed finite set of descriptions
D which constitute the abstract state space.

Soundness Requirements for Labels and Descriptions. Given a label or description
ϕ(x), we write s |= ϕ(c) to express that in state s, process c has property ϕ. We next
describe two requirements on the set D of descriptions and the set L of labels to make
them useful as building blocks for the abstract model.

1. Coverage. For each system P (K), each state s in SK and each process c there is
some description Δ(x) ∈ D which describes the properties of c, i.e.,

s |= Δ(c).

In other words, every concrete situation is reflected by some abstract state.

Proving Ptolemy Right: The Environment Abstraction Framework 39

2. Completeness. For each description Δ(x) ∈ D and each label l(x) ∈ L it holds
that either

Δ(x) → l(x) or Δ(x) → ¬l(x).

In other words, the descriptions in D contain enough information about a process
to conclude whether a label holds true for this process or not. The completeness
property enables us to give natural labels to each state of the abstract system: An
abstract state Δ(x) has label l(x) if Δ(x) → l(x).

Description of the Abstract System P A. Given two sets D and L of descriptions and
labels which satisfy the two criteria coverage and completeness, the abstract system PA

is a Kripke structure
〈D, IA, RA, LA〉

where each Δ(x) ∈ D has a label l(x) ∈ L if Δ(x) → l(x), i.e., LA(Δ(x)) = {l(x) :
Δ(x) → l(c)}. Before we describe IA and RA, we state the following lemma about
preservation of labels which motivates our definition of the abstraction function below:

Lemma 1. Suppose that s |= Δ(c). Then the concrete state s has label l(c) iff the
abstract state Δ(x) has label l(x).

Definition 1. Given a concrete state s and a process c, the abstraction of s with refer-
ence process c is given by the set αc(s) = {Δ(x) ∈ D : s |= Δ(c)}.

Remark 1. (i) The coverage requirement guarantees that αc(s) is always non-empty. (ii)
If the Δ(x) are mutually exclusive, then αc(s) always contains exactly one description
Δ(x). (iii) Two processes c, d of the same state s will in general give rise to different
abstractions, i.e., αc(s) = αd(s) is, in general, not true.
Now we define the transition relation of the abstract system by a variation of existential
abstraction: RA contains a transition between Δ1(x) and Δ2(x) if there exist a concrete
system P (K), two states s1, s2 and a process r such that

1. Δ1(x) ∈ αr(s1) [or, equivalently, s1 |= Δ1(r)]
2. Δ2(x) ∈ αr(s2) [or, equivalently ,s2 |= Δ2(r)]
3. there is a transition from s1 to s2 in P (K), i.e., (s1, s2) ∈ RK .

We note three important properties of this definition:

(a) We existentially quantify over K , s1, s2, and r. This is different from standard
existential abstraction where we only quantify over s1, s2. For fixed K and r, our
definition is essentially equivalent to existential abstraction. The only difference is
the obvious change in the labels: the concrete structure has labels of the form l(c),
while the abstract structure has labels of the form l(x).

(b) Since Δ1(x) ∈ αr(s1) and Δ2(x) ∈ αr(s2), both abstractions Δ1 and Δ2 use
the same process r. Thus, the Ptolemaic viewpoint of the reference process is not
changed in the transition.

(c) The process which is active in the transition from s1 to s2 can be any process in
P (K), it does not have to be r.

Finally, the set IA of abstract initial states is the union of the abstractions of concrete
states, i.e., Δ(x) ∈ IA if there exists a system P (K) with state s ∈ IK and process r
such that Δ(x) ∈ αr(s).

40 E. Clarke, M. Talupur, and H. Veith

For environment abstractions that satisfy coverage and completeness we have the
following general soundness theorem.

Theorem 1 (Soundness of Environment Abstraction). Let P (K) be a parameterized
system and PA be its abstraction as described above. Then for single indexed ACTL�

specifications ∀x.ϕ(x), the following holds:

PA |= ϕ(x) implies ∀K.P (K) |= ∀x.ϕ(x).

The reader is referred to the full version of this paper [7] for a proof; the full version
also contains the formal generalization of environment abstraction to multiple reference
processes.

3.4 Trade-Off between Expressivity of Labels and Number of Index Variables

In this section, we discuss how a well-chosen set of labels L often makes it possible to
use a single index variable. The Ptolemaic system view explains why we seldom find
more than two indices in practical specifications: When we specify a system, we tend
to track properties our process has in relation to other processes in the system, one at a
time. Thus, double-indexed specifications of the form ∀x �= y.ϕ(x, y) often suffice to
express the specifications of interest. Properties involving three or more processes at a
time are rare, as they consider triangles of processes and their relationships. (Note how-
ever that our method can, in principle, handle an arbitrary number of index variables,
cf. [7].) Let us return to our example specification. Mathematically, we can write this
formula in three ways:

(1) ∀x, y.x �= y → AG (pc[x] = 5) → (pc[y] �= 5)
(2) ∀x.AG (pc[x] = 5) → ¬(∃y �= x.pc[y] = 5)
(3) ∀x.AG (pc[x] = 5) → ¬(5 ∈ env(x))
Going from (1) to (3) we see that the universal quantifier is distributed over AG and

hidden inside the label 5 ∈ env(x). The Ptolemaic viewpoint again explains why such
situations are likely to happen: In many specifications, we consider our process along
the time axis, but only at each individual time point, we evaluate its relationship to other
processes; thus, a quantification scope inside the temporal operator suffices.

Formally, it is easy to see that the translation from (1) to (3) depends on the dis-
tributivity of conjunction over AG(α → β) with respect to β, i.e., AG(α → (ϕ ∧
ψ)) is equivalent to AG(α → ϕ) ∧ AG(α → ψ). We give a syntactic characteri-
zation of formulas with this property in [7]. Our characterization relies on previous
work [22,23] in the context of temporal logic query languages.

4 Verification of the Reader and Writer Algorithms

In this section we apply our framework to two classical semaphore based distributed
algorithms by Courtois et al. [10]. The algorithms ensure mutual exclusion of multiple
concurrent readers and writers. To our knowledge, these algorithms – which were posed
as challenge problems to us by Peter O’Hearn – have not been verified parametrically.
Figure 1 shows the code for a reader process in the simpler of the two algorithms.

Proving Ptolemy Right: The Environment Abstraction Framework 41

L1: P(mutex)
L2: readcount := readcount + 1
L3: if readcount = 1 then P(w)
L4: V(mutex)
L5: *** reading is performed ****

L6: P(mutex)
L7: readcount := readcount - 1
L8: if readcount = 0 then V(w)
L9: V(mutex)

Fig. 1. The Reader Algorithm

We first give a single compound statement that suffices to describe the semaphore based
algorithms. Then we introduce an appropriate abstract template invariant, and show how
to verify the two algorithms in practice.This example should illustrate all the ingredients
that go into our method and demonstrate the ease of application.

Compound Statement for Semaphore Based Algorithms. A semaphore is a low-
level hardware or OS construct for ensuring mutual exclusion. By design, a semaphore
variable can be accessed by only one process at any given time. The basic operations
on a semaphore variable w are P (w), which acquires the semaphore, and R(w), which
releases the semaphore.

We model a semaphore w as a boolean variable bw that can be accessed by all pro-
cesses. The acquire and release actions P (w) and R(w) are modeled by setting bw to 1
and 0 respectively. A semaphore based algorithm has N identical local processes corre-
sponding to the readers and writers. Readers and writers do not have the same code but
we can create a union of the two syntactically to obtain a single larger process with two
possible start states; depending on which state is chosen as the start state the compound
process either acts as a reader or as a writer. The state space of each local process is
finite. Instead of having multiple local variables, we will assume for simplicity there is
only one local variable pc per process.

In addition to the local processes there is one central process C. The central pro-
cess essentially consists of the shared variables, including the boolean variables used to
model the semaphores. As with the local processes, we roll up all the variables of the
central process into a single variable stcen for the sake of simplicity. Note that stcen can
be an unbounded variable. We will denote the parameterized system by P (N).

The reader and writer algorithms of [10] have three different types of transitions:

1. A simple transition by a local process. For example, the transition at L5 in Figure 1.
2. A local transition conditioned on acquiring or releasing a semaphore, e.g. L1, L4.
3. A transition in which a process modifies a shared variable, e.g., L2, L7.

All three types of transitions can be guarded by a condition on the central variables.
The three types of transitions can be modeled using the compound statement

pc = L1 : if stcen = C1 then goto stcen = f(stcen) ∧ pc = L2

else goto stcen = g(stcen) ∧ pc = L3.

The semantics of this statement is intuitive: if the local process is in control location L1,
it checks if the central process is in state C1. In this case, it modifies the central process
to a new state f(stcen) (where f is a function, see below) and goes to L2. Otherwise,
the central process is modified to g(stcen) and the local process goes to L3.

42 E. Clarke, M. Talupur, and H. Veith

In the semaphore algorithms we consider, the functions f, g are simple linear func-
tions. For instance, in the transition L2 : readcount := readcount + 1 of Figure 1 the
new value for the central variable readcount is a linear function of the previous value.

In the longer version of this paper [7] we present the two algorithms from [10] in
our input language. For example, the semaphore acquire action at L1 in Figure 1 can be
modelled as

pc = L1 : if bmutex = 0 then goto bmutex = 1 ∧ pcl = L2 else goto pc = L1

Abstract Domain. Our description formulas Δ(x) are very similar to the example of
Section 3, except for an additional conjunct Δcen:

pc[x] = pc ∧ (
∧

i∈A

∃y �= x.pc[y] = i) ∧ (
∧

i∈B

¬∃y �= x.pc[y] = i) ∧ Δcen

Here, Δcen is a predicate which describes properties of the central process, analogous
to classical predicate abstraction. Since the central process does not depend on the ref-
erence process x, the formula Δcen does not contain the free variable x.

The structure of Δcen is automatically extracted from the program code. For instance,
for the program of Figure 1, Δcen describes the semaphore variables w, mutex and the
two predicates readcount = 0 and readcount = 1. Thus, Δcen has the form

[¬]w ∧ [¬]mutex ∧ [¬](readcount = 0) ∧ [¬](readcount = 1).

Here, [¬] stands for a possibly negated subformula. We write Dcen to denote the set of
all these Δcen formulas; in our example, Dcen has 24 = 16 elements.

As argued above, it is more convenient in the applications to describe an abstract
state Δ(x) as a tuple. Specifically, we will use the tuple

〈pc, e1, . . . , en, Δcen〉

to describe an abstract state Δ(x). Intuitively, pc refers to the control location of the
reference process, and Δcen is the predicate abstraction for the central process. The bits
ei describe the presence of an environment process in control location i, i.e., ei is 1 if
i ∈ A. (Equivalently, ei is 1 if Δ(x) → i ∈ env(x).)

We note that the abstract descriptions Δ(x) and the corresponding tuples can be
constructed automatically and syntactically from the protocol code. Since our labels of
interest are of the form pc[x] = c and c ∈ env(x), it is easy to see that the coverage
and completeness properties are satisfied by construction.

Abstraction Template Invariants. To describe the abstract template invariant, we will
consider two cases: (i) the executing process is the reference process and (ii) the exe-
cuting process is an environment process. For both cases, we will describe a suitable
abstract invariant, and take their disjunction. Recall the general form

pc = L1 : if stcen = C1 then goto stcen = f(stcen) ∧ pc = L2

else goto stcen = g(stcen) ∧ pc = L3.

of the compound statement. We will give an invariant for the abstract transition

〈pc, e1, . . . , en, Δcen〉 to 〈pc′, e′1, . . . , e
′
n, Δ′cen〉

Proving Ptolemy Right: The Environment Abstraction Framework 43

Case 1: Reference Process Executing. The invariant Iref in this case is

pc = L1 ∧ (1)
[
(C1 |= Δcen ∧ Δ′cen ∈ f(Δcen) ∧ pc′ = L2)

∨
(2)

(C1 �|= Δcen) ∧ Δ′cen ∈ g(Δcen) ∧ pc′ = L3)
]

(3)

Condition (1) says that the reference process is at control location L1. Condition (2)
corresponds to the then branch: it says that the central process is approximated to be
in state C1; in the next state, the reference process is in control location L2 and the
new approximation of the central process is non-deterministically picked from the set
f(Δcen). As usually in predicate abstraction, f is an over-approximation of function f :

f(Δcen) = {Δ′cen ∈ Dcen | ∃stcen. stcen |= Δcen and f(stcen) |= Δ′cen}

Usually the operations on variables in a protocol are not more complicated than simple
linear operations; consequently, the predicates involved in our environment abstraction
are simple, too. Therefore, computing f is trivial with standard decision procedures.

Condition (3), which corresponds to the else branch, is similar to condition (2).

Case 2: Environment Process Executing. The invariant Ienv in this case is

eL1 = 1 ∧ (4)
[
(C1 |= Δcen ∧ Δ′cen ∈ f(Δcen) ∧ e′L2

= 1)
∨

(5)

(C1 �|= Δcen) ∧ Δ′cen ∈ g(Δcen) ∧ e′L3
= 1)

]
(6)

Condition (4) says that some environment process is in control location L1). Condition
(5) is similar to Condition (2) of Case 1 above, with the exception that e′L2

= 1 forces
a process in the environment to go to location L2. Condition (6) is analogous to (5).

The invariant I for the compound statement is the disjunction I = Iref ∨ Ienv of the
invariants in the two cases. Given a protocol with compound statements cs1, . . . , csm

we first find invariants I(cs1), . . . , I(csm) by plugging in the concrete parameters of
each statement into the template invariant I . The disjunction of these individual invari-
ants gives us the abstract transition relation.

We denote the abstract system obtained from the template invariant as PA and the
abstract system obtained from the definition of environment abstraction by PA. Our
construction is a natural over-approximation of PA:

Fact 1. Every state transition from Δ(x) to Δ′(x) in PA also occurs in PA .

Practical Application. For our experiments, we already had a prototype implemen-
tation of environment abstraction to deal with cache coherence and mutual exclusion
protocols. We added new procedures to allow our tool to read in protocols using the
new compound statement and to perform automatic abstraction of the protocol, as de-
scribed in the previous section.

The procedure to compute next values for Δcen, i.e., f(Δcen), was handled by an
internal decision procedure. (This is a carry over from our previous work with environ-
ment abstraction. In hindsight, calling an external decision procedure is a better option).

44 E. Clarke, M. Talupur, and H. Veith

Our tool, written in Java, takes less than a second to find the abstract models given the
concrete protocol descriptions. We use Cadence SMV to verify the abstract model.

For both algorithms in [10], we verified the safety property

∀x �= y.AG
(
pc[x] ∈ {LR, LW} → ¬LW ∈ env(x)

)

where LR and LW are the program locations for reading and writing respectively.
Our first attempt to verify the protocol produced a spurious counterexample. To un-

derstand the reason for this counterexample, consider the protocol shown in Figure 1.
Each time a reader enters the section between lines L3 and L7, readcount is incre-
mented. When a reader exits the section, readcount is decremented. The semaphore w,
which controls a writer’s access to the critical section, is released only when readcount =
0 and this happens only when no reader is between lines L3 and L7. Our abstract model
tracks only the predicate readcount = 0. The decrement operation on readcount in line
L7 is abstracted to a non-deterministic choice over {0, 1} for the value of the predicate
(readcount = 0). Thus, the predicate can become true (i.e., take value 1) even when
there are readers between lines L3 and L7 and this leads to the spurious counter exam-
ple. To eliminate this spurious counterexample we make use of the invariant

pc[x] ∈ [L3..L7] → readcount �= 0

This invariants essentially says that for a process between lines L3 and L7, readcount
has to be non-zero. We abstract this invariant into two invariants

pc ∈ [L3..L7] → ¬(readcount = 0) and (
∨

L∈[L3..L7]

.eL) → ¬(readcount = 0).

for the reference process and the environment respectively. Constraining the abstract
model with these two invariants, we are able to prove the safety property. The model
checking time is less than a minute for both semaphore algorithms.

There still remains an important question: How do we know that the invariant added
to the abstract model is true? First, we note that the invariant is a local invariant in
that it refers only to one process and it is quite easy to convince ourselves that it holds.
To prove formally that the invariant holds, we proceed as follows: Running the model
checker on the original abstract model establishes pc ∈ [L3..L7]¬(→ readcount =
0). From Theorem 1 we can conclude that ∀x.pc[x] ∈ [L3..L7] → readcount �= 0,
and thus we are justified in using this invariant as assumption in proving the safety
property. Note that this approach is close in spirit to adding non-interference lemmas,
as described by McMillan and Chou et al. [17,6].

5 Survey of Other Environment Abstraction Applications

In this section, we survey other, more involved applications of the environment abstrac-
tion principle. For a more detailed discussion of these applications, we refer the reader
to Talupur’s thesis [25], and our predecessor paper [8].

Mutual Exclusion Protocols. In [8], we have shown how to verify mutual exclu-
sion protocols such as the Bakery protocol and Szymanski’s algorithm. We need two
compound statements which are more complex than in Section 4:

Proving Ptolemy Right: The Environment Abstraction Framework 45

Guarded Transition
pc = L1 : if ∀otr �= x.G(x, otr) then goto pc = L2 else goto pc = L3
Semantics: In control location L1, the process evaluates the guard and changes to control loca-
tion L2 or L3 accordingly.
Update Transition
pc = L1 : for all otr �= x if T (x, otr) then uk := ϕ(otr) goto pc = L2
Semantics: At location L1, the process scans over all other processes otr to check if formula
T (x, otr) is true. In this case, the process changes the value of its data variable uk according to
uk := ϕ(otr). Finally, the process changes to location L2.

The abstract domain is also more complex, because each process can have unbounded
data variables. To account for these variables, the Δ(x) include inter-predicates
IPj(x, y), i.e., predicates that span multiple processes. Thus, the Δ(x) have the form

pc[x] = c ∧
∧

(i,j)∈A

∃y �= x.pc[y] = i ∧ IPj(x, y) ∧
∧

(i,j)∈B

¬∃y �= x.pc[y] = i ∧ IPj(x, y)

for suitable A and B. The inter-predicates are automatically picked from the program
code. For example, a typical inter-predicate for Bakery is t[x] > t[y], which says that
the ticket variable of process x is greater than the ticket variable of process y.

The abstraction templates for this language are quite involved, providing a quite
precise abstract semantics which is necessary for this protocol class. While [8] assumed
that the compound statements are atomic, we later improved the abstraction to verify
the mutex property of Bakery without this assumption. We defer a full discussion of
these results to a future publication, and refer the reader to [25].

Cache Coherence Protocols. For cache coherence protocols we require six compound
statements. Like semaphore based protocols, cache coherence systems also have a cen-
tral process. The replicated processes, i.e., the caches, have very simple behaviors, and
essentially move from one control location to another. This is modeled by the trivial
local transition pc = L1 : goto pc = L2. Unlike semaphore based protocols, the di-
rectory (central process) can exhibit complex behaviors, as it has pointer variables and
set variables referring to caches. The compound statement for the directory has the form

guard : do actions A1, A2, .., Ak

where A1, . . . , Ak are basic actions and guard is a condition on the directory’s control
location and its pointer and set variables. The basic actions comprise goto, assign, add,
remove, pick and remote actions, cf. [7].

The descriptions Δ(x) used for cache coherence are similar to those of Section 4,
but owing to the complexity of the directory process, Δcen is more elaborate than in the
semaphore case. We have used this framework to verify the coherence property of sev-
eral versions of German’s protocol and a simplified version of the Flash protocol [25].

Our experiments with the original Flash protocol showed that the abstract model can
become very large. The reason is the high precision of the abstract domain based on all
control conditions from the protocol code. There is a promising approach to alleviate
this problem: instead of building the best possible abstract model we build a coarser
model which we refine using the circular reasoning scheme of [16,17,6]. Such a hybrid
approach combines the strengths of our approach and the circular reasoning approach.

46 E. Clarke, M. Talupur, and H. Veith

6 Conclusion

Environment abstraction provides a uniform platform for different types of parame-
terized systems. To adjust our tool to a new class of protocols, we have to identify the
compound statements for that class, and specify the actions of compound statements in
terms of abstraction templates. This task requires ingenuity, but is a one time task. Once
a ’library’ for a class of protocols is built, it can be used to verify any protocol in the
class automatically or with minimum user guidance.

Let us address some common questions we have encountered.
Human involvement present in too many places ? The end user who applies our tool to a
specific protocol can be different from the verification engineer who builds the library.
To verify a protocol, the user has to know only the compound statements; providing the
abstract template invariants is the task of the tool builder.
Compound statements too complex ? The compound statements try to pack as many basic
patterns as possible in a single statement and thus can be complex. But it is easy to create
familiar looking syntactic sugar for often used instances of the compound statements.
Correctness of the abstraction templates ? This question is not much different from
asking if a source code model checker is correct. It is easier to convince ourselves about
the correctness of a small number of declarative transition invariants than to reason
about a huge piece of software. In future work, we plan to investigate formal methods
to ensure correctness of the abstraction.
Abstraction refinement ? There are many ways of refining our abstract model. In partic-
ular, we can (i) enrich the environment predicates to count the number of processes in
a certain environment, (ii) increase the number of reference processes, and (iii) enrich
the Δ(x) descriptions by additional predicates. This is a natural part of our future work.

In conclusion, the environment abstraction framework works well for a variety of
protocols by striking what we believe is the right balance between automation and class
specific reasoning. As part of future work, we plan to apply this framework to real time
and time triggered systems to further illustrate this point.

References

1. Abdullah, P., Buojjani, A., Jonsson, B., Nilsson, M.: Handling Global Conditions in Pa-
rameterized System Verification. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 134–145. Springer, Heidelberg (1999)

2. Arons, T., Pnueli, A., Ruah, S., Zuck, L.: Parameterized Verification with Automatically
Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, Springer, Heidelberg (2001)

3. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S Systems to Ver-
ify Parameterized Networks. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS,
vol. 1785, Springer, Heidelberg (2000)

4. Stahl, K., Baukus, K., Lakhnech, Y.: Parameterized Verification of a Cache Coherence Pro-
tocol: Safety and Liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, Springer,
Heidelberg (2002)

5. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about Networks with Many Identical
Finite State Processes. Information and Computation 81, 13–31 (1989)

Proving Ptolemy Right: The Environment Abstraction Framework 47

6. Chou, C.-T., Mannava, P.K., Park, S.: A Simple Method for Parameterized Verification
of Cache Coherence Protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS,
vol. 3312, Springer, Heidelberg (2004)

7. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems,
www.cs.cmu.edu/∼tmurali/tacas08.pdf

8. Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameterized Verification.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2005)

9. Cohen, A., Namjoshi, K.: Local Proofs for Global Safety Properties. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidelberg (2007)

10. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent Control with ”Readers” and ”Writers”.
Communication of the ACM 14 (1971)

11. Delzanno, G.: Automated Verification of Cache Coherence Protocols. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)

12. German, S.M., Sistla, A.P.: Reasoning about Systems with Many Processes. Journal of the
ACM 39 (1992)

13. Grinchtein, O., Leucker, M., Piterman, N.: Inferring Network Invariants Automatically.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497.
Springer, Heidelberg (2006)

14. Lahiri, S.K., Bryant, R.: Constructing Quantified Invariants. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, Springer, Heidelberg (2004)

15. Lahiri, S.K., Bryant, R.: Indexed Predicate Discovery for Unbounded System Verification. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidelberg
(2004)

16. McMillan, K.L.: Verification of an implementation of tomasulo’s algorithm by compositional
model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 110–121. Springer,
Heidelberg (1998)

17. McMillan, K.L.: Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001.
LNCS, vol. 2144, Springer, Heidelberg (2001)

18. McMillan, K.L., Qadeer, S., Saxe, J.B.: Induction in Compositional Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 312–327. Springer, Hei-
delberg (2000)

19. Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, Springer, Heidelberg (2001)

20. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1, ∞)-Counter Abstraction. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

21. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic. In:
TOPLAS (2002)

22. Samer, M., Veith, H.: A Syntactic Characterization of Distributive LTL Queries. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1099–
1110. Springer, Heidelberg (2004)

23. Samer, M., Veith, H.: Deterministic CTL Query Solving. In: Proc. of the 12th International
Symposium on Temporal Representation and Reasoning (TIME) (2005)

24. Suzuki, I.: Proving Properties of a Ring of Finite State Machines. Information Processing
Letters 28, 213–214 (1988)

25. Talupur, M.: Abstraction Techniques for Infinite State Verification. PhD thesis, Carnegie
Mellon University, Computer Science Department (2006)

26. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic. In:
The Proceedings of 18th Symposium on Principles of Programming Languages (2001)

www.cs.cmu.edu/~tmurali/tacas08.pdf

Revisiting Resistance Speeds Up I/O-Efficient
LTL Model Checking�

J. Barnat1, L. Brim1, P. Šimeček1, and M. Weber2

1 Masaryk University Brno, Czech Republic
2 University of Twente, The Netherlands

Abstract. Revisiting resistant graph algorithms are those, whose correctness is
not vulnerable to repeated edge exploration. Revisiting resistant I/O efficient
graph algorithms exhibit considerable speed-up in practice in comparison to non-
revisiting resistant algorithms. In the paper we present a new revisiting resistant
I/O efficient LTL model checking algorithm. We analyze its theoretical I/O com-
plexity and we experimentally compare its performance to already existing I/O
efficient LTL model checking algorithms.

1 Introduction

Model checking real-life industrial systems is a memory demanding and computation
intensive task. Utilizing the increase of computational resources available for the ver-
ification process is indispensable to handle these complex systems. The three major
approaches to gain more computational power include the usage of parallel computers,
clusters of workstations and the usage of external memory devices (hard disks), as well
as their combination.

In this paper, we focus on external memory devices, where the goal is to develop
algorithms that reduce the number of I/O operations an algorithm has to perform to
complete its task. This is because the access to information stored on an external device
is orders of magnitude slower than the access to information stored in main memory.
Thus, the complexity of I/O efficient algorithms is measured in the number of I/O op-
erations [1].

The automata-theoretic approach [2] to model checking finite-state systems against
linear-time temporal logic (LTL) reduces to the detection of reachable accepting cycles
in a directed graph. Recently, two I/O efficient LTL model-checking algorithms that
allow verification of both safety and liveness properties have been proposed in [3] and
in [4]. Both algorithms build on breadth-first traversal through the graph and employ the
delayed duplicate detection technique [5,6,7,8]. The traversal procedure has to maintain
a set of visited vertices (closed set) to prevent their re-exploration. Since the graphs are
large, the closed set cannot be kept completely in main memory. Most of it is stored
on an external memory device. When a new vertex is generated (into the open set) it
is checked against the closed set to avoid its re-exploration. The idea of the delayed
duplicate detection technique is to postpone the individual checks and perform them

� This work has been partially supported by the Grant Agency of Czech Republic grant No.
201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 48–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 49

together in a group, for the price of a single scan operation. We assume that the de-
layed vertices are stored in the main memory as candidate set. In order to minimize the
number of scan operations which merge the closed set on disk with the candidate set, it
is important that the candidate set is as large as possible. In the case of BFS traversal,
candidate sets are formed typically from a single BFS level. However, if the level is
small, the utility of delaying the duplicate check drops down. A possible solution is to
maximize the size of the candidate set by exploring more BFS levels at once. This, in
general, leads to revisiting of vertices due to cycles and might violate the correctness of
the algorithm. Whether correctness is preserved depends on the algorithm itself. E.g.,
if an algorithm uses BFS to traverse the reachable part of a graph, revisiting of vertices
does not disturb its correctness, while the algorithm for computing a topological sort is
not resistant to such revisits.

It is important to note that even though vertex revisits result in performing more
(cheap) RAM operations, it might significantly reduce the number of expensive I/O
operations. Thus, revisiting resistant algorithms are expected to be more I/O efficient
than non-resistant ones in practice. In the first part of the paper we explore the notion
of a revisiting resistant graph algorithm in more detail.

We are interested in LTL model-checking algorithms for very large implicit graphs,
i.e., graphs defined by an initial vertex and a successor function. In previous work,
we provided an I/O efficient LTL model checking algorithm that builds on topological
sort [4]. The algorithm does not work on-the-fly, however, which limits its applicability.
In addition, the algorithm is not revisiting resistant. The main contribution of this paper
is to overcome these obstacles by providing a new algorithm. The algorithm adapts the
idea of the on-the-fly MAP algorithm [9], which is revisiting resistant. In particular,
we exploit the algorithm’s property of decomposing a graph into several independently
processable, smaller sub-graphs. This, in combination with revisiting resistance, sig-
nificantly improves its practical behavior. We consider several heuristics that guide the
decomposition.

Related work. Regarding I/O efficient LTL model-checking, we explicitly compare our
work to all existing approaches in Sections 5 and 6. Works on improving the effi-
ciency of delayed duplicate detection (DDD) include hash-based DDD [10], structured
DDD [11], graph compression, lossy hash tables and bit-state hashing [12]. All these
techniques are orthogonal to our approach and can be combined with the revisiting
resistance principle. We have not implemented these other techniques to provide an
empirical evaluation.

Main Results. The contribution of this paper can be summarized as follows:

– We explore the notion of a revisiting resistant algorithm and show that the I/O
efficient algorithm from [4] is not revisiting resistant (Section 2).

– We present a revisiting resistant I/O efficient reachability algorithm (Section 3).
– We describe the I/O efficient MAP algorithm for LTL model-checking that works

on-the-fly (Section 4), analyze its theoretical complexity (Section 5), and compare
it to other algorithms, both in terms of asymptotic complexity (Section 5) and ex-
perimental behavior (Section 6).

50 J. Barnat et al.

2 Revisiting Resistance

In this section, we explain that some algorithms exhibit a quite distinct property that
can be of use when adapting the algorithm to an I/O efficient setting. We will refer to
this property as revisiting resistance and will brand algorithms satisfying the property
as revisiting resistant algorithms.

We start with a brief description of a general graph search algorithm. Basically, a
search algorithm maintains two data structures: a set of vertices that await processing
(open set) and a set of vertices that have been processed already (closed set). The way in
which vertices are manipulated by a general algorithm is depicted in Fig. 1(a). A vertex
from the open set is selected and its immediate successors are generated (by traversing
edges originating from the vertex). The newly generated vertices are checked against
the closed set, to ensure that information stored in the closed set is properly updated.
Also, if there is need for further processing of some vertices, they are inserted into the
open set along with all necessary information for the processing.

DISK

RAM

(a) (b)

Candidates

(c)

Candidates

Op
en

Op
en

Op
en

Closed Closed Closed

Fig. 1. Vertex work flow: (a) Standard search algorithm, (b) I/O search algorithm with delayed
duplicate detection, (c) I/O search algorithm with delayed duplicate detection and revisiting

An I/O efficient search algorithm utilizing the delayed duplicate detection technique
has a different vertex work flow. A vertex is picked from the open set and its successors
are generated. Then they are inserted into the set of candidates, i. e., vertices for which
the corresponding check against the closed set has been postponed. In our approach, the
set of candidates is kept completely in memory. Candidates are flushed to disk using a
merge operation under two different circumstances: Either the open set runs empty and
the algorithm has to perform a merge to get new vertices into it, or the candidate set is
too large and cannot be kept in memory anymore. The merge operation performs the
duplicate check of candidate vertices against closed vertices, and inserts those vertices
that require further processing into the open set. A schema of the vertex work flow is
depicted in Fig. 1(b).

As explained, the merge operation is performed every time the algorithm empties the
set of open vertices. Under the standard I/O efficient approach to BFS graph exploration
this happens at least after every BFS level. We have observed that for many particular
runs of the I/O efficient BFS algorithm, the fact that the merge operation appears after
every BFS level is actually a weak point in the practical performance of the algorithm.
This is because often a single BFS level contains a relatively small number of vertices,

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 51

Fig. 2. Example computation of the topological-sort based cycle detection algorithm. Values as-
sociated with a vertex correspond to the number of immediate predecessors that have not been
processed yet. After the computation, vertices that are associated with a zero value lie outside
cycles. The algorithm is not revisiting resistant, as vertex D is labeled with a zero value after the
merge operation, although it does lie on a cycle.

in comparison to the full graph. Processing them means that the merge operation has to
traverse a large disk file, which is costly.

To fight this inefficiency, we suggest a modification in the vertex work flow of an I/O
efficient algorithm, as depicted in Fig. 1(c). A vertex, when generated, is inserted not
only into the set of candidates, but also into the open set. This causes some of the vertices
stored in the candidate set to be revisited. I.e., the “visit” procedure is performed repeat-
edly for a vertex without properly updating its associated information in the closed set
residing in external memory. Consequently, some graph algorithms may exhibit incor-
rect behavior. Revisiting resistant external memory graph algorithms are those, whose
correctness is not vulnerable to repeated edge exploration from vertices in the open set.
Below, we demonstrate that some algorithms are vulnerable to the revisiting of candi-
dates and become incorrect, while others cope with the revisiting without problems.

We exemplify the concept of revisiting resistance on the single source shortest path
(SSSP) and the topological-search based cycle detection (OWCTY) [13,14,15] algo-
rithms. As for the SSSP algorithm, the procedure that is bound to edge exploration
computes a new value for the target vertex, or updates it if the newly computed value is
better (lower in this case) than the value stored before. For example: suppose, an edge
(u,v) is labeled with the value t, and vertex u is stored in the open set with an associated
value d(u), representing the length of the currently shortest known path to vertex u from
the source vertex. The procedure computes a new value for vertex v using the formula
d(v) = d(u)+ t. The new pair (v,d(v)) is stored in the candidate set and awaits merging
with the value stored in the closed set. After the merge, the value stored in the closed
set corresponds to the minimum of the originally stored value and the newly computed
value. Note, that the resulting value in the closed set is independent from the number of
re-explorations of edge (u,v), and, in other words, the number of merges. Even if per-
formed several times, the computation of the minimum among several possible values
remains correct. Therefore, we consider the SSSP algorithm as revisiting resistant.

The situation is quite different in the case of the I/O-efficient OWCTY algorithm.
The algorithm performs a cycle detection that is based on the recursive elimination of

52 J. Barnat et al.

vertices with zero predecessors. At first, the algorithm computes the number of im-
mediate predecessors for every reachable vertex, and then eliminates vertices whose
predecessor count drops to zero. During vertex elimination, the predecessor count is
decreased for all immediate successors of the eliminated vertex. Thus, when visiting
a vertex v from vertex u, the predecessor count stored at vertex v has to be decreased
by one. Unfortunately, the value stored for vertex v can be maintained correctly only
by costly access to external memory. One way around this dilemma is to only store a
delta alongside v in the candidate set. E. g., a pair (v,−1) indicates that there is a new
eliminated predecessor of v, and so the value associated with v should be decreased by
one. If we now allow the algorithm to further explore vertices below v, it may happen
that the edge (u,v) is re-explored again and another pair (v,−1) is inserted into the set
of candidates. However, when the set of candidates is merged with the closed set on
disk, the predecessor count of vertex v gets decreased twice. This violates the correct-
ness of the algorithm. The problem is exemplified in Fig. 2. Therefore, the algorithm is
not revisiting resistant.

3 Revisiting Resistant Reachability

This section explains a simple revisiting resistant algorithm, an I/O efficient breadth-
first search (Alg. REACHABILITY). The algorithm’s sole task is to traverse all vertices,
thus we only have to remember for each vertex whether it has been visited or not.
Clearly, once a vertex is marked as visited, additional visits do not change this property.

We introduce revisiting resistance to the standard I/O efficient breadth-first search
(BFS) procedure as follows. After a single BFS level is fully generated, a decision is
made whether the set of candidates will be merged with the closed set, or whether an-
other BFS level will be processed without prior merging. The pseudo-code of function
OPENISNOTEMPTY makes this more precise.

According to our observations, omitting the merge operation as long as there is still
some unused memory left is not the optimal strategy. Merging with a small closed set
might be cheaper than repeatedly re-exploring vertices of the candidate set. We avoid
postponing merge operations on small closed sets by introducing a decision formula
that builds upon the estimated time needed to fully generate the next BFS level (n+1),
and the estimated time needed to perform the merge operation. These estimations are
denoted as estim(tgen

n+1) and estim(tmerge
n+1), respectively, and they are computed from the

sizes of open and closed sets as follows:

estim(tgen
n+1) = tgen

n · |Openn+1|
|Openn|

and estim(tmerge
n+1) = tmerge

n · |Closedn|+ |Openn|
|Closedn|

,

where |Openn+1| refers to the number of newly discovered vertices w.r.t. Candidates.
The decision formula is then a simple comparison of the estimated values:

estim(tgen
n+1) < estim(tmerge

n+1)

Finally, note that in our approach the entire set of candidates is kept in memory.
However, there is a different approach to I/O efficient reachability, in which both, the

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 53

Algorithm 1. REACHABILITY

1: OmittedMergeCount ← 0
2: Candidates ← /0
3: s ← GETINITIALVERTEX()
4: Closed ← {s}
5: Open.push(s)
6: while OPENISNOTEMPTY() do
7: s ← Open.pop()
8: for all t ∈ GETSUCCESSORS(s) do
9: if t �∈ Candidates then

10: Candidates ← Candidates ∪{t}
11: LastLevel ← LastLevel∪ t
12: if MEMORYISFULL() then
13: MERGE()

Algorithm 2. OPENISNOTEMPTY

1: if Open.isEmpty() then
2: if ESTIMGEN() < ESTIMMERGE() then
3: Open.swap(LastLevel)
4: OmittedMergeCount ← OmittedMergeCount +1
5: else
6: MERGE()
7: return ¬Open.isEmpty()

Algorithm 3. MERGE

1: for all s ∈ Closed do
2: if s ∈ Candidates then
3: Candidates ← Candidates \{s}
4: if OmittedMergeCount > 0 then
5: Open ← (Open∪LastLevel)\Closed
6: OmittedMergeCount ← 0
7: for all s ∈ Candidates do
8: if OmittedMergeCount = 0 then
9: Open.push(s)

10: Closed ← Closed ∪{s}
11: LastLevel.clear()
12: Candidates ← /0

candidate and the closed set are stored in external memory [3]. It is possible to com-
bine revisiting resistant algorithms with that approach by employing a similar decision
formula to trigger the merge operation.

4 I/O Efficient MAP Algorithm

In this section we design a new revisiting resistant, I/O efficient algorithm for detect-
ing reachable accepting cycles in an implicitly given, directed graph. The algorithm is

54 J. Barnat et al.

derived from the Maximal Accepting Predecessors (MAP) algorithm [9,16]. We discuss
advantages and disadvantages of the algorithm in comparison to other I/O efficient LTL
model checking algorithms.

The main idea behind the MAP algorithm is based on the fact that each accepting
vertex lying on an accepting cycle is its own accepting predecessor. Instead of expensive
computing and storing of all accepting predecessors for each (accepting) vertex, the
algorithm computes and stores a single representative accepting predecessor for each
vertex, namely the maximal one in a suitable ordering of vertices.

Let G = (V,E,s0,F) be a directed graph, where V is a set of vertices, E is a set of
edges, s0 is an initial vertex, and F a set of accepting vertices. For technical reasons we
assume s0 is not accepting. Let ≺ be a linear order on vertices with minimal element ⊥.
Let u �+ v denote that there is a directed path from u to v. Then the maximal accepting
predecessor function mapG is defined as:

mapG(v) = max
(
{u ∈ F |u �+ v}∪{⊥}

)

Accepting cycle detection is based on the fact that if v = mapG(v), then v lies on an
accepting cycle. While the condition is sufficient, it is not necessary—it is possible that
v �= mapG(v) but v lies on an accepting cycle. Moreover, if v is accepting and mapG(v) ≺
v then v does not lie on an accepting cycle. Therefore, the MAP algorithm repeatedly
removes vertices for which mapG(v) ≺ v and recomputes mapG for all vertices.

There is another feature of the MAP algorithm that can be exploited in designing
its I/O efficient version. If mapG(u) �= mapG(v), then u and v cannot lie on the same
accepting cycle. This property allows to decompose the graph G into disjoint subgraphs
each time mapG values are computed. Let P(u) = {v | mapG(v) = u}. The vertex u is
called a seed of a partition P(u). For any two vertices u,v we have that either P(u) =
P(v) or P(u)∩P(v) = /0. The subgraphs are given by disjoint partitions and it is enough
to search for accepting cycles in each partition separately. The algorithm thus maintains
a queue of pairs (seed,partition), which is initialized with the partition containing all
vertices of G and the initial vertex s0 as its seed. On each partition P the algorithm
computes mapG values. If there is a vertex u such that mapG(u) ∈ P, an accepting
cycle is detected, otherwise P is split into smaller partitions which are stored for further
processing. Note that sub-partitions with mapG = ⊥ are dropped immediately.

The algorithm obtains the necessary linear ordering on vertices by assigning a unique
number to every vertex. This also allows us to store for each vertex the order value of
its maximal accepting predecessor rather than the maximal accepting predecessor itself.

The basic structure of our new algorithm follows the original MAP algorithm. We
maintain a queue Partitions of unprocessed partitions as produced by computing mapG.
For each partition the algorithm also records its size. If a partition fits into the main
memory, we call a standard in-memory algorithm searching accepting cycles, for ex-
ample, nested depth-first search [17].

Procedure MAP propagates the highest order values across the graph in order to
compute mapG values for all vertices in a given partition. In essence, the procedure
is very similar to external BFS, but it allows to enqueue already explored vertices if
it increases their mapG value. We return to this point in the explanation of procedure
UPDATEMAP.

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 55

Algorithm 4. DETECTACCEPTINGCYCLE(G)
Require: G = (V ,E,s0,F)
1: Partitions.push(s0,V)
2: while Partitions �= /0 do
3: (s,Partition) ← Partitions.pop()
4: if ‖Partition‖ > MEMORY CAPACITY then
5: MAP(s,Partition)
6: else
7: NESTED-DFS(s,Partition)
8: FINDPARTITIONS(Partition)
9: return No accepting cycle!

Algorithm 5. MAP(seed,Partition)
1: Open.push(〈seed,⊥〉)
2: Closed ← {seed}
3: Closed.setMap(seed,⊥)
4: while OPENISNOTEMPTY() do
5: (s,propagate) ← Open.pop()
6: for all t ∈ GETSUCCESSORS(s) do
7: STOREORCOMBINE(t,propagate)

Algorithm 6. STOREORCOMBINE(s,map)
1: if s ∈ Candidates then
2: map′ ← Candidates.getMap(s)
3: Candidates.setMap(s, MAX(map,map′))
4: else
5: if MEMORYISFULL() then
6: MERGE()
7: Candidates ← Candidates ∪{s}
8: Candidates.setMap(s,map)

In procedure STOREORCOMBINE, we ensure that the currently highest known ac-
cepting predecessor for vertex s is stored: if some accepting predecessor for s has been
encountered already, we compare it to map and store the higher one. Otherwise, we
store s and map, possibly first making enough memory available through the MERGE

operation.
The MERGE procedure joins data stored in internal memory with an external reposi-

tory. To identify which vertices are new or having their maximal accepting predecessor
updated, the procedure traverses all vertices stored on disk and checks whether they are
present in the candidate set. For each vertex found in internal memory, MERGE also
compares whether the newly found accepting predecessor is higher than the one stored
on disk.

Finally, new vertices and vertices with updated accepting predecessor are appended
to the open set. New vertices are added to the Closed repository, too.

56 J. Barnat et al.

Algorithm 7. MERGE

1: Candidates ← Candidates ∩ Partition {Intersection is made trivially by a single traversal
across Partition}

2: Updated = /0
3: for all s ∈ Closed do
4: if s ∈ Candidates then
5: UPDATEMAP(s)
6: for all s ∈ Candidates do
7: Open.push(〈s,Candidates.getMap(s)〉)
8: New ← Candidates\Updated
9: Closed ← Closed ∪New

10: Candidates ← /0

Procedure UPDATEMAP is called from MERGE to compare accepting predecessors
of a given vertex s, this time taking all known information into account. We compare the
(so far) highest accepting predecessor for s stored with the candidate set (in memory),
the closed set (on disk), and s itself if it is an accepting vertex. Out of those, the maximal
vertex (w.r.1t. ≺) is stored as new accepting predecessor for s.

We discard s from memory if its accepting predecessor stored with the candidate set
is not higher than the one stored with the closed set, as it does not yield any useful
information.

After the loop between lines 3–5 in MERGE finishes, the candidate set contains only
new vertices and vertices whose accepting predecessor in memory has been greater
than the one stored on disk. In addition, we return the set of vertices whose accepting
predecessor has been changed.

Algorithm 8. UPDATEMAP(s)
1: map ← Candidates.getMap(s)
2: map′ ← Closed.getMap(s)
3: if ISACCEPTING(s) then
4: map′ ← MAX(map′,s)
5: Closed.setMap(s, MAX(map,map′))
6: Candidates.setMap(s, MAX(map,map′))
7: if map � map′ then
8: if s = map then
9: exit Accepting cycle found!

10: Updated ← Updated ∪{s}
11: else
12: Candidates ← Candidates \{s}
13: return Updated

Procedure FINDPARTITIONS is called from DETECTACCEPTINGCYCLE to identify
new sub-partitions in a given partition. Therefore, the procedure sorts vertices in the
partition by their mapG values. After that, it only traverses the sorted list of vertices
sequentially (loop 4–13) to find the beginning and end of partitions, and also to find

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 57

the maximal accepting predecessor in the given partition, which is from this moment
on regarded to be non-accepting (see line 3 of MAP). Note that the condition on line 6
leaves out a partition with mapG value set to ⊥, since it does not contain any accepting
vertex and thus cannot contain an accepting cycle.

Algorithm 9. FINDPARTITIONS(Partition)
1: Partition.sortByMap()
2: newPartition ← /0
3: lastMap ← ⊥ {⊥ is the lowest possible value }
4: for all (s,map,order) ∈ Partition do
5: if lastMap �= map then
6: if lastMap �= ⊥ then
7: Partitions.push(seed, newPartition)
8: newPartition ← /0
9: else

10: newPartition ← newPartition∪{s}
11: if map = order then
12: seed ← s
13: lastMap ← map
14: Partitions.push(seed, newPartition) {Adding last partition}

MAP is a revisiting resistant algorithm because it simply traverses the state space
and updates mapG values, which are computed as maximum of the values propagated
to it. The order and repetition of vertices does not matter, as the maximum stays the
same. Henceforward we will refer to the revisiting resistant version of the I/O efficient
MAP algorithm as MAP-rr.

Changes in the algorithm are analogous to the modification of the reachability algo-
rithm presented in Sec. 3, but we have to take care of accepting vertices in a special
way: between lines 11 and 12 of function UPDATEMAP we put another line:

if map′ = ORDERNUMBER(s) then Updated ← Updated ∪{s}

5 Complexity Analysis and Comparison

A widely accepted model for the complexity analysis of I/O algorithms is the model
of Aggarwal and Vitter [1], in which the complexity of an I/O algorithm is measured
solely in terms of the numbers of external I/O operations. This is motivated by the
fact that a single I/O operation is approximately six orders of magnitude slower than a
computation step performed in main memory [18]. Therefore, an algorithm that does
not perform the optimal amount of work but has lower I/O complexity may be faster
in practice, when compared to an algorithm that performs the optimal amount of work,
but has higher I/O complexity. The complexity of an I/O algorithm in the model of
Aggarwal and Vitter is further parametrized by M, B, and D, where M denotes the
number of items that fits into the internal memory, B denotes the number of items that
can be transferred in a single I/O operation, and D denotes the number of blocks that can

58 J. Barnat et al.

Table 1. I/O complexity of algorithms for both modes of candidate set storage. Parameter pmax

denotes the longest path in the graph going through trivial strongly connected components (with-
out self-loops), lSCC denotes the length of the longest path in the SCC graph, hBFS denotes the
height of its BFS tree, and d denotes the diameter of the graph.

Algorithm Worst-case I/O Complexity

Candidate set in main memory

EJ’ O((l + |F | · |E|/M) · scan(|F | · |V |))
OWCTY O(lSCC · (hBFS + |pmax|+ |E|/M) · scan(|V |))
MAP O(|F | · ((d + |E|/M + |F |) · scan(|V |)+ sort(|V |)))

Candidate set in external memory

EJ O(l · scan(|F | · |V |)+ sort(|F | · |E|))
OWCTY’ O(lSCC · ((hBFS + |pmax|) · scan(|V |)+ sort(|E|)))
MAP’ O(|F | · ((d + |F |) · scan(|V |)+ sort(|F | · |E|)))

be transferred in parallel, i.e., the number of independent parallel disks available. The
abbreviations sort(n) and scan(n) stand for Θ(N/(DB) logM/B(N/B)) and Θ(N/(DB)),
respectively. In this section we give the I/O complexity of our algorithm and compare
it with the complexity of the algorithm by Edelkamp and Jabbar [3].

Theorem 1. The I/O complexity of algorithm DETECTACCEPTINGCYCLE is

O(|F| · ((d + |E|/M + |F|) · scan(|V |)+ sort(|V |)))

where d is the diameter of a given graph.

Proof. Since each partition is identified by its maximal accepting vertex, at most |F |
partitions can be found during traversal. Thus, lines 2–8 in DETECTACCEPTINGCYCLE

are repeated at most |F | times, and consequently, procedures MAP and
FINDPARTITIONS are called at most |F| times as well. Each call of FINDPARTITIONS

costs at most O(scan(|V |)+sort(|V |)), because of the dominating sort operation on line
1 and the linear scan in loop 4–13. The I/O complexity of MERGE is O(scan(|V |)), be-
cause it is dominated by the scan operation across the closed set (loop 3–5) and writing
of new and updated vertices to the open set.

There are two main sources of I/O operations in procedure MAP: merge operations
and open set manipulation. MERGE is indirectly called on lines 4 and 7. It is called
whenever the memory becomes full (at most |E|/M times) or the open set becomes
empty (at most d times). Reading of Open on line 5 costs at most O(scan(|F| · |V |)) =
O(|F|scan(|V |)), because each vertex can appear in the open set as many times as its
associated accepting predecessor changes. ��

For the purpose of comparison, we denote our new algorithm as MAP, the algorithm
proposed in [4] as OWCTY and the algorithm of Edelkamp and Jabbar [3] as EJ. MAP
and OWCTY store the candidate set internally, while EJ stores it externally by default.
In the case the candidate set is sorted externally, it is possible to perform the merge
operation on a BFS level independently of the size of the main memory. This approach

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 59

Table 2. Partitions after the first iteration of MAP algorithm. Maximums are taken over partitions
with some accepting vertex in them.

Graph Size Number of Max. Partition Vertices with
Experiment Partitions Size mapG = ⊥

Lamport(5),P4 74,413,141 838,452 454,073 < 1% 38,717,846 52%
MCS(5),P4 119,663,657 3,373,145 108,092 < 1% 60,556,519 51%
Peterson(5),P4 284,942,015 11,451 12,029,114 4% 142,471,098 50%
Phils(16,1),P3 61,230,206 336,339 129,023 < 1% 43,046,721 70%
Rether(16,8,4),P2 31,087,573 33,353 5 < 1% 30,920,813 99%
Szymanski(5),P4 419,183,762 20,064 131,441,308 31% 209,596,444 50%

is suitable for those cases where memory is small, or the graph is orders of magnitude
larger. A disadvantage of the approach is the need to sort during each merge opera-
tion. Furthermore, it cannot be combined with heuristics, such as Bloom filters and a
lossy hash table [12]. Fortunately, all three algorithms are modular enough to be able to
work in both modes. Tab. 1 shows the I/O complexities for all three algorithms in both
variants.

It can be seen that the upper bound for the complexity of MAP is worse than the
one of EJ and OWCTY (in both modes of the candidate set). Nevertheless, we claim
that the complexity is reasonable in most cases, for a number of reasons. First, the
algorithm usually performs at most two iterations of the loop between lines 2–8 in pro-
cedure DETECTACCEPTINGCYCLE: if an accepting cycle was not found during the
first iteration, the state space is partitioned into many partitions (as shown in Tab. 2).
Furthermore, if the state space was partitioned evenly, then 1000 partitions would be
enough to divide a 1 Terabyte state space into blocks sufficiently small to fit into very
modestly sized internal memory, by today’s standards. Even if some partitions would
not fit into main memory yet, another partitioning round usually decreases the maximal
partition size enough such that all remaining partitions fit into internal memory. There-
fore, it is reasonable to expect that the algorithm becomes fully internal after a very
small number of iterations.

Second, d is commonly not proportional to the size of the state space and is usually
not much higher than hBFS.

Third, the upper bound |F | · |V | on the number of vertices revisited due to updates of
a mapG value is quite coarse. We have measured the amount of mapG updates for the
MAP algorithm with a reverse-BFS ordering of vertices. We found that map updates
take commonly not more than 20% of the graph exploration (see Tab. 4).

Taking this into account, the complexity of MAP could be very close to

O((hBFS + |E|/M) · scan(|V |)+ sort(|V |))

in most practical cases. We note that this equals the complexity of I/O efficient reach-
ability plus sorting the set of vertices. Our measurements confirm this claim, as shown
in Tab. 4.

60 J. Barnat et al.

Table 3. Comparison of revisiting techniques and simple I/O efficient reachability

Experiment Normal (hours) Revisiting Resistant (hours)

Lamport(5),P4 02:51:09 01:19:32 46%
MCS(5),P4 03:56:26 02:41:45 68%
Peterson(5),P4 19:38:32 09:02:37 46%
Phils(16,1),P3 02:09:45 01:41:24 77%
Rether(16,8,4),P2 13:54:29 00:29:19 3%
Szymanski(5),P4 51:20:32 17:54:14 34%

On average 100% 46%

Table 4. Run times of reachability and MAP algorithm

Model Reachability (hours) MAP (hours)

Lamport 2:51:09 3:12:09 112%
MCS 3:56:26 4:28:06 113%
Phils 2:09:45 2:29:26 115%

6 Experiments

In order to obtain experimental evidence about the behavior of our algorithm in practice,
we implemented an I/O efficient reachability procedure and three I/O efficient LTL
model checking algorithms.

All algorithms have been implemented on top of the DIVINE library [19], providing
the state space generator, and the STXXL library [20], providing the needed I/O prim-
itives. Experiments were run on 2 GHz Intel Xeon PC, the main memory was limited
to 2 GB, the disk space to 60 GB and wall clock time limit was set to 120 hours. Al-
gorithm MAP-rr is a variant of MAP exploiting its revisiting resistance. Algorithm EJ
was implemented as a procedure that performs the graph transformation as suggested
in [3] and then employs I/O efficient breadth-first search to check for a counter exam-
ple. Note, that our implementation of [3] does not include the A∗ heuristics and hence
can be less efficient when searching for an existing counter example. The procedure is
referred to as Liveness as Safety with BFS (LaS-BFS) [21].

First of all, we have measured the impact of revisiting resistance on procedure
REACHABILITY. We have obtained results that demonstrate significant speed-up, as
shown in Tab. 3. We have also measured run times and memory consumption of LaS-
BFS, OWCTY, MAP and MAP-rr. The experimental results are listed in Tab. 5. We
note that just before the unsuccessful termination of LaS-BFS due to exhausting the
disk space, the BFS level size still tended to grow. This suggests that the computation
would last substantially longer if sufficient disk space would have been available. For
the same input graphs, algorithms OWCTY, MAP and MAP-rr manage to perform the
verification using a few Gigabytes of disk space only. All the models and their LTL
properties are taken from the BEEM project [22].

Measurements on models with valid properties demonstrate that MAP is able
to successfully prove their correctness, while LaS-BFS fails. Additionally, MAP’s

Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking 61

Table 5. Run times in hh:mm:ss format and memory consumption on a single workstation.
“OOS” means “out of space”.

LaS-BFS OWCTY MAP MAP-rr

Experiment Time Disk Time Disk Time Disk Time Disk

Valid Properties

Lamport(5),P4 (OOS) 02:37:17 5.5 GB 03:16:36 5.7 GB 02:37:56 8.5 GB
MCS(5),P4 (OOS) 03:27:05 9.8 GB 04:59:17 10 GB 04:13:21 11 GB
Peterson(5),P4 (OOS) 18:20:03 26 GB 25:09:35 26 GB 15:24:29 27 GB
Phils(16,1),P3 (OOS) 01:49:41 6.2 GB 02:31:33 7.8 GB 02:19:20 8.1 GB
Rether(16,8,4),P2 53:06:44 12 GB 07:22:05 3.2 GB 12:31:18 6.3 GB 00:39:07 6.3 GB
Szymanski(5),P4 (OOS) 45:52:25 38 GB 59:35:25 38 GB 29:09:12 39 GB

Invalid Properties

Anderson(5),P2 00:00:17 50 MB 07:14:23 3.3 GB 00:00:07 2 MB 00:00:01 4 MB
Bakery(5,5),P3 00:25:59 5.4 GB 68:23:34 38 GB 00:00:09 16 MB 00:00:23 54 MB
Szymanski(4),P2 00:00:50 203 MB 00:20:07 253 MB 00:00:04 2 MB 00:00:02 4 MB
Elevator2(7),P5 00:01:02 130 MB 00:00:25 6 MB 00:00:05 2 MB 00:00:01 3 MB

performance does not differ much from the performance of OWCTY. Moreover,
with the use of revisiting resistant techniques, MAP-rr is able to outperform
OWCTY in many cases. We observe that specifically in cases with high hBFS—e. g.,
Rether(16,8,4),P2—time savings are substantial.

A notable weakness of OWCTY is its slowness on models with invalid properties. It
does not work on-the-fly, and is consequently outperformed by LaS-BFS in the afore-
mentioned class of inputs. Algorithms MAP and MAP-rr do not share OWCTY’s draw-
backs, and in fact they outperform both, OWCTY and LaS-BFS on those inputs. This
can be attributed to their on-the-fly nature: On all our inputs, a counter example, if
existing, is found during the first iteration.

7 Conclusions

We described revisiting resistance, a distinct property of graph algorithms, and showed
how it can be of practical use to the I/O efficient approach of processing very large
graphs. In particular, we described how a simple I/O efficient reachability procedure
with delayed duplicate detection can be extended to exploit its revisiting resistance and
showed that the extension is valuable in practice. Furthermore, we analyzed existing I/O
efficient algorithms for LTL model checking and showed that the OWCTY algorithm is
not revisiting resistant. We introduced a new I/O efficient revisiting resistant algorithm
for LTL model checking that employs the Maximal Accepting Predecessor function
to detect accepting cycles. We analyzed the I/O complexity of the new algorithm, and
showed that due to the revisiting resistance, the algorithm exhibits competitive runtimes
for verification of valid LTL properties while preserving its on-the-fly nature. According
to our experimental results, the algorithm outperforms other I/O efficient algorithms on
invalid LTL properties even if it is being slowed down with the vertex revisiting.

62 J. Barnat et al.

References
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.

Commun. ACM 31(9), 1116–1127 (1988)
2. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-

tion. In: Proc. of LICS 1986, pp. 332–344. Computer Society Press (1986)
3. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari, A. (ed.)

SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)
4. Barnat, J., Brim, L., Šimeček, P.: I/O Efficient Accepting Cycle Detection. In: Damm, W.,

Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Heidelberg (2007)
5. Korf, R.E., Schultze, P.: Large-Scale Parallel Breadth-First Search. In: Proc. of AAAI, pp.

1380–1385. AAAI Press / The MIT Press (2005)
6. Korf, R.E.: Best-First Frontier Search with Delayed Duplicate Detection. In: Proc. of AAAI,

pp. 650–657 (2004)
7. Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi Verifier.

In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer, Heidelberg (1998)
8. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. of SODA, Society

for Industrial and Applied Mathematics, pp. 687–694 (1999)
9. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than Back

Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

10. Korf, R.E.: Best-First Frontier Search with Delayed Duplicate Detection. In: Proc. of AAAI,
pp. 650–657. AAAI Press / The MIT Press (2004)

11. Zhou, R., Hansen, E.A.: Structured Duplicate Detection in External-Memory Graph Search.
In: Proc. of AAAI, pp. 683–689 (2004)

12. Hammer, M., Weber, M.: To Store or Not To Store. In: Brim, L., Haverkort, B.R., Leucker,
M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66.
Springer, Heidelberg (2007)

13. Černá, I., Pelánek, R.: Distributed Explicit Fair Cycle Detection. In: Ball, T., Rajamani, S.K.
(eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg (2003)

14. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is There a Best Symbolic Cycle-
Detection Algorithm? In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS,
vol. 2031, pp. 420–434. Springer, Heidelberg (2001)

15. Ravi, K., Bloem, R., Somenzi, F.: A Comparative Study of Symbolic Algorithms for the
Computation of Fair Cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

16. Brim, L., Černá, I., Moravec, P., Šimša, J.: How to Order Vertices for Distributed LTL Model-
Checking Based on Accepting Predecessors. In: Proc. of PDMC (2005)

17. Holzmann, G., Peled, D., Yannakakis, M.: On Nested Depth First Search. In: The SPIN
Verification System, American Mathematical Society, pp. 23–32 (1996)

18. Vitter, J.S.: External memory algorithms and data structures: dealing with massive data. ACM
Comput. Surv. 33(2), 209–271 (2001)

19. Barnat, J., Brim, L., Černá, I., Šimeček, P.: DiVinE – The Distributed Verification Environ-
ment. In: Proc. of PDMC, pp. 89–94 (2005)

20. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard Template Library for XXL Data
Sets. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 640–651.
Springer, Heidelberg (2005)

21. Schuppan, V., Biere, A.: Efficient Reduction of Finite State Model Checking to Reachability
Analysis. International Journal on Software Tools for Technology Transfer (STTT) 5(2–3),
185–204 (2004)

22. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)

Antichains: Alternative Algorithms for LTL
Satisfiability and Model-Checking�

M. De Wulf1, L. Doyen2, N. Maquet1,��, and J.-F. Raskin1

1 CS, Université Libre de Bruxelles (ULB), Belgium
2 I&C, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. The linear temporal logic (LTL) was introduced by Pnueli as a logic
to express properties over the computations of reactive systems. Since this sem-
inal work, there have been a large number of papers that have studied deductive
systems and algorithmic methods to reason about the correctness of reactive pro-
grams with regard to LTL properties. In this paper, we propose new efficient algo-
rithms for LTL satisfiability and model-checking. Our algorithms do not construct
nondeterministic automata from LTL formulas but work directly with alternating
automata using efficient exploration techniques based on antichains.

1 Introduction

A model for an LTL formula over a set P of propositions is an infinite word w over the
alphabet Σ = 2P . An LTL formula φ defines a set of words [[φ]] = {w ∈ Σω | w |= φ}.
The satisfiability problem for LTL asks, given an LTL formula φ, if [[φ]] is empty. The
model-checking problem for LTL asks, given an omega-regular language L (e.g., the set
of all computations of a reactive system) and a LTL formula φ, if L ⊆ [[φ]].

The link between LTL and omega-regular languages is at the heart of the automata-
theoretic approach to LTL [24]. Given a LTL formula φ, we can construct a nonde-
terministic Büchi automaton (NBW) Aφ whose language, noted Lb(Aφ), corresponds
exactly to the models of φ, i.e., Lb(Aφ) = [[φ]]. This reduces the satisfiability and model-
checking problems to automata-theoretic questions.

This elegant framework has triggered a large body of works that have been imple-
mented in explicit state model-checking tools such as SPIN [19] and in symbolic state
model-checking tools such as SMV [15] and NUSMV [2].

The translation from LTL to NBW is central to the automata-theoretic approach to
model-checking. When done explicitly, this translation is worst-case exponential. Ex-
plicit translation is required for explicit state model-checking, while in the symbolic
approach to LTL model-checking [3] the NBW is symbolically encoded using boolean
constraints. In [18], Rozier and Vardi have extensively compared symbolic and explicit
approaches to satisfiability checking using a large number of tools. From their experi-
ments, the symbolic approach scales better.

� This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Cen-
tre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles
Project of the Belgian Federal Government.

�� This authorw is supported by a FNRS-FRIA grant.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 63–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 M. De Wulf et al.

Efficient algorithms to reason on large LTL formulas are highly desirable. First, as
writing formal requirements is a difficult task, verifying consistency is an issue for
which efficient satisfiability checking would be highly valuable. Second, when model-
checking a system and especially in the “debugging” phase, we may want to check
properties that are true only under a set of assumptions, in which case specifications are
of the form ρ1 ∧ ρ2 ∧ · · · ∧ ρn → φ, and are usually very large. The reader will find
such large formulas for example in [1] and in the experiments reported here.

In this paper, we present a new approach to LTL satisfiability and model-checking.
Our approach avoids the explicit translation to NBW and does not resort to pure boolean
reasoning as in the symbolic approach. Instead, we associate to every LTL formula
an alternating Büchi automaton over a symbolic alphabet (sABW) that recognizes the
models of the formula. The use of alternation instead of nondeterminism, and of sym-
bolic alphabets allows for the construction of compact automata (the number of states
and symbolic transitions are linear in the size of the LTL formula). While this construc-
tion is well-known and is an intermediate step in several translators from LTL to explicit
NBW [23], we provide a new efficient way to analyze sABW. This new algorithm is an
extension of [7], where we have shown how to efficiently decide the emptiness problem
for (non-symbolic) ABW. The efficiency of our new algorithm relies on avoiding the
explicit construction of a NBW and on the existence of pre-orders that can be exploited
to efficiently compute fixpoint expressions directly over the transition relation of ABW.

Contributions. The three main contributions of the paper are as follows. First, we
adapt the algorithm of [7] for checking emptiness of symbolic ABW. The algorithm
in [7] enumerates the alphabet Σ, which is impractical for LTL where the alphabet
Σ = 2P is of exponential size. To cope with this, we introduce a way to combine BDD-
based techniques with antichain algorithms, taking advantage of the strengths of BDDs
for boolean reasoning. Second, we extend the combination of BDDs and antichains
to model-checking of LTL specifications over symbolic Kripke structures. In [7], only
explicit-state models and specifications given as NBWs were handled. Third, we have
implemented and extensively tested our new algorithms. While the previous evalua-
tions of antichain algorithms [6,7] were performed on randomly generated models, we
experiment here our new algorithms on concrete (i.e., with a meaningful semantics as
opposed to randomly generated instances) satisfiability and model-checking examples.
Most of our examples are taken in [18] and [20] where they are presented as benchmarks
to compare model-checking algorithms. Our new algorithms outperform standard clas-
sical symbolic algorithms of the highly optimized industrial-level tools like NUSMV
for both satisfiability and model-checking.

Related works. We review the recent related works about LTL satisfiability and model-
checking. For many years, great efforts have been devoted to reduce the cost of the
explicit translation from LTL to NBW (see e.g., [8,9,22,4]). The existing translators are
now very sophisticated and it is questionable that they can still be drastically improved.
According to [18], the current explicit tools are suitable for relatively small formulas
but do not scale well. Rozier and Vardi advocate the use of symbolic methods as defined
in [3] and tools like NUSMV for LTL satisfiability checking. They can handle much
larger formulas than explicit tools. Therefore, we compare our new algorithms with
NUSMV on benchmarks proposed by Rozier and Vardi, with very good results.

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 65

In [20], Vardi et al. propose a hybrid approach to model-checking: the system is
represented symbolically using BDDs and the LTL formula is translated explicitly as a
NBW. Their method has the nice property to partition the usually huge symbolic state
space into pieces associated to each state of the NBW (this heuristic is called property-
driven partitioning in [18]). Our approach also gains from this interesting feature, but in
contrast to Vardi et al., we do not need the expensive construction of the explicit NBW
from the LTL formula.

Structure of the paper. The paper is structured as follows. In Section 2, we recall
the definitions of LTL and ABW. In Section 3, we present a forward semi-symbolic
algorithm for satisfiability checking of LTL and we evaluate its performance in Section
4. In Section 5, we present a similar algorithm for model-checking and we show in
Section 6 that it has performances that are better than the best existing tools. We draw
some conclusion in Section 7.

2 LTL and Alternating Automata

Linear Temporal Logic. Given a finite set P of propositions, a Kripke structure over
P is a tuple K = 〈Q, qι, →K, L〉 where Q is a finite set of states, qι ∈ Q is the initial
state, →K ⊆ Q × Q is a transition relation, and L : Q → 2P is a labeling function.
A run of K is an infinite sequence ρ = q0q1 . . . such that q0 = qι and for all i ≥ 0,
(qi, qi+1) ∈ →K. Let L(ρ) = L(q0)L(q1) . . . and define the language of K as L(K) =
{L(ρ) | ρ is a run of K}.

The LTL formulas over P are defined by φ ::= p | ¬φ | φ ∨ φ | Xφ | φUφ where
p ∈ P . Given an infinite word w = σ0σ1 · · · ∈ Σω where Σ = 2P , and an LTL formula
φ over P , we say that w satisfies φ (written w |= φ) if and only if (recursively):

• φ ≡ p and p ∈ σ0,
• or φ ≡ ¬φ1 and w �|= φ1,
• or φ ≡ φ1 ∨ φ2 and w |= φ1 or w |= φ2,
• or φ ≡ Xφ1 and σ1σ2 . . . |= φ1,
• or φ ≡ φ1 Uφ2 and for some k ∈ N, σkσk+1 . . . |= φ2 and for all i, 0 ≤ i < k,

σiσi+1 . . . |= φ1.

Additional formulas such as true, false and φ1∧φ2 can be derived from the definition
in the usual way, as well as the following temporal operators: let �φ = true Uφ, �φ =
¬�¬φ and φ1Rφ2 = ¬(¬φ1U ¬φ2).

Let [[φ]] = {w ∈ Σω | w |= φ} be the language defined by the LTL formula φ. The
satisfiability-checking problem asks, given an LTL formula φ whether [[φ]] �= ∅ (if so,
we say that φ is satisfiable). Given an LTL formula φ and a Kripke structure K over P ,
we say that K satisfies φ (written K |= φ) if and only if L(K) ⊆ [[φ]], that is for all runs
ρ of K, we have L(ρ) |= φ. The model-checking problem asks, given a Kripke structure
K and an LTL formula φ, whether K |= φ. Satisfiability and model-checking of LTL
are both PSPACE-COMPLETE. The time complexity of LTL model-checking is linear
in the number of states of the Kripke structure and exponential in the size of the LTL
formula.

66 M. De Wulf et al.

Symbolic Alternating Büchi Automata. The automata-based approach to satisfiabil-
ity is to transform the formula φ to an automaton Aφ that defines the same language,
and then to check the emptiness of Lb(Aφ). Similarly for model-checking, we check the
emptiness of L(K) ∩ Lb(A¬φ). These automata are defined over a symbolic alphabet of
propositional formulas. Intuitively, a transition labeled by a formula ϕ encodes all the
transitions that are labeled by a set of propositions that satisfies ϕ.

Given a finite set Q, let Lit(Q) = Q ∪ {¬q | q ∈ Q} be the set of literals over Q,
and B+(Q) be the set of positive boolean formulas over Q, that is formulas built from
elements in Q∪{true, false} using the boolean connectives ∧ and ∨. Given R ⊆ Q and
ϕ ∈ B+(Q), we write R |= ϕ if and only if the truth assignment that assigns true to the
elements of R and false to the elements of Q \ R satisfies ϕ.

A symbolic alternating Büchi automaton (sABW) over the set of propositions P is a
tuple A = 〈Loc, I, Σ, δ, α〉 where:

• Loc is a finite set of states (or locations);
• I ∈ B+(Loc) defines the set of possible initial sets of locations. Intuitively, a set

s ⊆ Loc is initial if s |= I;
• Σ = 2P is the alphabet;
• δ : Loc → B+(Lit(P)∪Loc) is the transition function. The use of formulas to label

transitions in δ allows a compact representation of δ′, e.g., using BDD. We write
	

σ−→δ s whenever σ ∪ s |= δ();
• α ⊆ Loc is the set of accepting states.

A run of A on an infinite word w = σ0σ1 · · · ∈ Σω is a DAG Tw = 〈V, Vι, →〉
where:

• V ⊆ Loc × N is the set of nodes. A node (, i) represents the location 	 after the
first i letters of w have been read by A. Nodes of the form (, i) with 	 ∈ α are
called α-nodes;

• Vι ⊆ Loc × {0} is such that Vι ⊆ V and {	 | (, 0) ∈ Vι} |= I;
• and → ⊆ V × V is such that (i) if (, i) → (′, i′) then i′ = i + 1 and (ii)

σi ∪ {	′ | (, i) → (′, i + 1)} |= δ() for all (, i) ∈ V .

A run Tw = 〈V, vι, →〉 of A on an infinite word w is accepting if all its infinite paths
visit α-nodes infinitely often. An infinite word w ∈ Σω is accepted by A if there exists
an accepting run on it. We denote by Lb(A) the set of infinite words accepted by A.

A nondeterministic Büchi automaton (sNBW) is an sABW A = 〈Loc, I, Σ, δ, α〉
such that I is a disjunction of locations, and for each 	 ∈ Loc, δ() is a disjunction
of formulas of the form ϕ ∧ 	′ where ϕ ∈ B+(Lit(P)) and 	′ ∈ Loc. In the sequel,
we often identify I with the set of locations that appear in I and δ as a the set of
all transitions (, σ, 	′) such that σ ∪ {	′} |= δ(). Runs of sNBW reduce to (linear)
sequences of locations as a single initial state can be chosen in I , and each node has
at most one successor. We define the reverse automaton of A as the sNBW A−1 =
〈Loc, α, Σ, δ−1, I〉 where δ−1 = {(, σ, 	′) | (′, σ,) ∈ δ}.

There exists a simple translation from LTL to sABW [9,23]. We do not recall the
translation but we give an example hereafter. The construction is defined recursively
over the structure of the formula and it gives a compact automata representation of LTL

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 67

formulas (the number of states of the automaton is linear in the size of the formula).
The succinctness results from the presence of alternation in the transition function, and
from the use of propositional formulas (the symbolic alphabet) to label the transitions.

	4 	3

	2 	1

true
p

¬p ∧ ¬r

p true

true ¬r

Fig. 1. Alternating automaton for ϕ ≡
¬(��p → �(¬p → �r))

Example. Fig. 1 shows the sABW for the nega-
tion of the formula ��p → �(¬p → �r),
which is equivalent to the conjunction of φ1 ≡
��p and φ2 ≡ �(¬p ∧ �¬r). The accepting
states are α = {	1, 	4}. Intuitively, the states
	4, 	3 check that φ1 holds, and states 	2, 	1 check
that φ2 holds. The conjunction is enforced by
the initial condition 	4 ∧ 	2. We write transitions
in disjunctive normal form and we consider two
parts in each conjunction, one for the proposi-
tions and one for the locations. E.g., the transition
from 	4 is δ(4) = (p ∧ 	4) ∨ (true ∧ 	3 ∧ 	4),
and from 	3 it is δ(3) = (true∧ 	3)∨ (p∧ true).
We use true to emphasize when there is no con-
straint on either propositions or locations. In the
figure, a conjunction of locations is depicted by a
forked arrow, the conjunction of literals is labelling the arrow. One arrow from 	3 has
an empty target as ∅ |= true. If the control of the automaton is in 	4 and the automaton
reads some σ ∈ 2P such that p �∈ σ, then the control moves simultaneously to loca-
tion 	4 and location 	3. As 	3 is not accepting, the control has to leave 	3 eventually by
reading some σ′ such that p ∈ σ′. So every run accepted from 	4 satisfies ��p.

3 Satisfiability-Checking of LTL

By the above translation from LTL to sABW, the satisfiability-checking problem re-
duces to emptiness of sABW (that is to decide, given an sABW A, whether Lb(A) = ∅)
which can be solved using a translation from sABW to sNBW that preserves the lan-
guage of the automaton [16]. This construction involves an exponential blow-up that
makes straight implementations infeasible in practice. We do not construct this automa-
ton, but the correctness of our approach relies on its existence.

Miyano-Hayashi construction. The construction transforms an sABW into a sNBW
that accepts the same language. It has the flavor of the subset construction for automata
over finite words. Intuitively, the sNBW maintains a set s of states of the sABW that
corresponds to a whole level of a guessed run DAG of the sABW. In addition, the sNBW
maintains a set o of states that “owe” a visit to an accepting state. Whenever the set o
gets empty, meaning that every path of the guessed run has visited at least one accepting
state, the set o is initiated with the current level of the guessed run. The Büchi condition
asks that o gets empty infinitely often in order to ensure that every path of the run DAG

visits accepting states infinitely often. The construction is as follows (we adapt it for
symbolic sABW).

68 M. De Wulf et al.

Given an sABW A=〈Loc, I, Σ, δ, α〉 over P , let MH(A)=〈Q, IMH, Σ, δMH, αMH〉
be a sNBW where:

• Q = 2Loc × 2Loc;
• IMH is the disjunction of all the pairs 〈s, ∅〉 such that s |= I;
• δMH is defined for all 〈s, o〉 ∈ Q as follows:

• If o �= ∅, then δMH(〈s, o〉) is the disjunction of all the formulas ϕ∧ 〈s′, o′ \ α〉
with ϕ ∈ B+(Lit(P)) such that:
(i) o′ ⊆ s′;

(ii) ∀	 ∈ s · ∀σ ⊆ P : if σ |= ϕ then σ ∪ s′ |= δ();
(iii) ∀	 ∈ o · ∀σ ⊆ P : if σ |= ϕ then σ ∪ o′ |= δ().

• If o = ∅, then δMH(〈s, o〉) is the disjunction of all the formulas ϕ∧〈s′, s′ \α〉)
with ϕ ∈ B+(Lit(P)) such that:
∀	 ∈ s · ∀σ ⊆ P : if σ |= ϕ then σ ∪ s′ |= δ();

• αMH = 2Loc × {∅}.

The number of states of the Miyano-Hayashi construction is exponential in the num-
ber of states of the original automaton.

Theorem 1 ([16]). For all sABW A, we have Lb(MH(A)) = Lb(A).

Fixpoint formulas. To check the satisfiability of an LTL formula φ we check the empti-
ness of MH(Aφ) = 〈Q, IMH, Σ, δMH, αMH〉.

It is well-known that [[φ]]= Lb(Aφ) = ∅ iff IMH∩Fφ = ∅ where Fφ is the following
fixpoint formula [5]:

Fφ ≡ νy · μx · (Pre(x) ∪ (Pre(y) ∩ αMH))

where Pre(L) = {q ∈ Q | ∃σ ∈ Σ · ∃q′ ∈ L : σ ∪ {q′} |= δMH(q)}.
We call Fφ a backward algorithm as it uses the predecessor operator Pre(·). The set

of states that are computed in the iterations of the fixpoints may be unreachable from
the initial states [12]. Therefore, a forward algorithm based on the successor operator
Post(·) would have the advantage of exploring only the reachable states of the automa-
ton. Moreover, the number of successors is often smaller than the number of prede-
cessors, especially when the LTL formula “specifies” initial conditions that reduce the
forward non-determinism.

The following fixpoint formulas compute the accepting reachable states Rα and then
the set F ′φ in a forward fashion.

Rα ≡ αMH ∩ μx · (Post(x) ∪ IMH)
F ′φ ≡ νy · μx · (Post(x) ∪ (Post(y) ∩ Rα))

where Post(L) = {q ∈ Q | ∃σ ∈ Σ · ∃q′ ∈ L : σ ∪ {q} |= δMH(q′)}.

Theorem 2. Lb(Aφ) = ∅ iff F ′φ = ∅.

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 69

Proof. Define ΔMH : Q×Σ+ the extension of the transition relation δMH to nonempty
words as follows (recursively): ΔMH(q, σ) = δMH(q, σ) and ΔMH(q, wσ) = {q′ ∈ Q |
∃q′′ ∈ ΔMH(q, w) : σ ∪ {q′} |= δMH(q′′)} for each q ∈ Q, w ∈ Σ+ and σ ∈ Σ.

Let CMH = {q ∈ Q | ∃w ∈ Σ+ : q ∈ ΔMH(q, w)} be the set of looping states
in MH(Aφ). From the definition of Büchi acceptance condition for NBW, we have
Lb(Aφ) = ∅ iff CMH∩Rα = ∅. Let HM(Aφ) be the reverse automaton1. The following
equivalences (the first one being well-known) establish the theorem:

νy · μx · (Pre(x) ∪ (Pre(y) ∩ Rα)) = ∅

iff CMH ∩ Rα = ∅

iff CHM ∩ Rα = ∅

iff νy · μx · (Post(x) ∪ (Post(y) ∩ Rα)) = ∅

iff F ′φ = ∅

�

Closed Sets and Antichains. Remember that Q is exponential in the size of φ. Follow-
ing the lines of [7], we show that F ′φ can be computed more efficiently. Let �⊆ Q × Q
be a preorder and let q1 ≺ q2 iff q1 � q2 and q2 �� q1. A set R ⊆ Q is �-closed iff
for all q1, q2 ∈ Q, if q1 � q2 and q2 ∈ R then q1 ∈ R. The �-closure of R, is the set
[[R]]�= {q ∈ Q | ∃q′ ∈ R : q � q′}. Let �R�� = {q ∈ R | �q′ ∈ R : q ≺ q′} be the
set of �-maximal elements of R, and dually let �R�� = {q ∈ R | �q′ ∈ R : q � q′}
be the set of �-minimal elements of R.

For all �-closed sets R ⊆ Q, we have R =[[�R��]]� and for all �-closed sets
R ⊆ Q, we have R =[[�R��]]�. Furthermore, if � is a partial order, then �R�� is an
antichain and it is a canonical representation of R.

Let A = 〈Loc, I, Σ, δ, α〉 be a NBW. A preorder �⊆ Loc × Loc is a forward-
simulation for A (q1 forward-simulates q2 if q1 � q2) if for all q1, q2, q3 ∈ Loc, for all
σ ∈ Σ, (i) if q1 � q2 and q2

σ−→δ q3 then there exists q4 ∈ Loc such that q1
σ−→δ q4 and

q4 � q3, and (ii) if q1 � q2 and q2 ∈ α then q1 ∈ α. A backward-simulation for A is
a forward-simulation for A−1. It is not true in general that � is a backward-simulation
for A if � is a forward-simulation for A (consider a state qc that has no predecessor and
such that qb � qc). However, the following lemma shows that the language of a sNBW is
unchanged if we add a transition from a state qa to a state qc which is forward-simulated
by one of the successors of qa. By adding in this way all the possible transitions, we
obtain a sNBW for which � is a backward-simulation.

Lemma 3. Let A be a sNBW with transition relation δA and � be a forward-simulation
relation for A. If (qa, σ, qb) ∈ δA and qb � qc, then the sNBW A′ that differs from A
only by its transition relation δA′ = δA ∪{(qa, σ, qc)} defines the same language as A,
that is Lb(A′) = Lb(A).

As a dual of the results of [7], it is easy to show that given a backward-simulation �
for MH(Aφ), all the sets that are computed to evaluate Rα and F ′φ are �-closed, that is
IMH and αMH are �-closed, and x ∩ y, x ∪ y and Pre(x) are �-closed whenever x and
y are �-closed [7]. The relation �alt defined by 〈s, o〉 �alt 〈s′, o′〉 iff (i) s ⊆ s′, (ii)

1 In the sequel, Pre(·) and Post(·) are always computed on MH(Aφ) and never on HM(Aφ).

70 M. De Wulf et al.

o ⊆ o′, and (iii) o = ∅ iff o′ = ∅ is a forward-simulation for MH(Aφ). Therefore,
the relation �alt (which is �−1

alt) is a backward-simulation if we modify the transition
relation of MH(Aφ) as follows: if δMH(〈s, o〉) is a disjunction of formulas of the form
ϕ∧〈s′, o′〉 with ϕ ∈ B+(Lit(P)), then we disjunctively add all the formulas ϕ∧〈s′′, o′′〉
to δMH(〈s, o〉) such that 〈s′, o′〉 �alt 〈s′′, o′′〉. According to Lemma 3, this preserves the
language of MH(Aφ). We keep only the �alt-minimal elements of �alt-closed sets to
evaluate F ′φ and so we dramatically reduce the size of the sets that are handled by the
algorithms.

Remark 1. The intuition for keeping only minimal elements is as follows. Let A be a
sABW, along a run of MH(A) that reads a word w, a pair 〈s, o〉 keeps track of the set of
locations from which the sABW has to accept the suffix and to pass by accepting states.
Clearly, if there is no accepting run from 〈s, o〉 then there is no accepting run from any
pair 〈s′, o′〉 where 〈s′, o′〉 �alt 〈s, o〉. In short, the antichain algorithm concentrates on
the most promising pairs that can be part of an accepting run by only keeping track of
minimal elements.

Elements of efficient implementation. The efficient computation of the �alt-minimal
elements of Post([[·]]�alt) is not trivial. For instance, the algorithm of [7] would have
to enumerate all the truth assignments of propositional formulas over P appearing on
transitions. To mitigate this problem, we propose to combine BDDs and antichains as
follows. Antichains of pairs 〈s, o〉 are represented explicitly (as a list of pairs of sets
of locations) while computation of the successors of a pair 〈s, o〉 is done symbolically.
This is why, in the following, we call our algorithm semi-symbolic.

Given a BDD B over a set of variables V (seen as a boolean formula over V),
let [[B]] be the set of truth assignments over V that satisfy B. Given a pair 〈s, o〉,
Algorithm 1 computes the set LPost = �Post([[{〈s, o〉}]]�alt)��alt . When computing
the successors of a pair 〈s, o〉, the algorithm uses the intermediate boolean variables
x1, . . . , xn, y1, . . . , yn and y′1, . . . , y

′
n to encode respectively the sets s′, o′ \ α and o′

where 〈s′, o′ \ α〉 ∈ Post([[{〈s, o〉}]]�alt). We write δ()[x1 . . . xn] to denote the for-
mula δ() in which each occurrence of a location 	i is replaced by variable xi for all
1 ≤ i ≤ n. The computations at lines 1–6 match exactly the definition of the Miyano-
Hayashi construction. The BDD θ(y, y′) is used to remove the accepting states from the
sets o′ in BL, and the existential quantification over the set P of propositions matches
the definition of the Post(·) operator. Then, using a BDD ω(x, y, x′, y′) that encodes
the relation ≺alt (we have 〈s′, o′〉 ≺alt 〈s, o〉 in ω where s, o, s′, o′ are encoded respec-
tively with variables x, y, x′, y′), we eliminate the non-minimal elements in BL and we
reconstruct the explicit set of pairs 〈s′, o′〉 from Bmin

L (x, y).
The encoding that we have chosen uses a number of variables linear in the size of

the set of locations of the sABW and number of propositions. Preliminary experiments
have shown that this approach is faster than an enumerative algorithm implemented in
a clever way. The combinatorial blow-up that is hidden in the quantification ∃P over
propositions is likely to be the reason for this, as it is well known that for this purpose
symbolic algorithms are faster in practice.

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 71

Algorithm 1. Semi-symbolic Algorithm for Post(·)
Data : An sABW A = 〈Loc, I,Σ, δ, α〉, and a pair 〈s, o〉 such that o ⊆ s.

Result : The set LPost = �Post([[{〈s, o〉}]]�alt)��alt .

begin

1 if o 	= ∅ then

2 BL(x, y′) ← ∃P :

⎧
⎨

⎩

∧n
i=1 y′

i → xi // o′ ⊆ s′

∧
∧

�∈s δ(�)[x1 . . . xn] // σ ∪ s′ |= δ(�) for all � ∈ s
∧

∧
�∈o δ(�)[y′

1 . . . y′
n] // σ ∪ o′ |= δ(�) for all � ∈ o

3 θ(y, y′) ←
∧

�i∈α ¬yi ∧
∧

�i �∈α yi ↔ y′
i // o′ \ α

4 BL(x, y) ← ∃ y′ : BL(x, y′) ∧ θ(y, y′)

5 else

6 BL(x, y) ← ∃ P :

{ ∧
�i∈α ¬yi ∧

∧
�i �∈α yi ↔ xi // o′ is s′ \ α

∧
∧

�∈s δ(�)[x1 . . . xn] // s′ |= δ(�) for all � ∈ s

7 ω(x, y, x′, y′) ←

⎧
⎨

⎩

∧n
i=1

(
x′

i → xi ∧ y′
i → yi

)

∧
∨n

i=1

(
xi 	= x′

i ∨ yi 	= y′
i

)
// ω encodes ≺alt

∧ (
∨n

i=1 yi) ↔ (
∨n

i=1 y′
i)

8 Bmin
L (x, y) ← BL(x, y) ∧ ¬

(
∃x′, y′ : ω(x, y, x′, y′) ∧ BL(x′, y′)

)

9 LPost ←
{
〈s′, o′〉 | ∃v ∈[[Bmin

L]]: s′ = {�i | v(xi) = true}, o′ = {�i | v(yi) =

true}
}

end

4 Satisfiability: Performance Evaluation

We have implemented our new forward semi-symbolic satisfiability algorithm in a pro-
totype written in Python2. Before evaluating the fixpoint expression, the prototype per-
forms the following steps: the LTL formula is parsed, standard fast heuristical rewriting
rules are applied [22], and the formula is then translated to a sABW [9]. This sABW
contains n locations, where n is linear in the size of the LTL formula. To compactly
represent the symbolic transitions associated to each location, we use BDDs over n+ k
boolean variables where k is the number of propositions that appear in the formula.
Usually, the BDDs that are associated to the locations of the sABW are small because
they are typically expressing constraints over few locations. This is usually in sharp
contrast with the size of the BDDs that represent the underlying NBW of a LTL for-
mula in fully-symbolic model-checking. The BDD package used by our prototype is
CUDD [21] which is available through a python binding called PYCUDD3.

Comparison with the state-of-the-art algorithms. According to the extensive survey
of Vardi and Rozier [18] NUSMV is the most efficient available tool for LTL satis-
fiability. We therefore compare our prototype with NUSMV. Satisfiability checking
with NuSMV is done simply by model checking the negation of the formula against a

2 Python is an interpreted object-oriented language. See http://www.python.org
3 http://www.ece.ucsb.edu/bears/pycudd.html

72 M. De Wulf et al.

universal Kripke structure. In all our experiments, we used NUSMV 2.4 with the default
options. 4 No variable reordering techniques were activated in either tool.

Benchmarks. We have compared both tools on four families of LTL formulas. Our
satisfiability-checking prototype is reported as “sat.py” in the figures. All the experi-
ments were performed on a single Intel Xeon CPU at 3.0 GHz, with 4 GB of RAM,
using a timeout of 10 min and a maximum memory usage limit of 2.5 GB (all experi-
ments timed out before exceeding the memory limit). All the LTL formulas tested here
can be found in the long version of this paper[14].5

The first family is a parametric specification of a lift system with n floors that we
have taken from Harding’s thesis [11]. Two encodings are used: one (“lift”) that uses
a linear number of variables per floor, and another (“lift-b”) which uses a number of
variables that is logarithmic in the number of floors (resulting in larger formulas). As
seen in figure 2(a), our algorithm scales much better than NUSMV for both encodings.
For more than 7-floor (a formula with 91 temporal operators and 17 distinct boolean
propositions), NUSMV is more than 60 times slower than our tool.

The second family of formulas was referenced in [20] as examples of difficult LTL to
NBW translation and describes liveness properties for the Szymanski mutual exclusion
protocol and for a variant of this protocol due to Pnueli. We have run both our prototype
and NUSMV on these four formulas (pos) and their negation (neg), all of which can be
found in [14]. Again, our tool shows better performances (by factors of 50 and higher),
as reported in figure 2(b).

The third family we used is a random model described in [4] and also used in [18].
Random LTL formulas are generated according to the following parameters: the length
of the formula (L), the number of propositions (N) each with equal probability of oc-
currence, and the probability (P) of choosing a temporal operator (U or R). As in [18],
we fix P = 0.5 and compare execution times for L ∈ {10, 20, . . . , 100} and for both
N = 2 and N = 4. As indicated by figure 2(c), our algorithm copes much better with
the joint increase in formula length and number of propositions6. For L = 100, going
from N = 2 to N = 4 multiplies the time needed by NUSMV by 7, while our prototype
only exhibits an 8% increase in execution time.

Finally, the last set of formulas (also taken in [18]) describes how a binary counter,
parameterized by its length, is incremented. Two ways of formalizing the increment are
considered (“count”, “count-l”). Those formulas are quite particular as they all define a
unique model: for n = 2, the model is (00·01·10·11)ω. In this benchmark, the classical
fully-symbolic algorithm behaves much better than our antichain algorithm. This is
not surprising for two reasons. First, the efficiency of our antichain-based algorithms
comes from the ability to identify prefixes of runs in the ABW which can be ignored
because they impose more constraints than others on the future (see Remark 1). As there
is only one future allowed by the formula, the locations of the NBW defined by the
Miyano-Hayashi construction are incomparable for the simulation relation defined in
Section 3, causing very long antichains and poor performances. This can be considered
as a pathological and maybe not very interesting case.

4 The options are numerous, check the NUSMV user manual for full details.
5 They can also be downloaded at http://www.ulb.ac.be/di/ssd/nmaquet/tacas.
6 We report only the mean execution times, but the standard deviation is similar for both tools.

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 73

(a) (b)

(c) (d)

(e) (f)

(g)

Time and Memory for the Bakery Algorithm
Mutual Exclusion Fairness

NuSMV mc.py NuSMV mc.py
2 proc. 0.22s 0.55s 10.66s 3.47s

10.7MB 60.3MB 35.4MB 60.3MB
3 proc. 359.12s 8.81s 28740.17s 730.60s

656.7MB 87.3MB 495.0MB 201.3MB
4 proc. > 1000s 630, 7s N/A N/A

out of Mem. 579, 01MB N/A N/A

(h)

Fig. 2. Experimental results comparing NUSMV with our algorithms

74 M. De Wulf et al.

5 LTL Model-Checking

Our algorithm for LTL model-checking is based on forward exploration and semi-
symbolic representations. It is also related to the hybrid approach proposed by Vardi
et al. in [20] with the essential difference that we work directly on the sABW for the
LTL formula, avoiding the construction of a NBW.

Given a Kripke structure K = 〈Q, qι, →K, L〉 and an LTL formula φ, the model-
checking problem for K and φ reduces to the emptiness of L(K) ∩ Lb(A¬φ) (where
A¬φ = 〈Loc, I, Σ, δ, α〉 is the sABW for ¬φ) which can be checked by computing the
following fixpoint formulas over the lattice of subsets of Q × 2Loc × 2Loc:

RKα ≡ α′ ∩ μx · (PostMC(x) ∪ I ′)

FKφ ≡ νy · μx · (PostMC(x) ∪ (PostMC(y) ∩ RKα))

where PostMC(L) = {(q′, 〈s′, o′〉) | ∃(q, 〈s, o〉) ∈ L : q →K q′ ∧ L(q) ∪ {〈s′, o′〉} |=
δMH(〈s, o〉)}, I ′ = {qι} × IMH and α′ = Q × αMH (where the MH superscript refers
to the sABW MH(A¬φ)). As before, we have FKφ = ∅ iff L(K) ∩ Lb(A¬φ) = ∅ iff
K |= φ.

Moreover, there exists a partial order �MC for which all the sets that are com-
puted to evaluate FKφ are �MC-closed. The relation �MC is defined by (q, 〈s, o〉) �MC

(q′, 〈s′, o′〉) iff q = q′ and 〈s, o〉 �alt 〈s′, o′〉.
We use a semi-symbolic forward algorithm for model-checking as this is the most

promising combination, in the light of our experiences with satisfiability. We assume
a symbolic representation of K where each state q ∈ Q is a valuation for a finite set
of boolean variables V = {z1, . . . , zm} such that P ⊆ V . The labeling function L is
defined as the projection of 2V to 2P in the natural way. The transition relation is given
by a BDD T (V, V ′) over V ∪ V ′ where the set V ′ = {z′ | z ∈ V } of primed variables
is used to define the value of the variables after the transition.

To efficiently compute FKφ , we need a compact representation of �MC-antichains.
Under the hypothesis that the huge size of Q is the main obstacle, we consider a semi-
symbolic representation of antichains, as a set of pairs (B, 〈s, o〉) where B is a BDD
over V . A pair (B, 〈s, o〉) represents the set [[(B, 〈s, o〉)]]= {(q, 〈s, o〉) | q ∈[[B]]}.

Let L = {(q1, 〈s1, o1〉), (q2, 〈s2, o2〉), . . . } be an �MC-antichain. Let SL = {〈s, o〉 |
∃(q, 〈s, o〉) ∈ L}. We define R(L) = {(B, 〈s, o〉) | 〈s, o〉 ∈ SL∧ [[B]]= {q |
(q, 〈s, o〉) ∈ L}. It is easy to establish the following property of this encoding.

Lemma 4. If L is an �MC-antichain for all (B1, 〈s1, o1〉), (B2, 〈s2, o2〉) ∈ R(L), if
〈s1, o1〉 �alt 〈s2, o2〉, then [[B1]] ∩ [[B2]]= ∅.

We say that R(L) is a semi-symbolic and canonical representation of [[L]]�MC . The al-
gorithm to compute PostMC(·) follows the lines of Algorithm 1, using 2n boolean vari-
ables to encode a pair 〈s, o〉. The existential quantification over V is performed after
synchronization over propositions P with the Kripke structure. Let BL(x, y, V) be the
BDD that encodes with variables x, y the successors of 〈s, o〉 over a symbolic label en-
coded by variables V . We compute the BDD CL(x, y, V ′) = ∃V : B(V) ∧ T (V, V ′) ∧
BL(x, y, V) and then we construct the encoding R(·) of its minimal elements.

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 75

6 Model-Checking: Performance Evaluation

Implementation. We have implemented the forward semi-symbolic model-checking al-
gorithm using the same technology as for satisfiability (i.e., Python and PYCUDD).
The sABW of the negation of the LTL formula is obtained as described in Section 3.
We have interfaced our prototype with NUSMV in order to get the BDDs7 obtained
from models written in the SMV input language. This has two advantages. First, we
can effectively run our algorithm on any available SMV model, making direct compar-
isons with NUSMV easy. Second, we are guaranteed to use exactly the same BDDs
for the Kripke structure (with the same ordering on variables) than NUSMV, making
comparisons with this tool very meaningful.

On the use of NUSMV. As for satisfiability, all our experiments were performed using
NuSMV 2.4 without any option except “-dcx” which disables the creation of counter-
examples. By default, NUSMV implements the following version of the LTL symbolic
algorithm: it precomputes the reachable states of the Kripke structure and then evaluates a
backward fixpoint expression (the Emerson-Lei algorithm) for checking emptiness of the
product of the structure and the NBW of the formula (encoded with BDDs). Guiding the
backward iterations with reachable states usually improves execution times dramatically.
It also makes the comparison with our algorithm fair as it also only visits reachable states.

Benchmarks. We have compared our prototype with NUSMV on three families of scal-
able SMV models. The experiments were performed using the same environment as for
satisfiability (see Section 4). Again, additional information about models and formulas
can be found in[14].

The first family describes a gas station with an operator, one pump, and n customers
(n is a parameter) waiting in line to use the pump. The operator manages the customer
queue and activates or deactivates the pump. This resource-access protocol was used
in [20] as an LTL model-checking benchmark. We have used the same LTL formulas as
in [20]. The running times for n between 2 and 50 are given in Fig. 2(g). The difference
in scalability is striking. While our tool is slower than NUSMV for n=2 (probably due
to the overhead of using an interpreted language instead of C), it scales much better.
For instance, for n = 38 NUSMV needs several minutes (between 233 and 418 seconds
depending on the property), while our algorithm completes in just over 3 seconds for all
properties. NUSMV is not able to verify models with 50 customers within 10 minutes
while our algorithm handles them in less than 10 seconds.

The second family of models also comes from [20] and represents a stack, on which
push, pop, empty and freeze operations can be performed. Each cell of the stack can
hold a value from the set {1,2} and a freeze operation allows to permanently freeze the
stack, after which the model runs a pointer along the stack from top to bottom repeat-
edly. At each step of this infinite loop, a “call” predicate indicates the value currently
pointed.8 As we needed a scalable set of formulas for at least one model to compare the

7 These are essentially: the predicates appearing in the LTL formula, the initial constraints, the
transition relation and the invariant constraints.

8 For example, if the stack contains, from bottom to top, {1,2} then after the freeze operation,
the model will behave like this : call2, call1, call2, call1, ...

76 M. De Wulf et al.

scalability of our algorithm with NuSMV, we have provided and used our own spec-
ifications for this model. These specifications simply enforce that if the sequence of
push operations “12 . . . n” is performed and not followed by any pop until the freeze
operation, then the subsequence of call operations “n . . . 21” appears infinitely often.

Finally, the last family of models that we consider is a finite state version of the
Lamport’s bakery mutex protocol [13]. This protocol is interesting becauses it imposes
fairness among all processes and again it is parametric in the number n of participating
processes. Our model is large and grows very rapidly with the number of processes.
For 2 processes, it uses 42 boolean variables and requires BDDs with a total of 7750
nodes to encode the model, for 4 processes, it uses 91 variables and BDDs with more
than 20 million nodes. Again, our algorithm scales much better than the classical fully
symbolic algorithm. For 3 processes, we are able to verify the fairness requirement in
730.6 seconds while NUSMV needs 28740.17s. Also, our algorithm requires much less
memory than NUSMV, see Table 2(h) for the details.

7 Conclusion

In this paper, we have defined new algorithms for LTL satisfiability and model-checking.
The new algorithms use a clever combination of the antichain method defined in [7] and
BDDs. Our method differs fundamentally from the explicit and hybrid approach to LTL
as it does not require the explicit construction of a NBW, and from the symbolic ap-
proach as it does not encode the NBW with BDDs.

With a prototype implementation written in Python, we outperform in time and mem-
ory usage the state-of-the-art implementation in NUSMV of the classical fully symbolic
approach on all but one benchmark. More importantly, our implementation is able to
handle LTL formulas and models that are too large for NUSMV.

There are several lines of future works to consider both on the theoretical side and on
the practical side. First, we should investigate how we can take advantage of the struc-
ture of sABW that are produced from the LTL formula. Indeed, those sABW are weak
in the sense of [17], a property that we do not exploit currently. Second, we use a notion
of simulation which is called the direct simulation in the terminology of [10]. Weaker
notions of simulation exist for NBW like the fair simulation or the delayed simulation.
We should investigate their possible use instead of the direct simulation. This would al-
low for more pruning as antichains for those orders would be smaller. Third, high level
heuristics should be investigated. Let us take an example. A pair of locations {l1, l2} is an
incompatible pair of locations in a sABW A if there is no word w such that w is accepted
in A simultaneously from l1 and l2. In the forward satisfiability algorithm, it is easy to
see that we can stop the exploration of any pairs 〈s, o〉 such that s contains an incompat-
ible pair. We should look for easily (polynomial-time) checkable sufficient conditions
for incompatibility. Finally, a first release of our prototype (codenamed ALASKA) is
available for download at http://www.ulb.ac.be/di/ssd/nmaquet/alaska/.

References

1. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting ws1s systems to ver-
ify parameterized networks. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 188–203. Springer, Heidelberg (2000)

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking 77

2. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic model checker.
STTT 2(4), 410–425 (2000)

3. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Heidelberg (1994)

4. Daniele, M., Giunchiglia, F., Vardi, M.: Improved automata generation for linear temporal
logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260.
Springer, Heidelberg (1999)

5. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic pro-
grams for omega-regular objectives. In: LICS, pp. 279–290. IEEE, Los Alamitos (2001)

6. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for
checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

7. Doyen, L., Raskin, J.-F.: Improved algorithms for the automata-based approach to model-
checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465.
Springer, Heidelberg (2007)

8. Fritz, C.: Constructing Büchi automata from LTL using simulation relations for alternating
Büchi automata. In: H. Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48.
Springer, Heidelberg (2003)

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

10. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.: On complementing nondeterministic
Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–
110. Springer, Heidelberg (2003)

11. Harding, A.: Symbolic Strategy Synthesis For Games With LTL Winning Conditions. PhD
thesis, University of Birmingham (2005)

12. Henzinger, T.A., Kupferman, O., Qadeer, S.: From prehistoric to postmodern symbolic model
checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 195–206. Springer, Heidel-
berg (1998)

13. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. ACM 17(8),
453–455 (1974)

14. Maquet, N., De Wulf, M., Doyen, L., Raskin, J.-F.: Antichains: Alternative algorithms for
LTL satisfiability and model-checking. Technical Report, 84, CFV, Belgium (2008)

15. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
16. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. In: CAAP, pp. 195–

210 (1984)
17. Rohde, S.: Alternating Automata and the Temporal Logic of Ordinals. PhD thesis, University

of Illinois at Urbana-Champaign (1997)
18. Rozier, K., Vardi, M.: Ltl satisfiability checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN

2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)
19. Ruys, T., Holzmann, G.: Advanced Spin tutorial. In: Graf, S., Mounier, L. (eds.) SPIN 2004.

LNCS, vol. 2989, pp. 304–305. Springer, Heidelberg (2004)
20. Sebastiani, R., Tonetta, S., Vardi, M.: Symbolic systems, explicit properties: On hybrid ap-

proaches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 350–363. Springer, Heidelberg (2005)

21. Somenzi, F.: CUDD: CU Decision Diagram Package, University of Colorado (1998)
22. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A.,

Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)
23. Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle,

G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)
24. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-

tion 115(1), 1–37 (1994)

On-the-Fly Techniques for

Game-Based Software Model Checking�

Adam Bakewell and Dan R. Ghica

University of Birmingham, UK
{a.bakewell,d.r.ghica}@cs.bham.ac.uk

Abstract. We introduce on-the-fly composition, symbolic modelling
and lazy iterated approximation refinement for game-semantic models.
We present Mage, an experimental model checker implementing this
new technology. We discuss several typical examples and compare Mage
with Blast and GameChecker, which are the state-of-the-art tools in
on-the-fly software model checking, and game-based model checking.

1 Introduction and Background

Automated software verification evolved rapidly in the last few years, culminat-
ing in the development of industry-strength verification toolkits such as Slam [6]
and Blast [19]. These toolkits represent impressive feats of engineering, com-
bining techniques from model checking [10] and theorem proving, especially
satisfiability. They employ various methods intended to alleviate the so-called
state-explosion problem, i.e. the fact that the space complexity of the software
verification problem is very high. Some the most effective such methods are:

On-the-fly model checking. Also known as lazy model checking [10, Sec. 9.5],
it is used whenever a larger (finite-state) model needs to be constructed
from the intersection of two (or more) models; after that, a reachability
test is performed. In lazy model checking, the test is conducted while the
intersection is performed, rather than after. If the test succeeds then the rest
of the intersection is not computed, hence the gain in efficiency.

Symbolic model checking. This terminology is overloaded. We mean repre-
senting a model by equations, rather than explicitly by concrete states and
transitions [8].

Abstract interpretation. The key idea [11] is to construct, in a precisely de-
fined sense, best safe approximations of systems. That is, an “abstracted”
system that is smaller than the system to be verified but has richer behaviour
than it. Very large economies of space can be achieved by this method; in-
deed, finite-state approximations can be found for infinite-state systems. The
tradeoff is that additional behaviour in the “abstracted” system may lead to
“false positives,” i.e. it may report errors that do not exist in the original.

� Work supported by EPSRC grants EP/D070880/1 and EP/D034906/1.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 78–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On-the-Fly Techniques for Game-Based Software Model Checking 79

Iterated refinement. This technique is used in conjunction with the previous
one: if an approximation is too coarse and results in false positives, the false
positives are used to refine the approximation, i.e. to make it more precise [9].

The success of the combination of methods enumerated above has been extraor-
dinary, allowing tools to perform such feats as fully-automated verification of
device drivers and other important programs. However, to scale up automated
verification to large and complex software projects, modelling and verification
cannot remain monolithic operations. Instead, they must be done composition-
ally, but in such a way that the above methods can be utilised.

A promising new approach to software verification uses game semantics [3,20].
This technique of modelling programming languages is inherently compositional,
and known to give models both sound and complete (fully abstract) for many
languages. Subsequent research showed that game models can be given effective
algorithmic representations [15] and used as a basis for model checking.

Even a näıve implementation of game-based model checking was surprisingly
effective in verifying challenging programs such as sorting, or certain abstract
data types [2]. In a step towards fully automated verification a counterexample-
guided refinement technique was adapted to the game model [13], and a proto-
type tool was developed [14]. However, all these efforts focus on model extraction,
and use off-the-shelf back-ends for the heavy-duty model checking.

Older, more established model checking techniques benefit from elaborate
implementations. In order for games-based model checking to close the gap it
needs to adapt the state-of-the-art methods for mitigating the state-explosion
problem to the particular context of game models. We make significant steps in
this paper by introducing on-the-fly composition, symbolic modelling and lazy
iterated refinement for game models.

Game-based models are defined inductively on syntax and use composition
of models of sub-terms to generate the model of a given term. This indicates
that the scope for gains through lazy modelling is considerable. We push this
method to the extreme: we do not explicitly construct any of the component
models, only a tree of automata, then we combine a search through the tree with
searches in the models which are at the leaves of the tree using an algorithm
that is compatible with composition of game models.

We take a similar lazy approach to approximation and refinement. Rather
than refining whole models, we only refine along those paths that yield coun-
terexamples, refining further when the counterexample is potentially spurious
and backtracking whenever refinement leads into a dead end.

Last, but not least, our model-checker, Mage, has a simple (but not simplis-
tic!) and elegant implementation. It uses no external tools or libraries, so it may
serve as a concise, self-contained, example of the most effective state-of-the-art
model checking techniques in action. Programming Mage in Haskell allowed us
to take advantage of lazy evaluation, and naturally resulted in a compact imple-
mentation.1 A compact presentation of our early results with Mage is given in
[4]. More detail on the material here is given in [5].
1 Get Mage and a test suite at http://www.cs.bham.ac.uk/∼axb/games/mage/

http://www.cs.bham.ac.uk/~axb/games/mage/

80 A. Bakewell and D.R. Ghica

2 Idealized Algol: Syntax and Semantics

We analyse IA2, the procedural programming language presented in [13]. IA has
boolean and integer constants, the usual arithmetic and logical operators, se-
quencing, branching and iteration commands, first (base-type) and second order
(function-type) variables, λ-abstraction of first-order variables, term application
and block variable declaration.

The operational semantics is standard, see [13]. The game-semantic model
is fully abstract and can be expressed as an algebra of languages. We briefly
present this model using notation taken from [2].

Game models of terms are languages R over alphabets of moves A. They
include the standard languages consisting of: the empty language ∅; the empty
sequence ε; concatenation R ·S; union R+S; Kleene star R∗ and the elements of
the alphabet taken as sequences of unit length. In addition we use: intersection
R ∩ S; direct image under homomorphism φR and inverse image φ−1R. The
languages defined by these extensions are the obvious ones. It is a standard
result that languages constructed from regular languages using these operations
are regular and can be recognised by a finite automaton effectively constructable
from the language [21].

The disjoint union of two alphabets creates a larger alphabet A1+A2. Disjoint
union gives rise to canonical inclusion maps ini : Ai → A1+A2. Concretely, these
maps are tagging operations. We use the same notation for the homomorphism
ini : Ai → (A1 + A2)∗ and take outi : A1 + A2 → A∗

i to be the homomorphism
defined by outia = ai if a is in the image of ini and ε otherwise. If φ1 : A1 → B∗

1
and φ2 : A2 → B∗

2 are homomorphisms then their sum φ1 + φ2 : A1 + A2 →
(B1 + B2)∗ as (φ1 + φ2)a = ini(φia) if ai is in the image of ini.

Definition 1 (Composition). If R is a language over alphabet A + B and S
a language over alphabet B + C we define the composition S ◦ R as the lan-
guage S ◦ R = out3

(
out−1

1 (R) ∩ out−1
2 (S)

)
, over alphabet A + C, with maps

A + B
in1 �� A + B + C
out1

�� , B + C
in2 �� A + B + C
out2

�� and A + C
in3 �� A + B + C
out3

�� .

Type θ is interpreted by a language over alphabet A�θ�, containing the moves
from the game model. Terms are functionalized, so C; D is treated as seq C D
and int x; C is treated as newvar(λx.C) and so on. Term Γ � M : θ, with typed
free identifiers Γ = {xi : θi}, is interpreted by a language R = R �Γ � M : θ�over
alphabet

∑
xi:θi∈Γ A�θi�+ A�θ�. This interpretation is defined compositionally,

by induction on the syntax of the functionalized language.
See [2,13] for full details of the semantic model. Here we only emphasise the

aspect that is most relevant to the model-checking algorithm: function applica-
tion. The semantics of application is defined by

R �Γ, Δ � MN : θ�= R �Δ � N : τ�∗ ◦ R �Γ � M : τ → θ�,

2 See the webpage for example programs.

On-the-Fly Techniques for Game-Based Software Model Checking 81

with the composition − ◦ − of Def. 1. This application model uses three op-
erations: (1) homomorphisms (tagging and de-tagging); (2) Kleene-star; (3) in-
tersection. At the automata level: (1) is linear time; (2) the second is constant
time; (3) is O(m · n) where m, n are the sizes of the automata to be composed.
Clearly intersection dominates. For a term with k syntactic elements, therefore,
calculating the game model needs k−1 automata intersections. Computing them
explicitly incurs a huge penalty if, in the end, we only want a safety check (e.g.
that some bad action never occurs). Hence on-the-fly techniques are particularly
useful in this context.

3 Automata Formulation: On-the-Fly Composition

We reformulate composition (Def. 1) to be explicitly automata-oriented, in a
way that emphasises on-the-fly composition.

Let a lazy automaton A : A → B be a tuple A = 〈S, A, B, X, δ, s0〉 where:
S is a set of states; A, B are sets of symbols called active symbols; X is a set
of symbols called passive symbols; δ : (A + B + X) → S → N → S⊥, where
S⊥ = S + {⊥}, such that δmsn = ⊥ implies δms(n + 1) = ⊥ is a next-state
function that gives the ith next-state (rather than giving a set of all next states);
s0 ∈ S is a distinguished initial state.

If |S| ∈ N then the lazy automaton is finite-state. Lazy automaton A accepts
a string t ∈ (A+B +X)∗ from a set of states S0 iff t = ε and S0 �= ∅ or t = m · t′
with m ∈ A +B + X and t′ ∈ (A +B + X)∗ such that A accepts t′ from a state
in δmS0. If S0 = {s0} we say just that A accepts t. We denote by L(A) the set
of strings accepted by A.

The monotonicity of next-state function δ ensures that if requesting the jth
next state returns “none” then requesting any j+kth next state returns “none”.

Definition 2 (Lazy composition of automata). Given two lazy automata
A1 : A → B = 〈S, A, B, X, δ, s0〉 and A2 : B → C = 〈T, B, C, Y, λ, t0〉 their lazy
composition is A2 ◦ A1 =

〈
S × T, A, C, B + X + Y, λ · δ, 〈s0, t0〉

〉
where

(λ
 δ)m〈s, t〉〈n1, n2〉 = 〈(if m ∈ in1(A + B + X) then δmsn1 else s),
(if m ∈ in2(B + C + Y) then λmtn2 else t)〉

and λ · δ = (λ
 δ) ◦ 〈id, 〉
and ⊥ = 〈s, ⊥〉 = 〈⊥, t〉
and A + B + X

in1−→ A + B + C + X + Y

and B + C + Y
in2−→ A + B + C + X + Y.

Above, id is the identity function and : N → N × N any monotonic bijection.
The language of composed lazy automata is that required:3

Proposition 1. Given two lazy automata A1 : A → B and A2 : B → C,
out2(L(A2)) ◦ out1(L(A1)) = out(L(A2 ◦ A1)), where A + B + X

out2−→ A + B,
B + C + Y

out1−→ B + C, A + B + C + X + Y
out−→ A + C.

3 The propositions have elementary proofs, which are omitted.

82 A. Bakewell and D.R. Ghica

Above, we need to “project” the languages of the composite automata on their
active symbols, because automata compose “without hiding.” This move from
the “black-box” models of game semantics to “grey-box” models allows some
exposure of internal actions and is needed to identify spurious counterexamples.

In game models it is more natural to reduce safety to event reachability rather
than to state reachability. Given lazy automaton A we say that event m is
reachable if there exists string t such that tm ∈ L(A). Now we give an algorithm
for (lazy) reachability of move m0 in lazy automaton A, using the composition
defined above.

Definition 3 (Lazy reachability for lazy automata)

visited := ∅
frontier := [s0]
iterate state over frontier

visited := visited ∪ {state}
iterate move over (A + B + X)

iterate state′ over δ move state
if move = m0 then return REACHABLE
if state′ �∈ visited then frontier := [state′] : frontier

return UNREACHABLE .

This algorithm is a depth-first-search (DFS) through the automata tree, gen-
erating only necessary transitions. The lazy implementation of δ ensures that
iteration over δ move state returns one state at a time, rather than sets of states,
until ⊥ is produced and it stops.

3.1 Symbolic Automata

In the tree of automata that models a term, the leaves are automata representing
the constants of the language and the free identifiers. These can all be defined
symbolically, further reducing memory requirements: instead of constructing the
transition system corresponding to the leaf automata explicitly, as in the older
games-based model checkers [2,14] we only represent the transition function of
the automaton. This may sound silly, because the transition function is the
automaton, and they have the same size (theoretically). However, many of the
automata involved have particular structures (copy-cat, arithmetic, logic) and
their transition functions have efficient implementations in the programming
language in which the model checker is implemented (and, of course, on the
underlying hardware). Addition of finite integers, for example, is implemented
far more efficiently than a table of all possible pairs of operands and their results!

For example, the symbolic automaton of any arithmetic operator ⊕ has state
set S = N × Z × Z, initial state s0 = (0, 0, 0) and, for m, n ∈ Z, transitions:

δq (0, 0, 0) = {(1, 0, 0)}, δq (3, m, 0) = {(4, m, 0)},
δq (1, 0, 0) = {(2, 0, 0)}, δn (4, m, 0) = {(5, m, n)},
δm (2, 0, 0)={(3, m, 0)}, δ(m ⊕ n) (5, m, n)={(6, 0, 0)},

On-the-Fly Techniques for Game-Based Software Model Checking 83

3.2 Implementing Efficient Lazy Composition

The automata-theoretic formulation of lazy composition in Definition 2 omits
a key aspect of the original game model which leads to serious inefficiency if
implemented literally.

The problem occurs for active symbols common to the automata being com-
posed: the definition suggests that both sub-automata should be queried about
their transition for each such symbol. By analogy with abstract machines, this
is like implementing application by taking each value v in the argument type,
asking the argument term if it can produce v, and asking the function what it
will do with v, and proceeding whenever both respond positively!

The key aspect that must be restored is the “proponent/opponent” (i.e. in-
put/output) polarity of the game-semantic moves. At every composite state, one
component must be asked about its next move and the other component asked
only about particular moves. Mage records the necessary polarity information
and acts accordingly.

Another key inefficiency in Definition 2 is the iteration over all moves in
A + B + X . In practice, knowing which leaf in the automata tree will be asked
about its next move dramatically reduces the set of possible next moves: there
is only really a choice when a free variable reads from the environment.

4 CEGAR: On-the-Fly Approximation and Refinement

Because they involve large subsets of the integers, automata representing game-
semantic models are defined over enormous alphabets and, consequently, have
huge state sets. [13] shows how to apply approximation-refinement in the con-
text of games. We develop the ideas there in several directions by generalising
the definition of data abstraction from games to automata in general and by
giving a general and efficient criterion for recognising genuine counterexamples
in approximated automata. This fast detection criterion plays in important role
in the efficient implementation of approximation-refinement in Mage.

Two apparently insurmountable problems prevent us using the popular ab-
stract interpretation framework of [12]. Firstly, the automata-theoretic and
game-theoretic formulations of the model seem to be at odds with the lattice-
theoretic semantics of abstract interpretation. Secondly, abstract interpretation
is compositional but not functorial — applying the abstract interpretation of a
function to the abstract interpretation of an argument does not necessarily yield
the same as the abstract interpretation of the result of the application in the
concrete domain [1]. [12] argues convincingly that the practical consequences of
the requirement to preserve functoriality are too restrictive.

Therefore we use a simplified framework based only on approximation. An
approximation of language L is a function α : L → L̂. Interesting approximations
are, obviously, non-injective. An automaton approximation for automaton A =
〈S, A, B, X, δ, s0〉 is a tuple α = 〈αS : S → Ŝ, αA+B+X : A+B+X → Â+B̂+X̂〉
which defines an automaton Â = α(A) = 〈Ŝ, Â, B̂, X̂, δ̂, ŝ0〉 where ŝ0 = αS(s0)

84 A. Bakewell and D.R. Ghica

and δ̂ is any function such that δ̂m̂ŝ ⊇ αS(δms) for any m ∈ A + B, s ∈ S,
m̂ = αA+B+Xm, ŝ = αSs. Approximation is sound in the following sense:

Proposition 2. If m ∈ A + B + X is reachable in automaton A then for any
automata approximation α, αA+B+X(m) is reachable in α(A).

Given two automata A : A → B = 〈S, A, B, X, δ, s0〉 and B : B → C =
〈T, B, C, Y, λ, t0〉 and two approximations α and β the resulting automata αA :
αAA → αBB and βB : βBB → βCC are not immediately composable. However,
we can use a “glue” automaton I : αBB → βBB to perform the composition as
indicated by the diagram below

A

α

��

A �� B

α
����

��
��

�� β

��
��

��
��

��
B �� C

β

��

αA
αA ��

γ(A◦B)
��αB

I �� βB
βB

�� βC

A glue automaton I : αB → βB is an approximation of the “copy-cat” automa-
ton on B → B, i.e. an automaton that accepts strings of shape (Σm∈Bmm)∗
which uses αB to approximate the domain alphabet and βB the co-domain al-
phabet. Using glue automata we can show that approximation is compositional.

Proposition 3. For any automata A : A → B = 〈S, A, B, X, δ, s0〉 and B :
B → C = 〈T, B, C, Y, λ, t0〉 and approximations α, β there exists an approxima-
tion γ such that βB ◦ αA = γ(B ◦ A).

This flexible approximation framework allows each automaton in an automata
tree to be approximated individually, in a compositional and sound way.

Definition 4. Given a language L and approximation α : L → L̂, we call α′ :
L → L̂′ a refinement of the approximation α if there exists a map α′′ : L̂′ → L̂
such that α = α′′ ◦ α′.

4.1 Approximating Game Automata

Approximation of our game automata is most naturally done by finitely approx-
imating the alphabets and using an approximation of the set of states induced
by the alphabet approximation.

Definition 5 (Data approximation). An approximation α, is termed a data
approximation of automaton A if

– Ŝ = S/∼=, and αS is its representation function, where ∼= ⊆ S × S is the
least reflexive relation such that s1 ∼= s2 if s′1 ∼= s′2, s1 ∈ δm1s

′
1, s2 ∈ δm2s

′
2

and αA+B(m1) = αA+B(m2).
– δ̂m̂ŝ = αS(δms).

On-the-Fly Techniques for Game-Based Software Model Checking 85

This means that the states of Ŝ are the equivalence classes of S under ∼=. So states
are identified by a data abstraction only when they are targets of transitions with
identified moves from already identified states.

The definition of data approximation is not algorithmic, because it depends
in a non-trivial way on the automaton itself. However, the following property
along with the fact that we can rather easily find data approximations for the
particular automata that represent game-semantic models ensures that we can
use data approximation in our models:

Proposition 4. If automata A : A → B and B : B → C are data-approximated
as α(A) and β(B) then there exists a data approximation γ for B ◦ A such that
α(B) ◦ I ◦ β(A) = γ(B ◦ A), with I : αB → βB a data-approximated glue
automaton.

In other words, a composition of data-approximate automata is itself a data-
approximated automaton. Data-approximation can lead to finite-state automata.

Proposition 5. For any automaton A representing a game-semantic model of
IA and for any data approximation such that |rangeαA+B+X | ∈ N, the automa-
ton Â is finite-state.

We approximate game automata using data approximation. More precisely, we
use partitions of the set of integers into a finite set of intervals, wherever nec-
essary. The refinement of such an approximation using intervals is the obvious
one: using smaller intervals.

This approximation is compatible with the symbolic representation discussed
in Sec. 3.1. Moreover, approximate symbolic automata can be parameterized
lazily by the approximation scheme. This is only interesting for arithmetic and
logical operators. To implement their lazy and symbolic approximations we ex-
tend the operators from acting on integers to intervals, in the obvious way.
Every arithmetic operation ⊕ : Z → Z → Z becomes a finite relation ⊕̂ ⊆
αZ×α′Z×α′′Z, defined as follows:

(
[m1, m

′
1], [m2, m

′
2], [m, m′]

)
∈ ⊕̂ if and only

if [m, m′] ∈ α′′
(
[min{x1 ⊕ x2 | xi ∈ [mi, m

′
i]}, max{x1 ⊕ x2 | xi ∈ [mi, m

′
i]}]

)
.

4.2 Fast Early Detection of Counterexamples

As is well known, the converse of Prop. 2 is not true, since approximation can
introduce new behaviour. A reachability test in an approximate automaton will
return a string that needs to be “certified” for authenticity, i.e. that it indeed is
the image, under approximation, of a string in the original automaton.

The usual approach in model checking is to analyse a counterexample trace
using a SAT solver. We could follow that approach. However, by using domain-
specific knowledge about the automata and the approximations we obtain a
simpler and more efficient solution. A trivial test for identifying valid counterex-
amples can be implemented starting from the following fact:

Proposition 6. For any interface automaton A and data approximation α, if
m̂0 · · · m̂k ∈ L(Â) and α−1(m̂i) = {mi} then m0 · · · mk ∈ L(A).

86 A. Bakewell and D.R. Ghica

1

0

-1

1
0
-1

1
0
-1

1
0
-1

t

f
f

f

t

t

f

f
f

+

-

-

+
f

t

-

f

+

t

f v

x

v

x

Fig. 1. Data-approximated automaton

In words, a trace is valid if it contains no approximated symbols. This is only
true of data-approximated automata. This test is linear time, but it requires a
very “deep” refinement of a model. Mage uses a test that accepts traces with
approximate symbols when the approximation does not cause non-determinism
in the approximated automaton for transitions that are deterministic in the pre-
cise version. Fig. 1 shows a simple data approximation of an automaton4 that
checks for equality on the set {−1, 0, 1} by accepting two symbols then t if they
are equal and f otherwise; if f, we mark “success” by symbol v and otherwise we
mark “failure” by x. The data approximation is induced by α = {−1 �→ −, 0 �→
+, 1 �→ +, t �→ t, f �→ f, x �→ x, v �→ v}. The precise automaton is greyed out and
the approximated version superimposed. Approximated transitions that intro-
duce nondeterminism are dashed (e.g. +.+.f.x); approximated transitions not
introducing non-determinism (and which pass the test) are solid (e.g. +.−.f.x).

To apply this new criterion the counterexample must contain the visited states
(as well as the symbols in the trace), but that only adds a constant-factor time
and space algorithmic overhead.

Definition 6. Given an automaton A, a state s ∈ S is said to be forced if for
all (s, m′, s′), (s, m′′, s′′) ∈ δ, m′ = m′′ and s′ = s′′.

Proposition 7. For any automaton A, data approximation α and sequence
(ŝ0, m̂0) · · · (ŝk, m̂k) such that (ŝj , m̂j , ŝj+1) ∈ δ̂, if ŝi is forced whenever some
state s ∈ α−1

S (ŝi) is forced then m0 · · · mk ∈ L(A).

As before, this criterion is only valid for data approximation, and it spares the
need for an expensive SAT test. Instead, we can use a simple, linear-time test.
When automata compose, forced states in the components correspond to forced
4 For brevity, it is more concise than the corresponding IA game model.

On-the-Fly Techniques for Game-Based Software Model Checking 87

states in the composite automaton. It thus suffices to recognise when forced
states become non-forced through approximation in leaf automata, and record
this information whenever such states are visited, in order to indicate a trace
that fails the test of Prop. 7 and requires further refinement.

5 Mage: Empirical Results and Comparisons

We present a small selection of simple case studies to illustrate our main tech-
niques; and to compare Mage with both non-lazy game-based model checking
and lazy non-game-based model checking. The example programs are given in
the appendix. They and many more are also available on the webpage.

5.1 Lazy Precise Models

uflo : com, // exception called when empty stack popped
oflo : com, // exception called when full stack pushed
input : nat1, // free var in {0,1} supplying pushed values
output : nat1, // free var in {0,1} receiving popped values
check : com -> com -> com // arbitrary context
|-
new nat32[size] buffer in // fixed-size stack of numbers
new nat(log size) top := 0 in // first free buffer element
let push be
if top=size then oflo // raise oflo if full
else buffer[top] := input; top := top+1 fi // push and inc top

in let pop be
if top=0 then uflo // raise uflo if empty
else top := top-1; output := buffer[top] fi // pop and dec top

in check(pop,push) // context can do any seq of pushes and pops

The first example searches the model of the fixed-size integer stack ADT above
for sequences of calls of its push and pop methods that will result in uflo (i.e.
’pop empty’) or oflo (i.e. ’push full’), for different stack sizes. This example is
a classic model checking problem with a history in the games-literature making
it suitable for comparison in later sections, as well as being a good example
of how we can verify open terms. It is also a good example for testing our lazy
techniques because it presents a huge model in which a few specific paths exhibit
the properties of interest.

While checking the unapproximated model we make the stack elements be
naturals in {0, 1} — bigger integer types makes the precise models far too big.
Table 1 presents the time for Mage to search the lazy model for various stack
sizes.5 The rapid generation of counterexamples clearly demonstrates the benefit
of lazy model building. The times depend on stack size and model search order:
with the pop method given priority, the obvious uflo counterexample (“pop”)
is generated immediately. With push prioritised, a longer counterexample that
5 Mage is compiled with GHC6.4.2 and run with a 250MB heap on a 1.86GHz PC.

88 A. Bakewell and D.R. Ghica

Table 1. Lazy precise stack model verification with Mage

stack fixed-order search times (sec) randomized search
size push prioritised pop prioritised averaged times (sec)

oflo uflo oflo uflo oflo uflo
2 0.04 0.04 0.04 0.03 0.04 0.03
4 0.05 0.05 0.06 0.03 0.06 0.03
8 0.08 0.09 0.10 0.03 0.09 0.04

16 0.17 0.21 0.21 0.04 0.20 0.06
32 0.49 0.61 0.77 0.04 0.64 0.22
64 1.57 2.05 1.96 0.05 1.78 0.82

128 5.96 7.62 7.13 0.06 6.38 1.43
256 23.20 30.44 28.09 0.08 25.57 7.35
512 96.42 127.14 115.73 0.14 106.37 22.91

1024 433.43 575.56 525.27 0.30 501.02 189.26

fills then empties then underflows the stack is found. Similarly, search order af-
fects the harder oflo search problem. Mage can mitigate this effect by choosing
transitions (when iterating over frontier in the terminology of Def. 3) in a ran-
domised order instead; the last two columns in Table 1 show how this tends to
average out differences in search time caused by order.

5.2 Approximated Models and On-Demand Refinement

Switching from precise to approximate model building cuts model size, introduces
non-determinism and introduces possible false counterexamples. The Mage ap-
proximation/refinement scheme begins by setting the approximated domain of
each program variable to contain one value (the full range, determined by declared
size).

In the very best cases, searching the starting approximated model quickly
reveals safety. The starting approximated model of the term
new nat32 x := i in assert (x<1000000000 | x>1000)
exhibits a typical false counterexample. After three refinement iterations the
domain of x is precise enough for Mage to prove the assertion.

In addition to the early stopping, refinement is lazy in that only paths in the
automata that indicate potential counterexamples get refined. Spurious coun-
terexample makes the search backtrack to the next most-precise potential coun-
terexample and forget recent refinements. Consider this constraint problem:

Bill is twice as old as Ben was when Bill was as old as Ben is now.
Their combined ages are 84.

bill:nat7, ben:nat7 |- // 7-bit natural inputs
new nat7 y := bill in new nat7 ny := ben in // read the inputs
(y + ny = 84) & (y = 2 * (ny - (y - ny))) // age constraint

The above program returns true when its inputs are a solution. Searching its
precise model with Mage finds the correct ages in 256.5 seconds. Using approx-
imation/refinement, the ages are found in only 6.5 seconds after four backtracks
and six refinement iterations.

On-the-Fly Techniques for Game-Based Software Model Checking 89

5.3 Comparison of Precise vs. Approximate Modelling in Mage

Returning to the stack example, we make the elements realistic 32-bit integers
and show in Table 2 the iterated-refinement times. This exposes some pros and
cons of approximation-refinement, compared to the precise model verification
in Table 1. uflo search is even quicker, despite the increase in element domain
size. The oflo searches get somewhat slower than the precise search. While the
increased element size would make the precise search task impossible, this is not
a major factor in the time increase seen here because, as with uflo, repeatedly
pushing any value causes an oflo — indeed, the times are not much changed
by reducing the element type right down to nat1. What is going on instead, is
that each iteration identifies that a chain of pushes (of any value) could lead to
oflo so the refinement “learns” to keep the approximation domain of the array
elements vague, and each iteration makes the array index domain more precise;
each array index must be written for an oflo, so over log(size) iterations the
array index types are refined to be fully precise; this roughly doubles the number
of distinct indices each time, so the refinement amounts to the same thing as
searching for oflo in arrays with a tiny element domain and an index domain
of size 2i for each i from 0 to log(size).

It happens that the oflo counterexample is easy to find in that no back-
tracking from false counterexamples is needed. However, the search algorithm
retains a backtrack queue, so search with approximation/refinement tends to
incur further slowing as the memory gradually fills with the backtrack queue.
There is clearly potential to optimise the search process, perhaps with significant
performance gains.

5.4 Comparison with GameChecker

GameChecker [13,14] is a recent game-based model checker that incorporates
approximation and refinement. The main theoretical difference is that it does
not use our on-the-fly or symbolic techniques; the main practical difference
is that it is a Java front-end coupled to an industrial model checker whereas
Mage is implemented directly in Haskell. For a fair comparison we modify the
stack ADT program so the stack elements are 32-bit integers and search for
oflo’s and uflo’s using Mage with approximation/refinement on, and with
GameChecker using counterexample-guided refinement (on infinite integers).
The results in Table 2 support the expectation that the lazy techniques should
reap massive rewards: the GameChecker times show that building even ap-
proximate full models before analysing them incurs a severe penalty. As stack
size increases, building a full model of stack behaviour before searching is almost
all wasted work.

A secondary reason for GameChecker’s poorer performance is that it always
uses infinite integers, and to avoid infinite refinement of spurious counterexam-
ples it uses clever refinement schedules. This involves finding the smallest coun-
terexample relative to a rather complex order. This is not an issue with the
finite types in Mage, and the resultant performance gain seems to vindicate the
decision to use realistically large (i.e. 32-bit or more) integers.

90 A. Bakewell and D.R. Ghica

Table 2. CEGAR stack verification with Mage, GameChecker and Blast

stack Mage GameChecker Blast
size oflo (iters) uflo (iters) oflo (iters) uflo (iters) oflo (iters)

2 0.1 (2) 0.03 (2) 10.1 (4) 5.31 (2) 1.6 (2)
4 0.1 (3) 0.03 (2) 27.6 (6) 8.21 (2) 3.3 (4)
8 0.2 (4) 0.03 (2) 112.6 (10) 20.29 (2) 4.6 (8)

16 0.4 (5) 0.03 (2) 780.7 (18) 78.26 (2) 7.8 (16)
32 1.2 (6) 0.03 (2) 12,268.1 (36) 494.20 (2) 17.3 (32)
64 3.9 (7) 0.03 (2) >7 hrs - 8,982.13 (2) 43.7 (64)

128 13.9 (8) 0.03 (2) - - >7 hrs - 145.3 (128)
224 19.1 (9) 0.03 (2) - - - 506.4 (224)
225 19.3 (9) 0.03 (2) - - - - -
256 54.8 (9) 0.03 (2) - - - - -
512 215.3 (10) 0.03 (2) - - - - -

1024 864.7 (11) 0.03 (2) - - - - -

5.5 Comparison with Other Model Checkers

From the multitude of non-game-based approaches to model checking, in this
section we focus on what we regard as the leading tool based on predicate ab-
straction, Blast. This is a useful comparison because Blast has achieved signif-
icant performance improvements over Slam, by incorporating laziness into the
cycle of abstraction, verification and refinement. Thus we can think of Mage
vs. GameChecker as a game-based analogue of Blast vs. Slam.

Of course, the game-based tools are experiments in pure model checking for
a simple language whereas Slam and Blast are quite mature tools that handle
the C language. As a simple example of a defect of pure model checking compared
to the predicate abstraction tools, verifying the following with Mage requires a
search of all 232 possible inputs whereas Blast can declare the corresponding
C code safe in a fraction of a second.

input : nat32 |- new nat32 x := input in assert (x != 1+x)

Approaches to laziness. Laziness in Blast consists in rearranging the perfectly
eager CEGAR cycle of Slam which: (1) constructs a predicate-abstraction of
the program [7]; (2) model-checks; (3) refines the abstraction using the coun-
terexample. Instead, Blast updates the predicate-abstraction while construct-
ing the model, informed by a continuous examination of the counterexamples
yielded.This makes tremendous savings by zooming in on program parts that
need close examination and leaving the rest suitably abstract.

The incremental model building in Mage is very different but like Blast it
builds and refines only the parts needed. The other big separation is that Mage
does not pick up “interesting” predicates from the program as a starting point; it
just partitions the integers. Then refinement requires no syntactic manipulation
of source code; instead we just change the model semantics. This allows spurious
counterexamples to be identified without using an external theorem prover. In
Blast the theorem prover ends up dominating the verification process [18, p. 3].

On-the-Fly Techniques for Game-Based Software Model Checking 91

The potential disadvantage is that the initial approximation in Mage is blind
to any useful features in the program being analysed.

Stacks. Like Mage, Blast can detect uflo’s in less than a second for stack
sizes into billions of elements. Blast detects oflo in a stack of size n after n
iterations. Table 2 shows that we were able to do this without exhausting our
resources for stacks up to 224 elements. Much of the poor performance of Blast
with larger stacks is because it only generates a precise analysis of the first n
iterations of a loop, and only extends n by one at each refinement iteration, so
failures occurring only after very large numbers of iterations can be hard for it
to find. By comparison, the Mage data refinement tends to home loop counters
in on the number needed to generate the failure.

6 Conclusion

Games-based software model checking offers the advantage of compositionality,
which we believe essential for scaling to larger programs. Early work in this area
showed how the technique can be used in principle [2], and how the essential
method of iterated refinement can be adapted to the model [13]. The present
paper takes the next step in making this technique practical by incorporating
lazy/on-the-fly modelling techniques, with apparent massive efficiency gains. We
implemented, and made available, the first model checker specifically targeted
to take advantage of the multi-layered compositional nature of game models.

Our choice of target language was dictated by a desire to compare Mage to
previous work; a switch to call-by-value can be easily accomplished. Concurrency
can be also added using the work in [16]. Genuinely new developments that seem
compatible with our approach are the introduction of recursion and higher-order
functions, the game models of which admit finite-state over-approximations.

Comparison with the state-of-the art model checker Blast suggests that for
unsafe programs Mage is able to zoom in on the error faster. On safe programs
Mage’s total ignorance of specific predicates used in the program gives Blast a
substantial edge. It should be noted that Mage consists of 2,250 lines of Haskell
code, whereas Blast’s source distribution is 64MB, excluding the required ex-
ternal theorem prover. Finding common ground between the semantic-direct
approach of Mage and the syntax-oriented techniques of predicate abstraction
might be the best way forward in automated software verification.

References

1. Abramsky, S.: Abstract interpretation, logical relations and kan extensions. J. Log.
Comput. 1(1), 5–40 (1990)

2. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Applying game seman-
tics to compositional software modeling and verification. In: Jensen, K., Podelski,
A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 421–435. Springer, Heidelberg (2004)

3. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

92 A. Bakewell and D.R. Ghica

4. Bakewell, A., Ghica, D.R.: Game-Based Safety Checking with Mage. In: SAVCBS,
pp. 85–87 (2007)

5. Bakewell, A., and Ghica, D. R. On-the-Fly Techniques for Game-Based Software
Model Checking (extended report). Technical Report TR-07-8, School of Computer
Science, University of Birmingham (2007)

6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: Tech-
nology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick, J.,
Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)

7. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of c programs. In: SIGPLAN Conference on Programming Language
Design and Implementation, pp. 203–213 (2001)

8. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cam-
bridge (1999)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

12. Cousot, P., Cousot, R.: Higher-order abstract interpretation, invited paper. In:
Proc. 1994 International Conference on Computer Languages, pp. 95–112. IEEE
Computer Society Press, Los Alamitos (1994)

13. Dimovski, A., Ghica, D.R., Lazic, R.: Data-abstraction refinement: A game seman-
tic approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
102–117. Springer, Heidelberg (2005)

14. Ghica, D.R., Lazić, R.S., Dimovski, A.: A counterexample-guided refinement tool
for open procedural programs. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,
pp. 288–292. Springer, Heidelberg (2006)

15. Ghica, D.R., McCusker, G.: The regular-language semantics of second-order ideal-
ized Algol. Theor. Comput. Sci. 309(1-3), 1–3 (2003)

16. Ghica, D.R., Murawski, A.S.: Compositional model extraction for higher-order
concurrent programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 303–317. Springer, Heidelberg (2006)

17. Henzinger, T., Jhala, R., Majumdar, R., Sanvido, M.: Extreme model checking
(2003)

18. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verification with Blast
(2003)

19. Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST software verification sys-
tem. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 25–26. Springer,
Heidelberg (2005)

20. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

21. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

22. Laird, J.: A fully abstract game semantics of local exceptions. In: LICS, pp. 105–114
(2001)

Computing Simulations over Tree Automata
(Efficient Techniques for Reducing Tree Automata)

Parosh A. Abdulla1, Ahmed Bouajjani2, Lukáš Holı́k3, Lisa Kaati1, and Tomáš Vojnar3

1 University of Uppsala, Sweden
{parosh,lisa.kaati}@it.uu.se
2 LIAFA, University Paris 7, France

abou@liafa.jussieu.fr
3 FIT, Brno University of Technology, Czech Republic

{holik,vojnar}@fit.vutbr.cz

Abstract. We address the problem of computing simulation relations over tree
automata. In particular, we consider downward and upward simulations on tree
automata, which are, loosely speaking, analogous to forward and backward
relations over word automata. We provide simple and efficient algorithms for
computing these relations based on a reduction to the problem of computing sim-
ulations on labelled transition systems. Furthermore, we show that downward and
upward relations can be combined to get relations compatible with the tree lan-
guage equivalence, which can subsequently be used for an efficient size reduction
of nondeterministic tree automata. This is of a very high interest, for instance, for
symbolic verification methods such as regular model checking, which use tree
automata to represent infinite sets of reachable configurations. We provide ex-
perimental results showing the efficiency of our algorithms on examples of tree
automata taken from regular model checking computations.

1 Introduction

Tree automata are widely used for modelling and reasoning about various kinds of struc-
tured objects such as syntactical trees, structured documents, configurations of complex
systems, algebraic term representations of data or computations, etc. (see [9]). For in-
stance, in the framework of regular model checking, tree automata are used to represent
and manipulate sets of configurations of infinite-state systems such as parameterized
networks of processes with a tree-like topology, or programs with dynamic linked data-
structures [7,3,5,6].

In the above context, checking language equivalence and reducing automata wrt.
the language equivalence is a fundamental issue, and performing these operations effi-
ciently is crucial for all practical applications of tree automata. Computing a minimal
canonical tree automaton is, of course, possible, but it requires determinisation, which
may lead to an exponential blow-up in the size of the automaton. Therefore, even if
the resulting automaton can be small, we may not be able to compute it in practice due
to the very expensive determinisation step, which is, indeed, a major bottleneck when
using canonical tree automata.

A reasonable and pragmatic approach is to consider a notion of equivalence that is
stronger than language equivalence, but which can be checked efficiently, using a poly-
nomial algorithm. Here, a natural trade-off between the strength of the considered

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 93–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 P.A. Abdulla et al.

equivalence and the cost of its computation arises. In the case of word automata, an
equivalence which is widely considered as a good trade-off in this sense is simulation
equivalence. It can be checked in polynomial time, and efficient algorithms have been
designed for this purpose (see, e.g., [10,14]). These algorithms make the computation
of simulation equivalence quite affordable even in comparison with the one of bisimu-
lation, which is cheaper [13], but which is also stronger, and therefore leads in general
to less significant reductions in the sizes of the automata.

In this paper, we study notions of entailment and equivalence between tree automata,
which are suitable in the sense discussed above, and we also provide efficient algorithms
for their computation.

We start by considering a basic notion of tree simulation, called downward simula-
tion, corresponding to a natural extension of the usual notion of simulation defined on
or-structures to and-or structures. This relation can be shown to be compatible with the
tree language equivalence.

The second notion of simulation that we consider, called upward simulation, corre-
sponds intuitively to a generalisation of the notion of backward simulation to and-or
structures. The definition of an upward simulation is parametrised by a downward sim-
ulation: Roughly speaking, two states q and q′ are upward similar if whenever one of
them, say q, considered within some vector (q1, . . . ,qn) at position i, has an upward
transition to some state s, then q′ appears at position i of some vector (q′1, . . . ,q

′
n) that

has also an upward transition to a state s′, which is upward similar to s, and moreover,
for each position j �= i, q j is downward similar to q′j.

Upward simulation is not compatible with the tree language equivalence. It is rather
compatible with the so-called context language equivalence, where a context of a state
q is a tree with a hole on the leaf level such that if we plug a tree in the tree language
of q into this hole, we obtain a tree recognised by the automaton. However, we show
an interesting fact that when we restrict ourselves to upward relations compatible with
the set of final states of automata, the downward and upward simulation equivalences
can be combined in such a way that they give rise to a new equivalence relation which
is compatible with the tree language equivalence. This combination is not trivial. It
is based on the idea that two states q1 and q2 may have different tree languages and
different context languages, but for every t in the tree language of one of them, say q1,
and every C in the context language of the other, here q2, the tree C[t] (where t is plugged
into C) is recognised by the automaton. The combined relation is coarser than (or, in
the worst case, as coarse as) the downward simulation and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain two candidates for simulation-based equivalences for use in
automata reduction. Then, we consider the issue of designing efficient algorithms for
computing these relations. A deep examination of downward and upward simulation
equivalences shows that they can be computed using essentially the same algorithmic
pattern. Actually, we prove that, surprisingly, computing downward and upward tree
simulations can be reduced in each case to computing simulations on standard labelled
transition systems. These reductions provide a simple and elegant way of solving in
a uniform way the problem of computing tree simulations by reduction to computing
simulations in the word case. The best known algorithm for solving the latter problem,

Computing Simulations over Tree Automata 95

published recently in [14], considers simulation relations defined on Kripke structures.
The use of this algorithm requires its adaptation to labelled transition systems. We pro-
vide such an adaptation and we provide also a proof for this algorithm which can be
seen as an alternative, more direct, proof of the algorithm of [14]. The combination
of our reductions with the labelled transition systems-based simulation algorithm leads
to efficient algorithms for our equivalence relations on tree automata, whose precise
complexities are also analysed in the paper.

We have implemented our algorithms and performed experiments on automata com-
puted in the context of regular tree model checking (corresponding to representations of
the set of reachable configurations of parametrised systems). The experiments show that,
indeed, the relations proposed in this paper provide significant reductions of these au-
tomata and that they perform better than (existing) bisimulation-based reductions [11].

Related work. As far as we know, this is the first work which addresses the issue of
computing simulation relations for tree automata. The downward and upward simula-
tion relations considered in this work have been introduced first in [4] where they have
been used for proving soundness of some acceleration techniques used in the context
of regular tree model checking. However, the problem of computing these relations has
not been addressed in that paper. A form of combining downward and upward rela-
tions has also been defined in [4]. However, the combinations considered in that paper
require some restrictions which are computationally difficult to check and that are not
considered in this work. Bisimulations on tree automata have been considered in [2,11].
The notion of a backward bisimulation used in [11] corresponds to what can be called
a downward bisimulation in our terminology.

Outline. The rest of the paper is organised as follows. In the next section, we give some
preliminaries on tree automata, labelled transition systems, and simulation relations.
Section 3 describes an algorithm for checking simulation on labelled transition systems.
In Section 4 resp. Section 5, we translate downward resp. upward simulation on tree
automata into corresponding simulations on labelled transition systems. Section 6 gives
methods for reducing tree automata based on equivalences derived form downward and
upward simulation. In Section 7, we report some experimental results. Finally, we give
conclusions and directions for future research in Section 8.

Remark. For space reasons, all proofs are deferred to [1].

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata, and labelled
transition systems (LTS). In particular, we recall two simulation relations defined on tree
automata in [4], and the classical (word) simulation relation defined on LTS. Finally,
we will describe an encoding which we use in our algorithms to describe pre-order
relations, e.g., simulation relations.

For an equivalence relation ≡ defined on a set Q, we call each equivalence class of
≡ a block, and use Q/≡ to denote the set of blocks in ≡.

96 P.A. Abdulla et al.

Trees. A ranked alphabet Σ is a set of symbols together with a function Rank : Σ→ N.
For f ∈ Σ, the value Rank(f) is said to be the rank of f . For any n≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over
an alphabet Σ is a partial mapping t : N

∗ → Σ that satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset of N
∗, and

– for each p ∈ dom(t), if Rank(t(p)) = n > 0, then {i | pi ∈ dom(t)}= {1, . . . ,n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define the ith child
of p to be the node pi, and we define the ith subtree of p to be the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈N

∗. A leaf of t is a node p which does not have any children,
i.e., there is no i ∈ N with pi ∈ dom(t). We denote by T (Σ) the set of all trees over the
alphabet Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (TA) is a 4-
tuple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is a set of final states, Σ
is a ranked alphabet, and Δ is a set of transition rules. Each transition rule is a triple of
the form ((q1, . . . ,qn), f ,q) where q1, . . . ,qn,q ∈ Q, f ∈ Σ, and Rank(f) = n. We use

(q1, . . . ,qn)
f−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ Δ. In the special case where n = 0,

we speak about the so-called leaf rules, which we sometimes abbreviate as
f−→ q. We

use Lhs(A) to denote the set of left-hand sides of rules, i.e., the set of tuples of the form

(q1, . . . ,qn) where (q1, . . . ,qn)
f−→ q for some f and q. Finally, we denote by Rank(A)

the smallest n ∈ N such that n ≥ m for each m ∈ N where (q1, . . . ,qm) ∈ Lhs(A) for
some qi ∈ Q, 1≤ i≤ m.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t) → Q such that for each
node p ∈ dom(t) where q = π(p), we have that if qi = π(pi) for 1 ≤ i ≤ n, then Δ has

a rule (q1, . . . ,qn)
t(p)−→ q. We write t

π=⇒ q to denote that π is a run of A over t such
that π(ε) = q. We use t =⇒ q to denote that t

π=⇒ q for some run π. The language of
a state q ∈ Q is defined by L(q) = {t|t =⇒ q}, while the language of A is defined by
L(A) =

⋃
q∈F L(q).

Labelled Transition Systems. A (finite) labelled transition system (LTS) is a tuple
T = (S,L,→) where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L×S is a transition relation.

Given an LTS T = (S,L,→), a label a ∈ L , and two states q,r ∈ S, we denote by
q

a−→ r the fact that (q,a,r) ∈→. We define the set of a-predecessors of a state r as
prea(r) = {q ∈ S | q

a−→ r}. Given X ,Y ⊆ S, we denote prea(X) the set
⋃

s∈X prea(s),
we write q

a−→ X iff q ∈ prea(X), and Y
a−→ X iff Y ∩prea(X) �= /0.

Simulations. For a tree automaton A = (Q,Σ,Δ,F), a downward simulation D is a bi-

nary relation on Q such that if (q,r) ∈D and (q1, . . . ,qn)
f−→ q, then there are r1, . . . ,rn

such that (r1, . . . ,rn)
f−→ r and (qi,ri) ∈ D for each i such that 1 ≤ i ≤ n. It is easy to

show [4] that any downward simulation can be closed under reflexivity and transitivity.
Moreover, there is a unique maximal downward simulation over a given tree automaton,
which we denote as �down in the sequel.

Computing Simulations over Tree Automata 97

Given a TA A = (Q,Σ,Δ,F) and a downward simulation D, an upward simulation U

induced by D is a binary relation on Q such that if (q,r)∈U and (q1, . . . ,qn)
f−→ q′ with

qi = q, 1 ≤ i ≤ n, then there are r1, . . . ,rn,r′ such that (r1, . . . ,rn)
f−→ r′ where ri = r,

(q′,r′) ∈U , and (q j,r j) ∈ D for each j such that 1≤ j �= i ≤ n. In [4], it is shown that
any upward simulation can be closed under reflexivity and transitivity. Moreover, there
is a unique maximal upward simulation with respect to a fixed downward simulation
over a given tree automaton, which we denote as �up in the sequel.

Given an initial pre-order I ⊆ Q×Q, it can be shown that there are unique maxi-
mal downward as well as upward simulations included in I on the given TA, which we
denote �I

x in the sequel, for x ∈ {down,up}. Further, we use ∼=x to denote the equiva-
lence relation �x ∩�−1

x on Q for x ∈ {down,up}. Likewise, we define the equivalence
relations ∼=I

x for an initial pre-order I on Q and x ∈ {down,up}.
For an LTS T = (S,L,→), a (word) simulation is a binary relation R on S such that

if (q,r) ∈ R and q
a−→ q′, then there is an r′ with r

a−→ r′ and (q′,r′) ∈ R. In a very
similar way as for simulations on trees, it can be shown that any given simulation on an
LTS can be closed under reflexivity and transitivity and that there is a unique maximal
simulation on the given LTS, which will we denote by �. Moreover, given an initial
pre-order I ⊆ S×S, it can be shown that there is a unique maximal simulation included
in I on the given LTS, which we denote �I in the sequel. We use ∼= to denote the
equivalence relation � ∩�−1 on S and consequently∼=I to denote �I ∩ (�I)−1.

Encoding. Let S be a set. A partition-relation pair over S is a pair (P,Rel) where
(1) P ⊆ 2S is a partition of S (i.e., S = ∪B∈PB, and for all B,C ∈ P, if B �= C, then
B∩C = /0), and (2) Rel ⊆ P×P. We say that a partition-relation pair (P,Rel) over S
induces (or defines) the relation δ =

⋃
(B,C)∈Rel B×C.

Let � be a pre-order defined on a set S, and let ≡ be the equivalence � ∩ �−1

defined by�. The pre-order� can be represented—which we will use in our algorithms
below—by a partition-relation pair (P,Rel) over S such that (B,C) ∈ Rel iff s1 � s2 for
all s1 ∈ B and s2 ∈ C. In this representation, if the partition P is as coarse as possible
(i.e., such that s1,s2 ∈ B iff s1 ≡ s2), then, intuitively, the elements of P are blocks of≡,
while Rel reflects the partial order on P corresponding to �.

3 Computing Simulations on Labelled Transition Systems

We now introduce an algorithm to compute the (unique) maximal simulation relation
�I on an LTS for a given initial pre-order I on states. Our algorithm is a re-formulation
of the algorithm proposed in [14] for computing simulations over Kripke structures.

3.1 An Algorithm for Computing Simulations on LTS

For the rest of this section, we assume that we are given an LTS T = (S,L,→) and an
initial pre-order I⊆ S×S. We will use Algorithm 1 to compute the maximum simulation
�I⊆ S×S included in I. In the algorithm, we use the following notation. Given ρ⊆ S×S
and an element q ∈ S, we denote ρ(q) the set {r ∈ S | (q,r) ∈ ρ}.

98 P.A. Abdulla et al.

The algorithm performs a number of iterations computing a sequence of relations,
each induced by a partition-relation pair (P,Rel). During each iteration, the states
belonging to a block B′ ∈ P are those which are currently assumed as capable of simu-
lating those from any B with (B,B′) ∈ Rel. The algorithm starts with an initial partition-
relation pair (Pinit ,Relinit) that induces the initial pre-order I on S. The partition-relation
pair is then gradually refined by splitting blocks of the partition P and by restricting
the relation Rel on P. When the algorithm terminates, the final partition-relation pair
(Psim,Relsim) induces the required pre-order �I .

The refinement performed during the iterations consists of splitting the blocks in P
and then updating the relation Rel accordingly. For this purpose, the algorithm maintains
a set Removea(B) for each a∈L and B∈P. Such a set contains states that do not have an
a-transition going into states that are in B nor to states of any block B′ with (B,B′)∈Rel.
Clearly, the states in Removea(B) cannot simulate states that have an a-transition going
into

⋃
(B,B′)∈Rel B′. Therefore, for any Removea(B) �= /0, we can split each block C ∈ P to

C∩Removea(B) and C \Removea(B). This is done using the function Split on line 6.
After performing the Split operation, we update the relation Rel and the Remove sets.

This is carried out in two steps. First, we compute an approximation of the next values
of Rel and Remove. More precisely, after a split, all Rel relations between the original
“parent” blocks of states are inherited to their “children” resulting from the split (line
8)—the notation parentPprev(C) refers to the parent block from which C arose within
the split. On line 10, the remove sets are then inherited from parent blocks to their
children. To perform the second step, we observe that the inheritance of the original
relation Rel on parent blocks to the children blocks is not consistent with the split we
have just performed. Therefore, on line 14, we subsequently prune Rel such that blocks
C that have an a-transition going into B states cannot be considered as simulated by
blocks D which do not have an a-transition going into

⋃
(B,B′)∈Rel B′—notice that due

to the split that we have performed, the D blocks are now included in Remove. This
pruning can then cause a necessity of further refinements as the states that have some b-
transition into a D block (that was freshly found not to simulate C), but not to C nor any
block that is still viewed as capable of simulating C, have to stop simulating states that
can go into

⋃
(C,C′)∈RelC

′. Therefore, such states are added into Removeb(C) on line 17.

3.2 Correctness and Complexity of the Algorithm

In the rest of the section, we assume that Algorithm 1 is applied on an LTS T = (S,L,→)
with an initial partition-relation pair (Pinit ,Relinit). The correctness of the algorithm is
formalised in Theorem 1.

Theorem 1. Suppose that I is the pre-order induced by (Pinit ,Relinit). Then, Algo-
rithm 1 terminates and the final partition-relation pair (Psim,Relsim) computed by it
induces the simulation relation �I , and, moreover, Psim = S/∼=I .

A similar correctness result is proved in [14] for the algorithm on Kripke structures,
using notions from the theory of abstract interpretation. In [1], we provide an alterna-
tive, more direct proof, which is, however, beyond the space limitations of this paper.
Therefore, we will only mention the key idea behind the termination argument. In par-
ticular, the key point is that if we take any block B from Pinit and any a ∈ L , if B or any

Computing Simulations over Tree Automata 99

Algorithm 1. Computing simulations on states of an LTS
Input: An LTS T = (S,L ,→), an initial partition-relation pair (Pinit ,Relinit) on S inducing

a pre-order I ⊆ S×S.
Data: A partition-relation pair (P,Rel) on S, and for each B ∈ P and a ∈ L , a set

Removea(B)⊆ S.
Output: The partition-relation pair (Psim,Relsim) inducing the maximal simulation on T

contained in I.

/* initialisation */
(P,Rel)← (Pinit ,Relinit);1

forall a ∈ L ,B ∈ P do Removea(B)← S\prea(
⋃

Rel(B));2

/* computation */
while ∃a ∈ L . ∃B ∈ P. Removea(B) �= /0 do3

Remove← Removea(B);Removea(B)← /0;4

Pprev ← P;Bprev ← B;Relprev ← Rel;5

P← Split(P,Remove);6

forall C ∈ P do7

Rel(C)← {D ∈ P | D⊆ ⋃
Relprev(parentPprev

(C))};8

forall b ∈ L do9

Removeb(C)← Removeb(parentPprev
(C))10

forall C ∈ P. C
a−→ Bprev do11

forall D ∈ P. D⊆ Remove do12

if (C,D) ∈ Rel then13

Rel ← Rel\{(C,D)};14

forall b ∈ L do15

forall r ∈ preb(D)\preb(
⋃

Rel(C)) do16

Removeb(C)← Removeb(C)∪{r}17

(Psim,Relsim)← (P,Rel);18

of its children B′, which arises by splitting, is repeatedly selected to be processed by
the while loop on line 3, then the Removea(B) (or Removea(B′)) sets can never contain
a single state s ∈ S at an iteration i of the while loop as well as on a later iteration j,
j > i. Therefore, as the number of possible partitions as well as the number of states is
finite, the algorithm must terminate.

The complexity of the algorithm is equal to that of the original algorithm from [14],
up to the new factor L that is not present in [14] (or, equivalently, |L|= 1 in [14]). The
complexity is stated in Theorem 2.

Theorem 2. Algorithm 1 has time complexity O(|L|.|Psim|.|S|+ |Psim|.| → |) and space
complexity O(|L|.|Psim|.|S|).

A proof of Theorem 2, based on a similar reasoning as in [14], can be found in [1]. Here,
let us just mention that the result expects the input LTS and the initial partition-relation
pair be encoded in suitable data structures. This fact is important for the complexity
analyses presented later on as they build on using Algorithm 1.

In particular, the input LTS is represented as a list of records about its states—we
call this representation as the state-list representation of the LTS. The record about

100 P.A. Abdulla et al.

each state s ∈ S contains a list of nonempty prea(s) sets1, each of them encoded as a
list of its members. The partition Pinit (and later any of its refinements) is encoded as a
doubly-linked list (DLL) of blocks. Each block is represented as a DLL of (pointers to)
states of the block. The relation Relinit (and later any of its refinements) is encoded as a
Boolean matrix Pinit ×Pinit .

4 Computing Downward Simulation

In this section, we describe algorithms for computing downward simulation on tree
automata. Our approach consists of two parts: (1) we translate the maximal down-
ward simulation problem over tree automata into a corresponding maximal simulation
problem over LTSs (i.e., basically word automata), and (2) we compute the maximal
word simulation on the obtained LTS using Algorithm 1. Below, we describe how the
translation is carried out.

We translate the downward simulation problem on a TA A = (Q,Σ,Δ,F) to the sim-
ulation problem on a derived LTS A•. Each state and each left hand side of a rule in A
is represented by one state in A•, while each rule in A is simulated by a set of rules in
A•. Formally, we define A• = (Q•,Σ•,Δ•) as follows:

– The set Q• contains a state q• for each state q ∈ Q, and it also contains a state
(q1, . . . ,qn)• for each (q1, . . . ,qn) ∈ Lhs(A).

– The set Σ• contains each symbol a ∈ Σ and each index i ∈ {1,2, . . . ,n} where n is
the maximal rank of any symbol in Σ.

– For each transition rule (q1, . . . ,qn)
f−→ q of A, the set Δ• contains both the transi-

tion q•
f−→ (q1, . . . ,qn)• and transitions (q1, . . . ,qn)•

i−→ q•i for each i : 1≤ i≤ n.
– The sets Q•, Σ•, and Δ• do not contain any other elements.

The following theorem shows correctness of the translation.

Theorem 3. For all q,r ∈ Q, we have q• � r• iff q �down r.

Due to Theorem 3, we can compute the simulation relation �down on Q by constructing
the LTS A• and running Algorithm 1 on it with the initial partition-relation pair being
simply (P•,Rel•) = ({Q•},{(Q•,Q•)})2.

4.1 Complexity of Computing the Downward Simulation

The complexity naturally consists of the price of compiling a given TA A = (Q,Σ,Δ,F)
into its corresponding LTS A•, the price of building the initial partition-relation pair
(P•,Rel•), and the price of running Algorithm 1 on A• and (P•,Rel•).

We assume the automata not to have unreachable states and to have at most one
(final) state that is not used in the left-hand side of any transition rule—general automata

1 We use a list rather than an array having an entry for each a ∈ L in order to avoid a need to
iterate over alphabet symbols for which there is no transition.

2 We initially consider all states of the LTS A• equal, and hence they form a single class of P•,
which is related to itself in Rel•.

Computing Simulations over Tree Automata 101

can be easily pre-processed to satisfy this requirement. Further, we assume the input
automaton A to be encoded as a list of states q ∈ Q and a list of the left-hand sides
l = (q1, ...,qn) ∈ Lhs(A). Each left-hand side l is encoded by an array of (pointers to)
the states q1, ..., qn, plus a list containing a pointer to the so-called f -list for each f ∈ Σ
such that there is an f transition from l in Δ. Each f -list is then a list of (pointers to)

all the states q ∈ Q such that l
f−→ q. We call this representation the lhs-list automata

encoding. Then, the complexity of preparing the input for computing the downward
simulation on A via Algorithm 1 is given by the following lemma.

Lemma 1. For a TA A = (Q,Σ,Δ,F), the LTS A• and the partition-relation pair
(P•,Rel•) can be derived in time and space O(Rank(A) · |Q|+ |Δ|+(Rank(A)+ |Σ|) ·
|Lhs(A)|).

In order to instantiate the complexity of running Algorithm 1 for A• and (P•,Rel•),
we first introduce some auxiliary notions. First, we extend �down to the set Lhs(A)
such that (q1, . . . ,qn) �down (r1, . . . ,rn) iff qi �down ri for each i : 1 ≤ i ≤ n. We notice
that Psim = Q•/∼=. From an easy generalisation of Theorem 3 to apply not only for
states from Q, but also the left-hand sides of transition rules from Lhs(A), i.e., from the
fact that ∀l1, l2 ∈ Lhs(A).l1 �down l2 ⇔ l•1 � l•2 , we have that |Q•/∼=| = |Q/∼=down|+
|Lhs(A)/∼=down|.

Lemma 2. Given a tree automaton A = (Q,Σ,Δ,F), Algorithm 1 computes the simu-
lation � on the LTS A• for the initial partition-relation pair (P•,Rel•) with the time
complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ| · |Lhs(A)/∼=down|) and
the space complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|).

The complexity of computing the downward simulation for a tree automaton A via the
LTS A• can now be obtained by simply adding the complexities of computing A• and
(P•,Rel•) and of running Algorithm 1 on them.

Theorem 4. Given a tree automaton A, the downward simulation on A can be com-
puted in time O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ| · |Lhs(A)/∼=down|) and
space O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ|). 3

Moreover, under the standard assumption that the maximal rank and size of the alpha-
bet are constants, we get the time complexity O(|Δ| · |Lhs(A)/∼=down|) and the space
complexity O(|Lhs(A)| · |Lhs(A)/∼=down|+ |Δ|).

5 Computing Upward Simulation

In a similar manner to the downward simulation, we translate the upward simulation
problem on a tree automaton A = (Q,Σ,Δ,F) to the simulation problem on an LTS A�.
To define the translation from the upward simulation, we first make the following defini-
tion. An environment is a tuple of the form ((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained

3 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Lhs(A)|= |Q|, which leads to the same complexity as Algorithm 1
has when applied directly on word automata.

102 P.A. Abdulla et al.

by removing a state qi, 1 ≤ i ≤ n, from the ith position of the left hand side of a rule
((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q), and by replacing it by a special symbol � �∈ Q

(called a hole below). Like for transition rules, we write (q1, . . . ,�, . . . ,qn)
f−→ q pro-

vided ((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q) ∈ Δ for some qi ∈ Q. Sometimes, we also

write the environment as (q1, . . . ,�i, . . . ,qn)
f−→ q to emphasise that the hole is at po-

sition i. We denote the set of all environments of A by Env(A).
The derivation of A� differs from A• in two aspects: (1) we encode environments

(rather than left-hand sides of rules) as states in A�, and (2) we use a non-trivial ini-
tial partition on the states of A�, taking into account the downward simulation on Q.
Formally, we define A� = (Q�,Σ�,Δ�) as follows:

– The set Q� contains a state q� for each state q ∈ Q, and it also contains a state

((q1, . . . ,�i, . . . ,qn)
f−→ q)� for each environment (q1, . . . ,�i, . . . ,qn)

f−→ q.
– The set Σ� contains each symbol a ∈ Σ and also a special symbol λ �∈ Σ.

– For each transition rule (q1, . . . ,qn)
f−→ q of A, the set Δ� contains both the transi-

tions q�i
λ−→ ((q1, . . . ,�i, . . . ,qn)

f−→ q)� for each i ∈ {1, ...,n} and the transition

((q1, . . . ,�i, . . . ,qn)
f−→ q)�

f−→ q�.
– The sets Q�, Σ�, and Δ� do not contain any other elements.

We define I to be the smallest binary relation on Q� containing all pairs of states of the
automaton A, i.e., all pairs (q�1 ,q�2) for each q1,q2 ∈ Q, as well as all pairs of environ-

ments (((q1, . . . ,�i, . . . ,qn)
f−→ q)�,((r1, . . . ,�i, . . . ,rn)

f−→ r)�) such that (q j,r j)∈D
for each j : 1≤ j �= i≤ n.

The following theorem shows correctness of the translation.

Theorem 5. For all q,r ∈ Q, we have q �up r iff q� �I r�.

The relation I is clearly a pre-order and so the relation ι = I∩ I−1 is an equivalence. Due
to Theorem 5, we can compute the simulation relation �up on Q by constructing the
LTS A� and running Algorithm 1 on it with the initial partition-relation pair (P�,Rel�)
inducing I, i.e., P� = Q�/ι and Rel� = {(B,C) ∈ P�×P� | B×C⊆ I}.

5.1 Complexity of Computing the Upward Simulation

Once the downward simulation �down on a given TA A = (Q,Σ,Δ,F) is computed, the
complexity of computing the simulation �up naturally consists of the price of compiling
A into its corresponding LTS A�, the price of building the initial partition-relation pair
(P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

We assume the automaton A to be encoded in the same way as in the case of com-
puting the downward simulation. Compared to preparing the input for computing the
downward simulation, the main obstacle in the case of the upward simulation is the need
to compute the partition P�e of the set of environments Env(A) wrt. I, which is a subset
of the partition P� (formally, P�e = P� ∩ 2Env(A)). If the computation of P�e is done
naively (i.e., based on comparing each environment with every other environment), it
can introduce a factor of |Env(A)|2 into the overall complexity of the procedure. This

Computing Simulations over Tree Automata 103

would dominate the complexity of computing the simulation on A� where, as we will
see, |Env(A)| is only multiplied by |Env(A)/∼=up|.

Fortunately, this complexity blowup can be to a large degree avoided by exploit-
ing the partition Lhs(A)/∼=down computed within deriving the downward simulation as
shown in detail in [1]. Here, we give just the basic ideas.

For each 1 ≤ i ≤ Rank(A), we define an i-weakened version Di of the downward
simulation on left-hand sides of A such that ((q1, . . . ,qn),(r1, . . . ,rm)) ∈ Di ⇐⇒ n =
m ≥ i∧ (∀1 ≤ j ≤ n. j �= i =⇒ q j �down r j). Clearly, each Di is a pre-order, and we
can define the equivalence relations ≈i = Di∩D−1

i . Now, a crucial observation is that
there exists a simple correspondence between P�e and Lhs(A)/≈i. Namely, we have
that L ∈ Lhs(A)/≈i iff for each f ∈ Σ, there is a block EL, f ∈ P�e such that EL, f =

{(q1, . . . ,�i, . . . ,qn)
f−→ q | ∃qi,q∈Q. (q1, ...,qi, ...,qn)∈L ∧ (q1, ...,qi, ...,qn)

f−→ q}.
The idea of computing P�e is now to first compute blocks of Lhs(A)/≈i and then to

derive from them the P�e blocks. The key advantage here is that the computation of the
≈i-blocks can be done on blocks of Lhs(A)/∼=down instead of directly on elements of
Lhs(A). This is because, for each i, blocks of Lhs(A)/∼=down are sub-blocks of blocks of
Lhs(A)/≈i. Moreover, for any blocks K,L of Lhs(A)/∼=down, the test of K×L⊆Di can
simply be done by testing whether (k, l) ∈ Di for any two representatives k ∈ K, l ∈ L.
Therefore, all ≈i-blocks can be computed in time proportional to |Lhs(A)/∼=down|2.

From each block L ∈ Lhs(A)/≈i, one block EL, f of P�e is generated for each symbol
f ∈ Σ. The EL, f blocks are obtained in such a way that for each left-hand side l ∈ L, we
generate all the environments which arise by replacing the ith state of l by �, adding f ,

and adding a right-hand side state q ∈Q which together with l form a transition l
f−→ q

of A. This can be done efficiently using the lhs-list encoding of A. An additional factor
|Δ| · log |Env(A)| is, however, introduced due to a need of not having duplicates among
the computed environments, which could result from transitions that differ just in the
states that are replaced by � when constructing an environment. The factor log |Env(A)|
comes from testing a set membership over the computed environments to check whether
we have already computed them before or not.

Moreover, it can be shown that Rel� can be computed in time |P�|2. The complexity
of constructing A� and (P�,Rel�) is then summarised in the below lemma.

Lemma 3. Given a tree automaton A = (Q,Σ,Δ,F), the downward simulation �down

on A, and the partition Lhs(A)/∼=down, the LTS A� and the partition-relation pair
(P�,Rel�) can be derived in time O(|Σ| · |Q|+Rank(A)·(|Lhs(A)|+ |Lhs(A)/∼=down|2)+
Rank(A)2 · |Δ| · log |Env(A)|+ |P�|2) and in space O(|Σ| · |Q|+ |Env(A)|+ Rank(A) ·
|Lhs(A)|+ |Lhs(A)/∼=down|2 + |P�|2).

In order to instantiate the complexity of running Algorithm 1 for A� and (P�,Rel�), we
again first introduce some auxiliary notions. Namely, we extend �up to the set Env(A)

such that (q1, . . . ,�i, . . . ,qn)
f−→ q �up (r1, . . . ,� j, . . . ,rm)

f−→ r ⇐⇒m = n∧ i = j∧
q �up r∧(∀k ∈ {1, ...,n}. k �= i =⇒ qk �down rk). We notice that Psim = Q�/∼=I . From an
easy generalisation of Theorem 5 to apply not only for states from Q, but also environ-
ments from Env(A), i.e., from the fact that ∀e1,e2 ∈ Env(A). e1 �up e2 ⇐⇒ e�1 �I e�2 ,
we have that |Q�/∼=I |= |Q/∼=up|+ |Lhs(A)/∼=up|.

104 P.A. Abdulla et al.

Lemma 4. Given a tree automaton A = (Q,Σ,Δ,F), the upward simulation �up on A
can be computed by running Algorithm 1 on the LTS A� and the partition-relation pair
(P�,Rel�) in time O(Rank(A) · |Δ| · |Env(A)/∼=up|+ |Σ| · |Env(A)| · |Env(A)/∼=up|) and
space O(|Σ| · |Env(A)| · |Env(A)/∼=up|).

The complexity of computing upward simulation on a TA A can now be obtained by
simply adding the price of computing downward simulation, the price of computing A�

and (P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

Theorem 6. Given a tree automaton A = (Q,Σ,Δ,F), let Tdown(A) and Sdown(A) denote
the time and space complexity of computing the downward simulation �down on A. Then,
the upward simulation �up on A can be computed in time

O((|Σ| · |Env(A)|+Rank(A)·|Δ|)·‖Env(A)/∼=up|+Rank(A)2 ·|Δ| ·log |Env(A)|+Tdown(A))
and in space O(|Σ| · |Env(A)| · |Env(A)/∼=up|+ Sdown(A)).4

Finally, from the standard assumption that the maximal rank and the alphabet size are
constants and from observing that |Env(A)| ≤Rank(A)· |Δ| ≤Rank(A)· |Σ| · |Q|Rank(A)+1,
we get the time complexity O(|Δ| · (|Env(A)/∼=up|+ log |Q|)+ Tdown(A)) and the space
complexity O(|Env(A)| · |Env(A)/∼=up|+ Sdown(A)).

6 Reducing Tree Automata

In this section, we describe how to reduce tree automata while preserving the language
of the automaton. The idea is to identify suitable equivalence relations on states of
tree automata, and then collapse the sets of states which form equivalence classes. We
will consider two reduction methods: one which uses downward simulation, and one
which is defined in terms of both downward and upward simulation. The choice of
the equivalence relation is a trade-off between the amount of reduction achieved and
the cost of computing the relation. The second mentioned equivalence is heavier to
compute as it requires that both downward and upward simulation are computed and
then suitably composed. However, it is at least as coarse as—and often significantly
coarser than—the downward simulation equivalence, and hence can give much better
reductions as witnessed even in our experiments.

Consider a tree automaton A = (Q,Σ,Δ,F) and an equivalence relation ≡ on Q. The
abstract tree automaton derived from A and≡ is A〈≡〉= (Q〈≡〉,Σ,Δ〈≡〉,F〈≡〉) where:

– Q〈≡〉 is the set of blocks in ≡. In other words, we collapse all states which belong
to the same block into one abstract state.

– (B1, . . . ,Bn)
f−→ B iff (q1, . . . ,qn)

f−→ q for some q1 ∈ B1, . . . ,qn ∈ Bn,q ∈ B. This
is, there is a transition in the abstract automaton iff there is a transition between
states in the corresponding blocks.

– F〈≡〉 contains a block B iff B∩F �= /0. Intuitively, a block is accepting if it contains
at least one state which is accepting.

4 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Env(A)| ≤ |Σ| · |Q|, which leads to almost the same complexity (up
to the logarithmic component) as Algorithm 1 has when applied directly on word automata.

Computing Simulations over Tree Automata 105

6.1 Downward Simulation Equivalence

Given a tree automaton A = (Q,Σ,Δ,F), we consider the abstract automaton A〈∼=down〉
constructed by collapsing states of A which are equivalent with respect to ∼=down. We
show that the two automata accept the same language, i.e., L(A) = L(A〈∼=down〉). Ob-
serve that the inclusion L(A) ⊆ L(A〈∼=down〉) is straightforward. We can prove the in-
clusion in the other direction as follows. Using a simple induction on trees, one can
show that downward simulation implies language inclusion. In other words, for states
q,r ∈Q, if q �down r, then L(q)⊆ L(r). This implies that for any B∈Q〈∼=down〉, it is the
case that L(B)⊆ L(r) for any r ∈ B. Now suppose that t ∈ L(A〈∼=down〉). It follows that
t ∈ L(B) for some B ∈ F〈∼=down〉. Since B ∈ F〈∼=down〉, there is some r ∈ B with r ∈ F .
It follows that t ∈ L(r), and hence t ∈ L(A). This gives the following Theorem.

Theorem 7. L(A) = L(A〈∼=down〉) for each tree automaton A.

In fact, A〈∼=down〉 is the minimal automaton which is equivalent to A with respect to
downward simulation and which accepts the same language as A.

6.2 Composed Equivalence

Consider a tree automaton A = (Q,Σ,Δ,F). Let IF be a partitioning of Q such that
(q,r) ∈ IF iff q ∈ F =⇒ r ∈ F . Consider a reflexive and transitive downward simula-
tion D, and a reflexive and transitive upward simulation U induced by D. Assume that
U ⊆ IF . We will reduce A with respect to relations of the form ≡R which preserve lan-
guage equivalence, but which may be much coarser than downward simulations. Here,
each ≡R is an equivalence relation R∩R−1 defined by a pre-order R satisfying certain
properties. More precisely, we use D⊕U to denote the set of relations on Q such that
for each R ∈ (D⊕U), the relation R satisfies the following two properties: (i) R is tran-
sitive and (ii) D⊆ R⊆

(
D◦U−1

)
. For a state r ∈ Q and a set B⊆ Q of states, we write

(B,r) ∈ D to denote that there is a q ∈ B with (q,r) ∈ D. We define (B,r) ∈U analo-
gously. We will now consider the abstract automaton A〈≡R〉 where the states of A are
collapsed according to ≡R. We will relate the languages of A and A〈≡R〉.

To do that, we first define the notion of a context. Intuitively, a context is a tree
with “holes” instead of leaves. Formally, we consider a special symbol © �∈ Σ with
rank 0. A context over Σ is a tree c over Σ∪ {©} such that for all leaves p ∈ c, we
have c(p) = ©. For a context c with leaves p1, . . . , pn, and trees t1, . . . ,tn, we define
c[t1, . . . ,tn] to be the tree t, where

– dom(t) = dom(c)
⋃{p1 · p′| p′ ∈ dom(ti)}

⋃ · · ·⋃{pn · p′| p′ ∈ dom(tn)},
– for each p = pi · p′, we have t(p) = ti(p′), and
– for each p ∈ dom(c)\ {p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . ,tn] is the result of appending the trees t1, . . . ,tk to the holes of c.
We extend the notion of runs to contexts. Let c be a context with leaves p1, . . . , pn. A run
π of A on c from (q1, . . . ,qn) is defined in a similar manner to a run on a tree except
that for a leaf pi, we have π(pi) = qi, 1≤ i≤ n. In other words, each leaf labelled with
© is annotated by one qi. We use c [q1, . . . ,qn]

π=⇒ q to denote that π is a run of A on
c from (q1, . . . ,qn) such that π(ε) = q. The notation c [q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

106 P.A. Abdulla et al.

Using the notion of a context, we can relate runs of A with those of the abstract
automaton A〈≡R〉. More precisely, we can show that for blocks B1, . . . ,Bn,B ∈ Q〈≡R〉
and a context c, if c[B1, . . . ,Bn] =⇒ B, then there exist states r1, . . . ,rn,r ∈ Q such that
(B1,r1) ∈ D, . . . ,(Bn,rn) ∈ D,(B,r) ∈ U , and c[r1, . . . ,rn] =⇒ r. In other words, each
run in A〈≡R〉 can be simulated by a run in A which starts from larger states (with respect
to downward simulation) and which ends up at a larger state (with respect to upward
simulation). This leads to the following lemma.

Lemma 5. If t =⇒B, then t =⇒w for some w with (B,w)∈U. Moreover, if B∈F〈≡R〉,
then also w ∈ F.

In other words, each tree t which leads to a block B in A〈≡R〉 will also lead to a state
in A which is larger than (some state in) the block B with respect to upward simulation.
Moreover, if t can be accepted at B in A〈≡R〉 (meaning that B contains a final state of
A, i.e., B∩F �= /0), then it can be accepted at w in A (i.e., w ∈ F) too.

Notice that Lemma 5 holds for any downward and upward simulations satisfying
the properties mentioned in the definition of ⊕. We now instantiate the lemma for the
maximal downward and upward simulation to obtain the main result. We take D and
U to be �down and �IF

up, respectively, and we let �comp be any relation from the set of
relations (�down ⊕�IF

up). We let ∼=comp be the corresponding equivalence.

Theorem 8. L(A〈∼=comp〉) = L(A) for each tree automaton A.

Proof. The inclusion L(A〈∼=comp〉) ⊇ L(A) is trivial. Let t ∈ L(A〈∼=comp〉), i.e., t =⇒ B
for some block B where B∩F �= /0. Lemma 5 implies that t =⇒ w such that w ∈ F . �

Note that it is clearly the case that ∼=down ⊆ ∼=comp. Moreover, note that a relation
�comp∈ (�down ⊕�IF

up) can be obtained, e.g., by a simple (random) pruning of the rela-
tion �down ◦ (�IF

up)−1 based on iteratively removing links not being in �down and at the
same time breaking transitivity of the so-far computed composed relation. Such a way
of computing �comp does not guarantee that one obtains a relation of the greatest car-
dinality possible among relations from �down ⊕�IF

up, but, on the other hand, it is cheap
(in the worst case, cubic in the number of states). Moreover, our experiments show that
even this simple way of computing the composed relation can give us a relation ∼=comp

that is much coarser (and yields significantly better reductions) than ∼=down.

Remark. Our definition of a context coincides with the one of [8] where all leaves are
holes. On the other hand, a context in [9] and [3] is a tree with a single hole. Considering
single-hole contexts, one can define the language of contexts Lc(q) of a state q to be the
set of contexts on which there is an accepting run if the hole is replaced by q. Then, for
all states q and r, it is the case that q �up r implies Lc(q)⊆ Lc(r).

7 Experiments with Reducing Tree Automata

We have implemented our algorithms in a prototype tool written in Java. We have run the
prototype on a number of tree automata that arise in the framework of tree regular model
checking. Tree regular model checking is the name of a family of techniques for analysing
infinite-state systems in which states are represented by trees, (infinite) sets of states by

Computing Simulations over Tree Automata 107

Table 1. Reduction of the number of states and rules using different reduction algorithms

Protocol original ∼=down
∼=comp

backward
bisimulation

states rules states rules states rules states rules

percolate
10 72 7 45 7 45 10 72
20 578 17 392 14 346 20 578
28 862 13 272 13 272 15 341

arbiter
15 324 10 248 7 188 11 252
41 313 28 273 19 220 33 285
109 1248 67 1048 55 950 83 1116

leader
17 153 11 115 6 47 16 152
25 384 16 235 6 59 23 382
33 876 10 100 7 67 27 754

finite tree automata, and transitions by tree transducers. Most of the algorithms in the
framework rely crucially on efficient automata reduction methods since the size of the
generated automata often explodes, making computations infeasible without reduction.
The (nondeterministic) tree automata that we have considered arose during verification
of the Percolate protocol, the Arbiter protocol, and the Leader election protocol [4].

Our experimental evaluation was carried out on an AMD Athlon 64 X2 2.19GHz
PC with 2.0 GB RAM. The time for minimising the tree automata varied from a few
seconds up to few minutes. Table 1 shows the number of states and rules of the various
considered tree automata before and after computing ∼=down, ∼=comp, and the backward
bisimulation from [11]. Backward bisimulation is the bisimulation counterpart of down-
ward simulation. The composed simulation equivalence ∼=comp was computed in the
simple way based on the random pruning of the relation �down ◦ (�IF

up)−1 as mentioned
at the end of Section 6.2. As Table 1 shows, ∼=comp achieves the best reduction (often
reducing to less than one-third of the size of the original automaton). As expected, both
∼=down and ∼=comp give better reductions than backward bisimulation in all test cases.

8 Conclusions and Future Work

We have presented methods for reducing tree automata under language equivalence. For
this purpose, we have considered two kinds of simulation relations on the states of tree
automata, namely downward and upward simulation. We give procedures for efficient
translation of both kinds of relations into simulations defined on labelled transition sys-
tems. Furthermore, we define a new, language-preserving equivalence on tree automata,
derived from compositions of downward and upward simulation, which (according to
our experiments) usually gives a much better reduction on the size of automata than
downward simulation.

There are several interesting directions for future work. First, we would like to imple-
ment the proposed algorithms in a more efficient way, perhaps over automata encoded
in a symbolic way using BDDs like in MONA [12], in order to be able to experiment
with bigger automata. Further, for instance, we can define upward and downward bisim-
ulation for tree automata in an analogous way to the case of simulation. It is straight-
forward to show that the encoding we use in this paper can also be used to translate

108 P.A. Abdulla et al.

bisimulation problems on tree automata into corresponding ones for LTSs. Although re-
ducing according to a bisimulation does not give the same reduction as for a simulation,
it is relevant since it generates more efficient algorithms. Also, we plan to investigate
coarser relations for better reductions of tree automata by refining the ideas behind the
definition of the composed relation introduced in Section 6. We believe that it is possi-
ble to define a refinement scheme allowing one to define an increasing family of such
relations between downward simulation equivalence and tree language equivalence. Fi-
nally, we plan to consider extending our reduction techniques to the class of unranked
trees which are used in applications such as reasoning about structured documents or
about configurations of dynamic concurrent processes.

Acknowledgement. The work was supported by the ANR-06-SETI-001 French project
AVERISS, the Czech Grant Agency (projects 102/07/0322 and 102/05/H050), the
Czech-French Barrande project 2-06-27, and the Czech Ministry of Education by the
project MSM 0021630528 Security-Oriented Research in Information Technology.

References

1. Abdulla, P., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree
Automata. Technical report, FIT-TR-2007-001, FIT, Brno University of Technology, Czech
Republic (2007)

2. Abdulla, P., Högberg, J., Kaati, L.: Bisimulation Minimization of Tree Automata. In: H.
Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, Springer, Heidelberg (2006)

3. Abdulla, P., Jonsson, B., Mahata, P., d’Orso, J.: Regular Tree Model Checking. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

4. Abdulla, P., Legay, A., d’Orso, J., Rezine, A.: Tree Regular Model Checking: A Simulation-
based Approach. The Journal of Logic and Algebraic Programming 69(1-2), 93–121 (2006)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. In: ENTCS, vol. 149(1), pp. 37–48. Elsevier, Amsterdam (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
Springer, Heidelberg (2006)

7. Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

8. Bouajjani, A., Touili, T.: Reachability Analysis of Process Rewrite Systems. In: Pandya, P.K.,
Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, Springer, Heidelberg (2003)

9. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (1997), Available on:
http://www.grappa.univ-lille3.fr/tata

10. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and infinite graphs.
In: Proc. of FOCS 1995, IEEE, Los Alamitos (1995)

11. Maletti, A., Högberg, J., May, J.: Backward and forward bisimulation minimisation of tree
automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 109–121.
Springer, Heidelberg (2007)

12. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual, BRICS, Department of Computer
Science, University of Aarhus, Denmark (2001)

13. Paige, R., Tarjan, R.: Three Partition Refinement Algorithms. SIAM Journal on Comput-
ing 16, 973–989 (1987)

14. Ranzato, F., Tapparo, F.: A New Efficient Simulation Equivalence Algorithm. In: Proc. of
LICS 2007, IEEE CS, Los Alamitos (2007)

http://www.grappa.univ-lille3.fr/tata

Formal Pervasive Verification of a Paging Mechanism

Eyad Alkassar�, Norbert Schirmer ��, and Artem Starostin � � �

Computer Science Department - Saarland University
{eyad,nschirmer,starostin}@wjpserver.cs.uni-sb.de

Abstract. Memory virtualization by means of demand paging is a crucial com-
ponent of every modern operating system. The formal verification is challenging
since reasoning about the page fault handler has to cover two concurrent com-
putational sources: the processor and the hard disk. We accurately model the in-
terleaved executions of devices and the page fault handler, which is written in
a high-level programming language with inline assembler portions. We describe
how to combine results from sequential Hoare logic style reasoning about the
page fault handler on the low-level concurrent machine model. To the best of our
knowledge this is the first example of pervasive formal verification of software
communicating with devices.

1 Introduction

With a comparably small code base of only some thousand lines of code, and imple-
menting important safety and security abstractions as process isolation, microkernels
seem to offer themselves as perfect candidates for a feasible approach to formal verifi-
cation. The most challenging part in microkernel verification is memory virtualization,
i.e., to ensure that each user process has the notion of an own, large and isolated mem-
ory. User processes access memory by virtual addresses, which are then translated to
physical ones. Modern computer systems implement virtual memory by means of pag-
ing: small consecutive chunks of data, called pages, are either stored in a fast but small
physical memory or in a large but slower auxiliary memory (usually a hard disk), called
swap memory. The page table, a data structure both accessed by the processor and by
software, maintains whether a page is in the swap or the physical memory. Whenever the
process accesses a page located in the swap memory, either by a store/load instruction
or by an instruction fetch, the processor signals a page fault interrupt. On the hardware
side, the memory management unit (MMU) triggers the interrupt and translates from
virtual to physical page addresses. On the software side, the page fault handler reacts
to a page fault interrupt by moving the requested page to the physical memory. In case
the physical memory is full, some other page is swapped out (cf. Fig. 1).

The aim of the Verisoft project1 is a pervasive formal correctness result. The grand
challenge is to integrate various levels of abstraction and computational models. The

� Work was supported by the German Research Foundation (DFG) within the program ‘Perfor-
mance Guarantees for Computer Systems’.

�� Work was supported by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft project.

��� Work was supported by the International Max Planck Research School for Computer Science.
1 http://www.verisoft.de

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 109–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.verisoft.de

110 E. Alkassar, N. Schirmer, and A. Starostin

Fig. 1. Concept of paging

physical machine on the lower end, which comprises the concurrent computation of
at least the processor and the devices, in the middle, portions of assembler code to
implement the device drivers, and on the upper end a high-level sequential programming
language, in our case C0, a subset of C. The decisive contribution of this paper is the
integration of devices into a pervasive system verification methodology. This comprises
dealing with interleaved I/O devices and integration of inline assembler code even in the
high-level Hoare logics. All computational models and abstraction layers and almost all
proofs are mechanized in the theorem prover Isabelle/HOL, which gives us the highest
possible assurance that all parts fit together. At submission of the paper not finished
proofs include the read case of the driver.

Related Work. Hillebrand [7] presents paper and pencil formalisations and proofs for
memory virtualisation. First attempts to use theorem provers to specify and even prove
correct operating systems were made as early as the seventies in PSOS [11] and UCLA
Secure Unix [16]. However a missing or to a large extend underdeveloped tool envi-
ronment made mechanized verification futile. With the CLI stack [2], a new pioneering
approach for pervasive system verification was undertaken.

Most notably the simple kernel KIT was developed and its machine code implemen-
tation was proven. Compared to modern kernels KIT was very limited, in particular it
lacked the interaction with devices. The project L4.verified [6] focuses on the verifi-
cation of an efficient microkernel, rather than on formal pervasiveness, as no compiler
correctness or an accurate device interaction is considered. The microkernel is imple-
mented in a larger subset of C, including pointer arithmetic and an explicit low-level
memory model [15]. However with inline assembler code we gain an even more expres-
sive semantics as machine registers become visible if necessary. So far only exemplary
portions of kernel code were reported to be verified, the virtual memory subsystem uses
no demand paging [14]. For code verification L4.verified relies on Verisoft’s Hoare
environment [13]. In the FLINT project, an assembly code verification framework is
developed and code for context switching on a x86 architecture is formally proven [12].
Although a verification logic for assembler code is presented, no integration of
results into high-level programming languages is undertaken. The VFiasco project [9]
aims at the verification of the microkernel Fiasco implemented in a subset of C++. Code

Formal Pervasive Verification of a Paging Mechanism 111

verification is performed in a embedding of C++ in PVS and there is no attempt to map
the results down to the machine level.

Overview. Sect. 2 elaborates on the virtualization problem, gives an overview of our
general approach and states the required page fault handler correctness property. In
Sect. 3 a page fault handler implementation, specification and its code verification is
presented. In Sect. 4 we integrate the code verification into the Verisoft system stack to
obtain the desired correctness result. Finally we conclude in Sect. 5.

2 Virtual Memory Simulation Problem

One of the most challenging verification objectives of Verisoft is to prove that the phys-
ical machine correctly implements memory virtualization towards user processes: the
physical memory and the swap space of the hard disk are organized by the page fault
handler to provide separate uniform linear memories towards user processes. This is
expressed as a simulation theorem between a physical machine and a virtual machine
model and is described in this section. The other sections are concerned with its proof.

Most crucially the correctness of the simulation theorem depends on the correctness
of the page fault handler. This proof ties together various key results of the Verisoft
system stack. Besides the physical machine this also includes semantics for C0 and a
Hoare logic. The physical machine model is quite fine grained and executes instruc-
tions and devices concurrently, whereas the page fault handler is basically a high-level
sequential C0 program. We avoid conducting the whole proof on the low-level of the
physical machine, by proving the page fault handler correct in a Hoare logic for C0.
The soundness theorem of the Hoare logic [13] composed with the correctness theorem
of the C0 compiler [10] allows to transfer the page fault handler correctness down to
the physical machine. However, we have to consider one peculiarity of the page fault
handler (and low-level systems code in general): there are small portions of inline as-
sembler code that break the high-level C0 semantics. In case of the page fault handler
this is the device driver code for communication with the hard disk. We encapsulate
these pieces of inline assembler code into so called ‘XCall’s. On the level of the Hoare
logic these are represented as atomic state updates (cf. Sect. 3.1) on an extended state
that comprises both the C0 memory and the current configuration of the hard drive. We
prove that the assembler implementation of the XCall adheres to this abstraction (cf.
Sect. 4.2).

Another major step is to bridge the gap from the sequential C0 model to the con-
current execution of the processor and the devices on the physical machine. This is
achieved by means of a reordering theorem (cf. Sect. 4.2). The memory virtualization
theorem is a property that has to hold for all possible interleavings. The reordering the-
orem allows us to focus only on those execution traces where the relevant actions of the
device driver and the device happen consecutively.

2.1 Basic Definitions

We denote the set of boolean values by B and set of natural numbers including zero by
N. For any natural x we denote the set of natural numbers less then x by Nx. We denote

112 E. Alkassar, N. Schirmer, and A. Starostin

the unbounded abstract list with elements of type T by T ∗ and the list of length n by T n.
The length of a list x is denoted by |x|, its element access by x[i], and the tail, e.g., the
part of the list without the first element, by tl(x). The operator 〈x〉 yields for a bit string
x ∈ B

∗ the natural number represented by x. The fragment of a bit list from a position
a to b is denoted by x[b : a]. For a record x the set of all its possible configurations is
defined by Cx. A memory m is modeled as a mapping from addresses a to byte values
m[a]. An access to d consecutive memory cells starting at address a is abbreviated as
md [a] = m[a + d − 1], . . . ,m[a].

We deal with an abstract model of computation, where N user processes are virtual
machines that run on a single physical machine. The memories of machines are logically
organized in pages of size P = 4K bytes. For a virtual address va ∈ B

32 we define by
px(va) = va[31 : 12] and bx(va) = va[11 : 0] its page and byte indexes, respectively.
Represented as natural number we get px(va) = va/P and bx(va) = va mod P.

2.2 Physical Machine Specification

The physical machine is the sequential programming model of the VAMP hard-
ware [3] as seen by a system software programmer. It is parameterized by (i) the
set SAP ⊆ B

5 of special purpose register addresses visible to physical machines, and
(ii) the number TPP of total physical memory pages which defines the set PMA =
{a | 0 ≤ 〈a〉 < TPP ·P} ⊆ B

32 of accessible physical memory addresses. The machines
are records pm = (pc,dpc,gpr,spr,m) with the following components: (i) the normal
pm.pc ∈ B

32 and the delayed pm.dpc ∈ B
32 program counters used to implement the

delayed branch mechanism, (ii) the general purpose register file pm.gpr ∈ B
5 �→ B

32,
and the special purpose register file pm.spr ∈ SAP �→ B

32, and (iii) the byte address-
able physical memory pm.m ∈ PMA �→ B

8. We demand SAP to contain the following
addresses: (i) mode, for the mode register, and (ii) pto and ptl, for the page table origin
resp. length registers whose values are measured in pages. For any address a ∈ SAP
we will abbreviate pm.spr[a] = pm.a. A physical machine is running in system mode if
pm.mode = 032 and in user mode if pm.mode = 0311.

Address Translation and Page Faults. In user mode a memory access to a virtual
address va is subject to address translation. It either redirects to the translated physical
memory address pma(pm,va) or generates a page fault.

The physical memory address is computed as follows. We interpret the mem-
ory region pm.mpm.ptl·P[pm.pto · P] as the current page table. Let ptea(pm,va) =
pm.pto ·P+ 4 ·px(va) be the page table entry address for virtual address va and
pte(pm,va) = pm.m4[ptea(pm,va)] be its page table entry. The page table en-
try is composed of three components, the physical page index ppx(pm,va) =
pte(pm,va)[31 : 12], the valid bit v(pm,va) = pte(pm,va)[11], and the protected bit
p(pm,va) = pte(pm,va)[10]. Concatenation of the physical page index and the byte
index yields the physical memory address pma(pm,va) = ppx(pm,va)◦ bx(va).

In order to define page faults, let w ∈ B be active on write operations. The page fault
pf(pm,va,w) is raised if (i) the valid bit v(pm,va) is not set, or (ii) the write flag w and
the protected bit p(pm,va) are active.

Formal Pervasive Verification of a Paging Mechanism 113

Semantics. The semantics of a physical machine is formally given by the transition
function δpm(pm) = pm′ yielding the next state configuration. If no page fault occurs the
effects of a transition are defined by the underlying instruction set architecture (ISA).
In case pf(pm,va,w) the program counters are set to the start address of the page fault
handler. We switch to system mode and the execution of the handler is triggered. After
its termination the mode is changed back and the user computation resumes.

2.3 Devices

From the viewpoint of the operating system the hard disk is a device . Before describing
the hard disk model, we sketch our general framework for memory-mapped devices (we
do not consider DMA here). A device x is a finite transition system which communi-
cates with (i) an unspecified external environment, and (ii) the processor. Examples for
input and output from and to the environment are incoming key press events and out-
going network packages. We denote inputs from the environment with eifix and outputs
with eifox. The processor reads and writes from and to a device by load- and store-word
operations to specific address regions. Both operations are signaled by an output func-
tion ω of the processor: ω(pm) = mifi. In case of a read operation, the device returns
requested data in form of an output called mifo. The transition of a device of type Cx is
then given by: δdevs(x,eifix,mifi) = (x′,mifo,eifox).

For all modeled device types DT and a set of device identifiers DI, the configuration
pmd = (pm,devs : DI → DT) describes the state of the processor and of all devices. The
processor and devices are executed in an interleaved way. An oracle, called execution
sequence (seq) determines for a given step number i whether the processor, i.e., seq(i) =
Proc or some device d makes a step, in which case the sequence also provides the input
from the environment: seq(i) = (d,eifixd). The function δpmd describes the execution
of the overall system. It takes as input the combined state of the processor and of all
devices, a step number and an execution sequence. A detailed description of the device
framework can be found in [1]. Next we instantiate one device with the hard disk.

Hard Disk Description. We model a hard disk based on the ATA/ATAPI protocol.
Hard disks are parameterized over the number of sectors S. Each sector has a size of
128 words. We assume that the hard disk is large enough to store the total virtual page
space of all user processes. The processor can issue read or write commands to a range
of sectors, by writing the start address and the count of sectors to a special port. Each
sector is then read/written word by word from/to a sector buffer. After a complete sector
is written or read to the sector buffer, the hard disk needs some time to transfer data to
the sector memory. This amount of time is modeled as non-determinism by an oracle
input from the external environment, indicating the end of the transfer. In this case the
input eifihd is set to one. The hard disk can be run either in interrupt or polling mode.
We chose the second type.

In the following we only need the sector memory of the hard disk. Its domain ranges
over S · 128 words: hd = (sm : NS·128 �→ N256, . . .). A hard disk is necessarily an item
of the device system pmd.devs. We abbreviate an access to the hard disk of a physical
machine with devices as pmd.hd. A detailed description of the hard disk, its transitions
and a simple driver can be found in [8].

114 E. Alkassar, N. Schirmer, and A. Starostin

2.4 Virtual Machine Specification

Virtual machines are the hardware model visible for user processes. They give an
user the illusion of an address space exceeding the physical memory. No address
translation is required, hence page faults are invisible. The virtual machine’s param-
eters are: (i) the number TVP of total virtual memory pages which defines the set
of virtual memory addresses VMA = {a | 0 ≤ 〈a〉 < TVP ·P} ⊆ B

32, and (ii) the set
SAV ⊆ SAP\{mode,pto,ptl} of special purpose register addresses visible to virtual ma-
chines. Their configuration, formally, is a record vm = (pc,dpc,gpr,spr,m) where only
the vm.spr ∈ SAV �→ B

32 and vm.m ∈ VMA �→ B
8 differ from the physical machines.

The semantics is completely specified by the ISA.

2.5 Simulation Relation

A physical machine maintaining a page fault handler with a hard disk can simulate
virtual machines. The simulation relation, called the B-relation, specifies a (pseudo-)
parallel computation of N user processes up ∈ CN

vm modeled as virtual machines on one
system pmd composed out of a physical machine, a hard disk, and other devices. The
computation proceeds as follows.

The physical machine maintains a variable cp designating which of the user pro-
cesses is meant to make a step. Unless a page fault occurs, the process up[cp] is up-
dated according to the semantics of virtual machines. Otherwise, the physical machine
invokes the page fault handler. After its execution, the user process continues the com-
putation. An appropriate page fault handler obeys the following rules: (i) it maintains
the list of N process control blocks (PCB) (described below), which permanently reside
in the memory of the physical machine, (ii) it is able to access page tables of processes
which lie consecutively in the physical memory, (iii) it has a data structure, called the
swap table which maps virtual addresses to swap page indexes. A swap memory address
sma(pm,a) is computed via an access to such a table.

Process control blocks implement the user processes. They contain fields for storing
the content of gpr and spr register files of all processes. When a user process currently
being run on the physical machine is interrupted by a page fault, the content of the
registers is copied into the PCBs before the execution of the page fault handler. Accord-
ingly, after the handler terminates the interrupted user process is restored by copying
the content of appropriate PCB fields back to the registers of the physical machine.

Now we define the B-relation. First, we must reconstruct virtual machines from the
contexts stored in PCBs. The function virt(pid,pmd) = vm yields the virtual machine
for process pid by taking the register values from the corresponding PCB fields. The
memory component of the built virtual machine is constructed out of physical memory
and the data on the hard disk depending where a certain memory page lies:

vm.m[a] =

{
pmd.pm.m[pma(pm,a)] if v(pm,a)
pmd.hd.sm[sma(pm,a)] otherwise

.

Then, the B-relation is: B(pmd,up) = ∀pid ∈ NN : virt(pid,pmd) = up[pid].
There is a small number of additional correctness relations omitted due to the lack

of space. The reader should refer to [5] for them.

Formal Pervasive Verification of a Paging Mechanism 115

Proving the correctness of memory virtualization is a one-to-n-step simulation be-
tween the virtual and the physical machine. One has to show that each step of a virtual
machine, can be simulated by n steps of the physical machine, while the B-relation
is preserved. The only interesting case in the proof is the occurrence of a page fault
during the execution of a load or store instruction. In all other cases, the semantics of
the virtual and the physical machines almost coincide. In the following we describe the
crucial part of the proof: the page fault handler execution leads to a non-page faulting
configuration maintaining the B-relation.

3 Page Fault Handler Implementation and Code Verification

3.1 Extended Hoare Logic

Our page fault handler is implemented in a high-level programming language with small
portions of inline assembler code for communication with the hard disk and to access
portions of memory that are not mapped to program variables (e.g., memory of user
processes). As programming language we use C0, which has been developed for and is
extensively used within the Verisoft project. In short C0 is Pascal with C syntax, i.e.,
its type-system is sound and it supports references but no pointer-arithmetic. Syntax
and semantics of C0 are fully formalized in Isabelle/HOL. Moreover, a compiler is
implemented and formally verified [10].

We use Hoare logic as an effective means of C0 program verification. Unfortunately
the inline assembler portions, that make hardware details visible towards the program-
ming language, break the abstractions C0 provides. We deal with the low-level inline
assembler parts, without breaking the Hoare logic abstraction for C0, by encapsulated
them into an atomic step on an extended state, a so called XCall. The extended state can
only be modified via a XCall.

We apply an instance of Schirmer’s Hoare logic environment [13] implemented in
Isabelle/HOL. He defines a set of Hoare rules, for a generic programming language
Simpl, and formally proves the soundness of this logic. Hoare rules describe a triple
{P}S{Q}, where precondition P defines the set of valid initial states of the C0 variables,
S is the statement to execute and postcondition Q is guaranteed to hold for the states
after execution of S. We prove total correctness and hence termination is guaranteed.

Additionally to the embedding of C0 into Simpl, we introduce some special treat-
ment for XCalls and refer to the resulting system as extended Hoare logic. First we
have to deal with the extended state space, i.e., the physical memory and the swap. In
Simpl we treat them analogous to C0 variables, with the only difference that they are
not restricted to C0 types. It is not necessary to introduce a new Hoare rule into Simpl
to handle XCalls. Instead we can use the ‘Basic’ construct of Simpl, a general assign-
ment which can deal with an arbitrary state update function f : { f (s) ∈ Q} Basic f {Q}.
On the level of Simpl every XCall is modelled as such a state update, representing the
abstract semantics of the XCall.

The specification of the page fault handler and its operations, and data types in
general, are not directly formulated on the level of the extended C0 state. Instead the
C0 state is lifted to a more abstract model. For example a linked pointer structure may

116 E. Alkassar, N. Schirmer, and A. Starostin

be mapped to a HOL list. An abstraction relation abs relates the model a and the ex-
tended C0 state xc. The pre- and postconditions of Hoare triples then typically express
that the abstraction relation is preserved by the abstract operation and the correspond-
ing C0 implementation. When the operation on the abstract model transfers a to a′

then the extended C0 state has to make the analogous transition. Hence we prove sim-
ulation of the abstraction and the C0 program by the following specification scheme:
{abs(a,xc)}S{abs(a′,xc′)}.

In Sect. 3.2 we describe the C0 implementation of the page fault handler using
XCalls. Then we continue in Sect. 3.3 with the specification of the page fault handler by
an abstract model. The aforementioned Hoare logic verification ensures the simulation
of the implementation and the abstract model.

3.2 Implementation

Our page fault handler implementation [4] maintains several global data structures to
manage the physical and the swap memories. These data structures permanently reside
in the memory of a physical machine. They are used to support mechanisms of vir-
tual memory de- and allocation, and the page replacement strategy. The necessary data
structures comprise: (i) the process control blocks, (ii) the page and swap tables, and
(iii) active and free lists managing allocated and free user memory pages, respectively.

On the software level we distinguish the following page faults: (i) an invalid access
occurring when a desired page is not present in the physical memory, and (ii) the zero
protection page fault which signals a write access to a newly allocated page.

On the reset signal a page fault handler initialization code is executed. It brings the
data structures to a state where all the user physical pages are free, and page resp. swap
tables are filled with zeros. The page table lengths of all user processes are nulled, and
their origins are uniformly distributed inside the page table space.

When a memory page is allocated for a virtual machine it must be filled with zeros. In
order to avoid heavy swapping and zero-copying at a particular page index, we optimize
the allocation process by making all of the newly allocated pages point to the zero filled
page residing at page address adzfp. This page is always protected. Whenever one reads
from such a page a zero content is provided. At a write attempt to such a page a zero
protection page fault is raised. Thus, an allocation leaves the active and free lists un-
changed, possibly modifying the PCBs and the page table space in case a movement of
origins is needed. On the memory free, the descriptors of the released pages are moved
back to the free list, and the corresponding entries in the page tables are invalidated.

On a page fault the handling routine is called. The free list is examined in order to
find out whether any unused page resides in the physical memory and could be given
to a page faulting process. If not, a page from an active list is evicted. An obtained
vacant page is then either filled with the desired data loaded from the disk, or with
zeros depending on the kind of page fault. The page table entry of an evicted page is
invalidated while the valid bit of a loaded page is set. We use the FIFO-eviction strategy,
which guarantees that the page swapped in during the previous call to the handler will
not be swapped out during the current call. This property is crucial for liveness of the
page fault handler since a single instruction can cause up to two page faults on the
physical machine — one during the fetch phase, the other during a load/store operation.

Formal Pervasive Verification of a Paging Mechanism 117

Programming Model and Extended State. The semantics of C0 is defined as a small
step transition system on configurations c. In small step semantics, C0 configurations
are records c = (pr,s) where c.pr is the program rest and c.s is the ‘state’. The page
fault handler manipulates and hence must have access to the following components:

– Program variables as the free, and active lists, maintained only by the page fault
handler. These are ordinary C0 variables.

– The page tables which are used by the hardware for address translation. We simply
map them to an ordinary array variable in C0, where we solely have to ensure that
the allocation address of this array coincides with the page table origin used by
the physical machine during address translation. All the C0 data structures together
with the handler code consume TSP total system pages of physical memory.

– Physical memory of the machine running the handler. The page fault handler trans-
fers memory pages from the hard disk to the non-system region of physical mem-
ory which consists of TUP = TPP− TSP total user pages of physical memory, and
hence it must be able to manipulate the region pm.mTUP·P[TSP · P]. As in C0 the
memory is not explicitly visible (e.g., through pointer arithmetic) we employ the
extended state to manipulate physical memory.

– The swap memory of the hard disk. An elementary device driver which swaps pages
from memory to the hard disk is an integral part of the page fault handler. Similar
to the virtual memory, the hard disk is out of the scope of the pure C0 machine, and
is handled by the extended state.

Access to the physical memory and the elementary device driver of the hard disk
are both implemented as inline assembler code in C0. As detailed in Sect. 3.1 we en-
capsulate inline code by atomic primitives, the XCalls. We augment the C0 small step
semantics to handle XCalls which results in a new transition system on extended con-
figurations xc = (c,mem ∈ NTUP �→ N

P
256,swap ∈ NTVP·N �→ N

P
256).

The semantics δxc of the new machine executes the small step transition function
of the C0 machine in case the head of the program rest is an ordinary C0 statement.
Otherwise the effects of the primitives are applied, i.e., in case the next statement is a
read command: xc.c.pr = readPage(xc,admem,adswap) we copy a page from the swap
to the virtual memory: xc′.mem(admem) = xc.swap(adswap). Whereas in case of a write
primitive xc.c.pr = writePage(xc,adswap,admem) we copy a page from physical memory
to the swap: xc′.swap(adswap) = xc.mem(admem).

The implementations of these primitives, mainly the elementary drivers, are verified
separately against their specification. Note, that at this point we even abstracted inter-
leaved device execution to one atomic step. In Sect. 4.2 we justify this abstraction by
stating the correctness of our driver implementation.

3.3 Specification

Abstract Page Fault Handler. An abstract page fault handler is a high-level concept
of: (i) data structures from the implementation, (ii) physical memory of the machine
running a page fault handler, and (iii) hard disk of this machine. Before the formal
specification of the page fault handler two auxiliary concepts are formalized. They are
page descriptors and translation tables.

118 E. Alkassar, N. Schirmer, and A. Starostin

Page Descriptors. A page descriptor is a record pd = (pid,vpx,ppx) holding the infor-
mation about one user page. Its fields are: (i) pd.pid ∈ NN , a process identifier which de-
notes to which virtual machine an associated physical page belongs, (ii) pd.vpx ∈ NTVP,
a virtual page index showing to which virtual page the corresponding physical page be-
longs, and (iii) pd.ppx ∈ NTPP, a physical page index which points to the user page in
the physical memory.

Translation Table. We abstract the page and the swap tables to the concept of a trans-
lation table. It allows us to easily determine the address of a virtual page in physi-
cal or swap memories. A translation table entry is a record tte = (ppx,spx,v) with
tte.ppx ∈ NTPP, tte.spx ∈ NTVP and tte.v ∈ B. The components are the physical page
index, the swap page index, and the valid bit, respectively.

Configuration. The abstracted configuration of a page fault handler is a record pfh =
(active, free, tt,pto,ptl,mem,swap). The meaning of the components is: (i) the active
list pfh.active ∈ C∗

pd of page descriptors associated with user memory pages that store a
virtual page, (ii) the free list pfh.free ∈ N

∗
TPP of unused physical page indexes. We de-

mand |pfh.active|+ |pfh.free| = TUP since both lists describe physical memory pages
potentially accessible by a user, (iii) the translation table pfh.tt ∈ CTVP

tte is an abstraction
of the physical memory region that stores page tables and swap tables. Each entry cor-
responds exactly to one virtual page, (iv) the vectors of the processes’ page table origins
pfh.pto ∈ N

N
TVP and page table lengths pfh.ptl ∈ N

N
TVP, (v) page addressable representa-

tions of the non-system part of the physical memory pfh.mem ∈ NTUP �→ N
P
256, and the

hard disk content pfh.swap ∈ NTVP·N �→ N
P
256.

The components pfh.(mem,swap) are supposed to be mapped one-to-one to the cor-
responding components of the implementation configuration xc.

Page Faults Visible to the Software. A page fault handler guarantees that after its
call a page associated with a virtual address va and a process pid will be in the phys-
ical memory. The translation table entry address for a virtual page index px(va) and a
process pid is defined as ttea(pfh,pid,px(va)) = pfh.pto[pid] · P + px(va), and the cor-
responding translation table entry is tte(pfh,pid,px(va)) = pfh.tt[ttea(pfh,pid,px(va))].
We shorten an access to an entry’s component x ∈ {ppx,spx,v} as x(pfh,pid,px(va)) =
tte(pfh,pid,px(va)).x. By pf(pfh,pid,va) = v(pfh,pid,px(va))∨ppx(pfh,pid,px(va)) =
adzfp we define the page fault signal. The disjuncts denote the invalid access and the zero
protection page faults, respectively.

Obtaining a Non-Page Faulting Configuration. A page fault handling routine in-
voked in a configuration pfh with pf(pfh,pid,va) steps to a configuration pfh′ with
pf(pfh′,pid,va) according to the following algorithm. First, a victim page descrip-
tor vic is selected depending on the length of the free list. Let E(pfh) hold in
case the free list in the configuration pfh is empty, i.e., |pfh.free| = 0. We set
vic = pfh.active[0] if E(pfh), and vic = (∗,∗,pfh.free[0]) otherwise. If the free list
is empty the descriptor of the page to be swapped in is removed from the head
of the active list, otherwise from the head of the free list, and is appended to the
active list. The vpx field of the descriptor is set to the px(va) value. Formally,

Formal Pervasive Verification of a Paging Mechanism 119

pfh′.active = tl(pfh.active)◦ (pid,px(va),vic.ppx) and pfh′.free = pfh.free if E(pfh),
and pfh′.active = pfh.active ◦ (pid,px(va),vic.ppx) and pfh′.free = tl(pfh.free) other-
wise. Further, in case of the empty free list the victim page is written to the swap mem-
ory. Formally, pfh′.swap = swap out(pfh,vic.pid,vic.ppx,vic.vpx) if E(pfh), where
swap out(pfh,pid,ppx,vpx) yields the modified swap component replacing the swap
page at address spx(pfh,pid,vpx) by pfh.mem[ppx]. The (obtained) free space in the
physical memory is either filled with zeros in case of the zero protection page fault or
with the page loaded from the swap memory. We set pfh′.mem = zfp(pfh,vic.ppx) if
ppx(pfh,pid,px(va)) = adzfp, and pfh′.mem = swap in(pfh,pid,vic.ppx,px(va)) other-
wise. The swap in(pfh,pid,ppx,vpx) returns a memory component where a page at ad-
dress ppx is updated with pfh.swap[spx(pfh,pid,vpx)], and zfp(pfh,ppx) yields a mem-
ory where the page ppx is filled with zeros. Finally, the translation table entry of the
evicted page is invalidated while the valid bit and the page index of the swapped in
page are appropriately set:

pfh′.tt[i].(ppx,v) =

⎧
⎪⎨

⎪⎩

(ppx(pfh,vic.pid,vic.vpx),0) if i = ttea(pfh,vic.pid,vic.vpx)
(vic.ppx,1) if i = ttea(pfh,pid,px(va))
pfh.tt[i].(ppx,v) otherwise

.

4 Correctness of the Page Fault Handler: Integrating Results

Conceptually, there are two correctness criteria for a page fault handler. Invoked in the
configuration pfh with the parameters (pid,va) it must guarantee, first of all, a page fault
no longer occurs at the address va. Secondly, it must preserve the B-relation which is
established for the first time after the page fault handler initialization code. Both prop-
erties follow from the functional correctness of the page fault handler implementation.

Mapping Implementation to Abstraction. In order to state that the handler implemen-
tation respects abstraction we define the predicate map(c,pmd,pfh) which is, basically,
a conjunction of the three following statements: (i) the variables of the implementation
C0 machine c encode the data structures pfh.(active, free, tt,pto,ptl) of the abstraction,
(ii) the memory pmd.pm.m of the physical machine starting from the page TSP encodes
the abstract memory component pfh.mem, and (iii) the hard disk content pmd.hd.sm
stores the swap pages pfh.swap of the abstraction. This mapping is established for the
first time with the initial configuration of the abstract page fault handler and has to be
preserved under each call to the handler.

Mapping C0 to the Physical Machine. Since the overall paging mechanism correct-
ness is stated on the level of the physical machine with devices, we relate C0 config-
urations to the physical machine states. Given an allocation function alloc mapping
variable names to memory locations, we relate a C0 configuration to its physical ma-
chine implementation. We use the compiler simulation relation consis(alloc)(c,pm),
which relates values of variables and pointers to memory regions and the program to
some code region of the physical machine. A further condition is control-consistency,
which states that the delayed PC of the physical machine (used to fetch instructions)
points to the start of the translated code of the program rest c.pr of the C0 machine.

120 E. Alkassar, N. Schirmer, and A. Starostin

Validity of the Abstract Page Fault Handler. We demand a variety of properties to
hold over the page fault handler abstraction. These properties reflect the functional cor-
rectness and are necessary for the B-relation proof. The predicate valid(pfh) claims,
among others, the following: (i) all virtual addresses are translated into physical ad-
dresses outside the page fault handler code range, (ii) translation tables do not overlap,
(iii) page table origins of user processes are monotonic, and ttea(pfh,pid,px(va)) al-
ways addresses a value inside the translation table, (iv) the active list describes only
valid pages, and all the valid pages are described by the active list, (v) none of the vir-
tual pages of a given process might be stored by two or more active pages, and (vi) all
physical page indexes in active and free lists are distinct. Now we state the overall cor-
rectness theorem of a paging mechanism.

Theorem 1 (Paging Mechanism Correctness). Let c be the C0 machine calling the
handler function: c.pr = handler(pid,va);r, and let pfh be the abstract page fault han-
dler configuration. Let up be the user processes, and pmd = (pm,devs) be the physical
machine with devices. Assuming that (i) c is simulated by pm: consis(alloc)(c,pm),
(ii) the relation B(pmd,up) holds, (iii) c and pmd encode a valid configuration pfh:
map(c,pmd,pfh) ∧ valid(pfh), and (iv) a page fault takes place: pf(pfh,pid,va), then
there exists a number of steps T , s.t. pmd′ = (pm′,devs′) = δ T

pmd(pmd) after which (i) the
handler function is executed and the C0 machine remains consistent with the physical
one: ∃c′,alloc′ . consis(alloc′)(c′,pm′) ∧ c′.pr = r, (ii) the relation B(pmd′,up) is
preserved, and (iii) c′ and pmd′ encode a valid non-page faulting configuration pfh′:
map(c′,pmd′,pfh′) ∧ valid(pfh′) ∧ pf(pfh′,pid,va).

4.1 Compiler Correctness: From C0 to the Physical Machine

The compiler correctness theorem states that the execution of a given C0 program sim-
ulates the execution of the compiled program running on the hardware. It is formally
proven correct in Isabelle/HOL by Leinenbach [10].

Theorem 2. ∀t. consis(alloc)(c,pm) =⇒ ∃s,alloc′. consis(alloc′)(ct ,pms)

4.2 Driver Correctness

Implementation Model. The driver calls are implemented as C0 functions with in-
line assembler code, where the inline code portion accesses the hard disk and ma-
nipulates the physical memory. An assembler instruction list il can be integrated by
a special statement Asm(il) into the C0 code. The control-consistency is extended in a
straightforward way to the new statement: an instruction list at the head of the program
rest maps to a memory region pointed at by the delayed PC of the physical machine:
c.pr = Asm(il);r ∧ consis(alloc)(c,pm) =⇒ pm.m4·length(il)(pm.dpc) = il

The semantics of inline assembler is defined over the combined configuration of a
C0 and a physical machine with device state (c,pmd). We execute C0 transitions as long
as no assembler is met. In case of assembler instructions we switch, via the compiler
consistency relation, to the physical machine, execute the assembler code and switch
back to the C0 machine. For the last step, we only have to state how the C0 variables are

Formal Pervasive Verification of a Paging Mechanism 121

P P PHD, rdy P P SI ...KEYB SI KEYB

writePage

KEYB ...SI SIPP PHD, rdy P KEYBP

Fig. 2. Reordering of device steps, with hard disk, serial interface and keyboard

manipulated by the assembler code. This combination of assembler and C0 semantics is
the driver’s implementation model. Out of the two driver calls readPage and writePage
the latter and more complex one was formally verified.

Simulation Relation. This paragraph outlines the correctness of the elementary hard
disk driver. First we have to define a simulation relation between our abstract state xc
and the implementation state (c,pmd). This relation is called xConsis(xc,c,pmd) and it
maps: (i) the abstract swap component to the sector memory defined in the hard disk:
xc.swapTUP[0] = pmd.hd.smTUP·K [0], (ii) the abstract memory component to total user
pages of physical memory: xc.memTUP[0] = pm.mTUP·P[TSP · P], (iii) the program rest
of xc to the C0 program rest by substituting XCalls by their C0 with inline assembler
implementation, and (iv) machine c to the physical machine pm: consis(alloc)(c,pm).
Next we can state the simulation theorem, where pmdt,seq denotes the execution of t
steps under the oracle seq of the physical machine with devices:

Theorem 3. ∀seq. xConsis(xc,c,pmd) =⇒ ∃c′, t. xConsis(δxc(xc),c′,pmdt,seq)

The most challenging part of the correctness prove, is dealing with the interleaved de-
vice execution. We need a programmer’s model without unnecessary interleaving, and
we have to prove some atomicity of driver execution.

Non-Interference of Devices. All devices take interleaved steps triggered by the envi-
ronment. However we want to verify Theorem 3, ignoring all devices except the hard
disk. In the best case the proof would split in sequential assembler execution and device
steps analyzed separately. In principle we want to ensure that: (i) the execution of the
driver does not interfere with other devices than the hard disk, and (ii) the execution of
the driver can be considered as one atomic step.

These two properties follow from a simple observation of device execution. If the
processor is not accessing a device x and if device x is not triggering an interrupt we
can simply swap the execution of the processor and the device without changing the
final configuration. A similar lemma holds for swapping steps of two different devices.

We generalized this basic observations to a reordering theorem (see Fig. 2): if all
interrupts are disabled and if the processor only accesses some device x during execut-
ing a given instruction list, we can move all other device steps after the time when the
instruction list is executed.

4.3 Proof Sketch of the Paging Mechanism Correctness

With the described methodology we are able to show Theorem 1. In brief, the proof idea
is as follows: we show the functional correctness of the page fault handler by reasoning

122 E. Alkassar, N. Schirmer, and A. Starostin

xc

abstract transition systempfh

xc
extended C0 machine
(with swap and physical
memory component)

c c
C0 machine

pmd
physical machine with devices
(including hard disk model)

a
bs

up

x
C
on

si
s

pm
hd

co
n
si
s

pm
hd

up

�
-R

el

�
-R

el

x
C
on

sis

driver

XCall

a
bs

virtual memory specification

pfh

pmd

m
a
p m
a
p

co
n
si
s

Fig. 3. Page fault handler correctness: putting it all together

in Hoare logic, lift the results down to the level of the physical machine via the sound-
ness theorem of the Hoare logic [13] and Theorems 3 and 2, and infer the B-relation
by reasoning about the physical machine memory content. An overview is depicted in
Fig. 3. The order of proof steps of the paging mechanism are as follows. 1. Show the
validity of the Hoare triple {abs(pfh,xc)} handler(pid,va) {abs(pfh′,xc′)}. 2. Justify
the implication valid(pfh) =⇒ valid(pfh′). 3. From Theorem 3 obtain the number of
steps T and the implementation machine c′ in order to instantiate the existential quanti-
fiers in the conclusion: (a) via xConsis and (1) obtain the user part memories’ contents
pmd′.pm′.m and pmd′.hd′.sm that respect pfh′, and (b) via xConsis get that c′ is mapped
to pfh′. 4. Apply Theorem 2 in order to lift (3.c) down to the system part of the physical
memory pmd′.pm′.mTSP[0]. 5. We have mapped the user and system parts of physical
memory and hard disk content to the valid non-pagefaulting configuration pfh′. From
valid(pfh′) we are able to claim the properties about physical memory content sufficient
to show B(pmd′,up), which follows by case splitting on the page fault types.

5 Conclusion

The verification of 500 lines of C0 and 30 lines of assembler code and the reordering
theorems took us about 2 person years2. Not classical verification problems, as finding
invariants, appeared to be the major problem. Rather unexpected and tedious work as
‘simple’ bitvector operations turned out to be very time consuming. A lot of further
effort, not elaborated in this paper, amounts to the integration of models, in particular
lifting properties to the overall kernel correctness result, as well as a language stack
covering different big- and small step semantics of C0.

This paper not only presents the methodology to deal with pervasive system veri-
fication, including inline assembler and driver code accessing interleaved devices, we
also verify an important piece of a kernel, running on a real and verified processor.

2 Isabelle/HOL theories are available from http://www.verisoft.de/

http://www.verisoft.de/

Formal Pervasive Verification of a Paging Mechanism 123

By that we give a strong argument for the feasibility of formal verification beyond its
application to abstract models and toy implementations.

References

1. Alkassar, E., Hillebrand, M., Knapp, S., Rusev, R., Tverdyshev, S.: Formal device and pro-
gramming model for a serial interface. In: Proc. 4th International Verification Workshop
(VERIFY). CEUR-WS Workshop Proc. (2007)

2. Bevier, W., Hunt Jr., W., Moore, J.S., Young, W.: An approach to systems verification. Journal
of Automated Reasoning 5(4), 411–428 (1989)

3. Beyer, S., Jacobi, C., Kroening, D., Leinenbach, D., Paul, W.: Putting it all together: Formal
verification of the VAMP. International Journal on Software Tools for Technology Trans-
fer 8(4–5), 411–430 (2006)

4. Condea, C.: Design and implementation of a page fault handler in C0. Master’s thesis, Saar-
land University (July 2006)

5. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating
system kernels. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 1–16.
Springer, Heidelberg (2005)

6. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.: Towards trustworthy computing
systems: Taking microkernels to the next level. In: Operating Systems Review (July 2007)

7. Hillebrand, M.: Address Spaces and Virtual Memory: Specification, Implementation, and
Correctness. PhD thesis, Saarland University, Computer Science Department (June 2005)

8. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of per-
vasive system verification. In: ICCD 2005, pp. 309–316. IEEE Computer Society Press, Los
Alamitos (2005)

9. Hohmuth, M., Tews, H., Stephens, S.: Applying source-code verification to a microkernel:
the vfiasco project. In: Proc. 10th ACM SIGOPS, pp. 165–169. ACM Press, New York (2002)

10. Leinenbach, D., Petrova, E.: Pervasive compiler verification – from verified programs to
verified systems. In: 3rd SSV 2008, Elsevier Science B. V (to appear, 2008)

11. Neumann, P., Feiertag, R.: PSOS revisited. In: Omondi, A.R., Sedukhin, S. (eds.) ACSAC
2003. LNCS, vol. 2823, Springer, Heidelberg (2003)

12. Shao, Z., Yu, D., Ni, Z.: Using xcap to certify realistic systems code: Machine context man-
agement. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 189–206.
Springer, Heidelberg (2007)

13. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München (April 2006)

14. Tuch, H., Klein, G.: Verifying the L4 virtual memory subsystem. In: Proc. NICTA Formal
Methods Workshop on Operating Systems Verification, NICTA, pp. 73–97 (2004)

15. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Proc. 34th POPL,
pp. 97–108. ACM Press, New York (2007)

16. Walker, B., Kemmerer, R., Popek, G.: Specification and verification of the UCLA Unix se-
curity kernel. Commun. ACM 23(2), 118–131 (1980)

Analyzing Stripped Device-Driver Executables�

Gogul Balakrishnan1,�� and Thomas Reps2,3

1 NEC Laboratories America, Inc.
2 University of Wisconsin

3 GrammaTech, Inc.
bgogul@nec-labs.com, reps@cs.wisc.edu

Abstract. This paper sketches the design and implementation of
Device-Driver Analyzer for x86 (DDA/x86), a prototype analysis tool for
finding bugs in stripped Windows device-driver executables (i.e., when
neither source code nor symbol-table/debugging information is avail-
able), and presents a case study. DDA/x86 was able to find known bugs
(previously discovered by source-code-based analysis tools) along with
useful error traces, while having a reasonably low false-positive rate.

This work represents the first known application of automatic pro-
gram verification/analysis to stripped industrial executables, and allows
one to check that an executable does not violate known API usage rules
(rather than simply trusting that the implementation is correct).

1 Introduction

A device driver is a program in the operating system that is responsible for
managing a hardware device attached to the system. In Windows, a (kernel-
level) device driver resides in the address space of the kernel, and runs at a high
privilege level; therefore, a bug in a device driver can cause the entire system to
crash. The Windows kernel API [27] requires a programmer to follow a complex
set of rules: (1) a call to the functions IoCallDriver or PoCallDriver must occur
only at a certain interrupt request level, (2) the function IoCompleteRequest
should not be called twice with the same parameter, etc.

The device drivers running in a given Windows installation are one of the
sources of instability in the Windows platforms: according to Swift et al. [31],
bugs in kernel-level device drivers cause 85% of the system crashes in Windows
XP. Because of the complex nature of the Windows kernel API, the probability
of introducing a bug when writing a device driver is high. Moreover, drivers are
typically written by less-experienced or less-skilled programmers than those who
wrote the Windows kernel itself.

Several approaches to improve the reliability of device drivers have been previ-
ously proposed [10,12,15,31]. Swift et al. [30,31] propose a runtime approach that
works on executables; they isolate the device driver in a light-weight protection
domain to reduce the possibility of whole-system crashes. Because their method
� Supported by NSF under grants CCF-0540955 and CCF-0524051.

�� Work performed while at the University of Wisconsin.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 124–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analyzing Stripped Device-Driver Executables 125

is applied at runtime, it may not prevent all bugs from causing whole-system
crashes. Other approaches [10,11,12,22] are based on static program analysis of a
device driver’s source code. Ball et al. [10,12] developed the Static Driver Verifier
(SDV), a tool based on model checking to find bugs in device-driver source code.
A kernel API usage rule is described as a finite-state machine (FSM), and SDV
analyzes the source code for the driver to determine whether there is a path in
the driver that violates the rule.

Our work, which is incorporated in a prototype tool called Device-Driver An-
alyzer for x86 (DDA/x86), is also based on static analysis, but in contrast to the
work cited above, DDA/x86 checks properties of stripped Windows device-driver
executables; i.e., neither source code nor symbol-table/debugging information
need be available (although DDA/x86 can use debugging information, such as
Windows .pdb files, if it is available). Thus, DDA/x86 can provide information
that is useful in the common situation where one needs to install a device driver
for which source code has not been furnished.

Microsoft has a program for signing Windows device drivers, called Windows
Hardware Quality Lab (WHQL) testing. Device vendors submit driver executa-
bles to WHQL, which runs tests on different hardware platforms with different
versions of Windows, reviews the results, and, if the driver passes the tests,
creates a digitally signed certificate for use during installation that attests that
Microsoft has performed some degree of testing. However, there is anecdotal ev-
idence that device vendors have tried to cheat [2]. A tool like DDA/x86 could
allow static analysis to play a role in such a certification process.

Even if you have a driver’s source code (and can build an executable) and also
have tools for examining executables equipped with symbol-table/debugging in-
formation, this would not address the effects of the optimizer. If you want to look
for bugs in an optimized version, you would have a kind of “partially stripped”
executable, due to the loss of debugging information caused by optimization.
This is a situation where our techniques for analyzing stripped executables
should be of assistance.

A skeptic might question how well an analysis technique can perform on a
stripped executable. §4 presents some quantitative results about how well the
answers obtained by DDA/x86 compare to those obtained by SDV; here we
will just give one example that illustrates the ability of DDA/x86 to provide
information that is qualitatively comparable to the information obtained by
SDV. Fig. 1 shows fragments of the witness traces reported by SDV (Fig. 1(a))
and DDA/x86 (Fig. 1(b)) for one of the examples in our test suite. Fig. 1 shows
that in this case the tools report comparable information: the three shaded areas
in Fig. 1(b) correspond to those in Fig. 1(a).

Although not illustrated by Fig. 1, there are ways in which DDA/x86 can
provide higher-fidelity answers than tools based on analyzing source code. This
may seem counterintuitive, but the reason is that DDA/x86 works at a level
in which many platform-specific features are revealed, such as memory-layout
details (e.g., the offsets of variables in activation records and padding between
fields of a struct). Because the compiler is in charge of such choices, and may

126 G. Balakrishnan and T. Reps

KeInitializeEvent(&event, NotificationEvent, FALSE);

IoSetCompletionRoutine(Irp,

(PIO COMPLETION ROUTINE) MouFilter Complete,

&event,

TRUE,

TRUE,

TRUE); // No need for Cancel

status = IoCallDriver(devExt->TopOfStack, Irp);

if (STATUS PENDING == status) {
KeWaitForSingleObject(

&event,
Executive, // Waiting for reason of a driver
KernelMode, // Waiting in kernel mode
FALSE, // No alert
NULL); // No timeout

}

if (NT SUCCESS(status) && NT SUCCESS(Irp->IoStatus.Status)) {
//
// As we are successfully now back from our start device
// we can do work.
//
devExt->Started = TRUE;
devExt->Removed = FALSE;
devExt->SurpriseRemoved = FALSE;

}

//
// We must now complete the IRP, since we stopped it in the
// completion routine with MORE PROCESSING REQUIRED.
//
Irp->IoStatus.Status = status;

Irp->IoStatus.Information = 0;

IoCompleteRequest(Irp, IO NO INCREMENT);

break;

push 1

push 1

push 1

lea ecx, dword ptr [ebp + var 1C]

push ecx

push sub 1002270

mov edx, dword ptr [ebp + arg 4]

push edx

call dword ptr [sdv IoSetCompletionRoutine@24]

mov edx, dword ptr [ebp + arg 4]

mov eax, dword ptr [ebp + var 4]

mov ecx, dword ptr [eax + 8]

call dword ptr [@IofCallDriver@8]

mov dword ptr [ebp + var 20], eax

cmp dword ptr [ebp + var 20], 103h

jnz loc 10013E1
push 0
push 0
push 0
push 0
lea ecx, dword ptr [ebp + var 1C]
push ecx,
call dword ptr [sdv KeWaitForSingleObject@20]

loc 10013E1:

cmp dword ptr [ebp + var 20], 0

jl loc 1001405
mov edx, dword ptr [ebp + arg 4]
cmp dword ptr [edx + 18h], 0
jl loc 1001405
mov eax, dword ptr [ebp + var 4]
mov byte ptr [eax + 30h], 1
mov ecx, dword ptr [ebp + var 4]
mov byte ptr [ecx + 32h], 0
mov edx, dword ptr [ebp + var 4]
mov byte ptr [edx + 31h], 0

loc 1001405:

mov eax, dword ptr [ebp + arg 4]

mov ecx, dword ptr [ebp + var 20]

mov dword ptr [eax + 18h], ecx

mov edx, dword ptr [ebp + arg 4]

mov dword ptr [edx + 1Ch], 0

push 0

mov eax, dword ptr [ebp + arg 4]

push eax

call dword ptr [sdv IoCompleteRequest@8]

jmp loc 10014B0

(a) (b)

Fig. 1. (a) SDV trace; (b) DDA/x86 trace. The three shaded areas in (b) correspond
to those in (a).

also restructure the computation in certain ways, the machine-code level at which
DDA/x86 works is closer than the source-code level to what is actually executed.

Elsewhere [4,8], we have called this the WYSINWYX phenomenon (What
You See Is Not What You eXecute): computers execute the instructions of
programs that have been complied, and not the source code itself; compilation
effects can be important if one is interested in better diagnosis of the causes
of bugs, or in detecting security vulnerabilities. A Microsoft report on writing
kernel-mode drivers in C++ recommends examining “... the object code to be
sure it matches your expectations, or at least will work correctly in the ker-
nel environment” [3]. As discussed in §4, we encountered a few cases of the
WYSINWYX phenomenon in our experiments, although these concerned the
hand-written environment harnesses that we picked up from SDV [10,12].

This paper describes the design and implementation of DDA/x86, and
presents a case study in which we used it to find problems in Windows de-
vice drivers by analyzing the drivers’ stripped executables. The key idea that
allows DDA/x86 to achieve a substantial measure of success was to combine the

Analyzing Stripped Device-Driver Executables 127

algorithm for memory-access analysis [4,5,6] from CodeSurfer/x86 [7] with the
path-sensitive method of interpreting property automata from ESP [17]. The re-
sulting algorithm explores an over-approximation of the set of reachable states,
and hence can verify correctness by determining that all error configurations are
unreachable. The contributions of the work include
– DDA/x86 can analyze stripped device-driver executables, and thus provides

a capability not found in previous tools for analyzing device drivers [11,22].
– Our case study shows that this approach is viable. DDA/x86 was able to

identify some known bugs (previously discovered by source-code-based anal-
ysis tools) along with useful error traces, while having a reasonably low false-
positive rate: On a corpus of 17 device-driver executables, 10 were found to
pass the PendedCompletedRequest rule (definitely no bug), 5 false positives
were reported, and 2 were found to have real bugs—for which DDA/x86
supplied feasible error traces.

– We developed a novel, low-cost mechanism for instrumenting a dataflow-
analysis algorithm to provide witness traces.

One of the challenges that we faced was to find ways of coping with the differ-
ences that arise when property checking is performed at the machine-instruction
level, rather than on an IR created from source code. In particular, the domains
of discourse—the alphabets of actions to which the automata respond—are dif-
ferent in the two situations. This issue is discussed in §4.

The remainder of the paper is organized as follows: §2 provides background on
recovering intermediate representations (IRs) from executables. §3 describes the
extensions that we made to our algorithm for IR-recovery from low-level code
to perform path-sensitive property checking. §4 presents experimental results.
Related work is discussed in §5.

2 Background on Intermediate-Representation Recovery

DDA/x86 makes use of the IR-recovery algorithms of CodeSurfer/x86 [4,5,6,7].
This section explains some of the ideas used in those algorithms that are impor-
tant to understanding how they were extended to support path-sensitivity.

The IR-recovery algorithms of CodeSurfer/x86 recover from a device-driver
executable IRs that are similar to those that would be available had one started
from source code. CodeSurfer/x86 recovers IRs that represent control-flow graphs
(CFGs), with indirect jumps resolved; a call graph, with indirect calls resolved;
information about the program’s variables; possible values of pointer variables;
sets of used, killed, and possibly-killed variables for each CFG node; and data
dependences. The techniques employed by CodeSurfer/x86 do not rely on de-
bugging information being present, but can use available debugging information
(e.g., Windows .pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 (see [4,5,6]) are a great deal more am-
bitious than even relatively sophisticated disassemblers, such as IDAPro [24].
At the technical level, they address the following problem: Given a (possibly
stripped) executable E, identify the procedures, data objects, types, and libraries

128 G. Balakrishnan and T. Reps

that it uses, and, for each instruction I in E and its libraries, for each inter-
procedural calling context of I, and for each machine register and variable V in
scope at I, statically compute an accurate over-approximation to the set of values
that V may contain when I executes.

Variable and Type Discovery. One of the major stumbling blocks in an-
alyzing executables is the difficulty of recovering information about variables
and types, especially for aggregates (i.e., structures and arrays). When perform-
ing source-code analysis, the programmer-defined variables provide us with the
compartments for tracking data manipulations. When debugging information is
absent, an executable’s data objects are not easily identifiable. Consider, for in-
stance, an access on a source-code variable x in some source-code statement. At
the machine-instruction level, an access on x is performed either directly—by
specifying an absolute address—or indirectly—through an address expression of
the form “[base + index × scale + offset]”, where base and index are registers
and scale and offset are integer constants. The variable and type-discovery phase
of CodeSurfer/x86 [4,6] recovers information about variables that are allocated
globally, locally (i.e., on the run-time stack), and dynamically (i.e., from the
heap). The recovered variables, called a-locs (for “abstract locations”) are the
basic variables used in the extension of the VSA algorithm described in §3.

To accomplish this task, CodeSurfer/x86 makes use of a number of analyses,
and the sequence of analyses performed is itself iterated [4,6]. On each round,
CodeSurfer/x86 uses VSA to identify an over-approximation of the memory
accesses performed at each instruction. Subsequently, the results of VSA are
used to perform aggregate structure identification (ASI) [28], which identifies
commonalities among accesses to different parts of an aggregate data value, to
refine the current set of a-locs. The new set of a-locs are used to perform another
round of VSA. If the over-approximation of memory accesses computed by VSA
improves from the previous round, the a-locs computed by the subsequent round
of ASI may also improve. This process is repeated as long as desired, or until
the process converges. By this means, CodeSurfer/x86 bootstraps its way to a
set of a-locs that serve as proxies for the program’s original variables.

3 Property Checking in Executables Using VSA

This section describes the extensions that we made to our IR-recovery algorithm
to perform path-sensitive property checking. Consider the following memory-
safety property: p should not be dereferenced if its value is NULL. Fig. 2 shows
an FSM that checks for property violations. One approach to determining if there
is a null-pointer dereference in the executable is to start from the initial state
(UNSAFE) at the entry point of the executable, and find an over-approximation
of the set of reachable states at each statement in the executable. This can be
done by determining the states for the successors at each statement based on
the transitions in the FSM that encodes the memory-safety property.

Another approach is to use abstract interpretation to determine the abstract
memory configurations at each statement in the routine, and use the results to

Analyzing Stripped Device-Driver Executables 129

check the memory-safety property. For executables, we could use the information
computed by the IR-recovery algorithms of CodeSurfer/x86 [7]. For instance, for
each instruction I in an executable, the value-set analysis (VSA) algorithm [4,5,6]
used in CodeSurfer/x86 determines an over-approximation of the set of memory
addresses and numeric values held in each register and variable when I executes.

Suppose that we have the results of VSA and want to use them to check the
memory-safety property; the property can be checked as follows:

If the abstract set of addresses and numeric values computed for p possibly
contains NULL just before a statement, and the statement dereferences p, then
the memory-safety property is potentially violated.

Unfortunately, the approaches described above would result in a lot of false
positives because they are not path-sensitive. To overcome the limitations of the
two approaches described above, DDA/x86 follows Das et al. [17] and Fischer et
al. [20], who showed how to obtain a degree of path-sensitivity by combining the
propagation of automaton states with the propagation of abstract-state values
during abstract interpretation. The remainder of this section describes how the
propagation of property-automaton states can be incorporated into the VSA
algorithm to obtain a degree of path-sensitivity.

UNSAFE

SAFE

ERROR

p ≠ NULLp = NULL

*p

*

p ≠ NULL

p = NULL

Fig. 2. An FSM that encodes
the rule that pointer p should
not be dereferenced if it is
NULL

To simplify the discussion, the ideas are initially
described for a simplified version of VSA, called
context-insensitive VSA [5]; the combination of
automaton-state propagation with the context-
sensitive version of VSA [4, Ch. 3] is discussed
at the end of the section. The context-insensitive
VSA algorithm associates each program point
with an AbsEnv value [4,6], which represents a
set of concrete (i.e., run-time) states of a pro-
gram. An element in the AbsEnv domain asso-
ciates each a-loc and register in the executable
with an abstract value that represents a set of
memory addresses and numeric values. Let State
denote the set of property-automaton states. The path-sensitive VSA algo-
rithm associates each program point with an AbsMemConfigps value, where
AbsMemConfigps = ((State × State) → AbsEnv⊥).

In the pair of property-automaton states at a node n, the first component
refers to the state of the property automaton at the enter node of the procedure
to which node n belongs, and the second component refers to the current state
of the property automaton at node n. If an AbsEnv entry for the pair 〈s0, scur〉
exists at node n, then n is possibly reachable with the property automaton in
state scur from a memory configuration at the enter node of the procedure in
which the property automaton was in state s0.

The path-sensitive VSA algorithm is shown in Fig. 3. The worklist consists
of triples of the form 〈State, State, Node〉. A triple 〈enter state, cur state, n〉 is
selected from the worklist, and for each successor edge of node n, a new AbsEnv
value is computed by applying the corresponding abstract transformer (line[11]).

130 G. Balakrishnan and T. Reps

After computing a new AbsEnv value, the set of pairs of states for the successor
is identified (see the GetSuccStates procedure in Fig. 3). For an intraprocedural
edge pred→succ, the set of pairs of states for the target of the edge is obtained
by applying the NextStates function to 〈enter state, cur state〉 (line[34]). The
NextStates function pairs enter state with all possible second-component states
according to the property automaton’s transition relation for edge pred→succ.
For a call→enter edge, the only new state pair is the pair 〈cur state, cur state〉
(line[30]). For an exit→end-call edge, the set of pairs of states for the end-call
node is determined by examining the set of pairs of states at the corresponding
call (line[24]-[28]); for each 〈call enter state, call cur state〉 at the call node such
that (call cur state = enter state), the pair 〈call enter state, cur state〉 is added
to the result.

Note that the condition (call cur state = enter state) at line[25] checks if
〈enter state, cur state〉 at the exit node is reachable, according to the property
automaton, from 〈call enter state, call cur state〉 at the call node. The need to
check the condition (call cur state = enter state) at an exit node is the reason for
maintaining a pair of states at each node. If we do not maintain a pair of states,
it would not be possible to determine the property-automaton states at the call
that reach the given property-automaton state at the exit node. (In essence,
we are doing a natural join a tuple at a time: the subset of State × State at
the call node represents a reachability relation R1 for the property automaton’s
possible net change in state as control moves from the caller’s enter node to the
call site; the subset of State × State at the exit node represents a reachability
relation R2 for the automaton’s net change in state as control moves from the
callee’s enter node to the exit node. The subset of State × State at the end-
call node, representing a reachability relation R3, is their natural join, given by
R3(x, y) = ∃z. R1(x, z) ∧ R2(z, y). Thus, technically our extension amounts to
the use of the reduced cardinal power [16,17,20] of the edges in the transitive
closure of the automation’s transition relation and the original VSA domain.)

Finally, in the AbsMemConfigps value for the successor node, the AbsEnv values
for all the pairs of states that were identified by GetSuccStates are updated with
the newly computed AbsEnv value (see the Propagate function in Fig. 3).

It is trivial to combine the path-sensitive VSA algorithm in Fig. 3 and the
context-sensitive VSA algorithm to get a VSA algorithm that can distinguish
paths as well as calling contexts to a limited degree. In the combined algorithm,
each node is associated with a value from the following domain (where CallStringk

represents the set of call-string suffixes of length up to k [29]):
AbsMemConfigps-cs = ((CallStringk × State × State) → AbsEnv⊥).

4 Experiments

This section presents a case study in which we used DDA/x86 to analyze the
executables of Windows device drivers. The study was designed to test how well
different extensions of the VSA algorithm could detect problems in Windows
device drivers by analyzing device-driver executables—without accessing source

Analyzing Stripped Device-Driver Executables 131

1: decl worklist: set of 〈State, State, Node〉
2:
3: proc PathSensitiveVSA()
4: worklist := {〈StartState, StartState, enter〉}
5: absMemConfigps

enter[〈StartState, StartState〉] := Initial values of global a-locs and esp
6: while (worklist �= ∅) do
7: Select and remove a triple 〈enter state, cur state, n〉 from worklist
8: m := Number of successors of node n

9: for i = 1 to m do
10: succ := GetSuccessor(n, i)
11: edge amc := AbstractTransformer(n → succ, absMemConfigps

n [〈enter state, cur state〉])

12: succ states := GetSuccStates(enter state, cur state, n, succ)
13: for (each 〈succ enter state, succ cur state〉 ∈ succ states) do
14: Propagate(enter state, succ enter state, succ cur state, succ, edge amc)
15: end for
16: end for
17: end while
18: end proc
19:
20: proc GetSuccStates(enter state: State, cur state: State, pred: Node, succ: Node): set of

〈State, State〉
21: result := ∅
22: if (pred is an exit node and succ is an end-call node) then
23: Let c be the call node associated with succ
24: for each 〈call enter state, call cur state〉 in absMemConfigps

c do
25: if (call cur state = enter state) then
26: result := result ∪ {〈call enter state, cur state〉}

27: end if
28: end for
29: else if (pred is a call node and succ is an enter node) then
30: result := {〈cur state, cur state〉}

31: else
32: // Pair enter state with all possible second-component states according to
33: // the property automaton’s transition relation for input edge pred → succ
34: result := NextStates(pred→succ, 〈enter state, cur state〉)
35: end if
36: return result
37: end proc
38:
39: proc Propagate(pred enter state: State, enter state: State, cur state: State, n: Node, edge amc:

AbsEnv)
40: old := absMemConfigps

n [〈enter state, cur state〉]
41: if n is an end-call node then
42: Let c be the call node associated with n
43: edge amc := MergeAtEndCall(edge amc, absMemConfigps

c [〈enter state, pred enter state〉])
44: end if
45: new := old	ae edge amc
46: if (old �= new) then
47: absMemConfigps

n [〈enter state, cur state〉] := new
48: worklist := worklist ∪ {〈enter state, cur state, n〉}
49: end if
50: end proc

Fig. 3. Path-sensitive VSA algorithm. (The function MergeAtEndCall merges informa-
tion from the abstract state at an exit node with information from the abstract state
at the call node (cf. [25]). Underlining indicates an action that manages or propagates
property-state information.)

code, symbol-tables, or debugging information. In particular, if DDA/x86 were
successful at finding the bugs that the Static Driver Verifier (SDV) [10,12] tool
finds in Windows device drivers, that would be powerful evidence that our ap-
proach is viable—i.e., that it will be possible to find previously undiscovered

132 G. Balakrishnan and T. Reps

bugs in device drivers for which source code is not available, or for which com-
piler/optimizer effects make source-code analysis unsafe. We selected a subset of
drivers from the Windows Driver Development Kit (DDK) [1] release 3790.1830
for the case study. For each driver, we obtained an executable by compiling the
driver source code along with the harness and the OS environment model [10]
of the SDV toolkit. (Thus, as in SDV and other source-code-analysis tools, the
harness and OS environment models are analyzed; however, DDA/x86 analyzes
the executable code that the compiler produces for the harness and the models.
This creates certain difficulties, which are discussed below.)

A device driver is analogous to a library that exports a collection of subrou-
tines. Each subroutine exported by a driver implements an action that needs to
be performed when the OS makes an I/O request (on behalf of a user application
or when a hardware-related event occurs). For instance, when a new device is
attached to the system, the OS invokes the AddDevice routine provided by the
device driver; when new data arrives on a network interface, the OS calls the
DeviceRead routine provided by the driver; etc. For every I/O request, the OS
creates a structure called the “I/O Request Packet (IRP)”, which contains such
information as the type of the I/O request, the parameters associated with the
request, etc.; the OS then invokes the appropriate driver’s dispatch routine. The
dispatch routine performs the necessary actions, and returns a value that indi-
cates the status of the request. For instance, if a driver successfully completes
the I/O request, the driver’s dispatch routine calls the IoCompleteRequest API
function to notify the OS that the request has been completed, and returns the
value STATUS SUCCESS. Similarly, if the I/O request is not completed within the
dispatch routine, the driver calls the IoMarkPending API function and returns
STATUS PENDING.

A harness in the SDV toolkit is C code that simulates the possible calls to the
driver that could be made by the OS. An application generates requests, which
the OS passes on to the device driver. Both levels are modeled by the harness.
The harness defined in the SDV toolkit acts as a client that exercises all possible
combinations of the dispatch routines that can occur in two successive calls to
the driver. The harness that was used in our experiments calls the following
driver routines (in the order given below):

1. DriverEntry: initializes the driver’s data structures and the global state.
2. AddDevice: simulates the addition of a device to the system.
3. The plug-and-play dispatch routine (called with an IRP MN START DEVICE

I/O request packet): simulates the starting of the device by the OS.
4. Some dispatch routine, deferred procedure call, interrupt service routine,

etc.: simulates various actions on the device.
5. The plug-and-play dispatch routine (called with an IRP MN REMOVE DEVICE

I/O request packet): simulates the removal of the device by the OS.
6. Unload: simulates the unloading of the driver by the OS.

The OS environment model in the SDV toolkit consists of a collection of
functions (written in C) that conservatively model the API functions in the
Windows DDK. The models are conservative in the sense that they simulate

Analyzing Stripped Device-Driver Executables 133

all possible behaviors of an API function. For instance, if an API function Foo
returns the value 0 or 1 depending upon the input arguments, the model for Foo
consists of a non-deterministic if statement that returns 0 in the true branch
and 1 in the false branch. Modeling the API functions conservatively enables a
static-analysis tool to explore all possible behaviors of the API.

WYSINWYX. We had to make some changes to the OS models used in
the SDV toolkit because SDV’s models were never meant to be compiled and
used, in compiled form, as models of the OS environment by an analyzer that
works on machine instructions, such as DDA/x86. These problems showed up
as instances of the WYSINWYX phenomenon. For instance, each driver has a
device-extension structure that is used to maintain extended information about
the state of each device managed by the driver. The number of fields and the
type of each field in the device-extension structure is specific to a driver. How-
ever, in SDV’s OS model, a single integer variable is used to represent the
device-extension object. Therefore, in a driver executable built using SDV’s
models, when the driver writes to a field at offset o of the device-extension struc-
ture, it would appear as a write to the memory address that is offset o bytes
from the memory address of the integer that represents the device-extension
object.

We also encountered the WYSINWYX phenomenon while using SDV’s OS
models. For instance, the OS model uses a function named SdvMakeChoice to
represent non-deterministic choice. However, the body of SdvMakeChoice only
contains a single “return 0” statement.1 Consequently, instead of exploring all
possible behaviors of an API function, DDA/x86 would explore only a subset
of the behaviors of the API function. We had to modify SDV’s OS environment
model to avoid such problems.

Case Study. We chose the following “PendedCompletedRequest” rule for our
case study:

A driver’s dispatch routine should not return STATUS PENDING on an I/O
Request Packet (IRP) if it has called IoCompleteRequest on the IRP, unless
it has also called IoMarkIrpPending.

Fig. 4 shows the FSM for this rule.2

We used the three different variants of the VSA algorithm listed in Tab. 1 for
our experiments on a 64-bit Xeon 3GHz processor with 16GB (only 4GB/process)
of memory, and Tab. 2 presents the results. The column labeled “Result” indi-
cates whether the VSA algorithm reported that there is some node n at which the
ERROR state in the PendedCompletedRequest FSM is reachable, when one starts
from the initial memory configuration at the entry node of the executable.

Configuration ‘�’ uses an algorithm that is similar to the one used in IDAPro
to recover variable-like entities. That algorithm does not provide variables of the

1 According to T. Ball [9], the C front end used by SDV treats SdvMakeChoice specially.
2 According to the Windows DDK documentation, IoMarkPending has to be called

before IoCompleteRequest ; however, the FSM defined for the rule in SDV is the one
shown in Fig. 4. We used the same FSM for our experiments.

134 G. Balakrishnan and T. Reps

START

PENDING

COMPLETED

PENDING ∧COMPLETED

ERROR

A: “return status ≠ STATUS_PENDING”

A

A,B
A,B

B

B: “return status = STATUS_PENDING”

*

C

D C

D

C: IoMarkPending

D: IoCompleteRequest

D C,D

C

Fig. 4. Finite-state machine for the rule PendedCompletedRequest

Table 1. Variants of the VSA algorithm used in the experiments

Config. A-locs Property Automaton

� IDAPro-based algorithm Fig. 4
� ASI-based algorithm Fig. 4
� ASI-based algorithm Cross-product of the automata in Figs. 4 and 6

Table 2. Results of checking the PendedCompletedRequest rule in Windows device
drivers. (

√
: passes rule; ×: a real bug found; FP: false positive.) See Tab. 1 for an

explanation of �, �, and �. (For the examples that pass the rule, “Rounds” represents
the number of VSA-ASI rounds required to prove the absence of the bug; for the other
examples, the maximum number of rounds was set to 5.)

� � �
Feasible Feasible Feasible

Driver Procedures Instructions Result Trace? Result Trace? Result Trace? Time Rounds
src/vdd/dosioctl/krnldrvr 70 2824 FP -

√
-

√
- 14s 2

src/general/ioctl/sys 76 3504 FP -
√

-
√

- 13s 2
src/general/tracedrv/tracedrv 84 3719 FP -

√
-

√
- 16s 2

src/general/cancel/startio 96 3861 FP -
√

-
√

- 12s 2
src/general/cancel/sys 102 4045 FP -

√
-

√
- 10s 2

src/input/moufiltr 93 4175 × No × No × Yes 3m 3s 5
src/general/event/sys 99 4215 FP -

√
-

√
- 20s 2

src/input/kbfiltr 94 4228 × No × No × Yes 2m 53s 5
src/general/toaster/toastmon 123 6261 FP - FP -

√
- 4m 1s 3

src/storage/filters/diskperf 121 6584 FP - FP -
√

- 3m 17s 3
src/network/modem/fakemodem 142 8747 FP - FP -

√
- 11m 6s 3

src/storage/fdc/flpydisk 171 12752 FP - FP - FP - 1h 6m 5
src/input/mouclass 192 13380 FP - FP - FP - 40m 26s 5
src/input/mouser 188 13989 FP - FP - FP - 1h 4m 5
src/kernel/serenum 184 14123 FP - FP -

√
- 19m 41s 2

src/wdm/1394/driver/1394diag 171 23430 FP - FP - FP - 1h33m 5
src/wdm/1394/driver/1394vdev 173 23456 FP - FP - FP - 1h38m 5

right granularity and expressiveness, and therefore, not surprisingly, configura-
tion ‘�’ reports many false positives for all of the drivers.3

3 In this case, a false positive reports that the ERROR state is (possibly) reachable at
some node n, when, in fact, it is never reachable. This is sound (for the reachability
question), but imprecise.

Analyzing Stripped Device-Driver Executables 135

int dispatch routine(. . .) {
int status, c = 0;

.

.

.
status = STATUS PENDING;
P1:if(. . .) {

status = STATUS SUCCESS;
c = 1;

}
P2:

.

.

.
if(c == 1) {

IoCompleteRequest(. . .)
}
P3: return status;

}

Information at P3 with the FSM shown in Fig. 4
START:

c �→ {0, 1}
status �→ {STATUS SUCCESS, STATUS PENDING}

COMPLETED:
c �→ {0, 1}
status �→ {STATUS SUCCESS, STATUS PENDING}

Information at P3 with the FSM shown in Fig. 6
ST PENDING:

c �→ {0}
status �→ {STATUS PENDING}

ST NOT PENDING:
c �→ {1}
status �→ {STATUS SUCCESS}

Fig. 5. An example illustrating false positives in device-driver analysis

Configuration ‘�’, which uses only the PendedCompletedRequest FSM, also
reports a lot of false positives. Fig. 5 shows an example that illustrates one of
the reasons for the false positives in configuration ‘�’. As shown in the right
column of Fig. 5, the set of values for status at the return statement (P3) for
the property-automaton state COMPLETED contains both STATUS PENDING and
STATUS SUCCESS. Therefore, VSA reports that the dispatch routine possibly vi-
olates the PendedCompletedRequest rule. The problem is as follows: because the
state of the PendedCompletedRequest automaton is the same after both branches
of the if statement at P1 are analyzed, VSA merges the information from both
of the branches, and therefore the correlation between c and status is lost after
the statement at P2.

Fig. 6 shows an FSM that enables VSA to maintain the correlation between
c and status. Basically, the FSM changes the abstraction in use, and enables
VSA to distinguish paths in the executable based on the contents of the variable
status. We refer to a variable (such as status in Fig. 6) that is used to keep
track of the current status of the I/O request in a dispatch routine as the status-
variable. To be able to use the FSM in Fig. 6 for analyzing an executable, it is
necessary to determine the status-variable for each procedure. However, because
debugging information is usually not available, we use the following heuristic to
identify the status-variable for each procedure in the executable:

By convention, eax holds the return value in the x86 architecture. Therefore,
the local variable (if any) that is used to initialize the value of eax just before
returning from the dispatch routine is considered to be the status-variable.

Configuration ‘�’ uses the automaton obtained by combining the PendedCom-
pletedRequest FSM and the FSM shown in Fig. 6 (instantiated using the above
heuristic) using a cross-product construction. As shown in Tab. 2, for configu-
ration ‘�’, the number of false positives is substantially reduced.

It required substantial manual effort to find an abstraction that had sufficient
fidelity to reduce the number of false positives reported by DDA/x86. To cre-
ate a practical tool, it would be important to automate the process of refining the

136 G. Balakrishnan and T. Reps

abstraction based on the property be checked. The model-checking community
has developed many techniques that could be applicable, although the discussion
above shows that the definition of a suitable refinement can be quite subtle.

As a point of comparison, SDV also found the bugs in both “moufiltr” and
“kbfiltr”, but had no false positives in any of the examples. However, one should
not leap to the conclusion that machine-code-analysis tools are necessarily infe-
rior to source-code-analysis tools.

– The basic capabilities are different: DDA/x86 can analyze stripped device-
driver executables, which goes beyond the capabilities of SDV.

– The analysis techniques used in SDV and in DDA/x86 are incomparable:
SDV uses predicate-abstraction-based abstractions [21], plus abstraction re-
finement; DDA/x86 uses a combined numeric-plus-pointer analysis [5], to-
gether with a different kind of abstraction refinement [6]. Thus, there may
be examples for which DDA/x86 outperforms SDV.

Moreover, SDV is a multiple man-year effort, with a professional team at Mi-
crosoft devoted to its development. In contrast, the prototype DDA/x86 was cre-
ated in only a few man-months (although multiple man-years went into building
the underlying CodeSurfer/x86 infrastructure).

Property Automata for the Analysis of Machine Code. Property au-
tomata for the analysis of machine code differ from the automata used for source-
level analysis. In particular, the domain of discourse—the alphabet of actions to
which an automaton responds—is different when property checking is performed
at the machine-code level, rather than on an IR created from source code.

In some cases, it is possible to recognize a source-level action based on in-
formation available in the recovered IR. For instance, a source-code procedure
call with actual parameters is usually implemented as a sequence of instructions
that evaluate the actuals, followed by a call instruction to transfer control
to the starting address of the procedure. The IR-recovery algorithms used in
CodeSurfer/x86 will identify the call along with its arguments.

In other cases, a source-level action is not identifiable. One contributing factor
is that a source-level action can correspond to a sequence of instructions. More-
over, the instruction sequences for two source-level actions could be interleaved.
We did not have a systematic way to cope with such problems except to rewrite
the automaton of interest based on instruction-level actions.

Fortunately, most of the instruction-level actions that need to be tracked boil
down to memory accesses/updates. Because VSA is precise enough to interpret
many memory accesses [4, §7.5], it is possible for DDA/x86 to perform property
checking using the extended version of VSA described in §3. In our somewhat
limited experience, we found that for many property automata it is possible to
rewrite them based on memory accesses/updates so that they can be used for
the analysis of executables.

Finding a Witness Trace. If the VSA algorithm reports that the ERROR
state in the property automaton is reachable, it is useful to find a sequence of

Analyzing Stripped Device-Driver Executables 137

ST_UNKNOWN

ST_PENDING

ST_NOT_PENDING

A: “status := x, where x ≠ STATUS_PENDING”

C

B

B: “status := STATUS_PENDING”

A

C: “status := ?”B
A

C

C

Fig. 6. Finite-state machine that tracks the contents of the variable status

instructions that shows how the property automaton can be driven to ERROR.
Rather than extending the VSA implementation to generate and manage ex-
plicitly the information required for reporting witness traces, we exploited the
fact that the standard algorithms for solving reachability problems in pushdown
systems (PDSs) [14,19] provide a witness-trace capability to show how a given
(reachable) configuration is reachable.

The algorithm described in §3 was augmented to emit the rules of a PDS
on-the-fly. The PDS constructed is equivalent to a PDS that would be obtained
by a cross-product of the property automaton and a PDS that models the inter-
procedural control-flow graph, except that, by emitting the PDS on-the-fly as
VSA variant ‘�’ is run, the cross-product PDS is pruned according to what the
VSA algorithm and the property automaton both agree on as being reachable.
The PDS is constructed as follows:

PDS rules Control flow modeled
〈q, [n0, s]〉 ↪→ 〈q, [n1, s

′]〉 Intraprocedural CFG edge from node n0 in state s
to node n1 in state s′

〈q, [c, s]〉 ↪→ 〈q, [enterP, s][r, s′]〉 Call to procedure P from c in state s that returns
〈q[xP,s′], [r, s′]〉 ↪→ 〈q, [r, s′]〉 to r in state s′.
〈q, [xP, s

′]〉 ↪→ 〈q[xP,s′], ε〉 Return from P at exit node xP in state s′

In our case, to obtain a witness trace, we merely use the witness trace re-
turned by the PDS reachability algorithm to determine if a PDS configuration
〈q, [n, ERROR]〉—where n is a node in the interprocedural CFG—is reachable from
the configuration 〈q, entermain〉.

Because the PDS used for reachability queries is based on the results of VSA,
which computes an over-approximation of the set of reachable concrete memory
states, the witness traces provided by the reachability algorithm may be infea-
sible. In our experiments, only for configuration ‘�’ were the witness traces for
kbfiltr and moufiltr feasible. (Feasibility was checked by hand.)

This approach is not specific to VSA; it can be applied to essentially any
worklist-based dataflow-analysis algorithm when it is extended with a property
automaton, and provides a conceptually low-cost mechanism for augmenting
such algorithms to provide witness traces.

138 G. Balakrishnan and T. Reps

5 Related Work

DDA/x86 is the first known application of program analysis/verification tech-
niques to stripped industrial executables. Among other techniques, it combines
the IR-recovery algorithms from CodeSurfer/x86 [4,5,6] with the path-sensitive
method of interpreting property automata from ESP [17].

A number of algorithms have been proposed in the past for verifying proper-
ties of programs when source code is available [10,12,13,17,20,22]. Among these
techniques, SDV [10,12] and ESP [17] are closely related to DDA/x86. SDV
builds a Boolean representation of the program using predicate abstraction; it
reports a possible property violation if an error state is reachable in the Boolean
model. In contrast, DDA/x86 uses value-set analysis [5,4] (along with property
simulation) to over-approximate the set of reachable states; it reports a possible
property violation if the error state is reachable at any instruction in the exe-
cutable. To eliminate spurious error traces, SDV uses counter-example-guided
abstraction refinement, whereas DDA/x86 leverages path sensitivity obtained
by combining property simulation and abstract interpretation. In this respect,
DDA/x86 is more closely related to ESP—in fact, the algorithm in §3 was in-
spired by ESP. However, unlike ESP, DDA/x86 provides a witness trace for a
possible bug, as described in §4. Moreover, DDA/x86 uses a different kind of
abstraction refinement [6].

Although combining the propagation of property-automaton states and ab-
stract interpretation provides a degree of path sensitivity, it was not always
sufficient to eliminate all of the false positives for the examples in our test
suite. Therefore, we also distinguished paths based on the abstract state (us-
ing the automaton shown in Fig. 6) in addition to distinguishing paths based
on property-automaton states. While the results of our experiments are encour-
aging, it required a lot of manual effort to reduce the number of false positives:
spurious error traces were examined by hand, and the automaton in Fig. 6 was
introduced to refine the abstraction in use. For DDA/x86 to be usable on a
day-to-day basis, it would be important to automate the process of reducing the
number of false positives. Several techniques have been proposed to reduce the
number of false positives in abstract interpretation, including trace partitioning
[26], qualified dataflow analysis [23], and the refinement techniques of Fisher et
al. [20] and Dhurjati et al. [18]. All of these techniques are potentially applicable
in DDA/x86.

References

1. http://www.microsoft.com/whdc/devtools/ddk/default.mspx
2. Defrauding the WHQL driver certification process, March (2004),

http://blogs.msdn.com/oldnewthing/archive/2004/03/05/84469.aspx
3. C++ for kernel mode drivers: Pros and cons, WHDC web site (February 2007),

http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx
4. Balakrishnan, G.: WYSINWYX: What You See Is Not What You eXecute. PhD

thesis, C.S. Dept. Univ. of Wisconsin, Madison, WI, August, TR-1603 (2007)

http://www.microsoft.com/whdc/devtools/ddk/default.mspx
http://blogs.msdn.com/oldnewthing/archive/2004/03/05/84469.aspx
http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx

Analyzing Stripped Device-Driver Executables 139

5. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

6. Reps, T., Balakrishnan, G.: DIVINE: DIscovering Variables IN Executables. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer,
Heidelberg (2007)

7. Reps, T., Melski, D., Lal, A.K., Teitelbaum, T., Balakrishnan, G., Gruian, R.,
Kidd, N., Lim, J., Yong, S., Chen, C.-H.: Model checking x86 executables with
CodeSurfer/x86 and WPDS++. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 158–163. Springer, Heidelberg (2005)

8. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You
See Is Not What You eXecute. In: IFIP Working Conf. on VSTTE (2005)

9. Ball, T.: Personal communication (February 2006)

10. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys. (2006)

11. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Spin Workshop (2000)

12. Rajamani, S.K., Ball, T.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

13. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI (2003)

14. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, Springer, Heidelberg (1997)

15. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of oper-
ating systems errors. In: SOSP (2001)

16. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL (1979)

17. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: PLDI (2002)

18. Das, M., Yang, Y., Dhurjati, D.: Path-Sensitive Dataflow Analysis with Iterative
Refinement. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 425–442. Springer,
Heidelberg (2006)

19. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci. 9 (1997)

20. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, Springer, Heidelberg (2005)

21. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)

22. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

23. Holley, L.H., Rosen, B.K.: Qualified data flow problems. TSE 7(1), 60–78 (1981)

24. IDAPro disassembler, http://www.datarescue.com/idabase/
25. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,

Kastens, U. (eds.) CC 1992. LNCS, vol. 641, Springer, Heidelberg (1992)

26. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005)

http://www.datarescue.com/idabase/

140 G. Balakrishnan and T. Reps

27. Oney, W.: Programming the Microsoft Windows Driver Model. In: Microsoft (2003)
28. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its ap-

plication to program analysis. In: POPL (1999)
29. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:

Program Flow Analysis: Theory and Applications, Prentice-Hall, Englewood Cliffs
(1981)

30. Swift, M.M., Annamalai, M., Bershad, B.N., Levy, H.M.: Recovering device drivers.
In: OSDI (2004)

31. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. ACM Trans. Comput. Syst. 23(1) (2005)

Model Checking-Based Genetic Programming

with an Application to Mutual Exclusion

Gal Katz and Doron Peled

Department of Computer Science
Bar Ilan University

Ramat Gan 52900, Israel

Abstract. Two approaches for achieving correctness of code are verifi-
cation and synthesis from specification. Evidently, it is easier to check a
given program for correctness (although not a trivial task by itself) than
to generate algorithmically correct-by-construction code. However, for-
mal verification may give quite limited information about how to correct
the code. Genetic programming repeatedly generates mutations of code,
and then selects the mutations that remain for the next stage based on
a fitness function, which assists in converging into a correct program.
We use a model checking procedure to provide the fitness value in every
stage. As an example, we generate algorithms for mutual exclusion, us-
ing this combination of genetic programming and model checking. The
main challenge is to select a fitness function that will allow construct-
ing correct solutions with minimal effort. We present our considerations
behind the selection of a fitness function based not only on the classical
outcome of model checking, i.e., the existence of an error trace, but on
the complete graph constructed during the model checking process.

1 Introduction

The challenge in automatic programming is synthesizing programs automatically
from their set of requirements. Genetic programming (GP) is an automatic pro-
gram generation methodology; a population of programs is randomly created,
and evolves by a biologically inspired process; the fitness of each program is usu-
ally calculated by running the program on some test cases, and evaluating its
performance. Orthogonally, model checking [1] can be used to analyze a given
program, verifying that it satisfies its specification, or providing a counterexam-
ple of that fact.

One of the possibilities of program synthesis is based on a brute force genera-
tion and analysis of the possible solutions. For example, Perrig and Song [2] suc-
cessfully synthesized security protocols, while Bar-David and Taubenfeld [3] used
a similar approach for the generation of mutual exclusion algorithms. Checking
all the possibilities one by one guarantees that given enough time, a correct
solution will be found. However, synthesis is an intractable problem in nature,
which becomes quite quickly prohibitively expensive. This is also the case for
synthesis algorithms that are not based on enumeration.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 141–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 G. Katz and D. Peled

Genetic programming is often appropriate for solving sequential optimiza-
tion related problems, where providing better solutions for some inputs than for
others is acceptable. GP is less used traditionally for designing communication
protocols, concurrent or reactive systems, where there is a specification on the
behavior of the system over time, which must not be violated. Recently, John-
son [4] experimented with using the results of model checking for providing the
fitness function for synthesizing a reactive system with GP. Using model check-
ing for providing the fitness function has the advantage over testing that all the
executions of the generated code are checked, rather than sampled. However,
finding a fitness function with enough values to allow the gradual improvements
typical to GP is not an easy task.

We provide a framework for genetic programming that is based on intensive
analysis of a model checking procedure. The main challenge is to provide a fit-
ness function that will improve the chances and speed of convergence towards
a correct solution. For that, model checking is not only used to decide whether
some properties of the specification hold or not (as in [4]), but the graph gen-
erated during model checking is analyzed, in order to extract more information.
Finally, we provide experimental results of applying our framework to the mutual
exclusion algorithm generation problem.

We experimented with several alternative analysis methods based on the re-
sult of state based model checking, such as probabilistic [5] and quantitative [6]
model checking. In our experiments, these methods have not led to convergence
toward solutions. Our method for calculating a fitness function is based on an
analysis of the strongly connected components in the model checking graph. We
show experimental results where this analysis leads to the generation of mutual
exclusion algorithms. While the stochastic nature of GP eliminates the ability
of finding all solutions, or proving that no such exists, it drastically reduces the
average time and search steps required for finding a solution, compared to the
enumeration methods. This is especially true when the solution programs are
long, resulting in an extremely large search space.

In particular, our analysis gives a lower fitness weight to the case where an
error can occur after a finite number of steps and a higher fitness weight to the
case where infinite number of choices is needed in order for it to occur. The
intuition behind this distinction is that the first kind of errors is more basic,
whereas the second kind of errors is due to subtle scheduling.

The rest of the paper is organized as follows: Section 2 gives background
on Genetic Programming and Model Checking. A description of the combined
approach is given in Sect. 3. The mutual exclusion example is described in Sect.
4, followed by conclusions and future work in Sect. 5.

2 Background

2.1 Genetic Programming

Genetic Programming [7] is a method for automatic synthesis of computer
programs by an evolutionary process. GP is derived from the field of Genetic

Model Checking-Based Genetic Programming 143

Algorithms (GA) [8], and uses a similar methodology. An initial population of
candidate solutions is randomly generated and gradually improved by various
biologically inspired operations. The main advantages of GP over GA are the
explicit use of computer programs in the solution space, and the flexible struc-
ture of the solutions, usually represented as trees (although other representation
are possible as well). The GP algorithm we use in this work goes through the
following steps (described in details below):

1. Create initial population of candidate solutions.
2. Randomly choose μ candidate solutions.
3. Create λ new candidates by applying mutation (and optionally crossover)

operations (as explained below) to the above μ candidates.
4. Calculate the fitness function for each of the new candidates.
5. Based on the calculated fitness, choose μ individuals from the obtained set of

size μ+λ candidates, and use them to replace the old μ individuals selected
at step 2.

6. Repeat steps 2-5 until a perfect candidate is found, or until the maximal
permitted number of iterations is reached.

Programs are represented as trees, where an instruction or an expression is
represented by a single node, having its parameters as its offspring, and terminal
nodes represent constants. Examples of the instructions we use are assignment,
while (with or without a body), if and block. The latter is a special node that
takes two instructions as its parameters, and runs them sequentially.

A strongly-typed GP [9] is used, which means that every node has a type,
and also enforces the type of its offspring. It also affects the genetic operations
which must preserve the program typing rules.

At the first step, an initial population of candidate programs is generated.
Each program is generated recursively, starting from the root, and adding nodes
until the tree is completed. The root node is chosen randomly from the set
of instruction nodes, and each child node is chosen randomly from the set of
nodes allowed by its parent type, and its place in the parameter list. A “grow”
method [7] is used, meaning that either terminal or non-terminal nodes can be
chosen, unless the maximum tree depths is reached, which enforces the choice of
terminals. This method can create trees with various forms. Figure 1(i) shows an
example of a randomly created program tree. The tree represents the following
program:

while (A[2] != 0)
A[me] = 1

Nodes in bold belong to instructions, while the other nodes are the parameters
of those instructions.

Mutation is the main operation we use. It allows making small changes on
existing program trees. The mutation includes the following steps:

1. Randomly choose a node (internal or leaf) from the program tree.
2. Apply one of the following operations to the tree with respect to the chosen

node:

144 G. Katz and D. Peled

while

!= assign

A[] 0

2

A[]

me

(i)

1

while

!= assign

A[] 0

2

A[]

me

(ii)

A[]

0

Fig. 1. (i) Randomly created program tree, (ii) the result of a replacement mutation

(a) Replace the subtree rooted by the node with a new randomly generated
subtree.

(b) Add an immediate parent to the node. Randomly create other offspring
to the new parent, if needed.

(c) Replace the node by one of its offspring. Delete the remaining offspring
of that node.

(d) Delete the subtree rooted by the node. The node ancestors should be
updated recursively (possible only for instruction nodes).

Mutation of type (a) can replace either a single terminal or an entire subtree.
For example, the terminal “1” in the tree of Fig. 1(i), is replaced by the grayed
subtree in (ii), changing the assignment instruction into A[me] = A[0]. Muta-
tions of type (b) can extend programs in several ways, depending on the new
parent node type. In case a “block” type is chosen, a new instruction(s) will be
inserted before or after the mutation node. For instance, the grayed part of Fig.
2 represents a second assignment instruction inserted into the original program.
Similarly, choosing a parent node of type “while” will have the effect of wrap-
ping the mutation node with a while loop. Another situation occurs when the
mutation node is a simple condition which can be extended into a complex one,
extending, for example, the simple condition in Fig. 1 into the complex con-
dition: A[2] != 0 and A[other] == me. Mutation type (c) has the opposite
effect, and can convert the tree in Fig. 2 back into the original tree of Fig. 1(i).
Mutation of type (d) allows the deletion of one or more instructions. It can
recursively change the type, or even cause the deletion of ancestor nodes.

Mutation type is randomly selected, but all mutations must obey strongly
typing rules of nodes. This affects the possible mutation type for the chosen
node, and the type of new generated nodes.

Model Checking-Based Genetic Programming 145

while

!= block

A[] 0

2

assign assign

A[] other

2

A[]

me

1

Fig. 2. Tree after insertion mutation

The crossover operation creates new individuals by merging building blocks
of two existing programs. The crossover steps are:

1. Randomly choose a node from the first program.
2. Randomly choose a node from the second program that has the same type

as the first node.
3. Exchange between the subtrees rooted by the two nodes, and use the two

new programs created by this method.

While traditional GP is heavily based on crossover, it is quite a controversial
operation (see [10], for example), and may cause more damage than benefit in
the evolutionary process, especially in the case of small and sensitive programs
that we investigate. Thus, crossover is barely used in our work.

Fitness is used by GP in order to choose which programs have a higher prob-
ability to survive and participate in the genetic operations. In addition, the
success termination criterion of the GP algorithm is based on the fitness value
of the most fitted individual. Traditionally, the fitness function is calculated by
running the program on some set of inputs (a training set) which suppose to rep-
resent all of the possible inputs. This can lead to programs which work only for
the selected inputs (overfitting), or to programs that may fail for some inputs,
which might be unacceptable in some domains. In contrast, our fitness function
is not based on running the programs on sample data, but on an enhanced model
checking procedure, as described later.

We use a fitness-proportional selection [8] that gives each program a proba-
bility of being chosen that is proportional to its fitness value. In traditional GP,
after the μ programs are randomly chosen, the selection method is applied in
order to decide which of them will participate in the genetic operations. The
selected programs are then used in order to create a new set of μ programs that
will replace the original ones.

146 G. Katz and D. Peled

We use another method, which is more similar to the Evolutionary Strate-
gies [11] μ + λ style. In this method, genetic operations are applied to all of the
μ programs, in order to produce a much larger set of λ offspring. The fitness
proportional selection is then used in order to chooses μ programs from the set
of parents and offspring that will replace the original μ parents.

2.2 Model Checking

A finite ω-automaton is a tuple A = (Σ, S, S0, Δ, L, Ω) where:

– Σ is a finite alphabet.
– S is a finite set of states.
– S0 ⊆ S is a set of initial states.
– Δ ⊆ S × S is a transition relation.
– L : S → Σ is a labeling function of the states.
– Ω is the acceptance condition (defined later).

Note that in the automaton type defined here, the labels are on the states
instead of on the arcs. Nevertheless, it is easy to transform one type of the
automaton into another. An automaton can be treated as a directed graph GA =
(V, E) by setting V = S and E = Δ.

A run p of A over an infinite word w = w0w1w2... ∈ Σω is the sequence s =
s0s1s2... ∈ Sω such that: s0 ∈ S0, for all i ≥ 0, (si, si+1) ∈ Δ, and wi = L(si).
We denote by Inf(p) the set of states appearing infinitely on the run p.

A maximal strongly connected component (SCC) is a maximal set of nodes
C ⊆ S such that for each s, t ∈ C there is a path from s to t. An SCC is non-trivial
if it has at least one edge. A graph can be decomposed into SCCs by a linear
time algorithm, such as Tarjan’s. The SCCs in a graph can be converted into a
directed acyclic graph (DAG) where each SCC is represented by a simple node,
and edges between these latter nodes represent paths from one corresponding
SCC to another. A bottom SCC (BSCC) is an SCC that has no paths to other
SCCs, i.e. it is associated with a leaf in the SCCs DAG defined in the previous
paragraph. A Büchi automaton is an ω-automaton with the acceptance condition
defined as a set of states F ⊆ S where a run p over a word w is accepted if
Inf(p) ∩ F �= ∅.

A Streett automaton is an ω-automaton with the acceptance condition defined
as a set of k ordered pairs (Ei, Fi), where Ei, Fi ⊆ S, 1 ≤ i ≤ k. A run p over
a word w is accepted if Inf(p) ∩ Ei �= ∅ → Inf(p) ∩ Fi �= ∅ for all pairs. Every
Streett automaton can be converted into a Büchi automaton accepting the same
language, and vice versa [12]. Streett automata are closed under determiniza-
tion [13], but this is not the case for Büchi automata where their nondeterministic
version is more expressive than their deterministic one. The language of A, de-
noted by L(A) is defined as the set of all words accepted by A. A is nonempty
if L(A) �= ∅, i.e. A accepts at least one word. An accepting SCC is defined as an
SCC C, for which there exists an accepting run p such that Inf(p) ⊆ C. We say
that this SCC is not empty.

Model Checking-Based Genetic Programming 147

Algorithm 1. Checking non-emptiness of a Streett automaton or SCC

IsNonempty(A, IsEntireAutomaton)
(1) if IsEntireAutomaton
(2) Decompose A into SCCs reachable from S0

(3) repeat
(4) changed = FALSE
(5) for each pair (Ei, Fi) ∈ Ω
(6) for each nontrivial SCC C
(7) if C ∩ Ei �= ∅ and C ∩ Fi = ∅
(8) remove from C all states {e | e ∈ Ei}
(9) rebuild the decomposition of C into SCCs
(10) changed = TRUE
(11) until changed = FALSE
(12) if A contains nontrivial components return TRUE
(13) else return FALSE

Algorithm 1 can check in polynomial time the non-emptiness of an entire
Streett automaton or a single SCC [14]. The second parameter should be set to
TRUE of FALSE respectively.

Street automata are closed under intersection, i.e. if

A = (Σ, SA, S0
A, ΔA, LA, ΩA) , B = (Σ, SB, S0

B, ΔB, LB, ΩB)

are two Street automata using the same alphabet, then there exists a Street
automaton C such that L(C) = L(A) ∩ L(B). C is constructed as follows:

C = (Σ, SA × SB , S0
A × S0

B, ΔC , LC , ΩC) where

– ΔC = {(s, s′), (t, t′) | (s, t) ∈ ΔA and (s′, t′) ∈ ΔB and L(s) = L(s′) and
L(t) = L(t′)}.

– For each state (s, s′) of C, L(s, s′) = L(s).
– ΩC = {(E×SB, F ×SB) | (E, F) ∈ ΩA}∪{(SA×E, SA×F) | (E, F) ∈ ΩB}.

Büchi automata are closed under intersection as well.
A finite-state system M can be represented as an ω-automaton AM by using

the following settings:

– Σ = 2AP where AP denote a set of atomic propositions that may hold on
the system states.

– S is a set of the system states, where a system state consists of the values of
its variables, program counter, buffers, etc. at a specific time.

– S0 is the initial state of the system.
– Δ ⊆ S × S is a set of state pairs (s, r) such that r can be obtained from s

by an atomic transition of M .
– L : S → 2AP assigns to each state a set of propositions that hold in that

state.
– Ω is set to accept all runs. This can be done on Büchi automata by setting

Ω = S, and on Street automata by setting Ω = ∅. Another option is to set
Ω to some fairness conditions that will allow only fair runs of the system.

148 G. Katz and D. Peled

In order to define the specification properties we use Linear Temporal Logic
(LTL). LTL is a modal logic having the following syntax:

ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | �ϕ | �ϕ | ©ϕ | ϕUϕ

where p ∈ AP , a set of atomic propositions. LTL formulas are interpreted over
an infinite sequence of states ξ = s0s1s2 . . ., where we denote by ξi the suffix
sisi+1si+2 . . . of ξ. For a suffix ξk of ξ, the LTL semantics is defined as follows:

– ξi |= p iff si ∈ p.
– ξi |= ¬ϕ iff not ξi |= ϕ.
– ξi |= ϕ ∨ ψ iff ξi |= ϕ or ξi |= φ.
– ξi |= ©ϕ iff ξi+1 |= ϕ.
– ξi |= ϕUψ iff for some j ≥ i, ξj |= ψ. and for all i ≤ k < j, ξk |= ϕ.

The rest of connectives can be defined by using the following identities:

true = p∨¬p, ϕ∧ψ = ¬(¬ϕ∨¬ψ), ϕ → ψ = ¬ϕ∨ψ, �ϕ = trueUϕ, �ϕ=¬�¬ϕ

We say that ξ |= ϕ if ξ0 |= ϕ, i.e. the complete sequence ξ satisfies the LTL
formula ϕ. For a finite-state system M , M |= ϕ if for every fair run ξ on M ,
ξ |= ϕ.

Specification properties defined as LTL formulas can be converted into ω-
automata. For nondeterministic Büchi automata, this can be done by a direct
construction algorithm in time exponential to the formula size [15]. For deter-
ministic Streett automata, the process may involve a construction of a Büchi
automaton, and a determinization process that ends with a deterministic Streett
automaton [13]. The translation may result in a doubly exponential blowup [16].

A standard Model Checking procedure checks whether a system M satisfies
a specification ϕ [17]. This is done by building the automata AM and Aϕ of M
and ϕ respectively, and checking whether L(M) ⊆ L(ϕ). Since

L(M) ⊆ L(ϕ) ↔ L(M) ∩ L(ϕ) = ∅ ↔ L(M) ∩ L(¬ϕ) = ∅

it is possible to use the negation of ϕ, build A¬ϕ, and check whether the language
L(M)∩L(¬ϕ) is empty. The Model Checking process is usually performed using
Büchi automata, since the conversion from LTL, and the language emptiness
checking are easier with these automata. However, for our purposes we will use
Streett automata, as explained in the next section.

3 Combining GP and Model Checking

The standard model checking procedure gives a yes/no answer to the satisfaction
of a system M by a specification formula ϕ (in addition to a counterexample,
when ϕ is not satisfied). As we wish to base the fitness function on the model
checking results, using a function with just two values may give a limited ability
to gradually improve the programs ([4], for instance). Therefore, we try to quan-
tify the level of satisfaction, by comparing the system computations on which

Model Checking-Based Genetic Programming 149

the specification is satisfied, with those on which it is not. This can be done by
checking the intersection graph of the system and the specification, for accepting
and non-accepting paths.

However, when using a nondeterministic (such as Büchi) automaton, finding
a non-accepting path of a computation does not necessarily mean that the com-
putation itself is not accepted, since there might be another accepting path for
the same computation. For this reason, we use deterministic Streett automata,
on which each computation is represented by a single path. While this choice
has an additional cost on the size of the specification automata, and on the
model checking procedure performance, the symmetry between accepting and
non-accepting paths is crucial for our analysis.

Having a system M and a specification formula ϕ, we perform the enhanced
model checking procedure showed below.

Algorithm 2. Enhanced model checking
EnhancedMC(M, ϕ)
(1) univ := FALSE
(2) Construct Streett automata AM and Aϕ for M and ϕ re-

spectively.
(3) Create the intersection automaton Apos = AM ∩ Aϕ.
(4) Decompose Apos into SCCs reachable from its initial states
(5) For each SCC C ∈ Apos:
(6) acc(C) := IsNonempty(C, FALSE)
(7) if for each SCC C, acc(C) = TRUE
(8) Construct Streett automaton A¬ϕ for the negation of ϕ
(9) Create the intersection automaton Aneg = AM ∩ A¬ϕ

(10) univ := ¬ IsNonempty(Aneg, TRUE)

The algorithm first checks the non-emptiness of every SCC of the graph and
stores the result in the SCC’s acc variable (lines (1) - (6)). In the case that all
of the SCCs are accepting, an additional step is performed in order to check the
automaton for universality (stored in the univ variable) (lines (7) - (10)).

The results of the algorithm are used for setting the value of the fitness func-
tion, as detailed in Table 1. In order to assign a fitness level, we assume that the
choice of program transitions is made by a hostile scheduler (or environment)
that tries to cause the violation of the checked property. The amount of choices
the scheduler has to make during an execution determines the fitness level (for
a related approach for analyzing counterexamples, see [18]). The lowest fitness
level of 0 is given when the checked property is never satisfied (thus, no hostile
scheduling choices are needed to violate the property). Level 1 is assigned when
the graph contains a non-accepting bottom SCC. In this case, a finite number of
choices can lead to that BSCC, from which the failure is unavoidable. A higher
level of 2 is assigned where all BSCCs are accepting, hence, a violation can be
caused only by an infinite scheduler choices that will consistently skip the accept-
ing paths. The highest level of 3 indicates that the property is always satisfied
(thus, even a hostile scheduler cannot cause a violation of the property).

150 G. Katz and D. Peled

Table 1. Fitness Levels

Fitness
level

Condition Description Hostile
scheduler
choices

Score

0 For all SCCs,
acc(C)=FALSE

The property is not satisfied on any
execution

None 0

1 At least one SCC with
acc(C)=TRUE. At
least one BSCC with
acc(C)=FALSE

The program can reach a state
from which the violation of the
property is unavoidable

Finite 70

2 For all BSCCs,
acc(C)=TRUE,
univ=FALSE

Property violation is always avoid-
able. It can be violated only by an
infinite scheduler choices

Infinite 80

3 univ=TRUE The property is always satisfied Impossible 100

The scores assigned to each fitness level are intended to encourage the gradual
evolution of programs among the various levels. The specific score values were
chosen so that two or more partially satisfied properties will have a higher score
than a single fully satisfied property. This gives a better chance to a more parallel
and smooth evolution.

A class of properties that need a special treatment are properties of the form
�(P → �Q). These properties can be vacuously satisfied by a run on which
P never happens (see [19]). When comparing the accepting and non-accepting
paths of the program, we wish to ignore those vacuous runs, and concentrate
only on runs where P eventually happens.

Consider for instance the property � (p in Pre → � (p in CS)) (defined at
Sect. 4), requiring that a process trying to enter the critical section will eventually
enter it. We do not wish to give extra score for program runs that stay infinitely
on the Non Critical Section. Neither can we just add “∧ � (p in Pre)” to the
property, since this will treat the above runs as violating the property. Instead,
we wish to evaluate only runs where the process enters the Pre Protocol section,
and ignore other runs and their related SCCs.

In order to achieve that, a prior step is added before line (3) of algorithm 2 .
In this step AM is intersected with the automaton of the property �P , and the
intersection is used instead of AM . In the special case when the intersection is
empty, all runs are vacuously satisfied, and a predefined fitness level (usually 0)
is assigned to the program, without running the rest of the algorithm.

Another reason for restricting program runs is related to fairness. In this
work we use weak process fairness by adding Streett conditions to the program
automaton (strong fairness can be applied as well with Streett conditions).

On cases when not all of the program runs are accepted by the program
automaton AM (such as the two cases above), algorithm 2 needs a refinement.
Prior to the non-emptiness check at lines (5) - (6), we run a similar check,
but only with the Streett conditions derived from AM . Empty SCCs found at
this stage are considered not-relevant, and are not used by further steps of the
algorithm and the scoring analysis. After this stage, the standard check of lines

Model Checking-Based Genetic Programming 151

(5) - (6) is performed on the relevant SCCs, including all of the Streett conditions
(derived from both the program and the specification).

Deadlocks in programs are considered a fundamental failure, and are usually
tested at early stages along with other safety properties. In our case, however,
programs can evolve to a certain fitness score, even if they contain deadlocks.
This is a result of the fact that as shown on the previous section regarding
vacuity, some liveness properties can be relevant only in some parts of the state
space, and may not be affected by other parts with deadlocks.

For this reason, we do not check for deadlocks explicitly. Instead, when the
graph of a specific liveness property contains a deadlock, it will be detected by
the above algorithm as a non-accepting BSCC, and will be assigned fitness level
1. In order to distinguish this case from the usual cases of level 1, we slightly
decrease the score given to the property if the BSCC contains only a single
node (which is the case when a deadlock occurs). While programs may simply
raise their score by adding lines that turn the deadlock into a livelock, adding
these lines increases the probability of a mutation in the program lines related
to the deadlock, which may help in eliminating it. This was the case on the run
described later.

The procedure above is performed for each of the properties included in the
specification, resulting in multiple fitness functions. These values have to be
merged into a single fitness score. This can be done by summing up the values of
all functions (as done in [4]). However, our experience shows that some properties
may depend on other more basic properties, and may become trivially satisfied
where those basic properties are not satisfied. In order to prevent this biased
fitness calculation, we assign a level to each property, starting from 1 for the
most basic properties, and checking properties by the order of levels. If at level
i, not all of the properties are fully satisfied, the checking process is stopped, and
all properties at levels greater than i receive a score of 0. This also saves time
by not checking unneeded properties. The total fitness value is then divided by
the total number of properties (including those that were not checked) in order
to get an average fitness value.

GP programs tend to grow in size over time until they reach the maximum al-
lowed tree depth. This phenomena [20,21], known as “bloating” is caused by non-
relevant portions of code which are called “introns” after the analogous biological
term for non-relevant DNA. While there is evidence that introns may help the
evolutionary process [10], they may hurt performance and even prevent the con-
vergence, especially in areas such as protocols and concurrent programs, where
programs has to be small and accurate. One of the ways of preventing introns from
appearing is giving a penalty to large programs by decreasing their fitness.

We use parsimony as a secondary fitness measure by subtracting from the
total score the number of program nodes multiplied by a small constant (0.1).
The constant is chosen to be small enough, so that programs with various length
can evolve, and the distinction between fitness levels is preserved, but still large
enough to affect programs at the same level to have a reduced size. Note that
this means programs cannot get a perfect score of 100, but only get closer to

152 G. Katz and D. Peled

it. Instead, we mark programs as perfect when all properties are fully satisfied.
Shorter programs can be created as a result of the genetic operations, as well as
by removing dead-code detected by the model checking process.

4 Example - The Mutual Exclusion Problem

As an example, we use our method in order to automatically generate solutions to
several variants of the Mutual Exclusion Problem. In this problem, first described
and solved by Dijkstra [22], two or more processes are repeatedly running critical
and non-critical sections of a program. The goal is to avoid the simultaneous
execution of the critical section by more than one process. We limit our search
for solutions to the case of only two processes. The problem is modeled using
the following program parts that are executed in an infinite loop:

Non Critical Section
Pre Protocol
Critical Section
Post Protocol

The Non Critical Section part represents the process part on which it does
not require an access to the shared resource. A process can make a nondeter-
ministic choice whether to stay in that part, or to move into the Pre Protocol
part. From the Critical Section part, a process always has to move into
the Post Protocol part. The Non Critical Section and Critical Section
parts are fixed, while our goal is to automatically generate code for the Pre
Protocol and Post Protocol parts, such that the entire program will fully
satisfy the problem’s specification.

We use a restricted high level language based on the C language. Each process
has access to its id (0 or 1) by the me literal, and to the other process’ id by the
other literal. The processes can use an array of shared bits with a size depended
on the exact variant of the problem we wish to solve. The two processes run
the same code. The available node types are: assignment, if, while, empty-while,
block, and ,or and array. Terminals include the constants: 0, 1, 2, me and other.

Table 2 describes the properties which define the problem specification. The
four program parts are denoted by NonCS, Pre, CS and Post respectively. Property
1 is the basic safety property requiring the mutual exclusion. Properties displayed

Table 2. Mutual Exclusion Specification

No. Type Definition Description Level

1 Safety �¬(p0 in CS ∧ p1 in CS) Mutual Exclusion 1

2,3 Liveness �(pme in Post → �(pme in NonCS)) Progress 2
4,5 �(pme in Pre ∧ �(pother in NonCS)) →

�(pme in CS))
No Contest 3

6 �((p0 in Pre ∧ p1 in Pre) → �(p0 in
CS ∨ p1 in CS))

Deadlock Freedom 4

7,8 �(pme in Pre → �(pme in CS)) Starvation 4

Model Checking-Based Genetic Programming 153

in pairs are symmetrically defined for the two processes. Properties 2 and 3
guarantee that the processes are not hung in the Post Protocol part. Similar
properties for the Critical Section are not needed, since it is a fixed part
without an evolved code. Properties 4 and 5 require that a process can enter the
critical section, if it is the only process trying to enter it. Property 4 requires that
if both processes are trying to enter the critical section, at least one of them will
eventually succeed. This property can be replaced by the stronger requirements
7 and 8 that guarantee that no process will starve.

There are several known solutions to the Mutual Exclusion problem, depend-
ing on the number of shared bits in use, the type of conditions allowed (simple /
complex) and whether starvation-freedom is required. The variants of the prob-
lem we wish to solve are showed in Table 3.

Table 3. Mutual Exclusion Variants

Variant
No.

Number
of bits

Conditions Requirement Relevant
properties

Known algorithm

1 2 Simple Deadlock Freedom 1,2,3,4,5,6 One bit protocol [23]

2 3 Simple Starvation Freedom 1,2,3,4,5,7,8 Dekker [22]

3 3 Complex Starvation Freedom 1,2,3,4,5,7,8 Peterson [24]

4.1 Experimental Results

We used a specially designed model check and GP engine which implements the
methods described earlier. Three different configurations where used, in order
to search for solutions to the variants described in Table 3. Each run included
the creation of 150 initial programs by the GP engine, and the iterative creation
of new programs until a perfect solution was found, or until a maximum of
2000 iterations. At each iteration, 5 programs were randomly selected, bred, and
replaced using mutation and crossover operations, as described on Sect. 2.1. The
values μ = 5, λ = 150 where chosen. The tests were performed on a 2.6 GHz
Pentium Xeon Processor. For each configuration, multiple runs were performed.
Some of the runs converged into perfect solutions, while others found only partial
solutions. The results are summarized on Table 4.

Table 4. Test results

Variant
No.

Successful runs
(%)

Avg. run durtaion
(sec)

Avg. no. of tested
programs per run

1 40 128 156600

2 6 397 282300

3 7 363 271950

Test 1. At the first test, we tried to find a deadlock-free algorithm solving
the mutual exclusion problem. The programming language in this case was set
to allow the use of two shared bits, and only simple conditions. Followed is an

154 G. Katz and D. Peled

analysis of one of the successful runs. The numbers in the square brackets under
each program below represent the program fitness scores.

The initial population contained 150 randomly generated programs with vari-
ous fitness scores. Many programs did not satisfy even the basic mutual exclusion
safety property 1, and thus achieved a fitness score of zero.

The programs were gradually improved by the genetic operations, until pro-
gram (a) was created. This program fully satisfies all of the properties, which
makes it a correct solution. At this stage, we could end the run; however, we
kept it for some more iterations. Due to the parsimony pressure caused by the
secondary fitness measure, the program is finally evolved by a series of deletion
and replacement mutations into program (b). This program is a perfect solution
to the requirements, which is actually the known one bit protocol [23].

Non Critical Section Non Critical Section
A[me] = 1 A[me] = 1
While (A[other] != 0) While (A[other] != 0)

A[me] = me A[me] = me
While (A[other] != A[0]) While (A[other] == 1)

While (A[1] != 0) A[me] = 1
A[me] = 1 Critical Section

Critical Section A[me] = 0
A[me] = 0

(a) [96.50] (b) [97.10]

Test 2. At the second test we changed the configuration to support three shared
bits. This allowed the creation of algorithms like Dekker’s [22] which uses the
third bit to set turns between the two processes. Since the requirements were
similar to those of the previous test (accept the change of property 6 by 7 and
8), many runs initially converged into deadlock-free algorithms using only two
bits. Those algorithms have execution paths at which one of the processes starve,
hence only partially satisfying properties 7 or 8. Program (c) shows one of those
algorithms, which later evolved into program (d). The evolution first included
the addition of the a second line to the post protocol section (which only slightly
decreased its fitness level due to the parsimony measure). A replacement muta-
tion then changed the inner while loop condition, leading to a perfect solution
similar to Dekker’s algorithm.

Another interesting algorithm generated by one of the runs is program (e).
This algorithm (also reported at [3]) is a perfect solution too, but it is shorter
than Dekker’s algorithm.

Non Critical Section Non Critical Section Non Critical Section
A[me] = 1 A[me] = 1 A[other] = other
While (A[other] == 1) While (A[other] == 1) if (A[2] == other)

While (A[0] != other) While (A[2] == me) A[2] = me
A[me] = 0 A[me] = 0 While (A[me] == A[2])

A[me] = 1 A[me] = 1 Critical Section
Critical Section Critical Section A[other] = me

Model Checking-Based Genetic Programming 155

A[me] = 0 A[2] = me
A[me] = 0

(c) [94.34] (d) [96.70] (e) [97.50]

Test 3. At this test, we added the and and or operators to the function set, al-
lowing the creation of complex conditions. Some of the runs evolved into program
(f) which is the known Peterson’s algorithm [24].

Non Critical Section
A[me] = 1
A[2] = me
While (A[other] == 1 and A[2] != other)
Critical Section
A[me] = 0

(f) [97.60]

5 Conclusions and Future Work

One of the main features of our scoring system is that a failure of a property to
hold in a program is considered to be more severe where there is a finite prefix
from which the property would not be fixable. On the other hand, when failure
involves infinitely many choices that would steer away the execution from a cor-
rect one, the failure is considered to be “weaker”. This provides an interesting
dichotomy in analysis of correctness, and can be further refined (e.g., by recog-
nizing the case when all of the executions are of the same severe failure, rather
than that there exists at least one such).

Experimentally, this distinction turned out to provide good scoring results
with a high probability of convergence. On the other hand, the disadvantage of
using GP for generating solutions for problems like mutual exclusion is that be-
cause GP involves probabilistic decisions, one does not know when and whether
the search space is exhausted.

Further work includes refining the scoring system, and making experiments
with other concurrent or distributed algorithms.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

2. Perrig, A., Song, D.: Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols. In:
CSFW, pp. 64–76 (2000)

3. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 136–150. Springer,
Heidelberg (2003)

156 G. Katz and D. Peled

4. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

5. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

6. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

9. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

10. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An
Introduction; On the Automatic Evolution of Computer Programs and its Appli-
cations, 3rd edn. Morgan Kaufmann, San Francisco (2001)

11. Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc. New York (1993)

12. Safra, S., Vardi, M.Y.: On ω automata and temporal logic. In: 21th Annual Symp.
on Theory of Computing, pp. 127–137 (1989)

13. Safra, S.: Complexity of automata on infinite objects. PhD thesis, Rehovot, Israel
(1989)

14. Emerson, E.A.: Automata, tableaux and temporal logics. In: Parikh, R. (ed.) Logic
of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985)

15. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

17. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. IEEE Symp. on Logic in Computer Science, Boston, July
1986, pp. 332–344 (1986)

18. Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 445–459. Springer, Heidelberg
(2002)

19. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation
methodology. In: DAC, pp. 596–602 (1994)

20. Angeline, P.J.: Genetic programming and emergent intelligence. In: Advances in
Genetic Programming, pp. 75–98. MIT Press, Cambridge (1994)

21. Tackett, W.A.: Recombination, selection, and the genetic construction of computer
programs. PhD thesis, Los Angeles, CA, USA (1994)

22. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

23. Burns, J.E., Lynch, N.A.: Bounds on shared memory for mutual exclusion. Infor-
mation and Computation 107(2), 171–184 (1993)

24. Peterson, G.L., Fischer, M.J.: Economical solutions to the critical section problem
in a distributed system. In: ACM Symposium on Theory of Computing (STOC),
pp. 91–97 (1977)

Conditional Probabilities over Probabilistic and

Nondeterministic Systems

Miguel E. Andrés and Peter van Rossum

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{mandres,petervr}@cs.ru.nl

Abstract. This paper introduces the logic cpCTL, which extends the
probabilistic temporal logic pCTL with conditional probability, allowing
one to express that the probability that ϕ is true given that ψ is true is
at least a. We interpret cpCTL over Markov Chain and Markov Decision
Processes. While model checking cpCTL over Markov Chains can be done
with existing techniques, those techniques do not carry over to Markov
Decision Processes. We present a model checking algorithm for Markov
Decision Processes. We also study the class of schedulers that suffice to
find the maximum and minimum probability that ϕ is true given that
ψ is true. Finally, we present the notion of counterexamples for cpCTL
model checking and provide a method for counterexample generation.

1 Introduction

Conditional probabilities are a fundamental concept in probability theory. In
system validation these appear for instance in anonymity, risk assessment, and
diagnosability. Typical probabilities here are the probability that a certain mes-
sage was sent by Alice, given that an intruder observes a certain traffic pattern;
the probability that the dykes break, given that it rains heavily; the probability
that component A has failed, given error message E.

This paper introduces the logic cpCTL extending the probabilistic temporal
logic pCTL [HJ89] with new probabilistic operators of the form P≤a[ϕ|ψ], which
expresses that the probability that ϕ is true given that ψ is true is at most a.
We interpret cpCTL formulas over Markov Chains (MCs) and Markov Decision
Processes (MDPs). Model checking cpCTL over MCs can be done with model
checking techniques for pCTL*, using the equality P[ϕ|ψ] = P[ϕ ∧ ψ]/P[ψ].

For MDPs, cpCTL model checking is significantly more complex. Writing
Pη[ϕ|ψ] for the probability P[ϕ|ψ] under scheduler η, model checking P≤a[ϕ|ψ]
boils down to computing P+[ϕ|ψ] = maxη Pη[ϕ|ψ] = maxη Pη[ϕ ∧ ψ]/Pη[ψ].
Thus, we have to maximize a non-linear function. (Note that in general it is not
true that P+[ϕ|ψ] = P+[ϕ ∧ ψ]/P+[ψ]). Therefore, we cannot reuse the efficient
machinery for pCTL model checking, which heavily relies on linear optimization
techniques [BA95].

In particular we show that, unlike for pCTL [BA95], memoryless schedulers
are not sufficient for optimizing reachability properties. We introduce the class

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 157–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 M.E. Andrés and P. van Rossum

of semi history-independent schedulers and show that these suffice to attain
the optimal conditional probability. We also show that in cpCTL optimizing
schedulers are not determined by the local structure of the system. That is,
the choices made by the scheduler in one branch may influence the optimal
choices in other branches. Surprisingly, deterministic schedulers still suffice to
find the optimal conditional probability. This is remarkable indeed, since many
non-linear optimization problems attain their optimal value in the interior of a
convex polytope (which correspond to randomized schedulers in our setting).

Based on these properties, we present an exponential algorithm for checking
if a given system satisfies a formula in the logic. We also present two heuristic
optimizations of this algorithm: one trades time for space by exploiting the semi-
history-independentness of optimizing schedulers; the other uses the fact that in
certain cases optimal decisions can be decided locally. Finally, we present the
notion of counterexamples for cpCTL model checking as pairs of sets of paths
and provide a method for counterexample generation.

1.1 Applications

Complex Systems. One application of the techniques in this paper can be
found in the area of complex system behavior. Modeling naturally occurring
events as probabilistic choices and operator actions as non-deterministic choices,
computing maximum and minimum conditional probabilities can help optimize
run-time behavior. For instance, suppose that the desired behavior of the system
is expressed as a pCTL formula ϕ and that during run-time we are making an
observation about the system, expressed as a pCTL formula ψ. The techniques
in this paper allow us to compute the maximum probability of obtaining ϕ given
that ψ is true and compute the corresponding actions (non-deterministic choices)
that have to be taken to achieve this probability.

Anonymizing Protocols. Another application can be found in anonymizing
protocols. These protocols such as Onion Routing [CL05], Dining Cryptogra-
phers [Cha88], voting protocols [FOO92] try to hide the originator of a message
rather than the content. Strong anonymity is commonly formulated [Cha88,
BP05] in terms of conditional probability: A protocol is considered strongly
anonymous if no information about the sender of a message can be derived from
observations of the network traffic. Formally, this is expressed by saying that the
(random variable representing) sender of a specific message is independent of the
(random variable representing) the observations the adversary makes. That is,
for all users u and all observations of the adversary o:

P[sender = u | observations = o] = P[sender = u].
It is customary to give the adversary full control over the network [DY83] and
model the capabilities of the adversary as nondeterministic choices in the system;
probabilistic choices model user behavior and random choices in the protocol.
Since anonymity should be guaranteed for all possible attacks of the adversary,
equality should hold for all schedulers. That is: for all schedulers η, all users u
and all adversarial observations o:

Conditional Probabilities over Probabilistic and Nondeterministic Systems 159

Pη[sender = u | observations = o]= Pη[sender = u]

In practic e, Pη[sender = u] does not depend on the adversary. Since the tech-
niques in this paper allow us to compute the maximal and minimal conditional
probabilities, we can use them to prove strong anonymity.

Similarly, probable innocence is often formulated as saying that a user is (at
worst) as likely to have not sent a message as to have sent it. In cpCTL this can
immediately be expressed as P≤1/2[sender = u | observations = o].

1.2 Organization of the Paper

In Section 2 we present the necessary background on MDPs. In Section 3 we
introduce conditional probabilities over MDPs and cpCTL is introduced in Sec-
tion 4. Section 5 introduces the class of semi history-independent schedulers and
Section 6 explains how to compute maximum and minimum conditional proba-
bilities. In Section 7, we investigate the notion of counterexamples. Finally, in
Section 8 we give directions for future research.

2 Markov Decision Processes

Markov Decision Processes constitute a formalism that combines nondetermin-
istic and probabilistic choices. They are a dominant model in corporate finance,
supply chain optimization and system verification and optimization. While there
are many slightly different variants of this formalism (e.g., action-labeled MDPs
[Bel57, FV97], probabilistic automata [SL95, SV04]), we work with the state-
labeled MDPs from [BA95].

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6

{P}

s7

{}

π1

π2 π3

3
4

1
4

1
2 −α

α
1
2 1

10
9
10

Fig. 1. Markov Decision Process

The set of all discrete probability distri-
butions on a set S is denoted by Distr(S).
The Dirac distribution on an element s ∈ S
is written as 1s. We also fix a set P of propo-
sitions.

Definition 2.1. A Markov Decision Pro-
cess (MDP) is a four-tuple Π = (S, s0,
τ, L), where S is the finite state space of the
system; s0 ∈ S is the initial state; L : S →
℘(P) is a labeling function that associates
to each state s ∈ S a subset of P; τ : S →
℘(Distr(S)) is a function that associates to
each s ∈ S a non-empty and finite subset of
Distr(S) of successor distributions.

We define a successor relation ρ ⊆ S × S by ρ � {(s, t)|∃π ∈ τ(s) . π(t) > 0}
and for each state s ∈ S we define the sets Ωs � {s0s1s2 . . . ∈ Sω|s0 = s ∧ ∀n ∈
N . ρ(sn, sn+1)}, and Ω∗s � {s0s1 . . . sn ∈ S�|s0 = s ∧ ∀ 0 ≤ i < n . ρ(sn, sn+1).
of paths and finite paths resp. beginning at s. For ω ∈ Ωs, we write the n-th
state of ω as ωn. As usual, we let Bs ⊆ ℘(Ωs) be the Borel σ-algebra on the
basic cylinders 〈s0 . . . sn〉 � {ω ∈ Ωs|ω0 = s0 ∧ . . . ∧ ωn = sn}.

160 M.E. Andrés and P. van Rossum

Example 2.2. Figure 1 shows a MDP. Absorbing states (i.e., states s with
τ(s) = {1s}) are represented by double lines. This MDP features a single non-
deterministic decision, to be made in state s2.

Schedulers (also called strategies, adversaries, or policies) resolve the nondeter-
ministic choices in a MDP [PZ93,Var85,BA95].

Definition 2.3. Let Π = (S, s0, τ, L) be a MDP and s ∈ S. An s-scheduler η
on Π is a function from Ω∗s to Distr(℘(Distr(S))) such that for all σ ∈ Ω∗s we
have η(σ) ∈ Distr(τ(last(σ))). We denote the set of all s-schedulers on Π by
Schs(Π). When s = s0 we omit it.

Note that our schedulers are randomized, i.e., in a finite path σ a scheduler
chooses an element of τ(last(σ)) probabilistically. Under a scheduler η, the prob-
ability that the next state reached after the path σ is t, equals

∑
π∈τ(last(σ)) η(σ)

(π) · π(t). In this way, a scheduler induces a probability measure on Bs as usual.

Definition 2.4. Let Π be a MDP, s ∈ S, and η an s-scheduler on Π. We
define the probability measure μs,η as the unique measure on Bs such that for all
s0s1 . . . sn ∈ Ω∗s

μs,η(〈s0s1 . . . sn〉) =
n−1∏

i=0

∑

π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

We recall the notions of deterministic and history independent schedulers.

Definition 2.5. Let Π be a MDP, s ∈ S, and η an s-scheduler of Π. We say
that η is deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and
all σ ∈ Ω∗s . We say that a scheduler is history independent (HI) if for all finite
paths σ1, σ2 of Π with last(σ1) = last(σ2) we have η(σ1) = η(σ2) The set of all
deterministic and HI s-schedulers will be denoted by SchHI

s (Π).

Definition 2.6. Let Π be a MDP, s ∈ S, and Δ ∈ Bs. Then the maximal and
minimal probabilities of Δ, μ+

s (Δ), μ−s (Δ), are defined by

μ+
s (Δ) � sup

η∈Schs(Π)
μs,η(Δ) and μ−s (Δ) � inf

η∈Schs(Π)
μs,η(Δ).

A scheduler that attains μ+
s (Δ) or μ−s (Δ) is called a maximizing or minimizing

scheduler respectively.

We define the notion of (finite) convex combination of schedulers.

Definition 2.7. Let Π be a MDP, s ∈ S. An s-scheduler η is a convex com-
bination of the s-schedulers η1, . . . , ηn if there are α1, . . . , αn ∈ [0, 1] with α1 +
· · ·+ αn = 1 such that for all Δ ∈ Bs, μs,η(Δ) = α1μs,η1(Δ)+ · · ·+ αnμs,ηn(Δ).

Note that taking the convex combination η of η1 and η2 as functions, i.e.,
η(σ)(π) = αη1(σ)(π) + (1 − α)η2(σ)(π), does not imply that η is a convex com-
bination of η1 and η2 in the sense above.

Conditional Probabilities over Probabilistic and Nondeterministic Systems 161

3 Conditional Probabilities over MDPs

The conditional probability P (A | B) is the probability of an event A, given the
occurrence of another event B. Recall that given a probability space (Ω, F, P) and
two events A, B ∈ F with P (B) > 0, P (A | B) is defined as P (A ∩ B)/P (B).
If P (B) = 0, then P (A | B) is undefined. In particular, given a MDP Π , a
scheduler η and a state s, (Ωs, Bs, μs,η) is a probability space. So, for two sets
of paths Δ1, Δ2 ∈ Bs with μs,η(Δ2) > 0, the conditional probability of Δ1
given Δ2 is μs,η(Δ1 | Δ2) = μs,η(Δ1 ∩ Δ2)/μs,η(Δ2). If μs,η(Δ2) = 0, then
μη,s(Δ1 | Δ2) is undefined. For technical reasons, we define the maximum and
minimum conditional probabilities for all Δ2 ∈ Bs.

Definition 3.1. Let Π be a MDP. The maximal and minimal conditional prob-
abilities μ+

s (Δ1|Δ2), μ−s (Δ1|Δ2) of sets of paths Δ1, Δ2 ∈ Bs are defined by

μ+
s (Δ1|Δ2) �

{
supη∈Sch>0

Δ2
μs,η(Δ1|Δ2) if Sch>0

Δ2
�= ∅,

0 otherwise,

μ−s (Δ1|Δ2) �
{

infη∈Sch>0
Δ2

μs,η(Δ1|Δ2) if Sch>0
Δ2

�= ∅,

1 otherwise,

where Sch>0
Δ2

= {η ∈ Schs(Π) | μs,η(Δ2) > 0}.

The following lemma generalizes Lemma 6 of [BA95] to conditional probabilities.

Lemma 3.2. Given Δ1, Δ2 ∈ Bs, its maximal and minimal conditional proba-
bilities are related by: μ+

s (Δ1|Δ2) = 1 − μ−s (Ωs − Δ1|Δ2).

4 Conditional Probabilistic Temporal Logic

The logic cpCTL extends pCTL with formulas of the form P
�a[ϕ|ψ]. Intuitively,
P≤a[ϕ|ψ] holds if the probability that ϕ holds given that ψ holds is at most a.

Definition 4.1. The cpCTL logic is defined as the set of state and path formu-
las, i.e., cpCTL � Stat∪Path, where Stat and Path are defined inductively:

P ⊆ Stat,
ϕ, ψ ∈ Stat ⇒ ϕ ∧ ψ, ¬ϕ ∈ Stat,
ϕ, ψ ∈ Path ⇒ Aϕ, Eϕ,P
�a[ϕ],P
�a[ϕ|ψ] ∈ Stat,
ϕ, ψ ∈ Stat ⇒ ϕ Uψ,♦ϕ,� ϕ ∈ Path .

Here ��∈ {<, ≤, >, ≥} and a ∈ [0, 1].

Semantics. Satisfiability of state-formulas (s |= ϕ for a state s) and path-
formulas (ω |= ψ for a path ω) is defined as an extension of satisfiability for
pCTL. Satisfiability of the logical, temporal, and pCTL operators is defined in
the usual way. For the conditional probabilistic operators we define

s |= P≤a[ϕ|ψ] ⇔ μ+
s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}) ≤ a,

s |= P≥a[ϕ|ψ] ⇔ μ−s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}) ≥ a,

and similarly for s |= P<a[ϕ|ψ] and s |= P>a[ϕ|ψ]. Following [BA95] we define

162 M.E. Andrés and P. van Rossum

P+
s [ϕ] � μ+

s ({ω ∈ Ωs | ω |= ϕ}),

P+
s [ϕ|ψ] � μ+

s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}),

Ps,η[ϕ|ψ] � μs,η({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ})

and we define P−s [ϕ|ψ] and P−s [ϕ] analogously.

Observation 4.2. As usual, for checking if s |= P
�a[ϕ|ψ], we only need to
consider the cases where ϕ = ϕ1Uϕ2 and where ψ is either ψ1Uψ2 or �ψ1. This
follows using �ϕ ↔ ¬♦¬ϕ, ♦ϕ ↔ trueUϕ, and the relations

P+
s [¬ϕ|ψ] = 1 − P−s [ϕ|ψ] P−s [¬ϕ|ψ] = 1 − P+

s [ϕ|ψ]

derived from Lemma 3.2. Because there is no way to relate P+[ϕ|ψ] and P+[ϕ|¬ψ],
we have to provide two algorithms, one to compute P+[ϕ|ψ1Uψ2] and one to
compute P+[ϕ|�ψ1]

5 Deterministic and Semi History-Independent Schedulers

Recall that there exist maximizing and minimizing schedulers on pCTL that are
deterministic and HI [BA95]. We show that for cpCTL deterministic schedulers
still suffice to reach optimal conditional probability. Because we now have to
solve a non-linear optimization problem, the proof differs from the pCTL case
in an essential way. We also show that HI schedulers do not suffice and we
introduce semi history-independent schedulers that do attain optimal conditional
probability.

To simplify notation, for a deterministic scheduler η, we use η(σ) to denote
the unique distribution π ∈ τ(last(σ)) such that η(σ)(π) = 1.

5.1 Semi History-Independent Schedulers

{} s0

s1

{B}

{P} s2 s3

{P}

s4

{}

π1 π2
π3

π4

π5

1
2

1
2

Fig. 2. MDP

The following example shows that maximizing schedulers
are not necessarily HI.

Example 5.1. Let Π be the MDP of Figure 2 and the con-
ditional probability Ps0,η[♦B|♦P]. There are only three
deterministic history independent schedulers, choosing π1,
π2, or π3 in s0. For the first one, the conditional probability
is undefined and for the second and third it is 0. The sched-
uler η that maximizes Ps0,η[♦B|♦P] satisfies η(s0) = π3,
η(s0s3) = π5, and η(s0s3s0) = π1. Since η chooses on s0
first π2 and later π1, η is not history independent.

However, there exists a maximizing scheduler that is “nearly HI” in the sense that
it always takes the same decision before the system reaches a certain condition
ϕ and also always takes the same decision after ϕ. This family of schedulers is
called ϕ-semi history independent (ϕ-sHI for short).

Conditional Probabilities over Probabilistic and Nondeterministic Systems 163

Definition 5.2. Let Π = (S, s0, τ, L) be a MDP, s ∈ S, η a scheduler of Π,
and ϕ ∈ Stat. We say that η is a ϕ-sHI s-scheduler if it satisfies

1. for all σ1, σ2 ∈ Ω∗s , if last(σ1) = last(σ2) and σ1, σ2 �|= ♦ϕ, then η(σ1) =
η(σ2);

2. for all σ ∈ Ω∗s , if σ |= ♦ϕ, then for all σ′, σ′′ ∈ Ω∗last(σ) such that σ � σ′,
σ � σ′′, and last(σ′) = last(σ′′) we have η(σ′) = η(σ′′).

Here last(s0s1 . . . sn) = sn, tail(s0s1 . . . sn) = s1 . . . sn, and � denotes the prefix
order over finite paths, i.e. σ′ � σ ⇔ σ = σ′σ′′ for some σ′′.

Theorem 5.3. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, �ψ1 ∈ cpCTL.
There exists a (¬ϕ1 ∨ ϕ2 ∨ ¬ψ1 ∨ ψ2)-sHI s-scheduler η′ such that

Ps,η′ [ϕ1Uϕ2|ψ1Uψ2] = P+
s [ϕ1Uϕ2|ψ1Uψ2]

and a (¬ϕ1 ∨ ϕ2 ∨ ¬ψ1)-sHI s-scheduler η′′ such that

Ps,η′′ [ϕ1Uϕ2|�ψ1] = P+
s [ϕ1Uϕ2|�ψ1].

We define ϕU � ¬ϕ1 ∨ ϕ2 ∨ ¬ψ1 ∨ ψ2 and ϕ� � ¬ϕ1 ∨ ϕ2 ∨ ¬ψ1. We refer to ϕU

(resp. ϕ�) as the until (resp. globally) stopping condition.

5.2 Deterministic Schedulers

Lemma 5.4. Let v1, v2 ∈ [0, ∞) and w1, w2 ∈ (0, ∞). Then the function f : R →
R defined by f(x) � xv1+(1−x)v2

xw1+(1−x)w2
is monotonous.

Proof. f ′(x) = v1w2−v2w1
(xw1−(1−x)w2)2

which is always ≥ 0 or always ≤ 0.

The following result states that taking the convex combination of schedulers
does not increase the conditional probability P[ϕ|ψ].

Lemma 5.5. Let Π be a MDP, s a state, and ϕ, ψ path formulas. Suppose
that the s-scheduler η is a convex combination of η1 and η2. Then Ps,η[ϕ|ψ] ≤
max(Ps,η1

[ϕ|ψ],Ps,η2
[ϕ|ψ]).

Proof. Applying the above lemma to

[0, 1] � α �→
αPs,η1

[ϕ ∧ ψ] + (1 − α)Ps,η2
[ϕ ∧ ψ]

αPs,η1
[ψ] + (1 − α)Ps,η2

[ψ]

we get that the maximum is reached at α = 0 or α = 1. Because η is a con-
vex combination of η1 and η2, Ps,η[ϕ|ψ] ≤ Ps,η2

[ϕ|ψ] (in the first case) or
Ps,η[ϕ|ψ] ≤ Ps,η1

[ϕ|ψ] (in the second case).

Theorem 5.6. Let Π be a MDP, s a state, and ϕ a path formula. Then every
s-scheduler on Π is a convex combination of deterministic ϕ-sHI s-schedulers.

Theorem 5.7. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, �ψ1 ∈ cpCTL.
There exists a deterministic ϕU -sHI s-scheduler η′ such that

164 M.E. Andrés and P. van Rossum

Ps,η′ [ϕ1Uϕ2|ψ1Uψ2] = P+
s [ϕ1Uϕ2|ψ1Uψ2]

and a deterministic ϕ�-sHI s-scheduler η′′ such that
Ps,η′′ [ϕ1Uϕ2|�ψ1] = P+

s [ϕ1Uϕ2|�ψ1],

where ϕU and ϕ� are the stopping conditions.

Example 5.8 Consider the MDP and cpCTL formula of Example 5.1. Accord-
ing to Theorem 5.7 there exists a deterministic and (B ∨ P)-sHI scheduler that
maximizes Ps0,η[♦B|♦P]. In this case, a maximizing scheduler will take always
the same decision (π3) before the system reaches s3 (a state satisfying the until
stopping condition (B ∨ P)) and always the same decision (π1) after the system
reaches s3.

6 Model Checking cpCTL

Model checking cpCTL means checking if a state s satisfies a certain state for-
mula ϕ. We focus on formulas of the form P≤a[ϕ|ψ] and show how to compute
P+

s [ϕ|ψ] given ϕ, ψ ∈ Path. The case P−s [ϕ|ψ] is similar.
Recall that model checking pCTL is based on the Bellman-equations. For

instance, P+
s [♦B] = maxπ∈τ(s)

∑
t∈succ(s) π(t)P+

t [♦B] whenever s �|= B. So a
scheduler η that maximizes Ps[♦B] chooses π ∈ τ(s) maximizing

∑
t∈succ(s)π(t)·

P+
t [♦B]. In a successor state t, η still behaves as a scheduler that maximizes

Pt[♦B]. As shown below, such a local Bellman-equation is not true for condi-
tional probabilities: a scheduler that maximizes a conditional probability such
as Ps[♦B|�P] does not necessarily maximize Pt[♦B|�P] for successors t of s.

Example 6.1 Again, consider the MDP and cpCTL formula P≤a[♦B|�P] of
Figure 1. There are only two deterministic schedulers. The first one, η1, chooses
π2 when the system reaches the state s2 and the second one, η2, chooses π3 when
the system reaches s2. For the first one Ps0,η1

[♦B|�P] = 1 − 2α
7 , and for the

second one Ps0,η2
[♦B|�P] = 30

31 . So P+
s0

[♦B|�P] = max(1− 2α
7 , 30

31). Therefore,
if α ≥ 7

62 the scheduler that maximizes Ps0
[♦B|�P] is η2 (Ps0,η2

[♦B|�P] =
P+

s0
[♦B|�P]) and otherwise it is η1 (Ps0,η1

[♦B|�P] = P+
s0

[♦B|�P]).

Furthermore, P+
s1

[♦B|�P] = 1 and P+
s2

[♦B|�P] = 1 − 2α; the scheduler that
obtains this last maximum is the one that chooses π2 in s2.

So, if α ≥ 7
62 the scheduler that maximizes the conditional probability from

s0 is taking a different decision than the one that maximize the conditional
probability from s2. Furthermore, for all α, max(1 − 2α

7 , 30
31) = P+

s0
[♦B|�P] �=

3
4P

+
s1

[♦B|�P] + 1
4P

+
s2

[♦B|�P] = 1 − 1
2α, showing that the Bellman-equation

from above does not generalize to cpCTL.

An obvious way to compute P+
s [ϕ|ψ] is by computing the pairs (Ps,η[ϕ ∧ ψ],

Ps,η[ψ]) for all sHI schedulers η, and taking the maximum quotient Ps,η[ϕ ∧ ψ]/
Ps,η[ψ]. We present two methods to avoid the computation of certain pairs of
acyclic MDPs. We can use these for a MDP with cycles by first transforming it
to an equivalent acyclic one using the strongly connected component structure.

Conditional Probabilities over Probabilistic and Nondeterministic Systems 165

6.1 Acyclic MDP

Note that every MDP has cycles associated to absorbing states. We call a MDP
acyclic if it the only if the only cycles are selfloops taken with probability one.

Definition 6.2. A MDP Π is called acyclic if for all states s ∈ S and all
π ∈ τ(s) we have π(s) = 0 or π(s) = 1 and for all paths ω and all i < j such
that ωi = ωj we have ωi = ωi+1 = · · · = ωj.

The idea behind the algorithm for acyclic MDPs is as follows. We label each
state s by a sequence (p1, q1), . . . , (pn, qn) of pairs of probabilities, where pi =
Ps,ηi

[ϕ ∧ ψ] and qi = Ps,ηi
[ψ] for a certain sHI s-scheduler ηi. The algorithm

starts by labeling each leaf s with a single pair (Ps,η[ϕ ∧ ψ],Ps,η[ψ]) for the
unique deterministic sHI s-scheduler η. The labeling is propagated towards the
root node s0. We obtain the maximum conditional probability P+

s0
[ϕ|ψ] as the

maximum quotient p/q for all (p, q) in the labeling of s0. Section 6.3 shows that
certain pairs can be discarded when propagating the labeling.

s0 (7−2α
8 , 7

8) ∨ (3
4 , 11

44)

s1

(1, 1)

s2 (1
2 − α, 1

2) ∨ (0, 1
10)

s3

(1, 1)

s4

(0, 1)

s5

(0, 0)

s6

(0, 1)

s7

(0, 0)

3
4

1
4

1
2 −α

α
1
2 1

10
9
10

Fig. 3. δ-values

Definition 6.3. Let L be the set of expressions of
the form (p1, q1)∨· · ·∨ (pn, qn) where pi, qi ∈ [0, ∞)
and qi ≥ pi, for all n ∈ N

�. On L we consider the
smallest congruence relation ≡1 satisfying (Idem-
potence) (p1, q1) ∨ (p1, q1) ≡1 (p1, q1), (Associa-
tivity) ((p1, q1) ∨ (p2, q2)) ∨ (p3, q3) ≡1 (p1, q1) ∨
((p2, q2) ∨ (p3, q3)), (Commutatitivity) (p1, q1) ∨
(p2, q2) ≡1 (p2, q2) ∨ (p1, q1). Note that (p1, q1) ∨
· · · ∨ (pn, qn) ≡1 (p′1, q

′
1) . . . (p′n′ , q′n′) if and only if

{(p1, q1), . . . , (pn, qn)} = {(p′1, q
′
1), . . . , (p

′
n′ , q′n′)}.

We let L1 be the set of equivalence classes and
denote the projection map L → L1 that maps each
expression to its equivalence class by f1. On L we also define maximum quotient
� : L → [0, ∞), and minimum quotient ⊥ : L → [0, ∞) by �(

∨n
i=1(pi, qi)) �

max({ pi

qi
|qi �= 0, i = 1, . . . , n} ∪ {0}) and ⊥(

∨n
i=1(pi, qi)) � min({ pi

qi
|qi �= 0, i =

1, . . . , n} ∪ {1}).
Note that � and ⊥ induce maps �1 : L1 → [0, ∞) and ⊥1 : L1 → [0, ∞) such

that �1 ◦ f1 = � and ⊥1 ◦ f1 = ⊥.

Definition 6.4. Let Π be a MDP. We define the function δ : S ×Stat× Path×
Path → L by δ(s, ϕ, ϕ, ψ) �

∨
η∈Schϕ

s (Π)

(
Ps,η[ϕ ∧ ψ],Ps,η[ψ]

)
and we define

δ1 : S × Stat× Path× Path → L1 by δ1 � f1 ◦ δ.

When no confusion arises, we omit the subscripts 1 and omit the projection map
f1, writing (p1, q1) ∨ · · · ∨ (pn, qn) for the equivalence class it generates.

Example 6.5. In Figure 3 we show the value δ(s, B ∨ ¬P,♦B,�P) associated
to each state s of the MDP previously presented in Figure 1.

The following result says that we can compute maximum conditional probability
from δUs or δ�

s .

166 M.E. Andrés and P. van Rossum

Theorem 6.6. Given Π = (S, s0, L, τ) an acyclic MDP, and ϕ1, ϕ2, ψ1, ψ2 ∈
Stat. Then

P+
s [ϕ1Uϕ2|ψ1Uψ2] = �(

�δU
s (ϕ1,ϕ2,ψ1,ψ2)

︷ ︸︸ ︷
δ(s, ϕU , ϕ1Uϕ2, ψ1Uψ2))

and

P+
s [ϕ1Uϕ2|�ψ1] = �(

�δ�
s (ϕ1,ϕ2,ψ1)

︷ ︸︸ ︷
δ(s, ϕ�, ϕ1Uϕ2,�ψ1)).

6.2 Extension to General MDP

Now, we extend our results to general, not necessarily acyclic, MDPs. We first
reduce all cycles in Π and create a new acyclic reduced MDP [Π] such that the
probabilities involved in the computation of P+[−|−] are preserved. We do so
by removing every strongly connected component (SCC) c of (the graph of) a
MDP Π , keeping only input states and transitions to output states. We show
that P+[−|−] on [Π] is equal to the corresponding value on Π . For this, we have
to make sure that states satisfying the stopping condition are ignored when we
are removing the SCCs.

Identifying SCCs. Our first step is to make stopping condition states absorbing.

Definition 6.7. Let Π = (S, s0, τ, L) be a MDP and ϕ ∈ Stat a state formula.
We define a new MDP 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where 〈τ〉ϕ(s) is equal to τ(s) if
s �|= ϕ and to 1s otherwise.

Typically ϕ will be either the until stopping condition (ϕU) or the globally
stopping condition (ϕ�).

To recognize cycles in the MDP we define a graph associated to it.

Definition 6.8. Let Π = (S, s0, τ, L) be MDP and ϕ ∈ Stat. We define the
digraph G = GΠ,ϕ = (S, →) associated to 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where →
satisfies u → v ⇔ ∃π ∈ 〈τ〉ϕ(u).π(v) > 0.

Now we let SCC = SCCΠ,ϕ ⊆ ℘(S) be the set of SCC of G. For each SCC c
we define the sets Inpc of all states in c that have an incoming transition of Π
from a state outside of c; we also define the set Outc of all states outside of c
that have an incoming transition from a state of c. Formally, for each c ∈ SCC
we define

C Input States

Output States

Inpc � {u ∈ c | ∃ s ∈ S − c.∃ π ∈ τ(s).π(u) > 0},

Outc � {s ∈ S − c | ∃u ∈ c.∃ π ∈ τ(u).π(s) > 0}.

We then associate a MDP Πc to each SCC c of G. The
space of states of Πc is c∪Outc and the transition relation
is induced by the transition relation of Π .

Conditional Probabilities over Probabilistic and Nondeterministic Systems 167

Definition 6.9. Let Π be a MDP and c ∈ SCC be a scc in Π. We pick an
arbitrary element sc of Inpc and define the MDP Πc = (Sc, sc, τc, L) where
Sc = c ∪ Outc and τc(s) is equal to {1s} if s ∈ Outc and to τ(s) otherwise.

Defining the new acyclic MDP. To obtain a reduced acyclic MDP from the
original one we first define the probability of reaching one state from another
according to a given HI scheduler in the following way.

Definition 6.10. Let Π = (S, s0, τ, L) be a MDP, and η be a HI scheduler on
Π. Then for each s, t ∈ S we define the function R such that RΠ(s

η� t) �
μs,η({ω ∈ Ωs | ∃ i.ωi = t}).

Now we are able to define an acyclic MDP [Π] related to Π such that P+
[Π] [−|−] =

P+
Π [−|−].

Definition 6.11. Let Π = (S, s0, τ, L) be a MDP. Then we define [Π] as
([S], s0, [τ], L) where

[S] =

Scom
︷ ︸︸ ︷

S −
⋃

c∈SCC

c ∪

Sinp

︷ ︸︸ ︷⋃

c∈SCC

Inpc

and for all s ∈ [S] the set [τ](s) of probabilistic distributions on [S] is given by

[τ](s) =
{

τ(s) if s ∈ Scom,

{λ ∈ [S].RΠcs
(s

η� t)) | η ∈ SchHI
s (Πcs)} if s ∈ Sinp.

Here cs is the SCC associated to s.

Theorem 6.12. Let Π = (S, s0, τ, L) be a MDP, and P≤a[ϕ|ψ] ∈ cpCTL. Then
[Π] is an acyclic MDP and P+

s0,Π [ϕ|ψ] = P+
s0,[Π] [ϕ|ψ], where P+

s,Π′ [−|−] repre-
sents P+

s [−|−] on the MDP Π ′.

Finally we can use the technique for acyclic MDPs on the reduced MDP in
order to obtain P+

s0
[−|−]. Note that to compute P+

s0
[−|−] it is not necessary to

compute reachability properties on SCC that are not reachable on G from its
initial state, so in model checking we avoid that.

6.3 Optimizations

We have already shown that δ is computable. Now we show two optimizations
in order to compute δ in a more efficient way.

Optimization 1: Reusing Information. We now show how to compute
δUs (ϕ1, ϕ2, ψ1, ψ2) and δ�

s (ϕ1, ϕ2, ψ1, ψ2) recursively in s. The base cases of the
recursion are the states where the stopping condition holds. Because there exists
an optimizing scheduler that is sHI, we only need to consider HI (and deter-
mininstic) schedulers in such a state. In the recursive case we can express δUs

168 M.E. Andrés and P. van Rossum

(resp. δ�
s) in terms of the δUt (resp. δ�

t) of the successor states t of s. There-
fore, if we encounter the same state t in more than one branch of the recursive
computation, we can reuse the previously computed value of δUt (resp. δ�

t).
To do this, we now define a scalar multiplication operator � and an addition

operator ⊕ on L.

Definition 6.13. We define � : [0, ∞) × L → L and ⊕ : L × L → L by c �∨n
i=1(pi, qi) �

∨n
i=1(c ·pi, c ·qi) and

∨n
i=1(pi, qi)⊕

∨m
j=1(p

′
j , q
′
j) �

∨n
i=1

∨m
j=1(pi +

p′j , qi + q′j).

Note that � and ⊕ induce maps �1 : [0, ∞) × L1 → L1 and ⊕1 : L1 × L1 → L1.
As before, we omit the subscript 1 if that will not cause confusion.

The following result gives recursive equations for the values of δUs and δ�
s . If

the MDP is acyclic, it can be used to compute these values.

Theorem 6.14. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2,�ψ1 ∈ Path.
Then δUs (ϕ1, ϕ2, ψ1, ψ2) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∨
η∈SchHI

s (Π)(Ps,η[ψ1Uψ2],Ps,η[ψ1Uψ2]) if s |= ϕ2,∨
η∈SchHI

s (Π)(Ps,η[ϕ1Uϕ2], 1) if s |= ¬ϕ2 ∧ ψ2,∨
η∈SchHI

s (Π)(0,Ps,η[ψ1Uψ2]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ψ2,

(0, 0) if s |= ϕ1 ∧ ¬ϕ2 ∧ ¬ψ1 ∧ ¬ψ2,
∨

π∈τ(s)

(⊕
t∈succ(s)π(t) � δUt (ϕ1, ϕ2, ψ1, ψ2)

)
if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1 ∧ ¬ψ2,

and δ�
s (ϕ1, ϕ2, ψ1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∨
η∈SchHI

s (Π)(Ps,η[�ψ1],Ps,η[�ψ1]) if s |= ϕ2,

(0, 0) if s |= ¬ϕ2 ∧ ¬ψ1,∨
η∈SchHI

s (Π)(0,Ps,η[�ψ1]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ψ1,
∨

π∈τ(s)

(⊕
t∈succ(s)π(t) � δ�

t (ϕ1, ϕ2, ψ1)
)
) if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1.

Optimization 2: Using pCTL algorithms after the stopping condition.
Up to now we have computed (Ps0,η[ϕ ∧ ψ],Ps0,η[ψ]) for all sHI schedulers. The
reason for this is that the (local) Bellman-equations do not hold for cpCTL.
Therefore, it is not enough to know the values P+

t [ϕ|ψ] for all successors t of s.
However, in some cases, we can locally decide that one sHI scheduler is guar-
anteed to be better than another one. We now give some intuition for this; a
formal claim is in Lemma 6.16 below.

For instance, let s be a state that is reachable from s0. Assume that η′ and
η′′ are sHI s-schedulers such that Ps,η′ [ϕ ∧ ψ] = Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] ≤
Ps,η′′ [ψ]. Furthermore, assume that η1 and η2 are sHI s0-schedulers that are
equal except that η1 behaves like η′ “below” s and η2 behaves like η′′ “below” s.
One can easily see that Ps0,η1

[ϕ|ψ] ≥ Ps0,η2
[ϕ|ψ]. Therefore, when computing

P+
s0

[ϕ|ψ] we do not have to consider all sHI s-schedulers, but, in this case, we
can omit η′′ from consideration.

Similarly, if Ps,η′ [ϕ ∧ ψ] ≤ Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] = Ps,η′′ [ψ], then we do
not have to consider the scheduler η′.

Conditional Probabilities over Probabilistic and Nondeterministic Systems 169

Finally, it follows from Lemma 5.4 that we don’t have to consider the scheduler
η′′ if Ps,η′ [ϕ ∧ ψ] + a = Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] + a = Ps,η′′ [ψ]. This is used
to show that when we reach a state s satisfying the stopping condition, we only
have to compute P+

s [ψ] and we do not have to consider conditional probabilities
anymore.

As a consequence of these facts we do not have to compute (Ps0,η[ϕ ∧ ψ],
Ps0,η[ψ]) for all sHI schedulers. In particular, if we reach a state satisfying the
stopping condition we can always choose a scheduler that maximizes or minimizes
one pCTL formula.

Definition 6.15. Consider the set of expressions L defined in Definition 6.3.
On L we now consider the smallest congruence relation ≡2 containing ≡1 and
satisfying (1) (p1, q1) ∨ (p1, q2) ≡2 (p1, min(q1, q2)), (2) (p1, q1) ∨ (p2, q1) ≡2
(max(p1, p2), q1), (3) (p1+a, q1+a)∨(p1, q1) ≡2 (p1+a, q1+a), where a ∈ [0, ∞).
We write L2 for the set of equivalence classes and denote the projection map
L2 → L by f2.

Since ≡1⊆≡2, this projection maps factors through f1, say g : L1 → L2 is the
unique map such that g ◦ f1 = f2. The following seemingly innocent lemma is
readily proven, but it contains the heart of this optimization. The fact that �
and ⊥ induce operations on L2 means that it is correct to “simplify” expressions
using ≡2 when we are interested in the maximum or minimum quotient. After
that, we show that this implies that we do not have to consider all sHI schedulers
when computing maximum or minimum conditional probabilities, but can on-
the-fly omit some from consideration.

Lemma 6.16. The operators �, ⊕, �, and ⊥ on L induce operators �2, ⊕2, �2,
and ⊥2 on L2.

Definition 6.17. We define δ2 : S × Stat× Path× Path → L2 by δ2 � f2 ◦ δ.

As usual, we omit subscripts 2 when confusion is unlikely. Note that with this
convention Theorem 6.6 still holds. Finally, the following theorem allow us to
recursively compute δUs and δ�

s considering these last optimizations.

Theorem 6.18. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2,�ψ1 ∈ Path.
Then δUs (ϕ1, ϕ2, ψ1, ψ2) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(P+
s [ψ1Uψ2],P+

s [ψ1Uψ2]) if s |= ϕ2,
(P+

s [ϕ1Uϕ2], 1) if s |= ¬ϕ2 ∧ ψ2,
(0,P−s [ψ1Uψ2]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ψ2,
(0, 0) if s |= ϕ1 ∧ ¬ϕ2 ∧ ¬ψ1 ∧ ¬ψ2,
∨

π∈τ(s)

(⊕
t∈succ(s)π(t) � δUt (ϕ1, ϕ2, ψ1, ψ2)

)
if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1 ∧ ¬ψ2,

and δ�
s (ϕ1, ϕ2, ψ1) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P+
s [�ψ1],P+

s [�ψ1]) if s |= ϕ2,
(0, 0) if s |= ¬ϕ2 ∧ ¬ψ1,
(0,P−s [�ψ1]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ψ1,
∨

π∈τ(s)

(⊕
t∈succ(s)π(t) � δ�

t (ϕ1, ϕ2, ψ1))
)

if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1.

170 M.E. Andrés and P. van Rossum

7 Counterexamples

Counterexamples in model checking provide important diagnostic information
used, among others, for debugging, abstraction-refinement [CGJ+00], and sched-
uler synthesis [LBB+01]. For systems without probability, a counterexample
typically consists of a path violating the property under consideration. Coun-
terexamples in MCs are sets of paths. E.g, a counterexample for the formula
P≤a[ϕ] is a set Δ of paths, none satisfying ϕ, and such that the probability
mass of Δ is greater than a [HK07,And06,AL06].

In MDPs, we first have to find the scheduler achieving the optimal probability.
Both for pCTL and cpCTL, this scheduler can be derived from the algorithms
computing the optimal probabilities [And06]. Once the optimal scheduler is fixed,
the MDP can be turned into a Markov Chain and the approaches mentioned
before can be used to construct counterexamples for pCTL. For cpCTL however,
the situation is slightly more complex. It follows directly from the semantics that:

s �|= P≤a[ϕ|ψ] iff ∃η ∈ Schs(Π).
μs,η({ω ∈ Ωs|ω |= ϕ ∧ ψ})

μs,η({ω ∈ Ωs|ω |= ψ})
> a.

Lemma 7.1. Let a ∈ [0, 1] and consider the formula P≤a[ϕ|ψ]. Let Δϕ � {ω ∈
Ω | ω |= ϕ}, Δ1 ⊆ Δϕ∧ψ, and Δ2 ⊆ Δ¬ψ. Then a < μη(Δ1)/(1 − μη(Δ2))
implies a < Pη[ϕ|ψ].

Proof. The proof follows from μη(Δ1) ≤ μη(Δϕ∧ψ) and μη(Δ2) ≤ μη(Δ¬ψ).
Then a <

μη(Δ1)
1−μη(Δ2) ≤ μη(Δϕ∧ψ)

1−μη(Δ¬ψ) = μη(Δϕ∧ψ)
μη(Δψ) = Pη[ϕ|ψ]. ��

This leads to the following notion of counterexample.

Definition 7.2. A counterexample for P≤a[ϕ|ψ] is a pair (Δ1, Δ2) of measurable
sets of paths satisfying Δ1 ⊆ Δϕ∧ψ, Δ2 ⊆ Δ¬ψ, and a < μη(Δ1)/(1 − μη(Δ2)),
for some scheduler η.

Note that such sets Δ1 and Δ2 can be computed using the techniques on Markov
Chains mentioned above.

Example 7.3. Consider the evaluation of s0 |= P≤3/4[♦B|�P] on the MDP
obtained by taking α = 1

10 in Example 2.2 (see Figure 4(a)). In this case the
maximizing scheduler, say η, chooses π2 in s2. In Figure 4(b) we show the Markov
Chain derived from MDP using η. In this setting we have Ps0,η[♦B|�P] = 68

70
and consequently s0 does not satisfy this formula.

We show this fact with the notion of counterexample of Definition 7.2. Note
that Δ♦B∧�P = 〈s0s1〉 ∪ 〈s0s2s3〉 and Δ¬�P = 〈s0s2s5〉. Using Lemma 7.1
with Δ1 = 〈s0s1〉 and Δ2 = 〈s0s2s5〉 we have 3

4 <
μη(Δ1)

1−μη(Δ2) = 3/4
1−1/8 = 6

7 .
Consequently 3

4 < Ps0,η[♦B|�P], which proves that s0 �|= P≤3/4[♦B|�P].

Conditional Probabilities over Probabilistic and Nondeterministic Systems 171

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6

{P}

s7

{}

π1

π2 π3

3
4

1
4

1
5 3

10

1
2 1

10
9
10

4(a) MDP

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6 s7

π1

π2

3
4

1
4

1
5 3

10

1
2

4(b) Markov Chain

8 Conclusion and Future Work

In this paper we extended the probabilistic temporal logic pCTL to cpCTL, in
which it is possible to express conditional probabilities. We showed that optimal
scheduling decisions can always be reached by a deterministic and semi history-
independent scheduler. Using this we presented an algorithm to check if a MDP
satisfies a cpCTL-formula. Our algorithm first reduces the MDP to an acyclic
MDP and then computes optimal conditional probabilities in over this reduction.
Counterexamples for conditional formulas consist of two sets of paths in the MDP
or MC. We have sketched an algorithm for counterexample generation.

A natural direction for future research is to extend pCTL∗ to cpCTL∗ and
find algorithms for model checking cpCTL∗. Furthermore, we plan to investigate
ways to find better counterexamples in cpCTL model checking. Finally, we intend
to implement our algorithms in a probabilistic model checker and apply cpCTL
model checking to verify the correctness of anonymity protocols.

Acknowledgement. The authors thank Mariëlle Stoelinga for helpful com-
ments on an earlier version of this paper.

References

[AL06] Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed
reachability. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS,
vol. 4202, pp. 33–51. Springer, Heidelberg (2006)

[And06] Andrés, M.E.: Derivation of counterexamples for quantitative model check-
ing. Master’s thesis, National University of Córdoba (2006)

[BA95] Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondetermin-
istic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026,
pp. 499–513. Springer, Heidelberg (1995)

[Bel57] Bellman, R.E.: A Markovian decision process. J. Math. Mech. 6, 679–684
(1957)

[BP05] Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer,
Heidelberg (2005)

172 M.E. Andrés and P. van Rossum

[CGJ+00] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

[Cha88] Chaum, D.: The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)

[CL05] Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer,
Heidelberg (2005)

[DY83] Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans-
actions on Information Theory 29(2), 198–208 (1983)

[FOO92] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for
large scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992.
LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)

[FV97] Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer,
Heidelberg (1997)

[HJ89] Hansson, H., Jonsson, B.: A framework for reasoning about time and re-
liability. In: Proceedings of Real Time Systems Symposium, pp. 102–111.
IEEE, Los Alamitos (1989)

[HK07] Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
60–75. Springer, Heidelberg (2007)

[LBB+01] Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T.S., Pet-
terson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reach-
ability for priced timed automata. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

[PZ93] Pnueli, A., Zuck, L.D.: Probabilistic verification. Information and Compu-
tation 103(1), 1–29 (1993)

[SV04] Sokolova, A., de Vink, E.P.: Probabilistic automata: System types, parallel
composition and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H.,
Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS,
vol. 2925, pp. 1–43. Springer, Heidelberg (2004)

[SL95] Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing 2(2), 250–273 (1995)

[Var85] Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state
systems. In: Proc. 26th IEEE Symp. Found. Comp. Sci, pp. 327–338 (1985)

On Automated Verification of Probabilistic

Programs

Axel Legay1, Andrzej S. Murawski2, Joël Ouaknine2, and James Worrell2

1 Institut Montefiore, Université de Liège, Belgium
2 Oxford University Computing Laboratory, UK

Abstract. We introduce a simple procedural probabilistic programming
language which is suitable for coding a wide variety of randomised algo-
rithms and protocols. This language is interpreted over finite datatypes
and has a decidable equivalence problem. We have implemented an auto-
mated equivalence checker, which we call apex, for this language, based
on game semantics. We illustrate our approach with three non-trivial case
studies: (i) Herman’s self-stabilisation algorithm; (ii) an analysis of the
average shape of binary search trees obtained by certain sequences of ran-
dom insertions and deletions; and (iii) the problem of anonymity in the
Dining Cryptographers protocol. In particular, we record an exponential
speed-up in the latter over state-of-the-art competing approaches.

1 Introduction

Ever since Michael Rabin’s seminal paper on probabilistic algorithms [23], it has
been widely recognised that introducing randomisation in the design of algo-
rithms can yield substantial benefits. Unfortunately, randomised algorithms and
protocols are notoriously difficult to get right, let alone to analyse and prove
correct. In this paper, we propose a simple prototype programming language
which we believe is suitable for coding a wide variety of algorithms, systems,
and protocols that make use of probability.

Our language incorporates several high-level programming constructs, such
as procedures (with local scoping) and arrays, but is predicated on finite data-
types and enjoys some key decidability properties. From our perspective the most
important of these is probabilistic contextual equivalence, which can be used to
express a broad range of interesting specifications on various systems.

We have developed an automated equivalence checker, apex, for our proba-
bilistic programming language. Our approach is based on game semantics, and
enables us to verify open programs (i.e., programs with undefined components),
which is often essential for the modular analysis of complex systems. Game se-
mantics itself has a strong compositional flavour, which we have exploited by
incorporating a number of state-space reduction procedures that are invoked
throughout a verification task.

We illustrate our framework with three non-trivial case studies. The first
is Herman’s algorithm, a randomised self-stabilising protocol. The second is a
problem about the average shape of binary search trees obtained by certain

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 173–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 A. Legay et al.

sequences of random insertions and deletions. Finally, our third case study is an
analysis of anonymity in the Dining Cryptographers protocol. In the latter, we
record an exponential speed-up over state-of-the-art competing approaches.

Main Contributions.1 Our main contributions are twofold: First, we define a
simple imperative, non-recursive call-by-name procedural probabilistic language,
interpreted over finite datatypes, and show that it has a decidable contextual
equivalence problem. Our language is related to second-order Probabilistic Ide-
alized Algol, as studied in [19], and our decidability proof relies in important
ways on results from [6, 19]. Among the new ingredients are direct automata
constructions (rather than reliance on abstract theoretical results, as was done
in [19]), in particular with respect to epsilon-elimination.

Our second—and arguably most significant—contribution lies in the novel
application of our framework in the treatment of the case studies. In particular,
we use contextual equivalence for open programs in a key way in two of the
three instances. As discussed in greater details below and in Section 6, our use
of contextual equivalence in the Dining Cryptographers protocol results in a
dramatic improvement in both verification time and memory consumption over
current alternative approaches.

Related Work. Proposals for imperative probabilistic programming languages,
along with associated semantics, go back several decades (see, e.g., [16]). As noted
in [8], most of the semantic models in the literature are variants of Markov chains,
where the states of the Markov chain are determined by the program counter
and the values of the variables.

While such treatments are perfectly adequate for model checking closed (mono-
lithic) programs, they are usually ill-suited to handle open programs, in which
certain variables or even procedures are left undefined. Moreover, such semantic
approaches are also generally of no help in establishing (probabilistic) contextual
equivalence: the indistinguishability of two open programs by any (program) con-
text. Contextual equivalence, in turn, is arguably one of the most natural and
efficient ways to specify various properties such as anonymity—see Section 6 for
further details and background on this point.

As we explain in Section 3, our approach, in contrast, is based on game se-
mantics, and differs radically from the various ‘probabilistic state-transformer’
semantics discussed above. The main benefit we derive is an algorithm for de-
ciding contextual equivalence.

We note that many probabilistic model checkers, such as PRISM [11] and
LiQuor [4], have been reported upon in the literature—see [18] for a partial
survey. Most of these tools use probabilistic and continuous-time variants of
Computation Tree Logic, although Linear Temporal Logic is also occasionally
supported.

1 A full version of this paper, which will include all the formal definitions, construc-
tions, and proofs that have been omitted here, is currently in preparation [18].

On Automated Verification of Probabilistic Programs 175

2 A Probabilistic Programming Language

Code fragments accepted by apex are written in a probabilistic procedural lan-
guage with call-by-name evaluation, whose full syntax is given below.

const ::= [0-9]+
id ::= [a-z]+
gr_type ::= ’void’ | ’int%’ const | ’var%’ const
gr_list ::= gr_type {’,’ gr_list }
type ::= { gr_type ’->’ | ’(’ gr_list ’) ->’ } gr_type
rand_dist ::= const ’:’ const ’/’ const {’,’ rand_dist }
gr_params ::= gr_type id {’,’ gr_params }
params ::= gr_type id { ’(’ gr_list ’)’ } {’,’ params }
program_list ::= program {’,’ program_list }
binop ::= ’+’ | ’-’ | ’*’ | ’/’ | ’and’ | ’or’ | ’<=’ | ’<’ | ’=’
unop ::= ’not’
typable_val ::= const | ’coin’ | ’rand[’ rand_dist ’]’

program ::=
’skip’ | typable_val | ’(int%’const typable_val ’)’ |
id | id ’(’ { program_list } ’)’ | id ’[’ program ’]’ |
’int%’const id | ’int%’const id ’[’ const ’]’ |
’if’ program ’then’ program { ’else’ program } |
’case’ ’(’ program ’)’ ’[’ program_list ’]’ |
program ’;’ program | ’while’ program ’do’ program |
program ’:=’ program | program binop program | unop program |
gr_type id ’(’ {gr_params} ’) {’ program ’}’ program |
’(’ program ’)’ | ’{’ program ’}’

input ::= type ’main(’ { params } ’) {’ program ’}’

This language has two simple mechanisms for specifying random values. First,
the ‘probabilistic’ constant coin represents the fair coin: it returns value 0 or 1,
each with probability 1

2 . More generally, one can specify arbitrary finite distri-
butions using rand, e.g., rand[1:1/3, 2:1/3, 3:1/3] stands for the fair three-
sided die. Other syntactic elements are intended to resemble C in order to make
it easier to analyse pieces of code; for example, blocks are delimited by braces
({. . . }). The language is predicated on finite integer datatypes, which support
modulo arithmetic (+,-,*,/). Local variables can be declared using statements
of the form int%n i, where n indicates the modulus and i is a variable name.
Similarly, arrays are defined using declarations such as int%n a[m], where m
represents the size of the array. int%2 can double as the Boolean type with the
associated logical operations (and, or, not). Procedures can be introduced with
syntax such as

void procname(int%4 i, var%7 j) {. . .}

176 A. Legay et al.

where i is a {0, 1, 2, 3}-valued parameter (modulo 4) and j is a reference pa-
rameter (analogous to ‘int &j’ in C++) modulo 7. Functions are defined in the
same way except that int%n should be used instead of void for some n ∈ N

+.
Procedures/functions can be declared locally within other procedures/functions,
but recursive calls are not allowed. Iteration is provided in the form of while
loops.

Our framework also supports open code with undefined variables, procedures
or functions (also known as undefined parameters). Their names together with
types (e.g., var%6 x, or void f(int%3,var%7)) have to be declared as part of
the input statement whose general shape is as follows:

type main(undefined parameters) {open code}.

3 Contextual Equivalence

As a result of randomisation, closed programs of type void terminate with some
probability, whereas closed programs of type int%m generate a sub-distribution
on {0, . . . , m−1}. In addition to closed programs, we also consider open program
fragments in which some parts are not specified and are represented by undefined
parameters, as discussed earlier. Open programs cannot be executed on their
own and become executable only when put in a program context that makes
them closed, i.e., provides instantiations for the undefined parts. Note that open
programs can alternatively be viewed as higher-order procedures.

We say that two (open or closed) programs P1 and P2 are equivalent iff they
behave the same way inside all program contexts, i.e., for any context C such that
C[P1], C[P2] are closed programs of type void, C[P1] and C[P2] terminate with
the same probability2. Thus equivalent programs exhibit the same observable
behaviour. The observable behaviour of closed programs is determined simply
by the sub-distribution generated by termination. That of open programs can be
said to correspond to the ways the program can use its undefined components.
This intuition is made precise by game semantics [1, 12, 6, 19], which we briefly
examine below.

Intuitively, probabilistic contextual equivalence is a linear-time (as opposed to
branching-time) and statistical (as opposed to possibilistic) notion of program
equivalence. We remark that it is an especially powerful instrument in the case
of open programs, which we make full use of in the case studies presented in
Sections 5 and 6.

The main theoretical result underpinning the work we present here is the
following.

Theorem 1. Probabilistic contextual equivalence is decidable for the program-
ming language given in Section 2.

The proof of Theorem 1 is based on game semantics and relies heavily on the
results of [6, 19]. Full details will appear in [18].
2 The probability of termination is formally computed using an operational semantics;

we refer the reader to [18] for the precise details.

On Automated Verification of Probabilistic Programs 177

Game semantics is a modelling theory for a wide range of programming
paradigms. It associates to any given (probabilistic) open program a (proba-
bilistic) strategy, which in turn gives rise to a set of (probabilistic) complete
plays. Full abstraction is then the assertion that two open programs are con-
textually equivalent iff they exhibit precisely the same set of complete plays.
Theorem 1 is established via a full abstraction result, in which moreover the rel-
evant sets of complete plays can be represented using probabilistic automata [22].
Probabilistic program equivalence therefore reduces to language equivalence for
probabilistic automata, which can be decided in polynomial time [25].

We note that the probabilistic automata arising from game semantics are
radically different from the Markov chains that arise in the various probabilistic
state-transformer semantics discussed in Section 1. Whereas the latter essentially
correspond to an operational unwinding of a program, the game-semantical prob-
abilistic automata capture the ways in which a program can interact with its
environment, i.e., the broader context in which the program lies. For a more
detailed account of game semantics as used in this paper, we refer the reader
to [18].

Our tool apex generates the probabilistic automata representing open pro-
grams in a compositional manner, by executing bespoke automata operations
for each of the syntactic constructs of our language. The state spaces of the
resultant intermediate automata are reduced using a variety of algorithmic tech-
niques, including reachability analysis, decomposition into strongly connected
components, and quotienting by probabilistic bisimulation [17].

We remark that closed programs always give rise to single-state automata,
whereas open programs yield non-trivial automata. Of course, in both cases the
intermediate automata produced can be arbitrarily large3 and complex, hence
the need for efficient implementations of the constructions and the use of state-
space reduction techniques.

As an example, consider the following open program P1:

void main(var%2 x) { x:=rand[0:1/3, 1:2/3]; x:=coin }

P1 has a single free identifier, x, which is a variable ranging over {0, 1}. In the
program code, x is first assigned 0 or 1 with respective probabilities of 1

3 and 2
3 ,

and is then again assigned 0 or 1, but with equal probability.
The open program P2, below, is similar to P1 except that the two assignments

to x are both made by a fair coin:

void main(var%2 x) { x:=coin; x:=coin }

P1 and P2, it turns out, are not equivalent; indeed, it is possible to manu-
facture a context which (probabilistically) distinguishes them by observing the
sequence of assignments to x.4 By full abstraction, the complete plays of P1

3 More precisely, the automata can have size exponential in the size of the code
fragment.

4 An instance of such a context could, for example, instantiate the free occurrences
of x with the sequential composition of a command followed by a variable; in effect,
assignments to x then induce side-effects, which can be detected by the context.

178 A. Legay et al.

and P2, captured respectively by the two probabilistic automata depicted be-
low, must therefore differ:

write(0)_x, 1/3

write(1)_x, 2/3
(0,1)

write(0)_x, 1/2

write(1)_x, 1/2

write(0)_x, 1/2

write(1)_x, 1/2
(0,1)

write(0)_x, 1/2

write(1)_x, 1/2

Each automaton consists of three states. Initial states are shaded, and ac-
cepting states are doubly circled. Transitions are labelled by the corresponding
assignments to x together with the associated probabilities.

The probabilistic languages of the two automata are plainly different; for
instance, the word 〈write(0) x, write(0) x〉 is accepted by the first automaton
with probability 1

6 and by the second automaton with probability 1
4 .

P1 and P2 both contain a free identifier x, and are therefore not closed pro-
grams. It is of course possible to declare x as a local variable instead, as in the
following:
void main() { int%2 x; x:=coin[0:1/3, 1:2/3]; x:=coin }

The above program is closed, and terminates with probability 1; it is therefore
equivalent to void main() { skip }, and its set of complete plays is captured
by the following probabilistic automaton:

(0,1)

The second component of the label on the accepting state, the number ‘1’,
represents the probability of termination. This automaton therefore accepts the
empty word with probability 1 (and all other words with probability 0).

It should be clear that, if P1 and P2 are modified by making x a local variable
rather than a free identifier, then no context can possibly distinguish them and
they therefore become equivalent (in accordance with one’s intuition). Hence
the way in which variables are declared, whether as free identifiers or locally,
intuitively corresponds to whether they are visible or not to the outside world.
We will make use of this idea when we consider the notion of anonymity in
Section 6.

The current version of apex relies on manipulating text files with a library
of automata routines. apex takes as input a text file containing a description of
an open probabilistic program which comprises the program type, the list of its
free identifiers, and the program code. The output is a probabilistic automaton.
After the automata have been generated they can be inspected immediately, or
fed to other automata-theoretic procedures such as Tzeng’s equivalence-checking
algorithm [25].

4 Herman’s Self-stabilisation Algorithm

Self-stabilisation is an important area of research in distributed systems that
originated with Dijkstra’s seminal 1974 paper [7]. Roughly speaking, a self-
stabilising system is one that always eventually recovers in finite time from
transient faults and operates correctly.

On Automated Verification of Probabilistic Programs 179

Herman’s algorithm is a classical example of a randomised self-stabilisation
protocol [9]. Imagine a network of processes, arranged in a ring, with each process
possibly holding a token. ‘Legitimate’ configurations are those in which a token
is held by exactly one process. The aim of a self-stabilisation protocol is to guide
the network towards legitimate configurations.

Let us assume that each process possesses a distinguished two-valued variable,
and let us adopt the convention that a process is deemed to hold a token if its
distinguished variable has the same value as that of its immediate right-hand
neighbour. (Note that in order for this representation scheme to make sense,
there must be an odd number of processes in the network.)

The algorithm works as follows. At every time step, each process determines
whether or not it holds a token. If it does, it flips its distinguished variable with
probability 1

2 , and otherwise sets its distinguished variable equal to that of its
right-hand neighbour. We assume that processes execute synchronously.

What we would like to show is that such a protocol is correct, i.e., that it
always eventually leads the system to a legitimate, single-token configuration.

To this end, we implemented Herman’s algorithm in our probabilistic pro-
gramming language for various numbers of processes in the network. The code
for a 15-process network is given below.

void main() {
int%2 x[15]; int%2 z; int%3 token; int%15 i;
token:=2;
while(not (token=1)) do {
token:=0;
i:=0;
z:=x[0];
while (i+1) do {
if (x[i]=x[i+1]) then

x[i]:=coin else x[i]:=x[i+1];
if (i>0) and (x[i-1]=x[i]) then

token:=case(token)[1,2,2];
i:=i+1

};
if (x[i]=z) then x[i]:=coin else x[i]:=z;
if (x[i-1]=x[i]) then token:=case(token)[1,2,2];
if (x[i]=x[0]) then token:=case(token)[1,2,2]

}
}

Most of the syntax is self-explanatory, perhaps with the exception of the state-
ment token:=case(token)[1,2,2];. This is similar to the switch construct in
C, and is equivalent to

if token=0 then token:=1 else
if token=1 then token:=2 else
if token=2 then token:=2;

180 A. Legay et al.

In the program, the distinguished variables of processes are held in a 15-
element array x of two-valued variables. The inner while loop simulates the
synchronous execution of the network over a single time step. In this loop, the
variable token is used to count the total number of tokens present in the net-
work, with the value 2 representing ‘two or more’. Recall the use of modulo
arithmetic so that variables that overflow simply cycle through 0. The outer
while loop ensures that the code is executed until the network contains just a
single token.

Note that our implementation is a closed program of type void. It should be
clear that the correctness of Herman’s algorithm (a single-token configuration
is always eventually reached) corresponds to the assertion that our program
terminates with probability 1. And indeed, when running apex, the output is the
one-state automaton corresponding to void main() { skip } already depicted
in Section 3.

We remark that it is trivial to modify the code to model networks with differ-
ent numbers of processes: it suffices to replace the two occurrences of the number
‘15’ in the first line by whatever other value is desired.

Although all instances of our program ultimately give rise to the same single-
state automaton, the computation times of apex increase with the sizes of the
networks modelled. This is not surprising since an n-process network has 2n

distinct configurations (ignoring symmetries). The intermediate automata gen-
erated by apex reflect this growth, although this is mitigated to some extent by
the use of state-space reduction techniques throughout the computation.

5 Hibbard’s Algorithm and Random Trees

apex makes it possible to compare various finite-state distribution generators.
For instance, one can easily verify that the standard iterative algorithm for
simulating a six-sided die using a fair coin is correct.

In this section we analyse a more complicated example, having to do with the
average shape of binary search trees generated by sequences of random insertions
and deletions. This is a classical problem in the theory of algorithms, in which a
central concern is to ensure that the random trees generated within a particular
scheme have low average height.

Binary search trees have been used and studied by computer scientists since
the 1950s. In 1962, Hibbard proposed a simple algorithm to dynamically delete
an element from a binary tree [10]. Moreover, he also proved that a random dele-
tion from a random tree, using his algorithm, leaves a random tree. Although the
statement might seem self-evident, we will see shortly that this is not quite the
case. More precisely, Hibbard’s theorem can be stated as follows: “If n+1 items
are inserted into an initially empty binary tree, in random order, and if one of
those items (selected at random) is deleted, the probability that the resulting
binary tree has a given shape is the same as the probability that this tree shape

On Automated Verification of Probabilistic Programs 181

would be obtained by inserting n items into an initially empty tree, in random
order.”

Hibbard’s paper was remarkable in that it contained one of the first formal
theorems about algorithms. Furthermore, the proof was not simple. Interestingly,
for more than a decade it was subsequently believed that Hibbard’s theorem in
fact proved that trees obtained through arbitrary sequences of random insertions
and deletions are automatically random, i.e., have shapes whose distribution is
the same as if the trees had been generated directly using random insertions
only; see [10, 15].

Quite surprisingly, it turns out that this intuition was wrong. In 1975, Knott
showed that, although Hibbard’s theorem establishes that n + 1 random inser-
tions followed by a deletion yield the same distribution on tree shapes as n
insertions, we cannot conclude that a subsequent random insertion yields a tree
whose shape has the same distribution as that obtained through n + 1 random
insertions [14].

As Jonassen and Knuth point out, this result came as a shock. In [13], they
gave a careful counterexample (based on Knott’s work) using trees having size
no greater than three. More precisely, they showed that three insertions, fol-
lowed by a deletion and a subsequent insertion (all random) give rise to dif-
ferent tree shapes from those obtained by three random insertions. Despite
the small sizes of the trees involved and the small number of random opera-
tions performed, their presentation showed that the analysis at this stage is
already quite intricate. This suggests a possible reason as to why an erroneous
belief was held for so long: carrying out even small-scale experiments on dis-
crete distributions is inherently difficult and error-prone. For example, it would
be virtually impossible to carry out by hand Jonassen and Knuth’s analysis
for trees of size no greater than five (i.e., five insertions differ from five inser-
tions followed by a deletion and then another insertion), and even if one used
a computer it would be quite tricky to correctly set up a bespoke exhaustive
search.

Our goal here is to show that such analyses can be carried out almost ef-
fortlessly with apex. It suffices to write programs that implement the relevant
operations and subsequently print the shape of the resultant tree, and then ask
whether the programs are equivalent or not.

As an example, we describe how to use apex to reproduce Jonassen and
Knuth’s counterexample, i.e., three insertions differ from three insertions fol-
lowed by a deletion and an insertion. Since apex does not at present support
pointers, we represent binary trees of size n using arrays of size 2n −1, following
a standard encoding (see, e.g., [5]): the left and right children of an i-indexed
array entry are stored in the array at indices 2i + 1 and 2i + 2 respectively.

It is then possible to write a short program that inserts three elements at
random into a tree, then sequentially prints out the tree shape in breadth-first
manner into a free identifier ch. The actual code is omitted here for lack of space,
and can be found in [18]. From this open program, apex generates the following
probabilistic automaton:

182 A. Legay et al.

write(1)_ch, 1/3

write(1)_ch, 1/6

write(1)_ch, 1/6

write(1)_ch, 1/6

write(1)_ch, 1/6

write(1)_ch, 1

write(1)_ch, 1

write(1)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

(0,1)

write(0)_ch, 1

write(1)_ch, 1

write(0)_ch, 1 write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(1)_ch, 1write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(0)_ch, 1
write(1)_ch, 1

write(1)_ch, 1

The upper path in this automaton, for example, represents the balanced three-
element tree shape . The probability that this shape occurs can be determined
by multiplying together the weights of the corresponding transitions, yielding a
value of 1

3 .
It is likewise straightforward to produce a program implementing three inser-

tions followed by a deletion and an insertion, all of them random—the code can
be found in [18]. The corresponding probabilistic automaton is the following:

write(1)_ch, 25/72

write(1)_ch, 11/72

write(1)_ch, 13/72

write(1)_ch, 11/72

write(1)_ch, 1/6

write(1)_ch, 1

write(1)_ch, 1

write(1)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

write(0)_ch, 1

(0,1)

write(0)_ch, 1

write(1)_ch, 1

write(0)_ch, 1 write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(1)_ch, 1write(1)_ch, 1

write(0)_ch, 1 write(0)_ch, 1 write(0)_ch, 1
write(1)_ch, 1

write(1)_ch, 1

The reader will note that the balanced three-element tree shape occurs with
slightly greater probability: 25

72 . Thus the two programs are indeed not equivalent.
Note that none of this, of course, contradicts Hibbard’s theorem, to the effect

that the distribution on tree shapes upon performing two random insertions is
the same as that obtained from three random insertions followed by a random
deletion. The reason is that, although the distribution on tree shapes is the same,
that on trees is not. This is then witnessed by performing an additional random
insertion, which in the second case very slightly biases the resulting tree shape
towards balance, as compared to the first case.

6 The Dining Cryptographers

Anonymity is a key concept in computer security. It arises in a wide range of
contexts, such as voting, blogging, making donations, passing on sensitive in-
formation, etc. A celebrated toy example illustrating anonymity is that of the
‘Dining Cryptographers protocol’ [3]. Imagine that a certain number of cryptog-
raphers are sharing a meal at a restaurant around a circular table. As the end of
the meal, the waiter announces that the bill has already been paid. The cryptog-
raphers conclude that it is either one of them who has paid, or the organisation
that employs them. They resolve to determine which of the two alternatives is
the case, with the proviso that for the former the identity of the payer should
remain secret.

A possible solution goes as follows. A coin is placed between each pair of adja-
cent cryptographers. The cryptographers flip the coins and record the outcomes
for the two coins that they can see, i.e., the ones that are to their immediate left

On Automated Verification of Probabilistic Programs 183

and right. Each cryptographer then announces whether the two outcomes agree
or disagree, except that the payer (if there is one) says the opposite. When all
cryptographers have spoken, they count the number of disagrees. If that number
is odd, then one of them has paid, and otherwise, their organisation has paid.
Moreover, if the payer is one of the cryptographers, then no other cryptographer
is able to deduce who it is.

There are many formalisations of the concept of anonymity in the literature.
The earliest approaches ignored probabilities and relied instead on nondeter-
minism; anonymity was then equated with ‘confusion’, or more precisely with
notions of equivalence between certain processes [24]. For example, in the case
of the dining cryptographers, every possible behaviour visible to one of the cryp-
tographers (i.e., outcomes of the two adjacent coin flips and subsequent round
of announcements) should be consistent with any of the other cryptographers
having paid, provided the number of disagrees is odd.

A more sophisticated treatment takes probabilities into account. In our exam-
ple, assuming the coins are fair, it can be shown that the a posteriori probability
of having paid, given a particular protocol run, is the same for all cryptogra-
phers. Note that this does not hold if the coins are biased, which highlights one
of the advantages of using probability over nondeterminism. A survey of the
literature, as well as an in-depth treatment using process algebra, can be found
in [2].

We show how to model the Dining Cryptographers protocol in our probabilis-
tic programming language, and verify anonymity using apex. Let us consider
the case of three cryptographers, numbered 1, 2, and 3, from the point of view
of the first cryptographer; the open program below enacts the protocol. This
program has a local variable whopaid that can be set to 2 or 3, to model the
appropriate situation. All events meant to be visible to the first cryptographer,
i.e., the outcomes of his two adjacent coins, as well as the announcements of all
cryptographers, are written to the free identifiers cn and ch respectively. (Prob-
abilistic) anonymity with respect to the first cryptographer corresponds to the
assertion that the program in which whopaid has been set to 2 is equivalent to
the program in which whopaid has been set to 3.

void main(var%2 ch, var%2 cn) {
int%4 whopaid; int%2 first; int%2 right; int%2 left; int%4 i;
whopaid:=2; first:=coin; right:=first; i:=1;
while (i) do {
left := if (i=3) then first else coin;
if (i=1) then { cn:=right; cn:=left };
if ((left=right)+(i=whopaid)) then ch:=1 else ch:=0;
right:=left;
i:=i+1

}
}

184 A. Legay et al.

From this code, apex produces the following probabilistic automaton:

write(0)_cn, 1/4

write(0)_cn, 1/4

write(1)_cn, 1/4

write(1)_cn, 1/4

write(0)_cn, 1

write(1)_cn, 1

write(0)_cn, 1

write(1)_cn, 1 write(1)_ch, 1 write(0)_ch, 1/2

write(1)_ch, 1/2

(0,1)

write(1)_ch, 1

write(0)_ch, 1

write(0)_ch, 1
write(1)_ch, 1/2

write(0)_ch, 1/2

It turns out that setting whopaid to 3 in the above program yields precisely the
same automaton. The two programs are therefore equivalent, which establishes
anonymity of the protocol with three cryptographers.

One can easily investigate larger instances of the protocol, through very mi-
nor modifications of the code. For example, the probabilistic automaton below
corresponds to an instance of the protocol comprising 10 cryptographers. It
is interesting to note that the size of the state space of the automata grows
only linearly with the number of cryptographers, despite the fact that the raw
cryptographers state space is ostensibly exponential (due to the set of possible
outcomes of the coin flips). Note however that this complexity is in our case
reflected in the number of paths of the automata rather than in the number of
their states. In fact, in our experiments (see Figure 1), the state spaces of the
intermediate automata as well as the total running times grew linearly as well.
This unexpected outcome arose partly from apex’s use of bisimulation reduction
throughout the construction, in which most symmetries were factored out.

write(0)_cn, 1/4

write(0)_cn, 1/4

write(1)_cn, 1/4

write(1)_cn, 1/4

write(0)_cn, 1

write(1)_cn, 1

write(0)_cn, 1

write(1)_cn, 1 write(1)_ch, 1 write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

write(1)_ch, 1/2

write(0)_ch, 1/2

write(0)_ch, 1/2

write(1)_ch, 1/2

(0,1)

write(1)_ch, 1

write(0)_ch, 1

write(0)_ch, 1
write(1)_ch, 1/2

write(0)_ch, 1/2

We can also show that probabilistic anonymity fails when the coins are biased,
as described in [18]. Note that thanks to full abstraction, whenever two proba-
bilistic programs are not equivalent, their corresponding probabilistic automata
will disagree on the probability of accepting some particular word. This word,
whose length need at most be linear in the sizes of the automata, can be thought
of as a counterexample to the assertion of equivalence of the original programs,
and can potentially be used to ‘debug’ them. In the case at hand, such a word
would illustrate why anonymity fails when the coins are biased, albeit only in
a probabilistic sense. A would-be spymaster could then return to the programs
and attempt to fix the problem.

Although apex does not at present generate counterexamples in instances of
inequivalence, we remark that it would be straightforward and computationally
inexpensive to instrument it to do so.

Related Work. Although the Dining Cryptographers protocol was proposed
almost twenty years ago and has been extensively studied since5, it had until

5 Google Scholar lists over 500 papers dealing with the Dining Cryptographers!

On Automated Verification of Probabilistic Programs 185

recently never been verified6 in a fully automated way. In the last few weeks,
we have become aware of two automated verification instances (other than that
proposed in the present paper): [21] and [20].

As explained earlier, assertions of anonymity are most commonly and natu-
rally expressed as equivalences ; in [24], for example, trace equivalence in (non-
probabilistic) CSP is used, whereas [2] is based on bisimulation equivalence for
a probabilistic extension of the π-calculus. Most probabilistic verification en-
gines, however, focus on model checking, i.e., whether a particular probabilistic
system satisfies a given specification, where the latter is usually given in some
(probabilistic) temporal logic such as PCTL.

As regards anonymity, model checking is considerably less convenient than
equivalence checking. In [21], for example, the authors establish anonymity of the
Dining Cryptographers protocol by considering all possible visible behaviours, and
proving for each that the likelihood of its occurrence is the same regardless of the
payer. This leads to exponentially large specifications, and correspondingly in-
tractable model-checking tasks.7 In practice, a proper verification of the proto-
col can only be carried out for a handful of cryptographers—see the experimen-
tal results reported in Figure 1, running on a Fujitsu-Siemens Lifebook P7120 at
1.2 GHz, with 1 GB RAM, under Windows XP. In particular, PRISM takes over
an hour to handle 10 cryptographers, and runs out of memory for larger instances.
By contrast, we can handle 100 cryptographers in approximately 125 seconds.

The same difficulties beset the framework of [20], which gives an algorithm
for PCTL model checking of the probabilistic π-calculus, along with a PRISM-
based implementation. Again, the combinatorial explosion (of both the model
and the specification) severely limits the sizes of the protocol instances that can
be verified. We believe that the work presented in this section makes a forceful
case for the development of probabilistic equivalence checkers alongside model-
checking tools.

7 Future Work

There are many avenues for further research. We are currently implementing
support for pointers, which would enable more flexible modelling of algorithms
that use dynamic data structures. We would also like to extend apex to handle
programs that feature parameterised random constants, representing undeter-
mined sub-distributions, which can be viewed as a form of nondeterminism. For
instance, in a version of Herman’s protocol with biased coins, one could verify
termination for all possible biases at once.

6 By verification of the protocol we refer here to the automated handling of instances in
which the number of cryptographers is fixed; the parameterised verification problem,
which deals at once with all possible numbers of cryptographers, is substantially more
difficult to achieve in fully automated fashion.

7 The state space of the underlying Markov chain generated by PRISM also grows ex-
ponentially, but this is mitigated by PRISM’s use of symbolic representations in the
form of MTBDDs.

186 A. Legay et al.

crypt. PRISM apex

3 4 7
4 4 8
5 7 8
6 39 9
7 95 9
8 282 10
9 964 10
10 > 1h 11
15 OOM 13
50 OOM 56
100 OOM 125

Fig. 1. Dining Cryptographers protocol verification times. Timeout was set at one
hour, all other times reported in seconds. OOM indicates ‘out of memory’.

To support such an extension, we believe that Tzeng’s algorithm for lan-
guage equivalence of probabilistic automata [25] can be generalised to a ran-
domised polynomial-time algorithm for determining universal equivalence of
parameterised probabilistic automata: ‘Are two automata equivalent for all pos-
sible instantiations of their parameters, subject to a set of linear constraints?’

We also aim to extend the capabilities of apex beyond equivalence checking,
by exploiting the probabilistic automata it generates in different ways. Model
checking and counterexample generation are the most obvious examples, but
refinement checking and performance analysis, among others, would also be very
useful.

A more ambitious line of research would consist in extending the current ap-
proach to handle concurrency, which would facilitate the modelling of distributed
systems and protocols.

Acknowledgements. We would like to thank Marta Kwiatkowska, Gethin Nor-
man, and Dave Parker for useful discussions and their help with PRISM, and
the London Mathematical Society for financial support.

References

[1] Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163, 409–470 (2000)

[2] Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

[3] Chaum, D.: The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. J. Cryptology 1(1), 65–75 (1988)

[4] Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proceedings of QEST, IEEE Computer Society
Press, Los Alamitos (2006)

On Automated Verification of Probabilistic Programs 187

[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

[6] Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput.
Log. 3(3), 359–382 (2002)

[7] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

[8] Esparza, J., Etessami, K.: Verifying probabilistic procedural programs. In: Lo-
daya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 16–31. Springer,
Heidelberg (2004)

[9] Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
[10] Hibbard, T.N.: Some combinatorial properties of certain trees with applications

to searching and sorting. J. ACM 9(1), 13–28 (1962)
[11] Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

[12] Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observ-
ables and the full abstraction problem, II. Dialogue games and innocent strate-
gies, III. A fully abstract and universal game model. Inf. Comput. 163(2), 285–408
(2000)

[13] Jonassen, A.T., Knuth, D.E.: A trivial algorithm whose analysis isn’t. J. Comput.
Syst. Sci. 16(3), 301–322 (1978)

[14] Knott, G.D.: Deletion in Binary Storage Trees. PhD thesis, Stanford University,
Computer Science Technical Report STAN-CS-75-491 (1975)

[15] Knuth, D.E.: Sorting and searching. In: The Art of Computer Programming (first
printing), vol. 3, Addison-Wesley, Reading (1973)

[16] Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

[17] Larsen, K., Skou, A.: Compositional verification of probabilistic processes. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, Springer, Heidelberg
(1992)

[18] Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: Verification of probabilistic
programs via equivalence checking. (preparation)

[19] Murawski, A.S., Ouaknine, J.: On Probabilistic Program Equivalence and Refine-
ment. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp.
156–170. Springer, Heidelberg (2005)

[20] Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking the probabilistic
π-calculus. In: Proceedings of QEST, IEEE Computer Society Press, Los Alamitos
(2007)

[21] PRISM case study: Dining Cryptographers.
www.prismmodelchecker.org/casestudies/dining crypt.php

[22] Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245
(1963)

[23] Rabin, M.O.: Probabilistic algorithms. In: Proceedings of the Symposium on Al-
gorithms and Complexity, Academic Press, London (1976)

[24] Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth,
H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, Springer,
Heidelberg (1996)

[25] Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216–227 (1992)

www.prismmodelchecker.org/casestudies/dining_crypt.php

Symbolic Model Checking of Hybrid Systems

Using Template Polyhedra

Sriram Sankaranarayanan1, Thao Dang2, and Franjo Ivančić1

1 NEC Laboratories America, Princeton, NJ, USA
2 Verimag, Grenoble, France

{srirams,ivancic}@nec-labs.com,thao.dang@imag.fr

Abstract. We propose techniques for the verification of hybrid systems
using template polyhedra, i.e., polyhedra whose inequalities have fixed
expressions but with varying constant terms. Given a hybrid system de-
scription and a set of template linear expressions as inputs, our technique
constructs over-approximations of the reachable states using template
polyhedra. Therefore, operations used in symbolic model checking such
as intersection, union and post-condition across discrete transitions over
template polyhedra can be computed efficiently using template polyhe-
dra without requiring expensive vertex enumeration.

Additionally, the verification of hybrid systems requires techniques
to handle the continuous dynamics inside discrete modes. We propose
a new flowpipe construction algorithm using template polyhedra. Our
technique uses higher-order Taylor series expansion to approximate the
time trajectories. The terms occurring in the Taylor series expansion are
bounded using repeated optimization queries. The location invariant is
used to enclose the remainder term of the Taylor series, and thus truncate
the expansion. Finally, we have implemented our technique as a part of
the tool TimePass for the analysis of affine hybrid automata.

1 Introduction

Symbolic model checking of infinite state systems requires a systematic repre-
sentation for handling infinite sets of states. Commonly used representations
include difference matrices, integer/rational polyhedra, Presburger arithmetic,
polynomials, nonlinear arithmetic and so on. Expressive representations can bet-
ter approximate the underlying sets. However, the basic operations required for
symbolic execution such as intersection, image (post-condition) and so on are
harder to compute on such representations.

Convex polyhedra over reals (rationals) are a natural representation of sets of
states for the verification of hybrid systems [15,30,2,10,11,12]. However, basic al-
gorithms required to manipulate polyhedra require worst-case exponential com-
plexity. This fact has limited the practical usefulness of symbolic model checking
tools based on polyhedra. Therefore, restricted forms of polyhedra such as or-
thogonal polyhedra [3] and zonotopes [11] are used to analyze larger systems at
a level of precision that is useful for proving some properties of interest. Other

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 188–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{srirams,ivancic}@nec-labs.com, thao.dang@imag.fr

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 189

techniques, such as predicate abstraction, use Boolean combinations of a fixed
set of predicates p1, . . . , pm, to represent sets of states [1,16]. Such techniques
enable the refinement of the representation based on counterexamples.

In this paper, we propose template polyhedra as a representation of sets of
states. Given a set of template expressions e1, . . . , em, we obtain a family of tem-
plate polyhedra, each of which is represented by the constraints

∧
i ei ≤ ci [29]. As

with predicate abstraction, our approach assumes that the template expressions
are provided as an input to the reachability problem. We then use the family
of polyhedra defined by the given template expressions as our representation
for sets of states. The advantage of restricting our representation to a family of
template polyhedra is that operations such as join, meet, discrete post-condition
and time elapse can be performed efficiently, without requiring expensive vertex
enumeration. Furthermore, our initial experience suggests that commonly used
domains in software analysis such as intervals and octagons provide a good ini-
tial set of templates. This set can be further refined using simple heuristics for
deriving additional expressions.

In order to analyze hybrid systems, we additionally require techniques to over-
approximate the continuous dynamics at some location. This paper proposes a
sound flowpipe construction technique based on a Taylor series approximation.
Our approach works by solving numerous linear programs. The solutions to these
linear programs correspond to bounds on the terms involved in the Taylor series
expansion. The expansion itself is bounded by enclosing the remainder term using
the location invariant. The flowpipe construction results in a series of template
polyhedra whose disjunctions over-approximate the time trajectories.

Finally, we have implemented our methods in our prototype tool TimePass
for verifying safety properties of affine hybrid systems. We use our tool to ana-
lyze many widely studied benchmark systems and report vastly improved per-
formance on them.

Related Work

Hybrid systems verification is a challenge even for small systems. Numerous ap-
proaches have been used in the past to solve reachability problems: the HyTech
tool due to Henzinger et al. uses polyhedra to verify rectangular hybrid sys-
tems [15]. More complex dynamics are handled using approximations. Kurzhan-
ski and Variaya construct ellipsoidal approximations [17]; Mitchell et al. use
level-set methods [20]; the d/dt system uses orthogonal polyhedra and face lift-
ing [2]; Piazza et al. [22] propose approximations using constraint solving based
on quantifier elimination over the reals along with Taylor series expansions to
handle the continuous dynamics. Lanotte & Tini [18] present approximations
based on Taylor series that can be made as accurate as possible, approaching
the actual trajectories in the limit.

Girard uses zonotopes to construct flowpipes [11]. The PHAVer tool due to
Frehse extends the HyTech approach by repeatedly subdividing the invariant
region and approximating the dynamics inside each subdivision by piece-wise
constant dynamics [10]. Tiwari [31] presents interesting techniques for proving

190 S. Sankaranarayanan, T. Dang, and F. Ivančić

safety by symbolically integrating the dynamics of the system. Symbolic tech-
niques for proving unreachability without the use of an explicit flowpipe approxi-
mation [28,32,26,23]. These techniques can handle interesting nonlinear systems
beyond the reach of many related techniques.

The problem of flowpipe construction for template polyhedra has been studied
previously by Chutinan & Krogh [5]. Their technique has been implemented as a
part of the tool CheckMate [30]. Whereas the CheckMate approach solves global
non convex optimization problems using gradient descent, our approach solves
simple convex optimization problems to bound the coefficients of the Taylor se-
ries expansion. Furthermore, our technique can be extended to some nonlinear
systems to construct ellipsoidal and polynomial flowpipes. The CheckMate tech-
nique simply yields a harder nonconvex optimization problem for these cases.
On the other hand, our approach loses in precision due to its approximation of
functions by Taylor polynomials; CheckMate, however, is more robust in this
regard.

Template polyhedra are commonly used in static analysis of programs for com-
puting invariants. Range analysis can be regarded as template polyhedra over
expressions of the form ±x [7] . Similarly, the octagon domain due to Miné [19]
uses template polyhedron of the form

∧
xi −xj ≤ c. General template polyhedra

were used as an abstract domain to represent sets of states by Sankaranarayanan
et al. [29].

2 Preliminaries

Let R denote the set of reals, and R+ = R ∪ {±∞}. A first order assertion
ϕ[x1, . . . , xn], over the theory of reals, represents a set [[ϕ]] ⊆ Rn. A column vec-
tor, denoted 〈x1, . . . , xn〉, is represented succinctly as x. Capital letters A, B, C
and X, Y, Z denote matrices; Ai denotes the ith row of a matrix A. A linear
function f(x) is the inner product of vectors cT x. Similarly, an affine function
is represented as cT x + d.

Polyhedra. A polyhedron is a conjunction of finitely many linear inequalities∧
i ei ≤ c, represented succinctly as Ax ≤ b, where A is a m × n matrix, b is a

m × 1 column vector and ≤ is interpreted entry-wise.
A linear program(LP) P : max. cT x subject to Ax ≤ b seeks to optimize

a linear objective cT x over the convex polyhedron [[Ax ≤ b]]. If [[Ax ≤ b]] is
nonempty and bounded then the optimal solution always exists. LPs are solved
using techniques such as Simplex [8] and interior point techniques [4]. The former
technique is polynomial time for most instances, whereas the latter can solve LPs
in polynomial time.

Vector Fields and Lie Derivatives. A vector field D over Rn associates each
point x ∈ Rn with a derivative vector D(x) ∈ Rn. Given a system of differential
equations of the form ẋi = fi(x1, . . . , xn), we associate a vector field D(x) =
〈f1(x), . . . , fn(x)〉. A vector field is affine if the functions f1, . . . , fn are all affine
in x. For instance, the vector field D0(x, y) : 〈x + y, x − 2y − 3〉 is affine.

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 191

Let D(x) = 〈f1(x), . . . , fn(x)〉 be a vector field over Rn. The Lie derivative of
a continuous and differentiable function h : Rn 	→ R is LD(f) = (∇h) · D(x) =∑n

i=1
∂h
∂xi

· fi(x). The Lie derivative of the function x + 2y − 2 over the vector
field D0(x, y) shown above is given by

LD0(x + 2y − 2) = 1 · (x + y) + 2 · (x − 2y − 3) = 3x − 3y − 6 .

Hybrid Systems. To model hybrid systems we use hybrid automata [14].

Definition 1 (Hybrid Automaton). A hybrid automaton Ψ :
〈n,L, T , Θ,D, I, �0〉 consists of the following components:

– n is the number of continuous variables. These variables are denoted by the
set V = {x1, . . . , xn}.

– L, a finite set of locations; �0 ∈ L is the initial location;
– T , a set of (discrete) transitions. Each transition τ : 〈�1 → �2, ρτ 〉 ∈ T

consists of a move from �1 ∈ L to �2 ∈ L, and an assertion ρτ over V ∪ V ′,
representing the transition relation;

– Assertion Θ, specifying the initial values of the continuous variables;
– D, mapping each � ∈ L to a vector field D(�), specifying the continuous

evolution in location �;
– I, mapping each � ∈ L to a location invariant, I(�).

A computation of a hybrid automaton is an infinite sequence of states 〈l, x〉 ∈
L × Rn of the form 〈l0, x0〉, 〈l1, x1〉, 〈l2, x2〉, . . ., such that initially l0 = �0 and
x0 ∈ [[Θ]]; and for each consecutive state pair 〈li, xi〉, 〈li+1, xi+1〉, satisfies one
of the consecution conditions:

Discrete Consecution: There exists a transition τ : 〈�1, �2, ρτ 〉 ∈ T such that
li = �1, li+1 = �2, and 〈xi, xi+1〉 |= ρτ , or

Continuous Consecution: li = li+1 = �, and there exists a time interval
[0, δ), δ > 0, and a time trajectory τ : [0, δ] 	→ Rn, such that τ evolves from xi

to xi+1 according to the vector field at location �, while satisfying the location
condition I(�). Formally,

1. τ(0) = x1, τ(δ) = x2, and (∀ t ∈ [0, δ]), τ(t) ∈ [[I(�)]],
2. (∀t ∈ [0, δ)), dτ

dt = D(�)|x=τ(t).

Definition 2 (Affine Hybrid Automaton). A hybrid automaton Ψ is affine
if the initial condition, location invariants and transition relations are all repre-
sented by a conjunction of linear inequalities; and furthermore, the dynamics at
each location D(�) is an affine vector field.

The rest of the paper focuses solely on affine systems. However, our results also
extend to the non-affine case.

Example 1. Affine hybrid systems are used to represent a variety of useful sys-
tems. Consider the oscillator circuit shown in Figure 1(a). The circuit consists of

192 S. Sankaranarayanan, T. Dang, and F. Ivančić

C

R

S

5V

(a)

Loc. C

V̇c = 1
RC

(5 − Vc)
ṫ = 1

Loc. D

V̇c = −Vc

RC

ṫ = 1

Vc ≥ 4.5
t := 0

Vc ≤ 0.5

(b)

Fig. 1. An oscillator circuit (left) and its affine hybrid automaton model

a capacitor that may be charged or discharged using a voltage triggered switch
S that is controlled by the voltage across the capacitor Vc. The corresponding
affine hybrid automaton H has two modes C and D corresponding to the charg-
ing and discharging; and two variables Vc modeling the voltage of the capacitor
and t modeling time. Switching between each mode takes place when the capac-
itor has charged (or discharged) to 90% (10%) of its final charge. We assume the
mode invariants I(C) : 0 ≤ Vc ≤ 4.5 and I(D) : 0.5 ≤ Vc ≤ 5.

The post-condition and time elapse operations are the two fundamental prim-
itives for over-approximating the reachable sets of a given hybrid automaton.
Given an assertion ϕ over the continuous variables, its post-condition across a
transition τ : 〈�, m, ρ〉 is given by post(ϕ, τ)[y] : (∃ x) (ϕ(x) ∧ ρ(x, y)). The
post-condition of a polyhedron is also polyhedral. It is computed using intersec-
tion and existential quantification.

Similarly, given an assertion ϕ, the set of possible time trajectories inside a
location � with invariant I(�) and dynamics D(�) is represented by its time elapse
ψ : timeElapse(ϕ, 〈D, I〉). However, for affine hybrid systems, the time elapse of
a polyhedron need not be a polyhedron. Therefore, the time elapse operator is
hard to compute and represent exactly. It is over-approximated by the union of
a set of polyhedra. Such an approximation is called a flowpipe approximation.

Using post-conditions and time elapse operators as primitives, we can prove
unreachability of unsafe states using a standard forward propagation algorithm.
Such an algorithm is at the core of almost all safety verification tools for hybrid
systems [15,2,30,10].

Template Polyhedra. The goal of this paper is to implement symbolic model
checking on hybrid systems using template polyhedra. We now present the basic
facts behind template polyhedra, providing algorithms for checking inclusion, in-
tersection, union and post-condition. Additional details and proofs are available
from our previous work [29].

A template is a set H = {h1(x), . . . , hm(x)} of linear expressions over x.
We represent a template as an m × n matrix H , s.t. each row Hi corresponds
to the linear expression hi. Given a template, a family of template polyhedra
may be obtained by considering conjunctions of the form

∧
i hi(x) ≤ ci. Each

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 193

〈H, (1, 1, 1, 1,∞,∞)〉

(a)

〈H, (1,∞, 1, 4, 3, 3)〉

(b)

〈H, (1,∞,∞,∞, 3,∞)〉

(c)

no representation

(d)

Fig. 2. Polyhedra (a), (b) and (c) are template instances for the template H shown in
Example 2, whereas (d) is not

polyhedron in the family may be obtained by choosing the constant coefficients
c1, . . . , cm.

Definition 3 (Template Polyhedron). A template polyhedron over a tem-
plate H is a polyhedron of the form Hx ≤ c, wherein c ∈ Rm

+ . Such a polyhedron
will be represented as 〈H, c〉.

Example 2. Consider the template H = {x, −x, y, −y, y − x, x − y}. The unit
square −1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 may be represented by the template polyhedron
〈H, (1, 1, 1, 1, ∞, ∞)〉. Figure 2 shows three polyhedra that are instances, and one
that is not.

Let c1 ≤ c2 signify that for each row i ∈ [1, |c1|], c1i ≤ c2i.

Lemma 1. If c1 ≤ c2 then 〈H, c1〉 ⊆ 〈H, c2〉. However, the converse need not
hold.

Example 3. The set C : x = 0 ∧ y = 0 may be represented using the tem-
plate H = {x, −x, y, −y, x + y} using the instances vectors c : 〈0, 0, 0, 0, 0〉,
c1 : 〈0, 0, 0, 0, 100〉, c2 : 〈−10, 0, 0, 0, 0〉, and c3 : 〈0, −100, 0, 0, 0〉. In each case
〈H, ci〉 ⊆ 〈H, c〉. However ci �≤ c. Intuitively, “fixing” any four of the rows to 0
renders the remaining constraint row redundant.

Consider a region C ⊆ Rn and template H . There exists a smallest template
polyhedron 〈H, c〉, with the least instance vector c, that over-approximates C,
denoted c = αH(C). Furthermore, for any template polyhedra 〈H, d〉 that over-
approximates C, c ≤ d. Each component ci of αH(C) may be computed using
the optimization problem ci : max. hi(x) s.t. x ∈ C. Note that if C is a poly-
hedron, then its best over-approximation according to a template H is obtained
by solving |H | linear programs.

Lemma 2. For any closed set C ⊆ Rn, the polyhedron Hx ≤ αH(c) is the
smallest template polyhedron that includes C.

Example 4. Let H = {x, −x, y, −y} be a template. Consider the set C : (x2 +
y2 ≤ 1) of all points inside the unit circle. The smallest template polyhedron

194 S. Sankaranarayanan, T. Dang, and F. Ivančić

containing C is the unit square that may be represented with the instance vector
〈1, 1, 1, 1〉. Additionally, if the expressions x + y, x − y, −x − y, x + y are added
to the set H , the smallest template polyhedron representing C is the octagon
inscribed around the circle.

It is algorithmically desirable to have a unique representation of each set by a
template polyhedron. Given a template polyhedron 〈H, c〉, its canonical form
is given by canH(c) = αH(Hx ≤ c). An instance vector is canonical iff c =
canH(c).

Lemma 3. (a) 〈H, c〉 ≡ 〈H, d〉 iff canH(c) = canH(d), and (b) 〈H, c〉 ⊂ 〈H, d〉
iff canH(c) < canH(d).

Thus, canonicity provides an unique representation of template polyhedra. Any
representation can be converted into a canonical representation in polynomial
time using optimization problems.

The union of 〈H, c1〉 and 〈H, c2〉 (written c1�c2) is defined as c = max(c1, c2),
where max denotes the entry-wise minimum. Similarly, intersection of two poly-
hedra c1, c2 is represented by c = min(c1, c2).

Given a template polyhedron P0 : 〈J, c〉, and a discrete transition relation
τ , we wish to compute the smallest template polyhedron P1 : 〈H, d〉 that over-
approximates the post-condition post(P0, τ). Note that the templates J and H
need not be identical. The post-condition d : postH(〈J, c〉 , τ) is computed by
posing an optimization query for each di: max. Hiy subj. to Jx ≤ c ∧ ρτ (x, y).
The resulting d is always guaranteed to be canonical.

Lemma 4. The polyhedron postH(P0, τ) is the smallest template polyhedron
containing post(P0, τ).

In program analysis, template polyhedra with a fixed set of template have been
used previously. For instance, given variables x1, . . . , xn, intervals are obtained as
template polyhedra over the set HI = {x1, −x1, x2, . . . , xn, −xn} [7]. Similarly,
the octagon domain is obtained by considering the template expressions HO =
HI ∪{±xi ±xj |1 ≤ i < j ≤ n} [19]. Other domains based on template polyhedra
include the octahedron domain consisting of all linear expressions involving the
variables x1, . . . , xn with unit coefficients [6].

3 Flowpipe Construction

We now consider flowpipe construction techniques to over-approximate the time
trajectories of affine differential equations. An instance of flowpipe construction
problem: 〈H, c0, inv,D, δ〉 consists of the template H , an initial region 〈H, c0〉,
the location invariant 〈H, inv〉 and an affine vector field D representing the dy-
namics and a time step δ ≥ 0. We assume that 〈H, inv〉 and 〈H, c0〉 are nonempty
and bounded polyhedra.

Example 5. Consider the oscillator circuit model from Example 1. An instance
consists of a template H = {v, −v, t, −t, v − t, t − v}, initial condition v ∈
[0, 0.1], t = 0 and location invariant v ∈ [0, 5], t ∈ [0, 100].

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 195

Let F(t) denote the set of states reachable, starting from 〈H, c0〉, at some time
instant t ≥ 0. Similarly, F[t, t+δ) denotes the set of reachable states for the time
interval [t, t + δ).

Formally, we wish to construct a series of flowpipe segments

〈H, d0〉 , 〈H, d1〉 , 〈H, d2〉 , . . . , 〈H, dN 〉 , . . .

such that each segment dj over-approximates F[jδ, (j+1)δ). There are two parts
to our technique:

Flowpipe Approximation: Approximate F[0, δ) given 〈H, c0〉.
Set Integration: Given an approximation F[iδ, (i+1)δ), approximate the next

segment F[(i + 1)δ, (i + 2)δ).

Together, they may be used to incrementally construct the entire flowpipe.
Set Integration. By convention, the jth order Lie derivative of a function f is
written f (j). Let f : cT x be a linear function. By convention, we denote its jth

order derivative as c(j)x.

Definition 4 (Taylor Series). Let h be a continuous function and differen-
tiable at least to order m + 1. It follows that

h(t) = h(0) + h(1)(0)t + h(2)(0)
t2

2!
+ · · · + h(m)(0)

tm

m!
+ h(m+1)(θ)

tm+1

(m + 1)!
,

where θ ∈ [0, t). The last term of the series is known as the remainder.

Let Sk : 〈H, dk〉 be an over-approximation of F[kδ, (k+1)δ). We wish to compute
an approximation Sk+1 for the time interval [(k + 1)δ, (k + 2)δ). In other words,
we require an upper bound for the value of each template row Hix. Let x(t) be
the state at time instant t. Using a Taylor series expansion, we get:

Hix(t + δ) = Hix(t) + · · · + δm

m!
H

(m)
i x(t) +

δm+1

(m + 1)!
H

(m+1)
i x(t + θ) , (1)

where 0 ≤ θ < δ. Note that the first m terms are functions of x(t), whereas the
remainder term, is a function of x(t + θ). The exact value of θ is not known and
is conservatively treated as a nondeterministic input. In other words, we may
write Hix(t+ δ) as a sum of two expressions Hix(t+ δ) = gi

T x(t)+ri
T x(t+θ),

wherein gi represents the sum of the first m terms of the Taylor series and ri

represents the remainder term.
Assuming t ∈ [jδ, (j +1)δ), we have x(t) ∈ Sk. Therefore, an upper bound on

gi is obtained by solving the following LP:

gmax
i = max. gi

T x subj.to. x ∈ Sk (2)

Similarly, even though the remainder term cannot be evaluated with certainty,
we know that x(t + θ) ∈ 〈H, inv〉. A bound on rix(t + δ) is, therefore, obtained
by solving the optimization problem

rmax
i = max. ri

T y subj.to y ∈ 〈H, inv〉 (3)

196 S. Sankaranarayanan, T. Dang, and F. Ivančić

The overall bound on Hix(t+δ) is gmax
i +rmax

i . Finally, the over-approximation
Sk+1 is obtained by computing gmax

i + rmax
i for each template row i ∈ [1, |H |].

Note that in the optimization problem above, the time step δ is an user-input
constant, each Lie-derivative g

(m)
i is affine and Sk is a template polyhedron. As

a result, the optimization problems for affine vector fields are linear programs.

Example 6. Following Example 5, consider a flowpipe segment v ∈ [0, 0.2] ∧ t ∈
[0, 0.1] by δ = 0.1, according to the differential equation v̇ = 5−v

2 , ṫ = 1. The
first row of the template is H1 : v. The first 6 Lie derivatives of H1 are tabulated
below:

0 1 2 3 4 5 6
v 5−v

2
−5+v

4
5−v
8
−5+v

16
5−v
32

−5+v
64

Following, Eq. 1, we use exact arithmetic to obtain

v(t + δ) = v + 5−v
2 δ + −5+v

4
δ2

2! + · · · + 5−v
32 δ55! + −5+v(θ)

64
δ6

6!
∼ 0.951229424479167v(0)+ 0.24385288020833

︸ ︷︷ ︸
g0

+ 0.131 × 10−7v(θ)
︸ ︷︷ ︸

r0

Now observing that v(0) ∈ [0, 0.2], we obtain gmax
0 = 0.4341 (upto 4 decimal

places). Similarly, using the location invariant v(θ) ∈ [0, 5], we obtain rmax
0 =

0.131 × 10−8 × 5. As a result, we obtain a bound v(t + 0.1) ≤ 0.4341 (upto
4 decimal digits). Repeating this process for every template row gives us the
required flowpipe approximation for the segment [0.1, 0.2).

Flowpipe Approximation

We now seek an approximation 〈H, d0〉 for F[0, δ). Therefore, for each tem-
plate row Hi, we wish to bound the function Hix as an univariate polynomial
of degree m + 1 over the time interval [0, δ). Let ai,j , 0 ≤ j ≤ m be the re-
sult of the optimization ai,j = max H

(j)
i (x)
j! subj.to. x ∈ 〈H, c0〉 and ai,m+1 =

max H
(m+1)
i (y)
m+1! subj.to. y ∈ 〈H, inv〉 .

Each optimization problem is an LP and can be solved efficiently. Consider
the polynomial pi(t) =

∑m
j=0 aijt

j + ai,m+1t
m+1.

Lemma 5. For t ≥ 0 and x ∈ 〈H, c0〉, Hix(t) ≤ pi(t).

Hix(t) = Hix(0) + tH
(1)
i x(0) + · · · + tm

H
(m)
i (x(0))

m! + tm+1 H
(m+1)
i (x(θ))
(m+1)!

≤ ai0 + ai1t + · · · + aimtm + ai,m+1t
m+1 ∵ H

(j)
i x(0)

j! ≤ aij and t ≥ 0
≤ pi(t)

The required bound for the function Hix for the time interval t ∈ [0, δ) may now
be approximated by maximizing the univariate polynomial pi(t) over the interval
[0, δ). The maximum value of an univariate polynomial p in a time interval
[T1, T2] may be computed by evaluating the polynomial at the end points T1, T2
and the roots (if any) of its derivative p′ lying in that interval. The maxima in
the interval is guaranteed to be achieved at one of these points.

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 197

0 2 4 6 8 10 12 14
0

1

2

3

4

5

t

V

0 2 4 6 8 10 12 14
0

1

2

3

4

5

t

V

0 10 20 30 40 50
0

1

2

3

4

5

t

V

0 10 20 30 40 50
0

1

2

3

4

5

t

V

(a) (b)

Fig. 3. Flowpipes for Example 1: (a) one complete charge/discharge cycle and (b) the
time interval [0, 49]

Example 7. Consider the problem instance shown in Example 5. We wish to
compute an over-approximation of F[0, 0.1) given v(0) ∈ [0, 0.1] and t(0) = 0.
We consider a bound H1 : v over t ∈ [0, 0.1). Example 6 shows the lie derivatives.
The following table shows the bounds a1, . . . , a6 corresponding to the initial
condition and invariant regions (accurate to 4 decimal places).

0 1 2 3 4 5 6
0.1 2.5 −0.6125 0.1058 −0.01276 0.0013 −0.00106

As a result, we have that v(t) ≤ −0.00106t6+0.0013t5 −0.01276t4 + · · ·+0.1 for
all t ∈ [0, 0.1). This polynomial is increasing in this range and has its maximum
value at t = 0.1. This yields a bound v ≤ 0.3439 for the segment F[0, 0.1).
Similarly, we can compute bounds for all the rows in the template.

Thus, given an instance of the flowpipe problem, we compute an initial flow-
pipe segment 〈H, d0〉 ⊇ F[0, δ) by computing univariate polynomials, one per
template row, that upper bound the Taylor series and in turn finding the max-
ima of these polynomials. This initial flowpipe segment is then advanced by using
set integration. Following this scheme, Fig. 3 shows the flowpipe constructed for
the instance in Example 5. Let d0, . . . , dN be the results of the flowpipe con-
struction on a given instance.

Theorem 1. The disjunction
∨N

i=0 〈H, di〉 contains all the time trajectories
starting from 〈H, c0〉 and evolving according to D inside 〈H, inv〉.

Termination. In theory, the flowpipe construction produces infinitely many seg-
ments. However, we may stop this process if the flowpipe “exits” the invariant,
i.e, 〈H, dN 〉 ∩ 〈H, inv〉 = ∅ for some N > 0; or “cycles” back into itself, i.e.,
〈H, dN 〉 ⊆ 〈H, dj〉 for j < N . The flowpipe construction can be stopped upon
encountering a cycle since each subsequent segment will lie inside a previously
encountered segment.

Extensions. Our technique is directly applicable to cases where the templates
may consist of nonlinear functions and the dynamics may be nonlinear. In each

198 S. Sankaranarayanan, T. Dang, and F. Ivančić

Table 1. Optimization problems for flowpipe construction

Dynamics (D) Template (hi) Invariants (I) Optimization Problem.

Affine Linear Polyhedral Linear Programming

Affine Ellipsoidal Polyhedral Quadratic Programming [4]

Polynomial Polynomial Semi-Algebraic Sum-of-Squares Optimization (SOS) [21]

Continuous Continuous Rectangular Interval Arithmetic [13]

case, we encounter different types of optimization problems with differing objec-
tives and constraints. Table 1 summarizes the different optimization problems
that are encountered.

Matrix Exponentiation. Set integration can also be computed using matrix ex-
ponentiation for affine systems [5]. In this approach, we compute a matrix ex-
ponential T = eAδ, corresponding to the dynamics D(x) = Ax. Given the
initial segment S0, approximating F[0, δ), we may compute successive sets as
Si+1 = TSi. However, computing this transformation requires an expensive ver-
tex representation of Si. On the other hand, our approach works purely on the
constraint representation of template polyhedra using LPs for set integration.

Location Invariant Strengthening. The location invariant bounds the remainder
term in our construction. Therefore, tighter bounds on the remainder can result
from stronger location invariants. Such a strengthening can be computed prior
to each flowpipe construction using a policy iteration technique. Using invariant
strengthening, each flowpipe construction instance can be performed more ac-
curately using a better bound for the location invariant. Curiously, a stronger
invariant region may result in fewer flowpipe segments and quicker termination,
thus reducing the overall time taken by our technique. The details of the invari-
ant strengthening technique appear elsewhere [27].

4 Experiments

Our prototype tool TimePass implements the techniques described in this paper
using template polyhedra for safety verification.

Template Construction. A larger set of template expressions provides a richer
representation of template polyhedra. However, the size of each LP instance
encountered is linear in the number of templates. Therefore, too many templates
impacts performances.

Our template construction strategy uses two basic sources of template ex-
pressions: (a) Fixed templates such as boxes and octagons; and (b) Expressions
occurring in the hybrid system description. Fixed templates used include box
templates which include the expressions ±xi, for each continuous variable xi in
the system, and octagon templates of the form ±xi ± xj for all xi �= xj .

Additionally, we enrich templates by computing their Lie derivatives. This
process is important since the key flowpipe construction steps involve finding

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 199

Table 2. Performance of our tool on hybrid systems benchmarks. All timings are in
seconds and memory in MBs. Legend: Inv. Str.: Invariant Strengthening, H: Template
size, δ: step size, T:Time, Mem: memory, Prf?: Property proved.

Name Description Size/Params w/o Inv. Str. Inv. Str.
#Var #Loc #Trs |H | δ T Prf? T Prf?

focus [24] 2 2 1 28 0.2 0 Y 0 Y
reigen - 3 2 1 54 0.2 0.1 Y 0.2 Y
flow - 3 2 1 54 0.2 0.1 Y 0.1 Y
convoi - 5 1 1 90 0.2 10 Y 18 Y
therm [1] 2 3 4 28 0.05 1.1 Y 1.2 Y
nav01 Benchmark [9] 4 8 18 64 0.2 260 Y 22 Y
nav02 - 4 8 18 64 0.2 362 Y 23 Y
nav03 - 4 8 18 64 0.2 390 Y 20 Y
nav04 - 4 8 18 64 0.2 1147 Y 18 Y
nav05 - 4 8 18 64 0.1 7 N 513 Y
nav06 - 4 8 18 64 0.2 45 N 1420 N
nav07 - 4 15 39 64 0.2 1300 N 572 Y
nav08 - 4 15 39 64 0.2 139 N 572 Y

bounds on the Lie derivatives of the template rows (and their convex combina-
tions). Therefore, tracking bounds for such rows as part of the template can lead
to tighter bounds. The eigenvectors corresponding to the real eigenvalues of the
RHS matrix of the differential equations also form an interesting set of template
expressions. The Lie derivatives of such expressions yield back the original ex-
pression upto a constant scale factor. As a result, the Taylor polynomials for
such expressions can be computed precisely without truncation.

Numerical Issues. It is possible to implement most of the algorithms described in
this paper using exact arithmetic. In our experience, however, exact arithmetic
LP solvers exhibit large performance overheads. Hence, our tool primarily uses
a floating point implementation of the simplex algorithm. The LP solution can
then be verified using the Karush-Kuhn-Tucker (KKT) conditions to lie within
an error tolerance bound (∼ 10−7). Failing, the error tolerance bounds, the
verification may be performed an exact arithmetic simplex implementation. All
our experiments, however, were performed with a floating point solver.

Parameters. The time step δ for flowpipe construction has the largest impact on
the performance. A large time step speeds up the convergence but results in a
coarser approximation. In general, the ideal choice of time step is hard to realize.
Therefore, we use a trial-and-error approach to successively reduce/increase δ to
arrive at a large enough time step that proves the property of interest.

Experiments. Table 2 shows the performance of our tool on some hybrid systems
benchmarks consisting of small but complex systems, designed to test the accu-
racy of the flowpipe construction and its propagation. A detailed description is
available elsewhere [24,9]. We report on our performance with and without the
use of invariant strengthening. Our tool successfully proves safety for a most of
the benchmarks instances. Note that invariant strengthening plays a key role,

200 S. Sankaranarayanan, T. Dang, and F. Ivančić

Table 3. Flowpipe results on systems with many variables. Note: Timeout is set to 1h.

n #Sys |H | #Loc #Trs Time(sec) Mem (Mb) Proved?
Avg. Max Min Avg. Max Min

10 10 80 7 6 21 52 1 5 7 3 10/10
20 10 160 14 13 30 91 8 11 13 5 10/10
40 10 320 21 20 192 975 44 105 88 126 10/10
80 6 640 29 28 1386 > 1h 420 700 743 608 5/6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

0 1 2 3 4
0

1

2

3

4

x

y

0 1 2 3 4
0

1

2

3

4

x

y

Fig. 4. Reach sets (projected over x, y) along with the unsafe cell for the nav05 (left)
and nav08 (right) benchmarks

especially for the larger examples. As expected, the use of invariant strengthen-
ing vastly reduces the time taken to prove many properties. Our timings on the
other examples are quite competitive with those of PHaVer [10] and HSolver [25].
Our approach also provides the first known verification for benchmarks nav05-
nav08. Figure 4 depicts the reach sets computed by our tool for the nav05 and
the nav08 benchmark examples.

We stress test our flowpipe construction on systems with a large number of
variables. Since we do not have access to meaningful models in a suitable format,
we use a scheme for generating a family of systems with known behaviors and
verify these using our tool. Each system Hn has n > 0 variables. It has a primary
mode �0, and secondary modes �1, . . . , �m.

The dynamics at location �0 are x′ = A(x−t), where A is an invertible matrix
with negative real eigenvalues and t is a target point. These dynamics ensure
that t is a stable equilibrium point. The mode invariant I(�0) is a hypercube
|x| ≤ t+ ε for a parameter ε > 0. To generate A, we choose negative eigenvalues
Λ at random, and compute A = X−1ΛX for invertible X .

The secondary modes consist of regions around the corners of the primary
mode hypercube, which are unreachable from the interior of the primary mode.
The initial location is �0 and Θ : x ∈ [−ε0, ε0]. We seek to verify that the
secondary modes are unreachable. We first generate many instances with varying
dynamics A, target vectors t and number of secondary modes. We also fix ε = 1
and ε0 = 0.1. Table 3 shows the results of running our tool on systems of varying
sizes. To minimize the run-time overhead especially for large systems, these
experiments were carried out without using policy iteration to strengthen the

Symbolic Model Checking of Hybrid Systems Using Template Polyhedra 201

invariant region. It clearly demonstrates the scalability of our approach. Also, it
demonstrates that our flowpipe is accurate enough to prove a vast majority of
instances.

5 Conclusion

Template polyhedra are shown to be an effective tool for the verification of hybrid
systems by avoiding the need to perform costly vertex enumerations using tem-
plate polyhedra. In the future, we hope to study heuristics for choosing template
expressions that would enable application of our technique to the counterexam-
ple guided refinement (CEGAR) framework. We hope to extend our techniques
to nonlinear systems and apply it to more meaningful examples.

References

1. Alur, R., Dang, T., Ivančić, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

2. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

3. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and
computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 46–60. Springer, Heidelberg (1999)

4. Boyd, S., Vandenberghe, S.: Convex Optimization. Cambridge University Press,
Cambridge (2004), http://www.stanford.edu/∼boyd/cvxbook.html

5. Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for
dynamic systems. In: Proceedings of IEEE CDC, IEEE press, Los Alamitos (1998)

6. Clarisó, R., Cortadella, J.: The Octahedron Abstract Domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

7. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Dunod,
Paris, France, pp. 106–130 (1976)

8. Dantzig, G.B.: Programming in Linear Structures. In: USAF (1948)
9. Fehnker, A., Ivančić, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R.,

Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

10. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 258–273.
Springer, Heidelberg (2002)

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

12. Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

13. Hentenryck, P.V., Michel, L., Benhamou, F.: Newton: Constraint programming over
nonlinear real constraints. Science of Computer Programming 30(1-2), 83–118 (1998)

14. Henzinger, T.A.: The theory of hybrid automata. In: Logic In Computer Science
(LICS 1996), IEEE Computer Society Press, Los Alamitos (1996)

http://www.stanford.edu/~boyd/cvxbook.html

202 S. Sankaranarayanan, T. Dang, and F. Ivančić

15. Henzinger, T.A., Ho, P.: HYTECH: The Cornell hybrid technology tool. In: Antsak-
lis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp.
265–293. Springer, Heidelberg (1995)

16. Ivančić, F. Modeling and Analysis of Hybrid Systems. PhD thesis, University of
Pennsylvania (December 2003)

17. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214.
Springer, Heidelberg (2000)

18. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 402–416. Springer, Heidelberg
(2005)

19. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

20. Mitchell, I., Bayen, A., Tomlin, C.: Computing reachable sets for continuous dy-
namic games using level set methods. IEEE Transactions on Automatic Con-
trol 50(7), 947–957 (2005)

21. Parillo, P.A.: Semidefinite programming relaxation for semialgebraic problems.
Mathematical Programming Ser. B 96(2), 293–320 (2003)

22. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algo-
rithmic algebraic model checking I: Challenges from systems biology. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidel-
berg (2005)

23. Prajna, S., Jadbabaie, A.: Safety verification using barrier certificates. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Hei-
delberg (2004)

24. Ratschan, S., She, Z.: Benchmarks for safety verification of hybrid systems. cf.
(viewed October, 2007), http://hsolver.sourceforge.net/benchmarks

25. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propa-
gation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

26. Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005)

27. Sankaranarayanan, S., Dang, T., Ivancic, F.: A policy iteration technique for
time elapse over template polyhedra (Extended Abstract). In: HSCC 2008. LNCS,
vol. 4981, Springer, Heidelberg (to appear, 2008)

28. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
555. Springer, Heidelberg (2004)

29. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-
tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, Springer, Heidelberg (2005)

30. Silva, B., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of
hybrid dynamical system using checkmate. In: ADPM (2000),
http://www.ece.cmu.edu/∼webk/checkmate

31. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)

32. Tiwari, A., Khanna, G.: Non-linear systems: Approximating reach sets. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Hei-
delberg (2004)

http://hsolver.sourceforge.net/benchmarks
http://www.ece.cmu.edu/~webk/checkmate

Fast Directed Model Checking Via Russian Doll
Abstraction

Sebastian Kupferschmid1, Jörg Hoffmann2, and Kim G. Larsen3

1 University of Freiburg, Germany
kupfersc@informatik.uni-freiburg.de

2 University of Innsbruck, STI, Austria
joerg.hoffmann@sti2.at
3 Aalborg University, Denmark

kgl@cs.aau.dk

Abstract. Directed model checking aims at speeding up the search for bugs in
a system through the use of heuristic functions. Such a function maps states to
integers, estimating the state’s distance to the nearest error state. The search gives
a preference to states with lower estimates. The key issue is how to generate
good heuristic functions, i. e., functions that guide the search quickly to an error
state. An arsenal of heuristic functions has been developed in recent years. Sig-
nificant progress was made, but many problems still prove to be notoriously hard.
In particular, a body of work describes heuristic functions for model checking
timed automata in UPPAAL, and tested them on a certain set of benchmarks. Into
this arsenal we add another heuristic function. With previous heuristics, for the
largest of the benchmarks it was only just possible to find some (unnecessarily
long) error path. With the new heuristic, we can find provably shortest error paths
for these benchmarks in a matter of seconds. The heuristic function is based on
a kind of Russian Doll principle, where the heuristic for a given problem arises
through using UPPAAL itself for the complete exploration of a simplified instance
of the same problem. The simplification consists in removing those parts from the
problem that are distant from the error property. As our empirical results confirm,
this simplification often preserves the characteristic structure leading to the error.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. UPPAAL is
a tool doing this for networks of extended timed automata. It has a highly optimized
implementation, but still the reachable state space often is too large in realistic applica-
tions. A potentially much easier task is to try to falsify the safety property, by identifying
an error path: for this, we can use a heuristic that determines in what order the states are
explored. In our work, we enhance error detection in UPPAAL following such a strategy.

A heuristic, or heuristic function, is a function h that maps states to integers, esti-
mating the state’s distance to the nearest error state. The heuristic is called admissible
if it provides a lower bound on the real error state distance. The search gives a pref-
erence to states with lower h value. There are many different ways of doing the latter.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 203–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

The A∗ method, where the search queue is a priority queue over start state distance plus
the value of h, guarantees to find an optimal (shortest possible) error path if the heuris-
tic is admissible. An alternative is greedy best-first search. There, the search queue is
a priority queue over the value of h. This does not give any guarantee on the solu-
tion length, but is often (yet not always) faster than A∗ in practice. Note that short error
paths are important in practice, since the error path will be used for debugging purposes.
The application of heuristic search to model checking was introduced a few years ago
by Edelkamp et al. [1,2], naming this research direction directed model checking, and
inspiring various other approaches of this sort, e. g. [3,4,5,6,7]. The main difference
between these approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state?

The following gives an overview of the heuristic functions defined so far. Edelkamp
et al. [1] base their heuristics on the “graph distance” within each automaton – the
number of edge traversals needed, disregarding synchronization and all state variables.
This yields a rather simplistic estimation, but can be computed very quickly. Groce and
Visser [3] define heuristics inspired from the area of testing, with the idea to prefer
covering yet unexplored branches in the program. Qian and Nymeyer [4,8] ignore some
of the state variables to define heuristics which are then used in a pattern database ap-
proach (see below). Kupferschmid et al. [5] adapt a heuristic method from the area of AI
Planning, based on a notion of “monotonicity” where it is assumed that a state variable
accumulates, rather than changes, its values. Dräger et al. [6] iteratively “merge” a pair
of automata, i. e., compute their product and then merge locations until there are at most
N locations left, where N is an input parameter. The heuristic function is read off the
overall merged automaton. Hoffmann et al. [7] compute the state space of a predicate
abstraction of the system to be checked, and use a mapping from real states into abstract
states to compute the heuristic values.

We add another kind of heuristic functions into the above arsenal. Like Qian and
Nymeyer’s [4] techniques, our heuristic functions belong into the family of pattern
databases (PDB), which were first explored in AI [9], more precisely for hard search
problems in single agent games such as Rubik’s Cube. A PDB heuristic function ab-
stracts a problem by ignoring some of the relevant symbols, e. g., some of the state
variables [4]. The state space of the abstracted problem is built completely as a pre-
process to search, and is used as a look-up table for the heuristic values during search.

The main question to answer is, of course, which symbols should be ignored? How
should we abstract the problem to obtain our PDB? In AI, see e. g. [9,10], most strate-
gies are aimed at exploiting parts of the problem that are largely independent – the idea
being to generate a separate PDB for each part, and accumulate the heuristic values.
Indeed, Edelkamp et al.’s [1,2] heuristic can be viewed as an instance of this, where
each PDB ignores all symbols except the program counter of one single automaton.

In our work, we extend and improve upon a new kind of strategy to choose a PDB
abstraction. The strategy is particularly well suited for model checking; a first version
of it was explored by Qian and Nymeyer [8]. It is based on what we call a Russian
Doll principle. Rather than trying to split the entire system up into (more or less) in-
dependent parts, one homes in on the part of the system that is most relevant to the

Fast Directed Model Checking Via Russian Doll Abstraction 205

safety property, and leaves that part entirely intact.1 Intuitively, this is more suitable for
model checking than traditional AI techniques because a particular combined behavior
of the automata nearest to the safety property is often essential in how the error arises.
The child Russian Doll preserves such combined behaviors, and should hence provide
useful search guidance. The excellent results we obtained in our benchmarks indicate
that this is indeed the case, even with rather small abstractions/“child dolls”.

Given the key idea of the Russian Doll strategy – keep all and only symbols that are
of “immediate relevance” to the safety property to be checked – the question remains
what is “relevant”. Answering this question precisely involves solving the problem in
the first place. However, one can design computationally easy strategies that are intu-
itively very adequate for model checking. The basic idea is to do some form of abstract
cone-of-influence [11] computation, and ignore those symbols that do not appear in
the cone-of-influence. Qian and Nymeyer [8] use a simple syntactic backward chain-
ing process that iteratively collects variable names and requires the user to specify a
threshold on the maximal considered “distance” – number of iterations – of the kept
variables from the safety property. In our work, we use a more sophisticated procedure
based on the abstraction techniques of Kupferschmid et al. [5]. The procedure selects
a subset of the relevant symbols (automata, synchronization actions, clock variables,
integer variables) based on an abstract error path. No user input is required. Once it is
decided which parts to keep, our implementation outputs those parts in UPPAAL input
language. In Russian Doll style, UPPAAL itself is then used to compute the entire state
space of the abstracted problem, and that state space is stored and used as a look-up
table for heuristic values during search.

With half of the related work discussed above, namely [5,6,7], we share the fact
that we are working with UPPAAL, and we also share the set of benchmarks with these
works. The benchmarks are meaningful in that they stem from two industrial case stud-
ies [12,13]. Table 1 gives a preview of our results with our “Russian Doll” approach;
we re-implemented the two heuristic functions defined in [1]; for each of [5,6,7], we
could run the original implementation; finally, we implemented the abstraction strategy
of [8], for comparison with our more sophisticated abstraction strategy (we created the
pattern database with UPPAAL for our strategy). Every entry in Table 1 gives the total
runtime (seconds), as well as the length of the found error path. The result shown is the
best one that could be achieved, on that instance, with the respective technique: from
the data points with shortest error path length, we selected the one with the smallest
runtime (detailed empirical results are given in Section 5). A dash means the technique
runs out of memory on a 4 GByte machine. Quite evidently, our approach drastically
outperforms all the other approaches. This signifies a real boost in the performance of
directed model checking, at least on these benchmarks.

The paper is organized as follows. Section 2 introduces notations. Section 3 explains
some technicalities regarding possible sets of symbols to be ignored, and regarding
the generation of a pattern database using UPPAAL. Section 4 introduces our Russian
Doll strategy for choosing the symbols to be ignored. Section 5 contains our empirical
evaluation, Section 6 discusses related work, and Section 7 concludes.

1 We chose the name “Russian Doll” based on the intuition that the part left intact resembles the
child Russian Doll, which is smaller but still characteristically similar to the parent.

206 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

Table 1. Results preview: total runtime / error path length

Exp. [1]-best [5]-best [6]-best [7]-best [8]-best Russian Doll

C5 114.2 / 57 114.1 / 57 21.8 / 57 13.7 / 57 121.5 / 57 1.1 / 57
C6 – 1211.7 / 57 291.5 / 57 85.2 / 57 – 1.3 / 57
C7 – – 309.1 / 855 204.5 / 1064 – 2.1 / 57
C8 – 427.0 / 433 293.8 / 707 153.5 / 976 – 2.2 / 57
C9 – 875.8 / 614 – – – 2.1 / 58

2 Notations

We assume the reader is roughly familiar with timed automata (TA) and their commonly
used extensions; however, an in-depth familiarity is not necessary to understand the key
contribution of this paper. Here, we give a brief description of the TA variant treated
in our current implementation loosely following the terminology given by Behrmann et
al. [14].

We treat networks of timed automata with binary synchronisation and integer vari-
ables. Our notations are as follows (all sets are finite). Each automaton i is a tuple
(Li, Xi, Vi, Ai, Ei) where Li is a set of locations, Xi is a set of clock variables, Vi

is a set of integer variables, Ai is a set of actions, and Ei is a set of edges; these con-
structs will be explained below. The network consists of a set I of automata. By X ,
V , and A we denote

⋃
i∈I Xi,

⋃
i∈I Vi, and

⋃
i∈I Ai, respectively. Importantly, each

x ∈ X , v ∈ V , and a ∈ A may appear in more than one automaton i ∈ I . In our
Russian Doll abstractions, as stated, we ignore a set of “symbols”. More precisely, such
an abstraction set A will be a subset of I ∪ X ∪ V ∪ A.

To denote the current locations of the automata, we assume a location variable loci

for each i ∈ I , where the range of loci is Li. A state, or system state, of the network is
then given by a valuation of the variables loci, X , and V . Each x ∈ X ranges over the
non-negative reals. Each v ∈ V has a finite domain domv . The action set A contains
the internal action τ , and for each action a? ∈ A there is a corresponding co-action
a! ∈ A; for a ∈ A, we denote the co-action with a. For each i ∈ I , the edges Ei are
given as a subset of Li × Li. Each edge e ∈ Ei is annotated with an action ae ∈ A,
with a guard ge, and with an effect fe. The guard is a conjunction of conditions, each
having the form of either x �� c, or x − y �� c, or lfn(V ′) �� c, where x, y ∈ Xi,
��∈ {<, ≤, =, ≥, >}, c is a constant (a number), and lfn(V ′) is a linear function in a
variable set V ′ ⊆ Vi. The effect is a list of assignments, each of which either has the
form x := c or v := lfn(V ′)+ c, where v ∈ Vi and the other notations remain the same.
Each variable x ∈ Xi and v ∈ Vi occurs on the left hand side of one such assignment
at most. The semantics are defined as usual. Transitions are either asynchronous and
triggered by an edge e where ae = τ , or synchronous and triggered by two edges
e ∈ Ei and e′ ∈ Ej , i �= j, so that ae = a? and ae′ = a! for some a?, a! ∈ A. Each
i ∈ I has a start location l0i ∈ Li; each v ∈ V has a start value c0

v ∈ domv; the start
value of all clocks is 0.

As stated, we address the falsification of safety properties, also commonly referred
to as invariants; in CTL, these properties take the form AGφ. In our current implemen-
tation, φ takes the form g ∧ (

∨
i∈I′ ¬loci = li) where g has the same form as a guard,

I ′ ⊆ I , and li ∈ Li. A path of transitions is called an error path if it leads from the start

Fast Directed Model Checking Via Russian Doll Abstraction 207

state to a state that satisfies ¬φ. An error path is optimal if there is no other error path
that contains less transitions.

The above notations correspond to a subset of the UPPAAL input language; that lan-
guage allows more powerful constructs such as non-binary synchronization, committed
locations, and array manipulations. It is important to note that the restrictions imposed
by the language subset are by no means inherent to our approach. Indeed, the only “lan-
guage bottleneck” in our current implementation is the method choosing the abstraction
set A; as detailed in Section 4, this is based on methods from [5] which are as yet re-
stricted to the above input language. Once A is chosen, UPPAAL itself is used to solve
the abstracted problem, and so of course the whole of UPPAAL’s input language can
be handled. Hence, one can extend our technique simply by devising more generally
applicable techniques for choosing A.

3 Russian Doll Abstraction

This section presents the technicalities of generating the simplified problem in UPPAAL

input language, and using UPPAAL itself to compute the heuristic function. We show
how the simplified problem is generated based on an abstraction set A, how the pattern
database is built and used, and that the resulting heuristic estimates are admissible (i. e.,
lower bounds) provided A satisfies a certain property.

3.1 Abstraction Sets

Assume a network I of timed automata with the notations as specified, and a safety
property AGφ. As mentioned, an abstraction set is a set A ⊆ I ∪ X ∪ V ∪ A. The
abstracted problem is generated as follows.

Definition 1. Given a network I of timed automata and an abstraction set A, the ab-
straction of I under A, A(I), is defined as

{(Li, Xi \ A, Vi \ A, Ai \ A, {A(e) | e ∈ Ei}) | i ∈ I \ A}

where A(e) is initialized to be equal to e and then modified as follows: if ae ∈ A or
ae ∈ A, then aA(e) := τ ; if x ∈ A or y ∈ A for a guard or effect x �� c, x − y �� c, or
x := c, then this guard/effect is removed; if ({v} ∪ V ′) ∩ A �= ∅ for a guard or effect
lfn(V ′) �� c or v := lfn(V ′) + c, then this guard/effect is removed.

Given a safety property AGφ, φ = g ∧ (
∨

i∈I′ ¬loci = li), the abstraction of φ
under A, A(φ), is defined as A(g) ∧ (

∨
i∈I′\A ¬loci = li), where A(g) is defined as

for guards above.

In words, given an abstraction set A, we simply ignore any automaton that appears in
A, as well as any guards or effects that involve variables or actions from A.

It is important to note that this simple strategy does not always have the desired ef-
fect. Consider the case where automaton i has an edge e where ae = a? and automaton
j has an edge e′ where ae′ = a!. Say i ∈ A but a! �∈ A. Then potentially j can never
traverse the edge e′ because there is no one to synchronize with. A similar situation
arises if fe sets v := v′ and ge′ demands v = 7, but v′ ∈ A and v �∈ A. The following
is a sufficient condition on A ensuring that such things do not happen.

208 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

Definition 2. Given a network I of timed automata and an abstraction set A, A is
closed iff all of the following hold:

– If i ∈ I ∩ A and a ∈ Ai, then a ∈ A
– If i ∈ I ∩ A and e ∈ Ei so that fe sets x := c, then x ∈ A
– If i ∈ I ∩ A and e ∈ Ei so that fe sets v := lfn(V ′) + c, then v ∈ A
– If i ∈ I \ A and e ∈ Ei so that fe sets v := lfn(V ′) + c where V ′ ∩ A �= ∅, then

v ∈ A

We will see below that closed A yield admissible heuristic functions. Obviously, any A
can be closed by extending it according to Definition 2.

3.2 Pattern Databases

As explained, pattern databases in our approach are obtained as the result of a complete
state space exploration using UPPAAL. One subtlety to consider here is that, due to the
continuous nature of the set of possible system states in timed automata, UPPAAL’s
search space does not coincide with the set of possible system states. Rather, each state
s that UPPAAL considers corresponds to a set of system states where all automata loca-
tions and integer variables are fixed but the clock valuation can be any of a particular
clock region. A clock region is given in the form of a (normalized) set of unary or bi-
nary constraints on the clock values, called difference bound matrix, which we denote
by DBMs. By [s], we denote the set of system states corresponding to s.2

Our basic notions regard state spaces and error distances.

Definition 3. Given a network I of timed automata, the UPPAAL state space for I ,
S(I), is a tuple (S, T, s0), where S is the set of search states explored by UPPAAL when
verifying a safety property AGφ with φ ≡ �, T ⊆ S × S are the possible transitions
between those search states, and s0 ∈ S is the start state.

Given also a safety property AGφ, an error state is a state s ∈ S so that s |= ¬φ.
Given an arbitrary state s ∈ S, the error distance of s in I with φ, dI,φ(s), is the length
of a shortest path in (S, T) that leads from s to an error state, or dI,φ(s) = ∞ if there
is no such path.

Given Definition 3, it is now easy to state precisely what our pre-process to search
does, when given a network I and a safety property AGφ. First, an abstraction set A
is chosen (with the techniques detailed below in Section 4). Then, UPPAAL is called to
generate S(A(I)). The resulting tuple (S′, T ′, s′0) is redirected into a file, in a simple
format. Once UPPAAL has stopped, an external program finds all error states in S′, and
computes dA(I),A(φ)(s′) for all s′ ∈ S′, using a version of Dijkstra’s algorithm with
multiple sources. In other words, UPPAAL computes the state space of the abstracted
problem, and an external program finds the distances to the abstracted error states.

It remains to specify how S(A(I)) and the dA(I),A(φ)(s′) are used to implement a
heuristic function for solving I and AGφ. The core operation is to map a state in S(I)
onto a set of corresponding states in S(A(I)). For a UPPAAL state s, by [s]|A we denote
the projection of the system states in [s] onto the variables not contained in A.

2 For the reader unfamiliar with timed automata, we want to add that our techniques apply also
to discrete state spaces, in a manner that should become obvious in the following.

Fast Directed Model Checking Via Russian Doll Abstraction 209

Definition 4. Given a network I of timed automata with S(I) = (S, T, s0), an abstrac-
tion set A with S(A(I)) = (S′, T ′, s′0), and a state s ∈ S, the abstraction of s under
A, A(s), is defined as {s′ ∈ S′ | [s′] ∩ [s]|A �= ∅}. Given a safety property AGφ, the
heuristic value of s under A, hA(s), is defined as min{dA(I),A(φ)(s′) | s′ ∈ A(s)}.

Note that [s′] ∩ [s]|A �= ∅ may be the case for more than one s′ because, and only
because, UPPAAL’s search states do not commit to one particular clock valuation. We
have [s′] ∩ [s]|A �= ∅ if and only if s′ and s agree completely on the automata locations
of I \ A and on the values of V \ A, and DBMs′ is consistent with DBMs.3 Testing
consistency of two DBMs is a standard operation for which UPPAAL provides a highly
efficient implementation. Consequently, in our implementation, we store S(A(I)) in a
hash table indexed on I \ A and V \ A, where each table entry contains a list of DBMs,
one for each corresponding abstract state s′; of course, dA(I),A(φ)(s′) is also stored in
each list entry. Lookup of heuristic values is then realized via hash table lookup plus
DBM consistency checks in the list, selecting the smallest dA(I),A(φ)(s′) of those s′ for
which the check succeeded.

Lemma 1. Let I be a network of timed automata with S(I) = (S, T, s0), let A be a
closed abstraction set A, and let s ∈ S be a state. Then hA(s) ≤ dI,φ(s).

Proof Sketch: Let S(A(I)) = (S′, T ′, s′0). The key property is that, in the terms of
[15], (S′, T ′, s′0) approximates (S, T, s0): for any transition (s1, s2) ∈ T , either s and
s′ agree on the symbols not in A, or there is a corresponding transition (s′1, s

′
2) ∈ T ′. So

transitions are preserved, and error path length can only get shorter in the abstraction.

Lemma 1 does not hold if A is not closed. This can be seen easily based on examples
like those mentioned above Definition 2, where a symbol that is abstracted away can
contribute to changing the status of a symbol that is not abstracted away. The importance
of Lemma 1 is that, plugging our heuristic function into A∗, we can guarantee to find a
shortest possible – an optimal – error path.

4 Choosing Abstraction Sets

Having specified how to proceed once an abstraction set A is chosen, it remains to clar-
ify how that choice is made. In AI, the traditional design principle for pattern databases
is to look for different parts of the problem that are largely independent, and to construct
a separate pattern database for each of them, accumulating the heuristic values. This
principle has been shown to be powerful (see e. g. [16,10]). Now, consider this design
principle in model checking. An error typically arises due to some complex interaction
between several automata. If one tears those automata apart, the information about this
interaction is lost. A different approach, first mentioned by Qian and Nymeyer [8], is to
keep only one pattern database that includes as much as possible of those parts of the
network that are of immediate relevance to the safety property. The intuition is that the
particular combined behavior responsible for the error should be preserved.

3 In a discrete state space, s′ and s agree completely on all non-abstracted variables, and so the
mapping becomes simpler.

210 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

To realize this idea, one needs a definition of what is “close” to the safety property,
and what is “distant”. The notion of cone-of-influence [11] computation lends itself
naturally to obtain such a definition. Qian and Nymeyer [8] use a simple method based
on syntactic backward chaining over variable names. Herein, we introduce a more so-
phisticated method based on the abstraction techniques of Kupferschmid et al. [5]. As
we shall see, this method leads to much better empirical behavior, at least in our tests
with UPPAAL on networks of timed automata.

Qian and Nymeyer’s [8] method starts with the symbols – automata, variables –
mentioned in the safety property; this set of symbols forms layer 0. Then, iteratively,
new layers are added, where layer t + 1 arises from layer t by including any symbol y
that does not occur in a layer t′ ≤ t, and that may be involved in modifying the status of
a symbol x in layer t, e. g., x and y may be variables and there may exist an assignment
x := exp(ȳ) where y ∈ ȳ. The abstraction set is then chosen based on a cut-off value d
supplied by the user: A will contain (exactly) all the symbols in layers t > d.

Intuitively, the problem with this syntactic backward chaining is that it is not dis-
criminative enough between transitions that are actually relevant for violating the error
property, and transitions that are not. In our experiments, we observed that, typically,
the layers t converge to the entire set of symbols very quickly (in our largest bench-
mark example, this is the case at t = 5); when cutting off very early (at t = 2, e. g.),
one misses some symbols that are important, and at the same time one includes many
symbols that are not important.

Our key idea for improving on these difficulties is to do a more informed relevance
analysis. We abstract the problem according to Kupferschmid et al. [5]: we compute an
abstract error path with those authors’ techniques, and set A to those symbols that are
not affected by any of the transitions contained in the abstract error path. This way, we
get a fairly targeted notion of what is relevant for reaching an error and what is not. The
abstraction of Kupferschmid et al. [5] does not require any parameters, and hence as a
side effect we also get rid of the need to request an input parameter from the user; i. e.,
our method for choosing A is fully automatic.

Describing Kupferschmid et al.’s [5] techniques in detail would breach the space
limits of this paper and cannot be its purpose. For the sake of self-containedness, the
following is a summary of the essential points. Kupferschmid et al.’s abstraction is
based on the simplifying assumption that state variables accumulate rather than change,
their values. The value s(v) of a variable v in a state s is now a subset rather than an
element, of v’s domain. If v obtains a new value c, then c is included into s(v) without
removing any old values, i. e., the new value subset is defined by s(v) := s(v) ∪ {c}.
Hence the value range of each state variable grows monotonically over transitions, and
hence Kupferschmid et al. call this the monotonicity abstraction.

Of course, the interpretation of formulas, such as transition guards, must be adapted
to the new notion of states. This is done by existentially quantifying the state variables in
the formula where each quantifier ranges over the value subset assigned to the respective
variable in the state. It is easy to see that this abstraction is an over-approximation in
the sense that the shortest abstract error path is never longer than the shortest real error
path; it may be shorter.

Fast Directed Model Checking Via Russian Doll Abstraction 211

The following example describes a situation where no real error path exists but only
an absone. Say we have an integer variable v and one transition with guard v = 0
and effect v := v + 1. The start state is v = 0, and the safety property is AGv < 2.
Obviously, the safety property is valid, i. e., there is no error path. However, such a path
does exist in the abstraction. The abstract start state is {0} which after one transition
becomes {0, 1}. Since the transition guard is abstracted to ∃c ∈ s(v) : c = 0, the
transition can be applied a second time and we get the state {0, 1, 2}: the new values
obtained for v are 1 (inserting 0 into the effect right hand side) and 2 (inserting 1). The
negated safety property, which is abstracted to ∃c ∈ s(v) : c ≥ 2, is satisfied in that
state.

Kupferschmid et al. develop a method that finds abstract error paths in time that is
exponential only in the maximum number of variables of any linear expression over in-
teger variables; i. e., the only exponential parameter is max{|V ′| | ex. i, e : i ∈ I, e ∈
Ei, (lfn(V ′) �� c) ∈ ge or (v := lfn(V ′) + c) ∈ fe}. The method consists of two parts,
a forward chaining and a backward chaining step. The forward chaining step simulates
the simultaneous execution of all transitions in parallel, starting from the start state. In
a layer-wise fashion, this computes for every state variable – i. e., for the location vari-
ables loci, i ∈ I , as well as the integer variables v ∈ V and the clock variables x ∈ X
– what the subset of reachable values is. The forward step stops when it reaches a layer
where the negation of the safety condition can be true. The backward step then starts
at the state variable values falsifying the safety condition; it selects transitions that can
be responsible for these values. The guards of these transitions yield new state variable
values that must be achieved at an earlier layer. The process is iterated, selecting new
transitions to support the new values and so on. The outcome of the process is a se-
quence 〈t1, . . . , tn〉 of transitions that leads from the start state to a state falsifying the
safety property, when executed under the monotonicity abstraction.

In our method for choosing the abstraction set A, we execute Kupferschmid et al.’s
algorithm exactly once to obtain an abstract error path t̄ = 〈t1, . . . , tn〉 for the problem.4

We then collect all symbols not affected by this path:

A0 :={i ∈ I | not ex. e ∈ t̄ s. t.e ∈ Ei}∪
{a ∈ A | not ex. e ∈ t̄ s. t.ae = a}∪
{x ∈ X| not ex. e ∈ t̄, c s. t.(x := c) ∈ fe, and

not ex. i ∈ A0, e ∈ Ei, c s. t.(x �� c) ∈ ge, and
not ex. i ∈ A0, e ∈ Ei, y, c s. t.(x − y �� c) ∈ ge}∪

{v ∈ V | not ex. e ∈ t̄, lfn(V ′), c s. t.(v := lfn(V ′) + c) ∈ fe, and
not ex. i ∈ A0, e ∈ Ei, lfn(V ′), c s. t.(lfn(V ′) �� c) ∈ ge and v ∈ V ′}.

In this notation, e ∈ t̄ is of course a shorthand for asking whether any of the transi-
tions ti involves e. In words, we keep all automata, actions, clock variables and integer
variables that are modified on the path, and we keep all clock and integer variables that
are relevant to a guard in an automaton that we keep. We obtain our final abstraction set
A by closing A0 according to Definition 2.

4 Actually we use a slightly modified version of the described backward chaining procedure, not
considering indirect variable dependencies. We found this method to yield better performance,
by selecting more relevant variable subsets.

212 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

filter FES1

filter FCS1

counter EC1

error detection

filter FLS1

filter FES2

filter FCS2

filter FLS2

counter EC2

counter CL2

main controller

Actuator 1

Actuator 2

counter CL1

Fig. 1. The Single-tracked Line Segment case study

Kupferschmid et al.’s techniques form an appropriate basis for choosing A because
they are computationally efficient, and they do provide useful information about rele-
vance in the problem. Let us consider an example to illustrate this. Figure 1 illustrates
one of our two industrial case studies, called “Single-tracked Line Segment”. This study
stems from an industrial project partner of the UniForM-project [12]. It concerns the de-
sign of a real-time controller for a segment of tracks where trams share a piece of track;
each end of the shared piece of track is connected to two other tracks. The property to
be checked requires that never both directions are given permission to enter the shared
segment simultaneously. That property is not valid because some of the temporal con-
ditions in the control automaton are not strict enough.

Let us consider Figure 1 in some more detail. As one would expect, Actuator 1
and Actuator 2 are the two automata in direct control of the signals allowing (signal
up) or disallowing (signal down) a tram to enter the shared track. In particular, the
safety property expresses that always at most one of those signals is up. The main
controller automaton contains the (faulty) control logic that governs how the signals are
set. The four counter automata count how many trains have passed on each of the four
tracks that connect to the shared segment. The error detection detects inconsistencies
between the counts, meaning that a train that should have left the shared segment is
actually still inside it. Finally, each filter automaton receives an input variable from a
sensor, and removes the noise from the signal by turning it into a step function based
on a simple threshold test (so as to avoid, e. g., mistaking a passing truck for a tram).

The advantage of Kupferschmid et al.’s abstract error path for this example is that it
touches only Actuator 1, Actuator 2, and the control unit. That is, the abstract error
path involves exactly those automata that are immediately responsible for the error.
Further, the abstract error path involves exactly the variables that are crucial in obtaining
the error. The other – irrelevant – variables and automata have only an indirect influence
on the error path, and need not be touched to obtain an error under the monotonicity

Fast Directed Model Checking Via Russian Doll Abstraction 213

abstraction. On the other hand, consider what happens if we apply Qian and Nymeyer’s
[8] syntactic backward chaining instead. In the start layer, indexed 0, of the chaining,
we have only Actuator 1 and Actuator 2. In the next layer, indexed 1, we correctly get
the control unit – but we also get error detection and all of the counter automata. In
just one more step, at layer 2, we get every automaton in the whole network. As if that
wasn’t bad enough, the relevant variables involved in producing the error appear much
later, some of them in layer 5 only. Hence, based on this information, there is no way
of separating the relevant symbols from the irrelevant ones.

5 Empirical Results

We ran experiments on an Intel Xeon 3.06 Ghz system with 4 GByte of RAM. We com-
pare our heuristic to those of Edelkamp et al. [1] and Qian and Nymeyer [8] (both
re-implemented), as well as those of Kupferschmid et al. [5], Dräger et al. [6], and
Hoffmann et al. [7] (all in the original implementation). We further include results for
UPPAAL’s breadth-first search, which we abbreviate BF, and for UPPAAL’s randomised
depth-first search, abbreviated rDF. We distinguish between optimal search and greedy
search. The former is BF, or A∗ with an admissible (lower-bound) heuristic function;
the latter is rDF, or greedy best-first search with any (possibly non-admissible) heuris-
tic function. Table 2 shows the results for optimal search, Table 3 shows the results for
greedy search. In the figures, our Russian Doll technique is indicated with RD. All other
techniques are indicated in terms of the respective citations. If a technique requires a
parameter setting, then we choose the setting that performs best in terms of total run-
time; importantly, this does not compromise the other performance parameters: search
space size and memory usage correlate positively with runtime, and error path length
behavior does not vary significantly over parameter settings.

The “Ci”, i = 1, . . . , 9, examples in the figures come from the Single-tracked Line
Segment case study that was explained above. Examples “Mi” and “Ni”, i = 1, . . . , 4,
come from a study called “Mutual Exclusion”. This study models a real-time protocol
to ensure mutual exclusion of states in a distributed system via asynchronous commu-
nication. The protocol is described in full detail in [13]. The specifications are flawed
due to an overly generous time bound. In all of the Ci, Mi, and Ni test beds, the size of
the network scales with increasing i.

Consider first Table 2. The results for the Ci examples are striking. While all other
techniques suffer from severe scalability issues, we can find the error in even the largest
example in basically no time at all (C2 is somewhat of an outlier). This is due to the
quality of the heuristic function, which is clearly indicated in the number of search states
explored by UPPAAL (note the direct effect that a smaller number of search states has
on the peak memory usage). In the Mi and Ni examples, our technique is less dominant,
but still performs better than the other techniques. The only somewhat bad cases are the
smaller examples where the overhead for computing the Russian Doll pattern database
does not pay off in terms of total runtime. Note that this is benign – what matters are
the hard cases. It is remarkable that, consistently, our method explores at least one order
of magnitude less search states than any of the others. This clearly indicates that, again,

214 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

Table 2. Results for optimal search. Notations: “runtime” is total runtime (including any pre-
processes) in seconds; “search space” is the number of states UPPAAL explored before finding an
error; “memory” is peak memory usage in MByte; “trace” is the length of the found error path;
x e+y means x · 10y

runtime search space memory trace
BF [1] [5] [6] BF [1] [5] [6] BF [1] [5] [6]

M1 0.8 0.7 0.3 0.3 50001 50147 24035 19422 7 9 9 9 48
M2 3.1 3.3 1.4 1.1 223662 223034 101253 77523 11 14 12 11 51
M3 3.3 3.3 1.6 1.4 234587 231357 115008 94882 11 14 12 12 51
M4 13.6 13.8 6.5 6.9 990513 971736 468127 436953 29 33 23 23 54
N1 5.2 5.6 3.3 2.7 100183 99840 59573 46920 9 11 10 10 50
N2 25.6 25.7 15.5 12.7 442556 446465 273235 211132 18 21 16 16 53
N3 26.4 27.0 17.1 13.6 476622 473117 301963 238161 17 20 16 16 53
N4 120.0 118.3 79.0 68.2 2.0e+6 2.0e+6 1.3e+6 1.1e+6 65 57 40 39 56
C1 0.3 0.2 0.6 0.1 35325 35768 17570 9784 7 11 10 10 55
C2 0.9 0.8 1.5 0.4 109583 110593 46945 34644 10 18 13 12 55
C3 1.2 1.1 1.8 0.5 143013 144199 53081 40078 11 21 14 13 55
C4 10.8 10.6 14.8 2.9 1.4e+6 1.4e+6 451755 324080 78 124 52 41 56
C5 114.0 114.2 114.1 21.8 1.2e+7 1.2e+7 3.4e+6 2.4e+6 574 927 329 246 57
C6 – – 1211.7 291.5 – – 3.2e+7 2.4e+7 – – 2880 2402 57
C7 – – – – – – – – – – – – 57
C8 – – – – – – – – – – – – 57
C9 – – – – – – – – – – – – 58

runtime search space memory trace
[7] [8] RD [7] [8] RD [7] [8] RD

M1 1.4 0.7 4.8 22634 28788 190 9 12 13 48
M2 2.8 2.9 5.0 94602 121594 4417 12 23 13 51
M3 3.2 3.1 5.2 121559 131482 11006 12 24 15 51
M4 9.0 12.8 6.2 466967 543872 41359 24 67 20 54
N1 4.6 4.9 26.8 46966 61830 345 10 21 21 50
N2 13.7 27.2 17.7 211935 271912 3811 16 71 21 53
N3 14.6 30.0 22.4 233609 298208 59062 16 74 33 53
N4 58.6 154.3 55.5 1.0e+6 1.2e+6 341928 39 305 105 56
C1 3.5 0.4 1.0 7088 30201 130 10 14 9 55
C2 3.7 1.0 1.7 15742 95560 89813 11 25 27 55
C3 3.7 1.4 0.9 15586 127327 197 12 31 9 55
C4 6.1 12.4 1.0 108603 1.2e+6 1140 23 181 10 56
C5 13.7 121.5 1.1 733761 1.1e+7 7530 194 1479 11 57
C6 85.2 – 1.3 7.3e+6 – 39435 745 – 16 57
C7 – – 2.1 – – 149993 – – 32 57
C8 – – 2.2 – – 158361 – – 34 57
C9 – – 2.1 – – 127895 – – 39 58

our approach yields the best quality search information (the relatively high memory
usage for N4 is mostly due to the size of the pattern database).

Consider now Table 3, the data for the greedy searches. The techniques by Kupfer-
schmid et al. [5], Dräger et al. [6], and Hoffmann et al. [7] all perform much better,

Fast Directed Model Checking Via Russian Doll Abstraction 215

Table 3. Results for greedy search. Notations as in Table 2; “K” means thousand.

runtime search space memory trace
Exp rDF [1] [5] [6] rDF [1] [5] [6] rDF [1] [5] [6] rDF [1] [5] [6]

M1 0.8 0.4 0.0 0.3 29607 31927 5656 21260 7 9 8 9 1072 1349 169 90
M2 3.1 2.8 0.3 1.0 118341 203051 30743 78117 10 15 10 10 3875 7695 431 102
M3 2.8 1.6 0.2 1.1 102883 174655 18431 85301 9 12 9 10 3727 5412 231 105
M4 12.7 7.3 1.2 3.8 543238 579494 122973 287122 22 28 15 16 15K 5819 849 124
N1 1.9 1.3 0.4 1.2 41218 42931 16335 30970 7 9 9 9 1116 1695 396 110
N2 9.3 9.5 2.4 5.8 199631 264930 88537 149013 13 17 12 12 4775 9279 990 127
N3 8.4 4.9 0.6 6.0 195886 134798 28889 158585 12 14 10 12 3938 1656 324 108
N4 40.9 52.1 4.9 31.6 878706 1.5e+6 226698 785921 39 60 20 32 18K 1986 1199 147
C1 0.8 0.1 0.1 0.1 25219 19263 2368 2025 7 11 9 10 1056 794 95 149
C2 1.0 0.4 0.2 0.2 65388 68070 5195 4740 8 15 9 10 875 962 84 198
C3 1.1 0.6 0.3 0.2 85940 97733 6685 6970 10 19 9 10 760 916 109 198
C4 8.4 6.1 2.5 0.5 892327 979581 55480 31628 43 96 16 12 1644 2305 142 173
C5 72.4 69.4 20.8 2.6 8.0e+6 8.8e+6 465796 260088 295 734 68 37 2425 2708 330 268
C6 – – 177.4 23.3 – – 4.5e+6 2.9e+6 – – 519 303 – – 490 377
C7 – – – 309.1 – – – 2.9e+7 – – – 2600 – – – 855
C8 – – 427.0 293.8 – – 1.2e+7 2.8e+7 – – 1266 2608 – – 433 707
C9 – – 875.8 – – – 2.0e+7 – – – 1946 – – – 614 –

runtime search space memory trace
Exp [7] [8] RD [7] [8] RD [7] [8] RD [7] [8] RD

M1 1.4 0.2 4.8 23257 11284 249 9 9 13 51 169 56
M2 2.4 1.0 4.8 84475 59667 495 12 15 13 53 476 77
M3 2.5 1.4 4.9 92548 85629 993 12 17 13 56 589 54
M4 5.6 3.3 5.1 311049 216938 3577 24 32 13 56 419 106
N1 3.2 0.5 26.5 31593 13902 242 10 11 21 55 159 57
N2 8.7 3.8 17.7 172531 93467 470 16 28 20 58 624 64
N3 8.2 5.3 15.4 167350 104104 1787 16 28 19 58 493 71
N4 39.4 30.7 10.3 975816 422499 10394 39 93 19 61 242 81
C1 3.2 0.3 0.9 1588 23173 130 10 13 9 159 65 55
C2 3.5 0.8 1.2 3786 75111 56894 10 21 21 181 77 128
C3 3.6 1.1 1.0 3846 101049 290 10 26 9 187 75 57
C4 4.9 8.8 1.1 30741 1.0e+6 1163 14 151 10 241 86 58
C5 7.1 84.3 1.4 185730 9.1e+6 39837 31 1075 18 423 124 76
C6 23.6 – 1.7 1.9e+6 – 80878 195 – 25 757 – 65
C7 204.5 – 6.7 1.8e+7 – 697116 1591 – 129 1064 – 65
C8 153.5 – 10.4 1.4e+7 – 1.1e+6 1282 – 194 976 – 98
C9 – – 20.0 – – 2.2e+6 – – 355 – – 109

compared to the optimal search in Table 2, in terms of runtime, search space size, and
peak memory usage. This improvement is bought at the cost of significantly overlong
error paths; in most cases, the returned error paths are more than an order of magni-
tude longer than the shortest possible error path. For rDF and the heuristic functions by
Edelkamp et al. [1], the path length increase is even more drastic, by another order of
magnitude, and with only a moderate gain in runtime. Qian and Nymeyer’s [8] heuristic
function yields much improved runtime behavior in Mi and Ni at the cost of signifi-
cantly overlong error paths; in Ci, greedy search does not make much of a difference.

216 S. Kupferschmid, J. Hoffmann, and K.G. Larsen

Finally, consider our RD technique. In Mi and Ni, the search space size performance
is drastically improved now beating the other techniques quite convincingly (but not as
convincingly in terms of runtime, where [8] is very competitive except in N4). In Ci,
the search spaces become a little larger; it is not clear to us what the reason for that is.
The loss in error path quality is relatively minor.

In summary, the empirical results clearly show how superior our Russian Doll heuris-
tic function is, on these examples, in comparison to previous techniques.

6 Related Work

We have already listed the previous methods for generating heuristic functions for di-
rected model checking [3,4,8,5,6,7]. By far the closest relative to our work is the work
by Qian and Nymeyer [8] which uses an intuitively similar strategy for generating pat-
tern database heuristics. As we have shown, our improved strategy yields much better
heuristic functions, at least in our suite of benchmarks. It remains to be seen whether
that is also the case for other problems. It should also be noted that Qian and Nymeyer
[8] use their heuristic function in a rather unusual BDD-based iterative deepening A∗

procedure, and compare that to a BDD-based breadth-first search. As the authors state
themselves, it is not clear in this configuration how much of their empirically observed
improvements is due to the heuristic guidance, and how much of it is due to all the other
differences between the two search procedures. In our work, we use standard heuristic
search algorithms. We finally note that Qian and Nymeyer [8] state as the foremost topic
for future work to find better techniques choosing the abstraction; this is exactly what
we have done in this paper.5

7 Conclusion

We have explored a novel strategy for generating pattern database heuristics for directed
model checking. As it turns out, this strategy results in an unprecedented efficiency of
detecting error paths, solving within a few seconds, and to optimality, several bench-
marks that were previously hardly solvable at all.

Our empirical results must of course be related to the benchmarks on which they
were obtained, and it is a priori not clear to what extent they will carry over to other
model checking problems. However, there certainly is a non-zero chance that they will
carry over. This makes the further exploration of this kind of strategy an exciting direc-
tion, which we hope will inspire other researchers as well.

Acknowledgements

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

5 We remark on the side that we developed our technique independently from Qian and Nymeyer
[8], and only became aware of their work later.

Fast Directed Model Checking Via Russian Doll Abstraction 217

References

1. Leue, S., Edelkamp, S., Lluch Lafuente, A.: Directed Explicit Model Checking with HSF-
SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg
(2001)

2. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. STTT 5, 247–267 (2004)

3. Groce, A., Visser, W.: Model checking Java programs using structural heuristics. In: Proc.
ISSTA, pp. 12–21. ACM, New York (2002)

4. Nymeyer, A., Qian, K.: Guided Invariant Model Checking Based on Abstraction and Sym-
bolic Pattern Databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 497–511. Springer, Heidelberg (2004)

5. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI Planning Heuris-
tic for Directed Model Checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
35–52. Springer, Heidelberg (2006)

6. Drãger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer, Hei-
delberg (2006)

7. Hoffmann, J., Smaus, J.G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using predi-
cate abstraction to generate heuristic functions in UPPAAL. In: Edelkamp, S., Lomuscio, A.
(eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 51–66. Springer, Heidelberg (2007)

8. Qian, K., Nymeyer, A., Susanto, S.: Abstraction-guided model checking using symbolic ida*
and heuristic synthesis. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 275–289.
Springer, Heidelberg (2005)

9. Culberson, J., Schaeffer, J.: Pattern databases. Comp. Int. 14, 318–334 (1998)
10. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent construction

of pattern database heuristics for cost-optimal planning. In: Proc. AAAI (2007)
11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
12. Krieg-Brückner, B., Peleska, J., Olderog, E., Baer, A.: The UniForMWorkbench, a uni-

versal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing,
J.M. (eds.) FM 1999. LNCS, vol. 1709, Springer, Heidelberg (1999)

13. Dierks, H.: Comparing Model-Checking and Logical Reasoning for Real-Time Systems. For-
mal Aspects of Computing 16, 104–120 (2004)

14. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

15. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM Transac-
tions on Programming Languages and Systems 16, 1512–1542 (1994)

16. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. AIJ 134, 9–22 (2002)

A SAT-Based Approach to Size Change

Termination with Global Ranking Functions

Amir M. Ben-Amram1 and Michael Codish2

1 School of Computer Science, Tel-Aviv Academic College, Israel
2 Department of Computer Science, Ben-Gurion University, Israel

amirben@mta.ac.il, mcodish@cs.bgu.ac.il

Abstract. We describe a new approach to proving termination with
size change graphs. This is the first decision procedure for size change
termination (SCT) which makes direct use of global ranking functions. It
handles a well-defined and significant subset of SCT instances, designed
to be amenable to a SAT-based solution. We have implemented the ap-
proach using a state-of-the-art Boolean satisfaction solver. Experimen-
tation indicates that the approach is a viable alternative to the complete
SCT decision procedure based on closure computation and local ranking
functions. Our approach has the extra benefit of producing an explicit
witness to prove termination in the form of a global ranking function.

1 Introduction

Program termination is a cornerstone problem of program verification, as well as
being the quintessential example for undecidability. In practice, however, there
is a growing conviction that automated termination analysis is viable. This can
be explained by the hypothesis that in realistic, correct programs, termination
usually follows from reasons that are not very complex. The challenge of ter-
mination analysis is to design a useful program abstraction that captures the
properties needed to prove termination as often as possible, while making ter-
mination checking decidable.

The Size-Change Termination method (SCT) is such an approach. Formally
introduced in [17], SCT is a program abstraction where termination is decidable.
Briefly, an abstract program is a directed control-flow graph (CFG), where each
arc is an abstract transition, specified by its source and target locations and
annotated by a size-change graph. The latter describes how the sizes of program
data are affected by the transition. The abstract program terminates if and only
if every infinite CFG path implies that a value descends infinitely. We assume
that the values described by the size-change graphs are well-founded, so infinite
descent is impossible.

The size-change termination method has been successfully applied in a va-
riety of different application areas [18,8,15,24,23,1,19]. A significant factor in
the success of the method is that, in line with other recent work [5,10,11,13],
it departs from the classic approach of seeking a termination proof in the form
of a global ranking function—a function that ranks program states so that the
rank decreases on every transition. Instead [17] gave an algorithm that takes

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 218–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A SAT-Based Approach to Size Change Termination 219

a local approach, covering all possible CFG cycles and proving termination of
each. In [6], the SCT condition is expressed in terms of assigning a local ranking
function to every possible cycle. That paper shows that it suffices to restrict
local ranking functions to a very simple form—namely sums of subsets of the
(abstract) program variables. But local ranking functions cannot serve as a wit-
ness to termination that can be checked against any transition, in the way a
global ranking function can be used.

It is this difference that motivates our interest in global ranking functions:
the ranking expression (i.e., the formula that represents the ranking function)
is useful as a certificate, which can be used to verify the claim that a program
terminates. As pointed out in [16], such a setup allows a theorem prover to certify
the termination claim while allowing the tool that searches for the termination
proof to stay outside the trusted (formally verified) code base. One can also
consider applications to proof-carrying code, where again the desire is for the
proof to be given as a certificate that is easier to check than to find.

Thus reconciling the SCT method with the global ranking function approach
is a theoretical challenge with a practical motivation. Initially, it had not been
clear whether there is any constructive way to characterize an SCT termination
proof in terms of a global ranking function. A break-through was achieved by
Chin Soon Lee [12], who characterized a class of expressions that are sufficient
for globally-ranking any terminating SCT program, and showed that the ranking
expression can be effectively constructed from the size-change graphs. While this
class of expressions is syntactically simple, the ranking expressions themselves
can be exponentially large (the upper bound in [12] is triple-exponential). This
makes its usage as a certificate difficult.

As Krauss [16] points out, there is a complexity-theoretic argument that pre-
cludes the existence of short and simple certificates for size-change termination:
the SCT decision problem is PSPACE-complete, and such problems do not have
polynomially-verifiable certificates. Ben-Amram [2] gives a more detailed proof,
that shows that the assumption “polynomially verifiable” can be replaced with
the even humbler “polynomially computable.”

Our proposition, presented in this paper, for solving this difficulty is to define
a subset of SCT instances that is rich enough for practical usage and has concise
(polynomial) global ranking expressions. Such a set would naturally be in NP,
and thus our proposition also gives an answer to a natural theoretical curiosity—
namely is there an interesting subset of SCT at the NP level. If a set is in NP, it
is amenable for solution strategies not available for PSPACE-complete problems;
in particular, it is reducible to SAT, and given the performance of state-of-the
art SAT solvers, this is practically significant.

A subset of SCT, decidable in polynomial time and hence called SCP, was
presented in [4]. This subset is, however, defined implicitly, by giving an algo-
rithm, also called SCP which can be seen as a heuristic to recognize programs in
our class, analogically called SCNP. Thus, SCNP is the natural SCT subset that
encompasses the instances handled by SCP. The arguments and examples given
in [4] to explain the usefulness of SCP provide initial assurance that SCNP is rich
enough. Now, we can also support this claim by ample experimental evidence.

220 A.M. Ben-Amram and M. Codish

Contributions of this work. We identify a class of expressions that are useful for
globally ranking size-change terminating programs: the expressions are concise,
they are constructed so that proving the descent in every transition is relatively
simple, and they are expressive enough for practical usage of SCT. We define
SCNP as the class of SCT instances for which this proof strategy works. We
turn this characterization into an effective algorithm using SAT and constraint-
solving technology. We have thus created the first tool that not only verifies that
an SCT instance terminates, but also produces a ranking expression. To further
improve its usefulness for certification, our tool also outputs the justification,
that is, the argument that links the ranking function to the size-change graphs.

Here are some observations related to comparison between the different SCT
algorithms. The standard algorithm for deciding SCT in full is based, as men-
tioned above, on the local approach and composition closure computation. The
SCP algorithm of [4] already handles some examples of the following kinds: (1)
instances which need exponentially many local ranking-functions (see [2]), there-
fore driving the closure algorithm to exponential behavior; and (2) instances
where any ranking expression of the form used in [12] must be exponentially
big [3]. Thus, our method also handles such examples. We also illustrate where
our method outperforms SCP.

The next two sections contain fuller definitions and background facts on SCT
and ranking functions. Section 4 describes our class of ranking functions and
some related theory, and Sections 5–6 describe the implementation and experi-
ments performed so far.

2 Size Change Termination

This section introduces the SCT abstraction, and reviews the major facts about
SCT decision procedure(s). Terminology is not uniform across the related pub-
lications and we have made an arbitrary choice. For instance, we use the term
program point where some references use, e.g., flow-chart point, program location
and function, the latter obviously in a functional-programming context.

An abstract program is a set of abstract transitions. An abstract transition is
a relation on abstract program states. The approach is programming-language
independent and focuses solely on abstract states and transitions. A front-end
analyzes concrete programs and creates the abstraction for our analysis. Appro-
priate front ends exist for various programming systems [8,24,23,1,19,16].

Definition 1 (program). An (abstract) program consists of a finite set P of
program points, where every program point p is associated with a fixed list Arg(p)
of argument positions; and of a finite set of size-change graphs, defined below,
representing possible transitions. The number of argument positions for p is called
the arity of p. We sometimes write p/n to denote that p is of arity n.

Definition 2 (program state). Let Val be a fixed, infinite well-ordered set.
An (abstract) program state is given by associating a value from Val to each
argument position of a program point p. The set of all states is S t.

A SAT-Based Approach to Size Change Termination 221

In this paper we write a program state down as a term p(u1, . . . , un), where n
is understood to be the arity of p. The argument positions may represent actual
data in the program (of type consistent with Val), but quite often they represent
some “size measures” or “norms” associated with the actual data.

Definition 3 (size-change graph). A size-change graph is formally a triple
g = (p, q, A) where p, q are program points and A ⊂ Arg(p) × SizeLabel × Arg(q)
is a set of size-change arcs with SizeLabel = {↓, ↓=} indicating strict or non-strict
descent between an argument of p and an argument of q.

As an alternative notation, we represent a size-change graph as a constraint logic
programming clause p(x̄) :– π; q(ȳ) with x̄ = x1, . . . , xn, ȳ = y1, . . . , ym, and π
a conjunction of constraints of the form (xi > yj) or (xi ≥ yj). We also write
π |= φ to indicate that proposition φ (involving values x̄ and ȳ) holds under the
assumptions π.

Since the size-change graphs implicitly reveal the set of (relevant) program
points, we identify an abstract program with a set G of size change graphs. The
control-flow graph (CFG) of the program is the directed (multi-)graph over P
underlying G (namely, every size-change graph corresponds to an arc).

Definition 4 (transitions). A state transition is a pair (s, s′) of states. Let
g = p(x̄) :– π; q(ȳ) be a size-change graph. The associated set of transitions is
Tg = {(p(x̄), q(ȳ)) | π}. The transition system associated with a set of size-change
graphs, G, is TG =

⋃
g∈G Tg.

Definition 5 (termination). Let G be an SCT instance. A run of TG is a
(finite or infinite) sequence of states s0, s1, s2 . . . such that for all i, (si, si+1) ∈
TG. Transition system TG is uniformly terminating if it has no infinite run.

An SCT instance G is positive (or, satisfies SCT) if TG is uniformly terminating.
Fortunately, this is not dependent on the specific choice of Val, which justifies
considering it as a property of G. This “semantic” definition is not the one given
in [17]; indeed, in that paper a “combinatorial” definition is given, in terms of
the graphs, and it is a significant result that the given property is equivalent
to uniform termination. However, since they are equivalent, we can forego the
combinatorial definition, as its details are not used in this work.

It was proved in [17] that the set of positive SCT instances is decidable and its
complexity class was determined: it is PSPACE-complete. Decidability is proven
in two ways, one of which is direct, i.e., an algorithm that specifically solves this
problem. It is based on computing the composition-closure of G, a technique al-
ready used by other termination analyzers [18,8]. Such an algorithm is obviously
exponential-time. Most current implementations of SCT use this algorithm, but
an obvious concern regarding its complexity prompted Lee and Ben-Amram to
look for a polynomial-time decidable subset of SCT. A polynomial-time algo-
rithm (SCP, for Size-Change termination in Ptime) that decides such a subset is
presented in [4]. In experiments, it performed very well on the benchmark used in
that work—a collection of example programs obtained from researchers working

222 A.M. Ben-Amram and M. Codish

on Prolog termination. An interesting part of [4] is an attempt to explicate the
capabilities of this algorithm, since it is heuristic and it is not a priori obvious
why or when it should be successful. The explanation given links the algorithm
to specific “size-change patterns”—including lexicographic descent, multiset de-
scent, and dual-multiset descent (the last two terms are defined later in this
paper). These observations form the starting point of the current work.

3 Ranking Functions

In this section we introduce ranking functions and describe some known facts
regarding SCT and ranking functions.

Definition 6 (quasi-order). A quasi-order over a set D is a binary relation
� ⊆ D × D which is transitive and reflexive. Its strict part � is defined by
x � y ⇐⇒ x � y ∧ y �� x. A well-quasi-order means a well-founded one.

Definition 7 (ranking function). Let G be a set of size change graphs. A
function ρ which maps program states to a well-quasi-order (D, �) is a (global)
ranking function for G if for every graph g = p(x̄) :– π; q(ȳ) ∈ G, it holds that
π |= ρ(p(x̄)) � ρ(q(ȳ)).

The qualifier global is used to distinguish this notion of a ranking function from
another (local) one (which is not used in this work). When depicting graphs we
use solid and dashed lines to respectively indicate strict and nonstrict edges.

Example 1. Consider the following two size-change graphs:

p :

p :

x1

�� ���
�

� x2

���
�

�
x3

y1 y2 y3

p :

p :

x1 x2

����
��

�
���
� x3

��
y1 y2 y3

A ranking function for this set is ρ(x1, x2, x3) = max{〈x1, 1, x3〉, 〈x2, 0, x3〉}
where tuples are ordered lexicographically.

We remark that lexicographic ordering is used throught this work, and we rely
on the well-known fact that if D is well-founded then so is the set of tuples over
D of a fixed length, or of a bounded length (when comparing tuples of differing
lengths, if one is a prefix of the other, it is considered smaller).

It is obvious that the existence of a ranking function for G implies termination.
This is, in fact, an equivalence (for the other direction, take TG as a quasi-order).
The ranking technique has been known for a long time and seems to be the
natural way to prove termination of transition systems. Even if we know that a
system terminates, an explicit ranking function conveys interesting information
about the way that computation progresses towards its finish line.

Another view is that a ranking function (given explicitly as some kind of ex-
pression) constitutes a witness, or certificate, to termination. When presented

A SAT-Based Approach to Size Change Termination 223

with the expression, one only has to verify that it does decrease on every tran-
sition This is conceptually easier than establishing a termination proof from
scratch, essentially because it only requires arguing about a single transition at
a time. Thus, the argument needed to prove termination, given a ranking func-
tion, is logically simpler than the argument necessary for a termination proof
using only the SCT graphs, even though this is possible. This simplification is an
advantage for users who wish to establish the termination of a program within
a theorem-prover [16]. Depending on the form of the ranking function, verifying
a certificate may also be easier in a computational-complexity sense (and per-
haps a programming sense) than proving termination from the graphs. These
considerations are important in “proof-carrying code” scenarios [21].

The SCT criterion was proved in [17] to be decidable, but the algorithms given
do not construct a ranking function. The question of whether it is at all possible
to obtain an explicit expression for the ranking function (we know that a function
exists, once termination is proved!) has only been settled (in the positive) a few
years later, in a paper by Chin Soon Lee [12]. The size of the ranking expression
in this work is triply-exponential in the worst-case. Recent progress [3] reduces
this to a single exponent, but obviously this is still a deterring complexity for
practical usage (such as for certification).

However, these works provide an important theoretic underpinning to working
with ranking functions for SCT, as they exhibit a class of functions within which
all SCT instances can be ranked.

Theorem 1 (Lee 2007). If G is SCT, it has a ranking function, effectively
constructible from the size-change graphs, of the form: ρ(s) = min{M1, M2, . . . }
where Mi is max{ti1, t

i
2, . . . } and each tij is a tuple of arguments (of the state s)

and constants.

The ranking function in Example 1 has precisely this form (degenerate in that
the min operator is unnecessary).

Lee’s result indicates a small and yet sufficient set of operators for constructing
ranking functions, and also shows that a very limited way of combining them is
sufficient. The fact that the expressions are very limited makes the theoretical
result even more remarkable. However, it is natural to expect that by narrowing
down the class of expressions, we make it more likely that the representation of
the ranking function will be big.

In general, we cannot expect any reasonable class of expressions to beat the
exponential upper bound. This follows from complexity-theoretic considerations,
as explained in [2]. However, it is easy to find instances where the use of addi-
tional operators or expression structures can allow for more concise expressions.

Example 2. The function ρ(x1, x2, . . . , xn) = 〈max{x1, x2}, . . . , max{xn−1, xn}〉
is of linear size. Expressing it in the form max-of-tuples leads to an expression
with 2n/2 tuples. Thus, simply changing the nesting structure suffices for an
exponential improvement in size.

In this work we use several expression constructors that yield concise expres-
sions where, in some cases, the simple forms would lead to exponential size. On

224 A.M. Ben-Amram and M. Codish

the other hand, our class of expressions is not universal. Its specific design is a
crucial ingredient in our work and is unveiled in the next section.

4 SCNP: Size-Change Termination NP Subset

This section introduces a class SCNP of size change termination problems. Its
definition is derived from a specific form of ranking functions. We first define
a class of functions; then we define SCNP to include an SCT instance if and
only if it has a ranking function of our class. Thus, this definition is based on
ranking functions and the fact that the resulting subset is NP is an immediate
consequence of showing that our ranking functions have polynomial size and
that the problem of checking a function against a set of graphs is also in NP.

The building blocks for our construction are four types of well-quasi-orders
and certain level mappings which are functions mapping program states into
these orders. These are defined next.

Definition 8 (multiset extensions). Let (D, �) be a total order and (D, �)
its strict part. Let ℘(D) denote the set of multisets of elements of D of at most
n elements, where n is fixed by context1. The μ-order extension of (D, �), for
μ ∈

{
max, min, ms, dms

}
, is the quasi-order (℘(D), �μ) where:

1. (max order) S �max T holds iff max(S) � max(T), or T is empty; S �max T
holds iff max(S) � max(T), or T is empty while S is not.

2. (min order) S �min T holds iff min(S) � min(T), or S is empty; S �min T
holds iff min(S) � min(T), or S is empty while T is not.

3. (multiset order [14]) S �ms T holds iff T is obtained by replacing a non-
empty sub-multiset U ⊆ S by a (possibly empty) multiset V such that U �max

V ; The weak relation S �ms T holds iff S �ms T or S = T .
4. (dual multiset order [4]) S �dms T holds iff T is obtained by replacing a

sub-multiset U ⊆ S by a non-empty multiset V with U �min V ; The weak
relation S �dms T holds iff S �dms T or S = T .

Example 3. Let S =
{

4, 3, 3, 0
}

and T =
{

4, 3, 2, 1, 1
}
. We have T >min S,

S ≥max T and T ≥max S. We have S >ms T because U = {3, 0} is replaced
by V = {2, 1, 1}, where all elements are smaller than max(U). We don’t have
S >dms T , but T >dms S.

We give the following well-known facts without proof.

Lemma 1. When the underlying order is total, so are all the multiset exten-
sions. If (D, �) is well-founded, then so is each of the extensions (D, �μ).

Note however that the min/max orders are not partial orders, but rather quasi
orders as anti-symmetry does not hold. Why these four orders? The motivation
lies in previous work with SCT, as mentioned at the end of Section 2.

1 Given an SCT instance G, n is the maximum arity in G.

A SAT-Based Approach to Size Change Termination 225

Definition 9 (level mappings). Let G be a set of size change graphs involving
N program points; and let M be the sum of arities of all program points. A level
mapping is a function f from St to a certain (quasi) ordered set. In this work,
level mappings are one of the following:

Numeric: f maps each program state s = p(ū) to a natural number 0 ≤ f(s) <
N , such that f(s) only depends on the program-point.

Plain: f maps a program state p(ū) to a multiset
{

v1, . . . , vk

}
∈ ℘(Val) where

v1, . . . , vk are arguments in ū; the selection of argument positions only de-
pends on the program point.

Tagged: f maps a program state p(ū) to a multiset {(v1, n1), . . . , (vk, nk)} ∈
℘(D×N) where v1, . . . , vk are elements of ū and n1, . . . , nk are natural num-
bers less than M (called tags). The selection of argument positions as well
as the tags is determined by the program point.

We use a subscripted annotation on f to indicate the order associated with its
range and write fμ with μ ∈

{
max, min, ms, dms

}
for the multiset orders (both

over Val and over Val × N). We write fω for the numeric level mapping, where
the order �ω is the natural order ≥ on integers.

Example 4. The following are plain and tagged level mappings (respectively),
assuming a program with program points p/2 and q/3:

fμ(s) =

⎧
⎪⎨

⎪⎩

{u, v} if s = p(u, v)
{u} if s = q(u, v, w)
∅ otherwise

f ′μ(s) =

⎧
⎨

⎩

{(u, 0)} if s = p(u, v)

{(u,1), (w,0)} if s = q(u, v, w)

∅ otherwise

Definition 10 (SCNP). A set of size change graphs is in SCNP if it has a
ranking function which is a tuple of level mappings.

Example 5. Consider the size change graphs below with the level mappings fμ

and f ′μ (with μ = max) from Example 4.

G =
{

p(x1, x2) :– x1 > y1, x2 ≥ y2, x1 ≥ y3; q(y1, y2, y3),
q(x1, x2, x3) :– x1 ≥ y1; p(y1, y2)

}

Function ρ(s) = 〈f ′max(s), fmax(s)〉 is a ranking function for G; the reader may
find it interesting to figure out the justification before reading further.

Definition 11 (orienting graphs). We say that a level mapping fμ orients a
size-change graph g = p(x̄) :– π; q(ȳ) if π |= f(p(x̄)) �μ f(q(ȳ)); it orients g
strictly if π |= f(p(x̄)) �μ f(q(ȳ)); and it orients a set G of size-change graphs
if it orients every graph of G, and at least one of them strictly.

The next lemma is immediate from the definitions.

Lemma 2. Let f1, . . . , fm be level mappings. The function

ρ(s) = 〈f1(s), f2(s), . . . , fm(s)〉

is a (lexicographic) ranking function for G if and only if for every g ∈ G, there
in an i ≤ m such that g is oriented by f1, . . . , f i and strictly oriented by f i.

226 A.M. Ben-Amram and M. Codish

Definition 12. Function ρ(s) = 〈f1(s), f2(s), . . . , fm(s)〉 is irredundant if for
all i ≤ m, f i orients all graphs that are not strictly oriented by f j for some
j < i, and strictly orients at least one of these graphs.

Observe that an irredundant function is a tuple of length at most |G|. Verifying
such a ranking function reduces to the problem of testing whether a graph is
(strictly) oriented by a given level mapping. We elaborate on this test for each
kind of level mapping. We assume that a level mapping f is given explicitly,
by listing the set of argument positions and/or natural number associated with
every program point. For the case of numeric level mappings the test is trivial.

Plain level mappings Let fμ be a plain level mapping and g = p(x̄) :– π; q(ȳ). It
is convenient to view g as a graph (in the way of Definition 3). Thus π |= x ≥ y
is equivalent to g having an arc x → y, while π |= x > y if the arc is strict. By gt

we denote the transpose of g (obtained by inverting all the arcs). Let S ⊆ x̄ be
the set of argument positions selected by fμ(p(x̄)) and similarly T for fμ(q(ȳ)).
The definition of �μ indicates precisely what π has to satisfy. We elaborate,
assuming that S, T are nonempty.

1. max order: for non-strict descent, every y ∈ T must be “covered” by an
x ∈ S such that π |= x ≥ y. Strict max-descent requires x > y.

2. min order: Same conditions but on gt (thus, now T covers S).
3. multiset order: for non-strict descent, every y ∈ T must be “covered” by an

x ∈ S such that π |= x ≥ y. Furthermore each x ∈ S either covers each
related y strictly (x > y) or covers at most a single y. Descent is strict if
there is some x of the strict kind.

4. dual multiset order: Same conditions but on gt (now T covers S).

Example 6. Consider again G from Example 5, and fμ from Example 4. The first
SCG (from p to q) is oriented strictly taking μ = max and μ = ms, but not at
all under their duals. The second SCG is oriented weakly for μ = min and not
under any other of the orders.

Tagged level mappings These are just like plain level mappings except that the
underlying order is modified by the presence of tags. So to decide whether π |=
f(p(x̄)) �μ f(q(ȳ)) where f is a set of tagged arguments, we use the rules given
above for the multiset-extension μ, plus the following facts:

π |= (x, i) � (y, j) ⇐⇒ (π |= x � y) ∧ (π |= x � y ∨ i > j)
π |= (x, i) � (y, j) ⇐⇒ (π |= x � y) ∨ (π |= x � y ∧ i ≥ j)

As an example the reader may want to verify that the function f ′, defined
in Example 4, orients the graphs of Example 5 under max ordering, with the
second one oriented strictly. This is, of course, used in arguing the correctness
of the ranking function in that example.

We are now in position to state the following Theorem.

Theorem 2. SCNP is in NP.

A SAT-Based Approach to Size Change Termination 227

Proof. If a ranking function of the desired form exists, then there is an irredun-
dant one of polynomial size. Checking the condition in Lemma 2, according to
the rules given above for the different orderings, is clearly polynomial-time.

Since the problem is in NP it is known that it can be reduced to SAT. In fact
it is possible to transform a complete problem instance into one big Boolean
formula whose satisfying assignment will encode the sought solution. To find
the assignment we can make use of an off-the-shelf SAT solver. However, it is
far more efficient to make use of the structure of the problem and call the SAT
solver several times, on smaller SAT instances.

Our algorithm has the following top-level structure: as long as G is not empty,
find a level mapping f that orients G. Remove the graphs oriented strictly by f ,
and repeat.

Basically, the instruction “find a level mapping” is performed by trying each of
the level-mapping types in turn, so that the smaller NP problems that we reduce
to SAT are of the form: given G and μ, find out if there is a level mapping fμ

that orients it. Numeric level mappings have a special role in this algorithm.
Since such a level mapping ignores the argument values we write it as f(p()).

Claim. If there is a numeric level mapping f that orients G and program point
q is reachable from p then f(p()) ≥ f(q()).

This (obvious) property implies that f is constant in every strongly connected
component (SCC) of G (considered as a graph with abstract transitions as arcs).
Only inter-component transitions can be strictly oriented by f and in fact all
of them can, by assigning f values according to reverse topological order of the
SCCs. Now, after deleting the strictly-oriented transitions, SCCs will become
disconnected from each other which allows them to be processed separately. We
obtain the following revised algorithm.

1. Initialize ρ to the empty tuple.
2. Perform the following steps as long as G is not empty:
3. Compute the decomposition of G to strongly connected components (SCC’s).

If G has inter-component transitions, define a numeric level mapping f by
reverse topological ordering of the SCC’s. Extend ρ by f and remove the
inter-component transitions.

4. If G has a non-trivial SCC2, perform the following for each such component
C in turn: (a) Apply SAT solving, as described in Section 5, to find a level
mapping f that orients C. If no level mappings exists, exit with a failure
message; and (b) Define the value of f as ∅ for all program points not in C.
Append f to ρ and remove the transitions strictly oriented by f .

We conclude this section by discussing the relations of SCNP, SCT and SCP.
Viewing all three as decision problems (sets of instances), we have:

SCP ⊂ SCNP ⊂ SCT.

Arguments for these relations are as follows:
2 That is, an SCC that contains at least one arc.

228 A.M. Ben-Amram and M. Codish

1. SCNP ⊆ SCT because SCNP is a sound termination condition. The inclusion
is strict because there are terminating instances not in SCNP. Here is such
an example (from [4]).

Example 7.
{

p(x, y, z, w) :– x ≥ x′, x ≥ y′, w > w′; p(x′, y′, z′, w′),
p(x, y, z, w) :– y > x′, y ≥ y′, z > z′; p(x′, y′, z′, w′)

}

2. SCNP handles some examples not handled by SCP; for instance, Example 1
on page 222 for which ρ(x1, x2, x3) = 〈max

{
(x1, 1), (x2, 0)

}
, max

{
x3

}
〉 is

a ranking function.
3. Finally, the claim SCP ⊆ SCNP follows from an analysis of the SCP algo-

rithm that cannot be included in this conference paper, however we refer the
reader to [4, Section 5] where some ideas of this analysis are already given.

On the point of complexity, it is interesting to observe that the hard cases
for the SCT algorithms based on the local-ranking approach are not necessarily
hard for our approach based on global ranking functions. In [2], an SCT instance
is described, having n + 1 arguments and n size-change graphs, that requires 2n

different local ranking functions of the kind discussed in [6]. This means that
the closure-based SCT algorithms are driven to exponential behavior. But this
instance is handled by SCNP and even SCP.

Finally, we prove that SCNP is complete for NP. Thus solving it with SAT is
not an overkill in a complexity-theoretic sense.

Theorem 3. SCNP is NP-complete.

Proof. We will prove NP-hardness of a simplified problem—given G is there any
level mapping that orients G? We give a reduction from the well-known Set
Covering problem SC, defined as follows:

INSTANCE: 〈n, [S1, . . . , Sm], k〉, where each Si ⊆ {1, . . . , n}, and k ≤ n.
CONDITION: {1, . . . , n} can be covered by k of the sets Si.
Given an instance of SC, construct size-change graphs as follows. Let x̄ =
〈x1, . . . , xn, xn+1, . . . , x2n−k〉. We have a single program point p(x̄) and graphs
gi = p(x̄) :– πi; p(x̄′) for i = 1, 2 with:

π1 = {xi > x′j | j ∈ Si} ∪ {xi ≥ x′j | i ≤ n, j > n}
π2 = {xi ≥ x′i+1 | i < 2n − k} ∪ {x2n−k ≥ x′1}.

Observe that the CFG is strongly connected, so a numeric level mapping is
ruled out. Graph g2 is easily seen to defeat any multiset based level mapping
that does not include all the arguments. Assuming k < n, graph g1 defeats min
and dms ordering, because xn+1 is not covered in gt

1. It is easy to see that g1
is oriented by max, but only weakly (and we cannot use tagging because of g2).
So, to orient g1 strictly we need the ms ordering, and (because of g2) the set
has to include all arguments. Now, arguments xn+j for j = 1, . . . , n−k can only
be covered non-strictly, and so n − k different source arguments are needed to
cover them (recall that a source argument can only cover one target argument if
it covers it non-strictly). The remaining k arguments among x1, . . . , xn have to
cover x′1, . . . , x

′
n which clearly implies a solution to the Set Covering instance.

A SAT-Based Approach to Size Change Termination 229

This reduction is interesting in that it shows that even if we know the level
mapping (in this case, fms(p(x̄)) = {x1, . . . , x2n−k}) it is still NP-hard to ver-
ify it, just because of not knowing which arcs of the size-change graph to use.
This observation motivates us to report not only the level mapping but also its
justification as part of the output of our tool.

5 A SAT Based Implementation

This section is dedicated to our solution of the subproblem—finding an orient-
ing level mapping—with the aid of a SAT solver. We use an approach described
in [9], where the problem to be solved is encoded into Boolean and partial order
constraints. The latter are propositional statements which contain both propo-
sitional variables and atoms of the form (f > g) or (f = g) where f and g
are partial order symbols. A satisfying assignment assigns Boolean values to the
propositional variables and integer values to the partial order symbols.

Let G be a set of size change graphs and μ ∈
{

max, min, ms, dms
}
. We

construct a propositional formula (with partial order constraints) to determine
if there exists a tagged level mapping which μ-orients G. We remark that a
plain mapping need not be handled separately: it is a special case of the tagged
mapping where all tags are the same. The proposition has the form ΦGμ = ϕG∧ϕGμ
where ϕG is a representation of G and ϕGμ is specific for μ.

Encoding a set of size change graphs. Let g = p(x1, . . . , xn) :– π; q(y1, . . . , ym).
We create propositional variables eg

c with c of the form (pi > qj) or (pi ≥ qj).
Intuitively, eg

c represents the fact π |= (xi, tag i
p) > (yj , tagj

q) (or ≥). The encoding
introduces partial order constraints on the tag values tagi

p and tagj
q . We define

ϕG =
∧

g∈G ϕG . The following formula encodes graph g. The propositions π |=
xi > yj (or xi ≥ yj) that appear in it are replaced by true or false according
to the size-change graph.

ϕg =
∧

1≤i≤n

1≤j≤m

(
(eg

xi>yj
↔ (π |= xi > yj) ∨ (π |= xi ≥ yj) ∧ (tagi

p > tagj
q))

∧ (eg
xi≥yj

↔ (π |= xi > yj) ∨ (π |= xi ≥ yj) ∧ (tagi
p ≥ tagj

q))

)

Example 8. Let g = p(x1, x2, x3) :– x1 > y1, x1 ≥ y2; q(y1, y2, y3). The encoding
is a conjunction of subformulae. Let us consider several of them: The constraint
x1>y1 contributes the conjuncts eg

x1>y1
and eg

x1≥y1
; The constraint x1≥y2 con-

tributes the conjuncts (eg
x1>y2

↔ tag1
p > tag2

p), and (eg
x1≥y1

↔ tag1
p ≥ tag2

p). The
absence of a constraint between x1 and y3 contributes ¬eg

x1>y3
and ¬eg

x1≥y3
.

For the μ specific part of the encoding, the propositional variables weakg
μ

and strictgμ are interpreted as specifying that graph g is weakly (resp. strictly)
oriented by μ respectively. Hence the encoding takes the form:

ϕG
μ =

(
∧

g∈G
weakg

μ

)

∧
(

∨

g∈G
strictg

μ

)

∧ ψG
μ

230 A.M. Ben-Amram and M. Codish

The first two conjuncts specify that there exists an fμ which orients G. The
third conjunct ψGμ constrains variables weakg

μ and strictgμ so that they are true
exactly when the corresponding graphs are weakly (resp. strictly) oriented by
μ. The propositional variables p1, . . . , pn and q1, . . . , qm indicate the argument
positions of p and q selected for the level mapping.

Encoding the max set ordering: The following formula encodes the conditions
described in Section 4.

ψG
max =

∧

g=p(x̄) :– π;q(ȳ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

weakg
max ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

(pi ∧ eg
xi≥yj

)

⎞

⎠ ∧

strictg
max ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

(pi ∧ eg
xi>yj

)

⎞

⎠ ∧
∨

1≤i≤n

pi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Encoding the multiset ordering: We follow the encoding for the multiset ordering
described in [22]. The operator ⊕ specifies that exactly one of a set of propositional
variables is true. For each graph g, propositional variables γg

i,j specify that in size

change graph g = p(x̄) :– π; q(ȳ) the ith argument of p/n covers the jth argument of
q/m. The propositional variables εg

i specify if whatever the ith argument of p/n covers
is weak (then it may cover only one) or strict (then it may cover several).

The conjunct for graph g has four parts. The first subformula encodes the conditions
for weakly orientation by multiset ordering (see Section 4). The second subformula
expresses a strict covering. The third subformula specifies that γg

i,j and εg
i agree with

their intended meaning. The fourth subformula states that if pi is selected and εg
i

indicates weak cover, then position i covers exactly one position j.

ψG
ms =

∧

g=p(x̄) :– π;q(ȳ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

weakg
ms ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

γg
i,j

⎞

⎠ ∧

strictg
ms ↔

∨

1≤i≤n

(pi ∧ ¬εg
i) ∧

∧

1≤i≤n

1≤j≤m

γg
i,j → pi ∧ qj ∧ eg

xi≥yj
∧ (¬εg

i ↔ eg
xi>yj

) ∧

∧

1≤i≤n

pi → εg
i → ⊕

{

γg
i,j

∣
∣
∣
∣ 1 ≤ j ≤ m

}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Encoding the min and dual-multiset orderings: The encodings are obtained through
the respective dualities with the max and multiset orderings.

ψG
min =

∧

g=p(x̄) :– π;q(ȳ)

(
weakg

min ↔ weakgt

max ∧
strictg

min ↔ strictgt

max

)

ψG
dms =

∧

g=p(x̄) :– π;q(ȳ)

(
weakg

dms ↔ weakgt

ms ∧
strictg

dms ↔ strictgt

ms

)

A SAT-Based Approach to Size Change Termination 231

We have implemented the algorithm in Prolog. After creating the partial order
constraints, our program calls the solver described in [9]. This solver transforms the
partial order constraint to a CNF which is passed on to the MiniSAT solver for Boolean
satisfaction [20] through its Prolog interface described in [7].

6 Experimentation

We have tested our implementation on two benchmark suites. The first is described
in [4]. It originates from a logic programming test suite for termination analysis and con-
sists of 123 examples (abstract programs). The second suite originates in a benchmark
suite for termination of term rewriting systems (TPDP version 4.0 [25]). It consists of
4062 abstract programs generated when AProVE, a tool to automatically prove ter-
mination of term rewriting systems, applied the SCT method based on the embedding
order, as described in [24]. The first suite can be obtained via Amir Ben-Amram’s web
page. The second can be found at http://www.cs.bgu.ac.il/ mcodish/Software/
trs suite for sct.zip

For the first suite, 84 of the 123 examples are SCT positive. All of these are also
in SCP and, with no surprises, also in SCNP. The SAT based implementation is much
slower than the implementations for SCP and SCT described in [4]. However, analysis
times are reasonable (under 3 seconds for the entire suite) and we have the benefit that
ranking functions are provided for the SCNP instances.

For the second suite, 3820 of the 4062 examples are in SCT. There is only one exam-
ple which is SCT but not SCP. In fact, this is Example 7 which was designed expressly
to defeat SCP. Here too SCNP agreed with SCP. Again ranking functions are provided
for all the verified instances and the entire suite is analyzed in approximately 20 sec-
onds. Our implementation is not optimized and analysis times are only reported to give
an idea of their magnitude and show that the use of SAT solving is not prohibitive.

Acknowledgment

We thank Samir Genaim for help with the benchmarking and Peter Schneider-Kamp
for harvesting the collection of 4062 sets of size-change graphs. This work was done
while Amir Ben-Amram was visiting DIKU, the University of Copenhagen, Denmark;
and Michael Codish was visiting the CLIP group at the Technical University of Madrid,
supported by a mobility grant (SAB2006-0189) from the Spanish Ministry of Science
and Education.

References

1. Avery, J.: Size-change termination and bound analysis. In: Hagiya, M., Wadler, P.
(eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

2. Ben-Amram, A.M.: A complexity tradeoff in ranking-function termination proofs
(submitted for publication 2007)

3. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination II. In:
9th International Workshop on Termination (WST 2007) (July 2007)

4. Ben-Amram, A.M., Lee, C.S.: Size-change analysis in polynomial time. ACM
Transactions on Programming Languages and Systems 29(1) (2007)

http://www.cs.bgu.ac.il/~mcodish/Software/trs_suite_for_sct.zip
http://www.cs.bgu.ac.il/~mcodish/Software/trs_suite_for_sct.zip

232 A.M. Ben-Amram and M. Codish

5. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
TOPLAS 29(2) (2007)

6. Codish, M., Lagoon, V., Stuckey, P.J.: Testing for termination with monotonicity
constraints. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
326–340. Springer, Heidelberg (2005)

7. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The-
ory and Practice of Logic Programming (2007)

8. Codish, M., Taboch, C.: A semantic basis for termination analysis of logic pro-
grams. The Journal of Logic Programming 41(1), 103–123 (1999)

9. Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for LPO
termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer,
Heidelberg (2006)

10. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

11. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Schwartzbach, M., Ball, T. (eds.) Proc. PLDI, pp. 415–426. ACM Press, New York
(2006)

12. Lee, C.S.: Ranking functions for size-change termination (submitted 2007)
13. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework

for automatic termination analysis of logic programs. Applicable Algebra in Engi-
neering, Communication and Computing 12(1–2), 117–156 (2001)

14. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

15. Jones, N.D., Bohr, N.: Termination analysis of the untyped lambda calculus. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004)

16. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

17. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Proc. POPL 2001, January 2001, vol. 28, pp. 81–92. ACM Press,
New York (2001)

18. Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: Termilog: A system for checking ter-
mination of queries to logic programs. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 444–447. Springer, Heidelberg (1997)

19. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

20. MiniSAT solver (Viewed December 2005),
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

21. Necula, G.C.: Proof-carrying code. In: Proc. POPL, pp. 106–119. ACM Press, New
York (1997)

22. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termi-
nation using recursive path orders and sat solving. In: Konev, B., Wolter, F. (eds.)
FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg (2007)

23. Sereni, D., Jones, N.: Termination analysis of higher-order functional programs. In:
Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg (2005)

24. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-
nation of term rewriting. Applicable Algebra in Engineering, Communication and
Computing 16(4), 229–270 (2005)

25. The termination problem data base. http://www.lri.fr/∼marche/tpdb/

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
http://www.lri.fr/~marche/tpdb/

Efficient Automatic STE Refinement Using
Responsibility

Hana Chockler1, Orna Grumberg2, and Avi Yadgar2

1 IBM Research
Mount Carmel, Haifa 31905, Israel

hanac@il.ibm.com
2 Computer Science Department

Technion, Haifa, Israel
{orna,yadgar}@cs.technion.ac.il

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
hardware model checking. It is based on 3-valued symbolic simulation, using
0,1, and X (“unknown”). X is used to abstract away values of circuit nodes, thus
reducing memory and runtime of STE runs. The abstraction is derived from a
given user specification.

An STE run results in “pass” (1), if the circuit satisfies the specification, “fail”
(0) if the circuit falsifies it, and “unknown” (X), if the abstraction is too coarse to
determine either of the two. In the latter case, refinement is needed: The X values of
some of the abstracted inputs should be replaced. The main difficulty is to choose
an appropriate subset of these inputs that will help to eliminate the “unknown”
STE result, while avoiding an unnecessary increase in memory and runtime. The
common approach to this problem is to manually choose these inputs.

This work suggests a novel approach to automatic refinement for STE, which
is based on the notion of responsibility. For each input with X value we compute
its Degree of Responsibility (DoR) to the “unknown” STE result. We then refine
those inputs whose DoR is maximal.

We implemented an efficient algorithm, which is linear in the size of the circuit,
for computing the approximate DoR of inputs. We used it for refinements for STE
on several circuits and specifications. Our experimental results show that DoR is a
very useful device for choosing inputs for refinement. In comparison with previous
works on automatic refinement, our computation of the refinement set is faster,
STE needs fewer refinement iterations and uses less overall memory and time.

1 Introduction

Symbolic Trajectory Evaluation (STE) [13] is a powerful technique for hardware model
checking. STE is based on combining 3-valued abstraction with symbolic simulation.
It is applied to a circuit M , described as a graph over nodes (gates and latches). The
specification consists of assertions in a restricted temporal language. An assertions is of
the form A =⇒ C, where the antecedent A expresses constraints on nodes n at different
times t, and the consequent C expresses requirements that should hold on such nodes
(n, t). Abstraction in STE is derived from the specification by initializing all inputs not
appearing in A to the X (“unknown”) value.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 233–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 H. Chockler, O. Grumberg, and A. Yadgar

An STE run may result in “pass” (1), if the circuit satisfies the specification, “fail” (0)
if the circuit falsifies it, and “unknown” (X), if the abstraction is too coarse to determine
either of the two. In the latter case, a refinement is needed: The X values of some of the
abstracted inputs should be changed.

The main challenge in this setting is to choose an appropriate subset of these inputs,
that will help to eliminate the “unknown” STE result. Selecting a “right” set of inputs
for refinement is crucial for the success of STE: refining too many inputs may result in
memory and time explosion. On the other hand, selecting too few inputs or selecting
inputs that do not affect the result of the verification will lead to many iterations with
an “unknown” STE result.

The common approach to this problem is to manually choose the inputs for refine-
ment. This, however, might be labor-intensive and error-prone. Thus, an automatic re-
finement is desired.

In this work we suggest a novel approach to automatic refinement for STE, which
is based on the notion of responsibility. For each input with X value we compute its
Degree of Responsibility (DoR) to the “unknown” STE result. We then refine those
inputs whose DoR is maximal.

To understand the notion of responsibility, consider first the following concepts. We
say that event B counterfactually depends on event A [9] if A and B both hold, and
had A not happened then B would not have happened. Halpern and Pearl broadened
the notion of causality saying that A is a cause of B if there exists some change of the
current situation that creates the counterfactual dependence between A and B [8].

n1=1

n2=1

n=1

n1=0

n2=0

n=0

(a) (b)

Fig. 1. Cause

As an example, consider the circuit in Figure 1(a). The
event “n = 1” counterfactually depends on the event
“n1 = 1”. Next consider the circuit in Figure 1(b).
“n1 = 0” is a cause of “n = 0”. This is because if we
change n2 from 0 to 1, then “n = 0” counterfactually
depends on “n1 = 0”. Similarly, “n2 = 0 is a cause of
“n = 0”.

The notion of responsibility and of weighted responsibility, introduced in [4], quanti-
fies the change that is needed in order to create the counterfactual dependence. The DoR
of A for B is taken to be 1/(k+1), where k is the size of the minimal change that creates
the counterfactual dependence. For instance, in the example above, the DoR of “n1 = 0”
for “n = 0” is 1/2, because the minimal change that creates a counterfactual dependence
is of size 1 (changing the value of n2 from 0 to 1). In this work we use weighted DoR in
order to obtain a finer-grain quantification for changes, in the context of STE.

Computing responsibility in circuits is known to be intractable in general [4]. In-
spired by the algorithm for read-once formulas in [3], we developed the algorithm
RespSTE for efficiently computing an approximate DoR. Computing the responsi-
bility of the inputs for some output of a circuit involves one traversal of the circuit for
each X valued input in the cone of influence of the output. The overall complexity is
therefore only quadratic in the size of the circuit.

In order to evaluate our algorithm RespSTE, we implemented it and used it in
conjunction with Forte, a BDD based STE tool by Intel [14]. We applied it to several
circuits and specifications. We compared our results with the automatic refinement for

Efficient Automatic STE Refinement Using Responsibility 235

STE, suggested in [15]. In all cases, the comparison shows a significant speedup. A
significant reduction in BDD nodes is also gained in most of the assertions. In some of
the cases, our algorithm needed fewer refinement iterations.

The DoRs we compute gives us a quantitative measure of the importance of each
input to the STE “unknown” result. By examining these values, we conclude that this
quantitative measure is of high quality and is complying with our understanding of the
problem as users who are familiar with the models.

When using these results for automatic refinement, the quality of the results is re-
flected by the number of refinement iterations that were required, and in the number
of symbolic variables that were added to the assertion. We point out that even when
a non-automatic (manual) refinement is applied, our DoRs can serve as recommended
priorities on the candidate inputs for refinement.

Related Work. Abstraction-Refinement takes a major role in model checking [6,10]
for reducing the state explosion problem. In [5], it is shown that the abstraction in STE
is an abstract interpretation via a Galois connection. In [17], an automatic abstraction-
refinement for symbolic simulation is suggested. However, the first automatic refine-
ment for STE has been suggested in [15]. In this refinement scheme, the values of the
circuit nodes, as computed by STE, are used in order to trace X paths, and refine the
STE assertion by adding symbolic variables to A. While this work is the closest to ours,
it is essentially different from using the responsibility concept. We compare our results
to this work in Section 5. In [2], an automatic refinement for GSTE is suggested. This
method, like [15], traverses the circuit nodes after running STE, and performs a model
and an assertion refinement. This method is also essentially different from ours, as it is
aimed at solving GSTE problems, where an assertion graph describes the specification,
and is used in the refinement process.

SAT based refinements were suggested in [12] and [7]. The method presented in [12]
is used for assisting manual refinement. The method presented in [7] takes an automatic
CEGAR approach which is applicable only in the suggested SAT based framework. In
[1], a method for automatic abstraction without refinement is suggested. We believe
that our algorithm can complement such a framework.

The rest of the paper is organized as follows. In Section 2 we give the needed back-
ground for STE and present the formal definitions of causality and responsibility. Sec-
tion 3 shows how to define and compute the degrees of responsibility (DoR) in the
context of STE refinement. Section 4 describes the abstraction and refinement loop
for STE with responsibility. Section 5 presents our experiments and concludes with an
evaluation of the results.

2 Preliminaries

2.1 Symbolic Trajectory Evaluation (STE)

A hardware model M is a circuit, represented by a directed graph. The graph’s nodes
N are input and internal nodes, where internal nodes are latches and combinational
gates. A combinational gate represents a Boolean operator. The graph of M may contain
cycles, but not combinational cycles. A graph of a circuit is shown in Figure 4(a). Given

236 H. Chockler, O. Grumberg, and A. Yadgar

a directed edge (n1, n2), we say that n1 is an input of n2. We denote by (n, t) the value
of node n at time t. The value of a gate (n, t) is the result of applying its operator on the
inputs of n at time t. The value of a latch (n, t) is determined by the value of its input
at time t − 1. The bounded cone of influence (BCOI) of a node (n, t) contains all nodes
(n′, t′) with t′ ≤ t that may influence the value of (n, t), and is defined recursively as
follows: the BCOI of a combinational node at time t is the union of the BCOI of its
inputs at time t, and the BCOI of a latch at time t is the union of the BCOI of its inputs
at time t − 1. The BCOI of a node with no inputs is the empty set.

In STE, a node can get a value in a quaternary domain Q = {0, 1, X, ⊥}. A node
whose value cannot be determined by its inputs is given the value X(”unknown”). ⊥ is
used to describe an over constrained node. This might occur when there is a contradic-
tion between an external assumption on the circuit and its actual behavior.

A state s in M is an assignment of values from Q to every node, s : N → Q.
A trajectory π is an infinite series of states, describing a run of M . We denote by
π(i), i ∈ N, the state at time i in π, and by π(i)(n), i ∈ N, n ∈ N , the value of node n
in the state π(i). πi, i ∈ N, denotes the suffix of π starting at time i.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Fig. 2. Quaternary Operations

Let V be a set of symbolic Boolean variables
over the domain {0, 1}. A symbolic expression
over V is an expression consisting of quaternary
operations, applied to V ∪ Q. The truth tables of
the quaternary operators are given in Figure 2.
A symbolic state over V is a mapping from each
node of M to a symbolic expression. A symbolic
state represents a set of states, one for each assignment to V . A symbolic trajectory over
V is an infinite series of symbolic states, compatible with the circuit. It represents a
set of trajectories, one for each assignment to V . Given a symbolic trajectory π and an
assignment φ to V , φ(π) denotes the trajectory that is received by applying φ to all the
symbolic expressions in π.

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as fol-
lows: f ::= n is p | f1 ∧ f2 | p → f | Nf , where n ∈ N , p is a Boolean expression
over V , and N is the next time operator. The maximal depth of a TEL formula f is the
maximal time t for which a constraint exists in f on some node n, plus 1.

Given a TEL formula f over V , a symbolic trajectory π over V , and an assignment
φ to V , we define the satisfaction of f as in [15]:

[φ, π |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(π)(i)(n) = ⊥. Otherwise:
[φ, π |= n is p] = 1 ↔ φ(π)(0)(n) = φ(p)
[φ, π |= n is p] = 0 ↔ φ(π)(0)(n) �= φ(p) and φ(π)(0)(n) ∈ {0, 1}
[φ, π |= n is p] = X ↔ φ(π)(0)(n) = X φ, π |= p → f ≡ ¬φ(p) ∨ φ, π |= f
φ, π |= f1 ∧ f2 ≡ (φ, π |= f1 ∧ φ, π |= f2) φ, π |= Nf ≡ φ, π1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1).
We define the truth value of π |= f as follows:

[π |= f] = 0 ↔ ∃φ : [φ, π |= f] = 0
[π |= f] = X ↔ ∀φ : [φ, π |= f] �= 0 and ∃φ : [φ, π |= f] = X
[π |= f] = 1 ↔ ∀φ : [φ, π |= f] �∈ {0, X} and ∃φ : [φ, π |= f] = 1
[π |= f] = ⊥ ↔ ∀φ : [φ, π |= f] = ⊥

Efficient Automatic STE Refinement Using Responsibility 237

This definition creates levels of importance between 0 and X . If there exists an as-
signment such that [φ, π |= f] = 0, the truth value of π |= f is 0, even if there are other
assignments such that [φ, π |= f] = X .

STE assertions are of the form A ⇒ C, where A (the antecedent) and C (the con-
sequent) are TEL formulae. A expresses constraints on circuit nodes at specific times,
and C expresses requirements that should hold on circuit nodes at specific times. We
define the truth value of [M |= A ⇒ C] as follows:

[M |=A⇒C]=1 ↔ ∀π:[π|=A]=1 implies [π|=C]=1
[M |=A⇒C]=⊥ ↔ ∀π:[π|=A]=⊥
[M |=A⇒C]=0 ↔ ∃π:[π|=A]=1 and [π|=C]=0
[M |=A⇒C]=X ↔ [M |=A⇒C] �=0 and ∃π:[π|=A]=1

and [π|=C]=X

t n1 n2 n3 n4 n5 n6

0 X X X 0 X 0

1 X X 0 X 1 X

Fig. 3. Symbolic Simula-
tionAs in [15], an antecedent failure is the case where [M |=

A ⇒ C] = ⊥. For a node n at time t we say that “(n, t) is
X-possible”, if there exists a trajectory π and an assignment φ such that φ(π)(t)(n)
is X . If n at time t is also constrained by C, then we say that it is undecided. In that
case, [M |= A ⇒ C] = X . Consider the circuit and STE assertion in Figure 4(a). The
table in Figure 3 corresponds to a symbolic simulation of this assertion. n5 at time 1 is
evaluated to 1, and thus the assertion holds.

 1n
 4n

 5n
 6n

 3n

 2n

A = (n4 is 0), C = N(n5 is 1)

 4n

 5n
 6n

 3n

 2n
 1n

 4n

 5n
 6n

 3n

 2n
 1n t = 1t = 0

Fig. 4. (a) A circuit M (b) An Unrolling of M to depth 2

2.2 Refinement in STE

A major strength of STE is the use of abstraction. The abstraction is determined by the
assignment of the value X to input nodes in M by A. However, if the abstraction is too
coarse, then there is not enough information for proving or falsifying the STE assertion.
That is, [M |= A ⇒ C] = X .

The common abstraction and refinement process in STE consists of the following
steps: the user writes an STE assertion A ⇒ C for M , and receives a result from STE.
If [M |= A ⇒ C] = ⊥ (an antecedent failure), then there is a contradiction between
A and M , and the user has to write a new assertion. If [M |= A ⇒ C] = 0, or [M |=
A ⇒ C] = 1, the process ends with the corresponding result. If [M |= A ⇒ C] = X ,
a refinement is required. In this case, there is some X-possible node (n, t), which is
undecided. The user has to manually decide how to refine the specification such that the
X truth value will be eliminated.

For automatic refinement, we assume that the STE assertion correctly describes the
desired behavior of the model, and that disagreements between the assertion and the
model originate from errors in the model. Thus, the refinement should preserve the

238 H. Chockler, O. Grumberg, and A. Yadgar

meaning of the original assertion. Note, that refinement is only performed in cases
where an antecedent failure does not occur.

An automatic refinement can be obtained by creating a new antecedent for the STE
assertion. The refinement of A should preserve the semantics of A ⇒ C. Formally, let
Anew ⇒ C denote the refined assertion and let runs(M) denote the set of all concrete
trajectories of M . We require that Anew ⇒ C holds on runs(M) iff A ⇒ C holds on
runs(M).

Refinement Strategy. In [15], refinement steps add constraints to A by forcing the
values of some input nodes at certain times to the value of fresh symbolic variables.
That is, symbolic variables that are not already in V . By initializing an input (in, t) with
a fresh symbolic variable instead of X , the value of (in, t) is accurately represented,
and knowledge about its effect on M is added. However, it does not constrain input
behavior that was allowed by A, nor does it allow input behavior that was forbidden by
A. Thus, the semantics of A is preserved. In [15] it is proven that if Anew ⇒ C holds
in M , then so does A ⇒ C. Also, if Anew ⇒ C yields a counterexample ce, then ce is
also a counterexample w.r.t A ⇒ C.

2.3 Causality and Responsibility

In this section, we review the definitions of causality and responsibility. We start with
causality. The most intuitive definition of causality is counterfactual causality, going
back to Hume [9],which is formally defined as follows.

Definition 1 (Counterfactual causality). We say that an event A is a counterfactual
cause of event B if the following conditions hold: (a) both A and B are true, and
(b) if we assign A the value false, then B becomes false. We sometimes refer to the
dependence of B on A as a counterfactual dependence.

In this paper, we use a simplified version of the definition of causality from [8]. In order
to define causality formally, we start with the definition of causal models (again, due to
[8]).

Definition 2 (Causal model). A causal model M is a tuple 〈U , D, R, F〉, where U is
the set of exogenous variables (that is, variables whose value is determined by con-
straints outside of the model), D is the set of endogenous variables (that is, variables
whose value is determined by the model and the current assignment to D), R asso-
ciates with each variable in U ∪ D a nonempty range of values, and the function F
associates with every variable Y ∈ D a function FY that describes how the value of Y
is determined by the values of all other variables in U ∪ D.

A context �d is an assignment for variables in D (the values of variables in U are
considered constant).

In this paper we restrict our attention to models in which variables do not depend on
each other.

A causal formula ϕ is a formula over the set of variables U ∪ D. A causal formula
ϕ is true or false in a causal model given a context �d. We write (M, �d) |= ϕ if ϕ is
true in M given a context �d. We write (M, �d) |= [�Z ← �z]ϕ if ϕ holds in the model M

Efficient Automatic STE Refinement Using Responsibility 239

given the context �d and the assignment �z to the variables in the set �Z ⊂ V , such that �z
overrides �d for variables in �Z .

With these definitions in hand, we can give the simplified definition of cause based
on the definition in [8]. The main simplification is due to the fact that in our models,
variables do not depend on each other, and thus there is no need to explicitly check
various cases of mutual dependence between variables.

Definition 3 (Cause). For a constant y, we say that Y = y is a cause of ϕ in (M, �d) if
the following conditions hold:

AC1. (M, �d) |= (Y = y) ∧ ϕ.
AC2. There exists a partition (�Z, �W) of D with Y ∈ �Z and some setting (y′, �w′) of the

variables in Y ∪ �W such that:
(a) (M, �d) |= [Y ← y′, �W ← �w′]¬ϕ. That is, changing (Y, �W) from their original

assignment (y, �w) (where �w ⊂ �d) to (y′, �w′) changes ϕ from true to false.
(b) (M, �d) |= [Y ← y, �W ← �w′]ϕ. That is, setting �W to �w′ should have no effect

on ϕ as long as Y has the value y.

Essentially, Definition 3 says that Y = y is a cause of ϕ if both Y = y and ϕ hold
in the current context �d, and there exists a change in �d that creates a counterfactual
dependence between Y = y and ϕ.

The definition of responsibility introduced in [4] refines the “all-or-nothing” concept
of causality by measuring the degree of responsibility of Y = y for the truth value of ϕ
in (M, �d). The following definition is due to [4]:

Definition 4 (Responsibility). Let k be the smallest size of �W ⊂ D such that �W sat-
isfies the condition AC2 in Definition 3. Then, the degree of responsibility (DoR) of
Y = y for the value of ϕ in (M, �d), denoted dr((M, �d), Y = y, ϕ), is 1/(k + 1).

Thus, the degree of responsibility measures the minimal number of changes that have
to be made in �d in order to make Y = y a counterfactual cause of ϕ. If Y = y is not a
cause of ϕ in (M, �d), then the minimal set �W in Definition 4 is taken to have cardinality
∞, and thus the degree of responsibility of Y = y is 0. If ϕ counterfactually depends
on Y = y, its degree of responsibility is 1. In other cases the degree of responsibility is
strictly between 0 and 1. Note that Y = y is a cause of ϕ iff the degree of responsibility
of Y = y for the value of ϕ is greater than 0.

As we argue in Section 3.1, in our setting it is reasonable to attribute weights to the
variables in order to capture the cost of changing their value. Thus, we use the weighted
version of the definition of the degree of responsibility, also introduced in [4]:

Definition 5 (Weighted responsibility). Let wt(Y) be the weight of Y and wt(�W) the
sum of the weights of variables in the set �W . Then, the weighted degree of responsibility
of Y = y for ϕ is wt(Y)/(k +wt(Y)), where k is the minimal wt(�W) of a �W ⊂ D for
which AC2 holds. This definition agrees with Definition 4 if the weights of all variables
are 1.

Remark 1. We note that in general, there is no connection between the degree of respon-
sibility of Y = y for the value of ϕ and a probability that ϕ counterfactually depends on

240 H. Chockler, O. Grumberg, and A. Yadgar

Y = y. Basically, responsibility is concerned with the minimal number of changes in a
given context that creates a counterfactual dependence, whereas probability is measured
over the space of all possible assignments to variables in D.

3 Responsibility in STE Graphs

In section 4 we will show how to refine STE assertions by using the degree of respon-
sibility (dr) of inputs for X-possible nodes. Consider a model circuit M , and an STE
assertion A ⇒ C, such that [M |= A ⇒ C] = X and let r be an undecided node. In
this section we show how M can be viewed as a causal model, and present an algorithm
for computing the degree of responsibility of an input to M for “r is X-possible”.

3.1 STE Circuits as Causal Models

In order to verify the assertion A ⇒ C, M has to be simulated k times, where k is
the maximal depth of A and C. We create a graph by unrolling M k times. Each node
n ∈ M has k instances in the new graph. The ith instance of node n represents node
n at time i. In the new graph, the connectivity of the input and gate nodes remains the
same. The latches are connected such that the input to a latch at time t are the nodes
at time t − 1, and the latch is an input to nodes at time t. Due to the new connectivity
of the latches, and since M does not have combinational cycles, the unrolled graph is a
DAG. The leaves of the new graph are k instances of each of the inputs to M , and the
initial values of the latches.

We assume that the only nodes assigned by A are leaves. It is straightforward to
extend the discussion to internal nodes that are assigned by A, and to nodes that get their
value from propagating the assignments of A. Consider the circuit and STE assertion
in Figure 4(a). The corresponding unrolling is shown in Figure 4(b). t = 0 and t = 1
are two instances of the circuit. The inputs to the latch n3 in t = 1 are the nodes of
t = 0, thus eliminating the cycle of the original circuit. The inputs to the new circuit
are the first instance of n3 (the initial value of the latch), and the two instances of n1
and n2. From herein we denote by M the unrolled graph of the circuit.

Regarding M as a causal model requires the following definitions: 1) a set of vari-
ables and their partition into U and D, the exogenous and endogenous variables, respec-
tively. 2) R, the range of the endogenous variables. 3) values for the exogenous vari-
ables U . 4) a context �d, which is an assignment to the variables in D. 5) F , a function
which associates each variable Y ∈ D with a function FY that describes its dependence
in all the other variables.

We define the inputs of M to be the variables of the causal model. The inputs that
are assigned 1 or 0 by the antecedent A are considered the exogenous variables U , and
their values are determined by A. The values of these variables cannot change, and
are viewed as part of the model M . The rest of the inputs to M are the endogenous
variables D. The range of the variables in D is {0, 1, X} ∪ V , where V is the set of
symbolic variables used by A.1The context �d is the current assignment to D, imposed

1 For simplicity of presentation, we do not distinguish between a symbolic variable vi ∈ V and
its corresponding element in R.

Efficient Automatic STE Refinement Using Responsibility 241

by the antecedent A. Last, since the variables are inputs to a circuit, their values do
not depend on each other. Therefore, the function F associates each variable with the
identity function.

Next we have to define a causal formula ϕ. For an undecided node r, we want to
compute the responsibility of the leaves having X values for “r is X-possible”. We
define the causal formula ϕ to be “r is X-possible”. Since the context �d is imposed by
the antecedent A, and Since “r is X-possible” holds under A, we have (M, �d) |= ϕ.

We will compute a weighted degree of responsibility, as described in Definition 5.
We choose wt(n) = 1 if �d(n) ∈ V , and wt(n) = 2 if �d(n) = X . Next we explain
this choice of weights. For computing the degree of responsibility, we consider changes
in the context �d that replace the assignments to some of the variables in D from X
or vi ∈ V to a Boolean value. When running STE, a symbolic variable may assume
either of the Boolean values. On the other hand, a leaf that is assigned X cannot take
a Boolean value without changing the antecedent of the STE assertion. Therefore, we
consider changing �d for a variable n such that �d(n) ∈ V to be easier than for a variable
n such that �d(n) = X . Thus, our choice of weights takes into account the way in which
STE regards X and vi ∈ V .

We have shown how an unrolled model M can be viewed as a causal model. Let
IX(r) and IV (r) be the sets of leaves in BCOI(r), for which A assigns X and sym-
bolic variables, respectively. From herein, for l ∈ IX(r), we denote by dr(M, l, r) the
degree of responsibility of “l is X” for “r is X-possible”. Next we present an algorithm
that computes an approximate degree of responsibility of each leaf in IX(r) for “r is
X-possible”.

3.2 Computing Degree of Responsibility in Trees

Computing responsibility in circuits is known to be FPΣP
2 [log n]-complete 2 in gen-

eral [4], and thus intractable. In order to achieve an efficiently computable approxi-
mation, our algorithm is inspired by the algorithm for read-once formulas in [3]. It
involves one traversal of the circuit for each l ∈ IX(r) and its overall complexity is
only quadratic in the size of M . We start by describing an exact algorithm for M which
is a tree, and then introduce the changes for M which is a DAG.

We define the following values that are used by our algorithm.

– c0(n, M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make n evaluate to 0.

– c1(n, M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make n evaluate to 1.

– s(n, M, l): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make “n is X-possible” counterfactually depend on “l is
X”. If there is no such number, that is, there is no change in the context that causes
this dependability, we define s(n, M, l) = ∞.

If clear from the context, we omit M from the notation of c0, c1 and s.

2 FPΣP
2 [log n] is the class of functions computable in polynomial time with log n queries to

oracle in Σ2.

242 H. Chockler, O. Grumberg, and A. Yadgar

We would like to compute the degree of responsibility of every leaf l ∈ IX(r) for
“r is X-possible”. Therefore, for each l ∈ IX(r), our algorithm computes s(r, l). We
denote by A(n) the assignment to node n in M , imposed by A. We discuss a model M
with AND and NOT operators. Extending the discussion to OR, NAND and NOR
operators is straightforward. Given r and l ∈ IX(r), our algorithm computes s(r, l) by
starting at r, and executing the recursive computation described next. Note that only
values that are actually needed for determining s(r, l) are computed.
For a node n, s(n, l) is recursively computed by:

– For n a leaf: if (n = l) then s(n, l) = 0, because the value of l counterfactually
depends on itself. Otherwise, s(n, l) = ∞ since a leaf does not depend on other
leaves.

– For n = n1 ∧ . . .∧nm: W.l.o.g. we assume that l belongs to the subtree of M rooted
in n1 (since M is a tree, l belongs to a subtree of only one input of n). In order
to make the value of n counterfactually depend on the value of l, all input to n,
except for n1, should be 1, and the value of n1 should counterfactually depend on
the value of l. Thus, s(n, l) = s(n1, l) +

∑m
i=2 c1(ni).

– For n = ¬n1: s(n, l) = s(n1, l), since “n is X-possible” iff “n1 is X-possible”.

For a node n, c0(n) and c1(n) are recursively computed by:

– For n a leaf:
• If A(n) = 0, c0(n) = 0, because no change in the assignments to IX(r) ∪

IV (r) is required. c1(n)=∞, because no change in the assignments to IX(r)∪
IV (r) will change the value of n.

• Similarly, if A(n) = 1, c1(n) = 0 and c0(n) = ∞.
• If A(n) = X , c0(n) = c1(n) = 2, because only the value of n has to be

changed, and the weight of n is 2.
• If n is associated with a symbolic variable, c0(n) = c1(n) = 1, because only

the value of n has to be changed, and the weight of n is 1.
– For n = n1, ∧ . . . ∧ nm:

• It is enough to change the value of one of its inputs to 0 in order to change the
value of n to 0, thus c0(n) = mini∈{1,...,n} c0(ni).

• The values of all the inputs of n should be 1 in order for n to be 1, thus c1(n) =∑n
i=1 c1(ni).

– For n = ¬n1
• c1(n) = c0(n1) and c0(n) = c1(n1), as any assignment that gives n1 the value

0 or 1, gives n the value 1 or 0, respectively.

The computation above directly follows the definitions of c0, c1 and s, and thus its
proof of correctness is straightforward. For a node r and leaf l, computing the values
c0(n), c1(n) and s(n, l) for all n ∈ BCOI(r) is linear in the size of M . Therefore,
given r, computing s(r, l) for all l ∈ IX(r) is at most quadratic in the size of M . Note
that for a node n, the values c0(n) and c1(n) do not depend on a particular leaf, and
thus are computed only once.

Efficient Automatic STE Refinement Using Responsibility 243

l4=V2 l1=X1 l2=V1

^
n2

^
out

^
n1

s(n1,l3)=∞
c1(n1)=3 s(n2,l3)=1

s(out,l3) = 4

l3=X

Fig. 5. Computing Responsibility

We demonstrate the computations done by our
algorithm on the circuit in Figure 5. The an-
tecedent associates l2, l4 and l1, l3 with symbolic
variables and X , respectively. For node out, “out is
X-possible” holds. We want to compute s(out, l3).
l3 is in the subtree of n2. Therefore, s(out, l3) =
c1(n1) + s(n2, l3). Since n1 is an AND gate,
c1(n1) = c1(l1) + c1(l2). n2 is also an AND gate,
and therefore s(n2, l3) = c1(l4) + s(l3, l3). The
weight of the leaves is according to their assign-
ment. Therefore, c1(l2) = c1(l4) = 1 and c1(l1) = 2. Additionally, s(l3, l3) = 0.

Finally, the degree of responsibility of “l is X” for “r is X-possible”, dr(M, l, r)
is 2

s(r,l)+2 . If s(r, l) = ∞, then dr(M, l, r) = 0, which matches Definition 5. In our

example, dr(M, l3, out) = 2
s(out,l3)+2 = 1

3 .

3.3 Computing an Approximate Degree of Responsibility in DAGs

We now introduce a change to the definition of s(n, l), resulting in an efficiently com-
putable approximation of the degree of responsibility in DAGs, as required for STE.

For a DAG M , and a node n = n1 ∧ . . . ∧ nm, we no longer assume that l belongs
to a subtree of only one input of n. Let NS = {ni|s(ni, l) �= ∞, i ∈ {1, . . . , m}}, and
let N∞ = {ni|s(ni, l) = ∞, i ∈ {1, . . . , m}}. We define s(n, l) to be:

s(n, l) =
∑

ni∈NS

s(ni, l)
|NS | +

∑

ni∈N∞

c1(ni)

Recall that dr(M, l, n) is inversely proportional to s(n, l). Thus, our new definition
gives higher degree of responsibility to leaves that belong to subtrees of multiple inputs
of n. Such leaves are likely to be control signals, or otherwise more effective candidates
for refinement than other variables.

d2=X d1=X c=X

^
n2

out

^
n1

n3

c0(n1)=2
s(n1,d1)=2
s(n1,c)=2 c0(n2)=2

s(n2,d2)=2
s(n2,c)=2

s(out,d1) =4
s(out,d2)=4
s(out,c)=2

out = (c ∧ d1) ∨ (¬c ∧ d2)

Fig. 6. A multiplexer

We demonstrate the effect of this definition on
the multiplexer in Figure 6. d1 and d2 are the data
inputs to the multiplexer, and c is its control in-
put. If c = 1, then out = d1, else, out = d2.
The value s(out, d1) is given by s(out, d1) =
c0(n2) + s(n1, d1) = 4. The same computation
applies to d2. On the other hand, c belongs to the
subtrees of both n1 and n2. Therefore, s(out, c) =
s(n1,c)+s(n2,c)

2 = 2. Consequently, dr(c, out) = 1
2 ,

whereas dr(d1, out) = dr(d2, out) = 1
3 .

The rest of the algorithm remains as in Section
3.2. Note that since M is a DAG, rather than a tree,
not changing the computation of c0 and c1 makes it
an approximation, as it does not take into account
possible dependencies between inputs of nodes.

244 H. Chockler, O. Grumberg, and A. Yadgar

4 Applying Responsibility to Automatic Refinement

Refinement of an STE assertion is required when the return value of an STE run is X . In
that case, the set of undecided nodes is returned by STE. The goal of the refinement is
to add information such that undecided nodes become decided. In this section we show
how we employ the concept of responsibility for efficiently refining STE assertions.

The outline of the refinement algorithm follows the discussion in section 2.2: First,
a refinement goal r is selected from within the set of undecided nodes. Then, a set of
input nodes in IX(r) is chosen, to be initialized to new symbolic variables.

Choosing a Refinement goal. Our refinement algorithm chooses a single refinement
goal on each refinement iteration. This way, the verification process might be stopped
early if a constraint over a single node does not hold, without handling the other unde-
cided nodes. Additionally, conceptual relations between the undecided nodes may make
them depend on a similar set of inputs. Thus, refinement targeted at one node may be
useful for the other nodes as well. For example, all bits of a data vector are typically
affected by the same set of control signals.

We would like to add as little symbolic variables as possible. Thus, from within
the set of undecided nodes, we choose the nodes with the minimal number of inputs
in its BCOI, and among these we choose the one with the minimal number of nodes
in its BCOI. If multiple nodes have the minimal number of inputs in their BCOI, we
arbitrarily pick one of them. This approach has also been taken in [15].

Choosing Input Nodes. Given a refinement goal r, we have to choose a subset of
nodes Iref ⊆ IX(r) that will be initialized to new symbolic variables, trying to prevent
the occurrence of “r is X-possible”. We choose the nodes in IX(r) with the highest
degree of responsibility for “r is X-possible”, as computed by the algorithm in Section
3.3. These nodes have the most effect on “r is X-possible”, and are likely to be the most
effective nodes for refinement. Our experimental results support this choice of nodes,
as shown in Section 5.

RespSTE(M,A, C)
while [M |= A ⇒ C] = X do

r ← choose refinement target
for all l ∈ IX(r) do

compute dr(r, l)
end for
max←max{dr(l, r))|l ∈ IX(r)}
Iref ←{l|l ∈ IX(r), dr(l, r)=max}
∀li∈Iref , add symbolic variable vli to A

end while

Fig. 7. RespSTE

Given the refinement algorithm de-
scribed above, we construct RespSTE, an
iterative algorithm for verifying STE as-
sertions: for a model M and an STE as-
sertion A ⇒ C, while STE returns [M |=
A ⇒ C] = X , RespSTE iteratively
chooses a refinement root r ∈ M , com-
putes the degree of responsibility of each
leaf l ∈ IX(r) for “r is X-possible” and
introduces new symbolic variables to A,
for all leaves with the highest degree of re-
sponsibility. A pseudo code of RespSTE is
given in Figure 7.

Efficient Automatic STE Refinement Using Responsibility 245

5 Experimental Results

For evaluating our algorithm RespSTE, presented in Section 4, we implemented and
used it in conjunction with Forte, a BDD based STE tool by Intel [14].

For our experiments we used the Content Addressable Memory (CAM) module from
Intel’s GSTE tutorial, and IBM’s Calculator 2 design [16]. These models and their
specifications are interesting and challenging for model checking. All experiments use
dedicated computers with 3.2Ghz Intel Pentium CPU, and 3GB RAM, running Linux
operating system.

5.1 Verifying CAM Module

A CAM is a memory module that for each data entry holds a tag entry. Upon receiving
an associative read (aread) command, the CAM samples the input “tagin”. If a matching
tag is found in the CAM, it gives the “hit” output signal the value 1, and outputs the cor-
responding data entry to “dout”. Otherwise, “hit” is given the value 0. The verification
of the aread operation using STE is described in [11]. The CAM that we used is shown
in Figure 8. It contains 16 entries. Each entry has a data size of 64 bits and a tag size of
8 bits. It contains 1152 latches, 83 inputs and 5064 combinational gates.

hitTAG MEMORY

DATA MEMORY

16

16

64

aread

dwrite
dout

daddr[0..3]

datain[0..63]

8

tagin[0..8]

taddr[0..3]

twrite

Fig. 8. Content Addressable Memory

We checked the CAM against three asser-
tions. For all the assertions, RespSTE added
the smallest number of symbolic variables
required for proving or falsifying the asser-
tion. Next we discuss Assertion 1.

Given
−−→
TAG and

−→
A , vectors of symbolic

variables, Assertion 1 is: (tagin is
−−→
TAG) ∧

(taddr is
−→
A)∧(twrite is 1)∧N ((aread is 1)∧

(tagin is
−−→
TAG)) =⇒ N (hit is 1). This is to

check that if a tag value
−−→
TAG is written to an

address
−→
A in the tag memory at time 0, and

at time 1
−−→
TAG is read, then it should be found

in the tag memory, and hit should be 1. If at time 1 there is no write operation to the tag
memory ((twrite, 1) = 0), then

−−→
TAG should be found in address

−→
A . If (twrite, 1) = 1,

−−→
TAG should still be found, since it is written again to the tag memory. Therefore, As-
sertion 1 should pass. However, since twrite and taddr at time 1 are X , the CAM cannot
determine whether to write the value of (tagin, 1) to the tag memory, and to which tag
entry to write it. As a result, the entire tag memory at time 1 is X , causing (hit, 1) to be
X . Thus, [M |= A ⇒ C] = X . In two consecutive refinement iterations, (twrite, 1)
and (tadder, 1) are associated with new symbolic variables, and the assertion passes.
The refinement steps of Assertion 1 are presented in Figure 10(a). Each row in the table
describes a single refinement iteration, the name of the goal node, and the name and
time of the inputs for which symbolic variables were added.

246 H. Chockler, O. Grumberg, and A. Yadgar

5.2 Verifying Calculator 2

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Fig. 9. Calculator

Calculator 2 design [16], shown in Figure 9,
is used as a case study design in simulation
based verification. It contains 2781 latches,
157 inputs and 56960 combinational gates.
The calculator has two internal arithmetic
pipelines: one for add/sub and one for shifts.
It receives commands from 4 different ports,
and outputs the results accordingly. The cal-
culator supports 4 types of commands: add,
sub, shift right and shift left. The response
is 1 for good, 2 for underflow, overflow or
invalid command, 3 for an internal error and
0 for no response. When running the calcu-
lator, reset has to be 1 for the first 3 cycles.

We checked the calculator against four assertions. For all but one of the assertions,
RespSTE added the smallest number of symbolic variables required for proving or fal-
sifying the assertion. Next we discuss Assertion 2.

Assertion 2 sets the command sent by a port Pi to add. The msb bits of the sent data
are constrained to 0 to avoid an overflow. No constraints are imposed on the commands
sent by other ports. The requirement is that the output data for Pi would match the
expected data. Assertion 2 fails due to an erroneous specification. The calculator gives
priority to the lower indexed ports. Thus, if both ports 1 and 3 send an add command,
port 3 does not receive a response at the first possible cycle. Due to the implementation
of the priority queue, commands of at least 3 ports have to be definite for falsifying the
assertion. IX((out resp2[0], 7)) contains cmd, data and tag inputs of all ports at cycles
3 and 4. Out of them, RespSTE added the least number of inputs required for falsifying
the assertion. The refinement steps of Assertion 2 are presented in Figure 10(b).

5.3 Evaluation of Results

As. It Goal Added Vars

1 1 hit,1 twrite,1

1 2 hit,1 taddr [0:3], 1

(a) CAM
As. It Goal Added Vars

2 1 out_resp2 [0],7 req1_cmd [0:2],3

2 2 out_resp2 [0],7 req1_cmd [3],3

2 3 out_resp2 [0],7 req2_cmd [0:3],3

(b) Calculator 2

Fig. 10. Refinement Steps

In [15], an algorithm called autoSTE for au-
tomatic refinement in STE, is presented. au-
toSTE exploits the results of the STE run,
as computed by Forte, in order to iden-
tify trajectories along which all nodes have
the value X . The input nodes of these tra-
jectories are the candidates for refinement.
Heuristics are used for choosing subsets of
these candidates.

We compared our experimental results
with those obtained by autoSTE. For the sake
of comparison, we used in our experiments
the same parametric representation of the STE assertions as in [15]. The final results of
RespSTE and its comparison with autoSTE are shown in Table 1.

Efficient Automatic STE Refinement Using Responsibility 247

Table 1. Experimental Results. AutoSTE is the algorithm presented in [15]. “Iterations” is the
number of refinement iterations that were performed, “Time” is the total runtime in seconds until
verification / falsification of the property, ”Vars” is the total number of symbolic variables that
were added by the refinements, and “BDD Nodes” is the number of BDD nodes used by Forte.

RespSTE AutoSTE
result Iterations Vars BDD Nodes Time Iterations Vars BDD Nodes Time

1 pass 2 5 3201 2 2 5 4768 3
2 fail 5 11 30726 5 7 11 57424 20
3 fail 1 8 14127 3 3 13 29006 17

1 fail 2 5 7735 32 2 2 6241 87
2 fail 3 8 19717 25 2 8 20134 100
3 fail 1 8 262201 43 1 8 530733 220
4 pass 4 16 14005 27 11 16 17323 494

C
al

c
2

C
A

M

The comparison shows a significant speedup in all of the assertions, and up to 18.5×
speedup in the larger ones. A significant reduction in BDD nodes is also gained in most
of the assertions. For some of the assertions, RespSTE added less symbolic variables or
required less refinement iterations than autoSTE. The overall performance of RespSTE
was better than autoSTE even when this was not the case.

Altogether, our experiments demonstrated that using the degree of responsibility as
a measure for refinement is a good choice. It provides a quantitative measure of the
importance of each input to an undecided node being X-possible. By examining these
values, we conclude that this quantitative measure reflects the actual importance of the
inputs in the model. The results obtained by RespSTE agree with the decisions of a user
who is familiar with the circuit. When using these results for automatic refinement,
the quality of the results demonstrates itself in the number of refinement iterations that
were required, and in the total number of symbolic variables that were added to the
antecedent.

Acknowledgements. We thank Rotem Oshman and Rachel Tzoref for the fruitful dis-
cussions, and the reviewers for their useful comments.

References

1. Adams, S., Bjork, M., Melham, T., Seger, C.: Automatic Abstraction in Symbolic Trajectory
Evaluation. In: FMCAD 2007 (2007)

2. Chen, Y., He, Y., Xie, F., Yang, J.: Automatic Abstraction Refinement for Generalized Sym-
bolic Trajectory Evaluation. In: FMCAD 2007 (2007)

3. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification?
In: ACM TOCL (to appear)

4. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model approach. Journal
of Artificial Intelligence Research (JAIR) 22, 93–115 (2004)

5. Chou, C.-T.: The mathematical foundation of symbolic trajectory evaluation. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 196–207. Springer, Heidelberg
(1999)

248 H. Chockler, O. Grumberg, and A. Yadgar

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer,
Heidelberg (2000)

7. Grumberg, O., Schuster, A., Yadgar, A.: 3-Valued Circuit SAT for STE with Automatic Re-
finement. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007.
LNCS, vol. 4762, Springer, Heidelberg (2007)

8. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach — part 1:
Causes. In: Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), pp. 194–202. Morgan Kaufmann, San Francisco (2001)

9. Hume, D.: A treatise of human nature. John Noon, London (1739)
10. Kurshan, R.P.: Computer-Aided Verification of coordinating processes - the automata theo-

retic approach (1994)
11. Pandey, M., Raimi, R., Bryant, R.E., Abadir, M.S.: Formal verification of content addressable

memories using symbolic trajectory evaluation. DAC 00, 167 (1997)
12. Roorda, J.-W., Claessen, K.: Sat-based assistance in abstraction refinement for symbolic tra-

jectory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 175–189.
Springer, Heidelberg (2006)

13. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered
trajectories. Formal Methods in System Design 6(2) (1995)

14. Seger, C.-J.H., Jones, R.B., O’Leary, J.W., Melham, T.F., Aagaard, M., Barrett, C., Syme,
D.: An industrially effective environment for formal hardware verification. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 24(9) (2005)

15. Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic trajec-
tory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 190–204.
Springer, Heidelberg (2006)

16. Wile, B., Roesner, W., Goss, J.: Comprehensive Functional Verification: The Complete In-
dustry Cycle. Morgan Kaufmann, San Francisco (2005)

17. Wilson, J.C.: Symbolic Simulation Using Automatic Abstraction of Internal Node Values.
PhD thesis, Stanford University, Dept. of Electrical Engineering (2001)

Reasoning Algebraically About P-Solvable Loops

Laura Kovács�

EPFL, Switzerland
laura.kovacs@epfl.ch

Abstract. We present a method for generating polynomial invariants for a sub-
family of imperative loops operating on numbers, called the P-solvable loops. The
method uses algorithmic combinatorics and algebraic techniques. The approach
is shown to be complete for some special cases. By completeness we mean that
it generates a set of polynomial invariants from which, under additional assump-
tions, any polynomial invariant can be derived. These techniques are implemented
in a new software package Aligator written in Mathematica and success-
fully tried on many programs implementing interesting algorithms working on
numbers.

1 Introduction

This paper discusses an approach for automatically generating polynomial equations as
loop invariants by combining advanced techniques from algorithmic combinatorics and
polynomial algebra. Polynomial invariants found by an automatic analysis are useful
for program verification, as they provide non-trivial valid assertions about the program,
and thus significantly simplify the verification task. Finding valid polynomial identities
(i. e. invariants) has applications in many classical data flow analysis problems [21], e.
g., constant propagation, discovery of symbolic constants, discovery of loop induction
variables, etc.

Exploiting the symbolic manipulation capabilities of the computer algebra system
Mathematica, the approach is implemented in a new software package called
Aligator [17]. By using several combinatorial packages developed at RISC,
Aligator includes algorithms for solving special classes of recurrence relations
(those that are either Gosper-summable or C-finite) and generating polynomial de-
pendencies among algebraic exponential sequences. Using Aligator, a complete set
of polynomial invariants is successfully generated for numerous imperative programs
working on numbers [17]; some of these examples are presented in this paper.

The key steps of our method for invariant generation are as follows.

(i) Assignment statements from the loop body are extracted. They form a system
of recurrence equations describing the behavior of those loop variables that are
changing at each loop iteration.

� The results presented here were obtained at the Research Institute for Symbolic Computation
(RISC), Linz, Austria. The work was supported by BMBWK (Austrian Ministry of Education,
Science, and Culture), BMWA (Austrian Ministry of Economy and Work) and MEC (Roma-
nian Ministry of Education and Research) in the frame of the e-Austria Timişoara project, and
by FWF (Austrian National Science Foundation) - SFB project F1302.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 249–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

250 L. Kovács

(ii) Methods of algorithmic combinatorics are used to solve exactly the recurrence
equations, yielding the closed form for each loop variable.

(iii) Algebraic dependencies among possible exponential sequences of algebraic num-
bers occurring in the closed forms of the loop variables are derived using algebraic
and combinatorial methods.
As a result of these steps, every program variable can be expressed as a polynomial
of the initial values of variables (those when the loop is entered), the loop counter,
and some new variables, where there are algebraic dependencies among the new
variables.

(iv) Loop counters are then eliminated by polynomial methods to derive a finite set
of polynomial identities among the program variables as invariants. From this fi-
nite set, under additional assumptions when the loop body contains conditionals
branches, any polynomial identity that is a loop invariant can be derived.

In our approach to invariant generation, a family of imperative loops, called P-solvable
(to stand for polynomial-solvable), is identified, for which test conditions in the loop and
conditional branches are ignored and the value of each program variable is expressed
as a polynomial of the initial values of variables, loop counter, and some new vari-
ables where there are algebraic dependencies among the new variables. We show that
for such loops, polynomial invariants can be automatically generated. Many non-trivial
algorithms working on numbers can be naturally implemented using P-solvable loops.

Further, if the bodies of these loops consist only of assignments whose right hand
sides are polynomials of certain shape, then the approach generates a complete set of
polynomial invariants of the loop from which any other polynomial invariant can be
obtained.

Moreover, if the P-solvable loop bodies contain conditional branches as well, under
additional assumptions the approach is proved to be also complete in generating a set of
polynomial invariants of the loop from which any further polynomial invariant can be
derived. We could not find any example of a P-solvable loop with conditional branches
and assignments for which our approach fails to be complete. We thus conjecture that
the imposed constraints cover a large class of imperative programs, and the complete-
ness proof of our approach without the additional assumptions is a challenging task for
further research.

The automatically obtained invariant assertions, together with the user-asserted non-
polynomial invariant properties, can be subsequently used for proving the partial cor-
rectness of programs by generating appropriate verification conditions as first-order
logical formulas. This verification process is supported in an imperative verification
environment implemented in the Theorema system [2].

This paper extends our earlier experimental papers [18, 19] by the completeness and
correctness results of the invariant generation algorithm, and by a complete treatment
of the affine loops. We omit proofs, they can be found in [17].

The rest of the paper is organized as follows. Section 2 gives a brief overview on
related work for invariant generation, followed by Section 3 containing the presentation
of some theoretical notions that are used further in the paper. In Section 4 we present
our method for polynomial invariant generation and illustrate the algorithm on concrete
examples. Section 5 concludes with some ideas for the future work.

Reasoning Algebraically About P-solvable Loops 251

2 Related Work

Research into methods for automatically generating loop invariants goes a long way,
starting with the works [8,12]. However, success was somewhat limited for cases where
only few arithmetic operations (mainly additions) among program variables were in-
volved. Recently, due to the increased computing power of hardware, as well as ad-
vances in methods for symbolic manipulation and automated theorem proving, the
problem of automated invariant generation is once again getting considerable atten-
tion. Particularly, using the abstract interpretation framework [4], many researchers
[22, 25, 26, 11] have proposed methods for automatically computing polynomial in-
variant identities using polynomial ideal theoretic algorithms.

In [22,26], the invariant generation problem is translated to a constraint solving prob-
lem. In [26], non-linear (algebraic) invariants are proposed as templates with parame-
ters; constraints on parameters are generated (by forward propagation) and solved using
the theory of ideals over polynomial rings. In [22], backward propagation is performed
for non-linear programs (programs with non-linear assignments) without branch condi-
tions, by computing a polynomial ideal that represents the weakest precondition for the
validity of a generic polynomial relation at the target program point. Both approaches
need to fix a priori the degree of a generic polynomial template being considered as an
invariant. This is also the case in [11] where a method for invariant generation using
quantifier-elimination [3] is proposed. A parameterized invariant formula at any given
control point is hypothesized and constraints on parameters are generated by consider-
ing all paths through that control point. Solutions of these constraints on parameters are
then used to substitute for parameters in a parameterized invariant formula to generate
invariants.

A related approach for polynomial invariant generation without any a priori bound
on the degree of polynomials is presented in [25]. It is observed that polynomial invari-
ants constitute an ideal. Thus, the problem of finding all polynomial invariants reduces
to computing a finite basis of the associated polynomial invariant ideal. This ideal is
approximated using a fix-point procedure by computing iteratively the Gröbner bases
of a certain polynomial ideal. The fixed point procedure is shown to terminate when the
list of (conditional) assignments present in the loop constitutes a solvable mapping.

In our work we do not need to fix a priori the degree of a polynomial assertion,
and do not use the abstract interpretation framework either. Instead, recurrence rela-
tions expressing the value of each program variable at the end of any iteration are for-
mulated and solved exactly. Structural conditions are imposed on recurrence relations
so that their closed form solutions can be obtained by advanced symbolic summation
techniques. Since these closed form expressions can involve exponentials of algebraic
numbers, algebraic dependencies among these exponentials need to be identified, which
can be done automatically, unlike [25], where polynomial dependencies could be de-
rived only for a special case of algebraic exponentials, namely, for rationals. Finally, for
eliminating the loop counter and the variables standing for the exponential sequences in
the loop counter from these closed form solutions expressed as polynomials, a Gröbner
basis computation is performed; however, we do not need to perform Gröbner basis
computations iteratively. Contrarily to [25] where completeness is always guaranteed,
the completeness of our method for loops with conditional branches and assignments

252 L. Kovács

is proved only under additional assumptions over ideals of polynomial invariants. It is
worth to be mentioned though that these additional constraints cover a wide class of
loops, and we could not find any example for which the completeness of our approach
is violated.

3 Theoretical Preliminaries

This section contains some definitions and facts about linear recurrences, ideals and
algebraic dependencies. For additional details see [5, 7].

In what follows, N, Z, Q, R denote respectively the set of natural, integer, rational
and real numbers. Throughout this paper we assume that K is a field of characteristic
zero (e.g. Q, R, etc.) and denote by K̄ its algebraic closure. All rings are commutative.

Definition 3.1. Sequences and Recurrences

– A univariate sequence in K is a function f : N → K. By f(n) we denote both the
value of f at the point n and the whole sequence f itself.

– A recurrence for a sequence f(n) is

f(n + r) = R(f(n), f(n + 1), . . . , f(n + r − 1), n) (n ∈ N),

for some function R : K
r+1 → K, where r is a natural number, called the order of

the recurrence.

The recurrence equation of f(n) allows the computation of f(n) for any n ∈ N: first
the previous values f(1), . . . , f(n − 1) are determined, and then f(n) is obtained. A
solution to the recurrence would be thus more suitable for getting the value of f(n) for
any n as a function of the recurrence index n. That is a closed form solution of f(n).
Since finding closed form expressions of recurrences in the general case is undecidable,
it is necessary to distinguish among the type of recurrence equations. In what follows,
several classes of recurrences will be briefly presented together with the algorithmic
methods for solving them.

Definition 3.2. Gosper-summable and C-finite Recurrences [9, 28]

1. A Gosper-summable recurrence f(n) in K is a recurrence

f(n + 1) = f(n) + h(n + 1) (n ∈ N), (1)

where h(n) is a hypergeometric sequence in K. Namely, h(n) can be a product
of factorials, binomials, rational-function terms and exponential expressions in the
summation variable n (all these factors can be raised to an integer power).

2. A C-finite recurrence f(n) in K is a (homogeneous) linear recurrence with constant
coefficients

f(n + r) = a0f(n) + a1f(n + 1) + . . . + ar−1f(n + r − 1) (n ∈ N), (2)

where r ∈ N is the order of the recurrence, and a0, . . . , ar−1 are constants from
K with a0 �= 0. By writing xi for each f(n + i), i = 0, . . . , r, the corresponding
characteristic polynomial c(x) of f(n) is

c(x) = xr − a0 − a1x − · · · − ar−1x
r−1.

Reasoning Algebraically About P-solvable Loops 253

Computation of Closed Forms
(i) The closed-form solution of a Gosper-summable recurrence can be exactly com-
puted [9]; for doing so, we use the recurrence solving package zb [23], implemented
in Mathematica by the RISC Combinatorics group. For example, given the Gosper-
summable recurrence f(n + 1) = f(n) + 1

2n+1 , n ≥ 0, with the initial value f(0), we
obtain its closed form f(n) = f(0) + 2 − 2 ∗ 2−n.
(ii) A crucial and elementary fact about a C-finite recurrence f(n) in K is that it always
admits a closed form solution [7]. Its closed form is

f(n) = p1(n)θn
1 + · · · + ps(n)θn

s , (3)

where θ1, . . . , θs ∈ K̄ are the distinct roots of the characteristic polynomial of f(n),
and pi(n) is a polynomial in n whose degree is less than the multiplicity of the root
θi, i = 1, . . . , s. The closed form (3) of f(n) is called a C-finite expression.

An additional nice property of C-finite recurrences is that an inhomogeneous linear
recurrence with constant coefficients

f(n + r) = a0f(n) + a1f(n + 1) + · · · + ar−1f(n + r − 1) + g(n) (n ∈ N),

where a0, . . . , ar−1 ∈ K and g(n) �= 0 is a C-finite expression in n, can always be trans-
formed into an equivalent (homogenous) C-finite recurrence. Hence, its closed form can
always be computed.

For obtaining the closed form solutions of (C-finite) linear recurrences we use the
SumCracker package [13], a Mathematica implementation by the RISC Combina-
torics group. For example, given the linear recurrence f(n+1) = 1

2 ∗f(n)+1, n ≥ 0,
with initial value f(0), we obtain its closed form f(n) = 1

2n ∗ f(0) − 2
2n + 2.

In this paper we consider the ring K[x1, . . . , xm] of polynomials in the loop variables
x1, . . . , xm with coefficients in K, and perform operations over ideals of K[x1, . . . , xm].
Thus, it is necessary for our approach to effectively compute with ideals. This is pos-
sible by using Buchberger’s algorithm for Gröbner basis computation [1]. A Gröbner
basis is a basis for an ideal with special properties making possible to answer algo-
rithmically questions about ideals, such as ideal membership of a polynomial, equality
and inclusion of ideals, etc. A detailed presentation of the Gröbner bases theory can be
found in [1].

Definition 3.3. Algebraic Dependencies among Exponential Sequences [14]
Let θ1, . . . , θs ∈ K̄ be algebraic numbers, and their corresponding exponential se-
quences θn

1 , . . . , θn
s , n ∈ N.

An algebraic dependency (or algebraic relation) of these sequences over K̄ is a poly-
nomial p ∈ K̄[x1, . . . , xs] in s distinct variables x1, . . . , xs, i.e. in as many distinct
variables as exponential sequences, such that p vanishes when variables are substituted
by the exponential sequences, namely:

p(θn
1 , . . . , θn

s) = 0, ∀n ∈ N. (4)

Note that the multiplicative relations among θ1, . . . , θs imply corresponding relations
among θn

1 , . . . , θn
s . Further, by results of [14], the ideal I(θn

1 , . . . , θn
s) of algebraic de-

pendencies among the sequences θn
1 , . . . , θn

s is the same as the ideal I(n, θn
1 , . . . , θn

s).

254 L. Kovács

For automatically determining the ideal I(n, θn
1 , . . . , θn

s) of algebraic dependencies
among θn

1 , . . . , θn
s we use the Dependencies package [14] implemented in Mathe-

matica by the RISC combinatorics group. For example, θ2n
1 − θn

2 = 0 is an algebraic
dependency among the exponential sequences of θ1 = 2 and θ2 = 4 and there is no
algebraic dependency among the exponential sequences of θ1 = 2 and θ2 = 3.

4 Generation of Invariant Polynomial Identities

As observed already by [25], the set of polynomial invariants forms a polynomial ideal.
The challenging task is thus to determine the polynomial invariant ideal.

The algorithm for polynomial invariant generation presented in this paper combines
computer algebra and algorithmic combinatorics in such a way that at the end of the
invariant generation process valid polynomial assertions of a P-solvable loop are auto-
matically obtained. Moreover, under additional assumptions for loops with conditional
branches, our approach is proved to be complete: it returns a basis for the polynomial
invariant ideal.

In our approach for generating polynomial invariants, test conditions in the loops
and conditionals are ignored. This turns the considered loops into non-deterministic
program fragment.

For any conditional statement If[b Then S1 Else S2], where S1 and S2 are se-
quences of assignments, we will omit the boolean condition b and write it in the form
If[. . . Then S1 Else S2] to mean the non-deterministic program S1|S2. Likewise, we
omit the condition b from a loop While[b, S], where S is a sequence of assignments,
and will write it in the form

While[. . . , S] (5)

to mean the non-deterministic program S∗. A detailed presentation of the syntax and
semantics of considered non-deterministic programs can be found in [17].

Ignoring the tests in the conditional branches means that either branch is executed in
every possible way, whereas ignoring the test condition of the loop means the loop is
executed arbitrarily many nonzero times. We will refer to the loop obtained in this way
by dropping the loop condition and all test conditions also as a P-solvable loop. In the
rest of this paper we will focus on non-deterministic P-solvable loops with assignments
and conditional branches with ignored conditions, written as below.

While[. . . ,If[. . . Then S1]; . . . ;If[. . . Then Sk]]. (6)

The definition of P-solvable loops is available in our earlier conference papers [18,
19]. Informally, an imperative loop is P-solvable if the closed form solution of the loop
variables are polynomials of the initial values of variables, the loop counter, and some
new variables, where there are algebraic dependencies among the new variables. The
class of P-solvable loops includes the simple situations when the expressions in the
assignment statements are affine mappings, as stated below.

Theorem 4.1. Affine loops are P-solvable

Reasoning Algebraically About P-solvable Loops 255

Our experience shows that most practical examples operating on numbers exhibit the
P-solvable loop property. Thus, the class of P-solvable loops covers at least a significant
part of practical programming.

P-solvable Loops with Assignments Only. We denote by n ∈ N the loop counter,
by X = {x1, . . . , xm} (m > 1) the recursively changed loop variables whose initial
values (before entering the loop) are denoted by X0. Our method for automatically
deriving a basis of the polynomial invariant ideal for P-solvable loops with assignments
only is presented in Algorithm 4.1.

Algorithm 4.1 “receives” as input a P-solvable loop with assignments only (k =
1 in (6)), and starts first with extracting and solving the recurrence equations of the
loop variables. The closed forms of the variables are thus determined (steps 1-3 of
Algorithm 4.1). Next, it computes the set A of generators for the ideal of algebraic
dependencies among the exponential sequences from the closed form system (step 4
of Algorithm 4.1). Finally, from the ideal I generated by the polynomial system of
closed forms and A, the ideal G of all polynomial relations among the loop variables is
computed by elimination using Gröbner basis w.r.t. a suitable elimination order (steps
5-7 of Algorithm 4.1).

Algorithm 4.1 P-solvable Loops with Assignments Only
Input: Imperative P-solvable loop (5) with only assignment statements S, having its
recursively changed variables X = {x1, . . . , xm} with initial values X0
Output: The ideal G � K[X] of polynomial invariants among X
Assumption: The recurrence equations of X are of order at least 1, n ∈ N

1 Extract the recurrence equations of the loop variables

I. Recurrence Solving.

2 Identify the type of recurrences and solve them by the methods from page 253
3 Using the P-solvable loop property, the closed form system is

⎧
⎪⎨

⎪⎩

x1[n] = q1(n, θn
1 , . . . , θn

s)
...
xm[n] = qm(n, θn

1 , . . . , θn
s)

, where
θj ∈ K̄, qi ∈ K̄[n, θn

1 , . . . , θn
s],

qi are parameterized by X0,
j = 1, . . . , s, i = 1, . . . , m

4 Compute a basis A for the ideal of algebraic dependencies among n, θn
1 , . . . , θn

s .

Conform page 253, 〈A〉 = I(n, θn
1 , . . . , θn

s)

5 Denote z0 = n, z1 = θn
1 , . . . , zs = θn

s . Thus 〈A〉 � K̄[z0, . . . , zs] and
⎧
⎪⎨

⎪⎩

x1 = q1(z0, z1, . . . , zs)
...
xm = qm(z0, z1, . . . , zs)

, where
qi ∈ K̄[z0, z1, . . . , zs], i = 1, . . . , m,
qi are parameterized by X0.

II. Polynomial Invariant Generation.

256 L. Kovács

6 Consider I = 〈x1 − q1(z0, . . . , zs), . . . , xm − qm(z0, . . . , zs)〉 + 〈A〉.

Thus I ⊂ K̄[z0, z1, . . . , zs, x1, . . . , xm]

7 return G = I ∩ K[x1, . . . , xm].

Theorem 4.2. Algorithm 4.1 is correct. Its output G satisfies

1. G � K[x1, . . . , xm];
2. every polynomial relation from G is a polynomial invariant among the P-solvable

loop variables x1, . . . , xm over K[X];
3. any polynomial invariant among the P-solvable loop variables x1, . . . , xm over

K[X] can be derived from (the generators of) G.

The restrictions at the various steps of Algorithm 4.1 are crucial. If the recurrences
cannot be solved exactly, or their closed forms do not fulfill the P-solvable form, our
algorithm fails in generating valid polynomial relations among the loop variables. Thus,
Algorithm 4.1 can be applied only to P-solvable loops whose assignment statements
describe either Gosper-summable or C-finite recurrences.

Example 4.3. Given the loop

While[. . . , a := a + b; y := y + d/2; b := b/2; d := d/2],

its polynomial invariants, by applying Algorithm 4.1 and using Aligator, are ob-
tained as follows.

Step 1:⎧
⎪⎪⎨

⎪⎪⎩

a[n + 1] = a[n] + b[n]
y[n + 1] = y[n] + d[n]/2
b[n + 1] = b[n]/2
d[n + 1] = d[n]/2

Steps 2,3:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a[n] =
Gosper

a[0] + 2 ∗ b[0] − 2 ∗ b[0] ∗ 2−n

b[n] =
C−finite

b[0] ∗ 2−n

d[n] =
C−finite

d[0] ∗ 2−n

y[n] =
Gosper

y[0] + d[0] − d[0] ∗ 2−n

where a[0], b[0], d[0], y[0] denote the initial values of a, b, d, y before the loop.

Steps 4, 5: z1 = 2−n, z2 = 2−n, z3 = 2−n, z4 = 2−n

⎧
⎪⎪⎨

⎪⎪⎩

a = a[0] + 2 ∗ b[0] − 2 ∗ b[0] ∗ z1
b = b[0] ∗ z2
d = d[0] ∗ z3
y = y[0] + d[0] − d[0] ∗ z4

with

algebraic dependencies:⎧
⎨

⎩

z1 − z4 = 0
z2 − z4 = 0
z3 − z4 = 0

Steps 6, 7: The Gröbner basis computation with z1 � z2 � z3 � z4 � a � b � d � y
yields:
G = 〈d + y − d[0] − y[0], y b[0] + b d[0] − b[0]d[0] − b[0]y[0], a + 2b − a[0] − 2b[0]〉.
Based on Theorems 4.1 and 4.2, we finally state the theorem below.

Theorem 4.4. The ideal of polynomial invariants for an affine loop is algorithmically
computable by Algorithm 4.1.

Reasoning Algebraically About P-solvable Loops 257

P-solvable Loops with Conditionals and Assignments. We consider a generalization
of Algorithm 4.1. for P-solvable loops with conditional branches and assignments.

The starting point of our approach is to do first program transformations (see The-
orem 4.5). Namely, transform the P-solvable loop with conditional branches, i.e. outer
loop, into nested P-solvable loops with assignments only, i.e. inner loops. Further, we
apply steps of Algorithm 4.1 to reason about the inner loops such that at the end we
derive polynomial invariants of the outer loop. Moreover, under the additional assump-
tions introduced in Theorem 4.12, we prove that our approach is complete. Namely, it
returns a basis for the polynomial invariant ideal for some special cases of P-solvable
loops with conditional branches and assignments. It is worth to be mentioned that the
imposed assumptions cover a wide class of imperative programs (see [17] for concrete
examples). Moreover, we could not yet find any example of a P-solvable loop for which
the completeness of our approach is violated.

Theorem 4.5. Let us consider the following two loops:

While[b, s0;If[b1 Then s1 Else . . . If[bk−1 Then sk−1 Else sk]. . .]; sk+1] (7)

and
While[b,
While[b ∧ b′1, s0; s1; sk+1];
. . .
While[b ∧ ¬b′1 ∧ · · · ∧ ¬b′k−1, s0; sk; sk+1]],

(8)

where s0, s1, . . . , sk, sk+1 are sequences of assignments, and b′i = wp(s0, bi) is the
weakest precondition of s0 with postcondition bi, i = 1, . . . , k − 1.

Then any formula I is an invariant of the first loop if and only if it is an invariant of
the second loop and all of its inner loops.

Since in our approach for invariant generation tests are ignored in the loop and con-
ditional branches, the loop (7) can be equivalently written as (6), by denoting Si =
s0; si; sk+1. Further, using our notation for basic non-deterministic programs men-
tioned on page 254, the outer loop (8) can be written as (S1|S2| . . . |Sk)∗. Based on
Theorem 4.5, an imperative loop having k ≥ 1 conditional branches and assignment
statements only is called P-solvable if the inner loops obtained after performing the
transformation rule from Theorem 4.5 are P-solvable.

Example 4.6. Consider the loop implementing Wensley’s algorithm for real division
[27].

While[(d ≥ Tol),
If[(P < a + b)
Then b := b/2; d := d/2
Else a := a + b; y := y + d/2; b := b/2; d := d/2]].

(9)

After applying Theorem 4.5 and omitting all test conditions, the obtained nested loop
system is as follows.

While[. . . ,
S1 : While[. . . , b := b/2; d := d/2];
S2 : While[. . . , a := a + b; y := y + d/2; b := b/2; d := d/2]].

258 L. Kovács

What remains is to determine the relation between the polynomial invariants of the P-
solvable loop (7) and the polynomial identities of the inner loops from (8). For doing
so, the main steps of our algorithm are as follows.

(i) Firstly, we determine the ideal of polynomial relations for an arbitrary iteration of
the outer loop (8) (see Theorem 4.8).

(ii) Finally, from the ideal of polynomial relations after the first iteration of the outer
loop (8), we keep only the polynomial invariants for the P-solvable loop (7) (see
Theorem 4.10).

Moreover, under the additional assumptions of Theorem 4.12, the polynomial
invariants thus obtained form a basis for the polynomial invariant ideal of the P-
solvable loop (7).

In more detail, we proceed as follows. (i) In the general case of a P-solvable loop (7)
with a nested conditional statement having k ≥ 1 conditional branches, by applying
Theorem 4.5, we obtain an outer loop (8) with k P-solvable inner loops S1, . . . , Sk.
Thus an arbitrary iteration of the outer loop is described by an arbitrary sequence of
the k P-solvable loops. Since the tests are ignored, for any iteration of the outer loop we
have k! possible sequences of inner P-solvable loops.

Let us denote the set of permutations of length k over {1, . . . , k} by Sk. Consider a
permutation W = (w1, . . . , wk) ∈ Sk and a sequence of numbers J = {j1, . . . , jk} ∈
N

k. Then we write SJ
W = Sj1

w1
; Sj2

w2
; . . . ; Sjk

wk
to denote an arbitrary iteration of the

outer loop, i.e. an arbitrary sequence of the k inner loops. By Sj
i we mean the sequence

of assignments Si; . . . ; Si︸ ︷︷ ︸
j times

.

Using steps 1-4 of Algorithm 4.1, for each P-solvable inner loop Sji
wi

from SJ
W we

obtain their system of closed forms together with their ideal of algebraic dependencies
among the exponential sequences (steps 1-4 of Algorithm 4.2). Further, the system of
closed forms of loop variables after SJ

W is obtained by merging the closed forms of its
inner loops. Merging is based on the fact that the initial values of the loop variables
corresponding to the inner loop S

ji+1
wi+1 are given by the final values of the loop variables

after Sji
wi

(step 5 of Algorithm 4.2). In [17] we showed that merging of closed forms of
P-solvable inner loops yields a polynomial closed form system as well.

We can now compute the ideal of valid polynomial relations among the loop variables
X with initial values X0 corresponding to the sequence of assignments Sw1 ; . . . ; Sw1︸ ︷︷ ︸

j1 times

;

Sw2 ; . . . ; Sw2︸ ︷︷ ︸
j2 times

; ; Swk
; . . . ; Swk︸ ︷︷ ︸
jk times

. Using notation introduced on page 254, we thus

compute the ideal of valid polynomial relations after S∗w1
; . . . ; S∗wk

. This is presented
in Algorithm 4.2.

Algorithm 4.2 Polynomial Relations of a P-solvable Loop Sequence
Input: k P-solvable inner loops Sw1 , . . . , Swk

Output: The ideal G � K[X] of polynomial relations among X with initial values
X0 after S∗w1

; . . . ; S∗wk

Assumption: Swi are sequences of assignments, wi ∈ {1, . . . , k}, ji ∈ N, k ≥ 1

Reasoning Algebraically About P-solvable Loops 259

1 for each Sji
wi

, i = 1, . . . , k do
2 Apply steps 1-3 of Algorithm 4.1 for determining the closed form of Sji

wi

3 Compute the ideal Awi of algebraic dependencies for Sji
wi

4 endfor
5 Compute the merged closed form of Sj1

w1
; . . . ; Sjk

wk
:

⎧
⎪⎨

⎪⎩

x1[j1, . . . , jk] = f1(j1, θ
j1
w11, . . . , θ

j1
w1s, , jk, θjk

wk1, . . . , θ
jk
wks)

...
xm[j1, . . . , jk] = fm(j1, θ

j1
w11, . . . , θ

j1
w1s, , jk, θjk

wk1, . . . , θ
jk
wks)

, where

fl ∈ K̄[z10, . . . , z1s, , zk0, . . . , zks],

the variables zi0, . . . , zis are standing for the C-finite sequences ji, θ
ji
wi1, . . . , θ

ji
wis,

the coefficients of fl are given by the initial values before Sj1
w1 ; . . . ; Sjk

wk

6 A∗ =
k∑

i=1

Awi

7 I = 〈x1 − f1, . . . , xm − fm〉 + A∗ ⊂ K̄[z10, , zks, x1, . . . , xm]
8 return G = I ∩ K[x1, . . . , xm].

Elimination of z10, . . . , zks at step 8 is performed by Gröbner basis computation of
I w.r.t. an elimination order � such that z10 � · · · · · · � zks � x1 · · · � xm.

Example 4.7. For Example 4.6, the steps of Algorithm 4.2 are presented below.
Steps 1-4. Similarly to Example 4.3, the closed form systems of the inner loops S1

and S2 are as follows.

Inner loop S1: Inner loop S2:
j1 ∈ N j2 ∈ N

z11 = 2−j1 , z12 = 2−j1 z21 = 2−j2 , z22 = 2−j2 , z23 = 2−j2 , z24 = 2−j2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a[j1] = a[01]
b[j1] =

C−finite
b[01] ∗ z11

d[j1] =
C−finite

d[01] ∗ z12

y[j1] = y[01]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a[j2] =
Gosper

a[02] + 2 ∗ b[02] − 2 ∗ b[02] ∗ z21

b[j2] =
C−finite

b[02] ∗ z22

d[j2] =
C−finite

d[02] ∗ z23

y[j2] =
Gosper

y[02] + d[02] − d[02] ∗ z24,

with the computed algebraic dependencies

{
z11 − z12 = 0 and

⎧
⎨

⎩

z21 − z24 = 0
z22 − z24 = 0
z23 − z24 = 0,

where X01 = {a[01], b[01], d[01], y[01]} and X02 = {a[02], b[02], d[02], y[02]} are re-
spectively the initial values of a, b, d, y before entering the inner loops S1 and S2.

Steps 5-6. For the inner loop sequence Sj1
1 ; Sj

2 the initial values X02 are given by the
values a[j1], b[j1], d[j1], y[j1] after Sj1

1 . Hence, the merged closed form of Sj1
1 ; Sj2

2 is

260 L. Kovács

given below. For simplicity, let us rename the initial values X01 to respectively X0 =
{a[0], b[0], d[0], y[0]}.

⎧
⎪⎪⎨

⎪⎪⎩

a[j1, j2] = a[0] + 2 ∗ b[0] ∗ z11 − 2b[0] ∗ z21 ∗ z11
b[j1, j2] = b[0] ∗ z22 ∗ z11
d[j1, j2] = d[0] ∗ z12 ∗ z23
y[j1, j2] = y[0] + d[0] ∗ z12 − d[0] ∗ z24 ∗ z12,

(10)

with the already computed algebraic dependencies

A∗ = 〈z11 − z12, z21 − z24, z22 − z24, z23 − z24〉. (11)

Steps 7, 8. From (10) and (11), by eliminating z11, z12, z21, z22, z23, z24, we obtain the
ideal of polynomial relations for Sj1

1 ; Sj2
2 , as below.

G = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0] − a[0] ∗ d[0] − 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d − a[0] ∗ d − 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

In order to get all polynomial relations among the loop variables X with initial val-
ues X0 corresponding to an arbitrary iteration of the outer loop (8), we need to apply
Algorithm 4.2 on each possible sequence of k inner loops that are in a number of k!.
This way, for each sequence of k inner loops we get the ideal of their polynomial re-
lations among the loop variables X with initial values X0 (step 3 of Algorithm 4.3).
Using ideal theoretic results, by taking the intersection of all these ideals, we derive
the ideal of polynomial relations among the loop variables X with initial values X0
that are valid after any sequence of k P-solvable inner loops (step 4 of Algorithm 4.3).
The intersection ideal thus obtained is the ideal of polynomial relations among the loop
variables X with initial values X0 after an arbitrary iteration of the outer loop (8). This
can be algorithmically computed as follows.

Algorithm 4.3 Polynomial Relations for an Iteration of (8)
Input: P-solvable loop (8) with P-solvable inner loops S1, . . . , Sk

Output: The ideal PI ⊂ K[X] of the polynomial relations among X with initial
values X0 corresponding to an arbitrary iteration of (8)
Assumption: X0 are the initial values of X before the arbitrary iteration of (8)

1 PI = Algorithm 4.2
(
S1, . . . , Sk

)

2 for each W ∈ Sk \ {(1, . . . , k)} do
3 G = Algorithm 4.2

(
Sw1 , . . . , Swk

)

4 PI = PI ∩ G
5 endfor
6 return PI.

Theorem 4.8. Algorithm 4.3 is correct. It returns the generators for the ideal PI of
polynomial relations among the loop variables X with initial values X0 after a possible
iteration of the outer loop (8).

Example 4.9. Similarly to Example 4.7, we compute the ideal of polynomial relations
for Sj2

2 ; Sj1
1 for Example 4.6. Further, we take the intersection of the ideals of polyno-

mial relations for Sj1
1 ; Sj2

2 and Sj2
2 ; Sj1

1 . We thus obtain

Reasoning Algebraically About P-solvable Loops 261

PI = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0] − a[0] ∗ d[0] − 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d − a[0] ∗ d − 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

(ii) What remains is to identify the relationship between the polynomial invariants
among the loop variables X of the outer loop and the computed polynomial relations
using Algorithm 4.3 for an arbitrary iteration of the outer loop. For doing so, we pro-
ceed as follows.

1. Note that the initial values X0 of the loop variables X at the entry point of the outer
loop are also the initial values of the loop variables X before the first iteration of the
outer loop (8). We thus firstly compute by Algorithm 4.3 the ideal of all polynomial
relations among the loop variables X with initial values X0 corresponding to the
first iteration of the outer loop (8). We denote this ideal by PI1.

2. Next, from (the generators of) PI1 we keep only the set GI of polynomial relations
that are invariants among the loop variables X with initial values X0: they are
preserved by any iteration of the outer loop (8) starting in a state in which the
initial values of the loop variables X are X0. By correctness of Theorem 4.5, the
polynomials from GI thus obtained are invariants among the loop variables X with
initial values X0 of the P-solvable loop (7) (see Theorem 4.10).

Finally, we can now formulate our algorithm for polynomial invariant generation for
P-solvable loops with conditional branches and assignments.

Algorithm 4.4 P-solvable Loops with Non-deterministic Conditionals
Input: P-solvable loop (7) with k ≥ 1 conditional branches and assignments
Output: Polynomial invariants of (7) among X with initial values X0

1 Apply Theorem 4.5, yielding a nested loop (8) with k P-solvable inner loops
S1, . . . , Sk

2 Apply Algorithm 4.3 for computing the ideal PI1 of polynomial relations
among X after the first iteration of the outer loop (8)

3 From PI1 keep the set GI of those polynomials whose conjunction is pre-
served by each S1, . . . , Sk:

GI = {p ∈ PI1 | wp(Si, p(X) = 0) ∈ 〈GI〉, i = 1, . . . , k} ⊂ PI1, where
wp(Si, p(X) = 0) is the weakest precondition of Si with postcondition p(X) = 0

4 return GI .

Theorem 4.10. Algorithm 4.4 is correct. It returns polynomial invariants among the
loop variables X with initial values X0 of the P-solvable loop (7).

Example 4.11. From Example 4.9 we already have the set PI1 for Example 4.6. By
applying step 3 of Algorithm 4.4, the set of polynomial invariants for Example 4.6 is

GI = {b[0] ∗ d + b ∗ d[0], a ∗ d[0] − a[0] ∗ d[0] − 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d − a[0] ∗ d − 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]}.

262 L. Kovács

In what follows, we state under which additional assumptions Algorithm 4.4 returns a
basis of the polynomial invariant ideal. We fix some further notation.

– J∗ the polynomial invariant ideal among X with initial values X0 of the P-solvable
loop (7).

– JW denotes the ideal of polynomial relations among X with initial values X0 after
SJ

W .
– For all i = 1, . . . , k and j ∈ N, we denote by JW,i the ideal of polynomial relations

among X with initial values X0 after SJ
W ; Sj

i .

For proving completeness of our method, we impose structural conditions on the
ideal of polynomial relations among X with initial values X0 corresponding to se-
quences of k and k + 1 inner loops, as presented below.

Theorem 4.12. Let ak =
⋂

W∈Sk

JW , ak+1=
⋂

W∈Sk
i=1,...,k

JW,i. Let GI be as in Algorithm 4.4.

1. If ak = ak+1 then J∗ = ak.
2. If 〈GI〉 = ak ∩ ak+1 then J∗ = ak ∩ ak+1.
3. If 〈GI〉 = ak then J∗ = ak.

Example 4.13. From Examples 4.9 and 4.11 we obtain GI = PI1. By Theorem 4.12
we thus derive GI = J∗, yielding the completeness of Algorithm 4.4 for Example 4.6.

Further Examples. We have successfully tested our method on a number of interesting
number theoretic examples [17], some of them being listed in the table below. The first
column of the table contains the name of the example, the second and third columns
specify the applied combinatorial methods and the number of generated polynomial
invariants for the corresponding example, whereas the fourth column shows the timing
(in seconds) needed by the implementation on a Pentium 4, 1.6GHz processor with 512
Mb RAM. The fifth columns shows whether our method was complete.

5 Conclusion

A framework for generating loop invariants for a family of imperative programs operat-
ing on numbers. We give several methods for invariant generation and prove a number
of new results showing soundness, and also sometimes completeness of these methods.
These results use non-trivial mathematics based on combining combinatorics, algebraic
relations and logic. Moreover, the framework is implemented as a Mathematica pack-
age, called Aligator, and used further for imperative program verification in the The-
orema system. A collection of examples successfully worked out using the framework
is presented in [17].

So far, the focus has been on generating polynomial equations as loop invariants.
We believe that it should be possible to identify and generate polynomial inequalities in
addition to polynomial equations, as invariants as well. We have been investigating the
manipulation of pre- and postconditions, and other annotations of programs, if avail-
able, along with conditions in loops and conditional statements, as well as the simple

Reasoning Algebraically About P-solvable Loops 263

Example Comb. Methods Nr.Poly. (sec) Compl.
P-solvable loops with assignments only

Division [6] Gosper 1 0.08 yes
Integer square root [15] Gosper 2 0.09 yes
Integer square root [16] Gosper 2 0.09 yes
Integer cubic root [16] Gosper 2 0.15 yes
Fibonacci [17] Generating functions, Alg.Dependencies 1 0.73 yes
Sum of powers n5 [24] Gosper 1 0.07 yes

P-solvable loops with conditional branches and assignments
Wensley’s Algorithm [27] Gosper, C-finite, Alg.Dependencies 2 0.48 yes
LCM-GCD computation [6] Gosper 1 0.33 yes
Extended GCD [16] Gosper 5 2.65 yes
Fermat’s factorization [16] Gosper 1 0.32 yes
Square root [29] Gosper, C-finite, Alg.Dependencies 1 1.28 yes
Binary Product [16] Gosper, C-finite, Alg.Dependencies 1 0.47 yes
Binary Product [25] Gosper, C-finite, Alg.Dependencies 1 9.6 yes
Binary Division [10]
1st Loop C-finite, Alg. Dependencies 2 0.10 yes
2nd Loop C-finite, Gosper, Alg.Dependencies 1 0.72 yes
Square root [6]
1st Loop C-finite, Alg. Dependencies 2 0.15 yes
2nd Loop Gosper, C-finite, Alg. Dependencies 1 8.7 yes
Hardware Integer Division [20]
1st Loop C-finite, Alg. Dependencies 3 0.19 yes
2nd Loop Gosper, C-finite, Alg.Dependencies 3 0.64 yes
Hardware Integer Division [26]
1st Loop C-finite, Alg. Dependencies 3 0.17 yes
2nd Loop Gosper, C-finite, Alg.Dependencies 3 0.81 yes
Factoring Large Numbers [16] C-finite, Gosper 1 14.4 yes

fact that no loop is executed less than 0 times. Quantifier elimination methods on theo-
ries, including the theory of real closed fields, should be helpful. We are also interested
in generalizing the framework to programs on nonnumeric data structures.

Acknowledgements. The author wishes to thank Tudor Jebelean, Andrei Voronkov,
Deepak Kapur and Manuel Kauers for their help and comments.

References

1. Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In:
Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidi-
mensional Systems, pp. 184–232 (1985)

2. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F.,
Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards Computer-Aided
Mathematical Theory Exploration. Journal of Applied Logic 4(4), 470–504 (2006)

3. Collins, G.E.: Quantifier Elimination for the Elementary Theory of Real Closed Fields by
Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS,
vol. 33, pp. 134–183. Springer, Heidelberg (1975)

4. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Variables of
a Program. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 84–97 (1978)

5. Cox, D., Little, J., O’Shea, D.: Ideal, Varieties, and Algorithms. An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer, Heidelberg
(1998)

264 L. Kovács

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
7. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. Mathemat-

ical Surveys and Monographs, American Mathematical Society, 104 (2003)
8. German, S.M., Wegbreit, B.: A Synthesizer of Inductive Assertions. IEEE Transactions on

Software Engineering 1, 68–75 (1975)
9. Gosper, R.W.: Decision Procedures for Indefinite Hypergeometric Summation. Journal of

Symbolic Computation 75, 40–42 (1978)
10. Kaldewaij, A.: Programming. The Derivation of Algorithms. Prentince-Hall, Englewood

Cliffs (1990)
11. Kapur, D.: A Quantifier Elimination based Heuristic for Automatically Generating Inductive

Assertions for Programs. Journal of Systems Science and Complexity 19(3), 307–330 (2006)
12. Karr, M.: Affine Relationships Among Variables of Programs. Acta Informatica 6, 133–151

(1976)
13. Kauers, M.: SumCracker: A Package for Manipulating Symbolic Sums and Related Objects.

Journal of Symbolic Computation 41, 1039–1057 (2006)
14. Kauers, M., Zimmermann, B.: Computing the Algebraic Relations of C-finite Sequences and

Multisequences. Technical Report 2006-24, SFB F013 (2006)
15. Kirchner, M.: Program Verification with the Mathematical Software System Theorema. Tech-

nical Report 99-16, RISC-Linz, Austria, Diplomaarbeit (1999)
16. Knuth, D.E.: The Art of Computer Programming, 3rd edn. vol. 2. Addison-Wesley, Reading

(1998)
17. Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Imperative Pro-

gram Verification in Theorema. PhD thesis, RISC, Johannes Kepler University Linz (2007)
18. Kovács, L., Jebelean, T.: Finding Polynomial Invariants for Imperative Loops in the Theo-

rema System. In: Proc. of Verify 2006, FLoC 2006, pp. 52–67 (2006)
19. Kovács, L., Popov, N., Jebelean, T.: Combining Logic and Algebraic Techniques for Program

Verification in Theorema. In: Proc. of ISOLA 2006 (2006)
20. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill Inc, New York (1974)
21. Müller-Olm, M., Seidl, H., Petter, M.: Interprocedurally Analyzing Polynomial Identities.

In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer,
Heidelberg (2006)

22. Müller-Olm, M., Seidl, H.: Polynomial Constants Are Decidable. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)

23. Paule, P., Schorn, M.: A Mathematica Version of Zeilberger’s Algorithm for Proving Bino-
mial Coefficient Identities. Journal of Symbolic Computation 20(5-6), 673–698 (1995)

24. Petter, M.: Berechnung von polynomiellen Invarianten. Master’s thesis, Technical University
Münich, Germany (2004)

25. Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Simple Loops.
J. of Symbolic Computation 42(4), 443–476 (2007)

26. Sankaranaryanan, S., Sipma, H.B., Manna, Z.: Non-Linear Loop Invariant Generation using
Gröbner Bases. In: Proc. of POPL 2004 (2004)

27. Wegbreit, B.: The Synthesis of Loop Predicates. Communication of the ACM 2(17), 102–112
(1974)

28. Zeilberger, D.: A Holonomic System Approach to Special Functions. Journal of Computa-
tional and Applied Mathematics 32, 321–368 (1990)

29. Zuse, K.: The Computer - My Life. Springer, Heidelberg (1993)

On Local Reasoning in Verification

Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E1 4, Saarbrücken, Germany
{ihlemann,sjacobs,sofronie}@mpi-inf.mpg.de

Abstract. We present a general framework which allows to identify
complex theories important in verification for which efficient reasoning
methods exist. The framework we present is based on a general notion
of locality. We show that locality considerations allow us to obtain pa-
rameterized decidability and complexity results for many (combinations
of) theories important in verification in general and in the verification
of parametric systems in particular. We give numerous examples; in par-
ticular we show that several theories of data structures studied in the
verification literature are local extensions of a base theory. The general
framework we use allows us to identify situations in which some of the
syntactical restrictions imposed in previous papers can be relaxed.

1 Introduction

Many problems in verification can be reduced to proving the satisfiability of
conjunctions of literals in a background theory (which can be a standard theory,
the extension of a theory with additional functions – free, monotone, or recur-
sively defined – or a combination of theories). It is very important to identify
situations where the search space can be controlled without losing completeness.
Solutions to this problem were proposed in proof theory, algebra and verification:
In [8,11], McAllester and Givan studied the proof-theoretical notion of “local in-
ference systems” – where for proving/disproving a goal only ground instances
of the inference rules are needed which contain ground terms which appear in
the goal to be proved. In universal algebra, Burris [3] established a link between
ptime decidability of the uniform word problem in quasi-varieties of algebras
and embeddability of partial into total models. A link to the notion of locality
was established by Ganzinger [5]. In the verification literature, locality proper-
ties were investigated in the context of reasoning in pointer data structures by
McPeak, Necula [12] and in the study of fragments of the theory of arrays by
Bradley, Manna and Sipma [1] and Ghilardi, Nicolini, Ranise and Zucchelli [7].
The applications in verification usually require reasoning in complex domains.
In [6,13] we study local extensions of theories and show that in such extensions
proof tasks can be reduced, hierarchically, to proof tasks in the base theory.

The main contributions of this paper can be described as follows:

(1) We introduce generalized notions of locality and stable locality and show
that theories important in verification (e.g. the theory of arrays in [1] and
the theory of pointer structures in [12]) satisfy such locality conditions.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 265–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

(2) We present a general framework which allows to identify local theories im-
portant in verification. This allows us to also handle fragments which do not
satisfy all syntactical restrictions imposed in previous papers. In particular,
the axiom sets which we consider may contain alternations of quantifiers.

(3) We use these results to give new examples of local theories of data types.
(4) We discuss the experiments we made with an implementation.

The paper is structured as follows. We start (Sect. 1.1 and 1.2) by discussing
the application domains we consider and illustrating our main idea. Section 2
contains basic definitions. In Sect. 3 local extensions are defined, results on
hierarchical reasoning, parameterized decidability and complexity results, and
possibilities of recognizing local extensions are summarized. Section 4 contains a
large number of examples, ranging from extensions with monotonicity, injectivity
and (guarded) boundedness properties to theories of data structures (pointers,
arrays). A general framework for recognizing locality in verification is presented
in Sect. 5. We describe our implementation and some experiments in Sect. 6.

1.1 Application Domains

The application domains we consider are mainly related to the verification of
parametric systems (parametric either w.r.t. the number of subsystems involved,
or w.r.t. some data used to describe the states and their updates).

We model systems using transition constraint systems T = (V, Σ, Init, Update)
which specify: the variables (V) and function symbols (Σ) whose values change
over time; a formula Init specifying the properties of initial states; a formula
Update with variables in V ∪V ′ and function symbols in Σ∪Σ′ (where V ′ and Σ′

are copies of V resp. Σ, denoting the variables resp. functions after the transition)
which specifies the relationship between the values of variables x and function
symbols f before a transition and their values (x′, f ′) after the transition. Such
descriptions can be obtained from system specifications (for an example cf. [4]).
With every specification, a background theory TS – describing the data types
used in the specification and their properties – is associated. The verification
problems we consider are invariant checking and bounded model checking.

Invariant checking. We can check whether a formula Ψ is an inductive in-
variant of a transition constraint system T=(V, Σ, Init, Update) in two steps: (1)
prove that TS , Init |= Ψ ; (2) prove that TS , Ψ, Update |= Ψ ′, where Ψ ′ results from
Ψ by replacing each x ∈ V by x′ and each f ∈ Σ by f ′. Failure to prove (2)
means that Ψ is not an invariant, or Ψ is not inductive w.r.t. T .1

Bounded model checking. We check whether, for a fixed k, unsafe states are
reachable in at most k steps. Formally, we check whether:

TS ∧ Init0 ∧
j∧

i=1

Updatei ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k,

1 Proving that Ψ is an invariant of the system in general requires to find a stronger
formula Γ (i.e., TS |= Γ → Ψ) and prove that Γ is an inductive invariant.

On Local Reasoning in Verification 267

where Updatei is obtained from Update by replacing all variables x ∈ V by xi

and any f ∈ Σ by fi, and all x′ ∈ V ′, f ′ ∈ Σ′ by xi+1, fi+1; Init0 is Init with x0
replacing x ∈ V and f0 replacing f ∈ Σ; Ψi is obtained from Ψ similarly.

We are interested in checking whether a safety property (expressed by a suit-
able formula) is an invariant, or holds for paths of bounded length, for given
instances of the parameters, or under given constraints on parameters. We aim
at identifying situations in which decision procedures exist. We will show that
this is often the case, by investigating locality phenomena in verification. As a
by-product, this will allow us to consider problems more general than usual tasks
in verification, namely to derive constraints between parameters which guaran-
tee safety. These constraints may also be used to solve optimization problems
(maximize/minimize some of the parameters) such that safety is guaranteed.

1.2 Illustration

We illustrate the problems as well as our solution on the following example.2

Consider a parametric number m of processes. The priorities associated with
the processes (non-negative real numbers) are stored in an array p. The states of
the processes – enabled (1) or disabled (0) are stored in an array a. At each step
only the process with maximal priority is enabled, its priority is set to x and
the priorities of the waiting processes are increased by y. This can be expressed
with the following set of axioms which we denote by Update(a, p, a′, p′)

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ p′(i) = x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ a′(i) = 0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ p′(i) = p(i)+y)

where x and y are considered to be parameters. We may need to check whether
if at the beginning the priority list is injective, i.e. formula (Inj)(p) holds:

Inj(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i �= j → p(i) �= p(j))

then it remains injective after the update, i.e. check the satisfiability of:

(Z∪R+∪{0, 1})∧Inj(p)∧Update(a, p, a′, p′)∧1≤c≤m∧1≤d≤m∧c �=d∧p′(c)=p′(d).

We may need to check satisfiability of the formula under certain assumptions
on the values of x and y (for instance if x = 0 and y = 1), or to determine
constraints on x and y for which the formula is (un)satisfiable.

Problem. The problem above is a satisfiability problem for a formula with (al-
ternations of) quantifiers in a combination of theories. SMT provers heuristically
compute ground instances of the problems, and return unsatisfiable if a contra-
diction is found, and unknown if no contradiction can be derived from these
instances. It is important to find a set of ground instances which are sufficient
for deriving a contradiction if one exists. [1] presents a fragment of the theory

2 All the examples in this paper will address invariant checking only. Bounded model
checking problems can be handled in a similar way.

268 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

of arrays for which this is possible. The formula above does not belong to this
fragment: Inj(p) contains the premise i �=j; Update(a, p, a′, p′) contains ∀∃ axioms.

Idea. Let T0 be the many-sorted combination of the theory of integers (for
indices), of real numbers (priorities), and {0, 1} (enabled/disabled). We consider:

(i) The extension T1 of T0 with the functions a : Z → {0, 1} (a free function)
and p : Z → R+ satisfying Inj(p);

(ii) The extension T2 of T1 with the functions a′ : Z → {0, 1}, p′ : Z → R+
satisfying the update axioms Update(a, p, a′, p′).

We show that both extensions have a locality property which allows us to use
determined instances of the axioms without loss of completeness; the satisfiability
problem w.r.t. T2 can be hierarchically reduced to a satisfiability problem w.r.t.
T1 and then to a satisfiability problem w.r.t. T0. The purpose of this paper is to
show that we can do this in a systematic way in a large number of situations.

2 Preliminaries

We assume known standard definitions from first-order logic. (Logical) theories
can be regarded as collections of formulae (i.e. can be described as the conse-
quences of a set of axioms), as collections of models (the set of all models of a
set of axioms, or concrete models such as Z or R), or both. If T is a theory and
φ, ψ are formulae, we say that T ∧ φ |= ψ (written also φ |=T ψ) if ψ is true in
all models of T which satisfy φ. If T ∧ φ |=⊥ (where ⊥ is false), there are no
models of T which satisfy φ, i.e. φ is unsatisfiable w.r.t. T . For the verification
tasks mentioned above, efficient reasoning in certain theories, which depend on
the specification of the systems under consideration, is extremely important.

Local theory extensions. We consider extensions T0 ∪ K of a theory T0 with
new sorts and new function symbols (called extension functions) satisfying a
set K of (universally quantified) clauses. An extension T0 ⊆ T0 ∪ K is local if
satisfiability of a set G of clauses w.r.t. T0 ∪ K only depends on T0 and those
instances K[G] of K in which the terms starting with extension functions are in
the set st(K, G) of ground terms which already occur in G or K [13]. A weaker
locality notion, namely stable locality, exists; it allows to restrict the search
to the instances K[G] of K in which the variables below extension functions are
instantiated with Σ0-terms generated from st(K, G). These generalize the notion
of local theories introduced by [8,11,9] resp. of locality and stable locality studied
in [5]. In such extensions hierarchical reasoning is possible (cf. also Sect. 3.1).

Partial and total models. Local and stably local theory extensions can be
recognized by proving embeddability of partial into total models [13,16]. Let
Π = (S, Σ, Pred) be an S-sorted signature where Σ is a set of function symbols
and Pred a set of predicate symbols. In a partial Π-structure the function symbols
may be partial (for definitions cf. [2]). If A is a partial structure and β : X → A is
a valuation we say that (A, β) |=w (¬)P (t1, . . ., tn) iff (a) β(ti) are all defined and
their values are in the relationship (¬)PA; or (b) at least one of β(ti) is undefined.

On Local Reasoning in Verification 269

This holds in particular for the equality relation. (A, β) weakly satisfies a clause
C (notation: (A, β) |=w C) if it satisfies at least one literal in C. A is a weak
partial model of a set of clauses K if (A, β) |=w C for every valuation β and every
clause C in K. (Evans) partial models are defined similarly, with the following
difference: (A, β) |= t ≈ s iff (a) β(t) and β(s) are both defined and equal; or (b)
β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one of the
direct subterms of t; or (c) both β(s) and β(t) are undefined.

3 Locality

As seen in Section 1.2, the axioms occurring in applications may contain alter-
nations of quantifiers. To address this, we study the notion of extended (stable)
locality (cf. also [13]). Let T0 be a theory with signature Π0 = (S0, Σ0, Pred),
where S0 is a set of sorts, Σ0 a set of function symbols, and Pred a set of predicate
symbols. We consider extensions T1 of T0 with new sorts and function symbols
(i.e. with signature Π = (S0 ∪ S1, Σ0 ∪ Σ1, Pred)), satisfying a set K of axioms
of the form (Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π . The free variables x1, . . . , xn of
such an axiom are considered to be universally quantified. We are interested in
disproving closed formulae Σ in the extension Πc of Π with new constants Σc.

Example 1. Consider the example in Sect. 1.2. In modeling this problem we
start from the disjoint combination T0 of integers, reals and Booleans with sig-
nature Π0 = (S0, Σ0, Pred), where S0 = {int, real, bool} and Σ0, Pred consist
of the (many-sorted) combination of the signatures of the corresponding theo-
ries. In a first step, T0 is extended to T1 = T0 ∪ Inj(p), with signature Π1 =
(S0, Σ0 ∪ {a, p}, Pred). Inj(p) is a clause. In a second step, T1 is extended to a
theory T2 = T1∪Update(a, p, a′, p′) with signature (S0, Σ0∪{a, p}∪{a′, p′}, Pred).
The axioms in Update(a, p, a′, p′) are of the form φ(i) ∨ C(i) and ¬φ(i) ∨ D(i),
where φ(i) = ∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j)). (Thus it can be seen that the
first two axioms in Update(a, p, a′, p′) contain a ∀∃ quantifier alternation.)

We can extend the notion of locality accordingly. We study extensions T0 ⊆ T0∪K
as above satisfying the locality and stable locality conditions (ELoc, ESLoc):

(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has
no weak partial model in which all terms in st(K, G) are defined.

Here K[Γ] consists of all instances of K in which the terms starting with extension
functions are in the set st(K, G) (defined in Sect. 2).

(ESLoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has
no partial model in which all terms in st(K, G) are defined.

Here K[Γ] consists of all instances of K in which the variables below a Σ1-symbol
are instantiated with Σ0-terms generated from st(K, G).

270 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

The problem with (ESLoc) is that the number of instances in K[Γ] is finite only if
the number of Σ0-terms generated from st(K, G) can be guaranteed to be finite,
i.e. when Σ0 = ∅ (in which case the size of K[Γ] is polynomial in the size of
st(K, G)) or when only finitely many non-equivalent Σ0-terms (modulo T0) can
be generated from a finite set of generators (then the size of K[Γ] is polynomial
in the number of such non-equivalent terms). To overcome these problems, we
identify a family of conditions in between locality and stable locality.

Let Ψ be a function associating with a set K of axioms and a set of ground
terms T a set ΨK(T) of ground terms such that (i) all ground subterms in K
and T are in ΨK(T); (ii) for all sets of ground terms T, T ′ if T ⊆ T ′ then
ΨK(T) ⊆ ΨK(T ′); (iii) Ψ is a closure operation, i.e. for all sets of ground terms T ,
ΨK(ΨK(T)) ⊆ ΨK(T); (iv) Ψ is compatible with any map h between constants,
i.e. for any map h : C → C, ΨK(h(T)) = h(ΨK(T)), where h is the unique
extension of h to terms. Let K[ΨK(G)] be the set of instances of K in which the
extension terms are in ΨK(st(K, G)), which here will be denoted by ΨK(G). We
say that an extension T0 ⊆ T0 ∪ K is Ψ -local if it satisfies condition (ELocΨ):

(ELocΨ) for every formula Γ=Γ0∪G, where Γ0 is a Πc
0-sentence and G a

finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[ΨK(G)] ∪ Γ
has no weak partial model in which all terms in ΨK(G) are defined.

If K consists of clauses and only satisfiability of sets G of ground clauses is
considered we obtain a condition (LocΨ) extending the notion (Loc) of locality in
[13]. Ψ -stable locality (ESLocΨ) can be defined replacing K[ΨK(G)] by K[ΨK(G)].

3.1 Hierarchical Reasoning in Local Theory Extensions

Let T0 ⊆ T1=T0∪K be a theory extension satisfying condition (E(S)Loc) or
(E(S)LocΨ). To check the satisfiability w.r.t. T1 of a formula Γ = Γ0 ∪ G, where
Γ0 is a Πc

0-sentence and G is a set of ground Πc-clauses, we proceed as follows:

Step 1: By the locality assumption, T1∪Γ0∪G is satisfiable iff T0∪K∗[G]∪Γ0∪G
has a (weak) partial model with corresponding properties, where, depending on
the type of locality, K∗[G] is K[G], K[G], K[ΨK(G)] or K[ΨK(G)].

Step 2: Purification. We purify K∗[G]∪G by introducing, in a bottom-up manner,
new constants ct (from a set Σc of constants) for subterms t = f(g1, . . . , gn) with
f ∈ Σ1, gi ground Σ0 ∪ Σc-terms, together with their definitions ct ≈ t. The set
of formulae thus obtained has the form K0 ∪ G0 ∪ Γ0 ∪ D, where D consists of
definitions of the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c is a constant, g1, . . . , gn

are ground Σ0 ∪ Σc-terms, and K0, G0, Γ0 are Πc
0-formulae.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

N0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

This yields a sound and complete hierarchical reduction to a satisfiability prob-
lem in the base theory T0 (for (E(S)LocΨ) the proof is similar to that in [13]):

On Local Reasoning in Verification 271

Theorem 1. Let K and Γ = Γ0 ∧ G be as specified above. Assume that T0 ⊆
T0 ∪ K satisfies condition (E(S)Loc) or (E(S)LocΨ). Let K0 ∪ G0 ∪ Γ0 ∪ D be
obtained from K ∗ [G]∪Γ0 ∪G by purification, as explained above. The following
are equivalent:

(1) T0∪K∗[G]∪Γ0∪G has a partial model with all terms in st(K, G) defined.
(2) T0∪K0∪G0∪Γ0∪D has a partial model with all extension terms in D defined.
(3) T0 ∪ K0 ∪ G0 ∪ Γ0 ∪ N0 has a (total) model.

Alternatively, if K consists only of clauses and all variables occur below an
extension function and if Γ is a set of ground clauses then K ∗ [G]∧Γ consists of
ground clauses, so locality also allows us to reduce reasoning in T1 to reasoning
in an extension of T0 with free function symbols; an SMT procedure can be used.
If Γ0 contains quantifiers or K ∗ [G] contains free variables it is problematic to
use SMT provers without loss of completeness.

3.2 Decidability, Parameterized Complexity

Assume that K consists of axioms of the form C = (ΦC(x) ∨ C(x)), where
ΦC(x) is in a fragment (class of formulae) F of T0 and C(x) is a Π-clause, and
Γ = Γ0 ∧ G, where Γ0 is a formula in F without free variables, and G is a set of
ground Πc-clauses, both containing constants in Σc.

Theorem 2. Assume that the theory extension T0 ⊆ T1 satisfies (E(S)Loc), or
(E(S)LocΨ). Satisfiability of goals Γ0 ∪G as above w.r.t. T1 is decidable provided
K ∗ [G] is finite and K0 ∪ G0 ∪ Γ0 ∪ N0 belongs to a decidable fragment of T0.

Locality allows us to obtain parameterized decidability and complexity results:

Case 1: If for each C = ΦC(x)∨C(x) ∈ K all free variables occur below some
extension symbol, then K∗[G] contains only formulae of the form ΦC(g)∨C(g),
where g consists of ground Σ0-terms, so K0∪G0∪Γ0∪N0 ∈ Fg, the class obtained
by instantiating all free variables of formulae in F with ground Σ0-terms.
Decidability and complexity: If checking satisfiability for the class Fg w.r.t. T0
is decidable, then checking satisfiability of goals of the form above w.r.t. T1 is
decidable. Assume that the complexity of a decision procedure for the fragment
Fg of T0 is g(n) for an input of size n. Let m be the size of K0∪G0∪Γ0∪N0. Then
the complexity of proving satisfiability of Γ0 ∪ G w.r.t. T1 is of order g(m).

(i) For local extensions, K∗[G] = K[G]; the size m of K0∪G0∪Γ0∪N0 is of order
|G|k for some 2 ≤ k ∈ Z for a fixed K (at least quadratic because of N0).

(ii) For stably local extensions, the size of K ∗ [G] = K[G] is polynomial in the
size s of the model of T0 freely generated by |st(K, G)| generators.

Similarly for Ψ -(stably) local extensions (with st(K, G) replaced by ΨK(G)).

Case 2: If not all free variables in K occur below an extension symbol, then the
instances in K∗[G] contain free variables, so K0∪G0∪Γ0∪N0 is in the universal
closure ∀F of F . The decidability and complexity remarks above here apply
relative to the complexity of checking satisfiability of formulae in the fragment
∀F of T0 with constants in Σc (regarded as existentially quantified variables).

272 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

3.3 Recognizing Generalized Locality

Theory extensions T0 ⊆ T1 satisfying (E(S)Loc), (E(S)LocΨ) can be recognized
by showing that certain partial models of T1 can be completed to total models.
We consider the following completability conditions:
(Compw) Every weak partial model A of T1 with totally defined Σ0-functions

and extension functions with a finite definition domain weakly
embeds into a total model B of T1 s.t. A|Π0 and B|Π0 are isomorphic.

(CompΨ
w) Every weak partial model A of T1 with totally defined Σ0-functions

and such that {f(a1, . . . , an) | ai ∈ A, f ∈ Σ1, fA(a1, . . . , an) defined}
is finite and closed under ΨK weakly embeds into a total model B of
T1 s.t. A|Π0 and B|Π0 are elementarily equivalent.

Conditions (Comp), (CompΨ) can be defined by replacing “weak partial model”
with “Evans partial model”. Assume Ψ satisfies conditions (i)–(iv) in Sect.3:

Theorem 3. (1) If all terms of K starting with a Σ1-function are flat and linear
and the extension T0 ⊆ T1 satisfies (Compw) (resp. (CompΨ

w)) then it satisfies
(ELoc) [13] (resp. (ELocΨ)).

(2) If T0 is a universal theory and the extension T0 ⊆ T1 satisfies (Comp) (resp.
(CompΨ)) then it satisfies (ESLoc) [13] (resp. (ESLocΨ)).

Theorem 3 allows us to identify many examples of local extensions (see Sect. 4). A
combination of extensions of a theory T0 which satisfy condition Comp (Compw)
also satisfies condition Comp (Compw) and hence also condition ESLoc (ELoc).

Theorem 4 ([15]). Let T0 be a first order theory with signature Π0 = (Σ0, Pred)
and (for i ∈ {1, 2}) Ti = T0 ∪Ki be an extension of T0 with signature Πi = (Σ0 ∪
Σi, Pred). Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Compw), and that Σ1∩Σ2 = ∅. Then the extension T0 ⊆ T =T0∪K1∪K2 satisfies
condition (Compw). If, additionally, in Ki all terms starting with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

4 Examples

4.1 Extensions with Free, (Strictly) Monotone, Injective Functions

Any extension T0 ∪ Free(Σ) of a theory T0 with a set Σ of free function symbols
satisfies condition (Compw). We also consider monotonicity/antitonicity condi-
tions3 for an n-ary function f w.r.t. a subset I of its arguments:

Monσ(f)
∧

i∈I

xi ≤σi

i yi ∧
∧

i�∈I

xi = yi → f(x1, .., xn) ≤ f(y1, .., yn),

where for i ∈ I, σi∈{−, +}, and for i �∈ I, σi=0, and ≤+=≤ and ≤−=≥.

3 If I = {1, . . . , n} we speak of monotonicity in all arguments; we denote MonI(f) by
Mon(f). If I = ∅, Mon∅(f) is equivalent to the congruence axiom for f .

On Local Reasoning in Verification 273

We showed [13,16] that the extensions of any (possibly many-sorted) theory
whose models are posets with functions satisfying the axioms Monσ(f) satisfy
condition (Compw) if the codomains of the functions have a bounded semilattice
reduct or are totally ordered. In particular, any extension of the theory of reals,
rationals or integers with functions satisfying Monσ(f) into an numeric domain
(reals, rationals, integers or a subset thereof) is local, since (Compw) holds.

Example 2. The sortedness property Sorted(a) of the array a can be expressed
as a monotonicity axiom: ∀i, j(1 ≤ i ≤ j ≤ m → a(i) ≤ a(j)). An extension of
the theory of integers with a function a of arity i → e satisfying Sorted(a) (where
e is a new or old sort and the theory of sort e is totally ordered) is local.

Consider now the following conditions:
SMon(f) ∀i, j(i < j → f(i) < f(j)) and Inj(f) ∀i, j(i �= j → f(i) �= f(j))

Theorem 5. Assume that in all models of T0 the support of sort i has an un-
derlying strict total order relation <. Let T1 = T0 ∪ SMon(f), where f is a new
function of arity i → e (e may be a new or an old sort), in all models of T1 the
support of sort e has an underlying strict total order <, and there exist injective
order-preserving maps from any interval of the support of sort i to any interval
of the support e. Then the extension T0 ⊆ T1 satisfies (Compw), hence it is local.

Example 3. Let T0 be the (many-sorted) combination of T i
0 (the theory of linear

integer arithmetic, sort i) and T num
0 (the theory of real numbers, sort num). The

extension T1 of T0 with a function f of arity i→num satisfying SMon(f) is local.

Theorem 6. A theory extension T0 ⊆ T1 = T0∪Inj(f) with a function f of arity
i → e satisfying Inj(f) is local provided that in all models of T1 the cardinality of
the support of sort i is lower or equal to the cardinality of the support of sort e.

4.2 Extensions with Definitions and Boundedness Conditions

Let T0 be a theory containing a binary predicate ≤ which is reflexive, and f �∈ Σ0.

Guarded boundedness. Let m ∈ N. For 1 ≤ i ≤ m let ti(x1, . . . , xn) and
si(x1, . . . , xn) be terms in the signature Π0 with variables among x1, . . . , xn,
and let φi(x1, . . . , xn), i ∈ {1, . . . , m} be Π0-formulae with free variables among
x1, . . . , xn, such that (i) for every i �= j, φi ∧ φj |=T0⊥, and (ii) for every i,
T0 |= ∀x(φi(x) → si(x) ≤ ti(x)). Let GBound(f) =

∧m
i=1 GBoundφi(f), where:

GBoundφi(f) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)).
The extension T0 ⊆ T0 ∪ GBound(f) is local.

Boundedness for (strictly) monotone and injective functions. Any ex-
tension of a theory for which ≤ is a partial order (or at least reflexive) with func-
tions satisfying Monσ(f) and boundedness Boundt(f) conditions is local [14,16].

Boundt(f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))
where t(x1, . . . , xn) is a Π0-term with variables among x1, . . . , xn whose associ-
ated function has the same monotonicity as f in any model. Similar results hold
for strictly monotone/injective functions (under the conditions in Thm. 5, 6).

274 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

4.3 Pointer Data Structures à la McPeak and Necula

In [12], McPeak and Necula investigate reasoning in pointer data structures. The
language used has sorts p (pointer) and s (scalar). Sets Σp and Σs of pointer resp.
scalar fields are modeled by functions of sort p → p and p → s, respectively. A
constant null of sort p exists. The only predicate of sort p is equality; predicates
of sort s can have any arity. The axioms considered in [12] are of the form

∀p E ∨ C (1)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all
terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom also con-
tains the disjunction p = null∨fn(p) = null∨· · ·∨f2(. . . fn(p)) = null.4 Examples
of axioms (for doubly linked data structures with priorities) considered there are:

∀p p �= null ∧ next(p) �= null → prev(next(p)) = p (2)
∀p p �= null ∧ prev(p) �= null → next(prev(p)) = p (3)
∀p p �= null ∧ next(p) �= null → priority(p) ≥ priority(next(p)) (4)

(the first two axioms state that prev is a left inverse for next, the third axiom is a
monotonicity condition on the function priority). Let ΨK(T) = st(K)∪T ∪{f(t) |
t ∈ st(K) ∪ T, f ∈ Σs} for any set of ground terms T .

Theorem 7. Let T0 be a Π0-theory, where S0 = {s}, and T1 = T0∪K be the
extension of T0 with signature Π = ({p, s}, Σ, Pred) – where Σ=Σp∪Σs∪Σ0,
and K is a set of axioms ∀p(E ∨ C) of type (1). Then every partial model A of K
with total Σ0 functions such that the definition domain of A is closed under ΨK
(i.e. if f∈Σs and the p-term t is defined in A then f(t) is defined in A) weakly
embeds into a total model of K. Hence T0 ⊆ T1 is a Ψ -stably local extension.

Ψ -stable locality is not harmful in this case, since all universally quantified vari-
ables in the axioms in K are of sort p, and the number of instances of these
variables with subterms in ΨK(G) which need to be considered is polynomial in
the size of st(K, G) (no operations with output sort s generate such terms).

4.4 The Theory of Arrays à la Bradley, Manna and Sipma

In [1] the array property fragment is studied, a fragment of the theory of arrays
with Presburger arithmetic as index theory and parametric element theories.
Consider the extension of the combination T0 of the index and element theories
with functions read, write and axioms:

read(write(a, i, e), i) = e j �= i → read(write(a, i, e), j) = read(a, j).

The array property fragment is defined as follows5:

4 This has the rôle of excluding null pointer errors.
5 The considerations below are for arrays of dimension 1, the general case is similar.

On Local Reasoning in Verification 275

An index guard is a positive Boolean combination of atoms of the form t ≤ u or
t = u where t and u are either a variable of index sort or a ground term (of index
sort) constructed from (Skolem) constants and integer numbers using addition
and multiplication with integers. A formula of the form (∀i)(ϕI(i) → ϕV (i)) is an
array property if ϕI is an index guard and if any universally quantified variable of
index sort i only occurs in a direct array read read(a, x) in ϕV . Array reads may
not be nested. The array property fragment consists of all existentially-closed
Boolean combinations of array property formulae and quantifier-free formulae.
The decision procedure proposed in [1] decides satisfiability of formulae in nega-
tion normal form in the array property fragment in the following steps.

1. Replace all existentially quantified array variables with Skolem constants;
replace all terms of the form read(a, i) with a(i); eliminate all terms of the
form write(a, i, e) by replacing the formula φ(write(a, i, e)) with the conjunc-
tion of the formula φ(b) (obtained by introducing a fresh array name b for
write(a, i, e)) with (b(i) = e) ∧ ∀j(j ≤ i − 1 ∨ i + 1 ≤ j → b(j) = a(j)).6

2. Existentially quantified index variables are replaced with Skolem constants.
3. Universal quantification over index variables is replaced by conjunction of

suitably chosen instances of the variables.

For determining the set of ground instances to be used in Step 3, the authors
prove that certain partial “minimal” models can be completed to total ones.

Theorem 8 (cf. also [1]). Let K be the clause part and G the ground part
(after the transformation steps (1)–(3)), and I be the set of index terms defined
in [1]. Let ΨK(G) = {f(i1, . . . , in) | f array name , i1, . . . , in ∈ I}. Every partial
model of T0 ∪ K[ΨK(G)] ∪ G in which all terms in ΨK(G) are defined can be
transformed into a (total) model of T0 ∪ K ∪ G. This criterion entails (ELocΨ).

5 A General Framework for Obtaining Locality Results

In Section 4 we identified a large number of theory extensions which can be
proved to be local and arise in a natural way in invariant checking and bounded
model checking. We distinguish several aspects:

– Programs usually handle complex data structures; it may be necessary to
reason about various data types such as lists, arrays, records, etc. We pre-
sented classes of such theories for which locality properties hold. Theorem 4
identifies cases in which locality is preserved when combining theories.

– The transition constraint systems we consider define updates of the values
of variables and functions which are guarded by formulae which describe a
partition of the state space, and therefore define local theory extensions.

– In invariant checking and bounded model checking, the paths to be verified
(consisting of successive updates) can be used to identify chains of exten-
sions to be considered in the deduction process. These extensions are often
(combinations) of various extensions with guarded boundedness conditions.

6 Note that, by the definition of array property formulae, if a term write(a, i, e) occurs
in the array property fragment then i is an existentially quantified index variable.

276 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

Thus, results in Sect. 4.2 and 3.3 allow us to extend the classes of theories from
verification for which instantiation-based complete decision procedures exist.

Extensions of the fragment of Necula and McPeak. We are interested in
pointer structures which can be changed during execution of a program (a cell of
a list can be removed, or a new subtree added into a tree structure). The general
remarks above also apply for such situations.

Theorem 9. Assume that the update axioms Update(Σ, Σ′) describe how the
values of the Σ-functions change, depending on a finite set {φi | i ∈ I} of
mutually exclusive conditions, expressed as formulae over the base signature and
the Σ-functions (axioms of type (5) below represent precise ways of defining the
updated functions, whereas axioms of type (6) represent boundedness properties
on the updated scalar fields, assuming the scalar domains are partially ordered):

∀x(φi(x) → f ′i(x)=si(x)) i ∈ I, where φi(x) ∧ φj(x) |=T0 ⊥ for i �=j (5)
∀x(φi(x) → ti(x)≤f ′i(x)≤si(x)) i ∈ I, where φi(x) ∧ φj(x) |=T0 ⊥ for i �=j (6)

where si, ti are terms over the signature Σ such that T0 |= ∀x(φi(x)→ti(x)≤si(x))
for all i ∈ I. They define local theory extensions. This holds for any extensions
of disjoint combinations of various pointer structures with such update axioms.

Example 4. Consider the following algorithm for inserting an element c with
priority field c.prio = x into a doubly-linked list sorted w.r.t. the priority fields.

c.prio = x, c.next = null
for all p �= c do
if p.prio ≤ x then if p.prev = null then c.next′ = p, endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null
p.next �= null ∧ p.next > x then p.next′ = p.next
p.next �= null ∧ p.next ≤ x then p.next′ = c, c.next′ = p.next

The update rules Update(next, next′) can be read from the program above:

∀p(p �=null ∧ p �=c ∧ prio(p)≤x ∧ (prev(p) = null) → next′(c)=p ∧ next′(p)=next(p))
∀p(p �=null ∧ p �=c ∧ prio(p)≤x ∧ (prev(p) �= null) → next′(p)=next(p))
∀p(p �=null ∧ p �=c ∧ prio(p)>x ∧ next(p)=null → next′(p)=c ∧ next′(c)=null)
∀p(p �=null ∧ p �=c ∧ prio(p)>x ∧ next(p) �=null ∧ prio(next(p))>x → next′(p)=next(p))
∀p(p �=null∧p �=c∧prio(p)>x∧next(p) �=null∧prio(next(p))≤x → next′(p)=c∧next′(c)=next(p))

We prove that if the list is sorted, it remains so after insertion, i.e. the formula:

d �= null ∧ next′(d) �= null ∧ ¬prio(d) ≥ prio(next′(d))

is unsatisfiable in the extension T1 = T0 ∪ Update(next, next′) of the theory T0 of
doubly linked lists with a monotone field prio. T0 is axiomatized by the axioms
K = {(2), (3), (4)} in Sect. 4. The update rules are guarded boundedness axioms,
so the extension T0 ⊆ T1 is local. Hence, the satisfiability task above w.r.t. T1
can be reduced to a satisfiability task w.r.t. T0 as follows:

On Local Reasoning in Verification 277

Update0 d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d)=null → c1=d
d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d)=null → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d) �=null → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d)=null → d1=c ∧ c1=null
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))<x → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))≤x → d1=c
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))≤x → c1=next(d)

G0 d �= null ∧ next′(d) �= null ∧ ¬prio(d) ≥ priority(next′(d))

N0 d=c → d1=c1 (corresponds to Def : next′(d)=d1 ∧ next′(c)=c1)

To check the satisfiability of G′ = Update0∧G0∧N0 w.r.t. T0 we use the Ψ -stable
locality of the theory defined by the axioms K = {(2), (3), (4)} of doubly linked
lists with decreasing priorities in Sect. 4 or the instantiation method in [12].

Extending the array property fragment. Let T0 be the array property
fragment in [1] (set of arrays Σ0). There are several ways of extending T0:

Theorem 10. Let T1=T0∪K be an extension of T0 with new arrays in a set Σ1.

(1) If K consists of guarded boundedness axioms, or guarded definitions (cf.
Sect.4.2) for the Σ1-function symbols, then the extension T0 ⊆ T1 is local. 7

(2) If K consists of injectivity or (strict) monotonicity (and possibly boundedness
axioms) for the function symbols in Σ1 then the extension T0 ⊆ T1 is local if
the assumptions about the element theory specified in Sect. 4.1 hold.

(3) Any combination of extensions of T0 as those mentioned in (1),(2) with
disjoint sets of new array constants leads to a local extension of T0.

If the guards φi of the axioms in K are clauses then the result of the hierarchical
reasoning method in Thm. 1 is a formula in T0, hence satisfiability of ground
clauses w.r.t. T0 ∪ K is decidable. Similarly for chains of extensions. The same
holds for testing satisfiability of goals Γ0 ∪G where Γ0 and (K[G])0 belong to the
array property fragment. For general guards and chains of extensions decidability
depends on the form of the formulae obtained by hierarchical reduction(s).

Example 5. The example presented in Section 1.2 illustrates the extension of
the fragment in [1] we consider. The task is to check the unsatisfiability of the
formula G = (1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c �= d ∧ p′(c) = p′(d)) in the
extension of the many sorted combination T0 of Z, R+, {0, 1} with the axioms
∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i �= j → p(i) �= p(j)) ∧ Update(a, p, a′, p′).
The extension can be expressed as a chain: T0 ⊆ T1 = T0 ∪ Inj(p) ⊆ T2 =
T1 ∪ Update(a, p, a′, p′). By the locality of the second extension (with guarded
boundedness axioms) we obtain the following reduction of the task of proving
T2 ∧ G |=⊥ to a satisfiability problem w.r.t. T1. We take into account only
the instances of Update(a, p, a′, p′) which contain ground terms occurring in G.
This means that the axioms containing a′ do not need to be considered. After
purification and skolemization of the existentially quantified variables we obtain:
7 An example are definitions of new arrays by writing x at a (constant) index c,

axiomatized by {∀i(i �= c → a′(i) = a(i)), ∀i(i = c → a′(i) = x)}.

278 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

Update0 1 ≤ c ≤ m ∧ (1 ≤ kc ≤ m ∧ kc �=c → p(c)>p(kc)) → c1=x
1 ≤ d ≤ m ∧ (1 ≤ kd ≤ m ∧ kd �=d → p(d)>p(kd)) → d1=x
∀j(1 ≤ j ≤ m ∧ j �=c → p(c)>p(j)) ∨ (1 ≤ c ≤ m → c1=p(c)+y)
∀j(1 ≤ j ≤ m ∧ j �=d → p(d)>p(j)) ∨ (1 ≤ d ≤ m → d1=p(d)+y)

G0 1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c �= d ∧ c1 = d1

N0 c = d → c1 = d1 (corresponds to Def : p′(c) = c1 ∧ p′(d) = d1)

We reduced the problem to checking satisfiability of G1 = Update0 ∧ G0 ∧ N0
(which contains universal quantifiers) w.r.t. T1. Let G1 = Gg ∧ G∀, where Gg

is the ground part of G and G∀ the part of G containing universally quantified
variables. We now have to check whether T0 ∧ Inj(p) ∧ G∀ ∧ Gg |= ⊥. Note
that extensions of injectivity axioms and boundedness are local, and thus T0 ⊆
T0 ∧ Inj ∧ G∀ is a local extension. This makes the following reduction possible:

Inj0 1≤i�=j≤m → p(i) �=p(j) where i, j are instan-
G∀0 (1≤j≤m ∧ j �=c → c2>p(j)) ∨ (1≤c≤m → c1=c2+y) tiated with c, d, kc, kd

(1≤j≤m ∧ j �=d → d2>p(j)) ∨ (1 ≤ d ≤ m → d1=d2+y) + purification
Gg 1≤c≤m ∧ (1≤kc≤m ∧ kc �=c → c2>c3) → c1=x c=d → c1=d1

1≤d≤m ∧ (1≤kd≤m ∧ kd �=d → d2>d3) → d1=x

1≤c≤m ∧ 1≤d≤m ∧ c�=d ∧ c1=d1

N ′
0 c=d → c2=d2, c=kc → c2=c3, c=kd → c2=d3, d=kc → d2=c3, d=kd → d2=d3,

kc=kd → c3=d3 (corr. to Def1 : p(c)=c2 ∧ p(d)=d2 ∧ p(kc)=c3 ∧ p(kd)=d3)

We can use a prover for a combination of integers and reals to determine whether
the conjunction of formulae above is satisfiable or symbolic computation pack-
ages performing quantifier elimination over the combined theory to derive con-
straints between x and y which guarantee injectivity after update.

6 Experiments

We have implemented the approach for hierarchical reasoning in local theory
extensions described in [13], cf. also Sect. 3.1. The tool we devised allows us to
reduce satisfiability problems in an extended theory to a base theory for which
we can then use existing solvers. It takes as input the axioms of the theory
extension, the ground goal and the list of extension function symbols. Chains
of extensions are handled by having a list of axiom sets, and correspondingly a
list of lists of extension function symbols. We follow the steps in Sect. 3.1: the
input is analyzed for ground subterms with extension symbols at the root. After
instantiating the axioms w.r.t. these terms, the instances are purified (so the
extension symbols are removed). The resulting formula is either given to a prover
for a base theory, or taken as goal for another reduction (if we have a chain of
extensions). Currently, we can produce base theory output for Yices, Mathsat,
CVC and Redlog, but other solvers can be integrated easily. We ran tests on
various examples, including different versions of a train controller example [10,4],
an array version of the insertion algorithm, and reasoning in theories of lists.
Test results and comparisons can be found in [17] (which contains preliminary
versions of some of the results in this paper, in an extended form). Runtimes

On Local Reasoning in Verification 279

range from 0.047s to 0.183s for various versions of the train controller example
resp. to 0.4s for array examples (including an example from [1]). While Yices
can also be used successfully directly for unsatisfiable formulae, this does not
hold if we change the input problem to a formula which is satisfiable w.r.t.
the extended theory. In this case, Yices returns “unknown” after a 300 second
timeout. After the reduction with our tool, Yices (applied to the problem for
the base theory) returns “satisfiable” in fractions of a second, and even a model
for this problem that can easily be lifted to a model in the extended theory
for the initial set of clauses8. Even more information can be obtained using the
quantifier elimination facilities offered e.g. by Redlog for determining constraints
between the parameters of the problems which guarantee safety.

We are working towards extending the tool support to stable locality, as well
as for extensions with clauses containing proper first-order formulae.

7 Conclusions

We presented a general framework – based on a general notion of locality –
which allows to identify complex theories important in verification for which
efficient (hierarchical and modular) reasoning methods exist. We showed that
locality considerations allow us to obtain parameterized decidability and com-
plexity results for many (combinations of) theories important in verification (of
parametric systems). We showed that many theories of data structures studied
in the verification literature are local extensions of a base theory. The list of
theories we considered is not exhaustive. (Due to space limitations we did not
discuss the theory of arrays studied in [7], whose main ingredient is the exis-
tence of undefined values in arrays and properties (e.g. injectivity) are guarded
by definedness conditions. The main result in [7] can be seen as a locality re-
sult as the arguments used are based on the possibility of completing partial
to total models.) The general framework we use allows us to identify situations
in which some of the syntactical restrictions imposed in previous papers can be
relaxed.

The deduction tasks we considered here are typical for invariant checking and
bounded model checking. The next step would be to integrate these methods
into verification tools based on abstraction/refinement. Our work on hierarchical
interpolation in local extensions [14] can be extended to many of the theories of
data structures described in this paper. This is the topic of a future paper.

Acknowledgments. We thank Aaron Bradley for helpful comments made on
a preliminary version of this paper. This work was partly supported by the
German Research Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). See www.avacs.org for more information.

8 The lifting is straightforward, given the output of our tool, but is not automated at
the moment.

280 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

References

1. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

2. Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras: Intro-
duction to Theory and Application of Partial Algebras, Part I. In: Mathematical
Research, vol. 31, Akademie-Verlag, Berlin (1986)

3. Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quar-
terly 41, 173–182 (1995)

4. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-
tions with complex data types and timing parameters. In: Davies, J., Gibbons, J.
(eds.) IFM 2007. LNCS, vol. 4591, pp. 233–252. Springer, Heidelberg (2007)

5. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In: Proc. 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), pp. 81–92. IEEE Computer Society Press, Los
Alamitos (2001)

6. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with Evans equality. Information and Computation 204(10),
1453–1492 (2006)

7. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Deciding extensions of the theory
of arrays by integrating decision procedures and instantiation strategies. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 177–189. Springer, Heidelberg (2006)

8. Givan, R., McAllester, D.: New results on local inference relations. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR 1992), pp. 403–412. Morgan Kaufmann, San Francisco (1992)

9. Givan, R., McAllester, D.A.: Polynomial-time computation via local inference re-
lations. ACM Transactions on Computational Logic 3(4), 521–541 (2002)

10. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the
verification of complex systems. Electronic Notes in Theoretical Computer Sci-
ence 174(8), 39–54 (2007)

11. McAllester, D.: Automatic recognition of tractability in inference relations. Journal
of the Association for Computing Machinery 40(2), 284–303 (1993)

12. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.
Springer, Heidelberg (2005)

13. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

14. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer,
Heidelberg (2006)

15. Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007.
LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)

On Local Reasoning in Verification 281

16. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local ex-
tensions of ordered structures. In: Proc. of ISMVL-2007, IEEE Computer Society
Press, Los Alamitos (2007), http://dx.doi.org/10.1109/ISMVL.2007.10

17. Sofronie-Stokkermans, V., Ihlemann, C., Jacobs, S.: Local theory extensions, hier-
archical reasoning and applications to verification. In: Dagstuhl Seminar Proceed-
ings 07401,, http://drops.dagstuhl.de/opus/volltexte/2007/1250

http://dx.doi.org/10.1109/ISMVL.2007.10
http://drops.dagstuhl.de/opus/volltexte/2007/1250

Interprocedural Analysis of Concurrent

Programs Under a Context Bound�

Akash Lal1,��, Tayssir Touili2, Nicholas Kidd1, and Thomas Reps1,3

1 University of Wisconsin, Madison, WI, USA
{akash,kidd,reps}@cs.wisc.edu

2 LIAFA; CNRS & University of Paris 7, Paris, France
touili@liafa.jussieu.fr

3 GrammaTech, Inc., Ithaca, NY, USA

Abstract. Analysis of recursive programs in the presence of concur-
rency and shared memory is undecidable. In previous work, Qadeer and
Rehof [23] showed that context-bounded analysis is decidable for recur-
sive programs under a finite-state abstraction of program data. In this
paper, we show that context-bounded analysis is decidable for certain
families of infinite-state abstractions, and also provide a new symbolic
algorithm for the finite-state case.

1 Introduction

This paper considers the analysis of concurrent programs with shared-memory
and interleaving semantics. Such an analysis for recursive programs is, in general,
undecidable, even with a finite-state abstraction of data (e.g., Boolean Programs
[1]). As a consequence, to deal with concurrency soundly (i.e., capture all concur-
rent behaviors), some analyses give up precise handling of procedure call/return
semantics. Alternatively, tools use inlining to unfold multi-procedure programs
into single-procedure ones. This approach cannot handle recursive programs, and
can cause an exponential blowup in size for non-recursive ones.

A different way to sidestep the undecidability issue is to limit the amount
of concurrency by bounding the number of context switches, where a context
switch is defined as the transfer of control from one thread to another. Such
an approach is not sound because it does not capture all of the behaviors of a
program; however, it has proven to be useful in tools for bug-finding because
many bugs can be found after a few context switches [24,23,20]. For example,
KISS [24] is a verification tool that analyzes programs for only up to two context
switches; it was able to find a number of bugs in device drivers. We call the anal-
ysis of recursive, concurrent programs under a context bound context-bounded
analysis (CBA). CBA does not impose any bound on the execution length be-
tween context switches. Thus, even under a context bound, the analysis still has
to consider the possibility that the next switch takes place in any one of the
� Supported by NSF under grants CCF-0540955 and CCF-0524051.

�� Supported by a Microsoft Research Graduate Fellowship.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 282–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interprocedural Analysis of Concurrent Programs Under a Context Bound 283

(possibly infinite) states that may be reached after a context switch. Because of
this, CBA still considers an infinite number of interleavings.

Qadeer and Rehof [23] showed that CBA is decidable for recursive programs
under a finite-state abstraction of data. This paper shows that CBA is decidable
for certain families of infinite-state abstractions, and also provides a new sym-
bolic algorithm for the finite-state case. We give conditions on the abstractions
under which CBA can be solved precisely, along with a new algorithm for CBA.
In addition to the usual conditions required for precise interprocedural analysis
of sequential programs, we require the existence of a tensor product (see §6). We
show that these conditions are satisfied by a class of abstractions, thus giving
precise algorithms for CBA with those abstractions. These include finite-state
abstractions, such as the ones used for verification of Boolean programs, as well
as infinite-state abstractions, such as affine-relation analysis [19].

Our results are achieved using techniques that are quite different from the
ones used in the Qadeer and Rehof (QR) algorithm [23]. In particular, to explore
all possible interleavings, the QR algorithm crucially relies on the finiteness of
the data abstraction because it enumerates all reachable (abstract) data states
at a context switch. Our algorithm is based on weighted transducers (weighted
automata that read input and write output) and requires no such enumeration in
the case of finite-state data abstractions, which also makes it capable of handling
infinite-state abstractions.

The contributions of this paper can be summarized as follows:
– We give sufficient conditions under which CBA is decidable for infinite-state

abstractions, along with an algorithm. Our result proves that CBA can be
decided for affine-relation analysis, i.e., we can precisely find all affine re-
lationships between program variables that hold in a concurrent program
(under the context bound).

– We show that the reachability relation of a weighted pushdown system
(WPDS) can be encoded using a weighted transducer (§5), which generalizes
a previous result for (unweighted) PDSs [8]. We use WPDSs to model each
thread of the concurrent program, and the transducers can be understood
as summarizing the (sequential) execution of a thread.

– We give precise algorithms for composing weighted transducers (§6), when
tensor products exist for the weights. This generalizes previous work on
manipulating weighted automata and transducers [17,18].

The remainder of the paper is organized as follows. §2 introduces some termi-
nology and notation. §3 sketches an alternative to the QR algorithm for finite-
state abstractions; the rest of the paper generalizes the algorithm to infinite-state
abstractions. §4 gives background on WPDSs. §5 gives an efficient construction
of transducers for WPDSs. §6 shows how weighted transducers can be composed.
§7 discusses related work. Additional material can be found in [16].

2 Terminology and Notation

A context-bounded analysis (CBA) considers a set of concurrent threads that
communicate via global variables. Synchronization is easily implementable using

284 A. Lal et al.

global variables as locks. Analysis of such models is undecidable [25], i.e., it
is not possible, in general, to determine whether or not a given configuration
is reachable. Let n be the number of threads and let t1, t2, · · · , tn denote the
threads. We do not consider dynamic creation of threads in our model. (Dynamic
creation of up to n threads can be encoded in the model [23].)

Let G be the set of global states (valuations of global variables) and Li be
the set of local states of ti. Then the state space of the entire program consists
of the global state paired with local states of each of the threads, i.e., the set
of states is G × L1 × · · · × Ln. Let the transition relation of thread ti, which
is a relation on G × Li, be denoted by ⇒ti . If (g, li) ⇒ti (g′, l′i), the transi-
tion (g, l1, · · · , li, · · · , ln) ⇒c

ti
(g′, l1 · · · , l′i, · · · , ln) is a valid transition for the

concurrent program.
The execution of a concurrent program proceeds in a sequence of execution

contexts. In an execution context, one thread has control and it executes a finite
number of steps. The execution context changes at a context switch and control
is passed to a different thread. The CBA problem is to find the set of reach-
able states of the concurrent program under a bound on the number of context
switches. Formally, let k be the bound on the number of context switches; thus,
there are k + 1 execution contexts. Let ⇒c be (∪n

i=1(⇒c
ti

)∗), the transition re-
lation that describes the effect of one execution context; we wish to find the
reachable states in the transition relation given by (⇒c)k+1.

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ, Δ), where P
is a finite set of states or control locations, Γ is a finite set of stack symbols,
and Δ ⊆ P × Γ × P × Γ ∗ is a finite set of rules. A configuration of P is a
pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉,
where p, p′ ∈ P , γ ∈ Γ and u ∈ Γ ∗. These rules define a transition relation ⇒ on
configurations of P as follows: If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉
for all u ∈ Γ ∗. The reflexive transitive closure of ⇒ is denoted by ⇒∗. For
a set of configurations C, we define pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and
post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which are just backward and forward
reachability under the transition relation ⇒.

Without loss of generality, we restrict the pushdown rules to have at most two
stack symbols on the right-hand side [28].

PDSs can encode recursive programs with a finite-state data abstraction [28]:
the data values get tracked by the PDS state, and recursion gets handled by the
PDS stack. In this case, a PDS configuration represents a program state (current
data values and stack). For sequential programs, the problem of interest is to find
the set of all reachable configurations, starting from a given set of configurations.
This can then be used, for example, for assertion checking (i.e., determining if a
given assertion can ever fail) or to find the set of all data values that may arise at
a program point (for dataflow analysis). Because the number of configurations
of a PDS is unbounded, it is useful to use finite automata to describe regular
sets of configurations.

Interprocedural Analysis of Concurrent Programs Under a Context Bound 285

Definition 2. If P = (P, Γ, Δ) is a PDS then a P-automaton is a finite au-
tomaton (Q, Γ, →, P, F), where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q
is the transition relation, P is the set of initial states, and F is the set of final
states. We say that a configuration 〈p, u〉 is accepted by a P-automaton if it can
accept u when started in the state p. A set of configurations is regular if it is
the language of some P-automaton.

For a regular set of configurations C, both post∗(C) and pre∗(C) are also reg-
ular [2,7,11]. The algorithms for computing post∗ and pre∗, called poststar and
prestar, respectively, take a P-automaton A as input, and if C is the set of con-
figurations accepted by A, produce P-automata Apost∗ and Apre∗ that accept
the sets post∗(C) and pre∗(C), respectively [2,10,11].

3 A New Approach Using Thread Summarization

Between consecutive context switches only one thread is executing, and a con-
current program acts like a sequential program. However, a recursive thread can
reach an infinite number of states before the next context switch, because it has
an unbounded stack. A CBA must consider the possibility that a context switch
occurs at any of these states.

The QR algorithm works under the assumption that the set G is finite. It
uses a PDS to encode each thread (using a finite-state data abstraction). The
algorithm follows a computation tree, each node of which represents a set of
states {g}×S1 ×· · ·Sn of the concurrent program, where Si ⊆ Li, i.e., the set of
states represented by each node has the same global state. The root of the tree
represents the set of initial states, and nodes at the ith level represent all states
reachable after i − 1 context switches.

At each node, including the root, the computation tree branches: For each
choice of thread tj that receives control, a new set of states is obtained by running
poststar on the PDS for thread tj , starting with the node’s (unique) global state
and local states of tj . The local states of th, h �= j, are held fixed. The resulting
set is split according to the reachable global states, to create multiple new nodes
(maintaining the invariant that each node only represents a single global state).
This process is repeated until the computation tree is completely built for k + 1
levels, giving all reachable states in k or fewer context switches. The “splitting” of
nodes depending on reachable global states causes branching of the computation
tree proportional to the size of G at each level.

Another drawback of the QR algorithm is its use of poststar to compute the
forward reachable states of a given thread. Poststar represents a function that
maps a starting set of configurations to a set of reachable configurations. Hence,
poststar needs to be re-executed if the starting set changes. The discovery of new
starting sets forces the QR algorithm to make multiple calls on poststar (for a
given thread) to compute different sets of forward reachable states.

A similar problem arises in interprocedural analysis of sequential programs:
a procedure can be called from multiple places with multiple different input
values. Instead of reanalyzing a procedure for each input value, a more efficient

286 A. Lal et al.

approach is to analyze each procedure independently of the calling context to
create a summary. The summary describes the effect of executing the procedure
in any calling context, in terms of a relation between inputs and outputs.

Our first step is to develop a new algorithm—based on a suitable form of
summary relation for threads—for the case of unweighted PDSs. The motivation
is to develop an algorithm that avoids enumerating all global states at a context
switch, and then use that algorithm as the starting point for a generalization that
handles infinite-state abstractions. A difficulty that we face, however, is that each
summary relation must relate starting sets of configurations to reachable sets of
configurations. Because both of these sets can be infinite, we need summary
relations to be representable symbolically.

Our approach to generalizing the QR algorithm (for both finite-state and
infinite-state data abstractions) is based on the following observation:

Observation 1. One can construct an appropriate summary of a thread’s be-
havior using a finite-state transducer (an automaton with input and output tapes).

Definition 3. A finite-state transducer τ is a tuple (Q, Σi, Σo, λ, I, F),
where Q is a finite set of states, Σi and Σo are input and output alphabets,
λ ⊆ Q × (Σi ∪ {ε}) × (Σo ∪ {ε}) × Q is the transition relation, I ⊆ Q is the
set of initial states, and F ⊆ Q is the set of final states. If (q1, a, b, q2) ∈ λ,
written as q1

a/b−−−→ q2, we say that the transducer can go from state q1 to q2 on
input a, and outputs the symbol b. For state q ∈ I, the transducer accepts string
σi ∈ Σ∗i with output σo ∈ Σ∗o if there is a path from q to a final state that takes
input σi and outputs σo. The language of the transducer L(τ) is the relation
{(σi, σo) ∈ Σ∗i × Σ∗o | the transducer can output string σo when the input is σi}.

In the case of finite-state abstractions, and each thread represented as some PDS
P , one can construct a transducer τP whose language equals ⇒∗, the transitive
closure of P ’s transition relation: The transducer accepts a pair (c1, c2) if a
thread, when started in state c1, can reach state c2. The advantage of using
transducers is that they are closed under relational composition:

Lemma 1. Given transducers τ1 and τ2 with input and output alphabet Σ, one
can construct a transducer (τ1; τ2) such that L(τ1; τ2) = L(τ1); L(τ2), where the
latter “;” denotes composition of relations. Similarly, if A is an automaton with
alphabet Σ, one can construct an automaton τ1(A) such that its language is the
image of L(A) under L(τ1), i.e., the set {u ∈ Σ∗ | ∃u′ ∈ L(A), (u′, u) ∈ L(τ1)}.

Both of these constructions are carried out in a manner similar to intersection
of automata [13]. One can also take the union of transducers (union of their
languages) in a manner similar to union of automata.

In the case of CBA with a finite-state data abstraction, each thread is rep-
resented using a PDS. We construct a transducer τti for the transition relation
⇒∗ti

. By extending τti to perform the identity transformation on stack symbols
of threads other than ti (using transitions of the form p

γ/γ−−−→ q), we obtain
a transducer τc

ti
for (⇒c

ti
)∗. Next, a union of these transducers gives τc, which

represents ⇒c. Performing the composition of τc k times with itself gives us a

Interprocedural Analysis of Concurrent Programs Under a Context Bound 287

transducer τ that represents (⇒c)k+1. If an automaton A captures the set of
starting states of the concurrent program, τ(A) gives a single automaton for the
set of all reachable states in the program (under the context bound).

The rest of the paper generalizes this approach to infinite-state abstractions by
going from PDSs to WPDSs. This requires the construction (§5) and composition
(§6) of weighted transducers.

4 Weighted Pushdown Systems (WPDSs)

A WPDS is a PDS augmented with weights drawn from a bounded idempotent
semiring [27,4]. Such semirings are powerful enough to encode finite-state data
abstractions, as used in bitvector dataflow analysis, Boolean program verifica-
tion [1], and the IFDS dataflow-analysis framework [26], as well as infinite-state
data abstractions, such as linear-constant propagation and affine-relation anal-
ysis [19]. We review some of this here; see also [27].

Weights encode the effect that each statement (or PDS rule) has on the data
state of the program. They can be thought of as abstract transformers that
specify how the abstract state changes when a statement is executed.

Definition 4. A bounded idempotent semiring (or “weight domain”) is a
tuple (D, ⊕, ⊗, 0, 1), where D is a set of weights, 0, 1 ∈ D, and ⊕ (combine)
and ⊗ (extend) are binary operators on D such that

1. (D, ⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D, ⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b iff a ⊕ b = a, there are no

infinite descending chains.

The height of a weight domain is defined to be the length of the longest descend-
ing chain in the domain. In this paper, we assume the height to be bounded for
ease of discussing complexity results, but WPDSs, and the algorithms in this pa-
per, can also be used in certain cases when the height is unbounded (as long as
there are no infinite descending chains). Os(.) denotes the time bound in terms
of semiring operations.

Often, weights are data transformers: extend is composition; combine is meet ;
0 is the transformer for an infeasible path; and 1 is the identity transformer.

Definition 5. A weighted pushdown system is a triple W = (P , S, f) where
P = (P, Γ, Δ) is a pushdown system, S = (D, ⊕, ⊗, 0, 1) is a bounded idempotent
semiring and f : Δ → D is a map that assigns a weight to each rule of P.

Let σ ∈ Δ∗ be a sequence of rules. Using f , we can associate a value to σ, i.e.,
if σ = [r1, . . . , rk], then we define v(σ) def= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for

288 A. Lal et al.

any two configurations c and c′ of P , we use path(c, c′) to denote the set of all
rule sequences that transform c into c′. If σ ∈ path(c, c′), then we say c ⇒σ c′.
Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 6. Let W = (P , S, f) be a WPDS, where P = (P, Γ, Δ), and let
S, T ⊆ P ×Γ ∗ be regular sets of configurations. Then the meet-over-all-valid-
paths value MOVP(S, T) is defined as

⊕
{v(σ) | s ⇒σ t, s ∈ S, t ∈ T }.

A PDS is simply a WPDS with the Boolean weight domain ({0, 1}, ⊕, ⊗, 0, 1) and
weight assignment f(r) = 1 for all rules r ∈ Δ. In this case, MOVP(S, T) = 1 iff
there is a path from a configuration in S to a configuration in T , i.e., post∗(S)∩T
and S ∩ pre∗(T) are non-empty.

One way of modeling programs as WPDSs is as follows: the PDS models the
control flow of the program and the weight domain models transformers for an
abstraction of the program’s data. Examples are given in [16].

4.1 Solving for the MOVP Value

There are two algorithms for solving for MOVP values, called prestar and poststar
(by analogy with the algorithms for PDSs) [27]. Their input is an automaton that
accepts the set of initial configurations. Their output is a weighted automaton:

Definition 7. Given a WPDS W = (P , S, f), a W-automaton A is a P-
automaton, where each transition in the automaton is labeled with a weight. The
weight of a path in the automaton is obtained by taking an extend of the weights
on the transitions in the path in either a forward or backward direction. The
automaton is said to accept a configuration c = 〈p, u〉 with weight w = A(c) if
w is the combine of weights of all accepting paths for u starting from state p in
A. We call the automaton a backward W-automaton if the weight of a path
is read backwards, and a forward W-automaton otherwise.

Let A be an unweighted automaton and L(A) be the set of configurations ac-
cepted by it. Then there is an algorithm prestar(A) that produces a forward
weighted automaton Apre∗ as output, such that Apre∗(c) = MOVP({c}, L(A)),
and an algorithm poststar(A) produces a backward weighted automaton Apost∗

as output, such that Apost∗(c) = MOVP(L(A), {c}) [27]. For a weighted au-
tomaton A′, we define A′(C) =

⊕
{A′(c) | c ∈ C}. The values of A′(c) and

A′(C) can be computed by the algorithms presented in [27].

Lemma 2. [27] Given a WPDS with PDS P = (P, Γ, Δ), if A = (Q, Γ, →, P, F)
is a P-automaton, poststar(A) produces an automaton with at most |Q| + |Δ|
states and runs in time Os(|P ||Δ|(|Q0| + |Δ|)H + |P ||λ0|H), where Q0 = Q\P ,
λ0 ⊆→ is the set of all transitions leading from states in Q0, and H is the height
of the weight domain.

4.2 CBA Problem Definition

Definition 8. A weighted relation on a set S, weighted with semiring
(D, ⊕, ⊗, 0, 1), is a function from (S ×S) to D. The composition of two weighted

Interprocedural Analysis of Concurrent Programs Under a Context Bound 289

relations R1 and R2 is defined as (R1; R2)(s1, s3) = ⊕{w1 ⊗ w2 | ∃s2 ∈ S :
w1 = R1(s1, s2), w2 = R2(s2, s3)}. The union of the two weighted relations is
defined as (R1 ∪R2)(s1, s2) = R1(s1, s2)⊕R2(s1, s2). The identity relation is the
function that maps each pair (s, s) to 1 and others to 0. The reflexive-transitive
closure is defined in terms of these operations, as before.

The transition relation of a WPDS is a weighted relation over the set of PDS
configurations. For configurations c1 and c2, if r1, · · · , rm are all the rules such
that c1 ⇒ri c2, then (c1, c2, ⊕if(ri)) is in the weighted relation of the WPDS. In
a slight abuse of notation, we use ⇒ and its variants for the weighted transition
relation of a WPDS. Note that the weighted relation ⇒∗ maps a configuration
pair (c1, c2) to MOVP({c1}, {c2}).

The CBA problem is defined as in §2, except that all relations are weighted.
Each thread is modeled as a WPDS. Given the weighted relation (⇒c)k+1 as R,
the set of initial states S and a set of final states T (of the concurrent program),
we want to be able to compute the weight R(S, T) = ⊕{R(s, t) | s ∈ S, t ∈ T }.
This captures the net transformation on the data state between S and T : it is
the combine over the weights of all paths involving at most k context switches
that go from a state in S to a state in T . Our results from §5 and §6 allow us to
compute this value when S and T are regular.

5 Weighted Transducers

In this section, we show how to construct a weighted transducer for the weighted
relation ⇒∗ of a WPDS. We defer the definition of a weighted transducer to a
little later in this section (Defn. 9). Our solution uses the following observation
about paths in a PDS’s transition relation. Every path σ ∈ Δ∗ that starts from
a configuration 〈p1, γ1γ2 · · · γn〉 can be decomposed as σ = σ1σ2 · · ·σkσk+1 (see
Fig. 1) such that 〈pi, γi〉 ⇒σi 〈pi+1, ε〉 for 1 ≤ i ≤ k, and 〈pk+1, γk+1〉 ⇒σk+1

〈pk+2, u1u2 · · · uj〉: every path has zero or more pop phases (σ1, σ2, · · · , σk) fol-
lowed by a single growth phase (σk+1):

1. Pop-phase: A path such that the net effect of the pushes and pops per-
formed along the path is to take 〈p, γu〉 to 〈p′, u〉, without looking at u ∈ Γ ∗.
Equivalently, it can take 〈p, γ〉 to 〈p′, ε〉.

2. Growth-phase: A path such that the net effect of the pushes and pops
performed along the path is to take 〈p, γu〉 to 〈p′, u′u〉 with u′ ∈ Γ+, without
looking at u ∈ Γ ∗. Equivalently, it can take 〈p, γ〉 to 〈p′, u′〉.

Intuitively, this holds because for a path to look at γ2, it must pop off γ1.
If it does not pop off γ1, then the path is in a growth phase starting from γ1.
Otherwise, the path just completed a pop phase. We construct the transducer
for a WPDS by computing the net transformation (weight) implied by these
phases. First, we define two procedures:

290 A. Lal et al.

〈p1, γ1 γ2 γ3 · · · γn〉 ⇒σ1 〈p2, γ2 γ3 · · · γk+1 γk+2 · · · γn〉
⇒σ2 〈p3, γ3 · · · γk+1 γk+2 · · · γn〉
· · ·
⇒σk 〈pk+1, γk+1 γk+2 · · · γn〉
⇒σk+1 〈pk+2, u1 u2 · · · uj γk+2 · · · γn〉

Fig. 1. A path in the PDS’s transition relation; ui ∈ Γ, j ≥ 1, k < n

1. pop : P × Γ × P → D is defined as follows:
pop(p, γ, p′) =

⊕
{v(σ) | 〈p, γ〉 ⇒σ 〈p′, ε〉}

2. grow : P × Γ → ((P × Γ+) → D) is defined as follows:
grow(p, γ)(p′, u) =

⊕
{v(σ) | 〈p, γ〉 ⇒σ 〈p′, u〉}

Note that grow(p, γ) = poststar(〈p, γ〉), where the latter is interpreted as a
function from configurations to weights. The following lemmas give efficient al-
gorithms for computing the above procedures. Proofs are given in [16].

Lemma 3. Let A = (P, Γ, ∅, P, P) be a P-automaton that represents the set of
configurations C = {〈p, ε〉 | p ∈ P}. Let Apop be the forward weighted-automaton
obtained by running prestar on A. Then pop(p, γ, p′) is the weight on the transi-
tion (p, γ, p′) in Apop. We can generate Apop in time Os(|P |2|Δ|H), and it has
at most |P | states.

Lemma 4. Let AF = (Q, Γ, →, P, F) be a P-automaton, where Q = P ∪ {qp,γ |
p ∈ P, γ ∈ Γ} and p

γ−→ qp,γ for each p ∈ P, γ ∈ Γ . Then A{qp,γ} represents
the configuration 〈p, γ〉. Let A be this automaton where we leave the set of final
states undefined. Let Agrow be the backward weighted-automaton obtained from
running poststar on A (poststar does not need to know the final states). If we
restrict the final states in Agrow to be just qp,γ,we obtain a backward weighted-
automaton Ap,γ = poststar(〈p, γ〉) = grow(p, γ). We can compute Agrow in time
Os(|P ||Δ|(|P ||Γ | + |Δ|)H), and it has at most |P ||Γ | + |Δ| states.

The advantage of the construction presented in Lemma 4 is that it just requires
a single poststar query to compute all of the Ap,γ , instead of one query for each
p ∈ P and γ ∈ Γ . Because the standard poststar algorithm builds an automaton
that is larger than the input automaton (Lemma 2), Agrow has many fewer states
than those in all of the individual Ap,γ automata put together.

The idea behind our approach is to use Apop to simulate the first phase where
the PDS pops off stack symbols. With reference to Fig. 1, the transducer con-
sumes γ1 · · · γk from the input tape. When the transducer (non-deterministically)
decides to switch over to the growth phase, and is in state pk+1 in Apop with
γk+1 being the next symbol in the input, it passes control to Apk+1,γk+1 to start
generating the output u1 · · · uj . Then it moves into an accept phase where it
copies the untouched part of the input stack (γk+2 · · ·γn) to the output.

Note that Apop is a forward-weighted automaton, whereas Agrow is a backward-
weighted automaton. Therefore, when we mix them together to build a trans-
ducer, we must allow it to switch directions for computing the weight of a path.

Interprocedural Analysis of Concurrent Programs Under a Context Bound 291

Consider Fig. 1; a PDS rule sequence consumes the input configuration from left
to right (in the pop phase), but produces the output stack configuration u from
right to left (as it pushes symbols on the stack). Because we need the transducer
to output u1 · · ·uj from left to right, we need to switch directions for computing
the weight of a path. For this, we define partitioned transducers.

Definition 9. A partitioned weighted finite-state transducer τ is a tuple
(Q, {Qi}2

i=1, S, Σi, Σo, λ, I, F) where Q is a finite set of states, {Q1, Q2} is a
partition of Q, S = (D, ⊕, ⊗, 0, 1) is a bounded idempotent semiring, Σi and Σo

are input and output alphabets, λ ⊆ Q × D × (Σi ∪ {ε}) × (Σo ∪ {ε}) × Q is
the transition relation, I ⊆ Q1 is the set of initial states, and F ⊆ Q2 is the
set of final states. We restrict the transitions that cross the state partition: if
(q, w, a, b, q′) ∈ λ and q ∈ Ql, q

′ ∈ Qk and l �= k, then l = 1, k = 2 and w = 1.
Given a state q ∈ I, the transducer accepts a string σi ∈ Σ∗i with output σo ∈ Σ∗o
if there is a path from state q to a final state that takes input σi and outputs σo.

For a path η that goes through states q1, · · · , qm, such that the weight of the
ith transition is wi, and all states qi are in Qj for some j, then the weight of this
path v(η) is w1 ⊗w2 ⊗· · ·⊗wm if j = 1 and wm ⊗wm−1 ⊗· · ·⊗w1 if j = 2, i.e.,
the state partition determines the direction in which we perform extend. For a
path η that crosses partitions, i.e., η = η1η2 such that each ηj is a path entirely
inside Qj, then v(η) = v(η1) ⊗ v(η2).

In this paper, we refer to partitioned weighted transducers as weighted transduc-
ers, or simply transducers when there is no possibility of confusion. Note that
when the extend operator is commutative, as in the case of the Boolean semiring
used for encoding PDSs as WPDSs, the partitioning is unnecessary.

Theorem 1. We can compute a transducer τW such that if τW is given input
(p u), p ∈ P, u ∈ Γ ∗, then the combine over the values of all paths in τW that
output the string (p′ u′) is precisely MOVP({〈p, u〉}, {〈p′, u′〉}). Moreover, this
transducer can be constructed in time Os(|P ||Δ|(|P ||Γ | + |Δ|)H), has at most
|P |2|Γ | + |P ||Δ| states and at most |P |2|Δ|2 transitions.

Usually the WPDSs used for modeling programs have |P | = 1 and |Γ | < |Δ|. In
that case, constructing a transducer has similar complexity and size as running
a single poststar query; see [16].

6 Composing Weighted Transducers

Composition of unweighted transducers is straightforward, but this is not the
case with weighted transducers. The requirement here is to take two weighted
transducers, say τ1 and τ2, and create another one, say τ3, such that L(τ3) =
L(τ1); L(τ2). The difficulty is that this requires composition of weighted lan-
guages (see Defn. 8). We begin with a slightly simpler problem on weighted
automata. The machinery that we develop for this problem will be used for
composing weighted transducers.

292 A. Lal et al.

p

a, w1 b, w2

d, w3

p

a, w4 b, w5

d, w6

(p,p)

a, (w1,w4) b, (w2,w5)

q1
q2 (q1,q2)

d, (w3,w6)

A1 A2 A3

Fig. 2. Forward-weighted automata with final states q1, q2, and (q1, q2), respectively

6.1 The Sequential Product of Two Weighted Automata

Given forward-weighted automata A1 and A2, we define their sequential product
as another weighted automaton A3 such that for any configuration c, A3(c) =
A1(c) ⊗ A2(c). More generally, we want the following identity for any regular
set of configurations C: A3(C) =

⊕
{A3(c) | c ∈ C} =

⊕
{A1(c) ⊗ A2(c) |

c ∈ C}. (In this section, we assume that configurations consist of just the stack
and |P | = 1.) This problem is the special case of transducer composition when
a transducer only has transitions of the form (γ/γ). For the Boolean weight
domain, it reduces to unweighted automaton intersection.

To take the sequential product of weighted automata, we start with the algo-
rithm for intersecting unweighted automata. This is done by taking transitions
(q1, γ, q2) and (q′1, γ, q′2) in the respective automata to produce ((q1, q

′
1), γ, (q2, q

′
2))

in the new automaton. We would like to do the same with weighted transitions:
given weights of the matching transitions, we want to compute a weight for the
created transition. In Fig. 2, intersecting automata A1 and A2 produces A3
(ignore the weights for now). Automaton A3 should accept (a b) with weight
A1(a b) ⊗ A2(a b) = w1 ⊗ w2 ⊗ w4 ⊗ w5.

One way of achieving this is to pair the weights while intersecting (as shown
in A3 in Fig. 2). Matching the transitions with weights w1 and w4 produces
a transition with weight (w1, w4). For reading off weights, we need to define
operations on paired weights. Define extend on pairs (⊗p) to be componentwise
extend (⊗). Then A3(a b) = (w1, w4) ⊗p (w2, w5) = (w1 ⊗ w2, w4 ⊗ w5). Taking
an extend of the two components produces the desired answer. Thus, this A3
together with a read out operation in the end (that maps a weight pair to a
weight) is a first attempt at constructing the sequential product of A1 and A2.

Because the number of accepting paths in an automaton may be infinite, one
also needs a combine (⊕p) on paired weights. The natural attempt is to define
it componentwise. However, this is not precise. For example, if C = {c1, c2}
then A3(C) should be (A1(c1) ⊗ A2(c1)) ⊕ (A1(c2) ⊗ A2(c2)). However, using
componentwise combine, we would get A3(C) = A3(c1) ⊕p A3(c2) = (A1(c1) ⊕
A1(c2), A2(c1) ⊕ A2(c2)). Applying the read-out operation (extend of the com-
ponents) gives four terms

⊕
{(A1(ci) ⊗ A2(cj)) | 1 ≤ i, j ≤ 2}, which includes

cross terms like A1(c1) ⊗ A2(c2). The same problem arises also for a single con-
figuration c if A3 has multiple accepting paths for it.

Under certain circumstances there is an alternative to pairing that lets us
compute precisely the desired sequential product of weighted automata:

Definition 10. The nth sequentializable tensor product (n-STP) of a
weight domain S = (D, ⊕, ⊗, 0, 1) is defined as another weight domain St =

Interprocedural Analysis of Concurrent Programs Under a Context Bound 293

(Dt, ⊕t, ⊗t, 0t, 1t) with operations � : Dn → Dt (called the tensor operation)
and DeTensor : Dt → D such that for all wj , w

′
j ∈ D and t1, t2 ∈ Dt,

1. �(w1, w2, · · · , wn)⊗t �(w′1, w
′
2, · · · , w′n) = �(w1⊗w′1, w2⊗w′2, · · · , wn ⊗w′n)

2. DeTensor(�(w1, w2, · · · , wn)) = (w1 ⊗ w2 ⊗ · · · ⊗ wn) and
3. DeTensor(t1 ⊕t t2) = DeTensor(t1) ⊕ DeTensor(t2).

When n = 2, we write the tensor operator as an infix operator. Note that
because of the first condition in the above definition, 1t = �(1, · · · , 1) and 0t =
�(0, · · · , 0). Intuitively, one may think of the tensor product of i weights as a
kind of generalized i-tuple of those weights. The first condition above implies that
extend of tensor products must be carried out componentwise. The DeTensor
operation is the “read-out” operation that puts together a tensor product by
taking extend of its components. The third condition distinguishes the tensor
product from a simple tupling operation. It enforces that the DeTensor operation
distributes over the combine of the tensored domain, which pairing does not
satisfy.

If a 2-STP exists for a weight domain, then we can take the product of
weighted automata for that domain: if A1 and A2 are the two input automata,
then for each transition (p1, γ, q1) with weight w1 in A1, and transition (p2, γ, q2)
with weight w2 in A2, add the transition ((p1, p2), γ, (q1, q2)) with weight (w1 �
w2) to A3. The resulting automaton satisfies the property: DeTensor(A3(c)) =
A1(c) ⊗ A2(c), and more generally, DeTensor(A3(C)) =

⊕
{A1(c) ⊗ A2(c) | c ∈

C}. (A proof is given in [16].) Thus, with the application of the DeTensor oper-
ation, A3 behaves like the desired automaton for the product of A1 and A2. A
similar construction and proof hold for taking the product of n automata at the
same time, when an n-STP exists.

Before generalizing to composition of transducers, we show that n-STP exists,
for all n, for a class of weight domains. This class includes the one needed to
perform affine-relation analysis [16].

6.2 Sequentializable Tensor Product

We say that a weight domain is commutative if its extend is commutative. STP
is easy to construct for commutative domains (tensor is extend, and DeTensor
is identity), but such domains are not useful for encoding abstractions for CBA.
Under a commutative extend, interference from other threads can have no effect
on the execution of a thread. However, such domains still play an important
role in constructing STPs. We show that STPs can be constructed for matrix
domains built on top of a commutative domain.

Definition 11. Let Sc = (Dc, ⊕c, ⊗c, 0c, 1c) be a commutative weight domain.
Then a matrix weight domain on Sc of order n is a weight domain S =
(D, ⊕, ⊗, 0, 1) such that D is the set of n × n matrices with elements from Dc;
⊕ is element-wise ⊕c; ⊗ is matrix multiplication; 0 is the matrix in which all
elements are 0c; 1 is the matrix with 1c on the diagonal and 0c elsewhere.

294 A. Lal et al.

S is a bounded idempotent semiring even if Sc is not commutative.
The advantage of looking at weights as matrices is that it gives us essential

structure to manipulate for constructing the STP. We need the following oper-
ation on matrices: the Kronecker product [29] of two matrices A and B, of sizes
n1 × n2 and n3 × n4, respectively, is the matrix C of size (n1 n3) × (n2 n4) such
that C(i, j) = A(i div n3, j div n4) ⊗ B(i mod n3, j mod n4), where matrix in-
dices start from zero. It is much easier to understand this definition pictorially
(writing A(i, j) as aij):

C =

⎛

⎜
⎝

a11B · · · a1n2B
...

. . .
...

an11B · · · an1n2B

⎞

⎟
⎠

The Kronecker product, written as �, is an associative operation. Moreover,
for matrices A, B, C, D with elements that have commutative multiplication,
(A � B) ⊗ (C � D) = (A ⊗ C) � (B ⊗ D) [29].

Note that the Kronecker product has all pairwise products of elements from
the original matrices. One can come up with projection matrices pi (with just
1 and 0 entries) such that pi ⊗ m ⊗ pj selects the (i, j) entry of m (zeros out
other entries). Using these matrices in conjunction with permutation matrices
(that can permute rows and columns and change the size of a matrix), one
can compute the product of two matrices from their Kronecker product: there
are fixed matrices ei, ej and an expression θm =

⊕
i,j(ei ⊗ m ⊗ ej), such that

θm1�m2 = m1 ⊗ m2. This can be generalized to multiple matrices to get an
expression θm of the same form as above, such that θm1�···�mn = m1 ⊗· · ·⊗mn.
The advantage of having an expression of this form is that θm1⊕m2 = θm1 ⊕ θm2

(because matrix multiplication distributes over their addition, or combine).

Theorem 2. A n-STP exists on matrix domains for all n. If S is a matrix
domain of order r, then its n-STP is a matrix domain of order rn with the
following operations: the tensor product of weights is defined as their Kronecker
product, and the DeTensor operation is defined as λm.θm.

The necessary properties for the tensor operation follow from those for Kronecker
product (this is where we need commutativity of the underlying semiring) and
the expression θm. This also implies that the tensor operation is associative and
one can build weights in the nth STP from a weight in the (n−1)th STP and the
original matrix weight domain by taking the Kronecker product. It follows that
the sequential product of n automata can be built from that of the first (n − 1)
automata and the last automaton. The same holds for composing n transducers.
Therefore, for CBA, the context-bound can be increased incrementally, and the
transducer constructed for (⇒c)k can be used to construct one for (⇒c)k+1.

6.3 Composing Transducers

Unweighted transducer composition proceeds in a similar fashion to automaton
intersection: for transitions (q1, γ1/γ2, q2) and (q′1, γ2/γ3, q

′
2) in the respective

transducers, add ((q1, q
′
1), γ1/γ3, (q2, q

′
2)) to the new transducer.

Interprocedural Analysis of Concurrent Programs Under a Context Bound 295

If our weighted transducers were unidirectional (completely forwards or com-
pletely backwards) then composing them would be the same as taking the prod-
uct of weighted automata: the weights on matching transitions would get ten-
sored together. However, our transducers are partitioned, and have both a for-
wards component and a backwards component. To handle the partitioning, we
need additional operations on weights.

Definition 12. Let S = (D, ⊕, ⊗, 0, 1) be a weight domain. Then a transpose
operation on this domain is defined as (.)T : D → D such that for all w1, w2 ∈ D,
wT

1 ⊗wT
2 = (w2⊗w1)T and it is its self-inverse: (wT

1)T = w1. An n-transposable
STP (TSTP) on S is defined as an n-STP along with another de-tensor op-
eration: TDeTensor : Dn → D such that TDeTensor(�(w1, w2, · · · , wn)) =
w1 ⊗ wT

2 ⊗ w3 ⊗ wT
4 ⊗ · · · w′n, where w′n = wn if n is odd and wT

n if n is even.

TSTPs always exist for matrix domains: the transpose operation is the matrix-
transpose operation, and the TDeTensor operation can be defined using an ex-
pression similar to that for DeTensor. We can use TSTPs to remove the parti-
tioning. Let τ be a partitioned weighted transducer on S, for which a transpose
exists, as well as a 2-TSTP. The partitioning on the states of τ naturally defines
a partitioning on its transitions as well (a transition is said to belong to the
partition of its source state). Replace weights w1 in the first (forwards) partition
with (w1 �1), and weights w2 in the second (backwards) partition with (1�wT

2).
This gives a completely forwards transducer τ ′ (without any partitioning). The
invariant is that for any sets of configurations S and T , τ(S, T), which is the
combine over all weights with which the transducer accepts (s, t), s ∈ S, t ∈ T ,
equals TDeTensor(τ ′(S, T)).

This can be extended to compose partitioned weighted transducers. Com-
posing n transducers requires a 2n-TSTP: each transducer is converted to a
non-partitioned one over the 2-TSTP domain; input/output labels are matched
just as for unweighted transducers; and the weights are tensored together.

Theorem 3. Given n weighted transducers τ1, · · · , τn on a weight domain with
2n-TSTP, the above construction produces a weighted transducer τ such that for
any sets of configurations S and T , TDeTensor(τ(S, T)) = R(S, T), where R is
the weighted composition of L(τ1), · · · , L(τn).

By composing the weighted languages of transducers, we can construct a weighted
transducer τ for (⇒c)k+1. If automaton AS represents the set of starting states
of a program, τ(AS) provides a weighted automaton A describing all reachable
states (under the context bound), i.e., the weight A(t) gives the net transforma-
tion in data state in going from S to t (0 if t is not reachable).

7 Related Work

Reachability analysis of concurrent recursive programs has also been considered
in [4,22,9]. These consider the problem by computing overapproximations of the
execution paths of the program, whereas here we compute underapproximations

296 A. Lal et al.

of the reachable configurations. Analysis under restricted communication poli-
cies (in contrast to shared memory) has also been considered [6,14]. The basic
technique of Qadeer and Rehof has been generalized to handle more abstractions
in [5,3], however, these also require enumeration of states at a context switch,
and cannot handle infinite-state abstractions like affine-relation analysis.

The goal of partial-order reduction techniques [12] for concurrent programs is
to avoid explicit enumeration of all interleavings. Our work is in similar spirit,
however, we use symbolic techniques to avoid explicitly considering all interleav-
ings. In the QR algorithm, only the stack was kept symbolic using automata,
and we extended that approach to keep both stack and data symbolic.

Constructing transducers. As mentioned in the introduction, a transducer
construction for PDSs was given earlier by Caucal [8]. However, the construction
was given for prefix-rewriting systems in general and is not accompanied by
a complexity result, except for the fact that it runs in polynomial time. Our
construction for PDSs, obtained as a special case of the construction given in §5,
is quite efficient. The technique, however, seems to be related. Caucal constructed
the transducer by exploiting the fact that the language of the transducer is a
union of the relations (pre∗(〈p, γ〉), post∗(〈p, γ〉)) for all p ∈ P and γ ∈ Γ , with an
identity relation appended onto them to accept the untouched part of the stack.
This is similar to our decomposition of PDS paths (see Fig. 1). Construction of
a transducer for WPDSs has not been considered before. This was crucial for
developing an algorithm for CBA with infinite-state data abstractions.

Composing transducers. There is a large body of work on weighted automata
and weighted transducers in the speech-recognition community [17,18]. However,
the weights in their applications usually satisfy many more properties than those
of a semiring, including (i) the existence of an inverse, and (ii) commutativity
of extend. We refrain from making such assumptions.

The sequential product of weighted automata on semirings was also considered
in [15]. However, that algorithm handles only the special case of taking one
product of a forwards automaton with a backwards one. It cannot take the
product of three or more automata. The techniques in this paper are for taking
the product any number of times (provided STPs exist).

Tensor products have been used previously in program analysis for combining
abstractions [21]. We use them in a different context and for a different purpose.
In particular, previous work has used them for combining abstractions that are
performed in lock-step; in contrast, we use them to stitch together the data state
before a context switch with the data state after a context switch.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: PLDI (2001)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, Springer, Heidelberg (1997)

Interprocedural Analysis of Concurrent Programs Under a Context Bound 297

3. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL (2003)

5. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

6. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

7. Büchi, J.R.: Finite Automata, their Algebras and Grammars. Springer, New
York(1988)

8. Caucal, D.: On the regular structure of prefix rewriting. TCS 106(1), 61–86 (1992)
9. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent

message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

10. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, Springer, Heidelberg (2000)

11. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Electronic Notes in Theoretical Comp. Sci. 9 (1997)

12. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

14. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL
(2007)

15. Lal, A., Kidd, N., Reps, T., Touili, T.: Abstract error projection. In: Riis Nielson,
H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 200–217. Springer, Heidelberg
(2007)

16. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. TR-1598, University of Wisconsin (July 2007)

17. Mohri, M., Pereira, F., Riley, M.: Weighted automata in text and speech processing.
In: ECAI (1996)

18. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state
transducer library. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses,
P.D. (eds.) TCS 2000. LNCS, vol. 1872, Springer, Heidelberg (2000)

19. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: POPL (2004)

20. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI (2007)

21. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

22. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, Springer, Heidelberg (2007)

23. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

298 A. Lal et al.

24. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI (2004)
25. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-

able. In: TOPLAS (2000)
26. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: POPL (1995)
27. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. In: SCP, vol. 58 (2005)
28. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of

Munich, Munich, Germany (July 2002)
29. Wikipedia. Kronecker product, http://en.wikipedia.org/wiki/Kronecker product

http://en.wikipedia.org/wiki/Kronecker_product

Context-Bounded Analysis of Concurrent

Queue Systems�

Salvatore La Torre1, P. Madhusudan2, and Gennaro Parlato1,2

1 Università degli Studi di Salerno, Italy
2 University of Illinois at Urbana-Champaign, USA

Abstract. We show that the bounded context-switching reachability
problem for concurrent finite systems communicating using unbounded
FIFO queues is decidable, where in each context a process reads from
only one queue (but is allowed to write onto all other queues). Our result
also holds when individual processes are finite-state recursive programs
provided a process dequeues messages only when its local stack is empty.
We then proceed to classify architectures that admit a decidable (un-
bounded context switching) reachability problem, using the decidability
of bounded context switching. We show that the precise class of decid-
able architectures for recursive programs are the forest architectures,
while the decidable architectures for non-recursive programs are those
that do not have an undirected cycle.

1 Introduction

Networks of concurrent processes communicating via message queues form a
very natural and useful model for several classes of systems with inherent paral-
lelism. Two natural classes of systems can be modeled using such a framework:
asynchronous programs on a multi-core computer and distributed programs com-
municating on a network.

In parallel programming languages for multi-core or even single-processor sys-
tems (e.g., Java, web service design), asynchronous programming or event-driven
programming is a common idiom that programming languages provide [19,7,13].
In order to obtain higher performance and low latency, programs are equipped
with the ability to issue tasks using asynchronous calls that immediately return,
but are processed later, either in parallel with the calling module or perhaps
much later, depending on when processors and other resources such as I/O be-
come free. Asynchronous calls are also found in event-driven programs where a
program can register callback functions that are associated to particular events
(such as a new connection arriving on a socket), and are called when the event
occurs. Programs typically call several other functions asynchronously so that
they do not get blocked waiting for them to return. The tasks issued by a system
are typically handled using queues, and we can build faithful models of these
systems as networks of processes communicating via queues.
� The first and third authors were partially supported by the MIUR grants ex-60%

2006 and 2007 Università degli Studi di Salerno.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 299–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

300 S. La Torre, P. Madhusudan, and G. Parlato

Distributed systems communicating via FIFO message channels also form a
natural example of networks of processes communicating via queues. Motivated
by the verification problem of distributed communication protocols, the model-
checking problem for these systems has been studied extensively, where each
process in the system is modeled using a finite-state transition system [1,15,10].

In this paper, we study the reachability problem for finite-state processes
(and finite-state recursive processes) communicating via FIFO queues. We fol-
low the paradigm of abstraction, where we assume that each program has been
abstracted (using, for example, predicates) or modeled as a finite-state process,
and algorithmically subject to model-checking.

The main barrier to model-check queue systems is that the FIFO message
queues give an infinite state-space that is intractable: even reachability of two
processes communicating via queues with each other is undecidable. There have
been several ways to tackle the undecidability in this framework. One line of
attack has been to weaken the power of queues by assuming that messages can
get arbitrarily lost in queues; this leads to a decidable reachability problem [1]
that is appealing in the distributed protocol domain as messages indeed can
get lost, but is less natural in the event-driven programming domain as enlisted
tasks seldom get lost.

Another technique is to ignore the FIFO order of messages and model the
queue as a bag of messages, where any element of the bag can be delivered
at any time [18,11]. When the number of kinds of messages is bounded, this
amounts to keeping track of how many messages of each kind are present in the
bag, which can be tracked using counters. Using the fact that counter systems
without a zero-check admit a decidable reachability problem, model-checking of
these systems can be proved decidable. In the realm of event-driven programming
the assumption of modeling pending tasks as a bag is appealing because of the
nondeterministic nature of scheduling.

In this paper, we do not destroy the contents of queues nor destroy the FIFO
order, but model queues accurately. To curb undecidability, we show that the
bounded context-switching reachability problem is decidable. More precisely, a
context of a queueing network is defined as an (arbitrarily long) evolution of one
process that is allowed to dequeue messages from (only) one queue and enqueue
messages on all its outgoing message queues. The bounded context-switching
reachability problem asks whether a global control state is reachable through a
run that switches contexts at most k times, for a fixed value k.

Bounded context switching for recursive concurrent (non-queueing) programs
was introduced in [16] in order to find a meaningful way to explore initial parts
of executions using algorithmic techniques. The intuition is that many errors
manifest themselves even with a short number of context-switches, and hence a
model-checker that explores thoroughly the states reached within a few context-
switches can prove effective in finding bugs. Bounded context-switching for non-
queueing programs have exhibited good coverage of state-spaces [14] and are an
appealing restriction for otherwise intractable verification problems of concurrent
programs.

Context-Bounded Analysis of Concurrent Queue Systems 301

We show the decidability of bounded context switching reachability for queue-
ing finite-state programs, which in addition can have a finite shared memory. We
show that the problem is also decidable for recursive programs, wherein each pro-
cess has a local call-stack that it can manipulate on its moves, provided each
process is well-queueing. A set of programs is well-queueing if each process de-
queues messages only when its local stack is empty. This model allows us to
capture general event-driven programs that have recursive synchronous calls,
and the well-queueing assumption is natural as the most prevalent programs
dequeue a task and execute it to completion before dequeuing the next task
(see [18,5] for similar restrictions). We show both the above decidability results
by a reduction to the bounded phase reachability of multistack machines, which
was recently proven by us to be decidable [12].

We also study the unbounded context-switching reachability problem for queue
systems by classifying the architectures that admit decidable reachability prob-
lems. An architecture is a set of process sites and queues connecting certain
pairs of process sites. For the class of recursive programs, we show that the only
architectures with a decidable reachability problem are the directed forest archi-
tectures. This decidability result is shown using the bounded context switching
decidability result. We find this surprising: the decidability of bounded context
switching (including the notion of a context) stems from a technical result on
bounded phase multistack automata, which were defined with no queues in mind,
and yet proves to be sufficient to capture all decidable queueing architectures.

Turning to non-recursive architectures, we again provide an exact character-
ization: the precise class of decidable architectures are those whose underlying
undirected graph is a forest. The decidability for this result uses a simple idea
that queues in architectures can be reversed, and the proof of decidability of
tree architectures is considerably simpler as we can build a global finite-state
machine simulating the network with bounded-length message queues.

The paper is organized as follows. The next section defines networks of pro-
cesses communicating via queues, and the reachability and bounded context
switching reachability problems. Section 3 establishes our results on bounded
context switching reachability of queue systems using multi-stack pushdown au-
tomata. Section 4 encompasses our results on the exact class of decidable archi-
tectures for recursive and non-recursive programs, and Section 5 ends with some
conclusions.

Related Work. The idea of context-bounded analysis for concurrent systems
was introduced in [16] where it was shown that it yields a decidable reachability
problem for shared memory recursive Boolean programs, and is a generalization
of the KISS framework proposed by Shaz Qadeer [17]. The last two years has
seen an increasing interest in context-bounded analysis for otherwise intractable
systems, including context-bounded analysis for asynchronous dynamic push-
down networks [2], for systems with bounded visible heaps [3], and for a more
general notion of context-switching for recursive Boolean programs [12]. A recent
paper [14] shows experimentally that a few number of context-switches achieves
large coverage of state-space in multithreaded programs.

302 S. La Torre, P. Madhusudan, and G. Parlato

Message-passing queue systems has been a well-studied problem over the last
two decades, and several restrictions based on automata-theoretic analysis have
been proposed to verify such systems. These include systems with lossy chan-
nels [1], and several restricted models of queue systems, such as systems with a
single queue [10], systems where message queues contain only one kind of mes-
sage [15], half-duplex (and quasi-duplex) systems where only one queue can be
active and contain messages at any point [4], and reversal bounded multicounter
machines connected via a single queue [9].

Finally, asynchronous programs have been shown to have a decidable reacha-
bility problem when at any point only a single recursive process runs, enqueuing
tasks onto a bag of tasks, where enqueuing of tasks can only be performed when
the local stack is empty [18]. In a recent paper, an under and over approximation
scheme based on bounding the counters representing messages has been pro-
posed, and implemented, to solve dataflow analysis problems for asynchronous
programs [11].

2 Queue Systems

In this section, we define networks of shared-memory processes communicating
via unbounded FIFO queues. The number of processes will be bounded, and
the state of each process will be modeled using a global finite-state control that
models the control locations of the processes, the local variables, and the global
shared memory they access. The global finite-state control can be either a non-
recursive program, or a recursive program modeled by each process having its
own call-stack that it can push and pop from.

We model any number of queues using which the processes can communicate;
each queue has a unique sending process and a unique receiving process. There
will be a finite message alphabet, but each queue has an unbounded capacity to
store messages. Processes hence communicate either using the shared-memory
(which carries only a bounded amount of information) or through queues (which
carry unbounded information).

An architecture is a structure (P, Q, Sender , Receiver) where P is a finite set
of processes, Q is a finite set of queues, and Sender : Q → P and Receiver : Q → P
are two functions that assign a unique sender process and receiver process for
each queue in Q, respectively. We assume that the sender of a queue cannot be
its receiver as well: i.e. for every q ∈ Q, Sender(q) �= Receiver(q).

We refer to processes in P using notations such as p, p′, pi, p̂, etc., and queues
using q, q′, etc.

Recursive Programs Communicating Via Queues

Let Π be a finite message alphabet. Consider an architecture
A=(P, Q, Sender , Receiver). An action of a process p ∈ P (over Π) is of
one of the following forms:

– p: send(q, m) where m ∈ Π , q ∈ Q, and Sender(q) = p.

Context-Bounded Analysis of Concurrent Queue Systems 303

– p: recv(q, m) where m ∈ Π , q ∈ Q, and Receiver(q) = p.
– p: int or p: call or p: ret .

Intuitively, a “p: int” action is an internal action of process p that does not
manipulate queues, “p: send(q, m)” is an action where process p enqueues the
message m on queue q (the receiver is predetermined as the receiver process for
the queue), and “p: recv(q, m)” corresponds to the action where p receives and
dequeues the message m from queue q.

The stack actions are those of the form p: call or p: ret . The stack action
p: call corresponds to a local call of a procedure in process p, where the process
pushes onto its local stack some data (the valuation of its local variables) and
moves to a new state. The stack action p: ret corresponds to a return from a
procedure where the local stack is popped and the process moves to a new state
that depends on the current state and the data popped from the stack.

Let Actp denote the set of actions of p, and let Act =
⋃

p∈P Actp denote the
set of all actions. Let Calls denote the set of call actions {p: call | p ∈ P} and
Rets denote the set of return actions {p: ret | p ∈ P}.

Definition 1. A recursive queueing concurrent program (RQCP) over an ar-
chitecture (P, Q, Sender , Receiver) is a structure (S, s0, Π, Γ, {Tp}p∈P), where S
is a finite set of states, s0 ∈ S is an initial state, Π is a finite message alphabet,
and Γ is a finite stack alphabet. If Actp is the set of actions of process p on the
message alphabet Π, then Tp is a set of transitions:

Tp ⊆ (S × (Actp \ {p: call , p: ret}) × S) ∪ (S × {p: call} × S × Γ)
∪ (S × {p: ret} × Γ × S).

The size of an RQCP as above is the size of the tuple representation.
A configuration of an RQCP R = (S, s0, Π, Γ, {Tp}p∈P) is a tuple
(s, {σp}p∈P , {μq}q∈Q) where s ∈ S, for each p ∈ P , σp ∈ Γ ∗ is the content
of the local stack of p, and for each queue q ∈ Q, μq ∈ Π∗ is the content of q.1

Transitions between configurations are defined as follows:
(s, {σp}p∈P , {μq}q∈Q) act−−→ (s′, {σ′p}p∈P , {μ′q}q∈Q) if

[Internal] act = p̂: int and there is a transition (s, p̂: int , s′) ∈ Tp̂ such that
– for every q ∈ Q, μ′q = μq, and
– for every p ∈ P , σ′p = σp.

[Send] act = p̂: send(q̂, m) and there is a transition
(s, p̂: send(q̂, m), s′) ∈ Tp̂ such that
– μ′q̂ = m.μq̂, and for every q �= q̂, μ′q = μq

– for every p ∈ P , σ′p = σp.
[Receive] act = p̂: recv(q̂, m) and there is a transition

(s, p̂: recv(q̂, m), s′) ∈ Tp̂ such that
– μq̂ = μ′q̂.m and for every q �= q̂, μ′q = μq

– for every p ∈ P , σ′p = σp.

1 The top of the stack of p is at the beginning of σp, and the last message enqueued
onto q is at the beginning of μq , by convention.

304 S. La Torre, P. Madhusudan, and G. Parlato

[Call] act = p̂: call and there is a transition (s, p̂: call, s′, γ) ∈ Tp̂ such that
– σ′p̂ = γσp̂, and for every p �= p̂, σ′p = σp,
– for every q ∈ Q, μ′q = μq.

[Return] act = p̂: ret and there is a transition (s, p̂: ret , γ, s′) ∈ Tp̂ such that
– σp̂ = γσ′p̂ and for every p �= p̂, σ′p = σp,
– for every q ∈ Q, μ′q = μq.

A run of an RQCP is a sequence of transitions c0
act1−−−→ c1

act2−−−→ c2 . . .
actn−−−→ cn

with c0 = (s, {σp}p∈P , {μq}q∈Q), where s = s0 is the initial state, σp = ε for
each p ∈ P (initial stacks are empty), and μq = ε for each q ∈ Q (initial queues
are empty). A state ŝ is said to be reachable if there is a run c0

act1−−−→ c1
act2−−−→

c2 . . .
actn−−−→ cn such that cn = (ŝ, {σp}p∈P , {μq}q∈Q).

The reachability problem for recursive programs communicating via queues is
to determine, given an RQCP (S, s0, Π, Γ, {Tp}p∈P) and a set of target states
T ⊆ S, whether any ŝ ∈ T is reachable.

Non-recursive programs communicating via queues
A non-recursive queueing concurrent program (QCP) over the processes P , mes-
sage alphabet Π , and queues Q is an RQCP (S, s0, Π, Γ, {Tp}p∈P) in which
there are no transitions on calls and returns (i.e. there is no transition on an
action of the form p: call or p: ret in Tp). Consequently, we remove the stack
alphabet Γ from its description, and its configurations do not involve the local
stacks of each process. A QCP hence is of the form (S, s0, Π, {Tp}p∈P) where
Tp ⊆ (S × (Actp \ {p: call , p: ret}) × S), a configuration of a QCP is of the form
(s, {μq}q∈Q), and the semantics of transitions on configurations are the appro-
priately simplified versions of the rules for internal, send, and receive actions
described above. The reachability problem is analogously defined.

Bounded context switching
It is well-known that the reachability problem for even non-recursive queueing
concurrent programs is undecidable (see Lemma 8 later). The undecidability
result holds even for a very simple architecture with only two processes p and
p′, and two queues, one from p to p′ and the other from p′ to p.

Since reachability is undecidable for queue systems, we study bounded context-
switching of queue systems. Intuitively, a context of a queueing system is a
sequence of moves where only one process evolves, dequeuing at most one queue
q (but possibly enqueuing messages on any number of queues that it can write
to). The bounded-context switching reachability problem for an RQCP (or QCP)
is the problem of finding whether a target set of states is reachable by some run
that switches contexts at most k times, for an a priori fixed bound k.
Formally, for any p ∈ P , q ∈ Q such that Receiver(q) = p, let
Actp,q={p: int , p: call , p: ret} ∪ {p: send(q′, m) | q′ ∈ Q, Sender(q′)=p, m ∈ Π}

∪ {p: recv(q, m) | m ∈ Π}
denote the set of actions of p with dequeue actions acting only on queue q. A run
c0

act1−−−→ c1
act2−−−→ . . .

actn−−−→ cn has at most k context switches if the cardinality
of the set {i | acti ∈ Actp,q, acti+1 �∈ Actp,q, p ∈ P, q ∈ Q} is bounded by k.

Context-Bounded Analysis of Concurrent Queue Systems 305

The bounded context-switching reachability problem is to determine, given an
RQCP (or QCP), a target set of states T , and a bound k ∈ N, whether any state
in T is reachable on a run that has at most k context switches.

Well-queueing processes
An RQCP is said to be well-queueing if every process p dequeues a message
from a queue only when its local stack is empty. Formally, an RQCP is well-
queueing if there is no run of the form c0

act1−−−→ c1
act2−−−→ . . . cn−1

actn−−−→ cn where
cn−1 = (s, {σp}p∈P , {μq}q∈Q), actn−1 = p: recv(q, m) and σp �= ε.

3 The Bounded Context-Switching Reachability Problem

In this section, we recall multi-stack pushdown systems and show that bounded
context-switching reachability for both non-recursive and well-queueing recursive
concurrent programs can be decided via a reduction to bounded phase reacha-
bility for multi-stack pushdown systems [12].

Multi-stack Pushdown Systems

A multi-stack pushdown system is the natural extension of standard pushdown
system with multiple stacks. Formally, a multi-stack pushdown system (MSPS)
is M = (S, s0, St , Γ, Δ) where S is a finite set of states, s0 ∈ S is the initial state,
St is a finite set of stacks, Γ is the stack alphabet and Δ = Δint ∪ Δpush ∪ Δpop
is the transition relation with Δint ⊆ S × S, Δpush ⊆ S × St × Γ × S, and
Δpop ⊆ S × St × Γ × S.

A configuration c of an MSPS M is a tuple 〈s, {σst}st∈St 〉, where s ∈ S is the
current control state of M , and for every st ∈ St , σst ∈ Γ ∗ denotes the content
of stack st (we assume that the leftmost symbol of st is the top of the stack).
The initial configuration of M is 〈s0, {σst}st∈St 〉, where for every st ∈ St , σst = ε
denoting that each stack is empty. The semantics of M is given by defining the
transition relation induced by Δ on the set of configurations of M . We write
〈s, {σst}st∈St 〉 δ−→ 〈s′, {σ′st}st∈St 〉 iff one of the following cases holds: (unless it is
differently specified, we assume that σst = σ′st for every st ∈ St)

[Internal move] δ is (s, s′) ∈ Δint .
[Push onto stack ŝt] δ is (s, ŝt , a, s′) ∈ Δpush and σ′

ŝt
= a.σŝt .

[Pop from stack ŝt] δ is (s, ŝt , a, s′) ∈ Δpop and σŝt = a.σ′ŝt .

A run of an MSPS M is a sequence of transitions c0
δ1−→ c1

δ2−→ c2 . . .
δn−→ cn. A

state ŝ ∈ S is reachable if there exists a run c0
δ1−→ c1

δ2−→ c2 . . .
δn−→ cn such that

c0 is the initial configuration, and cn is a configuration of the form 〈ŝ, {σst}st∈St〉.
A phase of a run is a portion of the run in which the pop moves are all from

the same stack. For a positive integer k, a k-phase run is a run that is composed
of at most k phases. Formally, an M run c0

δ1−→ c1
δ2−→ c2 . . .

δn−→ cn is k-phase if
we can split the sequence δ1 . . . δn into α1 . . . αk such that: for each i = 1, . . . , k,

306 S. La Torre, P. Madhusudan, and G. Parlato

there is a stack st ∈ St such that each rule δ ∈ Δpop within αi is of the form
(s, st , a, s′). Therefore, in a k-phase run the stack from which we pop symbols is
changed at most k − 1 times (phase-switches). A state ŝ is k-phase reachable if
it is reachable on a k-phase run. The bounded phase reachability problem is the
problem of determining whether, given an MSPS M , a set of states T , and a
positive integer k, there is a state of T that is reachable on a k-phase run.

Theorem 1. [12] The bounded phase reachability problem for MSPSs is decid-
able. Moreover, the problem can be solved in time exponential in the number of
states and double exponential in the number of phases.

Decidability of Bounded Context-Switching Reachability

We start showing that context-switching reachability for QCPs is decidable.

Theorem 2. The bounded context-switching reachability problem for non-
recursive queuing concurrent programs is decidable. Moreover, the problem can
be solved in time double exponential in the number of context-switches, and ex-
ponential in the size of the program.

Proof. We reduce the reachability problem up to k context switches for QCPs
to the reachability problem up to 2k + 1 phases for MSPSs. Fix a QCP A over
an architecture (P, Q, Sender , Receiver) and let S be the set of states of A. We
construct an MSPS M which simulates A by keeping track of the state of A in
its control state, and stores the contents of each queue q in a stack stq, and has
an additional work stack st .

Let us denote a context with (p̂, q̂), where p̂ is the active process dequeuing
from q in the context. Fix a run of A and let (p̂, q̂) be the context at a particular
point in the run. M is defined such that the following invariant is preserved: the
content of any queue q �= q̂ is stored in stq with the rear at the top, stack st q̂ is
empty and the content of queue q̂ is stored in st with the front at the top.

An internal move of A is simulated by an internal move of M ; sending a
message m to a queue q �= q̂ corresponds to push m onto stack stq; receiving a
message m from q̂ corresponds to pop m from the work stack st . Consequently,
in one context, there are no phase switches in the simulating machine M . On
switching context from (p̂, q̂) to (p̂′, q̂′), M moves the content of st onto stack
st q̂ and then the content of stack st q̂′ onto st . Observe that the first of these
two tasks does not cause a change of phase in the run on M since st is the stack
which is popped while simulating the context (p̂, q̂). The second task requires
popping from a new stack and thus causes a change of phase.

We can design the described MSPS M such that it has states polynomial in
|S|. Therefore, reachability in A within k context-switches reduces to reachability
within 2k + 1 phases in M (k + 1 phases are required for the k + 1 contexts and
k additional phases for context switching). The stated complexity bound thus
follows form Theorem 1. 	

Context-Bounded Analysis of Concurrent Queue Systems 307

The construction sketched in the above proof can be adapted to show the decid-
ability of bounded context-switching reachability for well-queueing RQCPs:

Theorem 3. The bounded context-switching reachability problem for well-
queueing recursive concurrent programs is decidable. Moreover, the problem can
be solved in time double exponential in the number of context-switches, and ex-
ponential in the size of the program.

Proof. Let R be a well-queueing RQCP. We will simulate R using an MSPS as
in the proof of Theorem 2. The MSPS will have one stack stq for every queue q,
and an extra work stack st, as before, but in addition it will have one stack stp
for every process p.

When the current context is (p̂, q̂), we will maintain the invariant that the
local stack of all processes p (p �= p̂) in the RQCP is stored in the reverse order
in stack stp, and the queue contents of each queue q (q �= q̂) are stored in the
stack stq as before; the stacks stp̂ and st q̂ will be empty and the stack st will
have the content of queue q̂ and on top of it the content of the local stack of p̂.
Internal moves and enqueuing operations are performed as before, and calls and
returns are performed by pushing and popping the work-stack. When process
p̂ dequeues from queue q̂, its local stack must be empty (by the well-queueing
assumption), and hence the next message to be dequeued from q will be at the
top of the stack st , and can hence be popped. When the context switches from
(p̂, q̂) to (p̂′, q̂′), we transfer the top portion of stack st onto stack st p̂ and the
bottom portion onto the stack stq̂, and then transfer the contents of stack st q̂′

to st followed by the contents of stack st p̂′ to st. This requires two extra phases
and maintains the invariant. The complexity follows from Theorem 1. 	

The Well-Queueing Assumption and the Notion of Context

Reachability for recursive queueing concurrent programs that are not well-
queueing is complex and even the simplest of architectures has an undecidable
bounded context-switching reachability problem:

p p′q
Theorem 4. The bounded context-switching reachability prob-
lem for RQCPs (which need not be well-queueing) is undecid-
able for the architecture containing two processes p and p′

with a single queue connecting p to p′. The undecidability re-
sult holds even if we restrict to runs with at most a single context switch.

Also relaxing the requirement that in each context a process can dequeue at
most from one queue immediately leads to undecidability.

Theorem 5. The bounded context-switching reachability problem for QCPs
(hence for well-queueing RQCPs) where a process can dequeue from more than
one queue in each context is undecidable. The undecidability result holds even if
we restrict to runs with just one context switch and allow processes to dequeue
from at most two queues in each context.

308 S. La Torre, P. Madhusudan, and G. Parlato

4 Unbounded Context-Switching: Decidable
Architectures

In this section, we study the class of architectures for which unbounded context-
switching reachability (or simply reachability) is decidable. Our goal is to give
exact characterizations of decidable architectures for the framework where in-
dividual processes are non-recursive, as well as the framework where individual
processes are recursive. We restrict ourselves to studying the reachability prob-
lem for programs that have no shared memory and are well-queueing. As we show
later in this section (Section 4.3), programs with shared memory and recursive
programs that are not well-queueing are undecidable even for the simplest of
architectures. We prove that for recursive well-queueing concurrent programs
with no shared memory, the class of decidable architectures is precisely the class
of directed forest architectures.For the non-recursive queueing concurrent pro-
grams with no shared memory, we show that the class of decidable architectures
is precisely the polyforest architectures (a polyforest is a set of disjoint polytrees;
a polytree is an architecture whose underlying undirected graph is a tree).

Processes with no shared memory: A recursive queueing concurrent pro-
gram (S, s0, Π, Γ, {Tp}p∈P) is said to have no shared memory if its state space
is the product of local state-spaces and each move of a process depends only on
its local state, and updates only its local state. In other words, S = Πp∈P Sp,
where Sp is a finite set of local states of process p, and there is a local transition
relation LTp (for each p ∈ P) where

LTp ⊆ (Sp × (Actp \ {p: call , p: ret}) × Sp) ∪ (Sp × {p: call} × Sp × Γ)
∪ (Sp × {p: ret} × Γ × Sp)

such that for all p ∈ P and s, s′ ∈ S:

– for every a ∈ (Actp \ {p: call , p: ret}),
(s, a, s′) ∈ Tp iff ((s[p], a, s′[p]) ∈ LTp and s′[p′] = s[p′] for every p �= p′);

– for every γ ∈ Γ , (s, p: call , s′, γ) ∈ Tp iff
((s[p], p: call , s′[p], γ) ∈ LTp and s′[p′] = s[p′] for every p �= p′);

– for every γ ∈ Γ , (s, p: ret , γ, s′) ∈ Tp iff
((s[p], p: call , γ, s′[p]) ∈ LTp and s′[p′] = s[p′] for every p �= p′).

In fact, for RQCPs with no shared memory, we can assume that the RQCP
is presented in terms of its local transition relations, and model it as a tuple
({Sp}p∈P , s0, Π, Γ, {LTp}p∈P) where s0 ∈ Πp∈P Sp. The size of an RQCP with
no shared memory will be in terms of this representation: i.e. the size of this
tuple. Note that this size is possibly exponentially smaller than the size of the
RQCP with the global transition relations. The complexity results in this section
will refer to the size of RQCPs with no shared memory measured with the local
transition relations.

Context-Bounded Analysis of Concurrent Queue Systems 309

The graph of an architecture: We will characterize decidable architectures
based on properties of the underlying graphs. The graph of an architecture
A=(P, Q, Sender , Receiver) is G=(V, E) where V =P and E is the set of labeled
edges E={(p, q, p′) | Sender(q) = p, Receiver(q) = p′, q ∈ Q, p, p′ ∈ P}.

4.1 Decidable Architectures for Recursive Programs

We now show that the only architectures that admit a decidable reachability
problem for well-queueing recursive concurrent programs (with no shared mem-
ory) are the class of directed forest architectures.

An architecture is said to be a directed tree architecture if its graph is a
rooted tree, i.e. there is a root process p0, every other process p is reachable
from p0 using directed edges, and there is no undirected cycle in the graph. An
architecture is said to be a directed forest architecture if its graph is the disjoint
union of rooted trees. The main theorem of this section is:

Theorem 6. An architecture admits a decidable reachability problem for well-
queueing RQCPs with no shared memory iff it is a directed forest architecture.
Moreover, the reachability problem is decidable in time doubly exponential in the
number of processes and singly exponential in the size of the RQCP.

The above theorem is proved using Lemma 1 and Lemma 3 below.

p1

p3p2

p5p4

q1 q2

q3 q4

The decidability result is obtained using the decidabil-
ity of bounded context-switching reachability established
in the previous section. Intuitively, given a directed tree
architecture, any execution of the processes is equivalent
to a run where the root process first runs, enqueuing mes-
sages to its children, and then its children run (one after
another) dequeuing messages from the incoming queue
and writing to their children, and so on. For example, for the directed tree ar-
chitecture shown on the right, any reachable state of the system can be reached
by a run that has 4 context switches: in the first context p1 runs enqueuing
messages on q1 and q2, then p2 runs dequeuing messages from q1 and enqueuing
messages in q3 and q4, and then in three contexts, p3, p4 and p5 run, one after
the other, dequeuing messages from their incoming queues.

Lemma 1. The reachability problem for well-queueing RQCPs with no shared
memory is decidable for all directed forest architectures, and is decidable in time
doubly exponential in the number of processes, and singly exponential in the size
of the RQCP.

Proof. On directed tree architectures, unbounded reachability reduces to bounded
context-switching reachability, where each process in the tree runs at most once,
processing messages from its only incoming queue and writing to its outgoing
queues. Directed forest architectures can be analyzed by executing its compo-
nent directed trees one after another. Note that the fact that in a tree there is
at most one incoming edge to a node is crucial; and so is the assumption that

310 S. La Torre, P. Madhusudan, and G. Parlato

there is no shared memory. Hence, given an RQCP M with no shared memory
over a directed forest architecture, we can reduce it to the problem of reachabil-
ity within n contexts (where n is the number of processes) of a new RQCP M ′

(with shared memory); furthermore, the number of states of M ′ is linearly pro-
portional to the local states of M . The lemma now follows from Theorem 3. 	

Let us now show that all other architectures are undecidable for well-queueing
RQCPs with no shared memory. First, we establish that three architectures are
undecidable:

Lemma 2. The following architectures are undecidable for all well-queueing re-
cursive concurrent programs with no shared memory:

p1

p3

p2

q1

q2

– the architecture consisting of three processes p1, p2 and
p3, with a queue from p1 to p3, and another from p2 to
p3;

p1 p2

q1

q2

– the two-process cyclic architecture consisting two processes
p1 and p2, with two queues, one from p1 to p2, and the
other from p2 to p1;

p1 p2

q1

q2

– the architecture with processes p1 and p2, with two queues
from p1 to p2.

The above lemma can be extended to show that any architecture embedding any
of the above architectures is undecidable:

Lemma 3. Any architecture that has (a) a process with two incoming queues,
or (b) a set of processes forming a cycle, or (c) has two distinct paths from one
process to another, is undecidable for well-queueing RQCPs with no shared mem-
ory. Consequently, any architecture that is not a directed forest is undecidable
for recursive well-queueing concurrent programs with no shared memory.

Lemma 1 and Lemma 3 establish Theorem 6.

4.2 Decidable Architectures for Non-recursive programs

p1

p3p2

p5

p4

q1 q2

q3

q4

We now turn to the classification of architectures that
admit a decidable reachability problem for non-recursive
queueing programs with no shared memory. A directed
graph is a polytree if it does not have any undirected
cycles, i.e. the undirected graph corresponding to it is a
tree. A polyforest is a disjoint union of polytrees. An ar-
chitecture is a polytree (or a polyforest) if its graph is a
polytree (or polyforest). We show that the class of decidable architectures for
non-recursive programs is precisely the polyforest architectures. For example,
the architecture depicted on the right is a polytree architecture, but not a di-
rected tree architecture; hence it admits decidable reachability for non-recursive
programs but not for well-queueing recursive programs.

Context-Bounded Analysis of Concurrent Queue Systems 311

Theorem 7. The class of architectures that admit a decidable reachability prob-
lem for QCPs with no shared memory are precisely the polyforest architectures.

We prove the above theorem using Lemma 7 and Lemma 9 below.
First, we can reduce the reachability problem to the reachability problem on

empty queues (where a state is deemed reachable only if it is reachable with all
queues emptied). Any QCP can be transformed so that any individual process,
for any of its outgoing queues, stops sending messages (throwing away future
messages sent on this queue) and instead sends a special symbol on the queues
signaling that this is the last message that will be received by the recipient. All
processes must receive these last messages before they reach the target states.

Lemma 4. The reachability problem for QCPs (or even RQCPs) on any archi-
tecture is polynomial time reducible to the reachability problem on empty queues
for QCPs (or RQCPs, respectively) on the same architecture.

Now, we show a crucial lemma: for non-recursive programs the direction of a
queue in an architecture does not matter for decidability. Intuitively, consider
two architectures that are exactly the same except for a queue q which connects
p1 to p2 in A1, and connects p2 to p1 in A2 instead. Then, reachability on empty
queues for a QCP on A1 can be transformed to reachability on empty queues
for a corresponding program over A2 by letting p1 receive in A2 the messages
from p2 which it would have instead sent to p2 in A1: the program at p1 simply
dequeues from q whenever the original program at p1 enqueued onto q; similarly
process p2 enqueues onto q whenever the original program at p2 dequeued q.2

Lemma 5. Let A1 and A2 be two architectures whose underlying undirected
graphs are isomorphic. Then, reachability on empty queues for QCPs with no
shared memory on A1 can be effectively (and in polynomial time) reduced to
reachability on empty queues for QCPs with no shared memory on A2.

We now show that reachability on all directed-forest architectures is decidable,
which, combined with the above lemmas will show that all polyforest archi-
tectures are decidable. While this already follows from our result for recursive
programs on directed forest architectures, we can give a much simpler proof for
non-recursive architectures. Essentially, a QCP with no shared memory on a
directed tree architecture can be simulated by a finite-state process that keeps
track of the global state of each process and synchronizes processes on send-
ing/receiving messages. Since a process lower in a tree can never enable or disable
a transition in a process higher in the tree, and since there is no shared memory,
we can argue that this finite-state process will discover all reachable states. The
argument easily extends to directed forest architectures, and it easy to see that
it results in a PSPACE decision procedure. The problem is PSPACE-hard as
even reachability of synchronizing finite-state machines is PSPACE-hard [6].

2 The reader may wonder why this transformation cannot work recursive programs; it
does indeed work. However, it may make a well-queueing program non well-queueing!

312 S. La Torre, P. Madhusudan, and G. Parlato

Lemma 6. The reachability problem for QCPs with no shared memory over
directed forest architectures is PSPACE-complete.

Combining the above with Lemmas 4 and 5, we establish the upper bounds:

Lemma 7. The reachability problem for QCPs with no shared memory over
polyforest architectures is decidable and is PSPACE-complete.

Let us now show that all but the polyforest architectures are undecidable.

p1 p2

q1

q2

Lemma 8. The reachability problem for QCPs with no shared
memory over the architecture consisting of two processes, p1
and p2, with one queue from p1 to p2, and the other from p2
to p1, is undecidable.

The above proof can be extended to show that any architecture with a directed
cycle is undecidable. Combining this with Lemmas 4 and 5 we get that all ar-
chitectures whose graphs have an undirected cycle are undecidable.

Lemma 9. The reachability problem for QCPs with no shared memory over any
architecture that is not a polyforest architecture is undecidable.

4.3 The Well-Queueing Assumption and Absence of Shared
Memory

This section has dealt with well-queueing processes communicating with each
other through unbounded queues and without any shared memory. Reachabil-
ity in shared-memory concurrent queue systems is more complex and even the
simplest of architectures is undecidable:

p p′q

Theorem 8. The reachability problem for QCPs (and hence
well-queueing RQCPs) is undecidable for the architecture con-
taining two processes p and p′ with a single queue connecting
p to p′ (depicted on the right). For well-queueing RQCPs, the
undecidability result holds even if there are two processes and no queues.

Similarly, recursive queueing concurrent programs that are not well-queueing are
complex too and even the simplest of architectures is undecidable:

Theorem 9. The reachability problem for RQCPs with no shared memory
(which need not be well-queueing) is undecidable for the architecture contain-
ing two processes p and p′ with a single queue connecting p to p′.

Consequently, the classification of decidable architectures is interesting only un-
der the assumptions of no shared memory and well-queueing.

Context-Bounded Analysis of Concurrent Queue Systems 313

5 Conclusions

We have shown that bounded context-switching reachability is decidable for
queueing non-recursive programs and well-queueing recursive programs. Using
this result, we have precisely characterized the architectures that admit a de-
cidable reachability problem for both recursive and non-recursive programs.
Our contribution is theoretical, but addresses an important problem involving
a model that can capture both asynchronous programs as well as distributed
communicating processes.

The most important future direction we see is in designing approximate anal-
ysis for queue systems based on the theory we have presented that will work
well on domain-specific applications. Two recent papers give us hope: in [18],
the authors addressed the reachability problem for asynchronous programs com-
municating via unbounded bags of messages using counter systems, and a year
later, a convergent under- and over-approximation of counter contents led to a
practical implementation of dataflow analysis for asynchronous programs [11].
A similar scheme for queue systems would be interesting and useful.

References

1. Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. In: LICS,
pp. 160–170. IEEE Computer Society, Los Alamitos (1993)

2. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

3. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

4. Cécé, G., Finkel, A.: Programs with quasi-stable channels are effectively recogniz-
able (extended abstract). In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp.
304–315. Springer, Heidelberg (1997)

5. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR.
LNCS, vol. 4703, Springer, Heidelberg (2007)

6. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. Theor.
Comput. Sci. 147(1-2), 117–136 (1995)

7. Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D.E.: The
Nesc language: A holistic approach to networked embedded systems. In: PLDI, pp.
1–11. ACM Press, New York (2003)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

9. Ibarra, O.H.: Verification in queue-connected multicounter machines. Int. J. Found.
Comput. Sci. 13(1), 115–127 (2002)

10. Ibarra, O.H., Dang, Z., San Pietro, P.: Verification in loosely synchronous queue-
connected discrete timed automata. Theor. Comput. Sci. 290(3), 1713–1735 (2003)

11. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL, pp. 339–350. ACM Press, New York (2007)

314 S. La Torre, P. Madhusudan, and G. Parlato

12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society Press, Los Alamitos
(2007)

13. Libasync, http://pdos.csail.mit.edu/6.824-2004/async/.
14. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of

multithreaded programs. In: PLDI, pp. 446–455. ACM, New York (2007)
15. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state

machines. Acta Inf. 29(6/7), 499–522 (1992)
16. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

17. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI, pp. 14–24. ACM,
New York (2004)

18. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

19. Zeldovich, N., Yip, A., Dabek, F., Morris, R., Mazières, D., Kaashoek, M.F.: Mul-
tiprocessor support for event-driven programs. In: USENIX (2003)

http://pdos.csail.mit.edu/6.824-2004/async/

On Verifying Fault Tolerance of Distributed Protocols

Dana Fisman1,2, Orna Kupferman1, and Yoad Lustig1

1 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel
2 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel

{danafi,orna,yoadl}@cs.huji.ac.il

Abstract. Distributed systems are composed of processes connected in some
network. Distributed systems may suffer from faults: processes may stop, be in-
terrupted, or be maliciously attacked. Fault-tolerant protocols are designed to be
resistant to faults. Proving the resistance of protocols to faults is a very challeng-
ing problem, as it combines the parameterized setting that distributed systems
are based-on, with the need to consider a hostile environment that produces the
faults. Considering all the possible fault scenarios for a protocol is very difficult.
Thus, reasoning about fault-tolerance protocols utterly needs formal methods.

In this paper we describe a framework for verifying the fault tolerance of (syn-
chronous or asynchronous) distributed protocols. In addition to the description of
the protocol and the desired behavior, the user provides the fault type (e.g., fail-
stop, Byzantine) and its distribution (e.g., at most half of the processes are faulty).
Our framework is based on augmenting the description of the configurations of
the system by a mask describing which processes are faulty. We focus on reg-
ular model checking and show how it is possible to compile the input for the
model-checking problem to one that takes the faults and their distribution into an
account, and perform regular model-checking on the compiled input. We demon-
strate the effectiveness of our framework and argue for its generality.

1 Introduction

Distributed systems are composed of processes connected in some network [25,30].
In a typical setting, the processes are isomorphic, in the sense that they execute the
same protocol up to renaming. Thus, the systems are parameterized by the number of
processes, and a protocol is correct if it is correct for any number of processes.

With the implementation of distributed protocols, it has been realized that the model
of computation that basic protocols assume is often unrealistic. In reality, the processes
and the communication between them may suffer from faults: messages may be omit-
ted, processes may stop, may be interrupted, and may be maliciously attacked, causing
them not to follow their protocol. For example, in the fail-stop fault, processes may fail
before completing the execution of their code [29]. Even a simple task like broadcasting
a message from a sender process to all other processes becomes difficult in the presence
of such faults. Indeed, the sender may fail after sending the message to only a subset of
the other processes, resulting in disagreement about the content of the message among
processes that have not failed.

The realization of faults has led to the development of fault-tolerant protocols, which
are designated to be resistant to faults. For example, for the broadcasting task, a protocol

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 315–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

316 D. Fisman, O. Kupferman, and Y. Lustig

of n rounds (n is the number of processes) in which the sender broadcasts the message
in the first round and every process that has received the message for the first time in
the same round broadcasts it to all other processes in the next round, ensures that all
processes that have not failed agree on the content of the message [14].

Proving the resistance of protocols to faults is a very challenging problem, as it
combines the multi-process setting that distributed protocols are based-on, with the need
to consider a hostile environment that produces the faults. Considering all the possible
fault scenarios for a protocol is very difficult. This is reflected in the very complicated
manual proofs that new protocols are accompanied with, and in the unfortunate fact
that it is not rare that errors escape these manual proofs [12,7,19]. Thus, verification of
fault-tolerance protocols utterly needs formal methods.

Current applications of model checking to reasoning about fault-tolerant distributed
protocols are very elementary [5]. For example, [27] reports an error in the Byzantine
self-stabilizing protocol of [13]. The error has been detected using the model checker
SMV for the case n = 4. Likewise, a corrected version of the protocol has been proven
correct in SMV for the case n = 4 [26]. While these works clearly demonstrate the
necessity and effectiveness of model checking, there is no general methodology for
reasoning about fault-tolerant protocols. Moreover, these works ignore the unbounded
state-space that the parameterized setting involves; proving that a protocol is correct for
the case n = 4 does not guarantee the protocol is correct for any number of processes.
Thus, formal reasoning about distributed protocols, which is so utterly needed, requires
the development and application of parameterized verification methods.

The parameterized setting is, in general, undecidable [4]. There has been extensive
research in the last decade on finding settings for which the problem is decidable (c.f.,
[17]) and on developing methods that are sound but incomplete. Efforts in this direction
include induction, network invariants, abstraction, and more [18,24,20].

A direction that has received a lot of attention is that of regular model checking
[23,3]. In regular model checking, we describe configurations of the system as well as
transitions between configurations by regular languages. In more details, in a regular
description of a protocol, letters in the alphabet Σ describe states of the underlying pro-
cesses, and a configuration of the system corresponds to a word in Σ∗. The protocol is
then given by a regular language I ⊆ Σ∗ describing the possible initial configurations,
and a regular language R ⊆ (Σ × Σ)∗ describing the transition relation (a letter [σ, σ′]
describes the current (σ) and next (σ′) state of a certain process). For example, if each
process may either have a token or not have it, then a letter in Σ = {N, T } describes
a state of each process, I = T · N∗ describes a set of configurations in which only the
leftmost process has the token, and R = ([T, T] + [N, N] + [T, N] · [N, T])∗ describes
a set of transitions in which processes either maintain their state or participate in a pass
of a token from a process to its right. In this example all processes make a step simulta-
neously, thus they represent a synchronous distributed systems. However, we can also
represent asynchronous systems using a regular description by coding a transition in
which only one process can make a step at each time unit. It is sometimes more conve-
nient to describe the protocol in a monadic second order logic over finite words (FMSO)
[23], which is as expressive as regular expressions [11,16]. Then, a formula over Σ

On Verifying Fault Tolerance of Distributed Protocols 317

describes the initial configurations, and a formula over Σ ∪Σ′ describes the transitions,
with Σ′ referring to the letters in the successor state.

A weakness of regular model checking is that not all protocols have a regular descrip-
tion. Moreover, even when a regular description exists, reasoning about it may diverge.
The good news is that many interesting protocols do have a regular description. Also,
various acceleration, abstraction, and symmetry-reduction techniques are successfully
combined with regular model checking and lead the model-checking algorithm into
termination [10,1,28,9,8]. Regular model checking has successfully been applied for
the verification of a variety of protocols, including ones involving systems with queues,
counters, and dynamic linked data structures [10,1]. In particular, termination of regular
model checking is guaranteed for systems in which the set of reachable configurations
is regular [22].

In this paper we suggest a methodology for reasoning about the fault tolerance of
(synchronous or asynchronous) distributed protocols.1 In addition to the description of
the protocol, the user provides the following parameters:

1. Fault type: The user can specify the type of faults with which he wishes to chal-
lenge the protocol. We support faults like fail-stop (processes halt before completing
the execution of the code), Byzantine (processes do not follow their code, and we also
allow variants of Byzantine faults, like omission and timing faults), and transient (the
state of the faulty processes is perturbed for a finite duration) faults. The methodology
is compositional in the sense that the faults can be combined. For example, the user can
check self-stabilization (resistance to transient faults) of a protocol in the presence of
Byzantine faults.

2. Fault distribution: The user can specify the distribution of the faulty processes.
The distribution is specified as a bound on the number of the sound/faulty processes, or
on their ratio (e.g., a strict minority of the processes are faulty).2 In fact, as explained
shortly, we support all fault distributions that can be specified by a context-free language
(CFG).

3. Desired behavior: The user specifies the desired property in LTL(FMSO) — an
extension of LTL in which the propositional layer is replaced by a second-order layer
describing the unbounded configurations [2]. We show how, using LTL(FMSO), the user
can specify both properties of the global setting (e.g., all processes eventually agree on
the content of the message) or properties that refer to the underlying processes (e.g.,
every sound process that tries to enter the critical section, eventually enters it).

Our methodology is based on augmenting the description of the configurations of the
system by a mask describing which processes are faulty. We describe our methodology
in the framework of regular model checking. Technically, we replace the alphabet Σ

1 A different approach to reasoning about fault-tolerant systems is taken in [6]. There, following
the classification of faults in [5], faults are modeled by transitions that perturb the state of
the system. The problem studied in [6] is that of closed-system synthesis. Thus, this work is
orthogonal to ours and, in particular, it does not address the parametric setting.

2 Proving the correctness of a system, one is typically interested in an upper bound on the faulty
processes and/or a lower bound on the sound processes. Refuting the correctness of a system,
one is typically interested in an upper bound on the sound processes and/or a lower bound on
the faulty processes.

318 D. Fisman, O. Kupferman, and Y. Lustig

by the alphabet Σ × {S, F}, in which each letter describes not only the state of the
corresponding process but also whether it is sound (S) or faulty (F). We then compile
the languages I ⊆ Σ∗ of the initial configurations into a language I ′ ⊆ (Σ × {S, F})∗,
and compile the language R ⊆ (Σ × Σ)∗ of transitions into a language R′ ⊆ ((Σ ×
{S, F}) × (Σ × {S, F}))∗. The type of the fault is reflected in the way faulty processes
behave in I ′ and R′. The compilation is automatic and is done on top of the FMSO

description of the underlying process. We can determine the distribution of the faults
by restricting I ′ to configurations whose projection on {S, F} belongs to a language that
describes the desired distribution. Here, we may use either a regular language (say, for
bounding the number of faulty processes by a constant) or a context-free language (say,
for bounding the ratio of the faulty processes).3

We demonstrate the application of our methodology in a toy example of a token-ring-
based mutual-exclusion protocol. Application of our methodology to a real example
of the reliable broadcasting protocol of [14] can be found in the full version of the
paper.

2 Preliminaries

2.1 Regular Description of a Protocol

A regular description of a protocol is a tuple P = 〈Σ, I, R〉, where Σ is an alphabet,
each letter of which describes a possible state of one process. Intuitively, each configu-
ration of a system composed of processes that follow the protocol P is a word w ∈ Σ∗.
The length of w is the number of underlying processes, with the first letter describ-
ing the state of the first process, the second letter describing the state of the second
process, and so on. Accordingly, I ⊆ Σ∗ is a regular language describing the initial
configuration of the system for any number of processes, and R ⊆ (Σ × Σ)∗ is a
regular language describing its transition relation. Given two words over Σ of same
length, say w = σ1 · σ2 · · · σn and w′ = σ′1 · σ′2 · · ·σ′n, we use [w, w′] ∈ R to ab-
breviate [σ1, σ

′
1] · [σ2, σ

′
2] · · · [σn, σ′n] ∈ R. A computation of the system is a sequence

w0, w1, w2, . . . of words over Σ such that w0 ∈ I , and for every i ≥ 0, we have
[wi, wi+1] ∈ R.

For a regular language L ⊆ Σ∗, let preR(L) = {w : ∃w′ ∈ L such that [w, w′] ∈
R} and postR(L) = {w : ∃w′ ∈ L such that [w′, w] ∈ R} be the pre- and post-images
of L, respectively. We use pre∗R and post∗R to denote the transitive closure of preR and
postR, respectively. Thus, if L describes a set of configurations, then pre∗R(L) is the set
of configurations that can reach a configuration in L, and dually for post∗R(L).

Example 1. Consider the Token-Ring protocol described below. Each process has a
boolean variable token is mine indicating whether it holds the token. The process
may be in one of the three locations �0, �1, and �2. Location �2 is a critical section.

3 The restriction of I ′ can be done after the fixed-point computation that model checking in-
volves is completed. This enables us to proceed with both forward and backward model check-
ing. This is also why we do not sacrifice decidability in the richer context-free setting.

On Verifying Fault Tolerance of Distributed Protocols 319

A process that enters �2 ex-
its it (and returns to �0) in
the next transition. Location
�1 is a trying section. A pro-
cess in �1 waits for the to-
ken, and once it has it, it
moves to the critical section
in the next transition. Loca-
tion �0 is the non-

Protocol 1. Token-Ring
boolean token is mine
repeat

�0 : if token is mine then
pass token to right();

goto {�0, �1};
�1 : await token is mine;
�2 : critical;

until forever ;

critical section. A process in �0 may either stay in �0 or proceed to �1. In addition, if the
process has the token, it passes it to the process to its right.

We now present a regular description of the token-ring protocol. Let Σloc = {�0, �1,
�2} and Σtok = {N, T }. A state of a process is a letter in Σ = Σloc ×Σtok , describing
both the location of the process and the value of token is mine. For example, the letter
〈�2, T 〉 indicates a process in location �2 that has the token. For simplicity, we use the
letters 0T, 1T, 2T, 0N, 1N , and 2N to describe the letters in Σ.

The initial configuration of a system in which all processes are in location �0 and the
token is owned by one4 process is given by 0T · 0N∗. In order to describe the transi-
tion relation, we distinguish between three types of actions a process may be involved
at during a transition. Each action corresponds to a letter [σ, σ′] ∈ Σ × Σ, where σ
describes the current state of the process and σ′ describes the next state.

• The process does not pass or receive the token. These actions correspond to the
letters SN = {[0N, 0N], [0N, 1N], [1N, 1N], [2N, 0N], [1T, 2T], [2T, 0T]}.

• The process has the token in location �0, in which case it passes it to the right.
These actions correspond to the letters SP = {[0T, 0N], [0T , 1N]}.

• The process does not have the token and receives it from the left. These actions
correspond to the letters SR = {[0N, 0T], [0N, 1T], [1N, 1T], [2N, 0T]}.

The transition function R then allows all processes to proceed with actions in SN and
allows adjacent processes to proceed with SP (the left process) and SR (the right process)
simultaneously. Accordingly,5 R = (SN + SP · SR)∗ + (SR · (SN + SP · SR)∗ · SP).

Note that R indeed reflects the protocol. In particular, the transition function is de-
fined also for processes that are in the critical section without the token, and for config-
urations in which there is more than a single token. Indeed, for different initial config-
urations, such transitions may be taken.6

4 Since we use words to model a ring architecture, we arbitrarily set the token owner to be
the leftmost process. Nevertheless, the transitions are defined so that the so called rightmost
process has this leftmost process as its neighbor to the right.

5 The second term corresponds to the rightmost process closing the ring.
6 We note that the common description of token-passing protocols in the regular model-checking

literature allows only a single pass to take place in a transition. In a transition in our model,
all processes proceed together and any number of tokens may be passed simultaneously (yet a
process cannot receive and pass a token at the same transition).

320 D. Fisman, O. Kupferman, and Y. Lustig

2.2 FMSO and LTL(FMSO)

In Section 2.1, we used regular expressions in order to specify configurations of the dis-
tributed system. In this section we present finitary monadic second order logic (FMSO)
[11,16,31] – an alternative formalism for specifying regular languages. Describing con-
figurations of a parameterized system by a monadic second order logic is suggested in
[23], where the logic used is FS1S. A similar direction was taken in [2], where LTL is
augmented with MSO. We choose to work with FMSO, which unifies both approaches.

FMSO formulas are interpreted over finite words over Σ. Formulas are defined with
respect to a set F of first-order variables ranging over positions in the word, and a set S

of second-order variables ranging over sets of positions in the word. Let us emphasize to
readers who are familiar with temporal logic that the variables in F and S do not point to
points in time (or sets of such points) — an FMSO formula describes a configuration of
the system at a single time point, and the variables in F and S point to positions (or sets
of positions) in the configuration, namely to identity of processes in the parameterized
system.

In our application, the alphabet Σ describes a state of a process, and a word of length
n describes a configuration consisting of n processes. Typically, Σ = Σ1 × · · · × Σk

is the product of underlying alphabets, each describing a propositional aspect of a state
of a process. For example, in Example 1, we had Σ = Σloc × Σtok . We refer to the
set {Σ1, . . . , Σk} as the signature of Σ and refer to the set Σ1 ∪ · · · ∪ Σk as the set of
underlying letters. An advantage of FMSO is that it enables convenient reference to the
underlying letters. Given a word in Σ∗, a position term p ∈ F points to a letter in Σ,
and preceding it by an underlying alphabet points to an underlying letter. For example,
the letter term Σtok [p] is evaluated to the status of the token of the process in position
p. Thus, if p is evaluated to 3, then the letter term Σtok [p], when interpreted over the
word 〈�0, T 〉, 〈�0, N〉, 〈�0, N〉, 〈�0, N〉, is evaluated to N – the projection on {N, T } of
the third letter. We now describe the syntax and the semantics of FMSO formally.

Syntax. Let F, S be sets of variables as above, and let Σ = Σ1 ×· · ·×Σk. Terms and
formulas of FMSO are defined inductively as follows.

– A position (first order) term is of the form 0, i, p ⊕ 1, or p
 1, for i ∈ F and a
position term p.

– A letter term is of the form τ or x[p], for τ ∈ Σ1 ∪ · · · ∪ Σk, a position term p, and
x an underlying alphabet in {Σ1, . . . , Σk}.

– A formula is of the form a1 = a2, p1 ≤ p2, I1 ⊆ I2, p∈I, ¬ϕ, ϕ∨ψ, ∃iϕ, or ∃Iϕ,
for letter terms a1 and a2, position terms p, p1 and p2, formulas ϕ and ψ, i ∈ F,
and I1, I2, I ∈ S.

Writing formulas, we use the standard abbreviations =, <, =, ∧, →, and ∀. In addition,
we use Σ[p] = 〈σ1, . . . , σk〉 as an abbreviation for Σ1[p] = σ1 ∧ . . . ∧ Σk[p] = σk . An
FMSO formula is closed if all the occurrences of variables in F and S are in a scope of
a quantifier.

Semantics. For an integer n ∈ N, let Zn denote the set {0, 1, . . . , n − 1}. We define
the semantics of an FMSO formula with respect to a tuple I = 〈n, IF , IS , IΣ〉, where
n ∈ N is the length of the word that I models, IF : F → Zn assigns the first-order

On Verifying Fault Tolerance of Distributed Protocols 321

variables with locations in Zn, IS : S → 2Zn assigns the second-order variable with
subsets of Zn, and IΣ : Zn → Σ is the word that I models. Given a letter σ ∈ Σ and
an underlying alphabet x ∈ {Σ1, . . . , Σk}, we denote the projection of σ on x by σ|x.

Position terms are evaluated with respect to n and IF as follows: [[0]] = 0, [[i]] =
IF (i), [[p ⊕ 1]] = ([[p]] + 1) mod n, and [[p
 1]] = ([[p]] − 1) mod n. Letter terms are
evaluated with respect to IΣ as follows: [[τ]] = τ and [[x[p]]] = IΣ(p)|x. Satisfaction of
formulas is defined as follows:

I |= a1 = a2 iff [[a1]] = [[a2]] I |= ¬ϕ iff I |=/ ϕ
I |= p1 ≤ p2 iff [[p1]] ≤ [[p2]] I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ
I |= I1 ⊆ I2 iff IS(I1) ⊆ IS(I2) I |= ∃iϕ iff ∃m ∈ Zn s.t. I[i �→ m] |= ϕ
I |= p1 ∈ I iff [[p1]] ∈ IS(I) I |= ∃Iϕ iff ∃S ⊆ Zn s.t. I[I �→ S] |= ϕ,

where I[i �→ m] is obtained from I by letting IF (i) be m, and similarly for I[I �→ S].

LTL(FMSO). The logic LTL is traditionally defined over computations in which each
point in time can be characterized by a propositional formula. In the parameterized
setting, each point in time is an unbounded configuration, and can be characterized by an
FMSO formula. The logic LTL(FMSO) is an extension of LTL in which the propositional
layer is replaced by FMSO. Thus, the FMSO formulas are used to describe a configuration
of the computation at a given instance of time, and the LTL operators are used to reason
about the on-going behavior of the system. The internal FMSO formulas may contain
a free variable whose quantification is external to the temporal operators. A regular
model-checking procedure for LTL(FMSO) is described in [2]. The syntax and semantics
of LTL(FMSO) are given in the full version of the paper. Here, we give some examples.

Example 2. Consider the token-ring protocol given in Example 1. We use LTL(FMSO)
in order to specify its desired properties:

– Mutual exclusion (there is always at most one process in the critical section):
�(∀i, j : (i = j) → ¬(Σloc [i] = �2 ∧ Σloc[j] = �2)).

– Non-starvation (whenever a process tries to enter the critical section, it eventually
does): �∀i : (Σloc[i] = �1 → �(Σloc[i] = �2)).

2.3 An FMSO-Based Description of a Protocol

In this section we explain how FMSO can be used to define protocols and the param-
eterized system they induce. A similar description appears in [23].7 There, however,
formulas describe the parameterized system whereas here formulas describe an under-
lying process parameterized by its identity. An FMSO description of the parameterized
system is then automatically derived from the description of its underlying process. The
ability to describe a single process is fundamental to our method since the input to our
application carries information on how a fault affects a single process rather than how it
affects the parameterized system (In Remark 5, we elaborate on the significance of this
ability further).

A protocol parameterized by i ∈ F is a tuple P [i] := 〈Σ, Θ[i], Δ[i]〉, where Σ =
Σ1 × · · ·× Σk is the alphabet, Θ[i] is an FMSO formula that specifies the initial state of

7 The monadic second order used in [23] is FS1S (rather than FMSO).

322 D. Fisman, O. Kupferman, and Y. Lustig

the process i, and Δ[i] is an FMSO formula over Σ ∪ Σ′ where Σ′ is a primed version
of the alphabet Σ. The formula Δ[i] relates the current configuration (over the alphabet
Σ) with the successor configuration (over the alphabet Σ′). The only free variable in
the formulas Θ[i] and Δ[i] is i. Note that the formulas may refer to the current as well
as the successor state of other processes, but this reference is either relativized by i (say,
to i ⊕ 1) or is universal or existential.8

The parameterized system induced by P [i] is given by P = 〈Σ, Θ, Δ〉, where the
initial configuration is Θ = ∀iΘ[i], and the transition relation is Δ = ∀iΔ[i]. Thus,
as expected, each process starts in an initial state, and in each point in time, all pro-
cesses simultaneously proceed according to the protocol. Note that, as in the regular
description of a protocol, this does not prevent us from describing asynchronous sys-
tems. Asynchronous systems can be modeled by adding to Δ[i] a disjunct of the form
Σ[i]=Σ′[i] that allows a process to remain in its state.

Example 3. Consider the Token-Ring protocol discussed in Example 1. We can provide
an FMSO description of the protocol P [i] := 〈Σ, Θ[i], Δ[i]〉 as follows. The alphabet
is Σ = Σloc × Σtok. The initial state stipulates that the control location is �0 and the
token is owned by the process iff its identity is 1. Thus Θ[i] := (Σloc [i]=�0) ∧ ((i=
1 ∧ Σtok[i]=T) ∨ (i =1 ∧ Σtok[i]=N)). Following the regular description given in
Example 1, we define three transitions δN [i], δP [i], and δR[i], where δN [i] corresponds
to the case where the process does not pass or receive the token, δP [i] corresponds to
the case where the process passes the token and δR[i] corresponds to the case where the
process receives the token. Since a token may pass from a process to its right neighbor,
the overall transition relation is then Δ[i] := δN [i] ∨ (δP [i] ∧ δR[i ⊕ 1])∨ (δR[i]∧
δP [i
 1]).

The transitions δN [i], δP [i], and δR[i] are defined as follows:

– δN [i] := (Σtok[i]=Σ′tok[i])∧(Σloc [i]=�0 → (Σ′loc [i]=�0 ∨Σ′loc [i]=�1))∧(Σ[i]=
〈�1, N〉 → Σ′[i]=〈�1, N〉) ∧ (Σ[i]=〈�1, T 〉 → Σ′[i]=〈�2, T 〉) ∧ (Σloc[i]=�2 →
Σ′loc[i]=�0).

– δP [i] := (Σtok[i]=T ∧ Σ′tok[i]=N) ∧ (Σloc[i]=�0 ∧ (Σ′loc [i]=�0 ∨ Σ′loc[i]=�1)).

– δR[i] := (Σtok[i]=N ∧ Σ′tok[i]=T) ∧ (Σloc[i]=�0 → (Σ′loc[i]=�0 ∨ Σ′loc[i]=
�1)) ∧ (Σloc[i]=�1 → Σ′loc[i]=�1) ∧ (Σloc [i]=�2 → Σ′loc[i]=�0).

3 Verifying Resistance to Faults

In this section we describe our methodology for verifying the resistance of distributed
protocols to faults. The idea behind our methodology is as follows.

• Recall that each process is defined with respect to a set of underlying alphabets. We
add to this set the underlying alphabet Σf = {S, F}. Doing so, each process i may
be either sound (Σf [i] = S) or faulty (Σf [i] = F).

8 The ability of process i to refer to other processes may seem to give it a power to force another
process into doing something. However, in the induced parameterized system all processes
take a transition simultaneously. Thus, there should be an agreement between what the other
process does and what process i stipulates it does.

On Verifying Fault Tolerance of Distributed Protocols 323

• Given a protocol P [i] parameterized by i ∈ F, we automatically modify P [i] to
include also transitions that correspond to a faulty behavior. The modification de-
pends on the type of fault, and is described in Section 3.2. A process follows the new
transitions iff it is faulty. Transitions may not change the classification to faulty and
sound.9

• Given the modified protocol, we (automatically, see Section 2.3) generate from it a
parameterized system. Note that each of the processes in the parameterized system
may be either faulty or sound, and that this classification is indicated in Σf . By
translating the FMSO formulas to regular expressions, we obtain a regular description
P̃ = 〈Σ×Σf , I, R〉 of the system. For some types of faults, we need to exclude from
P̃ computations that do not satisfy some fairness conditions. Rather than augmenting
P̃ with a fairness constraint, we associate with it an LTL(FMSO) formula ψfair that
we later use as an assumption in the specification.10

• Given a fault distribution in terms of an upper/lower bound on the faulty/sound
processes or an upper/lower bound on the ratio between the faulty and sound pro-
cesses, we translate it into a CFG language D ⊆ Σ∗f . A configuration of P̃ agrees
with the fault distribution if its projection on Σf is in D. The translation is auto-
matic (see Section 3.3). The user may also describe D directly. For a language L ⊆
(Σ × Σf)∗ and a language D ⊆ Σ∗f , let agree(L, D) denote the subset of L whose
projection on Σf agrees with D. Formally, [σ1, σ

′
1] · · · [σn, σ′n] ∈ agree(L, D) iff

[σ1, σ
′
1] · · · [σn, σ′n] ∈ L and σ′1 · · · σ′n ∈ D.

• It is left to check P̃ with fault distribution D with respect to the desired LTL(FMSO)
property ψ. We proceed with the regular model-checking algorithm of [2], applied
to ψfair → ψ. Whenever a computation of the algorithm refers to the language I of
initial configurations, we refer instead to agree(I, D). It is possible to restrict I to con-
figurations that agree with D at various steps in the model-checking procedure. Also,
restricting I can be replaced by restricting fixed-points calculated during the compu-
tation. As detailed in Section 3.4, this flexibility has helpful practical implication.

Remark 1. While the methodology is presented for the general parametric setting, its
idea can be applied also for a bounded finite number of processes. In particular, it is
easy to adapt existing BDD based model checkers to apply for this case. Needless to
say, some simple technical updates must be made, such as replacing FMSO with the
model-checker language, and providing the fault distribution in a way suitable for BDD.
Note also that when the number of processes is bounded but big, the parametric setting
may still be advantageous.

We now provide the details of our methodology, starting by reviewing types of faults.

3.1 Types of Faults

The theory of fault-tolerant distributed systems studies a large variety of types of faults.
We consider here the most common types. As we explain in Section 3.2, our method is
versatile and one should be able to apply it to more types.

9 As we show in Section 3.2 this does not prohibit us from modeling fail-stop and transient
failures.

10 One could also consider protocols with fairness constraints [28]. We found the description via
LTL(FMSO) simpler.

324 D. Fisman, O. Kupferman, and Y. Lustig

• Fail-stop. A process that suffers from a fail-stop failure halts before the termination of
its protocol. Such a process has a well-defined failure-mode operating characteristics,
and indeed the idea behind fail-stop faults is to minimize the effect of failures – the
faulty process halts in response to a failure, and it often does so in a detectable manner
and before the effect of the failure becomes visible [29].

• Byzantine. In general, a Byzantine process is not committed to the protocol. Thus, it
can take arbitrary transitions, changing its state and the values of variables it shares. The
fact the process is Byzantine is undetectable. Byzantine faults are the most general type
of faults and model a wide variety of problems ranging from hardware failures (causing
unexpected system behavior) to malicious attack of hackers on the system. One often
consider variants of Byzantine faults, like timing faults (the process does follow the
protocol, but there are arbitrary delays between the execution of successive statements)
and omission faults (the messages sent by and/or to the process do not get to their
destination. The process might or might not be aware of the fact that the transmission
went wrong).

• Transient. A transient fault occurs when a process suffers from a temporal failure,
say part of its memory is corrupted. Technically, transient faults are similar to Byzantine
faults, only that the duration of the Byzantine behavior is bounded. In addition, the fault
may be restricted to specific elements of the process (memory, clock, etc.). Protocols
that tolerant transient faults are often termed self-stabilizing, as they recover from faults
in the prefix of the computation.

3.2 Generating the Faulty Protocol

Let P [i] := 〈Σ, Θ[i], Δ[i]〉 be a protocol parameterized by position variable i. For each
type of fault discussed in section 3.1, we show how to construct a process P̃ [i] :=
〈Σ̃, Θ̃[i], Δ̃[i]〉 in which the process may be either sound or faulty. In the latter case, the
process may exhibit a faulty behavior of the corresponding type.

For all types of faults, the signature of Σ̃ consists of the signature of Σ and contains,
in addition, the underlying alphabet Σf = {S, F} (and possibly more underlying alpha-
bets, according to the specific fault). Recall that the classification of processes to sound
and faulty may not change. Accordingly, for all types of faults, the transition formula
Δ̃[i] is of the form Δf [i] ∧ (Σf [i] = Σ′f [i]), where Δf [i] is a modification of Δ[i] that
depends on the specific fault. Below we describe the compilation of Δ[i] into Δf [i] for
the various faults. Also, for some faults, we also generate an LTL(FMSO) formula ψfair

that serves as a fairness condition for the faulty system. Unless we state differently,
ψfair = true, thus no fairness is required.

Fail-stop faults. Recall that Σf classifies the processes to sound and faulty. In the
fail-stop fault, the faulty processes start their execution as sound processes, but may
halt before the completion of the protocol. In order to model fail-stop faults, we add to
the signature the underlying alphabet Σt = {A, H}, which indicates whether a faulty
process is still alive (A) or has already halted (H). Sound processes and faulty, yet alive,
processes should satisfy the original initial formula, thus Θ̃[i] := (Σf [i]=S ∨ Σt[i]=
A) → Θ[i]. The transition formula Δf [i] makes sure that (1) only a faulty process

On Verifying Fault Tolerance of Distributed Protocols 325

may halt (2) once a process halts, it cannot become alive, (3) the state of a process that
halts does not change, and (4) processes that are sound or alive respect Δ[i]. Formally,
Δf [i] = [(Σt[i]=H) → (Σf [i]=F ∧Σ′t[i]=H)]∧ [(Σt[i]=H) → Σ[i]=Σ′[i]]∧ [(Σt[i]=
A) → Δ[i]].

Remark 2. Recall that fail-stop faults are detectable. Detectability can be modeled by
making Σt observable to the other processes (either by putting it in a shared memory, or
by letting the failing processes broadcast a failure notification before they halt). Thus,
the original protocol, which is likely to be designed towards fail-stop faults, already has
Σt in its signature, and the transitions in Δ[i] may refer to it.

Byzantine faults. Under a Byzantine failure, no assumption is made on the behavior
of a faulty processes. A Byzantine process may start in an arbitrary configuration (which
may or may not be valid for a sound process) and in each time unit it can transit to any
other (valid/invalid) configuration . Accordingly, in P̃ [i], the requirement to respect
Θ[i] and Δ[i] is restricted to sound processes. Formally, Θ̃[i] := (Σf [i]= S) → Θ[i]
and Δf [i] := (Σf [i]=S) → Δ[i]. In the full version of the paper we expand on timing
and omission faults.

Transient faults. A process i affected by a transient fault need not respect Θ[i] and
Δ[i]. Unlike a Byzantine fault, however, the duration of the fault is finite. Thus, at
some point, the process recovers and proceeds (from the arbitrary state it has reached
in its perturbed behavior) according to Δi. In order to model transient faults, we add
to the signature the underlying alphabet Σt = {P, R}, which indicates whether a faulty
process is still perturbing (P) or has already recovered (R). Only faulty processes may
perturb, and perturbed processes need not satisfy the initial formula.11 Thus, Θ̃[i] :=
(Σt[i]=P → Σf [i]=F) ∧ (Σf [i]=S → Σt[i]=R) ∧ (Σt[i]=R → Θ[i]). In addition,
perturbed processes need not satisfy the transition formula, and a recovered process
cannot perturb again. Thus, Δf [i] := (Σt[i] = R) → (Δ[i] ∧ Σ′t[i] = R). Finally, to
ensure that a process can perturb only during a finite prefix of the computation, we add
the assumption formula ψfair = ∀i(�� Σt[i]=R).

Remark 3. Transient faults are often associated with specific components of the pro-
cess. For example, it may be known that certain areas in the memory of the protocol
may be temporarily corrupted. Accordingly, rather than letting the affected processes
ignore Θ[i] and Δ[i], we let them satisfy the projection of Θ[i] and Δ[i] on the under-
lying alphabets in the signature that have not been affected.

Remark 4. An approach that is taken in the distributed-algorithm community is to rea-
son about the self-stabilization of a protocol by reasoning about the protocol when
starting from an arbitrary initial configuration (or, per Remark 3, from a set of allowed
initial configurations that extends the original set). Such a reasoning can be easily done
in our model by leaving P [i] as is, except for Θ[i].

11 We could give up Σt and model a recovery by modifying the F indication in Σf to S. The
reason we do use Σt is practical: as we explain in Section 3.4, by keeping F and S fixed, we
can sample the fault distribution at any time in the computation, which enables us to proceed
with both forward and backward model checking.

326 D. Fisman, O. Kupferman, and Y. Lustig

Remark 5. It is easy to see that the computation of faulty processes need not respect the
original protocol. Note, however, that sound processes may also follow computations
that were not possible for them in the original protocol although they are obeying the
protocol. For example, if the transition of process i is of the form α∨(Σ[i⊕1]=σ∧α′),
for some formulas α and α′, and process i + 1, when respecting the protocol, never
satisfies Σ[i⊕1]=σ, then process i always proceeds with α. In a faulty system, however,
process i + 1 may satisfy Σ[i ⊕ 1]=σ, letting process i, which is sound, to proceed
with either α or α′. By compiling P [i] rather than the parameterized system P we
make sure that such scenarios do not escape the resulting faulty parameterized system.
Another reason to compile underlying processes is practical: one of the heuristics that
are applied to regular-model checking is symmetry reduction. Keeping the protocol of
all (either sound or faulty) processes identical, reasoning about the compiled system
can apply these reductions.

3.3 Handling Fault Distributions

The specification of fault-tolerance includes assumptions about the distribution of faults
(e.g., a strict minority of the processes are faulty). We model a fault distribution by a
language over {S, F}. To ease the work of the specification engineer, we suggest a sim-
ple and readable formalism in which common distributions can be specified. Formally,
a distribution bound is a word γ ∈ {U, L} × {S, F} × (N ∪ (N × N)). The first letter
indicates whether γ imposes an upper (U) or lower (L) bound, the second letter indi-
cates whether the bound refers to the sound or faulty processes, and the third indicates
whether it is a constant bound k ∈ N or a ratio bound k1

k2
, for k1, k2 ∈ N. For example,

γ = 〈U, F, k〉 (resp. 〈L, S, k〉) checks tolerance for a parameterized system with at most
k faulty (at least k sound) processes, and γ = 〈U, F, k1, k2〉 checks tolerance for a pa-
rameterized system in which at most k1

k2
of the processes are faulty. Given a distribution

bound, we generate a language over {S, F} that describes it. For a word w over {S, F}
and a letter σ ∈ {S, F}, let #(σ, w) denote the number of occurrences of σ in w. Then
(other bounds are isomorphic to the ones below),

– 〈U, F, k〉 induces the regular language S∗ · ((F + S) · S∗)k

– 〈L, S, k〉 induces the regular language F∗ · (S · F∗)k · (F + S)∗

– 〈U, F, k1, k2〉 induces the context-free language {w | k1#(F, w) ≤ (k2 − k1)#
(S, w)}.

The user may also provide the distribution language directly, thus describing richer
types of distributions, like (S + F)∗ · Fk · (S + F)∗ (there exists a neighborhood of
k faulty processes), (Sk−1 · (S + F))∗ (only every other k processes may be faulty),
etc. Such distribution languages are particularly appropriate in architectures like rings,
where the position of the process in the word describing the configuration is important.
Also, a conjunction of bounds may be obtained by intersecting the corresponding (at
most one context-free) languages.

We are now ready to model check the system with the faults according to the fault
distribution in D. We first formalize properties of the compilation that are useful in the
model-checking procedure. For simplicity, we assume that the alphabet of the compiled
system is Σ × Σf (when its alphabet contains additional underlying alphabets, we

On Verifying Fault Tolerance of Distributed Protocols 327

project them in an existential manner). Theorem 1 below states that it is possible to
augment the description of a protocol by a mask describing the faulty systems, and that
reasoning about the augmented description can be done in both a backward and forward
manner. The correctness of the theorem follows from the fact that the Σf component
of the augmented protocol, which describes the mask, is fixed throughout the execution
of the protocol. Let w = σ1 · σ2 · · · σn and w′ = σ′1 · σ′2 · · · σ′n be two words of the
same length over the alphabets Σ and Σ′, respectively. We use w ⊗ w′ to denote the
word over Σ × Σ′ obtained by merging the letters of w and w′. That is, w ⊗ w′ =
(σ1, σ

′
1) · (σ2, σ

′
2) · · · (σn, σ′n).

Theorem 1. Consider an FMSO description P [i] over Σ of a protocol parameterized
by position variable i, a type β of a fault, and a distribution language D ⊆ Σ∗f . Let P

be the parameterized system induced by P [i] and let P̃ and ψfair be the parameterized
system over Σ × Σf to which P [i] is compiled.

1. w0, w1, w2 . . . is a computation of the system P when suffering from a fault of type
β with fault distribution D iff there is a word d ∈ D such that w0 ⊗d, w1 ⊗d, w2 ⊗
d . . . is a computation of P̃ that satisfies ψfair .

2. Let R̃ be the transition relation of P̃ . For a set S ⊆ (Σ × Σf)∗, we have
pre∗

R̃
(agree(S, D)) = agree(pre∗

R̃
(S), D) and post∗

R̃
(agree(S, D)) = agree

(post∗
R̃
(S), D).

3.4 Model Checking the Faulty System

We now describe how we adjust the LTL(FMSO) regular model-checking algorithm of
[2] to consider the distribution language. Let us first review the procedure in [2].

Given an LTL(FMSO) specification ψ, it is possible to extend the translation of LTL

formulas to Büchi automata [32] and generate from ψ a Büchi transducer Aψ (au-
tomaton over Σ × Σ, in the terminology of [2]) that accepts exactly all the models
of ψ. The transducer consists of three regular languages: initial configurations Iψ ⊆
Σ∗, transitions Rψ ⊆ (Σ × Σ)∗, and acceptance condition α ⊆ Σ∗. Let A¬ψ =
〈Σ, I¬ψ, R¬ψ, α¬ψ〉 be the Büchi transducer for an LTL(FMSO) formula ¬ψ. A param-
eterized system P = 〈Σ, I, R〉 then violates ψ if the product of P with A¬ψ, namely
the Büchi transducer 〈Σ, I ∩ I¬ψ , R ∩ R¬ψ, α¬ψ〉, has a fair computation. It is shown
in [28,2] how bad-cycle detection algorithms can be lifted to the regular setting.

Let S = 〈Σ × Σf , I, R, α〉 be the product of the regular description of the faulty
protocol with a Büchi transducer A¬(ψfair→ψ) for ¬(ψfair → ψ), and let D ⊆ Σ∗f be the
distribution language with respect to which the protocol is checked. By Theorem 1 (1),
the system P tolerates the fault with distribution D iff S does not contain a computation
that visits α infinitely often and whose projection on Σf is in D.

Thus, searching for bad cycles in S, we should restrict attention to computations
whose projection on Σf is in D. By Theorem 1 (2), we can sample the projection of the
computation on Σf at any point, and can also do it after the computations of fixed-points
converge. Accordingly, for forward model checking, we can start with I and restrict to
computations that agree with D after the calculations of post∗. Likewise, for backward
model checking, we can start with α and restrict to computations that agree with D

328 D. Fisman, O. Kupferman, and Y. Lustig

after the calculations of pre∗. Note that, as observed in [21], it is possible to conduct
backward/forward model checking in which the last step uses a context-free rather than
a regular language. This is possible due to the fact that context free languages are closed
under intersection with regular languages and the emptiness of a context free language
is decidable. Therefore, we can use a context-free language for ratio bounds.

Remark 6. The compilation of P [i] to P̃ [i] is easy to describe when P [i] is given in
FMSO. The model-checking algorithm, however, requires the translation of the FMSO for-
mulas to automata or regular expressions. In general, the translation is non-elementary.
The blow-up, however, is caused by nested negations, which are not typical in our set-
ting, and is quite rare in practice [15]. For many faults, we can do the compilation on
top of the regular description of the protocol and circumvent FMSO. In some cases,
however, such as the one described in Remark 5, going through FMSO is much simpler.

Remark 7. It is sometimes desirable to check a protocol with respect to a combination
of faults (for example, whether it is self-stabilized in the presence of a Byzantine fault).
It is easy to see that our method is compositional, in the sense that the compilations
described in Section 3.2 can be applied on top of each other, each with its distribution
of faults (at most one distribution, however, can induce a context-free language). Also,
by relating the underlying alphabets that specify the mask for the faulty processes in
each type fault, it is possible to relate the faulty processes in the different faults (for
example, the processes that suffer from the transient faults are necessarily different
from these that suffer from the Byzantine fault).

Remark 8. The user may use the methodology in a query mode, in which the bound in
the fault distribution is not specified. Thus, the bound is of the form {L, U} × {S, F} ×
{?}, and the user asks for the maximal/minimal number m of faulty/sound processes
with which the property holds/is violated. Since the language D plays a role only in the
last step of the model-checking procedure, an algorithm that does a binary search for m
can reuse the result of the fixed-point computation that the steps that are independent of
D have calculated, and only project it iteratively on different distribution languages. A
similar approach can be used for ratio bounds.

We now demonstrate the application of our methodology for the verification of the
token-ring protocol presented in Example 1. In the full version of the paper we consider
a more impressive application, to the reliable broadcasting protocol of [14].

Example 4. Consider the token-ring protocol given in Example 1. We would like to
verify whether it satisfies the mutual-exclusion and non-starvation properties specified
in Example 2, in the presence of fail-stop, and Byzantine faults.

We start with fail-stop faults. We first follow the compilation described in Section 3.2
and compile the protocol P [i] that is described in Example 3 to a protocol P̃ [i] that takes
the fail-stop faults into an account. Recall that P [i] is over Σ = {�0, �1, �2} × {N, T }
and P̃ [i] is over Σ̃ = Σ × {A, H} × {S, F}. For Sloc ⊆ {�0, �1, �2}, Stok ⊆ {N, T },
St ⊆ {A, H}, and Sf ⊆ {S, F}, we use [Sloc, Stok , Sl, Sf] to abbreviate the regular
expression that is the union of all letters 〈sloc, stoc, st, sf 〉 ∈ Sloc × Stoc × St × Sf .

On Verifying Fault Tolerance of Distributed Protocols 329

When Sloc = Σloc , we replace Sloc by . When Sloc is a singleton {sloc}, we simply
write sloc , and similarly for the other underlying alphabets.

Since mutual exclusion is a safety property, the model-checking procedure is simple,
and we only have to check whether the set of reachable states (per a given distribution
language) intersects the language Lbad of configurations that violate the property (the
language is generated automatically from the Büchi transducer for the negation of the
formula, and it is extended to the alphabet Σ̃). Formally, Lbad := Σ̃∗ · [�2, , ,] ·
Σ̃∗ · [�2, , ,] · Σ̃∗.

Using acceleration methods such as in [28,22], we can calculate the set Lreach of
reachable configurations of P̃ . Lreach = [{�0, �1}, N, ,]∗ · [, T, ,] · [{�0, �1},
N, ,]∗.

It is easy to see that the intersection of Lbad and Lreach is empty, regardless of the
distribution bound. Thus, even if all processes are faulty, mutual exclusion holds.

As for non-starvation, the product of P̃ with the Büchi transducer for the negation of
the property is not empty even for the distribution bound 〈U, F, 1〉. Indeed, the computa-
tion that begins in the configuration 〈�0, T, H, F〉 · 〈�0, N, A, S〉∗, and then loops forever
in the configuration 〈�0, T, H, F〉 · 〈�1, N, A, S〉∗, is a computation of P̃ that is accepted
by the Büchi transducer. Also, all the configurations along it belong to the distribution
language S∗ · (S + F) · S∗ that is induced by 〈U, F, 1〉. Note that the computation cor-
responds to the case the first process fail-stops as soon as the execution of the protocol
begins, causing the token not to be passed at all.

Let us now move to Byzantine faults. Since a Byzantine process can produce or
destroy tokens as he sees fit, the protocol is not resistant to Byzantine faults, even
with a single Byzantine process. Recall that when modelling Byzantine faults, we have
Σ̃ = Σloc×Σtok ×{S, F}. The protocol P̃ contains the computation that begins with the
configuration 〈�0, T, F〉 · 〈�0, N, S〉∗, then moves to 〈�1, T, F〉 · 〈�1, T, S〉 · 〈�0, N, S〉∗,
and then moves to 〈�2, T, F〉 · 〈�2, T, S〉 · 〈�0, N, S〉∗. Clearly, the third configuration
intersects the language of bad configurations. Thus, mutual exclusion does not hold.
Intuitively, the computation corresponds to the faulty process passing the token to the
right but keeping a copy of the token to itself. The protocol also contains the compu-
tation that begins with the configuration 〈�0, T, F〉 · 〈�0, N, S〉∗, and then loops forever
in the configuration 〈�0, N, F〉 · 〈�1, N, S〉∗. This computation is accepted by the Büchi
transducer for the negation of the non-starvation property. Intuitively, it corresponds
to a scenario where the faulty process destroys the token. Also, both computations are
consistent with the fault distribution 〈U, F, 1〉. Thus, the properties do not hold in the
presence of even a single Byzantine process.

Finally, in timing faults, the set of reachable states is similar to the set of reachable
states in the original protocol (lifted by the new underlying alphabets), thus mutual
exclusion holds. Non-starvation holds too, as the computations in the product that do
violate the property are not fair.

4 Discussion

State-of-the-art work on verifying fault tolerance of distributed systems is restricted
to the non-parametric setting. This is true both in work studying specific protocols, as
[27,26], which model-check protocols for the case of four processes; as well as in work

330 D. Fisman, O. Kupferman, and Y. Lustig

describing a general methodology, as [6], which studies synthesis of distributed systems
with a bounded number of processes.

The idea behind our methodology is simple: it is possible to augment the description
of a process by an indication of whether the process is faulty or sound, it is possible to
let the process proceed with both indications (in case it is sounds it follows the original
protocol, in case it is faulty it follows a modified protocol that is automatically generated
according to the type of fault), and it is possible to use a symbolic description of the
fault distribution in order to control the number or the fraction of the faulty processes.
The methodology is generic in the sense that it can be applied to both synchronous and
asynchronous systems, considering a large variety of faults, and taking into account a
large variety of distribution faults (any distribution that can be specified by a context-
free language).

We demonstrated our methodology in the framework of regular model checking
(augmented to support a context-free language describing the fault-distribution). We
are optimistic about the application of the methodology in other approaches that ad-
dress the parameterized setting. In particular, in the approach of network invariants
[33], one tries to find a system I such that (1) I abstracts P or P‖P and (2) I abstracts
I‖P . Our initial results in this front show that assuming the composition is symmetric,
it is possible to replace P in the above conditions by finite compositions of P with
faulty versions of it. For example, in order to prove resistance to c faults, one can re-
place P by a composition of P with c faulty versions of it; likewise in order to prove
the resistance to a k1

k2
fraction of faulty processes, one can replace P by a combination

of k1 instances of P with k2 −k1 instances of a faulty version of P . Our future research
aims at generalizing these ideas further.

Acknowledgment.We thank Danny Dolev and Ezra Hoch for many helpful discussions
on distributed systems and fault-tolerant protocols.

References

1. Abdulla, P.A., d’Orso, J., Jonsson, B., Nilsson, M.: Algorithmic improvements in regular
model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
236–248. Springer, Heidelberg (2003)

2. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model checking
for LTL(MSO). In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 348–360.
Springer, Heidelberg (2004)

3. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48.
Springer, Heidelberg (2004)

4. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. In-
formation Processing Letters 22(6), 307–309 (1986)

5. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant computing.
Software Engineering 19(11), 1015–1027 (1993)

6. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent programs. ACM
TOPLAS 26, 128–185 (2004)

7. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election and related problems. In: Proc. 19th STOC, pp. 230–240 (1987)

On Verifying Fault Tolerance of Distributed Protocols 331

8. Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-structured regular
model checking, with applications to lossy channel systems. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)

9. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model
checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488.
Springer, Heidelberg (2005)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

11. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik und
Grundl. Math. 6, 66–92 (1960)

12. Keneddey Space Center. NASA space shuttle launch archive, mission STS-1 (1981)
http://science.ksc.nasa.gov/shuttle/missions/sts-1/mission-
sts-1.html

13. Daliot, A., Dolev, D., Parnas, H.: Linear time byzantine self-stabilizing clock synchroniza-
tion. In: Proc. of 7th PODC, pp. 7–19 (2003)

14. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing 12, 656–666 (1983)

15. Elgaard, J., Klarlund, N., Möller, A.: Mona 1.x: new techniques for WS1S and WS2S. In: Y.
Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)

16. Elgot, C.: Decision problems of finite-automata design and related arithmetics. Trans. Amer.
Math. Soc. 98, 21–51 (1961)

17. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: Proc. 17th
CAD, pp. 236–255 (2000)

18. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. IJFCS 14(4), 527–550 (2003)
19. Faloutsos, M., Molle, M.: Optimal distributed algorithm for minimum spanning trees revis-

ited. In: Proc. 14th PODC, pp. 231–237 (1995)
20. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with invisible ranking. STTT 8(3),

261–279 (2004)
21. Fisman, D., Pnueli, A.: Beyond regular model checking. In: Hariharan, R., Mukund, M.,

Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, Springer, Heidelberg (2001)
22. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages.

ENTCS 138(3), 21–36 (2005)
23. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with

rich assertional languages. TCS 256, 93–112 (2001)
24. Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear net-

works of processes. In: Proc. 24th POPL, pp. 346–357 (1997)
25. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
26. Malekpour, M.R.: A byzantine fault-tolerant self-stabilization synchronization protocol for

distributed clock synchronization systems. TR NASA/TM-2006-214322, NASA STI (2006)
27. Malekpour, M.R., Sinimiceanu, R.: Comments on the byzantine self-stabilization synchro-

nization protocol: counterexamples. TR NASA/TM-2006-213951, NASA STI, (2006)
28. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification. In: Proc. 12th

CAV, pp. 328–343 (2000)
29. Schlichting, R.D., Schneider, F.B.: Fail-stop processors: An approach to designing fault-

tolerant computing systems. Computer Systems 1(3), 222–238 (1983)
30. Tanenbaum, A., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice Hall,

Englewood Cliffs (2007)
31. Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer Science, 133–

191 (1990)
32. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I&C 115(1), 1–37 (1994)
33. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network in-

variants. In: Proc. Automatic verification methods for finite state systems, pp. 68–80 (1990)

http://science.ksc.nasa.gov/shuttle/missions/sts-1/mission-sts-1.html
http://science.ksc.nasa.gov/shuttle/missions/sts-1/mission-sts-1.html

The Real-Time Maude Tool

Peter Csaba Ölveczky1 and José Meseguer2

1 Department of Informatics, University of Oslo
peterol@ifi.uio.no

2 Department of Computer Science, University of Illinois at Urbana-Champaign
meseguer@cs.uiuc.edu

Abstract. Real-Time Maude is a rewriting-logic-based tool supporting
the formal specification and analysis of real-time systems. Our tool em-
phasizes expressiveness and ease of specification over algorithmic decid-
ability of key properties, and provides a spectrum of analysis methods,
including symbolic simulation, and unbounded and time-bounded reach-
ability analysis and LTL model checking. Real-Time Maude has proved
well suited to analyze both correctness and performance of large and
complex real-time systems, including state-of-the-art schedulers, network
protocols, and wireless sensor network algorithms.

1 Introduction

Real-Time Maude is a high-performance tool that extends the rewriting logic-
based Maude system [1] to support the formal specification and analysis of real-
time systems. The characteristic features of Real-Time Maude are:

– Its specification formalism emphasizes generality and expressiveness, yet is
simple and intuitive.

– Real-Time Maude is particularly suitable for specifying distributed real-time
systems in an object-oriented style, and provides advanced object-oriented
features such as inheritance and dynamic object creation and deletion.

– It does not build in a fixed communication model; instead, the user has the
flexibility to easily define the appropriate communication model.

– It supports a range of analysis methods, including symbolic simulation and
unbounded and time-bounded reachability analysis and LTL model checking.

Real-Time Maude is particularly useful for specifying and analyzing advanced
distributed object-based systems with novel forms of communications and/or
complex and unbounded data types. Such systems are typically beyond the pale
of timed-automaton-based tools, as well as formal tools and simulation tools that
are based on a fixed model of communication. One example of an application
domain with new forms of communications for which Real-Time Maude has
proved useful is the rapidly emerging field of wireless sensor networks.

Real-Time Maude is implemented in Maude [1] as an extension of Full Maude.
Since most commands are executed by translating them into Maude commands [2],
Real-Time Maude’s performance is in essence the good one of Maude.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 332–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Real-Time Maude Tool 333

The tool is available at http://www.ifi.uio.no/RealTimeMaude. The pa-
per [2] describes in detail the semantic foundations of our tool. The enhancements
in the tool and its applications since our previous tool paper [3] include: (i) devel-
opment of conditions that guarantee soundness and completeness of Real-Time
Maude analysis for many applications (Section 3); (ii) important new applica-
tions (Section 4); and (iii) improved support for object-oriented features such as
subclasses, attributes, etc., in search and model checking commands.

2 Specification and Analysis in Real-Time Maude

A Real-Time Maude specification is a tuple (Σ, E, IR, TR), where

– (Σ, E) is a theory in membership equational logic [4], with Σ a signature and
E a terminating and confluent set of conditional equations and membership
axioms. (Σ, E) specifies the system’s state space as an algebraic data type.

– IR is a set of conditional instantaneous rewrite rules specifying the system’s
instantaneous (i.e., zero-time) local transition patterns.

– TR is a set of tick rewrite rules which model the time elapse in the system
and have the form

{t} => {t′} in time τ if cond

where τ is a term denoting the duration of the rule, t and t′ are terms, and
{_} is an operator encapsulating the global state, so that the form of the
tick rules ensures that time advances uniformly in all parts of the system.
Intuitively, the tick rule says that it takes time σ(τ) to go from state {σ(t)}
to state {σ(t′)} for any substitution σ of the variables in t, t′, and τ that
satisfies the condition cond .

Real-Time Maude is particularly well suited to specify real-time systems in an
object-oriented way. The state of a system is then represented by a term that
has the structure of a multiset of objects and messages (with delays).

To cover the entire time domain (which can be either discrete or dense), tick
rules typically have the form {t} => {t′} in time X if X ≤ u ∧ cond, for X
a variable not occurring in t. To execute such rules, Real-Time Maude offers a
choice of heuristic-based time sampling strategies, so that only some moments
in time are visited. The choice of such strategies includes:

– Advancing time by a fixed amount Δ in each application of a tick rule.
– The maximal strategy, that advances time to the next moment when some

action must be taken. That is, time is advanced by u time units in the above
tick rule. This corresponds to event-driven simulation.

Real-Time Maude offers a spectrum of analysis commands, including:

– Timed rewriting that simulates one behavior of the system, possibly up to
a time limit, from an initial state.

http://www.ifi.uio.no/RealTimeMaude

334 P.C. Ölveczky and J. Meseguer

– Explicit-state breadth-first search for reachability analysis. This command
analyzes all possible behaviors of the system, relative to the selected time
sampling strategy, to check whether a state matching a pattern and satisfy-
ing a condition can be reached from the initial state. Paths leading to the
(un)desired state can be exhibited. Search may be limited to search only for
states reachable from the initial state in a desired time interval.

– Explicit-state linear temporal logic (LTL) model checking. Although our tool
does not support model checking of metric LTL properties, it offers model
checking of “clocked” properties that involve both the states and the dura-
tions in which the states can be reached. Model checking may be unbounded,
or consider only behaviors up to a given duration. Since, relative to a time
sampling strategy, the number of states reachable from an initial state in
a finite time interval should be finite, time-bounded LTL model checking is
possible also when an infinite number of states can be reached without a
time bound. Our tool gives a counterexample if a formula does not hold.

– Finding the shortest and the longest time it takes to reach a state pattern.

3 Soundness and Completeness of the Analysis

The behaviors obtained by applying the tick rules according to a time sampling
strategy is a subset of all possible behaviors in a system. Therefore, Real-Time
Maude search and model checking analyses are sound in the sense that any
counterexample to the validity of an invariant or LTL property found by such
analysis is a valid counterexample in the system. However, Real-Time Maude
analyses are in general incomplete for dense time, since there is no guarantee
that the selected time sampling strategy covers all interesting behaviors.

In [5] we investigate under what circumstances maximal time sampling analy-
ses are sound and complete. For object-oriented systems, we give a set of simple
and easily checkable conditions for completeness of such analyses. These condi-
tions are satisfied by useful classes of systems encountered in practice, including
the large and complex AER/NCA and OGDC case studies mentioned below, that
fall outside the class of dense-time systems for which well known decision proce-
dures exist. For such systems, time-bounded search and model checking relative
to the maximal time sampling strategy become sound and complete decision pro-
cedures for the satisfaction of, respectively, invariants and LTL properties not
including the next operator ©. For discrete time, our results justify using max-
imal time sampling instead of visiting each time instant, which can drastically
reduce the state space to make search and model checking analyses feasible.

4 Some Real-Time Maude Applications

The following is a sample of advanced Real-Time Maude applications in which
the tool has been useful both as a simulation tool and as a model checking
tool. Other Real-Time Maude applications include: time-sensitive cryptographic

The Real-Time Maude Tool 335

protocols [6], parts of a multicast protocol developed by IETF [7], other state-
of-the-art wireless sensor network algorithms [8], and power management algo-
rithms for multimedia systems [9].

The AER/NCA Active Network Protocol Suite [10]. AER/NCA is a
suite of active network protocols that aim to make network multicast scalable,
fault-tolerant, and congestion-avoidant. The definition of the protocol mandated
that aspects such as the capacity, speed, and propagation delay of each link, as
well as the size of the packets, be modeled. Thanks to the ease with which we
could experiment with different values of such parameters, we could use Real-
Time Maude simulation and model checking to discover: (i) all flaws known by
the protocol developers that we were not told about; and (ii) non-trivial design
errors that were not known by the protocol developers, and that were not found
during traditional network simulation and testing.

A Modification of the CASH Scheduling Algorithm [11]. The CASH
algorithm is a sophisticated state-of-the-art scheduling algorithm with advanced
features for reusing unused execution budgets. Because the number of elements
in the queue of unused resources can grow beyond any bound, the CASH al-
gorithm poses challenges to its formal specification and analysis. Using search,
we found subtle behaviors in the proposed modification of CASH that lead to
missed deadlines. Furthermore, by using a pseudo-random function, we could
generate tasks with “random” arrival and execution times, and used rewriting
to perform “Monte-Carlo simulations.” Extensive such simulation indicated that
it is unlikely that the missed deadline could be found by simulation alone.

The OGDC Wireless Sensor Network Algorithm [12]. OGDC is a so-
phisticated algorithm for wireless sensor networks that tries to maintain sensing
coverage of an area for as long as possible. Wireless sensor networks pose many
challenges to their modeling and analysis, including novel communication forms
(area broadcast with delays for OGDC), treatment of geometrical areas, and the
need to analyze both correctness and performance. The OGDC developers used
the ns-2 simulator to show that OGDC outperforms other coverage algorithms.

To the best of our knowledge, the Real-Time Maude analysis of OGDC was
the first formal analysis of an advanced wireless sensor network algorithm. Using
a pseudo-random function to place sensor nodes in pseudo-random locations, we
performed a series of simulations of OGDC with up to 800 sensor nodes. The
Real-Time Maude simulations gave performance figures quite similar to the ns-
2 simulations when we did not consider transmission delays. Since the OGDC
developers told us that they probably did not include delays in their simula-
tions, this indicates that the Real-Time Maude simulations provided fairly ac-
curate performance estimates of OGDC. Nevertheless, since the definition of the
OGDC algorithm does take transmission delays into account, such delays should
be modeled. Real-Time Maude simulations with delays showed that then the
performance of OGDC is more than twice as bad as in the ns-2 simulations. We
could also point to a flaw in OGDC that explains this difference in performance.

336 P.C. Ölveczky and J. Meseguer

These facts seem to indicate that Real-Time Maude simulations provide more
reliable performance estimates for OGDC than the network simulation tool ns-2.

Embedded Car Software. Real-Time Maude has been used by a Japanese
research institute to find several time-dependent bugs in embedded car software
used by major car makers. The time sampling approach of Real-time Maude was
crucial to detect the bugs, which could not be found by the usual model-checking
tools employed in industry.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

2. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

3. Ölveczky, P.C., Meseguer, J.: Specification and analysis of real-time systems using
Real-Time Maude. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 354–358. Springer, Heidelberg (2004)

4. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, Springer, Heidel-
berg (1998)

5. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
Electronic Notes in Theoretical Computer Science 176(4), 5–27 (2007)

6. Ölveczky, P.C., Grimeland, M.: Formal analysis of time-dependent cryptographic
protocols in Real-Time Maude. In: IPDPS 2007, IEEE, Los Alamitos (2007)

7. Lien, E.: Formal modelling and analysis of the NORM multicast protocol using
Real-Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo (2004)

8. Katelman, M., Meseguer, J., Hou, J.: Formal modeling, analysis, and debugging
of a wireless sensor network protocol with Real-Time Maude and statistical model
checking. Technical report, Dept. of Computer Science, University of Illinois at
Urbana-Champaign (In preparation, 2008)

9. Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation
for energy minimization in cross layered systems: A formal method approach. In:
IEEE RTAS 2006 (2006)

10. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29, 253–293 (2006)

11. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

12. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of the OGDC wire-
less sensor network algorithm in Real-Time Maude. In: Bonsangue, M.M., Johnsen,
E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg
(2007)

Z3: An Efficient SMT Solver

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo,nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) problem is a decision
problem for logical first order formulas with respect to combinations of
background theories such as: arithmetic, bit-vectors, arrays, and unin-
terpreted functions. Z3 is a new and efficient SMT Solver freely available
from Microsoft Research. It is used in various software verification and
analysis applications.

1 Introduction

Satisfiability modulo theories (SMT) generalizes boolean satisfiability (SAT) by
adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers,
and other useful first-order theories. An SMT solver is a tool for deciding the sat-
isfiability (or dually the validity) of formulas in these theories. SMT solvers enable
applications such as extended static checking, predicate abstraction, test case gen-
eration, and bounded model checking over infinite domains, to mention a few.

Z3 is a new SMT solver from Microsoft Research. It is targeted at solving
problems that arise in software verification and software analysis. Consequently,
it integrates support for a variety of theories. A prototype of Z3 participated
in SMT-COMP’07, where it won 4 first places, and 7 second places. Z3 uses
novel algorithms for quantifier instantiation [4] and theory combination [5]. The
first external release of Z3 was in September 2007. More information, including
instructions for downloading and installing the tool, is available at the Z3 web
page: http://research.microsoft.com/projects/z3.

Currently, Z3 is used in Spec#/Boogie [2,7], Pex [13], HAVOC [11], Vigi-
lante [3], a verifying C compiler (VCC), and Yogi [10]. It is being integrated
with other projects, including SLAM/SDV [1].

2 Clients

Before describing the inner workings of Z3, two selected uses are briefly de-
scribed. Front-ends interact with Z3 by using either a textual format or a binary
API. Three textual input-formats are supported: The SMT-LIB [12] format, the
Simplify [8] format, and a low-level native format in the spirit of the DIMACS
format for propositional SAT formulas. One can also call Z3 procedurally by
using either an ANSI C API, an API for the .NET managed common language
runtime, or an OCaml API.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 337–340, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://research.microsoft.com/projects/z3

338 L. de Moura and N. Bjørner

Spec#/Boogie3. generates logical verification conditions from a Spec# pro-
gram (an extension of C#). Internally, it uses Z3 to analyze the verification
conditions, to prove the correctness of programs, or to find errors on them. The
formulas produced by Spec#/Boogie contain universal quantifiers, and also use
linear integer arithmetic. Spec# replaced the Simplify theorem prover by Z3 as
the default reasoning engine in May 2007, resulting in substantial performance
improvements during theorem proving.

Pex. (Program EXploration) is an intelligent assistant to the programmer. By
automatically generating unit tests, it allows to find bugs early. In addition, it sug-
gests to the programmer how to fix the bugs. Pex learns the programbehavior from
the execution traces, and Z3 is used to produce new test cases with different behav-
ior. The result is a minimal test suite with maximal code coverage. The formulas
produced by Pex contains fixed-sized bit-vectors, tuples, arrays, and quantifiers.

3 System Architecture

Z3 integrates a modern DPLL-based SAT solver, a core theory solver that handles
equalities and uninterpreted functions, satellite solvers (for arithmetic, arrays,
etc.), and an E-matching abstract machine (for quantifiers). Z3 is implemented
in C++. A schematic overview of Z3 is shown in the following figure.

SMT-LIB Simplify Native text

OCaml

C .NET

Simplifier

Compiler

Congruence closure core

literal assignments

SAT solver

Theory Solvers

Linear arithmetic

Bit-vectors

Arrays

Tuples

E-matching engine

equalities
assignments

new atoms

equalities

clauses

Z3: An Efficient SMT Solver 339

Simplifier. Input formulas are first processed using an incomplete, but efficient
simplification. The simplifier applies standard algebraic reduction rules, such as
p∧true �→ p, but also performs limited contextual simplification, as it identifies
equational definitions within a context and reduces the remaining formula using
the definition, so for instance x = 4 ∧ q(x) �→ x = 4 ∧ q(4). The trivially
satisfiable conjunct x = 4 is not compiled into the core, but kept aside in the
case the client requires a model to evaluate x.

Compiler. The simplified abstract syntax tree representation of the formula
is converted into a different data-structure comprising of a set of clauses and
congruence-closure nodes.

Congruence Closure Core. The congruence closure core receives truth assign-
ments to atoms from the SAT solver. Atoms range over equalities and theory
specific atomic formulas, such as arithmetical inequalities. Equalities asserted
by the SAT solver are propagated by the congruence closure core using a data
structure that we will call an E-graph following [8]. Nodes in the E-graph may
point to one or more theory solvers. When two nodes are merged, the set of
theory solver references are merged, and the merge is propagated as an equality
to the theory solvers in the intersection of the two sets of solver references. The
core also propagates the effects of the theory solvers, such as inferred equalities
that are produced and atoms assigned to true or false. The theory solvers may
also produce fresh atoms in the case of non-convex theories. These atoms are
subsequently owned and assigned by the SAT solver.

Theory Combination. Traditional methods for combining theory solvers rely
on capabilities of the solvers to produce all implied equalities or a pre-processing
step that introduces additional literals into the search space. Z3 uses a new
theory combination method that incrementally reconciles models maintained by
each theory [5].

SAT Solver. Boolean case splits are controlled using a state-of-the art SAT
solver. The SAT solver integrates standard search pruning methods, such as
two-watch literals for efficient Boolean constraint propagation, lemma learning
using conflict clauses, phase caching for guiding case splits, and performs non-
chronological backtracking.

Deleting clauses. Quantifier instantiation has a side-effect of producing new
clauses containing new atoms into the search space. Z3 garbage collects clauses,
together with their atoms and terms, that were useless in closing branches. Con-
flict clauses, and literals used in them, are on the other hand not deleted, so
quantifier instantiations that were useful in producing conflicts are retained as
a side-effect.

Relevancy propagation. DPLL(T) based solvers assign a Boolean value to
potentially all atoms appearing in a goal. In practice, several of these atoms are
don’t cares. Z3 ignores these atoms for expensive theories, such as bit-vectors,
and inference rules, such as quantifier instantiation. The algorithm used for
discriminating relevant atoms from don’t cares is described in [6].

340 L. de Moura and N. Bjørner

Quantifier instantiation using E-matching. Z3 uses a well known approach
for quantifier reasoning that works over an E-graph to instantiate quantified vari-
ables. Z3 uses new algorithms that identify matches on E-graphs incrementally
and efficiently. Experimental results show substantial performance improvements
over existing state-of-the-art SMT solvers [4].
Theory Solvers. Z3 uses a linear arithmetic solver based on the algorithm used in
Yices [9]. The array theory uses lazy instantiation of array axioms. The fixed-sized
bit-vectors theory applies bit-blasting to all bit-vector operations, but equality.
Model generation. Z3 has the ability to produce models as part of the output.
Models assign values to the constants in the input and generate partial function
graphs for predicates and function symbols.

4 Conclusion

Z3 is being used in several projects at Microsoft since February 2007. Its main
applications are extended static checking, test case generation, and predicate
abstraction.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. SIGPLAN Not. 37(1), 1–3 (2002)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.I.T., Zhou, L., Zhang, L.,
Barham, P.: Vigilante: end-to-end containment of internet worms. In: Herbert,
A., Birman, K.P. (eds.) SOSP, pp. 133–147. ACM Press, New York (2005)

4. Bjørner, N.S., de Moura, L.: Efficient E-Matching for SMT Solvers. In: Pfenning, F.
(ed.) CADE2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer,Heidelberg (2007)

5. de Moura, L., Bjørner, N.: Model-based Theory Combination. In: SMT 2007 (2007)
6. de Moura, L., and Bjørner, N.: Relevancy Propagation. Technical Report MSR-

TR-2007-140, Microsoft Research (2007)
7. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking

object-oriented programs. Technical Report 2005-70, Microsoft Research (2005)
8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.

J. ACM 52(3), 365–473 (2005)
9. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

10. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: a new algorithm for property checking. In: Young, M., Devanbu, P.T. (eds.)
SIGSOFT FSE, pp. 117–127. ACM, New York (2006)

11. Lahiri, S.K., Qadeer, S.: Back to the Future: Revisiting Precise Program Verifica-
tion using SMT Solvers. In: POPL 2008 (2008)

12. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2006), http://www.SMT-LIB.org

13. Tillmann, N., Schulte, W.: Unit Tests Reloaded: Parameterized Unit Testing with
Symbolic Execution. IEEE software 23, 38–47 (2006)

http://www.SMT-LIB.org

Computation and Visualisation of Phase

Portraits for Model Checking SPDIs

Gordon Pace1 and Gerardo Schneider2

1 Dept. of Computer Science, University of Malta, Msida, Malta
gordon.pace@um.edu.mt

2 Dept. of Informatics, University of Oslo — PO Box 1080 Blindern, N-0316 Oslo,
Norway

gerardo@ifi.uio.no

1 Introduction and Background

Hybrid systems combining discrete and continuous dynamics arise as mathemat-
ical models of various artificial and natural systems, and as an approximation
to complex continuous systems. Reachability analysis has been the principal
research question in the verification of hybrid systems, even though it is a well-
known result that most non-trivial subclasses of hybrid systems reachability and
most verification problems are undecidable [1]. Nonetheless, various decidable
subclasses have been identified, including polygonal hybrid systems (SPDIs) [2].
SPDIs can be used, for instance, in the analysis of approximations of non-linear
differential equations in two-dimensions.

src

dst

Fig. 1. Reachability on SPDI

Qualitative analysis of hybrid sys-
tems is an alternative but rather
neglected research direction [3,4,5,6].
Typical qualitative questions include:
“Are there ‘sink’ regions which one can
never leave once they have been en-
tered?”; “Which are the basins of at-
traction of such regions?”; “Are there
regions in which every point in the re-
gion is reachable from any other point
in the same region without leaving
it?”. Answering such questions usually
implies giving a collection of objects
characterising such sets, which provide
useful information about the qualitative

behaviour of the hybrid system. We call the set of all such objects the phase por-
trait of the system.

Defining and constructing phase portraits of hybrid systems has been directly
addressed for SPDIs in [7,8]. In this paper we present a tool implementing the
generation of phase portraits for SPDIs following the latter papers, and we show
how these can be used to optimise the reachability analysis, in some cases even
giving an immediate answer, as exposed in [9].

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 341–345, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

342 G. Pace and G. Schneider

Viability kernels

Invariance kernel

Controllability kernels

Phase Portrait

Fig. 2. Example generated by SPeeDI+

An SPDI (Fig. 1) consists of a finite partition P of the plane (into convex polyg-
onal areas), such that, each P ∈ P is associated to a pair of vectors aP and bP

(shown as arrows in the polygons in the figure). The SPDI behaviour is defined by
the differential inclusion ẋ ∈ ∠bP

aP
for x ∈ P , where ∠b

a denotes the angle on the
plane between the vectors a and b. In [2] it has been proved that edge-to-edge and
polygon-to-polygon reachability is decidable by exploiting the topological proper-
ties of the plane. The information gathered for computing reachability turns out
to be useful for computing certain phase portrait objects of SPDIs. Given a cycle
on a SPDI, we can speak about a number of kernels pertaining to that cycle [7,8].
The viability kernel is the largest set of points in the cycle which may loop forever
within the cycle. The controllability kernel is the largest set of strongly connected
points in the cycle. The invariant kernel is the largest set of points in a loop such
that each point must keep rotating within the set forever.

Kernels are not only interesting as a mathematical curiosity but are crucial
in model checking. The invariance kernel, for instance, has been used to prove
termination in a breadth-first search algorithm for model checking SPDIs [10].
It is also of interest since it is much cheaper than reachability analysis, and one
can use the kernels to abstract and reduce the size of SPDIs [9].

2 SPeeDI+

The tool-set SPeeDI [11] is a collection of utilities to manipulate and reason
mechanically about SPDIs, implemented in Haskell including:

Computation and Visualisation of Phase Portraits 343

Visualisation aids: Graphical representations of SPDIs, including simulation
of trajectories and signatures within it.

Information gathering: SPeeDI calculates edge-to-edge successor function
composition and enlist signatures going from one edge to another.

Reachability analysis: SPeeDI allows the user to verify a system by checking
reachability between restricted edges. It also enables the use of signatures
(abstract paths through an SPDI), to enable exploration of feasible paths in
an SPDI.

Trace generation: Whenever reachability analysis succeeds, SPeeDI generates
an abstract signature as a witness. Since a signature embodies a collection
of concrete paths through the SPDI, SPeeDI also provides tools to generate
concrete paths from abstract signatures.

src

dst

Fig. 3. Immediate answer using the
kernels

Despite the fact that lazy functional
languages have a rather bad reputa-
tion regarding performance, the per-
formance we obtained was more than
adequate for our examples.

In this paper we present SPeeDI+,
which extends our earlier tool SPeeDI,
enabling the computation and analy-
sis of three important phase portrait
objects of an SPDI, namely viability,
controllability and invariance kernels.
Fig. 2 shows all the kernels for the SPDI
depicted in Fig. 1. The top left figure
shows the union of the viability kernels
of ten (overlapping) loops present in the

given SPDI. Similarly, the top right figure depicts the controllability kernels and
the bottom left show the unique invariance kernel. Note that some loops do not
have a controllability kernel. The bottom right figure shows the complete phase
portrait — all the kernels of the SPDI. The execution time for obtaining all the
kernels in this example is instantaneous.

3 Applications and Discussion

SPeeDI+ implements the algorithms published in [7,8] based on the analysis of
qualitative behaviours generated by a discrete dynamical system characterised
by positive affine Poincaré maps. Currently there are no other tools specifi-
cally for SPDI analysis. Tools for generic hybrid systems, such as HyTech, are
more generic, but are subsequently only semi-algorithms and less efficient than
SPeeDI+. See [11] for a direct comparison.

We use the kernels computed with SPeeDI+ for optimising the reachability anal-
ysis, in some cases giving an immediate answer without exploring the state space.
For example, the reachability question answered by the path given in Fig. 1 (and
generated using the reachability analysis in SPeeDI) can be answered immediately

344 G. Pace and G. Schneider

just by observing the phase portrait picture (without performing reachability anal-
ysis) as can be seen in Fig. 3. Using a property of viability kernels, we know that
there is a trajectory starting in the initial interval which will reach a point in the
controllability kernel of the same cycle. Furthermore, by definition of the control-
lability kernel, the final interval (on another controllability kernel which intersects
the first) is then reachable from the initial point.

As already noted, we can also use the kernels to abstract and reduce the
state-space of a given SPDI. For example, when verifying reachability between
two edges both lying within an invariance kernel, we can reduce the SPDI by
discarding all regions outside the kernel, since by definition of the invariance
kernel they can play no role in the reachability analysis, as it is not possible to
leave the kernel. Similarly viability and controllability kernels can be used to
decompose a reachability question to smaller ones by splitting the state space
using the outline of these kernels as boundaries, and performing model checking
on the smaller spaces independentaly. The theoretical results concerning state-
space reduction and optimisation using kernels (and semi-separatrices) have been
presented in [9], while the results showning how kernels can also be used to
decompose reachability questions thus effectively giving a parallel algorithm for
SPDI reachability has been presented in [12].

References

1. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: STOC 1995, pp. 373–382. ACM Press, New York (1995)

2. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability
problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Hei-
delberg (2001)

3. Aubin, J.P., Lygeros, J., Quincampoix, M., Sastry, S., Seube, N.: Viability and
invariance kernels of impulse differential inclusions. In: Conference on Decision
and Control. IEEE, vol. 40, pp. 340–345 (2001)

4. Aubin, J.P.: The substratum of impulse and hybrid control systems. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 105–118. Springer, Heidelberg (2001)

5. Deshpande, A., Varaiya, P.: Viable control of hybrid systems. In: Antsaklis, P.J.,
Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 128–147.
Springer, Heidelberg (1995)

6. Kourjanski, M., Varaiya, P.: Stability of hybrid systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 413–423. Springer, Heidelberg
(1996)

7. Asarin, E., Schneider, G., Yovine, S.: Towards computing phase portraits of polyg-
onal differential inclusions. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 49–61. Springer, Heidelberg (2002)

8. Schneider, G.: Computing invariance kernels of polygonal hybrid systems. Nordic
Journal of Computing 11, 194–210 (2004)

9. Pace, G., Schneider, G.: Static analysis for state-space reduction of polygonal hy-
brid systems. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202,
pp. 306–321. Springer, Heidelberg (2006)

Computation and Visualisation of Phase Portraits 345

10. Pace, G., Schneider, G.: Model checking polygonal differential inclusions using
invariance kernels. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 110–121. Springer, Heidelberg (2004)

11. Asarin, E., Pace, G., Schneider, G., Yovine, S.: SPeeDI: a verification tool for
polygonal hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 354–358. Springer, Heidelberg (2002)

12. Pace, G., Schneider, G.: A compositional algorithm for parallel model checking
of polygonal hybrid systems. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 168–182. Springer, Heidelberg (2006)

GOAL Extended: Towards a Research Tool for

Omega Automata and Temporal Logic�

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan,
and Chi-Jian Luo

Department of Information Management, National Taiwan University, Taiwan

Abstract. This paper reports extensions to the GOAL tool that enable
it to become a research tool for omega automata and temporal logic. The
extensions include an expanded collection of translation, simplification,
and complementation algorithms, a command-line mode which makes
GOAL functions accessible by programs, and utility functions for such
common tasks as file format conversion, random formulae generation,
and statistics collection.

1 Introduction

GOAL (http://goal.im.ntu.edu.tw) is a graphical interactive tool for defin-
ing and manipulating ω-automata, in particular Büchi automata, and temporal
logic formulae. It was first formally introduced in [20]. Two most useful and dis-
tinctive functions of GOAL are (1) translation of quantified propositional linear
temporal logic (QPTL) formulae into equivalent Büchi automata and (2) equiv-
alence test between two Büchi automata or between a Büchi automaton and a
QPTL formula. With these and other utility functions, the GOAL tool may be
used for educational purposes and for supplementing automata-theoretic model
checkers such as SPIN [8]. For example, the user may use GOAL to prepare a
Büchi automaton diagram that is checked to be correct in that it is equivalent to
another larger reference Büchi automaton or some easier-to-understand QPTL
formula.

In this paper, we report extensions to GOAL that enable it to become a
research tool for ω-automata and temporal logic. We have at present focused
on Büchi automata and PTL (which subsumes LTL). The extensions and their
usage for supporting research are described in the next section. Table 1 sum-
marizes the major algorithms implemented in GOAL. Though the number of
supported functions does not actually increase, a larger collection of algorithms
are very useful for various research purposes. In addition, several utility func-
tions have been implemented for common tasks in experimentation such as (1)
collecting statistic data and (2) generating random automata and temporal for-
mulae. These functions allow researchers to test correctness of their translation
� This work was partially supported by the iCAST project sponsored by the National

Science Council, Taiwan, under the Grant No. NSC96-3114-P-001-002-Y.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 346–350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

GOAL Extended: Towards a Research Tool 347

Table 1. Major algorithms in GOAL. An * indicates that the algorithm had already
been implemented in earlier versions of GOAL [20].

Translation Complementation
Tableau*, Inc. Tableau [9], Temp. Tester [10], Safra*, WAPA [18], WAA [11], Piterman [13]
GPVW [5], GPVW+ [5], LTL2AUT [1], Simplification
LTL2AUT+ [19], LTL2BA [3], PLTL2BA [4] Simulation*, Pruning fair sets [15]

algorithm, collect comparison data, and, with GOAL’s graphical interface, vi-
sually observe and manipulate automata generated from their algorithm. The
extensions also enhance the original roles of GOAL as a learning/teaching tool
and as a supplementary model-checking tool.

2 The Extensions for Supporting Research

In this section, we detail the extensions to GOAL and explain how they may be
used for supporting research.

– Translation Algorithms: In addition to the Tableau algorithm [12], we
have now implemented eight translation algorithms. Four (Tableau, Incre-
mental Tableau, Temporal Tester, and PLTL2BA) of the nine algorithms
originally support past operators. We have extended three more (GPVW,
LTL2AUT, and LTL2AUT+) to allow past operators. All these nine algo-
rithms are further extended to support quantification on propositions.

As an illustration of usage, Table 2 summarizes the results of translating
the following two equivalent formulae into generalized Büchi automata by
seven algorithms:

1. ¬(�p → (¬p U (q ∧ ¬p ∧©(¬p U r))))
2. ¬�(p → (−�(r ∧ −© −�q)))

Each formula is the negation of a formula stating that p must be triggered
by q and r with q occurring strictly before r. The first formula with only
future operators is taken from the Spec Patterns respository [16].

– Complementation and Simplification Algorithms: In addition to
Safra’s construction, GOAL now has another three complementation algo-
rithms, including complementation via weak alternating parity automata
(WAPA) [18], complementation via weak alternating automata (WAA) [11],
and Piterman’s construction [13]. Cross-checking greatly increases our confi-
dence in the correctness of the different complementation algorithms, which
are difficult, and hence the correctness of the language containment and
equivalence tests. GOAL applies simplification algorithms to the input
automata before an equivalence test, and this substantially enhances the
performance. Besides the simulation-based method in [15], we have also im-
plemented simplification heuristics based on pruning fair sets in the same
work.

348 Y.-K. Tsay et al.

Table 2. Comparison of seven translation algorithms without and with simplification.
The column acc indicates the number of acceptance sets.

No.
Extended Extended Extended

Tableau GPVW GPVW+ LTL2AUT LTL2AUT+ LTL2BA PLTL2BA
st tran acc st tran acc st tran acc st tran acc st tran acc st tran acc st tran acc

1. 65 550 3 72 456 1 49 288 1 22 84 1 21 105 1 8 30 1 33 118 1

2. 49 396 1 13 55 1 - - - 9 23 1 8 17 1 - - - 15 38 1

1. 14 68 3 14 58 1 13 52 1 13 46 1 8 27 1 8 30 1 14 41 1

2. 10 26 1 7 21 1 - - - 5 10 1 5 10 1 - - - 10 23 1

– The Command-Line Mode: This mode makes most of the GOAL func-
tions accessible by programs or shell scripts. It therefore provides an interface
between GOAL and external tools. Sample shell scripts that compare trans-
lation algorithms and output the results as text files are provided. They can
be easily adapted to handle other different tasks.

– Utility Functions: Utility functions are available for collecting statistic
data (numbers of states, transitions, and acceptance sets) and for generating
random automata and random temporal formulae. Outputs from external
automata tools MoDeLLa [14] and LTL2Buchi [6] may also be converted to
the GOAL File Format (GFF, which is an XML file format designed to cover
all ω-automata) for further processing by GOAL.

We now describe a typical use case for the above functions, namely checking
correctness of a translation algorithm. This task can be performed with
high confidence by comparing the results of the algorithm under test with (1)
those of a large number of different translation algorithms, (2) those of a reference
algorithm, or (3) a set of reference answers, consisting of pairs of formulae and
their equivalent Büchi automata.

We assume a reference algorithm. To carry out the correctness checking pro-
cess, generate an adequate number of random temporal formulae and then apply
the following procedure repeatedly for each formula f :

1. Use the reference algorithm to generate two automata Af and A¬f that are
equivalent to f and ¬f respectively.

2. Use the algorithm under test to translate f into an automaton B.
3. Test if both A¬f ∩ B and Af ∩ B are empty.

If all the emptiness tests succeed, then the algorithm should be correct. Oth-
erwise, GOAL will produce counterexamples which can be run interactively on
the automata to “see” what the problem might be. We developed our transla-
tion algorithms in this manner. GOAL helped us to find some subtle bugs and
possible room for improvement.

3 Performance Evaluation and an Example Experiment

We present an experiment that, on the one hand, evaluates the performance
of GOAL and, on the other, demonstrates experimental comparative studies

GOAL Extended: Towards a Research Tool 349

Table 3. Comparison of complementation algorithms without and with simplification.
Only successful runs are accounted in the accumulated States, Transitions, and Time.

States Transitions Time Timeout

¬f to BA 1629 6906 51.0s 0
Safra 2461 11721 175.7s 6
Simplification+Safra 2077 9707 22.1s + 114.8s 5
WAPA 89196 4902278 6346.3s 51
Simplification+WAPA 8828 425248 14.0s + 202.9s 27
WAA 2920 27870 3629.4s 51
Simplification+WAA 1886 17740 14.1s + 167.3s 27
Piterman 1816 8314 224.5s 5
Simplification+Piterman 1531 6916 23.4s + 442.4s 3

that may be conducted with GOAL. The experiment was run on an Intel Xeon
3.2GHz machine with 2GB of memory allocated to the Java Virtual Machine.

In the experiment, we compared the four complementation algorithms imple-
mented in GOAL without and with simplification. Note that the performance of
a complementation algorithm dictates the performance of the equivalence test
function it supports. We generated 300 random PTL formulae with a length
of 5 and translated them into Büchi automata as inputs using the LTL2AUT
algorithm. None of the 300 formulae are valid or unsatisfiable. The average size
of the input automata is about 5.4. We set a timeout of 10 minutes. From
this experiment, we found that (1) Safra’s and Piterman’s algorithms perform
much better than complementation via WAPA and complementation via WAA
and (2) simplification can significantly speed up the complementation task, es-
pecially complementation via WAPA and complementation via WAA.

4 Remarks

The extension of GOAL will continue to include a few more complementation
algorithms, for example [2]. Another effort will be to include even more trans-
lation algorithms, in particular those that utilize intermediary automata with
acceptance conditions on transitions such as [17] and those that do simplification
while constructing automata on-the-fly [7]. The fact that Safra’s and Piterman’s
algorithms in average work better than complementation via WAPA and com-
plementation via WAA is also worthy of further investigation.

Acknowledgment. We thank Susan H. Rodger at Duke University for granting
us the permission to use and modify the JFLAP source code.

References

1. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

350 Y.-K. Tsay et al.

2. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. In:
Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg (2004)

3. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translations. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

4. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating au-
tomata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448.
Springer, Heidelberg (2003)

5. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV 1995, pp. 3–18. Chapman & Hall, Boca
Raton (1995)

6. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

7. Hammer, M., Knapp, A., Merz, S.: Truly on-the-fly LTL model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 191–205. Springer,
Heidelberg (2005)

8. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

9. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 97–109. Springer, Heidelberg (1993)

10. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. In: Infor-
mation and Computation, vol. 163, pp. 203–243 (2000)

11. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

12. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safty. Springer,
Heidelberg (1995)

13. Piterman, N.: From nondeterministic Büchi and Streett automata to determin-
istic parity automata. In: LICS 2006, pp. 255–264. IEEE Computer Society, Los
Alamitos (2006)

14. Sebastiani, R., Tonetta, S.: More deterministic vs. smaller Büchi automata for
efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)

15. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

16. The Spec Patterns repository, http://patterns.projects.cis.ksu.edu/
17. Tauriainen, H.: Automata and Linear Temporal Logic: Translations with

Transition-based Acceptance. PhD thesis, Helsinki University of Technology (2006)
18. Thomas, W.: Complementation of Büchi automata revisited. In: Jewels are Forever,

Contributions on Theoretical Computer Science in Honor of Arto Salomaa (1998)
19. Tsai, M.-H., Chan, W.-C., Tsay, Y.-K., Luo, C.-J.: Full PTL to Büchi automata

translation for on-the-fly model checking. Manuscript (2007)
20. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: A graphical

tool for manipulating Büchi automata and temporal formulae. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg
(2007)

 http://patterns.projects.cis.ksu.edu/

RWset: Attacking Path Explosion in

Constraint-Based Test Generation

Peter Boonstoppel, Cristian Cadar, and Dawson Engler

Computer Systems Laboratory, Stanford University

Abstract. Recent work has used variations of symbolic execution to
automatically generate high-coverage test inputs [3, 4, 7, 8, 14]. Such
tools have demonstrated their ability to find very subtle errors. However,
one challenge they all face is how to effectively handle the exponential
number of paths in checked code. This paper presents a new technique
for reducing the number of traversed code paths by discarding those that
must have side-effects identical to some previously explored path. Our
results on a mix of open source applications and device drivers show
that this (sound) optimization reduces the numbers of paths traversed
by several orders of magnitude, often achieving program coverage far out
of reach for a standard constraint-based execution system.

1 Introduction

Software testing is well-recognized as both a crucial part of software develop-
ment and, because of the weakness of current testing techniques, a perennial
problem as well. Manual testing is labor intensive and its results often closer to
embarrassing than impressive. Random testing is easily applied, but also often
gets poor coverage. Even a single equality conditional can derail it: satisfying a
32-bit equality in a branch condition requires correctly guessing one value out of
four billion possibilities. Correctly getting a sequence of such conditions is hope-
less. Recent work has attacked these problems using constraint-based execution
(a variant of symbolic execution) to automatically generate high-coverage test
inputs [3, 4, 7, 8, 14].

At a high-level, these tools use variations on the following idea. Instead of
running code on manually or randomly constructed input, they run it on sym-
bolic input that is initially allowed to take any value. They substitute program
variables with symbolic values and replace concrete program operations with
ones that manipulate symbolic values. When program execution branches based
on a symbolic value, the system (conceptually) follows both branches at once,
maintaining a set of constraints called the path constraint which must hold on
execution of that path. When a path terminates or hits a bug, a test case can be
generated by solving the current path constraint to obtain concrete input values.
Assuming deterministic code, feeding this concrete input to an uninstrumented
version of the checked code will cause it to follow the same path and hit the
same bug.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 351–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

352 P. Boonstoppel, C. Cadar, and D. Engler

A significant scalability challenge for these tools is how to handle the ex-
ponential number of paths in the code. Recent work has tried to address this
scalability challenge in a variety of ways: by using heuristics to guide path explo-
ration [4]; caching function summaries for later use by higher-level functions [7];
or combining symbolic execution with random testing [13].

This paper presents a largely complementary technique that prunes redundant
paths by tracking the memory locations read and written by the checked code,
in order to determine when the remainder of a particular execution is capable of
exploring new behaviors. This technique, which we call read-write set (RWset)
analysis, dramatically reduces the number of paths explored by discarding those
that will produce the same effects as some previously explored path.

RWset analysis employs two main ideas. First, an execution that reaches a
program point in the same state as some previous execution will produce the
same subsequent effects and can be pruned. Second, this idea can be greatly
amplified by exploiting the fact that two states that only differ in program values
that are not subsequently read will produce the same subsequent effects and can
be treated as being identical. Consequently, the second execution is redundant
and can also be pruned.

We measure the effectiveness of our RWset implementation by applying it to
server, library, and device driver code. Our results show that RWset analysis
is effective in discarding redundant paths, often reducing the number of paths
traversed by several orders of magnitude and achieving coverage out-of-reach for
the base version of the system, which easily gets stuck continuously revisiting
provably redundant states.

The paper is structured as follows. Section 2 gives an overview of RWset
analysis using several small examples, while Section 3 discusses the implementa-
tion more thoroughly. Section 4 measures the efficiency of our implementation.
Finally, Section 5 discusses related work and Section 6 concludes.

2 Overview

This section gives a general overview of RWset analysis. To make the paper self-
contained, we first briefly describe how constraint-based execution works in the
context of our tool, EXE. (For the purpose of this paper, one can view other
constraint-based execution tools as roughly equivalent; RWset analysis can be
implemented in any of them.) We subsequently describe the main idea behind
RWset analysis and then discuss some of the refinements employed to maximize
the number of redundant paths detected.

2.1 Constraint-Based Execution

EXE lets users explicitly mark which memory locations should be treated as
holding symbolic data, whose values are initially entirely unconstrained. EXE
instruments the user program so that it can track these symbolic values. When
the program runs, at each statement EXE checks if all inputs to that statement
have exactly one value, i.e. they are concrete rather than symbolic. In such

RWset: Attacking Path Explosion in Constraint-Based Test Generation 353

Path Constraints

Path 1 Path 2

1: x = read_sym_input(); {x = ∗}

2: if(x == 1234) ↙ fork ↘

3: printf("foo"); {x = 1234}

4: else printf("bar"); {x �= 1234}

5: ... {x = 1234} {x �= 1234}

Fig. 1. Contrived example to illustrate constraint-based execution. The code has two
paths, both of which will be followed. The first path (lines 1,2,3,5) ends with the
constraint that x = 1234. The second (lines 1,2,3,4) with the constraint that x �= 1234.

cases, the statement executes exactly as it would in the uninstrumented code.
Otherwise, EXE adds the effects of the statement as a constraint to the current
path. For example, given the statement i = x + y, if x and y have the values
x = 4 and y = 5, EXE executes the statement and assigns the 9 to i. If not, it
adds the path constraint that i = x + y.

When execution reaches a symbolic branch condition, EXE uses the STP
constraint solver [5] to check if the current path constraints make either branch
direction infeasible, and, if so, follows the other. If it cannot prove that one di-
rection is infeasible, EXE (conceptually) forks execution and follows both paths,
adding the appropriate branch constraint on each path.

To illustrate these points, consider the contrived code in Figure 1, where the
call to read sym input() marks x as an unconstrained symbolic value. This
code has two feasible paths, both of which EXE will explore, and generates two
concrete test cases to exercise each path. The steps followed by EXE are as
follows:

Line 1: EXE adds the path constraint x = ∗, i.e. x is unconstrained.
Line 2: Since both branches are possible, EXE forks execution: on the true

path it adds the constraint x = 1234 and on the false path the constraint
x �= 1234.

Line 3, 5: Assume that EXE follows the true path first. When it terminates
or hits an error, EXE solves the path constraints for concrete values. In this
case it will generate x = 1234. If the code is deterministic, rerunning the
program on this value will cause the same path (lines 1,2,3,5,...) to execute.

Line 4, 5: Similarly, the false path is followed and generates more test cases.

In order to handle real code, EXE tracks all constraints with bit-level accu-
racy. EXE supports pointers, arrays, unions, bit-fields, casts, and aggressive bit-
operations such as shifting, masking, and byte swapping. The interested reader
can refer to [4] for details.

2.2 Scalability Challenge: Discarding Redundant Paths

While constraint-based execution can automatically explore program paths, the
number of distinct paths increases exponentially with the number of conditional

354 P. Boonstoppel, C. Cadar, and D. Engler

statements traversed. In all but the smallest programs, this typically leads to
an essentially inexhaustible set of paths to explore. However, not all paths are
equal; very often multiple paths produce the same effects, and there is no reason
to explore more than one such path. The effects of an execution path can be
defined in any way desired, depending on the needs of the testing process. One
common definition, which we also use in this paper, defines the effects of an
execution path to be the basic blocks it executes.

The basic idea behind RWset analysis is to truncate exploration of a path as
soon as we can determine that its continued execution will produce effects that
we have seen before. In particular, we stop exploring a path as soon as we can
determine that its suffix will execute exactly the same as the suffix of a previously
explored path. Note that truncating a path explored by EXE results in a large
gain, as the number of new paths spawned from a path can be exponential
in the number of symbolic branch conditions encountered in its suffix. In real
code, this truncation can easily be the difference between doing useful work and
getting uselessly stuck revisiting that same program point in equivalent states,
as illustrated in one of the contrived examples presented later in this section,
but also as suggested by our experiments in Section 4.

The RWset algorithm is sound – relative to the base system – with respect
to the effects that we observe in the program (in our particular implementation
with respect to the basic branch coverage achieved in the program), as the RWset
analysis only discards execution paths that are proven to generate the same
effects as some previously explored path (e.g., that are proven to cover the very
same basic blocks). The soundness guarantee is relative to the base system,
because the RWset technique only discards redundant paths; if, for example, the
base symbolic execution tool misses a non-redundant path due to imprecision in
its analysis, then the RWset version of the same system will miss that path too.

In order to determine when we can stop executing a path, we apply the simple
observation that deterministic code applied to the same input in the same inter-
nal state must compute the same result. For simplicity, assume for now that the
state of a program is just the current set of path constraints (we discuss details
concerning program states in the next section). If a path arrives at a program
point in the same state as a previous instance, the system generates a test case,
and then halts execution. We call such an event a cache hit. We generate a test
case on a cache hit so that the prefix of the path (which so far has been unique)
will be tested.

The attentive reader will note that, as discussed so far, such a cache hit
will actually be fairly rare — the only reason a different path would execute is
because of a branch, which would add the corresponding branch condition on
one path and its negation on the other (e.g., x = 1234 and x �= 1234), preventing
most subsequent cache hits. We greatly increase the applicability of the basic
idea by exploiting the following refinement: a value not subsequently read by
the program can be dropped from the state, as it cannot affect any subsequent
computation.

RWset: Attacking Path Explosion in Constraint-Based Test Generation 355

Constraint Cache Live Refined
No refinement vars cache

1: x = read_sym_input(); {x = ∗} {x} {x = ∗}

2: if(x == 1234) {x = ∗} {} {}

3: printf("foo"); {x = 1234} {} {}

4: else printf("bar"); {x �= 1234} {} {}

5: ... {x = 1234}, {x �= 1234} {} {} HIT!

Fig. 2. Constraint cache example using code from Figure 1 both with and without
refinement. The constraint cache is used to truncate paths that reach a program point
with the same constraints as some previous path. “Live vars” denotes the set of all
variables read by code after a program point given a set of path constraints. Refine-
ment considers two constraint sets equal if all constraints (transitively) involving live
variables are equal.

As the program executes, a constraint cache records all the states with which
each program point was reached. When we get a cache hit (i.e., a path reaches a
programpoint with the same constraint set as some previous path) we stop execut-
ing the path. We illustrate how RWset analysis works on the simple code example
in Figure 1, both without and with the refinement discussed above. As shown in
Figure 2, the initially empty constraint cache gets populated by the two code paths
as follows. At line 1, EXE checks if the path constraint {x = ∗} is already in the
cache. Since this is not the case, the constraint set is added to this program point
and execution continues. When line 2 is reached, EXE forks execution, adding
the constraint x = 1234 on the first path, and x �= 1234 on the second. Subse-
quently, the current constraint set for each path is added to the constraint cache:
{x = 1234} at line 3, and {x �= 1234} at line 4. Finally, when both paths reach
line 5, they add their current constraint sets to the constraint cache.

Note that when the second path reaches line 5 with constraint set {x �= 1234},
there is no cache hit, since the only constraint set already in the cache at this
point is {x = 1234}. However, if we assume that the code from line 5 onward
does not read x again (x is a dead variable), we can drop all the constraints
involving x, thus changing the picture dramatically.

More precisely, before adding the constraint set to the cache, we intersect it
with the current set of live variables (details on how liveness is computed in our
frameworks are described in § 3.2). Since x is not read after line 2 it is not in
the set of live variables, and at lines 2, 3, 4 and 5 we add the empty set to the
constraint cache. In particular, when path 1 reaches line 5, it adds the empty
set to the cache. Then, when path 2 reaches line 5 too, its constraint set is also
the empty set, and thus the system gets a cache hit at this point, and stops
executing path 2. As discussed earlier, when pruning path 2, EXE generates a
test case to cover path 2’s unique prefix – if we did not generate a test case,
we would not have a test case that exercises the printf call at line 4. Note
that pruning a path can save significant work since the number of paths the
pruned path would otherwise spawn can increase exponentially with the number
of symbolic branches hit by the path’s suffix.

356 P. Boonstoppel, C. Cadar, and D. Engler

As positive as it is to truncate paths spawned at if-statements, it is even better
to truncate loops. As an example, consider a common style of event processing
loop that shows up frequently in device drivers and networking applications
where the code spins in an infinite loop, reading data and then processing it:

while(1) {
x = read_data(); // x is symbolic.
process(x);

}

Here, a naive constraint-based execution system will never terminate, since it
will keep reading new symbolic data and generating new paths. A widely-used
hack for handling such loops is to traverse them a fixed number of times. Un-
fortunately, such blind truncation can easily miss interesting paths. In contrast,
as long as the loop has a finite number of states (or more precisely, as long as
it is observed in a finite number of ways), RWset analysis will automatically
determine when the loop reaches a fixed point and terminate it afterwards. Note
that while the code above is contrived, the problem is very real: handling such
loops in device drivers and networking applications was a primary motivation to
build RWset analysis in EXE.

As an even more common pattern, consider the case of a loop that uses a
symbolic variable as a loop bound, as in the following code where we assume the
constraint that n < 10:

...
1: for(i = 0; i < n; i++)
2: foo();
3: ...no reads of i, n...

When running this loop, EXE will spawn ten new executions, one for every
feasible loop exit, each with different constraints on n (that is, NOT (0 < n),
NOT (1 < n), etc). If there are no subsequent reads of i or n, then RWset analysis
will prune all but one of these ten new executions, thus saving an enormous
amount of subsequent work.

3 Key Implementation Details

This section discusses some key implementation details that are critical in mak-
ing the approach scale to real applications. To make the exposition clearer, Ta-
ble 1 groups the terms used by this section for ease of reference.

3.1 Program States

This section discusses state representation issues.

Handling mixed symbolic and concrete execution. If execution happened
entirely symbolically, path constraints would provide a complete description of
the current program state and would be the only thing stored in the constraint

RWset: Attacking Path Explosion in Constraint-Based Test Generation 357

Table 1. Terminology

Term Definition

Program point (§ 3.1) A context-sensitive MD4 hash of the program counter
and callstack.

Path constraints (§ 2.1) All constraints accumulated on a given path thus far.
Writeset (§ 3.1) The set of concrete values written to concrete memory

locations by a given path thus far.
Readset (§ 3.2) All locations read after a program point given a program

state.
Program state (§ 3.1) A program point plus its writeset and path constraints

Two program paths with identical program states must
produce identical subsequent effects.

cache. However, for efficiency, we want to do as many things concretely as pos-
sible. While conceptually concrete values can be viewed as equality constraints
(e.g., if variable x has the value 4, this could be represented by the constraint
x = 4), it is more efficient to separate the symbolic and concrete cases. Thus,
a program state includes both the current path constraints (the symbolic state)
and the values of all concrete memory locations (the concrete state).

Because the concrete state can be huge, we do not record it directly but
instead only track the set of values written along the path — i.e., the path’s
difference from the initial concrete state all paths begin in. We call this set the
writeset. When a concrete value x is assigned to a memory location v, we add
the pair (v, x) to the writeset. We reduce spurious differences between writesets
by removing a memory location from a writeset in two cases. First, when it is
deallocated (by function call return or explicit heap deallocation) since we know
these elements cannot be read later (a separate component of EXE catches use-
after-free errors). Note that we only remove these values from the writeset, not
from the path constraints, since deallocating a variable should have no impact
on previously formulated constraints. To make this point clearer, assume we
add the constraint that x < y and then deallocate y; the constraint x < y
should definitely remain. The second, implementation-specific removal happens
whenever an operation makes a formerly concrete memory location symbolic: it
this case we remove the concrete location from the writeset, since it will now
appear in the path constraints. The simplest example of such an operation is
assigning a symbolic value to a concrete location.

Callsite-aware caching. The state must also include some context-sensitive
notion of the current program point. Otherwise, the constraint cache entries for
a function generated from other callsites can cause us to falsely think we can
prune execution. Truncating path exploration when we get a cache hit is only
sound if the entire path suffix after the current program point is identical to
some previously explored one. This is only guaranteed when the current call
will return to the same callsites that generated the cache entry. For example,
consider a program that has calls to both of the following functions:

358 P. Boonstoppel, C. Cadar, and D. Engler

a() { b() {
c(); c();

} }

Assume the tool first follows a path that calls a, which will then call c, populating
c’s constraint cache. Subsequently, it follows a path that calls b and, hence, c. If
we ignore context, we may (incorrectly) get a cache hit in c on an entry added by
a, and stop execution, despite the fact that returning to the call in b can produce
a very different result with the current constraints than returning to the call in
a. Our implementation handles this problem by associating a secure MD4 hash
of the current callstack with each constraint cache entry. Other approaches are
also possible.

Granularity. Our cache tracks values at the byte level. One extreme would be to
track the values associated with each bit. While this adds more precision, it was
not clear the increase in bookkeeping was worth it. We could also choose a more
coarse-grained approach, such as tracking constraints at the variable or memory
object level, which would decrease the amount of bookkeeping, but unfortunately
would miss many redundant paths, since often only some parts of a memory
object are dead, but not the entire object. We picked byte-level granularity
because it seems to be the right trade-off between memory consumption and
precision, and because it’s a straightforward match of C’s view of memory.

3.2 Live Variables

We call the set of locations read after a program point the readset at that program
point; any value in the program state not in this set can be discarded. Thus, the
more precise (smaller) we can make the readset, the more irrelevant parts of the
current state we can discard and the more likely we are to get cache hits and
prune an exponential number of redundant paths.

One approach to computing the readset would be to use a static live variable
analysis. Unfortunately, doing so would be incredibly imprecise — for example,
often the heap contains most of the program state, which such an analysis typ-
ically gives up on. Instead, we compute the locations dynamically, which turns
out to be both cheap and very accurate. The basic algorithm is as follows. At a
given program point, we do a complete depth-first (DFS) traversal of all paths
after that point. The union of all values read by these paths is the readset for
that program point, and any part of the current state not observed by this read-
set can be discarded. As a simple but effective optimization, as we propagate
the readset backwards up each path, we remove from it all locations that are
deallocated or overwritten. For example, a read of z will be removed from the
readset if we hit an assignment to z.

The reader may be concerned about whether this algorithm is sound when the
DFS traversal does not achieve full branch coverage, such as when some path
constraints make some branches infeasible. For example, assume we traverse the
following code with the constraint that x �= 12:

RWset: Attacking Path Explosion in Constraint-Based Test Generation 359

...
// after DFS from this point, the readset will be {x}

1: if(x == 12)
2: if(y == 34) // constraint x!=12 makes this branch unreachable
3: printf("hello\n");

... no further reads of x or y ...

In this case, we will never execute the branch at line 2, so y will not be in the
readset, and will be discarded from the current program state. Will this cause
us to discard states that could reach line 2? The answer is no: since x is in the
readset, the only states that will be discarded at line 2 are those that have an
equivalent set of constraints on x, i.e, those for which x �= 12. But these states
don’t satisfy the branch at line 1 and so will not execute the branch at line 2
either. Recursively applying this argument can easily be used to formally prove
that the dynamic algorithm is sound even when it does not explore all branches.

3.3 Symbolic Memory References

Symbolic memory references complicate both readset and writeset construction.
Assume we have an array reference a[i] where i is symbolic. If the only con-
straint on i is that it is in-bounds, a[i] can refer to any location in a. Even if
the constraints on i limit it to a narrow range, the cost of precisely determin-
ing this range (via expensive constraint solver interactions) often means that we
must accept imprecision. For reads, this imprecision inflates the readset in two
ways. First, we must conservatively assume a[i] can reference any location in a
unless we can prove otherwise. Thus, a single reference can pull all of a into the
readset. Second, when propagating the readset back up a path, when we hit an
assignment to a[i] we cannot remove any element from the readset unless we
can prove a[i] overwrites it. As a result, in our implementation, assignments to
arrays at symbolic offsets (indices) do not filter the readset at all.

Similarly, such assignments identically prevent removing elements from the
writeset. Recall that assigning a symbolic value to x causes x to be removed
from the writeset and added as a path constraint instead. However, when we
assign to a[i] we can only remove an element from the writeset if we can prove
that a[i] must overwrite it.

3.4 State Refinement

Given a program state and a readset, we remove irrelevant parts of the program
state as follows:
1 Concrete state: Keep the locations in the intersection of the readset and

writeset.
2 Symbolic state: Keep the transitive closure of all constraints that overlap

with the readset. For example, if the readset is {x} and the current path
constraint is: {x < y, y < 10, z < w}, our transitive closure would be {x <
y, y < 10}. Note that taking the intersection instead of the transitive closure,
would produce constraint sets that allow solutions illegal in the original path
constraint.

360 P. Boonstoppel, C. Cadar, and D. Engler

3.5 Abstraction Issues

For space reasons, we have currently taken a very literal view of what the pro-
gram state is, what reads and writes are, what is considered a cache hit, and
what the effects of a path are. One can, of course, profitably vary all of these,
depending on the requirements of the testing process. We consider two first-order
decisions.

First, what effects of computation are we interested in? The literal view is
everything. We can also consider things more abstractly. For example, one may
consider only the effects that affect branch coverage, or those that expose bugs
in the program. Deciding what effects to focus on determines what reads (or
writes) we must consider: if a read cannot affect the given metric, then the read
can be ignored. For example, if we are aiming for branch coverage, we can ignore
all reads not involved in an eventual control dependency.

Second, what is a cache hit? Thus far we have assumed two states are equal
if they match exactly. We can however, improve on this definition. One sound
improvement is to notice that two sets of constraints are equal if they would
cause the same effect. For example, if one path has x < 10 and another x < 20
and the only subsequent use of x is a branch comparison x < 30, then we could
consider these two constraints to be equal since they both satisfy the condition.

3.6 Summary

We now summarize the basic RWset implementation in EXE. We represent the
symbolic state by the current path constraint, the concrete state by the writeset,
and the program point by the callstack and program counter. Each context-
sensitive program point records all previous states it has been visited in, and
associates with each of these entries the complete set of reads (observations) done
by all subsequent paths when reached in this state (the readset). We determine
if we have already seen a state by comparing it against each of these entries
after first intersecting it with the entry’s associated readset. If we get a hit, we
generate a test case (to exercise the path up to this point) and terminate further
exploration of this path. Otherwise we continue.

4 Evaluation

This section evaluates the effectiveness of RWset analysis on real code, using a
mix of server and library code and operating system device drivers. The results
show that the technique gives an order of magnitude reduction in the number of
tests needed to reach the same number of branches, and often achieves branch
coverage out-of-reach for the base version of EXE. All experiments were per-
formed on a dual-core 3.2 GHz Intel Pentium D machine with 2 GB of RAM,
and 2048 KB of cache.

4.1 Server and Library Code

Our first experiments measure the improvement given by RWset analysis on
five medium-sized open-source benchmarks previously used to evaluate the base

RWset: Attacking Path Explosion in Constraint-Based Test Generation 361

Table 2. Number of tests in RWset mode necessary to achieve the same coverage as
in the base system

Base RWset
Branches Tests % tests needed

tcpdump 123 2175 11.4%
bpf 171 6333 16.2%
expat 472 677 31.1%
udhcpd 166 225 49.7%
pcre 1268 26,596 72.2%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

bpf

RWset
Base

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

expat

RWset
Base

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

pcre

RWset
Base

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

tcpdump

RWset
Base

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

udhcpd

RWset
Base

Fig. 3. Distinct explored states over number of test cases for the base system versus
the RWset version for the server and library code benchmarks. With the exception
of PCRE, the base system without RWset wastes much of it time exploring provably
redundant states.

version of EXE [4]: bpf, the Berkeley Packet Filter; udhcpd, a DHCPD server;
expat, an XML parser library; tcpdump, a tool for printing out headers of net-
work packets matching a boolean expression; and pcre, the Perl Compatible
Regular Expression library.

We ran each of these benchmarks for roughly 30 minutes each with the base
version of EXE, and recorded: (1) the (maximum) branch coverage achieved,
and (2) how many test cases were necessary to achieve this coverage (note that
sometimes we generate more than this number of test cases in 30 minutes, but
the extra tests don’t hit any new branches). The one exception was PCRE, which
we ran longer until it generated 30,000 test cases in order to have a meaningful
comparison between the base and RWset versions. The second column of Table 2
gives the number of branches hit by these runs and the third column gives the
number of test cases.

362 P. Boonstoppel, C. Cadar, and D. Engler

We then reran each benchmark using the RWset version of EXE and recorded
the number of test cases necessary to achieve the same coverage as the base
version did in half an hour. The last column of Table 2 gives the percentage of
test cases needed for the RWset version to match the coverage from the base
run. As the table shows, the improvement can be substantial: tcpdump only needs
11.4% the number of test cases to get equivalent coverage (249 vs 2175 tests)
and bpf needs 16%. In fact, with the exception of pcre, all benchmarks need
less than half the number of test cases with the RWset version.

We also measured the number of distinct states visited by the RWset version
relative to the base. The graphs, shown in Figure 3, indicate that without RWset
analysis the system wastes enormous resources constantly revisiting redundant
states, thus generating many irrelevant test cases.

Finally, we measured the runtime overhead of our RWset implementation by
running an EXE version that performs all computations RWset requires (con-
structing readsets and writesets, checking for cache hits), but without pruning
any paths. Thus, this version generates exactly the same tests as the base version
of EXE, while paying the full cost of RWset analysis. Our measurements show
that for all benchmarks the average overhead is at most 4.38%.

4.2 Device Drivers

We also checked OS-level code by applying EXE to three Minix device drivers.
Minix 3 [16, 10], is an open source, Unix-like, microkernel-based operating sys-
tem, with a kernel of under 4000 lines of code, and almost all functionality –
including device drives – running in user space. 1

Drivers make up the bulk of modern operating systems and are notoriously
buggy [1, 15]. Drivers are an interesting case for systems such as EXE because,
while drivers ostensibly require a physical version of the device they are intended
to drive, they only interact with the device through memory-mapped I/O, which
mechanically looks like a memory array with special read and write semantics.
Thus, we can effectively test a driver by marking this array as symbolic and
running the driver inside our symbolic environment.

The Minix driver interface makes this approach easy to apply. Minix drivers
are built as standalone processes that use a small message-passing interface to
communicate with the rest of the system. Their organization mirrors that of
many network servers: a main dispatch loop that waits for incoming messages
from other processes, the kernel or the hardware (the kernel translates hardware
interrupts into messages as well) and processes the incoming requests. Thus,
applying EXE to these drivers was relatively easy: for each read the driver does,
we just return a symbolic message.

We made two modifications to the driver code. First, we performed simple
“downscaling,” such as reducing data buffer sizes, which only required changing

1 We have a lot of experience checking Linux drivers but switched to Minix because
of the first author’s affiliation with the Minix group. We do not expect our results
to change for Linux.

RWset: Attacking Path Explosion in Constraint-Based Test Generation 363

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 500 1000 1500 2000 2500

B
ra

nc
h

co
ve

ra
ge

 (
%

)

Number of test cases

lance

RWset
Writeset

Base

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1000 2000 3000 4000 5000 6000 7000 8000

B
ra

nc
h

co
ve

ra
ge

 (
%

)

Number of test cases

pci

RWset
Writeset

Base

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 500 1000 1500 2000 2500 3000

B
ra

nc
h

co
ve

ra
ge

 (
%

)

Number of test cases

sb16

RWset
Writeset

Base

Fig. 4. Branch coverage (in percentage) over the number of test cases generated for
the device drivers, comparing the base version of EXE and the RWset version with and
without the use of readsets. In the first two cases, the full RWset system quickly gets
branch coverage dramatically beyond that of the base system or writeset alone.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

lance

RWset
Base

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1000 2000 3000 4000 5000 6000 7000 8000

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

pci

RWset
Base

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

D
is

tin
ct

 e
xp

lo
re

d
st

at
es

Number of test cases

sb16

RWset
Base

Fig. 5. Distinct explored states over number of test cases generated for the device
drivers, comparing the base and the RWset versions of EXE. As with the server exper-
iments, RWset typically both explores many more distinct states than the base system
and does so very quickly.

a few constant values in header files. Second, we fixed the number of iterations in
the dispatch loop and limited the search depth (expressed in number of symbolic
branches). These latter changes were needed in order to do a better comparison
between the base and the RWset versions of EXE. Without them, the base
version gets stuck in infinite cycles. As a result of these changes, our experiments
underestimate the improvement given by the RWset technique.

We run each device driver for one hour in three modes. As before, we use
the base and the RWset versions of EXE. In addition, we also measure the
effectiveness of using the readset to filter irrelevant state details by disabling
this step and only pruning paths when states are exactly equal (writeset).

We statically counted the total number of branches in each driver (using a
compiler pass) and then, for the three runs, recorded the branches hit by each
generated test case. Figure 4 uses this data to plot the cumulative percentage of
code branches covered by the given number of test cases. As the figure shows: (1)
the RWset version outperforms the base version and (2) a lot of this improvement
comes from the readset filtering. For lance and pci, the base version keeps
visiting the same branches, and cannot achieve more than 40% branch coverage
in the first hour. In the case of sb16, the base version does not fare as poorly,
although it still doesn’t achieve as much coverage as the RWset version.

364 P. Boonstoppel, C. Cadar, and D. Engler

Figure 4.2 shows the number of distinct states visited by the base and the
RWset versions of EXE. The most striking feature of the graph is how quickly
the base version gets stuck, repeatedly visiting states that are provably the same
and thus generating large numbers of redundant test cases.

While testing these device drivers, we also checked for bugs. Unsurprisingly,
the bug count improves with the amount of branch coverage achieved. While we
only looked for simple low-level errors (such as assert() failures, null pointer
dereferences, buffer overflows and out-of-bounds errors) the RWset version still
found thirteen unique, confirmed bugs. On the other hand, the base version of
EXE missed all but four of these.

5 Related Work

The idea for RWset was inspired by two bug-finding systems the authors were
involved with [9, 18]. The first system [9] statically found bugs by pushing user-
written compiler extensions down all paths in a checked program. For scalability,
it tracked the internal state of these checkers and stopped exploring paths when
a basic block was revisited in the same state. We reused this caching idea to
do path truncation dynamically. In retrospect, adding a variation of the readset
calculation presented in this paper would have likely made a big improvement
in this static system since it would allow it to discard many more paths in a
simple way, and transparently scale up with the power of any underlying path-
sensitivity added to the system. The second system [18] provided the idea of using
read and write sets when computing state equivalence. It dynamically computed
such information in terms of the disk blocks a file system repair program read
and wrote as a way to determine when crashing and restarting such a program
during repair would compute identical results to not crashing. The use of read
and write sets let it save enormous amounts of work, leading us to try a similar
approach for memory (rather than disk) in our more general checking context.

Recent work on constraint-based execution tools have approached the path
explosion problem in a variety of ways. Two methods that use heuristics to
guide path exploration are [4] (which attempts to explore paths that hit less-
often executed statements) and [13] (which combines symbolic execution with
random testing). We view these techniques as largely complementary to the
RWset analysis: one can use RWset analysis to discard irrelevant paths and then
use these techniques to prioritize the residue.

Another approach, which like RWset analysis uses a static analysis-inspired
technique to attack path explosion, tests code compositionally by reusing func-
tion summaries [7]. Roughly speaking, it does a bottom-up analysis that records
the result of analyzing a function at a given callsite and, if it encounters another
call to the same function with the same inputs, reuses the result of this analysis.
If we regard program suffixes as functions taking as arguments the current state
of the program, then [7] becomes equivalent to our RWSet technique without
the readset refinement. We believe the function summary approach could also
use a variation of readsets to prune out irrelevant details, and thus both get
more summary hits and remove unneeded path constraints.

RWset: Attacking Path Explosion in Constraint-Based Test Generation 365

More generally, the idea of pruning equivalent states is an old one and has
shown up in many different situations. A context closely related to ours is the
use of state caching in explicit state model checking (e.g., [17]), which tracks
the states generated by an abstract model of a system and does not explore
the successors of an already-seen state. State caching is often improved through
dead variable elimination. In most systems, this is accomplished by running a
standard static live variable analysis before model checking begins, as in SPIN
and Bebop [11, 2]. In [12], the system uses runtime information to eliminate
infeasible paths at various points in the program in order to improve the results
of the static live variable analysis. While such pruning helps, we expect the
significant imprecision inherent to a static live variable forces this approach to
miss many pruning opportunities. However, comparing the two techniques is
hard as the benchmarks used in [12] seem to be on the order of a hundred lines
of code or less, with at most three loops per program.

We note that while in hindsight it may appear clear that state caching is
worth applying to constraint-based tools, the context seems different enough
that, while all authors of such tools that we talked to complained about the
path explosion problem, no one suggested using a state-caching approach.

A final model checking technique related to RWset analysis is partial order
reduction [6], which skips redundant states by exploiting the fact that if two ac-
tions are independent then the order in which they occur does not matter. The
two approaches should work well together: partial order reduction is a “horizon-
tal” approach that eliminates path interleavings, while the RWset technique is
a “vertical” one that truncates the remaining paths.

6 Conclusion

While constraint-based execution is a promising approach for automatically gen-
erating test cases to cover all program paths, it faces significant scalability chal-
lenges for checking large applications. This paper introduces RWset analysis, a
technique for detecting and pruning large numbers of redundant paths. RWset
analysis tracks all the reads and writes performed by the checked program and
uses this information to truncate a path as soon as it determines that the path
will execute equivalently to some previously explored one.

We measured the effectiveness of our RWset implementation by applying it
to server, library, and device driver code. Our results show that RWset analysis
can reduce the tests needed to reach a given number of branches by an order of
magnitude, and often achieves branch coverage out-of-reach for the base version
of the system, which easily gets stuck revisiting provably redundant states.

References

[1] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. In: EuroSys (April 2006)

366 P. Boonstoppel, C. Cadar, and D. Engler

[2] Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885,
Springer, Heidelberg (2000)

[3] Cadar, C., Engler, D.: Execution generated test cases: How to make systems
code crash itself. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23.
Springer, Heidelberg (2005)

[4] Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE: Automatically
generating inputs of death. In: Proceedings of the 13th ACM Conference on Com-
puter and Communications Security (October-November 2006)

[5] Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

[6] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, New York (1996)

[7] Godefroid, P.: Compositional dynamic test generation. In: Proceedings of the
34th Symposium on Principles of Programming Languages (POPL 2007) (January
2007)

[8] Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random test-
ing. In: Proceedings of the Conference on Programming Language Design and
Implementation (PLDI), Chicago, IL USA, ACM Press, New York (June 2005)

[9] Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building
system-specific, static analyses (2002)

[10] Herder, J.N.: Towards a true microkernel operating system. Master’s thesis, Vrije
Universiteit Amsterdam (2005)

[11] Holzmann, G.J.: The engineering of a model checker: The Gnu i-protocol case
study revisited (1999)

[12] Lewis, M., Jones, M.: A dead variable analysis for explicit model checking. In:
In Proceedings of the ACM SIGPLAN 2006 Workshop on Partial Evaluation and
Program (2006)

[13] Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE 2007) (May 2007)

[14] Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
In 5th joint meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2005) (September 2005)

[15] Swift, M.M., Annamalai, M., Bershad, B.N., Levy, H.M.: Recovering device
drivers. In: OSDI, pp. 1–16 (December 2004)

[16] Tanenbaum, A.S., Woodhull, A.S.: Operating Systems Design and Implementa-
tion, 3rd edn. Prentice Hall, Englewood Cliffs (2006)

[17] Stern, U., Dill, D.L.: Improved Probabilistic Verification by Hash Compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995)

[18] Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors (December 2004)

Demand-Driven Compositional

Symbolic Execution

Saswat Anand1,�, Patrice Godefroid2, and Nikolai Tillmann2

1 Georgia Institute of Technology,
saswat@cc.gatech.edu
2 Microsoft Research,

{pg,nikolait}@microsoft.com

Abstract. We discuss how to perform symbolic execution of large pro-
grams in a manner that is both compositional (hence more scalable) and
demand-driven. Compositional symbolic execution means finding feasi-
ble interprocedural program paths by composing symbolic executions
of feasible intraprocedural paths. By demand-driven, we mean that as
few intraprocedural paths as possible are symbolically executed in order
to form an interprocedural path leading to a specific target branch or
statement of interest (like an assertion). A key originality of this work is
that our demand-driven compositional interprocedural symbolic execu-
tion is performed entirely using first-order logic formulas solved with an
off-the-shelf SMT (Satisfiability-Modulo-Theories) solver – no procedure
in-lining or custom algorithm is required for the interprocedural part.
This allows a uniform and elegant way of summarizing procedures at
various levels of detail and of composing those using logic formulas.

We have implemented a prototype of this novel symbolic execution
technique as an extension of Pex, a general automatic testing framework
for .NET applications. Preliminary experimental results are encouraging.
For instance, our prototype was able to generate tests triggering assertion
violations in programs with large numbers of program paths that were
beyond the scope of non-compositional test generation.

1 Introduction

Given a sequential program P with input parameters
−→
I , the test generation

problem consists in generating automatically a set of input values to exercise as
many program statements as possible. There are essentially two approaches to
solve this problem. Static test generation [15,22,7] consists in analyzing the pro-
gram P statically, using symbolic execution techniques to attempt to compute
inputs to drive P along specific paths or branches, but without ever executing the
program. In contrast, dynamic test generation [16,11,5] consists in executing the
program, typically starting with some random inputs, while simultaneously per-
forming a symbolic execution to collect symbolic constraints on inputs obtained
from predicates in branch statements along the execution, and then using a con-
straint solver to infer variants of the previous inputs in order to steer program
� The work of this author was done mostly while visiting Microsoft Research.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 367–381, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 S. Anand, P. Godefroid, and N. Tillmann

executions along alternative program paths. Since dynamic test generation ex-
tends static test generation with additional runtime information, it can be more
powerful [11,10], and is therefore used as the basis of this work.

As recently pointed out [10], automatic test generation (whether static or dy-
namic) does not scale to large programs with many feasible program paths, unless
test generation is performed compositionally. Inspired by interprocedural static
analysis, compositional test generation consists in encoding test results of lower-
level functions with test summaries, expressed using preconditions over function
inputs and postconditions over function outputs, and then re-using those sum-
maries when testing higher-level functions. In contrastwith traditional interproce-
dural static analysis, the framework introduced in [10] involves detailed summaries
where function preconditions and postconditions are represented using logic for-
mulas, and the interprocedural analysis (test generation) is performed using an
automated theorem prover. A key component of this approach is thus composi-
tional symbolic execution: how to find feasible interprocedural program paths by
composing symbolic executions of feasible intraprocedural paths, represented as
logic “summaries”.

In this paper, we develop compositional symbolic execution further. We present
a detailed formalization of how to generate first-order logic formulas with uninter-
preted functions in order to represent function summaries and allow compositional
symbolic execution using a SMT (Satisfiability-Modulo-Theories) solver. Our for-
malization generalizes the one of [10] as it allows incomplete summaries (which
correspond to only a subset of all paths of a function) to be expanded lazily on
a demand-driven basis, instead of being expanded in the fixed “innermost-first”
order described in [10]. With demand-driven symbolic execution, as few intrapro-
cedural paths as possible are symbolically executed in order to form an interpro-
cedural path leading to a specific target branch or statement of interest (like an
assertion). This increased flexibility also allows test generation to adapt dynam-
ically, as more statements get covered, in order to focus on those program state-
ments that are still uncovered. In practice, real-life software applications are very
complex, and allowing the search to be demand-driven is often key to reach a spe-
cific target in a reasonable time. It is also useful for selective regression testing
aimed at generating tests targeted to cover new code embedded in old code.

We have implemented a prototype of demand-driven compositional symbolic
execution as an extension of Pex [20], a general automatic testing framework
for .NET applications. Preliminary experimental results are encouraging. For
instance, our prototype implementation was able to generate tests triggering
assertion violations in programs with large numbers of program paths that were
beyond the scope of non-compositional test generation.

2 Background

We assume we are given a sequential program P with input parameters
−→
I .

Symbolic execution of P means symbolically exploring the tree T defined by the
execution paths of the program when considering all possible value assignments

Demand-Driven Compositional Symbolic Execution 369

to input parameters. For each execution path ρ, i.e., a sequence of statements
executed by the program, a path constraint φρ is constructed that characterizes
the input assignments for which the program executes along ρ. Each variable
appearing in φρ is thus a program input, while each constraint is expressed in
some theory T decided by a constraint solver (for instance, including linear arith-
metic, bit-vector operations, etc.). A constraint solver is an automated theorem
prover which also returns a satisfying assignment for all variables appearing in
formulas it can prove satisfiable. All program paths can be enumerated by a
search algorithm that explores all possible branches at conditional statements.
The paths ρ for which φρ is satisfiable are feasible and are the only ones that
can be executed by the actual program. The solutions to φρ exactly character-
ize the inputs that drive the program through ρ. Assuming that the constraint
solver used to check the satisfiability of all formulas φρ is sound and complete,
this use of symbolic execution for programs with finitely many paths amounts
to program verification.

In practice, symbolic execution of large programs is bound to be imprecise
due to complex program statements (pointer manipulations, floating-point op-
erations, etc.) and calls to operating-system and library functions that are hard
or impossible to reason about symbolically with good enough precision at a
reasonable cost. Whenever precise symbolic execution is not possible during dy-
namic test generation, concrete values can be used to simplify constraints and
carry on with a simplified, partial symbolic execution [11].

Systematically executing symbolically all feasible program paths does not
scale to large programs. Indeed, the number of feasible paths can be exponential
in the program size, or even infinite in presence of loops with unbounded num-
ber of iterations. This path explosion can be alleviated by performing symbolic
execution compositionally [10].

Let us assume the program P consists of a set of functions. In what follows,
we use the generic term of function to denote any part of the program P whose
observed behaviors are summarized; obviously, any other kinds of program frag-
ments such as arbitrary program blocks or object methods can be treated as
“functions” as done in this paper. To simplify the presentation, we assume that
the functions in P do not perform recursive calls, and that all the executions
of P terminate. (These assumptions do not prevent P from possibly having in-
finitely many executions paths, as is the case if P contains a loop whose number
of iterations may depend on some unbounded input.)

In compositional symbolic execution [10], a function summary φf for a func-
tion f is defined as a formula in propositional logic whose propositions are con-
straints expressed in some theory T . φf can be derived by successive iterations
and defined as a disjunction of formulas φw of the form φw = prew ∧ postw,
where prew is a conjunction of constraints on the inputs of f while postw is a
conjunction of constraints on the outputs of f . φw can be computed from the
path constraint corresponding to the execution path w as described later. An
input to a function f is any value that can be read by f in some of its execu-
tions, while an output of f is any value written by f in some of its executions

370 S. Anand, P. Godefroid, and N. Tillmann

in t abs (i n t x){ i n t testAbs (i n t p , i n t q){
i f (x > 0) r e turn x ; i n t m = abs (p) ;
e l s e i f (x == 0) in t n = abs (q) ;

r e tu rn 100 ; i f (m > n && p > 0)
e l s e r e turn −x ; a s s e r t f a l s e ; // t a r g e t

} }

Fig. 1. Example program

and later read by P after f returns. To simplify the presentation, we assume
in what follows that each function takes a fixed number of arguments as inputs
and returns a single value.

3 Motivating Example and Overview

To illustrate the motivation for demand-driven compositional symbolic execution,
consider the simpleprogram inFig. 1,whichconsists of a top-level functiontestAbs
which calls another function abs. Intraprocedural execution trees for each function
are shown in Fig. 2. Each node in such trees represents the execution of a program
statement such that a path from the root of the tree to a leaf corresponds to an in-
traprocedural path. Each such path can be identified by its leaf node. Edges in exe-
cution trees are labeled with constraints expressed in terms of the function inputs.
The conjunction of constraints labeling the edges of a path represents its associ-
ated path constraint as defined earlier. For example, Fig. 2(a) shows the (partial)
execution tree of function abs, shown in Fig. 1, after the execution of abs with a
single input x=1. In what follows, we call a node dangling if it represents a path that
has not been exercised yet. For example, after executing the abs with input x=1,
any path on which the input is less than or equal to 0 is not exercised. In Fig. 2(a),
the sole dangling node is denoted by a circle.

The demand-driven compositional symbolic execution we develop in this work
has two key properties: given a specific target to cover, it tries to (1) explore as
few paths as possible (called lazy exploration) and to (2) avoid exploring paths
that can be guaranteed not to cover the target (called relevant exploration). We
now illustrate these two features.

Lazy Exploration. Assume that we first run the program of Fig. 1 by execut-
ing the function testAbs with p=1 and q=1. This first execution will exercise
the then branch of the first conditional statement in abs (node 3), as well as the
else branch of the conditional statement in testAbs (node 10). The execution
trees of abs and testAbs resulting from this execution are shown in Fig. 2(a)
and (c), respectively. Suppose we want to generate a test input to cover node 11,
corresponding to the assertion in testAbs. The search ordering described in [10]
is not target-driven and would attempt to next exercise the unexplored paths in
the innermost, lower-level function abs. In contrast, the more flexible formaliza-
tion introduced in the next section allows us to check whether a combination of
currently-known fully-explored intraprocedural paths are sufficient to generate

Demand-Driven Compositional Symbolic Execution 371

(a) abs, {<1>}

9

10 11

(c) testAbs, {<1,1>}

4

65

8

return 100

if(x == 0)

return −x

7

(b) abs, {<1>, <0>,<−1>}

return x

1

3
return x

if(x > 0)

if(x > 0)

2

abs(p)>abs(q)∧
p>0

abs(p)≤abs(q)∨
p≤0

x > 0x ≤ 0

x = 0 x �= 0

x > 0x ≤ 0

Fig. 2. Execution trees for the functions abs and testAbs from Fig. 1. Each execution
tree represents paths exercised by a set of test inputs shown as vectors inside the curly
braces.

a new test input covering the target node. In this example, this is the case as
the assertion can be reached in testAbs without exploring new paths in abs, for
instance with values p=2 and q=1.

Relevant Exploration. Now, assume we first execute the program with inputs
p=0 and q=1. Suppose our target is again node 11 corresponding to the assert
statement. From the condition guarding the assert statement, observe that any
combination of input values for p and q where p has a non-positive value has
no chance to cover the target. As we will see, our proposed algorithm is able
to infer such information automatically from the previous execution with inputs
p=0 and q=1, and will thus prune automatically the entire sub-search tree where
p is not greater than 0.

4 Demand-Driven Compositional Symbolic Execution

4.1 Main Algorithm

Algorithm 1 outlines our test-generation algorithm. Given a program P, Algo-
rithm 1 iteratively computes a set of test inputs to cover all reachable statements
in P. The algorithm starts with an empty set of intraprocedural execution trees,
and a random program input. It performs two steps in sequence until all reach-
able nodes in the program have been explored. (1) Function Execute executes
the program with some test input, both normally and symbolically. During sym-
bolic execution of the specific path exercised by the test input, new nodes and
edges with constraint labels are added to the intraprocedural execution trees
of the individual program functions being executed, while dangling nodes, used
as place-holders along this specific path in previous executions, become regular
nodes. (2) ChooseDanglingNode chooses a dangling node as the next target to
be covered, using any heuristic (search strategy). If there is no dangling node

372 S. Anand, P. Godefroid, and N. Tillmann

input : Program P
output: A set of test inputs

exTrees ← emptyExTree ;
input ← RandomInput();
repeat

if input �= emptyModel then
exTrees ← Execute(P, input, exTrees);
OutputTest(input);

else
RemoveDanglingNode(n);

end
n ← ChooseDanglingNode(exTrees);
if n �= nil then

input ← FindTestInput(exTrees, n);
end

until n = nil ;
return;

Algorithm 1. Test-input generation algorithm

remaining, the algorithm terminates. Otherwise, FindTestInput computes a test
input to cover the target, as will be described next.

4.2 Compositional Symbolic Execution

In compositional symbolic execution, the condition under which a node in a
function can be reached from the program’s entry point is the conjunction of (1)
the condition under which the function’s entry node can be reached, referred to
as calling context ; and (2) the condition under which the node can be reached
within its function, referred to as the local (intraprocedural) path constraint.

Local (Intraprocedural) Path Constraint. The local path constraint of
a node n in the intraprocedural execution tree Tf of function f is defined as
the path constraint of the path w from the entry node of f to the statement
represented by n. The local path constraint of node n, represented by localpc(n),
is expressed in terms of the input parameter symbols

−→Pf of f and represents a
precondition pre(w) for execution of the path w [10]. It is defined as follows.

localpc(n) := lpcn ∧
∧

for each g(−→a) appearing in lpcn

Dg(−→a)

where lpcn is the conjunction of constraints appearing on the edges of the path
w from the root of Tf to n, and each definition predicate Dg(−→a) represents
the (possibly partial) summary currently available for function g, called from f
with −→a as arguments, and mentioned in lpcn. Definition predicates are formally
defined as follows.

Demand-Driven Compositional Symbolic Execution 373

Definition predicate. When function f calls function g during symbolic execu-
tion, we treat the return value of the function call to g as a (fresh) symbolic input
to f . We represent the return value by the expression g(−→a), where −→a are the
arguments expressed in terms of

−→Pf . If the return value is used in a conditional
statement of f , then g(−→a) appears in the path constraint. The function symbol
g will be treated as an uninterpreted function symbol by the constraint solver,
and we restrict possible interpretations by an axiom of the form ∀x. g(x) = E[x],
where E[x] is an expression that may involve the bound variable x. As an ex-
ample, for the abs function in Fig. 1, abs can be defined as follows (where ITE
denotes the If-Then-Else construct):

∀x. abs(x) = ITE(x > 0, x, ITE(x = 0, 100, −x))

However, return values on some paths of a function may be currently unknown
since paths are explored incrementally and on-demand. In those cases, we cannot
use the above encoding directly. We could use a special undefined value that
represents the result of an unexercised path, and lift all operations accordingly.
Instead, we use a definition-predicate Dg for each function symbol that represents
the return value of a function call. We define this predicate with the axiom δg

as follows.

δg := ∀−→Pg. Dg(
−→Pg) ⇔

∨

leaf l in Tg

localpc(l) ∧ ret(l)

where

ret(l) :=
{Gl if l is a dangling node

g(
−→Pg) = Retg(l) otherwise

In the above definition, Retg(l) represents the return value of g, which is an
expression in terms of

−→Pg, on the fully-explored intraprocedural path represented
by l. For each dangling node d, Gd represents an auxiliary boolean variable that
uniquely corresponds to d; we use these boolean variables in Sec. 4.3 to control
the search by specifying whether the exploration of a new execution path through
a dangling node is permissible.

For the example shown in Fig. 1, suppose we execute testAbs with p = 1 and
q = 1. The execution trees for abs and testAbs obtained from this input are
shown in Fig. 2(a) and (c) respectively. Now, the local path constraint of the
node n, labeled 11 in the figure, will be as follows.

localpc(n) := abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q)

With the above input, since only the path where x > 0 has been explored in
abs, there is a dangling node d , labeled 2, which represents the (unexplored)
else branch of the conditional statement. The definition predicate Dabs is then
defined by the following axiom.

δabs := ∀x. Dabs(x) ⇔ ITE(x > 0, abs(x) = x, Gd)

374 S. Anand, P. Godefroid, and N. Tillmann

If all the paths of abs had been explored (as shown in Fig. 2(b)), its definition-
predicate axiom would instead be as follows.

δabs := ∀x. Dabs(x) ⇔ (x ≤ 0 ∧ x = 0 ∧ abs(x) = 100)
∨(x ≤ 0 ∧ x �= 0 ∧ abs(x) = −x)
∨(x > 0 ∧ abs(x) = x)

= ∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x) = 100, abs(x) = −x),
abs(x) = x)

Note that, with the specific innermost-first search order used in [10] for incre-
mentally computing summaries, dangling and target nodes are always in the
current innermost function in the call stack and the above formalization of par-
tial summaries can then be simplified. In contrast, the formalization presented
here is more general as it allows dangling nodes and target nodes to be located
anywhere in the program.

Calling-context Predicate. The calling-context predicate associated with a
function f describes under which conditions, and with which arguments, f can be
reached. The calling-context predicate of function f , written as Cf (−→a), evaluates
to true iff on some program path f can be called with arguments −→a . Cf (−→a) is
defined by the calling-context axiom γf as follows.

γf :=

⎧
⎪⎨

⎪⎩

∀−→a . Cf (−→a) ⇔ −→a =
−→
I if f is entry function of program P

∀−→a . Cf (−→a) ⇔
∨

for each
function g in P

Cg
f (−→a) otherwise

with
Cg

f (−→a) := ∃−→Pg. Cg(
−→Pg) ∧ (knownCg

f (−→a) ∨ unknownCg)

where

knownCg
f (−→a) :=

∨

m∈callsites(Tg ,f)

−→a = args(m) ∧ localpc(m)

unknownCg :=
∨

dangling node d in Tg

localpc(d) ∧ Gd

We distinguish two cases in γf . First, if f is the entry function of the program
P , then the arguments of f are the program inputs

−→
I . Otherwise, Cf (−→a) is true

iff f can be called from some function g with arguments −→a . Cg
f (−→a) represents

the condition under which g may call f with arguments −→a . Cg
f (−→a) in turn

evaluates to true iff (1) g itself can be called with arguments
−→Pg; and either (2.a)

f can be called from g in a known call site denoted by m ∈ callsites(Tg, f) with
arguments −→a = args(m), where args(m) denote the arguments (in terms of

−→Pg)
passed to call at m; or (2.b) f might be called (with unknown arguments) on a
path in g, represented by a dangling node d, that has not been explored so far.
In either case, the local path constraint localpc(m) leading to the known call

Demand-Driven Compositional Symbolic Execution 375

site m or localpc(d) leading to a possible call site d, respectively, is appended as
a condition necessary to reach the respective call site.

Consider again the program shown in Fig. 1 with testAbs as the top-level
entry function. The calling-context predicate for testAbs is then defined by the
following axiom.

γtestAbs := ∀p, q. CtestAbs(p, q) ⇔ p =
−→
I (0) ∧ q =

−→
I (1).

For the function abs, the definition of the calling-context predicate is more com-
plicated because abs can be called twice in testAbs. Suppose the execution
trees of abs and testAbs are as shown in Fig. 2(b) and (c) respectively. For
both known call-sites of abs in testAbs, where p and q are passed as arguments,
localpc evaluates to true. And, there is one unknown call-site, which is repre-
sented by the dangling node d (labeled 11). For d, we have localpc(d) := abs(p) >
abs(q)∧ p > 0 ∧ Dabs(p) ∧ Dabs(q). Now, Cabs(a) is defined by the axiom γabs as
follows.

γabs := ∀a. Cabs(a) ⇔ CtestAbs
abs (a)

CtestAbs
abs (a) := ∃p, q. CtestAbs(p, q) ∧ (a = p ∨ a = q

∨(abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ Gd))

Note that an existential quantification is used in Cg
f to limit the scope of pa-

rameter symbols Pg to specific call-sites. However, this existential quantification
can be eliminated by skolemization since it always appears within the scope of
the universal quantifier in the definition of γf .

Also note that the formalization proposed in [10] does not require calling-
context predicates because it only supports a fixed inner-most ordering in which
intraprocedural paths are explored. Since we relax here the restriction on the
exploration ordering so that paths can be explored in any order on-demand,
calling-context predicates become necessary.

Interprocedural path constraint. Given a node n in the intraprocedural ex-
ecution tree Tf of a function f , path constraints of interprocedural paths leading
to n are represented by Ψn, which is defined recursively as follows:

Ψn = localpc(n) ∧ Cf (
−→Pf) ∧

∧

Cg(−→a) appears in Ψn

γg ∧
∧

g(−→a) appears in Ψn

δg

Ψn represents the disjunction of path constraints of all interprocedural paths to
target n that can be formed by joining intraprocedural paths, represented by
execution trees of different functions. (Disjunctions arise from the definitions of
γg and δg.) An intraprocedural path p in Tf can be joined with an intraprocedural
path q in Tg, if either (1) p ends at a leaf node (possibly a dangling node) in Tf ,
and q starts at a node in Tg corresponding to a call-site of f in g; or, (2) p ends
at a node representing a call-site of g in f and q starts at the entry-node of Tg;
or, (3) p ends at a dangling node, and q starts from the entry-node of Tg, where
g is any arbitrary function.

376 S. Anand, P. Godefroid, and N. Tillmann

With compositional symbolic execution, the size of an interprocedural path
constraint is linear in the sum of the sizes of the execution trees Tf [10].

Examples. As our first example, suppose the execution trees for abs and
testAbs are as shown in Fig. 2(b) and (c), respectively. If the target is the
node labeled 11, then the interprocedural path constraint is as follows.

abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ p > 0 ∧ CtestAbs(p, q)∧
∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x)= 100, abs(x)= −x), abs(x)= x)

∧
∀p, q. CtestAbs(p, q) ⇔ p =

−→
I (0) ∧ q =

−→
I (1)

As another example, suppose the execution trees for abs and testAbs are again
as shown in Fig. 2(b) and (c), respectively. Now if the target is node labeled
2, the path constraint is as follows (where G11 represents the unique boolean
variable corresponding to the dangling node labeled 11):

x ≤ 0 ∧ Cabs(x)∧
∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x)= 100, abs(x)= −x), abs(x)= x)∧
∀a. Cabs(a) ⇔ ∃p, q. CtestAbs(p, q) ∧ (a = p ∨ a = q

∨(abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ G11))
∧

∀p, q. CtestAbs(p, q) ⇔ p =
−→
I (0) ∧ q =

−→
I (1)

4.3 Demand-Driven Symbolic Execution

In compositional symbolic execution, interprocedural paths are formed by com-
bining intraprocedural paths. To allow compositional symbolic execution to be
demand-driven, we allow in this work (unlike [10]) interprocedural paths to be
formed by combining intraprocedural paths that end in dangling nodes. We call
an interprocedural path partially-explored iff it goes through one or more dan-
gling nodes; otherwise we call the path fully-explored. Note that a fully-explored
path may end at, but not go through, a dangling node.

Algorithm 2 is used to find a feasible, interprocedural path from the entry
of the program to a target node using demand-driven compositional symbolic
execution. The algorithm corresponds to the subroutine FindTestInput in Al-
gorithm 1. It takes as input a set of intraprocedural execution trees exTrees,
and a dangling node n in one of these execution trees, which is the target to
cover. It returns either (1) a designated value emptyModel representing the fact
that the target node is unreachable, or (2) program inputs

−→
I that exercises a

path that may cover the target. The algorithm calls an SMT solver by invoking
the function FindModel(Ψ), which returns a model for the path constraint Ψ
if it is satisfiable, or returns emptyModel otherwise. G(Ψ) represents the set of
all boolean flags that appear in the path constraint Ψ , each of which uniquely
corresponds to a dangling node in exTrees. The algorithm first computes the
interprocedural path constraint for the target node n in exTrees as presented in
Sec. 4.2. Then it performs two steps, referred to as lazy exploration and relevant
exploration in what follows.

Demand-Driven Compositional Symbolic Execution 377

input : Set of execution trees exTrees, target node n to be covered
output: Program inputs that may cover n, or emptyModel if the target is

unreachable

Ψn ← InterprocPC(n,exTrees);
input ← FindModel(Ψn ∧

∧

Gd∈G(Ψn)∧d �=n

Gd = false);

if input = emptyModel then
input ← FindModel(Ψn);

end
return input ;

Algorithm 2. Demand-driven, compositional FindTestInput algorithm

Lazy Exploration. In this step, the algorithm checks if it is possible to form
a feasible, fully-explored, interprocedural path to n by combining only (fully-
explored) intraprocedural paths in exTrees. To do so, it computes a constraint
that represents the disjunction of the path constraints of all such paths and
checks its satisfiability. The new constraint is formed by conjoining Ψn with
equations that set all variables but Gn in G(Ψn) to false so that all intrapro-
cedural paths that end at a dangling node other than n are made infeasible. If
the augmented constraint is satisfiable, FindModel returns a program test input
that is guaranteed to cover the target (provided symbolic execution has perfect
precision). Otherwise, we need to explore new partially-explored intraprocedural
paths, which is done in the next step.

Relevant Exploration. We say that a partially-explored, interprocedural path
is relevant if it ends at the target. In other words, such a path starts at the
program entry, goes through one or more dangling nodes, finally taking the
path from the root node of Tf to the target node n, where Tf represents the
execution tree of function f where n is located. In this second step, the algorithm
checks if a feasible relevant path can be formed by combining all (both fully-
explored and partially-explored) intraprocedural paths in exTrees. To do so, the
algorithm checks satisfiability of Ψn with a second call to FindModel. If Ψn is
unsatisfiable, the algorithm returns emptyModel representing unreachability of
the target. Otherwise, it returns a program input that might exercise a path to
the target. This time, the boolean variables in G(Ψn) are not constrained to any
specific value as is done in the previous step. As a result, the constraint solver
assigns true to a boolean variable if the path to the corresponding dangling node
is used to form the interprocedural path to the target. Such a relevant path is
not guaranteed to reach the target, since the program’s behavior at dangling
nodes, which may appear on a relevant path, is currently unknown.

The following theorems characterize the correctness of the above algorithms.
These theorems hold assuming symbolic execution has perfect precision, i.e., that
constraint generation and solving is both sound and complete for all program
statements. (Proofs are omitted due to space limitations.)

378 S. Anand, P. Godefroid, and N. Tillmann

Theorem (Relative Completeness). If Algorithm 2 returns emptyModel,
then the target n is unreachable.

Theorem (Progress). If Algorithm 2 returns a program input
−→
I (different

from emptyModel), then the execution of the program with
−→
I exercises a new

intraprocedural path (i.e., at least one dangling node is removed from exTrees).

Theorem (Termination). If the program has a finite number of paths, Algo-
rithm 1 terminates.

5 Preliminary Experiments

We have implemented a prototype of demand-driven compositional symbolic ex-
ecution in Pex [20], a general automatic testing framework for .NET programs.
Pex generates test inputs for parameterized unit tests [21] by performing a varia-
tion of dynamic [11] test generation using the SMT constraint solver Z3 [8]. Pex’
goal is to analyze as many feasible execution paths of a given .NET program
as possible in a given amount of time. During the search, Pex picks the next
target node using a scheduling algorithm that is fair between all dangling nodes.
Pex is a comprehensive testing tool and framework, which has been used within
Microsoft on several .NET applications and contributed to finding many bugs
(including several security-critical ones) in released software and software still
under development at Microsoft.

We present experiments with three programs written in C# using both non-
compositional and demand-driven compositional symbolic execution. These ex-
periments were conducted on a 3.4 GHz Pentium 4 with 2 GB memory.

HWM is program that takes a string as input, and an assertion fails if the input
string contains all of the four substrings: “Hello”, “world”, “at”, “Microsoft!”.
Although it is a simple program, it has hundreds of millions of feasible whole-
program paths. The program has a main method that calls contains(s,t)
four times in succession. contains(s,t) checks if string s contains substring t.
contains(s,t) calls containsAt(s,i,t) that checks if s contains t starting
from index i in s.

Parser is a parser for a subset of a Pascal-like language. The program takes
a string as input, and successfully parses it if it represents a syntactically valid
program in the language. An assertion is violated if parsing is successful. A valid
program starts with the keyword “program” followed by an arbitrary string
representing program name. Furthermore, the body of the program starts with
keyword “begin” and end with keyword “end”. And the body may optionally
include function definitions.

IncDec is a program that takes an integer as argument. It increments it several
times and then decrements until a certain condition specified as an assertion is
satisfied.

The table in Fig. 3 presents results of experiments. The three first columns rep-
resent the total number of executions, the total time taken over all executions,

Demand-Driven Compositional Symbolic Execution 379

Benchmark No. of Executions Time in sec time per execution Exception found

new old new old new old new old

HWM 37 maxed 65 705 1.75 0.02 yes no
Parser 144 maxed 71 338 0.49 0.01 yes yes
IncDec 74 1207 14 43 0.18 0.03 yes yes

Fig. 3. Comparison between new (demand-driven, compositional) and old (non-
compositional) symbolic execution techniques

and the time taken per execution. (Execution time includes time taken by the con-
straint solver.)The last column showswhether the respective technique was able to
generate an input that violates the assertion contained in each program. In the col-
umn showing the number of executions, “maxed” denotes that non-compositional
symbolic execution hits an upper bound of 20,000 executions; in those cases, total
execution time represents the time taken to reach the upper bound.

We make the following observations from the table in Fig. 3. (1) The number
of executions required with demand-driven compositional symbolic execution is
often several orders of magnitude smaller compared to non-compositional sym-
bolic execution. (2) The improvement in total time cannot be measured as non-
compositional symbolic execution technique hits the upper bound on the number
of execution in two of the three cases. (3) The time taken for each execution in-
creases when the symbolic execution is demand-driven and compositional, as the
formulas generated are more complicated and the constraint solver needs more
time to solve those, although most can be solved in seconds. (4) In the case of
HWM, only the search with demand-driven compositional symbolic execution
is able to find the assertion violation, whereas the non-compositional search is
lost in search-space due to path explosion. The other two examples have fewer
execution paths, and the fair search heuristics implemented in Pex are able to
find the assertion violations, even with non-compositional searches.

6 Other Related Work

Interprocedural static analysis always involves some form of summarization [19].
Summaries are usually defined either at some fixed-level of abstraction, e.g., for
points-to analysis [17], or as abstractions of intraprocedural pre and postcondi-
tions, e.g., projections onto a set of predicates [3,23]. Even when a SAT solver is
used for a precise intraprocedural analysis [6,23,2], the interprocedural part of
the analysis itself is carried out either using some custom fixpoint computation
algorithm [4,23] or by in-lining functions [6,2], the latter leading to combinatorial
explosion.

In contrast with prior work on interprocedural static analysis, we represent
function summaries as uninterpreted functions with arbitrary pre/postcondi-
tions represented as logic formulas, and we use an SMT solver to carry out the
interprocedural part of the analysis. Of course, the constraint solver may need
to in-line summaries during its search for a model satisfying a whole-program

380 S. Anand, P. Godefroid, and N. Tillmann

path constraint, but it will do so lazily, only if necessary, and while memoizing
new induced facts in order to avoid re-inferring those later, hence simulating the
effect of caching previously-considered calling contexts and new summaries in-
ferred by transitivity, as in compositional algorithms for hierarchical finite-state
machine verification [1].

How to perform abstract symbolic execution with simplified summary repre-
sentations [14,2,12] in static program analysis is orthogonal to the demand-driven
and compositionality issues addressed in our paper.

The use of automatically-generated software stubs [11] for abstracting (over-
approximating) lower-level functions during dynamic test generation [18,9] is
also mostly orthogonal to our approach. However, the practicality of this idea
is questionable because anticipating side-effects of stubbed functions accurately
is problematic. In contrast, our approach is compositional while being grounded
in testing and concrete execution, thus without ever generating false alarms.

Demand-driven dynamic test generation for single procedures has previously
been discussed in [16,13]. This prior work is based on dataflow analysis, does not
use logic and automated theorem proving, and does not discuss interprocedural
analysis. As discussed earlier, our work extends the compositional test generation
framework introduced in [10] by precisely formalizing how to implement it using
first-order logic formulas with uninterpreted functions and a SMT solver, and
by allowing it to be demand-driven.

7 Conclusion

This paper presents an automatic and efficient symbolic execution technique
for test-input generation, which is both demand-driven and compositional. By
demand-driven, we mean that, given a target to cover, the technique aims to
explore as few program paths as possible (called lazy exploration), and avoid
exploring paths that can be guaranteed not to cover the target (called relevant
exploration). By compositional, we mean that, instead of enumerating all inter-
procedural paths one-by-one, the technique finds feasible, interprocedural paths
by combining intraprocedural paths. Because the technique is demand-driven,
it can be very efficient when the goal is to cover a particular location in the
program (e.g., an assertion). And, due to its compositionality, it can alleviate
the path-explosion problem, which severely limits the scalability of automatic
test-input generation. We have implemented a prototype of the proposed tech-
nique on top of Microsoft’s Pex test-generation tool. Preliminary experimen-
tal results are promising. Currently, we are extending our prototype to handle
implementation issues such as summarizing side-effects through the heap. Fu-
ture work includes applying the technique to a larger set of programs to further
assess its effectiveness.

Acknowledgments. We thank Jonathan ’Peli’ de Halleux, one of the Pex de-
velopers, Nikolaj Bjørner and Leonardo de Moura for the Z3 SMT constraint
solver and their support, and the anonymous reviewers for helpful comments.

Demand-Driven Compositional Symbolic Execution 381

References

1. Alur, R., Yannakakis, M.: Model Checking of Hierarchical State Machines. In: Vau-
denay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 175–188. Springer, Heidelberg (1998)

2. Babic, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, Springer, Heidelberg
(2007)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic Predicate Abstrac-
tion of C Programs. In: Proceedings of PLDI 2001 (2001)

4. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-
gramming errors. Software Practice and Experience 30(7), 775–802 (2000)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically Generating Inputs of Death. In: ACM CCS (2006)

6. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, Springer, Heidelberg
(2004)

7. Csallner, C., Smaragdakis, Y.: Check’n Crash: Combining Static Checking and
Testing. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, Springer,
Heidelberg (2006)

8. de Moura, L., Bjørner, N.: Z3, 2007. Web page:
http://research.microsoft.com/projects/Z3

9. Engler, D., Dunbar, D.: Under-constrained execution: making automatic code de-
struction easy and scalable. In: Proceedings of ISSTA 2007 (2007)

10. Godefroid, P.: Compositional Dynamic Test Generation. In: POPL 2007, pp. 47–54
(January 2007)

11. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: PLDI 2005, Chicago, pp. 213–223 (June 2005)

12. Gopan, D., Reps, T.: Low-level Library Analysis and Summarization. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 68–81. Springer, Heidel-
berg (2007)

13. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating Test Data for Branch Coverage.
In: Proceedings of ASE 2000, pp. 219–227 (September 2000)

14. Khurshid, S., Suen, Y.L.: Generalizing Symbolic Execution to Library Classes. In:
PASTE 2005, Lisbon (September 2005)

15. King, J.C.: Symbolic Execution and Program Testing. Journal of the ACM 19(7),
385–394 (1976)

16. Korel, B.: A Dynamic Approach of Test Data Generation. In: ICSM, pp. 311–317
(November 1990)

17. Livshits, V.B., Lam, M.: Tracking Pointers with Path and Context Sensitivity for
Bug Detection in C Programs. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887,
Springer, Heidelberg (2003)

18. Majumdar, R., Sen, K.: Latest: Lazy dynamic test input generation. Technical
report, UC Berkeley (2007)

19. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of POPL 1995, pp. 49–61 (1995)

20. Tillmann, N., de Halleux, J.: Pex (2007), http://research.microsoft.com/Pex
21. Tillmann, N., Schulte, W.: Parameterized unit tests. In: ESEC-FSE 2005, pp. 253–

262. ACM, New York (2005)
22. Visser, W., Pasareanu, C., Khurshid, S.: Test Input Generation with Java

PathFinder. In: ISSTA 2004, Boston (July 2004)
23. Xie, Y., Aiken, A.: Scalable Error Detection Using Boolean Satisfiability. In: Pro-

ceedings of POPL 2005 (2005)

http://research.microsoft.com/projects/Z3
http://research.microsoft.com/Pex

Peephole Partial Order Reduction

Chao Wang1, Zijiang Yang2, Vineet Kahlon1, and Aarti Gupta1

1 NEC Laboratories America, Princeton, NJ
{chaowang,kahlon,agupta}@nec-labs.com

2 Western Michigan University, Kalamazoo, MI
zijiang.yang@wmich.edu

Abstract. We present a symbolic dynamic partial order reduction (POR) method
for model checking concurrent software. We introduce the notion of guarded in-
dependent transitions, i.e., transitions that can be considered as independent in
certain (but not necessarily all) execution paths. These can be exploited by using
a new peephole reduction method. A symbolic formulation of the proposed peep-
hole reduction adds concise constraints to allow automatic pruning of redundant
interleavings in an SMT/SAT solver based search. Our new method does not di-
rectly correspond to any explicit-state algorithm in the literature, e.g., those based
on persistent sets. For two threads, our symbolic method guarantees the removal
of all redundant interleavings (better than the smallest persistent-set based meth-
ods). To our knowledge, this type of reduction has not been achieved by other
symbolic methods.

1 Introduction

Verifying concurrent programs is hard due to the large number of interleavings of tran-
sitions from different threads. In explicit-state model checking, partial order reduction
(POR) techniques [7, 17, 20] have been be used to exploit the equivalence of interleav-
ings of independent transitions to reduce the search state space. Since computing the
precise dependence relation may be as hard as verification itself, existing POR methods
often use a conservative static analysis to compute an approximation. Dynamic partial
order reduction [6] and Cartesian partial order reduction [11] lift the need of apply-
ing static analysis a priori by detecting collision (data dependency) on-the-fly. These
methods in general can achieve more reduction due to the more accurate collision de-
tection. However, applying these POR methods (which were designed for explicit-state
algorithms) to symbolic model checking is not an easy task.

A major strength of SAT-based symbolic methods [2] is that property dependent and
data dependent search space reduction is automatically exploited inside modern SAT
or SMT (Satisfiability Modulo Theory) solvers, through the addition of conflict clauses
and non-chronological backtracking. Symbolic methods are often more efficient in rea-
soning about variables with large domains. However, combining classic POR methods
(e.g., those based on persistent-sets [8]) with symbolic algorithms has proven to be diffi-
cult [1, 15, 10, 3, 13]. The difficulty arises from the fact that symbolic methods typically
manipulate a large set of states implicitly as opposed to manipulating states individu-
ally. Capturing and exploiting transitions that are dynamically independent with respect
to a set of states is much harder than it is for individual states.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 382–396, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Peephole Partial Order Reduction 383

T1

i = foo() ;
...

A a[i] = 10 ;
B a[i] = a[i]+20;
C *p = a[j] ;

T2

j = bar() ;
...

α a[j] = 50 ;
β a[j] = a[j]+100;
γ *q = a[i] ;

Fig. 1. tA, tB are independent with tα, tβ when i �=
j; tC is independent with tγ when (p �= q).

A

A

A

A

B

B

B

C

C B

C

C

{ }

β γ

β

α

α

α

α

β

β

γ

γ

γ

{A, B, C, α, β, γ}

Fig. 2. The lattice of interleavings

For example, in Fig. 1 there are two concurrent threads accessing a global array
a[]. The two pointers p and q may be aliased. Statically, transitions tA, tB in thread
T1 are dependent with tα, tβ in T2. Therefore, POR methods relying on a static anal-
ysis may be ineffective. Note that when i �= j holds in some executions, tA, tB and
tα, tβ become independent, meaning that the two sequences tA; tB; tα; tβ; tC ; tγ ; and
tα; tβ ; tA; tB; tC ; tγ ; are equivalent. However, none of the existing symbolic partial or-
der reduction methods [1, 15, 10, 3, 13] takes advantage of such information1. Among
explicit-state POR methods, dynamic partial order reduction [6] and Cartesian partial
order reduction [11] are able to achieve some reduction by detecting conflicts on-the-fly;
in any individual state s, the values of i and j (as well as p and q) are fully determined,
making it much easier to detect conflicts. However, it is not clear how to directly apply
these techniques to symbolic model checking, where conflict detection is performed
with respect to a set of states.

Missing out these kind of partial-order reductions can be costly, since the symbolic
model checker needs to exhaustively search among the reduced set of execution se-
quences. The number of valid interleavings (sequences) can be large even for moderate
sized programs. For the running example, we can capture all possible interleavings us-
ing a lattice structure (Fig. 2). Let Q = {tA, tB, tC , tα, tβ , tγ} be the set of transitions
from both threads. Each vertex in the figure represents a distinct subset of Q, consisting
of the executed transitions up to that point. The top vertex is { } and the bottom ver-
tex is {tA, tB, tC , tα, tβ , tγ}. A path from top to bottom denotes a unique interleaving.
For example, the left-most path corresponds to tA; tB ; tC ; tα; tβ ; tγ . The set of vertices
forms a powerset 2Q.

In this paper, we present a new peephole partial order reduction method to exploit
the dynamic independence of transitions. To this end, we introduce a new notion of in-
dependence relation called guarded independence relation (GIR). It is an extension of

1 The method in [13] can reduce equivalent interleavings if we replace i=foo() and j=bar()
with i=1 and j=2, but not in the general case.

384 C. Wang et al.

the classic (conditional) independence relation [14, 8]: instead of defining independence
with respect to either a single state or for all global states, we define the GIR relation RG

with respect to a predicate over programs variables. Each 〈t1, t2, cG〉 ∈ RG corresponds
to a pair of transitions t1, t2 that are independent iff cG holds. A major advantage of GIR
is that it can be accurately computed by a simple traversal of the program structure. We
further propose a peephole reduction which concisely captures the guarded independent
transitions as constraints over a fixed number of adjacent transitions to restrict the satis-
fiability formula during symbolic search (e.g., in bounded model checking). The added
constraints allow the underlying SAT/SMT solver to prune search space automatically.
Adding these GIR constraints requires identification of a pattern in a fixed sized time
window only.

The basic observation exploited by various POR methods is that different execution
sequences may correspond to the same equivalence class. According to Mazurkiewicz’s
trace theory [16], two sequences are equivalent if they can be obtained from each other
by successively permuting adjacent independent transitions. In this sense, our peephole
POR method has the same goal as the classic POR methods[7, 17, 20, 6, 11]; however,
it does not directly correspond to any existing method. In particular, it is not a symbolic
implementation of any of these explicit-state methods. For a system with two threads,
our method can guarantee optimality in reduction; that is, all redundant interleavings
are removed (proof is in Section 3.2). To our knowledge, there has not been such guar-
antee among existing POR methods. We also show an example on which our method
achieves strictly more reduction than any persistent-set based method. Finally, the pro-
posed encoding scheme is well suited for symbolic search using SAT/SMT solvers.

To summarize, our main contributions are: (1) the notion of guarded independence
relation, which accurately captures independence between a pair of transitions in terms
of predicates on states; (2) a peephole partial order reduction that adds local constraints
based on the guarded independence relation, along with a symbolic formulation; (3) the
guarantee of removing all redundant interleavings for systems with two threads. This
kind of reduction has not been achieved by previous symbolic methods [1, 15, 10, 3, 13].

2 Guarded Independence Relation

In this section, we review the classic notion [14, 8] of independent transitions, and then
present the new notion of guarded independence relation.

Let Ti (1 ≤ i ≤ N) be a thread with the set transi of transitions. Let trans =⋃N
i=1 transi be the set of all transitions. Let Vi be the set of local variables in thread

Ti, and Vglobal be the set of global variables. For t1 ∈ transi, we denote the thread
index by tidt1 , and denote the enabling condition by ent1 . If t1 is a transition in Ti

from control location loc1 to loc2 and is guarded by cond, then ent1 is defined as
(pci = loc1)∧cond. Here pci ∈ Vi is a special variable representing the thread program
counter. Let S be the set of global states of the system. A state s ∈ S is a valuation of

all local and global variables. For two states s, s′ ∈ S, s
t1→ s′ denotes a state transition

by applying t1, and s
ti...tj⇒ s′ denotes a sequence of state transitions.

Peephole Partial Order Reduction 385

2.1 Independence Relation

Definition 1 (Independence Relation [14, 8]). R ⊆ trans×trans is an independence
relation iff for each 〈t1, t2〉 ∈ R the following two properties hold for all s ∈ S:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

In other words, independent transitions can neither disable nor enable each other, and
enabled independent transitions commute. As pointed out in [7], the definition has been
mainly of semantic use since it is not practical to check the above two properties for all
states to determine which transitions are independent. Instead, traditionally collision de-
tection often uses conservative but easy-to-check sufficient conditions. For instance, the
following properties [7] have been used in practice to compute independent transitions:

1. the set of threads that are active for t1 is disjoint from the set of threads that are
active for t2, and

2. the set of objects that are accessed by t1 is disjoint from the set of objects that are
accessed by t2.

Note that some independent transitions may be conservatively classified as dependent,
like t1:a[i] = e1 and t2:a[j] = e2 when i �= j, since it is not clear statically if a[i] and
a[j] refer to the same element. This can in turn lead to a coarser persistent set.

In the conditional dependence relation [14, 8], two transitions are defined as inde-
pendent with respect to a state s ∈ S (as opposed to for all s ∈ S). This extension
is geared towards explicit-state model checking, in which persistent sets are computed
for individual states. A persistent set at state s is a subset of the enabled transitions
that need to be traversed in adaptive search. A transition is added to the persistent set
if it has any conflict with a future operation of another thread. The main difficulty in
persistent set computation lies in detecting future collision with enough precision. Al-
though it is not practical to compute the conditional dependence relation for each state
in S for collision detection purposes, there are explicit-state methods (e.g., [6, 11]) to
exploit such dynamically independent transitions. However, these classic definitions of
independence are not well suited for symbolic search.

2.2 Guarded Independence Relation

Definition 2. Two transitions t1, t2 are guarded independent with respect to a condition
cG iff cG implies that the following properties hold:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

This can be considered as an extension of the conditional dependence relation; instead
of defining 〈t1, t2, s〉 with respect to a state s ∈ S, we define 〈t1, t2, cG〉 with respect to
a predicate over local and global program variables. The independence relation is valid
for all states in which cG holds, i.e., it is valid with respect to a (potentially large) set of

386 C. Wang et al.

states. Unlike the previous definitions, when computing GIR, we are able to apply the
two properties in Definition 2 precisely.

The guard cG can be efficiently computed by a traversal of the structure of the pro-
gram. For a transition t, we use VRD(t) to denote the set of variables read by t, and
VWR(t) to denote the set of variables written by t. We define the potential conflict set
between t1 and t2 from different threads to be

Ct1,t2 = VRD(t1) ∩ VWR(t2) ∪ VRD(t2) ∩ VWR(t1) ∪ VWR(t1) ∩ VWR(t2) .

In our running example, CtA,tα = {a[i], a[j]}. For a C-like program, we list the different
scenarios under which we compute the guarded independence relation RG:

1. when Ct1,t2 = ∅, add 〈t1, t2, true〉 to RG;
2. when Ct1,t2 = {a[i], a[j]}, add 〈t1, t2, i �= j〉 to RG;
3. when Ct1,t2 = {∗pi, ∗pj}, add 〈t1, t2, pi �= pj〉 to RG;
4. when Ct1,t2 = {x}, consider the following cases:

a. RD-WR: if x ∈ VRD(t1) and the assignment x := e appears in t2, add
〈t1, t2, x = e〉 to RG;

b. WR-WR: if x := e1 appears in t1 and x := e2 appears in t2, add 〈t1, t2, e1 =
e2〉 to RG;

c. WR-C: if x appears in the condition cond of a branching statement t1, such as
if(cond), and x := e appears in t2, add 〈t1, t2, cond = cond[x → e]〉 to RG,
in which cond[x → e] denotes the replacement of x with e.

Overall the computational complexity is O(|trans|2), where |trans| is the number of
transitions. If desired, the set of rules can be easily extended to handle a richer set of
language constructs.

Rules 1,2, and 3 correspond to standard semantics of a program. Pattern 4(a) states
that two read/write operations to the same variable are guarded independent if the write
operation does not change its value. Pattern 4(b) states that two write operations to the
same variable are guarded independent if their newly assigned values are the same. In
these two cases, cG may evaluate to true more frequently than one may think, espe-
cially when these variables have small ranges and when they are used for branching
purposes. If b is a Boolean variable, then b := e1 and b := e2 independent in two of
the four possible cases. Pattern 4(c) is a special case of 4(a): clearly x = e implies
cond = cond[x → e]; however, there are cases when x �= e but cond = cond[x → e].
For example, let if(x < 10) be a transition in thread 1 and x := e be in thread
2. They are guarded independent if (x < 10) = (e < 10), even if x changes af-
ter the assignment. Multiple patterns can appear in the same pair of transitions. In such
cases, cG is a conjunction or disjunction of individual conditions. For example, consider
t1:if(a[i]>5) and t2:a[j]:=x. Here cG is defined as i �= j∨((a[i] > 5) = (x > 5)).

In symbolic search based on SMT/SAT solvers, the guarded independence relation
can be compactly encoded as symbolic constraints in the problem formulation, as de-
scribed in the next section. These constraints facilitate automatic pruning of the search
space.

Peephole Partial Order Reduction 387

3 Peephole Partial Order Reduction

After reviewing the basics of SMT/SAT based bounded model checking in Section 3.1,
we will present our new partial order reduction method in Section 3.2.

3.1 Bounded Model Checking (BMC)

Given a multi-threaded program and a reachability property, BMC can check the prop-
erty on all execution paths of the program up to a fixed depth K . For each step 0 ≤
k ≤ K , BMC builds a formula Ψ such that Ψ is satisfiable iff there exists a length-k
execution that violates the property. The formula is denoted Ψ = Φ ∧ Φprop, where Φ
represents all possible executions of the program up to k steps and Φprop is the con-
straint indicating violation of the property. (For more information about Φprop, refer to
[2].) In the following, we focus on the formulation of Φ.

Let V = Vglobal ∪
⋃

Vi, where Vglobal are global variables and Vi are local variables
in Ti. For every local (global) program variable, we add a state variable to Vi (Vglobal).
Array and pointer accesses need special handling. For an array access a[i], we add sep-
arate variables for the index i and for the content a[i]. Similarly, for a pointer access ∗p,
we assign separate state variables for (∗p) and p. We add a pci variable for each thread
Ti to represent its current program counter. To model nondeterminism in the sched-
uler, we add a variable sel whose domain is the set of thread indices {1, 2, . . . , N}. A
transition in Ti is executed only when sel = i.

At every time frame we add fresh copies of the set of state variables. Let vi ∈ V i

denote the copy of v ∈ V at the i-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactly k time frames.

Φ := I(V 0) ∧
k∧

i=0

⎛

⎝SCH(V i) ∧
N∧

j=1

TRj(V i, V i+1)

⎞

⎠

where I(V 0) represents the set of initial states, SCH represents the constraint on the
scheduler, and TRj represents the transition of thread Tj . Without any partial order
reduction, SCH(V i) := true, which means that sel takes arbitrary values at every
step. This default SCH considers all possible interleavings. Partial order reduction can
be implemented by adding constraints to SCH to remove redundant interleavings.

We now consider the formulation of TRj . Let V Sj = Vglobal ∪ Vj denote the set of
variables visible to Tj . At the i-th time frame, for each t ∈ transj (a transition between
control locations loc1 and loc2), we create tri

t. If t is an assignment v := e, then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ vi+1 = ei ∧ (V Si+1
j \ vi+1) = (V Si

j \ vi) .

If t is a branching statement2 assume(c), as in if(c), then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ ci ∧ V Si+1
j = V Si

j .

2 We assume that there is a preprocessing phase in which the program is simplified to have only
assignments and branching statements, as in tools like FSoft [12].

388 C. Wang et al.

Overall, TRi
j is defined as follows:

TRi
j :=

⎛

⎝seli = j ∧
∨

t∈transj

tri
t

⎞

⎠ ∨
(
seli �= j ∧ V i+1

j = V i
j

)

The second term says that if Tj is not selected, variables in Vj do not change values.

3.2 Peephole Partial Order Reduction

SCH initially consists of all possible interleavings of threads. If multiple length-k se-
quences are in the same equivalence class, only one representative needs to be checked
for property violation. To facilitate such reduction, we add constraints for each pair of
guarded independent transitions to restrict the scheduler.

For each 〈t1, t2, cG〉 ∈ RG such that tidt1 < tidt2 , we conjoin the following con-
straint to SCH ,

ent1(V
k) ∧ ent2(V

k) ∧ cG(V k) → ¬(selk = tidt2 ∧ selk+1 = tidt1)

Here, ent1(V k) and ent2(V k) are the enabling conditions for t1 and t2 at the k-th time
frame. The above constraint says that, if independent transitions t1 and t2 are enabled,
sequences starting with both t1; . . . and t2; . . . are allowed to be explored. However,
among the sequences starting with t2; . . ., we forbid t2; t1;... through the addition of
constraint ¬(selk = tidt2 ∧ selk+1 = tidt1). In essence, the above constraint enforces
a fixed order on the priority of scheduling two independent transitions t1, t2. We always
prefer sequences in which two adjacent independent transitions t1, t2 are scheduled in
their thread index order, i.e., t1 ahead of t2 if tidt1 < tidt2 . The alternative sequences
are removed, as illustrated in Fig. 3.

In the running example, the new SCH(V k) is
(
pck

1 = A ∧ pck
2 = α ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)

)
∧(

pck
1 = A ∧ pck

2 = β ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = B ∧ pck

2 = α ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = B ∧ pck

2 = β ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = C ∧ pck

2 = γ ∧ (ik �= jk ∧ pk �= qk) → ¬(selk = 2 ∧ selk+1 = 1)
)

When i �= j, the above constraint removes sequences containing tα; tA;

Theorem 1. All interleavings removed by the peephole reduction are redundant.

Proof. Let π = π0π1... be a valid sequence that is forbidden by the peephole reduction.
Then there exists at least one index k in π such that cG holds, πk and πk+1 are inde-
pendent. By swapping the two adjacent independent transitions, we produce another
sequence π′ such that π′k = πk+1, π′k+1 = πk, and π′i = πi for all i �= k and i �= k + 1.
π′ is (Mazurkiewicz) equivalent to π. (1) If π′ is not forbidden by the peephole reduc-
tion, π is redundant and we have a proof. (2) If π′ is also forbidden, then there exists
an index k in π′ such that π′k, π′k+1 are guarded independent—because otherwise π′

cannot be removed by the peephole reduction. Due to the finiteness of the sequence, if

Peephole Partial Order Reduction 389

we continue the find-and-swap process, eventually we will find a sequence π′′ that is
not forbidden by the peephole reduction. In this case π is redundant (equivalent to π′′)
and we complete the proof. ��

Theorem 2. For two threads, the peephole reduction removes all the redundant inter-
leavings.

Proof. We prove by contradiction. Assume π, π′ are two remaining sequences and they
are (Mazurkiewicz) equivalent. By definition, π and π′ have the same set of transitions;
π′ is a permutation of π. Let πj in π be the first transition from T2 that is swapped to
be π′i in π′ (where i < j). Then π and π′ share a common prefix up to i (Fig. 4). Fur-
thermore, all transitions πi, . . . , πj−1 in π belong to T1. This is because if any of them
belongs to T2, it would not be possible to move πj ahead of π′ – the order of transitions
from the same thread cannot be changed. Therefore, there are only two cases regard-
ing πj−1 from T1 and πj from T2: (1) if they are dependent, swapping them produces
a non-equivalent sequences; (2) if they are independent, the fact that πj appears after
πj−1 in π means that tidπj > tidπj−1 . This implies that tidπj > tidπi , and π′ would
have been removed. Since both cases contradict the assumption, the assumption is not
correct. ��

For more than two threads, the proposed peephole reduction does not always guarantee
the removal of all redundant interleavings. For example, let transitions tA, tα, tx be-
long to threads T1, T2, T3, respectively. Assume that tA and tx are dependent, but tα is
guarded independent with both tA and tx. When the guard is true, the following two
interleavings are equivalent,

tx; tA;tα; . . .
tα; tx; tA; . . .

Both sequences conform to the GIR constraints, since the segment (tA;tα;) conforms to
tidtA < tidtα and the segment (tα; tx;) conforms to tidtα < tidtx . The three transitions
can be grouped into two independent sets: {tA, tx} and {tα}. The non-optimality arises
from the fact that there is not an order of the two sets in which the pairwise independent

X = trans \ {t1, t2}

t1
X

t1 t2
Xt2

t2
t1

Fig. 3. We remove only redundant inter-
leavings

in thread 1

in thread 2

πj

π′

πj

πj−1

πi

πi

π

πj−1

Fig. 4. For two threads, we remove all re-
dundant interleavings

390 C. Wang et al.

transitions are ordered in a way consistent with the ordered thread indices3 . If we
arrange the threads in a different order, tA, tx, tα are in T1, T2, T3, then the sequence
tα; tx; tA; . . . would be removed by our reduction. Extending the peephole reduction to
guarantee the removal of all redundant interleavings in the more general cases may be
possible. However, any such extension is likely to be more expensive than the peephole
reduction proposed here. In practice, there is a tradeoff between the encoding overhead
and the amount of achievable reduction.

3.3 Comparison with Persistent-Set Based Methods

The peephole reduction add only local constraints, i.e., constraints over a fixed number
of adjacent time steps. The reduction relies on whether two transitions t1, t2 are locally
(guarded) independent, for which the precise information is available (Section 2.2).
This is in contrast to persistent set based methods relying on detecting future conflicts
(for which precise information in general is expensive to compute). Persistent set based
methods were designed to be used in adaptive search during explicit-state model check-
ing. Depending on the order in which transitions are picked during persistent set com-
putation, there can be more than one persistent set. Some persistent sets achieve more
reduction than others. In practice, computing the smallest persistent set at each step of
the adaptive search can be costly. The following example shows that even if the small-
est persistent sets were available at each step of the adaptive search (in a hypothetical
algorithm), there would still be redundant interleavings.

Fig. 5 is derived from the running example by assuming i = 1, j = 2, and p �= q.
Since tA has a collision with a future transition of thread T2 (transition tγ), and similarly
tα has a collision with tC , the smallest persistent set at the starting point is PS(s) =
{tA, tα}. This allows both tA; . . . and tα; . . . to be explored. In the reduced lattice in
Fig. 5, there are many redundant sequences (paths over solid thick lines). In fact, the
only reduction is achieved by the persistent set PS(s′) = {C}, which is a strict subset
of the enabled set {C, γ}.

In our peephole POR method, since tA and tα are independent and tidtA < tidtα ,
we remove the sequences starting with tα; tA;... but allow the sequences starting with
tα; tβ ; As shown by the reduced lattice in Fig. 6, the following adjacent transitions
are forbidden: (tα, tA), (tβ ; tA), (tα; tB), (tβ ; tB), and (tγ ; tC). The forbidden com-
binations of adjacent independent transitions are depicted by dotted arrows. The last
dotted arrow in Fig. 6 deserves more explanation: our method forbids tC only when tγ
is the previous transition, but allows tC to execute if the previous transition is tB (both
tC and tB are from T1). Note that there is no redundant interleaving.

This example suggests that the benefit of peephole reduction is separate from the
benefit of accurate guarded independence relation. In this example, both the persistent
set method and the peephole reduction can use the most precise independence rela-
tion, yet our method can forbid more interleavings. Therefore, the advantages of our
approach in general come from two distinct sources: the peephole reduction and the
accurate guarded independence relation.

3 There are eight distinct scenarios of the pairwise dependency of 〈tA, tα, tx〉, each of which
corresponds to six interleavings. The proposed reduction removes all the redundant sequences
except one.

Peephole Partial Order Reduction 391

T1

A a[1] = 10 ;
B a[1] = a[1]+20;
C m = a[2] ;

T2

α a[2] = 50 ;
β a[2] = a[2]+100;
γ n = a[1] ;

A

B

C

C

C

C

B

B

B

A

A

A

PS(s′) = {C}

β

β

γ

γ

β

β

α

α

PS(s) = {A, α}

PS = {C, α}

PS = {B, α}

α

γ

α

Fig. 5. Smallest persistent-sets do not remove all redundant interleavings

B

B

B

B

C

C

C

C

A

A

A

A

γ

α

α

α

α

β

γβ

β

β

γ

Our method add constraints to SCH
to disallow sequences containing the
following fragments:

α; A;
β; A;
α; B;
β; B;
γ; C;

Fig. 6. Our method removes all the redundant interleavings

Persistent set computation looks only into current and future transitions of other
threads. The methods based on sleep set [9] also consider past transitions when com-
puting reduction. Our peephole POR method differs from sleep sets in two aspects:
First, the peephole reduction guarantees the optimality for two threads. Second, the en-
coding in peephole reduction is memoryless in that there is no need to store information
about past transitions (and to carry the information around) explicitly.

4 Reducing the Overhead of GIR Constraints

For the symbolic formulation outlined in the previous section, the number of GIR con-
straints added is linear in the number of guarded independent transition pairs (which can
be quadratic in the number of transitions). These constraints need to be added at each
time frame, which may pose a significant overhead for the SMT/SAT solver. On the
other hand, missing out these reductions can be costly, since the model checker needs
to explore all allowed execution sequences, which can be many. In practice, there is a
tradeoff between the encoding overhead and the amount of achievable reduction. Hav-
ing said that, there are techniques to reduce the encoding overhead in practical settings.

392 C. Wang et al.

Tj

B βconflict

transC
i = {A, B} transC

j = {α, β}

A

αconflict

Ti

Fig. 7. Using dependent transitions to simplify encoding

First, if a cheap static analysis can be used to figure out statically independent tran-
sitions, based on which high quality persistent sets can be computed, then it should be
used before proceeding to the more advanced reduction. In principle, one can reserve
peephole reduction to transitions that are not statically independent (or those that can-
not be easily identified statically). Furthermore, when programs have clearly specified
synchronization disciplines, e.g., all shared variables are protected by locks, transaction
based methods [18, 19, 5] can be used to reduce the search space. These methods are or-
thogonal to our peephole reduction, and in principle transactions can be exploited along
with our proposed reduction techniques. In addition to these conventional techniques,
we present the following simplifications.

Merging GIR Constraints. If transition t1 ∈ transi is guarded independent with
respect to all transitions t2 ∈ transj , we do not need to add constraints separately for
all 〈t1, t2〉 pairs. Instead, we merge all these GIR constraints as

ent1(V
k) ∧ cG(V k) → ¬(selk = j ∧ selk+1 = i) .

As a simple case, this simplification can be applied when t1 is a local transition (in-
dependent with all other threads). In this case, the effect captured is similar to that ob-
tained from detecting transactions. However, the above rule is not restricted only to such
simple cases. As a more general case, consider N dining philosophers in which all tran-
sitions in one philosopher (thread) are visible to two adjacent philosophers (threads).
There is no local transition per se. However, for any two non-adjacent philosophers, a
transition t1 in the i-th philosopher is always independent with all transitions in the j-th
philosopher. Therefore the above simplification can be applied.

Encoding Dependent Transitions. For loosely coupled threads, the number of inde-
pendent transition pairs are significantly larger than the number of dependent transition
pairs (conflicts). In such cases, we can use an alternative encoding scheme. Instead of
adding a constraint for every independent transition pair, we focus on dependent tran-
sition pairs. For threads Ti and Tj (i < j), we use transC

i ⊆ transi and transC
j ⊆

transj to denote the subsets of transitions that may be guarded dependent4 with the
other thread. By definition, ∀t1 ∈ (transi \ transC

i) and ∀t2 ∈ (transj \ transC
j),

4 In 〈t1, t2, cG〉, if cG is not constant true, then t1 and t2 may be dependent.

Peephole Partial Order Reduction 393

t1 and t2 are always independent. This is illustrated in Fig. 7. To encode the GIR con-
straints, first, we define enableTi for thread Ti as follows,

enableTi :=
∨

t∈(transi\transC
i)

ent .

Then, we summarize constraints for the always independent transition pairs.

enableTi(V
k) ∧ enableTj(V

k) → ¬(selk = j ∧ selk+1 = i) .

Finally, some transitions in transC
i and transC

j may still be independent from each
other. For each t1 ∈ transC

i and t2 ∈ transC
j , if 〈t1, t2, cG〉 ∈ RG, we add the GIR

constraint as in Section 3.2. As an example, if two threads are completely independent,
only one constraint needs to be added to SCH .

5 Experiments

We have implemented the new methods in an SMT-based bounded model checker us-
ing the Yices SMT solver [4]. Yices is capable of deciding satisfiability formulae with
a combination of theories including propositional logic, integer linear arithmetic, and
arrays. We performed experiments with three variants of the peephole reduction, and a
baseline BMC algorithm with no POR. The three variants represent different tradeoffs
between the encoding overhead and the amount of achievable reduction. The first one
is static POR, in which constraints are added only for statically independent transitions.
The second one is simple PPOR, which adds constraints also for guarded independent
transitions covered by GIR cases 1-3 (in Section 2.2). The third one is full PPOR, which
adds constraints for all guarded independent transitions covered by GIR cases 1-4. Our
experiments were conducted on a workstation with 2.8 GHz Xeon processor and 4GB
memory running Red Hat Linux 7.2.

Parameterized Examples. The first set of examples are parameterized versions of din-
ing philosopher and indexer. For dining philosopher, we used a version that guarantees
the absence of deadlocks. Each philosopher (thread) has its own local state variables,
and threads communicate through a shared array of chop-sticks. When accessing the
global array, threads may have conflicts (data dependency). The first property (pa) we
checked is whether all philosophers can eat simultaneously (the answer is no). The sec-
ond property (pb) is whether it is possible to reach a state in which all philosophers
have eaten at least once (the answer is yes). For the indexer example, we used the ver-
sion from [6]. In this example, concurrent threads manipulate a shared hash table. Each
thread needs to write four distinct values into the hash table. An atomic compare-and-
swap instruction is used to check if a hash entry is available; if so, it writes the value;
otherwise, the thread changes the hash key before retry. The property we checked is
whether it is possible to reach a state in which all threads have completed. This exam-
ple is interesting because there is no collision in accessing the hash table with up to 11
threads. However, such information cannot be detected by a static analysis.

For dining philosopher, with 2 threads we set the unrolling depths to 15,30,. . .,120,
and compared the runtime of the four methods as well as the number of backtracks of

394 C. Wang et al.

Fig. 8. Comparing runtime (left) and the number of backtracks in the SMT solver (right); per-
formed on two philosophers with the property pa

Table 1. Comparing the performance of four symbolic partial order reduction techniques

Test Program Total CPU Time (s) #Conflicts (k) #Decisions (k)
name steps sat none static s-ppor f-ppor none static s-ppor f-ppor none static s-ppor f-ppor

phil2-pa 15 no 0.3 0.1 0.1 0.1 0.5 0.1 0.1 0.9 1.1 0.6 0.6 0.4
phil3-pa 22 no 27 6 1.2 0.7 17 5 2 1 23 8 4 1
phil4-pa 29 no 69 50 26 28 39 28 13 13 54 41 21 20
phil2-pb 15 yes 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.6 0.4 0.3
phil3-pb 22 yes 1.7 0.8 0.4 1.4 2 1.1 0.4 1.0 3 2 1 3
phil4-pb 29 yes 19 17 1.5 2.9 12 9 1 2 17 15 4 5
indexer2 10 no 0.3 0.2 0.1 0.1 0.3 0.3 0.1 0.1 1 1 1 1
indexer3 15 no 31 23 0.4 0.3 14 14 0.4 0.3 183 183 1 1
indexer4 20 no T/O 1791 1.2 1.7 - 344 1 1 - 395 2 2
indexer5 25 no T/O T/O 5.1 6.6 - - 2 2 - - 6 6
indexer2 11 yes 3 2 0.4 0.7 1.5 1.5 0.3 0.6 54 54 15 33
indexer3 16 yes 22 17 4 3 5 5 1 1 163 163 77 127
indexer4 21 yes 179 177 12 6 283 283 3 2 432 432 181 139
indexer5 26 yes T/O T/O 38 35 - - 4 4 - - 579 427

the SMT solver. The results are given in Fig. 8. The x-axis is the unrolling depths. The
y-axis are the BMC runtime in seconds (left figure), and the number of backtracks (right
figure). The y-axis is in logarithmic scale. The number of decisions of the SMT solver
looks similar to the runtime curves; we omit it for brevity. These results show that both
simple PPOR and full PPOR have shown significant performance improvement over
static. Due to its larger encoding overhead, the runtime of full PPOR is less consistent
and is sometimes inferior to simple PPOR.

We also set the number of threads to 2, 3, 4 for both dining philosopher and indexer
examples and compared the four methods. In these experiments the BMC unrolling
depths are chosen to be large enough (larger than the estimated reachable diameters [2]),
so that the verification results are conclusive. The detailed results are given in Table 1.
In Table 1, Columns 1-3 show the name of the examples, the number of BMC unrolling
steps, and whether the property is true or not. Columns 4-7 report the runtime of the
four methods. Columns 8-11 and Columns 12-15 report the number of backtracks and
the number of decisions of the SMT solver.

Peephole Partial Order Reduction 395

The Daisy Example. The second set of examples come from a much larger concurrent
program called Daisy. Daisy has been used before as a benchmark for verifying con-
current programs. The version we used is written in C and has been verified previously
in [13]. The parsing and encoding of these examples were performed automatically.
Note that in [13] there already exists a state-of-the-art symbolic POR method based
on persistent sets, advanced static analysis techniques, and the exploitation of nested
locks. Our peephole POR method was implemented on top of these techniques. The
two properties we checked are data race conditions (both are reachable).

For comparison purposes, we implemented the peephole reduction on the same SAT-
based BMC procedure as in [13]. Compared with the previous method, our peephole
POR method can significantly reduce the BMC runtime in detecting these data races.
In particular, for the first property, the new method was able to find a counterexample
of length 132 and reduced the BMC runtime from 519 seconds to 374 seconds. For the
second property, the new method was able to find a counterexample of length 136 and
reduced the BMC runtime from 1540 seconds to 998 seconds.

6 Conclusions

We have presented a peephole partial order reduction method for model checking
concurrent systems, based on a new notion of guarded independence relation between
transitions. We have presented a concise symbolic encoding of local dynamically inde-
pendent transition pairs which is well suited for using SMT/SAT solvers to find property
violations. We have shown that the new peephole POR method can achieve significantly
more reduction compared to other existing methods. For a system with two concurrent
threads, our method guarantees the removal of all redundant interleavings. For future
work, we plan to investigate additional techniques for simplifying the GIR constraints.

References

[1] Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduc-
tion in symbolic state-space exploration. Formal Methods in System Design 18(2), 97–116
(2001)

[2] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)

[3] Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous
boolean programs. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 75–90.
Springer, Heidelberg (2005)

[4] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

[5] Dwyer, M.B., Hatcliff, J., Robby, Ranganath., V.P.: Exploiting object escape and locking
information in partial-order reductions for concurrent object-oriented programs. Formal
Methods in System Design 25(2-3), 199–240 (2004)

[6] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: Principles of programming languages (POPL 2005), pp. 110–121 (2005)

[7] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

396 C. Wang et al.

[8] Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verification meth-
ods. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 438–449. Springer, Heidel-
berg (1993)

[9] Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock
freedom and safety properties. Formal Methods in System Design 2(2), 149–164 (1993)

[10] Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-
widening for multi-process systems. In: Principles of programming languages (POPL
2005), pp. 122–131 (2005)

[11] Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112. Springer,
Heidelberg (2007)

[12] Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V., Wang, C., Yang, Z.: Model
checking C program using F-Soft. In: International Conference on Computer Design, Oc-
tober 2005, pp. 297–308 (2005)

[13] Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs using
partial orders and on-the-fly transactions. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 286–299. Springer, Heidelberg (2006)

[14] Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Comput.
Sci. 101(2), 337–359 (1992)

[15] Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. Electr. Notes
Theor. Comput. Sci. 89(3) (2003)

[16] Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN
1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

[17] Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

[18] Stoller, S.D.: Model-checking multi-threaded distributed java programs. International Jour-
nal on Software Tools for Technology Transfer 4(1), 71–91 (2002)

[19] Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction. In: Gar-
avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 489–504. Springer, Heidel-
berg (2003)

[20] Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN
1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

Efficient Interpolant Generation
in Satisfiability Modulo Theories�

Alessandro Cimatti1, Alberto Griggio2, and Roberto Sebastiani2

1 FBK-IRST, Povo, Trento, Italy
cimatti@fbk.eu

2 DISI, Università di Trento, Italy
{griggio,rseba}@disi.unitn.it

Abstract. The problem of computing Craig Interpolants for propositional (SAT)
formulas has recently received a lot of interest, mainly for its applications in for-
mal verification. However, propositional logic is often not expressive enough for
representing many interesting verification problems, which can be more naturally
addressed in the framework of Satisfiability Modulo Theories, SMT.

Although some works have addressed the topic of generating interpolants in
SMT, the techniques and tools that are currently available have some limitations,
and their performace still does not exploit the full power of current state-of-the-art
SMT solvers.

In this paper we try to close this gap. We present several techniques for in-
terpolant generation in SMT which overcome the limitations of the current gen-
erators mentioned above, and which take full advantage of state-of-the-art SMT
technology. These novel techniques can lead to substantial performance improve-
ments wrt. the currently available tools.

We support our claims with an extensive experimental evaluation of our im-
plementation of the proposed techniques in the MathSAT SMT solver.

1 Introduction

Since the seminal paper of McMillan [19], interpolation has been recognized to be a
substantial tool for verification in the case of boolean systems [7, 17, 18]. The tremen-
dous improvements of Satisfiability Modulo Theory (SMT) solvers in the recent years
have enabled the lifting of SAT-based verification algorithms to the non-boolean case [2,
1], and made it practical the implementation of other approaches such as CEGAR [21].

However, the research on interpolation for SMT has not kept the pace of the SMT
solvers. In fact, the current approaches to producing interpolants for SMT [20,30,27,16,
15] all suffer from a number of limitations. Some of the approaches are severely limited
in terms of their expressiveness. For instance, the tool described in [27] can only deal
with conjunctions of literals, whilst the recent work described in [16] can not deal with
many useful theories. Furthermore, very few tools are available [27,20], and these tools
do not seem to scale particularly well. More than to naı̈ve implementation, this appears
to be due to the underlying algorithms, that substantially deviate from or ignore choices

� This work has been partly supported by ORCHID, a project sponsored by Provincia Autonoma
di Trento, and by a grant from Intel Corporation.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 397–412, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 A. Cimatti, A. Griggio, and R. Sebastiani

common in state-of-the-art SMT. For instance, in the domain of linear arithmetic over
the rationals (LA(Q)), strict inequalities are encoded in [20] as the conjunction of a
weak inequality and a disequality; although sound, this choice destroys the structure
of the constraints, requires additional splitting, and ultimately results in a larger search
space. Similarly, the fragment of Difference Logic (DL(Q)) is dealt with by means of
a general-purpose algorithm for full LA(Q), rather than one of the well-known and
much faster specialized algorithms. An even more fundamental example is the fact that
state-of-the-art SMT reasoners use dedicated algorithms for Linear Arithmetic [10].

In this paper, we tackle the problem of generating interpolants within a state of the
art SMT solver. We present a fully general approach that can generate interpolants for
the most effective algorithms in SMT, most notably the algorithm for deciding LA(Q)
presented in [10] and those for DL(Q) in [9, 23]. Our approach is also applicable to
the combination of theories, based on the Delayed Theory Combination (DTC) method
[5, 6], as an alternative to the traditional Nelson-Oppen method.

We carried out an extensive experimental evaluation on a wide range of benchmarks.
The proposed techniques substantially advance the state of the art: our interpolator can
deal with problems that can not be expressed in other solvers; furthermore, a compari-
son on problems that can be dealt with by other tools shows dramatic improvements in
performance, often by orders of magnitude.

The paper is structured as follows. In §2 we present some background on interpo-
lation in SMT. In §3 and §4 we show how to efficiently interpolate LA(Q) and the
subcase of DL(Q). In §5 we discuss interpolation for combined theories. In §6 we an-
alyze the experimental evaluation, whilst in §7 we draw some conclusions. For lack of
space, we omit the proofs of the theorems. They can be found in the extended technical
report [8].

2 Background

2.1 Satisfiability Modulo Theory – SMT

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A
term is a first-order term built out of function symbols and variables. A linear term is
either a linear combination c1x1 + . . .+ cnxn + c, where c and ci are numeric constants
and xi are variables. When doing arithmetic on terms, simplifications are performed
where needed. We write t1 ≡ t2 when the two terms t1 and t2 are syntactically identi-
cal. If t1, . . . , tn are terms and p is a predicate symbol, then p(t1, . . . , tn) is an atom.
A literal is either an atom or its negation. A (quantifier-free) formula φ is an arbitrary
boolean combination of atoms. We use the standard notions of theory, satisfiability,
validity, logical consequence. We consider only theories with equality. We call Satisfi-
ability Modulo (the) Theory T , SMT(T), the problem of deciding the satisfiability of
quantifier-free formulas wrt. a background theory T . 1

We denote formulas with φ, ψ, A, B, C, I , variables with x, y, z, and numeric con-
stants with a, b, c, l, u. Given a theory T , we write φ |=T ψ (or simply φ |= ψ) to denote

1 The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper
we restrict our interest to quantifier-free formulas.

Efficient Interpolant Generation in Satisfiability Modulo Theories 399

that the formula ψ is a logical consequence of φ in the theory T . With φ � ψ we denote
that all uninterpreted (in T) symbols of φ appear in ψ. Without loss of generality, we
also assume that the formulas are in Conjunctive Normal Form (CNF). If C is a clause,
C ↓ B is the clause obtained by removing all the literals whose atoms do not occur
in B, and C \ B that obtained by removing all the literals whose atoms do occur in
B. With a little abuse of notation, we might sometimes denote conjunctions of literals
l1 ∧ . . . ∧ ln as sets {l1, . . . , ln} and vice versa. If η ≡ {l1, . . . , ln}, we might write ¬η
to mean ¬l1 ∨ . . . ∨ ¬ln.

We call T -solver a procedure that decides the consistency of a conjunction of literals
in T . If S ≡ {l1, . . . , ln} is a set of literals in T , we call (T)-conflict set any subset η
of S which is inconsistent in T . 2 We call ¬η a T -lemma (notice that ¬η is a T -valid
clause). Given a set of clauses S ≡ {C1, . . . , Cn} and a clause C, we call a resolution
proof that

∧
i Ci |=T C a DAG P such that:

1. C is the root of P ;
2. the leaves of P are either elements of S or T -lemmas;
3. each non-leaf node C′ has two parents Cp1 and Cp2 such that Cp1 ≡ p ∨ φ1,

Cp2 ≡ ¬p ∨ φ2, and C′ ≡ φ1 ∨ φ2. The atom p is called the pivot of Cp1 and Cp2 .

If C is the empty clause (denoted with ⊥), then P is a resolution proof of unsatisfiability
for

∧
i Ci.

A standard technique for solving the SMT(T) problem is to integrate a DPLL-based
SAT solver and a T -solver in a lazy manner (see, e.g., [28] for a detailed description).
DPLL is used as an enumerator of truth assignments for the propositional abstraction of
the input formula. At each step, the set of T -literals S corresponding to the current as-
signment is sent to the T -solver to be checked for consistency in T . If S is inconsistent,
the T -solver returns a conflict set η, and the corresponding T -lemma ¬η is added as
a blocking clause in DPLL, and used to drive the backjump mechanism. With a small
modification of the embedded DPLL engine, a lazy SMT solver can also be used to
generate a resolution proof of unsatisfiability.

2.2 Interpolation in SMT

We consider the SMT(T) problem for some background theory T . Given an ordered
pair (A, B) of formulas such that A ∧ B |=T ⊥, a Craig interpolant (simply “inter-
polant” hereafter) is a formula I s.t.:

a) A |=T I ,
b) I ∧ B |=T ⊥,
c) I � A and I � B.

The use of interpolation in formal verification has been introduced by McMillan
in [19] for purely-propositional formulas, and it was subsequently extended to han-
dle SMT(EUF ∪ LA(Q)) formulas in [20], EUF being the theory of equality and
uninterpreted functions. The technique is based on earlier work by Pudlák [25], where

2 In the next sections, as we are in an SMT(T) context, we often omit specifying “in the theory
T ” when speaking of consistency, validity, etc.

400 A. Cimatti, A. Griggio, and R. Sebastiani

two interpolant-generation algorithms are described: one for computing interpolants for
propositional formulas from resolution proofs of unsatisfiability, and one for generating
interpolants for conjunctions of (weak) linear inequalities in LA(Q). An interpolant for
(A, B) is constructed from a resolution proof of unsatisfiability of A ∧ B, generated as
outlined in §2.1. The algorithm can be described as follows:

Algorithm 1. Interpolant generation for SMT(T)

1. Generate a proof of unsatisfiability P for A ∧ B.
2. For every T -lemma ¬η occurring in P , generate an interpolant I¬η for (η\B, η ↓ B).
3. For every input clause C in P , set IC ≡ C ↓ B if C ∈ A, and IC ≡
 if C ∈ B.
4. For every inner node C of P obtained by resolution from C1 ≡ p ∨ φ1 and C2 ≡

¬p∨φ2, set IC ≡ IC1 ∨IC2 if p does not occur in B, and IC ≡ IC1 ∧IC2 otherwise.
5. Output I⊥ as an interpolant for (A, B).

Notice that Step 2. of the algorithm is the only part which depends on the theory
T , so that the problem of interpolant generation in SMT(T) reduces to that of finding
interpolants for T -lemmas. To this extent, in [20] McMillan gives a set of rules for
constructing interpolants for T -lemmas in the theory of EUF , that of weak linear in-
equalities (0 ≤ t) in LA(Q), and their combination. Linear equalities (0 = t) can be
reduced to conjunctions (0 ≤ t) ∧ (0 ≤ −t) of inequalities. Thanks to the combination
of theories, also strict linear inequalities (0 < t) can be handled in EUF ∪ LA(Q) by
replacing them with the conjunction (0 ≤ t) ∧ (0 �= t),3 but this solution can be very
inefficient. The combination EUF ∪ LA(Q) can also be used to compute interpolants
for other theories, such as those of lists, arrays, sets and multisets [15].

In [20], interpolants in the combined theory EUF ∪LA(Q) are obtained by means of
ad-hoc combination rules. The work in [30], instead, presents a method for generating
interpolants for T1 ∪ T2 using the interpolant-generation procedures of T1 and T2 as
black-boxes, using the Nelson-Oppen approach [22].

Also the method of [27] allows to compute interpolants in EUF ∪ LA(Q). Its pecu-
liarity is that it is not based on unsatisfiability proofs. Instead, it generates interpolants in
LA(Q) by solving a system of constraints using an off-the-shelf Linear Programming
(LP) solver. The method allows both weak and strict inequalities. Extension to unin-
terpreted functions is achieved by means of reduction to LA(Q) using a hierarchical
calculus. The algorithm works only with conjunctions of atoms, although in principle
it could be integrated in Algorithm 1 to generate interpolants for T -lemmas in LA(Q).
As an alternative, the authors show in [27] how to generate interpolants for formulas
that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [16]. There, the authors use the eager
SMT approach to encode the original SMT problem into an equisatisfiable proposi-
tional problem, for which a propositional proof of unsatisfiability is generated. This
proof is later “lifted” to the original theory, and used to generate an interpolant in a way

3 The details are not given in [20]. One possible way of doing this is to rewrite (0 �= t) as
(y = t) ∧ (z = 0) ∧ (z �= y), z and y being fresh variables.

Efficient Interpolant Generation in Satisfiability Modulo Theories 401

HYP
Γ � φ

φ ∈ Γ LEQEQ
Γ � 0 = t

Γ � 0 ≤ t
COMB

Γ � 0 ≤ t1 Γ � 0 ≤ t2
Γ � 0 ≤ c1t1 + c2t2

c1, c2 > 0

Fig. 1. Proof rules for LA(Q) (without strict inequalities)

similar to Algorithm 1. At the moment, the approach is however limited to the theory
of equality only (without uninterpreted functions).

All the above techniques construct one interpolant for (A, B). In general, however,
interpolants are not unique. In particular, some of them can be better than others, de-
pending on the particular application domain. In [12], it is shown how to manipulate
proofs in order to obtain stronger interpolants. In [13, 14], instead, a technique to re-
strict the language used in interpolants is presented and shown to be useful in preventing
divergence of techniques based on predicate abstraction.

3 Interpolation for Linear Arithmetic with a State-of-the-Art
Solver

Traditionally, SMT solvers used some kind of incremental simplex algorithm [29] as
T -solver for the LA(Q) theory. Recently, Dutertre and de Moura [10] have proposed
a new simplex-based algorithm, specifically designed for integration in a lazy SMT
solver. The algorithm is extremely efficient and was shown to significantly outperform
(often by orders of magnitude) the traditional ones. It has now been integrated in several
SMT solvers, including ARGOLIB, CVC3, MATHSAT, YICES, and Z3. Remarkably,
this algorithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to efficiently generate inter-
polants for LA(Q) formulas. In §3.1 we begin by considering the case in which the
input atoms are only equalities and non-strict inequalities. In this case, we only need to
show how to generate a proof of unsatisfiability, since then we can use the interpolation
rules defined in [20]. Then, in §3.2 we show how to generate interpolants for problems
containing also strict inequalities and disequalities.

3.1 Interpolation with Non-strict Inequalities

Similarly to [20], we use the proof rules of Figure 1: HYP for introducing hypothe-
ses, LEQEQ for deriving inequalities from equalities, and COMB for performing linear
combinations.4 As in [20], we consider an atom “0 ≤ c”, c being a negative numerical
constant, as a synonym of ⊥.

The original Dutertre-de Moura algorithm. In its original formulation, the Dutertre-
de Moura algorithm assumes that the variables xi are partitioned a priori in two sets,
hereafter denoted as B̂ (“initially basic”) and N̂ (“initially non-basic”), and that the
algorithm receives as inputs two kinds of atomic formulas:5

4 In [20] the LEQEQ rule is not used in LA(Q), because the input is assumed to consist only of
inequalities.

5 Notationally, we use the hat symbol ˆ to denote the initial value of the generic symbol.

402 A. Cimatti, A. Griggio, and R. Sebastiani

– a set of equations eqi, one for each xi ∈ B̂, of the form
∑

xj∈N̂ âijxj + âiixi = 0
s.t. all âij ’s are numerical constants;

– elementary atoms of the form xj ≥ lj or xj ≤ uj s.t. lj , uj are numerical constants.

The initial equations eqi are then used to build a tableau T :

{xi =
∑

xj∈N aijxj | xi ∈ B}, (1)

where B (“basic”), N (“non-basic”) and aij are such that initially B ≡ B̂, N ≡ N̂ and
aij ≡ −âij/âii.

In order to decide the satisfiability of the input problem, the algorithm performs
manipulations of the tableau that change the sets B and N and the values of the co-
efficients aij , always keeping the tableau T in (1) equivalent to its initial version. An
inconsistency is detected when it is not possible to satisfy all the bounds on the vari-
ables introduced by the elementary atoms: as the algorithm ensures that the bounds on
the variables in N are always satisfied, then there is a variable xi ∈ B such that the in-
consistency is caused either by the elementary atom xi ≥ li or by the atom xi ≤ ui [10].
In the first case, 6 a conflict set η is generated as follows:

η = {xj ≤ uj |xj ∈ N+} ∪ {xj ≥ lj|xj ∈ N−} ∪ {xi ≥ li}, (2)

where xi =
∑

xj∈N aijxj is the row of the current version of the tableau T (1) corre-

sponding to xi, N+ is {xj ∈ N|aij > 0} and N− is {xj ∈ N|aij < 0}.
Notice that η is a conflict set in the sense that it is made inconsistent by (some of)

the equations in the tableau T (1), i.e. T ∪ η |=LA(Q) ⊥.
In order to handle problems that are not in the above form, a satisfiability-preserving

preprocessing step is applied upfront, before invoking the algorithm.

Our variant. In our variant of the algorithm, instead, the input is an arbitrary set of
inequalities lk ≤

∑
h âkh yh or uk ≥

∑
h âkh yh, and the preprocessing step is ap-

plied internally. In particular, we introduce a “slack” variable sk for each distinct term∑
h âkh yh occurring in the input inequalities. Then, we replace such term with sk (thus

obtaining lk ≤ sk or uk ≥ sk) and add an equation sk =
∑

h âkh yh. Notice that we
introduce a slack variable even for “elementary” inequalities (lk ≤ yk). With this trans-
formation, the initial tableau T (1) is:

{sk =
∑

h âkh yh}k, (3)

s.t. B̂ is made of all the slack variables sk’s, N̂ is made of all the original variables yh’s,
and the elementary atoms contain only slack variables sk’s.

In our variant, we can use η to generate a conflict set η′, thanks to the following
lemma.

Lemma 1. In the set η of (2), xi and all the xj ’s are slack variables introduced by our
preprocessing step. Moreover, the set η′ ≡ ηN+ ∪ ηN− ∪ ηi is a conflict set, where

6 Here we do not consider the second case xi ≤ ui as it is analogous to the first one.

Efficient Interpolant Generation in Satisfiability Modulo Theories 403

ηN+ ≡ {uk ≥
∑

h âkh yh|sk ≡ xj and xj ∈ N+},

ηN− ≡ {lk ≤
∑

h âkh yh|sk ≡ xj and xj ∈ N−},

ηi ≡ {lk ≤
∑

h âkh yh|sk ≡ xi}.

We construct a proof of inconsistency as follows. From the set η of (2) we build a
conflict set η′ by replacing each elementary atom in it with the corresponding original
atom, as shown in Lemma 1. Using the HYP rule, we introduce all the atoms in ηN+ ,
and combine them with repeated applications of the COMB rule: if uk ≥

∑
h âkh yh is

the atom corresponding to sk, we use as coefficient for the COMB the aij (in the i-th
row of the current tableau) such that sk ≡ xj . Then, we introduce each of the atoms in
ηN− with HYP, and add them to the previous combination, again using COMB. In this
case, the coefficient to use is −aij . Finally, we introduce the atom in ηi and add it to
the combination with coefficient 1.

Lemma 2. The result of the linear combination described above is the atom 0 ≤ c,
such that c is a numerical constant strictly lower than zero.

Besides the case just described (and its dual when the inconsistency is due to an elemen-
tary atom xi ≤ ui), another case in which an inconsistency can be detected is when two
contradictory atoms are asserted: lk ≤

∑
h âkh yh and uk ≥

∑
h âkh yh, with lk > uk.

In this case, the proof is simply the combination of the two atoms with coefficient 1.
The extension for handling also equalities like bk =

∑
h âkh yh is straightforward:

we simply introduce two elementary atoms bk ≤ sk and bk ≥ sk and, in the construc-
tion of the proof, we use the LEQEQ rule to introduce the proper inequality.

Finally, notice that the current implementation in MATHSAT (see §6) is slightly
different from what presented here, and significantly more efficient. In practice, η, η′

are not constructed in sequence; rather, they are built simultaneously. Moreover, some
optimizations are applied to eliminate some slack variables when they are not needed.

3.2 Interpolation with Strict Inequalities and Disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle strict inequali-
ties directly. Its method is based on the following lemma.

Lemma 3 (Lemma 1 in [10]). A set of linear arithmetic atoms Γ containing strict
inequalities S = {0 < p1, . . . , 0 < pn} is satisfiable iff there exists a rational number
ε > 0 such that Γε = (Γ ∪ Sε) \ S is satisfiable, where Sε = {ε ≤ p1, . . . , ε ≤ pn}.

The idea of [10] is that of treating the infinitesimal parameter ε symbolically instead
of explicitly computing its value. Strict bounds (x < b) are replaced with weak ones
(x ≤ b − ε), and the operations on bounds are adjusted to take ε into account.

We use the same idea also for computing interpolants. We transform every atom
(0 < ti) occurring in the proof of unsatisfiability into (0 ≤ ti − ε). Then we compute
an interpolant Iε in the usual way. As a consequence of the rules of [20], Iε is always a
single atom. As shown by the following lemma, if Iε contains ε, then it must be in the
form (0 ≤ t − c ε) with c > 0, and we can rewrite Iε into (0 < t).

404 A. Cimatti, A. Griggio, and R. Sebastiani

Lemma 4 (Interpolation with strict inequalities). Let Γ , S, Γε and Sε be defined
as in Lemma 3. Let Γ be partitioned into A and B, and let Aε and Bε be obtained
from A and B by replacing atoms in S with the corresponding ones in Sε. Let Iε be an
interpolant for (Aε, Bε). Then:

– If ε �� Iε, then Iε is an interpolant for (A, B).
– If ε � Iε, then Iε ≡ (0 ≤ t−c ε) for some c > 0, and I ≡ (0 < t) is an interpolant

for (A, B).

Thanks to Lemma 4, we can handle also negated equalities (0 �= t) directly. Suppose
our set S of input atoms (partitioned into A and B) is the union of a set S′ of equalities
and inequalities (both weak and strict) and a set S �= of disequalities, and suppose that
S′ is consistent. (If not so, an interpolant can be computed from S′.) Since LA(Q) is
convex, S is inconsistent iff exists (0 �= t) ∈ S �= such that S′∪{(0 �= t)} is inconsistent,
that is, such that both S′ ∪ {(0 < t)} and S′ ∪ {(0 > t)} are inconsistent.

Therefore, we pick one element (0 �= t) of S �= at a time, and check the satisfiability
of S′ ∪ {(0 < t)} and S′ ∪ {(0 > t)}. If both are inconsistent, from the two proofs
we can generate two interpolants I− and I+. We combine I+ and I− to obtain an
interpolant I for (A, B): if (0 �= t) ∈ A, then I is I+ ∨ I−; if (0 �= t) ∈ B, then I is
I+ ∧ I−, as shown by the following lemma.

Lemma 5 (Interpolation for negated equalities). Let A and B two conjunctions of
LA(Q) atoms, and let n ≡ (0 �= t) be one such atom. Let g ≡ (0 < t) and l ≡ (0 > t).
If n ∈ A, then let A+ ≡ A \ {n} ∪ {g}, A− ≡ A \ {n} ∪ {l}, and B+ ≡ B− ≡ B.
If n ∈ B, then let A+ ≡ A− ≡ A, B+ ≡ B \ {n} ∪ {g}, and B− ≡ B \ {n} ∪ {l}.
Assume that A+ ∧ B+ |=LA(Q) ⊥ and that A− ∧ B− |=LA(Q) ⊥, and let I+ and I−

be two interpolants for (A+, B+) and (A−, B−) respectively, and let

I ≡
{

I+ ∨ I− if n ∈ A
I+ ∧ I− if n ∈ B.

Then I is an interpolant for (A, B).

4 Graph-Based Interpolation for Difference Logic

Several interesting verification problems can be encoded using only a subset of LA(Q),
the theory of Difference Logic (DL(Q)), in which all atoms are inequalities of the form
(0 ≤ y − x + c), where x and y are variables and c is a numerical constant. Equalities
can be handled as conjunctions of inequalities. Here we do not consider the case when
we also have strict inequalities (0 < y −x+ c), because in DL(Q) they can be handled
in a way which is similar to that described in §3.2 for LA(Q). Moreover, we believe
that our method may be extended straightforwardly to DL(Z) because the graph-based
algorithm described in this section applies also to DL(Z); in DL(Z) a strict inequality
(0 < y − x+ c) can be safely rewritten a priori into the inequality (0 ≤ y − x+ c − 1).

DL(Q) is simpler than full linear arithmetic. Many SMT solvers use dedicated,
graph-based algorithms for checking the consistency of a set of DL(Q) atoms [9, 23].
Intuitively, a set S of DL(Q) atoms induces a graph whose vertexes are the variables

Efficient Interpolant Generation in Satisfiability Modulo Theories 405

of the atoms, and there exists an edge x
c−→ y for every (0 ≤ y − x + c) ∈ S. S is

inconsistent if and only if the induced graph has a cycle of negative weight.
We now extend the graph-based approach to generate interpolants. Consider the in-

terpolation problem (A, B) where A and B are sets of inequalities as above, and let C
be (the set of atoms in) a negative cycle in the graph corresponding to A ∪ B.

If C ⊆ A, then A is inconsistent, in which case the interpolant is ⊥. Similarly,
when C ⊆ B, the interpolant is
. If neither of these occurs, then the edges in the
cycle can be partitioned in subsets of A and B. We call maximal A-paths of C a path

x1
c1−→ . . .

cn−1−−−→ xn such that (I) xi
ci−→ xi+1 ∈ A, and (II) C contains x′ c′

−→ x1 and

xn
c′′
−→ x′′ that are in B. Clearly, the end-point variables x1, xn of the maximal A-path

are such x1, xn � A and x1, xn � B.
Let the summary constraint of a maximal A-path x1

c1−→ . . .
cn−1−−−→ xn be the inequal-

ity 0 ≤ xn − x1 +
∑n−1

i=1 ci. We claim that the conjunction of summary constraints of
the A-paths of C is an interpolant. In fact, using the rules for LA(Q) it is easy to see
that a maximal A-path entails its summary constraint. Hence, A entails the conjunction
of the summary constraints of maximal A-paths. Then, we notice that the conjunction of
the summary constraints is inconsistent with B. In fact, the weight of a maximal A-path
and the weight of its summary constraint are the same. Thus the cycle obtained from C
by replacing each maximal A-path with the corresponding summary constraint is also a
negative cycle. Finally, we notice that every variable x occurring in the conjunction of
the summary constraints is an end-point variable, and thus x � A and x � B.

A final remark is in order. In principle, to generate a proof of unsatisfiability for a
conjunction of DL(Q) atoms, the same rules used for LA(Q) [20] could be used. How-
ever, the interpolants generated from such proofs are in general not DL(Q) formulas
anymore and, if computed starting from the same inconsistent set C, they are either
identical or weaker than those generated with our method. In fact, due to the interpola-
tion rules in [20], it is easy to see that the interpolant obtained is in the form (0 ≤

∑
i ti)

s.t.
∧

i(0 ≤ ti) is the interpolant generated with our method.

Example 1. Consider the following sets of DL(Q) atoms:

A = {(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}
B = {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10
x1 x5

1

0

1

A
B

x2

x3

x4

corresponding to the negative cycle on the right. It is straightforward to see from the
graph that the resulting interpolant is (0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1), because
the first conjunct is the summary constraint of the first two conjuncts in A.

Applying instead the rules of Figure 1, the proof of unsatisfiability is:

HYP

(0 ≤ x1 − x2 + 1)

HYP

(0 ≤ x2 − x3)

COMB (0 ≤ x1 − x3 + 1)

HYP

(0 ≤ x4 − x5 − 1)

COMB (0 ≤ x1 − x3 + x4 − x5)

HYP

(0 ≤ x5 − x1)

COMB (0 ≤ −x3 + x4)

HYP

(0 ≤ x3 − x4 − 1)

COMB (0 ≤ −1)

406 A. Cimatti, A. Griggio, and R. Sebastiani

By using the interpolation rules for LA(Q) (see [20]), the interpolant we obtain is
(0 ≤ x1 − x3 + x4 − x5), which is not in DL(Q), and is weaker than that computed
above.

5 Computing Interpolants for Combined Theories Via DTC

One of the typical approaches to the SMT problem in combined theories, SMT (T1 ∪
T2), is that of combining the solvers for T1 and for T2 with the Nelson-Oppen (NO)
integration schema [22].

The NO framework works for combinations of stably-infinite and signature-disjoint
theories Ti with equality. Moreover, it requires the input formula to be pure (i.e., s.t. all
the atoms contain only symbols in one theory): if not, a purification step is performed,
which might introduce some additional variables but preserves satisfiability. In this set-
ting, the two decision procedures for T1 and T2 cooperate by exchanging (disjunctions
of) implied interface equalities, that is, equalities between variables appearing in atoms
of different theories (interface variables).

The work in [30] gives a method for generating an interpolant for a pair (A, B)
of T1 ∪ T2-formulas using the NO schema. Besides the requirements on T1 and T2
needed to use NO, it requires also that T1 and T2 are equality-interpolating. A theory
T is said to be equality-interpolating when for all pairs of formulas (A, B) in T and
for all equalities xa = xb such that (i) xa �� B and xb �� A (i.e. xa = xb is an
AB-mixed equality), and (ii) A ∧ B |=T xa = xb, there exists a term t such that
A ∧ B |=T xa = t ∧ t = xb, t � A and t � B. E.g., both EUF and LA(Q) are
equality-interpolating.

Recently, an alternative approach for combining theories in SMT has been proposed,
called Delayed Theory Combination (DTC) [5, 6]. With DTC, the solvers for T1 and
T2 do not communicate directly. The integration is performed by the SAT solver, by
augmenting the boolean search space with up to all the possible interface equalities.
DTC has several advantages wrt. NO, both in terms of ease of implementation and in
reduction of search space [5, 6], so that many current SMT tools implement variants of
DTC. In this Section, we give a method for generating interpolants for a pair of T1 ∪T2-
formulas (A, B) when T1 and T2 are combined using DTC. As in [30], we assume that
A and B have been purified using disjoint sets of auxiliary variables.

5.1 Combination without AB-Mixed Interface Equalities

Let Eq be the set of all interface equalities introduced by DTC. We first consider the
case in which Eq does not contain AB-mixed equalities. That is, Eq can be partitioned
into two sets (Eq \ B) ≡ {(x = y)|(x = y) � A and (x = y) �� B} and (Eq ↓
B) ≡ {(x = y)|(x = y) � B}. In this restricted case, nothing special needs to be
done, despite the fact that the interface equalities in Eq do not occur neither in A nor
in B, but might be introduced in the resolution proof P by T -lemmas. This is because
—as observed in [20]— as long as for an atom p either p � A or p � B holds, it is
possible to consider it part of A (resp. of B) simply by assuming the tautology clause
p ∨ ¬p to be part of A (resp. of B). Therefore, we can treat the interface equalities in
(Eq \ B) as if they appeared in A, and those in (Eq ↓ B) as if they appeared in B.

Efficient Interpolant Generation in Satisfiability Modulo Theories 407

5.2 Combination with AB-Mixed Interface Equalities

We can handle the case in which some of the equalities in Eq are AB-mixed under the
hypothesis that T1 and T2 are equality-interpolating. Currently, we also require that T1
and T2 are convex, although the extension of the approach to non-convex theories is
part of ongoing work.

The idea is similar to that used in [30] in the case of NO: using the fact that the
Ti’s are equality-interpolating, we reduce this case to the previous one by “splitting”
every AB-mixed interface equality (xa = xb) into the conjunction of two parts (xa =
t) ∧ (t = xb), such that (xa = t) � A and (t = xb) � B. The main difference is that
we do this a posteriori, after the construction of the resolution proof of unsatisfiabil-
ity P . This makes it possible to compute different interpolants for different partitions
of the input problem into an A-part and a B-part from the same proof P . Besides the
advantage in performance of not having to recompute the proof every time, this is par-
ticularly important in some application domains like abstraction refinement [11], where
the relation between interpolants obtained from the same proof tree is exploited to prove
some properties of the refinement procedure. 7 To do this, we traverse P and split every
AB-mixed equality in it, performing also the necessary manipulations to ensure that the
modified DAG is still a resolution proof of unsatisfiability (according to the definition
in §2.2). As long as this requirement is met, our technique is independent from the exact
procedure implementing it. In the rest of this Section, we describe the algorithm that
we have implemented, for the combination EUF ∪ LA(Q). Due to lack of space, we
can not describe it in detail, rather we only provide the main intuitions.

First, we control the branching and learning heuristics of the SMT solver to ensure that
the generated resolution proof of unsatisfiability P has a property that we call locality
wrt. interface equalities. We say that P is local wrt. interface equalities (ie -local) if the
interface equalities occur only in subproofs P ie

i of P , in which both the root and the
leaves are T1 ∪T2-valid, the leaves of P ie

i are also leaves of P , the root of P ie
i does not

contain any interface equality, and in P ie
i all the pivots are interface equalities. In order

to generate ie -local proofs, we adopt a variant of the DTC Strategy 1 of [6]. We never
select an interface equality for case splitting if there is some other unassigned atom, and
we always assign false to interface equalities first. Moreover, when splitting on interface
equalities, we restrict both the backjumping and the learning procedures of the DPLL
engine as follows. Let d be the depth in the DPLL tree at which the first interface equality
is selected for case splitting. If during the exploration of the current DPLL branch we
have to backjump above d, then we generate by resolution a conflict clause that does
not contain any interface equality, and “deactivate” all the T -lemmas containing some
interface equality, so that they can not be used elsewhere in the search tree. Only when
we start splitting on interface equalities again, we can re-activate such T -lemmas.

7 In particular, the following relation: IA,B∪C(P) ∧ C =⇒ IA∪C,B(P) (where IA,B(P) is
an interpolant for (A, B) generated from the proof P) is used to show that for every spurious
counterexample found, the interpolation-based refinement procedure is able to rule-out the
counterexample in the refined abstraction [11]. It is possible to show that a similar relation
holds also for IA,B∪C(P1) and IA∪C,B(P2), when P1 and P2 are obtained from the same
P by splitting AB-mixed interface equalities with the technique described here. However, for
lack of space we can not include such proof.

408 A. Cimatti, A. Griggio, and R. Sebastiani

The idea of the Strategy just described is that of “emulating” the NO combination
of the two Ti-solvers. The conflict clause generated by resolution plays the role of the
T -lemma generated by the NO-based T1 ∪ T2 solver, and the T -lemmas containing
positive interface equalities are used for exchanging implied equalities. The difference
is that the combination is performed by the DPLL engine, and encoded directly in the
ie -local subproofs P ie

i of P .
Since AB-mixed equalities can only occur in P ie

i subproofs, we can handle the rest
of P in the usual way. Therefore, we now describe only how to manipulate the P ie

i ’s
such that all the AB-mixed equalities are split.

In order accomplish this task, we exploit the following fact: since we are considering
only convex theories, all the Ti-lemmas generated by the Ti-solvers contain at most one
positive interface equality (x = y).8 Let C ≡ (x = y) ∨ ¬η be one such Ti-lemma.
Then η |=Ti (x = y). Since Ti is equality-interpolating, if (x = y) is AB-mixed, we
can split C into C1 ≡ (x = t) ∨ ¬η and C2 ≡ (t = y) ∨ ¬η. (E.g. by using the
algorithms given in [30] for EUF and LA(Q).) Then, we replace every occurrence of
¬(x = y) in the leaves of P ie

i with the disjunction ¬(x = t) ∨ ¬(t = y). Finally, we
replace the subproof

(x = y) ∨ ¬η ¬(x = y) ∨ φ

¬η ∨ φ
with

(x = t) ∨ ¬η ¬(x = t) ∨ ¬(t = y) ∨ φ

¬η ∨ ¬(t = y) ∨ φ
(t = y) ∨ ¬η

¬η ∨ φ
.

If this is done recursively, starting from Ti-lemmas ¬η ∨ (x = y) such that ¬η
contains no negated AB-mixed equality, then the procedure terminates and the new
proof P ie

i
′ contains no AB-mixed equality.

Finally, we wish to remark that what just described is only one possible way of
splitting AB-mixed equalities in P . In particular, the restrictions on the branching and
learning heuristics needed to generate ie -local proofs might have a negative impact
in the performance of the SMT solver. In fact, we are currently investigating some
alternative strategies.

6 Experimental Evaluation

The techniques presented in previous sections have been implemented within MATH-
SAT 4 [4] (Hereafter, we will refer to such implementation as MATHSAT-ITP). MATH-
SAT is an SMT solver supporting a wide range of theories and their combinations. In
the last SMT solvers competition (SMT-COMP’07), it has proved to be competitive
with the other state-of-the-art solvers. In this Section, we experimentally evaluate our
approach.

6.1 Description of the Benchmark Sets

We have performed our experiments on two different sets of benchmarks. The first
is obtained by running the BLAST software model checker [11] on some Windows

8 There is a further technical condition that must be satisfied by the Ti-solvers, i.e. they must not
generate conflict sets containing redundant disequalities. This is true for all the Ti-solvers on
EUF , DL(Q) and LA(Q) implemented in MATHSAT.

Efficient Interpolant Generation in Satisfiability Modulo Theories 409

Family # of problems MATHSAT-ITP FOCI CLP-PROVER

kbfiltr.i 64 0.16 0.36 1.47
diskperf.i 119 0.33 0.78 3.08
floppy.i 235 0.73 1.64 5.91

cdaudio.i 130 0.35 1.07 2.98

Fig. 2. Comparison of execution times of MATHSAT-ITP, FOCI and CLP-PROVER on problems
generated by BLAST

Execution Time Size of the Interpolant

F
O

C
I

 0.1

 1

 10

 100

1000

 0.1 1 10 100 1000

 2x
 4x

Single theory
Multiple theories

 10

 100

 1000

 10000

100000

 1e+06

 10 100 1000 10000 100000 1e+

 2x
 4x

Single theory
Multiple theories

MATHSAT-ITP MATHSAT-ITP

Fig. 3. Comparison of MATHSAT-ITP and FOCI on SMT-LIB
instances: execution time (left), and size of the interpolant
(right). In the left plot, points on the horizontal and vertical
lines are timeouts/failures.

Execution Time

C
L

P
-P

R
O

V
E

R

 0.01

 0.1

 1

 10

 100

1000

 0.01 0.1 1 10 100 1000

 2x
 4x

MATHSAT-ITP

Fig. 4. Comparison of MATH-
SAT-ITP and CLP-PROVER

on conjunctions of LA(Q)
atoms

device drivers; these are similar to those used in [27]. This is one of the most important
applications of interpolation in formal verification, namely abstraction refinement in
the context of CEGAR. The problem represents an abstract counterexample trace, and
consists of a conjunction of atoms. In this setting, the interpolant generator is called
very frequently, each time with a relatively simple input problem.

The second set of benchmarks originates from the SMT-LIB [26], and is composed
of a subset of the unsatisfiable problems used in the 2007 SMT solvers competition
(http://www.smtcomp.org). The instances have been converted to CNF and then
split in two consistent parts of approximately the same size. The set consists of problems
of varying difficulty and with a nontrivial boolean structure.

The experiments have been performed on a 3GHz Intel Xeon machine with 4GB
of RAM running Linux. All the tools were run with a timeout of 600 seconds and a
memory limit of 900 MB.

6.2 Comparison with the State-of-the-Art Tools Available

In this section, we compare with the only other interpolant generators which are avail-
able: FOCI [20, 13] and CLP-PROVER [27]. Other natural candidates for comparison
would have been ZAP [3] and LIFTER [16]; however, it was not possible to obtain them
from the authors.

http://www.smtcomp.org

410 A. Cimatti, A. Griggio, and R. Sebastiani

The comparison had to be adapted to the limitations of FOCI and CLP-PROVER. In
fact, the current version of FOCI does not handle the full LA(Q), but only the DL(Q)
fragment9. We also notice that the interpolants it generates are not always DL(Q) for-
mulas. (See, e.g., Example 1 of Section 4.) CLP-PROVER, on the other hand, does handle
the full LA(Q), but it accepts only conjunctions of atoms, rather than formulas with ar-
bitrary boolean structure. These limitations made it impossible to compare all the three
tools on all the instances of our benchmark sets. Therefore, we perform the following
comparisons:

– We compare all the three solvers on the problems generated by BLAST;
– We compare MATHSAT-ITP with FOCI on SMT-LIB instances in the theories of

EUF , DL(Q) and their combination. In this case, we compare both the execution
times and the sizes of the generated interpolants (in terms of number of nodes in
the DAG representation of the formula). For computing interpolants in EUF , we
apply the algorithm of [20], using an extension of the algorithm of [24] to generate
EUF proof trees. The combination EUF ∪ DL(Q) is handled with the technique
described in §5;

– We compare MATHSAT-ITP and CLP-PROVER on LA(Q) problems consisting of
conjunctions of atoms. These problems are single branches of the search trees ex-
plored by MATHSAT for some LA(Q) instances in the SMT-LIB. We have col-
lected several problems that took more than 0.1 seconds to MATHSAT to solve,
and then randomly picked 50 of them. In this case, we do not compare the sizes of
the interpolants as they are always atomic formulas.

The results are collected in Figures 2, 3 and 4. We can observe the following facts:

– Interpolation problems generated by BLAST are trivial for all the tools. In fact, we
even had some difficulties in measuring the execution times reliably. Despite this,
MATHSAT-ITP seems to be a little faster than the others.

– For problems with a nontrivial boolean structure, MATHSAT-ITP outperforms
FOCI in terms of execution time. This is true even for problems in the combined
theory EUF ∪ DL(Q), despite the fact that the current implementation is still
preliminary.

– In terms of size of the generated interpolants, the gap between MATHSAT-ITP and
FOCI is smaller on average. However, the right plot of Figure 3 (which considers
only instances for which both tools were able to generate an interpolant) shows that
there are more cases in which MATHSAT-ITP produces a smaller interpolant.

– On conjunctions of LA(Q) atoms, MATHSAT-ITP outperforms CLP-PROVER,
sometimes by more than two orders of magnitude.

7 Conclusions

In this paper, we have shown how to efficiently build interpolants using state-of-the-
art SMT solvers. Our methods encompass a wide range of theories (including EUF ,

9 For example, it fails to detect the LA(Q)-unsatisfiability of the following problem: (0 ≤
y − x + w) ∧ (0 ≤ x − z − w) ∧ (0 ≤ z − y − 1) .

Efficient Interpolant Generation in Satisfiability Modulo Theories 411

difference logic, and linear arithmetic), and their combination (based on the Delayed
Theory Combination schema). A thorough experimental evaluation shows that the pro-
posed methods are vastly superior to the state of the art interpolants, both in terms of
expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issues. First, we will improve
the implementation of the interpolation method for combined theories, that is currently
rather naı̈ve, and limited to the case of convex theories. Second, we will investigate
interpolation with other rules, in particular Ackermann’s expansion. Finally, we will
integrate our interpolator within a CEGAR loop based on decision procedures, such as
BLAST or the new version of NuSMV. In fact, such an integration raises interesting
problems related to controlling the structure of the generated interpolants [13, 14], e.g.
in order to limit the number or the size of constants occurring in the proof.

References

1. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems
with mathsat. Electr. Notes Theor. Comput. Sci. 119(2) (2005)

2. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model checking for
timed systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, Springer,
Heidelberg (2002)

3. Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theorem proving for software analy-
sis. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, Springer,
Heidelberg (2005)

4. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P., Schulz, S., Sebastiani,
R.: MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal of
Automated Reasoning 35(1-3) (October 2005)

5. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Se-
bastiani, R.: Efficient Theory Combination via Boolean Search. Information and Compu-
tation 204(10) (2006)

6. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed Theory Com-
bination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis. In:
Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, Springer, Heidel-
berg (2006)

7. Cabodi, G., Murciano, M., Nocco, S., Quer, S.: Stepping forward with interpolants in un-
bounded model checking. In: Proc. ICCAD 2006, ACM, New York (2006)

8. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability
Modulo Theories. Technical Report DIT-07-075, DISI - University of Trento (2007)

9. Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation for DPLL(T). In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg
(2006)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
Jones, N.D., Leroy, X. (eds.) POPL, ACM, New York (2004)

12. Jhala, R., McMillan, K.: Interpolant-based transition relation approximation. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg
(2005)

412 A. Cimatti, A. Griggio, and R. Sebastiani

13. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, Springer, Heidelberg
(2006)

14. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, Springer, Heidelberg (2007)

15. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: Young, M., De-
vanbu, P.T. (eds.) SIGSOFT FSE, ACM, New York (2006)

16. Kroening, D., Weissenbacher, G.: Lifting Propositional Interpolants to the Word-Level. In:
FMCAD, USA, pp. 85–89. IEEE Computer Society, Los Alamitos, CA, USA (2007)

17. Li, B., Somenzi, F.: Efficient Abstraction Refinement in Interpolation-Based Unbounded
Model Checking. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
227–241. Springer, Heidelberg (2006)

18. Marques-Silva, J.: Interpolant Learning and Reuse in SAT-Based Model Checking. Electr.
Notes Theor. Comput. Sci. 174(3), 31–43 (2007)

19. McMillan, K.: Interpolation and SAT-based model checking. In: Proc. CAV (2003)
20. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
21. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
22. Nelson, G., Oppen, D.: Simplification by Cooperating Decision Procedures. ACM Trans. on

Programming Languages and Systems 1(2) (1979)
23. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and Its Ap-

plication to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, Springer, Heidelberg (2005)

24. Nieuwenhuis, R., Oliveras, A.: Fast Congruence Closure and Extensions. Inf. Com-
put. 2005(4), 557–580 (2007)

25. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. J. of Symb. Logic 62(3) (1997)

26. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2006),
http://www.SMT-LIB.org

27. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: VM-
CAI. LNCS, Springer, Heidelberg (2007)

28. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Mod-
eling and Computation, J.SAT 3 (2007)

29. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Springer, Heidelberg
(2001)

30. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwen-
huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

http://www.SMT-LIB.org

Quantified Invariant Generation Using an

Interpolating Saturation Prover

K.L. McMillan

Cadence Berkeley Labs

Abstract. Interpolating provers have a variety of applications in verifi-
cation, including invariant generation and abstraction refinement. Here,
we extended these methods to produce universally quantified interpolants
and invariants, allowing the verification of programs manipulating arrays
and heap data structures. We show how a paramodulation-based satura-
tion prover, such as SPASS, can be modified in a simple way to produce
a first-order interpolating prover that is complete for universally quanti-
fied interpolants. Using a partial axiomatization of the theory of arrays
with transitive closure, we show that the method can verify properties
of simple programs manipulating arrays and linked lists.

1 Introduction

An interpolating prover derives an interpolant for a pair (or in general a se-
quence) of logical formulas from a proof of unsatisfiability of those formulas. An
interpolant for a pair of formulas (A, B) is a formula over their common vocab-
ulary that is implied by A and inconsistent with B. Interpolating provers have
been used to generate inductive invariants for proving properties of sequential
circuits [7] and sequential programs [9], as well as abstraction refinement [4].
However, their use so far has been limited to propositional logic (with a Boolean
satisfiability solver) or quantifier-free first-order logic for fixed theories (with
a ground decision procedure) [8]. While effective, these methods are strongly
limited in their ability to handle programs manipulating arrays and heap data
structures because these generally require quantified invariants.

In this paper, we show how to modify a paramodulation-based prover for first
order logic (FOL) with equality to produce an interpolating prover. This prover is
complete for generation of universally quantified interpolants (though the input
formulas may be in full FOL). Because it is a full first order prover, it allows
us to introduce various theories that may be useful for expressing invariants by
axiomatizing them. For example, we show that an incomplete axiomatization of
FO(TC), the first-order theory of transitive closure, allows us to verify properties
of simple heap-manipulating programs.

The primary problem that we must solve in making a practical interpolating
prover is divergence of the interpolants. That is, we generate inductive invariants
from the interpolants obtained by refuting unwindings of the program of increas-
ing length. If these interpolants diverge with increasing unwinding length (for

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 413–427, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

414 K.L. McMillan

example by exhibiting increasing numeric constants or function nesting depth
or number of quantifiers) then this approach fails. This problem was solved for
quantifier-free case (for certain theories) in [5]. Here, we solve the problem in a
different way, by bounding the clause language of the saturation prover. We show
that the method is complete for universally quantified invariant generation, that
is, if there is an inductive invariant proving a given property, we are guaranteed
to find one eventually.

We also show experimentally, by modifying the Spass prover [14] that the
method does in fact converge for some simple example programs manipulating
arrays and linked lists.

Related work. Indexed predicate abstraction [6] is a method that can generate
the strongest universally quantified inductive invariant of a program over a fixed
set of atomic predicates. However, some of these atomic predicates typically must
be provided manually, as effective selection algorithms are lacking. Moreover,
the forward image operator in this method is problematic, requiring in the worst
case an exponential number of calls to a decision oracle for first-order logic. The
method presented here does not require an image operator or a decision oracle.
It may, however, provide a useful heuristic for indexed predicate refinement.

Since the method presented here can handle FO(TC), it is comparable in
power to canonical heap abstraction [12]. The abstract states in this method
(with reachability predicates) can be expressed as formulas in FO(TC). The
difference between the methods is therefore mainly a matter of efficiency, which
remains to be determined. However, the interpolation method has the advantage
that it does not require the user to provide instrumentation predicates manually.
It could be that interpolation in FO(TC) will be a useful approach for automated
refinement in the canonical abstraction method.

Finally, the method can also be compared to parameterized invariant gener-
ation methods such as [13]. The main advantage of interpolation is that it can
synthesize the Boolean structure of the invariant, and it can handle heap proper-
ties using transitive closure that cannot be handled by parameterized methods.
On the other hand, the arithmetic reasoning ability of the present approach is
limited compared to these methods.

2 Background: Paramodulation Calculus

Paramodulation [11] is the method of choice for proving first order formulas
with equality. We begin by describing the basic principles of saturation provers
based on paramodulation. This is necessarily a quick review. The material in
this section is derived from an excellent article by Niewenhuis and Rubio [10],
to which the reader is referred for greater depth.

Preliminaries. Let Σ be a countable vocabulary of function and predicate
symbols, with associated arities. Function symbols with arity zero will be called
constants. We assume that Σ contains at least one constant. We will use meta-
variables f, g, h to represent function symbols, a, b, c to represent constants, and

Quantified Invariant Generation Using an Interpolating Saturation Prover 415

P, Q to represent predicate symbols. We will also distinguish a finite subset ΣI

of Σ as interpreted symbols. In particular, we assume that ΣI contains the binary
predicate symbol �, representing equality. Let V be a countable set of variables,
distinct from Σ. We will use U, V to represent variables. The set of terms T is
the least set such that V ⊆ T and for every function symbol f of arity k, and
terms t1 . . . tk ∈ T k, we have f(t1, . . . , tk) ∈ T . We will use s, t (and sometimes
l, r) to represent terms. The vocabulary of a term or formula φ, denoted L(φ)
is the set of uninterpreted symbols occurring in φ. If S is a vocabulary, we let
T (S) denote the set of terms t such that L(t) ⊆ S. Similarly, L(S) is the set of
first-order formulas φ such that L(φ) ⊆ S. We will also write L(φ) for L(L(φ)).

An atom is P (t1, . . . , tk), where P is a k-ary predicate symbol and t1, . . . , tk
are terms. A literal is an atom or its negation. A clause is a disjunction of literals
in which the variables are implicitly universally quantified. Following tradition,
we will write clauses in the form Γ → Δ, where Γ is the multiset of negative
literals in the clause, and Δ is the multiset of positive literals. Also following
tradition, we will write a formula multiset as list of formulas and formula mul-
tisets. Thus, if Γ is a multiset of formulas and φ a formula, then Γ, φ represents
Γ ∪ {φ}.

A substitution σ is a map from variables to terms. For any term of formula
φ, we write φσ to indicate the simultaneous substitution in φ of σ(U) for all
free occurrences of U , for all variables U in the domain of σ. A formula or term
is said to be ground if it contains no variables. A substitution is ground if all
terms in its range are ground. The ground instances of a clause C are all the
clauses Cσ, where σ is a ground substitution over the variables in C. A position
p is a finite sequence of natural numbers, representing a syntactic position in a
term or formula. If φ is a formula or term, then φ|p represents the subformula
or subterm of φ at position p. Thus, φ|ε is φ itself, φ|i is the i-th argument of φ,
φ|ij is the j-th argument of the i-th argument, and so on. The notation φ[ψ]p
means φ with ψ substituted in position p.

Paramodulation with constrained clauses. Paramodulation provers use
the concept of a reduction order to reduce that amount of deduction that is
required for completeness. For our purposes, a reduction order � is a total, well-
founded order on ground terms that is monotonic and has the subterm property.
Monotonicity means that whenever ψ1 � ψ2, we have φ[ψ1]p � φ[ψ2]p. The
subterm property says that φ � φ|p for all p �= ε. A reduction order can be
extended to finite multisets of formulas. Given two multisets S and S′, we say
S � S′ if S(φ) > S′(φ), where φ is the maximal formula such that S(φ) �= S′(φ).
This allows us to totally order the ground clauses with respect to �.

We will be concerned here with refutation systems that take a set of clauses,
and try to prove that the set is unsatisfiable by deriving the empty clause (equiv-
alent to false). For purposes of refutation, a clause with variables is logically
equivalent to the set of its ground instances (this is a consequence of Herbrand’s
theorem). Thus, it is useful to think of a clause with variables as simply a pat-
tern abbreviating a countable set of ground clauses. To describe the operation
of a paramodulation prover, it is useful to introduce the notion of a constrained

416 K.L. McMillan

clause. This is written in form C | T where C is a clause, and T is a constraint.
The constraint is usually a conjunction of constraints of the form s = t or s > t,
where s and t are terms or atoms. For a given ground substitution σ, s = t means
sσ and tσ are the syntactically equal, and s > t means sσ � tσ. The interpre-
tation of C | T is the set of all ground instances Cσ of C such that Tσ is true.
For example, P (U, V) | U > a means that P holds of all pairs of ground terms
U, V , such that U � a. Note that a clause with an unsatisfiable constraint is by
definition equivalent to true and an empty clause with a satisfiable constraint is
equivalent to false.

An inference is the derivation of a constrained clause (the conclusion) from a
multiset of constrained clauses (the premises) and is written in this form:

C1 | T1 . . . Cn | Tn

D | T

An inference rule is a pattern that finitely describes a set of valid inferences. For
example, here is the rule for resolution:

Γ → Δ, φ | T1 Γ ′, φ′ → Δ′ | T2

Γ, Γ ′ → Δ, Δ′ | φ = φ′ ∧ T1 ∧ T2

Note that because of the constraint φ = φ′ in the conclusion, every ground in-
stance of this inference is valid. Most resolution provers eliminate the constraint
φ = φ′ by substituting with σ, the most general unifier of φ and φ′, yielding
(Γ, Γ ′ → Δ, Δ′)σ | (T1 ∧ T2)σ. If φ and φ′ cannot be unified, the conclusion’s
constraint is unsatisfiable, and the inference is discarded. In the sequel, we will
omit the constraints on the premises and take it as implied that these constraints
are inherited by the conclusion.

For refutation in the theory of equality, most modern provers use a super-
position calculus (since resolution, though complete, is very inefficient for this
purpose). This is based on substitution of equals for equals. Here is an example
of a superposition inference:

P → f(x) = y Q → x = z
P, Q → f(z) = y

We say we have performed superposition with x = z, into f(x) = y. This ap-
proach can generate an enormous number of inferences. However, we can reduce
this chaos by using ordered superposition. That is, we only need to perform the
above inference if x and f(x) are maximal terms in their respective clauses, with
respect to �. Intuitively, we are always rewriting downward in the order. The
inference rules for ordered superposition are as follows:

superposition right:
Γ → Δ, s � t Γ ′ → Δ′, l � r

Γ, Γ ′ → Δ, Δ′, s[r]p � t | s|p = l ∧ OC

superposition left:
Γ, s � t → Δ Γ ′ → Δ′, l � r

Γ, Γ ′, s[r]p � t → Δ, Δ′ | s|p = l ∧ OC

Quantified Invariant Generation Using an Interpolating Saturation Prover 417

equality resolution:
Γ, s � t → Δ

Γ → Δ | s = t ∧ OC

equality factoring:
Γ → s � t, s′ � t′, Δ

Γ, t � t′ → s = t′, Δ | s = s′ ∧ OC
The equality resolution rule enforces reflexivity of equality, while the equality
factoring rule eliminates redundant equalities. In each rule, OC is an ordering
constraint. These constraints are not necessary, but they reduce the number
of possible inferences greatly without sacrificing completeness. From our point
of view, the only thing we need to know about OC is that it implies in the
superposition rules that s and l are maximal terms in their respective clauses.
Details can be found in [10].

We will call this system of inference rules I�, where � is the reduction ordering
used in the ordering constraints. Given any unsatisfiable set of “well-constrained
clauses”, I� can derive false. The notion of “well-constrained” is too technical
to present here (see [10]). We note only that clauses with constraints of the form
a < U are well-constrained, which is all the we require for present purposes. To
be more precise, we have:

Theorem 1 ([10]). For any reduction order �, system I� is complete for refu-
tation of well-constrained clause sets with equality.

Note that this system handles only equality predicates. However, we can in
principle translate any other predicate symbol P into a function symbol, such
that P (x, y, . . .) is equivalent to P (x, y, . . .) = t, where t is a symbol representing
“true”. Thus in principle, equality predicates are sufficient. In practice, provers
typically retain arbitrary predicate symbols and also implement resolution.

Redundancy and saturation. A saturation prover has inference rules that
deduce new clauses, and also reduction rules that delete redundant clauses. The
prover is said to reach saturation when any new inference from existing clauses
can be deleted by the reduction rules.

Relative to a set S of derived clauses and a reduction order �, a clause C is said
to be redundant when it is entailed by clauses in S that are less than C. A more
general notion is redundancy of inferences. An inference I is said to be redundant
when its conclusion is entailed by clauses in S less than the maximal clause in
its premises (for all ground instances satisfying its constraint). Intuitively, by
deleting a redundant inference, we “postpone” the deduction of its conclusion
(or lesser clauses entailing it). However cannot postpone its derivation infinitely,
since the reduction order is well-founded.

A saturation prover starts with a set of “usable” clauses U , and an empty set
of “worked off” clauses W . At each iteration of its main loop, it removes a clause
G from U , called the given clause. Reduction rules are applied to G (possibly
adding derived clauses to U). If G is not deleted, all possible inferences using G
and some set of clauses from W are then generated, and G is added to W . If U
becomes empty, then W is saturated.

The main results about saturation provers that are of interest here are the
following:

418 K.L. McMillan

1. If the set of inference rules is complete, and if only redundant inferences
are deleted, and if the selection of given clauses is fair, then the saturation
prover is complete for refutation.

2. Moreover, if any clause C is entailed by the original clauses, then eventually
it is entailed by clauses in W that are less than C in the reduction order.

To express rules for deleting redundant inferences, we will introduce a notation
for replacement rules. These have the form I

S→ J , where I is an inference,
S is a clause set and J is a set of (sound) inferences. The intuitive meaning
of a replacement is that, if clauses S are proved, adding inferences J makes
inference I redundant. As an example, if Q � a � b � P , the following is a valid
replacement:

P P → Q(a)
Q(a)

a=b→ P → Q(a) a = b
P → Q(b)

That is, since P → Q(a) is greater than P , P → Q(b) and a = b, and these
imply Q(a), we have a valid replacement. For each given clause G, the prover
checks whether I, the inference that produced G, can be deleted and replaced by
other inferences J , using a replacement rule. Since this adds only valid inferences
and deletes only redundant ones, both soundness and completeness are preserved.

3 Interpolants from Superposition Proofs

Given a pair of formulas (A, B), such that A ∧ B is inconsistent, an interpolant
for (A, B) is a formula Â with the following properties:

– A implies Â,
– Â ∧ B is unsatisfiable, and
– Â ⊆ L(A) ∩ L(B).

The Craig interpolation lemma [3] states that an interpolant always exists for
inconsistent formulas in FOL.

We now show how to use a saturation prover to generate universally quan-
tified interpolants from arbitrary formulas in FOL. The approach is based on
generating local proofs:

Definition 1. An inference is local for a pair of formulas (A, B) when its
premises and conclusions are either all in L(A) or all in L(B). A proof is local
for (A, B) when all its inferences are local.

From a local refutation proof of A, B, we can derive an interpolant for the pair
in linear time [5]. This interpolant is a Boolean combination of the formulas in
the proof.

Unfortunately, it is easily shown that the superposition calculus described
above is not complete if we restrict it to local proofs. Consider the case where A
consist of the clauses Q(f(a)) and ¬Q(f(b)), while B contains f(V) = c and b, c ∈
L(B). An interpolant for (A, B) is f(a) �� f(b). However, no local superposition

Quantified Invariant Generation Using an Interpolating Saturation Prover 419

inferences are possible for these clauses. To solve this problem, we show that
by choosing the precedence order appropriately and adding a replacement rule,
we can force all the inferences to be local without sacrificing completeness, so
long as A and B have an interpolant in L∀. This yields a complete procedure
for generating universally quantified interpolants.

Definition 2. A reduction order � is oriented for a pair of formula sets (A, B)
when, for all terms or formulas φ1, φ2 over L(A, B), if φ1 �∈ L(B) and φ2 ∈
L(B), then φ1 � φ2.

Intuitively, as we descend the order, we eliminate the symbols that occur only
in A. One way to construct an oriented reduction order is to use the standard
RPOS (recursive path ordering with status), setting the precedence order so that
the symbols in L(A) \ L(B) precede all the symbols in L(B).

Now let us consider again our example of of incompleteness of local superpo-
sition. In this example, although no local superposition inferences are possible,
we can make the non-local inference Q(f(a)), f(V) � c � Q(c). We can then
make the following replacement :

Q(f(a)) f(V) � c
Q(c) → Q(f(a))

f(a) � U → Q(U) | f(a) > U

where U is a fresh variable. This replacement is valid for the following reasons.
First, the right-hand inference is sound (that is, if Q holds of f(a), then Q
holds of any U equal to f(a)). Second, the conclusion on the right, f(a) �
U → Q(U) | f(a) > U , when resolved with f(V) � c, gives us Q(c). Thus, the
conclusion on the left is implied by proved clauses. Moreover, those clauses are
both less than Q(f(a)) in the reduction order, given the constraint f(a) > U .
That is, the conclusion on the left is implied by derived clauses less than its
maximal premise. This means that adding the right inference makes the left one
redundant.

We can now continue to construct a fully local refutation for our example
problem, using replacements of this type:

1. → Q(f(a)) (hypothesis from A)
2. → f(V) � c (hypothesis from B)
3. f(a) � U → Q(U) (superposition in 1 with 2, with replacement)
4. Q(f(b)) → (hypothesis from A)
5. f(b) � U, Q(U) → (superposition in 4 with 2, with replacement)
6. f(a) � U, f(b) � U → (resolution of 3 and 5)
7. f(b) � c → (resolution of 6 and 2)
8. → (resolution of 7 and 2)

Notice that the replacement allowed us to postpone the superposition steps
until only symbols from B remained. For this reason, we will refer to this type
of replacement as “procrastination”. The procrastination rule for deletion of
superposition right inferences can be stated as follows:

Γ → Δ, s � t Γ ′ → Δ′, l � r
Γ, Γ ′ → Δ, Δ′, s[r]p � t | s|p = l ∧ OC

∗→ Γ → Δ, s � t
s|p � U, Γ → Δ, s[U]p � t | s|p > U

420 K.L. McMillan

where OC is the ordering constraint of the superposition right rule. The asterisk
is to indicate that this rule is to be applied when p is not ε, the top position.
This means that l is a strict subterm of s, and thus s > l.

Now we argue that this rule is valid. Call the left inference L and the right
inference R. It is easily verified that R is sound. Now let LA1, LA2, LS, RA, RS
stand respectively for the premises and conclusion of the left and right inferences.
Since OC implies that l > r, we have RS, LA2 |= LS, which we can prove by
resolution. Finally, we need to show that LA1 � LA2 and LA1 � RS. The
former is guaranteed by the asterisk (that is, since s > l, and l is a maximal
term in LA1, we have LA1 � LA2). The latter is guaranteed by the constraint
s|p > U , which implies s > s|p > U , and, by monotonicity, s > s[U]p. Thus,
procrastination right is a valid replacement.

The rule replacing superposition left inferences is similar:

Γ, s � t → Δ Γ ′ → Δ′, l � r
Γ, Γ ′, s[r]p � t → Δ, Δ′ | s|p = l ∧ OC

∗→ Γ, s � t → Δ
s|p � U, Γ, s[U]p � t → Δ | s|p > U

The argument for validity is similar to that for procrastination right. Since the
procrastination rules are valid replacements, meaning that they only generate
sound inferences and delete redundant ones, we have immediately that:

Lemma 1. System I� with procrastination is complete for refutation for well-
constrained clause sets.

We now observe that, for pairs (A, B) with universally quantified interpolants,
we require only local ground instances of B clauses for refutation completeness.

To be more precise, if C is a clause, let C | L(B) stand for the set of ground
instances Cσ of C where the range of σ is contained in T (B). That is, we
constrain the values of the variables in C to be terms over L(B). If our reduction
ordering is oriented for (A, B), then C | L(B) can be expressed as C | a > U∧a >
V · · · where a is the least ground term not in L(B), and U, V, . . . are the variables
occurring in C. Thus, C | L(B) is well-constrained. Finally, if S is a clause set,
then let S | L(B) stand for the set of C | L(B) for C in S.

Lemma 2. Let A and B be clause sets. If there is an interpolant for (A, B) in
L∀, then A and B|L(B) are inconsistent.

We are now ready to prove the key lemma that will allow us to build an in-
terpolating prover. We show that on interpolation problems, superposition with
procrastination makes only local deductions:

Lemma 3. Let A and B be clause sets, and � be a reduction order oriented
for (A, B). Then system I� with procrastination, applied to A and B | L(B)
generates only inferences local for (A, B).

The above lemma holds only for provers that rigorously propagate the ordering
constraints from one inference to the next. However, in practice this is not nec-
essary to obtain a local proof. If we test the ordering constraints for satisfiability

Quantified Invariant Generation Using an Interpolating Saturation Prover 421

but do not propagate them, the worst outcome is that unnecessary deductions
will be made. We can simply throw away the resulting non-local deductions,
since we know by the above lemma that they are not required for completeness.

Since saturation with procrastination is complete and generates local proofs
for interpolation problems, we can use it to build an interpolation algorithm:

Algorithm 1
Input: A pair of equality clause sets (A, B) having an interpolant in L∀.
Output: An interpolant for (A, B)
1) Choose a reduction order � oriented for (A, B).
2) Apply system I� with procrastination to A, B | L(B).
3) If the prover generates a refutation P local for (A, B), then
4) Derive an interpolant for (A, B) from P and output the result,
5) Else (if the prover saturates) abort.

Theorem 2. Algorithm 1 is correct and terminating.

To allow us to speak of interpolants of program unwindings, we generalize the
notion of interpolant from pairs to finite sequences of formulas. That is, an
interpolant for a sequence of formulas A1, . . . , An is a sequence Â1, . . . Ân−1
such that:

– A1 implies Â1
– for all 1 ≤ i < n, Âi ∧ Ai implies Âi+1
– An ∧ Ân−1 implies false.
– for all 1 ≤ i < n, Âi ∈ (L(A1 . . . Ai) ∩ L(Ai+1 . . . An)).

We can think of the interpolant for a sequence of formulas as being structured
refutation of that sequence.

Though we do not prove it here, we can generalize Algorithm 1 to generate
interpolants for sequences, replacing (A, B) with the sequence A1 . . . An. We
say that a proof is local for A1 . . . An when every inference is local to some
Ai, and a reduction order � is oriented for A1 . . . An when it is oriented for
all the pairs ({A1 . . . Ai}, {Ai+1 . . . An}). Finally, instead of A, B | L(B), we
refute A1, A2 | L(A2 . . . An), . . . , An | L(An). The result is a local refutation for
A1 . . . An, from which we can derive an interpolant sequence in linear time in
the proof size and n.

4 Invariant Generation

Now we come to the question of generating invariants with interpolants. The
intuition behind this approach is the following. Suppose we wish to prove the
correctness of a single-loop while program. For example, we might want to prove:

{i = 0} while i < N do a[i]:=0; i++ od {∀(0 ≤ j < N)a[j] = 0}

where i++ is a shorthand for i:=i + 1. To do this, we might try unwinding
the loop n times and proving the resulting in-line program. If we are lucky, the

422 K.L. McMillan

resulting Floyd/Hoare proof will contain an inductive invariant for the loop. For
example, for n = 2, we might have:

{i = 0} [i < N]; a[i]:=0; i++ {∀(0 ≤ j < i)a[j] = 0}
[i < N]; a[i]:=0; i++ {∀(0 ≤ j < N)a[j] = 0}

where [φ] denotes a guard. Note that the middle assertion of this proof is an
inductive assertion for the loop, which we can verify with a suitable first-order
prover. On the other hand, if we are unlucky, we might obtain:

{i = 0} [i < N]; a[i]:=0; i++ {i = 1 ∧ a[0] = 0}
[i < N]; a[i]:=0; i++ {∀(0 ≤ j < N)a[j] = 0}

This is also a valid proof, but the intermediate assertion is useless for gen-
erating an inductive invariant. If we unwind the loop further, we might obtain
i = 2∧a[0] = 0∧a[1] = 0, and so on, producing a diverging series of non-inductive
formulas.

As we will see, the Floyd/Hoare proofs for the unwindings can be produced
by interpolation. The trick is to prevent the interpolant formulas from diverging
as we unwind the loops further. We will show that by bounding the behavior of
the prover appropriately, we can prevent divergence and guarantee to eventually
produce an inductive invariant if one exists in L∀.

Transition systems, unfoldings and interpolants. We will use first-order
formulas to characterize the transition behavior of a system, using the usual
device of primed symbols to represent the next state of the system. That is,
a set of uninterpreted function and constant symbols S represents the system
state. A state of the system is an interpretation of S. For every symbol s ∈ S, we
let the symbol s′ represent the value of s one time unit in the future. Moreover,
we think of s with n primes added as representing the value of s at n time
units in the future. For any formula or term φ, we will use the notation φ′ to
represent the result of adding one prime to all the occurrence of state symbols
in φ (meaning φ at the next time), and φ〈n〉 to denote the addition of n primes
to all occurrence of state symbols in φ (meaning φ at n time units in the future).

A state formula is a formula in L(S) (which may also include various inter-
preted symbols, such as � and +). A transition formula is a formula in L(S∪S′).
A safety transition system M is a triple (I, T, P), where state formula I repre-
sents the initial states, transition formula T represents the set of transitions, and
and state formula P represents the set of safe states. A safety invariant for M
is a state formula φ such that I |= φ and φ, T |= φ′ and φ |= P . That is, a safety
invariant is an inductive invariant of the system that proves that all reachable
states satisfy P .

We will say that an invariant generator G is a procedure that takes a safety
transition system M as input and outputs a sequence of formulas. For a given
language L ⊆ L(S), we say that G is complete for invariant generation in L
when, for every M that has a safety invariant in L, G eventually outputs a

Quantified Invariant Generation Using an Interpolating Saturation Prover 423

safety invariant for M . If we have a complete invariant generation procedure,
then we have an complete procedure to verify safety transition systems that
have safety invariants in L∀: we use a complete first-order prover to attempt to
prove correctness of each invariant candidate in the sequence, in an interleaved
manner.

Of course, there is a trivial complete invariant generator that simply outputs
all of the formulas in L in order of their Gödel numbers. Our purpose here is to
construct a practical invariant generator that uses proofs about finite behaviors
to focus the invariant candidates on relevant facts, and thus in a heuristic sense
tends to produce valid invariants quickly. In particular, we will be concerned with
the language L∀(S) of universally quantified state formulas. We will describe a
simple safety invariant generator based on our interpolation algorithm that is
complete for invariant generation in L∀(S). It prevents divergence by bounding
the language of the prover.

The algorithm is based on unfolding the transition system in the style of
Bounded Model Checking [1]. For k ≥ 0, the k-step unfolding of M (denoted
Uk(M)) is the following sequence of formulas:

Uk(M) = I, T, T 〈1〉, . . . , T 〈k−1〉, ¬P 〈k〉

This formulas characterizes the set of runs of the transition system of exactly k
steps that end in an unsafe state. The system M is safe when Uk(M) is unsatis-
fiable for all k ≥ 0. For simplicity, we will assume that ¬P ∧ T → ¬P ′. That is,
once the safety condition is false, it remains false. This can easily be arranged
by, for example, adding one state bit that remembers when the property has
been false in the past.

To generate invariant candidates, we will make use of a bounded saturation
prover to refute unfoldings. Given a language L, a saturation prover bounded by
L simply throws away all derived clauses not in L (after attempting reductions).
For example, the Spass prover [14] implements bounding by Wk, the set of
clauses with k symbols or fewer (i.e., clauses of “weight” up to k). In the sequel,
we will assume that L1, L2, . . . is a sequence of finite languages such that L1 ⊂
L2 ⊂ · · · and

⋃
i Li is the set of all clauses. For example, the sequence W1, W2, . . .

meets these criterion. Note that for any finite L, a saturation prover bounded
by L must terminate on any input, since the number of clauses it can generate
is bounded.

Now let � be RPOS for some precedence order oriented for S, S′, S′′, . . . and
let �̇ be a reduction order such that the set of terms less than any given term
t over a finite vocabulary is finite. For example, we could say that t�̇s when
the weight of s is less than the weight of t or the weights are equal and t � s.
Let SPB(L) stand for a saturation prover using the union of systems I� and I�̇
with procrastination, restricted to local deductions and bounded by L. For any
system M with a universally quantified safety invariant, a fixed language Lm

suffices to refute unfoldings of any length using this prover:

424 K.L. McMillan

Lemma 4. Let M be a safety transition system with a safety invariant in L∀.
There exists an integer m, such that for every k ≥ 0, SPB(Lm) refutes Uk(M).

Our invariant generation algorithm is as follows (where unp(φ) is φ with primes
removed):

Algorithm 2
Input: A system M = (I, T, P) having a safety invariant in L∀.
Output: A sequence of formulas containing a safety invariant for M .
1) Let i = 1 and k = 1
2) Repeat:
3) Apply Algorithm 1 using prover SPB(Li) to Uk(M).
4) If the algorithm returns an interpolant Â, then
5) For j = 1 to k + 1, output

∨
l=1...j unp(Âl)

6) Increase k.
7) Else (if Algorithm 1 aborts) increase i

Theorem 3. Algorithm 2 eventually outputs a safety invariant for M .

It is worth noting that this algorithm achieves completeness despite the fact that
the prover is not “complete for consequence generation” as is required in [5]. The
generated invariant candidates can be checked for inductiveness using any com-
plete first-order prover. Since this prover may not terminate in the negative case,
we must interleave these checks, rather than executing them sequentially. This
is a fairly näıve approach to generating invariants from interpolants. We could
also use, for example, the method of [7] or the lazy abstraction method [9]. Both
of these methods would require a decision oracle for first-order logic. However,
in practice we could use saturation of the (unbounded) prover as an indication
of unsatisfiability and accept a possibility of non-termination.

5 Implementation and Experiments

The interpolation algorithm has been implemented by modifying the Spass
prover. This is an efficient saturation prover that implements superposition with
a variety of reduction rules. Spass was modified in several ways:

1. The procrastination rules were added.
2. The input formulas are numbered in sequence, and a precedence order is

constructed that is oriented for that sequence.
3. Non-local inferences (after replacement) are discarded.

Moreover, it is also allowed to define a background theory by specifying addi-
tional interpreted function and predicate symbols and providing axioms for the
theory. The background axioms may contain only interpreted symbols. Thus,
use of the axioms does not affect locality of the proofs. When computing inter-
polants from proofs, the axioms in the proof are replaced with true, since they
are tautologies of the theory.

Quantified Invariant Generation Using an Interpolating Saturation Prover 425

The bound mechanism of Spass was also modified to allow bounds other than
weight (number of symbols) and nesting depth. In particular, we implemented
a bounding scheme in which Li allows all clauses with at most nesting depth i
and at most i variables. This is a finite set of clauses (modulo subsumption).

For the experiments, we axiomatized three theories: the natural numbers with
zero, successor and <, the theory of arrays with select and store, and transitive
closure of arrays, with a reachability predicate. These axioms are necessarily
incomplete. However, we found them adequate to prove properties of some sim-
ple programs manipulating arrays and linked lists. For each example program
an assertion was specified. The the loops were manually unwound n times, for
increasing values of n, and translated into static single-assignment (SSA) form
in the manner of the CBMC tool [2]. These unwindings were then verified using
the modified prover, increasing the bound i until a refutation was found for vio-
lation of the assertion. Then the interpolants were tested to see if they contain
inductive invariants for the loops that prove the assertions.

Table 5 shows the results obtained. For each example, the table gives a brief
description of the program, the assertion, the number of loop unwindings, the
bound language required, and the run time of the prover in seconds.

Table 1. Results of invariant generation experiments

name description assertion unwindings bound time (s)

array set set all array elements to 0 all elements zero 3 L1 0.01

array test set all array elements to 0 all tests OK 3 L1 0.01
then test all elements

ll safe create a linked list then memory safety 3 L1 0.04
traverse it

ll acyc create a linked list list acyclic 3 L1 0.02

ll delete delete an acyclic list memory safety 2 L1 0.01

ll delmid delete any element result acyclic 2 L1 0.02
of acyclic list

ll rev reverse an acyclic list result acyclic 3 L1 0.02

As an example, here is the (somewhat simplified) inductive invariant generated
for example list acyc. This is a loop in which newly allocated elements are
added to the beginning of a list by modifying their link field:

and(reachable(link,x,nil),

forall([U], or(U = nil, not(reachable(link,x,U)), alloc(U))))

This says that x (the list head) can reach nil (the list terminator) via the link
field, and every cell reachable from x via the link field is allocated. The for-
mer condition guarantees that the list is acyclic, while the latter implies that
in the future a cell already in the list will not be appended to the head, creating a

426 K.L. McMillan

cycle. This shows one advantage of using interpolants for invariant generation
relative to parametric invariant generation techniques such as [13]. That is, the
interpolator is able to synthesize Boolean combinations without requiring the
user to provide a template. Moreover, it can handle theories other than arith-
metic, such as reachability. Using the interpolating superposition prover and lazy
abstraction, the Impact software model checker [9] can automatically verify all
of the above examples.

The linked list examples in the table could be handled easily by canonical heap
abstraction methods [12]. However, using interpolation, we are not required to
provide the instrumentation predicates that define the abstraction. This may be
a significant advantage in scaling to larger programs. In the quantifier-free case
at least, the ability of the interpolating prover to focus invariant generation on
relevant facts has proved to be a significant advantage [7,4,9].

While the example programs we used are very simple, experience shows that
even very simple programs can produce divergence in infinite-state verification
techniques such as predicate abstraction [5]. Our results give some reason to
believe that the divergence problem can be controlled.

6 Conclusion and Future Work

We have shown that, by a small modification of a paramodulation-based satu-
ration prover, we can obtain an interpolating prover that is complete for uni-
versally quantified interpolants. This was done by constraining the reduction
order and adding a reduction rule in order to obtain local proofs. We also solved
the problem of divergence in interpolant-based invariant generation by bounding
the language of the prover and gradually relaxing the bound. Some experiments
verifying simple programs show that, in fact, divergence can be avoided, and
termination can be achieved with shallow unwindings.

The next obvious task is to study the scaling behavior of the approach using a
program verification system such as Impact [9], to determine whether the prover
is capable of focusing on just the facts relevant to proving shallow properties of
large programs. In addition, the are a number of possible extensions. The Spass
prover has the ability to split cases on ground atoms and to backtrack. However,
it may still be much less efficient than a modern DPLL satisfiability solver.
It might be useful to integrate it with an efficient DPLL solver in the style
of “SAT modulo theories” (SMT) for greater efficiency. Moreover, it would be
useful to integrate it with some ground arithmetic procedure (though again, the
divergence problem would have to be solved).

Finally, it would be possible to use an interpolant generator for universally
quantified interpolants as a predicate refinement heuristic for indexed predicate
abstraction [6] much in the same way that this is done for ordinary predicate ab-
straction in [4]. Having an effective refinement heuristic might make the indexed
predicate abstraction technique more practical.

Quantified Invariant Generation Using an Interpolating Saturation Prover 427

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, Springer, Hei-
delberg (1999)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

4. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244. ACM, New York (2004)

5. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

6. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstrac-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281.
Springer, Heidelberg (2004)

7. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

8. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

9. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

10. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 7, pp. 371–
443. Elsevier Science, Amsterdam (2001)

11. Robinson, G.A., Wos, L.T.: Paramodulation and theorem proving in first order
theories with equality. Machine Intelligence 4, 135–150 (1969)

12. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL, pp. 105–118. ACM, New York (1999)

13. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

14. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

Accelerating Interpolation-Based Model-Checking

Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, and Marc Zeitoun

LaBRI, Université Bordeaux - CNRS UMR 5800,
351 cours de la Libération, F-33405 Talence CEDEX France

{caniart,fleury,leroux,mz}@labri.fr

Abstract. Interpolation-based model-checking and acceleration techniques have
been widely proved successful and efficient for reachability checking. Surpris-
ingly, these two techniques have never been combined to strengthen each other.
Intuitively, acceleration provides under-approximation of the reachability set by
computing the exact effect of some control-flow cycles and combining them with
other transitions. On the other hand, interpolation-based model-checking is refin-
ing an over-approximation of the reachable states based on spurious error-traces.
The goal of this paper is to combine acceleration techniques with interpolation-
based model-checking at the refinement stage. Our method, called “interpolant
acceleration”, helps to refine the abstraction, ruling out not only a single spuri-
ous error-trace but a possibly infinite set of error-traces obtained by any unrolling
of its cycles. Interpolant acceleration is also proved to strictly enlarge the set of
transformations that can be usually handled by acceleration techniques.

1 Introduction

Model

Abstract

Refine

Unfold

Check
Error
Path

Okinitial
predicates

abstract
model

safe

error
yes

(trace)
no

(proof)

new
predicates

Fig. 1. Interpolant-based Model-Checking

Counterexample-guided abstraction refine-
ment (CEGAR) paradigm [6] makes it pos-
sible to perform efficient verification of
real-life software. In this approach (see
Fig.1), an initial coarse predicate abstrac-
tion [10] of the concrete model is first de-
rived and explored by a model-checker for
reachability of error states. If no error path
is found, the system is said to be ’safe’.
If an abstract error-trace is found, it is
checked against the concrete model. When
the error also exists in the concrete model, the system is said to be ’unsafe’ and a
concrete error path is provided to the operator. Finally, when the error is found to be
spurious, a proof of the spuriousness of the trace is used to build a refinement of the
abstraction.

Interpolation-based model-checking [14, 15] is a CEGAR framework where check-
ing the error-trace is performed using decision procedures for various logics and re-
finement is produced by computing an interpolant, which provides a set of predicates
needed to invalidate the considered spurious error-trace in the abstraction. Interpolation-
based model-checking technique has been proved robust and efficient but, as other

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 428–442, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Accelerating Interpolation-Based Model-Checking 429

CEGAR frameworks, cannot easily handle numerous cycles or infinite behaviors which
tend to generate a lot (possibly an infinity) of predicates, while another, better cho-
sen predicate could have captured the whole behavior of the cycle at once. Recently, a
’lazy’ [12] approach of this method has been introduced [16], allowing it to deal with
infinite systems. Still, the interpolation-based model-checking technique suffers from a
lack of good strategies to efficiently handle infinite behaviors of the input model. As an
illustration, consider the example shown on Fig. 2 taken from [13], and well-known in
the CEGAR framework [11]. On such a (correct) program, an interpolant-based model-
checker might never stop while deriving the predicates to refine the abstraction because
an infinity of values of i will have to be checked.

void foo(int i, int j) {
x = i; y = j;
while (x != 0)
{ x--; y--; }

if (i == j)
assert (y == 0);

}

ENTRY

ERROR

EXIT

x′ = i

∧y′ = j

x �= 0
∧x′ = x−1
∧y′ = y−1

x = 0

i = j

∧y = 0

i �= j

∧y �= 0

Fig. 2. An example of CEGAR divergence (C code and Control-Flow Automaton (CFA))

On the other hand, acceleration techniques [3, 5, 1] make it possible to check for
reachability of infinite systems thanks to a symbolic representation of configurations.
Basically, given some suitable control-flow cycle σ fulfilling some properties and a
set of states X , acceleration tries to compute the infinite union of all σn(X). Such a
set is called the σ∗-acceleration set. It captures the reachable states from X through
any unrolling of the cycle σ. Acceleration model-checking is usually performed by
adding meta-transitions σ∗ to the original model in order to create ’shortcuts’ allowing
to explore arbitrary iterations of a cycle in one single step, and thus computing the
reachable states even for infinite sequences of transitions. For example, systems such
as the one presented in Fig. 2 are quite easy to accelerate. Unfortunately, acceleration
techniques do not scale up to large systems and termination cannot be ensured.

Intuitively, interpolant-based model-checking focuses on large and simple systems
(large number of states, few predicates), where acceleration techniques focus more
on small and complex systems. Therefore, our idea is to combine interpolation-based
model-checking and acceleration techniques. Interpolation-based model-checking of-
fers a quite helpful automatic abstraction/refinement scheme which can discard un-
necessary parts of the system, helping the acceleration technique to deal with smaller
chunks to accelerate. Similarly, the acceleration technique can help the interpolation-
based model-checking to deal with complex behaviors. We propose here three ways to
combine them together:

– Static Acceleration: one simply performs static-analysis on the abstract model to
detect interesting cycles and adding the corresponding meta-transitions σ∗ to the
model. This method is quite simple but probably also extremely inefficient because
we possibly have to deal with large systems at this stage of the CEGAR for which
acceleration would not scale.

430 N. Caniart et al.

– On-the-fly Acceleration: While exploring and thus unfolding the abstract model,
paths can be processed on-the-fly to detect control loops and check for their con-
formance to acceleration requirements. Acceleration can then be used to fasten the
state-space exploration. This simple method is expected to have a better efficiency
as it does not require exhaustive cycle detection. Still, its complexity overhead can
be high since many cycles might be found during the unfolding. Heuristics can at
last be added to decide whether it is relevant or not to compute an acceleration.

– Interpolant Acceleration: Last but not least, we believe this method to be the
most promising one, though it can only be applied to lazy interpolant-based model-
checking and not to any CEGAR scheme as the previous ones. It takes place at the
refining stage, just after identifying an error-trace as ’spurious’ and when comput-
ing an interpolant for this trace. Suppose that some suitable cycles σ are found to
be such that any unrolling of them are also proved to be spurious. Then, computing
the σ∗-acceleration and extracting the interpolant will capture an enlarged set of
spurious counter-examples, thus yielding a better abstraction refinement.

We focus here on “interpolant acceleration” which reveals to be both theoretically
interesting and with room for improvements. We first extend the notion of interpolant on
a path [16] with the notion of error-pattern and accelerated interpolant and prove that
if an error-pattern is spurious, then there is an accelerated interpolant that will witness
every error-trace matching the error-pattern (section 2). We then identify two classes
of computable accelerated interpolants: Presburger accelerated interpolants (section 4)
and poly-bounded ones (sections 5 and 6). The first one makes it possible to assess the
spuriousness for error-patterns labeled by Presburger transformations, using standard
acceleration techniques. The second one allows us to compute interpolants for error-
patterns labeled by transformations whose iteration has polynomial, and not only linear,
behaviors (i.e. which are of the form x′= Mx + v where v ∈ Z

n and M ∈Mn(Z) is
such that the coefficients of its �-th power are bounded by a polynomial in �). Our proof
is constructive and can be translated into a (non-optimized) algorithm.

Our work is related to the framework recently presented in [2]. The approach of [2]
is to extract “path programs”, which are sub-graphs of the program leading to errors. In
our framework, we aim at capturing a characteristic unfolding of the program leading
to the error trace. Where path programs can be extremely complex and difficult to
exploit for acceleration techniques, error patterns tend to be simpler in the way loops
interleave and easier to process. On the other hand, path programs can capture much
more behaviors than error patterns.

The remainder of the paper is organized as follows: in Section 2 we recall the notion
of interpolant, introduce ’accelerated interpolant’ and relate it to set separability. We
recall basics on linear algebra and characterize the class of transformations that our
method can handle in Section 3. In Section 4, we rephrase the problem of computing an
accelerated interpolant for Presburger sets in more suitable terms. We then reduce this
latter problem in Section 5. Finally, using these intermediate results, Section 6 describes
how to compute an accelerated interpolant for our class of linear transformations and
two Presburger definable sets, one of which is finite. At last, we show that the finiteness
condition for one of the Presburger sets cannot be dropped.

Accelerating Interpolation-Based Model-Checking 431

2 Introducing Accelerated Interpolants

The need for interpolants in the CEGAR loop of interpolation-based model-checking
arises during the refinement step. More precisely, if we assume the input program of
the CEGAR loop to be given as a control-flow automaton [12] (CFA), an abstraction
of this one will be unfolded and explored to find an error-trace. In case one is found,
the algorithm tries to checks if it witnesses a real error-path or appears as a side ef-
fect of a too coarse abstraction. In the latter case the trace is said spurious. Finally, if
proved spurious, abstraction is refined to rule out the spurious error-trace thanks to the
computation of an interpolant capturing this trace.

Formally a CFA is a tuple G = (Q, qini, qerr, D, T) where Q is the finite set of
control-states, qini ∈ Q is the initial state, qerr ∈ Q is the error state, D is a possibly
infinite set representing the data domain, and T is a finite set of transitions t = (q, rt, q

′)
with q, q′ ∈ Q and rt ⊆ D × D. Intuitively, the binary relations over D × D can be used
either to encode guards, or to encode updates (see for instance Example 4.2). A trace
π = t0 · · · tk is a word of transitions ti ∈ T such that there exist q0, . . . , qk+1 ∈ Q and
r0, . . . , rk ⊆ D × D with ti = (qi, ri, qi+1) for 0 ≤ i ≤ k. Such a trace is also denoted
π = q0

r0−→ q1 · · · rk−→ qk+1, or just q0
rπ−→ qk+1 with rπ = r0 · · · rk

1 . It is called
an error-trace if q0 = qini and qk+1 = qerr. It is a cycle if qk+1 = q0. We denote by
r∗ =

⋃
�∈N

r� the reflexive and transitive closure of a binary relation r ⊆ D × D where
r� denotes the �-th power of r.

Semantically, a CFA defines a labeled transition system given by the set of configura-
tions Q×D and the binary relations

r−→ over the set of configurations by (q, d) r−→ (q′, d′)
if q

r−→ q′ and (d, d′) ∈ r. A path is an alternating sequence of configurations and bi-
nary relations (q0, d0)

r0−→ (q1, d1) · · · rk−→ (qk+1, dk+1). A concretization of a trace
q0

r0−→ q1 · · · rk−→ qk+1 is a path of the form (q0, d0)
r0−→ (q1, d1) · · · rk−→ (qk+1, dk+1),

unambiguously abusing the
rk−→ notation, for the sake of simplicity.

Definition 2.1. An error-trace is said spurious if it does not have a concretization.

By definition, the existence of a concretization is sufficient to certify that an error-trace
is not spurious. Let us now recall why a sequence of sets X0, . . . , Xk called an inter-
polant can certify that an error-trace is spurious. Let introduce few notations, given
X, X ′ ⊆ D and r ⊆ D × D, let postr(X) = {d′ | ∃ d (d, d′) ∈ r ∧ d ∈ X} and
wprer(X

′) = {d | ∀ d′ (d, d′) ∈ r ⇒ d′ ∈ X ′}. Recall that (postr(), wprer()) forms
a Galois connection, since clearly postr(X) ⊆ X ′ iff X ⊆ wprer(X

′). If these inclu-
sions hold true, we write X

r−→X ′. Moreover if X =X ′ then X is called an r-invariant.

Definition 2.2. A sequence X0, . . . , Xk+1 of subsets of D is called an interpolant for a
decomposition π0, . . . , πk of an error-trace π = π0 . . . πk if:

D = X0
rπ0−−→ X1 · · · Xk

rπk−−→ Xk+1 = ∅

Thus, the existence of an interpolant witnesses the spuriousness of an error-trace. Con-
versely, we would like to establish that if an error-trace is spurious, then there exists an
interpolant. This immediately follows from [7, Propositions 1&2].

1 By convention rπ is the identity binary relation if π is the empty word of T ∗.

432 N. Caniart et al.

Proposition 2.3 ([7, Propositions 1&2]). An error-trace π0 · · · πk is spurious if and
only if there exists an interpolant (Xi)0≤i≤k+1. In this case (postrπ0 ...rπi−1

(D))0≤i≤k+1

and (wprerπi
...rπk

(∅))0≤i≤k+1 are interpolants and we have:

∀ 0 ≤ i ≤ k + 1 postrπ0 ...rπi−1
(D) ⊆ Xi ⊆ wprerπi

...rπk
(∅).

Thus, an error-trace is spurious iff one can find an interpolant witnessing its spurious-
ness. Unfortunately, using this property, the classical CEGAR scheme may only discard
error-traces one by one. Consider the case where a trace contains cycles forming error-
patterns. We would like then to discard every error-traces matching a pattern at once
(whatever is the number of iterations along each cycle). That is, we would like to prove
that an error-pattern is spurious, not only a single error-trace. More formally:

Definition 2.4. An error-pattern is an sequence (π0, θ1, π1, . . . , θk, πk) where each πi

is a trace and each θi is a cycle, of the following form:

Note that, by extension, an error-pattern (π0, θ1, π1 . . . , θk, πk) is said spurious if all
error-traces in π0θ

∗
1π1 . . . θ∗kπk are spurious.

Definition 2.5 (Accelerated Interpolant). A sequence X0, . . . , Xk+1 of subsets of D

is called an accelerated interpolant for an error-pattern (π0, θ1, π1, . . . , θk, πk) if:

That is, in order for an interpolant X0, . . . , Xk+1 for (π0, π1, . . . , πk) to be an accel-
erated interpolant for the error-pattern (π0, θ1, π1, . . . , θk, πk), we require in addition
that each Xi is an rθi -invariant, for 1 ≤ i ≤ k. Once again, it is easy to check that
accelerated interpolants characterize spurious error-patterns.

Lemma 2.6. Let (π0, θ1, π1, . . . , θk, πk) be an error-pattern, rθ0 = rθk+1 be the iden-
tity relation on D, and pi, si ⊆ D × D defined by pi = r∗θ0

rπ0r
∗
θ1

· · · rπi−1r
∗
θi

, si =
r∗θi

rπi · · · r∗θk
rπk

. The error-pattern is spurious if and only if there exists an acceler-
ated interpolant (Xi)0≤i≤k+1. Moreover, in this case both (postpi

(D))0≤i≤k+1 and
(wpresi

(∅))0≤i≤k+1 are accelerated interpolants such that:

∀ 0 ≤ i ≤ k + 1 postpi
(D) ⊆ Xi ⊆ wpresi

(∅).

Corollary 2.7. An error-pattern is spurious iff there exists an accelerated interpolant.

We now investigate the computation of accelerated interpolants for error-patterns con-
taining one single cycle. We show that the accelerated interpolation problem for such
an error-pattern (π0, θ, π1) reduces to a separation problem.

Definition 2.8. Given a binary relation r, a set X is called a r-separator for a pair of
sets (E, F) if X

r−→X , E⊆X and X∩F=∅. If such a set exists, (E, F) is said r-separable.

In fact, observe that (D, X, ∅) is an accelerated interpolant for (π0, θ, π1) iff X is an
rθ-separator for (E, F) where E = postrπ0

(D) and F = wprerπ1
(∅).

We have shown that if an error-pattern is spurious, then there exist an interpolant that
will witness it spuriousness. But, to find an interpolant for a given a error-pattern, we
need to be able to compute or approximate the relations r∗θi

. Considering the fact that
the set of error-traces matching a pattern may be infinite, it is obvious that this is not
possible in general. This is the question addressed in the next sections.

Accelerating Interpolation-Based Model-Checking 433

3 Some Notes on Linear Algebra

The method we present in the next sections computes accelerated interpolants for an
error-pattern with one single cycle θ whose associated binary relation is x rθ y if and
only if y = Mx + v, where v ∈ Z

n and M ∈ Mn(Z) is such that the coefficients of
its �-th power are bounded by a polynomial in �. In this section, we first briefly recall
some material about matrices, and then characterize these integer matrices whose �-th
power is polynomially bounded in �.

Considering K ∈ {C, R, Q, Z}, we denote by Mn(K) the set of n-dim square ma-
trices with coefficients in K. The n-dim identity matrix and the zero matrix are respec-
tively denoted by In and 0n. The inverse of an invertible matrix P is denoted by P−1.
The matrix M �, where �∈N, denotes the �-th power of M . The multiplicative monoid
{M � | � ∈ N} is denoted by M∗. Given S ⊆ K

n, we let MS = {Mx | x ∈ S} and
M∗S =

⋃∞
�=0 M �S. Two matrices M1, M2 commute if M1M2 = M2M1. An n-dim

matrix Δ is said diagonal if Δij =0 whenever i �=j. A matrix D is said diagonalizable
if there exists a diagonal matrix Δ∈Mn(C) and an invertible matrix P ∈Mn(C) such
that D = PΔP−1. A matrix N is said nilpotent if there exists � ∈ N \ {0} such that
N � = 0n. Remember that Nn =0n. A set S ⊆K

n is called an M -invariant if MS ⊆ S.
An M -invariant S is called an M -attractor for a vector x ∈ K

n if there exists �0 ∈ N

such that M �0x∈S. Observe that M �x∈S for any � ≥ �0 since S is an M -invariant.
Let Lm(X)= 1

!mX · · · (X−m+1) be the m-th Lagrange polynomial. The binomial
theorem states that for every pair (M1,M2) of commuting matrices and for every �∈N:

(M1 + M2)� =
�∑

m=0

Lm(�)M �−m
1 Mm

2

Observe that a matrix M ∈Mn(Z) generates a finite monoid M∗ if and only if the
coefficients of M � are bounded independently of �. And the finiteness of M∗ is de-
cidable in polynomial time [3]. We are going to show that the Dunford decomposition
algorithmically characterizes the set of matrices M ∈Mn(Z) such that the coefficients
of M � are polynomially bounded in �. Recall that the Dunford decomposition theorem
proves that any matrix M can be uniquely decomposed into a pair (D, N) of com-
muting matrices of Mn(C) such that M = D + N , where D is diagonalizable and
N is nilpotent. Moreover if M ∈ Mn(Q) then D, N ∈ Mn(Q) are effectively com-
putable in polynomial time2. In particular, we can decide in polynomial time if a matrix
M ∈ Mn(Q) is diagonalizable. In fact, a matrix M is diagonalizable if and only if its
Dunford decomposition (D, N) satisfies D = M and N = 0n.

A matrix M is poly-bounded if all the coefficients of M � are polynomially bounded in �.

Proposition 3.1. A matrix M ∈ Mn(Z) is poly-bounded if and only if the Dunford
decomposition (D, N) of M is such that D∗ is finite.

2 A possible algorithm consists in computing P = χM/gcd(χM , χ′
M), where χM denotes

the characteristic polynomial of M , and the sequence defined by D0 = M , and Dk+1 =
Dk−P (Dk)◦(P ′(Dk))−1, which is well-defined and stabilizes to D after O(log n) iterations.

434 N. Caniart et al.

Example 3.2. Below is a poly-bounded matrix, and the transition system it encodes.

M =

⎛

⎝
1 1 0
0 1 1
0 0 1

⎞

⎠ is poly-bounded as M � =

⎛

⎝
1 � �(�−1)

2
0 1 �
0 0 1

⎞

⎠

x′
1 = x1 + x2

x′
2 = x2 + x3

x′
3 = x3

4 Presburger Accelerated Interpolants

In this section, we focus on the expressive power of the Presburger logic for effectively
computing accelerated interpolants.

Presburger logic [17] is a first-order additive arithmetic theory over the integers. This
decidable logic is used in a large range of applications such as compiler optimization,
program analysis and model-checking. A set Z ⊆ Z

n that can be encoded by a formula
φ(x) in this logic is called a Presburger set. In this paper, we use two geometrical
characterizations of the Presburger sets respectively based on linear sets and linear
constraints. A linear set Z is a set of the form Z =a + P ∗ where a∈Z

n, P is a finite
subset of Z

n and P ∗ denotes the set of finite sums
∑k

i=1 pi with p1, . . . , pk ∈ P and
k ∈N. Recall that a set is Presburger if and only if it is equal to a finite union of linear
sets [9]. A linear constraint is either an inequality constraint 〈α, x〉 ≤ c or a modular
constraint 〈α, x〉≡b c where α∈Z

n, b∈N \ {0}, c∈Z and where 〈α, x〉=
∑n

i=1 αixi

denotes the dot product of α and x, and ≡b denotes the equivalence binary relation
over Z satisfying z1 ≡b z2 if and only if b divides z1 − z2. A quantification elimination
shows that a set Z ⊆ Z

n is Presburger if and only if it can be encoded by a propositional
formula of linear constraints (i.e., a quantifier-free Presburger formula).

A CFA G = (Q, qini, qerr, Z
n, T) is said Presburger if x rt x′ is encoded by a

Presburger formula φt(x, x′) for any transition t∈T . We say that an interpolant (resp.
accelerated interpolant) X0, . . . , Xk+1 is Presburger if the sets X0, . . . , Xk+1 are Pres-
burger. Since Presburger logic is decidable, observe that the spuriousness problem for
error-traces of Presburger CFA is decidable and that we can effectively compute a Pres-
burger interpolant.

Concerning the computation of Presburger accelerated interpolants, observe that the
reachability problem for Minsky machines can be reduced to the spuriousness problem
of an error-pattern of the form (π0, θ, π1) where π0 intuitively initialized the Minsky
machine, π1 tests if the final state is reached and θ encodes the one step reachability
relation of the Machine. This reduction shows that the spuriousness problem for error-
patterns of Presburger CFA is undecidable. However, observe that if there exists a Pres-
burger accelerated interpolant, such an interpolant can be effectively computed with an
enumerative approach. In fact, the set of Presburger accelerated interpolants is recur-
sively enumerable since it is sufficient to fairly enumerate the sequences of Presburger
formulas φ0(x), . . . , φk+1(x) and checks if such a sequence effectively encodes an
accelerated interpolant. Therefore, the spuriousness problem for error-patterns of Pres-
burger CFA is undecidable. Note that when a Presburger accelerated interpolant exists,
it can effectively be computed.

Naturally, such an enumerative algorithm has no practical interest. This explains
why we focus on error-pattern classes admitting Presburger accelerated interpolants
based on a non enumerative algorithm. Acceleration techniques provide such a class.

Accelerating Interpolation-Based Model-Checking 435

The following theorem shows that if θ is a control-flow cycle such that x rθ y iff
y = Mx + v where v ∈ Z

n and M ∈ Mn(Z) has a finite monoid M∗, then we can
effectively compute a Presburger formula encoding the binary relation r∗θ . Thus, if the
cycles of an error-pattern satisfy the finite monoid condition, we can effectively decide
the spuriousness, and in this case we can effectively compute a Presburger accelerated
interpolant. Observe that the obtained interpolant does not use the fact that r∗θ can be ap-
proximated, whereas the definition of accelerated interpolants does not require a precise
computation of this relation.

Proposition 4.1 (Acceleration [4, 8]). A binary relation r over Z
n such that x r y if

and only if y = Mx + v where v ∈ Z
n and M ∈ Mn(Z) satisfies r∗ is Presburger if

and only if M∗ is finite. Moreover, in this case we can compute a Presburger formula
φ(x, y) encoding x r∗ y.

Here is an example of spurious error-pattern with no Presburger accelerated interpolant.

Example 4.2. Let n = 2 and consider the CFA G1 depicted in Fig 3. Intuitively, tini

reset two integer variables x1 and x2, t1 and t2 are two deterministic loops such that
rt2 performs the inverse of rt1 , t does not modify the variables, and terr tests if x1 = 0
and x2 > 0. More formally G1 = (Q, qini, qerr, Z

2, T) where Q = {qini, q1, q2, qerr}
and where T = {tini, t1, t, t2, terr} is defined by :

tini = (qini , rini , q1) with (x, x′)∈rini iff x′
1 = 0 ∧ x′

2 = 0
t1 = (q1 , r1 , q1) with (x, x′)∈r1 iff x′

1 = x1 + 1 ∧ x′
2 = x2 + x1

t = (q1 , r , q2) with (x, x′)∈r iff x′
1 = x1 ∧ x′

2 = x2

t2 = (q2 , r2 , q2) with (x, x′)∈r2 iff x1 = x′
1 + 1 ∧ x2 = x′

2 + x′
1

terr = (q2 , rerr , qerr) with (x, x′)∈rerr iff x1 = 0 ∧ x2 > 0

tini:
x′
1 = 0

∧x′
2 = 0

t1:
x′
1 = x1 + 1

∧x′
2 = x2 + x1

t:
x′
1 = x1

∧x′
2 = x2

t2:
x1 = x′

1 + 1

∧x2 = x′
2 + x′

1

terr :
x1 = 0
∧x2 > 0

Fig. 3. The CFA G1

Observe that (Z2, X, X, ∅) where
X = {x∈Z

2 | x2 = x1(x1−1)
2 } is an

accelerated interpolant for the error-
pattern (tini, t1, t, t2, terr). In partic-
ular this error-pattern is spurious. Un-
fortunately X is not a Presburger set.
Actually, the following lemma shows
that it is hopeless to try computing a
Presburger accelerated interpolant.

Lemma 4.3. There does not exist a Presburger accelerated interpolant for the spurious
error-pattern (tini, t1, t, t2, terr).

Proof. Let us consider an accelerated interpolant (Z2, X1, X2, ∅) for the spurious error-
pattern (tini, t1, t, t2, terr) and assume by contradiction that X1 is a Presburger set.
By replacing X1 by X1 ∩ N

2, we can assume without loss of generality that X1 ⊆
N

2. Let us consider a Presburger formula φ1(x) encoding X1. An immediate induc-
tion proves that postrinir∗

1
(Z2) is equal to X ′ = {x ∈ N

2 | x2 = x1(x1−1)
2 }. As

(Z2, X1, X2, ∅) is an interpolant, we deduce that X ′ ⊆ X1. Note that if X1 ∩ {x ∈
N

2 | x2 > x1(x1−1)
2 } is empty then X ′ is encoded by the Presburger formula φ′(x′) :=

φ1(x′) ∧ ∀x2φ1(x′1, x2) =⇒ x2 ≤ x′2. As X ′ is not a Presburger set we deduce that

436 N. Caniart et al.

this intersection is not empty. Thus, there exists x∈X1 such that x2 > x1(x1−1)
2 . Now,

just observe that postrr
x2
2 rerr

({x}) shows that postrr∗
2rerr

(X1) �= ∅ which is in con-

tradiction with the fact that (Z2, X1, X2, ∅) is an accelerated interpolant. ��

5 Half-Space Attractors

In this section we provide an algorithm for solving the following convergence decision
problem: given the half-space

H(α, c) = {x ∈ R
n | 〈α, x〉 ≥ c}

with α ∈ Z
n and c ∈ Z, and a matrix M ∈ Mn(R) such that N = M −In is nilpotent,

decide whether a vector x ∈ Z
n satisfies M �x ∈ H(α, c) for some � ∈ N. This

algorithm will be crucial for computing accelerated interpolants, in the next section.
We first show that the following two sets can be decomposed into an effectively

computable Boolean combination of half-spaces:

E−(α, c) = {x ∈ R
n | ∃�0 ∈ N, ∀� ≥ �0, M

�x �∈ H(α, c)},

E+(α, c) = {x ∈ R
n | ∃�0 ∈ N, ∀� ≥ �0, M

�x ∈ H(α, c)}.

It is clear that E−(α, c) and E+(α, c) are disjoint (the decomposition proof will show
in addition that R

n = E−(α, c)∪E+(α, c)). Recall that Lm(X) denotes the Lagrange
polynomial. Since Nn = 0n and Lm(�) = 0 for any m > �, the binomial theorem
applied to the commutative matrices In and N yields:

〈α, M �x〉 =
n−1∑

m=0

Lm(�)〈α, Nmx〉 (1)

We introduce the sets Zk(α) for k ∈ Z. First, Z0(α) = {x∈R
n |

∧
j≥1〈α, N jx〉 = 0}

and, for ε ∈ {−1, +1} and m ∈ N \ {0}:

Zε.m(α) = {x ∈ R
n | ε.〈α, Nmx〉 > 0 ∧

∧

j>m

〈α, N jx〉 = 0}.

Clearly, the Zk(α) are pairwise disjoint, Zk(α) = ∅ if |k| ≥ n, and
⋃

k∈Z

Zk(α) = R
n.

Lemma 5.1. Let α, x ∈ R
n. We have:

lim
�→+∞

〈α, M �x〉 =

⎧
⎪⎨

⎪⎩

+∞ if x ∈
⋃

k≥1 Zk(α),
〈α, x〉 if x ∈ Z0(α),
−∞ if x ∈

⋃
k≤−1 Zk(α).

From the previous lemma, we deduce the expression of E−(α, c) and E+(α, c):

E−(α, c) = (Z0(α) \ H(α, c)) ∪
⋃

k≤−1

Zk(α), (2)

E+(α, c) = (Z0(α) ∩ H(α, c)) ∪
⋃

k≥1

Zk(α). (3)

Accelerating Interpolation-Based Model-Checking 437

Naturally, if x ∈ E+(α, c) we can conclude that there exists � ∈ N such that M �x ∈
H(α, c). On the other hand, if x ∈ E−(α, c) we cannot conclude that M �x �∈ H(α, c)
for all � ∈ N. We are going to characterize a set X−(α, c) with an empty inter-
section with H(α, c) that is an M -attractor for any vector x ∈ E−(α, c). Thus, if

Fig. 4. Likely trajectories of M �x, omitting (α, c)

x ∈ E−(α, c), it suffices to
compute the beginning of the
sequence M �x until we dis-
cover � such that M �x is in
H(α, c) or X−(α, c). In the first
case there must be an � such
that M �x ∈ H(α, c) and in
the second case we can tell that
M �x �∈ H(α, c) for every � ∈ N.
The situation is show in Fig. 4.

We define the two sets X−(α, c) and X+(α, c) as follows:

X−(α, c) = {x �∈ H(α, c) |
∧

j≥1

〈α, N jx〉 ≤ 0},

X+(α, c) = {x ∈ H(α, c) |
∧

j≥1

〈α, N jx〉 ≥ 0}.

Proposition 5.2. (a) X−(α, c) is an M -attractor for every x ∈ E−(α, c), and
(b) X+(α, c) is an M -attractor for every x ∈ E+(α, c).

Proof. We only prove (a) since (b) is symmetrical.
We first show that X−(α, c) is an M -invariant. Consider x ∈ X−(α, c). Since

M = In + N , we have 〈α, Mx〉 = 〈α, x〉 + 〈α, Nx〉. From x �∈ H(α, c), we get
〈α, x〉 < c and since x ∈ X−(α, c), we deduce 〈α, Nx〉 ≤ 0. Therefore 〈α, Mx〉 <
c and we have proved that Mx �∈ H(α, c). Moreover, given j ≥ 1, observe that
〈α, N jMx〉 = 〈α, N jx〉 + 〈α, N j+1x〉. From x ∈ X−(α, c) we get 〈α, N jx〉 ≤ 0
and 〈α, N j+1x〉 ≤ 0. We deduce that 〈α, N jMx〉 ≤ 0 for any j ≥ 1. We have proved
that X−(α, c) is an M -invariant.

It remains to show that for x ∈ E−(α, c), there exists � such that M �x ∈ X−(α, c).
We use the expression (2) of E−(α, c). The case x ∈ Z0(α) \ H(α, c) is immediate
since it implies x ∈ X−(α, c). Thus, we can assume that there exists m ∈ N\{0} such
that x ∈ Z−m(α). By Lemma 5.1, there exists �0 such that 〈α, M �x〉 < c for any � ≥
�0. Let j ≥ 1 and let us prove that there exists �j ∈ N such that 〈α, N jM �x〉 ≤ 0 for
any � ≥ �j . Since M and N commute, we deduce that 〈α, N jM �x〉 = 〈α, M �N jx〉.
From equation (1) we get:

〈α, M �N jx〉 =
n−1∑

i=0

Li(�)〈α, N i+jx〉

Thus � �→ 〈α, N jM �x〉 is a polynomial in �. If this polynomial is equal to zero then
〈α, N jM �x〉 ≤ 0 for any � ≥ 0. Otherwise, we get j ≤ m by definition of Z−m(α),
and the leading coefficient of this polynomial is equal to 〈α,Nmx〉

!(m−j) . Now 〈α, Nmx〉 < 0
again by definition of Z−m(α), and we deduce that lim�→+∞〈α, N jM �x〉 = −∞.

438 N. Caniart et al.

Therefore there exists �j ∈ N such that 〈α, N jM �x〉 ≤ 0 for all � ≥ �j . Now, just
observe that M �x ∈ X−(α, c) if � = max{�0, . . . , �n−1}. ��

6 Computing Presburger Accelerated Interpolants

This section focus on the computation of a Presburger r-separator for a pair (E, F) of
r-separable Presburger sets. Observe that this is equivalent to the Presburger accelerated
interpolation problem for a spurious error-pattern with a unique cycle. We assume that
the relation r satisfies x r y iff y =Mx+v where v ∈Z

n and M ∈Mn(Z) is a poly-
bounded matrix. Note that this condition strictly extend the finite monoid M∗ condition
required in acceleration techniques (see Theorem 4.1). We prove that if (E, F) is r-
separable, then there exists a constructible Presburger r-separator for (E, F).

Remark 6.1. The unique cycle restriction is motivated by Example 4.2. In fact, this
example exhibits a spurious error-pattern (tini, t1, t, t2, terr) such that the cycles t1 and
t2 satisfy the condition presented above. However, let us recall that this error-pattern
does not admit a Presburger accelerated interpolant.

In the sequel, the Presburger sets E and F are decomposed into sets (Ei, Fj) following
the half-space attractors introduced in the previous section. Note that a Presburger r-
separator for (E, F) can be obtained as a combination of the Presburger r-separators
for (Ei, Fj) thanks to the following straightforward Lemma 6.2.

Lemma 6.2 (Stability by union)

(a) If Xi r-separates (Ei, F) for 1 ≤ i ≤ p, then
p⋃

i=1
Xi r-separates (

p⋃

i=1
Ei, F).

(b) If Xj r-separates (E, Fj) for 1 ≤ j ≤ m, then
m⋂

j=1
Xj r-separates (E,

m⋃

j=1
Fj).

Now, we reduce the r-separability problem to the uniform case v = 0. As expected,
this reduction is obtained by adding an extra component that remains equal to 1. More
precisely, consider the pair (E′, F ′) of Presburger sets defined by E′ = E × {1} and
F ′ = F ×{1} and the binary relation r′ over Z

n+1 defined by ((x, xn+1), (y, yn+1)) ∈
r′ iff y = Mx + vxn+1 and yn+1 = xn+1. Note that the matrix M ′ = [[M v][0, 1]] ∈
Mn+1(Z) is poly-bounded. Moreover (E, F) is r-separable if and only if (E′, F ′) is
r′-separable. From a Presburger r′-separator X ′ of (E′, F ′) we deduce a Presburger
r-separator for (E, F) by considering X = {x ∈ Z

n | (x, 1) ∈ X ′}. Note that under
the condition v = 0, a pair (E, F) of sets is r-separable if and only if M∗E ∩ F = ∅

and a set X is a r-separator if and only if X is an M -invariant such that E ⊆ X and
X ∩ F = ∅. Such a pair (E, F) is said M -separable and X is called a M -separator.

Next, the M -separability problem is reduced to a poly-bounded matrix M = In +N
where N ∈ Mn(Z) is a nilpotent matrix.

Lemma 6.3. Let M ∈ Mn(Z) be a poly-bounded matrix. Let (D, N) be the Dunford
decomposition of M . There exists an integer d ∈ N\ {0} such that the matrix D′ = Dd

satisfies D′D′ = D′. In this case N ′ = Md − D′ is a nilpotent matrix of Mn(Z) and
M ′ = In + N ′ satisfies Md�Mdn = (M ′)�Mdn for any �.

Accelerating Interpolation-Based Model-Checking 439

A pair (E, F) is M -separable if and only if (E′, F ′) with E′ =
⋃d−1

�=0 Mdn+�E
and F ′ = F is M ′-separable. Moreover, given an M ′-separator X ′ for (E′, F ′), the
following set X is an M -separator for (E, F).

X = E ∪ . . . ∪ Mdn−1E ∪ (
d−1⋂

�=0

{x ∈ Mdn
Z

n | M �x ∈ X ′})

Finally, denoting by b > 0 an integer extracted from the modular constraints defining
the Presburger set F , the following lemma shows that by replacing (In + N) by one of
its powers In + N ′ = (In + N)d, we can assume that M ≡b In.

Lemma 6.4. For any matrix M ∈ Mn(Z) such that M = In + N and for any integer
d > 0 we have Md = In+N ′ where N ′ is a nilpotent matrix. Moreover, for any integer
b > 0 there exists an integer d > 0 such that Md ≡b In.

A pair (E, F) is M -separable if and only if the pair (E′, F ′) with E′ =
⋃d−1

�=0 M �E
and F ′ = F is Md-separable. Moreover, given an Md-separator for (E′, F ′), the
following set X is an M -separator for (E, F).

X =
d−1⋂

�=0

{x ∈ Z
n | M �x ∈ X ′}

We can now provide the proof of our main Presburger separability theorem.

Theorem 6.5. Let r be a binary relation over Z
n such that x r y iff y = Mx + v

where v ∈ Z
n and M ∈ Mn(Z) be poly-bounded. A pair (E, F) of Presburger sets,

with either E or F finite, is r-separable if and only if it is Presburger r-separable.
Moreover in this case we can effectively compute a Presburger r-separator.

Proof. We have previously provided the reduction to the uniform case v = 0. Let
(E, F) be a pair of r-separable Presburger sets. Recall that this condition is equivalent
to M∗E ∩ F = ∅. From the reduction given in Lemma 6.3, we can assume that M =
(In + N) where N ∈ Mn(Z) is nilpotent. We have to find a Presburger r-separator X
for (E, F) i.e., an M -invariant X such that E ⊆ X and X ∩ F = ∅.

Since the condition M∗E ∩ F = ∅ is equivalent to (M−1)∗F ∩ E = ∅, and since
by hypothesis, either E or F is finite, it suffices by symmetry to handle the case where
E is finite. Since F is a Presburger set, it is defined by a propositional formula of linear
constraints, and one can effectively compute an integer b ∈ N \ {0} and an expression
F =

⋃m
j=1(Cj ∩

⋂qj

i=1 H(αi,j , ci,j)), where for all x ∈ Cj , x ≡b y implies y ∈ Cj .
By the reduction given in Lemma 6.4 one can assume that Mx ≡b x for all x ∈ Z

n.
Notice that this implies that both Cj and Z

n \ Cj are M -invariant. By Lemma 6.2 (b),
one can assume without loss of generality that F is of the form C ∩

⋂q
i=1 H(αi, ci).

Let x ∈ E. Assume that x ∈
⋂q

i=1 E+(αi, ci) ∩ C. Then M∗x ∩ X+(αi, ci) �= ∅

for 1 ≤ i ≤ q by Proposition 5.2(b). Since X+(αi, ci) is M -invariant, one would
have M∗x ∩

⋂r
i=1 X+(αi, ci) �= ∅. Since X+(αi, ci) ⊆ H(αi, ci), and since x also

belongs to C which is M -invariant, one would finally get M∗x∩F �= ∅, contradicting
the hypothesis M∗E ∩ F = ∅. Therefore, E ⊆

⋃q
i=1 E−(αi, ci) ∪ (Zn \ C), so that

E =

[
q⋃

i=1

E−(αi, ci) ∩ C ∩ E

]

∪ [(Zn \ C) ∩ E] (4)

440 N. Caniart et al.

Again by Lemma 6.2 (a), it suffices to treat two cases

(a) E ⊆ E−(αi, ci) ∩ C, and (b) E ⊆ Z
n \ C.

In case (a), Proposition 5.2 shows that for every x ∈ E there exists � such that
M �x ∈ X−(αi, ci). Since E is finite and X−(αi, ci) is an invariant, there exists �
such that M �E ⊆ X−(αi, ci). Furthermore, one can compute such an integer �, just
by computing successive images of E by M . Therefore, X = {MkE | k ≤ �} ∪
X−(αi, ci) is an M -separator for (E, F).

In case (b), where E ⊆ Z
n \ C, it suffices to choose X = Z

n \ C, which is a
Presburger M -invariant set such that E ⊆ X and X ∩ F = ∅. ��

We finally prove that finiteness of either E or F is necessary to entail r-separability.

Proposition 6.6. Consider E = (1, 1)N and F = {x ∈ Z
2 | x2 < x1 ∧ x1 < 0}. Let

r ⊆ Z
2 × Z

2 defined by x r y if y1 = x1 + x2 − 2 and y2 = x2 − 2. Then, the pair
(E, F) is r-separable, but it is not Presburger r-separable.

Proof. Computing r�E = −(�(�+1), 2�)+(�+1, 1)N shows that r∗E∩F = ∅, whence
r∗E is an r-separator for (E, F). Assume by contradiction that there is a Presburger r-
separator X for (E, F). For t ∈ Z and t ≥ −1, let Dt = (t, t) + (t, −1)N. This linear
set is located on the line (Δt) : x1 + tx2 = t + t2. Figure 6 (a) depicts the set E, its
successive images under r, and F . Figure 6 (b) displays the sets Dt and the lines Δt. An
easy computation gives (t, t)+k(t, −1) = rk(t+k, t+k) ∈ r∗E, so

⋃
t≥−1 Dt ⊆ r∗E.

Let Rt ⊆ Z
2 be the set of points between Δt−1 and Δt in the half space x1 ≥ x2.

Rt =
{
(x1, x2) | x1+tx2 < t+t2, x1+(t−1)x2 > (t−1)+(t−1)2, and x1 ≥ x2

}
.

This is a Presburger set, and F = R0. One easily checks that rRt ⊆ Rt−1. We claim
that there exists t such that ∅ �= Rt ∩ X . This will yield the contradiction, since then
∅ �= r(Rt∩X) ⊆ r(Rt)∩r(X) ⊆ Rt−1∩X , and by induction, ∅ �= R0∩X = F ∩X ,
contradicting the assumption that X is an r-separator for (E, F).

Choose an expression of the Presburger set X as a finite union of linear sets, and let
N ∈ N be greater than all the norms of the periods appearing in this expression. Then,
every point of X but a finite number is at distance at most N of another element of X .
Choose x ∈ DN ⊆ X , with x1 large enough so that the distance from x to both DN−1

E
rE

r2E

F

5

20

(a) r∗E as an infinite union of r�E

F = R0

Rt

(t, t)

Δt

Δt−1

Δ0

5

20

(b) r∗E as an infinite union of Dt

Accelerating Interpolation-Based Model-Checking 441

and DN+1 is greater than N . There are infinitely many such x, since DN is neither
parallel to DN−1 nor to DN+1. Now, any two points of ΔN ∩ Z

2 are at distance at
least N . By the choice of x and the definition of N , there must be an element in X∩RN

or X ∩ RN+1. This proves the claim and concludes the proof of the proposition. ��

7 Conclusion and Further Work

The main idea of this paper is to combine interpolation-based model-checking, which
works well on large and simple systems, and acceleration techniques, which prefers
small and complex ones. We explored a track to combine them, named interpolant
acceleration. in which we see a fair trade-off between the lack of scalability of accel-
eration, by applying it locally, and CEGAR inability to deal with of infinite behaviors.
We also strongly believe this paper to open a new field of investigation, and to offer
interesting research perspectives for future work.

We introduced the notion of error-pattern and accelerated interpolant. We identi-
fied two classes of computable accelerated interpolants: ’Presburger’ accelerated inter-
polants and ’poly-bounded’ accelerated interpolants. The second one allows to compute
interpolants for error-patterns labeled by transformations which strictly enlarge usual
classes used in acceleration techniques. This method is applicable for programs with a
finite set of initializations or with a finite set of errors, and this condition is necessary
due to Proposition 6.6. It would be interesting to extend the class of transformations, and
to find finer conditions for such interpolants to be computable. One can extract straight
from our constructive proof a rough algorithm. We would like to make it explicit, to
compute its theoretical complexity, and to test how it behaves in practice.

Indeed, we would like to find efficient algorithms to compute accelerated interpolants
as the one we provide here through the proof is brute-force. One possible track is to
compute them from symbolic (e.g. automata based) set representations, and then build
an effective implementation of a CEGAR loop using accelerated interpolants. Next,
the full potential of accelerated interpolants in the refinement remains to be explored.
From a more theoretical point of view, there are also many possible extensions: among
others, we would like to be able to handle transitions with explicit guards, or check for
some extensions of the class of transformations for which we can compute accelerated
interpolants. A full study of these classes would allow us to clearly delimit what is the
frontier between programs that can be handled by accelerated interpolants and others.
Finally, another track would be to investigate the influence of some structural properties
of the CFA (e.g. nested cycles) and how to deal with spurious error-traces whose proof
does not hold after some unrolling.

References

[1] Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat Acceleration in Symbolic Model-
Checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488.
Springer, Heidelberg (2005)

[2] Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path Invariants. In: Proc. of
the ACM SIGPLAN 2007 Conference on Programming Language Design and Implemen-
tation (PLDI 2007), pp. 300–309. ACM Press, New York (2007)

442 N. Caniart et al.

[3] Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Faculté
des Sciences Appliquées de l’Université de Liège (1999)

[4] Boigelot, B.: On Iterating Linear Transformations Over Recognizable Sets of Integers. The-
oret. Comput. Sci. 309(1-3), 413–468 (2003)

[5] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model-Checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg
(2000)

[6] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: CounterExample-Guided Abstrac-
tion Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)

[7] Esparza, J., Schwoon, S., Kiefer, S.: Abstraction Refinement with Craig Interpolation and
Symbolic Pushdown Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

[8] Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications to Broad-
cast Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp.
145–156. Springer, Heidelberg (2002)

[9] Ginsburg, S., Spanier, E.H.: Semigroups, Presburger Formulas and Languages. Pacific Jour-
nal of Mathematics 16(2), 285–296 (1966)

[10] Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

[11] Gulavani, B., Henzinger, T.A., Kannan, Y., Nori, A., Rajamani, S.K.: Synergy: A New Al-
gorithm for Property Checking. In: FSE 2006, pp. 117–127. ACM Press, New York (2006)

[12] Henzinger, T.A., Jhala, R., Majumbar, R., Sutre, G.: Lazy Abstraction. In: Proc. of 29th
Symp. on Principles of Programming Languages (POPL 2002), pp. 58–70 (2002)

[13] Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer,
Heidelberg (2006)

[14] McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

[15] McMillan, K.L.: An Interpolating Theorem Prover. Journal of Theoritical Computer Sci-
ence 345(1), 101–121 (2005)

[16] McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

[17] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du
1er congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)

Automatically Refining Abstract Interpretations

Bhargav S. Gulavani1, Supratik Chakraborty1, Aditya V. Nori2,
and Sriram K. Rajamani2

1 IIT Bombay
2 Microsoft Research India

Abstract. Abstract interpretation techniques prove properties of pro-
grams by computing abstract fixpoints. All such analyses suffer from the
possibility of false errors. We present three techniques to automatically
refine such abstract interpretations to reduce false errors: (1) a new op-
erator called interpolated widen, which automatically recovers precision
lost due to widen, (2) a new way to handle disjunctions that arise due to
refinement, and (3) a new refinement algorithm, which refines abstract
interpretations that use the join operator to merge abstract states at
join points. We have implemented our techniques in a tool Dagger. Our
experimental results show our techniques are effective and that their
combination is even more effective than any one of them in isolation.
We also show that Dagger is able to prove properties of C programs
that are beyond current abstraction-refinement tools, such as Slam [4],
Blast [15], Armc [19], and our earlier tool [12].

1 Introduction

Abstract interpretation [7] is a general technique to compute sound fixpoints for
programs. Such fixpoint computations have to lose precision in order to guar-
antee termination. However, precision losses can lead to false errors. Over the
past few years, counterexample driven refinement has been successfully used to
automatically refine predicate abstractions (a special kind of abstract interpre-
tation) to reduce false errors [4, 15, 19]. This has spurred significant research
in counterexample guided discovery of “relevant” predicates [14, 17, 8, 20, 5]. A
natural question to ask therefore is whether counterexample guided automatic
refinement can be applied to any abstract interpretation. A first attempt in this
direction was made in [12] where widen was refined by convex hull in the poly-
hedra domain. This was subsequently improved upon in [22] where widen was
refined using extrapolation. This paper improves the earlier efforts in three sig-
nificant ways that combine to give enhanced accuracy and efficiency. First, we
propose an interpolated widen operator that refines widen using interpolants.
Second, we propose a new algorithm to implicitly handle disjunctions that oc-
cur during refinement. Finally, we propose a new algorithm to refine abstract
interpretations that use the join operator to merge abstract states at program
locations where conditional branches merge. We have built a tool Dagger that
implements these ideas. Our empirical results show that Dagger outperforms

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 443–458, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

444 B.S. Gulavani et al.

0: int x=0; y=0; z=0; w=0;

1: while (*) {
2: if (*)
3: {x = x+1; y = y+100;}
4: else if (*) {
5: if (x >= 4)
6: {x = x+1; y = y+1;}

}

|7: else if (y > 10*w && z >= 100*x) |
|8: {y = -y;} |
9: w = w+1; z = z+10;

}
10: if (x >= 4 && y <= 2)
11: error();

(not to scale)

y = 100x

42

x

y

31

y = x

Fig. 1. Example program

a number of available tools on a range of benchmarks, and is able to prove
array-bounds properties of several programs that are beyond the reach of cur-
rent abstraction-refinement tools such as Slam [4], Blast [15], Armc [19], and
our earlier tool [12].

The widen operator is typically used in abstract interpreters to generate in-
variants by generalizing from multiple symbolic executions. However, widen is
unaware of the target property that needs to be verified, and may result in
approximations too coarse to prove the property. Interpolants offer a comple-
mentary generalization capability by providing succinct reasons for spuriousness
of counterexamples. However, interpolants are generated with respect to specific
counterexample traces, and are not guaranteed to be fixpoints with respect to all
executions. By combining the strengths of interpolants and widen in an effective
way, interpolated widen gives benefits of both.

To illustrate the benefit of using interpolants in conjunction with invariants
obtained by widening, consider the program in Figure 1 (ignore the boxed code
for now). The error at line 11 is unreachable. The inductive loop invariant x ≤
y ≤ 100x suffices to prove unreachability of the error. However, if we refine widen
using convex hull as in [12], we obtain the weaker invariant 100x ≥ y that does
not help in proving the program correct. The polyhedra obtained after the ith
such refinement iteration is indicated in Figure 1 by the region between the line
y = 100x and the ith dotted boundary. This dotted boundary is then discarded
in subsequent widen operations, and the abstract fixpoint intersects the error.
Therefore the refinement of widen to convex hull continues ad infinitum, giving
the imprecise invariant 100x ≥ y. Note that the extrapolation technique for
polyhedra given in [22] will also face a similar problem. In contrast, an interpolant
generation technique [17] can compute the interpolant y ≥ x easily by analyzing
a counterexample. By using this in conjunction with the invariant obtained by
widen, we obtain the stronger invariant x ≤ y ≤ 100x, which is strong enough
to prove that the error at line 11 is unreachable.

In the above example, y ≥ x is itself a strong enough loop invariant to prove
unreachability of the error. It may therefore appear that interpolation based

Automatically Refining Abstract Interpretations 445

techniques perform better than widen based techniques. However, interpolation
alone does not work in all cases. To illustrate this, consider the same exam-
ple including the boxed code (lines 7-9). In this program line 8 is unreach-
able. The inductive invariant required for proving the error unreachable is now
(x ≤ y ≤ 100x) ∧ (z = 10w). There is no obvious reason why interpolation
techniques like [17,20] will choose 100x ≥ y as part of an interpolant among the
many possible interpolants during counterexample analysis. Experiments show
that Armc, which uses a sophisticated interpolation algorithm [20], does not
terminate on this example in 2000s. Sting [21] does not generate invariants
strong enough to prove the error unreachable either. The refinement engine of
Blast is equipped to generate only difference and bounds predicates, hence
it fails to prove the program correct. Since the coefficient 100 in the required
predicate 100x ≥ y is large, recursively enumerating interpolants, as suggested
in [17], is also unlikely to work well. Widen based techniques like [12] can easily
generate invariants like 100x ≥ y and z = 10w, but not x ≤ y, which can be
easily generated by interpolant based techniques. Thus, by combining invariants
obtained by widen with interpolants obtained during counterexample analysis,
we obtain the right inductive invariant needed to prove the property. Further,
our empirical results (see Section 4) show that interpolated widen is better than
superficially combining widen and interpolation, i.e., by first computing invari-
ants using widen, and then using them to strengthen the transition relation in
interpolation based predicate abstraction frameworks, as suggested in [16].

Refining widen using specific operations in polyhedral abstract domains has
been used earlier [12,22]. While the widen up-to operator of [22] does not guar-
antee elimination of spurious counterexamples, the intuition behind widen up-to
and extrapolation are useful. In [13] Halbwachs et al. introduced the widen up-to
operator to improve the precision of widen with pre-computed (static) thresh-
olds. The use of dynamically computed interpolants to refine widen is an original
contribution of our work, and can be viewed as a generalization of the widen
up-to operators of [13, 22]. Since interpolants provide succinct reasons for spu-
riousness of counterexamples (by referring only to common variables between a
pair of formulas being interpolated), we enjoy the benefits of ideas in [12,22] while
potentially using simpler/fewer predicates. Unlike [12, 22], we can also leverage
independent advances in widening [10, 3] and interpolation techniques [17, 20, 5]
in a simple framework. In [16], predicate abstraction based analysis is improved
by using weak invariants discovered by widen in an initial pass. However, poten-
tially stronger invariants that may be discovered by widen after few iterations
of refinement are not considered. In contrast, our analysis based on interpolated
widen can benefit from such stronger invariants discovered later, especially if
sophisticated widening techniques [3, 10, 2] are used.

In addition to widen, if the join operator in an abstract domain loses preci-
sion, we need disjunctions to recover precision losses that are necessary to prove
a property. However, this makes us work over a powerset domain, where oper-
ations like interpolation and widen are expensive. We propose a technique that
implicitly uses disjunctions to recover precision as appropriate, while ensuring

446 B.S. Gulavani et al.

that interpolation and widen are applied only on base abstract domain (and not
powerset domain) elements. This contrasts with other approaches [12, 22] that
use similar base abstract domains but must use powerset widening.

In programs with conditional branches, the tree-based exploration used in
our earlier work [12] can result in traversing an exponential (in size of program)
number of paths. This can be avoided in abstract interpretation by using join
operations when different branches of conditional statements merge, in addition
to performing widen operations at loopheads. This is indeed a DAG-based explo-
ration. Therefore, an interesting question to ask is: can we perform counterexam-
ple driven automatic refinement with a DAG-based exploration? In this paper, we
propose a refinement algorithm that achieves this and also gives progress guaran-
tees. Counterexample-DAG based predicate abstraction has been used earlier for
programs with finite domain variables [8]. In contrast, our DAG based refinement
is used to refine imprecisions that arise due to the join operator at merge nodes.
In [9], Fischer et. al. used predicated dataflow lattices to improve precision lost
by join operation. However, the dataflow lattices considered in [9] are of finite
height and hence do not require a widen operator.

Our approach, like those of [12, 22, 16], benefits from cheap image/preimage
operations of abstract domains like octagons and polyhedra, as opposed to ex-
pensive image/preimage computations in predicate abstraction. In [18], McMil-
lan showed how abstract exploration for predicate abstraction can be performed
by way of computing interpolants, thus eliminating the need for the expensive
image computation. While this is a powerful technique, it does not benefit from
predicates that can be easily discovered as invariants by widen but are more dif-
ficult to obtain as interpolants, and that are also crucial for proving a property.
Beyer et al [5] introduced path programs to help discover such relevant predi-
cates. If we view this as an advanced interpolation technique, our approach, like
other predicate abstraction techniques, can only benefit from the predicates thus
computed. Interestingly, our abstraction refinement algorithm can also be used
to compute relevant predicates by analyzing path programs.

The remainder of the paper is organized as follows. In Section 2 we present the
interpolated widen operation and discuss implicit handling of disjuncts. Section 3
discusses DAG-based refinements. Section 4 presents and analyzes experimental
results from our tool Dagger, and Section 5 concludes the paper.

2 Refinement: Interpolated Widen and Implicit Disjuncts

Let V be a finite set of variables. A state s is a valuation to all variables in V .
Let Σ be the (possibly infinite) set of all possible states. A program PV over
a set of variables V is a six-tuple (L, E, R, l0, Image�), where (i) L is a finite
set of control locations in the program, representing possible valuations to the
program counter, (ii) E ⊆ L × L is a set of control flow edges, (iii) R ⊆ L is a
set of error locations, (iv) l0 is the initial program location, which is not in R,
and cannot be the target of any control flow edge, and (vi) Image� is a function
from 2Σ × L × L to 2Σ, where Image�(σ, l, l′) is the set of states obtained by

Automatically Refining Abstract Interpretations 447

starting at some state in the set of states σ and executing the statements along
the control flow edge (l, l′). The preimage operation Preimage� is defined as the
inverse of the image operation. We overload the Image� and Preimage� operations
to operate over a sequence of edges in the obvious way.

We assume that the control flow graphs of our programs are connected re-
ducible graphs, and that every location has at most two incoming control flow
edges. An edge e ∈ E is a backedge if it closes a cycle during a depth first traver-
sal of the graph 〈L, E〉, starting at location l0. A location l is called a merge
location if it has two incoming edges, neither of which is a backedge. A location
l is called a loophead if it has two incoming edges, and exactly one is a backedge.

A control location l is said to be reachable if there exists a path
(l0, l1, . . . , ln, l) in the control flow graph and a state σ0 ∈ Σ, such that
Image�({σ0}, (l0, l1, . . . , ln, l)) is not ∅. Our goal is to check if any error loca-
tion le ∈ R is reachable. A true counterexample is a sequence of control flow
locations (l0, l1, . . . , ln, le) such that le ∈ R and there exists σ0 ∈ Σ satisfy-
ing Image�({σ0}, (l0, l1, . . . , ln, le))
= ∅. The counterexample is called spurious if
Image�({σ0}, l0, l1, . . . , ln, le) = ∅ for every σ0 ∈ Σ. The length of a counterexam-
ple (l0, l1, . . . , ln, le) is one less than the length of the sequence (l0, l1, . . . , ln, le).

Following [7], we use abstract interpretation of a program PV over an abstract
domain 〈Σ�, �, �, ⊥, �, �〉, which is a complete lattice. In particular, we consider
abstract domains where elements of Σ� are formulas over V in a fragment of first
order logic closed under Craig interpolation [14]. Every formula represents a set
of states. The abstract image operation Image(s, l, l′) takes an abstract element
s and the control flow edge (l, l′) and returns the abstract element s′ obtained
by abstractly executing the statements along the control flow edge (l, l′). The
abstract Preimage operation is analogously defined. In the following discussion,
we will assume that the Image and Preimage operations are exact. The effects of
overapproximating Image and Preimage operations are briefly discussed later.

Widen. The widen [7] operator ∇ : Σ� × Σ� → Σ� is a binary operator such
that for all A, B ∈ Σ�, we have (i) A � A∇B, (ii) B � A∇B, and (iii) for any
strictly increasing sequence A0 � A1 � . . ., if we define B0 = A0, B1 = B0∇A1,
B2 = B1∇A2, . . ., then there exists i ≥ 0 such that Bj = Bi for all j > i.

The bounded widen or widen up-to [13] operator with respect to a set T of
abstract elements, ∇T : Σ� × Σ� → Σ�, is a widen operator such that for any
C ∈ T , if A � C and B � C then A∇T B � C.

Interpolant. For any two elements A, E ∈ Σ� such that A � E = ⊥, I ∈ Σ�

is said to be an interpolant [14] of A and E if (i) A � I, (ii) I � E = ⊥, and
(ii) the formula representing I has only those variables that are common to the
formulae representing A and E.

The widen operator A∇B is used to guarantee termination when computing
an abstract fixpoint. However, the imprecision introduced by widen may lead to
false errors. This can happen if, for an abstract error state E, (A � B) � E = ⊥,
but (A∇B) � E
= ⊥. In this case, we propose to pick an interpolant I of A � B
and E, and use a bounded widen operator A∇{I}B to compute the abstract

448 B.S. Gulavani et al.

/* Global: program PV , interpolant set T ,
abstract computation tree */
1. AbstractTREE
1: n0 ← 〈l0,�〉; T ← ∅; i← 0;
2: loop
3: for all n = 〈l, s〉 such that Depth(n) = i
4: for all edges (l, l′) in cfg
5: img ← Image(s, l, l′)
6: if ¬Covered(l′, img)
7: if l′ is loophead
8: s′′ ← Sel(l′, n)
9: img ← s′′∇T (s′′
 img)

10: Add 〈l′, img〉 as child of n
11: if ∃ne = 〈le, se〉 such that le ∈ R
12: i← RefineTREE(ne)
13: else if ¬∃ node at depth i + 1
14: “program correct”; exit
15: else
16: i← i + 1
17: end loop

2. RefineTREE (ne)
1: ψ ← �; curr ← ne; i← Depth(ne)
2: while i > 0
3: Let 〈l′, s′〉 = curr and 〈l, s〉 = Parent(curr)
4: if Image(s, l, l′) ψ = ⊥
5: /* curr is a refinement node */
6: s′ ← ApplyRefinement(l′, 〈l, s〉, ψ)
7: DeleteDescendents(curr)
8: return i− 1
9: ψ ← Preimage(ψ, l, l′)

10: curr ← Parent(curr); i← i− 1
11: end while
12: “program incorrect”; exit

3. ApplyRefinement (l′, 〈l, s〉, ψ)
1: Let n = 〈l, s〉; s′′ ← Sel(Sl′,n);
2: img ← Image(s, l, l′)
3: if (s′′
 img) ψ = ⊥ then
4: T ← T ∪ Interpolate(s′′
 img, ψ)
5: return s′′∇T (s′′
 img)
6: else
7: return img

Fig. 2. Refinement using Interpolated Widen

fixpoint. Such a bounded widen operator that uses interpolants as bounds is
called interpolated widen. A primary insight of this paper is that if the parameter
T of a bounded widen operator contains an interpolant, then a false error that
occurs due to the imprecision of widen can be avoided.

Lemma 1. Let A, B, E ∈ Σ� be such that (A � B) � E = ⊥. Let I ∈ Σ� be an
interpolant of (A � B) and E, and let T ⊆ Σ� be any set such that I ∈ T . Then
(A � B) � (A∇T B) � I and (A∇T B) � E = ⊥.

In the polyhedra abstract domain, bounding widen with constraints from the
convex hull has been used in earlier work [12,22]. Although such constraints sep-
arate the forward reachable states from the error, they may not be interpolants.
Since interpolants often give succinct reasons for eliminating counterexamples,
we choose to use them to bound widen.

For several abstract domains like polyhedra and octagons, the � operation is
inexact, in addition to having inexact ∇. Powerset extensions of these domains
however have exact �. A primary drawback of powerset domains is the increased
complexity of interpolation and other abstract domain operations. We therefore
propose ways to avoid these operations on powerset domains, while using base
abstract domains with inexact � operator. The abstraction refinement algorithm
using interpolated widen and tree based exploration is shown in Figure 2.

During the abstract fixpoint computation, procedure AbstractTREE stores the
intermediate states as a tree (N, A, n0) where N is the set of nodes, A is the set of
edges and n0 is the root node. Each node in N represents an abstract state during
the computation, stored as a pair 〈l, d〉 ∈ L×Σ�. The tree thus constructed gives
a model to perform counterexample driven refinement whenever an error location
is reached during the abstract computation.

Let the function Parent : N \ {n0} → N give for each node n ∈ N \ {n0}
its unique parent n′ in the tree. Let the function Depth : N → N give for each

Automatically Refining Abstract Interpretations 449

node n the number of edges along the path from n0 to n. Let Covered(l, s) be
a predicate that returns True iff either s = ⊥ or there exists a node n = 〈l, s′〉
in the tree such that s � s′. Let Sl,n denote the set of maximal abstract states
among the abstract states at the predecessors of node n with location l. Note
that there can be more than one node with maximal abstract state among the
predecessors of node n with location l because of refinements as explained later.
Given a set of abstract states S, the function Sel(S) deterministically returns
one element from S (using heuristics mentioned in [12]).

Since every node in the abstract tree stores a single abstract state, the image
computation in each step of forward exploration along a path in the tree gives a
single abstract state. Therefore, when we reach loopheads, we need to widen a set
S of abstract states with the set S ∪{s}, where s is the newly computed abstract
state. Given this special requirement, we define an operator ∇p

T : ℘(Σ�)× Σ� →
℘(Σ�) that takes a set S ⊆ Σ� and an element s ∈ Σ�, and returns the set of
maximal elements in S ∪ {Sel(S)∇T (Sel(S) � s)}.

Lemma 2. Let S0 ⊆ Σ� be a finite set. Consider the sequence S1 = S0 ∇p
T s0,

S2 = S1 ∇p
T s1, . . ., where si ∈ Σ� for all i ≥ 0. There exists u ≥ 0 such that

Sv = Su for all v ≥ u.

The computation of AbstractTREE starts with an abstract tree having a sin-
gle node n0 = 〈l0, �〉. Consider a node n = 〈l, s〉 and control flow edge (l, l′).
If Covered(l′, Image(s, l, l′)) returns False, a new node n′ = 〈l′, s′〉 is added as
a child of n in the tree; otherwise a new node is not added. If (l, l′) is not a
backedge then s′ is obtained as Image(s, l, l′). Otherwise s′ is computed using an
interpolated widen operation as s′′∇T (s′′ � Image(s, l, l′)), where s′′ = Sel(Sl′,n).
In computing s′, we must also ensure that the invariant computation for the
current path eventually terminates if no refinements are done in between.
Lemma 2 gives this guarantee. If a node ne = 〈le, se〉 with le ∈ R gets added to
the tree, then an error location is reached, and RefineTREE(ne) is invoked. The
abstraction refinement procedure terminates when either a fixpoint is reached
or refinement finds a true counterexample.

An important property of procedure AbstractTREE, that stems from its depth-
wise exploration of nodes is: if the loop at line 3 gets executed with i = k, the
program being analyzed has no true counterexamples of length ≤ k. This can be
proved by induction on k (refer [11]).

Procedure RefineTREE takes an error node ne as input and analyzes the coun-
terexample represented by the path from n0 to ne in the abstract computation
tree. It either confirms the counterexample as true or finds a node for refinement.
It initializes the error state at ne to � and then uses the abstract Preimage op-
eration to propagate this error state backward. At a node n′ = 〈l′, s′〉 with
parent n = 〈l, s〉, if ψ denotes the backward propagated error state at n′, and if
ψ � s′
= ⊥, the procedure proceeds in one of the following ways:

(1) Suppose the exact image of the parent, i.e. Image(s, l, l′), does not in-
tersect ψ. Then l′ must be a loophead and s′ must have been computed as
s′′∇T (s′′ � Image(s, l, l′)), where s′′ is Sel(Sl′,n). Furthermore, abstract state

450 B.S. Gulavani et al.

s′′ cannot intersect ψ, as otherwise, a true counterexample shorter than the
current one can be found – an impossibility by the above mentioned prop-
erty of AbstractTREE. If s′′ � Image(s, l, l′) doesn’t intersect ψ, neither s′′ nor
Image(s, l, l′) intersects ψ. We refine ∇T by computing an interpolant between
s′′� Image(s, l, l′) and ψ, and including it in T , to make ∇T precise enough. The
abstract state s′ is refined by using the refined ∇T operation. Lemma 1 ensures
that this refined state does not intersect ψ. If s′′ � Image(s, l, l′) intersects ψ we
simply refine the abstract state to Image(s, l, l′). This is a valid refinement as
the image does not intersect ψ (checked in line 4 of RefineTREE). Note also that
this refinement implicitly converts s′′∇T (s′′ � img) to a disjunction of s′′ and
img, with the disjuncts stored at distinct nodes (with location l′) in the tree.
This differs from [12] where a set of base abstract domain elements is stored
at each node to represent their disjunction. Note that our way of representing
disjunctions may result in a node n with location l′ having multiple maximal
nodes among its predecessors with location l′. After refining node n′, we delete
its descendents since the abstract states at these nodes may change because of
this refinement.

(2) If the exact image Image(s, l, l′) intersects ψ, the abstract error ψ at node n′

is propagated backward by the Preimage operation until either a refinement node
is identified or n0 is reached. Since Image and Preimage are exact, Image(s, l, l′)
intersects ψ if and only if s intersects Preimage(ψ, l, l′). Therefore it is not nec-
essary to intersect Image(s, l, l′) with ψ before propagating the error backwards.
If n0 is reached during backward propagation we report a true counterexample.

Note that if the Preimage operation is overapproximating, a counterexam-
ple reported by RefineTREE may not be a true counterexample. However, if a
program is reported to be correct, it is indeed correct. If the Image operation
is overapproximating, then a spurious counterexample may not be eliminated
because RefineTREE only refines join and widen operations. Consequently Ab-
stractTREE may loop indefinitely, a problem typical of all counterexample guided
abstraction refinement tools. This can be rectified by letting RefineTREE improve
the precision of Image as well.

3 DAG Refinement

The tree based abstraction refinement technique discussed in the previous section
potentially suffers from explosion of paths during forward exploration. Yet an-
other drawback of tree based exploration is that every invocation of RefineTREE
analyzes a single counterexample. We propose to address both these drawbacks
by adapting the tree based technique of the previous section to work with a
DAG. In such a scheme, the abstract computation joins states computed along
different paths to the same merge location. It then represents the merged state
at a single node in the DAG, instead of creating separate nodes as in a tree
based scheme. Subsequently, if it is discovered that merging led to an impreci-
sion that generated a spurious counterexample, the refinement procedure splits
the merged node, so that abstract states computed along different paths are
represented separately.

Automatically Refining Abstract Interpretations 451

The use of a DAG G to represent the abstract computation implies that when
an error location is reached at a node ne, there are potentially multiple paths
from the root n0 to ne in G. Let the subgraph of G containing all paths from n0
to ne be called the counterexample-DAG Ge. Unlike in a tree based procedure, we
must now analyze all paths in Ge to determine if ne is reachable. The refinement
procedure either finds a true counterexample in Ge, or if all counterexamples
are spurious, it replaces a set of imprecise operations by more precise ones along
every path in Ge. Refinement proceeds by first computing a set of abstract error
preimages, err(n), at each node n in Ge. For a node n, err(n) is computed as
the set union of the preimage of every element in err(n′), for every successor n′

of n in Ge.
Unlike in a tree based procedure, a node n′ = 〈l′, s′〉 may not have a unique

predecessor in the counterexample DAG Ge. We say that node n′ is a refinement
node with respect to predecessor n = 〈l, s〉 if ∃e′ ∈ err(n′), s′ � e′
= ⊥ and
∀e ∈ err(n), s � e = ⊥. The goal of refinement at such a node n′ is to improve
the precision of computation of s′ from s, so that the new abstract state at
n′ does not intersect err(n′). However, the abstract states already computed
at descendents of n′ in G may be rendered inexact by this refinement, and may
continue to intersect the corresponding abstract error preimages. Hence we delete
all descendents of n′ in G.

Refinement is done at node n′ = 〈l′, s′〉 in one of the following ways: (i) If l′

is a merge location and n′ has predecessors n1 = 〈l1, s1〉, . . . , nk = 〈lk, sk〉, then
refinement first deletes deletes n′ and all its incoming edges. Then it creates k
new nodes m1, . . . , mk, where mi = 〈l′, ti〉 and ti = Image(si, li, l

′). (ii) If l′ is a
loophead, then as done in Algorithm RefineTREE, refinement either introduces
disjunctions (implicitly) or does interpolated widen with a refined set of inter-
polants. An interpolant is computed between the joined result at n′ and each
of the abstract error states from the set err(n′). The result of the interpolated
widen is guaranteed not to intersect err(n′).

Consider a merge node n′ that is a refinement node with respect to predecessor
n but not with respect to predecessor m. Suppose no ancestor of n is a refinement
node while m has an ancestor p that is a refinement node. In this case if we apply
refinement at p before n′, then node n′ will be deleted and no counterexample
corresponding to a path through n and n′ would have any of its nodes refined.
To prevent this, nodes are refined in reverse topological order. This ensures that
at least one node along each path in the counterexample-DAG is refined.

Lemma 3. Let ne = 〈le, se〉 be a node in a counterexample-DAG Ge correspond-
ing to error location le. Every invocation of refinement with Ge either finds a true
counterexample or reduces the number of imprecise operations on each spurious
counterexample ending at ne in Ge.

As discussed above, the abstraction procedure aggressively merges paths at
merge locations, and refinement procedure aggressively splits paths at merge
locations. One could, however, implement alternative strategies, where we se-
lectively merge paths during abstraction and selectively split them during re-
finement. For example, whenever refinement splits a merge node n into nodes

452 B.S. Gulavani et al.

n1, . . . nk, it may be useful to remember that descendents of ni should not be
merged with those of nj where i
= j during forward exploration. This infor-
mation can then be used during abstraction to selectively merge paths leading
to the same merge location. Our implementation uses this simple heuristic to
prevent aggressive merging of paths. Note also that as an optimization, we store
and propagate back only those abstract error preimages s′e at node n′ = 〈l′, s′〉
that satisfy s′e � s′
= ⊥. This potentially helps in avoiding an exponential blow
up of error preimages during refinement.

Progress Guarantees. It would be desirable to prove that our DAG-based
abstraction refinement scheme has the following progress property: Once a coun-
terexample is eliminated it remains eliminated forever. There are two reasons
why the abstraction refinement procedure may not ensure this. Firstly, it does
not keep track of refinements performed earlier, and secondly, the interpolated
widen operation is in general non monotone, i.e., A′ � A and B′ � B does not
necessarily imply (A′∇T B′) � (A∇T B). Progress can be ensured by keeping
track of all earlier refinements and by using monotone operations. We propose
addressing both these issues by using a Hint DAG H , which is a generalization
of the list based hints used in [12]. Monotonicity of interpolated widen is ensured
by intersection with the corresponding widened result in the previous abstrac-
tion iteration. The details of using Hint DAG can be found in [11]. Lemma
3 along with the use of Hint DAG ensures the following: a counterexample c
having k imprecise operations is eliminated in at most k refinement iterations
with counterexample-DAGs containing c. The Hint DAG also ensures that once a
counterexample is eliminated, it remains eliminated in all subsequent iterations
of abstraction.

4 Implementation

We have implemented our algorithm in a tool, Dagger, for proving assertions in
C programs. Dagger is written in ocaml and uses the CIL [6] infrastructure for
parsing our input programs. Dagger uses the octagon and polyhedra abstract
domains as implemented in the Apron library [1]. We use flow insensitive pointer
analysis provided by CIL to resolve pointer aliases in a sound manner.

We have implemented several algorithms for abstract computation which in-
clude the TREE and DAG based exploration with and without interpolated widen.
This is done to compare the enhancements provided by each of these techniques.
Dagger keeps track of a separate interpolant set for each program location as
opposed to having a single monolithic set of interpolants for all program loca-
tions. We outline the interpolation algorithms for the octagon and polyhedra
abstract domains, and then explain an optimization of caching abstract error
preimages.

Interpolation for the octagon domain. In the octagon abstract domain
every non-⊥ abstract element is represented by a set of constraints of the form
l �� e �� u, where �� ∈ {<, ≤}, l and u are real or rational constants and e is an

Automatically Refining Abstract Interpretations 453

expression that is either a single variable, difference of two variables or sum of
two variables. We will assume that the set of constraints is in canonical form,
i.e., l and u are tight bounds for the expression e. InterpolateOct computes an
interpolant I of two non-⊥ canonical octagons A and B such that A � B = ⊥.
This takes time quadratic in the number of program variables. Note that in
Algorithm ApplyRefinement (Figure 2) canonicalization would already have been
done at line 3 when checking the emptiness of intersection, before InterpolateOct
is invoked at line 4.

Interpolation for the polyhedra domain. In this domain, each non-⊥
abstract element is represented by a set of non redundant constraints. For
an abstract element A, let var(A) be the set of variables occurring in the
constraints of A. Function Project(A, V), computes the projection of polyhedra
A on a set of variables V , i.e., it existentially quantifies the variables not in V .
Given two non-⊥ polyhedra A and B such that A � B = ⊥, the interpolant can
be computed as below.
InterpolateOct (A,B)
1: I ← ∅
2: for all expressions e do
3: Let al : la �� e and au : e �� ua be constraints in A
4: Let bl : lb �� e and bu : e �� ub be constraints in B
5: if au � {¬bl} then
6: I ← I ∪ {¬bl}
7: if al � {¬bu} then
8: I ← I ∪ {¬bu}

InterpolatePoly1 (A,B)
1: I ← ∅
3: for all constraints c in B do
4: if A � {¬c}
5: I ← I ∪ {¬c}
InterpolatePoly2 (A,B)
1: V ← var(A) ∩ var(B)
2: I ← Project(A, V)

InterpolatePoly1 computes an interpolant from the constraints of B. Any i ∈ I
computed by InterpolatePoly1 is implied by A and does not intersect B. It has
variables common to the constraints of A and B. Note that there may not be
any constraint c in B whose negation is implied by A. In such a case, we obtain
interpolants by algorithm InterpolatePoly2. In our implementation, we first try
to get an interpolant by InterpolatePoly1 algorithm. If no interpolant is found,
then we use InterpolatePoly2. As part of future work, we wish to incorporate
interpolation techniques from [17,20] in our tool Dagger. The correctness proofs
and complexity analysis of InterpolatePoly1 and InterpolatePoly2 algorithms can
be found in [11].

In each of the above mentioned abstract domains, a non-⊥ abstract element
is represented as a set of constraints (conjoined implicitly). For any two abstract
elements A and B, a simple interpolated widen operator can be defined as:
A∇T B = B if A = ⊥. Otherwise A∇T B = {c ∈ T | γ(A) ⊆ γ({c}) ∧ γ(B) ⊆
γ({c})} ∪ {c ∈ A | γ(B) ⊆ γ({c})}.

Caching error states. Our implementation also uses an additional optimiza-
tion of caching abstract error preimages at refinement points. This optimization
has been empirically found to be useful in early detection of imprecisions that
lead to errors in future explorations. Compared to [12] where widen is refined
by join, the use of interpolated widen can potentially increase the total num-
ber of image and preimage computations in the overall abstraction refinement

454 B.S. Gulavani et al.

Table 1. Experimental results. Column I: time (seconds), Column II: number of re-
finement iterations. ‘*’ denotes non-termination in 2000 sec, ‘!’ denotes inability of tool
to discover new predicates, and ‘-’ denotes tool crash.

Dagger TREE + ∇ TREE + ∇I DAG + ∇ DAG + ∇I Blast Slam GR06 Armc
Pgm I II I II I II I II I II I II I II I II I II

Sendmail
p1-ok 4.64 9 1940 18408 11.2 16 131.5 412 5.76 9 * * * * * * - -
p2-ok 0.27 4 35.8 3996 0.77 4 64.23 1332 0.39 4 * * * * * * * *
p3-ok 0.15 0 18.4 1 18.3 1 0.15 0 0.14 0 2.2 4 * * * * - -
p1-bad 3.31 11 2.81 33 8 17 3.53 19 21.7 38 1368 46 * * 12 33 - -
p2-bad 0.06 1 0.08 1 0.08 1 0.06 1 0.06 1 1.1 7 9.9 12 0.1 1 0.12 1
p3-bad 4.91 49 1735 2402 252 203 30.85 64 101 53 * * * * * * - -

StInG
seesaw 0.04 2 * * 0.05 2 * * 0.05 2 ! ! 1.0 1 0.82 6 * *
bkley 0.04 1 0.04 0 0.04 0 0.05 1 0.04 1 ! ! 2.90 5 0.10 2 4 16
bk-nat 0.06 2 0.09 2 0.06 1 0.11 4 0.07 2 ! ! ! ! 0.43 3 3.25 18
hsort 0.14 3 * * 0.16 3 * * 0.14 3 ! ! 1.10 1 0.72 3 22.5 40
efm 0.09 1 0.09 1 0.09 1 0.08 1 0.09 1 ! ! 1.40 1 0.06 0 16.9 35
lifo 0.31 2 0.57 2 0.55 2 0.38 3 0.32 2 ! ! 7.50 9 3.3 6 75.3 88
lifnat 0.49 3 * * 1.46 5 * * 0.48 3 ! ! 6.60 9 29.55 12 ! !
cars 19.5 8 * * 17.6 8 * * 19.5 8 ! ! 1.80 3 * * 107 27
barbr 3.46 8 * * 4.80 7 * * 3.44 8 ! ! 43.9 22 10.5 6 674 205
swim 0.60 2 2.46 13 0.60 2 1.49 9 0.60 2 ! ! ! ! 11.1 6 579 137
swim1 0.72 3 2.57 13 0.79 3 1.54 9 0.72 3 ! ! ! ! 11.2 6 767 144
hsort1 0.07 1 * * 0.08 1 * * 0.15 1 ! ! 1.3 1 * * 0.15 1
barbr1 0.63 2 * * 1.15 2 * * 0.62 2 ! ! 16.1 11 * * 570 109
lifnat1 0.59 6 * * 8.71 23 * * 0.74 5 ! ! ! ! * * ! !

Miscellaneous
f1a 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 1.07 12 * * 0.01 0 * *
ex1 0.04 1 * * 0.06 1 * * 0.04 1 ! ! ! ! * * 0.62 3
f2 0.07 1 * * 0.06 1 * * 0.07 1 ! ! ! ! 0.42 2 * *
ex2 0.03 0 5.4 0 5.4 0 0.03 0 0.03 0 506 132 * * 5.4 0 1.7 12
JM06 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 * * * * 0.02 0 * *

Programs Strengthened with loop invariants obtained by initial widen pass
p1-ok’ 4.64 9 1948 18413 8.2 13 121 411 4.76 9 200 24 * * * * - -
p2-ok’ 0.27 4 35.8 3996 0.77 4 64.23 1332 0.39 4 * * * * * * * *
JM06’ 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.07 2 * * 0.02 0 0.17 1
barbr’ 3.46 8 * * 4.80 7 * * 3.44 8 ! ! 4.7 14 10.5 6 890 153
barbr1’ 0.63 2 * * 1.15 2 * * 0.62 2 ! ! 1.7 5 * * 767 104
lifnat1’ 0.59 6 * * 6.71 10 * * 0.74 5 ! ! ! ! * * 205 71

loop. Caching abstract error preimages helps in mitigating this effect (see [11]
for further discussion of this optimization technique).

Experimental Evaluation. We have evaluated our implementation on the
suite of buffer overflow programs (adapted from Sendmail) developed by Zitser et
al. [23], the set of StInG benchmarks [21], and a miscellaneous set of programs.
All programs can be obtained from [11]. Our current implementation is intra
procedural and we handle multiple procedures by providing procedure summaries
by way of annotations. The experiments are performed on an Intel(R) Xeon 3.00
GHz processor with 4GB RAM. The experimental results are given in Table 1.

Benchmark programs. The Sendmail programs have nested while loops with
branching structures within the loops. The assertions in these programs check
bounds on array accesses. Programs with ‘ok’ suffix are correct and those with

Automatically Refining Abstract Interpretations 455

‘bad’ suffix have array bound errors. The programs p1-bad and p3-bad have
deep counterexamples whose lengths depend on the size of the array. The StInG
programs have a single while loop with nondeterministic branching in the loop
body. We modified the examples to assert for the invariants computed by StInG.
For the programs hsort1, barbr1 and lifnat1, we dropped some conjuncts in the
invariants computed by StInG while writing the assertion. Program ex2 has a
sequence of if-then-else statements, leading to an exponential explosion of paths.
Program JM06 is the benchmark program in [17] that could not be analyzed by
Blast. The programs with primed names in the last six rows were obtained
by annotating the corresponding unprimed programs with location invariants
obtained from an initial widen based analysis (using “assume” statements) as
suggested in [16] suggests. All Sendmail programs and JM06 were analyzed in
Dagger using the octagon abstract domain. All StInG programs and f1a, f2,
ex1 and ex2 were analyzed in Dagger using the polyhedra abstract domain.

Description of columns. In Table 1 we compare Dagger with other abstrac-
tion refinement tools (Slam, Blast, Armc), with our earlier tool GR06 [12],
and with combinations of Dagger’s constituent optimizations. We could not
compare with Impact and with the tools mentioned in [22, 16] due to their un-
availability. The column Dagger gives results for a DAG based exploration, as
described in Section 3, with the additional optimization of caching abstract error
preimages at refinement points. The column TREE + ∇ is for a TREE based ex-
ploration with widen refined by � instead of by interpolated widen. The column
TREE + ∇I gives results for a TREE based exploration, as discussed in Section
2. Similarly, the column DAG + ∇ gives results for a DAG based exploration
with widen refined by � instead of by interpolated widen. The column DAG +
∇I gives results for a DAG based exploration, as discussed in Section 3.

Advantages of interpolated widen. To understand the effect of interpolated
widen, we compare the columns TREE + ∇ and DAG + ∇, where interpolated
widen is not used, with the corresponding columns TREE + ∇I and DAG +
∇I , where interpolated widen is used. The programs seesaw, hsort, lifnat, cars,
barbr, hsort1, barbr1, lifnat1, ex1 and f2 require interpolated widen to compute
inductive invariants strong enough to prove the desired properties. For p1-ok
and p2-ok, exploration without interpolated widen performs a large number of
refinement iterations proportional to the size of the array being processed, as
seen in columns TREE + ∇ and DAG + ∇. Interpolated widen eliminates the
dependence on array size, as seen in columns TREE + ∇I and DAG + ∇I .

Advantages of DAG exploration. For programs p3-ok and ex2, TREE based
exploration explores exponentially many paths. However, DAG based exploration
avoids this blow up by merging abstract states along different paths at each
merge location. DAG based exploration is also effective in detecting true coun-
terexamples. In p3-bad, the TREE based technique explores several spurious
counterexamples before discovering a true error. The DAG based technique re-
duces this effort significantly. It also does not blow up while analyzing multiple

456 B.S. Gulavani et al.

counterexamples by backward propagation of error. Interestingly, in p1-bad, the
TREE based exploration got lucky and found a true counterexample quickly.
The StInG benchmarks do not have significant branching structure. Thus, the
DAG + ∇ and TREE + ∇ techniques, and also DAG + ∇I and TREE + ∇I

explorations perform similarly for these examples.

Advantages of caching. For programs p1-bad and p3-bad, the number of
image and preimage computations using TREE + ∇I and DAG + ∇I grows
quadratically with the length of the counterexample. This contrasts with TREE
+ ∇ and DAG + ∇, where this number grows linearly with the length of the
counterexample, leading to much lesser computation times. This discrepancy
arises because in TREE + ∇ and DAG + ∇, widens are refined to joins that are
more precise than interpolated widens. Thus, once a widen is refined, it does
not need to be refined further. By caching error preimages at refinement points,
the above drawback can be significantly addressed in interpolated widen based
techniques. This can be seen by comparing the Dagger column with the DAG
+ ∇I column for programs p1-bad and p3-bad.

Comparison with other refinement tools. For the Sendmail examples p1-
ok, p2-ok, p3-bad and for JM06, none of Slam, Blast, GR06 and Armc are
able to find the right predicates. Dagger’s interpolated widen however finds the
right predicates in a few iterations. On most of Sendmail examples, GR06 does
not terminate due to an explosion in the number of disjuncts. When location
invariants obtained from an initial widen based analysis are added to the original
program, the performance of other tools does not always improve. The last six
rows of Table 1 illustrate this. For Blast and Slam, the performance improves
for some programs by way of either terminating within 2000s (where it did
not terminate earlier), or faster convergence. However for other programs (p2-
ok’ for Blast, and p1-ok’, p2-ok’, JM06’ for Slam) these tools still do not
terminate in 2000s. For Armc the performance improves on some examples
(lifnat’, JM06’) and degrades on others (barbr’, barbr1’). For GR06 and Dagger
the performance does not significantly change after adding invariants since these
tools can easily discover these invariants. This illustrates that invariants obtained
from an initial widen based analysis may be too weak to help refinement, and
that interaction between widen and interpolation as implemented in Dagger is
useful.

The refinement engine of Blast fails for StInG programs as it is equipped to
generate only difference and bounds constraints, while the StInG programs need
more expressive invariants. Slam is unable to make progress on bk-nat, swim,
swim1 and lifnat1, as it cannot discover the correct predicates. Armc takes
several more iterations (and longer execution times) compared to Dagger to
generate the right predicates on most of the StInG examples. However for the
programs seesaw, lifnat and lifnat1, it is unable to generate the right predicates,
and hence does not terminate. GR06 is able to compute the correct inductive
invariants for many programs in the StInG benchmarks. But the programs cars,
hsort1, barbr1, and lifnat1 fail with this technique. Dagger and the constituents

Automatically Refining Abstract Interpretations 457

of Dagger that use interpolated widen (namely TREE + ∇I and DAG + ∇I)
are able to prove these programs correct in a small number of iterations.

Finally, looking at the miscellaneous benchmarks, we find that Slam fails
on all these examples. Blast fails on ex1, f2 and JM06. GR06 fails on ex1,
and Armc fails on f1a, f2 and JM06. Again, Dagger and the constituents of
Dagger that use interpolated widen (namely TREE + ∇I and DAG + ∇I) are
able to prove these programs correct in a small number of iterations.

Tools like Blast, Slam, and Armc use techniques beyond what we have
discussed for widen and interpolants. For example, Blast uses recursive enu-
meration of predicates, Slam uses several heuristics to determine a good set of
predicates, and both Blast and Armc use several sophisticated algorithms to
compute interpolants. In contrast, Dagger uses very simple widen and inter-
polation operators, and by combining these appropriately (and dynamically), it
outperforms these other tools.

5 Conclusion

We presented three new techniques to automatically refine abstract interpre-
tations to tune the precision of fixpoint computations dynamically and reduce
the number of false errors produced by abstract interpretation. We have proved
that our refinements guarantee progress in a formal sense. However, since asser-
tion checking is undecidable, our procedure is not guaranteed to terminate. In
practice, we find that our procedure terminates and outperforms tools available
to us on a variety of benchmarks. Though our implementation Dagger uses
polyhedra and octagons, our techniques can be used with any choice of abstract
domain, widen, join and interpolation operators.

Acknowledgments. The first author was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research India PhD Fellow-
ship Award.

References

1. Apron. Numerical Abstract Domain Library, http://apron.cri.ensmp.fr/library/
2. Bagnara, R., Hill, P., Zaffanella, E.: Widening operators for powerset domains.

Technical Report 344, University of Parma, Italy (2004)

3. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening opertors for
convex polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, Springer, Hei-
delberg (2003)

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL 2002, pp. 1–3 (2002)

5. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI, pp. 300–309 (2007)

6. CIL. Infrastructure for C Program Analysis and Transformation.
http://manju.cs.berkeley.edu/cil/

http://apron.cri.ensmp.fr/library/
http://manju.cs.berkeley.edu/cil/

458 B.S. Gulavani et al.

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252 (1977)

8. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with craig interpolation
and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

9. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In:
ESEC/SIGSOFT FSE, pp. 227–236 (2005)

10. Gopan, D., Reps, T.W.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

11. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically re-
fining abstract interpretations. Technical Report TR-07-23, CFDVS, IIT Bombay,
2007. http://www.cfdvs.iitb.ac.in/∼bhargav/dagger.html

12. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract
interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 474–488. Springer, Heidelberg (2006)

13. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. FMSD 11(2), 157–185 (1997)

14. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
In: POPL (2004)

15. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

16. Jain, H., Ivancic, F., Gupta, A., Shlyakhter, I., Wang, C.: Using statically computed
invariants inside the predicate abstraction and refinement loop. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 137–151. Springer, Heidelberg (2006)

17. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. Rybalchenko, A., Podelski, A.: Armc: The logical choice for software model check-
ing with abstraction refinement. In: PADL (2007)

20. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

21. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constraint based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

22. Wang, C., Yang, Z., Gupta, A., Ivancic, F.: Using counterexamples for improving
the precision of reachability computation with polyhedra. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg
(2007)

23. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. In: FSE, pp. 97–106 (2004)

http://www.cfdvs.iitb.ac.in/~bhargav/dagger.html

SVISS:

Symbolic Verification of Symmetric Systems�

Thomas Wahl1, Nicolas Blanc1, and E. Allen Emerson2

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Department of Computer Sciences, The University of Texas at Austin, USA

Abstract. Sviss is a flexible platform for incorporating efficient sym-
metry reduction into symbolic model checking. The tool comes with an
extensive C++ library for system modeling using BDDs and a rich CTL-
based model checking engine. Applications range from communication
protocols to computer hardware and multi-threaded software. We be-
lieve Sviss to be the first symbolic tool to exploit symmetry in concurrent
device-driver verification, which is vital in operating system design.

1 Introduction

Symmetry reduction has proved to effectively curb the complexity of model
checking finite-state multi-process systems. Provided the transition relation of
the system is invariant under permutations of the participating processes, states
that are identical up to permutations can be collapsed into an equivalence class,
known as an orbit. This can reduce the number of states that need to be kept in
memory from exponential to polynomial in the number of processes.

In contrast to its immediate success with explicit-state model checkers such
as Murϕ [7], symmetry reduction of a system given symbolically as a Binary
Decision Diagram (BDD) was first thought to be infeasible in practice due to
the orbit problem: the BDD representing the symmetry equivalence relation
is of intractable size [3]. In this paper, we present a symbolic model checker
with symmetry reduction that never builds this BDD and thus avoids the orbit
problem: Sviss (historically, “Symbolic V erification of I nvariants of Symmetric
Systems”) implements, to our knowledge, the first efficient symbolic realization
of symmetry reduction, by dynamically mapping each encountered state to a
unique representative of its orbit [5].

Sviss comes with a rich C++ library for constructing transition relations. The
benefit of a library in a widely known programming language over a specialized
input language is flexibility: the library has been used to model systems as
diverse as asynchronous communication protocols [5], Boolean abstractions of
concurrent software (see section 3), synchronous parallel programs [4], and finite-
state machine descriptions of computer hardware. The penalty for this flexibility
is that by using C++ constructs outside the library, the user can circumvent
� Work supported by the Swiss National Science Foundation under grant 200021-

109594, by ETH research grant TH-21/05-1, and by NSF grant CCR-020-5483.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 459–462, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 T. Wahl, N. Blanc, and E.A. Emerson

restrictions that ensure symmetry, which are therefore not enforced by the tool
(a weakness that Sviss shares with other tools exploiting symmetry including
Murϕ [7]).

Sviss especially supports experimentation. An input file contains no property
specifications. Instead, once the transition relation is built, the tool repeatedly
requests CTL-like formulas at a prompt and performs global model checking by
computing the set of states satisfying the formula. If the set is small, it can be
visualized in a compact format. The intended utility of this feature is to increase
confidence in the model by inspecting the set of initial, bad or reachable states
of a small instance of a parameterized system.

2 Tool Description and Usage

The state space of the design under investigation is described in Sviss through
model parameters, constants, and program variables. The variables can be of
type Boolean, finite range, enumeration, record and array. The C++ library of-
fers routines to access these variables, further Boolean operators, simple linear
arithmetic, and a set of specialized functions for transition relation construction.
An example illustrating the use of the library is provided on the tool website:
http://www.inf.ethz.ch/~wahlt/Sviss.

Variables are either global or belong to a symmetry block. Each block com-
prises the local variables of processes forming a symmetric factor of the state
space (such as a block of readers and a block of writers in the Readers-Writers
problem). A block also specifies the number of replicated components and the
symmetry group that is to act within it. Sviss offers reduction with respect
to full (arbitrary permutations of components) and rotational symmetry (cyclic
shifts), specified by the user individually for each block. Global variables that
store process indices (such as a token variable in a resource allocation protocol)
are allowed and treated specially by the reduction algorithms.

Sviss first compiles a system model to a customized executable. The model
may leave some parameters unspecified, such as the number of process compo-
nents. These parameter, as well as CTL specifications, can conveniently be sup-
plied later at the command line of the executable or at a prompt. This greatly
facilitates experimentation with different parameters and specifications.

Sviss computes the set of states corresponding to an input formula, which can
be written in a dialect of CTL, augmented by past-time temporal operators, with
or without frontier set optimization. The computation can be done (i) ignoring
symmetry, (ii) using dynamic symmetry [5], (iii) using the orbit relation [3] and
(iv) by way of multiple representatives [3].1 If the result is neither empty nor
equal to the entire state space, the set of states (or a few elements of it) can be
enumerated. For experimental purposes, Sviss further supports the computation
of a set’s cardinality, of the corresponding set of symmetry-representative states,
and of the corresponding set of symmetry-equivalent states (i.e. the set’s orbit).

1 On average, efficiency seems to diminish in the order (ii), (i), (iv), (iii).

Sviss: Symbolic Verification of Symmetric Systems 461

Sviss possesses a specialized operator INV, which checks invariant conditions
after each step during symbolic reachability analysis, either forward (from init)
or backward (from error). Upon failure, the tool prints an error trace in terms
of the original program variables.

Sviss uses the CUDD decision diagram package [9] for BDD manipulations.

3 Applications of SVISS

Sviss has been applied successfully to communication and locking protocols and
to systems parameterized by the number of processes, in one fell swoop over a
finite range of the parameter. Quantitative results from these experiments are
available in the cited literature [5,4], which also compares the performance of
Sviss’s algorithms with alternative approaches to exploiting symmetry.

In this paper we share our experiences of applying Sviss to concurrent Linux
device-driver software. A driver is confronted with a set of processes repre-
senting users, the operating system environment and external events. We used
DDVerify [11] to obtain a (coarse) Boolean abstraction of the driver software
with about 10-12 Boolean predicates per driver. All abstract models contain
errors (often spurious), at depths ranging from 100 to 200 instructions.

The histograms in figure 1 show time (top left, log-scale) and space (bottom
left) demands for safety-checking eight abstract models with a fixed number of

2 81 63 4 5 7

N

106

10

106

25

5

t

min
t

min
1900

3

114

19

drv# 3 4 5 6 7 8 9 10

n

no symmetry
with symmetry

700

Fig. 1. Comparison of resource demands without and with symmetry across drivers
for ten processes (left) and across numbers of components for driver # 3 (right)

ten processes, ignoring (light gray) and exploiting (dark gray) symmetry dynam-
ically [5]. We see tremendous memory savings thanks to symmetry, in all cases.2

The same holds for the run-time, with a few exceptions (e.g. drivers # 1, 2, 5);
the exceptions correspond to shallow errors. The deeper the exploration, the
greater the time and space savings of symmetry reduction. A similarly widen-
ing gap can be observed for a growing number n of components (graph on the
2 “Memory” = peak number N of allocated BDD nodes. Experiments conducted on

a 3 GHz IntelTM PentiumTM 4 dual-core processor, 2 GB of main memory.

462 T. Wahl, N. Blanc, and E.A. Emerson

right, only time is shown). After reaching a certain number of allocated BDD
nodes, the cost of computing a transition image far exceeds that of symmetry-
canonizing the set of successor states. The image computations benefit from a
small set of representative states in the case of symmetry.

4 Related Work and Conclusions

Distinguished examples of explicit-state model checkers using symmetry include
Murϕ [7], SMC [8] and Zing [1]. Due to the enumeration, these tools are limited
to systems with a manageable number of reachable states. Present-day (partially)
BDD-based model checkers that offer symmetry reduction include UPPAAL [6],
RULEBASE [2] and RED [10]. To escape the orbit problem, these tools usually
fall back on approximate reduction strategies.

Concurrent software verification is still in its infancy. Symmetry reduction
can help this effort by (i) increasing the depth up to which programs can be
explored in reasonable time, (ii) increasing the number of abstraction-refinement
iterations, each of which entails more predicates and thus more resource needs
than its predecessor, and (iii) increasing the number of processes to which, say, a
device driver can be exposed for verification. A future step is to integrate Sviss
fully into an abstraction-refinement framework based on Boolean programs.

References

1. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker
for concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 484–487. Springer, Heidelberg (2004)

2. Barner, S., Grumberg, O.: Combining symmetry reduction and Under Approxima-
tion for symbolic model checking. In: FMSD 2005 (2005)

3. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. In: FMSD 1996 (1996)

4. Emerson, E.A., Trefler, R.J., Wahl, T.: Reducing Model Checking of the Few to the
One. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 94–113. Springer,
Heidelberg (2006)

5. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg (2005)

6. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.: Adding
symmetry reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, Springer, Heidelberg (2004)

7. Melton, R., Dill, D.L.: Murϕ Annotated Reference Manual, rel. 3.1.,
http://verify.stanford.edu/dill/murphi.html

8. Sistla, A.P., Gyuris, V., Emerson, E.A.: Smc: a symmetry-based model checker for
verification of safety and liveness properties. In: ACM ToSEM 2000 (2000)

9. Somenzi, F.: The CU Decision Diagram Package, release 2.3.1, University of Col-
orado at Boulder, http://vlsi.colorado.edu/∼fabio/CUDD/.

10. Wang, F., Schmidt, K., Yu, F., Huang, G.-D., Wang, B.-Y.: Bdd-based safety-
analysis of concurrent software with pointer data structures using graph automor-
phism symmetry reduction. In: IEEE ToSE 2004 (2004)

11. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current linux device drivers. In: ASE 2007 (2007)

http://verify.stanford.edu/dill/murphi.html
http://vlsi.colorado.edu/~fabio/CUDD/.

RESY: Requirement Synthesis

for Compositional Model Checking�

Bernd Finkbeiner, Hans-Jörg Peter, and Sven Schewe

Universität des Saarlandes
66123 Saarbrücken, Germany

{finkbeiner,peter,schewe}@cs.uni-sb.de

Abstract. The requirement synthesis tool RESY automatically com-
putes environment assumptions for compositional model checking. Given
a process M in a multi-process PROMELA program, an abstraction re-
finement loop computes a coarse equivalence relation on the states of
the environment, collapsing two states if the environment of M can ei-
ther force the occurrence of an error from both states or from neither
state. RESY supports three different operation modes: assumption gener-
ation, compositional model checking, and front-end to the model checker
SPIN. In assumption generation mode, RESY minimizes the size of the
assumption; small assumptions are useful for program documentation
and as certificates for re-verification. In compositional model checking
mode, RESY terminates as soon as the property is proven or disproven,
independently of the size of the assumption. In front-end mode, RESY
terminates when the size of the assumption falls below a specified thresh-
old, and calls SPIN with the simplified verification problem.

1 Requirement Synthesis

RESY is a tool for the automatic synthesis of requirement automata for safety
properties. Requirement automata represent the assumptions an environment
makes on the behavior of a component. Typical applications include program
documentation [1], where the synthesized requirements help the user to under-
stand the interaction of the program components; program certification [2], where
the synthesized requirements simplify the re-verification of the system (possibly
by a different user and a different tool); and compositional model checking [3],
where the requirement is synthesized and used during the same model checking
run, in order to avoid the construction of the full product state space.

RESY implements the requirement synthesis algorithm presented in [4]. Given
a system M‖E, which consists of a process M and its environment E, RESY
computes an equivalence relation on the states of M , collapsing two states if E
can either force the occurrence of an error from both states or from neither state.
� This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 463–466, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

464 B. Finkbeiner, H.-J. Peter, and S. Schewe

The requirement automaton is the quotient of M with respect to the equivalence
relation.

Key advantages of this approach are that the generated requirement automa-
ton is small (RESY’s equivalence is much coarser than language-based equiva-
lences like bisimulation), inexpensive to compute (RESY is often dramatically
faster than L*-based requirement learning), and easy to re-verify (implementa-
tion and requirement are related by a simple homomorphism).

2 Generating Requirements from Abstractions

Computing the equivalence relation requires two traversals of the state space.
In a forward traversal, we identify states of the process M that are all either
reachable or unreachable, depending on the state in the environment E they are
combined with. In a backward traversal, we identify states of M that either all
have or all do not have a path to the error, depending again on the state in E
they are combined with.

To avoid the expansion of the full state graph, RESY considers abstractions of
E. The abstractions are computed in an automatic abstraction refinement loop
that, starting with the trivial abstraction, incrementally increases the size of the
abstraction.

The abstraction E of the environment is a modal transition system that is
defined by an equivalence relation � on E. Replacing E with its abstraction
introduces the possibility that two states of M both lead to an error when com-
posed with E , but only one of them leads to an error when composed with E.
RESY therefore distinguishes situations that may lead to an error (i.e., when
the error is reached in the composition with E but not necessarily in E) from
situations that must lead to an error (both in composition with E and in com-
position with E). Merging two states of M is safe in two cases: (1) if they both
must lead to an error, and (2) if neither of them may lead to an error.

The environment abstraction identifies must and may transitions. In the back-
ward analysis, for example, a transition ([v], a, [v′]) is a must transition if, for
all states w � v, there is a state w′ � v′ such that (w, a, w′) is a transition of E.
Reachability on must transitions is a sufficient criterion for reachability in the
concrete system; unreachability on may transitions is a sufficient criterion for
unreachability in the concrete system.

In each abstraction refinement step, RESY uses a heuristic to pick some may
transition ([v], σ, [v′]) of the forward or backward analysis that is not also a must
transition, and splits the equivalence class [v′] (respectively [v]), distinguishing
states that either have or do not have the incoming (respectively outgoing) tran-
sition in E. By default, RESY picks forward and backward transitions that are
closest to the initial state and the error, respectively.

RESY recognizes situations in which further refinements of the environment
abstraction will no longer lead to a reduction of the requirement automaton. De-
pending on RESY’s operation mode, the refinement loop may also be interrupted
earlier, yielding a sound but not necessarily minimal requirement automaton.

RESY: Requirement Synthesis for Compositional Model Checking 465

3 Operation Modes of RESY

The input to RESY is a PROMELA program that specifies a distributed system
as a parallel composition of modules, and a specification automaton for the safety
property. RESY can be executed in the following modes:

– Assumption generation. In this mode, RESY minimizes the size of the re-
quirement automaton. This mode is most useful if the automaton is to be
used as a certificate.

– Compositional model checking. In this mode, RESY terminates as soon as the
property is proven or disproven, independently of the size of the requirement
automaton generated so far. This mode is most useful if RESY is to be used
as a stand-alone model checker.

– SPIN front-end. In this mode, RESY also terminates if the size of the re-
quirement automaton falls below a user-defined threshold (for example, 10%
of the states of the program M). If the property has not been proven or
disproven at this point, RESY replaces M with the requirement automaton
and calls SPIN [5] with the modified PROMELA program.

4 Results

Table 1 shows the performance of RESY on a range of benchmarks, including
the sliding window protocol (SW), an elevator controller (Elevator), a produc-
tion cell (Prodcell), and an industrial document flow (workflow). For each bench-
mark, the table shows the time and memory usage of the assumption generation
mode and compares the performance of the compositional model checking mode
(CMC) and the SPIN front-end mode using a threshold of 10% (R10%) with the
performance of the model checker SPIN alone (SPIN).

The sliding window protocol is parameterized by the buffer and window sizes.
Property A, B, and C are valid properties (e.g., “the protocol does not invent
messages”). Property D (“the receiver never produces any output”) does not
hold. The elevator benchmark is parameterized by the number of floors. (The
property states that a door is never open when no elevator is present.) In the
production cell, two concurrent programs control a plant. The benchmark is
parameterized by the number of components of the plant (which may include
robot arms, a press, lifts, and grippers). The property requires that there is no
arm within the press when it starts working. The workflow benchmark models
an industrial document flow. It is parameterized by the number of participants.

The results in Table 1 show that compositional model checking with RESY
often improves over monolithic model checking with SPIN by more than an
order of magnitude. Computing the minimal requirement automaton typically
does not add significant cost. The minimal requirement automaton is always
much smaller than the original process and often small enough to be presented
to the user.

Availability. RESY and the benchmarks used in this paper are available online
at http://react.cs.uni-sb.de/resy.

http://react.cs.uni-sb.de/resy

466 B. Finkbeiner, H.-J. Peter, and S. Schewe

Table 1. Experimental results of RESY on a range of benchmarks. The table shows
the performance of the assumption generation mode, and compares the performance of
the verification modes compositional model checking (CMC) and SPIN front-end with
a threshold of 10% (R10%) to the performance of SPIN. The time (t) and memory
usage (m) is given in milliseconds and megabytes, respectively; the sizes of the pro-
cess M , environment E, and requirement automaton A are given as the number of
states. All benchmarks were measured on an Intel Pentium M processor 2.13 GHz.

model assumption verification
size generation CMC R10% SPIN

M E t m A t m t m t m

SW 2/1/A 48 26 86 0.4 3 86 0.3 86 0.4 1149 2.7
SW 3/1/A 256 120 2880 2.6 6 2877 2.4 3960 2.7 9017 3.9
SW 3/2/A 256 120 3882 2.7 5 3872 2.5 5366 2.8 9657 4.1
SW 2/1/B 48 26 86 0.4 28 49 0.3 86 0.4 1148 2.7
SW 3/1/B 256 120 3818 2.9 107 1722 1.9 3818 2.9 9050 3.9
SW 3/2/B 256 120 4979 3.0 209 598 1.7 4979 3.0 9613 4.1
SW 2/1/C 48 26 44 0.3 5 53 0.3 44 0.3 1148 2.7
SW 3/1/C 256 120 985 2.2 9 985 2.8 1958 2.7 9069 4.0
SW 3/2/C 256 120 1524 2.2 9 1523 3.0 2978 2.8 9640 4.1
SW 2/1/D 48 26 22 0.4 1 22 0.2 22 0.4 1148 2.7
SW 3/1/D 256 120 84 2.3 1 84 1.4 84 2.3 8890 3.6
SW 3/2/D 256 120 89 2.4 1 89 1.5 89 2.4 9406 3.7

Elevator 2 48 18 68 0.2 11 61 0.1 68 0.2 636 2.6
Elevator 3 192 30 414 1.0 15 407 0.5 414 1.0 860 2.6
Elevator 4 768 42 2633 4.9 22 2615 2.1 5113 4.9 1152 2.6

Prodcell 2 12 12 23 0.1 5 23 0.1 23 0.1 519 2.6
Prodcell 3 24 24 73 0.2 6 65 0.2 73 0.2 681 2.6
Prodcell 4 40 24 111 0.4 6 118 0.3 802 2.6 803 2.6
Prodcell 5 40 40 296 0.6 6 296 0.5 296 0.6 897 2.6
Prodcell 6 40 48 486 0.7 6 486 0.6 486 0.7 973 2.6
Prodcell 7 72 48 902 1.1 6 906 0.8 1831 2.6 1158 2.7

Workflow 2 64 11 35 0.2 4 31 0.1 35 0.2 526 2.6
Workflow 3 512 16 441 2.5 8 50 0.5 441 2.5 619 2.6
Workflow 4 4096 25 20294 62.9 16 409 4.1 20294 62.9 849 2.7

References

1. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proc. ASE, pp. 3–12. IEEE Computer Society,
Los Alamitos (2002)

2. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

3. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning
assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 548–562. Springer, Heidelberg (2005)

4. Finkbeiner, B., Schewe, S., Brill, M.: Automatic synthesis of assumptions for com-
positional model checking. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V.
(eds.) FORTE 2006. LNCS, vol. 4229, pp. 143–158. Springer, Heidelberg (2006)

5. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

Scoot: A Tool for the Analysis of

SystemC Models�

Nicolas Blanc1, Daniel Kroening2, and Natasha Sharygina3

1 ETH Zurich, Switzerland
2 Oxford University, Computing Laboratory, UK

3 University of Lugano, Switzerland

Abstract. SystemC is a system-level modeling language and offers sup-
port for concurrency and arbitrary-width bit-vector arithmetic. The ex-
isting static analyzers for SystemC consider only small fragments of the
language. We present Scoot, a model extractor for SystemC based on
a C++ frontend. The models generated by Scoot can serve multiple
purposes, ranging from verification and simulation to synthesis. Exem-
plarily, we report results indicating that our tool can be used to improve
the performance of dynamic execution up to a factor of five.

1 Introduction

SystemC is a system-level modeling language implemented as a C++ library. It
offers support for concurrency and arbitrary-width bit-vector arithmetic. Along
with an event-driven simulation environment, the library provides a notion of
timing, which is well-suited for modeling circuits. SystemC permits describing a
system at several levels of abstraction, starting at a high-level functional descrip-
tion, down to synthesizable gate-level. Due to the complexity of C++, existing
static analyzers for SystemC consider only small fragments of the language, es-
sentially searching for specific key-words. We present Scoot, a model extractor
for SystemC . The tool sypports a wide range of language constructs, as it based
on our C++ front-end. The models generated by Scoot can serve several pur-
poses, ranging from verification and simulation to synthesis. The tool is tightly
integrated with verification back-ends for Bounded Model Checking (CBMC) [4]
and SAT-based predicate abstraction (SATABS) [2]. Results on applying model
checking to models generated by Scoot have been reported before [5].

As an example of the utility of Scoot beyond formal verification, we re-
port results indicating that our tool can be used to improve the performance of
dynamic execution up to five times.

2 Overview of Scoot

A SystemC program consists of a set of modules. Modules may declare pro-
cesses, ports, internal data, channels and instances of other modules. Processes
� Supported by ETH research grant TH-21/05-1 and Foundation Tasso, Switzerland.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 467–470, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

468 N. Blanc, D. Kroening, and N. Sharygina

Tool
Verification

Simplified version of

files.

#include <systemc.h>

SystemC Modules

systemc.h

User−provided C++ files

g++

Formal Model

Simulator
SystemC

Static Scheduling

Pointer Analysis

SystemC Analysis

Typechecker

Scoot

CFG

Code Re−synthesis

the SystemC header Flat C++ Model

Fig. 1. Overview of Scoot

implement the functionality of the module, and are sensitive to events. As in Ver-
ilog or VHDL, ports are objects through which the module communicates with
other modules. Although variables are shared between processes, classic inter-
process communication is achieved through predefined channels such as signals
and FIFOs.

Scoot uses a C++ front-end to translate the SystemC source files into a
control flow graph. The nodes of the graph are annotated with assignments
and guards (implemented in the typechecking and CFG-conversion phases in
Figure 1). Subsequently, static analysis techniques are used to determine the
following information, which is specific to SystemC :

– The module hierarchy,
– the sensitivity list of the processes, and
– the port bindings.

The SystemC library makes heavy use of virtual functions and dynamic data
structures, which are not easily analyzed by static analysis techniques. Scoot
abstracts implementation details of the library by using simplified header files that
declare only relevant aspects of the API and omit the actual implementation.

3 Static Scheduling for Dynamic Verification

Technically, SystemC modules are plain C++ classes that can be compiled and
linked to a runtime scheduler, providing thus a way to simulate the behavior of
the system. The model hierarchy is discovered at run-time only and therefore,
the compiler is missing opportunities to take advantage of this knowledge. To
illustrate the utility of the model generated by Scoot, we re-synthesize more
efficient C++ code from the model.

SystemC has a co-operative multitasking semantics, meaning that the exe-
cution of processes is serialized by explicit calls to a wait() method and that
threads are not preempted. The scheduler tracks simulation time and delta cy-
cles. The simulation time corresponds to a positive integer value (the clock),

Scoot: A Tool for the Analysis of SystemC Models 469

while delta cycles are used to stabilize the state of the system. A delta cycle
consists of three phases: evaluate, update, and notify.

1. The evaluation phase selects, from the set of runnable processes, a process
and triggers or resumes its execution. The process runs immediately up to
the point where it returns or invokes the wait function. The evaluation phase
iterates until the set of runnable processes is empty. The order in which
processes are selected from the set of runnable processes is implementation-
defined.

2. In order to simulate synchronous executions, processes can delay change-
of-state effects by scheduling update requests. After the evaluation phase
terminates, the kernel executes any pending update request. This is called
the update phase. Typically, signal-assignments are implemented using the
update mechanism. Therefore, signals keep their value for a whole evaluation
phase.

3. Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such process
instances to the set of runnable processes.

Delta cycles are executed until the set of runnable processes is empty. Subse-
quently, the simulation time is increased, and processes waiting for the current
time-event are notified.

Formally, let S represent the set of states of a SystemC model. We write Up
to denote the function from 2S to 2S that updates a set of states as described by
the update phase. Similarly, let Ev : 2S → 2S denote the evaluation phase. The
delta phase performs a fix-point computation defined by δ(S) = δ ◦ Up ◦ Ev(S).
Finally, we concisely express the semantics of the scheduler with the function
Sim(t) = δ ◦ Uptime ◦ Sim(t− 1) that computes the set of final states at a time t.
The function Uptime updates the clock.

The standard SystemC scheduler contains several sources of inefficiency: first,
the scheduler stores data in containers that allocate memory at run-time, and sec-
ond, it triggers processes using function pointers. Scoot generates a completely
static scheduler by fixing the evaluation order of the processes and resolving dy-
namic calls. Finally, processes are sequentialized using a similar technique used
by KISS [7] that implements context switches with fast goto statements.

Code Re-synthesis. The intermediate representation used by Scoot was orig-
inally designed for model checking, and uses bit-vector arithmetic expressions.
After static scheduling, Scoot translates the intermediate representation back
to a flat C++ program that does not rely on the SystemC library anymore.
The generated model is subsequently passed to g++, which results in a faster
simulator.

The following table quantifies the advantages of static scheduling compared to
dynamic scheduling on a 3 GHz Intel Pentium 4 processor. We use an AES en-
cryption/decryption core as benchmark. For each module, we report the number
of processes, the number of signals, the execution time with dynamic scheduling,
the execution time using Scoot, and the speedup obtained.

470 N. Blanc, D. Kroening, and N. Sharygina

Module # Proc. # Sig. Dyn. Sched. [s] Stat. Sched [s] Speedup

Byte Mixcolum 2 7 22.94 4.33 5.3

Word Mixcolum 7 16 65.82 18.01 3.65

Mixcolum 11 30 75.7 28.6 2.65

Subbytes 15 30 49.73 9.84 5.05

128-bits AES 32 97 319.2 99.73 3.2

192-bits AES 32 99 344.21 105.45 3.26

4 Related Work and Conclusion

Due to the complexity of the C++ language, the development of any tool for
SystemC is a difficult task. Hardware synthesis tools for SystemC only consider a
small subset of the C++ syntax [3,1]. In [8], Savoiu et al. propose to use Petri-net
reductions for SystemC , and report a speedup of 1.5 for an AES core. In [6], Pérez
et al. present a static-scheduling technique restricted to method processes. Our
sequentialization technique extends the benefits of static scheduling to general
threads by eliminating the overhead caused by context switches.

We provide a tool that extracts formal models from SystemC code. The tool
supports a broad subset of the language, as it is built on top of our C++-front-
end. The main applications are formal analysis, e.g., by model checking, and
synthesis. Exemplarily, we show that formal models have value even in dynamic
verification: we show a significant improvement in simulation performance by
using a statically scheduled model.

We are continuing to improve the SystemC support of our tool. It currently
handles the most commonly used features of the SystemC API. We are also
investigating additional formal techniques to further enhance static scheduling.

References

1. Castillo, J., Huerta, P., Martinez, J.I.: An open-source tool for SystemC to Verilog
automatic translation. In: SPL, vol. 37, pp. 53–58 (2007)

2. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

3. Kostaras, N., Vergos, H.T.: SyCE: An integrated environment for system design in
SystemC. In: RSP, pp. 258–260. IEEE, Los Alamitos (2005)

4. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: DAC, pp. 368–371. ACM, New York (2003)

5. Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hard-
ware/software partitioning. In: MEMOCODE, pp. 101–110 (2005)

6. Pérez, D.G., Mouchard, G., Temam, O.: A new optimized implemention of the Sys-
temC engine using acyclic scheduling. In: DATE, pp. 552–557. IEEE, Los Alamitos
(2004)

7. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI, pp. 14–24. ACM,
New York (2004)

8. Savoiu, N., Sandeep, S., Rajesh, G.: Improving SystemC simulation through Petri
net reductions. In: MEMOCODE, pp. 131–140 (2005)

Trusted Source Translation of a

Total Function Language

Guodong Li and Konrad Slind

School of Computing, University of Utah
{ligd, slind}@cs.utah.edu

Abstract. We present a trusted source translator that transforms to-
tal functions defined in the specification language of the HOL theorem
prover to simple intermediate code. This translator eliminates polymor-
phism by code specification, removes higher-order functions through clo-
sure conversion, interprets pattern matching as conditional expressions,
etc. The target intermediate language can be further translated by proof
to a simple imperative language. Each transformation is proven to be
correct automatically. The formalization, implementation and mechani-
cal verification of all transformations are done in HOL-4.

1 Introduction

Giving realistic programming languages such as C and Java correct semantics
is difficult. It is more difficult to make such semantics tractable so that we
can reason about non-trivial programs in a formal setting. Some widely used
functional languages have been given a formal semantics, e.g. Scheme has a
denotational semantics [19] and ML has a formal operational semantics [14].
However, these semantics do not as yet provide a practical basis for formal
reasoning about programs in the languages, although they are extremely valuable
as reference documents and for proving meta-theorems (like type preservation).

In order to allow formal reasoning to the maximum extent, we can program
applications directly in logic, and then compile the logic to realistic platforms for
execution. Specifically, we can specify both the algorithms and the mathematics
needed for their verification in higher order logic, and then compile the verified
algorithms to low level platforms which are also modeled in the same logic.

The specification language we use is the Total Functional Language (TFL) [20],
which is a pure, total functional programming layer on top of higher order logic
and implemented in both the HOL-4 [17] and Isabelle [16] systems. TFL enables
abstract algorithms to be specified in a mixture of mathematics and programming
idioms and then reasoned about using a theorem prover. Roughly speaking, this
language comprises ML-style pure terminating functional programs, i.e., those
(computable) functions that can be expressed by well-founded recursion in higher
order logic. Features like type inference, polymorphism, higher order functions and
patternmatchingmake it a comfortable setting inwhich to program.This language
can express a very wide range of algorithms. The trade-off is that the compilation
of logic specifications written in this language is fairly complicated.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 471–485, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

472 G. Li and K. Slind

We have developed a software compiler [11,12], which produces assembly code,
and a hardware compiler [21], which synthesizes Verilog netlists, for a small sub-
set of TFL. This subset, named HOL-, is a simple monomorphically-typed func-
tional language handling first order equations where variables range over tuples
of booleans and 32-bit words. The software compiler performs normalization, in-
line expansion, nested function hoisting, register allocation and code generation
to convert HOL- programs into assembly. Many transformations are implemented
as rewrite rules [12]. The correctness of each transformation is proven on the fly:
after a program is translated, a theorem is given as by-product that states the
equivalence of the transformed code and this program.

This paper presents an extension of these compilers by strengthening the
front end translation to support polymorphism, higher order functions, alge-
braic datatypes, pattern matching and other advanced features in TFL. As far
as we know, it is the first verified translator that compiles logic specifications
coded in such advanced functional languages as TFL. We also present an ap-
proach to translate HOL- into a simple imperative language. The mechanical
correctness proof is performed deductively by synthesizing functions from im-
perative code and showing that these functions are equivalent to the original
HOL- functions. This enables safe source translations from ML-like functional
languages to imperative languages.

A TFL program is converted into an equivalent HOL- program via a sequence
of transformations, the correctness of each of which is proved automatically in the
logic system. Although standard compilation techniques developed for functional
programming may be applied here, new challenges are posed due to the fact that
(i) the source language is not visible in the logic — it is the logic itself that is
taken as the source language; (ii) TFL programs have a set-theoretic semantics
rather than an operational or denotational semantics; (iii) all transformations
must be formalized and verified in the logic that is compiled. Since TFL and HOL-

programs are not defined as datatypes and do not have an evaluation semantics,
widely-used techniques that base on structural induction on syntax datatypes
and rule-induction over evaluation relations cannot be applied here.

The main contribution of our work is that we construct and verify compilations
for logic specifications written in the term language of a widely-used theorem
prover. Users can model an application directly in HOL and prove properties
about it, then our compilers translate it to low level code with a certificate
(proof) showing that this code correctly implements the application. As a con-
sequence, the execution of this code will always guarantee the properties proven
on the original application.

2 TFL and HOL-

Both TFL and HOL- are subsets of the higher order logic built in HOL, thus
their syntax and the semantics have already been defined. Programs written
in them are simply mathematical functions defined in the HOL logic. It is this
feature that enables us to use standard mathematics to prove properties of these

Trusted Source Translation of a Total Function Language 473

programs directly in the logic system. This supports much flexibility and allows
the meaning of a program to be transparent. In particular, two programs are
equivalent when the mathematical functions represented by them are equal.

One immediate advantage of taking TFL as the source language is that many
front end tasks are already provided by the HOL-4 system: lexical analysis, pars-
ing, type inference, overloading resolution, function definition, and termination
proof (needed to admit recursive functions, since HOL is a logic of total func-
tions). The result of all this activity is a valid HOL function definition, embodied
in a possibly recursive equation. From this starting point, a sequence of proof-
based transformations pass through intermediate forms, ending in HOL-.

TFL is a polymorphic, higher order, pure and terminating functional lan-
guage supporting algebraic datatypes and pattern matching. Its syntax is shown
in Figure 1, where [term]separator means a sequence of term’s separated by the
separator. HOL- is a simple typed functional language handling first order equa-
tions over nested tuples of basic types. Clearly HOL- is a subset of TFL.

τ ::= T | t | τ D primitive type, type variable and algebraic type
| τ # τ | τ → τ tuple type and arrow(function) type

atc ::= id | id of [τ]⇒ algebraic datatype clause
at ::= datatype id = [atc]| algebraic datatype

| [at]; mutually recursive datatype

pt ::= i | v | c
−→
pt pattern

e ::= i : T | v : τ constant and variable
| −→e tuple, i.e.[e],
| p e primitive application
| c e constructor application
| fid function identifier
| e e composite application
| if e then e else e conditional
| case e of [(c e) � e]| case splitting
| let v = e in e let binding
| [λv]. e anonymous function

fdecl ::= fid ([pt],) = e pattern matching clause
| [fdecl]∧ function declaration
| v = e top level variable declaration

Fig. 1. The syntax of the total function language TFL

The translator performs transformations that are familiar from existing func-
tional language compilers except that it does so by proof for the term language
of HOL. TFL’s high-level features such as polymorphism, higher-order functions,
pattern matching and composite expressions need to be expressed in terms of
HOL-’s much lower-level structures:

– The translator removes polymorphism from TFL programs by making dupli-
cations of polymorphic datatype declarations and functions for each distinct
combination of instantiating types.

– The translator names intermediate computation results and makes the
evaluation order explicit by performing a continuation-passing-style (CPS)

474 G. Li and K. Slind

transformation. TFL expressions and functions are simplified to forms suit-
able for subsequent transformations.

– The translator applies defunctionalization to remove higher-order functions
by creating algebraic datatypes to represent function closures and type based
dispatch functions to direct the control to top level function definitions.

– The translator converts pattern matching first into nested case expressions,
then into explicit conditional expressions.

All intermediate forms of a program are still mathematical functions defined
in HOL. The correctness proof of a transformation of a source program p pro-
ceeds, in a translation validation [18] style, by showing the generated program
q computes the same mathematical function as p. Note that the built-in type
checker in HOL will type check both p and q to ensure their type safety. Two
techniques are used to generate correctness proofs:

1. The transformation is implemented as a rewrite rule based on a theorem
that is proven once and for all. In many cases we just need to instantiate
this theorem by the input program. Examples include the normalization.

2. A per-run correctness check is performed to show that the transformation
ensures semantics preserving on the given program. In general, we convert
the source program p into p′ using some algorithm, and then compare p
and p′ w.r.t their semantics. Examples include the monomorphisation and
defunctionalization.

3 Trusted Transformation

In this section we describe algorithms of a series of syntax directed transforma-
tions; we also show how to prove the correctness of them.

3.1 Monomorphisation

This transformation eliminates polymorphism and produces a simply-typed in-
termediate form that enables good data representations. The basic idea is to
duplicate a datatype declaration at each type used and a function declaration
at each type used, resulting in multiple monomorphic clones of this datatype
and function. This step paves the way for subsequent conversions such as the
type based defunctionalization. Although this seems to lead to code explosion in
theory, it is manageable in practice (MLton, a fancy ML compiler, uses similar
techniques and reports maximum increase of 30% in code size).

The first step is to build an instantiation map that enumerates for each
datatype and function declaration the full set of instantiations for each poly-
morphic type. A TFL program will be type checked by the HOL system and be
annotated with polymorphic type identifiers such as ′a,′ b, . . . when it is defined.
In particular, type inference has been done for (mutually) recursive functions.
The remaining task is to instantiate the generic types of a function with the
actual types of arguments at its call sites.

Trusted Source Translation of a Total Function Language 475

The notation used in this section is as follows. A substitution rule R = (t ↪→
{T }) maps an abstract type t to a set of its type instantiations; an instantiation
set S = {R} is a set of substitution rules; and an instantiation map M = {z ↪→
S} maps a datatype or a function z to its instantiation set S. We write M.y for
the value at field y in the map M ; if y /∈ Dom M then M.y returns an empty set.
The union of two substitution sets S1 ∪s S2 is {t ↪→ S1.t ∪ S2.t | t ∈ Dom S1 ∪
Dom S2}. We write

⋃
s {S} for the combined union of a set of substitution

rules. The union of two instantiation maps M1
⋃

m M2 is defined similarly. The
composition of two instantiation sets S1 and S2, denoted as S1 or S2, is {t ↪→⋃

{S2.t | t ∈ Dom S1} | z ∈ Dom S1}. And, the composition of an instantiation
map M and a set S is defined as M om S = {z ↪→ M.z or S | z ∈ Dom M}.

The instantiation information of each occurrence of a polymorphic function
and datatype is coerced into an instantiation map during a syntax directed
bottom-up traversal. The main conversion rules Γ and Δ shown in Fig. 2 build
the instantiation map by investigating types and expressions respectively. The
rule for a single variable/function declaration is trivial and omitted here: we just
need to walk over the right hand side of its definition. If a top level function
f is called in the body of another function top level g, then g must be visited
first to generate an instantiation map Mg, and then f is visited to generate Mf ;
finally these two maps are combined to a new one, i.e. ((Mf ◦ Mg.f) ∪m Mg).
The clauses in mutually recursive functions can be visited in an arbitrary order.

Γ [[τ]] = {}, for τ ∈ {T, t}
Γ [[τ D]] = {D ↪→ match tp (at tp D) τ}
Γ [[τ1 opt τ2]] = Γ [[τ1]] ∪m Γ [[τ2]], for opt ∈ {#,→}
Δ[[i]] = {}
Δ[[v : τ]] = Γ [[τ]]
Δ[[[e],]] =

S
m
{Γ [[e]]}

Δ[[p e]] = Δ[[e]]
Δ[[(c : τ) e]] = {con2tp c ↪→ match tp (con2tp c) τ}

∪m Γ [[τ]] ∪m Δ[[e]]
Δ[[(f : τ) e]] = {fid ↪→ match tp fid τ} ∪m Γ [[τ]] ∪m Δ[[e]]
Δ[[if e1 then e2 else e3]] = Δ[[e1]] ∪m Δ[[e2]] ∪m Δ[[e3]]
Δ[[case e1 of [((c : τ) e2) � e3]|]] = Δ[[e1]] ∪m

S
m
{{con2tp c ↪→ match tp (con2tp c) τ}

∪m Δ[[e2]] ∪m Δ[[e3]]}
Δ[[let v = e1 in e2]] = (Δ[[e1]] om Δ[[e2]].v) ∪m Δ[[e2]]
Δ[[[λ v.]∗e]] = Δ[[e]]

Fig. 2. Build instantiation maps for polymorphic components

This algorithm makes use of a couple of auxiliary functions provided by the HOL

system. Function con2tp c maps a constructor c to the datatype to which it be-
longs; at tp D returns σ if there is a datatype definition datatype σ = D of . . .;
when x is either a function name or a constructor, match tp x τ matches the orig-
inal type of x (i.e. the type when x is defined) with τ and returns a substitution
set.

476 G. Li and K. Slind

After the final instantiation map is obtained, we duplicate a polymorphic
datatype/function for all combinations of its type instantiations, and replace
each call of the polymorphic function with the call to its monomorphic clone with
respect to the type. The automatic correctness proof for the transformation is
trivial: each duplication of a polymorphic function computes the same function
on the arguments of the instantiating types.

Now we give a simple example to illustrate the transformation.

datatype σ = C of ′a# ′b f (x :′ a) = x
g (x :′ c, y :′ d) = let (h :′ d → (′c # ′d) σ) = λz :′ d.

(C : (′c # ′d) → (′c # ′d) σ) ((f :′ c →′ c) x, (f :′ d →′ d) z) in h y
j = (g (1 : num, ⊥ : bool), g (⊥ : bool, � : bool))

The algorithm builds the following instantiation maps:

Investigate j : Mj = {g ↪→ {′c ↪→ {bool, num},′ d ↪→ {bool}}}
Investigate g : Mg = {f ↪→ {′a ↪→ {′c,′ d}}, σ ↪→ {′a ↪→ {′c},′ b ↪→ {′d}}}
Compose Mg and Mj : Mg◦j = Mg ◦ Mj .g =
{ f ↪→ {′a ↪→ {bool, num}}, σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }

Union Mg and Mg◦j : M{g,j} = Mg ∪m Mj =
{ f ↪→ {′a ↪→ {bool, num}}, g ↪→ {′c ↪→ {bool, num}, ′d ↪→ {bool}},

σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }
Investigate f : no changes, M{f,g,j} = M{g,j}

Then for datatype σ, function f and function g, a monomorphic clone is created
for each combination of instantiating types. Calls to the original functions are
replaced with the appropriate copies of the right type. For example, function j
is converted to j = (gnum#bool (1, ⊥), gbool#bool (⊥, �)), where gnum#bool and
gbool#bool are the two clones of g. The correctness of j’s conversion is proved
based on the theorems showing that g’s copies compute the same function as g
with respect to the instantiating types: �thm gnum#bool = g ∧ gbool#bool = g.

3.2 Normalization

This transformation bridges the gap between the form of expressions and control
flow structures in TFL and HOL-. A TFL program is converted to a simpler
form such that: (1) the arguments to function and constructor applications are
atoms like variables or constants; (2) discriminators in case expressions are also
simple expressions; (3) compound expressions nested in an expression are lifted
to make new ‘let’ bindings; (4) curried functions are uncurried to a sequence of
simple functions that take a single tupled argument. Primitive expressions such
as arithmetic and logical expressions on atoms need not to be converted.

A continuation-passing-style (CPS) transformation is performed to normalize
TFL programs. The essence is to sequentialize the computation of TFL expres-
sions by introducing variables for intermediate results, and the control flow is
pinned down into a sequence of elementary steps. It extends the one in our soft-
ware compiler [12] by addressing higher level structures specific to TFL. In the
following rules, C e k denotes the application of the continuation k to an expres-
sion e, and its value is equal to k e. After the conversion, we rewrite with the

Trusted Source Translation of a Total Function Language 477

theorem C e k = let x = e in k x to obtain ‘let‘-based normal forms.

C [[e]] k = k e, when e is a primitive expression
C [[λ−→v .e]] = λ−→v . λk. C [[e]] k
C [[(e1, e2)]] k = C [[e1]] (λx.C [[e2]] (λy. k (x, y)))
C [[op e]] k = C [[e]] (λx. k (op x)) when op ∈ {p, c, fid}
C [[(e1 e2)]] k = C [[e1]] (λx.C [[e2]] (λy. k (x y)))
C [[let v = e1 in e2]] k = C [[e1]] (λx. C [[e2]] (λy. k y))
C [[if e1 then e2 else e3]] k =

C [[e1]] (λx. k (if x then C [[e2]] (λx.x) else C [[e3]] (λx.x)))
C [[case e1 of c e21 � e31 | c e22 � e32 | . . .]] k =

C [[e1]] (λx. (C [[e21]] (λy1. C [[e22]] (λy2. . . . ,
k (case x of c y1 � C [[e31]] (λx.x) | c y2 � C [[e32]] (λx.x) | . . .)))))

The following example illustrates this transformation, where c1 and c2 are the
two constructors of a datatype.

Original: f (x, y, z) = case x − y − z of c1 a ⇒ f(x − 1, a, y) | c2 b ⇒ b + y
Converted: f (x, y, z) =

let v1 = x − y − z in
case v1 of c1 a ⇒ let v2 = x − 1 in f(v2, a, y) | c2 b ⇒ b + y

3.3 Defunctionalization

In this section we convert higher-order functions into equivalent first-order func-
tions and hoist nested functions to the top level through a type based closure
conversion. After the conversion, no nested functions exist; and function call is
made by dispatching on the closure tag followed by a top-level call.

Function closures are represented as algebraic data types in a way that, for
each function definition, a constructor taking the free variables of this function
is created. For each arrow type we create a dispatch function, which converts the
definition of a function of this arrow type into a closure constructor application.
A nested function is hoisted to the top level with its free variables to be passed as
extra arguments. After that, the calling to the original function is replaced by a
calling to the relevant dispatch function passing a closure containing the values of
this function’s free variables. The dispatch function examines the closure tag and
passes control to the appropriate hoisted function. Thus, higher order operations
on functions are replaced by equivalent operations on first order closure values.

As an optimization, we first run a pass to identify all ‘targeted’ functions
which appear in the arguments or outputs of other functions and record them in
a side effect variable Targeted. Non-targeted functions need not to be closure
converted, and calls to them are made as usual. During this pass we also find out
the functions to be defined at the top level and record them in Hoisted. Finally
Hoisted contains all top level functions and nested function to be hoisted.

The conversion works on simple typed functions obtained by monomorphisa-
tion. We create a closure datatype and a dispatch function for each of the arrow
types that targeted functions may have. A function definition is replaced by
a binding to an application of the corresponding closure constructor to this
function’s free variables. Suppose the set of targeted functions of type τ is

478 G. Li and K. Slind

{fi xi = ei | i = 1, 2, . . . }, then the following algebraic datatype and dispatch
function are created, where tp of and fv return the type and free variables of a
term respectively (and the type builder Γ will be described below):

closτ = consτ
f1 of Γ [[tp of (fv f1)]] | consτ

f2 of Γ [[tp of (fv f2)]] | . . .
(dispatchτ (consτ

f1
, x1, y1) = (f1 : Γ [[τ]]) (x1, y1)) ∧

(dispatchτ (consτ
f2 , x2, y2) = (f2 : Γ [[τ]]) (x2, y2)) ∧

. . .

As shown in Fig. 3, the main translation algorithm inspects the references and
applications of targeted functions and replaces them with the corresponding
closures and dispatch functions. Function Γ returns the new types of variables.
When walking over expressions, Δ replaces calls to unknown functions (i.e. those
not presented in Hoisted) with calls to the appropriate dispatch function, and
calls to known functions with calls to hoisted functions. In this case the val-
ues of free variables are passed as extra arguments. Function references are also
replaced with appropriate closures. Finally Redefn contains all converted func-
tions, which will be renamed and redefined in HOL at the top level.

Γ [[v : T]] = T
Γ [[v : τ1 → τ2]] = if v ∈ Targeted then closτ1→τ2 else τ1 → τ2

Γ [[v : τ D]] = Γ [[τ]] D
Γ [[[v],]] = [Γ [[v]]],
Δ[[v : τ]] = if v ∈ Targeted then consτ

v else v : closτ

Δ[[[e],]] = [Δ[[e]]],
Δ[[p e]] = p (Δ[[e]])
Δ[[c e]] = c (Δ[[e]])
Δ[[(f : τ) e]] = if f ∈ Hoisted then (new name of f) (Δ[[e]], fv f)

else dispatchτ (f : closτ , Δ[[e]])
Δ[[if e1 then e2 else e3]] = if Δ[[e1]] then Δ[[e2]] else Δ[[e3]]
Δ[[case e1 of [c e2 � e3]|]] = case Δ[[e1]] of [(Δ[[c e2]]) � Δ[[e3]]]|
Δ[[let f = λ−→v . e1 in e2]] = (Φ[[f−→v = e1]] ; Δ[[e2]])
Δ[[let v = e1 in e2]] = let v = Δ[[e1]] in Δ[[e2]] when e1 is not a λ expression
Φ[[fid (−→v : τ) = e]] =

let e′ = Δ[[e]] in
Redefn := Redefn + (fid ↪→ Redefn.fid ∪ {(fid : τ → Γ [[tp of e′]]) −→v = e′}

Φ[[[fdecl]∧]] = [Φ[[fdecl]]];

Fig. 3. Remove higher order functions through closure conversion

Now we show the technique to prove the equivalence of a source function
f to its converted form f ′. We say that a variable v′ : τ ′ corresponds v : τ
iff: (1) v = v′ if both τ and τ ′ are closure type or neither of them is. (2)
∀x∀x′. dispatchτ ′(v′, x′) = v x if v′ is a closure type and v is an arrow type,
and x′ corresponds to x; or vice versa. Then f ′ is equivalent to f iff they corre-
spond to each other. The proof process is simple, as it suffices to simply rewrite
with the old and new definitions of the functions.

Trusted Source Translation of a Total Function Language 479

As an example, the following higher order program

f (x : num) = x ∗ 2 < x + 10
g (s : num → bool, x : num) =

let h1 = λy. y + x in if s x then h1 else let h2 = λy. h1 y ∗ x in h2

k (x : num) = if x = 0 then 1 else g (f, x) (k (x − 1))

is closure converted to

datatype closτ1 = consτ1
f

datatype closτ2 = consτ2
h1

of num | consτ2
h2

of num

dispatchτ1 (consτ1
f : closτ1 , x : num) = f ′ x ∧ f ′ x = x ∗ 2 < x + 10

dispatchτ2 (consτ2
h1

y : closτ2 , x : num) = h′
1 (y, x)) ∧

dispatchτ2 (consτ2
h2

y : closτ2 , x : num) = h′
2 (y, x)) ∧

h′
1 (y, x) = y + x ∧ h′

2 (y, x) = h′
1(y, x) ∗ x

g′ (s : closτ1 , x : num) = if dispatchτ1(s, x) then consτ2
h1

x else consτ2
h2

x

k′ (x : num) = if x = 0 then 1 else g (consτ1
f , x), (k′ (x − 1))

where τ1 and τ2 stand for arrow types num → bool and num → num respectively

And the following theorems (which are proved automatically) justify the cor-
rectness of this conversion:

�thm f = f ′ �thm k′ = k
�thm (∀x. dispatchτ1 (s′, x) = s x) ⇒ ∀x∀y. dispatchτ2 (g′ (s′, x), y) = (g (s, x)) y

3.4 Pattern Matching

This conversion to nested case expressions is based on Augustsson’s original
work [1], which was adapted by Slind [20] for function description in HOL. A
pre-processing pass is first performed to deal with incomplete and overlapping
patterns: incomplete patterns are made complete by adding rows for all missing
constructors; and overlapping patterns are handled by replacing a value with
possible constructors. Note that this approach may make the pattern exponen-
tially larger because no heuristics are used to choose the “best” order in which
subterms of any term are to be examined.

The translation rule Δ shown below converts patterns [pati � rhsi]| into
a nested case expression. It takes two arguments: a stack of variables that are
yet to be matched, and a matrix whose rows correspond to the clauses in the
pattern. All rows are of equal length, and the elements in a column should have
the same type.

Conversion Δ proceeds from left to right, column by column. At each step
the first column is examined. If each element in this column is a variable, then
the head variable z in the stack is substituted for the corresponding vi for the
right hand side of each clause. If each element in the column is the application of
a constructor for type τ , and τ contains constructor C1, . . . , Cn, then the rows
are partitioned into n groups of size k1, . . . , kn according to the constructors.
After partitioning, a row (C(p̄) :: pats; rhs) has its lead constructor discarded,
resulting in a row expression (p̄ @ pats; rhs). Here :: is the list constructor, and
@ appends the second list to the first one. If constructor Ci has type τ1 →

480 G. Li and K. Slind

· · · → τj → τ , then a set νi of new variables v1, . . . , vj are pushed onto the stack.
Finally the results for all groups are combined into a case expression on the head
of the stack.

Δ

⎛

⎜
⎜
⎝

z :: stack

v1 :: pats1 � rhs1,
. . .
vn :: patsn � rhsn

⎞

⎟
⎟
⎠ = Δ

⎛

⎜
⎜
⎝

stack

pats1 � rhs1[z ← v1],
. . .
patsn � rhsn[z ← v2]

⎞

⎟
⎟
⎠ , and

Δ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z :: stack

C1 p11 :: pats11 � rhs11,
. . .
Cn p1k1 :: pats1k1 � rhs1k1

Cn pn1 :: patsn1 � rhs11,
. . .
Cn p1kn :: patsnkn � rhsnkn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= tp case (λν1.M1) . . . (λνn.Mn) z

where Mi = Δ

⎛

⎜
⎜
⎝

ν1 :: stack

pi1 @ patsk1 � rhsk1,
. . .
piki @ patsiki � rhsiki

⎞

⎟
⎟
⎠ for i = 0, . . . , n

When a datatype tp with n constructors is declared, a case expression theorem
∀x. tp case f1 . . . fn (Ci x) ≡ fi x for i = 1, . . . , n is stored in HOL. For
example, the case expression for natural number is (num case b f 0 = b) ∧
(num case b f (Suc n) = f n).

For example, this step translates the Greatest Common Divisor function gcd
to a form taking only one argument:

gcd (0, y) = y gcd (Suc x, 0) = Suc x
gcd (Suc x, Suc y) = if y ≤ x then gcd (x − y, Suc y) else gcd (Suc x, y − x)

⇒
gcd z = pair case (λv v1. num case v1(λv2. num case (Suc v2)

(λv3. if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)) v1) v) z

In the next step case expressions are interpreted as conditional expressions
based on the following theorem

tp case (λx.f1 x) (λx.f2 x) . . . z =
if is C1 z then f1 (destructC1 z) else if is C2 z then f2 (destructC2 z) else . . .

where operator is Ci tells whether a variable matches the ith constructor Ci, i.e.
is Ci (Cj x) = � iff i = j; and operator destructCi is the destructor function
for constructor Ci. For example, destructSuc (Suc x) = x. These operators will
be implemented as datatype access operations in later compilation phases. In
addition, an optimization is performed to tuple variables: if an argument x has
type τ1# . . . #τn, then it is replaced by a tuple of new variables (x1, . . . , xn).
Superfluous branches and ‘let’ bindings are also removed. In this manner the
gcd function is converted to

Trusted Source Translation of a Total Function Language 481

gcd (z1, z2) = if z1 = 0 then z2

else let v2 = destructSuc z1 in
if z2 = 0 then Suc v2 else let v3 = destructSuc z2 in

if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)

4 Producing-by-Proof Imperative Code

Porting pure and terminating ML programs into TFL is easy due to the high
similarity in the syntax and semantics of ML and TFL. One of the main issues —
the termination proof of the imported ML program — is handled by proving that
the generated TFL function is total. Moreover, the imported programs will be
type checked by HOL. As the translation from TFL to HOL- eliminates features
pertaining to functional languages such as higher order functions and nested
expressions, it is natural to consider translating HOL- to realistic imperative
languages such as C and Java.

We have developed a method in our software compiler [11] that translates
simple normal forms obtained from HOL- programs to a low level imperative
language HSL (Heap and Stack Level). HSL supports various structured control
statements including blocks, sequential compositions, conditionals, tail recur-
sions, and function calls. However, since HSL is designed to couple tightly with
the targeted machine language and accesses registers and heaps directly, it is
not a good candidate as the target imperative language.

We extend HSL to a higher level imperative language IL (for Imperative Lan-
guage). The global variables of IL correspond to top level variables in HOL-;
and local variables in IL correspond to the administrative redexes (i.e. left hand
sides) of ‘let’ expressions in HOL-. IL also inherits the datatypes from HOL-, thus
no datatype representation is needed. What’s more important is our augmenta-
tion of the reasoning mechanism: we maintain a set of separate logic judgments
rather than just one judgment (as we did in [11]) and use them to reason about
programs. The syntax of IL’s control flow structures is shown below.

s ::= v := s assignment
| return v return
| s; s sequential statement
| IF e THEN s ELSE s conditional jump
| WHILE e s loop
| v :=f pid s function call

p ::= pid (−→v) = s programs

We first define an operational semantics (omitted here due to lack of space)
for IL and then derive an axiomatic semantics from it. Each axiomatic semantics
rule is specified as a Hoare triple {precondition} program {postcondition}:

{P} S1 {Q} {R} S2 {T} Q⇒R
{P} (S1 ; S2) {T}

{P} S {P}
{P} (WHILE C S) {P∧¬C}

{P∧C} St {Q} {P∧¬C} Sf {Q}
{P} (IF C THEN St ELSE Sf) {Q}

{P} St {Q} {P} Sf {R}
{P} (IF C THEN St ELSE Sf) {if C then Q else R}

482 G. Li and K. Slind

In order to connect the semantics of a IL program s with that of a HOL- function
f , we introduce the following rule to characterize s’s axiomatic semantics as a set
of predicates (where σ〈x〉 returns the value of variable x in state σ; and eval S σ
returns the new state after S’s execution):

s � {(̄ik, fk īk, ōk)} .
= ∀k∀σ∀v̄k.(σ〈̄ik〉 = v̄k) ⇒ ((eval S σ)〈ōk〉 = fk v̄k)

The kth predicate (̄ik, fk īk, ōk) specifies that: if inputs īk have initial values
v̄k, then in the state after the execution of s, the values left in outputs ōk

are equal to applying the function fi to the initial values v̄k. Such a rule is
obtained by instantiating the P and Q in {P} s {Q} to λσ. ∀k.σ〈̄ik〉 = v̄k and
λσ. ∀k.σ〈ōk〉 = fi v̄k respectively. We also write ek for fk īk if the context is
clear. If the judgment embodied by a predicate synthesizes f on inputs ī and
outputs ō, then we claim that s correctly implements f with respect to ī and ō.

In a preprocessing step, tail recursive HOL- functions are rewritten to equiv-
alent ‘while’ forms [12], where while c f

.
= λx.if ¬c x then x else while (f x).

Currently this preprocessing admits only tail recursive programs; mutually re-
cursive functions are not supported yet.

We derive a couple of rules to mechanically synthesize for an IL program the
functions it correctly implements. The rules utilize the following definitions. No-
tation Δ converts a HOL- variables and program fragments to TFL terms.

⋃
(̄ik)

constructs a tuple from the union of īk for all k. As usual, [let oi = fk īk]in
stands for a chain of ‘let’ bindings: let o1 = f1 i1 in let o2 = f2 i2 in Rule
refl, assgn and return build basic predicates in accordance to TFL ’s semantics.
Rule cond, while and application are used to synthesize functions for conditional
statements, loops and function calls respectively. The predicate sets are manip-
ulated by the union rule union and the elimination rule elim. As the inputs and
outputs of s are tuples of arbitrary arity, we provide a shuffle rule to change the
structures of them. This rule is particularly useful when we need to match the
inputs and outputs of a synthesized function with those of the original function.
The sequential composition rule seq is the most complicated one. For each vari-
able o1k in s2’s inputs, this rule looks up a predicate (ī1k, e1k, ō1k) in Σ1, and
inserts a let binding of e1k to ō1k into the composed expression.

� {(̄i, ī, ī)} refl
out := f in � {(Δ in, Δ (f in), Δ out)} assgn

return out � {(Δ out, Δ out, Δ out)} return

s1 � Σ1 s2 � Σ2 {(ī1k, e1k, ō1k)} ⊆ Σ1 (ō1, e2, ō2) ∈ Σ2
s1 ; s2 � {(

⋃
(ī1k), [let o1k=e1k]in e2, ō2)} seq

s1 � Σ1 s2 � Σ2 (̄i, e1, ō) ∈Σ1 (̄i, e2, ō) ∈ Σ2
IF cnd THEN s1 ELSE s2 � {(̄i, if (Δ cnd) then e1 else e2, ō)} cond

s � Σ (̄i, e, ī)∈Σ
WHILE cnd s � {(̄i, while (Δ cnd) e, ī)

while

s � Σ ∪ {(callee.̄i, e, callee.ō)} (Δ caller.i)=caller.̄i (Δ caller.o)=caller.ō
caller.o :=f s caller.i � {(caller.̄i, e[callee.̄i←caller.̄i], caller.ō)} application

Trusted Source Translation of a Total Function Language 483

s � Σ1 s � Σ2
s � Σ1 ∪ Σ2

union
s � Σ ∪ {(̄i, e, ō)}

s � Σ
elim

s � Σ ∪{(̄i, f ī, ō)} g ī′=f ī

s � (ī′, g ī′, ō)
shuffle

Basically, a predicate set records the values of live variables during the exe-
cution by relating them with other variables’ old values. These rules are applied
to build relations between specific inputs and outputs during the execution. The
application of them is syntax directed, and proceeds in a bottom-up manner.
For example, given the following IL program p produced from HOL- function f ,

p (a, b) = c := 2a + b; IF c2 > 1000 THEN return c ELSE {c := c ∗ b; return c}
f (a, b) = let c = 2a + b in if c2 > 1000 then c else let c = c ∗ b in c

we first apply rules refl, assgn and return to get c := c ∗ b � {((b, c), c ∗ b, c)}
and return c � {(c, c, c)}. Then by applying the seq rule once we have (c :=

c ∗ b; return c) � {((b, c), let c = c ∗ b in c, c)}. Similarly return c � {((b, c), c, c)} is
derived. According to the cond rule we have (IF c2 > 1000 THEN return c ELSE {c :=

c ∗ b; return c}) � {((b, c), if c2 > 1000 then c else let c = c ∗ b in c, c)}. For
brevity we denote it as S � {((b, c), e, c)}. Now investigating the remaining state-
ment c := 2a+ b will generate c := 2a+ b � {(b, b, b), ((a, b), 2a+ b, c)}. Then applying
the seq once we have c := 2a + b; S � {((a, b), let b = b in let c = 2a + b in e, c)}.
Finally, after the superfluous ‘let’ binding of b is removed through β-reduction, the
synthesized function is equal to f . The derivation is syntax-directed andautomatic.

This reasoning mechanism can be improved by adopting Myreen and Gordon’s
idea that uses separation logic [15] to reason about assembly language. We are
considering porting their method into our setting to verify the translation from
HOL- to IL.

5 Related Work

There has been much work on translating functional languages; one of the most
influential has been the paper of Tolmach and Oliva [22] which developed a
translation from SML-like functional language to Ada. Our monomorphisation
and closure conversion methods are similar, i.e., removing polymorphism by code
specialization and higher-order functions through closure conversion. However,
we target logic specification languages and perform correctness proofs on the
transformations. Our work can be regarded as an extension of theirs by now
verifying the correctness of these two conversions.

Hickey and Nogin [7] worked in MetaPRL to construct a compiler from a full
higher order, untyped, functional language to Intel x86 code, based entirely on
higher-order rewrite rules. A set of unverified rewriting rules are used to convert
a higher level program to a lower level program. They use higher-order abstract
syntax to represent programs and do not define the semantics of these programs.
Thus no formal verification of the rewriting rules is done.

Hannan and Pfenning [6] constructed a verified compiler in LF for the untyped
λ-calculus. The target machine is a variant of the CAM runtime and differs greatly
from real machines. In their work, programs are associated with operational

484 G. Li and K. Slind

semantics; and both compiler transformation and verifications are modeled as de-
ductive systems. Chlipala [4] further considered compiling a simply-typed
λ-calculus to assembly language. He proved semantics preservation based on de-
notational semantics assigned to the intermediate languages. Type preservation
for each compiler pass was also verified. The source language in these works is the
bare lambda calculus and is thus much simpler than TFL, thus their compilers
only begin to deal with the high level issues we discuss in this paper.

Compared with Chlipala [4] who gives intermediate languages dependent
types, Benton and Benton [2] interprets types as binary relations. They proved a
semantic type soundness for a compiler from a simple imperative language with
heap-allocated data into an idealized assembly language.

Leroy [3,10] verified a compiler from a subset of C, i.e. Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. Several intermediate
languages are introduced and translations between them are verified. The proof
of semantics preservation for the translation proceeds by induction over the
Clight evaluation derivation and case analysis on the last evaluation rule used;
in contrast, our proofs proceed by verifying the rewriting steps.

A purely operational semantics based development is that of Klein and Nipkow
[8] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
The Isabelle/HOL theorem prover is also used to verify the compilation from a
type-safe subset of C to DLX assembly code [9], where a big step semantics and a
small step semantics for this language are defined. In addition, Meyer and Wolff
[13] derive in Isabelle/HOL a verified compilation of a lazy language (called
MiniHaskell) to a strict language (called MiniML) based on the denotational
semantics of these languages. Of course, compiler verification itself is a venerable
topic, with far too many publications to survey (see Dave’s bibliography [5]).

6 Conclusions and Future Work

We have presented an approach to construct and mechanically verify a translator
from TFL to HOL-. The outputs of this translator can be compiled to assembly
code and hardware using the verified compilers for HOL- we developed in pre-
vious work [11,12,21]. Thus users can write logic specifications in an expressive
language TFL and obtain certified low level implementations automatically.

Currently, we are augmenting the compiler to tackle garbage collection, as well
as performing a variety of optimizations on intermediate code. We also consider
translating by proof a large subset of Java into TFL.

References

1. Augustsson, L.: Compiling pattern matching. In: Conference on Functional Pro-
gramming Languages and Computer Architecture (1985)

2. Benton, N., Zarfaty, U.: Formalizing and verifying semantic type soundness of a
simple compiler. In: 9th ACM SIGPLAN International Symposium on Principles
and Practice of Declarative Programming (PPDP 2007) (2007)

Trusted Source Translation of a Total Function Language 485

3. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

4. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. In: Conference on Programming Language Design and Implementation
(PLDI 2007) (2007)

5. Dave, M.A.: Compiler verification: a bibliography. ACM SIGSOFT Software En-
gineering Notes 28(6), 2–2 (2003)

6. Hannan, J., Pfenning, F.: Compiler verification in LF. In: Proceedings of the 7th
Symposium on Logic in Computer Science (LICS 1992) (1992)

7. Hickey, J., Nogin, A.: Formal compiler construction in a logical framework. Journal
of Higher-Order and Symbolic Computation 19(2-3), 197–230 (2006)

8. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and
Systems (TOPLAS) 28(4), 619–695 (2006)

9. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 com-
piler: Code generation and implementation correctnes. In: 4th IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2005) (2005)

10. Leroy, X.: Formal certification of a compiler backend, or: programming a compiler
with a proof assistant. In: Symposium on the Principles of Programming Languages
(POPL 2006), ACM Press, New York (2006)

11. Li, G., Owens, S., Slind, K.: Structure of a proof-producing compiler for a subset
of higher order logic. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
205–219. Springer, Heidelberg (2007)

12. Li, G., Slind, K.: Compilation as rewriting in higher order logic. In: 21th Conference
on Automated Deduction (CADE-21) (July 2007)

13. Wolff, B., Meyer, T.: Tactic-based optimized compilation of functional programs.
In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, pp. 201–214. Springer, Heidelberg (2006)

14. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML,
revised edition. MIT Press, Cambridge (1997)

15. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

17. Norrish, M., Slind, K.: HOL-4 manuals (1998-2006),
http://hol.sourceforge.net/

18. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, Springer, Heidelberg (1998)

19. http://swissnet.ai.mit.edu/∼jaffer/r5rs-formal.pdf
20. Slind, K.: Reasoning about terminating functional programs, Ph.D. thesis, Institut

für Informatik, Technische Universität München (1999)
21. Slind, K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic

and cryptographic hardware. Formal Aspects of Computing 19(3), 343–362 (2007)
22. Tolmach, A., Oliva, D.P.: From ML to Ada: Strongly-typed language interoper-

ability via source translation. Journal of Functional Programming 8(4), 367–412
(1998)

http://hol.sourceforge.net/
http://swissnet.ai.mit.edu/~jaffer/r5rs-formal.pdf

Rocket-Fast Proof Checking for SMT Solvers

Micha�l Moskal

University of Wroc�law, Poland

Abstract. Modern Satisfiability Modulo Theories (SMT) solvers are
used in a wide variety of software and hardware verification applica-
tions. Proof producing SMT solvers are very desirable as they increase
confidence in the solver and ease debugging/profiling, while allowing for
scenarios like Proof-Carrying Code (PCC). However, the size of typical
proofs generated by SMT solvers poses a problem for the existing sys-
tems, up to the point where proof checking consumes orders of magnitude
more computer resources than proof generation. In this paper we show
how this problem can be addressed using a simple term rewriting for-
malism, which is used to encode proofs in a natural deduction style. We
formally prove soundness of our rules and evaluate an implementation
of the term rewriting engine on a set of proofs generated from industrial
benchmarks. The modest memory and CPU time requirements of the
implementation allow for proof checking even on a small PDA device,
paving a way for PCC on such devices.

1 Introduction

Satisfiability Modulo Theories (SMT) [14] solvers check satisfiability of a first
order formula, where certain function and constant symbols are interpreted ac-
cording to a set of background theories. These theories typically include integer
or rational arithmetic, bit vectors and arrays. Some SMT solvers support only
quantifier free fragments of their logics, other also support quantifiers, most of-
ten through instantiation techniques. SMT solvers are often based on search
strategies of SAT solvers.

The usage of background theories, instantiation techniques and efficient han-
dling of the Boolean structure of the formula differentiates SMT solvers from
first-order theorem provers based on resolution. SMT solvers are efficient for
larger mostly ground formulas. This makes them good tools for hardware and
software verification.

SMT solvers typically either answer that the input formula is unsatisfiable, or
give some description of a model, in which the formula might be satisfiable. In
terms of software verification the first answer means that the program is correct,
while the second answer means, that an assertion might be violated. The model
description is used to identify a specific assertion and/or execution trace.

What is troubling is that we are trusting the SMT solver, when it says the
program is correct. One problem is that there might be a bug in the SMT solver,
whose implementation can be largely opaque to others than the developer.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 486–500, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Rocket-Fast Proof Checking for SMT Solvers 487

The other problem is that we might want to provide the evidence of program
being correct to someone else, like in Proof-Caring Code [13] scenarios.

It is therefore desirable for an SMT solver to produce the proof of the unsatis-
fiability of formulas. The problem is that in program verification, the queries are
rather huge and so are the proofs. For example formulas in the AUFLIA division
of the SMT problem library1 contain up to 130 000 distinct subterms, with an
average of 8 000. The proofs we have generated are on average five times bigger
than the formulas. The most complicated proof we have encountered contains
around 40 000 basic resolution steps and around 1 000 000 (sub)terms in size.
What is worth noting however, is that state of the art SMT solvers are able to
check a vast majority of such queries in under a second. As the general expec-
tation is that proof checking should be faster than proof generation, it becomes
clear that we need very efficient means of proof checking.

1.1 Contributions

The contributions of this paper are:

– we introduce a simple, yet expressive term rewrite formalism (Sect. 2), and
show it is strong enough to encode and check proofs of theory and Boolean
tautologies (Sect. 3), and also NNF/CNF conversions with skolemization
(Sect. 4),

– we discuss two highly efficient implementations of the proposed rewrite sys-
tem (Sect. 6). In particular we discuss performance issues (Sect. 6.2) and we
describe techniques to help ensure soundness of the rewrite rules (Sect. 6.1).

There are two reasons to use term rewriting as a proof checking vehicle. One
is that the term rewriting is a simple formalism, therefore it is relatively easy
to reason about the correctness of an implementation of the proof checker. The
bulk of soundness reasoning goes at term rewrite rules level, which is much better
understood and simpler to reason about than a general purpose (often low level)
programming language used to implement a proof checker.

The second reason is memory efficiency, which on modern CPUs is also a key
to time efficiency. We encode proof rules as rewrite rules and handle non-local
conditions (like uniqueness of Skolem functions) at the meta level, which allows
for the rewrite rules to be local. The idea behind the encoding of the proof rules
is to take proof terms and rewrite them into the formulas that they prove. This
allows for memory held by the proof terms to be immediately reclaimed and
reused for the next fragment of the proof tree read from a proof file.

1.2 Proof Search in SMT Solvers

This section gives description of a proof search of an SMT solver based on DPLL
and E-matching. It applies to most of the current SMT solvers.

1 Both the library and this particular division are described further in Sect. 6.2.

488 M. Moskal

In order to check unsatisfiability of a formula, an SMT solver will usually first
transform it into an equisatisfiable CNF formula, while simultaneously perform-
ing skolemization. Subsequent proof search alternates between Boolean reason-
ing, theory reasoning, and quantifier instantiation. For the Boolean part we use
resolution. Also the final empty clause is derived using resolution. Theory rea-
soning produces conflict clauses, which are tautologies under respective theories,
e.g., ¬(a > 7) ∨ a ≥ 6 or ¬(c = d) ∨ ¬(f(c) = 42) ∨ ¬(f(d) < 0). Quantifier rea-
soning is based on instantiating universal quantifiers and producing tautologies
like ¬(∀x. f(x) > 0 → P (x)) ∨ ¬(f(3) > 0) ∨ P (3). It can be thought of as just
another background theory.

To make this search procedure return a proof, we need proofs of: CNF transla-
tion, Boolean tautologies and theory tautologies. By taking these three together,
we should obtain a proof that the formula is unsatisfiable.

2 Definitions

Let V be an infinite, enumerable, set of variables. We use x and y (all symbols
possibly with indices) as meta-variables ranging over V . Let Σ be an infinite,
enumerable set of function symbols, we use meta-variable f ranging over Σ. We
define the set of terms T , and the set of patterns P ⊆ T as follows:

T ::= x | f(T1, . . . , Tn) | λx. T1 | cons · (T1, T2) | nil · () | build · (f, T1) |
apply · (T1, T2) | fold · (T1)

P ::= x | f(P1, . . . , Pn)

where n ≥ 0. The notion s · (...) stands for a special form, which have particular
interpretations in the term rewrite system. We will use t1 :: t2 as a syntactic
sugar for cons · (t1, t2), and nil for nil · ().

The set of free variables of a term, FV : T → P(V), is defined as usual:

FV (x) = {x}
FV (f(t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

FV (λx. t) = FV (t) \ {x}
FV (s · (t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

Note that it is also defined on P , as P ⊆ T . Let T (A, B) be a set of terms built
from function symbols from the set A and variables from the set B ⊆ V (i.e. if
t ∈ T (A, B) then FV (t) ⊆ B). A substitution is a function σ : V → T , which we
identify with its homomorphic, capture free extension to σ : T → T .

A rewrite rule is a pair (p, t), where p ∈ P , t ∈ T and FV (t) ⊆ FV (p). Let R
be set of such rewrite rules, such that for distinct (p, t), (p′, t′) ∈ R, p and p′ do
not unify. We define a normal form of a term t, with respect to R as nf (t), with
the rules below. Because the function defined below is recursive it is possible for
it not to terminate. If the rules below do not result in a single unique normal
form for term t, then we say that nf (t) = ⊗. If term has ⊗ as subterm, it is
itself regarded as equal to ⊗. In practice this condition is enforced by limiting
running time of the proof checker.

Rocket-Fast Proof Checking for SMT Solvers 489

nf (x) = x

nf (f(t1, . . . , tn)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nf (tσ)
for (p, t) ∈ R such that
∃σ. pσ = f(nf (t1), . . . ,nf (tn))

f(nf (t1), . . . ,nf (tn))
otherwise

nf (λx. t1) = λx.nf (t1)
nf (apply · (λx. t1, t2)) = nf (t1[x := t2])
nf (build · (f, t1 :: · · · :: tn :: nil))

= nf (f(t1, . . . , tn))
nf (build · (f, t1)) = build · (f,nf (t1)) if none of the above apply
nf (s · (t1, . . . , tn)) = s · (nf (t1), . . . ,nf (tn)) if none of the above apply

where t1[x := t2] denotes a capture free substitution of x with t2 in t1
2.

The semantics of the fold · (t) is not defined above. Its role is to perform
theory-specific constant folding on t. Folding is implemented either inside the
proof checker or by an external tool called by the proof checker. In this paper
we use integer constant folding (for example nf (fold · (add(20, 22))) = 42).

The signature used throughout this paper can be divided in four categories:

1. logical connectives: false, implies, and, or, forall, neg
2. theory specific symbols: eq, add, leq, minus and natural number literals

(0, 1, 2, ...)
3. technical machinery: lift known, �, sk
4. rule names

3 Boolean Deduction

Consider the logical system from Fig. 1. It is complete for Boolean logic with
connectives → and ⊥. Three of the derivation rules there ((mp), (absurd) and
(nnpp)) fit a common scheme:

Γ � Ξ1(ψ1, . . . , ψm) . . . Γ � Ξn(ψ1, . . . , ψm)
Γ � Ξ(ψ1, . . . , ψm)

(r)

where Ξi and Ξ are formulas built from the Boolean connectives and formula
meta-variables ψ1, . . . , ψm, while (r) is the name of the rule. We call such rules
standard rules. Additional Boolean connectives can be handled by adding more
standard rules. To encode a standard derivation rule, we use the following
rewrite:

r(�(Ξ1(x1, . . . , xm)), . . . , �(Ξn(x1, . . . , xm)), xi1 , . . . , xil
) �

�(Ξ(x1, . . . , xm))

2 The actual implementation uses de Bruijn indices, so the “capture free” part comes
at no cost.

490 M. Moskal

Proof rule Rewrite rule

Γ � ψ1 → ψ2 Γ � ψ1
Γ � ψ2

(mp)
mp(�(implies(x1, x2)), �(x1)) �

�(x2)

Γ � ⊥
Γ � ψ

(absurd)
absurd(�(false), x) �

�(x)

Γ � (ψ → ⊥) → ⊥
Γ � ψ

(nnpp)
nnpp(�(implies(implies(x, false), false))) �

�(x)

Γ ∪ {ψ1} � ψ2
Γ � ψ1 → ψ2

(assume)

assume(x1, x2) �
lift known(implies(x1,apply · (x2, �(x1))))

lift known(implies(x1, �(x2))) �
�(implies(x1, x2))

ψ ∈ Γ
Γ � ψ

(assumption)

Fig. 1. A complete system for → and ⊥

where xij are additional technical arguments, to fulfill the condition that the
left-hand side of a rule has to contains all the free variables in the right-hand
side and r is a function symbol used to encode this particular rule. Therefore we
can model (mp), (absurd) and (nnpp) using the rewrite rules listed in Fig. 1.

We are left with the (assume)/(assumption) pair, which is modeled using
lambda expressions. There is no explicit rewrite for (assumption) rule. The
term x2 is expected to be of the form λy. t, where t is a proof using y in places
where (assumption) should be used. This is very similar to the encoding of the
Imp-I rule in Edinburgh Logical Framework [10].

We call restricted the terms of the form �(...), lift known(...) or sk(...) (the
last one is used in the next section). We say that P ∈ T is a pre-proof (written
preproof (P)), if it does not contain a restricted subterm, or a subterm which
is a s · (...) special form.

Lemma 1. For any pair (P, σ), such that preproof(P), ∀x ∈ V . xσ = x ∨
∃φ. xσ = �(φ) and nf(Pσ) = �(ψ), there exists a derivation Γ � ψ where
Γ = {φ | x ∈ V , xσ = �(φ)}.

Proof. The proof is by induction on the size of P . Because �(...) is not a subterm
of P , the head of P must be either:

1. a variable x, in which case xσ is �(ψ) and the (assumption) rule can be
used, since ψ ∈ Γ ,

2. P = r(P1, . . . , Pn, t1, . . . , tm), where a rewrite, obtained from a derivation
rule (r), is applicable to:

r(nf (P1σ), . . . ,nf (Pnσ),nf (t1), . . . ,nf (tm))

We use the induction hypothesis on (Pi, σ), where nf (Piσ) = �(ψi) and
build the derivation using the (r) rule.

Rocket-Fast Proof Checking for SMT Solvers 491

Proof rule Rewrite rule

Γ � t = t
(eq refl)

eq refl(x) �
�(eq(x, x))

Γ � t1 = t2 Γ � t2 = t3
Γ � t1 = t3

(eq trans)
eq trans(�(eq(x1, x2)), �(eq(x2, x3))) �

�(eq(x1, x3))

Γ � t1 = t2
Γ � t2 = t1

(eq trans)
eq symm(�(eq(x1, x2))) �

�(eq(x2, x1))

Γ � t1 = t2
Γ � ψ(t1) → ψ(t2)

(eq sub)
eq sub(�(eq(x1, x2)), y) �

�(implies(apply · (y, x1),apply · (y, x2)))
Γ � x + x1 ≤ c1 Γ � −x + x2 ≤ c2

x1 + x2 ≤ c1 + c2
(utvpi trans)

utvpi trans(�(leq(add(x1, x2), x3)), �(leq(add(minus(x1), y2), y3))) �
�(leq(add(x2, y2), fold · (add(x3, y3)))

Fig. 2. The equality rules, and an example of an UTVPI rule

3. P = assume(P1, ψ), which rewrites to �(...) in two steps, through the
lift known(...) (which cannot be used explicitly because preproof (P)).
apply · (P1, �(ψ)) needs to be reduced to �(...) for the lift known(...) to
be applied, so nf (P1) = λx. P2, for some P2. Because no rule can result in
a rewrite to a lambda term (all of the rewrite rules have a term of the form
f(...) as their right hand side), then not only nf (P1), but also P1 itself needs
to start with a lambda binder. Therefore P1 = λx. P3, for some P3. In this
case we use the induction hypothesis on (P3, σ[x := �(ψ)]), and then use
the (assume) rule to construct the implication.

There are no other cases, since no other rewrite rule has �(...) as the right-hand
side. �

Applying this lemma with (P, ∅) gives the theorem.

Theorem 1. For any P , such that preproof(P) and nf(Pσ) = �(ψ) there
exists a derivation � ψ.

Theory Conflicts. Proving theory conflicts clearly depends on the particular
theory. Fig. 2 lists rules for the theory of equality. The encoding is the same
as for the standard rules from Fig. 1. For arithmetic we currently support the
UTVPI fragment [11] of integer linear arithmetic. It consists of inequalities of
the form ax + by ≤ c, where a, b ∈ {−1, 0, 1} and c is an integer. The decision
procedure closes set of such inequalities, with respect to a few rules, of the form
similar to the one listed in Fig. 2. Again, the encoding is the same as for ordinary
deduction rules.

4 Skolemization Calculus

Fig. 3 lists rules for a skolemization calculus. The � is disjoint set union (i.e.
A∪B if A∩B = ∅ and undefined otherwise). The intuition behind S; Q � ψ � φ

492 M. Moskal

Proof rule Rewrite rule

∅; Q � ¬ψ(f(Q)) � φ
{f}; Q � ¬∀x. ψ(x) � φ

(skol)
sk(y, skol(f, y1), neg(forall(x))) �

sk(y, y1, neg(apply · (x,build · (f, y))))

S; Q, x � ψ(x) � φ(x)
S; Q � ∀x. ψ(x) � ∀x. φ(x)

(skip∀)
sk(y, skip∀(y1), forall(x1)) �

forall(λx. sk(x :: y, y1,apply · (x1, x)))

∅; Q � ψ � ψ
(id) sk(y, id, x1) � x1

S1; Q � ψ1 � φ1 S2; Q � ψ2 � φ2
S1
 S2; Q � ψ1 ∧ ψ2 � φ1 ∧ φ2

(rec∧)
sk(y, rec∧(y1, y2), and(x1, x2)) �

and(sk(y, y1, x1), sk(y, y2, x2))

S1; Q � ψ1 � φ1 S2; Q � ψ2 � φ2
S1
 S2; Q � ψ1 ∨ ψ2 � φ1 ∨ φ2

(rec∨)
sk(y, rec∨(y1, y2), or(x1, x2)) �

or(sk(y, y1, x1), sk(y, y2, x2))

S1; Q � ¬ψ1 � φ1 S2; Q � ¬ψ2 � φ2
S1
 S2; Q � ¬(ψ1 ∨ ψ2) � φ1 ∧ φ2

(rec¬∨)
sk(y, rec¬∨(y1, y2), neg(or(x1, x2))) �

and(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))

S1; Q � ¬ψ1 � φ1 S2; Q � ¬ψ2 � φ2
S1
 S2; Q � ¬(ψ1 ∧ ψ2) � φ1 ∨ φ2

(rec¬∧)
sk(y, rec¬∧(y1, y2), neg(and(x1, x2))) �

or(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))

S1; Q � ψ1 � φ1
S1; Q � ¬¬ψ1 � φ1

(rec¬¬)
sk(y, rec¬¬(y1), neg(neg(x1))) �

sk(y, y1, x1)

Fig. 3. The skolemization calculus

is that for each model M of ∀Q. ψ there exists an extension of M on the symbols
from S that satisfies ∀Q. φ. We formalize it using second order logic with the
following lemma:

Lemma 2. Let Q = {x1, . . . , xn} and S = {f1 . . . fn}. If S; Q � ψ � φ where
ψ ∈ T (Σ, Q), φ ∈ T (Σ � S, Q), then |= ∃2f1 . . . ∃2fn. ∀x1, . . . , xn. ψ → φ.

The key point of the proof is that for the rules of the common form:

S1; Q � Ξ1(ψ1, . . . , ψk) � φ1 . . . Sm; Q � Ξm(ψ1, . . . , ψk) � φm

S1 � . . . � Sm; Q � Ξ(ψ1, . . . , ψk) � Ξ ′(ψ1, . . . , ψk, φ1, . . . , φm)
(r)

where ψj and φj range over first order formulas it is enough to show the following:

∀Q : Type. ∀S1 . . . Sn : Type.
∀ψ1 . . . ψk : Q → Prop.
∀φ1 : S1 × Q → Prop. . . . ∀φm : Sm × Q → Prop.∧

i=1...m(∃fi : Si. ∀x : Q. Ξi(ψi(x), . . . , ψk(x)) → φi(fi, x)) →
(∃f1 : S1. . . . ∃fm : Sm. ∀x : Q. Ξ(ψ1(x), . . . , ψk(x)) →

Ξ ′(ψm(x), . . . , ψk(x), φ1(f1, x), . . . , φm(fm, x)))

which is much like the formula from the lemma, except that there is only one
Skolem constant fi per premise and also there is only one free variable in all the
formulas, namely x. However these symbols are of arbitrary type, so they can
be thought of as representing sequences of symbols.

We prove such formulas for each rule, the reader can find the proof scripts for
Coq proof assistant online [1].

Rewrite encoding. The common form of a rule is encoded as:

sk(y, r(y1, . . . , ym), Ξ(x1, . . . , xk)) �
Ξ ′(x1, . . . , xk, sk(y, y1, Ξ1(x1, . . . , xk)), . . . , sk(y, ym, Ξm(x1, . . . , xk)))

Rocket-Fast Proof Checking for SMT Solvers 493

The first argument of sk(. . .) is the list of universally quantified variables in
scope. The second argument is a rule name, along with proofs of premises. The
third argument is the formula to be transformed.

The encoding of non-common rules (as well as the common rules used here)
is given in the Fig. 3.

Lemma 3. If preproof(P), nf(sk(x1 :: · · · :: xn :: nil, P, ψ)) = ψ′, and for each
occurrence of skol(f) as a subterm of P , the function symbol f does not occur
anywhere else in P nor in ψ, then there exists S, such that S; x1, . . . , xn �
� ψψ′.

Proof. By structural induction over P . �

Theorem 2. If preproof(P), nf(sk(nil, P, ψ)) = ψ′, and for each occurrence
of skol(f) as a subterm of P , the function symbol f does not occur anywhere
else in P nor in ψ, and ψ′ is unsatisfiable then ψ is unsatisfiable.

Proof. By Lemmas 2 and 3. �

5 The Checker

The proof checker reads three files: (1) rewrite rules describing the underlying
logic; (2) a query in SMT-LIB concrete syntax; and (3) the proof. The concrete
syntax for both the rewrite rules and the proof term is similar to the one used
in SMT-LIB. The proof term language includes the following commands:

– let x := t1: bind the identifier x to the term nf (t1)
– initial t1 t2: check if skol(f) is used in t1 only once with each f , that the

f symbols do not occur in t2, compares t2 against the query read from the
SMT-LIB file and if everything succeeds, binds �(nf (sk(nil, t1, t2))) to the
special identifier initial; this command can be used only once in a given
proof

– final t1: checks if nf (t1) = �(false), and if so reports success and exits
– assert eq t1 t2: checks if nf (t1) = nf (t2) (and aborts if this is not the case)
– assert ok t1 t2: checks if nf (t1) = �(nf (t2)) (and aborts if this is not the

case)
– print t1: prints a string representation of t1

The last three commands are used to debug the proofs.
The proofs, after initial skolemization, are structured as a sequence of clause

derivations, using either resolution, theory conflicts, instantiation or CNF-con-
version steps. All these clauses are let-bound, until we reach the empty clause.
Basically we end up with a proof-tree in natural deduction, deriving the Boolean
false constant from the initial formula. The tree is encoded as a DAG, because
let-bound clauses can be used more than once.

494 M. Moskal

Proof rule Rewrite rule

Γ � ψ1 ∧ ψ2
Γ � ψ1

(elim∧1)
elim∧1(�(and(x1, x2))) �

�(x1)

Γ � ψ1 ∧ ψ2
Γ � ψ2

(elim∧2)
elim∧2(�(and(x1, x2))) �

�(x2)

Γ � ψ1 ∨ ψ2
Γ � ¬ψ1 → ψ2

(elim∨)
elim∨(�(or(x1, x2))) �

�(implies(neg(x1), x2))

Γ � ¬ψ Γ � ψ
Γ � ⊥ (elim¬)

elim¬(�(neg(x1))), �((x1)) �
�(false)

Γ � ψ
Γ � ¬¬ψ

(add¬¬)
add¬¬(�(x1)) �

�(neg(neg(x1)))

Γ � ψ → ⊥
Γ � ¬ψ

(intro¬)
intro¬(�(implies(x1, false))) �

�(neg(x1))

Γ � ¬ψ → ⊥
Γ � ψ

(elim¬→)
elim¬→(�(implies(neg(x1), false))) �

�(x1)

Γ � ∀x.ψ(x)
Γ � ψ(t)

(inst)
inst(y, �(forall(x))) �

�(apply · (x, y))

Fig. 4. Additional rules for the example

All those steps are best described through an example3. Fig. 4 lists rules not
previously mentioned in this paper, that were used in the proof. The real proof
system has more rules. As described in Sect. 6.1, we mechanically check all rules.
Our example formula is:

P (c) ∧ (c = d) ∧ (∀x. ¬P (x) ∨ ¬(∀y. ¬Q(x, y))) ∧ (∀x. ¬Q(d, x))

The first step is the initial skolemization:

let q1 := forall(λx. or(neg(P (x)), neg(forall(λy. neg(Q(x, y))))))
let q2 := forall(λx. neg(Q(d, x)))
let fin := and(P (c), and(eq(c, d), and(q1, q2)))
let sk := rec∧(id, rec∧(id, rec∧(skip∀(rec∨(id, skol(f, rec¬¬(id)))), id)))
initial sk fin

Here our expectation, as the proof generator, is that ∀x. ¬P (x)∨¬(∀y. ¬Q(x, y))
will be replaced by ∀x. ¬P (x) ∨ Q(x, f(x)), which we express as:

let q3 := forall(λx. or(neg(P (x)), Q(x, f(x))))
let fsk := and(P (c), and(eq(c, d), and(q3, q2)))
assert ok initial fsk

The first step of the actual proof is a partial CNF-conversion. Our CNF conver-
sion uses Tseitin scheme, which introduces proxy literals for subformulas. This
3 The proof presented here is not the simplest possible of this very formula. However

it follows the steps that our SMT solver does and we expect other SMT solvers to
do.

Rocket-Fast Proof Checking for SMT Solvers 495

produces equisatisfiable set of clauses, yet the proof maps the proxy literals back
to the original subformulas. Then the defining clauses of proxy literals become
just basic Boolean facts. We therefore derive clauses of the form fsk → ¬ψ → ⊥,
where ψ is one of the conjuncts of fsk, for example:
let c1 := assume(fsk, λf. assume(neg(eq(c, d)), λp. elim¬(p, elim∧2(elim∧1(f)))))
assert ok c1 implies(fsk, implies(neg(eq(c, d)), false))

and similarly we derive:

assert ok c0 implies(fsk, implies(neg(P (c)), false))
assert ok c2 implies(fsk, implies(neg(q3), false))
assert ok c3 implies(fsk, implies(neg(q2), false))

Next we instantiate the quantifiers:

let c4 := assume(q2, λq. assume(Q(d, f(c)), λi. elim¬(inst(f(c), q), i)))
assert ok c4 implies(q2, implies(Q(d, f(c)), false))
let i1 := or(neg(P (c)), Q(c, f(c)))
let c5 := assume(q3, λq. assume(neg(i1), λi. elim¬(i, inst(c, q))))
assert ok c5 implies(q3, implies(neg(i1), false))

Then we need to clausify i1:

let c6 := assume(i1, λi. assume(P (c), λo1. assume(neg(Q(c, f(c))), λo2.
elim¬(o2, mp(elim∨(i), add¬¬(o1))))))

assert ok c6 implies(i1, implies(P (c), implies(neg(Q(c, f(c)), false)))

Then we do some equality reasoning:
let c7 := assume(neg(Q(d, f(c))), λln. assume(eq(c, d), λe. assume(Q(c, f(c)), λlp.

elim¬(ln, mp(eq sub(e, λx. Q(x, f(c))), lp)))))
assert ok c7 implies(neg(Q(d, f(c))), implies(eq(c, d), implies(Q(c, f(c)), false)))

What remains is a pure Boolean resolution. The resolution is realized by assum-
ing the negation of the final clause and then using unit resolution of the assumed
literals and some previous clauses, to obtain new literals, and as a last step, the
false constant. We first resolve c4 with c7:

let c8 := assume(q2, λl1. assume(eq(c, d), λl2. assume(Q(c, f(c)), λl3.
mp(mp(mp(c7, intro¬(mp(c4, l1))), l2), l3)

assert ok c8impliesq2, implieseq(c, d), impliesQ(c, f(c)), false

and finally we derive (also through resolution) the false constant:

let kq2 := elim¬→(mp(c3, initial))
let kq3 := elim¬→(mp(c2, initial))
let kp := elim¬→(mp(c0, initial))
let ke := elim¬→(mp(c1, initial))
let kq := elim¬→(mp(mp(c6, elim¬→(mp(c5, kq3))), kp))
let c9 := mp(mp(mp(c8, kq2), ke), kq)
final c9

496 M. Moskal

6 Implementation

We have implemented two versions of the proof checker: one full version in OCaml
and a simplified one written in C. Proof generation was implemented inside the
Fx7 [1] SMT solver, implemented in the Nemerle programming language. The
solver came second in the AUFLIA division of 2007 SMT competition, being
much slower, but having solved the same number of benchmarks as the winner,
Z3 [6].

An important point about the implementation, is that at any given point, we
need to store only terms, that can be referenced by let-bound name, and thus
the memory used by other terms can be reclaimed. As in our encoding the proof
terms actually rewrite to formulas that they prove, there is no need to keep the
proof terms around. We suspect this to be the main key to memory efficiency of
the proof checker. The C implementation exploits this fact, the OCaml one does
not.

Both implementations use de Bruijn [5] indices in representation of lambda
terms. We also use hash consing, to keep only a single copy of a given term. We
cache normal forms of the terms, we remember what terms are closed (which
speeds up beta reductions). Also a local memoization is used in function com-
puting beta reduction to exploit the DAG structure of the term. The rewrite
rules are only indexed by the head symbol, if two rules share the head symbol,
linear search is used.

All the memoization techniques used are crucial (i.e., we have found proofs,
where checking would not finish in hours without them).

The OCaml implementation is about 900 lines of code, where about 300 lines
is pretty printing for Coq and Maude formats. The C implementation is 1500
lines. Both implementation include parsing of the proof and SMT formats and
command line option handling. The implementations are available online along
with the Fx7 prover.

6.1 Soundness Checking

The OCaml version of the checker has also a different mode of operation, where
it reads the rewrite rules and generates corresponding formulas to be proven in
the Coq proof assistant. There are three proof modes for rules:

– for simple facts about Boolean connectives, arithmetic and equality, the
checker generates a lemma and a proof, which is just an invocation of ap-
propriate tactic

– for other generic schemas of proof rules from Sect. 3 and 4, the checker
produces proof obligations, and the proofs need to be embedded in the rule
descriptions

– for non-generic proof rules, the user can embed both the lemma and the
proof in the rule description file, just to keep them close

This semiautomatic process helps preventing simple, low-level mistakes in the
proof rules. The checker provides commands to define all these kinds of rules
and associated proofs.

Rocket-Fast Proof Checking for SMT Solvers 497

Directory Total UNSAT % UNSAT Fake % Fake Fail % Fail
front end suite 2320 2207 95.13% 101 4.35% 12 0.52%
boogie 908 866 95.37% 25 2.75% 17 1.87%
simplify 833 729 87.52% 44 5.28% 60 7.20%
piVC 41 17 41.46% 10 24.39% 14 34.15%
misc 20 16 80.00% 0 0.00% 4 20.00%
Burns 14 14 100.00% 0 0.00% 0 0.00%
RicartAgrawala 14 13 92.86% 0 0.00% 1 7.14%
small suite 10 8 80.00% 0 0.00% 2 20.00%

Fig. 5. Results on the AUFLIA division of SMT-LIB

6.2 Performance Evaluation

When running Fx7 on a query there are five possible outcomes:

– it reports that the query is unsatisfiable, and outputs a proof
– it reports that the query is unsatisfiable, but because the proof generation is

only implemented for the UTVPI fragment of linear arithmetic, the proof is
correct only if we assume the theory conflicts to be valid (there is typically
a few of them in each of such “fake” proofs)

– it reports the query is satisfiable, timeouts or runs out of memory

Tests were performed on AUFLIA benchmarks from the SMT-LIB [14]. This
division includes first order formulas, possibly with quantifiers, interpreted under
uninterpreted function symbols, integer linear arithmetic and array theories.
They are mostly software verification queries. The machine used was a 2.66GHz
Pentium 4 PC with 1GB of RAM, running Linux. The time limit was set to ten
minutes.

The results are given in Fig. 5. The “Total” column refers to the number
of benchmarks marked unsatisfiable in the SMT-LIB; “UNSAT” refers to the
number of cases, where the benchmark was found unsatisfiable and a correct
proof was generated; “Fake” is the number of benchmarks found unsatisfiable,
but with “fake” proofs; finally “Fail” is the number of cases, where Fx7 was
unable to prove it within the time limit. It should be the case that UNSAT +
Fake + Fail = Total. The percentages are with respect to the Total.

With the C implementation, proof checking a single proof never took more
than 7 seconds. It took more than 2 seconds in 4 cases and more than 1 second in
19 cases (therefore the average time is well under a second). The maximal amount
of memory consumed for a single proof was never over 7MB, with average being
2MB.

We have also tested the C implementation on a Dell x50v PDA with a
624MHz XScale ARM CPU and 32MB of RAM, running Windows CE. It was
about 6 times slower than the Pentium machine, but was otherwise perfectly
capable of running the checker. This fact can be thought of as a first step on
a way to PCC-like scenarios on small, mobile devices. Other devices of simi-
lar computing power and, what is more important, RAM amount include most
smart phones and iPods.

498 M. Moskal

The OCaml implementation was on average 3 times slower than the C
version, it also tends to consume more memory, mostly because it keeps all the
terms forever (which is because of our implementation, not because of OCaml).

We have also experimented with translating the proof objects into the Maude
syntax [3]. We have implemented lambda terms and beta reduction using the
built-in Maude integers to encode de Bruijn indices and used the standard equa-
tional specifications for the first order rules. The resulting Maude implementa-
tion is very compact (about 60 lines), but the performance is not as good as
with the OCaml or C implementation — it is between 10 and 100 times slower
than the OCaml one. It also tends to consume a lot more memory. The reason is
mainly the non-native handling of lambda expressions. Beta reductions translate
to large number of first order rewrites, which are then memoized, and we were
unable to instrument Maude to skip memoization of those.

We have performed some experiments using Coq metalogic as the proof
checker. We did not get as far as implementing our own object logic. The main
obstacle we have found was the treatment of binders. Performing skolemization
on a typical input results in hundreds of Skolem functions. When using a higher
order logic prover, such functions are existentially quantified and the quantifiers
need to be pushed through the entire formula to the beginning. Later, during
the proof, we need to go through them to manipulate the formula. This puts too
much pressure on the algorithms treating of binders in the higher order prover.
In our approach Skolem functions are bound implicitly, so there is no need to
move them around. This is especially important in SMT queries, where the vast
majority of the input formula is ground and quantified subformulas occur only
deep inside the input. We can therefore keep most of the formula binder-free. We
were not able to perform any realistic tests, as Coq was running out of memory.

Both Maude and Coq are far more general purpose tools than just proof
checkers. However relatively good results with Maude suggest that using a simple
underlying formalism is beneficial in proof checking scenarios.

7 Related and Future Work

CVC3 [2] and Fx7 were the only solvers participating in the 2007 edition of the
SMT competition to produce formal proofs. The proof generation in CVC3 is
based on the LF framework. We are not aware of a published work evaluating
proof checking techniques on large industrial benchmarks involving quantifiers.

Formalisms for checking SMT proofs have been proposed in the past, most
notably using an optimized implementation [15] of Edinburgh Logical Frame-
work [10]. However even with the proposed optimizations, the implementations
has an order of magnitude higher memory requirements than our solution. Also
the implementation of the checker is much more complicated.

Recently a Signature Compiler tool has been proposed [16]. It generates a
custom proof checker in C++ or Java from a LF signature. We have run our
proof checker on a 1:1 translation of the artificial EQ benchmarks from the
paper. It is running slightly faster than the generated C++ checker. The memory

Rocket-Fast Proof Checking for SMT Solvers 499

requirements of our implementation are way below the size of the input file on
those benchmarks. The checkers remain to be compared on real benchmarks
involving richer logics and quantifiers.

In context of the saturation theorem provers it is very natural to output
the proof just as a sequence of resolution or superposition steps. What is miss-
ing here, is the proof of CNF translation, though proof systems has been pro-
posed [8], [7] to deal with that.

Finally, work on integrating SMT solvers as decision procedures inside higher
order logic provers include [12], [9], [4]. The main problem with these approaches
is that proof generation is usually at least order of magnitude faster than proof
checking inside higher order logic prover. The Ergo [4] paper mentions promising
preliminary results with using proof traces instead of full proofs with Coq for
theory conflicts. It is possible that using traces could also work for CNF conver-
sion and skolemization. Yet another approach mentioned there is verifying the
SMT solver itself.

An important remaining problem is the treatment of theory conflicts. One
scenario here is to extend the linear arithmetic decision procedure to produce
proofs. It should be possible to encode the proofs with just a minor extensions to
the rewrite formalism. Another feasible scenario is to use a different SMT solver
as a oracle for checking the harder (or all) theory conflicts. This can be applied
also to other theories, like bit vectors or rational arithmetic.

8 Conclusions

We have shown how term rewriting can be used for proof checking. The high-
lights of our approach are (1) time and space efficiency of the proof checker;
(2) simplicity of the formalism, and thus simplicity of the implementation; and
(3) semiautomatic checking of proof rules. The main technical insight is that
the proof rules can be executed locally. Therefore the memory taken by proofs
trees can be reclaimed just after checking them and reused for the subsequent
fragments of the proof tree.

The author wishes to thank Joe Kiniry, Mikolás̆ Janota, and Radu Grigore
for their help during the work on the system, and Nikolaj Bjørner as well as
anonymous TACAS reviewers for his help in getting the presentation of this
paper better.

This work was partially supported by Polish Ministry of Science and Educa-
tion grant 3 T11C 042 30.

References

1. Fx7 web page, http://nemerle.org/fx7/

2. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the Cooperating
Validity Checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
515–518. Springer, Heidelberg (2004)

http://nemerle.org/fx7/

500 M. Moskal

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science (2001)

4. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: Lightweight Integration of
the Ergo Theorem Prover inside a Proof Assistant. In: Second Automated Formal
Methods workshop series (AFM 2007), Atlanta, Georgia, USA (November 2007)

5. de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math. 34(5), 381–392 (1972)

6. de Moura, L., Bjorner, N.: Efficient E-matching for SMT solvers. In: Proceedings of
the 21st International Conference on Automated Deduction (CADE-21), Springer,
Heidelberg (to appear, 2007)

7. de Nivelle, H.: Implementing the clausal normal form transformation with proof
generation. In: fourth workshop on the implementation of logics, Almaty, Kazach-
stan, University of Liverpool, University of Manchester, pp. 69–83 (2003)

8. de Nivelle, H.: Translation of resolution proofs into short first-order proofs without
choice axioms. Information and Computation 199(1), 24–54 (2005)

9. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + au-
tomation + soundness: Towards combining SMT solvers and interactive proof as-
sistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
167–181. Springer, Heidelberg (2006)

10. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: Proceed-
ings 2nd Annual IEEE Symp. on Logic in Computer Science, LICS 1987, Ithaca,
NY, USA, June, 22–25, 1987, pp. 194–204. IEEE Computer Society Press, New
York (1987)

11. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver
for constraint logic programming (1997)

12. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study
combining HOL-Light and CVC Lite. In: Armando, A., Cimatti, A. (eds.) Pro-
ceedings of the 3rd Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR 2005), Edinburgh, Scotland, January 2006. Electronic Notes in
Theoretical Computer Science, vol. 144(2), pp. 43–51. Elsevier, Amsterdam (2006)

13. Necula, G.C.: Proof-carrying code. In: Conference Record of POPL 1997: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Paris, France, January 1997, pp. 106–119 (1997)

14. SMT-LIB: The Satisfiability Modulo Theories Library. http://www.smt-lib.org/
15. Stump, A., Dill, D.: Faster Proof Checking in the Edinburgh Logical Framework.

In: 18th International Conference on Automated Deduction (2002)
16. Zeller, M., Stump, A., Deters, M.: A signature compiler for the Edinburgh Logical

Framework. In: Proceedings of International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (2007)

http://www.smt-lib.org/

SDSIrep: A Reputation System Based on SDSI�

Ahmed Bouajjani1, Javier Esparza2, Stefan Schwoon2,
and Dejvuth Suwimonteerabuth2

1 LIAFA, University of Paris 7, Case 7014, 75205 Paris cedex 13, France
2 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

Abstract. We introduce SDSIrep, a reputation system based on the
SPKI/SDSI authorization system. It is well-known that a system of
SPKI/SDSI certificates corresponds to the formal model of a pushdown
system (PDS). Our system, SDSIrep, allows principals to express trust
and recommendations in the form of so-called certificates with weights.
By interpreting weights as probabilities, we obtain a random-walk model
of the reputation of a principal. Thus, SDSIrep represents an application
of the theory of probabilistic PDSs to the field of computer security. We
present an algorithm to compute the reputation of each principal. An
extension of SDSIrep also provides for so-called intersection certificates,
by which, loosely speaking, a principal gains reputation if recommended
by all members of a given group of principals. On a formal-methods
level, this extension makes SDSIrep correspond to probabilistic alternat-
ing PDSs, and we extend the underlying theory of PDSs to handle this
case. As an example we sketch a small academic reputation system that
combines information from different reputation sources, like conferences,
coauthors, and rankings.

1 Introduction

In many Internet applications, notions of trust and reputation play an important
role. In particular, in an open-world scenario where we do not know all the
participants beforehand, we often need to decide whether to trust other persons
without having met them before. Examples include systems like Ebay, where
hitherto unknown participants engage in financial transactions; peer-to-peer file-
sharing networks where people download files from one another and the academic
world, where one often needs to assess a candidate’s scientific merit.

If one cannot judge somebody else’s trustworthiness oneself, a common so-
lution is to assess their reputation: while trust is a “local” notion about the
relation between two parties, reputation means somebody’s “global” standing
within some community. In the first two of the above scenarios, so-called rep-
utation systems can be employed where a participant’s reputation is computed
from the experiences that other participants have made in prior transactions.
A survey of reputation systems can be found in [1]. A concrete, well-known

� This work was partially supported by SFB 627 Nexus, Project A6.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 501–516, 2008.
© Springer-Verlag Berlin Heidelberg 2008

502 A. Bouajjani et al.

example of a reputation system is the one used by Ebay, where every trans-
action can be assigned a rating that is stored in a central server, which can then
authoritatively compute each participant’s reputation. Such a system, which is
based on the ratings users give to each other, is also called user-driven. In con-
trast, some domain-specific reputation systems such as the one proposed for
rating Wikipedia contributors [2] are called content-driven, because they rate
users based on how their contributions evolve in the system. Our proposal is not
geared towards any specific domain, and we follow the user-driven approach.

People often place trust in individuals and in the recommendations given by
well-reputed institutions. (Notice that trust and recommendations are closely
related: normally, we would recommend a person if we trust them to be good at
something.) For instance, when a well-reputed university hires a new researcher,
we can interpret this as a recommendation that the university gives to the re-
searcher. Likewise, when a well-reputed magazine publishes papers by a certain
author, it implicitly recommends the contents of those papers, enhancing the
reputation of the author. Such recommendations tend to “add up”; the more
such sources of reputation we know of, the more we would trust a researcher.

In the following, we propose a framework for expressing trust and reputation in
such a scenario. This framework allows to make statements that express trust in
individuals as well as in (hierarchical) organizations. For instance, one can state
that one recommends the employees of a certain university, or the coauthors of
one’s own papers. Moreover, such statements can be given weights to denote the
degree of the recommendation.

For this, we borrow from and modify the SPKI/SDSI framework [3]; we there-
fore call our system SDSIrep. SPKI/SDSI was designed to denote naming policies
in a distributed environment. Simply put, it allows to define groups of princi-
pals, which are described in distributed, hierarchical name spaces, and this idea
is well suited for our purposes. We also show, by re-interpreting the notion of
delegation in SPKI/SDSI, how an important distinction can be made between
our trust of a person and our trust of their ability to judge the reputation of oth-
ers. Our framework also borrows ideas from EigenTrust [4], a reputation system
that has been proposed for peer-to-peer networks. We discuss the similarities
and differences in Sections 3 and 6.

Previous work has shown that SPKI/SDSI has a strong connection to the
theory of pushdown systems [5,6]. Moreover, SPKI/SDSI (and the associated
pushdown theory) has been extended with weights, allowing to solve authoriza-
tion problems with quantitative components. However, the extensions considered
so far were not powerful enough to capture situations where trust “adds up” along
multiple paths as in our scenario (see above). For example, the framework in [6]
can express the fact that a certain level of trust exists if there is at least one
path to support it; however, it cannot express the idea that the level of trust
increases if multiple such paths exist. Recently, however, new results on proba-
bilistic pushdown systems [7] open up the opportunity for such an extension.

Our paper makes the following contributions:

SDSIrep: A Reputation System Based on SDSI 503

– We describe a new framework, called SDSIrep, that can be used to build a
reputation system suitable for modelling trust relationships in an open-world
scenario. Moreover, SDSIrep allows to distinguish between the trust one has
in a person and in their recommendations. We then show how these trust
values can be aggregated to measure each participant’s reputation.

– We expose the relationship between SDSIrep and probabilistic pushdown
systems and extend the probabilistic approach to alternating pushdown sys-
tems. This solution allows to handle so-called intersection certificates, in-
creasing the expressiveness of the SDSIrep framework at practically no extra
computational cost.

– As a small case study, we design a system for measuring academic reputation.
We implement the algorithms for computing reputations in this example and
report on their performance.

We proceed as follows: In Section 2 we recall basic notions of SPKI/SDSI.
We then present SDSIrep, our reputation system, in Section 3, and solve the
associated trust and reputation problem. In Section 4 we extend SDSIrep with
intersection certificates. We present some experimental results in Section 5 before
discussing related work and concluding in Section 6.

2 Background

This section provides some background on SPKI/SDSI and pushdown systems.

2.1 A Brief Introduction to SPKI/SDSI

The SPKI/SDSI standard was proposed in [3] and formalised in first-order logic
in [8]. We present a subset of SPKI/SDSI that has been considered in most of
the work on this topic. The full SPKI/SDSI standard also provides for so-called
threshold certificates, which we treat later in Section 4.

SPKI/SDSI was designed to denote authorization policies in a distributed
environment. A central notion of SPKI/SDSI are principals. A principal can be
a person or an organisation. Each principal defines his/her own namespace, which
assigns rôles to (other) principals. For instance, principal Fred can define the rôle
friend and associate principal George with this rôle. Such associations are made
in SPKI/SDSI by issuing so-called name certificates (name certs, for short). A
special feature is that principals may reference the namespace of other principals
in their certificates. For instance, Fred may state that all of George’s friends are
also his own friends. In this way, SPKI/SDSI allows to associate a rôle with a
group of principals described in a symbolic and distributed manner. SPKI/SDSI
then allows to assign permissions to rôles using so-called authorisation certificates
(or auth certs).

The SPKI/SDSI standard also uses a public-key infrastructure that allows for
certificates to be signed and verified for authenticity. Public-key infrastructure
does not play a major rôle in our approach, but we shall re-use the ideas behind
the naming scheme.

504 A. Bouajjani et al.

More formally, a SPKI/SDSI system can be seen as a tuple (P, A, C), where
P is a set of principals, A is a set of rôle identifiers (or identifiers, for short) and
C = Na � Au is a set of certificates. Certificates can be either name certificates
(contained in Na), or authorization certificates (contained in Au).

A term is formed by a principal followed by zero or more identifiers, i.e., an
element of the set PA∗. A term t is interpreted as denoting a set of principals,
written [[t]], which are defined by the set of name certificates (see below).

A name certificate is of the form p a → t, where p is a principal, a is an
identifier, and t is a term. Notice that p a itself is a term. The sets [[t]], for all
terms t, are the smallest sets satisfying the following constraints:

– if t = p for some principal p, then [[t]] = {p};
– if t = t′ a, then for all p ∈ [[t′]] we have [[p a]] ⊆ [[t]];
– if p a → t is a name certificate, then [[t]] ⊆ [[p a]].

For instance, if Fred and George are principals and friend is an identifier,
then Fred friend → George expresses that George is a friend of Fred, and
Fred friend → George friend means that all of George’s friends are also Fred’s
friends, and Fred friend → Fred friend friend says that the friends of Fred’s
friends are also his friends.

An authorisation certificate has the form p � → t b, where p is a principal, t
is a term, and b is either � or �. Such a certificate denotes that p grants some
authorisation to all principals in [[t]]. If b = �, then the principals in [[t]] are
allowed to delegate said authorisation to others; if b = �, then they are not.
(Auth certs in SPKI/SDSI contain more details about the authorisation that
they confer; this detail is not important for our approach.)

More formally, authorisation certs define a smallest relation aut : P × P be-
tween principals such that aut(p, p′) holds iff p grants an authorisation to p′:

– if there is an auth cert p � → t b, for b ∈ {�, �}, and p′ ∈ [[t]], then aut(p, p′);
– if there is an auth cert p � → t �, p′ ∈ [[t]], and aut(p′, p′′), then aut(p, p′′).

For instance, the certificate Fred � → George friend � means that Fred grants
some right to all of George’s friends, however, George’s friends are not allowed
to delegate that right to other principals.

The authorisation problem in SPKI/SDSI is to determine, given a system
(P, A, C) and two principals p and p′, whether p′ is granted authorisation by p,
i.e., whether aut(p, p′).

2.2 SPKI/SDSI and Pushdown Systems

Certificates in SPKI/SDSI can be interpreted as prefix rewrite systems. For
instance, if p a → p′ b c and p′ b → p′′ d e are two certificates interpreted as
rewrite rules, then their concatenation rewrites p a to p′′ d e c. In SPKI/SDSI,
a concatenation of two or more certificates is called a certificate chain. It is easy
to see that the authorisation problem, given principals p and p′, reduces to the
problem of whether there exists a certificate chain that rewrites p � into either

SDSIrep: A Reputation System Based on SDSI 505

p′ � or p′ � (in the first case, p′ also has the right to delegate the authorisation
further, in the second case he has not).

Moreover, it is well-known that the type of rewrite systems induced by a set
of SPKI/SDSI certificates is equivalent to that of a pushdown system (PDS),
see, e.g. [5,6,9,10]. For example, a cert like p a → p′ b c is interpreted as a
pushdown transition, where p, p′ are states of the finite control and where the
stack content a is replaced by bc. Then, the SPKI/SDSI authorisation problem
reduces to a pushdown reachability problem, i.e., whether from control location
p with the symbol � on the stack (and nothing else) one can eventually reach
control location p′ with empty stack.

In the following, we present our system, SDSIrep, which extends SPKI/SDSI
with weights on certificates and with so-called intersection certificates. In push-
down-automata theory, these extensions correspond to weighted pushdown sys-
tems [6] and alternating pushdown systems [9]. For brevity, we will not elaborate
on these correspondences any further, and we simply apply the appropriate push-
down theory to SDSIrep. Notice, however, that the combination of weighted and
alternating systems employed in this paper is novel.

3 A SDSI-Based Reputation System

We now explain the model of trust and reputation employed by SDSIrep, which
motivates the design of our system, given in Section 3.2. We then proceed to
show how to compute trust and reputation values in this system. In Section 4
we introduce an extension that further improves the expressiveness of the system.

3.1 A Numerical Model of Trust

Many reputation systems allow participants to express degrees of trust numeri-
cally. A common problem with this is that malicious participants may attempt
to “spam” the system and boost each other’s reputations with arbitrarily high
values. The solution employed here is to normalise trust values. In SDSIrep,
each principal has a total trust of 1 at his/her disposal, fractions of which can
be allocated freely to other principals.

Like in EigenTrust [4], this approach lends itself to a probabilistic interpreta-
tion, similar to the “Random Surfer” model used in Google’s PageRank [11]. We
interpret a SDSIrep system as a Markov chain whose states are the participants,
and where the trust that participant A has in B (expressed as a fraction between
0 and 1) serves as the probability of going from A to B. Then, one way to find
reputable participants is to perform a random walk on this Markov chain: after
a “long enough” period of time, one is more likely to be at a well-reputed par-
ticipant than not. In particular, each party’s reputation is taken as their value
in the stationary vector of the Markov chain. Thus, even though all participants
can distribute a total trust value of 1 to others, this does mean that the opinions
of all participants have the same influence. Well-reputed participants will be vis-
ited more often in a random walk than less-reputed ones, giving more weight to
their opinions.

506 A. Bouajjani et al.

What distinguishes SDSIrep from EigenTrust is the way peer-to-peer ratings
are specified: principals can assign their trust to groups of principals that are
defined indirectly, using name certificates like in SPKI/SDSI. Membership in a
group is associated with a numeric value, in a kind of fuzzy logic. Suppose, for
instance, that a researcher wants to recommend those researchers whose findings
have been published in a certain journal. Then, somebody with 10 papers in
that journal could be considered to belong more strongly to that group than
somebody with just one paper. SDSIrep allows to make such distinctions.

In the terminology of [1], PageRank, EigenTrust, and SDSIrep are all examples
of flow models. In a flow model, participants can only increase their reputation
at the cost of others. This property is obviously satisfied by SDSIrep, because
the sum of the reputation values over all participants is bounded by 1. Thus,
the absolute reputation values computed within the SDSIrep framework have no
meaning in themselves; they only indicate how well-reputed each participant is
in comparison with others.

3.2 SDSIrep Certificates

Our system is based on the design of SPKI/SDSI, i.e. a SDSIrep system is again
a triple (P, A, C) with (almost) the same meaning as in Section 2. However, in
SDSIrep, we are not concerned with authorisation problems. Rather, we reinter-
pret authorisation certificates as recommendations, which express trust in certain
groups of principals.

Another change is the addition of weights to certificates. Adding weights
drawn from the set [0, 1] to recommendation certs allows to express the de-
gree of recommendations. Similarly, weights on name certs express the degree of
membership to a set. We provide only simple examples in this section; a more
elaborate example of a SDSIrep system is presented in Section 5.

Weighted recommendation certs allow to recommend all members of a group
by issuing one single cert. This reflects common situations in which a principal
recommends a group even though the members of the group change along time,
or even though he or she does not know many of its members.

A weighted recommendation cert has the form p � x−→ t �, where x ∈ [0, 1]
is its weight. Such a cert states that the principal p recommends the principals
of the set [[t]] with weight x. The cert p � x−→ t � states that p recommends not
the principals of [[t]] themselves, but their recommendations with weight x.

As an example, suppose that researcher A wants to give 50% of his “share”
of recommendations to the authors of journal J . This could be stated by the
cert A � 0.5−−→ J aut �. To explain the semantic difference between � and
�, imagine a reputation system for film directors with directors and critics as
principals. Film critics will not be recommended for their directing skills, only
for their recommendations. A similar distinction exists in PGP, which separates
the trust that principals have in the authenticity of some person’s public key
from the trust they have in the ability of that person to correctly judge the
authenticity of other people’s keys.

SDSIrep: A Reputation System Based on SDSI 507

Notice that there is no certificate with � on the left-hand side. Thus, a chain
starting with a recommendation cert of the form p � x−→ t � necessarily ends
when t has been rewritten to an element of [[t]], whereas a chain starting with
p � x−→ t � allows to apply further recommendation certs at that point. This
corresponds to the idea that � expresses a recommendation of somebody’s rec-
ommendations, whereas � expresses a recommendation of that person as such.

To normalise the trust values in the system, and in order to enable a proba-
bilistic interpretation as discussed in Section 3.1, we additionally demand that
the weights on each principal’s recommendation certs add up to 1.

Weighted name certs have the form p a x−→ t, where x ∈ [0, 1]. Intuitively, such
a cert states a fuzzy membership relation: the elements of [[t]] belong to the set
[[p a]] with membership degree x.

As an example, consider a journal J and an identifier aut such that [[J aut]]
are the authors that have published in J . Then, if the journal has published
100 papers and B has authored 10 of them, B might be considered to belong
to [[J aut]] with degree 10%, expressed as J aut 0.1−−→ B. In order to uphold the
fuzzy-set interpretation we demand that for all pairs p a, the sum of the weights
on all name certs with p a on the left-hand side is 1.

3.3 Certificate Chains and Markov Chains

Consider the certs A � 0.5−−→ J aut � and J aut 0.1−−→ B. If A gives 50% of his
recommendations to the authors of J , and B has authored 10% of the papers
in J , then a natural interpretation is that 5% of A’s recommendations go to B.
Thus, the weight of the certificate chain formed from the two certs is obtained
by multiplying their individual weights.

To find out how much trust A puts into B, we are interested in the certificate
chains going from A � to B �. In general, there could be more than one such
chain. Thus, one needs to find all these chains in order to determine the degree
of recommendation A gives to B. The following example shows that the number
of such paths can in fact be infinite:

A � 1−→ A friend � (1)
B � 1−→ A � (2)

A friend x−→ B (3)
B friend 1−→ A (4)
A friend 1−x−→ A friend friend(5)

Cert (5) is the crucial one. It states that the friends of A’s friends also belong
to A’s friends, albeit with smaller weight. Notice that whenever this cert can be
applied, it can be applied arbitrarily often. So A recommends B through many
possible chains: for instance, we can apply the cert (1), then cert (5) 2n times,
and then certs (3) and (4) alternatingly n times each.

We can now define the two algorithmic problems related to SDSIrep. The
trust problem in SDSIrep is as follows: Given two principals p and p′, compute
the sum of the weights of all certificate chains that rewrite p � into p′ �. The
reputation problem is to compute, for each principal, their value in the stationary

508 A. Bouajjani et al.

vector of the Markov chain in which the transition probabilities are given by the
solutions to the pairwise trust problems. We discuss solutions for the trust and
reputation problems in Section 3.4.

3.4 Solving the Trust and Reputation Problems

It is easy to see that a system of SDSIrep certificates corresponds to a probabilis-
tic pushdown system (pPDS) [7]. The trust problem in SDSIrep then reduces
to a pPDS reachability problem, i.e., given p and p′, compute the probability of
reaching control location p′ with stack content � when starting from p and �.

Following [7], the solution to this is given by an equation system (see also [12]
for the same result using a different but equivalent model). Given a SDSIrep
system (P, A, C), the variables are elements of the set { [p, a, q] | p, q ∈ P, a ∈
A }, where [p, a, q] denotes the probability of rewriting the term p a into q. To
solve the trust problem, we also add an artificial certificate p′ � 1−→ p̄′, where
p̄′ is a fresh control location; since p′ � does not appear on any other left-hand
side, the solution of [p, �, p̄′] gives us the trust placed by p in p′.

Each variable [p, a, q] has the following equation:1

[p, a, q] =
∑

pa
x−→p′bc

x ·
∑

r∈P

[p′, b, r] · [r, c, q]+
∑

pa
x−→p′b

x · [p′, b, q]+
∑

pa
x−→q

x (6)

Intuitively, equation (6) sums up the probabilities for all the possible ways of
reaching q from p a. We just explain the first half of the expression; the other
cases are simpler and analogous: if p a is replaced by p′ b c (with probability x),
then one first needs to rewrite this term to r c for some r ∈ P , which happens
with the probability computed by [p′, b, r], and then r c needs to be rewritten
into q, which is expressed by the variable [r, c, q].

For instance, consider the system consisting of rules (1) to (5) in Section 3.3.
Some of the resulting equations are (abbreviating f for friend):

[B, f, A] = 1 [B, �, B] = 1 · [A, �, B]
[A, f, B] = x + (1 − x) · ([A, f, A] · [A, f, B] + [A, f, B] · [B, f, B])

This equation system has a least solution, and the elements of this least so-
lution correspond to the aforementioned probabilities. Notice that the equation
system is non-linear in general. We discuss the resulting algorithmic problems
in more detail in Section 5.3. The following theorem now follows from the defi-
nitions and the results of [7,12].

Theorem 1. The solution to the trust problem for principals p and p′ is equal
to the value of variable [p, �, p̄′] in the least solution of the equation system (6).

1 We show the equation system for the case where the terms on the right-hand side of
each cert consist of at most two identifiers; however, this is not a restriction as any
system can be converted into a system observing this rule with linear overhead [5].

SDSIrep: A Reputation System Based on SDSI 509

In general, the least solution cannot be computed exactly, but can be approxi-
mated to an arbitrary degree of precision using standard fix-point computation
methods [7]. We give more details on this computation when discussing our
experiments in Section 5. Notice that the equation system actually gives the
probabilities (and hence the trust values) for all pairs of principals, therefore
all values in the Markov chain used for solving the reputation problem can be
obtained from just one fixpoint computation.

As discussed in Section 3.1, a measure of the “reputation” of principals in the
system can be obtained by computing the stationary vector of the Markov chain
whose states are the principals and whose transition probabilities are given by
the solutions of the trust problems. Computing the stationary vector amounts
to solving a linear equation system, using well-known techniques.

However, for the stationary vector to exist, the Markov chain needs to be
irreducible and aperiodic. This is not guaranteed in general: e.g., if there is a
clique of participants who trust only each other, the Markov chain contains a
“sink”, i.e., it is not irreducible. This type of problem is also encountered in
other models based on random walks, e.g. EigenTrust or PageRank, and the
solutions employed there also apply to SDSIrep. For instance, the irreducibility
and aperiodicity constraint can be enforced by allowing the random walk to jump
to random states at any move with small probability. Notice that the example
in Section 5 does not exhibit this kind of problem; therefore, we did not use this
trick in our experiments.

4 Intersection Certificates

The SPKI/SDSI standard provides for so-called threshold certificates, which con-
sist of, say, an auth cert of the form p � → {t1b1, . . . , tnbn}, where b1, . . . , bn ∈
{�, �}, and an integer k ≤ n. The meaning of such a cert is that p grants autho-
risation to principal p′ if there is a certificate chain to p′ from at least k out of
t1b1, . . . , tnbn. Threshold certificates for name certs could be defined analogously.
We restrict ourselves to the case where k = n and use the more suggestive name
intersection certificate instead.2

In this section we show how intersection certificates can be added to SDSIrep
and define the corresponding trust problem and a probabilistic interpretation for
SDSIrep with intersection certificates. We then show that the equation system
from Section 3.4 can be modified to accomodate this extension.

Algorithms for authorisation in SPKI/SDSI with intersection were studied
in [5] and [9]. In the latter, the problem was reduced to reachability in alternat-
ing pushdown systems (APDS). It turns out that the authorisation problem with

2 In the case without weights, any certificate where k < n can be replaced by a set
of certificates, one for each k-sized subset of the right-hand side. In the case with
weights, this can also be done, but the degree to which a participant belongs to the
right-hand side can be interpreted in different ways. This question of interpretation
is beyond the scope of the paper.

510 A. Bouajjani et al.

intersection is EXPTIME-complete in general, but remains polynomial when in-
tersection is restricted to authorisation certs. This distinction translates directly
to SDSIrep; therefore, we restrict intersection to recommendation certs.

4.1 Intersection Certs in SDSIrep

Sometimes one wishes to recommend principals belonging to the intersection of
two or more groups. For instance, researcher A may wish to recommend those
of his co-authors that have published in journal J . In SDSIrep, we model this
by a certificate such as A � x−→ {A coaut �, J aut �}. In general, intersection
certificates have the form p � x−→ {t1 b1, . . . tn bn}, where b1, . . . , bn ∈ {�, �},
and express that p recommends the set

⋂n
i=1[[ti]] with weight x.

The trust problem for the case without intersection certs consists of computing
the values of certificate chains. When intersection certs come into play, we need
to think of certificate trees instead, where each node is labelled by a term,
and a node labelled by term t has a set of children labelled by T if T is the
result of applying a rewrite rule to t. For instance, if in addition to the previous
intersection certificate we have A coaut

y−→ B and J aut z−→ B, then we have
the following certificate tree:

A � x→
{

A coaut � y→ B �
J aut � z→ B �

In the probabilistic interpretation, the probability for this tree is x ·y ·z. Thus,
the trust problem for SDSIrep with intersection is as follows: Given principals p
and p′, compute the sum of the probabilities of all trees whose root is labelled by
p � and all of whose children are labelled by p′ �. Notice that the solution for
the associated reputation problem remains essentially unchanged, as the addition
of intersection certs merely changes the way peer-to-peer trust is assigned.

4.2 Solving the Trust Problem with Intersection Certs

We now extend the equation system from Section 3.4 to the case of intersection
certificates. (In terms of [9], we extend the solution to probabilistic APDSs.)

Let Ξ := {�, �}. Since intersection is restricted to recommendation certs, the
following important properties hold: (1) if p � is the root of a certificate tree,
then all nodes are of the form t b, where b ∈ Ξ and t does not contain any symbol
from Ξ; (2) if a term t of a certificate tree has more than one child, t = p � for
some p. It follows that if a term pw is the root of a tree and w does not contain
any occurrence of � or �, then every term of the tree has at most one child, and
so the tree has a unique leaf. We exploit this fact in our solution.

Let (P, A, C) be a SDSIrep system with intersection certificates. The variables
of the new equation system are of the form [p, ⊥, q] or [p, w, q], where p, q ∈ P ,
⊥ ∈ Ξ, w ∈ A∗, and w must be a suffix of the right-hand side of a cert. Notice
that, by definition, w contains no occurrence of � or �. The variable [p, ⊥, q]
represents the probability of, starting at p⊥, eventually reaching a tree where
all leaves are labelled with q. The variable [p, w, q] represents the probability of,

SDSIrep: A Reputation System Based on SDSI 511

starting at pw, reaching a tree whose unique leaf (here we use the fact above) is
labelled with q. We add (as in Section 3.4) an artificial rule p′� 1−→ p′, which is
the only rule consuming the � symbol.

For p, q ∈ P and γ ∈ A ∪ Ξ, we have:

[p, γ, q] =
∑

pγ
x−→p′w

x · [p′, w, q] +

∑

pγ
x−→{p1w1⊥1,...,pn,wn⊥n}

x ·
∑

q1,...,qn∈P

n∏

i=1

[pi, wi, qi] · [qi, ⊥i, q] (7)

(Notice that if γ ∈ A then the second sum is equal to 0 by property (2) above.)
Moreover, we set [p, ε, q] = 1 if p = q and 0 otherwise, and [p, γw, q] =∑

q′∈P [p, γ, q′] · [q′, w, q] for every two p, q ∈ P , γw ∈ (A ∪ Ξ)+. Notice that
γw is a suffix of the right-hand side of some cert, and therefore so is w.

The intuition for these equations is the same as in the case without alternation,
see Section 3.4. The corresponding equation system also has the same properties
and can be solved in the same way.

Theorem 2. The solution to the trust problem for principals p and p′ in a
SDSIrep system with intersection certificates is equal to the solution of variable
[p, �, p′] in the least solution of the equation system (7).

5 Experiments

For demonstration purposes, we have used SDSIrep to model a simple reputa-
tion system for the PC members of TACAS 2008. We have chosen this example
because the reader is likely to be familiar with the sources of reputation in
academia, in particular in computer science. We do not claim that our experi-
ments say anything really relevant about the actual reputation of the PC mem-
bers, in particular, because part of the required data (the personal preferences
of the PC members, see below) was not available to us.

In this section, we give some details on this system, and report on the perfor-
mance of our solver for the equation systems given in Sections 3.4 and 4.2.

5.1 A Small System for Academic Reputation

Principals and identifiers. The set of principals contains the 28 members of the
TACAS programme committee, 6 of the main conferences on automated ver-
ification (CAV, ICALP, LICS, POPL, VMCAI, TACAS), and 3 rankings: the
CiteSeer list of 10,000 top authors in computer science (year 2006) [13], de-
noted CiteSeer, the CiteSeer list of conferences and journals with the highest
impact factors [14], denoted Impact, and the list of h-indices for computer sci-
entists [15], denoted H-index. The identifiers are aut, publ, coaut, and circ,
with the following fuzzy sets as intended meaning:

512 A. Bouajjani et al.

– [[c aut]]: researchers that publish in conference c;
– [[r publ]]: conferences in which researcher r has published;
– [[r coaut]]: r’s co-authors;
– [[r circ]]: r’s “circle”, defined as r’s coauthors, plus the coauthors of r’s coau-

thors, and so on (the degree of membership to the circle will decrease with
the “distance” to r).

Name certs. Some illustrative examples of the certs in our system are shown in
Figure 1. For the sake of readability, we present them without having normalised
the weights (normalized values are more difficult to read and compare). So, to
set up the equation system, one has to take all the certs with the same tuple p a
on the left-hand side, say p a x1−−→ t1, . . . , p a

xn−−→ tn, and then replace each xi

by xi/
∑n

i=1 xi. In this way, all weights are normalised.
Two certs describe to which degree a PC member is an author of a conference

and which share each conference has in the PC member’s publication list. In both
cases, the weight (before normalisation) is the number of papers the author has
published in the conference, obtained from DBLP [16]. For instance, for TACAS
and Kim Larsen (KL), we have certs (8) and (9).

Another set of certs describes which PC members are coauthors of each other.
The weight is the number of jointly written papers, obtained again from DBLP.
For instance, cert (10) denotes that KL has written 22 papers with PP.

Finally, each PC member has a circle of fellow researchers, composed of the
member’s coauthors, the coauthors of the member’s coauthors, and so on. We
define KL’s circle by means of certs (11) and (12).

TACAS aut
10−−→ KL (8)

KL publ
10−−→ TACAS (9)

KL coaut
22−−→ PP (10)

KL circ
0.8−−→ KL coaut (11)

KL circ
0.2−−→ KL circ circ (12)

Impact � 1.24−−−→ TACAS aut � (13)

H-index � 34−−→ KL � (14)
CiteSeer � 2023−−−→ KL � (15)

KL � 4−→ KL publ aut � (16)
KL � 3−→ KL circ � (17)
KL � 2−→ Impact � (18)

KL � 3−→ CiteSeer � ∧ H-index � (19)

Fig. 1. Name and recommendation certificates for the example

Recommendation certs. The system contains one recommendation cert for each
conference, in which Impact recommends the authors of the conference with the
weight given by its impact factor. For TACAS we have cert (13).

The next two certs, (14) and (15) express that the h-index and CiteSeer lists
recommend a PC member (in this case KL) with a weight proportional to his
h-index and to his number of citations in the list, respectively.

Finally, each PC member issues four more certs. The certs for KL are given in
(16)–(19). Intuitively, they determine the weight with which KL wishes to recom-
mend his circle, the authors of the conferences he publishes in, and how much
trust he puts in the Citeseer and h-index rankings. In a real system, each PC
member would allocate the weights for his/her own certs; in our example we have

SDSIrep: A Reputation System Based on SDSI 513

assumed that all PC members give the same weights. In order to illustrate the
use of intersection certs we have assumed that KL only recommends researchers
on the basis of their ranking values if they appear in both CiteSeer’s list and in
the h-index list (19). Moreover, observe that in certs (18) and (19), KL places
trust in the recommendations given by the rule targets (signified by �), whereas
in the other rules he expresses trust in the principals themselves.

In the following two sections we describe the running times and some inter-
esting aspects of solving the equation systems computing the reputation of each
researcher. All experiments were performed on a Pentium 4 3.2 GHz machine
with 3 GB memory.

5.2 Experiment 1

We have written a program which takes as input the set of SDSIrep certificates
described above, generates the equation system of Section 4.2, and computes its
solution. We can then compute the degree to which researchers recommend one
another. From the result we build a Markov chain as described in Section 3.3.
The stationary distribution of the Markov chain, given at the top of Table 1,
can be interpreted as the (relative) reputation of each researcher when compared
to the others in the system. The lower part of Table 1 shows how the running

Table 1. Stationary distribution for TACAS PC members (values multiplied by 1000)
and statistics for different numbers of researchers

PB EB TB RC BC BD PG OG AG FH MH JJ KJ JK BK MK KL NL KN PP SR CR JR AR SS SS BS LZ
26 18 19 78 45 6 56 60 30 19 45 19 5 23 10 30 88 26 37 33 64 22 45 6 54 15 80 41

scientists 10 20 30 40 50 60 70 76
variables 627 1653 3089 4907 7126 9752 12777 14779
time (s) 0.47 2.07 6.85 12.55 23.90 44.89 78.35 106.55

time scales when the number of researchers is increased. For this experiment we
have put together the PCs of TACAS, FOSSACS, and ESOP, with a total of
76 members, adding FOSSACS and ESOP to the list of conferences. We have
computed the stationary distribution for subsets of 10, 20, . . . , 76 PC members.
The first line of the table shows the number of variables in the system (which is
also the number of equations), and the second shows the time required to solve
it and compute the stationary distribution.

Notice that the equation system used here is non-linear (see Section 4.2).
Following [12], we solve it using Newton’s iterative method, stopping when an
iteration does not change any component of the solution by more than 0.0001.

5.3 Experiment 2

In contrast to other trust systems, in which trust is assigned from one individual
to another, our choice of SDSI allows to assign trust measures to sets of prin-
cipals using multiple levels of indirection. For instance, A can transfer trust to

514 A. Bouajjani et al.

B because B is a coauthor of C, and C publishes in the same conference as A.
This added expressiveness comes at a price. Certs like (12) or (16), with more
than one identifier on the right-hand side, cause the resulting equation system
to become non-linear (see Section 3.4). Likewise, intersection certs also cause
non-linear equations (see Section 4.2).

On the other hand, if the system does not contain these two types of certs,
the resulting equation system is linear, and instead of Newton’s method more
efficient techniques can be applied, e.g. the Gauß-Seidel method.

In the following, let us assume that intersection certs are absent. Consider
cert (12). The certificate is “recursive” in the sense that it can be applied arbi-
trarily often in a certificate chain, rewriting KL circ to KL circn, for any n ≥ 1.
Thus, the length of terms to which KL circ can be rewritten is unbounded. (In
pushdown terms, the “stack” can grow to an unbounded size.) If the set of certs
is such that this effect cannot happen, then each term can be rewritten into only
finitely many different other terms. Therefore, we can apply a process similar
to that of “flattening” a PDS into a finite-state machine and derive a larger,
but linear, equivalent equation system. If there are recursive certs, we can still
choose an arbitrary bound on the length of terms and ignore the contributions
of larger terms. In this case, the “unflattened” and “flattened” systems do not
have the same solution, but the solution of the “flattened” system converges to
the solution of the “unflattened” one when the bound increases.

This provokes the question of whether the performance of the equation solver
can be improved by bounding the maximal term length, “flattening” the non-
linear system into a linear one, and solving the linear system. In order to ex-
perimentally address this question, we again took the system introduced in Sec-
tion 5.1, but without cert (19). We fixed the maximal term depth to various
numbers, computed the corresponding linear flattened systems, and solved them
using the Gauß-Seidel method. (We omit the details, which are standard.)

We found that in this example flattening works very well. Even with stack
depth 2 we obtained a solution that differed from the one given by Newton’s
method by less than 1% and can be computed in 1.23 seconds instead of 5.83.
Table 2 shows the results for stack depths up to 8, i.e. the size of the equation
system obtained for each stack depth and the time required to solve it. Notice
that in this case, the growth of the equation system as the stack depth grows is
benign (only linear); in general, the growth could be exponential.

This result might suggest that using Newton’s method could always be re-
placed by flattening in the absence of intersection certs. However, some caution
is required. When we tried to repeat the experiment for the case with 76 re-
searchers, our solver was able to solve the unflattened system within two minutes,
but ran out of memory even for a flattened stack depth of 2.

Table 2. Size of equation system and running times for flattened systems

Unflattened Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7 Depth 8
vars 2545 5320 7059 8798 10537 12276 14015 15754
time 5.83 1.23 3.32 6.39 10.34 18.78 32.18 42.97

SDSIrep: A Reputation System Based on SDSI 515

6 Discussion and Related Work

There is a large and growing body of literature on trust and reputation systems,
see e.g. [1,17]. In this paper, we have proposed a new framework, SDSIrep, that
is novel (to the best of our knowledge) in the way it expresses transitive trust
relations in an open-world scenario. More specifically, trust can be assigned to
principals based on their memberships in a group described by specific attributes,
e.g. co-authors of a researcher or employees of a certain university. We believe
that this mimics an important facet of how reputation is usually perceived.

Most trust and reputation systems collect peer-to-peer trust ratings and ag-
gregate a global reputation from these ratings. EigenTrust [4] is an example of a
system that also takes transitive trust into account, and it shares some similarities
with SDSIrep. Both EigenTrust and SDSIrep allow individual users to express and
quantify their personal trust relationships. In EigenTrust, principals express how
much they trust their peers, and trust in a peer automatically translates into trust-
ing the peer’s recommendations, and so on. In the terminology of [1], EigenTrust
is an example of a flow model. SDSIrep falls into the same category, but differs in
the means in which trust between principals is defined. In SDSIrep, trust can be
assigned to groups of principals (see above), and we allow to distinguish between
how much we trust a person and how much we trust their recommendations.

Both SDSIrep and EigenTrust make use of a probabilistic interpretation by
which these recommendations are aggregated into a measure of reputation. In
both cases, this measure is obtained from a Markov chain whose entries are given
by the peer-to-peer recommendations. In EigenTrust, the values of this Markov
chain are supplied directly by the users, whereas in SDSIrep they are obtained
by evaluating the certificates. Thus, roughly speaking, every SDSIrep system
has an equivalent EigenTrust system. However, the translation from SDSIrep to
EigenTrust is not completely straightforward, it requires to solve the equation
systems from Sections 3.4 and 4.2. In fact, providing these equation systems is
one of the contributions of this paper.

EigenTrust was designed for distributed computation of global trust values
in a peer-to-peer network with minimal overhead. We have not investigated
this aspect. For the purposes of this paper, we have assumed that some central
authority can collect relevant certificates and carry out the computation. In [10],
it was shown how authorization questions in SPKI/SDSI can be solved when
the relevant certificates are distributed among multiple sites. Our system is also
based on SPKI/SDSI, so it is conceivable that ideas from [10] could be lifted to
SDSIrep.

We assume that the certificates used in the computations represent the cur-
rent preferences of the users, and therefore the results of our algorithms reflect
the current situation. It is conceivable that users’ preferences change over time,
and that they will eventually want to redistribute their trust values to reflect their
new preferences. (Analogous effects occur, e.g., in PageRank or EigenTrust.) Such
dynamics are beyond the scope of this paper. For our purposes, we simply assume
that there exists some mechanism that allows the users to manage their certificates
and make their current certificates available to the computation engine.

516 A. Bouajjani et al.

References

1. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. In: Decision Support Systems (2005)

2. Adler, T., de Alfaro, L.: A content-driven reputation system for the Wikipedia. In:
Proc. 16th WWW Conference, ACM, pp. 261–270 (2007)

3. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylönen, T.: RFC
2693: SPKI Certificate Theory. In: The Internet Society (1999)

4. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in P2P networks. In: Proc. 12th WWW Conference (2003)

5. Jha, S., Reps, T.: Model checking SPKI/SDSI. JCS 12(3–4), 317–353 (2004)
6. Schwoon, S., Jha, S., Reps, T., Stubblebine, S.: On generalized authorization prob-

lems. In: Proc. CSFW, pp. 202–218. IEEE, Los Alamitos (2003)
7. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-

tomata. In: LICS 2004, IEEE, Los Alamitos (2004)
8. Li, N., Mitchell, J.C.: Understanding SPKI/SDSI using first-order logic. In: Proc.

CSFW, pp. 89–103. IEEE, Los Alamitos (2003)
9. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-

ing pushdown systems with an application to the computation of certificate chains.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer,
Heidelberg (2006)

10. Jha, S., Schwoon, S., Wang, H., Reps, T.: Weighted pushdown systems and trust-
management systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 1–26. Springer, Heidelberg (2006)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

12. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, Springer, Heidelberg (2005)

13. CiteSeer: Top 10,000 cited authors in computer science
http://citeseer.ist.psu.edu/allcited.html

14. CiteSeer: Estimated impact of publication venues in computer science
http://citeseer.ist.psu.edu/impact.html

15. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Pro-
ceedings of the National Academy of Sciences 102, 165–169 (2005)

16. Ley, M.: DBLP bibliography, http://www.informatik.uni-trier.de/~ley/db/
17. Jøsang, A., Marsh, S., Pope, S.: Exploring different types of trust propagation.

In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006.
LNCS, vol. 3986, pp. 179–192. Springer, Heidelberg (2006)

http://citeseer.ist.psu.edu/allcited.html
http://citeseer.ist.psu.edu/impact.html
http://www.informatik.uni-trier.de/~ley/db/

Author Index

Abdulla, Parosh A. 93
Alkassar, Eyad 109
Anand, Saswat 367
Andrés, Miguel E. 157

Bakewell, Adam 78
Balakrishnan, Gogul 124
Barnat, J. 48
Ben-Amram, Amir M. 218
Bjørner, Nikolaj 337
Blanc, Nicolas 459, 467
Boonstoppel, Peter 351
Bouajjani, Ahmed 93, 501
Brim, L. 48

Cadar, Cristian 351
Caniart, Nicolas 428
Chakraborty, Supratik 443
Chan, Wen-Chin 346
Chen, Yu-Fang 2, 346
Chockler, Hana 233
Cimatti, Alessandro 397
Clarke, Edmund M. 2, 33
Codish, Michael 218

Dang, Thao 188
de Moura, Leonardo 337
De Wulf, M. 63
Doyen, L. 63

Emerson, E. Allen 459
Engler, Dawson 351
Esparza, Javier 501

Farzan, Azadeh 2
Finkbeiner, Bernd 463
Fisman, Dana 315
Fleury, Emmanuel 428

Ghica, Dan R. 78
Godefroid, Patrice 367
Griggio, Alberto 397
Grumberg, Orna 233
Gulavani, Bhargav S. 443
Gupta, Aarti 382

Hoffmann, Jörg 203
Hoĺık, Lukáš 93

Ihlemann, Carsten 265
Ivančić, Franjo 188

Jacobs, Swen 265
Jonsson, Bengt 18

Kaati, Lisa 93
Kahlon, Vineet 382
Katz, Gal 141
Kidd, Nicholas 282
Kovács, Laura 249
Kroening, Daniel 467
Kupferman, Orna 315
Kupferschmid, Sebastian 203

La Torre, Salvatore 299
Lal, Akash 282
Larsen, Kim G. 203
Legay, Axel 173
Leroux, Jérôme 428
Li, Guodong 471
Luo, Chi-Jian 346
Lustig, Yoad 315

Madhusudan, P. 299
Malik, Sharad 1
Maquet, N. 63
McMillan, K.L. 413
Meseguer, José 332
Moskal, Micha�l 486
Murawski, Andrzej S. 173

Nori, Aditya V. 443

Ölveczky, Peter Csaba 332
Ouaknine, Joël 173

Pace, Gordon 341
Parlato, Gennaro 299
Peled, Doron 141
Peter, Hans-Jörg 463

518 Author Index

Rajamani, Sriram K. 443
Raskin, J.-F. 63
Reps, Thomas 124, 282

Saksena, Mayank 18
Sankaranarayanan, Sriram 188
Schewe, Sven 463
Schirmer, Norbert 109
Schneider, Gerardo 341
Schwoon, Stefan 501
Sebastiani, Roberto 397
Sharygina, Natasha 467
Šimeček, P. 48
Slind, Konrad 471
Sofronie-Stokkermans, Viorica 265
Starostin, Artem 109
Suwimonteerabuth, Dejvuth 501

Talupur, Murali 33
Tillmann, Nikolai 367

Touili, Tayssir 282
Tsai, Ming-Hsien 346
Tsay, Yih-Kuen 2, 346

van Rossum, Peter 157
Veith, Helmut 33
Vojnar, Tomáš 93

Wahl, Thomas 459
Wang, Bow-Yaw 2
Wang, Chao 382
Weber, M. 48
Wibling, Oskar 18
Worrell, James 173

Yadgar, Avi 233
Yang, Zijiang 382

Zeitoun, Marc 428

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Hardware Verification: Techniques, Methodology and Solutions
	Extending Automated Compositional Verification to the Full Class of Omega-Regular Languages
	Introduction
	Preliminaries
	Ultimately Periodic Words
	Learning ω-Regular Languages
	Optimizations
	Preliminary Experimental Results
	Conclusions and Future Work

	Graph Grammar Modeling and Verification of Ad Hoc Routing Protocols
	Introduction
	DYMO
	Modeling Using Graph Transformation Systems
	Symbolic Verification
	Modeling and Verification of DYMO
	Experimental Results
	Conclusions and Future Work

	Proving Ptolemy Right: The Environment Abstraction Framework for Model Checking Concurrent Systems
	Introduction
	Related Work
	A Generic Framework for Environment Abstraction
	System Model
	Ptolemaic Specifications
	Environment Abstraction
	Trade-Off between Expressivity of Labels and Number of Index Variables

	Verification of the Reader and Writer Algorithms
	Survey of Other Environment Abstraction Applications
	Conclusion

	Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking
	Introduction
	Revisiting Resistance
	Revisiting Resistant Reachability
	I/O Efficient MAP Algorithm
	Complexity Analysis and Comparison
	Experiments
	Conclusions

	Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking
	Introduction
	LTL and Alternating Automata
	Satisfiability-Checking of LTL
	Satisfiability: Performance Evaluation
	LTL Model-Checking
	Model-Checking: Performance Evaluation
	Conclusion

	On-the-Fly Techniques for Game-Based Software Model Checking
	Introduction and Background
	Idealized Algol: Syntax and Semantics
	Automata Formulation: On-the-Fly Composition
	Symbolic Automata
	Implementing Efficient Lazy Composition

	CEGAR: On-the-Fly Approximation and Refinement
	Approximating Game Automata
	Fast Early Detection of Counterexamples

	Mage: Empirical Results and Comparisons
	Lazy Precise Models
	Approximated Models and On-Demand Refinement
	Comparison of Precise vs. Approximate Modelling in Mage
	Comparison with GameChecker
	Comparison with Other Model Checkers

	Conclusion

	Computing Simulations over Tree Automata (Efficient Techniques for Reducing Tree Automata)
	Introduction
	Preliminaries
	Computing Simulations on Labelled Transition Systems
	An Algorithm for Computing Simulations on LTS
	Correctness and Complexity of the Algorithm

	Computing Downward Simulation
	Complexity of Computing the Downward Simulation

	Computing Upward Simulation
	Complexity of Computing the Upward Simulation

	Reducing Tree Automata
	Downward Simulation Equivalence
	Composed Equivalence

	Experiments with Reducing Tree Automata
	Conclusions and Future Work

	Formal Pervasive Verification of a Paging Mechanism
	Introduction
	Virtual Memory Simulation Problem
	Basic Definitions
	Physical Machine Specification
	Devices
	Virtual Machine Specification
	Simulation Relation

	Page Fault Handler Implementation and Code Verification
	Extended Hoare Logic
	Implementation
	Specification

	Correctness of the Page Fault Handler: Integrating Results
	Compiler Correctness: From C0 to the Physical Machine
	Driver Correctness
	Proof Sketch of the Paging Mechanism Correctness

	Conclusion

	Analyzing Stripped Device-Driver Executables
	Introduction
	Background on Intermediate-Representation Recovery
	Property Checking in Executables Using VSA
	Experiments
	Related Work

	Model Checking-Based Genetic Programming with an Application to Mutual Exclusion
	Introduction
	Background
	Genetic Programming
	Model Checking

	Combining GP and Model Checking
	Example - The Mutual Exclusion Problem
	Experimental Results

	Conclusions and Future Work

	Conditional Probabilities over Probabilistic and Nondeterministic Systems
	Introduction
	Applications
	Organization of the Paper

	Markov Decision Processes
	Conditional Probabilities over MDPs
	Conditional Probabilistic Temporal Logic
	Deterministic and Semi History-Independent Schedulers
	Semi History-Independent Schedulers
	Deterministic Schedulers

	Model Checking \rm cpCTL
	Acyclic MDP
	Extension to General MDP
	Optimizations

	Counterexamples
	Conclusion and Future Work

	On Automated Verification of Probabilistic Programs
	Introduction
	A Probabilistic Programming Language
	Contextual Equivalence
	Herman's Self-stabilisation Algorithm
	Hibbard's Algorithm and Random Trees
	The Dining Cryptographers
	Future Work

	Symbolic Model Checking of Hybrid Systems Using Template Polyhedra
	Introduction
	Preliminaries
	Flowpipe Construction
	Experiments
	Conclusion

	Fast Directed Model Checking Via Russian Doll Abstraction
	Introduction
	Notations
	Russian Doll Abstraction
	Abstraction Sets
	Pattern Databases

	Choosing Abstraction Sets
	Empirical Results
	Related Work
	Conclusion

	A SAT-Based Approach to Size Change Termination with Global Ranking Functions
	Introduction
	Size Change Termination
	Ranking Functions
	SCNP: Size-Change Termination NP Subset
	A SAT Based Implementation
	Experimentation

	Efficient Automatic STE Refinement Using Responsibility
	Introduction
	Preliminaries
	Symbolic Trajectory Evaluation (STE)
	Refinement in STE
	Causality and Responsibility

	Responsibility in STE Graphs
	STE Circuits as Causal Models
	Computing Degree of Responsibility in Trees
	Computing an Approximate Degree of Responsibility in DAGs

	Applying Responsibility to Automatic Refinement
	Experimental Results
	Verifying CAM Module
	Verifying Calculator 2
	Evaluation of Results

	Reasoning Algebraically About P-Solvable Loops
	Introduction
	Related Work
	Theoretical Preliminaries
	Generation of Invariant Polynomial Identities
	Conclusion

	On Local Reasoning in Verification
	Introduction
	Application Domains
	Illustration

	Preliminaries
	Locality
	Hierarchical Reasoning in Local Theory Extensions
	Decidability, Parameterized Complexity
	Recognizing Generalized Locality

	Examples
	Extensions with Free, (Strictly) Monotone, Injective Functions
	Extensions with Definitions and Boundedness Conditions
	Pointer Data Structures à la McPeak and Necula
	The Theory of Arrays à la Bradley, Manna and Sipma

	A General Framework for Obtaining Locality Results
	Experiments
	Conclusions

	Interprocedural Analysis of Concurrent Programs Under a Context Bound
	Introduction
	Terminology and Notation
	A New Approach Using Thread Summarization
	Weighted Pushdown Systems (WPDSs)
	Solving for the MOVP Value
	CBA Problem Definition

	Weighted Transducers
	Composing Weighted Transducers
	The Sequential Product of Two Weighted Automata
	Sequentializable Tensor Product
	Composing Transducers

	Related Work

	Context-Bounded Analysis of Concurrent Queue Systems
	Introduction
	Queue Systems
	The Bounded Context-Switching Reachability Problem
	Unbounded Context-Switching: Decidable Architectures
	Decidable Architectures for Recursive Programs
	Decidable Architectures for Non-recursive programs
	The Well-Queueing Assumption and Absence of Shared Memory

	Conclusions

	On Verifying Fault Tolerance of Distributed Protocols
	Introduction
	Preliminaries
	Regular Description of a Protocol
	FMSO and LTL(FMSO)
	An fmso-Based Description of a Protocol

	Verifying Resistance to Faults
	Types of Faults
	Generating the Faulty Protocol
	Handling Fault Distributions
	Model Checking the Faulty System

	Discussion

	The Real-Time Maude Tool
	Introduction
	Specification and Analysis in Real-Time Maude
	Soundness and Completeness of the Analysis
	Some Real-Time Maude Applications

	Z3: An Efficient SMT Solver
	Introduction
	Clients
	System Architecture
	Conclusion

	Computation and Visualisation of Phase Portraits for Model Checking SPDIs
	Introduction and Background
	SPeeDI^+
	Applications and Discussion

	GOAL Extended: Towards a Research Tool for Omega Automata and Temporal Logic
	Introduction
	The Extensions for Supporting Research
	Performance Evaluation and an Example Experiment
	Remarks

	RWset: Attacking Path Explosion in Constraint-Based Test Generation
	Introduction
	Overview
	Constraint-Based Execution
	Scalability Challenge: Discarding Redundant Paths

	Key Implementation Details
	Program States
	Live Variables
	Symbolic Memory References
	State Refinement
	Abstraction Issues
	Summary

	Evaluation
	Server and Library Code
	Device Drivers

	Related Work
	Conclusion

	Demand-Driven Compositional Symbolic Execution
	Introduction
	Background
	Motivating Example and Overview
	Demand-Driven Compositional Symbolic Execution
	Main Algorithm
	Compositional Symbolic Execution
	Demand-Driven Symbolic Execution

	Preliminary Experiments
	Other Related Work
	Conclusion

	Peephole Partial Order Reduction
	Introduction
	Guarded Independence Relation
	Independence Relation
	Guarded Independence Relation

	Peephole Partial Order Reduction
	Bounded Model Checking (BMC)
	Peephole Partial Order Reduction
	Comparison with Persistent-Set Based Methods

	Reducing the Overhead of GIR Constraints
	Experiments
	Conclusions

	Efficient Interpolant Generation in Satisfiability Modulo Theories
	Introduction
	Background
	Satisfiability Modulo Theory -- SMT
	Interpolation in SMT

	Interpolation for Linear Arithmetic with a State-of-the-Art Solver
	Interpolation with Non-strict Inequalities
	Interpolation with Strict Inequalities and Disequalities

	Graph-Based Interpolation for Difference Logic
	Computing Interpolants for Combined Theories Via DTC
	Combination without AB-Mixed Interface Equalities
	Combination with AB-Mixed Interface Equalities

	Experimental Evaluation
	Description of the Benchmark Sets
	Comparison with the State-of-the-Art Tools Available

	Conclusions

	Quantified Invariant Generation Using an Interpolating Saturation Prover
	Introduction
	Background: Paramodulation Calculus
	Interpolants from Superposition Proofs
	Invariant Generation
	Implementation and Experiments
	Conclusion and Future Work

	Accelerating Interpolation-Based Model-Checking
	Introduction
	Introducing Accelerated Interpolants
	Some Notes on Linear Algebra
	Presburger Accelerated Interpolants
	Half-Space Attractors
	Computing Presburger Accelerated Interpolants
	Conclusion and Further Work

	Automatically Refining Abstract Interpretations
	Introduction
	Refinement: Interpolated Widen and Implicit Disjuncts
	\sf DAG Refinement
	Implementation
	Conclusion

	SVISS: Symbolic Verification of Symmetric Systems
	Introduction
	Tool Description and Usage
	Applications of SVISS
	Related Work and Conclusions

	RESY: Requirement Synthesis for Compositional Model Checking
	Requirement Synthesis
	Generating Requirements from Abstractions
	Operation Modes of RESY
	Results

	Scoot: A Tool for the Analysis of SystemC Models
	Introduction
	Overview of Scoot
	Static Scheduling for Dynamic Verification
	Related Work and Conclusion

	Trusted Source Translation of a Total Function Language
	Introduction
	TFL and HOL-
	Trusted Transformation
	Monomorphisation
	Normalization
	Defunctionalization
	Pattern Matching

	Producing-by-Proof Imperative Code
	Related Work
	Conclusions and Future Work

	Rocket-Fast Proof Checking for SMT Solvers
	Introduction
	Contributions
	Proof Search in SMT Solvers

	Definitions
	Boolean Deduction
	Skolemization Calculus
	The Checker
	Implementation
	Soundness Checking
	Performance Evaluation

	Related and Future Work
	Conclusions

	SDSIrep: A Reputation System Based on SDSI
	Introduction
	Background
	A Brief Introduction to SPKI/SDSI
	SPKI/SDSI and Pushdown Systems

	A SDSI-Based Reputation System
	A Numerical Model of Trust
	SDSIrep Certificates
	Certificate Chains and Markov Chains
	Solving the Trust and Reputation Problems

	Intersection Certificates
	Intersection Certs in SDSIrep
	Solving the Trust Problem with Intersection Certs

	Experiments
	A Small System for Academic Reputation
	Experiment 1
	Experiment 2

	Discussion and Related Work

	Author Index

