

Lecture Notes in Computer Science 4959
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Laurie Hendren (Ed.)

Compiler
Construction

17th International Conference, CC 2008
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008
Budapest, Hungary, March 29 – April 6, 2008
Proceedings

13

Volume Editor

Laurie Hendren
McGill University, School of Computer Science
McConnell Engineering Building, Room 318
3480 University Street, Montreal, Quebec H3A 2A7, Canada
E-mail: hendren@cs.mcgill.ca

Library of Congress Control Number: 2008923179

CR Subject Classification (1998): D.3.4, D.3.1, F.4.2, D.2.6, F.3, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78790-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78790-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12244546 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2008 was the 11th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
22 satellite workshops (ACCAT, AVIS, Bytecode, CMCS, COCV, DCC, FESCA,
FIT, FORMED, GaLoP, GT-VMT, LDTA, MBT, MOMPES, PDMC, QAPL,
RV, SafeCert, SC, SLA++P, WGT, and WRLA), nine tutorials, and seven invited
lectures (excluding those that were specific to the satellite events). The five
main conferences received 571 submissions, 147 of which were accepted, giving
an overall acceptance rate of less than 26%, with each conference below 27%.
Congratulations therefore to all the authors who made it to the final programme!
I hope that most of the other authors will still have found a way of participating
in this exciting event, and that you will all continue submitting to ETAPS and
contributing to make of it the best conference in the area.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2008 was organized by the John von Neumann Computer Society
jointly with the Budapest University of Technology and the Eötvös University,
in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from Microsoft Research and Danubius Hotels.

VI Foreword

The organizing team comprised:

Chair Dániel Varró
Director of

Organization István Alföldi
Main Organizers Andrea Tósoky, Gabriella Aranyos
Publicity Joost-Pieter Katoen
Advisors András Pataricza, Joaõ Saraiva
Satellite Events Zoltán Horváth, Tihamér Levendovszky,

Viktória Zsók
Tutorials László Lengyel
Web Site Ákos Horváth
Registration System Victor Francisco Fonte, Zsolt Berényi,

Róbert Kereskényi, Zoltán Fodor
Computer Support Áron Sisak
Local Arrangements László Gönczy, Gábor Huszerl,

Melinda Magyar, several student volunteers.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig (Berlin),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Kim Larsen (Aalborg), Gerald Luettgen (York) Tiziana Mar-
garia (Göttingen), Ugo Montanari (Pisa), Martin Odersky (Lausanne), Catus-
cia Palamidessi (Paris), Anna Philippou (Cyprus), CR Ramakrishnan (Stony
Brook), Don Sannella (Edinburgh), João Saraiva (Minho), Michael Schwartzbach
(Aarhus), Helmut Seidl (Munich), Perdita Stevens (Edinburgh), and Dániel
Varró (Budapest).

I would like to express my sincere gratitude to all of these people and organi-
zations, the Programme Committee Chairs and members of the ETAPS confer-
ences, the organizers of the satellite events, the speakers themselves, the many
reviewers, and Springer for agreeing to publish the ETAPS proceedings. Finally,
I would like to thank the Organizing Chair of ETAPS 2008, Dániel Varró, for
arranging for us to have ETAPS in the most beautiful city of Budapest

January 2008 Vladimiro Sassone

Preface

The CC 2008 Programme Committee is pleased to present the proceedings of the
17th International Conference on Compiler Construction (CC 2008), which was
held on April 3rd and 4th in Budapest, Hungary, as part of the Joint European
Conference on Theory and Practice of Software (ETAPS 2008). As in the last
few years, papers were solicited on a wide range of areas including traditional
compiler construction, compiler analyses, runtime systems and tools, program-
ming tools, techniques for specific domains, and the design and implementation
of novel language constructs. We received submissions from a wide variety of
areas and the papers in this volume reflect that variety.

The Programme Committee received 71 submissions. From these, 17 research
papers and 1 tool demonstration paper were selected, giving an overall accep-
tance rate of 25%. The Programme Committee did the reviewing and paper
selection completely electronically this year, in two rounds. In the first round at
least three Programme Committee members reviewed the papers. After the first
round we identified those papers which were definitely accepts and those which
needed further discussion (about 20 papers). Our second round concentrated on
the papers needing further discussion, and we added one or two more reviews to
help us decide which papers to finally accept.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for all the care they put into their submissions.
Our gratitude also goes to the Programme Committee members and external
reviewers for their substantive and insightful reviews. Also, thanks go to the
developers and supporters of the EasyChair conference management system for
providing a reliable, sophisticated and free service.

CC 2008 was made possible by the ETAPS Steering Committee and the
local organizing committee. Finally, we are grateful to Michael Schwartzbach for
giving the CC 2008 invited talk entitled Design Choices in a Compiler Course -
or - How to Make Undergraduates Love Formal Notation.

January 2008 Laurie Hendren

Conference Organization

Programme Chair

Laurie Hendren, McGill University, Canada

Programme Committee

José Nelson Amaral, University of Alberta, Canada
Eduard Ayguade, Technical University of Catalunya (UPC), Spain
Albert Cohen, INRIA Futurs, Orsay, France
Alain Darte, CNRS, École normale supérieure de Lyon, France
Martin Elsman, IT University of Copenhagen, Denmark
M. Anton Ertl, TU Wien, Austria
David Gregg, Trinity College Dublin, Ireland
Sumit Gulwani, Microsoft Research, USA
Görel Hedin, Lund University, Sweden
Richard Jones, University of Kent, Canterbury, UK
Mira Mezini, Darmstadt University of Technology, Germany
Ana Milanova , Rensselaer Polytechnic Institute, USA
Antoine Miné, Ecole Normale Supérieure, Paris, France
Anders Møller, BRICS, University of Aarhus, Denmark
Michael O’Boyle, University of Edinburgh, UK
Peter O’Hearn, Queen Mary, University of London, UK
Jens Palsberg, UCLA, USA
Simon Peyton Jones, Microsoft Research Ltd, UK
Jan Vitek, IBM T.J. Watson, USA and Purdue University, USA
Andreas Zeller, Saarland University, Germany

Reviewers

Many thanks to the following researchers who provided official external reviews
for the Programme Committee, and to others who helped in the review process.

Christophe Alias
Christopher Barton
Richard Bennett
Josh Berdine
Paul Berube
Paul Biggar
Neil Birkbeck

Eric Bodden
Robert Bunyan
Paul Callaghan
Paul Carpenter
Adrian Cristal
Antonio Cunei
Alcino Cunha

X Organization

Stephen Curial
Benôıt Dupont de Dinechin
Torbjörn Ekman
Paul Feautrier
Mohammed Fellahi
François de Ferrière
Rahul Garg
John Gilbert
Alexey Gotsman
Ramaswamy Govindarajan
Daniel Grund
Sebastian Hack
Timothy Harris
Christoph Herrmann
Martin Hirzel
Timothy Jones
Andreas Krall
Akash Lal
Patrick Lam
Piotr Lesnicki
Ondřej Lhoták
Ben Lippmeier
Josep Llosa
Florian Loitsch
Simon Marlow
Xavier Martorell

Laurent Mauborgne
Bill McCloskey
Walid Najjar
Emma Nilsson-Nyman
Nate Nystrom
Prakash Panangaden
Jinpyo Park
Fernando Pereira
Cristian Perfumo
Filip Pizlo
Adrian Prantl
Fabrice Rastello
Xavier Rival
Amr Sabry
Markus Schordan
Rob Schreiber
Jorge Sousa Pinto
Jesper Honig Spring
Adam Szalkowski
Christian Thalinger
Osman Unsal
Viktor Vafeiadis
Peng Wu
Hongwei Xi
Hongseok Yang
Lukasz Ziarek

Table of Contents

Papers from Invited Talks

Design Choices in a Compiler Course or How to Make Undergraduates
Love Formal Notation . 1

Michael I. Schwartzbach

Improved Memory-Access Analysis for x86 Executables 16
Thomas Reps and Gogul Balakrishnan

Analyses and Transformations

A System for Generating Static Analyzers for Machine Instructions 36
Junghee Lim and Thomas Reps

IDE Dataflow Analysis in the Presence of Large Object-Oriented
Libraries . 53

Atanas Rountev, Mariana Sharp, and Guoqing Xu

An Adaptive Strategy for Inline Substitution . 69
Keith D. Cooper, Timothy J. Harvey, and Todd Waterman

Automatic Transformation of Bit-Level C Code to Support Multiple
Equivalent Data Layouts . 85

Marius Nita and Dan Grossman

Compiling for Parallel Architectures

Control Flow Emulation on Tiled SIMD Architectures 100
Ghulam Lashari, Ondřej Lhoták, and Michael McCool

Generating SIMD Vectorized Permutations . 116
Franz Franchetti and Markus Püschel

Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model 132

Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy,
J. Ramanujam, Atanas Rountev, and P. Sadayappan

XII Table of Contents

Runtime Techniques and Tools

How to Do a Million Watchpoints: Efficient Debugging Using Dynamic
Instrumentation . 147

Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and
Weng-Fai Wong

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 163
Gregory B. Prokopski and Clark Verbrugge

Hardware JIT Compilation for Off-the-Shelf Dynamically
Reconfigurable FPGAs . 178

Etienne Bergeron, Marc Feeley, and Jean Pierre David

Visualization of Program Dependence Graphs . 193
Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck

Analyses

On the Relative Completeness of Bytecode Analysis Versus Source
Code Analysis . 197

Francesco Logozzo and Manuel Fähndrich

Efficiency, Precision, Simplicity, and Generality in Interprocedural Data
Flow Analysis: Resurrecting the Classical Call Strings Method 213

Uday P. Khedker and Bageshri Karkare

Java Bytecode Verification for @NonNull Types . 229
Chris Male, David J. Pearce, Alex Potanin, and
Constantine Dymnikov

Efficient Context-Sensitive Shape Analysis with Graph Based Heap
Models . 245

Mark Marron, Manuel Hermenegildo, Deepak Kapur, and
Darko Stefanovic

Atomicity and Transactions

Coqa: Concurrent Objects with Quantized Atomicity 260
Yu David Liu, Xiaoqi Lu, and Scott F. Smith

Keep Off the Grass: Locking the Right Path for Atomicity 276
Dave Cunningham, Khilan Gudka, and Susan Eisenbach

Supporting Legacy Binary Code in a Software Transaction Compiler
with Dynamic Binary Translation and Optimization 291

Cheng Wang, Victor Ying, and Youfeng Wu

Author Index . 307

Design Choices in a Compiler Course

or
How to Make Undergraduates Love Formal

Notation

Michael I. Schwartzbach

Department of Computer Science
University of Aarhus, Denmark

mis@brics.dk

Abstract. The undergraduate compiler course offers a unique oppor-
tunity to combine many aspects of the Computer Science curriculum.
We discuss the many design choices that are available for the instructor
and present the current compiler course at the University of Aarhus, the
design of which displays at least some decisions that are unusual, novel,
or just plain fun.

1 Introduction

The compiler course is an important component in the undergraduate Computer
Science curriculum. Ideally, it ties together several aspects of the education,
such as formal languages (regular and context-free languages, syntax-directed
translation), programming languages (features and constructs), algorithms and
data structures (ASTs, symbol tables, code selection, optimization), logic (type
systems, static analysis), machine architecture (target platforms), and software
engineering (phase slicing, versioning, testing). At the same time, the compiler
project may involve the largest and most complex piece of software that the
students so far have been required to handle.

Even though most compiler courses obviously have a common basic structure,
a lecturer faces a host of design choices that must be made explicitly or implicitly.
In the following such choices will be presented and discussed, both in general
terms (based on an unscientific study of around 50 courses) and as they apply
to the current compiler course at the University of Aarhus, the design of which
displays at least some decisions that are unusual, novel, or just plain fun.

2 Design Choices

A compiler course must teach the students how compilers work. Beyond this ob-
vious statement hides a multitude of different choices that influence the contents
of the lectures, the style of the teaching, and the experiences of the students.
Compiler courses may fill different roles in the curriculum, recruit students with

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M.I. Schwartzbach

different backgrounds, and focus on different aspects. Thus, the purpose of this
section is not to describe an optimal point in the design space, but instead to
make the many design choices explicit and to discuss their consequences.

Projects

Many compiler courses are focused on a compiler project where the students
implement a working compiler of parts thereof. It is possible to keep the course
purely theoretical, but it seems to be the consensus that learning-by-doing is
eminently suited for this topic, and that implementing a compiler is a uniquely
rewarding and empowering experience for students.

A project may be monolithic, meaning that the students build a complete com-
piler from scratch. While initially appealing, this approach is often too demanding
and may strand students that get a bumpy start. At the other end of the scale, the
course may be segmented into a series of unrelated minor projects or assignments
that each are concerned with different aspects of the compilation process.

In between these extremes, many courses seek to provide a phase slicing where
the students hand in different parts of the compiler at various deadlines. The
phases may be implicit, or they can be made explicit by specifying strict APIs
for their interfaces or by introducing a string of intermediate languages. This is
more manageable, but fixed interfaces tend to limit the possible software designs
while many intermediate languages tend to be confusing.

The compiler project is often large, time-consuming, and viewed as a rite of
passage. Its solution is typically the largest and most complex piece of software
that the students have written. Correspondingly, it is also a challenge for the
teacher, since the project must be planned and tested in detail.

Source Language

The source language of a compiler is rarely a complete programming language,
such as Java, C#, or Haskell. The many subtle details of such languages and
their specifications are seen as distractions from the essential topics. Also, such
languages typically contain many redundant features that increase the amount
of grunt work in the project. Thus, most source languages are scaled-down ver-
sions of existing languages or invented for the occasion. There is a surprising
fecundity, as a quick look through the hits in Google reveals the following source
languages for compiler projects: Tiny, Cool, UnCool, MinC, MicroGCL, Tiger,
Iota, PCAT, Tiny-C, SampleC, Lake, B-flat, DL07, Simple, Ada/CS, ice9, ALL-
COT, F05, Z#, MiniCaml, MiniPascal, Pascalito, MiniOberon, SOOP, SIMP,
CSX, Tigris, Minila, C--, μOCCAM, MLPolyR, Dejlisp, and (Java seems to
spawn the most imitators) Decaf, Irish Coffee, Espresso, TinyJava, MiniJava
(several versions), MicroJava, Fjava, Javelet, StaticJava, CSX, j--, Jack, and
Joos. Most of these languages include essentially the same features, but there
is of course a fundamental distinction between functional and imperative lan-
guages. The huge variety may be viewed as an instance of the Not-Invented-Here
syndrome, but it probably just reflects that most compiler teachers are having

Design Choices in a Compiler Course 3

fun with their course and cannot resist the urge to tinker. Quite often the source
languages exist in two or more versions, and the students may earn extra credit
by implementing versions with extra features.

An entirely different approach is to use domain-specific source languages,
which is probably how most students will potentially apply their compiler skills.
In this case the students may even be allowed to design their own languages
in response to challenges from various application domains. The advantage is
that the project then includes a component of language design, but the main
disadvantage is that the resulting languages may omit many important features
(and that the teacher faces a Babylonic confusion).

Target Language

The choice of target language is less varied. Languages in the Java or C# fami-
lies generally translate into the corresponding virtual machines (since JVM and
.NET are quite accessible) and Pascal derivatives translate into a P-machine.
Many courses choose assembly code as the target, generally x86, SPARC, or
MIPS, sometimes in simplified forms such as SPIM. A third choice is to generate
C-code, which seems to be a good match for domain-specific source languages.
The choice of target language is also related to the discussion of frontends vs.
backends in Section 5.

Implementation Language

The implementation language is generally one with which the students are al-
ready familiar, typically Java, C#, ML, or C++. The many Java-based source
languages are almost always linked with Java as implementation language, which
yields a certain elegance. Other courses explicitly use distinct source and imple-
mentation languages to increase the exposure to different languages.

That Extra Thing

Apart from the basics of compiler construction, a compiler course seems to have
room for something extra. For example, the students may also acquire a de-
tailed knowledge of functional programming if the source and implementation
languages are both functional. Also, if the source language is domain-specific,
then the students may leave the course with significant knowledge of the given
application domain. As a final example, the compiler may be specified completely
in logic programming or using an attribute grammar evaluation system, in which
case knowledge of the chosen formalism is added to the outcome of the course.
This also relates to the discussion in Section 5.

This ability to use a compiler course as a vehicle for That Extra Thing is an
important design choice of which teachers should be aware.

Specifications and Formalization

Compiler courses display a large difference in the level of formalization that is
used in the specifications of languages, semantics, machines, and translations.

4 M.I. Schwartzbach

To a large extent this reflects the pre-qualifications of the students and the
preferences of the teacher. Most aspects of compiler technology may in fact be
completely formalized, but this is rarely the style used, and it is certainly possible
to be precise without being formal. As discussed in Section 6, selling the idea of
useful formalizations may become a main purpose in the course.

The various components of the project are typically specified rather infor-
mally, using examples or prose. If the source language is a subset of a known
language, then it may be specified as the original (often huge) language specifi-
cation mentally projected onto the subset of the syntax that is allowed. This is
actually a brittle technique, since programs in the subsyntax for subtle reasons
are not always legal in the full language (as a stupid example, imagine allow-
ing excluded keywords as identifiers). Reading full specifications of languages or
target platforms is often a both harrowing and healthy experience for students.

Tools and Technology

Most phases of a compiler may be supported by specialized tools and, of course,
entire compilers may be specified in compiler-generating frameworks. Apart from
the occasional use of attribute grammar systems, compiler courses generally only
automate scanning and parsing. There seems to be a certain air of conservatism
in this respect, with Lex/Flex and Yacc/Bison still reigning supremely. Java and
C# has specific and improved versions of such tools, as does in fact any major
programming language with respect for itself. Generally, the more modern tools
will offer better support, such as integrated scanners and parsers, automatic
generation of AST code, and perhaps expressive power beyond LALR(1).

An alternative approach uses one-pass compilers, in the style of the classi-
cal Pascal compilers, with handwritten scanners and recursive-descent parsers.
While this possesses some old-school charm, it misses out on important aspects
(such as ASTs, phases, analysis, and optimizations) and it does not generalize
to handle the complexities of modern languages.

Software Engineering

The compiler project is an excellent opportunity for gaining experience with
software engineering techniques. The code is large enough to show how IDEs
may help the programming task, and tools for code sharing and versioning are
relevant, particularly if the students work in groups. The architecture of the com-
piler may also be used to showcase advanced programming patterns as discussed
in Section 7.

Skeleton Code

Most courses provide the students with a starting point in the form of a skeleton
of the complete compiler. This helps the students structure the code and it makes
their resulting compilers more uniform and thus easier to evaluate. The skeleton
may be more or less detailed, which is a useful parameter for adjusting the work
load.

Design Choices in a Compiler Course 5

An alternative strategy is to provide the students with a complete compiler
for a different and often simpler source language, sometimes a subset of the
source language for their project. This helps in providing a complete overview
and enables the students to proceed by analogy.

Testing

Testing an incomplete compiler is a challenge. The generally recommended strat-
egy is to output a version of the annotated AST after each phase and then man-
ually inspect its contents. If the compiler is structured with explicit phases, a
more ambitious testing harness may be possible, see Section 8. For the complete
compiler it is useful to provide a test suite for diagnosing its correctness, and
perhaps also for grading the project. In any case, it is important that students
acquire techniques beyond black box testing of the completed compiler.

Documentation

A compiler course is certainly not a writing class. A program as large as the con-
structed compiler seems to call for extensive documentation, but most courses fo-
cus instead on writing code. Almost universally, the students are asked to com-
ment their code (often using something like Javadoc) and to write two pages for
each hand-in describing the structure of their code and the algorithms the employ.

Group Work

While a small or segmented project is suitable for an individual student, the
larger projects typically allow or require project groups. The ideal size of a
group seems to be three people, which corresponds well with other programming
experiences. There a several benefits from project groups, including the direct
training in collaboration, planning, and communication. The danger is of course
that the learning outcomes may differ for the group members, in particular there
is a danger of leaving a weaker member in charge of fetching sodas.

Exams and Grading

The project is generally the dominating activity on a compiler course, but this
is not always reflected with a equal weight in the examinations. The final grade
is typically a weighted sum of the individual project hand-ins, a number of
midterms, and a final exam. The midterms and the final exam are of course in-
dividual, while the project hand-ins are often made in groups. For group projects
the weight of the compiler code varies between 25% and 50% (with 40% being
the median), and for individual projects it varies between 70% and 90% (with
70% being the median). In a few cases the weight of the project is zero, which
seems to provide poor alignment as discussed in Section 11. The final exam is
almost invariably a standard written test, focusing on the underlying theory.

The compiler code is evaluated by a combination of code inspection and func-
tional testing. It is a huge advantage to enable automatic evaluation of test

6 M.I. Schwartzbach

suites, which must of course be able to handle both positive and negative test
cases, as discussed in Section 8.

Quite a few courses supplement the exam with an additional possibility for
winning awards for such feats as “Best Compiler” or “Fastest Runtime”. Contests
like these are a surprisingly effective way of spurring on the better students. A
winner’s cap or t-shirt (or merely a mention on a Web page) is apparently ample
payment for those extra 100 hours of work.

3 The dOvs Course

The Department of Computer Science at the University of Aarhus has an under-
graduate compiler course (called dOvs) in the final year of the B.Sc. program.
It has the unique advantage of being a mandatory course, meaning that it is
attended by around 80 students every year. Following an earlier run in 1997-
2001, the course was redesigned in 2005 based on the past experiences and with
explicit attention to the many design choices presented above.

4 A Case for Large Languages

As mentioned earlier, most source languages for compiler projects are smallish.
The motivation is that the students have a limited time for their project and
that a small language allows them to focus on the important concepts.

In contrast, the source language for the dOvs compiler project is huge chunk of
Java. The largest language we consider is called Joos2, and it corresponds to Java
1.3 with the omission of package private declarations, some control structures,
and various odds and ends. Conceptually, it is every bit as complicated as the
full language. The Joos2 language is the target for students going for extra
credit. The basic requirement is the Joos1 language, which further omits instance
and static initializers, multi-dimensional arrays, interfaces, and simplifies local
initializers and method overloading.

The benefits of using a large language is clearly that the students obtain a
realistic insight in to the workings of a full compiler that they have been using
for their entire previous studies. Their sense of achievement and empowerment
clearly grows with the street credibility of the source language. Also, by consid-
ering a full modern programming language, the students will encounter many
concepts and challenges that are absent in smaller projects, as discussed in Sec-
tion 5 and in Section 6.

The challenge of a large language is of course to make the projects succeed
in the given time frame. Clearly, this requires that the starting point is a large
skeleton compiler. Our model implementation of the Joos2 compiler is 12,207
lines of code (hand-written that is—SableCC generates a further 64,290 lines).
The skeleton that is provided is 8,466 lines of code. The remaining 3,741 lines of
code must then be written by the project groups (but generally they require be-
tween 5,000 and 10,000 lines to fulfill this task). The skeleton code includes 3,000
lines of code for defining Java bytecodes and the peephole optimizer discussed in

Design Choices in a Compiler Course 7

Section 10. This leaves around 5,000 lines of real compiler code that the students
are given for free. Clearly, the danger is that they could miss important points
by not fully understanding this code. However, it seems impossible to complete
the skeleton without having a detailed understanding of its inner workings.

The students are provided with a complete compiler for the Joos0 language,
which is a tiny static subset of Joos1 that corresponds to many of the source
languages used for other compiler courses. For completeness, a lecture is used
on the implementation of a narrow, one-pass compiler for a subset of C that is
compiled into the IJVM architecture (in 841 lines of code).

5 Frontend, Backend, or Middle-End?

Compiler courses can roughly be divided into two categories: those that are
frontend-heavy and those that are backend-heavy (with only a few large courses
managing to be both at the same time).

The first category spends a large part of the course on formal languages, in
particular on finite automata and context-free parsing. The construction and
correctness of LALR(1) parsing tables is still a cornerstone of many courses,
sometimes consuming half the available time. Of course, LALR(1) parser gen-
erators are still the most common choice, even if many other alternatives are
available, including general parsers that can handle all unambiguous languages.
These compiler courses often double as formal languages courses, but even in
this setting LALR(1) parsing theory is probably not the most vital topic.

The second category spends a large part of the course on code generation,
register allocation, and optimization for a realistic processor architecture. In
this setting, the project source language is often a simple static subset of Java
or C that allows the frontend to be dealt with as painlessly as possible.

Wedged between the traditional frontend and backend is the middle-end which
deals with the semantic analysis, including symbol tables and type checking,
which the majority of compiler courses dispenses with in a single week. This
actually seems paradoxical, since e.g. the vast majority of the Java and C#
language specifications deal with exactly this topic. The dOvs course has been
designed to be middle-end-heavy.

For the frontend, dOvs has the advantage of following a mandatory course on
formal languages, so little time needs to be spent on the basic definitions. The
students learn how LALR(1) tables work, but not how they are constructed. This
provides a sufficient basis for understanding LALR(1) conflicts and reading error
messages from SableCC. The students are provided with a SableCC specification
for the Joos1 language, but with a dozen missing features that must then be
added (an the resulting LALR(1) conflicts must be resolved).

The backend is naturally light, since our compiler generates Java bytecode
and the JVM has a simple architecture. Even so, optimization does play a major
role in the course, as discussed in Section 10.

But the majority of the course deals with the voluminous middle-end of a Java
compiler: weeding of ASTs for non-LALR(1) syntactic restrictions, building the

8 M.I. Schwartzbach

global class library, building environments, linking identifiers to declarations, re-
solving import declarations, checkingwell-formedness of the global class hierarchy,
disambiguating compound names, type checking, making implicit coercions man-
ifest, constant folding, and performing static analyses for reachability and definite
assignments. Such tasks are the main challenges of modern compilers and, conse-
quently, it seems reasonable to give them a proportional amount of attention.

6 Learning to Love Formal Notation

The dOvs course is designed with the clear goal that the students should learn
to love formal notation. This is not a trivial task, since many students start out
with the exact opposite attitude. But it is generally the case that a tool is best
appreciated when it is desperately needed.

The Joos languages are formally defined by a combination of its syntax, the
Java Language Specification (JSL), and a list of excluded features. As mentioned
earlier, it is actually a subtle task to ensure that every Joos1 program is also
a legal Joos2 program, and that every Joos2 program is also a legal Java 1.3
program.

The JLS is a formidable document that is heavy reading for anyone, in partic-
ular for undergraduate students. Thus, the lectures present compact formalized
explanations of the difficult aspects of the Joos (and Java) semantics. The lec-
tures (and the accompanying 600 slides) use appropriate formal notation to
explain the sometimes convoluted semantics of Java. This happens at a time
when the students are highly motivated, since they are trying to implement that
semantics at the same time, and they quickly notice that the formal notation is
often a direct guide to the code that must be written.

Various formalisms are in play here. The well-formedness of a class hierar-
chy is defined by sets and relations (DECLARE, INHERIT, and REPLACE) that
are populated through inductive rules and subjected to constraints phrased in
first-order logic. Static type checking is defined through ordinary inference rules,
with inductively defined relations as side conditions. The static analyses for
reachability and definite assignment are defined using least solutions for set con-
straints. Code generation is specified as a syntax-directed translation based on
templates. Finally, peephole optimization is presented as the fixed-point closure
of a transition relation.

As an illustration why the practicality of formal notation becomes clear, con-
sider the rules for definite assignments. In the JSL these are defined in 474 lines
of prose of the following poetic form:

The definite unassignment analysis of loop statements raises a special problem. Consider the statement
while (e) S. In order to determine whether V is definitely unassigned within some subexpression of e, we
need to determine whether V is definitely unassigned before e. One might argue, by analogy with the rule
for definite assignment, that V is definitely unassigned before e iff it is definitely unassigned before the
while statement. However, such a rule is inadequate for our purposes. If e evaluates to true, the statement
S will be executed. Later, if V is assigned by S, then in the following iteration(s) V will have already been
assigned when e is evaluated. Under the rule suggested above, it would be possible to assign V multiple
times, which is exactly what we have sought to avoid by introducing these rules. A revised rule would be:
V is definitely unassigned before e iff it is definitely unassigned before the while statement and definitely
unassigned after S. However, when we formulate the rule for S, we find: V is definitely unassigned before
S iff it is definitely unassigned after e when true. This leads to a circularity. In effect, V is definitely
unassigned before the loop condition e only if it is unassigned after the loop as a whole! We break this
vicious circle using a hypothetical analysis of the loop condition and body. For example, if we assume
that V is definitely unassigned before e (regardless of whether V really is definitely unassigned before e),
and can then prove that V was definitely unassigned after e then we know that e does not assign V.

Design Choices in a Compiler Course 9

In the formal notation, the definite assignment analysis is phrased in 7 slides with
set constraints of the following form (that directly translates into code using a
DepthFirstAdapter visitor pattern from SableCC):

{σ x = E; S} :
B[[E]] = B[[{σ x = E; S}]]
B[[S]] = A[[E]] ∪ {x}
A[[{σ x = E; S}]] = A[[S]]

while (E)S :
B[[E]] = B[[while (E)S]]
B[[S]] = At[[E]]
A[[while (E)S]] = Af [[E]]

Thus, the students experience that the formal notation is their friend that en-
ables them to meet their deadlines. Hopefully, this will change many skeptical
attitudes.

7 Explicit Phases through SableCC and AspectJ

As mentioned, there are countless tools for generating scanners and parsers, and
still many even if they are required to be compatible with Java. We have chosen to
use SableCC, which is of course to some degree a matter of taste, though it does
provide most modern conveniences: integrated scanner and parser, automatic
parse tree construction, and visitor patterns for tree traversals (in fact, we use a
souped-up version of SableCC with more powerful features for tree navigation).
However, there are more objective reasons why we feel SableCC is uniquely
suited for a compiler course.

SableCC allows the specification of ASTs in a separate grammar that is really
just a recursive datatype. It is then possible to specify syntax-directed trans-
lations from concrete to abstract syntax trees. Apart from being convenient,
this teaches the students about inductive translations in a practical setting.
This feature is also used to illustrate desugaring, by translating for-loops into
while-loops during parsing.

Phase slicing can be taken to an extreme length by combining the ASTs
of SableCC with simple features of AspectJ (which is the real implementation
language, though the students hardly notice this). A compiler phase needs to
perform one or more traversals of the AST but also to decorate the AST nodes
with additional information, such as symbol environments and types. Generally
this means that the class definitions for AST nodes must be extended with phase-
specific fields, which poses several problems. First, the actual AST node classes
are autogenerated by SableCC, so it is inconvenient and dangerous manually to
extend them. Second, if the phases are considered one at a time, then it requires
an awkward prescience to declare these extra AST node fields in advance. Third,
the specification of a given phase will be scattered over several files, which is an
inconvenient software architecture.

10 M.I. Schwartzbach

Using AspectJ, extra fields can be injected into the AST nodes using inter-
type declarations. For example, the skeleton code for the type checking phase
starts as follows:

public aspect TypeChecking extends DepthFirstAdapter {
/** The static type of the expression */
public PType PExp.type;

/** The static type of the lvalue */
public PType PLvalue.type;

/** The declaration of the field referenced in this lvalue */
public AFieldDecl AStaticFieldLvalue.field_decl;

/** The declaration of the field referenced in this lvalue */
public AFieldDecl ANonstaticFieldLvalue.field_decl;

/** The declaration of the method invoked by this expression */
public AMethodDecl AStaticInvokeExp.method_decl;

/** The declaration of the method invoked by this expression */
public AMethodDecl ANonstaticInvokeExp.method_decl;

/** The declaration of the constructor invoked by this expression */
public AConstructorDecl ANewExp.constructor_decl;

/** The declaration of the constructor invoked by this statement */
public AConstructorDecl ASuperStm.constructor_decl;

/** The declaration of the constructor invoked by this statement */
public AConstructorDecl AThisStm.constructor_decl;

...

}

Here, several autogenerated AST node classes are extended with extra fields for
information synthesized by the type checker. Using this technique, all concerns
of the type checker is collected in a single file, and the autogenerated code can
safely be extended.

8 Unit Testing through Phase Mixing

Testing a compiler during development is a difficult challenge, since only a com-
plete compiler has a functional behavior. The students are encouraged to pro-
gram an AST pretty-printer that after each new phase is extended to also print
the newly added AST decorations. This simple technique goes a long way, but
we can do better.

The use of AspectJ means that each phase resides in a single file. The use
of SableCC with syntax-directed construction of ASTs mean that the interface
between phases is fixed. This combination means that the phases of two Joos
compilers may literally be mixed to produce a new hybrid compiler. We exploit
this property by providing a complete and correct model implementation with
which the students may build and test hybrid compilers.

Assume that a group is working on the type checker. To perform a functional
test of this phase, they may build a hybrid compiler consisting of the model

Design Choices in a Compiler Course 11

compiler with only the type checking phase substituted by their own. To check
the allround progress, they may build a hybrid compiler consisting of their own
phases up to an including the type checking phase mixed with the remaining
phases from the model compiler. The students must of course not be allowed
access to even the class files of the model compiler (since Java is vulnerable to
decompilation), so the building and testing of a model compiler is performed by
submitting phases to a Web service.

The testing of a compiler is quite extensive. In a full test the compiler is
exposed to a test suite of 1,149 Java programs that each test a tiny specific
property. This collection has been constructed over the three years this course
have run, with new test programs being added whenever another potential kind
of error is discovered. A simple positive test looks as follows:

// TYPE_CHECKING
public class J1_constructoroverloading {

public int x = 0;
public J1_constructoroverloading() {
this.x = 23;

}
public J1_constructoroverloading(int x) {
this.x = x;

}
public static int test() {
J1_constructoroverloading obj1 = new J1_constructoroverloading();
J1_constructoroverloading obj2 = new J1_constructoroverloading(100);
return obj1.x + obj2.x;

}
}

By convention, correct runs will always return the value 123. A typical negative
test looks like:

// JOOS1: PARSER_WEEDER,JOOS1_THIS_CALL,PARSER_EXCEPTION
// JOOS2: TYPE_CHECKING,CIRCULAR_CONSTRUCTOR_INVOCATION
public class Je_16_Circularity_4_Rhoshaped {

public Je_16_Circularity_4_Rhoshaped() {
this(1);

}
public Je_16_Circularity_4_Rhoshaped(int x) {
this(1,2);

}
public Je_16_Circularity_4_Rhoshaped(int x, int y) {
this(1);

}
public static int test() {
return 123;

}
}

It must generate the kind of error that is mentioned in the comments for respec-
tively Joos1 and Joos2.

In general a test program may produce many different status values, depend-
ing on the success or failure of the compilation, the assembling, the class loading,
the runtime, and the output. A snippet of the output from the test driver looks
as follows:

12 M.I. Schwartzbach

The entries in the table are links that display all further details. In the first year,
the test driver ran directly on a web server which was run to the ground as it
quickly turned out that the students became addicted to using it. Subsequently
we have implemented automatic filtering so only those tests relevant to the
submitted phases are used, and the test driver now uses a farm of 17 dedicated
test servers.

Another advantage of phase mixing is that students failing to complete a given
phase may still continue the project by relying on the corresponding phase from
the model compiler.

9 Incremental Feedback

The students receive extensive feedback during the course. The online test driver
provides a continual evaluation of their code. We have a webboard staffed by
teaching assistants, where 12% of the questions receive replies within 5 minutes,
42% within 1 hour, and 94% within 12 hours. Also, each group has a 30 minute
weekly consultation with a teaching assistant. Finally, the groups must maintain
a documentation blog, where they also receive feedback.

We also monitor the students closely. All activity in the system is logged and
used for various statistics. A primary one is the activity curve, which shows how
hard the students are working as a function of time (measured as a weighted
sum of the logged activities). Each year has shown exactly the same pattern,
which looks as follows:

Design Choices in a Compiler Course 13

There are of course some marked spikes for each deadline, but overall the work
load has a reasonable distribution.

The project is evaluated through points that are awarded for each phase.
These are broken down into tiny individual components in the range between
0 and 2 points, which ensures a uniform evaluation. The students can see these
points on a group homepage as soon as they have been awarded. Chasing points
becomes something of an obsession.

We also maintain a visual presentation of how close the groups are to com-
pleting the next hand-in:

There is one horizontal line for each group showing the proportion between test
programs passed (green) and failed (red), sorted by success rate for effect and
anonymity. The collected pictures are also stored in 10-minute snapshots as a
fascinating movie, showing the struggle between red and green as the groups
work towards the next deadline.

The extensive logging is also useful to prevent cheating. In the few cases we
have experienced, suspicions of code similarity were easily confirmed by observ-
ing anomalous behaviors in the log files.

10 The Peephole Contest

One hand-in deals with peephole optimization of Java bytecode. The syntax-
directed code generation often produces naive code that is ripe for optimization.
We have developed a domain-specific language for specifying such peephole pat-
terns, one of which may look as follows:

pattern p25 x: //comparison_in_ifcmp2
x ~ ifcmp (e0, l0)

ldc_int (i0)
goto (l1)
label (l2)
ldc_int (i1)
label (l3)
if (e1, l4)

&& i0 == 0
&& i1 != 0
&& l0 == l2
&& l1 == l3
&& e1 == eq
&& degree l2 == 1

-> 4 ifcmp (negate e0, l4)
ldc_int (i1)

The compiler then contains a peephole engine that will apply all such patterns
on the generated code until no pattern is applicable.

14 M.I. Schwartzbach

The students are invited to compete in creating the most effective collection
of peephole patterns, measured in the total size of the bytecode generated for a
benchmark suite. The winners receive a highly coveted t-shirt:

2007
dOvs Peephole Competition
Winner

The bar is set fairly high, as the winning group generally produces hundreds
of sophisticated patterns to secure their position. Without the competition, it
is unlikely that this extra effort could be mobilized (at the last stage of the
project).

11 Exams and Grading

The projects are evaluated on a scale between 0% and 110% (including extra
credit). The highest ever score so far is 107%. The project is weighted with 70%
in the final grade, which is large considering that the project is done in a group.
However, the principle of alignment dictates that the exam should reward the
activity which best promotes learning, and this is clearly the project work.

To ensure individual grades, the course concludes with a 75 minute multiple-
choice test (allowing partial knowledge) that covers the basic theory and details
about the project. Multiple-choice tests are unfairly viewed as being superficial,
but the questions may in fact be quite deep:

Consider the method invocation A.B(1,2,3). To which category can A not belong?

a A class name.

b A static field name.

c A non-static field name.

d A local name.

e A package name.

f A formal name.

Clearly, superficial knowledge is not enough to answer such questions. The mul-
tiple choice test often yields a final difference of one to two grades among group
members, and it invariably rewards those students that the teaching assistants
predict to be the best.

The students generally do well, and many receive their highest grade in their
degree program in this course:

Design Choices in a Compiler Course 15

F FX E D C B A

12 Conclusion and Acknowledgements

Compiler courses are important and have been taught for a long time. We have
identified many design choices that are available to teachers and have discussed
some of their consequences.

The dOvs course has been designed with explicit consideration of these choices
and with the goal of being novel and fun. The main characteristic of the course
is that the project is huge and complicated, forcing the students to appreciate
software engineering techniques and to grow to depend on formal notation as a
guide to express the semantics of the source language in the implementation.

The course and its extensive infrastructure has been developed and imple-
mented in close collaboration with Aske Simon Christensen, Janus Dam Nielsen,
and Johnni Winther.

Improved Memory-Access Analysis

for x86 Executables�

Thomas Reps1,2 and Gogul Balakrishnan3,��

1 University of Wisconsin
2 GrammaTech, Inc.

3 NEC Laboratories America, Inc.
reps@cs.wisc.edu, bgogul@nec-labs.com

Abstract. Over the last seven years, we have developed static-analysis
methods to recover a good approximation to the variables and dynam-
ically allocated memory objects of a stripped executable, and to track
the flow of values through them. It is relatively easy to track the effects
of an instruction operand that refers to a global address (i.e., an access
to a global variable) or that uses a stack-frame offset (i.e., an access to a
local scalar variable via the frame pointer or stack pointer). In our work,
our algorithms are able to provide useful information for close to 100%
of such “direct” uses and defs.

It is much harder for a static-analysis algorithm to track the effects
of an instruction operand that uses a non-stack-frame register. These
“indirect” uses and defs correspond to accesses to an array or a dynam-
ically allocated memory object. In one study, our approach recovered
useful information for only 29% of indirect uses and 33% of indirect defs.
However, using the technique described in this paper, the algorithm re-
covered useful information for 81% of indirect uses and 90% of indirect
defs.

1 Introduction

Research carried out during the last decade by our research group [64,65,6,56,55,
7,8,36,4,49,9] as well as by others [48,22,33,14,2,31,13,44,32,3,54,37,21,46,28,
19,16,34,66] has developed the foundations for performing static analysis at the
machine-code level. The machine-code-analysis problem comes in two versions:
(i) with symbol-table/debugging information (unstripped executables), and (ii)
without symbol-table/debugging information (stripped executables). Many tools
address both versions of the problem, but are severely hampered when symbol-
table/debugging information is absent.

In 2004, we supplied a key missing piece, particularly for analysis of stripped
executables [6]. Previous to that work, static-analysis tools for machine code had
rather limited abilities: it was known how to (i) track values in registers and,
� Supported by NSF under grants CCF-0540955 and CCF-0524051 and by AFRL

under contract FA8750-06-C-0249.
�� Work performed while at the University of Wisconsin.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 16–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Memory-Access Analysis for x86 Executables 17

in some cases, the stack frame [48], and (ii) analyze control flow (sometimes by
applying local heuristics to try to resolve indirect calls and indirect jumps, but
otherwise ignoring them).

The work presented in [6] provided a way to apply the tools of abstract
interpretation [27] to the problem of analyzing stripped executables, and we
followed this up with other techniques to complement and enhance the ap-
proach [56, 47, 55, 7, 8, 4, 9]. This body of work has resulted in a method to
recover a good approximation to an executable’s variables and dynamically al-
located memory objects, and to track the flow of values through them. These
methods are incorporated in a tool called CodeSurfer/x86 [5].

It is relatively easy to track the effects of an instruction operand that refers to
a global address (i.e., an access to a global variable) or that uses a stack-frame
offset (i.e., an access to a local scalar variable via the frame pointer or stack
pointer). In our work, our algorithms are able to provide useful information for
close to 100% of such “direct” uses and defs.

It is much harder for a static-analysis algorithm to track the effects of an
instruction operand that uses a non-stack-frame register. These “indirect” uses
and defs correspond to accesses to an array or a dynamically allocated memory
object. This paper describes a technique that had an important impact on the
precision obtained for indirect uses and defs in CodeSurfer/x86. As we describe in
§5, in one validation study on a collection of stripped device-driver executables,
the algorithm reported in [8] recovered useful information for only 29% of indirect
uses and 33% of indirect defs. However, using the improved technique described
in this paper, the algorithm recovered useful information for 81% of indirect uses
and 90% of indirect defs.

The remainder of the paper is organized as follows: §2 motivates the work by
describing some of the advantages of analyzing machine code. §3 explains some
of the ideas used in CodeSurfer/x86 for recovering intermediate representations
(IRs). §4 describes an extension that we made to CodeSurfer/x86’s IR-recovery
algorithm, which had an important impact on precision. §5 presents experimental
results that measure the gain in precision. §6 discusses related work.

2 The Case for Analyzing Machine Code

Recent research in programming languages, software engineering, and computer
security has led to new kinds of tools for analyzing programs for bugs and security
vulnerabilities [38,60,35,26,17,12,20,39,30]. In these tools, static analysis is used
to determine a conservative answer to the question “Can the program reach a
bad state?”1 Some of this work has already been transitioned to commercial
products for source-code analysis [17, 11, 29, 23].
1 Static analysis provides a way to obtain information about the possible states that

a program reaches during execution, but without actually running the program on
specific inputs. Static-analysis techniques explore the program’s behavior for all pos-
sible inputs and all possible states that the program can reach. To make this feasible,
the program is “run in the aggregate”—i.e., on descriptors that represent collections
of memory configurations [27].

18 T. Reps and G. Balakrishnan

However, these tools all focus on analyzing source code written in a high-level
language. Unfortunately, most programs that an individual user will install on
his computer, and many commercial off-the-shelf (COTS) programs that a com-
pany will purchase, are delivered as stripped machine code (i.e., neither source
code nor symbol-table/debugging information is available). If an individual or
company wishes to vet such programs for bugs, security vulnerabilities, or ma-
licious code (e.g., back doors, time bombs, or logic bombs) the availability of
good source-code-analysis products is irrelevant.

Less widely recognized is that even when source code is available, source-code
analysis has certain drawbacks [40, 62]. The reason is that computers do not
execute source code; they execute machine-code programs that are generated
from source code. The transformation that takes place between high-level source
code and low-level machine code can cause there to be subtle but important
differences between what a programmer intended and what is actually executed
by the processor. Consequently, analyses that are performed on source code can
fail to detect certain bugs and vulnerabilities.

For instance, during the Windows security push in 2002, the Microsoft C++
.NET compiler was found to introduce a vulnerability in the machine code for
the following code fragment [40]:

memset(password, ‘\0’, len);
free(password);

Assume that the program has temporarily stored the user’s password—in clear
text—in a dynamically allocated buffer pointed to by the pointer variable
password. To minimize the lifetime of the password, which is sensitive infor-
mation, the code fragment shown above zeroes-out the buffer pointed to by
password before returning it to the freelist. Unfortunately, the compiler’s useless-
code-elimination algorithm reasoned that the program never uses the values writ-
ten by the call on memset, and therefore the call on memset could be removed—
thereby leaving sensitive information exposed in the freelist.

Such a vulnerability is invisible in the source code; it can only be detected
by examining the low-level code emitted by the optimizing compiler. Elsewhere
[56, 10, 4], we have called this the WYSINWYX phenomenon (What You See
Is Not What You eXecute).

WYSINWYX is not restricted to the presence or absence of procedure calls;
on the contrary, it is pervasive. Some of the reasons why analyses based on source
code can provide the wrong level of detail include
– Many security exploits depend on platform-specific details that exist because

of features and idiosyncrasies of compilers and optimizers. These include
memory-layout details (such as the positions—i.e., offsets—of variables in
the runtime stack’s activation records and the padding between structure
fields), register usage, execution order (e.g., of actual parameters at a call),
optimizations performed, and artifacts of compiler bugs. Bugs and security
vulnerabilities can escape notice when a tool is unable to take into account
such fine-grained details.

Improved Memory-Access Analysis for x86 Executables 19

– Analyses based on source code2 typically make (unchecked) assumptions,
e.g., that the program is ANSI C compliant. This often means that an anal-
ysis does not account for behaviors that are allowed by the compiler and that
can lead to bugs or security vulnerabilities (e.g., arithmetic is performed on
pointers that are subsequently used for indirect function calls; pointers move
off the ends of arrays and are subsequently dereferenced; etc.)

– Programs are sometimes modified subsequent to compilation, e.g., to perform
optimizations or insert instrumentation code [61]. They may also be modified
to insert malicious code. Such modifications are not visible to tools that
analyze source code.

In short, even when source code is available, a substantial amount of infor-
mation is hidden from source-code-analysis tools, which can cause bugs, security
vulnerabilities, and malicious behavior to be invisible to such tools.

The alternative is to perform static analysis at the machine-code level. The
advantage of this approach is that the machine code contains the actual in-
structions that will be executed; this addresses the WYSINWYX phenomenon
because it provides information that reveals the actual behavior that arises dur-
ing program execution. Although having to perform static analysis on machine
code represents a daunting challenge, there is also a possible silver lining: by
analyzing an artifact that is closer to what is actually executed, a static-analysis
tool may be able to obtain a more accurate picture of a program’s properties!

The reason is that—to varying degrees—the semantic definition of every
programming language leaves certain details unspecified. Consequently, for a
source-code analyzer to be sound, it must account for all possible implemen-
tations, whereas a machine-code analyzer only has to deal with one possible
implementation—namely, the one for the code sequence chosen by the compiler.

For instance, in C and C++ the order in which actual parameters are eval-
uated is not specified: actuals may be evaluated left-to-right, right-to-left, or in
some other order; a compiler could even use different evaluation orders for dif-
ferent functions. Different evaluation orders can give rise to different behaviors
when actual parameters are expressions that contain side effects. For a source-
level analysis to be sound, at each call site it must take the join (�) of the results
from analyzing each permutation of the actuals.3 In contrast, an analysis of an
executable only needs to analyze the particular sequence of instructions that
lead up to the call.

Static-analysis tools are always fighting imprecision introduced by the join
operation. One of the dangers of static-analysis tools is that loss of precision by
the analyzer can lead to the user being swamped with a huge number of reports
of potential errors, most of which are false positives. As illustrated in Fig. 1,

2 Terms like “analyses based on source code” and “source-code analyses” are used as
a shorthand for “analyses that work on IRs built from source code.”

3 We follow the conventions of abstract interpretation [27], where the lattice of prop-
erties is oriented so that the confluence operation used where paths come together
is join (�). In dataflow analysis, the lattice is often oriented so that the confluence
operation is meet (�). The two formulations are duals of one another.

20 T. Reps and G. Balakrishnan

because a source-code-analysis tool summarizes more behaviors than a tool that
analyzes machine code, the join performed at q must cover more abstract states.
This can lead to less-precise information than that obtained from machine-code
analysis. Because more-precise answers mean a lower false-positive rate, machine-
code-analysis tools have the potential to report fewer false positives.

There are other trade-offs between performing analysis at source level versus
the machine-code level: with source-code analysis one can hope to learn about
bugs and vulnerabilities that exist on multiple platforms, whereas analysis of
the machine code only provides information about vulnerabilities on the specific
platform on which the executable runs.

7

State space

q 7

State space

q

(a) (b)

Fig. 1. Source-code analysis, which must account for
all possible choices made by the compiler, must sum-
marize more paths (see (a)) than machine-code anal-
ysis (see (b)). Because the latter can focus on fewer
paths, it can yield more precise results.

Although it is possible to
create source-code tools that
strive to have greater fidelity
to the program that is actu-
ally executed—examples in-
clude [18, 51]—in the limit,
the tool would have to in-
corporate all the platform-
specific decisions that would
be made by the compiler.
Because such decisions de-
pend on the level of op-
timization chosen, to build
these choices into a tool that
works on a representation
that is close to the source
level would require simulat-
ing much of the compiler and
optimizer inside the analysis tool. Such an approach is impractical.

In addition to addressing the WYSINWYX issue, performing analysis at the
machine-code level provides a number of other benefits:
– Programs typically make extensive use of libraries, including dynamically

linked libraries (DLLs), which may not be available as source code. Typi-
cally, source-code analyses are performed using code stubs that model the
effects of library calls. Because these are created by hand, they may contain
errors, which can cause an analysis to return incorrect results. In contrast,
a machine-code-analysis tool can analyze the library code directly [36].

– The source code may have been written in more than one language. This
complicates the life of designers of tools that analyze source code because
multiple languages must be supported, each with its own quirks.

– Even if the source code is primarily written in one high-level language, it
may contain inlined assembly code in selected places. Source-code-analysis
tools typically either skip over inlined assembly [24] or do not push the
analysis beyond sites of inlined assembly [52]. To a machine-code-analysis
tool, inlined assembly just amounts to additional instructions to analyze.

Improved Memory-Access Analysis for x86 Executables 21

– Source-code-analysis tools are only applicable when source is available, which
limits their usefulness in security applications (e.g., to analyzing code from
open-source projects).

3 CodeSurfer/x86: A Platform for Recovering IRs from
Stripped Executables

Given a stripped executable as input, CodeSurfer/x86 [5] recovers IRs that are
similar to those that would be available had one started from source code.
This section explains some of the ideas used in the IR-recovery algorithms of
CodeSurfer/x86 [4, 6, 8].

The recovered IRs include control-flow graphs (CFGs), with indirect jumps
resolved; a call graph, with indirect calls resolved; information about the pro-
gram’s variables; possible values for scalar, array, and pointer variables; sets of
used, killed, and possibly-killed variables for each CFG node; and data depen-
dences. The techniques employed by CodeSurfer/x86 do not rely on debugging
information being present, but can use available debugging information (e.g.,
Windows .pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 are a great deal more ambitious than
even relatively sophisticated disassemblers, such as IDAPro [41]. At the technical
level, they address the following problem: Given a (possibly stripped) executable
E, identify the procedures, data objects, types, and libraries that it uses, and, for
each instruction I in E and its libraries, for each interprocedural calling context
of I, and for each machine register and variable V in scope at I, statically
compute an accurate over-approximation to the set of values that V may contain
when I executes.

It is useful to contrast this approach against the approach used in much of
the other work that now exists on analyzing executables. Many research projects
have focused on specialized analyses to identify aliasing relationships [33], data
dependences [2,22], targets of indirect calls [31], values of strings [21], bounds on
stack height [54], and values of parameters and return values [66]. In contrast,
CodeSurfer/x86 addresses all of these problems by means of a set of analyses that
focuses on the problem stated above. In particular, CodeSurfer/x86 discovers an
over-approximation of the set of states that can be reached at each point in
the executable—where a state means all of the state: values of registers, flags,
and the contents of memory—and thereby provides information about aliasing
relationships, targets of indirect calls, etc.

One of the goals of CodeSurfer/x86 is to be able to detect whether an exe-
cutable conforms to a standard compilation model. By “standard compilation
model” we mean that the executable has procedures, activation records (ARs),
a global data region, and a free-storage pool; might use virtual functions and
DLLs; maintains a runtime stack; each global variable resides at a fixed off-
set in memory; each local variable of a procedure f resides at a fixed offset in
the ARs for f ; actual parameters of f are pushed onto the stack by the caller

22 T. Reps and G. Balakrishnan

so that the corresponding formal parameters reside at fixed offsets in the ARs
for f ; the program’s instructions occupy a fixed area of memory, and are not
self-modifying.

During the analysis performed by CodeSurfer/x86, these aspects of the pro-
gram are checked. When violations are detected, an error report is issued, and
the analysis proceeds. In doing so, however, we generally choose to have the
analyzer only explore behaviors that stay within those of the desired execution
model. For instance, if the analysis finds that the return address might be mod-
ified within a procedure, it reports the potential violation, but proceeds without
modifying the control flow of the program. Consequently, if the executable con-
forms to the standard compilation model, CodeSurfer/x86 creates a valid IR for
it; if the executable does not conform to the model, then one or more violations
will be discovered, and corresponding error reports will be issued; if the (human)
analyst can determine that the error report is indeed a false positive, then the
IR is valid. The advantages of this approach are (i) it provides the ability to
analyze some aspects of programs that may deviate from the desired execution
model; (ii) it generates reports of possible deviations from the desired execution
model; (iii) it does not force the analyzer to explore all of the consequences of
each (apparent) deviation, which may be a false positive due to loss of precision
that occurs during static analysis.

Variable and Type Discovery. One of the major stumbling blocks in an-
alyzing executables is the difficulty of recovering information about variables
and types, especially for aggregates (i.e., structures and arrays). When perform-
ing source-code analysis, the programmer-defined variables provide us with the
compartments for tracking data manipulations. When debugging information is
absent, an executable’s data objects are not easily identifiable. Consider, for in-
stance, an access on a source-code variable x in some source-code statement. At
the machine-code level, an access on x is performed either directly—by speci-
fying an absolute address—or indirectly—through an address expression of the
form “[base + index × scale + offset]”, where base and index are registers and
scale and offset are integer constants. The variable and type-discovery phase
of CodeSurfer/x86 [8, 4] recovers information about variables that are allocated
globally, locally (i.e., on the stack), and dynamically (i.e., from the freelist).
The recovered variables, called a-locs (for “abstract locations”) are the basic
variables used in CodeSurfer/x86’s value-set-analysis (VSA) algorithm [6,8, 4].

To accomplish this task, CodeSurfer/x86 makes use of a number of analyses,
and the sequence of analyses performed is itself iterated [4, 8]. On each round,
CodeSurfer/x86 uses VSA to identify an over-approximation of the memory
accesses performed at each instruction. Subsequently, the results of VSA are
used to perform aggregate structure identification (ASI) [53], which identifies
commonalities among accesses to an aggregate data value, to refine the current
set of a-locs. The new set of a-locs are used to perform another round of VSA.
If the over-approximation of memory accesses computed by VSA improves from
the previous round, the a-locs computed by the subsequent round of ASI may

Improved Memory-Access Analysis for x86 Executables 23

also improve. This process is repeated as long as desired, or until the process
converges. By this means, CodeSurfer/x86 bootstraps its way to a set of a-locs
that serve as proxies for the program’s original variables.

1: decl worklist: set of 〈CallStringk, Node〉
2:
3: proc ContextSensitiveVSA()
4: worklist := {〈∅, enter〉}
5: absEnventer := Initial values of global a-locs and esp
6: while (worklist �= ∅) do
7: while (worklist �= ∅) do
8: Remove a pair 〈cs, n〉 from worklist
9: m := Number of successors of node n
10: for i = 1 to m do
11: succ := GetSuccessor(n, i)
12: edge ae := AbstractTransformer(n → succ, absMemConfign [cs])
13: cs set := GetCSSuccs(cs, n, succ)
14: for (each succ cs ∈ cs set) do
15: Propagate(succ cs, succ, edge ae)
16: end for
17: end for
18: end while
19: GMOD′ := ComputeGMOD()
20: if (GMOD′ �= GMOD) then
21: for each call-site c ∈ CallSites and cs ∈ CallStringk do
22: if inc[cs] �= ⊥ then worklist := worklist ∪ {〈cs, c〉}
23: end for
24: GMOD := GMOD′

25: end if
26: end while
27: end proc
28:
29: proc GetCSSuccs(pred cs: CallStringk, pred: Node, succ: Node): set of CallStringk
30: result := ∅
31: if (pred is an exit node and succ is an end-call node) then
32: Let c be the call node associated with succ
33: for each succ cs in absMemConfigc do
34: if (pred cs �cs succ cs) then
35: result := result ∪ {succ cs}
36: end if
37: end for
38: else if (succ is a call node) then
39: result := {(pred cs �cs c)}
40: else
41: result := {pred cs}
42: end if
43: return result
44: end proc
45:
46: proc Propagate(cs: CallStringk, n: Node, edge ae: AbsEnv)
47: old := absMemConfign [cs]
48: if n is an end-call node and round > 0 then
49: Let c be the call node associated with n
50: edge ae := GMODMergeAtEndCall(edge ae, absMemConfigc [cs])
51: end if
52: new := old�ae edge ae
53: if (old �= new) then
54: absMemConfign [cs] := new
55: worklist := worklist ∪ {〈cs, n〉}
56: end if
57: end proc

Fig. 2. Context-sensitive VSA algorithm with GMOD-based merge function

24 T. Reps and G. Balakrishnan

4 GMOD-Based Merge Function

This section describes one of the extensions that we made to our IR-recovery
algorithm that had an important impact on precision. The context-sensitive VSA
algorithm associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

where an AbsEnv value [4,8] maps each a-loc and register to an over-approximation
of its set of possible values (referred to as a value-set), and a CallStringk value is
an abstraction of the structure of the run-time stack.4 The context-sensitive VSA
algorithm characterizes a set of concrete states by a set of calling contexts in which
those states can arise.

end-call P

call P

end-call P

call P

exit main

enter main

enter P

exit P
g++

1

2

3

4

5

6

7

9

10

g := 0

8

Fig. 3. Example showing the need for
a GMOD-based merge function

Fig. 2 shows the context-sensitive VSA
algorithm, which is based on a work-
list. For the time being, consider the
statements that are underlined as being
absent. The entries in the worklist are
〈CallStringk, Node〉 pairs, and each entry
represents the calling contexts of the cor-
responding node that have not yet been
explored. The algorithm selects an entry
from the worklist, executes the abstract
transformer for each edge out of the node,
and propagates the information to all the
successors of the node.

For all nodes, including an end-call5

node, the algorithm combines the result
of the abstract transformer with the old
abstract state at the successor. Although
Propagate computes a sound AbsEnv value
for an end-call node, it may not always be precise. Consider the interprocedu-
ral CFG (ICFG) shown in Fig. 3. In any concrete execution, the only possible
value for g at node 4 is 0. However, context-insensitive VSA (i.e., VSA with
call-strings of length 0) computes the range [−231, 231 − 1] for g at node 4. In
context-insensitive VSA, the call-return structure of the ICFG is ignored (i.e.,
4 Let CallSites denote the set of call-sites in an executable. The executable’s call graph

is a labeled multi-graph in which each node represents a procedure, and each edge
(labeled with a call-site in the calling procedure) represents a call. A call-string in
the call graph is a finite-length path (c1 . . . cn) such that c1 is a call-site in the entry
procedure. CallString is the set of all call-strings.

A call-string suffix of length k [59] is either (c1 . . . ck) ∈ CallString, or (∗c1 . . . ck),
where c1, . . . , ck ∈ CallSites; the latter, referred to as a saturated call-string, represents
the set of call-strings {cs | cs ∈ CallString, cs = πc1 . . . ck, and |π| ≥ 1}. CallStringk is
the set of saturated call-strings of length k, plus non-saturated call-strings of length
≤ k.

5 An end-call node represents the return site for a call node.

Improved Memory-Access Analysis for x86 Executables 25

the ICFG is considered to be an ordinary graph). Note that 6→9 is a back-edge,
and hence is a suitable location for widening to be performed [15]. Consider
the path π = (6, 9, 10, 4). Although π is an invalid execution path, context-
insensitive VSA explores π. The effects of statement g++ at node 5 and the
results of widening at 6→9 are propagated to node 4, and consequently, the
range computed for g at node 4 by context-insensitive VSA is [−231, 231 − 1]
(due to widening and wrap-around in 32-bit arithmetic). One possible solution
to the problem is to increase the length of call-strings. However, it is impractical
to increase the length of call-strings beyond a small value. Therefore, increasing
the call-string length is not a complete solution to the problem.

1: proc GMODMergeAtEndCall(inc: AbsEnv, inx: AbsEnv): AbsEnv
2: in′

c := SetAlocsToTop(inc, GMOD[X])
3: in′

x := SetAlocsToTop(inx, U − GMOD[X])
4: out := in′

c ae in′
x

5: return out
6: end proc

Fig. 4. GMOD-based merge function. GMOD[X] represents the set of a-locs modified
(directly or transitively) by procedure X, and U is the universal set of a-locs)

Suppose that we modify Propagate in Fig. 4 by adding line [50], which invokes
procedure GMODMergeAtEndCall . GMODMergeAtEndCall takes two AbsEnv
values: (1) inc, the AbsEnv value at the corresponding call node, and (2) inx,
the AbsEnv value at the corresponding exit node. Let C and X be the procedures
containing the call and exit nodes, respectively. SetAlocsToTop(ae, AlocSet) re-
turns the AbsEnv value ae[a �→ �vs | a ∈ AlocSet]. Operation ae1 	ae ae2 yields a
new AbsEnv value in which the set of values for each a-loc (register) is the meet
of the value-sets for the corresponding a-loc (register) in ae1 and ae2.

In the earlier implementation of Propagate (i.e., when Propagate does not
call GMODMergeAtEndCall on line [50]), the value-sets of all a-locs in inx

are propagated to the end-call node. In contrast, when Propagate does call
GMODMergeAtEndCall , only the value-sets of a-locs that are modified (directly
or transitively) in procedure X are propagated from inx to the AbsEnv value at
the end-call node. The value-sets for other a-locs are obtained from inc. Because
procedure P does not modify global variable g, using GMODMergeAtEndCall
during context-insensitive VSA results in better information at nodes 4 and 7;
at node 4 the range for g is [0, 0], and at node 7 the range for g is [1, 1].

The actual implementation [4, Ch. 7] of GMODMergeAtEndCall is slightly
more complicated. In addition to combining the information from the call-site
and the exit node, it performs the following operations:

– At the exit node, the stack pointer esp points to the activation record of
callee X. The value of esp in the AbsEnv value returned by GMODMergeAt-
EndCall is adjusted to point to the activation record of caller C .

– The value of the frame pointer ebp is set to the value of ebp in inc. This change
corresponds to the common situation in which the value of ebp at the exit node
of a procedure is usually restored to the value of ebp at the call-site. (This is

26 T. Reps and G. Balakrishnan

one of the aspects of the executable that VSA checks; a report is issued to the
user if the behavior does not conform to what is expected.)

– The values of those a-locs that go out of scope, such as the local variables
of callee X, are set to a special invalid abstract address.

The procedure shown in Fig. 4 uses GMOD information [25]; i.e., for each
procedure P in the executable, information is required about the set of a-locs
that P could possibly modify (directly or transitively). To perform GMOD anal-
ysis, information is required for each instruction about the set of a-locs that the
instruction could possibly modify (i.e., IMOD information [25]). However, com-
plete information about the a-locs accessed by each instruction is not available
until the end of VSA. As discussed in §3, CodeSurfer/x86 makes use of a number
of analyses, and the sequence of analyses performed is itself iterated. At the end
of each round of VSA, GMOD information is computed for use during the next
round of VSA (see lines [19]–[25] in Fig. 2); i.e., the GMOD sets for use during
VSA round i are computed using the VSA results from round i−1. For the initial
round of VSA (i = 0), GMODMergeAtEndCall is not used.6 For each subsequent
round, procedure GMODMergeAtEndCall is used as the merge function.

The process mentioned above may not be sound in the presence of indirect
jump and indirect calls. In addition to determining an over-approximation of the
set of states at each program point, VSA also determines the targets of indirect
jumps and indirect calls. For pragmatic reasons, if VSA determines that the
target address of an indirect jump or indirect call is �vs, it does not add any
new edges.7 Consequently, in the presence of indirect jumps and indirect calls,
the ICFG used during round i − 1 of VSA can be different from the ICFG used
during round i. Therefore, for round i of VSA, it may not be sound to use the
GMOD sets computed using the VSA results from round i − 1. To ensure that
the VSA results computed by round i are sound with respect to the current
ICFG, the context-sensitive VSA algorithm of Fig. 2 does not terminate until
the GMOD sets are consistent with the VSA results (see lines [19]–[25] in Fig. 2):
when VSA reaches a fix-point in round i, the GMOD sets are recomputed using
the current VSA results (GMOD′ on line [19] in Fig. 2) and compared against
the current GMOD sets; if they are equal, then the VSA results are sound, and
VSA terminates; otherwise, all call-sites c ∈ CallSites are added to the worklist
(line [22]) and VSA is resumed with the new worklist (line [5]). (For each call-
site c, only those call-strings that have a non-⊥ AbsEnv at c are added to the
worklist (line [22] in Fig. 2).) Even though VSA is restarted from a non-⊥ state
by reinitializing the worklist (line [22]), VSA is guaranteed to converge because
Propagate accumulates values at each program point using join (�); see line [52].

5 Experiments

This section describes a study that we carried out to measure the gain in preci-
sion that was obtained via the technique presented in §4. The study measured
6 Alternatively, GMODMergeAtEndCall could be called with GMOD[X] = U .
7 A report is issued so that the user will be aware of the situation.

Improved Memory-Access Analysis for x86 Executables 27

Table 1. Running times for VSA with and without the GMOD-based merge function.
(For the drivers listed above in boldface, round-by-round details of the percentages
of strongly-trackable indirect operands are given in Fig. 7.)

Running time (seconds)
Driver Procedures Instructions No GMOD With GMOD
src/vdd/dosioctl/krnldrvr 70 284 34 25
src/general/ioctl/sys 76 2824 63 58
src/general/tracedrv/tracedrv 84 3719 122 45
src/general/cancel/startio 96 3861 44 32
src/general/cancel/sys 102 4045 43 33
src/input/moufiltr 93 4175 369 427
src/general/event/sys 99 4215 53 61
src/input/kbfiltr 94 4228 370 404
src/general/toaster/toastmon 123 6261 576 871
src/storage/filters/diskperf 121 6584 647 809
src/network/modem/fakemodem 142 8747 1410 2149
src/storage/fdc/flpydisk 171 12752 2883 5336
src/input/mouclass 192 13380 10484 13380
src/input/mouser 188 13989 4031 8917
src/kernel/serenum 184 14123 3777 9126
src/wdm/1394/driver/1394diag 171 23430 3149 12161
src/wdm/1394/driver/1394vdev 173 23456 2461 10912

certain characteristics of the variables and values discovered by IR-recovery. The
characteristics that we measured provide information about how good the re-
covered information would be as a starting point for some client tool that needs
to perform additional static analysis on the executable. In particular, because
resolution of indirect operands is a fundamental primitive that essentially any
subsequent analysis would need, we were particularly interested in how well our
techniques could resolve indirect memory operands that use a non-stack-frame
register (e.g., accesses to arrays and heap-allocated data objects).

To evaluate the effect of using the GMOD-based merge function on the preci-
sion of value-set analysis, we selected seventeen device drivers from the Windows
Driver Development Kit [63] release 3790.1830; see Tab. 1. The executable for
each device driver was obtained by compiling the driver source code along with
the harness and OS environment model used in the SDV toolkit [11] (see [9] for
more details). The resulting executable was then stripped; i.e., symbol-table and
debugging information was removed.

We analyzed each executable using two versions of VSA: (1) VSA without the
GMOD-based merge function (as sketched at the beginning of §4), and (2) VSA
with the GMOD-based merge function shown in Fig. 4. For the experiments, we
used a Dell Precision 490 Desktop, equipped with a 64-bit Intel Xeon 5160 3.0
GHz dual core processor and 16GB of physical memory, running Windows XP.
(Although the machine has 16GB of physical memory, the size of the per-process
virtual user-address space for a 32-bit application is limited to 4GB.)

28 T. Reps and G. Balakrishnan

Except for the difference in the merge function, all other parameters, such
as the lengths of call-strings, the number of rounds of VSA-ASI iteration, etc.,
were the same for both versions. We ran VSA-ASI iteration until convergence,
and then, based on the results of the final round of each run, we classified the
memory operands in the executable into strongly-trackable, weakly-trackable, and
untrackable operands:

– A memory operand is strongly-trackable (see Fig. 5) if
• the lvalue evaluation of the operand does not yield �vs, and
• each lvalue obtained refers to a 4-, 2-, or 1-byte (inferred) variable.

– A memory operand is weakly-trackable if
• the lvalue evaluation of the operand does not yield �vs, and
• at least one of the lvalues obtained refers to a 4-, 2-, or 1-byte (inferred)

variable.
– Otherwise, the memory operand is untrackable; i.e., either

• the lvalue evaluation of the operand yields �vs, or
• all of the lvalues obtained refer to an (inferred) variable whose size is

greater than 4 bytes.

VSA tracks value-sets for a-locs whose size is less than or equal to 4 bytes,
but treats a-locs greater than 4 bytes as having the value-set �vs [6, 55, 4].
Therefore, untrackable memory operands are ones for which VSA provides no
useful information at all, and strongly-trackable memory operands are ones for
which VSA can provide useful information.

evaluated operand ≠ SvsIndirect operand
[eax]
[ebp + ecx*4 - 60]
. . .

4-, 2-, or 1-byte a-loc

4-, 2-, or 1-byte a-loc

Fig. 5. Properties of a strongly-trackable memory
operand

We refer to a mem-
ory operand that is used
to read the contents
of memory as a use-
operand, and a mem-
ory operand that is used
to update the contents
of memory as a kill-
operand. VSA can
provide some useful in-
formation for a weakly-
trackable kill-operand,
but provides no useful in-
formation for a weakly-trackable use-operand. To understand why, first consider
the kill-operand [eax] in “mov [eax], 10”. If [eax] is weakly-trackable, then
VSA may be able to update the value-set—to a value other than �vs—of those
a-locs that are (i) accessed by [eax] and (ii) of size less than or equal to 4
bytes. (The value-sets for a-locs accessed by [eax] that are of size greater than
4 bytes already hold the value �vs.) In contrast, consider the use-operand [eax]
in “mov ebx, [eax]”; if [eax] is weakly-trackable, then at least one of the a-
locs accessed by [eax] holds the value �vs. In a mov instruction, the value-set
of the destination operand (ebx in our example) is set to the join (�vs) of the
value-sets of the a-locs accessed by the source operand ([eax] in our example);

Improved Memory-Access Analysis for x86 Executables 29

Table 2. Percentages of trackable memory operands in the final round

Geometric Mean (for the final round)
Category Strongly-trackable Strongly-trackable Weakly-trackable

indirect uses indirect kills indirect kills
Without GMOD-based merge function 29% 30% 33%
With GMOD-based merge function 81% 85% 90%

consequently, the value-set of ebx would be set to �vs—which is the same as
what happens when [eax] is untrackable.

We classified memory operands as either direct or indirect. A direct memory
operand is a memory operand that uses a global address or stack-frame offset.
An indirect memory operand is a memory operand that uses a non-stack-frame
register (e.g., a memory operand that accesses an array or a heap-allocated data
object).

Direct Memory Operands. For direct use-operands and direct kill-operands,
both versions perform equally well: the percentages of strongly-trackable di-
rect use-operands and both strongly-trackable and weakly-trackable direct kill-
operands are 100% for almost all of the drivers [4, §7.5.1].

Indirect Memory Operands. Tab. 2 summarizes the results for indirect
operands. As shown in Tab. 2, when the technique described in §4 is used, the
percentages of trackable indirect memory operands in the final round improve
dramatically. (Note that the “Weakly-trackable indirect kills” are a superset of
the “Strongly-trackable indirect kills”.)

Fig. 6 shows the effects, on a per-application basis, of using the GMOD-
based merge function on the percentages of strongly-trackable indirect use-
operands, strongly-trackable indirect kill-operands, and weakly-trackable indi-
rect kill-operands.

For the six Windows device drivers listed in boldface in Tab. 1, the graphs in
Fig. 7 show the percentages of strongly-trackable indirect operands in different
rounds for the two versions. The graphs show the positive interaction that exists
between VSA and ASI: the percentages of strongly-trackable indirect operands
increase with each round for both versions. However, for the VSA algorithm
without the GMOD-based merge function, the improvements in the percentages
of strongly-trackable indirect operands peter out after the third round because
the value-sets computed for the a-locs are not as precise as the value-sets com-
puted by the VSA algorithm with the GMOD-based merge function.

Columns 4 and 5 of Tab. 1 show the times taken for the two versions of VSA.
The running times are comparable for smaller programs. However, for larger pro-
grams, the VSA algorithm with the GMOD-based merge function runs slower
by a factor of 2 to 5. We believe that the slowdown is due to the increased
precision during VSA obtained using the GMOD-based merge function. We use
applicative AVL trees [50] to represent abstract stores. In our representation, if
the value-set of a-loc a is �vs, meaning that a could hold any possible address
or value, the AVL tree for the abstract store has no entry for a (and abstract

30 T. Reps and G. Balakrishnan

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Indirect Use-operands

Without GMOD-based merge function With GMOD-based merge function

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Indirect Kill-operands

Without GMOD-based merge function With GMOD-based merge function

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Weakly-Trackable Indirect Kill-operands

Without GMOD-based merge function With GMOD-based merge function

Fig. 6. Effects of using the GMOD-based merge function on the percentages of strongly-
trackable indirect use-operands, strongly-trackable indirect kill-operands, and weakly-
trackable indirect kill-operands

Improved Memory-Access Analysis for x86 Executables 31

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect use-operands

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect kill-operands

(a) Percentages for the VSA algorithm without the GMOD-based merge function.

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect use-operands

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect kill-operands

(b) Percentages for the VSA algorithm with the GMOD-based merge function.

Fig. 7. Percentage of strongly-trackable indirect operands in different rounds (for the
six device drivers listed in boldface in Tab. 1)

operations on such values are performed quickly). When a technique improves
the precision of VSA, there will be more a-locs whose value-set is not �vs; con-
sequently, there will be more entries in the AVL trees for the abstract stores,
and each abstract operation on the abstract store takes more time.

6 Related Work

A large amount of related work has already been mentioned in the body of the
paper. This section discusses a few additional issues.

Knoop and Steffen [45] introduced the use of merge functions in interprocedu-
ral dataflow analysis as a way to handle local variables at procedure returns. At
a call site at which procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that are
inaccessible to Q and to procedures transitively called by Q—consequently, the
contents of P ’s locals cannot be affected by the call to Q. To create the abstract
state at the end-call node in P , the merge function integrates the stored abstract
values for P ’s locals into the abstract state returned by Q. This idea is used in
many other papers on interprocedural dataflow analysis, including [58,42,47,1],
as well as several systems (e.g., [57, 43]).

32 T. Reps and G. Balakrishnan

Note that this model agrees with programming languages like Java, where it is
not possible to have pointers to local variables (i.e., pointers into the stack). For
machine-code programs, as well as programs written in languages such as C and
C++ (where the address-of operator (&) allows the address of a local variable
to be obtained), if P passes the address of a local to Q, it is possible for Q (or a
procedure transitively called from Q) to affect a local of P by making an indirect
assignment through the address. Conventional interprocedural dataflow-analysis
algorithms address this issue by (i) performing several preliminary analyses (e.g.,
first points-to analysis, which is used to determine IMOD information [25] for
individual statements, and then GMOD analysis [25]), and (ii) using the GMOD-
analysis results to create sound transformers for the primary interprocedural
dataflow analysis of interest.

The approach taken in the algorithm from §4 is similar, except that because
VSA is not only the primary interprocedural dataflow analysis of interest but is
also used to obtain points-to information, VSA and GMOD analysis are iterated.

References

1. Alur, R., Madhusudan, P.: Adding Nesting Structure to Words. In: Ibarra, O.H.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

2. Amme, W., Braun, P., Zehendner, E., Thomasset, F.: Data dependence analysis of
assembly code. In: IJPP 2000 (2000)

3. Backes, W.: Programmanalyse des XRTL Zwischencodes. PhD thesis, Universitaet
des Saarlandes (In German) (2004)

4. Balakrishnan, G.: WYSINWYX: What You See Is Not What You eXecute. PhD
thesis, C.S.Dept., Univ.of Wisconsin, Madison, WI, TR-1603 (August 2007)

5. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—A Plat-
form for Analyzing x86 Executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 250–254. Springer, Heidelberg (2005)

6. Reps, T., Balakrishnan, G.: Analyzing Memory Accesses in x86 Executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

7. Reps, T., Balakrishnan, G.: Recency-Abstraction for Heap-Allocated Storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

8. Reps, T., Balakrishnan, G.: DIVINE: DIscovering Variables IN Executables. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer,
Heidelberg (2007)

9. Balakrishnan, G., Reps, T.: Analyzing stripped device-driver executables. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 124–
140. Springer, Heidelberg (2008)

10. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You
See Is Not What You eXecute. In: VSTTE 2007 (2007)

11. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys 2006 (2006)

12. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

Improved Memory-Access Analysis for x86 Executables 33

13. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.:
Static detection of malicious code in executable programs. IJRE 2001 (2001)

14. Bergeron, J., Debbabi, M., Erhioui, M.M., Ktari, B.: Static analysis of binary code
to isolate malicious behaviors. In: WETICE 1999 (1999)

15. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Int. Conf.
on Formal Methods in Prog. and their Appl. 1993 (1993)

16. Brumley, D., Newsome, J.: Alias analysis for assembly. CMU-CS-06-180, School of
Comp.Sci., Carnegie Mellon University, Pittsburgh, PA (December 2006)

17. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-
gramming errors. Software: Practice and Experience 30, 775–802 (2000)

18. Chandra, S., Reps, T.: Physical type checking for C. In: PASTE 1999(1999)
19. Chang, B.-Y., Harren, M., Necula, G.C.: Analysis of low-level code using cooperat-

ing decompilers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 318–335. Springer,
Heidelberg (2006)

20. Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties
of software. In: CCCS 2002 (2002)

21. Christodorescu, M., Goh, W.-H., Kidd, N.: String analysis for x86 binaries. In:
PASTE 2005 (2005)

22. Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables.
In: ICSM 1997 (1997)

23. CodeSonar, GrammaTech, Inc.,
http://www.grammatech.com/products/codesonar

24. CodeSurfer, GrammaTech, Inc.,
http://www.grammatech.com/products/codesurfer

25. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI 1988 (1988)

26. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: Extracting finite-state models from Java source code. In: ICSE
2000 (2000)

27. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: POPL
1977 (1977)

28. Cova, M., Felmetsger, V., Banks, G., Vigna, G.: Static detection of vulnerabilities
in x86 executables. In: ACSAC 2006 (2006)

29. Coverity Prevent,
http://www.coverity.com/products/prevent analysis engine.html

30. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: PLDI 2002 (2002)

31. De Sutter, B., De Bus, B., De Bosschere, K., Keyngnaert, P., Demoen, B.: On the
static analysis of indirect control transfers in binaries. In: PDPTA 2000 (2000)

32. Debray, S.K., Linn, C., Andrews, G.R., Schwarz, B.: Stack analysis of x86 executa-
bles (2004), www.cs.arizona.edu/∼debray/Publications/stack-analysis.pdf

33. Debray, S.K., Muth, R., Weippert, M.: Alias analysis of executable code. In: POPL
1998 (1998)

34. Van Emmerik, M.J.: Static Single Assignment for Decompilation. PhD thesis,
School of Inf.Tech.and Elec.Eng., Univ.of Queensland, Brisbane, AU (May 2007)

35. Engler, D.R., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: OSDI 2000 (2000)

http://www.grammatech.com/products/codesonar
http://www.grammatech.com/products/codesurfer
http://www.coverity.com/products/prevent_analysis_engine.html
www.cs.arizona.edu/~debray/Publications/stack-analysis.pdf

34 T. Reps and G. Balakrishnan

36. Gopan, D., Reps, T.: Low-Level Library Analysis and Summarization. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 68–81. Springer, Heidel-
berg (2007)

37. Guo, B., Bridges, M.J., Triantafyllis, S., Ottoni, G., Raman, E., August, D.I.:
Practical and accurate low-level pointer analysis. In: CGO 2005 (2005)

38. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. STTT 2(4) (2000)

39. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002 (2002)

40. Howard, M.: Some bad news and some good news, MSDN, Microsoft Corp. (Octo-
ber 2002), http://msdn2.microsoft.com/en-us/library/ms972826.aspx

41. IDAPro disassembler, http://www.datarescue.com/idabase/
42. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A Relational Approach to Interpro-

cedural Shape Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
246–264. Springer, Heidelberg (2004)

43. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted
pushdown systems (2004), http://www.cs.wisc.edu/wpis/wpds++/

44. Kiss, Á., Lehotai, G., Jász, J., Gyimóthy, T.: Interprocedural static slicing of binary
executables. In: SCAM 2003 (2003)

45. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg
(1992)

46. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: USENIX Sec. Symp. 2005 (2005)

47. Lal, A., Reps, T., Balakrishnan, G.: Extended Weighted Pushdown Systems. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448.
Springer, Heidelberg (2005)

48. Larus, J.R., Schnarr, E.: EEL: Machine-independent executable editing. In: PLDI
1995 (1995)

49. Lim, J., Reps, T.: A system for generating static analyzers for machine instructions.
In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 36–52. Springer, Heidelberg
(2008)

50. Myers, E.W.: Efficient applicative data types. In: POPL 1984 (1984)
51. Nita, M., Grossman, D., Chambers, C.: A theory of platform-dependent low-level

software. In: POPL 2008 (2008)
52. PREfast with driver-specific rules, WHDC, Microsoft Corp. (October 2004),

http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx
53. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its ap-

plication to program analysis. In: POPL 1999 (1999)
54. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract interpreta-

tion. In: Trans. on Embedded Comp. Systs. 2005 (2005)
55. Reps, T., Balakrishnan, G., Lim, J.: Intermediate-representation recovery from

low-level code. In: PEPM 2006 (2006)
56. Reps, T., Balakrishnan, G., Lim, J., Teitelbaum, T.: A Next-Generation Platform

for Analyzing Executables. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
212–229. Springer, Heidelberg (2005)

57. Schwoon, S.: Moped system,
http://www.fmi.uni-stuttgart.de/szs/tools/moped/

58. Seidl, H., Fecht, C.: Interprocedural analyses: A comparison. In: JLP 2000 (2000)

http://msdn2.microsoft.com/en-us/library/ms972826.aspx
http://www.datarescue.com/idabase/
http://www.cs.wisc.edu/wpis/wpds++/
http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx
http://www.fmi.uni-stuttgart.de/szs/tools/moped/

Improved Memory-Access Analysis for x86 Executables 35

59. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, Prentice-Hall, Englewood Cliffs
(1981)

60. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A first step towards automated
detection of buffer overrun vulnerabilities. In: NDSS (February 2000)

61. Wall, D.W.: Systems for late code modification. In: Giegerich, R., Graham, S.L.
(eds.) Code Generation – Concepts, Tools, Techniques. Springer, Heidelberg (1992)

62. C++ for kernel mode drivers: Pros and cons, WHDC web site (February 2007),
http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx

63. http://www.microsoft.com/whdc/devtools/ddk/default.mspx
64. Xu, Z., Miller, B., Reps, T.: Safety checking of machine code. In: PLDI 2000 (2000)
65. Xu, Z., Miller, B., Reps, T.: Typestate Checking of Machine Code. In: Sands, D.

(ed.) ESOP 2001. LNCS, vol. 2028, Springer, Heidelberg (2001)
66. Zhang, J., Zhao, R., Pang, J.: Parameter and return-value analysis of binary exe-

cutables. In: COMPSAC 2007 (2007)

http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx
http://www.microsoft.com/whdc/devtools/ddk/default.mspx

A System for Generating

Static Analyzers for Machine Instructions�

Junghee Lim1 and Thomas Reps1,2

1 Comp. Sci. Dept.; Univ. of Wisconsin-Madison, WI; USA
2 GrammaTech, Inc.; Ithaca, NY; USA

{junghee,reps}@cs.wisc.edu

Abstract. This paper describes the design and implementation of a
language for specifying the semantics of an instruction set, along with a
run-time system to support the static analysis of executables written in
that instruction set. The work advances the state of the art by creating
multiple analysis phases from a specification of the concrete operational
semantics of the language to be analyzed.

1 Introduction

The problem of analyzing executables to recover information about their execu-
tion properties, especially for finding bugs, security vulnerabilities, or malicious
code (e.g., back doors, time bombs, or logic bombs), has been receiving increased
attention. However, much of this work has focused on specialized analyses to
identify aliasing relationships [13], data dependences [2,8], targets of indirect
calls [12], values of strings [7], bounds on stack height [20], and values of param-
eters and return values [24]. In contrast, Balakrishnan and Reps [3,5] developed
ways to address all of these problems by means of an analysis that discovers an
overapproximation of the set of states that can be reached at each point in the
executable—where a state means all of the state: values of registers, flags, and
the contents of memory. Moreover, their approach can be applied to stripped
executables (i.e., neither source code nor symbol-table/debugging information is
available).

Although their techniques, in principle, are language-independent, they were
instantiated only for the Intel IA32 instruction set. Our motivation is to provide
a systematic way of retargeting those analyses—and others yet to be created—to
instruction sets other than IA32.

The situation that we face is actually typical of much work on program
analysis: although the techniques described in the literature are, in principle,
language-independent, implementations are often tied to a specific language or
intermediate representation (IR). For high-level languages, the situation has been
addressed by developing common intermediate languages, e.g., GCC’s RTL, Mi-
crosoft’s MSIL, etc. The situation is more serious for low-level instruction sets,
� Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-

0540955 and CCF-0524051.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 36–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A System for Generating Static Analyzers for Machine Instructions 37

because of (i) instruction-set evolution over time (and the desire to have back-
ward compatibility as word size increased from 8 bits to 64 bits), which has
led to instruction sets with several hundred instructions, and (ii) a variety of
architecture-specific features that are incompatible with other architectures.

To address these issues, we developed a language for describing the semantics
of an instruction set, along with a run-time system to support the static analysis
of executables written in that instruction set. Our work advances the state of
the art by creating a system for automatically generating analysis components
from a specification of the language to be analyzed. The system, called TSL (for
“Transformer Specification Language”), has two classes of users: (1) instruction-
set-specification (ISS) developers and (2) analysis developers. The former are
involved in specifying the semantics of different instruction sets; the latter are
involved in extending the analysis framework. In designing TSL, we were guided
by the following principles:
– There should be a formal language for specifying the semantics of the lan-

guage to be analyzed. Moreover, ISS developers should specify only the ab-
stract syntax and a concrete operational semantics of the language to be
analyzed—each analyzer should be generated automatically from this spec-
ification.

– Concrete syntactic issues—including (i) decoding (machine code to abstract
syntax), (ii) encoding (abstract syntax to machine code), (iii) parsing assem-
bly (assembly code to abstract syntax), and (iv) assembly pretty-printing
(abstract syntax to assembly code)—should be handled separately from the
abstract syntax and concrete semantics.1

– There should be a clean interface for analysis developers to specify the ab-
stract semantics for each analysis. An abstract semantics consists of an in-
terpretation: an abstract domain and a set of abstract operators (i.e., for the
operations of TSL).

– The abstract semantics for each analysis should be separated from the lan-
guages to be analyzed so that one does not need to specify multiple versions
of an abstract semantics for multiple languages.

Each of these objectives has been achieved in the TSL system: The TSL system
translates the TSL specification of each instruction set to a common intermediate
representation (CIR) that can be used to create multiple analyzers (§2). Each
analyzer is specified at the level of the meta-language (i.e., by reinterpreting
the operations of TSL), which—by extension to TSL expressions and functions—
provides the desired reinterpretation of the instructions of an instruction set
(§3).

Other notable aspects of our work include
1. Support for Multiple Analysis Types.
– Classical worklist-based value-propagation analyses.
– Transformer-composition analyses [11,22], which are particularly useful for

context-sensitive interprocedural analysis, and for relational analyses.
1 The translation of the concrete syntaxes to and from abstract syntax is handled by

a generator tool that is separate from TSL, and will not be discussed in this paper.

38 J. Lim and T. Reps

– Unification-based analyses for flow-insensitive interprocedural analysis.
In addition, an emulator (for the concrete semantics) is also supported.

2. Implemented Analyses. These mechanisms have been instantiated for a
number of specific analyses that are useful for analyzing low-level code, including
value-set analysis [3,5] (§3.1), def-use analysis (for memory, registers, and flags)
(§3.2), aggregate structure identification [6] (§3.3), and generation of symbolic
expressions for an instruction’s semantics (§3.4).

3. Established Applicability. The capabilities of our approach have been
demonstrated by writing specifications for IA32 and PowerPC32. These are nearly
complete specifications of the languages, and include such features as (1) aliasing
among 8-, 16-, and 32-bit registers, e.g., al, ah, ax, and eax (for IA32), (2) endian-
ness, (3) issues arising due to bounded-word-size arithmetic (overflow/underflow,
carry/borrow, shifting, rotation, etc.), and (4) setting of condition codes (and
their subsequent interpretation at jump instructions).

The abstract transformers for these analyses that are created from the IA32
TSL specifications have been put together to create a system that essentially
duplicates CodeSurfer/x86 [4]. A similar system for PowerPC32 is under con-
struction. (The TSL-generated components are in place; only a few mundane
infrastructure components are lacking.) We have also experimented with suffi-
ciently complex features of other low-level languages (e.g., register windows for
Sun SPARC and conditional execution of instructions for ARM) to know that they
fit our specification and implementation models.

There are many specification languages for instruction sets and many pur-
poses for which they have been used. In our work, we needed a mechanism to
create abstract interpreters of instruction-set specifications. There are (at least)
four issues that arise: during the abstract interpretation of each transformer,
the abstract interpreter must be able to (i) execute over abstract states, (ii)
execute both branches of a conditional expression, (iii) compare abstract states
and terminate abstract execution when a fixed point is reached, and (iv) apply
widening operators, if necessary, to ensure termination. As far as we know, TSL
is the first system with an instruction-set-specification language and support for
such mechanisms.

Although this paper only discusses the application of TSL to low-level instruc-
tion sets, we believe that only small extensions would be needed to be able to
apply TSL to source-code languages (i.e., to create language-independent ana-
lyzers for source-level IRs), as well as bytecode. The main obstacle is that the
concrete semantics of a source-code language generally uses an execution state
based on a stack of variable-to-value (or variable-to-location, location-to-value)
maps. For a low-level language, the state incorporates an address-based memory
model, for which the TSL language provides appropriate primitives.

The remainder of the paper is organized as follows: §2 introduces TSL and the
capabilities of the system. §3 explains how CIR is instantiated to create an analyzer
for a specific analysis component. §4describes quirky features of several instruction
sets, and discusses how those features are handled in TSL. §5discusses related work.

A System for Generating Static Analyzers for Machine Instructions 39

2 Overview of the TSL System

This section provides an overview of the TSL system. We discuss how three
analysis components are created automatically from a TSL specification, using a
fragment of the IA32 instruction set to illustrate the process.

2.1 TSL from an ISS Developer’s Standpoint

Fig. 1 shows part of a specification of the IA32 instruction set taken from the
manual [1]. The specification is only semi-formal: it uses a mixture of English
and pseudo-code.

General Purpose Registers: ADD r/m32,r32; Add r32 to r/m32
EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,EIP ADD r/m16,r16; Add r16 to r/m16 . . .
Each of these registers also has 16- or 8-bit subset names. Operation: DEST ← DEST + SRC;

Addressing Modes: [sreg:][offset][([base][,index][,scale])] Flags Affected: The OF,SF,ZF,AF,CF, and
EFLAGS register: ZF,SF,OF,CF,AF,PF, . . . PF flags are set according to the result.

Fig. 1. A part of the Intel manual’s specification of IA32’s ADD instruction

Our work is based on completely formal specifications, which are written in a
language that we designed (TSL). TSL is a strongly typed, first-order functional
language with a datatype-definition mechanism for defining recursive datatypes,
plus deconstruction by means of pattern matching. Fig. 2 shows the part of the
TSL specification that corresponds to Fig. 1. Much of what an ISS developer
writes is similar to writing an interpreter for an instruction set in first-order
ML [14]. An ISS developer specifies the abstract syntax grammar by defining the
constructors for a language of instructions (lines 2–10), a concrete-state type
(lines 13–15), and the concrete semantics of each instruction (lines 23–33).

TSL provides 5 basetypes: INT8, INT16, INT32, INT64, and BOOL. TSL supports
arithmetic/logical operators (+, −, ∗, /, !, &&, ||, xor), bit-manipulation oper-
ators (∼, &, |, ˆ, �, �, right-rotate, left-rotate), relational operators (<, <=,
>, >=, ==, !=), and a conditional-expression operator (? :).

TSL also provides several map-basetypes: MEMMAP32 8 LE, MEMMAP32 16 LE,
VAR32MAP, VAR16MAP, VAR8MAP, VARBOOLMAP, etc. MEMMAP32 8 LE maps
from 32-bit values (addresses) to 8-bit values, VAR32MAP from var32 to 32-bit
values, VARBOOLMAP from var bool to Boolean values, and so forth. Tab. 1
shows the list of some of the TSL access/update functions. Each access function
takes a map (e.g., MEMMAP32 8 LE, VAR32MAP, VARBOOLMAP, etc.) and an
appropriate key (e.g., INT32, var32, var bool, etc.), and returns the value that
corresponds to the key. Each update function takes a map, a key, and a value,
and returns the updated map. The access/update functions for MEMMAP32 8 LE
implement the little-endian storage convention.

Each specification must define several reserved (but user-defined) types: var64,
var32, var16, var8, and var bool, which represent storage components of 64-bit, 32-
bit, 16-bit, 8-bit, and Boolean types, respectively; instruction; state; as well as the

40 J. Lim and T. Reps

[1] // User-defined abstract syntax
[2] reg32: EAX() | EBX() | . . . ;
[3] flag: ZF() | SF() | . . . ;
[4] operand32: Indirect32(reg32 reg32 INT8 INT32)
[5] | DirectReg32(reg32)| Immediate32(INT32)| ...;
[6] operand16: . . . ;
[7] . . .
[8] instruction
[9] : ADD32 32(operand32 operand32)
[10] | ADD16 16(operand16 operand16) | . . . ;
[11] var32: Reg32(reg32);
[12] var bool: Flag(flag);
[13] state: State(MEMMAP32 8 LE // memory-map
[14] VAR32MAP // register-map
[15] VARBOOLMAP); // flag-map
[16] // User-defined functions
[17] INT32 interpOp(state S, operand32 I) { . . . }
[18] state updateFlag(state S, . . .) { . . . }
[19] state updateState(state S, . . .) {
[20] with(S) (
[21] State(mem,regs,flags): . . .
[22] }
[23] state interpInstr(instruction I, state S) {
[24] with(I) (
[25] ADD32 32(dstOp, srcOp):
[26] let dstVal = interpOp(S, dstOp);
[27] srcVal = interpOp(S, srcOp);
[28] res = dstVal + srcVal;
[29] S2 = updateFlag(S, dstVal, srcVal, res);
[30] in (updateState(S2, dstOp, res)),
[31] . . .
[32])
[33] }

[1] template <typename INTERP>
[2] class CIR {
[3] class reg32 { . . . };
[4] class EAX: public reg32 { . . . };
[5] . . .
[6] class operand32 { . . . };
[7] class Indirect32: public operand32 { . . . };
[8] . . .
[9] class instruction { . . . };
[10] class ADD32 32: public instruction { . . .
[11] enum TSL ID id;
[12] operand32 op1;
[13] operand32 op2;
[14] };
[15] . . .
[16] class state { . . . };
[17] class State: public state { . . .
[18] INTERP::MEMMAP32 8 LE mapMap;
[19] INTERP::VAR32MAP var32Map;
[20] INTERP::VARBOOLMAP varBoolMap;
[21] };
[22] . . .
[23] static state interpInstr(instruction I, state S) {
[24] state ans;
[25] switch(I.id) {
[26] case ID ADD32 32: {
[27] operand32 dstOp = I.op1;
[28] operand32 srcOp = I.op2;
[29] INTERP::INT32 dstVal = interpOp(S, dstOp);
[30] INTERP::INT32 srcVal = interpOp(S, srcOp);
[31] INTERP::INT32 res = INTERP::Add(dstVal,srcVal);
[32] state S2 = updateFlag(S, dstVal, srcVal, res);
[33] ans = updateState(S2, dstOp, res);
[34] } break;
[35] . . .
[36] }
[37] return ans;
[38] }
[39]};

reserved function interpInstr. (These are underlined in Fig. 2.) These form part
of the API available to analysis engines that use the TSL-generated transformers
(see §3). The reserved types are used as an interface between the CIR and analysis-
domain implementations.

The definition of types and constructors on lines 2–10 of Fig. 2 is an abstract-
syntax grammar for IA32. The definitions for var32 and var bool wrap the
user-defined types reg32 and flag, respectively. Type reg32 consists of nullary con-
structors for IA32 registers, such as EAX() and EBX(); flag consists of nullary con-
structors for the IA32 condition codes, such as ZF() and SF(). Lines 4–7 define types
and constructors to represent the various kinds of operands that IA32 supports, i.e.,
various sizes of immediate, direct register, and indirect memory operands. The re-
served (but user-defined) type instruction consists of user-defined constructors for
each instruction, such as ADD32 32 and ADD16 16, which represent instructions
with different operand sizes.

Fig. 2. A part of the TSL specification
of IA32 concrete semantics,whichcorresponds

ADD from the IA32
manual. Reserved types and function names
are underlined.

to the specification

Fig. 3. A part of the CIRgenerated
from Fig. 2

A System for Generating Static Analyzers for Machine Instructions 41

Table 1. Access/Update functions

MEMMAP32 8 LE MemUpdate 32 8 LE 32(MEMMAP32 8 LE memmap, INT32 key, INT32 v);
INT32 MemAccess 32 8 LE 32(VAR32MAP mapmap, INT32 key);

VAR32MAP Var32Update(VAR32MAP var32Map, var32 key, INT32 v);
INT32 Var32Access(VAR32MAP var32Map, var32 key);

VARBOOLMAP VarBoolUpdate(VARBOOLMAP varBoolMap, var bool key, BOOL v);
BOOL VarBoolAccess(VARBOOLMAP varBoolMap, var bool key);

The type state specifies the structure of the execution state. The state for IA32
is defined on lines 13–15 of Fig. 2 to consist of a memory-map, a register-map, and
a flag-map. The concrete semantics is specified by writing a function named inter-
pInstr (see lines 23–33 of Fig. 2), which maps an instruction and a state to a state.

2.2 Common Intermediate Representation (CIR)

Fig. 3 shows part of the TSL CIR automatically generated from Fig. 2. Each gener-
ated CIR is specific to a given instruction-set specification, but common (whence
the name CIR) across generated analyses. Each generated CIR is a template class
that takes as input INTERP, an abstract domain for an analysis (lines 1–2). The
user-defined abstract syntax (lines 2–10 of Fig. 2) is translated to a set of C++
abstract-syntax classes (lines 3–15 of Fig. 3). The user-defined types, such as
reg32, operand32, and instruction, are translated to abstract C++ classes, and the
constructors, such as EAX(), Indirect32(, , ,), and ADD32 32(,), are subclasses of
the appropriate parent abstract C++ class. Each user-defined function is trans-
lated to a static CIR function.

Each TSL basetype and basetype-operator is prepended with the template
parameter name INTERP; INTERP is supplied for each analysis by an analysis
designer. The with expression and the pattern matching on lines 24–25 of Fig. 2
are translated to switch statements in C++2 (lines 25–36 in Fig. 3). The function
calls for obtaining the values of the two operands (lines 26–27 in Fig. 2) corre-
spond to the C++ code on lines 29–30 in Fig. 3. The TSL basetype-operator +
on line 28 in Fig. 2 is translated to the CIR member function INTERP::Add, as
shown on line 31 in Fig. 3. The function calls for updating the state (lines 29–30
in Fig. 2) are translated into C++ code (lines 32–33 in Fig. 3).

2.3 TSL from an Analysis Developer’s Standpoint

The generated CIR is instantiated for an analysis by defining (in C++) an interpre-
tation: a representation class for each TSL basetype, and implementations of each
TSL basetype-operator and built-in function. Tab. 2 shows the implementations
of primitives for three selected analyses: value-set analysis (VSA, see §3.1), def-use
analysis (DUA, see §3.2), and quantifier-free bit-vector semantics (QFBV, see §3.4).

2 The TSL front end performs with-normalization, which transforms all multi-level with
expressions to use only one-level patterns, via the pattern-compilation algorithm
from [18,23].

42 J. Lim and T. Reps

Table 2. Parts of the declarations of the basetypes, basetype-operators, and map-
access/update functions for three analyses

VSA DUA QFBV

[1] class VSA INTERP {
[2] // basetype
[3] typedef ValueSet32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return a.addValueSet(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Dict<var32,INT32>
[12] VAR32MAP;
[13] . . .
[14] // map-access/update functions
[15] INT32 Var32Access(
[16] VAR32MAP m, var32 k) {
[17] return m.Lookup(k);
[18] }
[19] VAR32MAP
[20] Var32Update(VAR32MAP m,
[21] var32 k, INT32 v) {
[22] return m.Insert(k, v);
[23] }
[24] . . .
[25]};

[1] class DUA INTERP {
[2] // basetype
[3] typedef UseSet INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return a.Union(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Dict<var32,INT32>
[12] VAR32MAP;
[13] . . .
[14] // map-access/update functions
[15] INT32 Var32Access(
[16] VAR32MAP m, var32 k) {
[17] return m.Lookup(k);
[18] }
[19] VAR32MAP
[20] Var32Update(VAR32MAP m,
[21] var32 k, INT32 v) {
[22] return m.Insert(k,v);
[23] }
[24]. . .
[25]};

[1] class QFBV INTERP {
[2] // basetype
[3] typedef QFBVTerm32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return QFBVPlus32(a, b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Dict<var32,INT32>
[12] VAR32MAP;
[13] . . .
[14] // map-access/update functions
[15] INT32 Var32Access(
[16] VAR32MAP m, var32 k) {
[17] return m.Lookup(k);
[18] }
[19] VAR32MAP
[20] Var32Update(VAR32MAP m,
[21] var32 k, INT32 v) {
[22] return m.Insert(k, v);
[23] }
[24] . . .
[25]};

Each interpretation defines an abstract domain. For example, line 3 of each
column defines the abstract-domain class for INT32: ValueSet32, UseSet, and QFB-
VTerm32. To define an interpretation, one needs to define 42 basetype operators,
most of which have four variants, for 8-, 16-, 32-, and 64-bit integers, as well
as 12 map access/update operations. Each abstract domain is also required to
contain a set of reserved functions, such as join, meet, and widen, which forms an
additional part of the API available to analysis engines that use TSL-generated
transformers (see §3).

2.4 Generated Transformers

The TSL system provides considerable leverage for implementing static-analysis
tools and experimenting with new ones. New static-analyses are easily imple-
mented: each static-analysis component is created via abstract interpretation
of the TSL code that defines the concrete semantics of the instruction set. In
particular, all abstract interpretation is performed at the meta-level : an analysis
designer adds a new analysis component to the TSL system by (i) redefining
the TSL basetypes, and (ii) providing a set of alternative interpretations for the
primitive operations on basetypes. This implicitly defines an alternative interpre-
tation of each expression and function in an instruction-set’s concrete operational
semantics, and thereby yields an abstract semantics for an instruction set from
its concrete operational semantics.

A System for Generating Static Analyzers for Machine Instructions 43

Table 3. Transformers generated by the TSL system

Analysis Generated Transformers for “add ebx,eax”
1.VSA λS.S[ebx �→ S(ebx)+vsaS(eax)] [ZF �→ (S(ebx)+vsaS(eax) = 0)][more flag updates]
2.DUA [ebx �→ {eax, ebx}, ZF �→ {eax, ebx}, . . .]
3.QFBV (ebx′ = ebx+32eax) ∧ (ZF′ ⇔ (ebx+32eax = 0)) ∧ (SF′ ⇔ (ebx+32eax< 0)) ∧ . . .

Consider the instruction “add ebx,eax”, which causes the sum of the values of
the 32-bit registers ebx and eax to be assigned into ebx. When Fig. 3 is instanti-
ated with the three interpretations from Tab. 2, lines 23–33 of Fig. 2 implement
the three transformers presented (using mathematical notation) in Tab. 3.

2.5 Measures of Success

Client Analyzer

M Instruction-Set Specifications

TSL System

N Analysis Components

• • •

interpInstr1 interpInstr2 interpInstrN

• • •

Fig. 4. The interaction between the TSL

system and a client analyzer. The grey
boxes represent TSL-generated analysis
components.

The TSL system provides two di-
mensions of parameterizability: dif-
ferent instruction sets and different
analyses. Each ISS developer speci-
fies an instruction-set semantics, and
each analysis developer defines an ab-
stract domain for a desired analy-
sis by giving an interpretation (i.e.,
the implementations of TSL base-
types, basetype-operators, and ac-
cess/update functions). Given the in-
puts from these two classes of users,
the TSL system automatically gener-
ates an analysis component. Note that
the work that an analysis developer
performs is TSL-specific but indepen-
dent of each language to be analyzed;
from the interpretation that defines
an analysis, the abstract transformers

for that analysis can be generated automatically for every instruction set for
which one has a TSL specification. Thus, to create M × N analysis components,
the TSL system only requires M specifications of the concrete semantics of in-
struction sets, and N analysis implementations (Fig. 4), i.e., M + N inputs to
obtain M × N analysis-component implementations.

One measure of success is demonstrated by our effort to use TSL to recreate
the analysis components used in CodeSurfer/x86 [4]. We estimate that the task
of writing transformers (for eight analysis phases used in CodeSurfer/x86) con-
sumed about 20 man-months; in contrast, we have invested a total of about 1
man-month to write the C++ code for the set of TSL interpretations that are
used to generate the replacement components. To this, one should add 10–20

44 J. Lim and T. Reps

man-days to write the TSL specification for IA32: the current specification for
IA32 consists of 2,834 (non-comment, non-blank) lines of TSL.

Because each analysis is defined at the meta-level (i.e., by providing an inter-
pretation for the collection of TSL primitives), abstract transformers for a given
analysis can be created automatically for each instruction set that is specified in
TSL. For instance, from the PowerPC32 specification (1,370 non-comment, non-
blank lines, which took approximately 4 days to write), we were immediately
able to generate PowerPC32-specific versions of all of the analysis components
that had been developed for the IA32 instruction set.

It is natural to ask how the TSL-generated analyses perform compared to their
hand-coded counterparts. Due to the nature of the transformers used in one of
the analyses that we implemented (affine-relation analysis (ARA) [17]), it was pos-
sible to write an algorithm to compare the TSL-generated ARA transformers with
the hand-coded ARA transformers that were incorporated in CodeSurfer/x86. On
a corpus of 542 instruction instances that covered various opcodes, addressing
modes, and operand sizes, we found that the TSL-generated transformers were
equivalent in 324 cases and more precise than the hand-coded transformers in
the remaining 218 cases.3

In addition to leverage and thoroughness, for a system like CodeSurfer/x86—
which uses multiple analysis phases—automating the process of creating abstract
transformers ensures semantic consistency; that is, because analysis implemen-
tations are generated from a single specification of the concrete semantics, this
guarantees that a consistent view of the concrete semantics is adopted by all of
the analyses used in the system.

It takes approximately 8 seconds (on an Intel Pentium 4 with a 3.00GHz CPU
and 2GB of memory, running Centos 4) for the TSL (cross-)compiler to compile
the IA32 specification to C++, followed by approximately 20 minutes wall-clock
time (on an Intel Pentium 4 with a 1.73GHz CPU and 1.5GB of memory, running
Windows XP) to compile the generated C++.

3 Generation of Static Analyzers

In this section, we explain how various analyses are created using our system,
and illustrate this process with some specific analysis examples.
3 For 87 cases, this was because in rethinking how the ARA abstraction could be

encoded using TSL mechanisms, we discovered an easy way to extend [17] to retain
some information for 8-, 16-, and 64-bit operations. (In principle, these could have
been incorporated into the hand-coded version, too.)

The other 131 cases of improvement can be ascribed to “fatigue factor” on the part
of the human programmer: the hand-coded versions adopted a pessimistic view and
just treated certain instructions as always assigning an unknown value to the regis-
ters that they affected, regardless of the values of the arguments. Because the TSL-
generated transformers are based on the ARA interpretation’s definitions of the TSL

basetype-operators, the TSL-generated transformers were more thorough: a basetype-
operator’s definition in an interpretation is used in all places that the operator arises
in the specification of the instruction set’s concrete semantics.

A System for Generating Static Analyzers for Machine Instructions 45

As illustrated in Fig. 4, a version of the interface function interpInstr is created
for each analysis. Each analysis engine calls interpInstr at appropriate moments
to obtain a transformer for an instruction being processed. Analysis engines can
be categorized as follows:

– Worklist-Based Value Propagation (or Transformer Application) [TA]. These
perform classical worklist-based value propagation in which generated trans-
formers are applied, and changes are propagated to successors/predecessors
(depending on propagation direction). Context-sensitivity in such analyses
is supported by means of the call-string approach [22]. VSA uses this kind of
analysis engine (§3.1).

– Transformer Composition [TC]. These generally perform flow-sensitive, context-
sensitive interprocedural analysis. DUA (§3.2) uses this kind of analysis en-
gine.

– Unification-Based Analyses [UB]. These perform flow-insensitive interproce-
dural analysis. ASI (§3.3) uses this kind of analysis engine.

For each analysis, the CIR is instantiated with an interpretation by an analysis
developer. This mechanism provides wide flexibility in how one can couple the
system to an external package. One approach, used with VSA, is that the analysis
engine (written in C++) calls interpInstr directly. In this case, the instantiated
CIR serves as a transformer evaluator : interpInstr is prepared to receive an in-
struction and an abstract state, and return an abstract state. Another approach,
used in DUA, is employed when interfacing to an analysis component that has its
own input language for specifying abstract transformers. In this case, the instan-
tiated CIR serves as a transformer generator : interpInstr is prepared to receive an
instruction and a default abstract state4 and return a transformer specification
in the analysis component’s input language.

The following subsections discuss how the CIR is instantiated for various
analyses.

3.1 Creation of a TA Transformer Evaluator for VSA

VSA is a combined numeric-analysis and pointer-analysis algorithm that deter-
mines a safe approximation of the set of numeric values and addresses that each
register and memory location holds at each program point [5]. A memory-region
is an abstract quantity that represents all runtime activation records of a pro-
cedure. To represent a set of numeric values and addresses, VSA uses value-sets,
where a value-set is a map from memory regions to strided intervals. A strided
interval consists of a lower bound lb, a stride s, and an upper bound lb+ks, and
represents the set of numbers {lb, lb + s, lb + 2s, ..., lb + ks} [21].

The Interpretation of Basetypes and Basetype-Operators. The abstract
domain for the integer basetypes is a value-set. The abstract domain for BOOL

4 In the case of transformer generation for a TC analyzer, the default state is the
identity function.

46 J. Lim and T. Reps

is Bool3 ({FALSE, MAYBE, TRUE}), where MAYBE means “may be FALSE or may
be TRUE”. The operators on these domains are described in detail in [21].

The Interpretation of Map-Basetypes and Access/Update Functions.
The abstract domain for memory maps (MEMMAP32 8 LE, MEMMAP32 16 LE,
etc.) is a dictionary that maps each abstract memory-location (i.e., the abstrac-
tion of INT32) to a value-set. The abstract domain for register maps (VAR32MAP,
VAR16MAP, etc.) is a dictionary that maps each variable (var32, var16, etc.) to
a value-set. The abstract domain for flag maps (VARBOOLMAP) is a dictionary
that maps a var bool to a Bool3. The access/update functions access or update
these dictionaries.

VSA uses this transformer evaluator to create an output abstract state, given
an instruction and an input abstract state. For example, row 1 of Tab. 3 shows the
generated VSA transformer for the instruction “add ebx, eax”. The VSA evaluator
returns a new abstract state in which ebx is updated with the sum of the values of
ebx and eax from the input abstract state and the flags are updated appropriately.

3.2 Def-Use Analysis (DUA)

Def-Use analysis finds the relationships between definitions (defs) and uses of
state components (registers, flags, and memory-locations) for each instruction.

The Interpretation of Basetypes and Basetype-Operators. The abstract
domain for the basetypes is a set of uses (i.e., abstractions of the map-keys in
states, such as registers, flags, and abstract memory locations), and the operators
on this domain perform a set union of their arguments’ sets.

The Interpretation of Map-Basetypes and Access/Update Functions.
The abstract domains of the maps for DUA are dictionaries that map each def
to a set of uses. Each access function returns the set of uses associated with the
key parameter. Each update function update(D, k, S), where D is a dictionary,
k is one of the state components, and S is a set of uses, returns an updated
dictionary D[k �→ (D(k) ∪ S)] (or D[k �→ S] if a strong update is sound).

The DUA results (e.g., row 2 of Tab. 3) are used to create transformers for
several additional analyses, such as GMOD analysis [10], which is an analysis
to find modified variables for each function f (including variables modified by
functions transitively called from f) and live-flag analysis, which is used in our
version of VSA to perform trace-splitting/collapsing (see §3.4).

3.3 Creation of a UB Transformer Generator for ASI

ASI is a unification-based, flow-insensitive algorithm to identify the structure
of aggregates in a program [6]. For each instruction, the transformer generator
generates a set of ASI commands, each of which is either a command to split a
memory region or a command to unify some portions of memory (and/or some
registers). At analysis time, a client analyzer typically applies the transformer
generator to each of the instructions in the program, and then feeds the resulting
set of ASI commands to an ASI solver to refine the memory regions.

A System for Generating Static Analyzers for Machine Instructions 47

The Interpretation of Basetypes and Basetype-Operators. The abstract
domain for the basetypes is a set of dataref s, where a dataref is an access on
specific bytes of a register or memory. The arithmetic, logical, and bit-vector
operations tag dataref s as non-unifiable dataref s, which means that they will
only be used to generate splits.
The Interpretation of Map-Basetypes and Access/Update Functions.
The abstract domain of the maps for ASI is a set of splits and unifications. The
access functions generate a set of dataref s associated with a memory location
or register. The update functions create a set of unifications or splits according
to the dataref s of the data argument.

For example, for the instruction “mov [ebx],eax”, when ebx holds the ab-
stract address AR foo−12, where AR foo is the memory-region for the activation
records of procedure foo, the ASI transformer generator emits one ASI unification
command “AR foo[-12:-9] :=: eax[0:3]”.

3.4 Quantifier-Free Bit-Vector (QFBV) Semantics

QFBV semantics provides a way to obtain a symbolic representation—as a for-
mula in first-order quantifier-free bit-vector logic—of an instruction’s semantics.

The Interpretation of Basetypes and Basetype-Operators. The abstract
domain for the integer basetypes is a term, and each operator on it constructs a
term that represents the operation. The abstract domain for BOOL is a formula,
and each operator on it constructs a formula that represents the operation.

The Interpretation of Map-Basetypes and Access/Update Functions.
The abstract domain for the state components is a dictionary that maps a stor-
age component to a term (or a formula in the case of VARBOOLMAP). The
access/update functions retrieve from and update the dictionaries, respectively.

QFBV semantics is useful for a variety of purposes. One use is as auxiliary
information in an abstract interpreter, such as the VSA analysis engine, to provide
more precise abstract interpretation of branches in low-level code. The issue
is that many instruction sets provide separate instructions for (i) setting flags
(based on some condition that is tested) and (ii) branching according to the
values held by flags.

•
•
•

(A) cmp eax, 10

(B) js …

(C) … (D) …

T F

(E) jz …
•
•
•

To address this problem, we use a trace-splitting/collapsing
scheme [16]. The VSA analysis engine partitions the state
at each flag-setting instruction based on live-flag informa-
tion (which is obtained from an analysis that uses the DUA
transformers); a semantic reduction [11] is performed on the
split VSA states with respect to a formula obtained from the
transformer generated by the QFBV semantics. The set of VSA
states that result are propagated to appropriate successors at
the branch instruction that uses the flags.

The cmp instruction shown above (A), which is a flag-setting instruction, has
SF and ZF as live flags because those flags are used at the branch instructions
js (B) and jz (E): js and jz jump according to SF and ZF, respectively. After
interpretation of (A), the state S is split into four states, S1, S2, S3, and S4,

48 J. Lim and T. Reps

which are reduced with respect to the formulas ϕ1: (eax − 10 < 0) associated
with SF, and ϕ2: (eax − 10 == 0) associated with ZF.

S1 := S[SF�→T] [ZF �→ T] [eax �→ reduce(S(eax), ϕ1 ∧ ϕ2)]
S2 := S[SF�→T] [ZF �→ F] [eax �→ reduce(S(eax), ϕ1 ∧ ¬ϕ2)]
S3 := S[SF�→F] [ZF �→ T] [eax �→ reduce(S(eax), ¬ϕ1 ∧ ϕ2)]
S4 := S[SF�→F] [ZF �→ F] [eax �→ reduce(S(eax), ¬ϕ1 ∧ ¬ϕ2)]

Because ϕ1 ∧ϕ2 is not satisfiable, S1 becomes ⊥. State S2 is propagated to the
true branch of js (i.e., just before (C)), and S3 and S4 to the false branch (i.e., just
before (D)). Because no flags are live just before (C), the splitting mechanism
maintains just a single state, and thus all states propagated to (C)—here there
is just one—are collapsed to a single abstract state. Because ZF is still live until
(E), the states S3 and S4 are maintained as separate abstract states at (D).

3.5 Paired Semantics

Our system allows easy instantiations of reduced products [11] by means of paired
semantics. The TSL system provides a template for paired semantics as shown
in Fig. 5(a).

(a)

[1] template <typename INTERP1, typename INTERP2>
[2] class PairedSemantics {
[3] typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;
[4] . . .
[5] INT32 MemAccess 32 8 LE 32(MEMMAP32 8 LE mem, INT32 addr) {
[6] return INT32(INTERP1::MemAccess 32 8 LE 32(mem.GetFirst(), addr.GetFirst()),
[7] INTERP2::MemAccess 32 8 LE 32(mem.GetSecond(), addr.GetSecond()));
[8] }
[9] };

(b)

[1] typedef PairedSemantics<VSA INTERP, DUA INTERP> DUA;
[2] template<> DUA::INT32 DUA::MemAccess 32 8 LE 32(
[3] DUA::MEMMAP32 8 LE mem, DUA::INT32 addr) {
[4] DUA::INTERP1::MEMMAP32 8 LE memory1 = mem.GetFirst();
[5] DUA::INTERP2::MEMMAP32 8 LE memory2 = mem.GetSecond();
[6] DUA::INTERP1::INT32 addr1 = addr.GetFirst();
[7] DUA::INTERP2::INT32 addr2 = addr.GetSecond();
[8] DUA::INT32 answer = interact(mem1, mem2, addr1, addr2);
[9] return answer;
[10]}

Fig. 5. (a) A part of the template class for paired semantics; (b) an example of C++

explicit template specialization to create a reduced product

The CIR is instantiated with a paired semantic domain defined with two inter-
pretations, INTERP1 and INTERP2 (each of which may itself be a paired semantic
domain), as shown on line 1 of Fig. 5(b). The communication between interpreta-
tions may take place in basetype-operators or access/update functions; Fig. 5(b)
is an example of the latter. The two components of the paired-semantics values
are deconstructed on lines 4–7 of Fig. 5(b), and the individual INTERP1 and

A System for Generating Static Analyzers for Machine Instructions 49

INTERP2 components from both inputs can be used (as illustrated by the call
to interact on line 8 of Fig. 5(b)) to create the paired-semantics return value,
answer. Such overridings of basetype-operators and access/update functions are
done by C++ explicit specialization of members of class templates (this is spec-
ified in C++ by “template<>”; see line 2 of Fig. 5(b)).

We also found this method of CIR instantiation to be useful to perform a form
of reduced product when analyses are split into multiple phases, as in a tool
like CodeSurfer/x86. CodeSurfer/x86 carries out many analysis phases, and the
application of its sequence of basic analysis phases is itself iterated. On each
round, CodeSurfer/x86 applies a sequence of analyses: VSA, DUA, and several
others. VSA is the primary workhorse, and it is often desirable for the information
acquired by VSA to influence the outcomes of other analysis phases by pairing
the VSA interpretation with another interpretation.

4 Instruction Sets

In this section, we discuss the quirky characteristics of some instruction sets,
and various ways these can be handled in TSL.

4.1 IA32

To provide compatibility with 16-bit and 8-bit versions of the instruction set,
IA32 provides overlapping register names, such as AX (the lower 16-bits of EAX),
AL (the lower 8-bits of AX), and AH (the upper 8-bits of AX). There are two
possible ways to specify this feature in TSL. One is to keep three separate maps
for 32-bit registers, 16-bit registers, and 8-bit registers, and specify that updates
to any one of the maps affect the other two maps. Another is to keep one 32-bit
map for registers, and obtain the value of a 16-bit or 8-bit register by masking
the value of the 32-bit register. (The former can yield more precise VSA results.)

Another characteristic to note is that IA32 keeps condition codes in a special
register, called EFLAGS.5 One way to specify this feature is to declare “reg32:
Eflags();”, and make every flag manipulation fetch the bit value from an appro-
priate bit position of the value associated with Eflags in the register-map. Another
way is to have symbolic flags, as in our examples, and have every manipulation
of EFLAGS affect the individual flags.

4.2 ARM

Almost all ARM instructions contain a condition field that allows an instruction
to be executed conditionally, depending on condition-code flags. This feature
reduces branch overhead and compensates for the lack of a branch predictor.
However, it may worsen the precision of an abstract analysis because in most in-
structions’ specifications, the abstract values from two arms of a TSL conditional
expression would be joined.
5 Many other instruction sets, such as SPARC, PowerPC32, and ARM, also use a special

register to store condition codes.

50 J. Lim and T. Reps

For example, MOVEQ is one of ARM’s conditional instructions; if the flag EQ
is true when the instruction starts executing, it executes normally; otherwise,
the instruction does nothing. Fig. 6 shows the specification of the instruction in
TSL. In many abstract semantics, the conditional expression “cond ? a : b” will
be interpreted as a join of the original register map b and the updated map a,
i.e., join(a,b). Consequently,

[1] MOVEQ(destReg, srcOprnd):
[2] let cond = VarBoolAccess(
[3] flagMap, EQ());
[4] src = interpOperand(
[5] curState, srcOprnd);
[6] a = Var32Update(
[7] regMap, destReg, src);
[8] b = regMap;
[9] answer = cond ? a : b;
[10] in (answer)

Fig. 6. An example of the specification of
an ARM conditional-move instruction in
TSL

destReg would receive the join of its
original value and src, even when
cond is known to have a definite
value (TRUE or FALSE) in VSA se-
mantics. The paired-semantics mech-
anism presented in §3.5 can help with
improving the precision of analyzers
by avoiding joins. When the CIR is
instantiated with a paired semantics
of VSA INTERP and DUA INTERP, and
the VSA value of cond is FALSE, the
DUA INTERP value for answer gets
empty def - and use-sets because the
true branch a is known to be unreach-
able according to the VSA INTERP

value of cond (instead of non-empty sets for def s and uses that contain all
the definitions and uses in destReg and srcOprnd).

4.3 SPARC

[1] var32 : Reg(INT8) | CWP() | . . .;
[2] reg32 : OutReg(INT8) | InReg(INT8) | . . .;
[3] state: State(. . . , VAR32MAP, . . .);
[4] INT32 RegAccess(VAR32MAP regmap, reg32 r) {
[5] let cwp = Var32Access(regmap, CWP());
[6] key = with(r) (
[7] OutReg(i):
[8] Reg(8+i+(16+cwp*16)%(NWINDOWS*16),
[9] InReg(i): Reg(8+i+cwp*16),
[10] . . .);
[11] in (Var32Access(regmap, key))
[12]}

Fig. 7. A method to handle the SPARC register window in
TSL

SPARC uses register win-
dows to reduce the over-
head associated with
saving registers to the
stack during a con-
ventional function call.
Each window has 8 in,
8 out, 8 local, and 8
global registers. Outs be-
come ins on a context
switch, and the new
context gets a new set
of out and local reg-
isters. A specific plat-
form will have some to-

tal number of registers, which are organized as a circular buffer; when
the buffer becames full, registers are spilled to the stack to free up
a sufficient number for the called procedure. Fig. 7 shows a way to
accomodate this feature. The syntactic register (OutReg(n) or InReg(n),
defined on line 2) in an instruction is used to obtain a semantic register (Reg(m),

A System for Generating Static Analyzers for Machine Instructions 51

defined on line 1, where m represents the register’s global index), which is the
key used for accesses on and updates to the register map. The desired index
of the semantic register is computed from the index of the syntactic register,
the value of CWP (the current window pointer) from the current state, and the
platform-specific value NWINDOWS (lines 8–9).

5 Related Work

There are many specification languages for instruction sets and many purposes
for which they have been used, including emulation (hardware simulation) for
cycle simulation, pipeline simulation, and compiler-optimization testing; retar-
geting of back-end phases, such as instruction scheduling, register assignment,
and functional-unit binding; and concrete syntactic issues, such as instruction
encoding and decoding. While some of the existing languages would have been
satisfactory for our purposes, their runtime components were not satisfactory,
which necessitated creating our own implementation. In particular, as mentioned
in §1, we needed the runtime to (i) execute over abstract states, (ii) possibly prop-
agate abstract states to more than one successor at a branch node, (iii) be able to
compare abstract states and terminate abstract execution when a fixed point is
reached, and (iv) apply widening operators, if necessary, to ensure termination.

Harcourt et al. [14] used ML to specify the semantics of instruction sets. LISAS
[9] is a specification language that was developed based on their experience with
ML. Their work particularly influenced the design of the TSL language.

TSL shares some of the same goals as λ-RTL [19] (i.e., the ability to specify
the semantics of an instruction set and to support multiple clients that make
use of a single specification). The two languages were both influenced by ML,
but different choices were made about what aspects of ML to retain: λ-RTL is
higher-order, but without datatype constructors and recursion; TSL is first-order,
but supports both datatype constructors and recursion.6 The choices made in
the design and implementation of TSL were driven by the goal of being able to
define multiple abstract interpretations of an instruction-set’s semantics.

Discussion of additional work related to TSL can be found in [15].

Acknowledgements. We would like to thank Gogul Balakrishnan, Denis
Gopan, and Susan Horwitz for their comments on drafts of this paper, and
the anonymous referees for the helpful suggestions contained in their reviews.

References

1. IA-32 Intel Architecture Software Developer’s Manual,
http://developer.intel.com/design/pentiumii/manuals/243191.htm

2. Amme, W., Braun, P., Zehendner, E., Thomasset, F.: Data dependence analysis of
assembly code. In: IFPP 2000 (2000)

6 Recursion is not often used in specifications, but is needed for handling some loop-
iteration instructions, such as the IA32 string-manipulation instructions and the Pow-

erPC32 multiple-word load/store instructions.

http://developer.intel.com/design/pentiumii/manuals/243191.htm

52 J. Lim and T. Reps

3. Balakrishnan, G.: WYSINWYX: What You See Is Not What You eXecute. PhD
thesis, Univ. of Wisc. (2007)

4. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—A Plat-
form for Analyzing x86 Executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 250–254. Springer, Heidelberg (2005)

5. Balakrishnan, G., Reps, T.: Analyzing Memory Accesses in x86 Executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

6. Balakrishnan, G., Reps, T.: DIVINE: DIscovering Variables IN Executables. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer,
Heidelberg (2007)

7. Christodorescu, M., Goh, W., Kidd, N.: String analysis for x86 binaries. In: PASTE
2005 (2005)

8. Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables.
In: ICSM 1997 (1997)

9. Cook, T.A., Franzon, P.D., Harcourt, E.A., Miller, T.K.: System-level specification
of instruction sets. In: DAC 1993 (1993)

10. Cooper, K., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI 1988 (1988)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979 (1979)

12. De Sutter, B., De Bus, B., De Bosschere, K., Keyngnaert, P., Demoen, B.: On the
static analysis of indirect control transfers in binaries. In: PDPTA 2000 (2000)

13. Debray, S., Muth, R., Weippert, M.: Alias analysis of executable code. In: POPL
1998(1998)

14. Harcourt, E., Mauney, J., Cook, T.: Functional specification and simulation of
instruction set architectures. In: PLC 1994 (1994)

15. Lim, J., Reps, T.: A system for generating static analyzers for machine instructions.
TR-1622, C.S.Dept., Univ. of Wisconsin, Madison, WI (October 2007)

16. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005)

17. Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. In: Sagiv, M. (ed.)
ESOP 2005. LNCS, vol. 3444, pp. 46–60. Springer, Heidelberg (2005)

18. Pettersson, M.: A term pattern-match compiler inspired by finite automata theory.
In: Pfahler, P., Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 258–270. Springer,
Heidelberg (1992)

19. Ramsey, N., Davidson, J.: Specifying instructions’ semantics using λ-RTL (unpub-
lished manuscript, 1999)

20. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract interpreta-
tion. In: TECS 2005 (2005)

21. Reps, T., Balakrishnan, G., Lim, J.: Intermediate-representation recovery from
low-level code. In: PEPM 2006 (2006)

22. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, Prentice-Hall, Englewood Cliffs
(1981)

23. Wadler, P.: Efficient compilation of pattern-matching. The Impl. of Func. Prog.
Lang. (1987)

24. Zhang, J., Zhao, R., Pang, J.: Parameter and return-value analysis of binary exe-
cutables. In: COMPSAC 2007 (2007)

IDE Dataflow Analysis in the Presence of Large

Object-Oriented Libraries�

Atanas Rountev, Mariana Sharp, and Guoqing Xu

Ohio State University, USA

Abstract. A key scalability challenge for interprocedural dataflow anal-
ysis comes from large libraries. Our work addresses this challenge for
the general category of interprocedural distributive environment (IDE)
dataflow problems. Using pre-computed library summary information,
the proposed approach reduces significantly the cost of whole-program
IDE analyses without any loss of precision. We define an approach for
library summary generation by using a graph representation of dataflow
summary functions, and by abstracting away redundant dataflow facts
that are internal to the library. Our approach also handles object-oriented
features, by employing an IDE type analysis as well as special handling
of polymorphic library call sites whose target methods depend on the
future (unknown) client code. Experimental results show that dramatic
cost savings can be achieved with the help of these techniques.

1 Introduction

Interprocedural dataflow analysis plays an important role in compilers and var-
ious software tools. A key scalability challenge for analysis algorithms comes
from large libraries. Systems are inevitably built with standard libraries (e.g.,
Java J2SE or C++ STL), domain-specific libraries (e.g., graphics, linear algebra,
etc.), and middleware (e.g., EJB). The size of the client code is often a small
fraction of the size of the library code being used by that client code.

In this paper we focus on whole-program interprocedural dataflow analysis
for Java. However, the proposed approach should also be applicable to other
object-oriented languages. Our target is a general category of dataflow problems
referred to as interprocedural distributive environment (IDE) problems [1]. The
goal is to reduce the cost of whole-program IDE analyses by using pre-computed
library summary information. Library code is analyzed independently of any
client code, in oder to produce a library summary stored on disk; this summary
is reusable for subsequent analysis of any client code. The summary-generation
analysis produces a precise summary: the solution for the client code, computed
using the summary, is as precise as the solution what would have been computed
if we were to use a whole-program analysis of client+library code.

Existing work by Sagiv et al. [1] already provides a solution for one key prob-
lem: the representation and manipulation of dataflow functions. Based on their
� This material is based upon work supported by NSF under grant CCF-0546040.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 53–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 A. Rountev, M. Sharp, and G. Xu

techniques, we define a general approach for library summary generation. One
important problem is that the summary may contain redundant dataflow facts
that do not affect the analysis of the client code. We solve this problem through
abstracted versions of summary functions, in order to filter out callee-local de-
tails. Another key problem are polymorphic library call sites whose target meth-
ods depend on the future (unknown) client code. We propose the use of IDE
type analysis to identify a subset of these sites that are client-independent and
can be processed precisely. The client-dependent call sites are left unresolved in
the summary, until client code becomes available. This approach also handles
library callback sites that may invoke callback methods defined in future clients.

Contributions. This work makes the following specific contributions:

– Whole-program analysis. A general framework for whole-program IDE anal-
yses for object-oriented programs, which extends the classical approach for
procedural languages [2,3,4,1] through an IDE type analysis (Section 2).

– Summary-generation analyses. A general algorithm for summary generation
with abstracted summary functions, capturing the dataflow effects of sets of
control-flow paths, with special treatment of polymorphic calls.

– Dependence analysis and type analysis. Two instances of the general ap-
proach: an IDE data dependence analysis that plays an important role in
the construction of system dependence graphs, and an IDE type analysis.

– Experimental evaluation. A study using the 10238 classes of the Java li-
braries, and 20 client programs. The experimental results show that dramatic
cost savings can be achieved with the help of these techniques

2 Whole-Program IDE Dataflow Problems

In interprocedural distributive environment (IDE) dataflow problems [1], the
dataflow facts are maps (“environments”) from some set of symbols D to lattice
elements from a semi-lattice L. The IDE class is a general category of dataflow
problems, examples of which are copy-constant propagation and linear-constant
propagation [1], object naming analysis [5], 0-CFA type analysis [6,7,8], and all
IFDS (interprocedural, finite, distributive, subset) problems [3] such as reach-
ing definitions, available expressions, live variables, truly-live variables, possibly-
uninitialized variables, flow-sensitive side-effects [9], some forms of may-alias and
must-alias analysis [4], and interprocedural slicing [10].

A program is represented by an interprocedural control-flow graph (ICFG).
Each call expression is represented by two nodes: a call-site node and a return-
site node. Interprocedural edges connect a call-site node with the start node
of the invoked procedure p, and the exit node of p with the return-site node
(assuming a single exit node per procedure.) An intraprocedural edge may also
be added from the call-site to the return-site [1]. A valid ICFG path has (call-site,
start) and (exit, return-site) edges that are properly matched [2,3,1].

An environment is a map D → L where D is a finite set of symbols and L is
a finite-height meet semi-lattice with a top element � and a meet operator ∧.
Let Env (D, L) be the set of all environments for a given pair (D, L). The meet

IDE Dataflow Analysis in the Presence of Large O-O Libraries 55

operator ∧ extended to environments is env1 ∧ env2 = λd.(env1(d) ∧ env2(d)).
The top element in Env (D, L), denoted by Ω, is λd.�. For any env ∈ Env(D, L),
d ∈ D, and l ∈ L, env [d �→ l] denotes an environment in which each symbol d′

is mapped to env(d′), except for d which is mapped to l.
Functions t : Env (D, L) → Env(D, L) are environment transformers. A dis-

tributive transformer t distributes over ∧. An instance of an IDE problem is
(G, D, L, M) where G is the ICFG and M is a map that associates distributive
transformers with the edges of G. A safe analysis for an IDE problem computes
an over-approximation of the meet-over-all-valid-paths solution for any node n:
the solution at n is ≤ the meet of fq(Ω) for all valid paths q from the start node
of the program to n, where fq is the composition of the transformers of q’s edges.

Some problems are naturally defined with the approximation that any or-
dering of statements in a procedure is possible; these are intraprocedurally
flow-insensitive problems. They can be encoded by conceptually modifying each
procedure’s CFG to represent arbitrary compositions and meets of transformers,
using a switch-in-a-loop structure [11]. In this case all nodes in the same proce-
dure have the same solution. A context-insensitive problem does not distinguish
the different calling contexts of a procedure. A flow- and context-insensitive
problem can be modeled by a single conceptual switch-in-a-loop graph for the
entire program; in this case all program statements have the same solution.
Solving IDE Problems. Sagiv et al. [1] define a technique for precise com-
putation of the meet-over-all-valid-paths solution, based on the “functional”
approach by Sharir and Pnueli [2]. The first phase on the functional approach
computes a summary function φn for each ICFG node n, representing the so-
lution at n as a function of the solution at the start node of the procedure p
containing n. If n is the exit node of p, φn is a summary function for the entire
procedure p. During a bottom-up traversal of the SCC-DAG of the call graph,
the functions for p’s callees are used to model the effects of calls made by p. In
the second phase, the actual solution is determined at each ICFG node through
top-down propagation based on the summary functions. It is possible to merge
these two phases, resulting in a single top-down algorithm which computes φn

incrementally only for lattice elements that reach p’s entry. The work in [1] ap-
plies this technique to IDE problems (where φn are environment transformers)
by using a compact graph representation for transformers; as a result, a summary
function can be modeled by a (small) graph. The composition, meet, and appli-
cation of transformers can be implemented as inexpensive graph operations, and
the analysis algorithms can be designed based on a generalized form of graph
reachability (essentially, graph summarization along valid paths).

2.1 Interprocedural Dependence Analysis

To illustrate the general approach for solving IDE problems, we will use a partic-
ular form of interprocedural dependence analysis for Java.1 For each method m

1 Without loss of generality, the subsequent discussion assumes a certain simplified
program representation (based on Jimple in the Soot analysis framework [12]). For
brevity, details of this representation are provided elsewhere [13].

56 A. Rountev, M. Sharp, and G. Xu

with a non-void return type, the analysis computes the set of formal parameters
of m on which the return value of m may depend directly or transitively. This
output is essentially a set of transitive-dependence summary edges [10] which
play a key role in a variety of analyses for interprocedural slicing, program refac-
toring, change impact analysis, etc. For simplicity, we restrict the discussion to
data dependencies (control dependencies are easy to add to the formulation, and
are handled by our implementation), non-exceptional flow of control, and stack
memory locations (i.e., dependencies through the heap are not modeled; they
could be added using a conservative approach which maps each expression x.fld
to a single abstract location fld). Even with these restrictions, the analysis ex-
hibits the essential features of flow- and context-sensitive IDE analyses.

We propose an IDE formulation2 in which D is the set of all local variables and
formal parameters, and the L is the powerset of the set F of formal parameters,
with partial order ⊇ and meet ∪. For any env ∈ Env(D, L), the value of env(d)
for local/formal d in method m is the set of formal parameters f of m such that
the current value of d may directly or transitively depend on the value that f
had at the start of m. The final solutions at statements return x in a method m
are used to find all formals of m on which its return value may depend.3 Each
such formal parameter defines an interprocedural transitive dependence which
is a key component for the construction of the system dependence graph [10].

For an assignment d := expr{d1, . . . , dk}, where the side-effect-free non-call
expression expr uses di ∈ D, and the input environment is env , the transformed
environment is env [d �→

⋃
i env(di)]. Here d becomes dependent on every for-

mal f on which some di is dependent. If expr does not use any di ∈ D (e.g.,
it is a constant expression), the transformed environment is env [d �→ ∅]. For all
other non-call statements, as well as for calls without return values, the trans-
former is the identity function. A call d := m(d1, . . . , dk), can be treated as a
sequence of actual-to-formal assignments, followed by the summary function for
the callee method m, followed by an assignment of m’s return value to d (with
filtering due to scope changes). It is easy to prove that these transformers are
distributive.

In general, an environment transformer can be represented by a bipartite
directed graph with 2(|D|+1) nodes [1]. In each partition, |D| nodes are labeled
with d ∈ D, and one node is labeled with a special symbol Λ. The edges in the
graph are labeled with functions L → L. For the dependence analysis from above,
there are only two kinds of edge labels: the identity function λl.l and the constant
function λl.∅. Examples of these graphs are shown in Figure 1. The key property
of this representation is that it is closed under transformer composition and meet.
In essence, transformer meet corresponds to graph union, and composition is
similar to graph transitive closure (with edge label composition).

2 While inspired by [4], our formulation differs significantly from this previous work.
3 In this case, a solution captures the effects of same-level valid paths [4] — that is,

paths with the same number of calls and returns, starting at method entry. The
solution at method entry is Ω[fi �→ {fi}]: each formal fi of the method depends on
itself, and every other d ∈ D is mapped to ∅ (i.e., d does not yet have dependencies).

IDE Dataflow Analysis in the Presence of Large O-O Libraries 57

Fig. 1. Graph representation of environment transformers t

2.2 Type Analysis

The standard IDE formulation is applicable to procedural languages. For object-
oriented languages, polymorphic calls require resolution of target methods, which
can be done by any call graph construction analysis. We propose the use of one
such approach: 0-CFA type analysis [7,6,8]. This analysis has been investigated
extensively, and has been shown to be a good compromise between cost and
precision [14]. We we have restated 0-CFA as an IDE problem, which makes it a
natural choice for use in a general IDE framework. Consider any IDE analysis A
which requires a call graph in order to construct its ICFG. One option is to run
0-CFA as a pre-processing step before A. Alternatively, 0-CFA can be embedded
in A by using the product of 0-CFA’s environment set and A’s environment set,
resulting in a generalized type-aware version of A.

Intraprocedural IDE type analysis. First, we briefly outline the formulation
of intraprocedural 0-CFA analysis for Java as an IDE problem. Let D be the
set of all local variables, formal parameters (including this), and fields. Also,
let T be the set of all types that correspond to objects created at run time. An
environment is a map D → 2T . The powerset 2T is a lattice with partial order
⊇ and meet ∪. For any environment env and local/formal/field d ∈ D, the value
of env(d) is a set of types for the run-time objects that may be referred to by d.

For brevity, we discuss only the following two categories of statements; our
implementation handles the general case. First, in d := alloc(X), an object of
type X is created and a reference to it is assigned to d ∈ D. The environment
transformer in this case is λenv .env [d �→ env(d)∪{X}]; that is, type X is added
to the set of types for d. Second, for an assignment d1 := d2 where d1, d2 ∈ D, the
transformer is λenv .env [d1 �→ env(d1)∪env(d2)]: the set of types for d2 is added
to the set of types for d1. These transformers are distributive, and therefore this
is an IDE problem. Since 0-CFA is a flow-insensitive analysis, the transformers
do not perform “kills” — i.e., (t(env))(d) ⊇ env(d) for any transformer t.

In our formulation, the intraprocedural aspects of 0-CFA are equivalent to
combining all transformers for a method’s body through transformer composi-
tion and meet. The resulting transformer is the intraprocedural solution for a
method. If transformers are represented by graphs (as defined in [1]), intraproce-
dural 0-CFA computes a fixed point under the corresponding graph operations.
The resulting graph is a “one-hop” representation of all intraprocedural 0-CFA
effects of a method: given some input environment which represents the state

58 A. Rountev, M. Sharp, and G. Xu

immediately before the execution of the method, only one application of the
fixed-point graph to this input is enough to produce all necessary state updates.

Interprocedural aspects. Consider non-polymorphic calls (e.g., calls to static
methods or constructors). Parameter passing and return values can be modeled
as assignments, with the corresponding transformers. These transformers can be
combined with the ones from the method bodies (with closure under composi-
tion and meet) to obtain one single transformer t∗ for the entire program. The
value of t∗(Ω) is the type analysis solution; here Ω is the environment that as-
signs to each d ∈ D an empty set of types. Since 0-CFA is flow- and context-
insensitive, there is only one solution for the entire program. A polymorphic call
x.m() can be represented as a switch statement, with one branch per possible
target method. The set of possible targets can be determined by examining the
class hierarchy. Since we are interested in on-the-fly call graph construction, each
target is considered infeasible until evidence to the contrary is seen. To achieve
this, special transformers are introduced for the outgoing edges of the multi-way
branch, in order to prune the receiver types. These transformers are of the form
λenv .env [x �→ env(x)∩ReceiverTypes] for a call through x. Here ReceiverTypes is
the set of receiver types for which virtual dispatch would invoke the target method
for this branch. If the pruned type set is empty, the call is ignored.

3 Summary Generation for Object-Oriented Libraries

Consider a large library Lib which is to be used by many (unknown) clients. Fur-
thermore, suppose we already have some existing whole-program IDE dataflow
analysis. Clearly, it is desirable to perform some of the analysis work for Lib in
advance, independently of any library clients. The library summary information
generated by this summary generation analysis can be stored on disk, and later
used by a summary-based analysis of any client component Main . Our focus is
on precision-preserving summary generation: for any ICFG node in Main , the
solution computed by the summary-based analysis should be the same as the
solution that would have been computed by the original whole-program analysis.

The proposed summary-generation approach performs as many transformer
meets and compositions as possible in the library, and uses the result as summary
information. Two key problems arise when applying this idea. First, the targets
of call sites in the library may depend on the unknown code in client components.
Some of these targets may be library methods that are feasible only for some (but
not all) clients. Some call sites may even invoke callback methods defined in client
code. Second, the library summary may contain redundant information that is
internal to the library and does not affect the analysis of clients. For example,
while locals in the library play an important role during the computation of
summary functions, they may be irrelevant after the functions are computed.

3.1 Stage 1: Intraprocedural Summary Generation

For a library method that does not make any calls, the summary information
can be computed as follows. The transformers for nodes in the method are

IDE Dataflow Analysis in the Presence of Large O-O Libraries 59

Fig. 2. Summary information for dependence analysis (only non-trivial edges)

combined using composition and meet: for each node n, the summary func-
tion is φn =

∧
fq, where the meet is over all paths q from the start node to n,

and fq is the composition of the transformers of q’s edges. The summary func-
tion for the exit node (represented as a graph) serves as the summary function
for the method.4 If type analysis is performed as a pre-processing step (as op-
posed to being embedded in the main IDE analysis), the summary information
also contains the graph representation of the fixed-point transformer for type
analysis.

Suppose the analyzed method contains a set of call-site nodes cs1, cs2, . . . , csk

with the corresponding return-site nodes rsi. In this case, the summary gener-
ation produces a set of summary functions ψn

m, where n is the entry node or
some rsi, and m is the exit node or some csi. Transformer ψn

m is the meet of
fq for all intra-method paths q from n to m such that q contains no calls other
than n and m. This set of summary functions captures all intraprocedural ef-
fects of the method, and leaves unresolved the effects of all calls. In addition to
the set of ψn

m (represented as graphs), the summary information for the method
also contains descriptions of all call sites (e.g., compile-time target methods,
actual parameters, etc.). If the type analysis is a separate pre-processing step,
the summary also contains a single transformer which is the fixed-point meet
and composition of all type-analysis transformers for non-call statements in the
method.

� Examples. Figure 2 shows an example based on class DateFormat and its
subclass SimpleDateFormat from java.text in the Java 1.4.2 libraries. Consider
the dependence analysis from Section 2.1. Part (a) illustrates transformer ψentry

cs1
,

which corresponds to a single path along which r0, r1, and r2 are assigned (for
brevity, the constructor call for StringBuffer is not discussed). Part (b) shows
ψrs2

exit , using an artificial variable ret to represent the method’s return value.

4 Strictly speaking, since summary generation is independent of any client code, the
whole-program D and L are not fully known, and the summary function is not a
single transformer but rather an infinite set of transformers, one per possible client.

60 A. Rountev, M. Sharp, and G. Xu

Fig. 3. Summary information for type analysis (only non-trivial edges)

Figure 3 shows another example, based on java.util.Properties, to illus-
trate the type analysis. The transformers for all non-call statements are combined
through composition and meet. The resulting fixed-point transformer is shown
in part (a) of the figure. Unlike the multiple ψn

m needed for the flow-sensitive
dependence analysis, only one ψ is needed for the flow-insensitive type analysis.
All edges are labeled with λl.l. Dashed edges represent transitive relationships
due to transformer composition. �

Abstracted summary functions. The functions from Figure 2(a)/(b) and Fig-
ure 3(a) contain redundant information. Consider ψentry

cs1
which represents the

flow from the formals of the method to the actual parameters of the call at cs1
(including local r0 which refers to the receiver object). Here the only relevant
elements of D are this, f1, r0, r1, and r2. Thus, the summary information can
store an abstracted summary function ψ̂entry

cs1
instead of the original summary

function ψentry
cs1

. Figure 2(c) shows the graph representation of ψ̂entry
cs1

. Similar
considerations apply to the type analysis. The only elements of D that are rel-
evant outside of the method are formals this, f1, and f2, the return variable
ret, the actuals r0 and r1 at the call site, and the local r3 to which the return
value of the call is assigned. Both r2 and r4 can be eliminated from transformer
ψ; the resulting abstracted transformer ψ̂ is shown in Figure 3(b).

In general, for any IDE analysis, only a subset of D is relevant with respect to
a particular ψn

m. Depending on the specific analysis and on n and m, this sub-
set would typically be related to formal parameters, return statements, actuals
at calls, and return values at calls. Thus, it should be possible to define a cor-
responding abstracted transformer ψ̂n

m that can be used instead of ψn
m without

any loss of precision. Obtaining the graph representation of ψ̂n
m should be trivial,

given the already-computed representation of ψn
m. For the dependence analysis

discussed earlier, ψ̂n
m can be defined as follows: (1) if n is an entry node, the for-

mals should be preserved; (2) if m is an exit node, the return variable ret should
be preserved; (3) if n is a return-site node, the local variable to which the return
value is assigned should be preserved; and (4) if m is a call-site node, the actual
parameters should be preserved, including the reference to the receiver object.
The abstracted transformer ψ̂ for the type analysis can be defined similarly.

IDE Dataflow Analysis in the Presence of Large O-O Libraries 61

3.2 Stage 2: Interprocedural Summary Generation

In the standard IDE formulation, each call has a single target which is known at
analysis time. For a library method that makes calls, its summary information
can be computed by “inlining” the summary functions for callee methods, and
then performing the intraprocedural propagation outlined above. As a result, a
single summary function ψ̂entry

exit would be computed for the entire method.
This approach is possible only in the absence of callbacks from Lib to client

code. If a library method m contains a callback site, the complete behavior of
m is not known at summary-generation time, and it is not possible to create
a complete summary function. This is a realistic problem, because callbacks
occur often in object-oriented libraries (e.g., due to polymorphic calls in C++,
Java, and C#). Consider the abstract method format in class DateFormat from
Figure 2. If a client component creates a subclass with a corresponding non-
abstract method format, call site cs1 in Figure 2 could be a callback site. This
situation is common for extensible object-oriented libraries. Note that cs1 is
not necessarily a callback site: if the client code simply uses library subclass
SimpleDateFormat, the target of cs1 would be the corresponding library method.

Even in the absence of callbacks, it may still be impossible to create precise
summary functions. Consider the following Java example: library method m has
a virtual call a.n() and the compile-time type of a is A. Suppose library classes
B and C extend A, and method A.n is overridden by B.n and C.n. A conservative
analysis has to assume that a.n() could invoke any of these three methods,
and thus the summary function for m will depend on all three callees. But, for
example, if a client instantiates only C, the summary would be too conservative.

Exit calls. A call site is an exit call if it can invoke some method that “exits” the
scope of the analysis and therefore the effects of the call cannot be modeled. An
exit call is a virtual call x.m() for which (1) the declared type of x has possible
unknown subtypes, and (2) the compile-time target method of the call can be
overridden by unknown methods. A library type T (class or interface type) is
considered to have potential unknown subtypes in clients when T or some library
subtype of T is public and not final.5 The compile-time target method m of the
call site can have unknown overriding methods if (1) m is not private and is not
final, and (2) at least one of m’s overriding methods in the library (or m itself)
is non-final and is visible to clients (i.e., public or protected).

Fixed calls. A fixed call site in the library has exactly one possible run-time
target method, regardless of what the client code may be. This target is a li-
brary method and can be determined at summary generation time. Obviously,
an exit call is not a fixed call. A non-exit call is fixed if any of the following cases
holds. In case 1, the call invokes a static method or a constructor, and thus the
run-time target is the same as the compile-time target. In case 2, the call is a
virtual invocation, and conservative analysis of the type hierarchy for the entire
library determines that the call has exactly one possible run-time target method
5 This definition assumes that library packages are sealed, and clients cannot add new

classes to them (thus, non-public types cannot be accessed directly by client code).

62 A. Rountev, M. Sharp, and G. Xu

regardless of client code. For example, for cs2 in Figure 2, r3 is of compile-time
type StringBuffer which is a final class; thus, the only possible target is the
corresponding method in this class. In case 3, the call is a virtual invocation, and
conservative intraprocedural 0-CFA type analysis determines that the call has
exactly one possible run-time target method regardless of client code. Consider
a call site x.m(). In the graph representation of the transformer ψ̂ computed
by the intraprocedural type analysis, the only edges reaching x should be of
the form Λ → x; in other words, the only values of x should come from inside
the method. The label on the Λ → x edge is exactly the set of possible types
for x.

Fixed methods. Consider a fixed call site cs and suppose that its unique target
method m contains only fixed calls (or no calls at all), and this property transi-
tively holds for all methods reachable from m. We will refer to such m as fixed
methods. Here the effects of m are fully known at summary-generation time, and
can be represented by a summary function ψ̂entry

exit for m, computed through a
bottom-up traversal of the SCC-DAG of the “fixed” library call graph (i.e., the
call graph in which nodes are fixed methods and edges are fixed calls).

In the method m′ containing cs , m’s summary function can be instantiated
as follows. Consider any pair of summary functions ψ̂n1

cs and ψ̂rs
n2

computed in
m′; here rs is the return site corresponding to cs . The composition of these func-
tions with the summary function for m, followed by the appropriate abstraction
operations, produces a summary function ψ̂n1

n2
. If the pair (n1, n2) already has a

corresponding function (i.e., because there is some call-free-path from n1 to n2),
the new function is merged with the old one through transformer meet.

� Example. Figure 2(b) shows ψ̂rs2
exit . Consider call site cs2, which is fixed.

Suppose that its target method StringBuffer.toString is also fixed, and its
summary function, instantiated at the call site, results in a transformer fcs2

which shows a dependence from r3 to r4. The right part of Figure 2(d) shows
the graph representation of fcs2 . The composition of fcs2 and ψ̂rs2

exit can be used
to compute ψ̂rs1

exit . In addition to transformer composition, this computation can
also abstract away r4 because this variable is neither assigned the return value at
rs1, nor used at method exit. In general, after a summary function is instantiated
as fcs at a fixed call site cs , any pair of ψ̂n1

cs and ψ̂rs
n2

can be used to create ψ̂n1
n2

as an abstracted version of ψ̂rs
n2

◦ fcs ◦ ψ̂n1
cs , based on the elements of D that

need to be preserved for n1 and n2. The left part of Figure 2(d) shows the graph
representation of ψ̂rs1

exit after this abstraction. This summary function together
with ψ̂entry

cs1
, shown in Figure 2(c), defines the final summary information. �

If the summary function for a fixed method m is instantiated at all fixed
call sites that invoke it, and if we can conservatively prove that no other
call sites can directly invoke m (from the library or from client code), the sum-
mary ψ̂entry

exit for m does not need to be stored in the library summary at all.
Due to space constraints, additional details on this optimization are presented
elsewhere [13].

IDE Dataflow Analysis in the Presence of Large O-O Libraries 63

Table 1. Library summary information

(a) Library (b) Dependence Analysis (c) Type Analysis

Pkg Cls Mthd Stmt 1 2 3 4 1 2 3

java 1802 15676 245605 389024 584174 243005 151424 77940 111801 53215

javax 2265 17618 254542 390351 582970 278622 209549 88822 117102 65272

org 1289 8688 136945 180258 260013 134934 90893 55426 78490 32153

com 2373 18235 349957 517577 685128 323522 227939 125492 184347 84665

sun 2509 16973 508954 676324 820889 383865 246579 151060 207184 78291

Total 10238 77190 1496003 2153534 2933174 1363948 926384 498740 698924 313596

4 Experimental Evaluation

Study 1: Summary generation. Our experiments used the entire standard
Java libraries from Java 2 SDK SE 1.4.2. Some characteristics of the packages
in these libraries are summarized in part (a) of Table 1: number of classes Cls ,
number of methods Mthd , and number of statements Stmt in the intermediate
representation (IR) provided by the Soot analysis framework [12].6 The entire set
of 10238 library classes was used as input to the summary-generation analysis.
The running time of the analysis was 5491.6 seconds (about 90 minutes), on
a single Intel Xeon 2.8GHz CPU in a Dell PowerEdge 1950 server. This time
includes all Soot-related costs, the actual analysis time, and the disk I/O. The
memory consumption was 1230.3 MB. The summary was written to disk in a
straightforward binary format, with all necessary information for dependence
analysis and type analysis. The total size of the summary file was 17.9 MB.

Part (b) of Table 1 provides relevant measurements for the dependence anal-
ysis. Our implementation generalizes the one outlined in Section 2.1 as follows.
First, as an optimization, we compute def-use chains and perform transitive de-
pendence propagation using these chains. Second, our implementation computes
control dependencies (in addition to the data dependencies) and uses them when
computing transitive dependencies. The IDE formulation from Section 2.1 can
be easily extended to capture this generalization. Finally, we use a sparse graph
representation of transformers: trivial edges d → d are not represented.

Column 1 in part (b) of Table 1 shows the total number of edges in the graph
representation of all transformers before any transformer composition or meet is
performed. Column 2 shows the total number of such edges after intraprocedural
propagation, which starts at each node n that is an entry node or a return site,
and computes summary functions ψn

m for all m reachable from n along call-
free paths. Column 3 shows the total number of edges in the representation
of the abstracted transformers ψ̂n

m. The reduction from column 2 to column 3
eliminates all method-local information that does not directly affect callers or
callees of a method. The overall reduction in the number of edges is 53.5%. Part
(c) shows similar measurements for the type analysis; here each method has a
single summary function. The reduction in the number of edges from column 2
6 Row com includes packages com and COM; row sun includes packages sun and sunw.

64 A. Rountev, M. Sharp, and G. Xu

Table 2. Whole-program vs. summary-based analysis: time (sec) and memory (MB)

(a) Program (b) All Analyses (c) Dependence Analysis

Name Stmts Twp ΔT Mwp ΔM Twp ΔT Δub
T Mwp ΔM Δub

M

compress 71729 89.6 52.4% 256.8 30.7% 21.5 86.2% 88.3% 58.1 95.1% 98.2%

db 71940 89.8 51.2% 257.2 30.7% 20.7 78.6% 83.2% 58.2 95.0% 98.3%

jb 72713 87.9 50.0% 259.3 30.6% 20.6 75.8% 80.6% 59.3 93.8% 96.9%

raytrace 74738 92.9 56.6% 262.3 30.3% 21.4 76.6% 79.5% 61.0 91.5% 94.7%

proxy 75962 91.4 56.1% 263.5 31.5% 21.4 74.6% 83.9% 61.4 94.9% 98.1%

jlex 77134 94.4 43.9% 264.2 30.2% 25.3 60.0% 63.2% 62.2 90.7% 93.8%

javacup 78798 97.6 46.0% 269.3 29.6% 24.3 73.7% 75.7% 64.4 88.0% 90.9%

jess 79131 96.4 46.6% 271.8 29.4% 23.3 70.3% 70.6% 64.7 87.2% 90.2%

jack 81139 103.0 45.4% 270.9 29.5% 25.9 70.3% 73.7% 65.3 86.8% 90.1%

mpegaudio 83023 135.8 26.0% 271.3 29.3% 57.9 13.1% 16.6% 65.3 86.4% 90.0%

rabbit 90964 100.8 59.7% 287.3 34.0% 23.6 80.3% 82.0% 73.6 94.2% 97.0%

sablecc 92171 114.6 44.7% 298.7 27.3% 34.6 61.3% 61.5% 75.9 77.2% 80.3%

javac 95498 108.0 43.2% 302.2 27.6% 26.4 63.3% 71.7% 78.8 75.3% 78.3%

fractal 106433 110.8 55.0% 315.0 37.1% 25.3 80.3% 84.7% 86.6 94.5% 97.3%

echo 110458 117.0 64.2% 321.5 37.7% 30.4 85.3% 85.8% 90.0 94.6% 97.2%

jtar 113244 116.4 61.3% 326.8 37.4% 28.8 83.7% 87.6% 92.4 93.0% 95.5%

jflex 116938 144.8 50.9% 334.5 35.3% 50.1 61.3% 61.6% 96.1 86.9% 89.5%

mindterm 126362 144.9 43.2% 345.9 36.1% 49.7 41.5% 41.6% 102.2 86.4% 89.0%

muffin 138140 138.0 51.1% 370.9 38.3% 35.5 56.2% 57.3% 113.4 88.3% 90.6%

violet 153895 148.3 66.5% 398.8 43.0% 39.3 83.5% 87.9% 126.8 95.3% 97.6%

(size of ψ, after fixed-point transformer composition and meet) to column 3 (size
of ψ̂, after abstracting method-local information) is 55.1%.

Out of all library methods, 25490 (33.0%) are fixed. While fixed methods tend
to be smaller and simpler than non-fixed ones, the complete knowledge of their
summary functions still has positive effects on the library summary. The instanti-
ation of fixed-method summary functions at calls can be done for 63229 (20.5%)
of all library call sites. This instantiation, followed by additional intraprocedural
propagation and abstraction, further reduces the number of edges in the repre-
sentation of summary functions: overall, from column 3 to column 4 of Table 1
part (b), there is 32.1% reduction. Since the type analysis is context-insensitive,
instantiation of summary functions at call sites (an inherently context-sensitive
operation) is not meaningful for it and was not performed.

Study 2: Summary-based client analysis. The goal of our second study was
to measure the cost benefits of summary-based analysis compared to traditional
whole-program analysis. Table 2 presents the results of this study on 20 Java
programs. Column Stmts shows the number of IR statements for all methods
reported by whole-program 0-CFA as reachable. Typically, more than 90% of
these methods are library methods [13].

We ran two sets of experiments. The first set, shown in part (b) of Table 2,
considered the entire set of analyses employed by a Soot user: the IR building,
the 0-CFA type analysis interleaved with on-the-fly call graph construction in

IDE Dataflow Analysis in the Presence of Large O-O Libraries 65

the Spark module [14], and the dependence analysis (which uses this call graph).
This is the complete start-to-finish cost that would have to be paid to obtain
dependence information. The second set of experiments, shown in part (c) of
Table 2, considered only the dependence analysis, without any Soot-related costs.
For each experiment we measured the running time Twp and the peak memory
consumption Mwp of the whole-program analysis, as well as the corresponding
cost reduction ΔT and ΔM when using summary-based analyses.

Considering dependence analysis, type analysis, and IR building together, as
shown in part (b), the time savings ΔT are 50.7% and the memory savings ΔM

are 32.8% (average across all 20 programs). A large proportion of these savings is
due to Soot-related costs; such savings will be observed for any interprocedural
dataflow analysis which uses 0-CFA as a preprocessing step to obtain a program
call graph. When considering only the dependence analysis, in part (c), the
savings are, on average, 68.8% for ΔT and 89.8% for ΔM .

Columns Δub
T and Δub

M in part (c) show conservative upper bounds on the
savings of the summary-based dependence analysis. These measurements were
obtained using an artificial summary which contained only summary functions
for type analysis, but not for dependence analysis. Thus, the only dependence
analysis work was done inside the client code (of course, the resulting solution is
unsound). It is impossible to achieve reductions higher than the ones observed
with this artificial summary. Comparing columns Δub

T and ΔT , as well as Δub
M

and ΔM , it is clear that the savings are very close to this upper bound.

5 Related Work

Various techniques have been used to achieve modularity in static analysis; some
of the most relevant approaches are outlined below. A more complete discussion
is available in [15], presented from an abstract-interpretation point of view.

Summary functions for interprocedural analysis date back to the functional
approach [2], with refinements in [3] for IFDS problems and in [1] for IDE prob-
lems. This body of work assumes a procedural language without polymorphic
calls; furthermore, there is no separation between client code and library code.
A recent generalization [16], which subsumes IFDS and IDE problems, uses con-
ditional micro-transformers to represent and manipulate dataflow functions; it
would be interesting to generalize our approach to take advantage of this work.

Our summary-based analyses can be viewed as instances of the theoretical
approach presented in [17]. However, this earlier work does not consider (1) type
analysis and on-the-fly call graph construction, (2) abstracting away of library-
local dataflow facts, or (3) compact graph representation of dataflow functions.

Most analyses that employ summaries perform bottom-up traversal of the call
graph, and compute summary functions using the functions computed for the
visited callees; examples include [18,19,20,21,22,23,24,25,26]. In [27], libraries
are pre-analyzed but the computation of summary functions cannot be per-
formed in the presence of callbacks. Some techniques compute summary infor-
mation for a software component independently of the callers and callees of that
component. One particular technique is a modular approach which computes

66 A. Rountev, M. Sharp, and G. Xu

partial analysis results for each component, combines the results for all com-
ponents in the program, and then performs the rest of the analysis; examples
include [28,29,30,31,32,33]. There have also been proposals for employing sum-
mary information provided by the analysis user, as in [34,35,36]. Finally, certain
approaches analyze a software component when there is no available informa-
tion about the surrounding environment, using conservative assumptions about
unknown external code (e.g., [37,38,27,39,40,41,42,43,44,45]).

6 Conclusions and Future Work

Summary-based analysis shows promising potential for improving the scalabil-
ity of interprocedural analysis in the presence of large object-oriented libraries.
Our results indicate that summary generation can have practical cost and can
produce a small summary file, and most importantly, the analysis of client code
becomes substantially cheaper. Future work will investigate other IDE analyses,
as well as a standardized API for storing and retrieving summary information.

References

1. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Comp. Sci. 167, 131–170 (1996)

2. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

3. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

4. Reps, T., Sagiv, M., Horwitz, S.: Interprocedural dataflow analysis via graph reach-
ability. Technical Report DIKU-TR94-14, U. Copenhagen (1994)

5. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered se-
quence diagrams. In: ICSE, pp. 254–263 (2005)

6. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
TOPLAS 23(6), 685–746 (2001)

7. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: OOPSLA, pp. 281–293 (2000)

8. Heintze, N.: Set Based Program Analysis. PhD thesis, CMU (1992)
9. Callahan, D.: The program summary graph and flow-sensitive interprocedural data

flow analysis. In: PLDI, pp. 47–56 (1988)
10. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.

TOPLAS 12(1), 26–60 (1990)
11. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the

presence of large libraries. Technical Report CISRC-TR01, Ohio State U (2006)
12. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:

Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, Springer, Heidelberg (2000)

13. Sharp, M.: Static Analyses for Java in the Presence of Distributed Components
and Large Libraries. PhD thesis, Ohio State University (2007)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

IDE Dataflow Analysis in the Presence of Large O-O Libraries 67

15. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–178. Springer, Heidelberg (2002)

16. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: POPL (2008)

17. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the pres-
ence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923,
pp. 2–16. Springer, Heidelberg (2006)

18. Chatterjee, R., Ryder, B.G., Landi, W.: Relevant context inference. In: POPL, pp.
133–146 (1999)

19. Choi, J., Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis for
Java. In: OOPSLA, pp. 1–19 (1999)

20. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA, pp. 187–206 (1999)

21. Cheng, B., Hwu, W.: Modular interprocedural pointer analysis using access paths.
In: PLDI, pp. 57–69 (2000)

22. Ruf, E.: Effective synchronization removal for Java. In: PLDI, pp. 208–218 (2000)
23. Foster, J., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-

insensitive points-to analysis for C. In: Palsberg, J. (ed.) SAS 2000. LNCS,
vol. 1824, pp. 175–198. Springer, Heidelberg (2000)

24. Liang, D., Harrold, M.J.: Efficient computation of parameterized pointer informa-
tion for interprocedural analyses. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 279–298. Springer, Heidelberg (2001)

25. Triantafyllis, S., Bridges, M., Raman, E., Ottoni, G., August, D.: A framework for
unrestricted whole-program optimization. In: PLDI, pp. 61–71 (2006)

26. Cherem, S., Rugina, R.: A practical effect and escape analysis for building
lightweight method summaries. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007.
LNCS, vol. 4420, pp. 172–186. Springer, Heidelberg (2007)

27. Chatterjee, R., Ryder, B.G.: Data-flow-based testing of object-oriented libraries.
Technical Report DCS-TR-433, Rutgers University (2001)

28. Oxhøj, N., Palsberg, J., Schwartzbach, M.: Making Type Inference Practical. In:
Lehrmann Madsen, O. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 329–349. Springer,
Heidelberg (1992)

29. Codish, M., Debray, S., Giacobazzi, R.: Compositional analysis of modular logic
programs. In: POPL, pp. 451–464 (1993)

30. Flanagan, C., Felleisen, M.: Componential set-based analysis. TOPLAS 21(2), 370–
416 (1999)

31. Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI,
pp. 35–46 (2000)

32. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA. In: PLDI, pp.
254–263 (2001)

33. Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built
with precompiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
20–36. Springer, Heidelberg (2001)

34. Dwyer, M.: Modular flow analysis of concurrent software. In: ASE, pp. 264–273
(1997)

35. Guyer, S., Lin, C.: Optimizing the use of high performance software libraries. In:
Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F.,
Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, pp. 227–243. Springer,
Heidelberg (2001)

36. Rugina, R., Rinard, M.: Design-driven compilation. In: Wilhelm, R. (ed.) CC 2001.
LNCS, vol. 2027, pp. 150–164. Springer, Heidelberg (2001)

68 A. Rountev, M. Sharp, and G. Xu

37. Harrold, M.J., Rothermel, G.: Separate computation of alias information for reuse.
TSE 22(7), 442–460 (1996)

38. Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments.
In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS,
vol. 1687, pp. 235–252. Springer, Heidelberg (1999)

39. Sreedhar, V., Burke, M., Choi, J.: A framework for interprocedural optimization
in the presence of dynamic class loading. In: PLDI, pp. 196–207 (2000)

40. Ghemawat, S., Randall, K., Scales, D.: Field analysis: Getting useful and low-cost
interprocedural information. In: PLDI, pp. 334–344 (2000)

41. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp.
35–46 (2001)

42. Tip, F., Sweeney, P., Laffra, C., Eisma, A., Streeter, D.: Practical extraction tech-
niques for Java. TOPLAS 24(6), 625–666 (2002)

43. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of
polymorphism in Java software. TSE 30(6), 372–387 (2004)

44. Rountev, A.: Precise identification of side-effect-free methods in Java. In: ICSM,
pp. 82–91 (2004)

45. Xue, J., Nguyen, P.H.: Completeness analysis for incomplete object-oriented pro-
grams. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 271–286. Springer, Hei-
delberg (2005)

An Adaptive Strategy for Inline Substitution

Keith D. Cooper1, Timothy J. Harvey1, and Todd Waterman2

1Rice University Houston,
Texas, USA

cooper,harv@rice.edu
2Texas Instruments, Inc. Stafford,

Texas, USA
twaterman@ti.com

Abstract. Inline substitution is an optimization that replaces a proce-
dure call with the body of the procedure that it calls. Inlining has the
immediate benefit of reducing the overhead associated with the call, in-
cluding register saves and restores, parameter evaluation, and activation
record setup and teardown. It has secondary benefits that arise from
providing greater context for global optimizations. These benefits can be
offset by the effects of increased code size, and by deleterious interactions
with other optimizations, such as register allocation.

The difficult aspect of inline substitution is choosing which calls to in-
line. Previous work has focused on static, one-size-fits-all heuristics. This
paper presents a feedback-driven adaptive scheme that derives a program-
specific inlining heuristic. The key contributions of this work are: (1) a
novel parameterization scheme for the inliner that makes it susceptible to
fine-grained external control, (2) a scheme for discretizing large integer pa-
rameter spaces, and (3) effective search techniques for the resulting search
space. This work provides a proof of concept that can provide insight into
the design of adaptive controllers for other optimizations with complex
decision heuristics. Our goal in this work is not to exhibit the world’s best
inliner. Instead, we present evidence to suggest that a program-specific,
adaptive scheme is needed to achieve the best results.

1 Introduction

Inline substitution is a simple transformation. It replaces a procedure call with a
copy of the callee’s body. The complex aspect of inline substitution is the decision
process–the method by which the compiler decides which call sites to inline. The
goal for inlining is to decrease the running time of the complete application.
Unfortunately, the decision made at one call site affects the decisions at other
call sites in subtle ways that can be hard to predict.

Naively, we would expect that inline substitution is always profitable. It elimi-
nates operations to save and restore registers, to manipulate and manage activa-
tion records, and to evaluate parameters. On the other hand, studies have shown
that inlining can increase application running time, due to effects that range from
increased code size to decreased effectiveness of global optimization [7]. The im-
pact at any single call site is multiplied by its execution frequency. Modern

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 69–84, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 K.D. Cooper, T.J. Harvey, and T. Waterman

programming practices encourage many calls to small procedures. An effective
decision procedure must balance many competing effects.

Existing compilers typically attack this problem with a set of static heuristics.
They aim to improve performance and avoid foreseeable pitfalls, such as excessive
code growth. While these heuristics usually improve the speed of the compiled
code, they leave a significant amount of improvement unrealized (See § 4).

The problem with static sets of heuristics is precisely that they are static; this
paper shows evidence that different input programs need different strategies. For
example, inlining small routines may produce radical improvement in one pro-
gram but miss opportunities in another. The difference between a good inlining
decision and a bad one often lies in low-level, idiosyncratic detail that is not
obvious early in compilation—properties such the demand for registers at the
call site and in the callee, the execution frequency of the call, and the improved
optimization that might accrue from knowledge about the actual parameters.

To address this problem, we designed and built an adaptive inliner. Many
recent papers have explored aspects of adaptive optimization [25,28,3,21,15].
This work focuses on program-specific optimization inside a single transforma-
tion. That transformation has a huge and complex decision space; each decision
changes the remainder of the problem. Our system includes a source-to-source
inliner that runs quickly. It takes, as a command-line parameter, a closed-form
description of an inlining heuristic and applies that heuristic to each call site
in a predictable order. The design of that parameter scheme is critical to the
system’s success. An adaptive controller manipulates the heuristic and measures
the results to discover a good heuristic for the input program.

The next section explores the decision problem for inline substitution and
introduces our inliner’s parameter scheme. Section 3 presents exploratory exper-
iments that we performed to help us understand the decision spaces and to de-
velop effective search techniques. The experimental results in Section 4 show that
the adaptive inliner consistently produces faster executables than gcc’s inliner.
Empirical evidence from our searches suggests why no set of static heuristics will
work as well as the adaptive system across a broad range of input codes.

2 Designing a Parameter Scheme for Inlining

Inlining decisions are made with two levels of granularity. The compiler might
decide to inline all calls to a particular procedure—for example, one whose body
required fewer operations than the call would. On the other hand, the compiler
might only inline a call if certain of the actual parameters have known constant
values that permit optimization of the inlined body. Call-site specific decisions
allow greater control, but make it harder to reason about the decision procedure.

To reason about the problem, assume that we have built a simplified call
graph, CG(N, E), with a distinct edge 〈a, b〉 for each call in a that invokes b and
a map from each edge to a specific call site. To simplify matters, we will elide
any backedges from the graph because the recursive cycles that they represent
would add another layer of complication to the inliner.

An Adaptive Strategy for Inline Substitution 71

Original Call Graph

W �

�

X�

�
Y �

��

�

�

��

�

�

��

�
Z

Y inlined into W

W �
�
�

���

X�

�
Y �

��

�

�

��

�

�

��

�
Z

Fig. 1. An example call-graph

The problem of deciding which call sites to inline is hard, for several reasons.
First, the impact of any particular inlining decision depends on the optimizer’s
effectiveness on the resulting code, which is hard to predict. Second, each decision
to inline changes the call graph for subsequent decisions. To see this, consider
the call graph in Figure 1.

The left side shows a call graph, where both W and X call Y , and Y calls Z
from three distinct locations. Inlining Y into W produces the call graph on the
right. Notice that the number of edges entering Z grows from three to six and
the total edge count grows from five to seven. If the compiler, instead, inlines
the calls from Y to Z, the total edge count shrinks from five to two.

If we view the decision problem as assigning a value, inline or intact, to
each edge, the compiler initially faces a set of E decisions, one per edge and
2E possible programs that it could consider and evaluate. Each time the system
inlines an edge, it changes the graph. The decision can add edges; it can remove
edges; it changes the program metrics for nodes and edges. Thus, the decision
problem is solved in a complex and changing environment.

Finally, the decisions are interrelated and the order of decisions can affect
the results. Consider, for example, a heuristic that inlines A into B if neither
procedure has more than ten instructions. In Figure 1, if W and Y each have six
instructions and Z has two, then inlining Y into W would prevent a subsequent
decision to inline Z. On the other hand, inlining Z into Y first would not preclude
inlining Y into W . Order has a direct effect on outcome; similar effects arise from
the order of application of multiple heuristics.

The goal of this work was to construct a system that discovers good program-
specific inlining heuristics. These program-specific heuristics are expressed in
terms of concrete properties of the input program. The system measures those
properties and then uses them in a feedback-driven tuning phase to construct a
program-specific heuristic. The current set of program metrics are:

Statement count - sc: the number of C statements contained within a procedure.
It approximates procedure size. Many inlining heuristics try to mitigate ob-
ject code growth by bounding the size of procedures that can be inlined.

72 K.D. Cooper, T.J. Harvey, and T. Waterman

Loop nesting depth - lnd: the number of loops in the caller that surround the
call site. lnd proxies for execution frequency; calls in loops usually execute
more often than calls outside of loops.

Static call count - scc: the number of distinct call sites that invoke the proce-
dure in the original code. If scc is one, the call can be inlined with little or
no code growth. If scc is small, the compiler might inline all of the calls and
eliminate the original procedure.

Parameter count - pc: the number of formal parameters at the call. Because
each parameter requires setup code, pc proxies for invocation cost. For small
procedures, parameter setup costs can exceed the cost of inline execution [23].

Constant-parameter count - cpc: the number of constant-valued actual param-
eters at the call site. Constant-valued parameters may predict the benefits
of optimizing the inlined code [4].

Calls in procedure - clc: the number of call sites inside the procedure that is a
candidate for inlining. If clc is zero, the candidate is a leaf procedure. Such
procedures are often small. Additionally, leaf procedures often account for a
majority of total runtime.

Dynamic call count - dcc: the number of times that a call site executes during
a profiling run of the program. Even minor savings at a site with with high
dcc can produce measurable improvement. Dcc captures profiling results and
gives more accurate data on which to base inlining decisions [18,6].

These metrics were chosen to enable comparison with previous studies of inlining.
The set is neither complete nor definitive, but it is broad enough to demonstrate
the power of the parameter scheme. Adding or replacing metrics is easy.

The power of our design lies not in the specific metrics that it uses, but,
rather, in the parameter scheme built on top of the metrics. The inliner takes a
command-line parameter, the condition string, that specifies a complete heuris-
tic. The condition string is a list of clauses in disjunctive normal form. Each
clause is an inequality over the program metrics, literal constants, and arith-
metic operators. For example, the clause sc - clc < 10 specifies that any proce-
dure comprised mostly of calls should be inlined. (To be precise, the expression
evaluates to true if the number of statements that are not calls is fewer than
ten.) Similarly, the condition string lnd > 0 & sc < 100 | sc < 25 returns true for
any call site in a loop where the callee has fewer than 100 statements and any
call that lies outside loops where the callee has fewer than 25 statements.

To apply a condition string, the inliner evaluates the expression at every call
site. It inlines each call site where the string evaluates to true. Call sites are
considered in a postorder walk over the call graph, starting with leaves and
working toward the root. When the system inlines a call site, it updates the
program metrics to reflect the transformation.1

The source-to-source inliner was built from Davidson and Holler’s INLINER
tool [10] modified to accept ANSI C. It first builds the call graph and annotates
1 The current metrics cannot express heuristics that rely on the inliner’s internal state:

e.g., “inline a call only if no other calls have been inlined into the caller.” Adding a
metric to account for this kind of data would be straightforward.

An Adaptive Strategy for Inline Substitution 73

it with the various metrics described above. It reads the condition string from the
command line. Next, it evaluates the condition string at each call, in a postorder
walk of the call graph that ignores backedges. If the condition string is true, the
tool inlines the call and updates both the graph and its annotations. The result
is a transformed source program. In our tests, we compiled the programs with
gcc; individual runs of the inliner took a small fraction of the time required to
compile the code with gcc.2

3 Adaptive Search of the Parameter Space

The condition string model is critical to the success of our adaptive inliner.
It is not, however, sufficient to guarantee success. For that, we need an adap-
tive framework that can efficiently find good condition strings for each input
program.3 To guide our design efforts, we performed a series of preliminary ex-
periments that improved our understanding of the search spaces encountered
by the adaptive inliner. The experiments also provided insight into the relative
importance of different program properties.

Our expressive parameter scheme creates immense search spaces. Thus, we
could not exhaustively explore the spaces to improve our understanding. Instead,
we conducted a series of one-, two-, and three-dimensional parameter sweeps to
learn about the search space. Space constraints only permit us to discuss a small
fraction of our preliminary experiments; Waterman’s dissertation contains the
full set of results [26].

Figure 2 shows examples of the kinds of parameter sweeps that we performed.
While the individual sweeps for different programs varied in detail, several gen-
eral trends emerged. Specifically, the difference between best and worst perfor-
mance was significant, and it required manipulation of several parameters to
achieve the best performance.

The preliminary experiments provided two kinds of insights. First, they gave
us an idea of which program properties measured by the inliner had the most
impact on performance. Second, they gave us an idea of the shape of the search
spaces. While the search spaces contain a variety of local minima and maxima,
they appear significantly smoother than the search spaces seem in the phase-
ordering problem [3]. The relative smoothness of the spaces for inlining makes
them appear amenable to the use of hillclimbers.

Pruning the Search Space. From the parameter sweeps, we learned that many
parameter settings would achieve good results. Unfortunately, unrestricted
2 We also experimented with Borland’s C compiler for the PowerPC; both compile

times and runtimes were longer than with gcc.
3 All experiments in this paper were run on a 1GHz, dual-processor G4 Macintosh

running OS X Server. Each processor has a 256kB L2 cache and 2MB L3 cache.
Benchmarks were inlined with the condition string being evaluated; the resulting
code was then compiled using gcc 3.3 with -O3 enabled. Each experiment ran on an
unloaded machine using just one processor. When needed, we disabled inlining in
gcc with -fno-inline-functions.

74 K.D. Cooper, T.J. Harvey, and T. Waterman

Fig. 2. Parameter Sweeps with vortex

condition strings admit huge search spaces that are impractical to search. To
limit the size of those search spaces, we adopted limits on the values of parame-
ters and on the form of the condition string. These restrictions statically prune
the search space. For example, the clause sc > k illustrates both problems. First,
it admits an open-ended search for the unbounded parameter k. Second, the
form of the clause limits the wrong aspect of the code; it places a lower-bound
on the size of the inlined body rather than an upper bound. This clause will
likely lead to large executables and little improvement. In contrast, the related
clause sc < k has been used productively in several systems.

We first simplified the space of possible decisions by adopting a canonical
form for condition strings. The canonical string is based on our own prelimi-
nary experiments and on insights from other studies. The current system limits
conditions to the form:

sc < A | sc < B & lnd > 0 | sc < C & scc = 1

| clc < D | cpc > E & sc < F | dcc > G

where A, B, C, D, E, F , and G are parameters chosen by the adaptive controller.
The first three clauses have been long been used as inlining heuristics. The

first, sc <A, inlines any callee with fewer than A statements. Small procedures
cause minimal code growth when inlined; each inlined call uses roughly the same
calling sequence. Thus, the strategy of inlining tiny procedures seeks maximal
benefit for minimal growth. The second, sc <B & lnd > 0, gives the controller a
separate (presumably larger) bound for call sites inside loops because those call
sites should execute more often. The third, sc <C & scc = 1, sets an independent
bound for procedures called from just one site, since inlining these procedures
causes no code growth. (The original copy of the callee can be discarded.)

The fourth clause, clc <D, inlines callees that contain fewer than D calls.
For example, D = 1 inlines all leaves in the call graph. Raising the limit
on clc produced strong results in our experiments, but has the potential to

An Adaptive Strategy for Inline Substitution 75

increase code size rapidly. The fifth clause, cpc >E & sc <F , tries to capture the
potential benefits from inlining a call with constant-valued parameters. The im-
portance of constant-valued parameters to inlining has long been recognized and
studied [4]. We pair the constant-parameter count with an independent limit on
callee statement count to limit code growth.4

The final clause, dcc >G, captures frequently executed call sites based on
data from a profiling run [6,18]. Because the benefits of inlining are multiplied
by execution frequency, inlining frequent calls is often a good strategy. This
clause shows, again, the importance of a strategy to limit integer parameter
values. The range of values for G can run from one to very large.

Bounding Integer Parameter Values. All of the parameter variables in the canon-
ical string take on integer values. To limit further the search space, we must set
reasonable bounds on the values for each variable—bounds that both delimit the
search and avoid nonsensical values. These bounds must be program specific; for
example, the upper limit on dcc should be small enough to admit some inlin-
ing of hot call sites and no larger than the maximum number of executions of
any call site. Our system uses a variety of measures to establish bounds on the
parameters. The goal is to limit the search without eliminating good solutions.

To bound the statement-count parameters, the adaptive controller performs
a fast parameter sweep. It evaluates condition strings of the form “sc <X”, with
X =10 initially. The sweep doubles X and reapplies the inliner until one of
three conditions arises: memory constraints prevent compilation of the program;
object code size has grown by a factor of ten; or the increase in X produces
no change from the previous value. When one of these conditions occurs, the
system uses the previous value of X as the maximum value for the statement-
count parameter, with zero as the minimum. Other statement-count parameters
are set to a multiple of this value, since they are constrained in other ways.

Bounds for the call count and constant-parameter-count variables are con-
stants chosen from experience in our initial experiments. Call count shows good
results with bounds up to three; however, clc < 4 produced exponential code
growth in several of our benchmarks. Thus, the system limits clc to the range
from one to three. With the constant-parameter variable, our tests have shown
no significant benefit beyond a lower-bound of three. Thus, the system limits
the lower bound on cpc to the range from zero to three.

The upper bound for dcc is set to its largest value observed in the profile run.
To set a lower bound for dcc, the system uses a fast parameter sweep similar
to the one used to select an upper bound for sc. The minimum dynamic call-
count required for inlining is repeatedly reduced until one of the three conditions
specified earlier occurs. Table 1 summarizes these procedures.

Discretizing Integer Parameter Ranges. While bounding the ranges of the integer
parameters does reduce the search space, it still leaves impractically many points
4 While code size does not relate directly to speed, it does slow down compilation and,

thus, the whole adaptive cycle. We found some huge executables that performed well,
but the compile-time costs were large enough to call into question their practicality.

76 K.D. Cooper, T.J. Harvey, and T. Waterman

Table 1. Bounds for condition string parameters

Parameter Limits Lower Bound Upper Bound
A sc 0 fast sweep on sc
B sc 0 10 * fast sweep on sc
C sc 0 10 * fast sweep on sc
D clc 0 3
E cpc 1 3
F sc 0 fast sweep on c
G dcc fast sweep on dcc max(dcc)

to examine. Some of the variables, such as dcc, can have extremely large bounds.
For example, profiling the vortex benchmark on our training data set produces
a range for dcc that runs from 57 to more than 80 million. Obviously, 80 million
discrete points is too many to search. To address this problem, we discretize each
large range into a set of 21 points. With this crude discretization, the condition
string still generates a search space of up to 49 million points.

For our strategy to be effective, the adaptive controller must establish a good
distribution of the twenty-one search points throughout the range of each dis-
cretized variable. Our first experiments divided the search points linearly across
the range. We quickly realized that many parameters have extremely large
ranges, but that the interesting values tend to be grouped together at lower
values. We experimented with a quadratic distribution, but it succumbs to the
opposite problem: points are grouped too closely together at the low end, and
too sparsely at the high end. Our best results came with a hybrid of these two,
a quadratic distribution with a linear coefficient: value = c1x

2 + c2x. Currently,
the system sets c2 to five, a value chosen after some tuning. The quadratic coef-
ficient c1 is program and parameter specific; it is chosen to generate the desired
minimum and maximum values. Table 2 shows how these different approaches
divide the parameter space for sc in vortex.

The system uses a different scheme to distribute the search points for dcc.
Because the controller has a dcc value for each procedure in the program, it
can distribute dcc values based on actual data. Thus, it uses a formula based

Table 2. Division of the sc parameter for bzip2 using different distributions

Ordinal 0 1 2 3 4 5 6 7 8 9 10

Linear 0 256 512 768 1024 1280 1536 1792 2048 2304 2560

Quadratic 0 13 51 115 205 320 461 627 819 1037 1280

Hybrid 0 17 58 123 212 325 462 623 808 1017 1250
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Ordinal 11 12 13 14 15 16 17 18 19 20

Linear 2816 3072 3328 3584 3840 4096 4352 4608 4864 5120

Quadratic 1549 1843 2163 2509 2880 3277 3699 4147 4621 5120

Hybrid 1507 1788 2093 2422 2775 3152 3553 3978 4427 4900

An Adaptive Strategy for Inline Substitution 77

on percentiles in the measured range. If the program has 1000 call sites with
an execution frequency between the previously determined maximum and mini-
mum, the first search point would be the dcc of the most executed call site. The
second search point would be the dynamic call count of the 50th most executed
call site (1000 points

20 intervals = 50 points
interval). In our experience, this distribution works

well for dcc. We cannot use this approach with sc because the statement counts
of a procedure change during the process of inlining. (The bottom-up order of
inlining decisions means that dcc cannot change until after it has been used.)

Searching the Spaces. Given the canonical condition string and a set of bounds
on the parameters, the question remains: how should we search this space? We
elected to use a hill-climbing algorithm. As its first step, the hillclimber selects a
point in the search space at random and evaluates it. Next, it evaluates the cur-
rent point’s neighbors, in random order. If it finds a neighbor with better results,
it shifts the current focus to that point and explores that point’s neighbors. This
process continues until no better neighbor can be found, indicating a local mini-
mum. Our experimental results suggest an approach that makes several descents
from distinct, randomly-chosen starting points.

To implement the hillclimber, we need a concrete notion of “neighbor.” The
canonical condition string has seven variables that the controller can vary. We
define the immediate neighbors of a point to be those arrived at by increasing
or decreasing a single parameter. Thus, each point in the space defined by the
canonical string has 14 potential neighbors.

The hillclimber takes the first downward step that it finds, rather than eval-
uating all of the current neighbors and taking the best step. Thus, it makes a
random descent rather than a steepest descent. Random descent takes, on av-
erage, fewer evaluations per step. In the relatively smooth spaces that we have
observed, it is more cost effective to make additional random descents than to
perform fewer of the more expensive steepest descents.

Constraining the Start Point. The pruned search space till contains points that
make poor starting points for the hillclimber. Some points produce such large
transformed programs that they either fail to compile or compile so slowly that
as to make the search impractical. (The hillclimber regards failure to compile
as producing an infinite execution time.) Unfortunately, such points often have
neighbors with the same problem. Thus, starting the search at such a point often
produces no progress or painfully slow progress.

To avoid starting a search at such a point, we added a further constraint for
start points. A start point must satisfy the condition: A2 + B2 + C2 + D2 +
E2 +F 2 +G2 ≤ 400, for the variables A through G in the canonical string. This
constraint allows a single parameter at its maximum value, or several parameters
with large values, but eliminates the unsuitable start points where too many
parameters all have large initial values. The restriction only applies to a start
point; the subsequent search can move outside these bounds.

78 K.D. Cooper, T.J. Harvey, and T. Waterman

Table 3. Improvements From Adaptive Inlining

vortex bzip2 mcf parser

Method Time % Dev Time % Dev Time % Dev Time % Dev
gcc no inl’g 20.95 100 73.45 100 48.46 100 15.81 100

gcc inl’g 17.97 86 71.89 98 46.94 97 13.30 84
1 descent 15.21 72 0.51 71.40 97 1.84 47.09 97 0.42 12.41 79 0.13
Best of 5 14.68 72 0.29 68.91 97 1.69 46.62 97 0.37 12.29 79 0.10

Best of 10 14.52 69 0.22 68.15 93 1.55 46.36 96 0.07 12.14 77 0.10
Best of 20 14.39 69 0.05 67.67 92 1.56 46.30 96 0.00 12.14 77 0.07

4 Experimental Results

To evaluate the adaptive inliner, we ran a set of experiments to measure the
effectiveness of the inlining strategy and the effectiveness of the search strat-
egy. In each experiment, we used the adaptive inliner to create a transformed
source program, which we then compiled with gcc. We compared the results of
our system against the original source code and against the results of the gcc
inliner. We performed the experiments using the same computer setup that we
described in Section 3. Due to space limitations, we will focus our discussion
on four benchmark codes, vortex, bzip2, mcf and parser. Again, Waterman’s
dissertation provides more detailed results‘[26].

To assess the potential impact of the adaptive inliner, we ran one hundred
descents of the hillclimber on each benchmark and recorded both the running
time and the condition string for each run. Using the hundred descents, we com-
puted the average performance from a single descent (average over 100 descents),
a best-of-5 run (average of 20 best-of-5 runs), a best-of-10 run (average of 10
best-of-10 runs), and a best-of-20 run (average of five best-of-20 runs). Table 3
shows these results, along with the running time for the code with no inlining
and with gcc 3.3’s inliner.5 Improvements range from 4% to 31%.

On these four benchmarks, the gcc inliner always produces faster code than
the original. (We saw one benchmark, gzip, where gcc’s inliner produced a
slowdown.) The adaptive inliner, in general, outperforms gcc’s inliner. A single
descent usually beats gcc; on mcf, the average single descent produced a slightly
slower version than gcc’s inliner. As a trend, more descents produce better re-
sults, although the returns appear to diminish beyond ten descents. The column
labelled Dev shows the standard deviation in running time across the multiple
“best-of-x” runs. While the average result from a single descent is close to that of
a best-of-10 run, any single descent may well be far away from a better solution.
Such variability is a natural result of using randomized greedy algorithms.

The improved performance and consistency from multiple descents strongly
encourage such an approach. Of course, increasing the number of descents

5 To maximize the performance of gcc’s inliner, we moved all the source code for each
application into a single file.

An Adaptive Strategy for Inline Substitution 79

Fig. 3. Effects of patience on benchmark programs

increases the overall cost of finding a good heuristic. The hillclimber, at five
to ten descents, seems to represent a good point on the cost/benefit curve. (Re-
member, the developer need not run the adaptive system on every compile.
Because it returns the condition string, subsequent compiles can simply use that
program-specific heuristic. The adaptive step need only be redone when program
properties change in a significant way.)

To explore the tradeoff between the number of evaluations and the speed
of the resulting executable, we conducted experiments with an impatient hill-
climber [3]. A patient hillclimber examines each neighbor of the current point
before it declares the current point to be a local minimum. An impatient hill-
climber limits the number of neighbors that it will examine before deciding the
current point is a local minimum. That limit, the patience factor, is expressed as
a percentage of the neighbors. The implementation of an impatient hillclimber
must select the neighbors in random order.

Because an impatient hillclimber can terminate its search prematurely, it will
miss some good solutions. However, the lower cost per descent of an impatient
hillclimber allows the compiler to perform more descents—to restart the search
from another randomly chosen start point. We have shown elsewhere that impa-
tient hillclimbers are effective in spaces that have a sufficient number of “good”
solutions [3,15]. These experiments suggest that the search spaces in which the
adaptive inliner operates have that property.

The graphs in Figure 3 show the effects of patience on both effort and solution
quality for the adaptive inliner. For each benchmark, the graph shows behav-
ior of a patient hillclimber (100% patience) and two impatient hillclimbers. We

80 K.D. Cooper, T.J. Harvey, and T. Waterman

Table 4. Frequency with which each neighbor was chosen as the downward step

Step vortex parser bzip2 mcf

sc Increased 7.88% 11.17% 15.74% 9.30%

sc Decreased 9.07% 19.68% 21.30% 22.10%

Loop sc Increased 8.11% 10.64% 0.93% 1.16%

Loop sc Decreased 8.35% 8.51% 1.85% 3.49%

scc sc Increased 13.60% 10.11% 23.15% 20.93%

scc sc Decreased 5.25% 8.51% 12.04% 34.88%

clc Increased 3.82% 4.26% 8.33% 2.33%

clc Decreased 3.82% 2.12% 2.78% 2.33%

cpc Increased 3.58% 5.32% 2.78% 2.33%

cpc Decreased 4.06% 1.59% 4.63% 1.16%

cpc sc Increased 6.44% 3.19% 0.00% 0.00%

cpc sc Decreased 3.34% 0.53% 0.00% 0.00%

dcc Increased 18.85% 4.26% 1.85% 0.00%

dcc Decreased 3.82% 10.11% 4.63% 0.00%

examine 50% and 25% patience since they provide sufficient savings to make
limited patience worthwhile. Lower values would examine just one or two neigh-
bors for each point. For these search spaces, those numbers are just too small.

The graphs show average results taken over 100 restarts. The graphs show a
common and expected theme: if the system is limited to a fixed number of evalua-
tions, an impatient hillclimber produces better results than a patient hillclimber.
Multiple descents are more important to protect against a bad start point than
is a thorough exploration of the neighborhood. If the number of evaluations is
not a concern, multiple patient descents usually provide better results.

The results for bzip2 are an anomaly that demonstrates the noise involved
in random greedy algorithms. For bzip2, we obtained better results with 50%
patience than with 100% patience. We attribute the difference between the runs
to the fact that they both used randomly selected starting points. Clearly, the
runs at 50% patience found more effective starting points.

A final experiment that provides insight into the search space is shown in
Table 4. We examined the fraction of the time that each neighbor was chosen as
the downward step in the hillclimber, across the various benchmarks. Originally,
we were looking for bias on which we could capitalize. The experiment showed
little bias; in fact, every possible change occurs a significant percentage of the
time for at least some benchmarks. This experiment produced two important
conclusions. First, each parameter in the condition string plays a role in some set
of decisions. This fact shows that the inliner should examine a variety of program
properties. The condition string and the program metrics capture important
aspects of the problem and its search spaces.

Second, the most frequently chosen parameters vary by benchmark. Thus, we
should not bias the hillclimber, since trends do not carry across benchmarks.
In itself, this observation is important. If the same parameters were adjusted in
the same ratio across different benchmarks, then it would suggest the possibility

An Adaptive Strategy for Inline Substitution 81

of a universal solution to finding sets of inlining decisions. However, the wide
variation in winning parameters across the benchmarks strongly supports the
notion that different heuristics are needed for different programs. It reinforces
our belief that adaptive inlining should outperform any static heuristic.

Taken together, these results demonstrate the efficacy of adaptive inlining.
The adaptive inliner consistently outperforms the traditional inlining approach
embodied in gcc; it also outperformed no inlining. In the one case where gcc’s
inliner degraded performance (gzip), the adaptive system discovered a heuristic
that ran 15% faster than the original code. The quality of results varies based on
the number of evaluations provided to the adaptive system, but good results can
be obtained with a small number of evaluations using limited patience. Finally,
examining the neighbors chosen by the hill climber’s descent demonstrates that
different sets of inlining decisions are appropriate for different programs and that
an adaptive approach is necessary to capitalize fully on the potential of inlining.

5 Related Work

Our work touches upon two separate areas of compiler technology, adaptive con-
trol of optimization and inline substitution. Both have an extensive background
in the literature. Space constraints prevent us from providing a complete related
work section.

Adaptive control of optimization has been widely explored in recent years.
Work has included profile-based optimization [6,13] and self-tuning libraries [27].
Several groups have looked at the problem of selecting and ordering optimiza-
tions [8,28,25,3,21]; those papers have used a variety of adaptive control mecha-
nisms ranging from genetic algorithms [8,21] to feedback-driven search [25,3] to
model-driven algorithms [28]. Other authors have looked at selecting command-
line options for the compiler [14] and deriving parameters and heuristics for
specific optimizations [19,24,9]. None of these studies examined flexible, expres-
sive parameter schemes similar to ours.

Inlining has a long history in the literature, dating back to the early 1970’s [2,20]
[1,16,17,22].Many authors have studied at the decisionproblem for inlining [4,10,7]
[11,18,12,29]. The closest work to our own is by Cavazos and O’Boyle [5]. They
used a genetic algorithm to tune the inlining heuristic in the Jikes RVM for new
platforms. Their system derived a platform-specific, program-independent inlin-
ing heuristic; it was run once per platform as part of the process of porting the
RVM. In contrast, our system uses impatient search to find reusable but program-
specific inlining heuristics.

6 Conclusions

This paper presents the design of an adaptive inliner and results of an experi-
mental validation of that tool. Our tool constructs a program-specific heuristic
to make inlining decisions and applies that heuristic to produce a transformed
version of the source compiler. Individual decisions are made by applying the

82 K.D. Cooper, T.J. Harvey, and T. Waterman

heuristic on a call-site by call-site basis; the heuristic uses measured properties
of the call site, caller, and callee. Our system measures seven specific program
properties, but the scheme is easily extended to include new metrics.

To validate our ideas and our design, we compared the performance of the
original programs, of those programs as optimized by gcc’s inliner, and of those
programs optimized in our system. All the versions were compiled with gcc, run,
and measured. The results show that the adaptive system finds program-specific
inlining heuristics that consistently outperform gcc’s inliner and the original
programs. Careful analysis of the adaptive system’s behavior suggests that no
single heuristic can achieve equivalent results across diverse programs.

Design and development of this system led to many insights. Two are particu-
larly important. The parameterization used to express the decision heuristic lets
the adaptive controller express and explore a huge decision space and allows it
sufficiently precise control to obtain good results. In our experience, compilers
and optimizations do not provide an interface that allows effective external con-
trol; parameter schemes similar to ours would be a substantial improvement. The
techniques that we developed to deal with discretizing large integer spaces and
to search them efficiently may help others as they develop adaptive controllers
for other complex optimizations. Our solutions should provide a starting point
for exploring those spaces and building new search algorithms.

References

1. Allen, F., Carter, J., Fabri, J., Ferrante, J., Harrison, W., Loewner, P., Trevillyan,
L.: The experimental compiling system. IBM Journal of Research and Develop-
ment 24(6), 695–715 (1980)

2. Allen, F.E., Cocke, J.: A catalogue of optimizing transformations. In: Rustin, J.
(ed.) Design and Optimization of a Compiler, pp. 1–30. Prentice-Hall, Englewood
Cliffs (1972)

3. Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S.W., Subramanian,
D., Torczon, L., Waterman, T.: Finding effective compilation sequences. In: Pro-
ceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems, June 2004, pp. 231–239 (2004)

4. Ball, J.E.: Predicting the effects of optimization on a procedure body. In: Proceed-
ings of the 1979 SIGPLAN Symposium on Compiler Construction, August 1979,
pp. 214–220 (1979)

5. Cavazos, J., O’Boyle, M.F.P.: Automatic tuning of inlining heuristics. In: Proceed-
ings of the 2005 ACM IEEE Conference on Supercomputing (SC 2005) (November
2005)

6. Chang, P.P., Mahlke, S.A., Hwu, W.W.: Using profile information to assist classic
code optimizations. Software—Practice and Experience 21(12), 1301–1321 (1991)

7. Cooper, K.D., Hall, M.W., Torczon, L.: An experiment with inline substitution.
Software—Practice and Experience 21(6), 581–601 (1991)

8. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems, May 1999, pp. 1–9 (1999)

An Adaptive Strategy for Inline Substitution 83

9. Cooper, K.D., Waterman, T.: Investigating adaptive compilation using the MIP-
Spro compiler. In: Proceedings of the 2003 LACSI Symposium, October 2003, Los
Alamos Computer Science Institute, Santa Fe, NM (2003)

10. Davidson, J.W., Holler, A.M.: A study of a C function inliner. Software—Practice
and Experience 18(8), 775–790 (1988)

11. Davidson, J.W., Holler, A.M.: Subprogram inlining: A study of its effects on pro-
gram execution time. IEEE Transactions on Software Engineering 18(2), 89–102
(1992)

12. Dean, J., Chambers, C.: Towards better inlining decisions using inlining trials. In:
Proceedings of the 1994 ACM Conference on LISP and Functional Programming,
June 1994, pp. 273–282 (1994)

13. Fisher, J.A.: Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers C-30(7), 478–490 (1981)

14. Granston, E., Holler, A.: Automatic recommendation of compiler options. In: Pro-
ceedings of the 4th Feedback Directed Optimization Workshop (December 2001)

15. Grosul, A.: Adaptive Ordering of Code Transformations in an Optimizing Com-
piler. PhD thesis, Rice University (2005)

16. Harrison, W.: A new strategy for code generation - the general purpose optimiz-
ing compiler. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, January 1977, pp. 29–37 (1977)

17. Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier North-Holland, New
York (1977)

18. Hwu, W.W., Chang, P.P.: Inline function expansion for compiling C programs. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation, June 1989, pp. 246–257 (1989)

19. Kisuki, T., Knijnenburg, P., O’Boyle, M.: Combined selection of tile sizes and
unroll factors using iterative compilation. In: Proceedings of the 2000 International
Conference on Parallel Architectures and Compilation Techniques, October 2000,
pp. 237–248 (2000)

20. Knuth, D.E.: An empirical study of FORTRAN programs. Software—Practice and
Experience 1(2), 105–133 (1971)

21. Kulkarni, P.A., Hines, S.R., Whalley, D.B., Hiser, J.D., Davidson, J.W., Jones,
D.L.: Fast and efficient searches for effective optimization-phase sequences. ACM
Trans. Archit. Code Optim. 2(2), 165–198 (2005)

22. Scheifler, R.W.: An analysis of inline substitution for a structured programming
language. Communications of the ACM 20(9), 647–654 (1977)

23. Serrano, M.: Inline expansion: when and how? In: Serrano, M. (ed.) Proceedings of
the Ninth International Symposium on Programming Languages, Implementations,
Logics, and Programs, September 1997, pp. 143–147 (1997)

24. Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly, U.-M.: Meta optimization:
Improving compiler heuristics with machine learning. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(June 2003)

25. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback directed and runtime-optimization,
March 2003, pp. 204–215 (2003)

26. Waterman, T.: Adaptive Compilation and Inlining. PhD thesis, Rice Univ. (2005)

84 K.D. Cooper, T.J. Harvey, and T. Waterman

27. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of
software and the ATLAS project. Parallel Computing 27(1–2), 3–25 (2001)

28. Zhao, M., Childers, B., Soffa, M.L.: Predicting the impact of optimizations for
embedded systems. In: Proceedings of the 2003 ACM SIGPLAN Conference on
Languages, Tools, and Compilers for Embedded Systems, June 2003, pp. 1–11
(2003)

29. Zhao, P., Amaral, J.N.: To inline or not to inline? enhanced inlining decisions. In:
Proceedings of the 16th International Workshop on Languages and Compilers for
Parallel Computing, October 2003, pp. 405–419 (2003)

Automatic Transformation of Bit-Level C Code

to Support Multiple Equivalent Data Layouts

Marius Nita and Dan Grossman

Department of Computer Science & Engineering
University of Washington, Seattle WA 98195-2350, USA

{marius,djg}@cs.washington.edu

Abstract. Portable low-level C programs must often support multiple
equivalent in-memory layouts of data, due to the byte or bit order of
the compiler, architecture, or external data formats. Code that makes
assumptions about data layout often consists of multiple highly similar
pieces of code, each designed to handle a different layout. Writing and
maintaining this code is difficult and bug-prone: Because the differences
among data layouts are subtle, implicit, and inherently low-level, it is
difficult to understand or change the highly similar pieces of code con-
sistently.

We have developed a small extension for C that lets programmers
write concise declarative descriptions of how different layouts of the same
data relate to each other. Programmers then write code assuming only
one layout and rely on our translation to generate code for the others.
In this work, we describe our declarative language for specifying data
layouts, how we perform the automatic translation of C code to equiv-
alent code assuming a different layout, and our success in applying our
approach to simplify the code base of some widely available software.

1 Introduction

C is sometimes referred to as a “portable assembly language” because it is im-
plemented for almost every platform and allows direct bit-level access to raw
memory. It remains the de facto standard for writing low-level code such as de-
buggers and run-time systems that manipulate low-level data representations or
process external file formats. It is therefore quite ironic that C is not well-suited
to writing portable bit-level code.

In practice, for such code to be portable it must support multiple equiva-
lent data formats. A ubiquitous example is big-endian and little-endian byte
order. The order of bit-fields in a struct can also vary with compilers. Additional
idiosyncratic examples arise with each unusual file format, compiler, or architec-
ture. Though such code is occasionally performance-critical (e.g., network-packet
processing), it usually is not (e.g., file-header processing).

Writing portable code is time-consuming and error-prone. Simple web searches
reveal hundreds of (known) endianness bugs. Even for bug-free code, data-
layout portability often leads to large amounts of code duplication; using Google

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 85–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

86 M. Nita and D. Grossman

Code Search we found approximately one thousand open-source packages with
near-identical code segments based on byte- or bit-order. Such code segments are
often poorly documented and are difficult to maintain consistently, particularly
because the code is inherently low-level.

1.1 Conventional Approaches

We believe the most common approach to supporting multiple equivalent data
layouts is, indeed, code duplication and conditionals (typically with the prepro-
cessor) to choose the correct variant. In our experience, a common approach to
such duplication is that one version of the code is developed first (e.g., for a
big-endian machine), then — perhaps much later when portability issues arise
— the code is copied, one copy is edited, and an #ifdef chooses between copies.
This process is error-prone and leads to maintenance problems as the copies
must remain consistent.

A natural alternative is to abstract all data-layout assumptions into helper
functions, confining code duplication to the smallest amount of code possible. We
believe dismissing any code that does not follow this approach as “poorly writ-
ten” is naive. First, if a nonportable code segment is already written, changing
it to abstract out such assumptions could introduce bugs on mature platforms.
Second, the resulting code can be much harder to read and understand: C is
good at expressing bit-level operations directly so the code is often reasonably
clear when specialized to a given data layout.

1.2 Our Approach

We have developed a tool that takes annotated C code and lets programmers
(1) write one version of their code assuming one particular data layout and (2)
declaratively specify multiple equivalent data layouts. We then perform a source-
to-source transformation that automatically generates versions of the code for
each data layout. In this way, we retain the coding effort and clarity of writing
nonportable code while supporting portability. We simply use compiler technol-
ogy to do what it does well: transform code to equivalent versions. Moreover, the
declarative specifications are concise documentation of data-layout assumptions.

Our approach should fit well with typical software development. Programmers
can still write nonportable code first and then add data-layout specifications and
“port statements” (described later) to indicate where to perform our source-
to-source transformation. Our tool can be used incrementally since only code
executed in the lexical scope of a port statement needs transforming. By pro-
ducing regular C code, the output of our tool can be distributed as open-source
software, processed by conventional tools, or edited manually.

1.3 Outline

This paper describes our tool, how our transformation works, and our prelim-
inary experience rewriting portions of the Gnu Debugger and Gnu Binary File

Automatic Transformation of Bit-Level C Code 87

1 enum endian { BIG, LITTLE };
2 struct reloc { char idx[3]; char type; };
3 int idx, extern, pcrel, neg, length;
4 struct reloc *reloc;

...
5 if (bfd_header_endian(abfd) == BIG) {
6 reloc->idx[0] = idx >> 16;
7 reloc->idx[1] = idx >> 8;
8 reloc->idx[2] = idx;
9 reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

10 | (neg ? 0x08 : 0) | (length << 5));
11 } else {
12 reloc->idx[2] = idx >> 16;
13 reloc->idx[1] = idx >> 8;
14 reloc->idx[0] = idx;
15 reloc->type = ((extern ? 0x08 : 0) | (pcrel ? 0x01 : 0)
16 | (neg ? 0x10 : 0) | (length << 1));
17 }

Fig. 1. Example BFD code

Descriptor Library with our approach. Section 2 informally presents a real ex-
ample to give a programmer’s view of our extension. Section 3 then describes
our language extensions completely. Section 4 describes our implementation, i.e.,
how we perform the source-to-source transformation. Section 5 describes some
preliminary experience. Section 6 describes related work, and Section 7 concludes
with several directions for future work.

2 Example

To give a flavor for how our tool works, we demonstrate its use on a code snippet
from the Gnu Binary File Descriptor Library (BFD) [17], a library that facilitates
working with binary formats such as a.out or ELF. Sections within some of these
formats may be stored in either little- or big-endian order. Code that reads or
writes these formats comes in two halves, each half handling one data layout.

Example 1 shows a snippet of such BFD code, rewritten slightly for con-
ciseness. reloc->idx stores the three low-order bytes in idx either left-to-right
(lines 6-8) or right-to-left (lines 12-14), depending on the byte order of the header
section in the binary format being handled. The field reloc->type is an 8-bit
piece of data holding six bit-flags and one 2-bit piece of data. Depending on
the endianness of the header, the bit data is stored in either left-to-right (lines
9-10) or right-to-left (lines 15-16) order. Notice that the two representations of
reloc->type are not related by the bitwise reverse function. The order of the
two bits within length remains unchanged.

Changes to this code must be done simultaneously to both halves, taking
into account the low-level details about how the representations differ. The bit

88 M. Nita and D. Grossman

enum endian { BIG, LITTLE };
struct reloc {
char idx[3] @ match endian,byte with BIG -> 0:1:2

| LITTLE -> 2:1:0;
char type @ match endian,bit with BIG -> 0:1:2:3:4:5:6:7

| LITTLE -> 7:5:6:4:3:2:1:0;
};
int idx, extern, pcrel, neg, length;
struct reloc *reloc;
...
port (bfd_header_endian(abfd), BIG) {
reloc->idx[0] = idx >> 16;
reloc->idx[1] = idx >> 8;
reloc->idx[2] = idx;
reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

| (neg ? 0x08 : 0) | (length << 5));
}

Fig. 2. Figure 1, rewritten for use with our tool

constants 0x10, 0x08, and 0x80 correspond to bitwise reverse analogues in the
opposite half: 0x08, 0x10, and 0x01. The left-shift and bitwise-or on line 9 place
the two bits in length in reloc->type’s bits 6 and 7. Since the representation
is reversed on the other endianness, these bits will occupy positions 2 and 3, so
a left-shift by 5 on big-endian formats must be accompanied by a left-shift by
1 on little-endian formats. The programmer must understand all these details
when writing and changing this code, and ensure that changes to one half are
propagated into the other half in a way that respects these low-level implicit
relationships between data layouts.

Figure 2 shows the code in Figure 1, rewritten for use with our tool. Two points
are worth emphasizing. First, we write only half the code, assuming one data
representation. Second, the relationships between the two data representations
for each reloc->idx and reloc->type are made explicit in the field declarations
within struct reloc.

The extra declaration sections (to the right of @) on the two fields define
how equivalent data layouts of the same data relate to each other. match, byte,
bit, and with are built-in keywords, endian is a C enumeration type defined
by the programmer and inhabited by the constants BIG and LITTLE, and the
colon-delimited sequences specify how positions of the bytes or bits within data
change from one data layout to another. The specifications case over the type
endian and provide a data layout for each of its constants. The keywords bit
and byte define the granularity of the specification — whether the numbers in
the colon-delimited sequence denote bits or bytes.

The specification on field idx says that idx is laid out in two ways, each
corresponding to an endian constant. The two layouts are the reverse of the

Automatic Transformation of Bit-Level C Code 89

enum endian { BIG, LITTLE };
struct reloc { char idx[3]; char type; };
int idx, extern, pcrel, neg, length;
struct reloc *reloc;
...
int tmp = bfd_header_endian(abfd);
switch (tmp) {
case LITTLE: flip0(reloc->idx);

flip1(& reloc->type);
break;

case BIG: break;
}
reloc->idx[0] = idx >> 16;
reloc->idx[1] = idx >> 8;
reloc->idx[2] = idx;
reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

| (neg ? 0x08 : 0) | (length << 5));
switch (tmp) {
case LITTLE: unflip0(reloc->idx);

unflip1(& reloc->type);
break;

case BIG: break;
}

Fig. 3. Our translation applied to the code in Figure 2

other (0:1:2 vs 2:1:0), at a byte-level granularity. The declaration on field type
is at the granularity of bits, but the two representations are not quite the reverse
of each other. Bits 5 and 6, which represent the two length bits, remain in the
same order.

The constants BIG and LITTLE associated with the layout declarations are used
in the translation of the port statement. The port statement is written under
the assumption that bfd_header_endian(abfd) evaluates to BIG. If it evaluates
to LITTLE, our translation assumes that the bytes within reloc->idx should be
represented in order 2:1:0, i.e., the reverse of how they would be laid out when
bfd_header_endian(abfd) evaluates to BIG. Therefore, when it evaluates to
LITTLE, the bytes within reloc->idx are reversed prior to entering the body of
the port. Likewise, the bits within reloc->type are shuffled according to the
7:5:6:4:3:2:1:0 specification. When bfd_header_endian(abfd) evaluates to
BIG, the body is simply executed. The end result is that the code in Figure 2
executes exactly as the code in Figure 1, but is shorter, better-documented, and
easier to write and maintain.

Figure 3 shows the code generated by our translation for the program in
Figure 2. When bfd_header_endian(abfd) evaluates to LITTLE, the layouts of
reloc->idx and reloc->type are flipped by functions flip0 and flip1 in accord
with the specifications attached to the corresponding field declarations. When
control enters what used to be the body of the port block, the two fields are laid

90 M. Nita and D. Grossman

out as they would be when bfd_header_endian(abfd) evaluates to BIG, which
matches the code’s assumptions. When control exits this code, the layouts of
the two fields are flipped back into their original forms by functions unflip0 and
unflip1. The flip and unflip functions are automatically generated by our transla-
tion from the specifications on the two fields. The bodies of flip1 and unflip1 are
shown in Figure 5 on page 94; the code for flip0 and unflip0 is straightforward. An
analysis determines the data whose layouts should be flipped/unflipped, by in-
specting all variable and field accesses and checking if their declarations contain
a layout specification that cases over the type endian.

3 Description of the Extension

Having described our tool via an example, we now give a complete description of
our annotations, their meaning, and how we perform our automatic translation
to support multiple data layouts.

At the syntax level, our extension has two components. First, we extend C’s
declaration language to allow specifying multiple equivalent data layouts for
variables and fields. Second, we introduce a new statement form port(e,c){e′}
that allows programmers to write code assuming only one data representation.
A translation takes code written with our extension and outputs code suitable
for passing to a C compiler.

3.1 The Specification Language

A layout specification is written as

match τ, g with c1 -> s1 | c2 -> s2 | . . . | cn -> sn

Symbols ci are C enumeration constants belonging to enumeration type τ and
si are colon-delimited sequences containing either natural numbers (starting at
0) or the symbol ’_’. g denotes the granularity of the specification. Our system
supports granularities bit, byte, and nibble. Others are easily added. Layout
specifications can appear on local and global variables and struct fields of integral
type (char, int, etc.) and arrays thereof.

A sequence s assigns names to the underlying layout units in the data, ac-
cording to the granularity g. For example, if the specification on a 4-byte piece of
data has granularity byte, a sequence 0:1:2:3 assigns names 0 through 3 to the
bytes within the data. In addition to numbers, sequences s may contain ’_’ sym-
bols, meaning that the corresponding layout units do not contain useful data and
need not be named, e.g., pad bytes. For example, a sequence 0:1:_:_ represents
a 4-byte sequence containing two named data bytes and two pad bytes.

A sequence s is not useful in isolation. Two or more, however, can precisely
describe how multiple equivalent layouts of the same data relate to each other.
For example, the sequences 0:1:2 and 2:1:0 represent two layouts that are
related by the reverse function. We say that they are equivalent because all the
layout units (bits, bytes, nibbles) in one are present in the other.

Automatic Transformation of Bit-Level C Code 91

Each sequence s is associated with a constant c. The set of constants in a
specification is used by the port block (described in the next section) to specify
its assumptions about the layouts of variables and fields used in its body.

Given two layout specification sequences s1 and s2, we can generate a flip
function that takes a piece of data assumed to be laid out as described by s1
and shuffles it such that the result is laid out according to s2. In our tool, we
must also generate an unflip function that undoes this effect, flipping data that
is laid out according to s2 back into its original layout, s1. Functionally, flip is
an isomorphism and unflip is its inverse. It would be unexpected, from the point
of view of the programmer, for either function to “forget” bits or bytes within
the data, with the exception of “don’t care” (_) layout units.

In order to ensure that flip and unflip functions respect this behavior and to
facilitate C code generation, we restrict the set of layout specifications that can
be written to those that are well-formed. A specification (match τ,g with c1
-> s1 | ... | cn -> sn) is well-formed if:

1. Constants do not overlap: ci �= cj when i �= j.
2. All constants inhabiting type τ must be included in the specification.
3. All si’s are equal in length. The lengths are multiples of 8 bits.
4. For all si, no number within si appears more than once.
5. Any number that occurs in an si must occur in all others.

The first two requirements ensure that specifications are complete and deter-
ministic. Given a constant c, there is exactly one layout per variable or field
associated with it. The rest of the requirements ensure that well-formed speci-
fications do not contain any layout sequences that forget or add data. We also
assume that the sequence lengths are multiples of 8 bits, as C types have sizes
that are multiples of bytes. The assumption aids our code generation, which
breaks layouts into bytes.

3.2 The port Statement

In addition to layout specifications on declarations, our extension provides a
new port statement. The statement is provided as a means for programmers
to delimit code that probes the in-memory layout of data with multiple possi-
ble layouts. Programmers write the body of port assuming one layout and the
compiler generates code that will work as intended for the other layouts.

A port block is written as

port(e, c) { e′ }

where c is a constant with enumeration type τ . The enumeration type and asso-
ciated constants ci in the layout specification language provide the connection
between specifications and the port statement. For each piece of data used in e′

whose declarations carry associated layout specifications at type τ (meaning the
specifications case over τ), the constants inhabiting τ represent different ways to
lay out the bytes, bits, and nibbles in that data. (Recall that each sequence sk in

92 M. Nita and D. Grossman

a layout specification corresponds to a constant ck.) The programmer writes the
body of the port block, e′, under the assumption that variables and fields used
in e′ are laid out according to c. This is assumed to be the case when e evaluates
to c. If e evaluates to a constant c′ �= c, the programmer’s assumptions no longer
hold. The compiler will then ensure that before e′ is executed, the layouts of the
variables and fields within e′ are laid out according to c, and when control exits
e′, they are laid out as they were before control reached the port block.

Consider the following code, which prints the high-order byte within the layout
of a 32-bit integer:

int x @ match endian,byte with BIG -> 0:1:2:3
| LITTLE -> 3:2:1:0;

...
port(endianness(), BIG) { printf("%x", ((char*)&x)[0]); }

Here, the programmer assumes that endianness() evaluates to BIG and writes
code that is correct for big-endian machines. If endianness() evaluates to
LITTLE, the body of the port block is obviously incorrect — it does not print
the high-order byte. In this case, the compiler uses the specification attached to
x to ensure that its bytes are laid out according to the block’s assumptions. In
this case, the bytes within x are reversed.

More precisely, the semantics of port(e,c){e′} is as follows:

– If e evaluates to c, no further action is required and the body e′ is executed.
– If e evaluates to c′ �= c, the layout of every variable and field used within e′

with a specification at the type of c will be “flipped” to match the assumption
that they are laid out according to c. The layouts are “unflipped” to their
original states after e′ is executed.

We allow nesting of port blocks as long as their associated constants c are
of different types, to avoid re-flipping data that was already flipped by an outer
port block. While we could allow arbitrary nesting and use a simple analysis to
avoid re-flipping, in practice it makes little sense to nest blocks in this manner.
(E.g., it is akin to nesting a block guarded by #ifdef LITTLE within one guarded
by #ifdef BIG.)

3.3 Translation

Given a program written using our extensions, a translation produces plain C
code that respects the semantics outlined in the previous section. The translation
transforms the code in the following ways:

– It erases the data-representation specifications from variable and field dec-
larations.

– If a variable or field with multiple layouts is accessed within a port block,
the translation generates a flip function and an unflip function. The first
flips the layout of the data to accord with the block’s assumptions and the
latter flips its layout back into its original form.

Automatic Transformation of Bit-Level C Code 93

int tmp = e;
switch(tmp) {
case c1: flip11(& x1); ... flip1m(& xm); break; /* from c1 to c */
...
case c: break; /* already in c */
...
case cn: flipn1(& x1); ... flipnm(& xm); break; /* from cn to c */

}
e′;
switch(tmp) {
case c1: unflip11(& x1); ... unflip1m(& xm); break; /* from c to c1 */
...
case c: break; /* already in c */
...
case cn: unflipn1(& x1); ... unflipnm(& xm); break; /* from c to cn */

}

Fig. 4. Translation of port(e,c){e′}

– It rewrites port(e,c){e′} statements to plain C code that calls flip functions
prior to entering e′, executes e′, and calls unflip functions upon exiting e′.

Given a statement port(e,c){e′} where c has enumeration type τ , the trans-
lation proceeds as follows. First, we gather all the variables and field accesses
x1, x2, . . . , xm that are used in e′ and have associated layout specifications at
type τ . Let the set of constants inhabiting τ be c1, c2, . . . , cn. Each of the vari-
ables and field accesses xi will have an associated layout specification that assigns
a layout to each constant ci.

The translation scheme is shown in Figure 4. First, we generate code that
evaluates e and saves the result in a fresh temporary tmp. Then we generate
code that, depending on the result of e, flips the layouts of x1, . . . , xm so that
they match the assumptions in e′ — that the xi are laid out according to the
specifications corresponding to constant c. We then generate e′ unchanged. After
e′, we generate code that flips the layouts of xi back to their original forms. For
each constant ci, each variable and field access xj will have ci -> si and c ->
s included in its associated specification. The function flipij changes the layout
of xi from si into s and and unflipij changes it back from s into si.

The translation calls flip/unflip functions for exactly the variables that (1)
have multiple data layouts and (2) are accessed in the lexical scope of the port
block. Notice any references to such variables passed to functions called in the
port block will refer to flipped data, i.e., the flipping happens in place.1 In
theory, if two items that need flipping might alias, we need to check for aliasing
dynamically to avoid double-flipping (and unflipping). In practice, we have not

1 Conversely, we do not flip any data that is accessed in a callee but not mentioned
directly in the port block. This can be an issue only with global variables or extremely
convoluted code and this has not been a problem in practice.

94 M. Nita and D. Grossman

void flip1(void * input) { void unflip1(void * input) {
char* t0 = (char*)input; char* t0 = (char*)input;
char t1 = t0[0]; char t1 = t0[0];
t0[0] = 0; t0[0] = 0;
t0[0] |= ((t1 << 7) & 0x80); t0[0] |= ((t1 << 7) & 0x80);
t0[0] |= ((t1 << 4) & 0x40); t0[0] |= ((t1 << 5) & 0x40);
t0[0] |= ((t1 << 4) & 0x20); t0[0] |= ((t1 << 3) & 0x20);
t0[0] |= ((t1 << 1) & 0x10); t0[0] |= ((t1 << 1) & 0x10);
t0[0] |= ((t1 >> 1) & 0x08); t0[0] |= ((t1 >> 1) & 0x08);
t0[0] |= ((t1 >> 3) & 0x04); t0[0] |= ((t1 >> 4) & 0x04);
t0[0] |= ((t1 >> 5) & 0x02); t0[0] |= ((t1 >> 4) & 0x02);
t0[0] |= ((t1 >> 7) & 0x01); t0[0] |= ((t1 >> 7) & 0x01);

} }

Fig. 5. Flip and unflip functions for reloc->type in Figure 2

encountered any code where such aliasing occurred, suggesting it may instead
be reasonable and in the spirit of C to make such aliasing an unchecked error.

3.4 Generation of Flip Functions

Our tool generates flip and unflip functions that mutate the layouts of their input
data in-place. The prototype of every flip function has the form void flip(void*).
Variables and fields whose layouts must be flipped are passed to their correspond-
ing flip functions by address.

The body of a flip function breaks its input into bytes, via a cast to char*, and
saves them in temporary variables. If the specified granularity is byte, flipping
is a matter of assigning the temporaries into their new locations in the input.
For smaller granularities, we generate bit-shifting and masking code to fetch the
bits or nibbles from within the temporaries holding bytes and code to assign
them to their new locations.

Figure 5 shows the flip and unflip functions generated by our translation from
the specification on field type in Figure 2. For each bit in the input layout, we
generate code that shifts it to the position specified by the output sequence and
masks out the rest of the bits. The result is added to the output sequence by
a bitwise-or. Code generation at nibble granularity is similar, except the only
possible masks are 0xf0 and 0x0f, and we shift by either 4 or 0 bits.

4 Implementation

Our prototype is implemented as a modification of the CIL frontend for C [14].
CIL inputs a C program, performs a series of transformations to simplify the
code into a uniform subset of C, and outputs equivalent, human-readable C
code. In addition, one can provide custom transformations that are applied to
the intermediate representations before the output phase.

Automatic Transformation of Bit-Level C Code 95

We modified CIL’s parser, lexer, and abstract syntax to allow port statements
and layout specifications in the input language. We then implemented a custom
transformation that erases layout specifications and rewrites port blocks accord-
ing to the translation scheme in Figure 4. In addition, flip and unflip functions
are generated and inserted into the output program. We have also experimented
with generating preprocessor macros instead of functions.

The tool outputs clean C code suitable for passing to a C compiler. As dis-
cussed more thoroughly in Section 5, a standard optimizing compiler is capable
of entirely optimizing away byte-level flips when flips are generated as macros,
and the overhead induced by bit- and nibble-level flips is manageable.

In our implementation, the annotation language is a syntactic extension to
the C language. However, should it be desired, it is easy to encode annotations
in stylized comments or empty preprocessor macros, such that an annotated
program is still legal (but nonportable) C.

5 Experience

To assess the usefulness of the tool, we applied it to subsets of two pieces of soft-
ware: the Gnu Debugger (GDB) [16] and the BFD library, which ship together
as part of the GDB distribution. Preliminary experience suggests that our tool
is a valuable addition to the developer’s toolset. It improves readability, shrinks
the code base, and aids in minimizing development and maintenance issues as-
sociated with code that is duplicated for the purpose of handling multiple data
layouts. In the rest of this section, we describe how we simplified part of the
GDB/BFD code base, present some quantitative results, discuss the limitations
of our tool, and share our experiences modifying GDB/BFD code.

Simplifying the Code Base: To estimate the extent of the code-duplication prob-
lem in GDB/BFD, we manually examined 120 files in a source base of roughly
1700 C files and 1 million lines of code. In these files, we recorded 407 occur-
rences of snippets where multiple versions of the same code were specialized to
particular data layouts. We counted roughly 3600 lines of duplicated code: code
that could be potentially eliminated with our tool. While we focused on the part
of the source base that we believe contains a lot of code doing low-level data
processing, there is surely more such code in the part of the enormous source
base that we have not inspected.

We applied our tool to 10 of these files, chosen in no particular fashion. Across
the 10 files, we found 31 occurrences of highly similar code-pairs with each half
specialized to a particular endianness. We used the port statement to eliminate
half the code in each of these occurrences, totaling 188 lines (2,465 lexical tokens)
of code. To ensure that the new code behaved the same as the old handwritten
code, 11 data-layout annotations were required, each specifying two possible data
layouts.

Two of the annotations (the ones shown in Figure 2) sufficed for 21 of the 31
port statements and contributed to eliminating 124 lines (1,894 lexical tokens)
of code. The struct type with which they are associated is used by many files

96 M. Nita and D. Grossman

in the BFD code base. Many of the other annotations were localized, on local
variables within functions in which the port blocks were placed, and affected
one or two occurrences of port. In one case, 3 annotations affected 2 blocks.

In addition to code being eliminated directly by port blocks, some related
“scaffolding code” became superfluous. Developers tuck hard-to-understand bit-
masks and flags into pairs of macro definitions, such as:

#define RELOC_STD_BITS_LENGTH_BIG 0x60
#define RELOC_STD_BITS_LENGTH_LITTLE 0x06
#define RELOC_STD_BITS_LENGTH_SH_BIG 5
#define RELOC_STD_BITS_LENGTH_SH_LITTLE 1

The former two are bit-masks used to identify the two length bits from Figure 1
in a byte. The latter two are amounts by which to shift left to place the length
bits in a byte. In each case, big- and little-endian versions of the constants are
provided. After applying our tool, half these constants were no longer needed.

Performance: None of our changes had an observable performance impact on
GDB. First, none of the code blocks we found and changed were in inner loops
or other performance-critical sections. Second, the overhead of our translation
is small, as the underlying compiler optimizes our code efficiently.

To gain a preliminary understanding of the performance impact of the gen-
erated flip code currently generated by our system, we picked port statements
from the ported BFD source and compared the quality of the generated code
to the previous handwritten code. Since our generated code consists of flipping
some layouts, executing handwritten code, then unflipping the layouts, the per-
formance overhead consists entirely of executing flip and unflip functions. Of the
31 blocks we ported, the average number of required flips/unflips was 1.5 and
the maximum was 3.

We noticed that if we generate preprocessor macros instead of functions, byte-
level flips are entirely optimized away by gcc -O3. For example, gcc produces the
same assembly code for flip(x); y=x[0]; unflip(x); as it does for y=x[3];.
This is hardly surprising, as all that is needed for this optimization is copy
propagation and dead-code elimination. In their current form, bit- and nibble-
level flips are not optimized as efficiently and can add 50%–100% overhead in
number of executed instructions. This is expected, as most of the time, the code
executed between flips and unflips is roughly the size of a flip body.

Limitations: There were two low-level code-pairs that we could not port to our
tool. Take, for example, the following snippet:

char valbuf[4];
...
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
memcpy (valbuf + (4 - len), val, len);

else
memcpy (valbuf, (char *) val, len);

Automatic Transformation of Bit-Level C Code 97

The code copies val into valbuf such that the bytes in val are right-justified
on big-endian targets and left-justified on little-endian ones. Assuming the bytes
within val are not already reversed on big-endian machines, we cannot write a
static specification that handles this pattern, since len is a dynamic value. This
makes clear the main limitation of our approach: it does not apply when the two
equivalent data layouts cannot be specified statically.

Discussion: The process of determining relationships between equivalent data
layouts by reading the code was difficult. First, bit-masks and shift constants are
hidden under macros that are scattered across header files far away from the code
that uses them. Second, code-pairs that touch the layout of data usually only
inspect a subset of the underlying bits and bytes, so one must inspect several
code-pairs before gaining a thorough understanding of the layout relationships.
Third, identifying the code-pairs themselves is a problem, as there are many ways
to express conditionals that run code depending on a particular layout. One may
use #ifdefs or if statements, and in each case the predicate may be different
(e.g., bfd_header_endian() vs. TARGET_BYTE_ORDER == BFD_ENDIAN_BIG).

We believe our rewritten code is much easier to understand than the original:
Bit-level code is clearly delimited by port statements and the relationships be-
tween equivalent layouts are explicit. We do not necessarily advocate rewriting
mature subtle bit-level code unless it is already being maintained or modified for
other reasons; we did so to evaluate our research on real code used in practice
that we did not write. We definitely do advocate using our approach for new
code or when making code portable for the first time.

6 Related Work

We are unaware of any prior work that automatically translates bit-level C code
to work for multiple data layouts. Our own recent prior work [15] was designed
to find type-casts that rely on platform-specific assumptions to be memory-safe.
That work, while useful for finding certain classes of bugs related to structure
padding and word size, does not address the issues associated with multiple data
layouts. More significantly, for bit-level differences such as endianness, our prior
work will never find bugs, since assuming the wrong endianness does not violate
memory safety — it just produces the wrong answer.

CCured [13], Deputy [3], SAFECode [4], and Cyclone [9] are projects that
aim to make C safer and more expressive, in some cases enriching it with new
programming abstractions, and compiling it in a way that prevents unchecked
errors. These systems are similar to ours in that they perform source-to-source
transformations and pass the output to a C compiler. However, they do not
facilitate working with multiple data layouts. Programmers must resort to spe-
cializing code to each endianness as they would in plain C.

Some analyses over C programs (e.g. [12,19]) assume one bit-level layout for
any piece of data, which is useful for precision, but not for writing portable code.

PADS [7], PacketTypes [10], and DataScript [1] are projects that facilitate
working with data formats. PacketTypes lets programmers specify the layout of

98 M. Nita and D. Grossman

network packets using a declarative language. Similarly, PADS uses a declarative
language to allow specifying arbitrary ad-hoc data formats, both textual and
binary, and automatically generates parsers that process the data. Like PADS,
DataScript takes declarative specifications for binary formats and generates code
that loads and processes binary files. It may be possible to modify software like
BFD to use PADS or DataScript for processing binary formats. However, these
projects do not handle discrepancies arising from how compilers/architectures
lay out data in memory and leave it up to the programmer to handle multiple
layouts of the same data.

Other work has focused on making it easier to work with bit-level data. Di-
atchki et al. [5] augment a Haskell-like language with bitdata: bit-level entities
that can be manipulated in various high-level ways in a type-safe manner. Erlang
bit patterns [8] allow pattern matching on binary data. Other projects (e.g. [6])
augment C and C++ with libraries that facilitate working with bit-level data.
These projects do not facilitate working with multiple bit-level layouts.

Our flip and unflip functions are similar to relational lenses [2]. A lens is a pair
of functions, get and putback. One extracts a representation (e.g., XML data)
of an element in a concrete domain (e.g., a database entry) and the other puts
the representation back into the concrete domain. Unlike flip and unflip, get and
putback are not exact inverses of each other. That is, get is allowed to forget part
of the data in the concrete domain.

Finally, some prior work has focused on making it easier to handle similar
blocks of code (e.g., Simultaneous Editing [11] and Linked Editing [18]). These
systems allow programmers to link together blocks of code that share a high-
degree of syntactic similarity, such that modifications to certain regions of one
block are automatically propagated to the others. However, they are unaware
of semantic relationships: e.g., one cannot cause an index of “0” in a big-endian
code block to be propagated as “3” to the corresponding little-endian block.

7 Conclusions and Future Work

We have designed, implemented, and evaluated a tool that provides direct sup-
port for writing code that is portable to multiple bit-level data representations.
The key novelty is an approach where programmers write their algorithm in C
with one representation in mind and declaratively specify what the equivalent
representations are. A source-to-source transformation then produces C code
with one version of the algorithm for each representation.

While we view our tool as successful, there are improvements that could make
it more widely applicable. First, its current requirement that all data layouts
be equivalent is too strong for scenarios where word size varies (e.g., 32-bit
versus 64-bit machines). Second, for short, performance-critical code segments,
our “flip on entry / unflip on exit” implementation strategy may be inferior to
a more sophisticated transformation that modified the code segments. However,
optimizing byte-endian code like flip(x); y=x[3]; unflip(x); into y=x[0];
is within the capabilities of an optimizing C compiler, as discussed in Section 5.

Automatic Transformation of Bit-Level C Code 99

We would also like to consider automating or semi-automating tasks we still
leave with the programmer, such as identifying where port statements are nec-
essary or editing legacy code to use our tool.

References

1. Back, G.: DataScript - A specification and scripting language for binary data. In:
ACM Conference on Generative Programming and Component Engineering 2002
(2002)

2. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for up-
dateable views. In: Principles of Database Systems 2006 (2006)

3. Condit, J., Harren, M., Anderson, Z., Gay, D., Necula, G.: Dependent types for
low-level programming. In: European Symposium on Programming 2007 (2007)

4. Dhurjati, D., Kowshik, S., Adve, V.: SAFECode: Enforcing alias analysis for weakly
typed languages. In: ACM Conference on Programming Language Design and Im-
plementation (2006)

5. Diatchki, I.S., Jones, M.P., Leslie, R.: High-level views on low-level representations.
In: ACM International Conference on Functional Programming (2005)

6. Dipperstein, M.: ANSI C and C++ bit manipulation libraries,
http://michael.dipperstein.com/bitlibs/

7. Fisher, K., Mandelbaum, Y., Walker, D.: The next 700 data description languages.
In: ACM Symposium on Principles of Programming Languages (2006)

8. Gustafsson, P., Sagonas, K.: Efficient manipulation of binary data using pattern
matching. J. Funct. Program. 16(1) (2006)

9. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A safe dialect of C. In: USENIX Annual Technical Conference (2002)

10. McCann, P.J., Chandra, S.: Packet types: abstract specification of network pro-
tocol messages. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (2000)

11. Miller, R.C., Myers, B.A.: Interactive simultaneous editing of multiple text regions.
In: USENIX Annual Technical Conference (2002)

12. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: ACM Conference on Language, Compilers, and Tool
Support for Embedded Systems (2006)

13. Necula, G., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems 27(3) (2005)

14. Necula, G., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and
tools for analysis and transformation of C programs. In: International Conference
on Compiler Construction (2002)

15. Nita, M., Grossman, D., Chambers, C.: A theory of platform-dependent low-level
software. In: ACM Symposium on Principles of Programming Languages (2008)

16. The GNU Project. GDB, The GNU Debugger, http://sourceware.org/gdb/
17. The GNU Project. GNU Binutils, http://sources.redhat.com/binutils/
18. Toomim, M., Begel, A., Graham, S.L.: Managing duplicated code with linked edit-

ing. In: IEEE Symposium on Visual Languages - Human Centric Computing (2004)
19. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-

grams. In: ACM Conference on Programming Language Design and Implementa-
tion (1995)

http://michael.dipperstein.com/bitlibs/
http://sourceware.org/gdb/
http://sources.redhat.com/binutils/

Control Flow Emulation on Tiled SIMD

Architectures

Ghulam Lashari, Ondřej Lhoták, and Michael McCool

D. R. Cheriton School of Computer Science, University of Waterloo

Abstract. Heterogeneous multi-core and streaming architectures such
as the GPU, Cell, ClearSpeed, and Imagine processors have better power/
performance ratios and memory bandwidth than traditional architec-
tures. These types of processors are increasingly being used to accelerate
compute-intensive applications. Their performance advantage is achieved
by using multiple SIMD processor cores but limiting the complexity of
each core, and by combining this with a simplified memory system. In
particular, these processors generally avoid the use of cache coherency
protocols and may even omit general-purpose caches, opting for restricted
caches or explictly managed local memory.

We show how control flow can be emulated on such tiled SIMD ar-
chitectures and how memory access can be organized to avoid the need
for a general-purpose cache and to tolerate long memory latencies. Our
technique uses streaming execution and multipass partitioning. Our pro-
totype targets GPUs. On GPUs the memory system is deeply pipelined
and caches for read and write are not coherent, so reads and writes may
not use the same memory locations simultaneously. This requires the use
of double-buffered streaming. We emulate general control flow in a way
that is transparent to the programmer and include specific optimizations
in our approach that can deal with double-buffering.

1 Introduction

GPUs are high-performance processors originally designed for graphics acceler-
ation. However, they are programmable and capable of accelerating a variety of
demanding floating-point applications. They can often achieve performance that
is more than an order of magnitude faster than corresponding CPU implemen-
tations [1]. Application areas for which implementations have been performed
include ray tracing, image and signal processing, computational geometry, fi-
nancial option pricing, sequence alignment, protein folding, database search,
and many other problems in scientific computation including solving differential
equations and optimization problems.

These processors are best suited to massively parallel problems, and internally
make extensive use of SIMD (single instruction, multiple data) parallelism. These
processors do have multiple cores with separate threads of control, but each core
uses SIMD execution. We will refer to such an architecture as a tiled SIMD
architecture. Although we will focus on the GPU in this paper, even on the Cell

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 100–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Control Flow Emulation on Tiled SIMD Architectures 101

processor and other general-purpose multi-core processors, higher performance
can be achieved by a tiled SIMD approach to vectorization.

The simplicity of the tiled SIMD architecture enables a number of optimiza-
tions that result in higher performance. The techniques we will present can also
apply to pure SIMD machines, such as the ClearSpeed processor. A tiled SIMD
architecture can be emulated on a pure SIMD machine, simply by executing the
per-tile computations serially instead of in parallel, just as concurrent threads
can be emulated on a serial machine.

A major difficulty with pure SIMD machines is the efficient implementation of
control flow. In a pure SIMD machine, control flow can be naively emulated by
taking all paths of execution and then conditionally discarding results. However,
this approach can result in arbitrarily poor efficiency. We show how to automat-
ically and efficiently emulate general control flow on a tiled SIMD architecture.

We use GPUs as our test platform. This means that we have to deal with
several other issues that are specific to GPUs, in particular double-buffering.
However, our general approach can apply to any other tiled SIMD architecture.

We assume the processors are programmed using a stream processing model
[1,2,3]. The model is based on applying a simple program, called a kernel, to each
element of an input array. Conceptually all invocations of the kernel execute in
parallel on each element. Kernel invocations cannot retain state or communicate
with each other during computation. The order of execution of kernel invocations
is also unspecified. In practice, for execution on a tiled SIMD machine, the arrays
are strip-mined and the kernels are executed over small subsets (tiles) of the input
arrays, using a combination of parallel and serial execution.

In the SPMD (single program, multiple data) variant of the stream processing
model, the kernels can contain control flow; in the SIMD variant, they cannot.
Our goal is to transform an SPMD kernel into a schedule of SIMD kernels over
tiles, so that SPMD kernels can be executed on (tiled) SIMD machines.

We assume SIMD kernel execution is guarded; a guard is a predicate which
controls whether the kernel will execute based on a data-dependent condition.
If the guard fails for all the elements in a tile then computation on that tile is
aborted, actually avoiding work. Aborted tiles do not write any output. However,
if only some guards fail then the computation proceeds in SIMD fashion over
the tile, but the outputs are masked: no output is written for elements for which
the guard failed. We also assume that the hardware provides a count of the
guards that did not fail across the entire stream after a kernel is executed over
that stream. We will call this the completion count (CC). Finally, we assume
the hardware uses deep memory pipelining and that reads and writes to the
same memory location are not permitted during a single kernel invocation. This
requires double-buffering of inputs and outputs.

We prototyped our multi-pass partitioning (MPP) technique on a GPU as
GPUs have all the above-mentioned features; the guard can be implemented with
a discard or early z-cull operation and the completion count with an occlusion
count. In the conclusions we will discuss two modifications that could be made
to tiled SIMD architectures to simplify control flow emulation.

102 G. Lashari, O. Lhoták, and M. McCool

Our contribution is a technique to efficiently emulate the SPMD stream pro-
cessing model on a tiled SIMD machine. Our technique automatically partitions
SPMD kernels with arbitrarily complex control flow into a set of SIMD sub-
kernels without any internal control flow, only guards. We show how to auto-
matically generate and run an efficient data-dependent schedule of these SIMD
sub-kernels.

2 Previous Work

Our work is related to previous work on partitioning large computations with
unbounded resource usage into multiple passes that respect hardware resource
limits, and to prior approaches for the control flow emulation on SIMD machines.

Several algorithms have been suggested to virtualize limited hardware re-
sources by partitioning GPU programs. However, existing algorithms partition
only straight-line programs comprised of a single basic block. Chan [4] and Fo-
ley [5] devised the RDS (Recursive Dominator Split) and MRDS algorithms,
respectively, that greedily merge operations in the dependence DAG into passes.
Riffel [6] redefined the partitioning problem as a job shop scheduling problem
and devised a greedy list scheduling algorithm called MIO. Heirich [7] presented
an optimal algorithm based on dynamic programming for the MPP problem.
However, none of these algorithms handle input programs with data dependent
loops. Therefore, they do not work in the presence of control flow.

If-conversion is a technique that has been widely used in the context of vector
machines to transform control dependence into data dependence. Both branches
of the if statement are executed, but the writes are selectively performed, for
components of the vector operand, to preserve the original results of the if state-
ment. Our technique is more general than if-conversion in that it handles arbi-
trary control constructs including loops.

Purcell [8] manually partitioned a ray tracing algorithm composed of three
nested loops into a set of conditionally executed blocks so it could run on a GPU
that had no native control flow. The ray tracer was split into four kernels: ray
generation, grid traversal, intersection, and shading. The execution of kernels on
rays was controlled by a state variable that was maintained for each ray. The
states corresponded to the kernels; for example, the traversing kernel would only
run on those rays that were in the traversing state. Purcell then created a static
schedule of the kernels that included running the ray generation kernel once,
then repeatedly running traversal and intersection kernels, and then invoking
the shading kernel once.

We generalize Purcell’s approach and automate the partitioning so it can work
on any control flow graph. Also, in the implementations we have studied, Purcell
terminated the computation based on a user-provided number of iterations. Our
approach instead automatically terminates the computation when all the stream
elements have terminated. We also automatically handle the double buffering
required by the fact that inputs cannot be bound as outputs in a single pass
due to read-write hazards. We will compare our results directly to Purcell’s

Control Flow Emulation on Tiled SIMD Architectures 103

ray-tracing implementation to evaluate performance but our techniques apply
to any algorithm that requires control flow.

The idea that an arbitrary control flow graph can be implemented by predi-
cating each basic block and wrapping all the basic blocks inside a single iteration
is quite old (at least forty years [9]). Harel calls it a “folk theorem” and surveys
many proofs [10]. This approach to implementing control flow has also been used
to show that goto is unnecessary, since in fact all programs can be implemented
using a “flow-chart simulator” that uses only structured control flow [11].

An alternative way to efficiently execute conditionals on SIMD machines is
to use conditional streams [12,13]. A single input stream is routed into multiple
output streams and a separate kernel is then applied to each output stream.
Similarly multiple input streams can be merged into a single output stream
and a single kernel applied to the output stream. This however requires special
hardware for stream compaction and expansion and also reorders the stream
elements. Our mechanism does not reorder the stream and requires much simpler
hardware support. Our technique is based on guarded kernels and tiling of the
input stream. If the individual tiles are coherent, this will result in avoiding work
for an entire tile for which the guard fails.

It should be noted here that the most recent generation of GPUs do support
internal control flow on tiles; they do this by maintaining a hardware stack
of conditional masks and temporary values for each SIMD tile. However, our
approach permits simpler hardware and can potentially be used on pure SIMD
machines (such as the ClearSpeed processor) as well. Even if control flow is
implemented using a hardware mechanism, some resource may be limited, such
as loop nesting depth, number of registers, or amount of local memory. In this
case kernel partitioning will be needed. If control flow is present the kernel will
have to be partitioned using techniques similar to those presented here even if
the control flow is not itself directly limited.

3 Control Flow Emulation on SIMD Machines

Our approach consists of three components: program partitioning, handling of
state retained between partitions, and dynamic scheduling.

3.1 Program Partitioning

Our technique is capable of handling programs with arbitrary control flow con-
structs with arbitrary nesting depth and iteration counts. We first create a con-
trol flow graph of such programs that is then passed as input to our partitioning
algorithm.

The basic idea behind our partitioning algorithm is to split the control flow
graph of the program on the basic block level. A kernel is created for each basic
block. For each element of the input array, we maintain (in a separate array)
a program counter that indicates the next basic block to execute. Each kernel
is predicated to run the basic block code only if the program counter matches
the basic block number; otherwise, the basic block code is skipped. To mimic

104 G. Lashari, O. Lhoták, and M. McCool

A

B

D

i = i + float2(1,1);
if (i.x > 20) break;

void main (in float2 coords : TEXCOORD0,
 uniform sampler2D STATE_IN,
 uniform sampler2D I_IN,
 out float2 I_OUT : COLOR0,
 out float2 STATE_OUT : COLOR1)
{
 float2 state = tex2D(texState, coords);
 // 1 is the identifier for block B
 if (state.x != 1) discard;
 float2 i = tex2D(I_IN, coords);
 i = i + float2(1,1);
 I_OUT = i;
 STATE_OUT.x = i.x > 20 ? 2 : 1; // 2 = D
}

void main (in float2 coords : TEXCOORD0,
 uniform sampler2D STATE_IN,
 uniform sampler2D I_IN,
 uniform float LTIME,
 uniform float CTIME,
 out float2 I_OUT : COLOR0,
 out float2 STATE_OUT : COLOR1)
{
 float2 state = tex2D(texState, coords);
 // 1 is the identifier for block B
 if (state.x != 1 || state.y <= LTIME) discard;
 float2 i = tex2D(I_IN, coords);
 i = i + float2(1,1);
 I_OUT = i;
 STATE_OUT = float2((i.x > 20 ? 2 : 1), CTIME);
}

(a)

(b)

(c)
(d)

Fig. 1. (a): A simple GPU program with a loop. (b): Basic block B of the program.
(c): Kernel for basic block B that discards an array element if the state (i.e. program
counter) does not match with the basic block identifier. (d): Kernel for basic block B
that uses timestamped program counter.

the execution of the original program, we run a schedule of these kernels. The
schedule is maintained on the host CPU that repeatedly takes a kernel off the
schedule and invokes it on the SIMD device. In later sections, we will show how
an efficient schedule can be derived.

Figure 1(a) shows the control flow graph of a simple program we will use as an
example. Figure 1(b) shows the code of basic block B from the original program,
and Figure 1(c) shows the corresponding kernel for that block after the program
has been partitioned.

Application of the original program to an array results in individual activa-
tions of the program taking different paths in the graph. Each activation may
also perform a different number of loop iterations. In contrast, after partition-
ing we schedule individual basic block kernels in some particular order, running
some of them repeatedly. Predication is used to ensure that execution of a given
kernel processes only those array elements on which the code should execute
according to the original program. We implemented predicates using the GPUs’
conditional discard feature, although it might also be possible to use the early
z-cull feature or a GPU if statement.

In order to ensure that the transformed code has the same semantics as the
original program, we must capture the control flow decisions of individual array
elements as they flow along the control flow edges. We do so using “program
counters” (maintained in the SIMD device memory). We assign a unique identi-
fier to each basic block. Before the schedule is run, the program counters for all
the array elements are initialized to the identifier of the entry node in the control
flow graph. Upon invocation of a kernel, only array elements whose predicates
are true execute the corresponding basic block. The predicate inside the kernel
ensures the program counter of the array element matches the identifier of the
corresponding basic block. At the end of the basic block execution, the program

Control Flow Emulation on Tiled SIMD Architectures 105

counters are updated to reflect which basic block to execute next, possibly based
on data-dependent information specific to each array element being processed. If
the program counter of an array element does not match the currently executing
kernel, the array element is not processed, and its program counter remains un-
changed; the array element will be processed the next time the kernel matching
its program counter is executed. The exit nodes in the control flow graph set
the program counter to a unique identifier ∞ indicating that the array element
has completed. Figure 1(c) shows Cg code that implements the predicate and
updates the program counters to capture the control flow decisions.

The target hardware cannot read and write from the same array in one pass,
but program counter arrays must be read, modified, and written in each kernel.
Therefore, we must allocate two arrays α and β to double-buffer program coun-
ters. At each kernel invocation, one of these arrays is bound as input and the
other as output. As a kernel finishes execution, the newly computed program
counters for the executed array elements are written to α or β, whichever is
bound as output to the kernel.

3.2 Temporary Variables

When the program is split into separate kernels, the values of temporary variables
must be communicated from one kernel to the next. Like program counters, these
temporary variables reside in the SIMD device memory across all passes in order
to avoid data transfer overhead to and from the host CPU.

We identify three kinds of temporary variables in the original program: BB
variables are those that are never live across a basic block boundary, exposed
variables are those that are live across a basic block boundary but are never
read and then written in the same block, and RW variables are those that are
live across a basic block boundary and are read and then written in the same
basic block. BB variables need no special treatment after program partitioning.
Exposed and RW variables, however, must be saved into array memory after
they are defined and restored before they are used. Exposed variables do not
require double-buffering, so a single array suffices for each exposed variable. For
each RW variable, we allocate two arrays for double-buffering. Each exposed or
RW variable is turned into an array input, output, or both for kernels in which
it is read or written.

We now show how these kinds of variables are identified. For each basic block
in the original program, we compute two sets of variables: upward exposed uses
(UEU) and downward exposed defs (DED) [14]. These variables become the
array inputs and outputs, respectively, of the corresponding kernel. The UEUs
for each basic block are those variables that are live at the beginning of the block;
they are computed using a local liveness analysis. The DEDs for each basic block
are variables that are written inside the block and live at the end of the block,
as computed by a global liveness analysis of the whole program. Each variable
that is both a UEU and a DED for the same block is a RW variable; every other
variable that is a UEU or a DED for some block is an exposed variable.

106 G. Lashari, O. Lhoták, and M. McCool

Simply turning all variables that are live at the beginning and end of a basic
block into inputs and outputs, respectively, would give correct semantics, but
would require reading and writing every variable that is live across a basic block,
even if it is not used within the block. Using UEUs and DEDs instead avoids
this inefficiency.

Unlike program counters, RW variables need not be double-buffered in all
kernels, but only in those in which they are read and then written. We will
discuss the binding of RW variable arrays to kernels in Section 3.4 and 4.2. The
Cg code in Figure 1(c) shows how to save and restore the RW variable i.

3.3 Dynamic Scheduling Using a Worklist

To decide which kernels to execute and with which program counter bindings, the
host CPU maintains a dynamic worklist that is updated based on the completion
counts. Each element of the worklist is a kernel with either a left or right arrow.
For example, B−→ indicates that kernel B should be executed with α as input and
β as output, while B←− indicates the opposite bindings. The worklist is initialized
with the initial basic block A−→. In each pass, a kernel is taken off the worklist and
executed. If the resulting completion count is not zero (i.e. the guard succeeded
for at least one array element), all immediate static successors (as given by the
control flow graph) are added to the worklist, with a program counter binding
that is the opposite of the current pass.

The worklist ensures that a kernel X will not execute unless one of its prede-
cessors was run since the last run of X . In our running example, A will run only
once, since it has no predecessors.

If kernels X and Y need to be executed and there is a control flow path from
X to Y but not from Y to X , X should be executed before Y , since executing
X will require executing Y after it. To ensure this, of all the kernels appearing
on the worklist, we always execute the kernel that appears earliest in a reverse
post-order traversal of the control flow graph. This order is precomputed before
execution begins. In our running example, this order delays execution of D until
all iterations of B have completed, so that D is only run once on all array
elements together.

3.4 Stale State

When an array element is discarded, no output is written for it. Therefore, if
kernels discard array elements that are skipped, program counters for skipped
elements cannot be updated in the output array. After executing a kernel that
inputs program counter array α and outputs program counter array β, up-to-
date program counters will be in array β for those elements that were executed,
and in array α for those elements that were skipped. Neither array will have
up-to-date program counters for every array element.

Stale program counters may cause extraneous execution of basic blocks and
even prevent the computation from terminating in some cases. Figure 2(a) il-
lustrates this with an example of the execution of the program from Figure 1.

Control Flow Emulation on Tiled SIMD Architectures 107

WL

βαA

βαB

βαB

B

βαB

A

D

βα

�

�

SE0

βα
SE1

βα
SE2

�

�

�

A A

� �

� �

��

�

B

D

B

B

D

A

B D

βα

A A A

B B

B
B D D

B D D

D D
�

CC

3

2

1

1

1

B

D DB

BD

� B D�

WL

1

2

3

4

5

6

Ti
m

e

βαA

βαB

βαB

B

βαD

D

A,0

D,1

βα

��

��

SE0

βα
SE1

βα
SE2

��

��

7

��

��

A,0 A,0

�� ��

�� ��

��

��

��

��

��

��

��

B,1

D,2

∞,5

B,1

B,2

D,3

∞,6

A

B D

βα

βα

A A A

B B

B

DD

D

B D D

B D D

D D

D
∞,6

��

CC

3

2

1

0

1

2

(a) (b)

Fig. 2. (a): A stale program counter causes extraneous execution of block B–resulting
in non-termination. (b): Timestamp identifies a stale program counter and prevents
extraneous execution of block B.

The control flow graph consists of three basic blocks A, B, and D, where B is a
self-loop. The program is run on three array elements SE0, SE1, and SE2, mak-
ing zero, one, and two loop iterations, respectively. The first column shows the
kernel executed in each pass. The arrow under the kernel name indicates whether
the program counter is read from array α and written to β, or vice versa. The
column labeled CC shows the completion count for each kernel executed. The
last column shows the contents of the worklist, in reverse post order, between
passes. The columns in the middle show the progress of each of the array ele-
ments. Each of them is further subdivided into three sub-columns. Each middle
sub-column shows the basic blocks that execute. The left and right sub-columns
show the values of the two program counter arrays α and β. A � indicates that
the current program counter matches the kernel being executed, so the basic
block appears in the middle sub-column, and the new program counter appears
in the opposite program counter array. A × indicates that the current program
counter does not match the kernel, so the basic block is not executed, and the
opposite program counter array is not updated.

In the first pass, all three array elements execute block A, and the new program
counters (D or B) are written to β. Kernels B←− and D←− are added to the worklist.
In the second pass, SE0 discards while SE1 and SE2 execute B and kernels B−→
and D−→ are added to the worklist. In the third pass, SE2 completes the second
iteration of B, adding B←− to the worklist while both SE0 and SE2 discard. In the
fourth pass, the stale program counter B is found in β for SE1, causing B to be
executed again, even though it was already executed in the second pass. This
is an extra execution of B that was not specified by the original program. In
addition, it results in addition of B−→ to the worklist, triggering another execution
of B. Finally, because β is not updated, the same thing will continue to happen
in every second future pass, so the kernels will loop indefinitely.

108 G. Lashari, O. Lhoták, and M. McCool

In order to prevent the above problems caused by stale program counters,
we add timestamps. With each kernel execution, we increment a global clock
(maintained on the host CPU). We maintain a timestamp (in array memory) for
each program counter, and two timestamps (in CPU memory) for each kernel,
one for each program counter array binding (i.e. A−→ and A←−). Each program
counter is stamped when it is generated, and a kernel is stamped when it is
executed with the corresponding binding. The key idea is that a program counter
A in α is stale if and only if it was generated earlier than the most recent
execution of kernel A−→ (since that execution will have generated a more up-to-
date program counter in β). Thus, to avoid extraneous execution due to stale
program counters, we need only modify the predicate of each kernel to skip the
basic block if the program counter is stale, even if the program counter matches
the basic block.

The code applying timestamps to our running example is given in Figure 1(d).
Figure 2(b) shows the execution of schedule with timestamped program counters.
The global clock appears in the column labeled Time. The first three passes of
the schedule are the same as in Figure 2(a). In fourth pass, however, SE1 is
discarded in kernel B←− because the timestamp of the program counter in β (1)
is lower than the most recent execution time of B←− (2). Thus, the extraneous
execution is avoided, and computation terminates in six passes as the worklist
becomes empty.

Timestamps prevent the extraneous execution and non-termination caused by
stale program counters. However, the schedule is still inefficient: we must execute
block D twice. We will show an improvement in the next section.

RW temporary variables suffer from the staleness problem as well, as they are
double-buffered. We solve the RW variable staleness problem by keeping the RW
variable array bindings synchronized with the program counter array bindings
(i.e. always copy all RW variables in every kernel). Since the timestamps prevent
execution when the program counter is stale, and double-buffering of variables is
synchronized with double-buffering of the program counter, the same timestamps
also prevent use of stale variables. However, copying all variables in every kernel
is inefficient; we will describe a better approach in the following section.

4 Optimizations

Two important optimizations can significantly reduce extraneous execution of
kernel partitions and data copying: graph bipartization and node bypassing.

4.1 Graph Bipartization

When a block is reached with two different program counter array bindings, it
must be executed twice, once for each binding. Moreover, the resulting program
counters will again be split between both arrays, so blocks that come after it
must also be executed twice. We would like to transform the control flow graph
to avoid this double execution of blocks.

Control Flow Emulation on Tiled SIMD Architectures 109

Specifically, we must transform the graph to be 2-colourable (equivalently,
bipartite or containing no odd cycles). At run time, a kernel must be executed
with a given binding if one of its predecessors has been executed with the opposite
binding. If it is possible to statically assign bindings to the basic blocks such that
the binding for a block is the opposite of the bindings of all its predecessors,
then at run time, each kernel only ever needs to be executed with its statically
assigned binding. Since the bindings can be thought of as colours for nodes, this
is possible exactly when the graph is 2-colourable.

We make the graph 2-colourable by inserting additional copying nodes on
existing edges of the graph. Each copying node simply copies program counters
from its input array to its output array. Although copying takes some time, the
cost of running a copying node is likely to be cheaper than having to run a
possibly large basic block twice, along with all blocks executed after it. Still, we
want to minimize the number of copying nodes.

To determine where to place copying nodes, we must find the smallest subset
of edges that must be removed from the control flow graph in order to make
it 2-colourable. This problem, Bipartite Subgraph, is a dual of Max-Cut and
is NP-complete [15]. Each of the removed edges must join vertices of the same
colour in the resulting 2-colouring; otherwise, it would not have to be removed,
contradicting the optimality of the subset. Therefore, placing a copying node on
each edge that is to be removed is equivalent to removing it. The minimal set of
edges on which copying nodes must be placed is exactly the solution of Bipartite
Subgraph.

To make bipartization computationally tractable we use an approximation
algorithm for Max-Cut. Fortunately, a well-known approximation algorithm is
available that runs in linear time, is easy to implement, and achieves a 1

2 -
approximation [16].

Once the graph has been made 2-colourable, colours can be assigned in a
simple traversal of the graph. Figure 3 shows a version of our running example
made 2-colourable by adding copying nodes C1 and C2, and the corresponding
multipass execution of the basic blocks. Block D is now executed only once, and
the number of executions for block B have reduced from three to two.

4.2 Node Bypassing

As explained in Section 3.2, temporary variables are divided into BB variables,
exposed variables, and RW variables. Only RW variables are double-buffered.
Just like program counters, the values of RW variables could be stale. As de-
scribed in Section 3.4, a simple but inefficient way to avoid the problems caused
by staleness is to keep the variable double-buffering synchronized with program
counter double-buffering, so that the same timestamp can be used for both.
Unfortunately, this requires extra data copying.

One way to avoid copying all RW variables in all kernels is to add a separate
timestamp for each RW variable, to avoid the need to synchronize with program
counter double-buffering. However, if a cycle in the control flow graph contains
an odd number of nodes that read and write the variable, the nodes in this cycle

110 G. Lashari, O. Lhoták, and M. McCool

WL

1

2

3

4

5

6

Ti
m

e

βαA

βαB

βαC1

B

βαC1

C2

A,0

C2,1

βα

��

��

βα βα

��

��

7

��

��

A,0 A,0

�� ��

�� ��

��

��

��

��

��

��

��

B,1

D,2

B,1

B,3

A

B C2

D

A

B

D

βα

βα

A A A

B B

C1

C2

C1 D

B D

D

D

C1C2

βαD
8

D D D�� �� ��∞,7 ∞,7 ∞,7

D,6

C1,2

BD,4

C2

C2

C2C1

C2

��

SE0 SE1 SE2

CC

3

2

1

1

0

1

3

Fig. 3. Bipartization avoids double execution of block D

would have to be executed twice, once for each array binding for the variable.
A program with n double-buffered variables could require 2n combinations of
variable array bindings. Requiring a basic block to be executed 2n times is not
practical.

We propose a more efficient solution that reduces the wasted memory band-
width without requiring additional timestamps. For each variable, we define RW
blocks as those that contain a read followed by a write of the variable, and free
blocks as those that do not. The problem is then to find a subset of free blocks
in which to copy the variable so that in every cycle, the total number of RW
blocks and copies is even. This property, which we call the Node Bypass Property,
makes it possible to statically assign variable array bindings to each basic block.
Since we have made the control flow graph bipartite, we know that the set of
all free blocks is one solution. To improve efficiency, we would like to minimize
the number of copies (i.e. maximize the number of bypassed copy nodes). We
have shown this problem to be NP-complete (by reducing Max-Cut to it). In the
opposite direction, we have also reduced it to Weighted Max-Cut, so heuristics
for Weighted Max-Cut can be used to find approximate solutions to Max Node
Bypass. Sketches of both constructions appear in the appendix.

5 Experimental Results

We implemented our partitioning technique in the OpenGL backend of the Sh
code generator [17]. Sh is a shader metaprogramming language and a precursor
to the RapidMind development platform [18]. The hardware used for the experi-
ment consisted of a 3.0GHz Intel Pentium4 with 1.0GB of RAM and an NVIDIA
GeForce 8800 GTS GPU with 320MB of memory. The software was tested under
the Windows XP operating system with NVIDIA video driver version 97.73 and
Cg compiler version 1.5.

Control Flow Emulation on Tiled SIMD Architectures 111

Table 1. For each scene, the number of triangles and voxels and the size of the triangle
list is shown. Also the number of iterations of the ray tracing loop required by the hand-
partitioned (HP) and auto-partitioned (AP) ray tracer program is shown. The last five
columns show absolute and relative execution times of the three versions of the ray
tracer: hand-partitioned using 4 outputs (HP), auto-partitioned using only 4 outputs
(AP4), and auto-partitioned using all 8 outputs (AP8).

Scenes
Tris Voxs TriList Iter Iter Time Time Time Time Time

Size (HP) (AP) (HP) (AP4) (AP8) (HP/AP4) (HP/AP8)

Glassner04 840 140 1618 339 681 5222 5847 4311 89% 121%
Glassner05 840 315 2142 279 563 4196 4842 3580 87% 117%
Glassner10 840 2340 3886 111 227 1647 2096 1545 81% 107%

We used a ray tracer with a number of scenes to evaluate the quality of par-
titions and schedule generated by our partitioning technique. We took the hand-
partitioned ray tracer implementation bundled with the distribution of BrookGPU
[19] and ported it to Sh. We also rewrote the ray tracer as a single GPU program
with nested loops. The rewritten ray tracer was then passed as input to our parti-
tioning algorithm. For comparison, our algorithm then automatically partitioned
the ray tracer and executed the resulting kernels using dynamic scheduling. We
compared the performance of the hand-partitioned ray tracer against that of our
automatically partitioned implementation (see Table 1).

The hand-partitioned ray tracer consists of seven kernels: Three of them gen-
erate eye rays and static and dynamic data for traversal, the fourth traverses
the voxels, the fifth computes ray-triangle intersections, the sixth validates the
intersections, and the seventh performs shading for the intersection points. The
traversal, intersection, and intersection validation kernels run repeatedly us-
ing a host CPU loop. Unlike the automatically partitioned version, the hand-
partitioned version provides no automated way to determine when computation
has completed. We determined the minimum number of iterations required for
each scene manually by comparing the output of runs with different numbers
of iterations. The render times shown in Table 1 for the hand-partitioned ray
tracer are for the minimum number of iterations required for each scene.

The control flow graph of the ray tracer originally contained 12 basic blocks.
To give each kernel a reasonable amount of computation, we automatically
merged basic blocks that were split only due to if statements (not loops) using
conditional assignments. This reduced the number of basic blocks to 5.

Our partitioning algorithm automatically partitioned the ray tracer into five
kernels. The algorithm employed all the techniques presented in Sections 3.3, 3.4,
4.1, and 4.2. The Graph Bipartization algorithm introduced two copying nodes,
increasing the number of kernels to seven. The liveness analysis revealed eleven
temporary variables that were live across basic block boundaries in the control
flow graph. Seven of them were exposed variables while four were RW variables
that required double-buffering. The max-node-bypass approximation algorithm
then detected that all but one node for each of these four variables could be

112 G. Lashari, O. Lhoták, and M. McCool

bypassed. Hence only one extra kernel was needed to read and write these RW
variables in order to keep them synchronized with the program counters.

Note that automatic partitioning can take advantage of any hardware im-
provements, but hand-partitioned code must be rewritten to do so. For example,
the hand-partitioned ray tracer was optimized for an older GPU, so it utilized
only four of the eight available outputs of the improved hardware. Our automat-
ically partitioned ray tracer utilized all eight, saving us from further partitioning
the kernels to virtualize the hardware’s output resources. We also evaluated a
version of the auto-partitioning algorithm limited to using four outputs for a fair
comparison with the hand-partitioned algorithm.

We ran the hand-partitioned and the automatically partitioned ray tracers
on three different scenes that consisted of different number of voxels and trian-
gles. The details about the scenes are given in Table 1. When allowed to use all
eight outputs, our auto-partitioned ray tracer was 7% to 21% faster than the
hand-partitioned one. However, even when artificially limited to four outputs,
our auto-partitioned ray tracer was only 11% to 19% slower than the hand-
partitioned version. In general the auto-partitioned ray tracer also performed
more repetitions than the hand-partitioned implementation. We attribute this
to the generality of our solution. The hand-partitioned ray tracer was written by
experts in the ray tracing area who were able to structure the ray tracing kernels
so that more work could be done in fewer executions of the kernels, but our auto-
partitioning algorithm has little knowledge about the algorithm implemented in
the program being partitioned. Moreover, some overhead is due to the occlusion
query that determines when execution has terminated; in the hand-partitioned
implementation, the number of iterations to execute must be determined man-
ually. Finally, use of the occlusion query requires adding timestamps to handle
stale program counters, which uses additional memory bandwidth.

6 Conclusions and Future Work

This paper presented a mechanism to emulate SPMD stream processing behaviour
on a tiled SIMD machine using the GPU as a test platform. We showed how to
automatically partition programs containing arbitrary control flow and to sched-
ule the resulting partitions. We showed how to automatically detect the termina-
tion of computation using a completion count mechanism (implemented using an
occlusion count feature on the GPU) and presented solutions to stale state prob-
lems that arose from double-buffering. The solutions to stale state included times-
tamps, graph bipartization, and a node-bypass optimization. A worklist-based
algorithm was also presented for dynamically scheduling the partitions. A ray
tracer performed 7% to 21% faster when partitioned using our automatic tech-
nique than a hand-tuned manually partitioned version, because our automatic
technique took advantage of all available hardware resources, while the manually
partitioned version was optimized for an older GPU. Even when artificially limited
to using the same resources as the manually partitioned version, the automatically
partitioned ray tracer was only 11% to 19% slower—although it was also more
general in that it was automatically checking for completion.

Control Flow Emulation on Tiled SIMD Architectures 113

We realized during this work that the complications arising from stale state
could be avoided if the hardware implementing the guard allowed writing to the
outputs before the guard was evaluated. Unfortunately, on current GPUs, the
discard operation masks out all outputs, including writes that occurred before
the discard. Thus, when the guard fails, we cannot copy state from the input
arrays to the output arrays, resulting in stale state. Avoiding stale state by using
a different strategy for predication might eliminate the need for timestamps,
graph bipartization, and solving the max node bypassing problem.

Another way to avoid stale state would be to remove the hardware restriction
that prevents both reading and writing the same memory location in a kernel.
If double buffering was not required, we could keep the state of the stream
elements in one set of arrays, again avoiding stale state. In fact, either one of
these modifications, on its own, would suffice to eliminate stale state and its
associated complication.

In the future, we would like to explore additional optimization techniques. A
better scheduling technique that prioritized the kernels for scheduling based on
the amount of work accumulated for them could deliver better performance. The
use of the completion count could also be limited to only some passes instead
of all of them. A major performance improvement can be achieved by packing
the intermediate results into different components of the same tuple of an array,
but this is not easy to implement because of the double-buffering. We statically
inserted copying nodes to avoid running certain kernels twice, but dynamically
inserting the copying nodes, when needed, could result in less copying. Moreover,
one should probably insist on adding copying nodes that will do the least amount
of work as opposed to the minimum number of nodes. For example, if a path on
the control graph is taken 90% of the time and the other is taken 10% of the
time, it is better to insert two nodes on the latter rather than one on the former.

As current GPUs and other high-throughput targets are actually SPMD ma-
chines and can handle limited control flow, it would be useful to generalize our
approach and use it as part of a resource virtualization framework. In the gen-
eral context it is important to merge control flow and generate larger SPMD
kernels to avoid the overhead of invoking a large number of small kernels. Ad-
ditional transformations should be explored to restructure the program so that
it fits within hardware limits, while maximizing efficiency and advantage of the
limited control flow provided by the GPU.

References

1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Lefohn, J.K.A.E., Purcell,
T.J.: A survey of general-purpose computation on graphics hardware. In: Euro-
graphics 2005: State of the Art Reports, pp. 21–51 (2005)

2. Das, A., Dally, W.J., Mattson, P.: Compiling for stream processing. In: PACT
2006: Parallel Architectures and Compilation Techniques, pp. 33–42. ACM, New
York (2006)

3. McCool, M.D.: Scalable Programming Models for Massively Multi-Core Processors.
In: Proc. IEEE (January 2008)

114 G. Lashari, O. Lhoták, and M. McCool

4. Chan, E., Ng, R., Sen, P., Proudfoot, K., Hanrahan, P.: Efficient partitioning of
fragment shaders for multipass rendering on programmable graphics hardware. In:
HWWS 2002: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pp. 69–78 (2002)

5. Foley, T., Houston, M., Hanrahan, P.: Efficient partitioning of fragment shaders
for multiple-output hardware. In: HWWS 2004: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 45–53 (2004)

6. Riffel, A., Lefohn, A.E., Vidimce, K., Leone, M., Owens, J.D.: Mio: fast multipass
partitioning via priority-based instruction scheduling. In: HWWS 2004: ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 35–44 (2004)

7. Heirich, A.: Optimal automatic multi-pass shader partitioning by dy-
namic programming. In: HWWS 2005: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 91–98 (2005)

8. Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable
graphics hardware. ACM Transactions on Graphics 21(3), 703–712 (2002)

9. Cooper, D.C.: Böhm and Jacopini’s reduction of flow charts. Commun. ACM 10(8),
463 (1967)

10. Harel, D.: On folk theorems. Commun. ACM 23(7), 379–389 (1980)
11. Knuth, D.E.: Structured programming with go to statements. ACM Comput.

Surv. 6(4), 261–301 (1974)
12. Kapasi, U.J., Dally, W.J., Rixner, S., Mattson, P.R., Owens, J.D., Khailany, B.:

Efficient conditional operations for data-parallel architectures. In: 33rd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 159–170 (2000)

13. Popa, T.S.: Compiling Data Dependent Control Flow on SIMD GPUs. Master’s
thesis, University of Waterloo (2004)

14. Marlowe, T.J., Ryder, B.G.: Properties of data flow frameworks: a unified model.
Acta Inf. 28(2), 121–163 (1990)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, San Francisco (1979)

16. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the
ACM 23(3), 555–565 (1976)

17. McCool, M.D., Qin, Z., Popa, T.S.: Shader Metaprogramming. In: Proc. Graphics
Hardware, September 2002, pp. 57–68 (2002)

18. McCool, M.D.: Data-Parallel Programming on the Cell BE and the GPU using
the RapidMind Development Platform. In: Proc. GSPx Multicore Applications
Conference (October–November 2006)

19. Buck, I.: BrookGPU (2003),
http://graphics.stanford.edu/projects/-brookgpu/

http://graphics.stanford.edu/projects/-brookgpu/

Control Flow Emulation on Tiled SIMD Architectures 115

A Complexity of Max Node Bypassing

Theorem 1. The Max Node Bypassing Problem is NP-hard.

Proof (Proof Sketch). We show a reduction from an instance of Max-Cut to an
instance of Max Node Bypassing. Given an instance of Max-Cut G 〈V, E〉, create
a control flow graph G′ using the “gadgets” shown in Figure 4 as follows.

– For each node v ∈ V , create a gadget A as shown in Figure 4 with both ©
and 	 labeled v.

– For each edge v → w ∈ E, create a gadget B as shown in Figure 4 with both
♦ and � labeled “v → w”, and connect the � labeled “v → w” to the ©
labeled w and the 	 labeled v to the ♦ labeled “v → w”.

The resulting control flow graph G′ is an instance of the Max Node Bypassing
Problem with the �s as free nodes, and 	s, ♦s, ©s as RW nodes. G′ is bipartite.
It can be proved that a set C ⊆ E is a cut if and only if the corresponding �s
labeled with edges in C satisfy the Node Bypassing Property in G′. Therefore the
maximal cut in G corresponds to the maximal node-bypass in G′.

To approximately solve an instance of the Max Node Bypassing Problem, we re-
duce in the opposite direction, from Max Node Bypassing Problem to Weighted
Max-Cut. We can then solve the Weighted Max-Cut using known approximation
algorithms, such as a variant of [16].

Given an instance of Max Node Bypassing, a bipartite control flow graph
G 〈V, E〉 and set of free nodes S ⊆ V , we create an instance of Weighted Max-
Cut G′ 〈V ′, E′〉 as follows. For each node v ∈ S, we create gadget C shown in
Figure 4. For each node v /∈ S, we create gadget D. For each edge v → w ∈ E, we
merge v3 ∈ V ′ with w1 ∈ V ′. We assign weights to all the edges as follows: each
dashed edge has weight 1, the weight of each solid edge is the total number of
dashed edges plus 1. It can be shown that the set of solid edges in G′ make a cut.
The Max-Cut in G′ must therefore include at least the solid edges and possibly
some dotted edges. It can also be shown that a subset σ ⊂ S of free nodes satisfy
the Node Bypassing Property if and only if the set of dashed edges in gadgets
C corresponding to nodes in σ, combined with the set of all solid edges, is a cut
in G′. Therefore, the maximal subset satisfying the Node Bypassing Property
corresponds to the Max-Cut in G′. Thus, an approximation to the Max-Cut in
G′ can be mapped back to an approximately maximal node bypass in G.

v�w

Gadget A Gadget B

v�w

v

v

Gadget D

v1

v3

Gadget C

v1

v3

v2

Fig. 4. Gadget graphs

Generating SIMD Vectorized Permutations

Franz Franchetti and Markus Püschel�

Electrical and Computer Engineering,
Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213
{franzf,pueschel}@ece.cmu.edu

http://www.spiral.net

Abstract. This paper introduces a method to generate efficient vector-
ized implementations of small stride permutations using only vector load
and vector shuffle instructions. These permutations are crucial for high-
performance numerical kernels including the fast Fourier transform. Our
generator takes as input only the specification of the target platform’s
SIMD vector ISA and the desired permutation. The basic idea underlying
our generator is to model vector instructions as matrices and sequences
of vector instructions as matrix formulas using the Kronecker product
formalism. We design a rewriting system and a search mechanism that
applies matrix identities to generate those matrix formulas that have
vector structure and minimize a cost measure that we define. The for-
mula is then translated into the actual vector program for the specified
permutation. For three important classes of permutations, we show that
our method yields a solution with the minimal number of vector shuffles.
Inserting into a fast Fourier transform yields a significant speedup.

1 Introduction

Most current instruction set architectures (ISAs) or ISA extensions contain single
instruction multiple data (SIMD) vector instructions. These instructions operate
in parallel on subwords of a large vector register (typically 64-bit or 128-bit
wide). Typically SIMD vector ISA extensions support 2-way–16-way vectors of
floating-point or integer type. The most prominent example is Intel’s SSE family.

From a software development point of view the most challenging difference
across vector extensions is their widely varying capability in reorganizing data
with in-register shuffle instructions. To obtain highest performance it is crucial
to limit memory accesses to transfers of entire vectors and to perform any data
reordering within the register file, ideally using the minimal number of shuffle
instructions. Unfortunately, the optimal solution is difficult to find and depends
on the target architecture.

The above optimizations are most relevant for highly optimized numerical
kernels where the slowdown suffered from “useless” instructions can be punish-
ing. For instance, on a Core2 Duo loading an aligned unit-stride 16-way vector of
� This work was supported by NSF through awards 0234293, 0325687, and by DARPA

through the Department of Interior grant NBCH1050009.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 116–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating SIMD Vectorized Permutations 117

8-bit elements costs one vector load, while gathering the same data at a stride
costs at least 24 instructions, some of them particularly expensive. However,
finding a short instruction sequence that reorganizes data in-register in a de-
sired way is akin to solving puzzles.

Contribution. In this paper we automatically generate vector programs for an
important class of permutations called stride permutations or matrix transpo-
sitions, given only the specification of the permutation and the specification of
the target vector instruction set architecture (ISA).

rewriting + search
vector ISA

vector
program

permutation

The basic idea is that we model both instructions and permutations as matri-
ces, and instruction sequences as matrix formulas using the Kronecker product
formalism [1]. We design a rewriting system that applies matrix identities to
generate, using a dynamic programming backtracking search, vectorized ma-
trix formulas that minimize a cost measure that we define. The formula is then
translated into the actual vector program implementing the specified permuta-
tion. For 3 important classes of permutations, we show that our method yields a
solution with the minimal number of vector shuffles. We also demonstrate a sig-
nificant speedup when inserting the generated permutation into small unrolled
fast Fourier transform (FFT) kernels generated by Spiral [2].

Related Work. The motivation of this work arose from generating optimized
programs for the discrete Fourier transform (DFT) in Spiral [2]. Spiral automates
the entire code generation and optimization process, including vectorization [3,4],
but, for FFTs, relies on three classes of in-register permutations [3]. These had
to be implemented by hand for each vector extension. This paper closes the loop
by generating these basic blocks for complete automatic porting across vector
extensions. While our method is domain specific, it could in principle be applied
to optimize vectorization of strided data access in a general purpose compiler,
in an application similar to the approach in [5].

Reference [6] served as inspiration for our approach. Reference [7] derives
the number of block transfers and [8] an optimal algorithm for transpositions on
multi-level memories. Both index computation time and I/O time are considered
in [9], and [10] optimizes matrix transpositions using a combination of analytical
and empirical approaches. In contrast to prior work, we generate vectorized
programs for small stride permutations that are optimized specifically for the
peculiarities of current SIMD extensions.

General compiler vectorization techniques such as loop vectorization [11] or
extraction of instruction-level parallelism and data reorganization optimiza-
tion [12,5] operate on input programs while we generate programs for a very
specific functionality using a declarative language and rewriting.

118 F. Franchetti and M. Püschel

2 Background

We briefly overview SIMD vector instructions and introduce our mathematical
framework to describe, manipulate, and vectorize stride permutations.

2.1 Vector SIMD Extensions

Most current general purpose and DSP architectures include short vector SIMD
(single instruction, multiple data) extensions. For instance, Intel and AMD de-
fined over the years MMX, Wireless MMX, SSE, SSE2, SSE3, SSSE, SSE4, SSE5,
3DNow!, Extended 3DNow!, and 3DNow! Professional as x86 SIMD vector ex-
tensions. On the PowerPC side AltiVec, VMX, the Cell SPU, and BlueGene/L’s
custom floating-point unit define vector extensions. Additional extensions are
defined by PA-RISC, MIPS, Itanium, XScale, and many VLIW DSP processors.

Common to all vector extensions are stringent memory transfer restrictions.
Only naturally aligned vectors can be loaded and stored with highest efficiency.
Accessing unaligned or strided data can be extremely costly. For performance
this requires that data be reordered (shuffled) inside the register file, using vec-
tor shuffle instructions. However, the available vector shuffle instructions vastly
differ across SIMD extensions.

We mainly base our discussion on Intel’s SSE2 extension, which defines six
128-bit modes: 4-way single-precision and 2-way double-precision vectors, and
2-way 64-bit, 4-way 32-bit, 8-way 16-bit, and 16-way 8-bit integer vectors. We
denote the vector length of a SIMD extension mode with ν.

C intrinsic interface. Compilers extend the C language with vector data types
and intrinsic functions for vector instructions. This way, the programmer can
perform vectorization and instruction selection while register allocation and in-
struction scheduling are left to the C compiler. We use the C extension defined
by the Intel C++ compiler (also supported by Microsoft Visual Studio and the
GNU C compiler).

SSE2 vector shuffle instructions. Intel’s SSE2 extension provides one of the
richest sets of vector shuffle instructions among the currently available SIMD
extensions. Table 1 summarizes the instructions native to SSE2’s 6 modes.

For example, _mm_shuffle_pd is a parameterized binary shuffle instruction
for the 2-way 64-bit floating-point mode. It shuffles the entries of its two operand
vectors according to a compile time constant (a 2-bit integer). _mm_unpacklo_ps
is a 4-way 32-bit floating-point shuffle instruction that interleaves the lower
halves of its two operands.

We observe some intricacies of the SSE2 instruction set that considerably com-
plicate its usability in general and the vectorization of permutations in particular:
1) The floating-point modes of SSE2 extend SSE while the integer modes extend
MMX. This leads to inconsistencies among the available operations and naming
conventions. 2) The parameterized shuffle instructions like _mm_shuffle_ps are
not as general as in AltiVec. 3) Integer vector instructions for coarser granularity

Generating SIMD Vectorized Permutations 119

Table 1. SSE2 shuffle instructions. {...} denotes a vector value. a and b are vectors,
a.i and b.i vector elements. <...> denotes an integer compile time parameter derived
from the constants inside <>. 0 ≤ j, k, m, n < 4 ≤ t, u, v, w < 8, and 0 ≤ r, s < 2.

2-way 64-bit floating-point
_mm_unpacklo_pd(a, b) → {a.0, b.0}
_mm_unpackhi_pd(a, b}) → {a.1, b.1}
_mm_shuffle_pd(a, b, <r, s>) → {a.r, b.s}

4-way 32-bit floating-point
_mm_unpacklo_ps(a, b) → {a.0, b.0, a.1, b.1}
_mm_unpackhi_ps(a, b) → {a.2, b.2, a.3, b.3}
_mm_shuffle_ps(a, b, <j, k, m, n>), → {a.j, a.k, b.m, b.n}

2-way 64-bit integer
_mm_unpacklo_epi64(a, b) → {a.0, b.0}
_mm_unpackhi_epi64(a, b) → {a.1, b.1}

4-way 32-bit integer
_mm_unpacklo_epi32(a, b) → {a.0, b.0, a.1, b.1}
_mm_unpackhi_epi32(a, b) → {a.2, b.2, a.3, b.3}
_mm_shuffle_epi32(a, <j, k, m, n>)→ {a.j, a.k, a.m, a.n}

8-way 16-bit integer
_mm_unpacklo_epi16(a, b) → {a.0, b.0, a.1, b.1, a.2, b.2, a.3, b.3}
_mm_unpackhi_epi16(a, b) → {a.4, b.4, a.5, b.5, a.6, b.6, a.7, b.7}
_mm_shufflelo_epi16(a, <j,k,m,n>) → {a.j,a.k,a.m,a.n,a.4,a.5,a.6,a.7}
_mm_shufflehi_epi16(a, <t,u,v,w>) → {a.0,a.1,a.2,a.3,a.t,a.u,a.v,a.w}

16-way 8-bit integer
_mm_unpacklo_epi8(a, b) → {a.0, b.0, a.1, b.1,...,a.7, b.7}
_mm_unpackhi_epi8(a, b) → {a.8, b.8, a.9, b.9,...,a.15, b.15}

(for instance, 4-way 32-bit) can be used with vectors of finer granularity (for in-
stance, 8-way 16-bit and 16-way 8-bit).

Gather vs. vectorized permutation. Data permutations can be implemented
in two ways:

– using vector shuffle instructions, or
– using gather/scatter operations that load/store ν scalars from/to non-

contiguous memory locations.

The goal of this paper is to generate fast implementations of the former and
evaluate against the latter. We focus on small permutations where no cache ef-
fects are visible. Vector shuffle operations increase the instruction count without
doing “useful” computation and may be executed on the same execution units as
vector arithmetic operations. However, once loaded, data stays in the register file
provided no spilling is necessary. Conversely, implementing vector gathers and
scatters can become costly: On SSE2, 2, 7, 16, and 24 instructions are needed
per gather/scatter for 2-way, 4-way, 8-way, and 16-way vectors, respectively. On
the Cell SPU it is even more costly, even though scalar loads are supported.

120 F. Franchetti and M. Püschel

2.2 Mathematical Background

We introduce the mathematical formalism used in this paper. For more details,
we refer the reader to [1,2,6]. All vectors in this paper are column vectors.

Direct sum of vectors. The direct sum x ⊕ y ∈ R
m+n of two vectors x ∈ R

m

and y ∈ R
n is the concatenation of their elements.

Permutations and permutation matrices. The goal of this paper is to gen-
erate vectorized data permutations. We represent permutations as permutation
matrices P ∈ R

n×n.
We define two basic permutation matrices: the n × n identity matrix In and

the stride permutation matrix Lmn
m , which permutes an input vector x of length

mn as in+ j �→ jm+ i, 0 ≤ i < m, 0 ≤ j < n. For example (“·” represents “0”),

L6
2

⎛

⎜
⎜
⎝

x0
x1
x2
x3
x4
x5

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x0
x2
x4
x1
x3
x5

⎞

⎟
⎟
⎠ , with L6

2 =

⎛

⎜
⎜
⎜
⎝

1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1

⎞

⎟
⎟
⎟
⎠

.

If x is viewed as an n×m matrix, stored in row-major order, then Lmn
m performs

a transposition of this matrix.
Matrix operators. Weneed threematrix operators.Thematrix productC = AB
is defined as usual. The tensor (or Kronecker) product of matrices is defined by

A ⊗ B = (ai,jB)i,j with A = (ai,j)i,j .

In particular,

In ⊗A =

⎛

⎝
A

. . .
A

⎞

⎠ .

Finally, the stacking of two matrices A and B is defined in the obvious way:

C =
(

A
B

)

.

Permutation matrix identities. Our approach uses factorization properties
of stride permutation matrices. We summarize those that we use throughout this
paper. Intuitively, these identities express performing a matrix transposition by
two passes instead of using a single pass. They are including blocked matrix
transposition.

Identity matrices can be split into tensor products of identity matrices if their
sizes are composite numbers, Imn = Im ⊗ In. Further, we use four factorizations
of stride permutations:

Lkmn
n =

(
Lkn

n ⊗ Im
)(

Ik ⊗ Lmn
n

)
(1)

Lkmn
n = Lkmn

kn Lkmn
mn (2)

Lkmn
km =

(
Ik ⊗ Lmn

m

)(
Lkn

k ⊗ Im
)

(3)

Lkmn
km = Lkmn

k Lkmn
m . (4)

Generating SIMD Vectorized Permutations 121

Table 2. Translating matrix formulas into Matlab style code. x denotes the input and
y the output vector. The subscript of A and B specifies the size of the matrix. x[b:s:e]
denotes the subvector of x starting at b, ending at e and extracted at stride s.

Matrix formula Code

y = (AnBn)x t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗An)x for (i=0;i<m;i++)
y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x for (i=0;i<m;i++)
y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lmn
m x for (i=0;i<m;i++)

for (j=0;j<n;j++)
y[i+m*j]=x[n*i+j];

y =
(

Am×k

Bn×k

)
x

y[0:1:m-1] = A(x[0:1:k-1]);
y[m:1:m+n-1] = B(x[0:1:k-1]);

Translating matrix expressions into programs. Matrix formulas, con-
structed using the above formalism, can be recursively translated into standard
scalar programs by applying the translation rules in Table 2 [13].

3 Vector Programs and Matrix Expressions

In this section we explain how we model vector instructions as matrices, se-
quences of vector instructions as matrix expressions, and how these are trans-
lated into programs.

3.1 Modeling Vector Shuffle Instructions as Matrices

We consider only unary and binary vector shuffle instructions. (AltiVec’s
vec_perm is a three-operand instruction but the third operand is a param-
eter.) The basic idea is to view each such instruction, when applied to its
input vector(s), as a matrix-vector product. The matrix becomes a declara-
tive representation of the instruction. As an example, consider the instruction
_mm_unpacklo_ps, which performs the operation (see Table 1).

_mm_unpacklo_ps(a, b) -> {a.0, b.0, a.1, b.1}

Setting x0 = (a0, a1, a2, a3)T and x1 = (b0, b1, b2, b3)T , this shuffle becomes the
the matrix-vector product

y = M4
mm unpacklo ps(x0 ⊕ x1), with M4

mm unpacklo ps =

⎛

⎜
⎝

1 · · · · · · ·
· · · · 1 · · ·
· 1 · · · · · ·
· · · · · 1 · ·

⎞

⎟
⎠ .

122 F. Franchetti and M. Püschel

Hence, the instruction _mm_unpacklo_ps is represented by the matrix
M4

mm unpacklo ps. The subscript indicates the instruction and the superscript the
vector length ν.

Unary and binary instructions. In general, for a ν-way mode, unary instruc-
tions are represented as ν×ν matrices and binary instructions as ν×2ν matrices.
Further, each binary instruction induces a unary instruction by setting both of
its inputs to the same value. The exact form of these matrices follow directly
from Table 1.

Polymorphic instructions. Some instructions can be used with multiple data
types, which produces different associated matrices. For example, in 2-way 64-
bit integer mode and 4-way 32-bit integer mode, _mm_unpacklo_epi64 is respec-
tively represented by

M2
mm unpacklo epi64 =

(
1 · · ·
· · 1 ·

)

and M4
mm unpacklo epi64 =

⎛

⎜
⎝

1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·

⎞

⎟
⎠.

_mm_unpacklo_epi64 can also be used in 8-way 16-bit and 16-way 8-bit integer
mode as well as in 2-way 64-bit and 4-way 32-bit floating-point mode.

Parameterized instructions. We treat parameterized instructions as one in-
struction instance per possible parameter value. For instance, _mm_shuffle_ps
is parameterized by four 2-bit constants, leading to 256 instruction instances.
We assume that all parameters are fixed at compile time, even if the instruction
set does support variable parameters (as AltiVec’s vec_perm).

Building matrices from ISA definition. Our system generates the matrices
for the given instruction set automatically. To do this, we first collect the in-
struction description from ISA and compiler manuals and basically copy them
verbatim into a database. Each instruction is represented by a record including
the vector length ν, the semantics function that takes up to three lists (two
input vectors and one parameter vector) and produces a list, and the parame-
ters list that contains all possible parameter values. Unary instructions ignore
the second input and unparameterized instructions ignore the third input. For
instance, _mm_shuffle_ps is represented by

Intel_SSE2.4_x_float._mm_shuffle_ps := rec(
v := 4,
semantics := (x, y, p) -> [x[p[1]], x[p[2]], y[p[3]], y[p[4]]],
parameters := Cartesian([[1..4],[1..4], [1..4], [1..4]])

);

The matrix generation is straightforward by “applying” the instruction to the
canonical base vectors; the results are the columns of the desired matrix. More
formally, if eν

i ∈ R
ν is the canonical basis vector with the “1” at the ith posi-

tion and 0ν ∈ R
ν the zero vector, then the matrix Mp for an instruction with

semantics function s(·, ·, ·) and parameter p is given by

Generating SIMD Vectorized Permutations 123

Mν
instr,p =

(
s(eν

0 , 0ν , p)| . . . |s(eν
ν−1, 0

ν, p)|s(0ν , eν
0 , p)| . . . |s(eν

0ν ,ν−1, p)
)
.

3.2 Translating Matrix Formulas into Vector Programs

In Table 2, we summarized how matrix formulas are recursively translated into
scalar code. To obtain vector programs for formulas representing permutations,
we expand this table with three cases: instruction matrices, vector permutations,
and half-vector permutations. Then we define the class of all formulas that we
translate into vector programs and define a cost measure for these formulas.

Instruction matrices. If a matrix, such as M4
mm unpacklo ps, corresponds to a

vector instruction it is translated into this instruction.

Vector permutations. If a permutation is of the form P ⊗ Iν , P a permutation
matrix, it permutes blocks of data of size ν. Hence, we translate P ⊗Iν into vector
code by first translating P into scalar code, and then replacing the scalar data
type to the corresponding vector data type.

For example, y = (L4
2 ⊗ I4)x is implemented for 4-way 32-bit floating point

SSE2 in two steps. First, y = L4
2 x is translated into the scalar program.

float x[2], y[2]; y[0] = x[0]; y[1] = x[2]; y[2] = x[1]; y[3] = x[3];

Then the scalar data type float is replaced by the vector data type __m128 to
get the final program

__m128 x[2], y[2]; y[0] = x[0]; y[1] = x[2]; y[2] = x[1]; y[3] = x[3];

Half-vector permutation. Permutations P ⊗ Iν/2 are implemented using the
same instructions i1 and i2 that implement, if possible, L4

2 ⊗ Iν/2. Otherwise,
P ⊗ Iν/2 cannot be implemented.

Vectorized matrix formulas.We define vectorized matrix formulas 〈vmf〉 as
matrix formulas that can be translated into vector programs as explained above.
The exact form depends on the vector extension and mode used. Formally, in BNF

〈vmf〉 ::= 〈vmf〉 〈vmf〉 | Im ⊗〈vmf〉 |
(

〈vmf〉
〈vmf〉

)

| 〈perm〉 ⊗ Iν |

〈perm〉 ⊗ Iν/2 if L4
2 ⊗ Iν/2 possible | Minstr with instr in ISA

〈perm〉 ::= Lmn
m | Im ⊗〈perm〉 | 〈perm〉 ⊗ Im | 〈perm〉〈perm〉

Cost measure. We define a cost measure for vectorized matrix formulas re-
cursively through (5)–(11). (6) assigns a constant cost cinstr to each instruction
instr. (7) states that permutations of vectors are for free, as they do not incur
any vector shuffle instructions. (9)–(11) makes our cost measure additive with
respect to matrix operators “·”, “

(
·
·

)
”, and“⊗”. The instructions i1 and i2 in

(8) are the same that implement L4
2 ⊗ Iν/2.

124 F. Franchetti and M. Püschel

CostISA,ν (P) = ∞, P not a 〈vmf〉 (5)
CostISA,ν (Mν

instr) = cinstr (6)
CostISA,ν (P ⊗ Iν) = 0, P permutation (7)

CostISA,ν

(
P ⊗ Iν/2

)
= �n/2�ci1 + n/2�ci2, P 2n × 2n permutation (8)

CostISA,ν (AB) = CostISA,ν (A) + CostISA,ν (B) (9)

CostISA,ν

((
A
B

))
= CostISA,ν (A) + CostISA,ν (B) (10)

CostISA,ν (Im ⊗A) = mCostISA,ν (A) (11)

To minimize the instruction count cinstr = 1 is chosen. Using values of cinstr that
depend on instr allows for fine-tuning of the instruction selection process when
multiple solutions with minimal instruction count exist. For example, for SSE2
we set cinstr = 1 for binary instructions and cinstr = 0.9 to unary instructions.
This slightly favors unary instructions which require one register less. Other
refinements are possible.

4 Generating Vectorized Permutation Programs

Our goal is to generate efficient vector programs that implement stride permu-
tations Lnν

k . The parameters of the stride permutation imply that we permute
data that can be stored in an array of n SIMD vectors and that k | nν.

Problem statement. Input: The permutation Lnν
k to be implemented, the vec-

tor length ν, and a list of vector instruction instances instr for the ISA consid-
ered and their associated costs cinstr.

Output: A vectorized matrix formula for Lnν
k with minimized cost and the

implementation of the formula.
Our algorithm for solving the problem uses a rewriting system that is used in

tandem with a dynamic programming search using backtracking. For important
cases the solution is proven optimal.

4.1 Rewriting Rule Set

We use a rewriting system [14] to recursively translate the given stride permuta-
tion Lnν

k into a vectorized matrix formula. In each rewriting step, the rewriting
system finds one of the rules (12)–(22) and suitable parameters (a subset of k,
�, m, n, r, instr, i1, and i2) for that rule so that its left side matches a subfor-
mula in the current matrix formula. This matching subformula is then replaced
by the right side of the rule.

Note that there may be degrees of freedom, as the matching of the left side
may, for instance, involve factorizing the integer kmn into three integers k, m,
and n, or involve the picking of a suitable, non-unique instruction instr. Also,
it is not guaranteed that one of the rules is applicable, which may lead to dead
ends. However, Section 4.3 shows that under relatively weak conditions (that are
met by most current vector extension modes) there exists a solution for any Lnν

k .

Generating SIMD Vectorized Permutations 125

The best solution has no obvious closed form; we use a dynamic programming
search with backtracking to find it. The remainder of this section discusses the
rewriting rule set while Section 4.2 discusses the search.

Recursive rules. Rules (12)–(17) are recursive rules. (12) is the entry rule, nor-
malizing Lnν

k into the shape I� ⊗ Lmn
m ⊗ Ir to simplify pattern matching. (13)–(16)

mirror identities (1)–(4) and have the factorization kmn as degree of freedom.
(17) extracts candidates for vector instruction matrices and may be followed by
application of (20)–(22).

Lmn
m → I1 ⊗ Lmn

m ⊗ I1 (12)
I� ⊗ Lkmn

n ⊗ Ir →
(
I� ⊗ Lkn

n ⊗ Imr

)(
I�k ⊗ Lmn

n Ir
)

(13)

I� ⊗ Lkmn
n ⊗ Ir →

(
I� ⊗ Lkmn

kn ⊗ Ir
)(

I� ⊗ Lkmn
mn ⊗ Ir

)
(14)

I� ⊗ Lkmn
km ⊗ Ir →

(
Ik� ⊗ Lmn

m ⊗ Ir
)(

I� ⊗ Lkn
k ⊗ Im

)
(15)

I� ⊗ Lkmn
km ⊗ Ir →

(
I� ⊗ Lkmn

k ⊗ Ir
)(

I� ⊗ Lkmn
m ⊗ Ir

)
(16)

Ik� ⊗ Lmn
m ⊗ Ir → Ik ⊗

(
I� ⊗ Lmn

m ⊗ Ir
)

if �mnr ∈ {ν, 2ν} (17)

Base cases. Rules (18)–(22) translate constructs I� ⊗ Lmn
m ⊗ Ir into vectorized

matrix formulas. Rule (19) is only applied if L4
2 ⊗ Iν/2 can be done using two

instructions.

I� ⊗ Lmn
m ⊗ Irν →

(
I� ⊗ Lmn

m ⊗ Ir
)

⊗ Iν (18)

I� ⊗ Lmn
m ⊗ Irν/2 →

(
I� ⊗ Lmn

m ⊗ Ir
)

⊗ Iν/2 (19)
I� ⊗ Lmn

m ⊗ Ir → Mν
instr if ∃ instr: I� ⊗ Lmn

m ⊗ Ir = Mν
instr (20)

I� ⊗ Lmn
m ⊗ Ir → Mν

i1M
ν
i2 if ∃ i1, i2: I� ⊗ Lmn

m ⊗ Ir = Mν
i1M

ν
i2 (21)

I� ⊗ Lmn
m ⊗ Ir →

(
Mν

i1
Mν

i2

)
if ∃ i1, i2: I� ⊗ Lmn

m ⊗ Ir =
(

Mν
i1

Mν
i2

)
(22)

The right-hand side of (18) can be implemented solely using vector assignments
(see Section 3.2). (19) introduces half-vector permutations which are necessary
if mn is not a two-power. (20) matches if a (necessarily unary) vector instruction
(instance) instr exists, which implements the left-hand side. As example,

y = _mm_shuffle_ps(x, x, _MM_SHUFFLE(0,2,1,3));

implements y = (I1 ⊗ L4
2 ⊗ I1)x for 4-way single-precision floating-point SSE2.

(21) matches if two (necessarily unary) vector instruction (instances) i1 and i2
exist, which implement its left-hand side when applied consecutively. As example,

y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(x,
_MM_SHUFFLE(0,2,1,3)), _MM_SHUFFLE(0,2,1,3));

implements y = (I2 ⊗ L4
2 ⊗ I2)x for 16-way 8-bit integer SSE2. (22) matches if

two (necessarily binary) vector instruction (instances) i1 and i2 exist, which
implement its left-hand side when applied to the input in parallel. As example,

y[0] = _mm_unpacklo_epi64(x[0], x[1]);
y[1] = _mm_unpacklo_epi64(x[0], x[1]);

implements y = (I1 ⊗ L4
2 ⊗ I4)x for 8-way 16-bit integer SSE2.

126 F. Franchetti and M. Püschel

Base case library. To speed up the pattern matching required in (20)–(22), we
perform a one-time initialization for each new vector architecture (instruction set
and mode), and build a base case library that caches the instruction sequences
that implement I� ⊗ Lmn

m ⊗ Ir for all values �, m, n, and r with �mnr ∈ {ν, 2ν}
or stores that no such instruction(s) exist. We build this table in a five-step
procedure.

– First we create the matrices associated with each instance of each instruction
(for all modes and parameters).

– Next we filter out all matrices that have more than one “1” per column, as
these matrices cannot be used to build permutations.

– To support (19), we search for a pair of binary instructions that implement
L4

2 ⊗ Iν/2.
– To support (20), we find all unary instruction (instances) that implement

I� ⊗ Lmn
m ⊗ Ir with ν = �mnr and save them in the cache.

– To support (21), we find all sequences of two unary instruction (instances)
that implement I� ⊗ Lmn

m ⊗ Ir with ν = �mnr and save them in the cache.
– To support (22), we find all pairs binary instruction (instances) that imple-

ment I� ⊗ Lmn
m ⊗ Ir with 2ν = �mnr and save them in the cache.

4.2 Dynamic Programming Search

The rule set (12)–(22) contains recursive and base rules with choices. We want to
find a (not necessarily unique) vectorized matrix formula for Lnν

k with minimal
cost. We use dynamic programming with backtracking, which finds the optimal
solution within the space of possible solutions spanned by the rewriting rules.

Dynamic Programming (DP). For a formula F , let E(F) be the set of formu-
las that can be reached by applying one rewriting step using (12)–(22). Assume
A ∈ E(F) is not yet a vectorized matrix formula. We define X(A) as the optimal
vectorized matrix formula, computed recursively together with its cost, or cost
= ∞ is it does not exist. DP computes X(F) as

X(F) = arg min {CostISA,ν (X(A)) |A ∈ E(F)} . (23)

All computed optimal costs and associated formulas are stored in a table. DP is
started by evaluating CostISA,ν (X(Lnν

k)).

Backtracking. Not all formulas I� ⊗ Lmn
m ⊗ Ir with �mnr ∈ {ν, 2ν} can be

necessarily translated into a vectorized matrix formula using (20)–(22). Thus,
randomly picking elements A ∈ E(F) during the rewriting process may not yield
a vectorized matrix formula at termination; hence, DP needs to backtrack and
in the worst case will generates all formulas that can be obtained using our
rewriting rules.

Existence and optimality of the solution are discussed in Section 4.3.

Generating SIMD Vectorized Permutations 127

Cycles in rewriting. (14) and (16) produce an infinite cycle. To avoid that
problem, we actually run two DPs—once without (14) and once without (16)—
and take the minimum value of both answers.

Runtime of algorithm. The generation of vectorized base cases consists of
two components: one-time generation of the base case library, and a DP for each
stride permutation to be generated.

– Base case library. For an instruction set extension mode with n instruction
instances, O(n2) matrix comparisons are required to build the base case
library. On a current machine the actual runtime is a few seconds to minutes.

– DP. Let nν =
∏k−1

i=0 pri

i be the prime factorization of nν. For a stride per-
mutation Lnν

k , DP with backtracking is in exponential in
∑

i ri. However, k
and ri are small as we are only handling basic blocks. On a current machine
the actual runtime is a few seconds.

4.3 Existence and Optimality

Since we model both permutations and instructions using matrices, we can use
mathematics to answer existence and optimality questions. Specifically, we give
conditions under which our rewriting system finds a solution, i.e., a vectorized
matrix formula, at all.

Further, we show vectorized matrix formulas for Lν2

ν generated for all modes
of SSE2 and the Cell BE and establish their optimality. We also discuss the
optimality of solutions for L2ν

2 , and L2ν
ν . These three permutations are the ones

needed, for example, in the short-vector Cooley-Tukey FFT [4]; Lν2

ν is an ubiqui-
tous algorithmic building block and crucial in matrix-matrix and matrix-vector
multiplication for some vector extensions.

Existence of solution. Under the most general conditions, our algorithm does
not necessarily return a solution. However, under relatively weak conditions im-
posed on the ISA, a solution can be guaranteed. The conditions are met by most
current SIMD extensions. One notable exception is 16-way 8-bit integer in SSE2,
for which the second condition does not hold.

– For ν | k | n, a 〈vmf〉 for L2ν
2 must exist.

– For ν � k or k � n, 〈vmf〉 for L2ν
2 , Lν

2 , and L4
2 ⊗ Iν/2 must exist.

The proof explicitly constructs a (suboptimal) vectorized formula using rules
(1)–(4). We omit the details.

Optimality of generated implementations. Floyd [7] derived the exact num-
ber of block transfers required to transpose an arbitrary matrix on a two-level
memory where the small memory can hold two blocks. We can apply his theorem
to our situation by identifying binary vector instructions with the two-element
memory in his formulation. The number of block transfer operations then yields
a lower bound on the number of binary vector instructions required to perform

128 F. Franchetti and M. Püschel

a stride permutation. Specifically, if Cν(P) is the minimal number of vector
shuffle instructions required to perform P , then

Cν(L2ν
k) ≥ 2, for k �= 1, 2ν, and Cν(Lν2

ν) ≥ ν log2 ν. (24)

For example, for Lν2

ν our method generates the following vectorized matrix for-
mulas. On SSE2 and on Cell the corresponding instructions counts match the
lower bounds on (24) for all modes and are hence optimal.

L16
4 =

(
L8

4 ⊗ I2
)(

I2 ⊗ L8
4
)

L64
8 =

(
I4 ⊗(L4

2 ⊗ I4)
)(

L8
4 ⊗ I8

)(
I4 ⊗(L8

4 ⊗ I2)
)(

(I2 ⊗ L4
2) ⊗ I8

)(
I4 ⊗ L16

8
)

L256
16 =

(
I8 ⊗(L4

2 ⊗ I8)
)(

L16
8 ⊗ I16

)(
I8 ⊗(L8

4 ⊗ I4)
)(

(I4 ⊗ L4
2) ⊗ I16

)

(
(I2 ⊗ L4

2 ⊗ I2) ⊗ I16
)(

I8 ⊗(L16
8 ⊗ I2)

)(
(I4 ⊗ L4

2) ⊗ I16
)(

I8 ⊗ L32
16

)

The formula for L64
8 yields the following implementation in 8-way 16-bit integer

SSE2. All variables are of type m128i.

t3 = _mm_unpacklo_epi16(X[0], X[1]); t4 = _mm_unpackhi_epi16(X[0], X[1]);
t7 = _mm_unpacklo_epi16(X[2], X[3]); t8 = _mm_unpackhi_epi16(X[2], X[3]);
t11 = _mm_unpacklo_epi16(X[4], X[5]);t12 = _mm_unpackhi_epi16(X[4], X[5]);
t15 = _mm_unpacklo_epi16(X[6], X[7]);t16 = _mm_unpackhi_epi16(X[6], X[7]);
t17 = _mm_unpacklo_epi32(t3, t7); t18 = _mm_unpackhi_epi32(t3, t7);
t19 = _mm_unpacklo_epi32(t4, t8); t20 = _mm_unpackhi_epi32(t4, t8);
t21 = _mm_unpacklo_epi32(t11, t15); t22 = _mm_unpackhi_epi32(t11, t15);
t23 = _mm_unpacklo_epi32(t12, t16); t24 = _mm_unpackhi_epi32(t12, t16);
Y[0] = _mm_unpacklo_epi64(t17, t21); Y[1] = _mm_unpackhi_epi64(t17, t21);
Y[2] = _mm_unpacklo_epi64(t18, t22); Y[3] = _mm_unpackhi_epi64(t18, t22);
Y[4] = _mm_unpacklo_epi64(t19, t23); Y[5] = _mm_unpackhi_epi64(t19, t23);
Y[6] = _mm_unpacklo_epi64(t20, t24); Y[7] = _mm_unpackhi_epi64(t20, t24);

Further, L2ν
ν can be implemented optimally on all considered vector architec-

tures using 2 binary vector instructions. However, L2ν
2 cannot be implemented

optimally on 8-way and 16-way SSE2 due to restrictions in the instruction set.

5 Experimental Results

We generated and evaluated vectorized permutations for a single core of a 2.66
GHz Intel Core2 Duo and one SPE of a 3.2 GHz IBM Cell BE processor. We
used the Intel C++ compiler 9.1 for SSE and the GNU C compiler 4.1.1 for the
Cell BE. The small sizes of the code generated by our approach makes it infea-
sible to compare our generated programs to any optimized matrix transposition
library.

Implementation in Spiral. We implemented our approach as part of Spi-
ral [2], a program generator that autonomously implements and optimizes DSP

Generating SIMD Vectorized Permutations 129

transforms. In particular, Spiral generates high performance vectorized DFT
implementations [4]. These implementations require vectorized basic blocks for
stride permutations Lν2

ν , L2ν
2 , and L2ν

ν , which were hand-supplied in [4]. Using
the approach presented in this paper, we automate this last manual step to
enable automatic porting to new vector architectures.

Stand-alone stride permutation. In the first experiment, we generated im-
plementations for y = Lν2

ν x for SSE2 2-way, 4way, 8-way, and 16-way, as well
as one 4-way Cell SPU. We compare our generated vectorized shuffle-based im-
plementation against the one based on vector gathers (see Section 2.1). The
shuffle-based implementations require ν vector loads, ν vector stores, and ν log2 ν
shuffle operations. The gather-based implementations require ν vector gathers
and ν vector stores. We measured the cycles required for the data to get per-
muted from L1 cache to L1 cache, measuring many iterations to compensate for
the timing overhead and to get a throughput measure.

Table 3 summarizes the results. In this setting, the shuffle-based implementa-
tion is much cheaper than the gather-based implementation. The reason is that
sustained subword memory access is particularly costly on modern CPUs, which
are optimized for wide words.

Table 3. Runtime and number of instructions needed for the stride permutations

y = Lν2

ν x when implemented using vector shuffles (generated by our method) or
gather-based (the usual approach)

Core2 SSE2 Cell SPU

ν = 2 ν = 4 ν = 8 ν = 16 ν = 2 ν = 4

vector shuffle
shuffle instructions 2 8 24 64 2 8
move instructions 4 8 16 32 6 10
cycles 4 13 35 106 15 22

vector gather
gather instructions 4 28 128 384 14 62
store instructions 2 4 8 16 2 4
cycles 15 60 94 407 32 112

Permutations within numerical kernels. In the second experiment we in-
vestigated the impact of our generated vectorized permutations versus vector
gathers inside DFT kernels. For proper evaluation, we used Spiral-generated
DFT kernels using the split complex format; these kernels are very fast (equal
or better than FFTW 3.1.2 and Intel IPP 5.1) since they consist exclusively of
vector arithmetic, vector memory access, and stride permutations Lν2

ν .
For n = kν2 ≤ 128, 1 ≤ k ≤ 8, a split complex DFTn requires between

3
ν n log2 n and 8

ν n log2 n vector arithmetic operations and k stride permutations

130 F. Franchetti and M. Püschel

0

200

400

600

800

1,000

4 8 12 16 20 24 28 32 16 32 48 64 64 128

[cycles]

DFT with vectorized permutation

DFT with gather-based permutation

2-way 64-bit double 4-way 32-bit float 8-way 16-bit

Runtimes of Split Complex DFT on 2.66 GHz Core2

Fig. 1. Vectorized split complex DFT for various small sizes

Lν2

ν . Hence, the majority of vector instructions are arithmetic operations, but
the number of vector shuffles and vector gathers still make up between 5% and
15% and between 15% to 50% of all instructions in their respective implemen-
tations. The overhead is largest for long vector lengths ν and small problem
sizes n.

Figure 1 shows the cycle counts of Spiral-generated FFT code in both cases.
For 2-way double-precision SSE2 the difference is negligible. For 4-way single-
precision SSE2, the difference is up to 35%, due to a relative higher vector
shuffle operations count and since expensive 4-way shuffle instructions are rel-
atively more expensive. In the 8-way case these arguments become even more
pronounced and the shuffle-based implementation is more than twice as fast as
the gather-based implementation.

6 Conclusion

In this paper we show how to generate efficient vector programs for small stride
permutations, which are important building blocks for numerical kernels. Even
though this is a very specific class, we think we put forward an interesting ap-
proach that may have broader applicability. Namely, we have shown how to
model vector instructions as matrices and then use matrix algebra for both
generating and optimizing algorithm and implementation for the desired permu-
tation and analyzing the quality of the result. On the practical side, our method
enables us to quickly generate the building blocks that Spiral needs to generate
FFTs for a given vector architecture. This enables us to port Spiral to new vector
architectures without creative human effort.

Generating SIMD Vectorized Permutations 131

References

1. van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM,
Philadelphia (1992)

2. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W.,
Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W.,
Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE 93(2), 232–275 (2005); Special issue on Program Generation, Optimization,
and Adaptation

3. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization
of signal transforms. In: Proc. High Performance Computing for Computational
Science (VECPAR) (2006)

4. Franchetti, F., Püschel, M.: Short vector code generation for the discrete Fourier
transform. In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS), pp. 58–67 (2003)

5. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data for SIMD.
In: Proc. Programming Language Design and Implementation (PLDI), pp. 132–143
(2006)

6. Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A methodology for
designing, modifying, and implementing FFT algorithms on various architectures.
Circuits Systems Signal Processing 9, 449–500 (1990)

7. Floyd, R.W.: Permuting information in idealized two-level storage. Complexity of
Computer Calculations, 105–109 (1972)

8. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: Two-level memo-
ries. Algorithmica 12(2/3), 110–147 (1994)

9. Suh, J., Prasanna, V.: An efficient algorithm for out-of-core matrix transposition.
IEEE Transactions on Computers 51(6), 420–438 (2002)

10. Lu, Q., Krishnamoorthy, S., Sadayappan, P.: Combining analytical and empirical
approaches in tuning matrix transposition. In: Proc. Parallel Architectures and
Compilation Techniques (PACT), pp. 233–242 (2006)

11. Zima, H., Chapman, B.: Supercompilers for parallel and vector computers. ACM
Press, New York (1990)

12. Ren, G., Wu, P., Padua, D.: Optimizing data permutations for SIMD devices. In:
Proc. Programming Language Design and Implementation (PLDI), pp. 118–131
(2006)

13. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A language and compiler
for DSP algorithms. In: Proc. Programming Language Design and Implementation
(PLDI), pp. 298–308 (2001)

14. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, pp. 535–610. Elsevier, Amsterdam
(2001)

Automatic Transformations for
Communication-Minimized Parallelization and Locality

Optimization in the Polyhedral Model

Uday Bondhugula1, Muthu Baskaran1, Sriram Krishnamoorthy1,
J. Ramanujam2, Atanas Rountev1, and P. Sadayappan1

1 Dept. of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
{bondhugu,baskaran,krishnsr,rountev,saday}@cse.ohio-state.edu

2 Dept. of Electrical and Computer Engg., Louisiana State University, Baton Rouge, LA , USA
jxr@ece.lsu.edu

Abstract. The polyhedral model provides powerful abstractions to optimize loop
nests with regular accesses. Affine transformations in this model capture a com-
plex sequence of execution-reordering loop transformations that can improve per-
formance by parallelization as well as locality enhancement. Although a significant
body of research has addressed affine scheduling and partitioning, the problem of
automaticallyfindinggoodaffine transformsforcommunication-optimizedcoarse-
grained parallelization together with locality optimization for the general case of
arbitrarily-nested loop sequences remains a challenging problem.

We propose an automatic transformation framework to optimize arbitrarily-
nested loop sequences with affine dependences for parallelism and locality simul-
taneously. The approach finds good tiling hyperplanes by embedding a power-
ful and versatile cost function into an Integer Linear Programming formulation.
These tiling hyperplanes are used for communication-minimized coarse-grained
parallelization as well as for locality optimization. The approach enables the min-
imization of inter-tile communication volume in the processor space, and mini-
mization of reuse distances for local execution at each node. Programs requiring
one-dimensional versus multi-dimensional time schedules (with scheduling-based
approaches) are all handled with the same algorithm. Synchronization-free paral-
lelism, permutable loops or pipelined parallelism at various levels can be detected.
Preliminary studies of the framework show promising results.

1 Introduction and Motivation

Current trends in architecture are increasingly towards larger number of processing el-
ements on a chip. This has led to multi-core architectures becoming mainstream along
with the emergence of several specialized parallel architectures or accelerators. The
difficulty of programming these architectures to effectively tap the potential of multi-
ple on-chip processing units is a well-known challenge. Among several approaches to
addressing this issue, one that is very promising but simultaneously very challenging is
automatic parallelization.

Many compute-intensive applications often spend most of their running time in nested
loops. This is particularly common in scientific and engineering applications. The poly-
hedral model [6,10,12] provides a powerful abstraction to reason about transformations

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 132–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Transformations for Communication-Minimized Parallelization 133

on such loop nests by viewing a dynamic instance (iteration) of each statement as an in-
teger point in a well-defined space which is the statement’s polyhedron. With such a rep-
resentation for each statement and a precise characterization of inter or intra-statement
dependences, it is possible to reason about the correctness and goodness of a sequence
of complex loop transformations using machinery from Linear Algebra and Integer Lin-
ear Programming. The polyhedral model is applicable to loop nests in which the data
access functions and loop bounds are affine combinations (linear combination with a
constant) of the enclosing loop variables and parameters. While a precise characteriza-
tion of data dependences is feasible for programs with static control structure and affine
references/loop-bounds, code with non-affine array access functions or dynamic control
can also be handled, using conservative assumptions.

Early approaches to automatic parallelization applied only to perfectly nested loops
and involved the application of a sequence of transformations to the program’s at-
tributed abstract syntax tree. The polyhedral model has enabled much more complex
programs to be handled, and easy composition and application of more sophisticated
transformations [6,12]. The task of program optimization in the polyhedral model may
be viewed in terms of three phases: (1) static dependence analysis of the input program,
(2) transformations in the polyhedral abstraction, and (3) generation of efficient loop
code. Despite the progress in these techniques, several scalability challenges limited ap-
plicability to small loop nests. Significant recent advances in dependence analysis [28]
and code generation [2,23,27] have demonstrated the applicability of the polyhedral
techniques to real applications. However, current state-of-the-art polyhedral implemen-
tations still apply transformations manually and significant time is spent by an expert to
determine the best set of transformations [6,12]. An important open issue is the choice
of transformations from the huge space of valid transforms. Our work addresses this
problem, by formulating a way to obtain good transformations fully automatically.

Tiling is a key transformation and has been studied from two perspectives — data
locality optimization and parallelization. Tiling for locality requires grouping points in
an iteration space into smaller blocks (tiles) allowing reuse in multiple directions when
the block fits in a faster memory (registers, L1, or L2 cache). Tiling for coarse-grained
parallelism fundamentally involves partitioning the iteration space into tiles that may
be concurrently executed on different processors with a reduced frequency and volume
of inter-processor communication: a tile is atomically executed on a processor with
communication required only before and after execution. Hence, one of the key aspects
of an automatic transformation framework is to find good ways of performing tiling.

Existing automatic transformation frameworks [1,13,17,18,19] have one or more
drawbacks or restrictions that do not allow them to effectively parallelize/optimize loop
nests. All of them lack a realistic cost model that is suitable for coarse-grained parallel
execution as is used in practice with manually developed parallel applications. With the
exception of Griebl [13], previous work generally focuses on one or the other of the
complementary aspects of parallelization and locality optimization. The approach we
develop answers the following question: What is a good way to tile imperfectly nested
loop sequences to minimize the volume of communication between tiles (in processor
space) as well as improve data reuse at each processor?

134 U. Bondhugula et al.

The rest of this paper is organized as follows. Section 2 provides an overview of the
polyhedral model. In Section 3 describes our automatic transformation framework. Sec-
tion 4 shows step-by-step application of our approach through an example. Section 5
provides a summary of the implementation and initial results. Section 6 discusses re-
lated work and conclusions are presented in Section 7. Full details of the framework,
transformations and optimized code for various examples, and experimental results are
available in extended reports [3,4].

2 Overview of the Polyhedral Framework

The set X of all vectors x ∈ Zn such that h.x = k, for k ∈ Z, forms an affine
hyperplane. The set of parallel hyperplane instances corresponding to different values
of k is characterized by the vector h which is normal to the hyperplane. Each instance
of a hyperplane is an n − 1 dimensional affine sub-space of the n-dimensional space.
Two vectors x1 and x2 lie in the same hyperplane if h.x1 = h.x2.

The set of all vectors x ∈ Zn such that Ax + b ≥ 0, where A is an integer matrix,
defines a (convex) integer polyhedron. A polytope is a bounded polyhedron. Each run-
time instance of a statement S is identified by its iteration vector i, of dimensionality
mSk

, containing values for the indices of the loops surrounding it from outermost to
innermost. Hence, a statement S is associated with a polytope characterized by a set
of bounding hyperplanes or faces. This is true when the loop bounds are affine com-
binations of outer loop indices and program parameters (typically, symbolic constants
representing the problem size). Let p be the vector of the program parameters.

A well-known known result useful for polyhedral analyses is the following [26]:

Lemma 1 (Affine form of Farkas Lemma). Let D be a non-empty polyhedron defined
by s affine inequalities or faces: ak.x + bk ≥ 0, 1 ≤ k ≤ s. An affine form ψ(x) is
non-negative everywhere in D iff it is a positive affine combination of the faces:

ψ(x) ≡ λ0 +
∑

k

λk(akx + bk), λk ≥ 0 (1)

The non-negative constants λk are referred to as Farkas multipliers.

Polyhedral Dependences. Our dependence model is of exact affine dependences and
same as the one used in [6,18,22,28]. Dependences are determined precisely
through array dataflow analysis [9], but the input need not be in single-assignment form.
All dependences including anti (write-after-read), output (write-after-write) and input
(read-after-read) dependences are considered. The Data Dependence Graph (DDG) is
a directed multi-graph with each vertex representing a statement, and an edge, e ∈ E,
from node Si to Sj representing a polyhedral dependence from a dynamic instance of Si

to one of Sj : it is characterized by a polyhedron, Pe, called the dependence polyhedron
that captures the exact dependence information corresponding to edge, e (see Fig. 1(b)
for an example). The dependence polyhedron is in the sum of the dimensionalities of
the source and target statement’s polyhedra (with dimensions for program parameters
as well). Though the equalities in Pe typically represent the affine function mapping the
target iteration vector t to the particular source s that is the last access to the conflicting

Automatic Transformations for Communication-Minimized Parallelization 135

for (i=0; i<N; i++)
for (j=0; j<N; j++)

S1: A[i , j] = A[i , j]+u[i]∗v[j];
for (i=0; i<N; i++)

for (j=0; j<N; j++)
S2: x[i] = x[i]+A[j , i]∗y[j];

(a) original code

S1 S2
i j const i j const

c1 0 1 0 1 0 0
c2 1 0 0 0 1 0
c3 0 0 0 0 0 1

(c) transformation

Pe1 :

2
6666664

1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

3
7777775

2
6666664

i
j
i′

j′

N
1

3
7777775

≥ 0
≥ 0
≥ 0
≥ 0
= 0
= 0

(b) Dependence polyhedron for the
inter-statement dependence on A

for (c1=0; c1<N; c1++)
for (c2=0; c2<N; c2++)

A[c2,c1] = A[c2,c1]+u[c2]∗v[c1];
x[c1] = x[c1]+A[c2,c1]∗y[c1];

(d) transformed code

Fig. 1. Polyhedral transformation and dependences

memory location, also known as the h-transformation [10], the last access condition is
not necessary; in general, the equalities can be used to eliminate variables from Pe. In
the rest of this section, we assume for convenience that s can be completely eliminated
using he, being substituted by he(t).
A one-dimensional affine transform for statement Sk is defined by:

φsk
=

[
f1 . . . fmSk

] (
i
)

+ f0, fi ∈ Z

A multi-dimensional affine transformation for a statement can now be represented by
a matrix with each row being an affine hyperplane/transform. If such a transforma-
tion matrix has full column rank, it completely specifies when and where an iteration
executes (one-to-one mapping from source to target). The total number of rows in the
matrix may be much larger as some special rows, splitters, may represent unfused loops
at a level. Fig. 1 shows application of a transformation. Such transformations capture
the fusion structure as well as compositions of permutation, reversal, relative shifting,
and skewing transformations. This representation for transformations has been used by
many researchers [6,11,12,15], and directly fits with scattering functions that a code
generator like CLooG [2] supports. Our problem is thus to find the the transformation
matrices that are best for parallelism and locality.

3 Finding good transformations

3.1 Legality of Tiling Imperfectly-Nested Loops

Theorem 1. Let φsi be a one-dimensional affine transform for statement Si. For {φs1 ,
φs2 , . . . , φsk

} to be a legal (statement-wise) tiling hyperplane, the following should
hold for each edge e from Si to Sj:

136 U. Bondhugula et al.

φsj (t) − φsi (s) ≥ 0, Pe (2)

Proof. Tiling of a statement’s iteration space defined by a set of tiling hyperplanes is
said to be legal if each tile can be executed atomically and a valid total ordering of the
tiles can be constructed. This implies that there exists no two tiles such that they both
influence each other. Let {φ1

s1
, φ1

s2
, . . . , φ1

sk
}, {φ2

s1
, φ2

s2
, . . . , φ2

sk
} be two statement-

wise 1-d affine transforms that satisfy (2). Consider a tile formed by aggregating a group
of hyperplane instances along φ1

si
and φ2

si
. Due to (2), for any dynamic dependence,

the target iteration is mapped to the same hyperplane or a greater hyperplane than the
source, i.e., the set of all iterations that are outside of the tile and are influenced by it
always lie in the forward direction along one of the independent tiling dimensions (φ1

and φ2 in this case). Similarly, all iterations outside of a tile influencing it are either in
that tile or in the backward direction along one or more of the hyperplanes. The above
argument holds true for both intra- and inter-statement dependences. For inter-statement
dependences, this leads to an interleaved execution of tiles of iteration spaces of each
statement when code is generated from these mappings. Hence, {φ1

s1
, φ1

s2
, . . . , φ1

sk
},

{φ2
s1

, φ2
s2

, . . . , φ2
sk

} represent rectangularly tilable loops in the transformed space. If
such a tile is executed on a processor, communication would be needed only before
and after its execution. From locality point of view, if such a tile is executed with the
associated data fitting in a faster memory, reuse is exploited in multiple directions. �

The above condition was well-known for the case of a single-statement perfectly
nested loops from the work of Irigoin and Triolet [14] (as hT .R ≥ 0). We have general-
ized it above for multiple iteration spaces with exact affine dependences with possibly
different dimensionalities and imperfect nestings for statements.

Tiling at an arbitrary depth. Note that the legality condition as written in (2) is imposed
on all dependences. However, if it is imposed only on dependences that have not been
carried up to a certain depth, the independent φ’s that satisfy the condition represent
tiling hyperplanes at that depth, i.e., rectangular blocking (stripmine/interchange) at
that level in the transformed program is legal.

Consider the perfectly nested version of 1-d Jacobi shown in Fig. 2(a). The discus-
sion that follows also applies to the imperfectly nested version, but for convenience we
first consider the perfectly nested version. We first describe solutions obtained by exist-
ing state-of-the-art approaches: Lim and Lam’s affine partitioning [18,19] and Griebl’s
space and time tiling with Forward Communication-Only (FCO) placement [13].

Lim et al. [19] define legal time partitions which have the same property of tiling
hyperplanes as described above. Their algorithm obtains affine partitions that minimize

for (t=1; t<T; t++)
for (i=2; i<N−1; i++)

a[t , i] = 0.33∗(a[t−1,i] +
a[t−1,i−1] + a[t−1,i+1]);

(a) 1-d Jacobi: perfectly nested

for (t=1; t<T; t++)
for (i=2; i<N−1; i++)

S1: b[i] = 0.33∗(a[i−1]+ a[i]+a[i +1]);
for (i=2; i<N−1; i++)

S2: a[i] = b[i];

(b) 1-d Jacobi: imperfectly nested

Fig. 2. 1-d Jacobi

Automatic Transformations for Communication-Minimized Parallelization 137

i

t

(1,0) (2,1)

i i

t tP1

P0

P3
P2

(1,1)
(1,0)

time

(1,1)
(1,0)

space time

P1 P2
P0

space
One line

of communication of communication
Three lines

space
Two lines of

of communication time

Fig. 3. Communication volume with different valid hyperplanes for perfectly nested 1-d Jacobi

the order of communication while maximizing the degree of parallelism. Equation (2)
gives legality constraints ct ≥ 0, ct + ci ≥ 0, and ct − ci ≥ 0 corresponding to de-
pendences (1, 0), (1, 1), and (1, −1). There are infinitely many valid solutions with the
same order complexity of synchronization, but with different communication volumes
that may impact performance. Although it may seem that the volume may not affect
performance, considering the fact that communication startup time on modern inter-
connects is significant, for higher dimensional problems such as n-d Jacobi, the ratio of
communication to computation increases (proportional to tile size raised to n − 1). Ex-
isting work on tiling [24,25,30] can find near communication-optimal tiles for perfectly
nested loops with constant dependences, but cannot handle arbitrarily nested loops. For
1-d Jacobi, all solutions within the cone formed by vectors (1, 1) and (1, −1) are valid
tiling hyperplanes. For the imperfectly nested version of 1-d Jacobi, the valid cone is
(2, 1) and (2, −1) (discussed later). For imperfectly nested Jacobi, Lim’s algorithm [19]
finds two valid independent solutions without optimizing for any particular criterion. In
particular, the solutions found by their algorithm (Algorithm A in [19]) are (2, −1) and
(3, −1) which are clearly not the best tiling hyperplanes to minimize communication
volume, though they do minimize the order of synchronization which is O(N); in this
case any valid hyperplane has O(N) synchronization. Figure 3 shows that the required
communication increases as the hyperplane gets more and more oblique. For a hyper-
plane with normal (k, 1), one would need (k + 1)T values from the neighboring tile.

Using Griebl’s approach, we first find that only space tiling is enabled with Feautrier’s
schedule being θ(t, i) = t, i.e., using (1, 0) as the scheduling hyperplane. With forward
communication-only (FCO) placement, an allocation is found such that dependences
have positive components along space dimensions thereby enabling tiling of the time
dimension; this decreases the frequency of communication. In this case, time tiling is
enabled with FCO placement along (1, 1). However, note that communication in the
processor space occurs along (1, 1), i.e., two lines of the array are required. However,
using (1, 0) and (1, 1) as tiling hyperplanes with (1, 0) as space and (1, 1) as inner time
and a tile space schedule of (2, 1) leads to only one line of communication along (1, 0).
Our algorithm finds such a solution. Below we develop a cost function for an affine
transform that captures communication volume and reuse distance.

3.2 Cost Function

Consider the following affine form:

δe(t) = φsi(t) − φsj (he(t)), t ∈ Pe (3)

138 U. Bondhugula et al.

The affine form δe(t) holds much significance. This function is the number of hyper-
planes the dependence e traverses along the hyperplane normal. It gives us a measure
of the reuse distance if the hyperplane is used as time, i.e., if the hyperplanes are ex-
ecuted sequentially. Also, this function is a factor in the communication volume if the
hyperplane is used to generate tiles for parallelization and used as a processor space
dimension. An upper bound on this function means that the number of hyperplanes that
would be communicated as a result of the dependence at the tile boundaries would not
exceed this bound. We are particularly interested in whether this function can be re-
duced to a constant value or zero by choosing a suitable direction for φ: if possible,
that particular dependence leads to constant or no communication for this hyperplane.
Note that each δe is an affine function of the loop indices. The challenge is to use this
function to obtain a suitable objective for optimization in the affine framework.

Challenges. The constraints obtained from (2) only guarantee legality of tiling (per-
mutability). However, several problems are encountered when one tries to apply a per-
formance factor to find a good tile shape out of the several possibilities. Farkas Lemma
has been used by many approaches [10,11,13,19] to eliminate loop variables from con-
straints by getting equivalent linear inequalities. The affine form in the loop variables
is represented as a positive linear combination of the faces of the dependence poly-
hedron. When this is done, the coefficients of the loop variables on the left and right
hand side are equated to eliminate the constraints of variables. This is done for each
of the dependences, and the constraints obtained are aggregated. The resulting con-
straints are entirely in the coefficients of the tile mappings and Farkas multipliers. All
Farkas multipliers can be eliminated, some by Gaussian elimination and the rest by
Fourier-Motzkin elimination [19,26]. However, an attempt to minimize communica-
tion volume ends up in an objective function involving both loop variables and hyper-
plane coefficients. For example, φ(t) − φ(he(t)) could be c1i + (c2 − c3)j, where
1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ i ≤ j. One ends up with such a form when a depen-
dence is not uniform or for an inter-statement dependence, making it hard to construct
an objective function involving only the unknown hyperplane coefficients.

3.3 Cost Function Bounding and Minimization

Theorem 2. If all iteration spaces are bounded, there exists an affine form v(p) =
u.p + w that bounds δe(t) for every dependence edge e:

v(p) −
(
φsi(t) − φsj (he(t))

)
≥ 0, t ∈ Pe, ∀e ∈ E (4)

i.e., v(p) − δe(t) ≥ 0, t ∈ Pe, ∀e ∈ E

Even if δe involves loop variables, one can find large enough constants in u that would
be sufficient to bound δe(s). Note that the loop variables themselves are bounded by
affine functions of the parameters, and hence the maximum value taken by δe(s) will
be bounded by such an affine form. Also, since v(p) ≥ δe(s) ≥ 0, v should increase
with an increase in the structural parameters, i.e., the coordinates of u are positive.
The reuse distance or communication volume for each dependence is bounded in this
fashion by the same affine form. Such a bounding function was used by Feautrier [10]
to find minimum latency schedules.

Automatic Transformations for Communication-Minimized Parallelization 139

Now we apply Farkas Lemma to (4):

v(p) − δe(t) ≡ λe0 +
me∑

k=1

λekPk
e , λek ≥ 0 (5)

where Pk
e is a face of Pe. The above is an identity and the coefficients of each of the

loop indices in i and parameters in p on the left and right hand side can be gathered and
equated. We now get linear inequalities entirely in coefficients of the affine mappings
for all statements, components of row vector u, and w. The above inequalities can at
once be solved by finding a lexicographic minimal solution with u and w in the leading
position, and the other variables following in any order. Let u = (u1, u2, . . . uk).

minimize≺ {u1, u2, . . . , uk, w, . . . , c′is, . . . } (6)

Finding the lexicographic minimal solution for a system of linear inequalities is within
the reach of the simplex algorithm and can be handled by the Parametric Integer Pro-
gramming (PIP) software [8]. Since the structural parameters are quite large, we first
want to minimize their coefficients. We do not lose the optimal solution since an optimal
solution would have the smallest possible values for u’s.

The solution gives a hyperplane for each statement. Note that the application of the
Farkas Lemma to (4) is not required when a dependence is uniform, since the corre-
sponding δe is independent of any loop variables. In such cases, we just have w ≥ δe.

3.4 Iteratively Finding Independent Solutions

Solving the ILP formulation in the previous section gives us a single solution to the
coefficients of the best mappings for each statement. We need at least as many inde-
pendent solutions as the dimensionality of the polytope associated with each statement.
Hence, once a solution is found, we augment the ILP formulation with new constraints
and obtain the next solution; the new constraints ensure linear independence with so-
lutions already found. Let the rows of HS represent the solutions found so far for a
statement S. Then, the sub-space orthogonal to HS [16,21] is given by:

H⊥
S = I − HT

S

(
HSHT

S

)−1
HS (7)

Note that H⊥
S .HS

T = 0, i.e., the rows of HS are orthogonal to those of H⊥
S . Let h∗

S be

the next row (linear portion of the hyperplane) to be found for statement S. Let Hi⊥
S be

a row of H⊥
S . Then, any one of the inequalities given by ∀i, Hi⊥

S .h∗
S > 0, Hi⊥

S .h∗
S < 0

gives the necessary constraint to be added for statement S to ensure that h∗
S has a non-

zero component in the sub-space orthogonal to HS . This leads to a non-convex space,
and ideally, all cases have to be tried and the best among those kept. When the number
of statements is large, this leads to a combinatorial explosion. In such cases, we restrict
ourselves to the sub-space of the orthogonal space where all the constraints are positive,
i.e., the following constraints are added to the ILP formulation for linear independence:

∀i, Hi⊥
S .h∗

S ≥ 0 ∧
∑

i

Hi⊥
S h∗

S ≥ 1 (8)

140 U. Bondhugula et al.

By just considering a particular convex portion of the orthogonal sub-space, we dis-
card solutions that usually involve loop reversals or combination of reversals with other
transformations; however, we believe this does not make a difference in practice. The
mappings found are independent on a per-statement basis. When there are statements
with different dimensionalities, the number of such independent mappings found for
each statement is equal to the number of outer loops it has. Hence, no more orthogo-
nality constraints need be added for statements for which enough independent solutions
have been found (the rest of the rows get automatically filled with zeros or linearly de-
pendent rows). The number of rows in the transformation matrix is the same for each
statement, and the depth of the deepest loop nest in the target code is the same as that
of the source loop nest. Overall, a hierarchy of fully permutable loop nest sets is found,
and a lower level in the hierarchy will not be obtained unless constraints corresponding
to dependences that have been carried by the parent permutable set have been removed.

3.5 Communication and Locality Optimization Unified

The above algorithm finds both synchronization-free and pipelined parallelism. The
best possible solution to (6) is with (u = 0, w = 0) and this happens when we find a
hyperplane that has no dependence components along its normal, which is a fully paral-
lel loop requiring no synchronization if it is at the outer level (outer parallel); it could be
an inner parallel loop if some dependences were removed previously and so a synchro-
nization is required after the loop is executed in parallel. Thus, in each of the steps where
we find a new independent hyperplane, we end up first finding all synchronization-free
hyperplanes; these are followed by a set of fully permutable hyperplanes that are tilable
and pipelined parallel requiring constant boundary communication (u = 0, w > 0)
w.r.t. the tile sizes. In the worst case, a hyperplane with u > 0, w ≥ 0 results in long
communication from non-constant dependences. It is important to note that the latter
are pushed to the innermost level. By considering communication volume and its mini-
mization, all degrees of parallelism are found in the order of their preference.

From the point of view of data locality, the hyperplanes that are used to scan the
tile space are the same as the ones that scan points in a tile. Hence, data locality is
optimized from two angles: (1) cache misses at tile boundaries are minimized for local
execution (as cache misses at local tile boundaries are equivalent to communication
along processor tile boundaries); (2) by reducing reuse distances, we increase the local
cache tile sizes. The former is due to selection of good tile shapes and the latter by the
right permutation of hyperplanes (implicit in the order in which we find them).

3.6 Space and Time in Transformed Iteration Space

By minimizing φ(t) − φ(s) as we find hyperplanes from outermost to innermost, we
push dependence carrying to inner loops and also ensure that loops do not have negative
dependence components (to the extent possible) so that target loops can be tiled. Once
this is done, if the outer loops are used as space (any number desired, say k), and the rest
are used as time (at least one time loop is required unless all loops are synchronization-
free parallel), communication in the processor space is optimized as the outer space
loops are the k best ones. Whenever the loops can be tiled, they result in coarse-grained
parallelism as well as better reuse within a tile.

Automatic Transformations for Communication-Minimized Parallelization 141

Input Generalized dependence graph G = (V, E) (includes dependence polyhedra Pe, e ∈ E)
1: Smax: statement with maximum domain dimensionality
2: for each dependence e ∈ E do
3: Build legality constraints: apply Farkas Lemma on φ(t) − φ(he(t)) ≥ 0 under t ∈ Pe,

and eliminate all Farkas multipliers
4: Build communication volume/reuse distance bounding constraints: apply Farkas Lemma

to v(p) − (φ(t) − φ(he(t))) ≥ 0 under Pe, and eliminate all Farkas multipliers
5: Aggregate constraints from both into Ce(i)
6: end for
7: repeat
8: C = ∅
9: for each dependence edge e ∈ E do

10: C ← C ∪ Ce(i)
11: end for
12: Compute lexicographic minimal solution with u′s coefficients in the leading position fol-

lowed by w to iteratively find independent solutions to C (orthogonality constraints are
added as each solution is found)

13: if no solutions were found then
14: Cut dependences between two strongly-connected components in the GDG and insert

the appropriate splitter in the transformation matrices of the statements
15: end if
16: Compute Ec: dependences carried by solutions of Step 12/14
17: E ← E − Ec; update the GDG (V, E)
18: until H⊥

Smax
= 0 and E = ∅

Output A transformation matrix for each statement (with the same number of rows)

Fig. 4. Overall algorithm

3.7 Fusion

The algorithm described in the previous section can also enable fusion across multiple
iteration spaces that are weakly connected, as in sequences of producer-consumer loops.
Solving for hyperplanes for multiple statements leads to a schedule for each statement
such that all statements in question are finely interleaved: this is indeed fusion. This
generalization of fusion is same as the one proposed in [6,12], and naturally integrates
into our algorithm. A detailed description can be found in an extended report [3].

Summary. The overall algorithm is summarized in Fig. 4. It can be viewed as trans-
forming to a tree of permutable loop nest sets/bands — each node of the tree is a good
permutable loop nest set. Step 12 finds such a band of permutable loops. If all loops are
tilable, there is just one node containing all the loops that are permutable. On the other
extreme, if no loops are tilable, each node of the tree has just one loop and no tiling is
possible. At least two hyperplanes should be found at any level (without dependence re-
moval/cutting) to enable tiling. Dependences from previously found solutions are thus
not removed unless they have to be (step 17) to allow the next permutable band to be
found, and so on. Hence, partially tilable or untilable input is handled. Loops in each

142 U. Bondhugula et al.

for (i=0; i<N: i++)
for (j=2; j<N; j++)

a[i , j] = a[j , i]+a[i , j−1];

P0 P3

P3 P4P2

P3

P1

P0 P1

P1 P2

P2

P2

P4

P5

spacetime

j

i

a[i′, j′] → a[i, j − 1]

h1 : i′ = i, j′ = j − 1;

P1 : 2 ≤ j ≤ N, 1 ≤ i ≤ N

a[i′, j′] → a[j, i]

h2 : i′ = j, j′ = i;

P2 : 2 ≤ j ≤ N, 1 ≤ i ≤ N, i − j ≥ 1

a[j′, i′] → a[i, j]

h3 : j′ = i, i′ = j

P3 : 2 ≤ j ≤ N, 1 ≤ i ≤ N, i − j ≥ 1

Fig. 5. An example with non-uniform dependences

node of the target tree can be stripmined/interchanged when there are at least two of
them; however, it is illegal to move a stripmined loop across different levels in the tree.

4 Example

Figure 5 shows an example from the literature [7] with affine non-uniform dependences,
together with the corresponding dependence polyhedra (the source iteration vector has
been eliminated). For the first dependence, the tiling legality constraint is

cii + cjj − cii − cj(j − 1) ≥ 0 ⇒ cj ≥ 0

Since this is a constant dependence, the volume bounding constraint gives w − cj ≥ 0.
For the second dependence, the tiling legality constraint is

(cii + cjj) − (cij + cji) ≥ 0

Applying Farkas Lemma (with P2), we have:

(ci − cj)i + (cj − ci)j ≡ λ0 + λ1(N − i) + λ2(N − j)
+λ3(i − j − 1) + λ4(i − 1) + λ5(j − 1) (9)

λ0, λ1, λ2, λ3, λ4, λ5 ≥ 0

Equating LHS and RHS coefficients for i, j, N and the constants in (9), and eliminating
Farkas multipliers through Fourier-Motzkin elimination, we obtain ci − cj ≥ 0.
The volume bounding constraint is

u1N + w − (cij + cji − cii − cjj) ≥ 0

A similar application of Farkas Lemma, and elimination of the multipliers yields u1 ≥
0, u1 − ci + cj ≥ 0, and 3u1 + w − ci + cj ≥ 0. Due to the symmetry with respect to i

Automatic Transformations for Communication-Minimized Parallelization 143

and j, the third dependence does not lead to any new constraints. Aggregating legality
and volume bounding constraints for all dependences, we get the formulation:

minimize≺ (u1, w, ci, cj)
subject to: cj ≥ 0 w − cj ≥ 0

ci − cj ≥ 0 u1 ≥ 0
u1 − ci + cj ≥ 0 3u1 + w − ci + cj ≥ 0

The lexicographic minimal solution for the vector (u1, w, ci, cj) is (0, 1, 1, 1) (the zero
vector is a trivial solution and is avoided). Hence, we get ci = cj = 1. Note that ci = 1
and cj = 0 is not obtained even though it is a valid tiling hyperplane as it involves more
communication: it requires u1 to be positive.

The next solution is forced to have a positive component in the subspace orthogonal
to (1, 1) given by (7) as (1,-1). This leads to the addition of the constraint ci − cj ≥ 1 or
ci − cj ≤ −1 to the existing formulation. Adding ci − cj ≥ 1 to (10), the lexicographic
minimal solution is (1, 0, 1, 0), i.e., u1 = 1, w = 0, ci = 1, cj = 0 (u1 = 0 is no
longer valid). Hence, (1, 1) and (1, 0) are the tiling hyperplanes obtained. (1,1) is used
as space with one line of communication between processors, and the hyperplane (1,0)
is used as time in a tile. The outer tile schedule is (2,1) (= (1,1) + (1,0)).

This transformation is in contrast to other approaches based on schedules which ob-
tain a schedule and then the rest of the transformation matrix. Feautrier’s greedy heuristic
gives the schedule θ(i, j) = 2i + j − 3 which carries all dependences. However, using
this as either space or time does not lead to communication or locality optimization. The
(2,1) hyperplane has non-constant communication along it. In fact, the only hyperplane
that has constant communication along it is (1,1). This is the best hyperplane to be used
as a space loop if the nest is to be parallelized, and is the first solution that our algo-
rithm finds. The (1,0) hyperplane is used as time leading to a solution with one degree
of pipelined parallelism with one line per tile of near-neighbor communication (along
(1,1)) as shown in Fig. 4. Hence, a good schedule that tries to carry all dependences (or
as many as possible) is not necessarily a good loop for the transformed iteration space.

5 Implementation and Preliminary Results

We have implemented our transformation framework using PipLib 1.3.3 [8]. Our tool
takes as input dependence information (dependence polyhedra and h-transformations)
from LooPo’s [20] dependence tester and generates statement-wise affine transforma-
tions. Though in theory the approach, relying on integer programming, has worst-case
exponential time complexity, we observe that it runs extremely fast in practice. The
transformations generated are provided to CLooG [2] as scattering functions. The goal
is to obtain tiled shared memory parallel code, for example, OpenMP code for multi-
core architectures. Table 1 summarizes the performance of transformed codes. The
state-of-the-art from the research community is represented by [13,17,18,19], while
ICC 10.1 with ‘-fast -parallel’ was used as the native compiler. The results were ob-
tained on an Intel Core 2 Quad (Q6600 2.4 GHz). Due to space constraints, detailed
experimental evaluation can be found elsewhere [4].

144 U. Bondhugula et al.

Table 1. Initial results: speedup over state-of-the-art research

Benchmark Single core speedup Multi-core speedup (4 cores)
over native over state-of-the-art over native over state-of-the-art
compiler research compiler research

1-d Jacobi (imperfect nest) 5.23x 2.1x 20x 1.7x
2-d FDTD 3.7x 3.1x 7.4x 2.5x

3-d Gauss-Seidel 1.6x 1.1x 4.5x 1.5x
LU decomposition 5.6x 5.7x 14x 3.8x

Matrix Vec Transpose 9.3x 5.5x 13x 7x

6 Related Work

Iteration space tiling [14,24,29] is a standard approach for aggregating a set of loop iter-
ations into tiles, with each tile being executed atomically. In addition, researchers have
considered the problem of selecting tile shape and size to minimize communication,
improve locality or minimize finish time [24,30]. These works are restricted to a single
perfectly nested loop nest with uniform dependences.

Loop parallelization has been studied extensively. The reader is referred to the survey
of Boulet et al. [5] for a detailed summary of older parallelization algorithms which ac-
cepted restricted input and/or are based on weaker dependence abstractions than exact
polyhedral dependences. Scheduling with affine functions using faces of the polytope
by application of the Farkas algorithm was first proposed by Feautrier [10]. Feautrier
explored various possible approaches to obtain good affine schedules that minimize
latency. The schedules carry all dependences and so all the inner loops can be par-
allel. However, transforming to permutable loops that are amenable to tiling was not
addressed. Though schedules yield inner parallel loops, the time loops cannot be tiled
unless communication in the space loops is in the forward direction (dependences have
positive components along all dimensions). Several works [6,13,22] make use of such
schedules. Overall, Feautrier’s classic works [10,11] are geared towards finding maxi-
mum fine-grained parallelism as opposed to tilability for coarse-grained parallelization
with minimized communication and better locality.

Lim and Lam [18,19] proposed an affine partitioning framework that identifies outer
parallel loops (communication-free space partitions) and pipelined parallel permutable
loops to maximize the degree of parallelism and minimize the order of synchronization.
They employ the same machinery for blocking [17]. Several (infinitely many) solutions
equivalent in terms of the criterion they optimize for result from their algorithm, and
these significantly differ in communication cost and locality; no metric is provided to
differentiate between these solutions. As seen in Sec. 3, without a cost function, the
solutions obtained even for the simplest input are not satisfactory.

Ahmed et al. [1] proposed a framework for locality optimization of imperfectly
nested loops for sequential execution. The approach embeds each statement into a prod-
uct space, which is then transformed for locality. Their heuristic sets reuse distances in
the target space for some dependences to zero (or a constant) to obtain coefficients of
the embedding/transformation matrix. However, there is no concrete procedure to de-
termine choice of the dependences and the number.

Automatic Transformations for Communication-Minimized Parallelization 145

Griebl [13] presents an integrated framework for optimizing locality and parallelism
with space and time tiling. Griebl’s approach enables time tiling by using a forward
communication-only placement with an existing schedule. As described in Sec. 3, using
schedules as time loops may not lead to communication or locality-optimized solutions.

Cohen et al. [6] and Girbal et al. [12] developed a framework to compose sequences
of transformations semi-automatically. Transformations are applied automatically, but
specified manually by an expert. Pouchet et al. [22] searches the space of transforma-
tions (one-dimensional schedules) to find good ones through iterative optimization by
employing performance counters. On the other hand, our approach is fully automatic.
However, some empirical and iterative optimization is required to choose transforms
that work best in practice. This is true when several fusion choices exist, or optimal
tile sizes and unroll factors have to be determined. A combination of our algorithm and
empirical search in a smaller space is an interesting approach to pursue.

7 Conclusions

We present a single framework that addresses automatic parallelization and data locality
optimization in the polyhedral model. The proposed algorithm finds communication-
minimized tiling hyperplanes for parallelization of a sequence of arbitrarily nested
loops. The same hyperplanes also minimize reuse distances and improve data local-
ity. The approach also enables fusion in the presence of producing-consuming loops.
To the best of our knowledge, this work is the first to propose a practical cost model to
drive automatic transformation in the polyhedral model. The framework has been im-
plemented in a fully-automatic tool for transforming C/Fortran code using the LooPo
infrastructure and CLooG. Preliminary experiments show very promising results.

Acknowledgments

We would like to thank Martin Griebl and his team (FMI, Universität Passau, Germany)
for the LooPo infrastructure. We would also like to thank Cédric Bastoul (Paris-Sud XI
University) and all other contributors of CLooG and PipLib. This work was supported in
part by a State of Ohio Development Fund and the National Science Foundation through
grants 0121676, 0121706, 0403342, 0508245, 0509442, 0509467 and 0541409.

References

1. Ahmed, N., Mateev, N., Pingali, K.: Synthesizing transformations for locality enhancement
of imperfectly-nested loop nests. IJPP 29(5) (October 2001)

2. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: IEEE
PACT, pp. 7–16 (September 2004)

3. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayap-
pan, P.: Affine transformations for communication minimal parallelization and locality op-
timization for arbitrarily-nested loop sequences. Technical Report OSU-CISRC-5/07-TR43,
The Ohio State University (May 2007)

4. Bondhugula, U., Ramanujam, J., Sadayappan, P.: PLuTo: A practical and fully automatic
polyhedral parallelizer and locality optimizer. Technical Report OSU-CISRC-5/07-TR70,
The Ohio State University (October 2007)

146 U. Bondhugula et al.

5. Boulet, P., Darte, A., Silber, G.-A., Vivien, F.: Loop parallelization algorithms: From paral-
lelism extraction to code generation. Parallel Computing 24(3–4), 421–444 (1998)

6. Cohen, A., Girbal, S., David,, Parello, M.S., Temam, O., Vasilache, N.: Facilitating the search
for compositions of program transformations. In: ICS, pp. 151–160 (June 2005)

7. Darte, A., Vivien, F.: Optimal fine and medium grain parallelism detection in polyhedral
reduced dependence graphs. IJPP 25(6), 447–496 (1997)

8. Feautrier, P.: Parametric integer programming. Operationnelle/Operations Research 22(3),
243–268 (1988)

9. Feautrier, P.: Dataflow analysis of array and scalar references. IJPP 20(1), 23–53 (1991)
10. Feautrier, P.: Some efficient solutions to the affine scheduling problem: I. one-dimensional

time. IJPP 21(5), 313–348 (1992)
11. Feautrier, P.: Some efficient solutions to the affine scheduling problem. part II. multidimen-

sional time. IJPP 21(6), 389–420 (1992)
12. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam, O.: Semi-

automatic composition of loop transformations for deep parallelism and memory hierarchies.
IJPP 34(3), 261–317 (2006)

13. Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory Architec-
tures. FMI, University of Passau, Habilitation Thesis (2004)

14. Irigoin, F., Triolet, R.: Supernode partitioning. In: POPL, pp. 319–329 (1988)
15. Kelly, W., Pugh, W.: A unifying framework for iteration reordering transformations. Techni-

cal Report CS-TR-3430, University of Maryland, College Park (1995)
16. Li, W., Pingali, K.: A singular loop transformation framework based on non-singular matri-

ces. IJPP 22(2), 183–205 (1994)
17. Lim, A., Liao, S., Lam, M.: Blocking and array contraction across arbitrarily nested loops

using affine partitioning. In: ACM SIGPLAN PPoPP, pp. 103–112 (2001)
18. Lim, A.W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maximize paral-

lelism and minimize communication. In: ACM ICS, pp. 228–237 (1999)
19. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine

partitions. Parallel Computing 24(3-4), 445–475 (1998)
20. LooPo - Loop parallelization in the polytope model,

http://www.fmi.uni-passau.de/loopo
21. Penrose, R.: A generalized inverse for matrices. Proceedings of the Cambridge Philosophical

Society 51, 406–413 (1955)
22. Pouchet, L.-N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the polyhedral

model: Part I, one-dimensional time. In: ACM CGO (March 2007)
23. Quilleré, F., Rajopadhye, S.V., Wilde, D.: Generation of efficient nested loops from polyhe-

dra. IJPP 28(5), 469–498 (2000)
24. Ramanujam, J., Sadayappan, P.: Tiling multidimensional iteration spaces for multicomputers.

Journal of Parallel and Distributed Computing 16(2), 108–230 (1992)
25. Schreiber, R., Dongarra, J.: Automatic blocking of nested loops. Technical report, University

of Tennessee, Knoxville, TN (August 1990)
26. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1987)
27. Vasilache, N., Bastoul, C., Cohen, A.: Polyhedral code generation in the real world. In: My-

croft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 185–201. Springer, Heidelberg
(2006)

28. Vasilache, N., Bastoul, C., Girbal, S., Cohen, A.: Violated dependence analysis. In: ACM
ICS (June 2006)

29. Wolf, M., Lam, M.S.: A data locality optimizing algorithm. In: PLDI, pp. 30–44 (1991)
30. Xue, J.: Communication-minimal tiling of uniform dependence loops. JPDC 42(1), 42–59

(1997)

http://www.fmi.uni-passau.de/loopo

How to Do a Million Watchpoints:

Efficient Debugging Using Dynamic
Instrumentation

Qin Zhao1, Rodric Rabbah2, Saman Amarasinghe3,
Larry Rudolph4, and Weng-Fai Wong1

1National University of Singapore
2IBM Research

3Massachusetts Institute of Technology
4VMware, Inc.

Abstract. Application debugging is a tedious but inevitable chore in
any software development project. An effective debugger can make pro-
grammers more productive by allowing them to pause execution and in-
spect the state of the process, or monitor writes to memory to detect data
corruption. This paper introduces the new concept of Efficient Debug-
ging using Dynamic Instrumentation (EDDI). The paper demonstrates
for the first time the feasibility of using dynamic instrumentation on-
demand to accelerate software debuggers, especially when the available
hardware support is lacking or inadequate. As an example, EDDI can
simultaneously monitor millions of memory locations without crippling
the host processing platform. It does this in software and hence provides
a portable debugging environment. It is also well suited for interactive
debugging because of its low overhead. EDDI provides a scalable and ex-
tensible debugging framework that can substantially increase the feature
set of current debuggers.

1 Introduction

Application debugging is an inevitable part of any software development cycle.
It is increasingly important in modern day programming practices because of
the growing complexity of software and hardware.

Software debuggers often run as separate processes that attach to user applica-
tions and trace through runtime events to detect execution anomalies. It is often
that case that runtime errors arise because a program’s memory is somehow cor-
rupted. Common examples include out-of-bounds accesses and buffer overflow
bugs which lead to null-pointer exceptions or the execution of illegal branch in-
structions. Other errors include the use of uninitialized variables, and data races
in the case of shared-memory multi-threaded applications. All of these errors are
notoriously difficult to discover and diagnose because it is often not clear when
the memory corruption occurred, and which instructions were responsible.

A debugger allows the programmer to inspect the code at the site of an
anomaly and trace back in the program stack to derive more clues about the

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 147–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 Q. Zhao et al.

cause of the problem. A particularly useful debugging feature that helps with
memory corruption bugs is the data breakpoint, also known as the watchpoint.
A watchpoint pauses program execution when an update to a specific memory
location is encountered. Watchpoints are similar to instruction breakpoints that
allow the user to pause execution at specific instructions.

1.1 Challenges Faced by Current Approaches

Data breakpoints are very expensive to implement without architectural support
because they require watching all updates to memory: every write (store) to
memory triggers a lookup of the store’s address in the watchlist. The watchlist
consists of all “watched” memory locations that are of interest to user.

The GNU Debugger (GDB) [1] on x86 architectures uses four debugging regis-
ters to accelerate the watchpoint debugging feature. The hardware-assist leads to
imperceptible or acceptable slowdowns. With hardware-assist forcibly disabled,
we observed that even a simple program slows down by a factor of a thousand
when a single watchpoint is set.

Hardware-assist has its limitations however. In case of GDB, when the watch-
list consists of more than handful of addresses, GDB is forced into a single-step
mode that scans a linked list of breakpoints and watchpoints following the ex-
ecution of every instruction. The performance quickly deteriorates and the cost
becomes prohibitively expensive for interactive debugging. As a result, a large
number of watchpoints is generally not practical and their use, while potentially
very helpful, remains quite limited in scope.

Furthermore, the feature sets offered by most existing standalone debuggers
are either not sufficiently rich, or exhibit high overhead and poor scalability
for practical and ubiquitous use. There are some advanced debuggers that can
manage the performance penalties with static program analysis and advanced
compilation [2,3,4], but they require additional compilation steps, and generally
cannot apply to precompiled binaries or dynamically linked code. These factors
may impede their adoption by programmers.

1.2 A New and Practical Alternative

This paper contributes a new approach to debugging, with a primary emphasis
on debugging with watchpoints. We leverage advances in binary instrumenta-
tion and code manipulation tools [5,6,7,8] to provide an effective and efficient
debugging framework that can substantially increase the feature set of standard
off-the-shelf debuggers.

We present Efficient Debugging using Dynamic Instrumentation (EDDI). We
demonstrate how to lower the cost and frequency of checking for runtime anoma-
lies and breakpoint conditions using a unique combination of on-demand dy-
namic instrumentation and a set of simple and carefully engineered optimizations
and heuristics. We believe this is the first paper to demonstrate the feasibility of
using a dynamic binary instrumentor in an interactive debugging environment.

The paper describes our prototype implementation of EDDI using a state-
of-the-art binary instrumentation infrastructure, and an off-the-shelf debugger,

How to Do a Million Watchpoints 149

namely GDB. The prototype inherits the properties of the binary instrumentor
to run on off-the-shelf IA32 processors. It can handle dynamically linked and
stripped binaries without the need for application source code or recompilation.

In the context of debugging using watchpoints, we demonstrate that we can
monitor more than a million data locations, with a slowdown of less than 3x
compared to native execution. The low overhead makes EDDI practical for in-
teractive debugging. This is in contrast to existing tools that use dynamic in-
strumentation for program analysis and bug discovery [9,10] but suffer from high
overheads. For example, MemCheck [9] – which can detect uninitialized memory
reads, writes to unallocated memory, and other memory use errors – can incur
slowdowns between 10x and 30x compared to native execution. Such tools are
better suited for regression testing than interactive debugging.

The ability to monitor a large number of memory locations significantly broad-
ens the scope of debugging with watchpoints, and allows for a lot of versatility
in defining a wide range of watchlists. For example, a user can choose to watch
(1) objects of a specific size or type, (2) objects allocated from specific call sites,
(3) entire data structures (e.g., arrays, records, graphs), and (4) reads from ad-
dresses written by specific instructions. This new ability leads to potential uses
in constraint and consistency checks on heap data structures, data race detec-
tion in multi-threaded programs, taint analysis for security analysis, and many
other scenarios. We highlight and evaluate a few practical debugging scenarios
to concretely demonstrate some of the new debugging capabilities afforded by
EDDI. Specifically, we dynamically watch the return addresses of all functions,
and break if an instruction modifies a return address. This scenario is useful for
detecting malicious attacks that attempt to hijack a program’s execution. Sec-
ond, we identify all static instructions that reference heap objects of a particular
types. This particular use scenario can be useful for dynamic pointer analysis.
Lastly, we use EDDI to discover all runtime read-accesses from uninitialized heap
location, and similarly, we use watchpoints to detect buffer overflow errors.

The contributions of the paper are summarized as follows:

– We designed and engineered EDDI, the first on-demand accelerated debugger
using binary instrumentation.

– We demonstrate that EDDI provides an efficient and scalable implementa-
tion of an important debugging facility, namely data breakpoints (watch-
points).

– We show that EDDI is practical for interactive debugging, and its ability to
monitor millions of memory locations provides new debugging capabilities.

2 Interactive Debugging with EDDI

Our goal is to substantially reduce the overhead associated with application de-
bugging so that it is possible to implement new debugging capabilities that can
substantially ease the burden on users when they are tracking down program-
ming errors. Our approach with EDDI is to use dynamic instrumentation with

150 Q. Zhao et al.

Front-End

Debugger
DynamoRIO

User

User
Application

Command
interpreter

Fig. 1. The EDDI interactive debugging infrastructure

an off-the-shelf debugger to provide on-demand acceleration and efficient exe-
cution under a debugger. An interactive debugger with EDDI consists of four
components as illustrated in Figure 1.

The first component is the user application that is interpreted using a bi-
nary instrumentation and code manipulation system. We use DynamoRIO [8],
although Pin [6] or other systems can also be used. DynamoRIO is a transpar-
ent runtime code manipulation system that can execute and manipulate real
world applications running on IA-32 hardware. It works under both Linux and
Windows. When an application is running with DynamoRIO, it is copied into a
thread-private code cache one basicblock at a time, and then runs directly from
the code cache. When some basicblocks on a common path become “hot”, they
are stitched together to form a single-entry multiple-exits trace, and promoted
to a trace cache. The basicblock and trace caches are collectively called the code
cache. DynamoRIO uses thread-private code caches, and this allows for tailoring
the instrumentation per thread when necessary. We modify the signal handler in
DynamoRIO to intercept and process all runtime signals before relaying them
to and from the user application.

The second component is the debugger. It runs as a separate process, and
provides typical debugging functionality. We use GDB as-is for this purpose.

The third component is the front-end. It functions as the interface between
the user, the debugger, and the instrumentation layer. Programmers use the
front-end to relay commands to the debugger, and the debugger relays output
back to the user through the front-end. Some commands are directly relayed
to a command interpreter that translates the commands into actions for Dy-
namoRIO. The front-end also consolidates the code manipulation carried out by
EDDI against the code mapping assumed by the debugger.

The command interpreter is the fourth component. It receives commands
from the front-end, and then collaborates with the debugger to instrument the
user application to implement the appropriate commands. For example, to set a
data breakpoint and then watch for updates to that memory location, EDDI
instruments store instructions in the program to check if the address being

How to Do a Million Watchpoints 151

written to matches the address being watched1. EDDI uses a set of optimizations
and heuristics to reduce the instrumentation and runtime overhead of checking
breakpoint conditions and predicates.

3 Efficient Debugging Using Dynamic Instrumentation:
Software Watchpoint

We believe that binary instrumentation can significantly improve the perfor-
mance of standard debuggers. In turn, this can lead to richer debugging features
that can improve programmer productivity. In this paper, our goal is an effi-
cient and scalable implementation of software watchpoints. We believe this work
enables new and potentially very powerful debugging capabilities, with likely
applicability in other use scenarios as well.

Watchpoints essentially require monitoring every memory read (load) and
write (store), and comparing the addresses against a list of watched addresses.
A basic monitoring approach using dynamic binary instrumentation adds new
instructions before every memory reference to perform the following tasks: (1)
determine the memory address referenced by the load or store, (2) check if ad-
dress is watched, and (3) raise a trap if the address is watched. We refer to
this scheme as full instrumentation (FI). A näıve implementation of this scheme
adds more than 10 instructions per static memory reference, and can degrade
performance by an average of 15x compared to native execution.

We refined this approach in two ways. First, we implemented a set of optimiza-
tions to substantially reduce the monitoring overhead as is detailed in Section 4.
Second, we used a coarse-grained monitoring scheme that first operates at page
granularity before switching to a more fine-grained monitoring mode that in-
spects individual memory references. We call this coarse-grained scheme partial
instrumentation (PI).

The PI scheme is tuned for the common case: the majority of memory refer-
ences do not access watched locations. It focuses primarily on instructions that
may reference watched locations, and uses the page protection mechanisms in
the operating system to help identify those instructions. In this scheme, pages
that contain watched data are protected, and any instructions that try to access
these pages trigger a signal. The signal handler checks if the referenced address
is watched and takes appropriate action. The runtime overhead for PI is highly
dependent on the number of references to the protected pages because signal han-
dling involves expensive operating system mechanisms. As with the FI scheme,
we lower the PI overhead by taking advantage of dynamic instrumentation as is
described in Section 5.

In addition to the monitoring schemes, we pay particular attention to the
design of the watchlist. The watchlist is the data structure that records the
watchpoints. Since the watchlist is accessed on every memory reference, it is

1 EDDI will first attempt to use any available hardware-assist resources before falling
back on a more general software-only approach.

152 Q. Zhao et al.

important to design an efficient watchpoint organization and to implement a
fast and scalable query mechanism with reasonable space-time properties.

A linked-list watchlist organization is not practical since the time for a query
scales linearly with the number of watchpoints. An alternate strategy is to use
shadow tags [4,11,12,13] to represent each byte in memory. If a tag is set, then
the corresponding byte in memory is watched. In this scenario, a watchpoint
query requires loading the appropriate tag and checking its status. The query
cost for this approach is constant and independent of the number of watchpoints.

In our work, we designed a new shadow tag based watchlists for efficient tag
lookup and with good scalability. The basic idea is to use an on-demand watch-
list. Each application memory page is associated with an equal sized shadow
page when necessary. The status of a byte in an application page is indicated by
the tag at the same offset in the associated shadow page (if the tag is zero, the
byte is not watched). We use a byte-long tag for byte-addressable memory. The
extra bits in each tag encode the status of adjacent bytes2.

A lookup table maintains the mapping between the application pages and their
shadow pages. On 64-bit architectures, a hierarchical lookup table is required,
although an optimized one-level table is feasible via careful memory allocation
for shadow tags.

4 Optimizations for Full Instrumentation (FI)

The full instrumentation scheme inserts instructions to check the watchlist be-
fore every memory reference. Figure 2 shows the necessary instrumentation for
a single x86 store instruction mov esi -> [eax, ebx]. The instrumentation
performs the following tasks before the store:

1. Save any registers that are used or side-effected by the watchlist query.
2. Calculate the reference address and lookup its associated tag.
3. Checks if the tag is set to “watched”, and trap if it is.
4. Otherwise, restore the saved registers and continue execution.

In this example, the lookup table stores the displacement between the shadow
page and the accessed data. There are 20 new instructions in total. Instructions
1–6 and 16–20 save and restore the execution context. Instruction 7 obtains
the effective address in register ecx. Then the lookup table entry is identified
and checked by instructions 8–10. Instructions 11–14 check the tag found in the
shadow pages. If the lookup table entry is null, the tag check is skipped.

The näıve instrumentation described above suffers from a significant runtime
overhead. We implemented and applied a series of optimizations to systemat-
ically and drastically reduce that overhead. We group the optimizations into
three categories: previously published, watchlist-specific, and local analysis.

2 Special care is required to handle two adjacent memory addresses that span two
pages. Due to space limitations, we do not describe the encoding in any more detail.

How to Do a Million Watchpoints 153

01: mov %ecx [ECX_slot] ! Steal registers
02: mov %eax [EAX_slot]
03: seto [OF_slot + 3] ! Save oflag
04: lahf ! Save eflags
05: mov %eax [AF_slot]
06: mov [EAX_slot] %eax ! Restore eax
07: lea [%eax, %ebx] %ecx ! Get address

! Compute table index
08: shr %ecx, $12 %ecx ! Shift right
09: cmp table[%ecx, 4], $0 ! Check entry
10: je SKIP_CHECK

! Check if tag is set to ‘watched’
11: add %eax, table[%ecx, 4] %eax
12: testb $0xAA, [%eax, %ebx]
13: jz AFTER_TRAP
14: trap ! Watchpoint trap
AFTER_TRAP:
15: sub %eax, table[%ecx, 4] %eax

! Restore all
SKIP_CHECK:
16: mov [AF_slot] %eax
17: add [OF_slot], $0x7f000000 [OF_slot]
18: sahf
19: mov [EAX_slot] %eax
20: mov [ECX_slot] %ecx

Fig. 2. Example instrumentation code

1. Previously published optimizations. We applied two optimizations published
by Qin et al. [12].

– Context Switch Reduction (CSR) performs register liveness analysis in each
basicblock to identify registers that can be safely used without requiring a
register spill and restore.

– Group Checks (GC) consolidates two consecutive memory reference checks
into a single check if there are no intervening instructions that affect the
address calculation of the second memory reference.

2. Watchlist-specific optimizations. The following two optimizations take advan-
tage of the watchlist design.

– Merged Checks (MC) aims to exploit the locality of memory references.
For example, two instructions in the same basicblock may access differ-
ent members of the same object (e.g., mov 0 -> [%eax + 4] followed by
mov 0 -> [%eax + 8]). In this case, a single shadow tag lookup is initiated
before the first reference. If the tag is zero, then neither location is watched.
Otherwise, the tag lookup is carried out for each reference individually.

– Stack Displacement (STK) aims to reduce the watchlist query for stack ac-
cesses that use the stack pointer. This optimization elides the mapping step
through the lookup table. This is achieved through a simple precomputation
step. When a thread is initialized, we allocate a shadow memory for the
application stack, and calculate the constant offset between the stack and
its corresponding shadow memory. Subsequently, when an instruction that

154 Q. Zhao et al.

accesses the stack via the stack pointer is encountered, the instrumentation
code directly calculates the displacement to the shadow tag without going
through the lookup table.

3. Local optimizations.

– Local Variables Check Elimination (LVE) eliminates tag checks on local
scalar variables referenced via the stack pointer (e.g., mov 0 -> [esp + 20])
since they are amenable to static analysis.

There are many other optimization that can further reduce the monitoring
overhead. Our purpose is not to be exhaustive but rather to demonstrate that
online memory reference monitoring can be achieved with reasonable overhead.

5 Partial Instrumentation (PI)

In addition to the fine-grained instrumentation approach, we rely on a coarse
grained partial instrumentation technique to further manage the runtime over-
head associated with monitoring memory updates. With PI, we only instrument
memory references that may reference watched locations. Partial instrumenta-
tion optimizes for the common cases where references do not access watched
locations.

PI relies on the operating system page protection mechanism to switch be-
tween a coarse-grained mode and a fine-grained mode that checks memory in-
structions with greater scrutiny. When a watchpoint is set, we make a twin copy
of the pages containing that watchpoint. The access rights of the original pages
are then set to be protected. During the program execution, if an instruction
I references an address on the watched pages, a SIGSEGV signal is raised. Our
signal handler catches that signal, and subsequently replaces the code fragments
containing the instruction I with a new code fragment that includes additional
instrumentation. The instrumentation serves dual roles. First, it performs any
necessary tag checks. Second, it performs reference redirection so that the instruc-
tion I accesses the copied pages instead of the protected pages, hence avoiding
future SIGSEGV signals from the same instruction.

PI is suitable for many situations, especially when monitoring data accesses
to the heap. For example, consider the case where a user wants to monitor all
references to objects allocated from a specific call site. With PI, we can (1)
allocate memory from a special pool of protected pages, (2) update the lookup
table, and (3) return the allocated address to the application. Meanwhile, we
allocate the twin page from another pool such that the difference between the
corresponding locations of a data object in both pools is a constant Dp. This
simplifies the redirection code. Figure 5 shows an example of reference redirection
for the x86 instruction mov 0 --> [%eax + 0x10], where Dp is 0x30000.

As is the case with full instrumentation, it is possible to apply more optimiza-
tion to further reduce the overhead associated with partial instrumentation.

How to Do a Million Watchpoints 155

mov %ecx [ECX_SLOT] ! steal ecx

lea [%eax+0x10] %ecx ! calculate address
... ! save eflags

shr %ecx, 20 %ecx ! right shift
cmp table[%ecx], $0 ! check table entry
je LABEL_ORIG
... ! check tag status
... ! restore eflags and ecx

mov 0 [%eax + 0x030010] ! redirected reference
jmp LABEL_NEXT

LABEL_ORIG:
... ! restore eflags and ecx

mov 0 [%eax+0x10] ! access original location

LABEL_NEXT:
... ! continue execution

Fig. 3. An example of reference redirection

6 Evaluation and Results

We measured the performance overhead associated with EDDI in the context of
software watchpoints. We conducted a set of experiments to quantify the impact
of our optimizations for full and partial instrumentation. We also designed some
experiments to showcase various debugging scenarios that make use of the large
number of watchpoints that can be monitored with EDDI.

We ran all of our experiments on a 2.66 GHz Intel Core 2 processor with
2 GBytes of RAM. The operating system is Linux Fedora Core 4. We used the
full SPEC CPU2000 [14] benchmark suite and the reference input workloads.
All benchmarks were compiled with GCC 4.0 using -O3. We used a shadow page
lookup table with 220 entries. We used shadow pages that are 4 KBytes in size
to match the default Linux page size.

Results for FI. Figure 4 compares the native performance of each bench-
mark to the same benchmark run with DynamoRIO and the full instrumentation
scheme (along with its accompanying optimizations). In this set of experiments,
there are no user-defined watchpoints (i.e., all shadow tag bits are zero). We are
simply measuring the instrumentation overhead attributed to the monitoring of
memory accesses and watchlist queries.

We report the results for full instrumentation with common optimizations
(CSR and GC), merged checks (MC), stack displacement (STK), and local vari-
able check elimination (LVE). The performance results are normalized to native
execution, and hence a value greater than one indicates a slowdown, with smaller
numbers reflecting lower runtime overhead.

The common optimizations reduced the runtime overhead from an average
slowdown of 15x in the unoptimized instrumentation scheme (data not shown),
to an average of 5x. The addition of MC reduced the overhead further. MC is
especially effective on benchmarks with good temporal and spatial locality (e.g.,
252.eon). Performance improvement due to STK were mixed. This particular
optimization reduces the opportunities for merged checks. The LVE optimization
improved performance significantly because it removes all checks for scalar (i.e.,

156 Q. Zhao et al.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16
8.w

up
wise

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
ere

c

18
8.a

mmp

18
9.l

uca
s

19
1.f

ma3
d

20
0.s

ixt
rac

k

30
1.a

ps
i

FP Ave
rag

e

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on kmblrep.352
25

4.g
ap

25
5.v

ort
ex

56
.bz

ip2

30
0.t

wolf

IN
T Ave

rage

SPEC
Ave

rag
e

CSR+GC CSR+GC+MC CSR+GC+MC+STK CSR+GC+MC+STK+LVE

1.00

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Fig. 4. Impact of optimizations on FI

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

16
8.w

up
wise

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
ere

c

18
8.a

mmp

18
9.l

uca
s

19
1.f

ma3
d

20
0.s

ixt
rac

k

30
1.a

ps
i

FP Ave
rag

e

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

56
.bz

ip2

30
0.t

wolf

IN
T Ave

rage

SPEC A
ve

rag
e

no watchpoint watch all return addresses watch all data locations

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Fig. 5. Performance of FI with different watchlist configurations

non-array) local variables. Overall, FI with all of our optimizations incurs an
average slowdown of 2.59x compared to native execution.

Next, we measured our system performance using three watchlist configura-
tions: no watchpoints3, watch all function return targets, and watch all data
locations. In an actual debugging scenario, data breakpoints that are triggered
alert the user and the debugger interrupts execution and waits for additional
commands from the user. In our experiments, however, when a watchpoint was
triggered, the instruction that accessed the watched location was merely marked
and execution continued. Figure 5 shows the results normalized to native execu-
tion time. As expected, the runtime overhead increased as the number of watch-
points increased. The low additional overhead that is observed when watching
all return targets is due to the efficacy of the STK optimization. In the worst
case, the average overhead is 3.68x when all memory locations are watched.

Results for PI. We studied the performance implications of the partial instru-
mentation scheme using several SPEC INT benchmarks. Two benchmarks were

3 This set of data point corresponds to the fourth bar in each set of bars from Figure 4.

How to Do a Million Watchpoints 157

Table 1. Runtime overhead using PI

Benchmarks Native PI Overhead No. of Watched No. of
(sec) (sec) PI / Native Redirects Objects SIGSEGV

164.gzip 24.379 26.189 1.074 1.45×108 20423 45

175.vpr 48.346 50.605 1.047 1.04×106 10000 76

176.gcc 7.980 10.026 1.256 1.51×106 1 22

181.mcf 53.243 80.659 1.515 1.08×1010 1 468

186.crafty 58.777 249.777 4.250 2.77×108 37 443

252.eon 35.961 41.470 1.153 3.50×101 1 8

253.perlbmk 9.101 24.489 2.691 7.69×107 1 249

255.vortex 29.940 47.582 1.589 1.65×109 10 219

256.bzip 27.598 50.837 1.842 9.01×109 7 541

300.twolf 155.725 161.442 1.037 2.78×105 1100 470

ignored: 197.parser allocates a large memory pool at the start of execution, and
254.gap requests a chunk of memory only to free it immediately without using it.

We selected watchpoints by intercepting allocation requests and randomly
deciding to watch the allocated objects. Objects that are watched were allocated
from a designated memory pool with protected pages. This approach allowed
us to easily define watchpoints at runtime without any user intervention. The
results are summarized in Table 1. The column labeled “Watched Objects” lists
the number of watched heap objects. It is worthy to note that these objects are
not necessarily uniform (i.e., they may vary in type and size).

The second column in Table 1 reports the native execution time, and the third
column shows the execution time when using EDDI and partial instrumentation.
The last column reports the number of SIGSEGV signals that were caught (due to
accesses to watched regions), and the column labeled “No. of Redirects” reports
the number of subsequent reference redirections that occurred. The overhead
in PI is mainly due to the redirection mechanism. The benchmarks 181.mcf,
175.vpr, and 256.bzip have 109 or more redirections with slowdowns ranging
from 51% to 84%. The two benchmarks with the highest overhead, 186.crafty
and 253.perlbmk, execute a large number of string operations that require a
relatively more heavyweight redirection mechanism. The benchmarks 176.gcc
and 252.eon incur a large DynamoRIO overhead (not shown). The added PI
overhead is these two benchmarks and the remaining three is less than 7%.

In general, partial outperforms full instrumentation. The former optimizes for
the common cases and only instruments a small number of static instructions.

Space Overhead. The size of the shadow memory depends on the number
of watchpoints. Since we use a demand-driven watchlist, we expect the shadow
memory footprint to be typically small. In the worst case when all memory loca-
tions are watched, FI doubles the total memory footprint since every application
page requires a shadow page. The PI scheme needs additional memory since it
also clones the application pages. Hence the total memory footprint grows three-
fold when watching all heap data.

158 Q. Zhao et al.

There is also some instruction memory overhead since the watchlist monitor-
ing adds instrumentation code. In practice, this is usually small compared to
the size of data memory. Note that these are virtual memory overheads, and our
results show that the spatial footprints remain manageable. We do not expect
the space overhead to be a serious concern on 64 bit processors.

Debugging Scenarios. We believe that EDDI can be a useful tool for un-
derstanding program behavior and discovering software bugs. Here we highlight
several debugging scenarios that demonstrate how a user may use the large num-
ber of watchpoints afforded by EDDI.

– We used EDDI to discover all the instructions that access the return ad-
dresses of functions. To do this, a watchpoint is automatically set on the
return address of a function when it is called. This watchpoint is cleared
when the function returns. Note that such a task is nearly impossible to
achieve in a standard debugger like GDB. The middle set of bars in Figure 5
show the expected performance for the SPEC benchmarks. Interestingly, we
found that besides the return instructions, there are several functions such
as setjmp that also read the return address.

– We also used EDDI to perform a kind of dynamic pointer analysis. In par-
ticular, using 181.mcf as an example, we watched all 33,112 instances of
the node data type and identified the 468 static instructions that referenced
these node objects 1.08 × 1010 times during execution.

– A common programming error is the use of uninitialized variables. We used
EDDI to detect such occurrences by replacing calls to calloc with malloc
in 181.mcf. Unlike calloc, malloc does not initialize the allocated mem-
ory. We used EDDI to discover reads to uninitialized values by marking all
allocated memory as watched. Once an object is initialized, it is removed
from the watchlist. EDDI reported all reads to uninitialized memory loca-
tions correctly. As an example, the first uninitialized read in 181.mcf oc-
curs 0.001 seconds from the start of execution. EDDI reports the error in
0.037 seconds, and overall, the instrumented execution is 83% slower using
PI and 250% slower using FI.

– The last use scenario that we investigated was inspired by software secu-
rity attacks. We used EDDI on a set of benchmarks for buffer overflow
attacks [15]. By placing watchpoints on buffer boundaries, EDDI success-
fully identified all offending instructions. By setting watchpoints on key lo-
cations that include return addresses, stack frame pointers, and function
pointers, many kinds of intrusion schemes can be detected. Furthermore, be-
cause EDDI monitors all instructions executed in user mode, it will discover
any buffer overflows that occur in shared libraries as well.

The above use-cases are not exhaustive. The ability to watch large and variable
sized regions of memory efficiently is very powerful. We believe that EDDI affords
new capabilities and potentially new approaches for debugging.

How to Do a Million Watchpoints 159

7 Related Work

Application Debugging. There are many software, hardware and hybrid tech-
niques for application debugging, especially for detecting memory bugs. Hard-
ware schemes such as SafeMem [16], iWatcher [17], and MemTracker [18] are
geared toward low overhead detection mechanisms of inappropriate memory uses.
DISE [19] (Dynamic Instruction Steam Editing) is a general hardware mecha-
nism for interactive debugging. HeapMon [20] is a hardware/software approach
for detecting memory bugs with a helper thread. An important drawback of
these techniques is that they require specialized hardware.

There are many software tools use dynamic instrumentation to discovery
memory related bugs. For example, Purify [21] and MemCheck [9] are two widely
used software tools for discovering memory problems. However, their significant
overhead make them unsuitable for interactive debugging purposes. Tdb [22] is
a tool that integrates dynamic instrumentation with GDB. However, the paper
only describes how to handle the code mapping between the application code
and the code cache, and uses code breakpoints as a demonstration vehicle. In
contrast, EDDI encompasses instruction and data breakpoints and can monitor
memory operations efficiently.

Software Watchpoint. Watchpoint is an important debugging facility that
helps users identify data corruption bugs. Almost all state-of-the-art proces-
sors provide limited hardware watchpoints facilities. There has also been several
proposals in the past on how to implement software watchpoints. They can be
generally classified as three approaches: page protection, trap patching, and code
patching. Wahbe [3] and Roberts [23] both compared the above implementation
strategies, and made the same conclusion that code patching has the lowest
overhead. Wahbe then proposed an efficient implementation of software watch-
points [4] using code patching and static analysis. However, that work could not
be used on shared libraries. Copperman and Thomas [2] extended the work to
use a post-loading technique to insert checks into an executable and solve the
shared library issue. EDDI can monitor all memory accesses efficiently. In addi-
tion, EDDI’s optimized page protection strategy outperforms the code patching
approach in certain situations.

Another interesting approach proposed by Keppel [24] is to use checkpointing
to discover data updates, but we did not find any implementation details or any
results on this work. There is a published patch to MemCheck in Valgrind [25] to
perform watchpointing. However, the watchpoints are organized in a linked-list
and performance scales very poorly. This clearly was not designed to operate at
the scale that we envision for EDDI.

Shadow Memory. Shadowing memory is important for efficient software
watchpoints. Cheng et al. [11] suggested splitting the address space with half
of it used for shadow memory. This approach simplifies the address calculation
for locating the tag in the shadow memory to a single add. However, this is
also the most space consuming proposal. Wahbe et al. [4] suggested a bit-map

160 Q. Zhao et al.

approach that associates a one-bit tag to every 4 bytes. On byte-addressable ar-
chitectures like the x86, the required space overhead is 12.5%, or 512 MBytes for
a 32-bit address space [12]. Unfortunately, on 64-bit architectures, this scheme
requires 261 contiguous bytes. MemCheck [13] use a two-level table to organize
the shadow memory that is similar to our approach. However, our approach is
more flexible, and allows for a more efficient tag lookup.

8 Conclusion

The state of debugging technology has largely remained unchanged for more than
a decade, and many programmers still rely on the “debug by printing” approach
to track down and resolve software bugs. As software becomes larger and more
complex, new approaches are required to improve programmer productivity. We
believe that the union of traditional debuggers and binary rewriting systems can
bring about many new debugging features and techniques. Our contribution in
this paper is to show the viability of such an approach.

We presented EDDI, a debugging framework that uses on-demand dynamic
instrumentation and runtime optimizations to accelerate and extend features
found in traditional debuggers. We showed how EDDI can be used to imple-
ment a data watchpoint facility that allows users to set orders of magnitude
more watchpoints than is practical today. EDDI does not rely on any specialized
hardware, and is evaluated in this paper using several SPEC2000 benchmarks
running on an Intel Core 2 machine. The results show that the average overhead
is 3x, which is low enough to make EDDI practical for interactive debugging. Be-
sides a large number of variable sized watchpoints, EDDI also provides dynamic
event handling capability and customized trigger actions. We highlighted several
practical uses of EDDI in debugging, program analysis and security. Combined
with the orthogonal effort of ‘reversible’ debugging [26], we believe EDDI can
contribute to powerful new ways of debugging software.

References

1. GNU/FSF GDB: The GNU Project Debugger
2. Copperman, M., Thomas, J.: Poor man’s watchpoints. SIGPLAN Not. 30, 37–44

(1995)
3. Wahbe, R.: Efficient data breakpoints. In: Proceedings of the Fifth International

Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 200–212 (1992)

4. Wahbe, R., Lucco, S., Graham, S.L.: Practical data breakpoints: design and im-
plementation. In: Proceedings of the SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pp. 1–12 (1993)

5. Nethercote, N.: Dynamic Binary Analysis and Instrumentation. PhD thesis, Uni-
versity of Cambridge (2004), http://valgrind.org/

6. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the SIGPLAN 2005 Conference on
Programming Language Design and Implementation, pp. 190–200 (2005)

http://valgrind.org/

How to Do a Million Watchpoints 161

7. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: Proceedings of the SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 1–12 (2000)

8. Bruening, D.: Efficient, Transparent, and Comprehensive Runtime Code Manipu-
lation. PhD thesis, Massachusetts Institute of Technology (2004),
http://www.cag.csail.mit.edu/rio/

9. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with
bit-precision. In: Proceedings of the 2005 USENIX Annual Technical Conference,
pp. 17–30. USENIX Association, Berkeley, CA, USA (2005)

10. Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate
switching. In: Proceeding of the 28th international conference on Software engi-
neering, pp. 272–281 (2006)

11. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: Tainttrace: Efficient flow tracing with
dynamic binary rewriting. In: Proceedings of the 11th IEEE Symposium on Com-
puters and Communications, Washington, pp. 749–754 (2006)

12. Qin, F., Wang, C., Li, Z., Kim, H.s., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In:
Proceedings of the 39th Annual International Symposium on Microarchitecture,
Washington, pp. 135–148 (2006)

13. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: Proceedings of the 3rd international conference on Virtual execution
environments, pp. 65–74 (2007)

14. Standard Performance Evaluation Corporation. SPEC CPU 2000 Benchmark suite
(2000), http://www.spec.org/osg/cpu2000/

15. Wilander, J., Kamkar, M.: A comparison of publicly available tools for dynamic
buffer overflow prevention. In: Proceedings 10th Network and Distributed System
Security Symposium, pp. 149–162 (2003)

16. Qin, F., Lu, S., Zhou, Y.: SafeMem: Exploiting ECC-Memory for Detecting Mem-
ory Leaks and Memory Corruption During Production Runs. In: Proceedings of
the 2005 International Symposium on High Performance Computer Architecture,
pp. 291–302 (2005)

17. Zhou, P., Qin, F., Liu, W., Zhou, Y., Torrellas, J.: iWatcher: Efficient Architec-
tural Support for Software Debugging. In: Proceedings of the 31st International
Symposium on Computer Architecture, pp. 224–237 (2004)

18. Venkataramani, G., Roemer, B., Prvulovic, M., Solihin, Y.: MemTracker: Efficient
and Programmable Support for Memory Access Monitoring and Debugging. In:
HPCA07, February 2007, pp. 273–284 (2007)

19. Corliss, M.L., Lewis, E.C., Roth, A.: Low-Overhead Interactive Debugging via
Dynamic Instrumentation with DISE. In: Proceedings of the 2005 International
Symposium on High Performance Computer Architecture, Washington, DC, USA,
pp. 303–314. IEEE Computer Society Press, Los Alamitos (2005)

20. Shetty, R., Kharbutli, M., Solihin, Y., Prvulovic, M.: HeapMon: a helper-thread
approach to programmable, automatic, and low-overhead memory bug detection.
IBM Journal of Research and Development 50, 261–275 (2006)

21. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors.
In: Proceedings of the Winter USENIX Conference 1992, pp. 125–136 (1992)

22. Kumar, N., Childers, B.R., Soffa, M.L.: Tdb: a source-level debugger for dynam-
ically translated programs. In: Proceedings of the sixth international symposium
on Automated analysis-driven debugging, pp. 123–132 (2005)

http://www.cag.csail.mit.edu/rio/
http://www.spec.org/osg/cpu2000/

162 Q. Zhao et al.

23. Roberts, P.E.: Implementation And Evaluation Of Data Breakpoint Scheme. In:
An Interactive Debugger. Master’s thesis, University of Utah (1996),
http://www.cs.utah.edu/flux/papers/perobert abstract.html

24. Keppel, D.: Fast Data Breakpoints. Technical Report TR-93-04-06, University of
Washington (1993)

25. Walsh, R.: Patches for Valgrind (2005),
http://valgrind.org/downloads/variants.html

26. The GNU GDB Project: GDB and Reversible Debugging (2006),
http://sourceware.org/gdb/news/reversible.html

http://www.cs.utah.edu/flux/papers/perobert_abstract.html
http://valgrind.org/downloads/variants.html
http://sourceware.org/gdb/news/reversible.html

Compiler-Guaranteed Safety in Code-Copying

Virtual Machines

Gregory B. Prokopski and Clark Verbrugge

Sable Research Group
School of Computer Science, McGill University

Montreal, Quebec, Canada
{gproko,clump}@sable.mcgill.ca

Abstract. Virtual Machine authors face a difficult choice between low
performance, cheap interpreters, or specialized and costly compilers. A
method able to bridge this wide gap is the existing code-copying tech-
nique that reuses chunks of the VM’s binary code to create a simple
JIT. This technique is not reliable without a compiler guaranteeing that
copied chunks are still functionally equivalent despite aggressive opti-
mizations. We present a proof-of-concept, minimal-impact modification
of a highly optimizing compiler, GCC. A VM programmer marks chunks
of VM source code as copyable. The chunks of native code resulting from
compilation of the marked source become addressable and self-contained.
Chunks can be safely copied at VM runtime, concatenated and executed
together. This allows code-copying VMs to safely achieve speedup up to
3 times, 1.67 on average, over the direct interpretation. This maintain-
able enhancement makes the code-copying technique reliable and thus
practically usable.

1 Introduction

Virtual Machines (VMs) are used as a target compilation architecture by many
languages. The most widely known example is Java, but the same is true of a host
of languages with dynamic properties, including Python, PHP, Perl6, Forth and
many others. The choice of the operations represented by the virtual assembly
(bytecodes) and the construction of a Virtual Machine differ for each language
but they all require a virtual machine, and thus also a translation mechanism
involving either the use of a cheap but slower interpreter or the use of a more
dynamic just-in-time or ahead-of-time compiler that generates better optimized
code, at greater cost. For many environments efficiency remains important, but
the development and maintenance costs of an optimizing compiler are outweighed
by the simplicity and rapid development time of an interpreter-based VM.

Code-copying has been proposed as a VM interpreter implementation tech-
nique that improves performance, reducing the gap between interpreters and
compilers [5,10]. In this work we address the main safety, practical implementa-
tion and maintenance problems inherent in such a technique that were left mostly
unsolved by the previous works. Our design builds on the well-known GCC com-
piler to ensure semantic guarantees appropriate for code-copying in VM designs.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 163–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

164 G.B. Prokopski and C. Verbrugge

This allows dynamic code construction and interpretation with good efficiency
versus maintenance tradeoffs. Supporting language enhancements in a continu-
ally evolving, optimizing compiler such as GCC can be complex; we thus further
show how changes to the basic VM compiler itself can be minimally intrusive,
requiring changes dependent mainly on core, stable internal compiler structures.
Low maintenance and easily isolated changes are important practical require-
ments for a feasible system.

An attractive feature of supporting advanced interpreter execution designs
is that a static compiler such as GCC can become an effective back-end for
multiple VM architectures. This provides optimized execution at low cost for a
number of interpreted languages. We provide experimental data from an imple-
mentation based on the SableVM Java Virtual Machine [5]. Our results show
that our automatic and verified safe design is able to match, and sometimes
exceed that of previous, labour-intensive, hand-done and unverified attempts.
This demonstrates the viability of our approach in terms of performance and
portability.

We make the following specific contributions:

– We develop safe and practical code-copying techniques appropriate for a
high-performance interpreter using GCC as a back-end. This also allows us to
provide previously elusive safety guarantees for the code-copying technique.

– Our approach ensures a maintainable design within the context of GCC
itself and should also be applicable to other compilers. Ensuring safety in
code-copying could be performed by large, invasive efforts at nearly all levels
of compilation; instead our technique minimizes the impact on general GCC
development to insertion of few well-separated phases: initial code alterations
and insertion of copyable code areas markers (early phases), restoration of
basic block order and other properties of copyable code areas (after most of
optimizations), and final verification (after all optimizations).

– Our work provides an attractive, single-compiler solution with potential for
use in a variety of different programming languages and virtual machines.
This takes advantage of the ubiquity and continuous development of a major
compiler framework such as GCC.

In the next section we give related work on code-copying and other inter-
preter optimization techniques. Section 3 then gives background on code-copying
techniques and requirements. Our design and GCC modifications are detailed
in Section 4, and Section 5 provides some experimental results from our
implementation.

2 Related Work

In our work we are concerned with optimizing interpreter-based VMs by en-
abling them to practically and safely use the code-copying technique. This tech-
nique originates from direct-threaded interpretation and was first described by
Rossi and Sivalingam [10]. Compilers used at that time did not use too many

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 165

optimizations that would make code-copying impossible, but their solution also
did not give safety guarantees.

Gagnon was the first to use the code-copying technique in a Java inter-
preter [5]. While this implementation solved some important problems specific
to the interpretation of Java bytecode, its code-copying engine required manual
tuning that could not give guarantees of safe execution and therefore could not
be regarded as a production-ready solution. Interestingly, experiments done with
a simple, non-optimizing portable JIT for SableVM (SableJIT [1]) showed that
such a JIT was only barely able to achieve speeds comparable to the code-copying
engine. This demonstrated once again that code-copying is a very attractive so-
lution, save only for its lack of safety.

One of the important reasons why code-copying is significantly faster than
other interpretation techniques is its positive influence on the success rate of
branch predictors commonly used in today’s hardware containing branch target
buffers (BTB). As Ertl showed in his work on indirect branch prediction in
interpreters [4] other solutions that improve branch prediction, like bytecode
duplication, can also give significant performance improvement. Speedup due to
branch prediction improvements much outweighs other negative effects such as
increased instruction-cache misses.

A solution similar to a code copying engine is a JIT using code generated by
a C compiler, as developed by Ertl [2]. In this solution, however, the pieces of
code were actually modified (patched) on the fly, so as to contain immediate
values and remove the need for the instruction counter. Due to the patching
architecture-specific code was necessary. Ertl’s solution did include automated
tests to detect code chunks that were definitely not copyable, but it was not
guaranteed to find all such chunks (see Figure 6 in [9] for an example) and thus
did not ensure safety. Our solution can not only detect non-copyable code but
actually change a formerly non-copyable code chunk into a copyable one.

Other solutions include systems like DyC [6] which dynamically recompiles
programs during their execution to benefit from run-time values allowing for op-
timizations based on partial evaluation. There also exist portable JITs like GNU
Lightning, but these often come with support for limited number of platforms
and their own limited set of code primitives.

Specialized interpreters are another route to optimized performance. In Vm-
gen the VM system can be trained on a set of programs to detect the most often
occurring small sequences of bytecodes and then modify the source of the in-
terpreter to combine these sequences into superinstructions, optimized the next
time the interpreter is recompiled [3]. While the speed benefits of this solution
are indisputable, it still requires non-automated training, selection of the set of
training programs and interpreter recompilation.

Another optimization based on exploitation of frequently occurring bytecode
sequences were shown by Stephenson under the name of multicode substitu-
tion [11]. He showed that to limit the total number of instructions (including
those created by the optimization itself) such an approach must be combined

166 G.B. Prokopski and C. Verbrugge

with careful selection of sequences based on how well a sequence of bytecodes
can be optimized.

A completely different approach to execution of bytecode was taken by GCJ
and LLVM. GCJ is a GCC-based Ahead-Of-Time compiler, including also a
direct-threaded interpreter for dynamically loaded code. GCJ takes as its in-
put either Java source or Java bytecode (class files) and compiles them to an
architecture-specific executable. LLVM is a compilation framework created for
lifelong program analysis that features its own code representation, own compiler
and other tools that make it very extendable and reusable.

3 VM Execution and Code-Copying

Figure 3 shows a rough taxonomy of the different kinds of execution engines
used by Virtual Machines; in general this is through an interpreter or compiler,
though mixed designs are also possible [12]. On the right side of Figure 3 com-
piler approaches translate streams of bytecodes into native machine code, either
Ahead-Of-Time, where the compiled code is stored and made ready for multiple,
repeated execution, or Just-in-Time, compiling the code just prior to execution
and (typically) discarding the result after the program is completed. Compilation
is desirable for performance, but implies a very non-trivial resource commitment
not always available to VM designers.

Virtual Machine

Interpreter Compiler

code-copying

direct-threaded

switch-
threaded

Ahead-
Of-Time

Just-In-Time

Fig. 1. The taxonomy of Virtual Machines
execution engines

Interpreters have the advantage of
simplicity, although improved perfor-
mance is possible with different de-
sign approaches. We illustrate the
main designs on the left side of Fig-
ure 3 to situate the code-copying
approach; these include a basic
switch-threaded interpreter, and a
direct-threaded model.

A switch-threaded interpreter sim-
ulates a basic fetch, decode, execute
cycle, reading the next bytecode to
execute and using a large switch-case
statement to branch to the actual VM code appropriate for that bytecode. This
process is straightforward but if, such as in Java, bytecodes often encode only
small operations the overhead of fetching and decoding an instruction is propor-
tionally high, making the overall design quite inefficient.

A direct-threaded interpreter is a more advanced interpreter that minimizes
decoding overhead. This kind of interpreter requires an extension offered by
some compilers known as labels-as-values. Many operating systems, their tools
and VMs are written in C or its close derivatives. Normally a C program can
contain gotos only to labels. With the labels-as-values extension it is possible
to take an address of a label and store it in a pointer type variable. Later this
variable can be used as an argument of a goto. In a direct-threaded interpreter
a stream of bytecodes is thus replaced by a stream of addresses of labels. The

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 167

labels themselves are placed at the start of the code responsible for the execution
of operations encoded by each bytecode. With this mechanism the interpreter
can immediately execute a direct goto to the right chunk of code. Optimization
is implied by reducing the repeated decoding of instructions, trading repeated
test-and-branch sequences for a one-time preparatory action where a stream of
bytecodes is translated into a stream of addresses.

It is important to notice that the speed advantage of a direct-threaded inter-
preter over a switch-threaded interpreter already comes with the requirement of
additional, specialized support from the compiler used to compile the interpreter.

3.1 Code-Copying Technique

In some sense, and as indicated in Figure 3, code-copying1 bridges interpreter
and compiler-based VM implementation approaches. Code-copying is a further
optimization to interpreter design, but one which makes relatively strong as-
sumptions about compiler code generation. The basic idea of code-copying is
to make use of the compiler applied to the VM to generate binary code for
matching bytecodes. Parts or chunks of the VM code are used to implement the
behaviour of each bytecode. Those chunks of code are marked with labels at
their beginning and end. At runtime, the interpreter copies the binary chunks
corresponding to an input stream of bytecodes and concatenates them into a
new place in memory, as shown in Figure 2. Such a set of concatenated instruc-
tions is called a superinstruction and it can execute at a much greater speed
than using any of the other two formerly described techniques. Depending on
the application and other factors the code-copying technique can give from 1.2
to 3 times performance gain [5] over the direct-threaded technique.

3.2 Safety

As numerous studies have shown the performance gains from using code-copying
technique are clear [4,5,10]. However one of the biggest problems the implemen-
tators of code-copying VMs face is ensuring that the fragments of the code
chunks copied to construct superinstructions are still fully functional in their
new locations and as parts of superinstructions.

Unfortunately, the C standard does not contain any semantics that would
allow us to express and impose the necessary restrictions on selected parts of
code. For instance the bracketing labels placed before and after source code of
chunks and used to address them do not guarantee contiguity of the resulting
binary code chunks, nor do they place restrictions on the use of relative address-
ing. Without ensured contiguity compiler optimizations will often relocate basic
blocks of a chunk outside of the bracketing labels. At VM runtime this will result
in incomplete copies of such a code chunk. The use of relative addressing of jump
or call targets outside of a code chunk will make the copies of such chunk contain
1 Note that in the literature what we call code-copying is sometimes referred to as

inlining or inline-threading [5]; these latter terms, however, we find, mislead most
compiler developers and researchers to think of inlining of functions or methods.

168 G.B. Prokopski and C. Verbrugge

ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0

ILOAD_1

IADD

ISTORE_2

. . .

. . .

. . .

ILOAD_1

ILOAD_0

IADD

ISTORE_2

in terpre ter main loop
(d i rec t - th readed)

single superinstruct ion
(code-copying)

super instruct ion
ILOAD1_ILOAD0_IADD_ISTORE2

Fig. 2. A simplified comparison of direct-threaded and code-copying engines

jumps or calls to invalid addresses. These and other related serious issues have
to be handled, otherwise virtual machine crashes or undefined behavior are to be
expected. To the best of our knowledge there is no production-quality solution
that would ensure creation of code chunks by an optimizing C compiler that can
be safely copied and executed.

Without guaranteed safety of code-copying an interpreter cannot practically,
reliably make use of this powerful technique. Previous results used hand-done
examination, trial-and-error, and manual porting combined with specialized test
suites [9] in attempt to ensure safety. The large effort required, and the lack of
a fully verified result motivates our design in the next section.

4 Design

For VM designers our approach requires the additional use of simple identifiers
bracketing copyable code. We make use of the well-known #pragma operator
to surround and thus help identify copyable chunks. The bulk of our design ef-
fort is in ensuring safety for code copying, a result guaranteed by a small set
of well-specified additional passes within GCC. Below we first detail require-
ments for code to be relocatable and thus suitable for code-copying, followed by
a description of the GCC modifications, including the final verification phase.

4.1 Generation of Safely Copyable Code

There are specific requirements that a chunk of code has to meet so it could
be copied to another location in memory, concatenated with other chunks and
safely executed. A code chunk can only be safely copied if its copy is functionally
equivalent, i.e. chunk of code Cbaseaddrα ≡ Cbaseaddrβ where α �= β.

We thus define a chunk of code C to be copyable if all of the following condi-
tions ensuring functional equivalence are true:

– C occupies a single contiguous space in memory that starts and ends with
two distinct code labels specified by a programmer.

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 169

I. Register pragma locations start/end during parsing

II. Scan the tree (twice)

III. Insert permanent marking and ensure areas are solid

IV. Fix ordering of basic blocks in copyable areas

VI. Verify RTL of copyable areas, that they

 hold the copyable-code properties

- ensure each pragma location is followed by a label

- flag these label statements as BEGIN & END

- insert volatile assembly around END labels

- modify gotos within the copyable areas to use absolute

 addressing (via register) if the target is outside of an area

- modify calls within areas to use absolute addressing

 (call via register)

AST is created

Scan 1

Scan 2

CFG is created
BB’s are created

Tree-SSA and RTL
optimizations

late
optimizations

- initial permanent marking of BEGIN/TARGET basic blocks

- restore marking of copyable areas using BEGIN, TARGET

 and computed gotos as boundaries (reusable pass)

- restore marking of copyable areas (reusable pass)

- reorder basic blocks of copyable areas

V. Insert RTL markers of copyable areas boundaries

Fig. 3. To produce copyable code with minimal changes to the internal structure of
the compiler we inserted several well isolated passes

– Natural control flow enters C only at its “top” and exits only at its “bottom.”
– Any jump from inside of C to code outside of C (e.g. to an exception handler)

uses an absolute target address.
– Any jump from the inside of C to another place inside C uses a relative

target address.
– Any function call from inside of C uses an absolute target address.
– At C boundaries registers must be used consistently with other code chunks

boundaries (this is already ensured by GCC’s computed goto extension).

4.2 GCC Modifications

Our goal was to modify a highly optimizing C compiler, such as GNU C Compiler
4.2, to selectively generate code that meets these requirements therefore ensuring
functional equivalence of selected code chunks.

To compile a single function GCC executes several dozens of optimization
passes. These passes modify the code in ways that are usually supposed to im-
prove the speed of the resulting code, or its other parameters. It is not feasible to
modify and maintain all of these passes to selectively generate code conforming
to our requirements. Instead we modify the compiler to:

– preserve the information about which parts of the code have to be treated
specially—from the moment the source code is parsed to the moment the
final assembly is generated,

170 G.B. Prokopski and C. Verbrugge

– allow (almost) all of the optimizations to execute without modifications and
then at certain selected points of the compilation process use additional
passes that modify the code in a manner that makes selected code chunks
copyable.

The overall set of modifications is divided into separate passes that collectively
track or restore information throughout the whole compilation process; a general
description is shown in Figure 3. Depending on the representation of the code
at each stage of compilation this information is tracked in a different form. In
the source code it exists as #pragma lines, then as special flags of selected AST
elements, later we attach it to basic blocks and computed goto’s, and eventually it
is inserted in a form of notes into the assembly. Tracking this information turned
out to be the most difficult part of our work. It is because of all the aggressive
optimizations that might duplicate, remove, and move parts of the code in which
we are interested that ensuring copyable code is non-trivial. We ensure that this
information is not lost, misplaced or mangled by separating it from structures
accessed by optimization passes where possible and by employing multiple sanity
checks in each of our passes that use this information.

Phase I: Code parser pragma hook. Figure 5 illustrates a fragment of inter-
preter source code for a single code chunk. The code of an instruction (bytecode)
is surrounded by the special copyable #pragma statements that mark the begin-
ning and end of the copyable chunk.

Phase II: Scan the tree (1). To ensure chunks are properly identified and
separated an initial pass is performed to check starting and ending conditions.
Each location of #pragma copyable begin and end registered during parsing is
checked to ensure it is followed by a label. These start and end labels have then
their special start and end flags set accordingly. Finally the code is modified by
artificially inserting into the stream of statements two empty volatile assembly
instructions around the end label.

The volatile assembly code acts as a barrier to code movement, and is used to
ensure the basic blocks directly following areas, the target blocks, are preserved
and act as the sole and unique exits of the natural control flow from a copyable
area. Our tests showed that otherwise some optimizations would attempt to
remove or merge target blocks.

Phase II: Scan the tree (2). In most architectures control flow jumps can be
relative or absolute. Relative jumps have the advantage of being (usually) smaller
instructions, but having a machine-specific limitations on the distance for which
they are useful. Absolute jumps are often longer instruction sequences since the
complete target address must be encoded, not just the relative displacement.
As mentioned in Section 4.1 for control flow that goes outside of the copyable
area absolute jumps are required to ensure the code behaves the same once
copied. Similarly, jumps within a copyable region must use relative addressing
to guarantee a copy will behave in an equivalent fashion.

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 171

Original code within a copyable area:

goto NullPointerException; /* label outside of the copyable area */

Is replaced with:

{ void *address = &&NullPointerException;
/* this assembly prevents constant propagation */
__asm__ __volatile__ ("" : "=r" (address) : "0" (address) : "memory");
goto *address; /* computed goto uses absolute addressing */ }

Fig. 4. To ensure absolute addressing a goto to outside of a copyable area is replaced
with a specially crafted computed goto.

Our second phase thus includes a pass to convert control flow statements that
go outside of a copyable area (and not to the target block) to use absolute addresses
for their targets. There are two cases of such control flow: a goto and a function call,
both complicated by the fact that GCC itself does not produce the final binary
code, rather it uses an external, platform-specific assembler program. It is in fact
the assembler’s role to choose the addressing mode for each call or jump; typically
the shortest addressing mode to reach the target is chosen, but there is no general
and relatively platform-agnostic way to specify in the assembler input that a jump
or a call is to use absolute addressing. Below we describe how we ensure absolute
jumps are used through the use of computed gotos, and then how we process the
code chunk to ensure control flow is safe for copying.

To force selected jumps and calls to use absolute addressing we modify the
code of these instructions to make jumps and calls via a register. As shown in
Figure 4, in C these instructions are represented respectively by a computed goto
and a function call using a function pointer. A computed goto is a special feature
of the labels-as-values extension of GCC used by direct-threaded engine. It is
a goto whose argument is not a label but a variable containing the address of
a label (or any other address). Using a register to hold the destination address
may have a negative impact on the performance that will vary from platform to
platform, or even CPU type. Here the benefits of maintainability and safety are
paramount, and as we will show in Section 5 our solution is efficient in practice.
Nevertheless, more portable ways of expressing absolute addressing could slightly
improve performance.

Our current system assumes that code chunks are small enough that the
compiler will use optimal, relative jumps within the code of instructions found
in a region. While it does not attempt to ensure intra-area jumps are relative, an
appropriate pass could easily be added. Violations to this assumption, however,
will still be detected in our final verification phase.

Phase III: Mark and ensure areas are solid. Rather than modifying a
large part of GCC to ensure properties of copyable code regions are preserved at
all subsequent compilation stages, by all compilation passes, we instead inserted
two additional passes. The first pass modifies the code in a way that ensures

172 G.B. Prokopski and C. Verbrugge

the minimal information about copyable code regions is always preserved. The
second (reusable) pass uses this information and is capable of finding all the basic
blocks belonging to copyable areas after arbitrary optimizations. Both passes
include sanity checks mentioned earlier ensuring the additional information on
code chunks is not lost or mangled.

a r e a = 5
flags = START

a r e a = 5

a r e a = 0

a r e a = 5

a r e a = 5
flags=TARGET

a r e a = 0

Basic blocksSta tements s t ream

/* Code before the area */

#pragma copyable start

 COPYABLE_ICMP_START:

 . . .

 /* Copyable code */

 . . .

#pragma copyable end

 ICMP_END:

/* Code after the area */

Fig. 5. Initial marking of basic blocks right
after parsing

After the source code is parsed into
the stream of statements the compiler
creates descriptions of basic blocks.
Each such description contains point-
ers to the first and the last instruc-
tion that a basic block contains. We
found that a basic block is a conve-
nient unit to carry the additional in-
formation about the copyable code. It
gives an easy access to smaller compo-
nents of the code, like each particular
instruction, while also being easily ac-
cessible via higher-level structures like
the control flow graph. We extended
the data structure describing a basic
block to store the unique id of the
copyable area a block belongs to and to store a field of utility flags. The initial
marking of basic blocks is straightforward. We scan the stream of statements for
labels earlier marked as start and end, and mark basic blocks with corresponding
flags.

In general optimizations can create new basic blocks, move or split existing
ones. One of the possible results is that some basic blocks that functionally are
part of a copyable area might no longer be placed between the start and target
basic blocks of this area and might not carry the initial marking. To recover
marking after optimizations we rely on the preservation of the start and target
blocks, which in turn is ensured with sanity checks. Area marking restoration
can then be done through simple propagation along the control flow graph, from
the start block of each area until the target block and jumps via computed gotos.
It is critical that the compiler had earlier modified all the jumps to outside of
copyable areas to use computed gotos. This way it is possible to always find the
limits of copyable areas.

Importantly, our approach does not use a heuristic and is guaranteed to prop-
erly restore the list of blocks belonging to each copyable area. We still included
extensive sanity checks that in practice should never be triggered. This is because,
for instance, we earlier inserted volatile assembly around chunks end labels and
disabled cross-jump optimization (see below). With these measures in place pre-
viously executed optimizations should not have inserted or deleted start or target
blocks or cause the control flow graphs of different code chunks to interfere.

For functions containing copyable code we disabled cross-jump optimization
which attempts to find identical code chunks within a function and share a single

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 173

instance of the code. This clearly conflicts with with the need of the code-copying
engine to use self-contained code chunks.

Phase IV: Fix basic blocks ordering. The main reason for our basic block
reordering pass is an optimization performed by GCC by default, basic block
partitioning. This pass does two things. It divides the set of basic blocks of a
function into those that are expected to be executed frequently (hot blocks)
and those that are expected to be executed rarely (cold blocks). In the final
assembly all the hot blocks of each function are located contiguously in the
upper part of the code, and the cold blocks are located below the hot blocks.
This optimization also reorders basic blocks to ensure that the fall-thru edges are
used for the most often encountered control flow. These are heuristic techniques
for improving instruction cache hit rate and simplifying control flow, and this
optimization can in practice improve the performance of a virtual machine by
several percent, therefore we want to allow for it.

For a chunk of code to be copyable the compiler has to restore the order of
basic blocks so that the marked code is self-contained. In this case the goal is
to move basic blocks to ensure that the start basic block of the copyable area
is followed by all other blocks belonging to it, which are then followed by the
target basic block of the same copyable area. After the marking of basic blocks
belonging to all areas is restored (as described in the previous section) it is
relatively easy to move all basic blocks belonging to an area into the wanted
positions. Positions of other basic blocks, not belonging to copyable areas, are
left unchanged.

4.3 Phase V and VI: RTL Markers and Final Verification

The additional passes described above modify the structure of the code based on
up to date information about the boundaries of basic blocks, construction of the
control flow graph, and other data. During the last compilation passes the GCC
compiler discards some of this information or does not keep it up to date. In our
tests we found that these last optimization passes do not change the structure
of the code enough to invalidate the properties of copyable code. Nonetheless,
this was not sufficient for the safety guarantees we required and another solution
was needed. We therefore added two passes.

Not long before the information about basic blocks and control flow graph
becomes unavailable an additional pass inserts into the program representation
(RTL stream) special (untouchable by other passes) notes that mark the start
and end of copyable areas, including the ID of an area. The second pass is then a
simple verification pass that uses only a minimum of information. It is executed
just before the final assembly is sent to the external assembler. With the notes
inserted by our previous pass it is possible to verify all the necessary properties
of copyable areas when the code is final. The verification algorithm takes each
instruction from the instruction stream and ensures that:

– all copyable areas are present,
– copyable areas do not interleave with one another,

174 G.B. Prokopski and C. Verbrugge

– jumps from a copyable area A are either to a target within A or to this
area’s target label (the label that begins the target basic block). Note that
it is also necessary to ensure that all jumps within A are also within the
allowable range of a relative jump2,

– jumps to the outside of an area are made via register and not a symbol (thus
are absolute),

– all calls from within areas are made via register and not a symbol (thus are
absolute).

A verification error at this point is uncorrectable and is treated as an internal
compiler error. This guarantees that if source code compiles properly then the
copyable chunks of binary code will be safe to copy and execute in a code-copying
VM. Sanity checks in all the passes ensure proper flow of the information on code
chunks which allows the final verification to function reliably. In our experience
we have not yet encountered a case where the verification pass would fail when
all the former passes executed properly.

5 Experimental Results

To examine practicality of our design we modified a Java Virtual Machine,
SableVM [5], to use our enhanced GCC. In SableVM source we marked code
chunks with our copyable #pragma. Code-copying was already supported in
SableVM, but required globally disabling block reordering in GCC and did not
provide safety guarantees. During preparations we used our enhanced GCC to
verify the unsafe code formerly used by SableVM’s code-copying engine and
found several cases where execution of a less likely control flow path in a byte-
code would result in a VM crash due to a function call using relative addressing.

The goal of our main experiments was thus to demonstrate that our new
approach allows the code-copying strategy to be realistically and more reliably
used while maintaining the performance. The results shown in Figure 6 have
been gathered using a machine with Intel Pentium IV at 3GHz, 512MB RAM.
The SPEC benchmarks, averaged over 10 runs, were executed with their default
settings (-S 100), and performance is shown normalized to the speed of the
direct-threaded engine as a baseline for comparison. SableCC and Soot are large,
object-oriented, in-house benchmarks.

The benefits of code-copying are clear. We are able to achieve approximate
parity with the unsafe code-copying approach. More surprising perhaps is that
the performance of SableVM version 1.13 modified to use our GCC extensions
actually improved over the manual code-copying design in most cases. We at-
tribute the general improvement to the fact that previously SableVM had to
globally disable basic block reordering for the code-copying engine to work at
all. With the added GCC support for code-copying this useful optimization was
enabled. We also note that the performance of two SPEC benchmarks that ben-
efit the most from code-copying, as well as Soot slightly decreased, about 2-3%.

2 This check has not been implemented in our current system.

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 175

Fig. 6. Performance comparison of SableVM with standard direct-threaded engine,
unsafe code-copying engine and safe code-copying engine using the GCC copyable-code
enhancement

We suspect that this effect is caused by the memory barriers inserted into the
code in places where the special #pragma is used. These barriers might be in-
hibiting some of the optimizations. Previously Gu et al. [8, 7], however, showed
that changes to the executable code placement without actual changes to the

Metric #
Data structures modified 4
Fields added to data structures 6
Data structures added 3
Functions added to existing files 4
Function calls/hooks inserted 8
Code lines added or modified 139
Code lines in new files 1500

Fig. 7. Metrics of code modified and added to
GCC

functioning of a VM can cause a
tremendous variance (up to almost
10%) in the VM performance. More
detailed analysis of performance
gains and losses is thus warranted,
but certainly the magnitude of cor-
relation in Figure 6 is sufficient to
demonstrate the general success of
our compiler-facilitated approach.
Overall, the effect is clear: our mod-
ifications efficiently enable code-
copying as a safe technique for VM
interpreter design.

One of our goals was to minimize the impact of our changes to GCC on GCC
maintenance. Figure 7 shows the results of our impact measurements in terms of
required changes to code and data structures. In a truly large project such as a
GCC we see these numbers as indicators that our extension has minimal impact
on the existing GCC code and its maintenance. We also report that a major
upgrade of our enhanced GCC from 3.4 to 4.2 (about 2 years of GCC develop-
ment) took only a few hours and consisted mostly of renaming and testing. We
believe this validates our claim that a relatively simple compiler modification
can help improve the performance of dynamic execution environments.

176 G.B. Prokopski and C. Verbrugge

6 Conclusions and Future Work

For a variety of reasons, including simplicity and dynamic support, many modern
languages are based on virtual machine (VM) designs. Efficiency and ease of
design are key features for rapidly evolving languages and associated execution
environments.

Code-copying interpreters offer a good trade-off between performance and
maintenance, but were previously limited by the lack of critical safety guar-
antees, as well maintenance concerns with respect to the VM compiler itself.
Copyable code must behave functionally the same when copied, and while con-
ceptually trivial these guarantees are simply not provided by current compilers
or C language extensions.

With our work we demonstrate that it is possible to make code-copying safe
and practical. Our approach to GCC modifications demonstrates viability of
our technique for ensuring the safety properties essential to code-copying. We
show how this technique can be relatively easily integrated with a modern C
compiler, while keeping the changes relatively isolated and making only limited
assumptions about the inner workings of a compiler, thus ensuring long-term
maintainability.

The implementation of a code-copying GCC extension on which we based this
paper was focused on supporting the i386 architecture. On other architectures
there might be additional issues with delay slots (e.g. MIPS), relative address-
ing of externs and globals (e.g. x86 64), or relative-jump span limitations (e.g.
PowerPC). We are currently working on incorporating the necessary detection
and correction mechanisms into our GCC extension leading to full support of
more architectures.

As well as deeper performance analysis, further determining the source of our
gains over hand-done code-copying, our immediate future work is in the appli-
cation of our technique to other VM architectures and other hardware architec-
tures. Simplified use of code-copying could improve performance for a variety of
predominantly interpreted languages, and we hope to show greater generality of
our design by replicating the code-copying technique in other environments.

This research was supported in part by NSERC and FQRNT. The authors
would also like to thank Etienne M. Gagnon for his suggestion regarding compiler
modification as a way of making code-copying practically usable. The source code
of our modified GCC 4.2 is available at http://www.prokopski.com .

References

1. Bélanger, D.: SableJIT: A retargetable just-in-time compiler. Master’s thesis,
McGill University (August 2004)

2. Ertl, M.A., Gregg, D.: Retargeting JIT compilers by using C-compiler generated
executable code. In: Parallel Architecture and Compilation Techniques (PACT
2004), pp. 41–50 (2004)

3. Ertl, M.A., Gregg, D., Krall, A., Paysan, B.: Vmgen: a generator of efficient virtual
machine interpreters. Softw. Pract. Exper. 32(3), 265–294 (2002)

http://www.prokopski.com

Compiler-Guaranteed Safety in Code-Copying Virtual Machines 177

4. Ertl, M.A., Thalinger, C., Krall, A.: Superinstructions and replication in the Cacao
JVM interpreter. Journal of.NET Technologies 4, 25–32 (2006); Journal papers
from .NET Technologies 2006 conference

5. Gagnon, E.M.: A Portable Research Framework for the Execution of Java Byte-
code. PhD thesis, McGill University (2002)

6. Grant, B., Philipose, M., Mock, M., Chambers, C., Eggers, S.J.: A retrospective
on: an evaluation of staged run-time optimizations in DyC. SIGPLAN Not. 39(4),
656–669 (2004)

7. Gu, D., Verbrugge, C., Gagnon, E.: Code layout as a source of noise in JVM
performance. In: Component And Middleware Performance workshop, OOPSLA
(2004)

8. Gu, D., Verbrugge, C., Gagnon, E.M.: Relative factors in performance analysis of
Java virtual machines. In: VEE 2006: Proceedings of the 2nd international con-
ference on Virtual execution environments, pp. 111–121. ACM Press, New York
(2006)

9. Prokopski, G.B., Gagnon, E.M., Arcand, C.: Bytecode testing framework for
SableVM code-copying engine. Technical Report SABLE-TR-2007-9, Sable Re-
search Group, School of Computer Science, McGill University, Montréal, Québec,
Canada (September 2007)

10. Rossi, M., Sivalingam, K.: A survey of instruction dispatch techniques for byte-
code interpreters. Technical Report TKO-C79, Faculty of Information Technology,
Helsinki Univeristy of Technology (May 1996)

11. Stephenson, B., Holst, W.: Multicodes: optimizing virtual machines using bytecode
sequences. In: OOPSLA 2003: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pp. 328–329. ACM Press, New York (2003)

12. Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T., Kawahito, M., Ishizaki,
K., Komatsu, H., Nakatani, T.: Overview of the IBM Java just-in-time compiler.
IBM Syst. J. 39(1), 175–193 (2000)

Hardware JIT Compilation for Off-the-Shelf

Dynamically Reconfigurable FPGAs

Etienne Bergeron, Marc Feeley, and Jean Pierre David

DIRO, Université de Montréal
GRM, École Polytechnique de Montréal

{bergeret,feeley}@iro.umontreal.ca, jpdavid@polymtl.ca

Abstract. JIT compilation is a model of execution which translates
at run time critical parts of the program to a low level representation.
Typically a JIT compiler produces machine code from an intermediate
bytecode representation. This paper considers a hardware JIT compiler
targeting FPGAs, which are digital circuits configurable as needed to im-
plement application specific circuits. Recent FPGAs in the Xilinx Virtex
family are particularly attractive for hardware JIT because they are re-
configurable at run time, they contain both CPUs and reconfigurable
logic, and their architecture strikes a balance of features.

In this paper we discuss the design of a hardware architecture and
compiler able to dynamically enhance the instruction set with hardware
specialized instructions. A prototype system based on the Xilinx Virtex
family supporting hardware JIT compilation is described and evaluated.

1 Introduction

Software just-in-time (JIT) compilation is a well-known technique for improv-
ing the execution speed of virtual machine interpreters. The virtual machine
identifies through run-time profiling which program parts are critical to its per-
formance (so called hot spots) and compiles these parts into optimized machine
code that is directly executed by the processor. Because the program’s behavior
evolves throughout its execution, the virtual machine continually monitors the
program to find the new hot spots to compile. The compiled code is often stored
in a limited size cache which contains the most recently compiled parts of the
program. Speed-ups are obtained when the monitoring and compilation effort
are more than compensated by the execution time savings of the compiled hot
spots. For this reason, time-consuming complex optimizations are typically not
performed by JIT compilers.

Hardware just-in-time compilation is an extension of this model to field-
programmable gate arrays (FPGAs). Figure 1 contrasts the software and hard-
ware JIT models. FPGAs are highly parallel configurable digital circuits whose
behavior can be tailored to a specific application in the field through the pro-
cess of configuration. Normally this configuration is performed at power-up, but
some FPGA families, namely the Xilinx Virtex II [19] and above, can recon-
figure sections of the device at run time. This FPGA family also supports up

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 178–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hardware JIT Compilation 179

Central
Processing

Unit
Sequential
execution

Configurable
Logic
Unit

Parallel
execution

Program
Memory

Data
Memory

PeripheralsDMA

Software
JIT compilation

Hardware
JIT compilation

System
bus

Fig. 1. Software and hardware JIT models

to two classical processors inside the reconfigurable logic, which can be used to
implement a virtual machine interpreter in software. A hardware JIT compiler,
embedded in the virtual machine interpreter, will compile program hot spots
into the low-level description (bitstream) of a digital circuit performing the same
computation. The circuit’s layout and position in the reconfigurable logic as well
as its interconnection with the processor running the virtual machine interpreter
are determined dynamically.

Circuit synthesis, placement and routing are rather time-consuming tasks. It
is not uncommon for standard synthesis tools to take several minutes on a high-
performance workstation to produce the bitstream for a simple computation.
This high cost of compilation must be amortized on abnormally long running
hot spots to achieve any speed-up. In order for hardware JIT compilation to
be useful for executing more typical programs, it is necessary to decrease the
compilation time by a few orders of magnitude. This is the obstacle we tackle in
this work.

Since the bitstream format of dynamically configurable FPGAs is not docu-
mented by the vendors, all the related work involving dynamical configuration
are based on vendor-supplied proprietary compilation tools. Our recent work [1]
has enabled us to extract enough information on the bitstream format to be able
to generate partial bitstreams on-the-fly in a fraction of a second without any
proprietary tool. We believe this is a key result on the road to general purpose
reconfigurable computing.

This paper describes the fast synthesis technique we have designed for a hard-
ware JIT compiler. Sections 2 and 3 report on related work and give some back-
ground information on FPGAs. We describe a prototype compiler in Section 4.
An evaluation of its performance is given in Section 5. We specifically focus our
attention on the synthesis times.

2 Related Work

Reconfigurable architectures such as PipeRench [8,16] and WASMII [15] gave
birth to the concept of virtual hardware. The idea is analogous to virtual memory.

180 E. Bergeron, M. Feeley, and J.P. David

Since the hardware resources on a chip are limited, it may be interesting to “store
hardware” out of the chip and “swap hardware” when required. Such hardware
manipulations require a dedicated area of the chip that is configurable. This
means that it is possible to alter the logic or the connections via software. The
store and swap mechanisms thus actually access the configurations bits, which
are also called bitstream.

Xilinx Virtex II and above FPGAs, which support dynamic reconfiguration,
have also been used for virtual hardware implementation [4]. Two synthesis flows
are proposed by Xilinx to handle the creation of dynamic modules using their
tools [18]. Essentially, each possible global configuration of the FPGA must be
pre-compiled using the standard synthesis process. Then, partial bitstreams are
extracted from the complete bitstream for each module. The swapping from one
configuration to another is achieved by sending a partial configuration to the
FPGA. Standard tools were not originally developed for this type of compilation
and their use imposes severe limitations on the design of virtual hardware. At
present, it is still very difficult to develop, debug and guarantee the stability of
dynamic applications.

The RTR-JVM (Reconfigurable Run-Time Java Virtual Machine) [9] proposes
a different approach where the concept of dynamic configuration is integrated
in the language and its virtual machine. This architecture allows the dynamic
loading of hardware modules produced from Java source code and translated
to VHDL code. By profiling the hot spots, the system is able to identify good
candidates for hardware implementation. The main limitation of this system
is that modules are produced statically (by the standard synthesis flow) and
preliminary executions are required.

Warp processors [11] are another example of hardware virtualization. The
authors propose to translate binary code to hardware [17] in order to make
the production of dynamic modules transparent to the user. The advantage of
this mode of execution is that it can be integrated to a conventional processor.
That work is based on a custom FPGA [12] as well as custom tools, compilers
and algorithms [13,14], which benefit from the regular structure of the custom
FPGA. A drawback of custom FPGAs is that they lag commercial ones in terms
of size, speed, and cost. The Warp project nevertheless demonstrated that JIT
compilation is viable on modern FPGAs.

We believe that on-the-fly generation of dynamic modules is appealing and
needs more investigation. In this paper, we demonstrate that these techniques
are applicable to commercial FPGAs despite their limitations in terms of archi-
tecture and synthesis tools.

3 Target Architecture

Our methodology assumes a dynamically reconfigurable FPGA with an em-
bedded processor as illustrated in Figure 2. The application and the compiler
are stored in an external memory and run on the embedded processor. Some
peripherals can be mapped inside the FPGA configurable logic, allowing the

Hardware JIT Compilation 181

Inputs/Outputs

Embedded

Static

processor

E
xt

er
na

l
m

em
or

y

Reconfigurable

peripherals

zone for dynamic
instructions

FPGA

Fig. 2. Diagram of a system supporting dynamic reconfiguration on a FPGA

application to perform input/output. This zone is static, which means that it
is configured at power-up and will not be modified later. The rest of the logic
constitutes the reconfigurable zone, which will behave as a hardware cache for
the dynamically generated specialized instructions. The compiler produces these
instructions on-the-fly and configures the dynamic zone to make them available
to the application through standard I/O instructions.

In practice, we use Xilinx Virtex-II Pro devices, which are one of the few
commercial devices currently supporting dynamic and partial reconfiguration.
Moreover, these devices (and later series) are the most dense FPGAs available
on the market. Figure 3 shows the layout of a small Virtex-II Pro device with
one embedded PowerPC processor.

A FPGA is mostly a grid of configurable blocks that can be interconnected in
a configurable way. Input/Output Blocks (IOBs) are physically connected to the
external pads. They are placed on the grid’s periphery. Configurable Logic Blocks
(CLBs) are the heart of the processing power of the FPGA. Basically, each CLB
contains user-defined lookup tables (LUT), registers and a programmable rout-
ing matrix to manage the connections to other CLBs. Virtex-II Pro FPGAs also

CLB

JTAG

IOB

ICAP

PPC405
PowerPC

BRAM
Multiplier

Fig. 3. Virtex-II Pro Device Grid

182 E. Bergeron, M. Feeley, and J.P. David

contain hard-wired cores to increase the design density. The densest FPGA (2VP
100) is equipped with 2 embedded PowerPC processors running at 400 MHz, 12
clock management devices, 444 18x18 bit multipliers, 444 block RAMs (18 kbits
each) and almost 100000 CLBs spread all over the chip.

Some special blocks are located at the chip’s periphery. The JTAG block is
a serial interface provided for low level debugging. The Internal Configuration
Access Port (ICAP) is used to configure the FPGA. In our architecture, it is
connected statically to the PowerPC processor to enable dynamic configuration
through standard I/O instructions.

Given this architecture, the challenge we face is to quickly generate the con-
figuration of the dynamic zone to enable efficient JIT hardware. More precisely,
we have to configure the blocks and their interconnection. This is addressed in
the next section.

4 Compiler Architecture

The next step is to build an execution environment running on the processors.
Instead of writing a whole system from scratch, we decided to port the Gambit [6]
Scheme to C compiler to the embedded PowerPC. This way, we inherit all Scheme
features and a dynamic execution model (dynamic software module loading,
dynamic code interpretation, etc). Gambit uses a fast interpretation technique [7]
and gives access to the AST representation of the running program which the
JIT compiler uses.

Many languages can benefit from this kind of execution and we believe they can
use a common back-end. High-level language synthesis, which consists in choosing
how high-level concepts are mapped to hardware, is the most language-dependent
phase but the running time of this phase is not a bottleneck. We have already ad-
dressed this issue in a previouswork in the context of a static hardware compiler [2].

The hardware JIT compilation process follows the standard phases used to
produce a FPGA bitstream: synthesis, technology mapping, place and route, bit-
stream generation and configuration. The synthesis phase translates a Scheme
expression into a representation that explicitly indicates how high-level concepts
are implemented (e.g. pipeline, state-machine,. . .) to take advantage of hard-
ware. The technology mapping phase attempts to map components generated
by the synthesis to patterns and resources existing on the FPGA (multipliers,
block RAMs, slices,. . .). The place and route phase finds a location for each
of the resources and connects them by assigning appropriate wires. Finally, the
bitstream generation produces a partial bitstream that will be downloaded into
the configuration memory in the configuration phase.

In a static compiler, these phases are optimized to produce a high-density,
fast and low-power design. Problems faced by a JIT compiler are not the same
and new techniques must be developed; the compilation time is one of the most
important aspects. To minimize it, some trade-offs must be made. Thus, we
prefer greedy algorithms over computation-intensive algorithms that could yield
a more optimized design.

Hardware JIT Compilation 183

In the following sections, we describe the algorithms and design choices made
at each phase of the compilation.

4.1 Source Language and High-Level Synthesis

High-level synthesis of digital systems consists in transforming a behavioral (al-
gorithmic) description of a design into a RTL (register transfer level) description
of the design. This phase determines how the high-level concepts of the program-
ming language are translated to low-level primitives.

Decisions must be taken on how high-level concepts can be implemented in
hardware. For example: should a function be implemented as a pipeline able to
handle parallel calls, or as a state machine, much more compact but unable to
handle parallelism? Other decisions must be taken such as which communication
protocol to use between software and hardware.

We chose to use Scheme [10] because it is a dynamic language quite easy to
use and learn. Scheme provides a small set of primitive constructs with which
most high-level features can be implemented. This simplifies the structure of the
compiler.

To elegantly provide dynamic compilation to hardware, our compiler is made
available as a user-callable synthesize primitive. This primitive maps a function
object, possibly a closure, onto the reconfigurable hardware. The sole parameter
is a function and it returns a function which performs the same computation in
hardware (i.e. semantically synthesize is the identity function). If the compila-
tion fails, the primitive returns the argument unchanged. Thus, the complexity
of hardware synthesis is hidden behind a single function.

This approach meshes nicely with function closures which remember their en-
vironment of definition. For people versed in functional programming languages
dynamic hardware synthesis with this extension is very natural. Hardware spe-
cialization is simply viewed as the partial evaluation of the function body given
the binding of variables in the definition environment (i.e. the closure’s free
variables).

Figure 4 shows a use of the synthesize primitive. The call (adder 4) re-
turns the closure which is an instance of the lambda-expression at line 3. This
closure is a specialized version of an adder which always adds 4 to its argument.

1 (define adder
2 (lambda (x)
3 (lambda (y)
4 (+ x y))))
5

6 (pretty -print
7 (map (synthesize (adder 4))
8 ’(1 2 3 4 5 6 7 8 9 10))

Fig. 4. Hardware synthesize/invocation of a specialized instruction

184 E. Bergeron, M. Feeley, and J.P. David

By passing this closure to the synthesize primitive, the system dynamically
compiles the closure, configures the dynamic zone and returns another closure
able to communicate with the dynamic instruction. When map calls that closure,
the argument is sent to the hardware’s input and the result is obtained from the
hardware’s output.

High-level synthesis is complex because many issues must be taken into ac-
count (e.g. memory access, global variables, continuations, threads. . .). In our
current prototype, we only support simple expressions containing arithmetic and
logic operators. Much work remains to be done to determine how to perform
high-level synthesis on general purpose languages.

4.2 Technology Mapping

Technology mapping consists in transforming technology-independent logical cir-
cuits into a technology-dependent mapping on a given technology. Typically, this
phase is driven by a set of technology patterns defined in a library. Mapping is
constrained by characteristics such as available physical gates, delays, available
power and area.

Compiler back-ends solve a similar problem when generating code. Two ap-
proaches are typically used: top-down and bottom-up. The top-down approach,
often called Maximal Munch, consists in finding, in the library, a pattern that
matches as much as possible from the root of the tree. Parts that were not
matched are processed in the same way. Another approach is to use dynamic
programming to find a way to cover the tree with a set of patterns.

Our pattern library is designed to be a bridge between a high-level language
and the low-level requirements imposed by the FPGA fabric. A typical operator
has a height of 4 CLBs and uses one slice column (i.e. half of a CLB column).
The use of a column of slices can be justified by the way fast carry chain logic
works. We decided to use 4 CLBs (and 16-bit operators) because the configura-
tion process works with 32-bit words and a CLB is 3 bytes wide. Thus, we obtain
operators representable by a sequence of three 32-bit words. In addition, embed-
ded multipliers are 18x18-bit and can implement 16-bit multiplication directly.
Figure 5 shows typical operator patterns of our library.

In our prototype, we decided to use a fast top-down approach. This phase
takes less than a millisecond to perform mapping of a specialized instruction. It
does not require much memory and is far from being the bottleneck of synthesis.

4.3 Place and Route

Placement consists in finding a location for each component of the design. Loca-
tions are chosen to minimize the distance between dependent components and
to maximize the probability of success of the routing phase. Sometimes, other
criteria such as power consumption must also be taken into account. Routing
consists in finding a path through static wires for each net.

Placement and routing are the slowest phases of synthesis on FPGA. Run-
ning times of several minutes are common for these phases. Although phases are

Hardware JIT Compilation 185

Carry chain

Switch matrix

CLB

16 bit routing 16 bit operator

LUT
Slice

(2 LUTs / Slice)
(2 Slices / Column)

2 operators / 4 CLBs

Fig. 5. Mapping of operators onto the FPGA fabric

run separately, they are interdependent. A good placement facilitates routing,
whereas a bad placement makes routing extremely complex. Because of the com-
plexity of these phases, their algorithms are crucial to be optimized if we want to
attain short compilation times. To understand current fast techniques, we briefly
explain the VPR and the ROCR tools which are the fastest available algorithms
for FPGA compilation. We then describe algorithms accelerating these phases.

The VPR (Versatile Place and Route) [3] tool uses the simulated annealing
algorithm for placement. The basic idea is to perform a random initial place-
ment of all components. At each iteration, components are randomly swapped
with a probability function of temperature and cost. The temperature gradu-
ally decreases until a threshold is reached. The VPR routing algorithm is an
improvement over the Pathfinder negotiated algorithm [5]. Initially, it routes all
nets with the shortest path regardless of the availability of resources. Dijkstra’s
algorithm is used to find the shortest path. At each iteration, every route is
sequentially re-routed by the lowest cost path. The cost of using a resource is a
function of the overuse of that resource. At the end of the iteration, the costs
of routing resources are adjusted accordingly to the amount of overuse in the
previous iteration. By gradually increasing the cost of oversubscribed routing
resources, the algorithm forces nets to avoid them and to use alternative routes.
Although VPR is quite fast, it is not fast enough for JIT place and route.

ROCR (Riverside On-Chip Router) [13] is designed for hardware JIT compi-
lation. It uses the basic cost model of VPR. To perform routing, it uses a global
and detailed routing algorithm. The design of the fabric allows the algorithm to
represent routing between CLBs as routing between switch matrices to which
CLBs are connected. The global routing algorithm works like the VPR algorithm.
Nets are initially routed with a greedy algorithm. Instead of un-routing all nets,
only illegal nets are re-routed in an iteration. While using the same routing cost

186 E. Bergeron, M. Feeley, and J.P. David

model as the VPR router, ROCR incorporates a small routing adjustment cost
to all routing resources used by an illegal route. The routing adjustment cost
discourages the greedy routing algorithm from selecting the same initial path
in subsequent iterations. Once global routing is done, ROCR performs detailed
routing which consists in assigning the channels (path in the switch matrix) used
for each route. Two routes present a conflict when both routes pass through a
given switch matrix and are assigned the same channel. This problem can be
solved by a graph-coloring algorithm. The use of Brelaz’s vertex coloring algo-
rithm allows a linear time approximation which is good enough for solving the
routing problem. ROCR takes advantage of the regular and basic structure of
the switch matrix of a custom made fabric. It is an order of magnitude faster
than VPR and uses an order of magnitude less memory.

To obtain a faster place and route algorithm, we explored several approaches.
As JIT systems are typically used for high-level languages, we chose to restrict
ourselves to fixed-width operators. We reduced the size of the problem by in-
creasing the granularity of the operators, which operate on 16-bit integers. We
also allowed algorithms to fail when problems are too complex, with a fallback
invoking the more expensive algorithms.

Placement. To simplify the placement algorithm, all operators are placed on
a horizontal line whose height equals 4 CLB. Thus, the placement problem has
only one dimension.

We implemented a classical simulated annealing algorithm. It takes about
120 ms for a circuit of 30 operators and 300 nets. This algorithm gives quite
good results and routing always succeeded in our tests.

In our search for a faster algorithm, we attempted to implement a simpler
algorithm which worked surprisingly well on our tests. We performed initial
placement by flattening the expression tree in the topological order of the data
dependencies. Then we performed a peep-hole optimization by trying every pos-
sible permutation of operators in a sliding window and kept the result with the
lowest cost. This algorithm is greedy because it always keeps a better candidate
when it finds one and never goes back to a worse solution. The algorithm loops
until a stable state is reached. It usually needs about 3 iterations to find the
best candidate, which takes less than 2 ms. The sliding window is illustrated
in Figure 6. Notice that a CLB can have two overlapping operators (one for
each column of slices) and the routing matrix is shared by the two operators
(Figure 5).

This algorithm only requires a few kilobytes of memory. The results are not
as good as the ones obtained by the simulated annealing algorithm but this does
not affect the performance of the final circuit.

Routing. Routing is more complex than placement. Figure 7 shows routing
resources used in our algorithm. FPGA routing resources consist of switch ma-
trices connected by external wires. There are various kinds of external wires:
simple, double and hex. Simple wires connect direct neighbors, double wires
connect the first and second neighbors, and hex wires connect third and sixth

Hardware JIT Compilation 187

16−bit bus16−bit operator

Sliding window

Fig. 6. Fast placement with peephole minimisation

Configurable
Switch Matrix

Routed Net

Primitive Pin Primitive Pin

External wires
Double wires

Direct wires

Hex wires

Switch matrix
output wire

Switch matrix
input wire

Fig. 7. Routing resources and a typical route

neighbors. Longer paths are routed through multiple switch matrices using mul-
tiple external wires.

A typical route starts from a primitive pin, passes through a switch matrix,
uses a wire to another switch matrix and ends at another primitive pin. All
programmable interconnect points (PIP) are in the switch matrix and nothing
is configurable outside the CLB.

The routing algorithm is split into two levels: external and internal routing.
The algorithm applies a sequence of greedy external routers that call different
internal routers to manage the routing inside the switch matrices. By carefully
pairing external and internal routers and by applying greedy and efficient algo-
rithms first, it is possible to minimize the routing time and obtain an efficient
routing.

Internal Router. Paths inside a switch matrix and their corresponding Pro-
grammable Interconnects Points (PIP) are determined by the internal router.
Internal routing is hard to achieve because the switch matrix is irregular, not
fully connected and paths may be of various depths. This router finds the short-
est path in the switch matrix from an input wire to an output wire. It takes into
consideration all used resources and may fail if there is no path or if the routing
is too complex.

188 E. Bergeron, M. Feeley, and J.P. David

The first internal router is implemented using a lookup table. The shortest
paths from all inputs to all outputs of a switch matrix are pre-computed. There-
fore, if a resource in the shortest path is already used, the routing simply fails.

The second internal router uses depth-first traversal. This algorithm is faster
than Dijkstra’s algorithm because paths are usually very short. The depth-first
search was implemented by a set of mutually recursive functions that represent
the connectivity of the switch matrix. Thus, there is no data manipulation, only
fast code execution. We ordered the recursive calls to maximize the likelihood
of reaching an output point.

External Router. The external router drives the algorithm to determine where
the next switch matrix is and which external wire is taken between switch ma-
trices. As stated above, it uses an internal router as a helper to solve connections
inside the switch matrix. External phases are sorted in such a way that most of
the nets will be routed rapidly at the beginning while the remaining nets will be
routed by a slower and more complex algorithm at the end.

The direct phase routes nets that can be routed only by using direct wires.
Thus, only direct neighbors can be routed by this phase. The next phase, general
routing, tries to route nets that only use one double or hex wire. As the placement
minimizes the distance between neighbors, after these two phases, almost all nets
are routed except those passing through more than one switch matrix or larger
than 6 CLBs. So, the next phase is greedy routing. The idea is to find recursively
the best path through switch matrices by jumping as close as possible to the
target. The last phase uses dynamic programming to find a valid path and is
able to route any net unless resource conflicts make it impossible.

Figure 8 shows examples of nets routed by each phase. As we see with the
direct and general phases, only one external wire connecting two switch matrices
is used. Greedy and dynamic routing use multiple external wires. We see the
difference between greedy routing and dynamic programming routing: the greedy
routing always jumps as close as possible. In the example, it jumps the longest

Direct

General

Dynamic

Greedy

Fig. 8. Typical routes obtained with the 4 external routers

Hardware JIT Compilation 189

possible path (6 CLBs) twice. The dynamic routing is able to find an alternative
route but it is slower. It is used when conflicts occur with the greedy algorithm.

Nets cache. Each external router keeps a cache of routed nets to determine if
another net can be routed the same way by applying a translation. There are
many cache hits because we use fixed-width operators and all the bits of a given
operator are often routed in the same way.

5 Results

We synthesized the design on the ML310 demo board made by Xilinx. This sys-
tem board has a Virtex-II Pro FPGA (2VP30) and 256 MB of external memory.
The board has more components (e.g. PCI Bus, VGA, Ethernet connector. . .)
but they were not used in our basic design; we only used the external memory,
the FPGA and the serial link. The program is running on the processor and
communicates through a console attached to the serial link.

Figure 9 shows a FPGA editor screenshot of a specialized intruction dynami-
cally generated by our compiler. We observe the horizontal placement of 4 CLB
high operators.

Fig. 9. Specialized instruction dynamically produced by the JIT compiler

To achieve high processing rates it is important to have a close coupling
of the processor and the dynamic instructions to minimize the communication
costs. It is also important for the dynamic instructions to exploit parallelism, for
example with a pipelined circuit. Because these aspects are orthogonal to the
placement and routing problems tackled in this paper we have used a less efficient
interface adequate for testing the correctness of the synthesized circuits. In our
prototype the input and output of the dynamic instructions are not interfaced
to the processor bus. The parameters and results are communicated through the
Internal Configuration Access Port (ICAP). The parameters become constant
values and the result is read back from the state of the output register. Given
the relatively slow speed of the ICAP interface, application speed-ups are not
possible. To solve this issue we must work-around Xilinx design flow limitations;
this work is still in progress. Given our goal to show that compilation time can be
low enough to support hardware JIT compilation, we focus our attention on the
synthesis phases. Therefore, instead of benchmarking applications, we evaluate

190 E. Bergeron, M. Feeley, and J.P. David

Table 1. Place and route times for specialized intructions

slices nets Place (ms) Route (ms)
S.A. fast-place dynamic no-table no-cache fast-route

48 80 3 0 3 2 4 2
64 112 8 0 5 3 5 3
80 144 7 0 4 3 3 3
144 272 47 2 12 5 4 4
224 432 166 6 227 143 19 14
440 864 763 46 1161 385 101 50

Table 2. Number of nets routed by each internal phase

nets pre-computed tables depth-first traversal
direct general greedy dynamic direct general greedy dynamic

80 56 16 0 0 8 0 0 0
112 68 32 0 0 12 0 0 0
144 56 80 0 0 8 0 0 0
272 140 120 0 0 12 0 0 0
432 136 252 35 0 8 0 0 0
864 224 532 88 0 0 0 0 0

the time needed to perform the placement and routing which are the bottlenecks
of synthesis.

Table 1 shows place and route times for expressions of various sizes (from 6 to
55 operators). For the placement, we compare the simulated annealing implemen-
tation with our fast implementation. We observe that our fast implementation
is about 20 times faster. It is important to note that our simulated annealing
implementation is already faster than current hardware synthesis tools because
it also performs one-dimensional placement of fixed-width operators.

The last set of columns shows the routing time of expressions. By disabling the
cache, we observe that the routing speed is halved. We also observe the speed-
up obtained by using pre-computed tables for switch matrices by comparing the
fast-route and the no-table columns. The dynamic column shows the worst case
of our algorithm when all nets are routed with the dynamic programming router.

Typical routing tools use the Pathfinder and Dijkstra’s algorithm. At each
iteration, they re-route wires. Our algorithm is not iterative and routes each
wire only once. Dijkstra’s algorithm’s speed should be similar to the dynamic
router speed. As VPR uses an iterative algorithm with Dijkstra’s algorithm, its
speed should be of the same order. Our algorithm does not iterate and only
applies a sequence of greedy routers. Speed-ups come from the fact that most
nets are routed by a faster router. Table 2 shows how many nets are routed by
each internal and external router. Almost all nets are routed by the direct and
general routers and a few nets really need a depth-first traversal to find a path.
This explains why our algorithm is efficient.

Hardware JIT Compilation 191

6 Conclusion

We have described a hardware JIT compiler for dynamically reconfigurable FP-
GAs. At run time, the JIT compiles function closures to a hardware circuit which
is downloaded to the reconfigurable zone of the FPGA. The JIT performs all
the normal phases of hardware synthesis including placement and routing. To
achieve good compilation speed we use a set of routing algorithms of increasing
complexity which are tried in a cascade. Most if not all of the work is usually
performed by the cheaper algorithms. The prototype we have built for the Xilinx
Virtex II Pro FPGA demonstrates that modest sized functions can be compiled
to hardware in a few milliseconds. Our experiments show that naive algorithms
and lookup tables significantly speed-up placement and routing.

Various heuristics and naive fast algorithms may be adapted to FPGAs de-
pending on their specific characteristics. We do not claim to have the best set
of algorithms. Our claim is that compilation times compatible with JIT com-
pilation are attainable on current reconfigurable FPGAs. We hope that our
work will spur further research on hardware JIT compilation for general-purpose
languages.

References

1. Bergeron, E., Feeley, M., David, J.P.: Toward On-Chip JIT Synthesis on Xilinx
Virtex-II Pro FPGAs. In: 50th International Midwest Symposium on Circuits and
Systems/5th International Northeast Workshop on Circuits (MWCAS/NEWCAS),
Montreal, Canada (August 2007)

2. Bergeron, E., Saint-Mleux, X., Feeley, M., David, J.P.: High-level synthesis for
data-driven applications. In: IEEE International Workshop on Rapid System Pro-
totyping, pp. 54–60 (2005)

3. Betz, V., Rose, J.: VPR: A new packing, placement and routing tool for FPGA
research. In: Glesner, M., Luk, W. (eds.) FPL 1997. LNCS, vol. 1304, pp. 213–222.
Springer, Heidelberg (1997)

4. Brebner, G.: The swappable logic unit: a paradigm for virtual hardware. In: FCCM
1997: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Comput-
ing Machines, Washington, DC, USA (1997)

5. Ebeling, C., McMurchie, L., Hauck, S.A., Burns, S.: Placement and routing tools
for the Triptych FPGA. IEEE Trans. Very Large Scale Integr. Syst. 3(4), 473–482
(1995)

6. Feeley, M.: Gambit-C, http://www.iro.umontreal.ca/∼gambit
7. Feeley, M., Lapalme, G.: Using closures for code generation. Computer Lan-

guages 12(1), 47–66 (1987)
8. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.:

PipeRench: A reconfigurable architecture and compiler. Computer 33(4), 70–77
(2000)

9. Greskamp, B., Sass, R.: A Virtual Machine for Merit-Based Runtime Reconfigura-
tion. In: IEEE Symposium on Field-Programmable Custom Computing Machines
(April 2005)

10. Kelsey, R., Clinger, W., Rees, J. (eds.): Revised5 Report on the Algorithmic Lan-
guage Scheme. ACM SIGPLAN Notices 33(9), 26–76 (1998)

http://www.iro.umontreal.ca/~gambit

192 E. Bergeron, M. Feeley, and J.P. David

11. Lysecky, R., Stitt, G., Vahid, F.: Warp processors. ACM Transactions on Design
Automation of Electronic Systems, 659–681 (July 2006)

12. Lysecky, R., Vahid, F.: A configurable logic architecture for dynamic hardware/-
software partitioning. In: Design Automation and Test in Europe Conference (2004)

13. Lysecky, R., Vahid, F., Tan, S.X.-D.: Dynamic FPGA routing for just-in-time
FPGA compilation. In: Design Automation Conference, pp. 954–959 (2004)

14. Lysecky, R., Vahid, F., Tan, S.X.-D.: A study of the scalability of on-chip routing
for just-in-time FPGA compilation. In: IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 57–62 (2005)

15. Ling, X.-p., Amano, H.: Performance evaluation of WASMII: a data driven com-
puter on a virtual hardware. In: Reeve, M., Bode, A., Wolf, G. (eds.) PARLE 1993.
LNCS, vol. 694, pp. 610–621. Springer, Heidelberg (1993)

16. Schmit, H., Whelihan, D., Tsai, A., Moe, M., Levine, B., Taylor, R.R.: PipeRench:
A virtualized programmable datapath. In: Proceedings of the IEEE 2002 Custom
Integrated Circuits Conference, pp. 63–66 (2002)

17. Stitt, G., Vahid, F.: Binary Synthesis. ACM Transactions on Design Automation
of Electronic Systems 12(3), 34 (2007)

18. Xilinx. XAPP290: Two Flows for Partial Reconfigurable Core Based on Small Bit
Manipulations. Technical report, Xilinx (September 2002)

19. Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
Technical report, Xilinx (June 2005)

Visualization of Program Dependence Graphs�

Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck

Institute for System Software
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz
Linz, Austria

{wuerthinger,wimmer,moessenboeck}@ssw.jku.at

Abstract. The analysis of a compiler’s intermediate data structures
helps at debugging complex optimizations. We present a graphical tool
for analyzing the program dependence graph of Sun Microsystems’ Java
HotSpotTM server compiler. The tool saves snapshots of the graph during
the compilation. It displays the graphs and provides filtering mechanisms
based on customizable JavaScript code and regular expressions. High
performance and sophisticated navigation possibilities enable the tool to
handle large graphs with thousands of nodes.

1 Introduction

The Java HotSpotTM server compiler [5] of Sun Microsystems uses a program
dependence graph [2] as the intermediate data structure when compiling Java
bytecodes to machine code. It applies optimizations such as global value num-
bering, conditional constant propagation, and loop transformations to produce
faster code. When debugging the compiler, only a textual output of the graph
is currently available.

We present a tool that facilitates analyzing the compiler by providing a graphi-
cal representation of the program dependence graph. The tool captures snapshots
of the graph during the compilation of a method, so the user can reconstruct
the transformations applied to the graph by compiler optimizations. The tool
applies filters based on regular expressions to make the appearance of the graph
customizable and enables the user to quickly focus on specific parts of the graph,
which is especially helpful for the analysis of large graphs.

While the main focus of the tool is currently the visualization of the data
structures of the server compiler, it can easily be adapted for other programs
that work on directed graphs. A more detailed description of the tool and the
program dependence graph can be found in [8].

2 Architecture

The program dependence graph of the Java HotSpotTM server compiler combines
control, data, and memory dependencies into a single graph. A node has ordered
� This work was supported by Sun Microsystems, Inc.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 193–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 T. Würthinger, C. Wimmer, and H. Mössenböck

Graph Snapshots

Server Compiler
Instrumentation

Java HotSpotTM VM Visualization Tool

Filter Layout Display

configuration

Fig. 1. Interaction between the compiler and the visualization tool

input slots and produces a single output value. Projection nodes are used when a
node produces a tuple. Figure 1 shows the interaction between the visualization
tool and the server compiler.

We instrument the compiler to take snapshots of the graph. The snapshots
are either stored in an intermediate file or directly sent to the visualization tool
via a network connection, which additionally allows configuration data to be
sent back to the compiler. The user can select a set of filters to be applied to
the graph. After the graph is transformed by the filters, the layout algorithm
calculates node positions and interpolation points for the edges. Then the graph
is displayed on the screen.

Data Model. The graphs are stored in an XML based format. They can be ex-
ported to a file to allow subsequent analysis. The snapshot of a graph is serialized
as the difference to the previous snapshot. This reduces the storage requirements
when snapshots of the graph are taken frequently.

Properties of nodes are stored as textual key-value pairs to improve extensibil-
ity. New properties can be introduced without changing the tool. Filters select
nodes based on regular expressions on the value of a property with a certain
name, and custom filters for arbitrary properties can be defined. This way, the
tool can be used to visualize directed graphs whose nodes have other properties
than the nodes of the server compiler.

The data transmitted from the server compiler to the visualization tool con-
tains a clustering of the nodes into basic blocks when this information is already
available in the compiler. Otherwise the tool calculates an approximate schedul-
ing of the nodes. The basic data model does not contain any display information.
Before the filters are applied, the transmitted graph is converted into a graph
with display information such as node positions and node colors. A node can
have multiple output slots in this model, e.g. if a filter merges several nodes.

Graph Layout. We use a hierarchical layout algorithm based on the approach
of Sugiyama [6] and the GraphViz tool dot [3]. The main focus of our imple-
mentation is performance, because the graph of large methods can have a few
thousand nodes and more than ten thousand edges. Long edges are cut so that
only the beginnings and endings are drawn. This improves the overview as well
as the performance. A special routing for backward edges ensures that they also
start at the bottom of their start node and end at the top of their destination
node.

Visualization of Program Dependence Graphs 195

Fig. 2. Screenshot of the visualization tool showing two graphs

3 Usage

Figure 2 shows the tool when displaying an extract of a graph in normal view
and a whole graph in satellite view. The methods retrieved from the server
compiler are listed in the top left window. Double-clicking on the graph snapshot
of a certain method opens the graph in the middle area. The top right window
contains the available filters; checkboxes activate them. The list of filters can
be edited, and the selected set of filters can be saved as a profile. The bottom
right window corresponds to the control flow graph approximation of the active
program dependence graph. The bottom left window displays the textual key-
value properties of the selected nodes. The middle left window contains the
bytecodes of the compiled method.
Filtering. Before layouting and displaying the graph, filters are applied that can
remove, add, merge, split, and color nodes and edges. The filters can be speci-
fied by predefined JavaScript functions, which use regular expression based rules
on the node properties. The following JavaScript statement assigns a red back-
ground color to all nodes whose name starts with the letter “I”. Semantically,
this highlights all integer instructions: colorize("name", "I.*", red);

Difference. The tool can display the difference between snapshots graphically.
It is also capable of calculating the approximate difference between two arbitrary
graphs, e.g. snapshots before and after a compiler change. The difference is made
visible using color filters. This helps identifying the effects of modifications in
the compiler.
Navigation. Despite standard graph navigation techniques like showing and
hiding nodes or going to pre- and successors of a node, the tool provides a way
to navigate in the graph by only double clicks on nodes. The tool maintains
the set S of fully shown nodes. It draws all nodes that are immediate pre- or
successors of a node of the set S as semi-transparent. The user can add one of
those semi-transparent nodes to the set S by a double click on it. Performing
this action on a node of the set S removes it from the set.

196 T. Würthinger, C. Wimmer, and H. Mössenböck

Bytecodes. The bytecodes window shows the input data of the server compiler.
If methods are inlined, this is a tree structure where the inlined methods are
shown as children of the method call. Navigation between the bytecodes and the
graph is available for instructions that may throw an exception. For all other
instructions, the server compiler does not track which instructions are created
for a certain bytecode.

4 Related Work

Balmas presents a tool that displays the program dependence graph for C source
code with focus on creating hierarchical groups of nodes [1]. Krinke developed a
similar tool that additionally gives a textual representation of program slices [4].
The main differences to our application are that they do not have built-in filtering
mechanisms and they are not designed to visualize a program dependence graph
structure that changes during compilation of a method as compiler optimizations
are applied.

5 Conclusions

We presented a tool for displaying the program dependence graph of the Java
HotSpotTM server compiler at various stages during compilation. It helps at
debugging the server compiler and analyze its built-in compiler optimizations.
A property-based filter system makes the tool flexible and also usable for the
analysis of other directed graph structures. The HotSpotTM compiler team at
Sun Microsystems is currently evaluating the tool and integrating the server
compiler instrumentation into the upcoming JDK 7 [7]. They are planning to
include the visualization tool in the OpenJDK project.

References

1. Balmas, F.: Displaying dependence graphs: A hierarchical approach. In: Proceedings
of the Working Conference on Reverse Engineering, pp. 261–270 (2001)

2. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

3. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing di-
rected graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)

4. Krinke, J.: Visualization of program dependence and slices. In: Proceedings of the
IEEE International Conference on Software Maintenance, pp. 168–177 (2004)

5. Paleczny, M., Vick, C., Click, C.: The Java HotSpotTM server compiler. In: Pro-
ceedings of the Java Virtual Machine Res. and Techn. Symposium, pp. 1–12 (2001)

6. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2),
109–125 (1981)

7. Sun Microsystems, Inc.: JDK 7 Project (2007), https://jdk7.dev.java.net/
8. Würthinger, T.: Visualization of program dependence graphs. Master’s thesis, Jo-

hannes Kepler University Linz (2007)

https://jdk7.dev.java.net/

On the Relative Completeness of Bytecode

Analysis Versus Source Code Analysis

Francesco Logozzo and Manuel Fähndrich

Microsoft Research
{logozzo,maf}@microsoft.com

Abstract. We discuss the challenges faced by bytecode analyzers de-
signed for code verification compared to similar analyzers for source code.
While a bytecode-level analysis brings many simplifications, e.g., fewer
cases, independence from source syntax, name resolution, etc., it also
introduces precision loss that must be recovered either via preprocess-
ing, more precise abstract domains, more precise transfer functions, or a
combination thereof.

The paper studies the relative completeness of a static analysis for
bytecode compared to the analysis of the program source. We illustrate
it through examples originating from the design and the implementation
of Clousot, a generic static analyzer based on Abstract Interpretation
for the analysis of MSIL.

1 Introduction

We are interested in static program analysis for program verification, where
the goal is to infer invariants that are sufficient to discharge assertions which
appear in the program either explicitly (specified by the user through assertions)
or implicitly (e.g., array bound checks, null dereferences, division by zero, etc.).
Such analyses need to be precise enough to validate the assertions. In this paper,
we will focus our attention on static analyses for program verification and we
call these PSA, Precise enough Static Analyses.

PSA are often designed to work at the program source level, e.g.,
[5,17,18,6,26]). There are many reasons for that. The program source provides a
uniform view which abstracts machine details. Source code analysis is also able
to directly exploit program structure, such as loops, to increase the precision via
techniques such as reductive iterations [12], and the narrowing application by
re-execution from a post-fixpoint [8].

As we will see in this paper, the most immediate benefit of source analy-
sis however is that it provides the analysis designer with a large code window,
allowing him/her to specialize transfer functions for extra precision.

The analysis of low level code provides different advantages: 1) it is more
faithful, as it analyzes the code that is actually executed (or closer to), 2) it en-
ables the analysis of libraries when source code is not available, 3) the analyzer
avoids redundant work that the compiler performed, such as name resolution,
type checking, template/generics instantiation, 4) the semantics of high-level

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 197–212, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 F. Logozzo and M. Fähndrich

constructs that are expanded by the compiler, such as try . . .catch . . .finally,
delegates, partial classes in C#, or generics in C# and Java, need not be dupli-
cated. As a consequence a low-level code analyzer needs to deal with many fewer
constructs than a source analyzer, reducing its complexity. Finally, 5) the ana-
lyzer can be language independent; e.g., analyzing the common target language
MSIL of the .NET platform provides analysis of C#, VB, Managed C++, F#.

Because of these advantages, plenty of static analyses have been developed for
low-level code. Most of them address non-relational properties like type checking
[14,16,25], non-cyclicity [27], nullness [10], etc. Others target numerical proper-
ties, e.g., to check buffer overruns [3] or array accesses [20].

Our observation is that while writing a static analyzer for a low-level language
or bytecode is simpler than writing one for source code due to the above advan-
tages, it is non-trivial to match the precision of a similar analysis performed at
source level, due to the missing high-level structure and the reduced size of the
code window used by transfer functions. The rest of this paper elucidates this
observation with examples and general principles.

Example 1 (Motivating Example). Suppose we analyze a program containing the
high level statement S ≡ assume x− y ≤ 7, using the difference bounds abstract
domain [22]. At source level, the constraint x − y ≤ 7 is a difference constraint,
and it can be represented faithfully by the abstract state. Now consider the
compilation of S into three address code:

0 :t1 ← x − y

1 :t2 ← t1 ≤ 7
2 :assume t2

Analyzing this code sequence with the same domain used at the source level
raises immediate problems:

Expression complexity. The assignment at line 0 involves three variables,
which cannot be captured precisely by the difference bounds domain. As a
consequence, the abstract value for t1 is �.

Type complexity. At line 1, t2 is assigned the result of a boolean expression1.
At the source level there was no such boolean assignment, and in fact, the
domain used at source level cannot encode the relation between t1 and t2.

As a result, the analysis of the code sequence using the same domain as at the
source level produces an abstract state that contains no information about the
relation of x and y. Several solutions are possible to mitigate the above problems.

– Use a more precise numerical abstract domain for the low-level analysis that
handles relations among more than two variables, such as Octahedra [7], or
Polyhedra [9,2]. This approach however leads to scaling problems, as these
domains exhibit exponential complexity. No polynomial domains are known
that can handle more than two variables [23].

1 Please note that this case is orthogonal to the previous one, i.e., the problem shows
up even if the assignment was t2 ← (x − y ≤ 7).

On the Relative Completeness of Bytecode Analysis 199

– Split the current abstract domain in two at the boolean assignment: one
where t2 == true and one where t2 == false. This method has two main
drawbacks: (i) it may lead to exponential explosion by doubling the abstract
states at each conditional branch; and (ii) it still introduces loss of precision,
because the relation to be assumed at line 2 is lost.

– A more general solution which addresses both of the problems and all others
related to the limited code window, is to use a lightweight symbolic abstract
domain to compute available expressions at each program point.

Let us briefly sketch how the use of a symbolic domain to recover expressions
works on the example. At line 2, the analysis first asks the symbolic domain to
refine variable t2. This refinement, using line 1, produces t2 ≡ t1 ≤ 7, which
can be further refined, using line 0, to produce t2 ≡ x−y ≤ 7. The analysis then
passes the refined expression x − y ≤ 7 to the difference bounds domain, which
handles it exactly as the source analysis does. ��

As the example shows, PSA of low-level code requires more than just reusing the
domains suitable for high-level code, otherwise, precision is lost. In this paper, we
investigate the relative completeness of low-level code analysis versus source code
analysis, i.e., what is required for bytecode analysis to be as precise as source
code analysis, without requiring the use of domains with worse complexity.

We present representative issues that crop up when designing precise and
scalable bytecode analyses. We faced those issues during the design and imple-
mentation of Clousot [19], a PSA for .NET based on abstract interpretation.
The issues described are not specific to .NET, but arise for all low-level analy-
ses. They manifest in (i) the precise handling of assignments, tests and branches,
and (ii) the fixpoint iteration strategy, in particular for narrowing and reductive
iterations. We discuss how to overcome these issues, and the solutions we have
adopted in Clousot. In general, quantifing the impact of such issues is hard.
We tried a rough (under-)estimation by switching off some precision refinements
discussed in this paper (not all of them could be switched off, as many are buried
deep in the architecture of Clousot). We obtained a loss of precision of 10% in
the analysis of the array accesses of mscorlib.dll, the main library in the .NET
framework. Such loss of precision is enough to generate more than 1400 false
positives, i.e., to make the analysis de facto unuseful.

2 Languages

We use a while-language as a representative for high-level languages, and a three
address code instruction set as a representative of low-level code.

2.1 While-Language

Our high level language is a simple while-language with no dynamic memory
allocation, shown in Fig. 1. The semantics is standard. We use a single type,
integers. Following widespread convention, we assume that 0 stands for false

200 F. Logozzo and M. Fähndrich

Stm ::= skip; | Var := Exp; | Stm Stm | while(BExp) {Stm}; | if(BExp) {Stm }else {Stm }; |
assume BExp; | assert BExp;

Exp ::= Lit | Exp op Exp
BExp ::= Lit | Exp relop Exp | !(BExp) | BExp && BExp | BExp ‖ BExp
Lit ::= Var | int Var ::= · · · | x | y | . . . int ::= · · · | −1 | 0 | 1 | . . .
op ::= + | − | ∗ | / relop ::=<|≤|==

Fig. 1. The while-language: a high-level language

IstrStream ::= Label : Istr | Label : Istr ′\n′ IstrStream | ε
Label ::= 0 | ... | 232

Istr ::= Var ← ExpTwoOps |
jmp Label | jmpIf Var Label | assert Lit | assume Lit | nop

ExpTwoOps ::= Lit | Lit op Lit | Lit relop Lit | Lit && Lit | Lit ‖ Lit

Fig. 2. Three address code: a low-level language

and all the other integers for true. Boolean expressions shortcut evaluation.
We also consider assert and assume statements, which enable assume/ guaran-
tee reasoning, e.g., to (abstract) method calls. The statement assert e; checks
if the expression e holds. If it does not, then the program fails. The state-
ment assume e; acts as an execution guard for the following statements. If the
condition does not hold, execution gets stuck.

2.2 Three Address Code

Our low-level language is a three address code instruction set shown in Fig. 2.
This language is higher level than MSIL, Java bytecode, or assembly, but it
simplifies our presentation and is sufficient to exhibit the problems of interest.

An instruction stream is a sequence of labeled instructions. An assignment in-
struction x ← e2ops updates the value of the variable x with the result of the
evaluation of the expression e2ops which contains at most two operands. As a con-
sequence the expressions that can be atomically evaluated and assigned at low
level are a subset of those at higher level, i.e., ExpTwoOps ⊆ Exp ∪ BExp. In the
next sections, we will see how this impacts the precision and performances of PSA.

2.3 Compilation

We assume two compilation functions: C ∈ [Stm → IstrStream] compiles a
program expressed in the high-level language into a low-level instruction stream
one, and Ce ∈ [(Exp∪BExp) → IstrStream] compiles expressions into a sequence
of instructions for evaluating them. The result of the evaluation is in a (reserved)
variable res. We expect the functions C and Ce to perform naive compilation,
i.e., a straightforward translation without any program optimization [1].

On the Relative Completeness of Bytecode Analysis 201

3 Abstract Interpretation

Abstract interpretation is a theory of approximations [8]. It formalizes the in-
tuition that semantics are more or less precise depending on the observation
level. The more precise the abstract semantics, the more precise the properties
about the execution of the program it captures. A static analysis is an abstract
semantics which is rough enough to be computable. A precise static analysis is
a static analysis which is precise enough to capture the properties of interests,
e.g., those needed to prove the absence of certain runtime errors.

3.1 Abstract Domains

An abstract domain D̄ is the complete lattice 〈E, , ⊥, �, �, �〉, where E is the set
of abstract elements, ordered according to the relation . The smallest abstract
element is ⊥, the largest is �. The join �, and the meet �, are also defined. With
a slight abuse of notation, we will confuse an abstract domain D̄ with the set of
its elements E.

The elements of an abstract domain are related to the concrete domain D
(also a complete lattice), by means of a monotonic concretization function γ ∈
[D̄ → D]. In this paper we assume the concrete domain to be the complete
boolean lattice P(Σ), where Σ = [Var → Z].

Given two abstract domains, D̄1 and D̄2, their reduced cartesian product is
D̄1 ⊗ D̄2, whose elements are pairs which satisfy the reduction condition:

∀〈d̄1, d̄2〉 ∈ D̄1 ⊗ D̄2. γD̄1⊗D̄2
(〈d̄1, d̄2〉) ⊆ γD̄1

(d̄1) ∩ γD̄2
(d̄2) .

An abstract domain is said to be relational if it keeps relations between pro-
gram variables. Otherwise it is said to be non-relational.

The elements of the abstract domain of intervals, Intv, are {[i, s] | i, s ∈
Z ∪ {−∞, +∞}}. The concretization function, γIntv ∈ [Intv → P(Z)] is defined
as γIntv([i, s]) = {z ∈ Z | i ≤ z ≤ s}. The abstract domain of boxes, Boxes,
is the functional lifting of Intv, i.e., Boxes = [Vars → Intv]. The concretiza-
tion of a box, γBoxes ∈ [Boxes → P(Σ)] is defined as γBoxes(f) = {σ ∈ Σ |
∀x.x ∈ dom(f) =⇒ σ(x) ∈ γIntv(f(x))}. From the definition of γBoxes, it follows
that the meaning of a variables in Boxes is independent from all the others,
which implies that Boxes is a non-relational abstract domain. The time and
space complexity of the operations on Boxes is O(n), where n is the number of
variables.

The abstract domain of Polyhedra, Poly [9], captures linear constraints be-
tween program variables:

∑i<n
i=0 ai ∗ xi ≤ z, with ai, z ∈ Z. The concretization

function γPoly ∈ [Poly → P(Σ)] is defined as the intersection of all the con-
straints : γPoly(P) =

⋂
∑ i<n

i=0 ai∗xi≤z∈P {σ ∈ Σ |
∑i<n

i=0 ai ∗ σ(xi) ≤ z}. From the
concretization function, it follows that Poly can capture properties between an
arbitrary number of variables, thus it is a relational domain. The complexity of
Poly is O(2n) both in space and time.

202 F. Logozzo and M. Fähndrich

3.2 Transfer Functions

Abstract interpreters implement an upper approximation τ̄ of the best abstract
transformer τ̄∗, i.e. ∀d̄ ∈ D̄. τ̄∗(d̄)τ̄ (d̄). An abstract transfer function τ̄ is (i)
usually hand-crafted, and (ii) tuned to maximize the precision/cost trade-off.

It is common practice for the implementation of an abstract domain D̄ to
provide two abstract transfer functions: one for the assignment and one for the
handling of tests [5,18,28]. The assignment abstract transfer function, D̄.assign,
is an over-approximation of the states reached with the concrete assignment:

∀x, e.∀d̄. {σ[x �→ v] | σ ∈ γ(d̄), �e�(σ) = v} ⊆ γ(D̄.assign(d̄, x, e)).

The test abstract transfer function, D̄.test, acts as a kind of filter to the input
states:

∀e.∀d̄. {σ ∈ γ(d̄) | �e�(σ) �= 0} ⊆ γ(D̄.test(d̄, e)).

It is vital for a PSA to provide a precise approximation of test.

4 Relative Completeness of Precise Analysis of Bytecode

In this section, we define a generic abstract semantics for the high level language,
H̄�·� ∈ [Stm → D̄ → D̄], by structural induction. In parallel, we define the
abstract semantics for the low level language, L̄�·� ∈ [IstrStream → D̄ → D̄].
For each kind of statement and expression, we (i) express whether and under
what conditions L̄�·� is complete w.r.t. H̄�·�, i.e., when L̄�·� is as precise as H̄�·�,
and (ii) show how best to overcome precision problems, e.g., by refining the
abstract domain or the transfer functions.

4.1 Notions of Relative Completeness

We distinguish two notions of relative completeness: strong and weak. Strong
relative completeness requires the low-level analysis not to lose information when
using the same abstract domain. Weak relative completeness allows the low-level
analysis to use a refinement of the abstract domain used at source level.

Definition 1 (Strong Relative Completeness). Given statement Stm, ab-
stract domain D̄, and projection function π ∈ [D̄ → D̄], which removes all the
temporary variables introduced by compilation, if

∀d̄ ∈ D̄. π(L̄�C(Stm)�(d̄))H̄�Stm�(d̄), (1)

then L̄�·� is strong-relatively complete w.r.t. to H̄�·� for statement Stm.

Note that the definition above does not require equality of precision, only sub-
sumption. It may be the case that the analysis at the bytecode level is more
precise in some cases.

On the Relative Completeness of Bytecode Analysis 203

Definition 2 (Weak Relative Completeness). Given statement Stm, two
abstract domains D̄ and D̄+ such that D̄+ is more precise than D̄ : D̄+ −−−→←−−−

α

γ

D̄, and projection function π ∈ [D̄+ → D̄+], which removes all the temporary
variables introduced by compilation, if

∀d̄ ∈ D̄. α(π(L̄�C(Stm)�(γ(d̄))))H̄�Stm�(d̄), (2)

then L̄�·� is weak-relatively complete w.r.t. to H̄�·� for statement Stm up to the
refined domain D̄+.

Weak relative completeness relaxes the previous definition by enabling the use
of a more precise abstract domain for the analysis of the bytecode. It is evident
that strong relative completeness implies weak relative completeness.

4.2 Skip

Handling of skip is straightforward: H̄�skip� = λd̄.d̄. The skip statement is
compiled with a nop: C(skip) = n : nop, and L̄�n : nop� = λd̄.d̄. As a conse-
quence, in this case the bytecode analysis is trivially strongly complete.

4.3 Sequence

The analysis of a sequence of statements is usually just the composition of the
analyses:

H̄�Stm1Stm2� = H̄�Stm2� ◦ H̄�Stm1�. (3)

The compilation is the juxtaposition of two sequences of instructions:

C(Stm1Stm2) =
[

C(Stm1)
C(Stm2)

.

The abstract semantics of a sequence of instructions is the compositions of the
analyses:

L̄�k : Istr ′\n ′ IstrStream� = L̄�IstrStream� ◦ L̄�k : Istr�. (4)

Assuming that low-level analysis is complete (resp. weakly complete) for the
subsequences, from (i) the fact that projection is an abstraction; and (ii) the
monotonicity of the abstract functions, it follows that the low-level analysis of
the sequence is complete (resp. weakly complete) w.r.t. the high-level analysis.

Note that in general, sequencing may cause loss of precision for both high-
and low-level analysis w.r.t. the concrete semantics.

4.4 Assignments

A source language analysis just passes the assignment to the underlying abstract
domain D̄:

H̄�x := e;� = λd̄.D̄.assign(d̄, x, e). (5)

204 F. Logozzo and M. Fähndrich

The compilation of the assignment generates a sequence of instructions to eval-
uate e, and an assignment of the result to x:

C(x := e;) =
[

Ce(e)
k : x ← res

. (6)

Without loss of generality, we will assume in the sequel that the last instruction
of Ce(e) assigns directly to the target variable x instead of res. Thus, the final
assignment is similarly passed to underlying abstract domain:

L̄�k : x ← e2op� = λσ.D̄.assign(σ, x, e2op). (7)

If the source expression e is such that e ≡ l or e ≡ l1op l2, where l, l1, l2 ∈ Lit,
and op is as in Fig. 1, then (5), (6) and (7) imply the strong relative completeness
of L̄�k : x ← e2op�. However, this is not the case for more complex expressions,
as the next (counter-) examples show.

Example 2 (Precision Loss using Interval Arithmetic). Suppose we use the Boxes
domain to analyze the assignment A ≡ z := (x+y)∗y. Let b̄0 = [x �→ [2, 3], y �→
[−1, 1]] be the abstract input state. Then

H̄�z := (x + y) ∗ y;�(b̄0) = b̄0[z �→ [−2, 4]],

using a specialized source transfer function. On the other hand, the compilation
of A is

C(z := (x + y) ∗ y;) =
[

0 : t ← x + y
1 : z ← t ∗ y , (8)

so that the abstract state after the program point 0 is b̄0[t �→ [1, 4]], and
hence the abstract post-state is L̄�C(z := (x + y) ∗ y;)�(b̄0) = b̄0[t �→ [1, 4], z �→
[−4, 4]]. ��
The example shows that the analysis of the compiled code introduces a loss of
precision w.r.t. to a specialized source level transfer function. Intuitively, it is
caused by the fact that the domain Boxes is non-relational, and hence at program
point 1 it has lost the information that t depends on y, so that two spurious
cases are introduced.

As the incompleteness originates from the use of a non-relational numerical
domain, one may advocate the usage of a relational domain. If we chose to
analyze (8) with Oct, the problem, unfortunately, does not go away. At program
point 0, we have an assignment that involves three variables. The domain cannot
track the relation between t, x and y. As a consequence, no improvement is
obtained at 1 using Octagons.

If we chose instead to analyze (8) with Poly, then the assignment at 0 can
be precisely captured by this domain. So the abstract post-state is p̄ = {2 ≤
x ≤ 3, −1 ≤ x ≤ 1, t − x − y = 0}. The instruction at 1 involves a quadratic
expression (the multiplication of two variables), which a naive implementation
of Poly.assign may simply decide to ignore. However, it is easy to see how a more
refined implementation can figure out that, because of p̄, t = x + y it can use
this equality to simplify the multiplication and infer the tightest lower bound
−2 ≤ z, and hence satisfy (2).

On the Relative Completeness of Bytecode Analysis 205

Example 3 (Precision Loss using Octagons). Let us analyze the assignment B ≡
z := 2∗x−y; with the Oct domain. Let the initial abstract state be ō0 = {x−y ≤
1, y − x ≤ −1}. Even if the source expression is not in the octagonal form, the
designer of the domain can refine Oct.assign (i) to replace x in the right hand
side of the B by y− 1, and (ii) to perform the basic algebraic simplifications, so
that

H̄�z := 2 ∗ x − y;�(ō0) = ō0 ∪ {z− y ≤ 2, y− z ≤ −2}.

On the other hand, the compilation of B is

C(z := 2 ∗ x − y;) =
[
0 : t ← 2 ∗ x
1 : z ← t − y

. (9)

At program point 0, there is no way one can refine Oct.assign to provide
an octagonal constraint for t. For instance, the substitution of x by y − 1
produces t ← 2 ∗ y − 2, which cannot be represented by an octagon con-
straint, too. As a consequence, no constraint can be inferred on t and hence
z: L̄�C(z := 2 ∗ x − y;)�(ō0) = ō0. ��
Intuitively, the precision loss in the previous example is caused by splitting
“large” expressions into smaller chunks, thereby reducing the expression window
seen by the atomic operations in the abstract domain, and hence limiting their
ability to infer relations.

If we chose instead to analyze (9) with Poly, then both assignments at program
points 0 and 1 are linear constraints that are represented exactly by this abstract
domain. As a consequence, the low-level analysis, when performed on a more
precise abstract domain is (weak-relatively) complete.

Discussion: Choosing the Right Abstract Domain. The previous exam-
ples suggest that we can obtain weak completeness by systematically using Poly.
This is the direction taken by some analyzers for low-level code, e.g., [11,20,4].
We do not advocate this approach, as Poly exhibits an exponential complexity in
practice (in the number of variables). In order to overcome this issue in Clousot,
we have chosen to not refine directly the numerical domain D̄, but to combine it
with a symbolic domain Symb to propagate expressions, [1,24]. In other words
the analysis is done on the refined abstract domain Symb ⊗ D̄. The analysis
of k : z ← e2op with an abstract element 〈̄s, d̄〉, first uses s̄ to refine e2op to
an expression e2op+, then it performs the assignment over the basic numerical
domain: D̄.assign(d̄, z, e2op+).

4.5 Assumptions and Assertions

We consider just the assume statement, the case for assert being similar. At
source level, the PSA just passes the expression to be assumed to the underlying
domain:

H̄�assume e;� = λd̄.D̄.test(d̄, e).

The compilation generates code to evaluate the condition e, and it assumes the
result:

206 F. Logozzo and M. Fähndrich

C(assume e;) =
[

Ce(e)
k : assume res

. (10)

The bytecode semantics passes the literal to the underlying abstract domain:

L̄�k : assume l� = λd̄ ∈ D̄.test(d̄, l).

The compilation schema (10), which is common to e.g., the C# and Java com-
pilers, introduces severe imprecision in analyses, as illustrated by Ex. 1 and by:

Example 4 (Precision Loss in Tests). Consider the statement D ≡ assume 0 ≤
x; to be analyzed with Oct, in the initial state �Oct = ∅. Then,
H̄�assume 0 ≤ x;�(�Oct) = {−x ≤ 0}. The compilation of D is

C(assume 0 ≤ x;) =
[
0 : res ← 0 ≤ x
1 : assume res

. (11)

At program point 0, res is assigned the result of evaluating the boolean condi-
tion. Since nothing is known in the input state about x, nothing can be concluded
about the truth of 0 ≤ x, and hence res is unconstrained. As a consequence,
L̄�C(assume 0 ≤ x;)�(�Oct) = �Oct. ��

The previous example shows that strong relative completeness does not hold.
If we analyze (11) with Poly, the situation does not change, because even Poly
cannot capture the relation between a variable and the truth value of an ex-
pression. Thus, if we seek weak relative completeness, we need to refine the ab-
stract domain with either an abstract domain for tracking boolean expressions,
or more generally use the symbolic abstract domain Symb introduced in Sect 4.4
to “reconstruct” larger expressions, that can then be passed to the underlying
numerical abstract domain.

Whereas in Sect 4.4 the use of Symb was just an alternative w.r.t. the use of
a more precise numerical domain, it becomes a necessity for handling boolean
expressions. The use of the symbolic domain during low-level analysis requires
a refinement of the transfer functions, as shown by the next example.

Example 5 (Precision Loss Induced by Compilation). Consider a slight modifica-
tion of the previous example: F ≡ assume !(0 ≤ x); to be analyzed with Oct, in
the entry state �Oct. H̄�assume !(0 ≤ x);�(�Oct) = {x ≤ −1}. The compilation
of F (e.g., by C#) is

C(assume !(0 ≤ x);) =

⎡

⎣
0 : t ← 0 ≤ x
1 : res ← t == 0
2 : assume res

. (12)

At program point 2, the analysis of the compiled code, using the refined domain
Symb ⊗ Oct infers the abstract state r̄ = 〈[t �→ 0 ≤ x, res �→ t == 0], �Oct〉.
Then, res is refined to the expression res+ ≡ (0 ≤ x) == 0, which
cannot be generated by the syntax in Fig. 1. As a consequence, Oct.assign,

On the Relative Completeness of Bytecode Analysis 207

designed for the high level, does not understand res+, and hence ignores it:
L̄�C(assume !(0 ≤ x);)�(〈�Symb, �Oct〉) = r̄. ��

Discussion: Refining the Transfer Functions, and Program Transfor-
mations. The example above underlines the fact that, in order to obtain weak
completeness, one must also refine the transfer functions. For instance, in the ex-
ample Oct.assign must be refined to perform the semantic preserving rewritings
(0 ≤ x) == 0 �!(0 ≤ x) � x < 0.

In practice, a PSA designer has two choices: perform the rewriting phase
online or offline. In the first case, a transfer function first rewrites the boolean
expressions, e.g., by applying the De Morgan laws, by rewriting e == 0 as !(e),
etc., and then proceeds. In the second case, in a pre-processing step, a program
S is analyzed with just Symb, all the expressions in S are first refined and then
simplified as above, to obtain a refined program S+. Then, S+ is analyzed using
D̄. In Clousot, we have adopted the first approach.

4.6 Conditionals

The analysis of conditional statements (i) refines the input abstract state with
the guard, (ii) analyzes the two branches in the refined state, and (iii) joins the
results at the exit point. Precise handling of guards is essential for a PSA.

H̄�if(e) {Stm1}else {Stm2};� =
λd̄.H̄�Stm1�(D̄.test(d̄, e)) � H̄�Stm2�(D̄.test(d̄, !(e))). (13)

One possible compilation is:

C(if(e) {Stm1}else {Stm2};) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ce(e)
k : b ← res == 0

k + 1 : jmpIf b t
C(Stm1)
jmp out

t : C(Stm2)
out : nop

. (14)

The low level analysis of (14) can be made very similar to (13), provided that
some preprocessing of the bytecode is performed. The first step is to construct the
control flow graph from (14), as in Fig. 3. However, that is not enough, because
one wants to know that !(b) (resp. b) holds at program point k + 2 (resp. t).
Propagating such an information during a dataflow analysis is non-trivial.

A better approach is to provide another view of the code (14), in which the
guard of the conditional is made explicit in the true-branch and the false-branch
as assume statements. This is the direction we have taken in Clousot. In general,
let B the block which computes the truth value of the guard e, T(e) and F(e)
the (compilation of the) two branches of the conditional dominated by (resp.)

208 F. Logozzo and M. Fähndrich

Ce(e)
k : b ← res == 0

k + 1 : jmpIf b t

�����
��

�����
��

C(Stm1)

����������
C(Stm2)

����������

out : nop

Fig. 3. The control flow graph constructed from C(if(e) {Stm1}else {Stm2};)

assume b and assume !(b), and O be the exit block. Then the low level semantics
can be defined as:

L̄

� B
���� ����

T(e)
����

F(e)
����

O

�

=

λr̄ ∈ D̄ ⊗ Symb.
let r̄1 = L̄�B�(̄r) in
let r̄t = L̄�T(e)�((D̄ ⊗ Symb).test(̄r1, e)) in
let r̄f = L̄�F(e)�((D̄ ⊗ Symb).test(̄r1, !(e))) in
in r̄t�r̄f .

(15)
However, incompleteness can still show up if the compilation scheme is differ-

ent from (14), in particular for the handling of expressions. The next example
is inspired by the way the C# compiler [21], generates code for shortcutting
boolean expressions.

Example 6 (Loss of Precision Induced by Compilation of Shortcut Expressions).
Let G be the code snippet if(0 ≤ i && i < len) {Stm1} else {Stm2}. The
C#2.0 compiler generates code that looks like the one in Fig. 4. Briefly, if one
of the operands of && is false, then it jumps to line 8, which sets res to 0 .
Otherwise, it sets res to 1. The two flows are then merged at program point
9, which implies that res == 0 and res == 1 are joined, i.e., the information
about the truth of the guard, res == 0 ⇐⇒!(0 ≤ i && i < len) and res ==
1 ⇐⇒ (0 ≤ i && i < len) is lost. So it cannot be further propagated in the two
branches of the conditional. ��

The incompleteness in the previous example can be resolved either by pre-
cisely modeling the relation between boolean variables and boolean expres-
sions with BDDs as in [15], or by approximating the double implication with
a simple implication, e.g., using trace partitioning, [13]. As a consequence,
the underlying abstract domain must be refined to the reduced cardinal power
P(Lit) → (D̄⊗Symb), so as to obtain the weak relative completeness for shortcut
conditionals.

On the Relative Completeness of Bytecode Analysis 209

C(if(0 ≤ i && i < len) {Stm1}else{Stm2}) =

0 : t1 ← 0 ≤ i
1 : b1 ← t1 == 0
2 : jmpIf b1 8
3 : t2 ← i < len
4 : b2 ← t2 == 0

5 : jmpIf b2 8
6 : res ← 1
7 : jmp 9
8 : res ← 0

9 : jmpIf res k + 1
10 : C(Stm2)
k : jmp out

k + 1 : C(Stm1)
out : nop

Fig. 4. The (simplified version of the) code generated by the C#2.0 compiler for the
statement if(0 ≤ i && i < len) {Stm1}else{Stm2}

4.7 Loops

The semantics of a loop is given as a least fixpoint over a suitable partial order:

H̄�while(e) { Stm };� = λd̄. let ¯inv = lfp�⊥λX. d̄�H̄�Stm�(D̄.test(X, e))
in D̄.test(¯inv, !(e)).

The least fixpoint equals the limit of the increasing iterations starting from ⊥. In
general the iterations may not converge, so that a widening operator [8] is used
to force convergence to a post-fixpoint. Then, a narrowing operator [8] is applied
to recover some precision. An easy yet generic and useful form of narrowing is
given by doing one more iteration starting from the post-fixpoint, as shown by
the next example.

Example 7 (Narrowing by Re-Execution). Let W ≡ z := 0; while(z <
100) { z := z + 1; }; assert z == 100; and let us analyze it with the Intv
abstract domain. The fixpoint iterations produce the increasing chain of inter-
vals [0, 0][0, 1][0, 2] . . .[0, n], which is extrapolated by the standard widen-
ing on intervals to [0, +∞], so that inv� = [z �→ [0, +∞]] is an invariant for the
loop. On the other hand, it is not precise enough to prove the assertion after
the loop. By first re-executing the body starting from the fixpoint, one gets
[0, 0]�[1, 100] = [0, 100], so that inv� = [z �→ [0, 100]]. Then, inv� intersected
with the negation of the loop guard is enough to prove the assertion. ��

The compilation of a while statement looks like

C(while(e) { Stm };) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b : Ce(e)
k : b ← res == 0

jmpIf b out
C(Stm)
jmp b

out : nop

. (16)

A typical analysis of the unstructured code above first detects the back edges,
in order to find the program points where widening is needed. However, back
edges detection is not enough to ensure relative completeness when extrapolating
operators are used, as shown by the next example.

210 F. Logozzo and M. Fähndrich

0 : z := 0

��

1 : nop
2 : res ← z < 100
3 : b ← res == 0

�����
���

��
4 : assume !(b)
5 : z := z + 1

		

6 : assume b
7 : assert z == 100

Fig. 5. The enhanced CFG graph for the three addresses compilation for the code in
Ex. 7. Exact narrowing requires the knowledge that the left branch leads to a cycle.

Example 8 (Narrowing by Re-Execution, continued). The CFG graph for W is
in Fig. 5. A standard back-edges analysis detects that the block starting at 1 is
the target of a back edge, and hence the widening point. Then, we analyze the
program on the domain Intv ⊗ Symb, and we infer the invariant z �→ [0, +∞] at
program point 1. Now we want to refine it using the re-execution based narrow-
ing. In the source level case, we just proceeded by induction on the structure.
At the low-level, we don’t know which edge leads into the loop, and which edge
leads out of the loop. If we push the invariant first onto the left branch (i.e., on
program point 4), then we obtain the desired refined z �→ [0, 100], which is then
pushed onto the right branch, where it is enough to prove the assertion is not
violated. On the other hand, if we push the invariant first onto the right branch
(i.e., on program point 6), we obtain no invariant refinement. ��

The example shows that applying standard narrowing techniques from source
level analysis is tricky on low-level code, as the necessary high-level loop struc-
tures are not apparent. Symbolic expression recovery is not sufficient, as control
flow is involved. Thus, to obtain relative completeness for loops, some form of
loop recovery must be performed.

5 Conclusions

We have presented a series of issues faced by low-level code analyzers if their
precision is to match the precision typically achieved by a source analysis. We
have formalized the relation between the low-level and high-level analyses via the
concepts of strong and weak relative completeness. By analysis on the program
constructs, we have shown: (i) how strong relative completeness can be obtained
only for trivial cases, and (ii) how weak relative completeness can be obtained
by refining the underlying domain for the analysis, the transfer functions, and
by pre-processing of the program. However, it turns out that the refinement step
must be handled with care by the designer of the precise static analysis, in order

On the Relative Completeness of Bytecode Analysis 211

to avoid transforming a polynomial problem (e.g., the analysis of the source
program with Octagons) into an exponential one.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading (1986)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library.,
http://www.cs.unipr.it/ppl/

3. Balakrishnan, G., Reps, T.W.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, Springer, Heidelberg (2004)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for Object-Oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
Springer, Heidelberg (2006)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003,
ACM Press, New York (2003)

6. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI
2003, ACM Press, New York (1993)

7. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, Springer, Heidelberg (2004)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
ACM Press, New York (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, ACM Press, New York (1978)

10. Fähndrich, M.A., Leino, K.R.M.: Declaring and checking non-null types in an
Object-Oriented language. In: OOPSLA 2003, pp. 302–312. ACM Press, New York
(2003)

11. Gopan, D., Reps, T.W.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

12. Granger, P.: Improving the results of static analyses programs by local decreasing
iteration. In: FSTTCS, pp. 68–79. Springer, Heidelberg (1992)

13. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, Springer, Heidel-
berg (1998)

14. ECMA Int. Standard ECMA-355, common language infrastructure (June 2006)
15. Jeannet, B.: Representing and approximating transfer functions in abstract inter-

pretation of hetereogeneous datatypes. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, Springer, Heidelberg (2002)

16. Leroy, X.: Bytecode verification on Java smart cards. Software - Practice and Ex-
perience (SPE) 32(4) (2002)

17. Lev-Ami, T., Manevich, R., Sagiv, S.: TVLA: A system for generating abstract
interpreters. In: 18th IFIP Congress Topical Sessions, August 2004, Kluwer, Dor-
drecht (2004)

18. Logozzo, F.: Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, Springer, Heidelberg (2007)

http://www.cs.unipr.it/ppl/

212 F. Logozzo and M. Fähndrich

19. Logozzo, F., Fähndrich, M.A.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. In: ACM SAC 2008 - OOPS, ACM Press,
New York (2008)

20. Hermenegildo, M.V., Mendez, M., Navas, J.: An efficient, parametric fixpoint al-
gorithm for analysis of Java bytecode. In: Bytecode 2007, Elsevier, Amsterdam
(2007)

21. Microsoft Inc. Visual C#. http://msdn2.microsoft.com/-us/vcsharp/
22. Miné, A.: A new numerical abstract domain based on difference-bounds matrices.

In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, Springer, Heidel-
berg (2001)

23. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique (2004)

24. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
Springer, Heidelberg (2005)

25. Palacz, K., Baker, J., Flack, C., Grothoff, C., Yamauchi, J., Vitek, H.: Engineering a
common intermediate representation for Ovm framework. The Science of Computer
Programming 57(3), 357–378 (2005)

26. RopasWork, Inc. Airac5, http://ropas.snu.ac.kr/airac5/
27. Rossignoli, S., Spoto, F.: Detecting non-cyclicity by abstract compilation into

boolean functions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, Springer, Heidelberg (2005)

28. Venet, A., Brat, G.P.: Precise and efficient static array bound checking for large
embedded c programs. In: PLDI 2004, ACM Press, New York (2004)

http://msdn2.microsoft.com/-us/vcsharp/
http://ropas.snu.ac.kr/airac5/

Efficiency, Precision, Simplicity, and Generality in
Interprocedural Data Flow Analysis: Resurrecting the

Classical Call Strings Method

Uday P. Khedker and Bageshri Karkare

Indian Institute of Technology, Bombay

Abstract. The full call strings method is the most general, simplest, and most
precise method of performing context sensitive interprocedural data flow analy-
sis. It remembers contexts using call strings. For full precision, all call strings up
to a prescribed length must be constructed. Two limitations of this method are
(a) it cannot be used for frameworks with infinite lattices, and (b) the prescribed
length is quadratic in the size of the lattice resulting in an impractically large
number of call strings. These limitations have resulted in a proliferation of ad hoc
methods which compromise on generality, precision, or simplicity.

We propose a variant of the classical full call strings method which reduces
the number of call strings, and hence the analysis time, by orders of magnitude
as corroborated by our empirical measurements. It reduces the worst case call
string length from quadratic in the size of the lattice to linear. Further, unlike the
classical method, this worst case length need not be reached. Our approach retains
the precision, generality, and simplicity of call strings method without imposing
any additional constraints. It can accommodate demand-driven approximations
and hence can be used for frameworks with infinite lattices.

1 Introduction

Interprocedural data flow analysis extends the scope of analysis across procedure bound-
aries. A context insensitive interprocedural analysis does not distinguish between dif-
ferent calling contexts of a procedure and merges the data flow information across all
contexts. Context sensitive analysis maintains separate data flow information for distinct
contexts for each procedure call and hence typically computes a more precise solution.

The full call strings method [22] is the most general, simplest, and most precise
method of performing context sensitive interprocedural data flow analysis. It represents
context information in the form of a call string. For full precision, all call strings up to a
prescribed length have to be constructed. Two limitations of this method are (a) it cannot
be used for frameworks with infinite lattices, and (b) the prescribed length is quadratic
in the size of the lattice resulting in an impractically large number of call strings. These
limitations have resulted in a proliferation of ad hoc methods which compromise on
generality, precision, or simplicity.

We modify the full call string method by identifying contexts which need not be
explicitly maintained. This reduces the number of contexts dramatically without com-
promising on the precision, generality, and simplicity of the method. The worst case

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 213–228, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

214 U.P. Khedker and B. Karkare

call string length is reduced from quadratic in the size of the lattice to linear. Further,
unlike the original method, our variant does not need to construct all call strings up to
the worst case length. Since it can accommodate demand-driven approximations, it can
be used for frameworks with infinite lattices also. Our empirical measurements show a
dramatic reduction in the number of call strings and analysis time.

Interestingly, we achieve all of the above by a very simple change in the original
method without affecting the essential principles of the method: In our variant, the
termination of call string construction is based on the equivalence of data flow val-
ues instead of prescribed lengths. This allows us to discard call strings where they are
redundant, and regenerate them when required. For cyclic call strings, regeneration fa-
cilitates iterative computation of data flow values without explicitly constructing most
of the call strings. This is based on interesting insights which are explained intuitively
and proved formally in this paper.

The rest of the paper is organized as follows: Section 2 provides the background,
Section 3 investigates the reasons of inefficiency in call strings method and sets the
stage for Section 4 which proposes our variant. Section 5 compares our work with
other approaches to interprocedural analysis. Section 6 presents the empirical data and
Section 7 concludes the paper.

2 Background

This section discusses safety, precision, and efficiency in the interprocedural analysis
and reviews the original call strings method.

Safety, Precision, and Efficiency in Data Flow Analysis. Data flow analysis examines
static representations of programs. Some paths in these representations may not corre-
spond to valid execution paths. Some path may be valid execution paths but may be
irrelevant because their analysis may not result in new information. Safety of analysis
can be ensured by covering all valid paths; excluding a valid path may result in an un-
safe solution. Precision can be ensured by restricting the analysis only to valid paths;
including invalid paths may result in an imprecise solution. Efficiency can be ensured
by restricting the analysis to relevant paths.

A flow sensitive intraprocedural analysis honours the control flow and computes pos-
sibly different data flow information for each program point. A flow insensitive analysis
does not consider the control flow and hence computes imprecise (but safe) solution.
A flow sensitive method excludes spurious paths and hence computes more precise
solutions. A flow insensitive analysis merely accumulates the information and hence
requires a single pass over a control flow graph.

Interprocedural data flow analysis is usually performed on a supergraph which con-
nects control flow graphs of different procedures with call and return edges. It contains
control flow paths which violate nestings of matching call return pairs. An interproce-
durally valid path is a feasible execution path containing a legal sequence of call and
return edges. A context sensitive interprocedural analysis retains distinct calling con-
texts to ensure propagation of information from the callee to appropriate callers. This
involves restricting the analysis to interprocedurally valid paths. A context insensitive

Efficiency, Precision, Simplicity, and Generality 215

Entry x∗y Entry

n1 x := &y n1

n2 z := &x n2

n3 z := &z n3

call p call p

Exit x∗y Exit

SP x∗y SP

n4 y := &z n4

call q

EP x∗y EP

Sq x∗y Sq

call q

n5 x := ∗x n5

Eq x∗y Eq

Entry x∗y Entry

n1 x := &y n1

n2 z := &x n2

n3 z := &z n3

C1 call p C1C2 call p C2

R1 call p R1R2 call p R2

Exit x∗y Exit

SP x∗y SP

n4 y := &z n4

C3 call q C3

R3 call q R3

EP x∗y EP

Sq x∗y Sq

C4 call q C4

R4 call p R4

n5 x := ∗x n5

Eq x∗y Eq

Fig. 1. Control flow graphs of recursive procedures and the corresponding supergraph

analysis does not distinguish between valid and invalid paths and computes safe, but
imprecise solution compared to a context sensitive analysis. For maximum statically
achievable precision, context sensitive analysis must also be flow sensitive at the in-
traprocedural level. Efficiency of context sensitive interprocedural analysis requires re-
stricting the number of contexts without merging information across distinct contexts.
Context insensitive analysis effectively restricts the number of contexts to one and thus
is much more efficient than context sensitive analysis.

The Call Strings Approach. The full call strings method embeds context information in
the data flow information. It treats procedure calls and returns similar to the intraproce-
dural control transfers and ensures the validity of interprocedural paths by maintaining
a history of calls in terms of call strings. A call string at a program point u is a se-
quence c1c2 . . .ck of call sites corresponding to unfinished calls at u and can be viewed
as a snapshot of the call stack at u; λ denotes an empty call string. Figure 1 shows a
program and its supergraph. Sp and Ep denote the start and end of procedure p while
those for the main program are Entry and Exit. A call site ci is split into a call node Ci

and the corresponding return node Ri and appropriate call and return edges are added.
Some call strings for this program are λ, c1, c1c3, c1c3c4, c1c3c4c4 etc.

Call string construction is governed by the interprocedural edges in a supergraph. Let
σ be a call string reaching node m in procedure p. For an intraprocedural edge m → n, σ
reaches n unmodified. For a call edge m → n where m is Ci and n is Sq, call string σ · ci

reaches Sq. For a return edge m → n where m is Ep and n is Ri, if the last call site in σ is
ci then the call string remaining after removing ci from σ reaches Ri. This ensures that
the data flow information is propagated to the correct caller.

The augmented data flow information is a pair 〈σ,d〉 where d is the data flow value
propagated along call string σ. Note that d is modified by an intraprocedural edge only.

216 U.P. Khedker and B. Karkare

A work list based iterative algorithm is used to perform the data flow analysis. The
process terminates when no new pair 〈σ,d〉 is computed; merging data flow values
propagated along all call strings reaching u results in a meet-over-all-interprocedurally-
valid-paths solution at u for distributive frameworks.

Since matching of call and return nodes is inherently performed in the call strings
method, it ensures that all interprocedurally valid paths are traversed and invalid paths
are avoided. Thus use of call strings guarantees a safe and precise solution. In non-
recursive programs, since the call strings are acyclic, their number is finite and all of
them are generated during analysis. However, in recursive program, new call strings are
generated with every visit to a call node involved in recursion. In such cases, call strings
must be restricted to a finite number using explicit criteria.

Let K be the maximum number of distinct call sites in any call chain and L be the
lattice of data flow values. The full call strings method [22] requires construction of all
call strings of length up to K × (|L| + 1)2 for computing a safe and precise solution.
Intuitively, the argument by Sharir can be explained as follows: Let a data flow value at
call node Ci be vi and the corresponding value at Ri be v′

i. Since there are |L|+1 values
for vi and v′

i (due to presence of a fictitious value Ω), (|L|+ 1)2 distinct combinations
are possible, for which (|L|+ 1)2 distinct call strings are required. If ci is in recursion,
(|L|+1)2 occurrences of ci guarantee that all these call strings are generated and hence
guarantee all possible computations. Since there can be K distinct call sites, call strings
of length K × (|L| + 1)2 ensure that all possible data flow values are computed. For
separable frameworks, the prescribed length reduces to K × (|L̂ |+ 1)2 where L̂ is the
component lattice for an entity. For bit-vector frameworks, this length is 3× K.

3 Efficiency of Call Strings Approach

This section discusses the factors affecting the efficiency of the classical full call strings
method.

Orthogonality of Call Strings and Data Flow Values. Analysis of non-recursive pro-
grams constructs a finite number of call strings and the termination of analysis is gov-
erned solely by the convergence of data flow values. In recursive programs, termination
of call string construction needs to be ensured explicitly. Once the termination of call
strings is ensured, the usual fixed point criterion can be applied to data flow values to
ensure the termination of analysis exactly as in iterative intraprocedural analysis.

In the classical full call strings method, call string construction is terminated by trun-
cating call strings at a prescribed length. We ask the following question: Is it possible
to use data flow values instead of a prescribed length to bound the cyclic call strings?
Intuitively, a criterion can be devised to stop the construction of new call strings when
the old values repeat along cyclic call strings. But this further raises questions regarding
safety and precision: Do the call strings thus terminated ensure traversing all interpro-
cedurally valid paths and avoiding all invalid paths? We answer these questions by
characterizing the minimal set of call strings required for recursive procedures.

Efficiency, Precision, Simplicity, and Generality 217

Let the cyclic call sequence be cx ·cx+1 · · ·cx+y · · · ≡ σc. Let the flow function along the cyclic
call sequence be f , along cyclic return sequence be g, and that along the recursion ending path
be h. The prescribed length is m.

Cx

Sp

u

Cx+1

Cx+y

Rx

Ep

v

Rx+1

Rx+y

〈σ,d〉

g

f

h

Values at Sp〈
σ ·σi

c, f i(d)
〉
, where

f i+1(d) �= f i(d),0 ≤ i < ω
f i+1(d) = f i(d),ω ≤ i ≤ m

Values along Sp → Ep〈
σ ·σi

c,h(f j(d))
〉
, where

j =
{

i, 0 ≤ i < ω
ω, ω ≤ i ≤ m

Let

Ti =

⎧
⎪⎨

⎪⎩

h(f i(d))
 g(Ti+1) 0 ≤ i < ω
h(f ω(d))
 g(Ti+1) ω ≤ i < m

h(f ω(d)) i = m

Values along Rx → Ep :
〈
σ ·σi

c,g(Ti+1)
〉

Merged Values at Ep :
〈
σ ·σi

c,Ti+1
〉

Values along Ep → v :
〈
σ ·σi

c,T0)
〉

Fig. 2. Modeling recursion for call strings. σc may have multiple occurrence of a call node and
hence can be any arbitrary recursive call sequence. Though the recursion ending path has been
shown in procedure p it may not exist in p but in some other procedure in recursion.

Issues in Terminating Call String Construction for Recursive Programs. The pre-
scribed length defined in the classical method is based on a crude estimate to ensure
complete analysis in both call and return sequences as explained below. Hence many
cyclic call strings generated using the prescribed length are redundant in that they carry
the same data flow information as some shorter call strings.

Consider the situation in Figure 2 which models a recursive call. The strongly con-
nected component consisting of call nodes (Cx,Cx+1, . . . ,Cx+y) is a cyclic call sequence
and is denoted by σc. The corresponding cyclic return sequence (Rx+y, . . . ,Rx+1,Rx)
forms another strongly connected component which we denote by σr. The dashed line
from Sp to Ep represents the recursion ending control flow path. In a valid interproce-
dural path involving σc and σr, σc is traversed at least as many times as σr. Observe
that we do not require the call sites along a cyclic call sequence to be distinct. Thus
this figure models a general recursive path. We have shown the recursion ending path
in procedure p but as Corollary 1 shows, it does not matter if this path exists in some
other procedure in recursive call chain.

Each application of g requires traversing the cyclic return sequence once. In the
process, the last occurrence of σc is removed from every call string. Thus, g can be
applied only as many times as the maximum number of σc in any call string reaching
the entry of Ep. Note that the application of f does not have such a requirement because
the call strings are constructed rather than consumed while applying f . Achieving safety
and precision in call strings method requires the following:

Precision. In any path from Sp to Ep, the number of applications of g should not
exceed that of f . This is ensured by the call string construction algorithm implying that
only interprocedurally valid paths are considered.

Safety. In order to guarantee safety, the call strings should be long enough to allow
computation of all possible data flow values in both cyclic call and return sequences. In

218 U.P. Khedker and B. Karkare

a cyclic call sequence this is guaranteed by constructing call strings σ ·σi
c, 0 ≤ i ≤ ω.

If we select m that is large enough to allow for computation of all possible values of
the following recurrence then these call strings also guarantee convergence of data flow
values in the corresponding cyclic return sequence.

Ti =
{

h(f ω(d))
 g(Ti+1) ω ≤ i < m
h(f ω(d)) i = m

(1)

Note that the computation starts from the last call string and is performed in the
order: Tm,Tm−1, . . . ,Tm−ω+1,Tm−ω. The convergence lemma (Lemma 3) shows that this
sequence follows a strictly descending chain. Let the length of this chain be η. Then
m should be at least ω+ η. If m < ω+ η, then some data flow values corresponding to
unbounded recursion may not be computed. Since the values of ω and η are not known
a priori, the classical prescribed length subsumes the possible worst case scenarios.

4 An Efficient Variant of Call Strings Approach

This section presents the proposed variant of call strings method.

4.1 Concepts and Notations

A program point v is context dependent on program point u if (a) there is a path from u
to v which is a subpath of an interprocedurally valid path from Entry to v, and (b) on
every such path from u to v, every occurrence of an Ep is matched by a corresponding
occurrence of Sp. For a procedure p, all program points within p and all program points
within all callees in every call chain starting in p, are context dependent on Sp.

We view call and return nodes as being significant nodes. When v is context de-
pendent on u, a context defining path from u to v is a sequence of significant nodes
appearing in a path from u to v such that this path is a subpath of a valid interprocedural
path from Entry to v. Observe that each adjacent pair of nodes in a context defining
path may correspond to many intraprocedural paths. Let Cd(u) denote the set of pro-
gram points which are context dependent on program point u. Then, Cdp(u,v) denotes
the set of context defining paths from u to v ∈ Cd(u). Cs(u,v) denotes the set of call
strings corresponding to paths in Cdp(u,v).

The concept of context defining path can be seen as a more general abstraction of the
concept of the same-level-valid-paths [19] which are interprocedural paths which start
and end in the same procedure and have matching call return pairs.

Let V (σ,u) denote the value associated with call string σ at program point u. We
define the equivalence of call strings at a given program point u as follows:

σ1
u= σ2

def
= {σ1,σ2} ⊆ Cs(Entry,u)∧V (σ1,u) = V (σ2,u) (2)

Equivalence of contexts in terms of data flow values has been observed by [14,24] and
has been used for non-recursive portions of programs.

We assume that the work list based analysis is intraprocedurally eager i.e. it pro-
cesses intraprocedural paths completely before propagating data flow information from

Efficiency, Precision, Simplicity, and Generality 219

a significant node to another significant node. This requires two separate work lists:
One for intraprocedural nodes and the other for significant nodes. A significant node is
selected for processing only when the work list of intraprocedural nodes is empty.

4.2 Call String Invariants

This section presents the following results: The context invariance lemma (Lemma 1)
guarantees that the same set of call strings reaches all program points in a procedure.
Hence, if a mechanism is devised to ignore some call strings in a procedure, it would be
possible to reconstruct them wherever they are required. The call strings equivalence
lemma (Lemma 2) guarantees that if call strings are partitioned on the basis of data flow
values, the equivalence classes remain unchanged in a procedure although the values
associated with them may change. The convergence lemma (Lemma 3), and the suffi-
ciency theorem (Theorem 1) guarantee that if there is a way of computing the correct
value of σ ·σω

c at Ep, call strings σ ·σi, ω < i ≤ m need not be constructed (Figure 2).

Lemma 1. (Context Invariance). The calling contexts of all intraprocedural program
points in a procedure are identical.
INTUITION: Calling contexts of a procedure depend on the callers so they cannot be
different for different program points within the procedure.
PROOF: Omitted.

Lemma 2. (Call String Equivalence). Consider v ∈ Cd(u). Assume that the recursive
paths in Cdp(u,v) are unbounded. When the work list of intraprocedural nodes is empty
in an intraprocedurally eager call strings based method,

σ1
u= σ2 ⇒ ∀σ ∈ Cs(u,v), (σ1 ·σ) v= (σ2 ·σ)

INTUITION: Since σ1 and σ2 are transformed in the same manner by following the
same set of paths, the values associated with them will also be transformed in the same
manner and will continue to remain equal.
PROOF: Omitted.

This lemma assumes unbounded recursion. However, practical call strings method uses
a prescribed length. Hence as illustrated in Figure 2, last η call strings do not have the
same value at Ep in spite of the fact that they have the same value at Sp. If the call strings
had unbounded occurrences of σc, then this exception would not arise. However, this
exception does not matter because the associated values follow a strictly descending
chain and converge on the least value as shown by the following lemma. It refers to
Section 3 and Figure 2.

Lemma 3. (Convergence). Assume that the call strings method constructs call strings
long enough so that all call strings σ ·σi

c, 0 ≤ i ≤ m are constructed where m ≥ ω+ η
for all possible values of ω and η. Then,

∀η, V (σ ·σm−η
c ,Ep) � V (σ ·σi

c,Ep), m− η ≤ i ≤ m

INTUITION: When a data flow value is repeatedly computed using the same function
and is merged with the same value at each step, the resulting values must follow a
strictly descending chain until convergence.

220 U.P. Khedker and B. Karkare

PROOF: Since call strings σ ·σi
c,ω ≤ i ≤ m have the same data flow value at Sp, from

Lemma 2, they have the same value, say d′, just before Ep along the recursion ending
path. Since ω ≤ m− η, the value associated with call strings σ ·σi

c,m− η ≤ i ≤ m at Ep

along the recursion ending path will also be d′. From Figure 2 and equation (1),

V (σ ·σi
c,Ep) = Ti =

{
d′
g(Ti+1) m− η ≤ i < m
d′ i = m

Then the proof obligation reduces to showing Tm−η � Ti, m− η ≤ i ≤ m. We prove
this by inducting on the distance of i from m by rewriting Ti as Tm− j,0 ≤ j ≤ η and
by showing that Tm−(j+1) � Tm− j, 0 ≤ j < η. The basis of induction is j = 0. Since
Tm = d′ and Tm−1 = d′
 (. . .), it follows that Tm−1 � Tm. For the inductive step, assume
that Tm−(j+1) � Tm− j. We need to show that Tm−(j+2) � Tm−(j+1). From (1),

Tm−(j+2) = d′
g(Tm−(j+1)) (3)

Tm−(j+1) = d′
g(Tm− j) (4)

From the inductive hypothesis and monotonicity of functions,

Tm−(j+1) � Tm− j ⇒ g(Tm−(j+1)) � g(Tm− j)

The inductive step follows by substituting this in the right hand sides of (3) and (4) and
comparing them.

If the recursion ending path is not within procedure p but is in some other procedure,
then Ti at Ep will simply be gi−m(d′).

Lemma 4. (Convergence in a Cycle). When the computation of a data flow value con-
verges at a program point in a cycle, it must converge at each program point in the
cycle. Further, due to monotonicity, all values must converge in the same direction.

Corollary 1. Ti of the form gi−m(d′) at Eq must converge.

Theorem 1. (Sufficiency of Cyclic Call Strings).

m

i=0
V (σ ·σi

c,Ep) =
ω

i=0
V (σ ·σi

c,Ep)

INTUITION: When the data flow values along call strings in a cyclic return sequence
follow a descending chain, only the last value matters in the overall merge.

PROOF: Since the data flow value computation converges for the value associated
with σ ·σm−η

c , from Lemma 3, V (σ · σi
c,Ep) = V (σ · σi+1

c ,Ep), ω ≤ i < m − η. As
consequence, V (σ ·σω

c ,Ep) � V (σ ·σi
c,Ep), ω ≤ i < m which proves the theorem.

4.3 Modifying Call Strings Method

The basic principle of our approach is to maintain a single representative call string for
an equivalence class within the scope of a maximal context dependent region. For pro-
cedure p, the decision of representation is taken at Sp and remains valid at all program

Efficiency, Precision, Simplicity, and Generality 221

Traditional prescribed length m = (|L|+1)2 whereas ω ≤ |L|

Sp σ σ ·σc . . . σ ·σω
c σ ·σω+1

c
. . . σ ·σm−η

c
. . . σ ·σm

c

Same Values

Ep σ σ ·σc . . . σ ·σω
c σ ·σω+1

c
. . . σ ·σm−η

c
. . . σ ·σm

c

Same Values

Sp σ σ ·σc . . . σ ·σω
c σ ·σω+1

c

Same Values

Ep σ σ ·σc . . . σ ·σω
c σ ·σω+1

c

(a) Classical full call strings method (b) Modified approach

Fig. 3. Modifying the call strings method for representing and regenerating cyclic call strings

points which are context dependent on Sp. Ep is the last such point and the call strings
must be regenerated so that appropriate data flow values can be propagated to different
callers of p. Similar to the scope of variables in a program, this representation may be
“shadowed” by other context dependent regions created by procedure calls.

Let shortest(σ,u) denote the shortest call string which has the same value as σ at u.
Then, representation at Sp and regeneration at Ep is performed as follows:

represent(〈σ,d〉,Sp) = 〈shortest(σ,Sp),d〉 (5)

regenerate(〈σ,d〉,Ep) = {〈σ′,d〉 | V (σ,Sp) = V (σ′,Sp)} (6)

This change obviates the need to construct all call strings up to a prescribed length.
For finite lattices, the termination of call strings automatically follows. Effectively, this
facilitates fixed point computation of contexts and avoids merging contexts.

Our method constructs call strings σ ·σi
c,0 ≤ i ≤ ω for the recursive contexts. Call

string σ ·σω+1
c is represented by σ ·σω

c at Sp and no subsequent call string is created.
Thus, call strings σ ·σi

c, ω+ 1 < i ≤ m are not regenerated at Ep as illustrated in Fig-
ure 3. All other call strings are regenerated completely.

Observe that the actual value of ω governs the construction of call strings (without
the need of knowing ω) in our method. However, the value of η does not play any role
in construction of call strings. This is because the computation of f i(d) in a cyclic call
sequence (Figure 2) begins with the first call string whereas the computation of Ti in the
corresponding cyclic return sequence begins with the last call string.

4.4 Safety, Precision, Efficiency, and Complexity

Theorem 2. (Safety and Precision). The final data flow values computed by represent-
ing and regenerating call strings using (5) and (6) are identical to the values computed
by the original call strings method with length bound.
INTUITION: Representation and regeneration discards only those call strings which
contain redundant values and performs the desired computation iteratively.
PROOF: For the non-recursive contexts, the theorem is obvious. For recursive contexts
we show that our method computes the same data flow value for call string σ ·σω

c at Ep

as would be computed by the original method.

222 U.P. Khedker and B. Karkare

At Ep, σ ·σω+1
c is regenerated and the data flow value (say d′) associated with σ ·σω

c
is propagated to it. The analysis propagates the pair 〈σ ·σω+1

c ,d′〉 along the cyclic re-
turn sequence. This traversal removes the last occurrence of σc from σ ·σω+1

c , computes
g(d′), which is merged with the value of σ ·σω

c along the recursion ending path. Thus
V (σ ·σω

c ,Ep) = d′
g(d′) after one traversal. This is same as the value associated with
call string σ ·σm−1

c in the original method. At Ep, this is again copied to the call string
σ ·σω+1

c overwriting the previous value and the pair 〈σ ·σω+1
c ,d′
g(d′)〉 is propagated

along the cyclic return sequence. The process repeats as long as new values are com-
puted for σ ·σω

c ; effectively, traversal i over the cyclic return sequence computes the
value Tm−i for σ ·σω

c . The process terminates after η traversals. This computes the de-
sired value for σ ·σω

c .

Effectively, our method computes the correct value for σ ·σω
c by iterating over the cyclic

return sequence η times, rather than constructing all call strings up to σ ·σm
c . Traditional

prescribed length m is orders of magnitude larger than ω, hence terminating the call
strings construction at σ ·σω

c results in a dramatic reduction in the number of call strings.
Further improvements in efficiency arise because the reduction in the number of call
strings is exponential—at each call site, much fewer call strings are passed on to callees
along a call chain. The iterative computation does not entail any additional cost because
these computations are anyway performed by the original method.

The elegance of our method lies in the fact that not only does it reduce space and
time dramatically in practice, it also brings down the worst case complexity of call
string length from quadratic to linear in the size of the lattice.

Theorem 3. (Complexity). Using the value based termination of call strings, the max-
imum length of a call string is K × (|L|+ 1).
INTUITION: At the start of each procedure, the call strings are partitioned by the data
flow values associated with them.
PROOF: The lemma trivially holds for call strings in non-recursive contexts. For recur-
sive contexts, we maintain the call strings σ ·σω

c at the exit of Sp. Since all call strings
which have the same value are represented by a single call string, at most |L| distinct
call strings will be maintained at Sp. Thus, ω ≤ |L| and no call site needs to appear more
than |L| times in a call string. We may have an additional call string at the entry of Sp

which gets represented at exit of Sp. Hence the theorem.

Even in the worst case, our method would construct much fewer call strings. Further, in
practice, our method does not construct all call strings up to the worst case length. This
is different from the original method which requires construction of all call strings of
length up to K × (|L|+ 1)2.

Corollary 2. For separable frameworks, the bound reduces to K × (|L̂ |+ 1) where L̂
is the component lattice representing the data flow values of one entity. For bit vector
frameworks, it further reduces to K × 3 since |L̂ | = 2.

4.5 An Example of Points-To Analysis

Consider the supergraph in Figure 1 for interprocedural May Points-to analysis [5,11].
Figure 4 shows some important steps in the analysis using our method; Inn and Outn

Efficiency, Precision, Simplicity, and Generality 223

denote entry and exit points of n. The data flow information is stored as 〈σ,d〉 where d
is the May points-to information which is a set of elements x S indicating that x points
to the variables contained in set S.

Observe the computation of representative call strings at node Sp as shown in rows
5 and 6. Since both call strings c1 and c2 reaching the entry of procedure p carry the
same data flow value, they are represented by a single call strings c1. Note that c2 is
also eligible as the representative call string. Further, the represent function is applied
at Sq (see rows 10,11) where two call strings c1c3 and c1c3c4 carry the same data flow
value and hence are represented by the shortest call string c1c3.

The regeneration takes place at the exit of procedure q (see rows 12,13). The regen-
erated call string c1c3c4 reaches R4. Effect of statement x = ∗x in node n4 is observed
on the data flow value associated with call string c1c3. At InEq , values associated with
c1c3 are merged (row 16) and function regenerate is applied once again (row 17). In
the subsequent visit to node n4 (not shown in the table), statement x = ∗x modifies the
points-to information of x again and merging of information and regeneration of call
strings is performed once again at Eq.

Eventually, call string c1c3 reaches R3 and is transformed into c1. This call string
reaches Ep and function regenerate is applied to reconstruct call strings c1 and c2 at the
exit of Ep as shown in rows 18,19 of Figure 4. Effectively, we perform safe and precise
May points-to analysis using only acyclic call strings. We construct 5 call strings for
the same. The overall lattice of May points-to framework for this example contains 512
elements. Considering K = 3 (the total number of distinct call sites in a call chain), the
classical method would construct all call strings with lengths up to 7,89,507. Clearly,
it would require millions of call strings.

4.6 An Approximate Version

It is possible to increase the efficiency of the proposed method by using an approximate
version which can adjust the approximation on demand. The approximation is quan-
tified in terms of the number of occurrences of a call site in any call string. Let this
number be δ. When a call string σ containing δ− 1 occurrences of call site ci reaches
call node Ci, σ · ci is created. If some other call string σ′ containing δ−1 occurrences of
ci reaches Ci, instead of constructing σ′ · ci the value of σ′ is merged with σ · ci. In other
words, the first call string that grows to contain δ occurrences of ci becomes the repre-
sentative call string for all call strings containing δ or more occurrences of ci. When a
call string with the prefix σ · ci reaches Ci, it is represented by σ · ci (which is the repre-
sentative call string) instead of suffixing another ci to it and its modified value is merged
with the earlier value of σ · ci at Ci. The process is repeated iteratively until the merged
value converges. This converged value is then propagated back to each represented call
string during regeneration at Ri. Since no context is missed out, this is safe but since
values are merged across contexts, this is possibly imprecise. The degree of imprecision
depends on the choice of δ. The existing methods which merge the values in recursive
contexts can be seen as a special case of our approximate method with δ = 1.

Apart from increasing efficiency, demand driven summarization facilitates applica-
tion of call strings method to data flow frameworks with infinite lattices which have
finite heights (eg. constant propagation [1]).

224 U.P. Khedker and B. Karkare

Point i New information at i

1 InEntry 〈λ,{x /0,y /0,z /0}〉
. . .

2 Outn2 〈λ,{x {y},y /0,z {x}}〉
. . .

3 OutC1 〈c1,{x {y},y /0,z {x}}〉
4 OutC2 〈c2,{x {y},y /0,z {x}}〉
5 InSp 〈c1,{x {y},y /0,z {x}}〉,

〈c2,{x {y},y /0,z {x}}〉
6 OutSp 〈c1,{x {y},y /0,z {x}}〉
. . .

7 OutC3 〈c1c3,{x {y},y {z},z {x}}〉
. . .

8 InSq 〈c1c3,{x {y},y {z},z {x}}〉
. . .

9 OutC4 〈c1c3c4,{x {y},y {z},z {x}}〉
. . .

10 InSq 〈c1c3,{x {y},y {z},z {x}}〉,
〈c1c3c4,{x {y},y {z},z {x}}〉

Point i New information at i

11 OutSq 〈c1c3,{x {y},y {z},z {x}}〉
. . .

12 InEq 〈c1c3,{x {y},y {z},z {x}}〉
13 OutEq 〈c1c3,{x {y},y {z},z {x}}〉,

〈c1c3c4,{x {y},y {z},z {x}}〉
14 InR4 〈c1c3c4,{x {y},y {z},z {x}}〉
. . .

15 Outn5 〈c1c3,{x {z},y {z},z {x}}〉
16 InEq 〈c1c3,{x {y,z},y {z},z {x}}〉
17 OutEq 〈c1c3,{x {y,z},y {z},z {x}}〉,

〈c1c3c4,{x {y,z},y {z},z {x}}〉
. . .

18 InEp 〈c1,{x {x,y,z},y {z},z {x}}〉
19 OutEp 〈c1,{x {x,y,z},y {z},z {x}}〉,

〈c2,{x {x,y,z},y {z},z {x}}〉
. . .

Fig. 4. Some important steps in intraprocedurally eager work list algorithm for interprocedural
May points-to analysis using value based termination of call strings for supergraph in Figure 1

5 Related Work

We compare our work with other methods on the basis of precision, efficiency, general-
ity and simplicity. The approximate call strings method [22] which retains fixed length
suffixes is a popular variant of call strings method. Although it is efficient and flexi-
ble, it compromises on precision in recursive as well as non-recursive programs and the
degree of precision varies with the length of suffixes.

Functional approach [22] involves computing flow functions in a context indepen-
dent manner and applying them in a context sensitive manner. Although this approach
guarantees precision, it is known to be inefficient due to high time and space com-
plexity resulting from function computations [1]. Tabulation method [22] is an efficient
implementation of functional approach, which uses memoization to store input and out-
put data flow values at each program point, instead of storing the functions. Similar to
our approach, this approach also uses the basic principle of restricting the reanalysis
of procedures only for distinct inputs. However, unlike our method, tabulation method
merges the newly computed data flow values with the old values at each program point
to guarantee termination. Further, since contexts are not remembered separately, mean-
ingful approximation is not possible and hence it cannot be used for frameworks with
infinite lattices. The method of computing partial transfer functions (PTF) [24,18] looks
very similar to tabulation. However, PTFs involve summarization of input in recursive
contexts whereas our method and tabulation do not do so and hence are more precise.
The graph reachability method [19,21,10] is a variant of tabulation based functional

Efficiency, Precision, Simplicity, and Generality 225

approach which requires computation of an exploded supergraph. It is applicable only
to finite distributive frameworks.

Many approaches have been developed specifically for context-sensitive points-to
analysis. BDD-based approaches [23,25,26] construct all acyclic contexts but merge
values along recursive portions resulting in loss of precision. Since BDDs have efficient
implementations and they exploit the commonality across contexts carrying equivalent
values [14], these approaches are scalable. Many approaches [4,13,15,7,16] achieve ef-
ficiency by using flow-insensitive algorithms for intraprocedural analysis thereby caus-
ing additional imprecision. The context-sensitive points-to analysis using invocation
graph [5] requires construction of separate invocation graph and is reported not to be
scalable [23]. This method computes conservative solution along recursive portions.
Summary-based points-to analysis approaches [24] are reported to be the precise, but
they do not guarantee full precision along recursive portions. As observed in a compar-
ison of context sensitive points-to analyses [14], treating recursive portions in a context
insensitive manner leads to significant imprecision in practical programs.

Some context sensitive methods (eg. automata based methods [6,20,3], generic as-
sertion based method [8], linear algebra based method [17]) have approached interpro-
cedural data flow analysis from a view point of building theoretical underpinnings and
their precision-efficiency trade off or generality (eg. applicability to frameworks such
as points-to analysis) is not clear.

We feel that context-insensitivity along recursive paths is being looked upon as an
unavoidable compromise for efficiency and is being accepted as a regular practice [9].
This may be because the orthogonality of bounding contexts and computing data flow
values makes it impossible to identify and eliminate all redundant contexts. To ensure
precision, the only available option is to use functional approaches or to use the worst
case bounds for call strings. Both these approaches are extremely inefficient.

The occurrence based bound for call strings for bit-vector frameworks [12] is an
improvement over the classical length bound [22]. It constructs call strings with any
call site occurring at most 3 times instead of all call strings with lengths up to 3K.
However, it still allows many redundant call strings since the termination of call strings
is orthogonal to the convergence of data flow values.

6 Empirical Measurements

We have implemented interprocedural Reaching Definitions analysis using the
proposed algorithm in gcc 4.0 as an additional pass that constructs supergraph and
performs the call strings based analysis on the Gimple IR. We have measured the per-
formance of the algorithm on the following programs: Hanoi1, sim2, bit gray3,
181.mcf and 256.bzip2 from SPEC-2000, analyzer, distray, mason
and fourinarow from FreeBench v1.03 suite. Among these programs,analyzer,
distray and 256.bzip2 are non-recursive whereas all other programs are recur-

1 http://www.ece.cmu.edu/∼ece548/hw/lab1/hanoi.c
2 http://gd.tuwien.ac.at/perf/benchmark/aburto/sim/sim.c
3 http://paul.rutgers.edu/∼rhoads/Code/bit gray.c

http://www.ece.cmu.edu/~ece548/hw/lab1/hanoi.c
http://gd.tuwien.ac.at/perf/benchmark/aburto/sim/sim.c
http://paul.rutgers.edu/~rhoads/Code/bit_gray.c

226 U.P. Khedker and B. Karkare

Program LoC #F #C 3K length bound Proposed Approach
K #CS MaxL #CSPN Time #CS MaxL #CSPN Time

hanoi 33 2 4 4 100000+ 12 99922 3973 ×103 8 3 7 2.37
bit gray 53 5 11 7 100000+ 21 31374 2705 ×103 17 4 6 3.83
analyzer 288 14 20 2 21 2 4 20.33 21 2 4 1.39
distray 331 9 21 6 96 6 28 322.41 22 3 4 1.11
mason 350 9 13 8 100000+ 11 22143 432 ×103 14 3 4 0.43
fourinarow 676 17 45 5 510 15 158 397.76 46 3 7 1.86
sim 1146 13 45 8 100000+ 14 33546 1427 ×103 211 13 105 234.16
181 mcf 1299 17 24 6 32789 18 32767 484 ×103 41 9 11 5.15
256 bzip2 3320 63 198 7 492 7 63 258.33 406 7 34 200.19

LoC is the number of lines of code, #F is the number of procedures, #C is the number of call sites,
#CS is the number of call strings (100000+ indicates that call strings construction was aborted
after 100000 call strings), #CSPN denotes the maximum number of call strings reaching any node.
MaxL denotes the maximum length of any call strings. The analysis time is in milliseconds.

Fig. 5. Empirical measurements

sive. These experiments were carried out on a P4 (3.06 GHz) machine with 1GB RAM
running Fedora Core 6.

Figure 5 gives the details of the benchmark programs and the call string related
measurements for the 3 × K length [22] and the proposed method. For the purpose of
experimentation we had to restrict the number of call strings to 105 for 3 × K bound.
This was done primarily due to the compiler running out of space. The table clearly
shows that our approach of terminating call strings construction using data flow values
reduces the number of call strings and hence the analysis time by orders of magnitude.

7 Conclusions and Future Work

The classical full call strings method is context sensitive and computes as precise so-
lution as is statically possible. However, it suffers from terrible inefficiency and hence
has been relegated to the set of classical methods which are of academic interest only.
This paper resurrects and rejuvenates the call strings method by observing some subtle
insights and proposing minimal changes to the method. These changes are simple, do
not impose any additional constraints, and faithfully retain the essential principles of
the method and the consequent properties: precision, simplicity, and generality. These
changes discard call strings where they are not required, regenerate them where they
are required and iteratively compute data flow values in cyclic call strings in return se-
quences as summarized in Figure 3. This results in dramatic improvements in efficiency.

Our investigations deviate from the current trends along the following two aspects:

– Most contemporary investigations seem to assume that compromising precision (at
least in recursive contexts) is essential for achieving efficiency. We believe that any
trade-off between precision and efficiency without making a clear distinction be-
tween relevant contexts and irrelevant contexts is undesirable. We have shown that
this distinction can be very easily and efficiently made by using the convergence of
data flow values for convergence of contexts without compromising on precision.

Efficiency, Precision, Simplicity, and Generality 227

– A majority of contemporary investigations involve specialized algorithms in order
to achieve efficiency. They may be specialized in terms of a very sophisticated rep-
resentation of the programs or in terms of using insights from the specific analyses
for which they are implemented. We believe that it is important to seek efficiency in
a general method which is applicable to all data flow frameworks (including those
with infinite lattices) and which can be implemented very easily. Simplicity and
generality are essential for exploring the possibility of automatic construction of
interprocedural data flow analyzers. We find this direction to be promising because
the scalability of our method depends on the convergence of data flow values rather
than merely on program structure. When programs are written in modular fashion
with loose coupling between different modules, the convergence of data flow values
does not scale with program size as much as the number of contexts.

We have implemented this method for Reaching Definitions analysis and the results
are very promising. We are in the process of implementing this method for points-
to analysis and would like to test the method on large programs. Note that point-to
analysis is non-distributive and the classical call string method would also suffer from
imprecision. Our variant does not create any additional imprecision because the results
presented in this paper do not assume distributivity property.

Our quick and dirty implementation was aimed at the first level measurements.
We would like to improve the implementation by engineering better data structures and
algorithms and observe their impact on the efficiency. We would also like to measure
the precision vs. efficiency trade-off using the approximate version of our method.

Acknowledgments

Implementation of these analyses was carried out by Seema Ravandale. Divya Krishan
was involved in the implementation of earlier versions of call strings methods.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley Longman Publishing Co., Inc. (2006)

2. Alt, M., Martin, F.: Generation of efficient interprocedural analyzers with PAG. In: Static
Analysis Symposium, pp. 33–50 (September 1995)

3. Amiranoff, P., Cohen, A., Feautrier, P.: Beyond iteration vectors: Instancewise relational ab-
stract domains. In: Static Analysis Symposium, pp. 161–180 (2006)

4. Burke, M., Carini, P., Choi, J., Hind, M.: Flow-insensitive interprocedural alias analysis in the
pressence of pointers. In: Pingali, K.K., Gelernter, D., Padua, D.A., Banerjee, U., Nicolau,
A. (eds.) LCPC 1994. LNCS, vol. 892, Springer, Heidelberg (1995)

5. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In: Proc. of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 242–256 (1994)

6. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis.
In: Foundations of Software Science and Computation Structure, pp. 14–30 (1999)

7. Fahndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using instantiation
constraints. In: Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 253–263 (2000)

228 U.P. Khedker and B. Karkare

8. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267. Springer, Heidelberg (2007)

9. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer analysis for
millions of lines of code. In: Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 290–299 (2007)

10. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: 3rd ACM
Symposium on Foundations of Software Engineering, pp. 104–115 (1995)

11. Kanade, A., Khedker, U.P., Sanyal, A.: Heterogeneous fixed points with application to points-
to analysis. In: Proc. of the Asian Symposium on Programming Languages and Systems, pp.
298–314 (2005)

12. Karkare, B., Khedker, U.P.: An improved bound for call-strings based interprocedural anal-
ysis of bit vector frameworks. ACM Trans. Program. Lang. Syst. 29(6), 38 (2007)

13. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with heap
cloning practical for the real world. In: Proc. of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (June 2007)

14. Lhoták, O., Hendren, L.J.: Context-sensitive points-to analysis: is it worth it? In: Mycroft,
A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer, Heidelberg (2006)

15. Liang, D., Harrold, M.J.: Efficient points-to analysis for whole-program analysis. SIGSOFT
Software Engineering Notes 24(6), 199–215 (1999)

16. Milanova, A.: Light context-sensitive points-to analysis for java. In: Proc. of ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(June 2007)

17. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Proc.
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
New York, NY, USA, pp. 330–341 (2004)

18. Murphy, B.R., Lam, M.S.: Program analysis with partial transfer functions. In: Proc. of the
2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Ma-
nipulation, pp. 94–103 (2000)

19. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reacha-
bility. In: Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 49–61 (1995)

20. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. Science of Computer Programming 58(1-2), 206–263
(2005)

21. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theoretical Computer Science 167(1–2), 131–170 (1996)

22. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, Prentice-Hall Inc.,
Englewood Cliffs (1981)

23. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: Proc. of the ACM SIGPLAN Conference on Programming language
design and implementation (June 2004)

24. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C programs. In: Proc.
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(1995)

25. Zhu, J.: Towards scalable flow and context sensitive pointer analysis. In: Proc. of the 42nd
Annual Conference on Design Automation, pp. 831–836 (2005)

26. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 145–157 (2004)

Java Bytecode Verification for @NonNull Types

Chris Male, David J. Pearce, Alex Potanin, and Constantine Dymnikov

Victoria University of Wellington, NZ
{malechri,djp,alex,dymnikkost}@mcs.vuw.ac.nz

Abstract. Java’s annotation mechanism allows us to extend its type system with
non-null types. However, checking such types cannot be done using the exist-
ing bytecode verification algorithm. We extend this algorithm to verify non-null
types using a novel technique that identifies aliasing relationships between local
variables and stack locations in the JVM. We formalise this for a subset of Java
Bytecode and report on experiences using our implementation.

1 Introduction

NullPointerExceptions are a common error arising in Java programs when ref-
erences holding null are dereferenced. Java 1.5 allows us to annotate types and, hence,
to extend the type system with @NonNull types. An important step in the enforcement
of such types is the bytecode verifier which must efficiently determine whether or not
non-null types are used soundly. The standard bytecode verifier uses a dataflow analy-
sis which is insufficient for this task. To address this, we present a novel, lightweight
dataflow analysis ideally suited to the problem of verifying non-null types.

Java Bytecodes have access to a fixed size local variable array and stack [19]. These
act much like machine registers in that they have no fixed type associated with them;
rather, they can have different types at different program points. To address this, the
standard bytecode verifier automatically infers the types of local variables and stack
locations at each point within the program. The following illustrates a simple program,
and the inferred types that hold immediately before each instruction:

static int f(Integer); locals stack
0: aload_0 [Integer] []
1: ifnull 8 [Integer] [Integer]
4: aload_0 [Integer] []
5: invokevirtual ... [Integer] [Integer]
8: return [Integer] []

Here, there is one local variable at index 0. On method entry, this is initialised with
the Integer parameter. The aload 0 instruction loads the local variable at index 0
onto the stack, and the Integer type is inferred for that stack location as a result.

A bytecode verifier for non-null types must infer that the value loaded onto the stack
immediately before the invokevirtual method call cannot be null, as this is the
call’s receiver. The challenge here is that ifnull compares the top of the stack against
null, but then discards this value. Thus, the bytecode verifier must be aware that, at

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 229–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

230 C. Male et al.

that exact moment, the top of the stack and local 0 are aliases. The algorithm used by the
standard bytecode verifier is unable to do this. Therefore, we extend this algorithm to
maintain information about such aliases, and we refer to this technique as type aliasing.
More specifically, this paper makes the following contributions:

– We formalise our non-null bytecode verifier for a subset of Java Bytecode.
– We detail an implementation of our system for Java Bytecode.
– We report on our experiences with using our system on real-world programs.

While there has already been considerable work on non-null types (e.g. [25,10,16,3,8]),
none has directly addressed the problem of bytecode verification. While these exist-
ing techniques could be used for this purpose, they operate on higher-level program
representations and must first translate bytecode into their representation. This intro-
duces unnecessary overhead that is undesirable for the (performance critical) bytecode
verifier. Our technique operates on bytecode directly, thus eliminating this inefficiency.

2 Preliminaries

We extend Java types to allow references to be declared as non-null and for arrays to
hold non-null elements (in §5 we extend this to Java Generics). For example:

Vector v1;
@NonNull Vector v2;
@NonNull Integer @NonNull [] a1;

Here, v1 is a nullable reference (one which may be null), while v2 is a non-
null reference (one which may not be null); similarly, a1 is a non-null reference to
an array holding non-null elements. When annotating arrays, the leftmost annotation
associates with the element type, whilst that just before the braces associates with the
array reference type. We formalise a cut-down version of the non-null types supported
by our system using the following grammar:

α ::= @NonNull | ε
T ::= T α [] | α C | null | ⊥

Here, the special null type is given to the null value, ε denotes the absence of a
@NonNull annotation, C denotes a class name (e.g. Integer) and ⊥ is given to
locations which hold no value (e.g. they are uninitialised, in deadcode, etc).

An important question is how our system deals with subtyping. For example, we re-
quire all array element types be identical between subtypes1. A formal definition of the
subtype relation for our simplified non-null type language is given in Figure 1. An im-
portant property of our subtype relation is that it forms a complete lattice (i.e. that every
pair of types T1, T2 has a unique least upper bound, T1�T2, and a unique greatest lower
bound, T1 � T2). This helps ensure termination of our non-null verification algorithm.

1 While this contrasts slightly with Java’s treatment of arrays, we cannot do better without
adding runtime non-null type information to arrays.

Java Bytecode Verification for @NonNull Types 231

@NonNull ≤ ε

α1 ≤ α2 C extends B

α1 C ≤ α2 B
α1 ≤ α2

T1 α1 [] ≤ T1 α2 [] T1 α [] ≤ α java.lang.Object

⊥ ≤ T α [] ⊥ ≤ α C ⊥ ≤ null null ≤ T1[] null ≤ C

Fig. 1. Subtyping rules for non-null Java types. We assume reflexivity and transitivity, that
java.lang.Object is the root of the class hierarchy and, hence, is also �.

A well-known problem, however, is that Java’s subtype relation does not form a com-
plete lattice [17]. This arises because two classes can share the same super-class and
implement the same interfaces; thus, they may not have a unique least upper bound. To
resolve this, we adopt the standard solution of ignoring interfaces entirely and, instead,
treating interfaces as type java.lang.Object. This works because Java supports
only single inheritance between classes. This is the approach taken in Sun’s Java Byte-
code verifier and, hence, our system is no less general than it.

3 Non-null Type Verification

Our non-null type verification algorithm infers the nullness of local variables at each
point within a method. We assume method parameters, return types and fields are al-
ready annotated with @NonNull. Our algorithm is intraprocedural; that is, it concen-
trates on verifying each method in isolation, rather than the whole program together.
The algorithm constructs an abstract representation of each method’s execution; if this
is possible, the method is type safe and cannot throw a NullPointerException.
The abstract representation of a method mirrors the control-flow graph (CFG); its nodes
contain an abstract representation of the program store, called an abstract store, giving
the types of local variables and stack locations at that point.

We now formalise this construction process for methods. Constructors are ignored
for simplicity and discussed informally in §5. Also, while the full Java Bytecode in-
struction set is supported, only a subset is considered here for brevity.

3.1 Abstract Store

In the Java Virtual Machine (JVM), each method has a fixed-size local variable array
(for storing local variables) and a stack of known maximum depth (for storing tempo-
rary values). Our system models this using an abstract store, which we formalise as
(Σ, Γ, κ), where Σ is the abstract meta-heap, Γ is the abstract location array and κ
is the stack pointer which identifies the first free location on the stack. Here, Γ maps
abstract locations to type references. These abstract locations are labelled 0, . . . , n−1,
with the first m locations representing the local variable array, and the remainder repre-
senting the stack (hence, n−m is the maximum stack size and κ≤n). A type reference
is a reference to a type object which, in turn, can be thought of as a non-null type with
identity. Thus, we can have two distinct type objects representing the same non-null
type. Crucially, this types-as-references approach allows two abstract locations to be

232 C. Male et al.

type aliases; that is, refer to the same type object. For example, in the following ab-
stract store, locations 0 and 2 are type aliases:

Σ ={r1 �→@NonNull Integer, r2 �→String}, Γ ={0 �→ r1, 1 �→ r2, 2 �→ r1}, κ=3

Here, the abstract meta-heap, Σ, maps type references to non-null types. It’s called
a meta-heap as Σ does not abstract the program heap; rather it is an internal structure
used only to enable type aliasing.

Definition 1. An abstract store (Σ, Γ, κ) is well-formed iff dom(Γ) = {0, . . . , n−1}
for some n, ran(Γ) ⊆ dom(Σ) and 0 ≤ κ ≤ n.

3.2 Abstract Semantics

The effect of a bytecode instruction is given by its abstract semantics, which we de-
scribe using transition rules. These summarise the abstract store immediately after the
instruction in terms of the abstract store immediately before it; any necessary constraints
on the abstract store immediately before the instruction are also identified.

The abstract semantics for the bytecode instructions considered in our formalism are
given in Figure 2. Here, Γ [r1/r2] generates an abstract store from Γ where all abstract
locations holding r1 now hold r2. Several helper functions are used: fieldT(O, N), re-
turns the type of field N in class O; methodT(O, M) returns the type of method M in
class O; thisMethT() gives the current method’s type; finally, validNewT(T1) holds if
T1 	= @NonNull T2 α [] for any T2. The latter prevents creation of arrays holding
@NonNull elements, as Java always initialises array elements with null (see §5).

A useful illustration of our abstract semantics is the arrayload bytecode. This
requires the array index on top of the stack, followed by the array reference itself;
these are popped off the stack and the indexed element is loaded back on. Looking at
the arrayload rule, we see κ decreases by one, indicating the net effect is one less
element on the stack. The notation Γ [κ−2 �→ r] indicates the abstract store is updated
so that abstract location κ−2 now holds type reference r; thus, r has been pushed onto
the stack and represents the loaded array element. The reference on top of the stack is
ignored since this represents the actual index value, and is of no concern. The constraint
r /∈ Σ ensures r references a fresh type object; such constraints are used to ensure an
abstract location is not type aliased with any other. Another constraint ensures the array
reference is non-null, thus protecting against a NullPointerException.

Considering the remaining rules from Figure 2, the main interest lies with ifceq.
There is one rule for each of the true/false branches. The true branch uses the greatest
lower bound operator, T1 � T2 (recall §2). This creates a single type object which is
substituted for both operands to create a type aliasing relationship. For the false branch,
a special difference operator, T1 − T2, is employed which is similar to set difference.
For example, the set of possible values for a variable o of type Object includes all in-
stances of Object (and its subtypes), as well as null; after a comparison o!=null,
null is removed from this set. Thus, it is defined as follows:

Java Bytecode Verification for @NonNull Types 233

store i : Σ, Γ, κ −→ Σ, Γ [i �→Γ (κ−1)], κ−1 load i : Σ, Γ, κ −→ Σ, Γ [κ �→Γ (i)], κ+1

r /∈ Σ Σ′ = Σ ∪ {r �→ null}
loadnull : Σ, Γ, κ −→ Σ′, Γ [κ �→r], κ+1

validNewT(T)
r /∈ Σ Σ′ = Σ ∪ {r �→ @NonNull T}
new T : Σ, Γ, κ −→ Σ′, Γ [κ �→r], κ+1

Σ(Γ (κ − 2)) = T @NonNull []
r /∈ Σ Σ′ = Σ ∪ {r �→ T}

arrayload : Σ, Γ, κ −→ Σ′, Γ [κ−2 �→ r], κ−1

Σ(Γ (κ−1)) = T1 T1 ≤ T2

Σ(Γ (κ−3)) = T2 @NonNull []
arraystore : Σ, Γ, κ −→ Σ, Γ, κ−3

Σ(Γ (κ−1)) = @NonNull C
T = fieldT(O, N)

r /∈ Σ Σ′ = Σ ∪ {r �→ T}
getfield O.N : Σ, Γ, κ −→ Σ′, Γ [κ−1 �→ r], κ

Σ(Γ (κ−1)) = T1

Σ(Γ (κ−2)) = @NonNull C
T2 = fieldT(O, N) T1 ≤ T2

putfield O.N : Σ, Γ, κ −→ Σ, Γ, κ−2

(P1, . . . , Pn) → Tr = methodT(O, M)
Σ(Γ (κ−n)), . . . , Σ(Γ (κ−1)) = T1, . . . , Tn

Σ(Γ (κ−(n+1))) = @NonNull C
T1 ≤ P1, . . . , Tn ≤ Pn

r /∈ Σ Σ′ = Σ ∪ {r �→ Tr} κ′ = κ − n

invoke O.M : Σ, Γ, κ −→ Σ′, Γ [κ′−1 �→r], κ′

(P1, . . . , Pn) → Tr = thisMethT()
Σ(Γ (κ−1)) = T T ≤ Tr

return : Σ, Γ, κ −→ ∅, ∅, 0

r1 = Γ (κ−2) r2 = Γ (κ−1)
Σ(r1) = T1 Σ(r2) = T2 r3 /∈ Σ

Σ′ = Σ ∪ {r3 �→ T1
 T2} κ′ = κ − 2

ifceq : Σ, Γ, κ
true−→ Σ′, Γ [r1/r3, r2/r3], κ

′

r1 = Γ (κ−2) r2 = Γ (κ−1)
Σ(r1) = T1 Σ(r2) = T2 r3, r4 /∈ Σ

Σ′ = Σ ∪ {r3 �→ T1−T2, r4 �→ T2−T1}
ifceq : Σ, Γ, κ

false−→ Σ′, Γ [r1/r3, r2/r4], κ−2

Fig. 2. Abstract semantics for Java Bytecodes considered. Note, ifceq stands for if cmpeq.

Definition 2. T1 − T2 is @NonNull T , if T1 = α T ∧ T2 = null , and T1 otherwise.

The semantics for the return bytecode indicate that: firstly, we always expect a return
value (for simplicity); and, secondly, no bytecode can follow it in the CFG.

Finally, the Java Bytecodes not considered in Figure 2 include all arithmetic oper-
ations (e.g. iadd, imul, etc), stack manipulators (e.g. pop, dup, etc), other branch-
ing primitives (e.g. ifnonull, tableswitch, etc), synchronisation primitives (e.g.
monitorenter, etc) and other miscellaneous ones (e.g. instanceof, check
cast, athrow and arraylength). It is easy enough to see how our abstract se-
mantics extends to these and our implementation (see §5) supports them all.

3.3 An Example

Figure 3 illustrates the bytecode instructions for a simple method and its corresponding
abstract representation. When a method is called, the local variable array is initialised
with the values of the incoming parameters, starting from 0 and using as many as neces-
sary; for instance methods, the first parameter is always the this reference. Thus, the
first abstract location of the first store in Figure 3 has type Test; the remainder have

234 C. Male et al.

0

1

2

0

1

2

class Test {
String f(Integer i, Integer j) {

}}
 } else { return null; }
 return j.toString();
 if(i==j && i!=null) {

3

4

3

3

4

3

3

4

3

43

0

1

2

3

43

4

3

43

4

3

4

loadnull

load 1

ifceq

load 2

true

false

true

false

load 2

invoke toString

return

load 1
1 20

loadnull

Integer

@NonNull Test

10

0

3

@NonNull Test

10 2

0

3

10 2

0

3

null 4

@NonNull Test

@NonNull Test

0

9

8

10String10 2

10

0

7

6

@NonNull Test

Γ

@NonNull Test

10 2

@NonNull Test

1 20

@NonNull Test

2

10 2

0

5@NonNull Integer

@NonNull Test

2

10 2

0

5@NonNull Integer

@NonNull Test

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Σ

ifceq

4

Fig. 3. Bytecode representation of a simple Java Method (source given above) and the state of the
abstract store, (Σ, Γ, κ), going into each instruction. The value of κ is indicated by the underlined
abstract location; when the stack is full, this points past the last location. The type objects in Σ are
given a unique identifier to help distinguish new objects from old ones; we assume unreferenced
type objects are immediately garbage collected, which is reflected in the identifiers becoming
non-contiguous. Type aliases are indicated by references which are “joined”. For example, the
second abstract store reflects the state immediately after the load 1 instruction, where locations
1 and 3 are type aliases.

Java Bytecode Verification for @NonNull Types 235

nullable type Integer, with each referring to a unique type object (since we must
conservatively assume parameters are not aliased on entry).

In Figure 3, the effect of each instruction is reflected in the changes between the
abstract stores before and after it. Of note are the two ifceq instructions: the first es-
tablishes a type aliasing relationship between locations 1 and 2 (on the true branch); the
second causes a retyping of location 1 to @NonNull Integer (on the false branch)
which also retypes location 2 through type aliasing. Thus, at the invoke instruc-
tion, the top of the stack (which represents the receiver reference) holds @NonNull
Integer, indicating it will not throw a NullPointerException.

We now consider what happens at join points in the CFG. The return instruction
in Figure 3 is a good illustration, since two distinct paths reach it and each has its
own abstract store. These must be combined to summarise all possible program stores
at that point. In Figure 3, the store coming out of the invoke instruction has a type
aliasing relationship, whereas that coming out of the loadnull instruction does not;
also, in the former, location 2 has type @NonNull Integer, whilst the latter gives
it nullable type Integer. This information must be combined conservatively. Since
location 2 can hold null on at least one incoming path, it can clearly hold null at the
join point. Hence, the least conservative type for location 2 is Integer. Likewise, if a
type alias relationship does not hold on all incoming paths, we cannot assume it holds
at the join. We formalise this notion of conservatism as a subtype relation:

Definition 3. Let S1 = (Σ1, Γ1, κ), S2 = (Σ2, Γ2, κ) be well-formed abstract stores.
Then S1 ≤ S2 iff ∀x, y ∈ {0 . . . κ}

[
Σ1(Γ1(x)) ≤ Σ2(Γ2(x)) ∧ (Γ2(x) = Γ2(y) =⇒

Γ1(x)=Γ1(y))
]
.

Note, Definition 3 requires κ be identical on each incoming store; this reflects a standard
requirement of Java Bytecode. Now, to construct the abstract store at a join point, our
verification system finds the least upper bound, �, of incoming abstract stores — this is
the least conservative information obtainable. We formalise this as follows:

Definition 4. Let G = (V, E) be the control-flow graph for a method M . Then, the
dataflow equations for M are given by SM (y) =

⊔

x
l→y∈E

f(I(x), SM (x), l).

Here, the transfer function, f , is defined by the abstract semantics of Figure 2, I(x)
gives the bytecode at node x, and the edge label, l, distinguishes the true/false branches
for ifceq. Thus, SM (y) gives the abstract store going into y. Finally, the dataflow
equations can be solved as usual by iterating to a fixed point using a worklist algorithm.

4 Soundness

We now demonstrate that our algorithm terminates and is correct; that is, if a method
passes our verification process, then it cannot throw a NullPointerException.

Several previous works have formalised Java Bytecode and shown the standard veri-
fication algorithm is correct (e.g. [14,17]). Our system essentially operates in an identi-
cal fashion to the standard verifier, except that it additionally maintains type aliases and
propagates @NonNull annotations. Indeed, our abstract semantics of Figure 2 would
be identical to previous work (e.g. [17]) if we removed the requirement for @NonNull

236 C. Male et al.

types at dereference sites and prohibited type aliasing relationships. Thus, we leverage
upon these existing works to simplify our proof by restricting attention to those details
particular to our system.

An important issue regarding our formalism is that it applies only to methods, not
constructors. The reason for this is detailed in §5. Therefore, in the following, we as-
sume all fields annotated with @NonNull are correctly initialised.

4.1 Termination

Demonstrating termination amounts to showing the dataflow equations always have
a least fixed-point. This requires the transfer function, f , is monotonic and that our
subtyping relation is a join-semilattice (i.e. any two abstract stores always have a unique
least upper bound). These are addressed by Lemmas 1 and 2.

Strictly speaking, Definition 3 does not define a join-semilattice over abstract stores,
since two stores may not have a unique least upper bound. For example, consider:

S1 = ({r1 �→ Integer, r2 �→ Float}, {0 �→ r1, 1 �→ r1, 2 �→ r2}, 3)
S2 = ({r1 �→ Integer, r2 �→ Float}, {0 �→ r2, 1 �→ r2, 2 �→ r1}, 3)

Then, the following are minimal upper bounds of S1 and S2:

S3 = ({r1 �→ Number, r2 �→ Number}, {0 �→ r1, 1 �→ r1, 2 �→ r2}, 3)
S4 = ({r1 �→ Number, r2 �→ Number}, {0 �→ r2, 1 �→ r2, 2 �→ r1}, 3)

Here, S3 ≤ S4, S4 ≤ S3, {S1, S2} ≤ {S3, S4} and ¬∃S.[{S1, S2} ≤ S ≤ {S3, S4}].
Hence, there is no unique least upper bound of S1 and S2. Such situations arise in our
implementation as type objects are Java Objects and, hence, r1 	= r2 simply means
different object addresses. Now, while S3 and S4 are distinct, they are also equivalent:

Definition 5. Let S1 = (Σ1, Γ1, κ), S2 = (Σ2, Γ2, κ), then S1 and S2 are equivalent,
written S1 ≡ S2, iff S1 ≤ S2 and S1 ≥ S2.

Lemma 1. Let S1 = (Σ1, Γ1, κ), S2 = (Σ2, Γ2, κ) with dom(Γ1) = dom(Γ2). If U is
the set of minimal upper bounds of S1 and S2, then U 	=∅ and ∀x, y∈U.[x ≡ y].

Proof. See companion Technical Report [20].

Lemma 2. The dataflow equations from Definition 4 are monotonic.

Proof. By case analysis on the instructions of Figure 2. See companion Technical Re-
port [20].

4.2 Correctness

We now show the type aliasing information maintained is correct (Lemma 3), and that
any location with @NonNull type cannot hold null (Lemma 4). This yields an overall
correctness result for the subset of Java Bytecode we have formalised (Theorem 1).

Definition 6. A Java method is considered to be valid if it passes the standard JVM
verification process [19].

Java Bytecode Verification for @NonNull Types 237

The consequences of Definition 6 include: all conventional types (i.e. ignoring non-null
types) are used safely; stack sizes are always the same at the meet points; method and
field lookups always resolve; etc.

Lemma 3. Let SM =(Σ, Γ, κ) be the abstract store for an instruction in a valid method
M . If {l1 �→ r, l2 �→ r} ⊆ Γ , then the local array/stack locations represented by l1, l2
refer to the same object or array immediately before that instruction in any execution
trace of M .

Proof. By case analysis on the different instruction types of Figure 2 and the notion of
conservatism from Definition 3. See companion Technical Report [20]. ��
Lemma 4. Let SM =(Σ, Γ, κ) be the abstract store for an instruction in a valid method
M . Assume the parameters of M , the fields accessed by M and the return value of all
methods invoked by M respect their declared non-null type. Then, if {l �→r}⊆Γ ∧{r �→
@NonNull T }⊆Σ, the local array/stack location represented by l does not hold null
immediately before that instruction in any execution trace of M .

Proof. Again, by case analysis on the different instruction types of Figure 2, the notion
of conservatism from Definition 3 and Lemma 3. See companion Technical Report [20].

��
Theorem 1. If our abstract representation can be correctly constructed for all methods
in a Java Bytecode program, then no method will throw a NullPointerException,
assuming all fields are correctly initialised.
Proof. By induction on the call sequence, starting from main(String[]). Using
Lemma 4, we formulate an inductive hypothesis stating, for a method M , that if the
arguments to M respect their non-null types, so do the return value of M , the arguments
to any calls made by M , and any assignments to fields / array elements made by M .
See companion Technical Report [20]. ��

5 Implementation

We have implemented our system on top of Java Bytecode and we now discuss many
aspects not covered by our discussion so far.

Constructors. In Java, a field is assigned null before it is initialised in a construc-
tor [10]. Thus, a field with non-null type will temporarily hold null inside a construc-
tor. Figure 4 highlights the problem. We must ensure such fields are properly initialised,
and must restrict access prior to this occurring. Two mechanisms are used to do this:

1. A simple dataflow analysis is used to ensure that all non-null (instance) fields in a
class declaration are initialised by that class’s constructor.

2. Following [10], we use a secondary type annotation, @Raw, for references to indi-
cate the object referred to may not be initialised. Reads from fields through these
return nullable types. The this reference in a constructor is implicitly typed @Raw
and @Raw is strictly a supertype of a normal reference.

Inheritance. When a method overrides another via inheritance our tool checks that
@NonNull types are properly preserved. As usual, types in the parameter position are
contravariant with inheritance, whilst those in the return position are covariant.

238 C. Male et al.

class Parent {
Parent() { doBadStuff(); } // error #1, f1 not initialised yet!
int doBadStuff() { return 0; }

}
class Child extends Parent {
@NonNull String f1; @NonNull String f2;
Child() {
doBadStuff(); // error #2, f1 not initialised before call!
f1 = "Hello World";

} // error #3, f2 not initialised yet!
int doBadStuff() { return f1.length(); }

}}

Fig. 4. Illustrating three distinct problems with constructors and default values. Error #3 arises as
all @NonNull fields must be initialised! Error #2 arises as a method is called on this before
all @NonNull fields are initialised. Error #1 arises as, when the Child’s constructor is called,
it calls the Parent’s constructor. This, in turn, calls doBadStuff() which dynamically dis-
patches to the Child’s implementation. However, field f1 has not yet been initialised!

Field Retyping. Consider this method and its bytecode (recall local 0 holds this):

class Test { 0. load 0
Integer field; 2. getfield Test.field
void f() { 5. ifnull 16
if(field != null) { 8. load 0
field.toString() 10. getfield Test.field

}}} 13. invoke Integer.toString
16. return

The above is not type safe in our system as the non-nullness of the field is lost when it is
reloaded. This is strictly correct, since the field’s value may have been changed between
loads (e.g. by another thread). We require this is resolved manually by adjusting the
source to first store the field in a local variable (which is strictly thread local).

Generics. Our implementation supports Java Generics. For example, we denote a
Vector containing non-null Strings with Vector<@NonNull String>. Ex-
tending the subtype relation of Figure 1 is straightforward and follows the conventions
of Java Generics (i.e. prohibiting variance on generic parameters). Verifying meth-
ods which accept generic parameters is more challenging. To deal with this, we in-
troduce a special type, �i, for each (distinct) generic type used in the method; here,
�i ≤ java.lang.Object and �i 	≤ �j , for i 	= j. When checking a method f(T x),
the abstract location representing x is initialised to the type �i used exclusively for
representing the generic type T. The subtyping constraints ensure �i can only flow into
variables/return types declared with the same generic type T. However, an interesting
problem arises with some existing library classes. For example:

class Hashtable<K,V> ... { ...
V get(K key) { ...; return null; } }

Clearly, this class assumes null is a subtype of every type; unfortunately, this is not
true in our case, since e.g. null 	≤ @NonNull String. To resolve this, we prohibit
instances of Hashtable/HashMap from having a non-null type in V’s position.

Java Bytecode Verification for @NonNull Types 239

Casting + Arrays. We explicitly prevent the creation of arrays with non-null ele-
ments (e.g. new @NonNull Integer[10]), as Java always initialises array ele-
ments of reference type with null. Instead, we require an explicit cast to @NonNull
Integer[] when the programmer knows the array has been fully initialised. Casts
from nullable to non-null types are implemented as runtime checks which fail by throw-
ing ClassCastExceptions. Their use weakens Theorem 1, since we are essentially
trading NullPointerExceptions for ClassCastExceptions. While this is
undesirable, it is analogous to the issue of downcasts in Object-Oriented Languages.

Instanceof. Our implementation extends the type aliasing technique to support retyp-
ing via instanceof. For example:

if(x instanceof String) { String y = (String) x; .. }

Here, our system retypes x to type @NonNull String on the true branch, rending
the cast redundant (note, an instanceof test never passes on null).

Type Annotations. The Java Classfile format doesn’t allow annotations on generic pa-
rameters or in the array type reference position. Therefore, we use a simple mechanism
for encoding this information into a classfile. We expect future versions of Java will
support such types directly and, indeed, work is already underway in this regard [9].

6 Case Studies

We have manually annotated and checked several real-world programs using our non-
null type verifier. The largest practical hurdle was annotating Java’s standard libraries.
This task is enormous and we are far from completion. Indeed, finishing it by hand does
not seem feasible; instead, we plan to develop (semi-)automatic procedures to help.

We now consider four real-world code bases which we have successfully annotated:
the java/lang and java/io packages, the jakarta-oro text processing library
and javacc, a well-known parser generator. Table 1 details these. Table 2 gives a
breakdown of the annotations added, and the modifications needed for the program
to type check. The most frequent modification, “Field Load Fix”, was for the field
retyping issue identified in §5. To resolve this, we manually added a local variable into
which the field was loaded before the null check. Many of these fixes may represent real
concurrency bugs, although a deeper analysis of each situation is needed to ascertain
this. The next most common modification, “Context Fixes”, were for situations where
the programmer knew a reference could not hold null, but our system was unable to
determine this. These were resolved by adding dummy null checks. Examples include:

Table 1. Details of our four benchmarks. Note, java/lang does not include subpackages.

benchmark version LOC source
java/lang package 1.5.0 14K java.sun.com
java/io package 1.5.0 10.6K java.sun.com
jakarta-oro 2.0.8 8K jakarta.apache.org/oro
javacc 3.2 28K javacc.dev.java.net

240 C. Male et al.

Table 2. Breakdown of annotations added and related metrics. “Annotated Types” gives the total
number of annotated parameter, return and field types against the total number of reference / array
types in those positions. A breakdown according to position (i.e. parameter, return type or field)
is also given. “Field Load Fixes” counts occurrences of the field retyping problem outlined in §5.
“Context Fixes” counts the number of dummy null checks which had to be added. “Required Null
Checks” counts the number of required null checks, versus the total number of dereference sites.
Finally, “Required Casts” counts the number of required casts, versus the total number of casts.

Annotated Parameter Return Field
Types Annotations Annotations Annotations

java/lang 931 / 1599 363 / 748 327 / 513 241 / 338
java/io 515 / 1056 322 / 672 96 / 200 97 / 184
jakarta-oro 413 / 539 273 / 320 85 / 108 55 / 111
javacc 420 / 576 199 / 278 53 / 65 168 / 233

Field Context Other Required Required
Load Fixes Fixes Fixes Null Checks Casts

java/lang 65 61 36 281 / 2550 51 / 96
java/io 59 82 21 207 / 2254 54 / 110
jakarta-oro 53 327 29 73 / 2014 29 / 33
javacc 109 137 (28) 74 287 / 5700 141 / 431

– Thread.getThreadGroup() returns null when the thread in question has
stopped. But,Thread.currentThread().getThreadGroup()will return
a non-null value, since the current thread cannot complete getThreadGroup()
if it has stopped! This assumption was encountered in several places.

– Another difficult situation for our tool is when the nullness of a method’s return
value depends either on its parameters, or on the object’s state. A typical example
is illustrated in Figure 5. More complex scenarios were also encountered where, for
example, an array was known to hold non-null values up to a given index.

– As outlined in §5, Hashtable.get(K) returns null if no item exists for the
key. A programmer may know that, for specific keys, get() cannot return null
and so can avoid unnecessary null check(s). The javacc benchmark used many
hashtables and many context fixes were needed as a result. In Table 2, the
number of “Context Fixes” for this particular problem are shown in brackets.

The “Other Fixes” category in Table 2 covers other miscellaneous modifications
needed for the code to check. Figure 6 illustrates one such example. Most relate to
the initialisation of fields. In particular, helper methods called from constructors which
initialise fields are a problem. This is because our system checks each constructor ini-
tialises its fields, but does not account for those initialised in helper methods. To resolve
this, we either inlined helper methods or initialised fields with dummy values before
they were called.

The “Required Null Checks” counts the number of explicit null checks (as present
in the original program’s source), against the total number of dereference sites. Since,
in the normal case, the JVM must check every dereference site, this ratio indicates the
potential for speedup resulting from non-null types. Likewise, “Required Casts” counts

Java Bytecode Verification for @NonNull Types 241

public void actionPerformed(@NonNull ActionEvent ae) { ...
JFileChooser jfc = new JFileChooser(); ...
int rval = jfc.showOpenDialog(null);
if(rval == JFileChooser.APPROVE_OPTION) {
File f = jfc.getSelectedFile();
filePath.setText(f.getCanonicalPath());

...

Fig. 5. A common scenario where the nullness of a method’s return type depends upon its context;
in this case, if rval==APPROVE OPTION, then getSelectedFile() won’t return null.
To resolve this, we must add a “dummy” check that f!=null before the method call.

public ThreadGroup(String name) {
this(Thread.currentThread().getThreadGroup(), name);
...

Fig. 6. An interesting example from java.lang.ThreadGroup. The constructor invoked via
the this call requires a non-null argument (and this is part of its Javadoc specification). Al-
though getThreadGroup() can return null, it cannot here (as discussed previously). Our
tool reports an error for this which cannot be resolved by inserting a dummy null check, since
the this call must be the first statement of the constructor. Therefore, we either inline the con-
structor being called, or construct a helper method which can accept a null parameter.

the number of casts actually required, versus the total number present (recall from §5
that our tool automatically retypes local variables after instanceof tests, making
numerous casts redundant.)

We were also interested in whether or not our system could help documentation.
In fact, it turns out that of the 1101 public methods in java/lang, 83 were mis-
documented. That is, the Javadoc failed to specify that a parameter must not be null
when, according to our system, it needed to be. We believe this is actually pretty good,
all things considered, and reflects the quality of documentation for java/lang. Inter-
estingly, many of the problem cases were found in java/lang/String.

Finally, a comment regarding performance seems prudent, since we have elided per-
formance results for brevity. In fact, the performance of our system is very competitive
with the standard bytecode verifier. This is not surprising, since our system uses a very
similar algorithm to the standard bytecode verifier, albeit extended with type aliasing.

7 Related Work

Several works have considered the problem of checking non-null types. Fähndrich and
Leino investigated the constructor problem (see §5) and outlined a solution using raw
types [10]. However, no mechanism for actually checking non-null types was presented.
The FindBugs tool checks @NonNull annotations using a dataflow analysis that ac-
counts for comparisons against null [16,15]. Their approach does not employ type
aliasing and provides no guarantee that all potential errors will be reported. While this
is reasonable for a lightweight software quality tool, it is not suitable for bytecode

242 C. Male et al.

verification. ESC/Java also checks non-null types and accounts for the effect of con-
ditionals [11]. The tool supports type aliasing (to some extent), can check very subtle
pieces of code and is strictly more precise than our system. However, it relies upon a
theorem prover which employs numerous transformations and optimisations on the in-
termediate representation, as well as a complex back-tracking search procedure. This
makes it rather unsuitable for bytecode verification, where efficiency is paramount.

Ekman et al. implemented a non-null checker within the JustAdd compiler [8]. This
accounts for the effect of conditionals, but does not consider type aliasing as there is
little need in their setting where a full AST is available. To apply their technique to Java
Bytecode would require first reconstructing the AST to eliminate type aliasing between
stack and local variable locations. This would add additional overhead to the bytecode
verification process, compared to our more streamlined approach. Pominville et al. also
discuss a non-null analysis that accounts for conditionals, but again does not consider
type aliasing [25]. They present empirical data suggesting many internal null checks
can be eliminated, and that this leads to a useful improvement in program performance.

Chalin et al. empirically studied the ratio of parameter, return and field declarations
which are intended to be non-null, concluding that 2/3 are [3]. To do this, they manually
annotated existing code bases, and checked for correctness by testing and with ESC/-
Java. JavaCOP provides an expressive language for writing type system extensions,
such as non-null types [2]. This system cannot account for the effects of conditionals;
however, as a work around, the tool allows assignment from a nullable variable x to a
non-null variable if this is the first statement after a x!=null conditional.

CQual is a flow-sensitive qualifier inference algorithm which supports numerous
type qualifiers, but does not account for conditionals at all [12,13]. Building on this is
the work of Chin et al. which also supports numerous qualifiers, including nonzero,
unique and nonnull [5,6]. Again, conditionals cannot be accounted for, which
severely restricts the use of nonnull. The Java Modelling Language (JML) adds for-
mal specifications to Java and supports non-null types [7]. However, JML is strictly a
specification language, and requires separate tools (such as ESC/Java) for checking.

Related work also exists on type inference for Object-Oriented languages
(e.g. [21,24,28]). These, almost exclusively, assume the original program is completely
untyped and employ set constraints (see [1]) for inferring types. This proceeds across
method calls, necessitating knowledge of the program’s call graph (which must be ap-
proximated in languages with dynamic dispatch). Typically, a constraint graph rep-
resenting the entire program is held in memory at once, making these approaches
somewhat unsuited to separate compilation [21]. Such systems share a strong rela-
tionship with other constraint-based program analyses, such as points-to analysis (e.g.
[18,26,22,23]).

Several works also use techniques similar to type aliasing, albeit in different settings.
Smith et al. capture aliasing constraints between locations in the program store to pro-
vide safe object deallocation and imperative updates [27]; for example, when an object
is deallocated the supplied reference and any aliases are retyped to junk. Chang et al.
maintain a graph, called the e-graph, of aliasing relationships between elements from
different abstract domains [4]; their least upper bound operator maintains a very similar

Java Bytecode Verification for @NonNull Types 243

invariant to ours. Zhang et al. consider aliasing of constraint variables in the context of
set-constraint solvers [29].

8 Conclusion

We have presented a novel approach to the bytecode verification of non-null types.
A key feature is that our system infers two kinds of information from conditionals:
nullness information and type aliases. We have formalised this system for a subset of
Java Bytecode, and proved soundness. Finally, we have detailed an implementation of
our system and reported our experiences gained from using it. The tool itself is freely
available from http://www.mcs.vuw.ac.nz/∼djp/JACK/.

Acknowledgements. Thanks to Lindsay Groves, James Noble, Paul H.J. Kelly, Stephen
Nelson, and Neil Leslie for many excellent comments on earlier drafts. This work is
supported by the University Research Fund of Victoria University of Wellington.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Science of Computer Pro-
gramming 35(2–3), 79–111 (1999)

2. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing plug-
gable type systems. In: OOPSLA, pp. 57–74. ACM Press, New York (2006)

3. Chalin, P., James, P.R.: Non-null references by default in Java: Alleviating the nullity an-
notation burden. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 227–247. Springer,
Heidelberg (2007)

4. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and heap struc-
tures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163. Springer, Heidel-
berg (2005)

5. Chin, B., Markstrum, S., Millstein, T.: Semantic type qualifiers. In: PLDI, pp. 85–95. ACM
Press, New York (2005)

6. Chin, B., Markstrum, S., Millstein, T., Palsberg, J.: Inference of user-defined type qualifiers
and qualifier rules. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 264–278. Springer,
Heidelberg (2006)

7. Cielecki, M., Fulara, J., Jakubczyk, K., Jancewicz, L.: Propagation of JML non-null annota-
tions in Java programs. In: PPPJ, pp. 135–140. ACM Press, New York (2006)

8. Ekman, T., Hedin, G.: Pluggable checking and inferencing of non-null types for Java. Journal
of Object Technology 6(9), 455–475 (2007)

9. Ernst, M.: Annotations on Java types. Java Specification Request (JSR) 308 (2007)
10. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented

language. In: OOPSLA, pp. 302–312. ACM Press, New York (2003)
11. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended

static checking for Java. In: Proc. PLDI, pp. 234–245. ACM Press, New York (2002)
12. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: Proc. PLDI, pp. 192–

203. ACM Press, New York (1999)
13. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proc. PLDI, pp. 1–12.

ACM Press, New York (2002)
14. Goldberg, A.: A Specification of Java Loading and Bytecode Verification. In: Conference on

Computer & Communications Security, pp. 49–58. ACM Press, New York (1998)

http://www.mcs.vuw.ac.nz/~djp/JACK/

244 C. Male et al.

15. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In: Proc.
PASTE, pp. 9–14. ACM Press, New York (2007)

16. Hovemeyer, D., Spacco, J., Pugh, W.: Evaluating and tuning a static analysis to find null
pointer bugs. In: Proc. PASTE, pp. 13–19. ACM Press, New York (2005)

17. Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of Automated
Reasoning 30(3/4), 235–269 (2003)

18. Lhoták, O., Hendren, L.J.: Context-sensitive points-to analysis: Is it worth it? In: Mycroft,
A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer, Heidelberg (2006)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. The Java Series.
Addison Wesley Longman, Inc., Amsterdam (1999)

20. Male, C., Pearce, D.J., Potanin, A., Dymnikov, C.: Java bytecode verification for @NonNull
types. Technical report, Victoria University of Wellington (2007)

21. Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Proc. OOPSLA, pp.
146–161. ACM Press, New York (1991)

22. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Online cycle detection and difference propagation:
Applications to pointer analysis. Software Quality Journal 12(4), 309–335 (2004)

23. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient field-sensitive pointer analysis for C. Trans-
actions on Programming Languages and Systems 30(1) (2008)

24. Plevyak, J., Chien, A.A.: Precise concrete type inference for object-oriented languages. In:
Proc. OOPSLA, pp. 324–340. ACM Press, New York (1994)

25. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L., Verbrugge, C.: A framework for opti-
mizing Java using attributes. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 334–554.
Springer, Heidelberg (2001)

26. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using annotated con-
straints. In: Proc. OOPSLA, pp. 43–55. ACM Press, New York (2001)

27. Smith, F., Walker, D., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000. LNCS,
vol. 1782, pp. 366–381. Springer, Heidelberg (2000)

28. Wang, T., Smith, S.F.: Precise constraint-based type inference for Java. In: Knudsen, J.L.
(ed.) ECOOP 2001. LNCS, vol. 2072, pp. 99–117. Springer, Heidelberg (2001)

29. Zhang, Y., Nielson, F.: A scalable inclusion constraint solver using unification. In: King, A.
(ed.) LOPSTR 2007. LNCS, vol. 4915, Springer, Heidelberg (2007)

Efficient Context-Sensitive Shape Analysis
with Graph Based Heap Models

Mark Marron1, Manuel Hermenegildo1,2, Deepak Kapur1, and Darko Stefanovic1

1University of New Mexico
{marron,kapur,darko}@cs.unm.edu

2 Technical University of Madrid and IMDEA-Software
herme@fi.upm.es

Abstract. The performance of heap analysis techniques has a significant impact
on their utility in an optimizing compiler. Most shape analysis techniques perform
interprocedural dataflow analysis in a context-sensitive manner, which can result
in analyzing each procedure body many times (causing significant increases in
runtime even if the analysis results are memoized). To improve the effectiveness
of memoization (and thus speed up the analysis) project/extend operations are
used to remove portions of the heap model that cannot be affected by the called
procedure (effectively reducing the number of different contexts that a proce-
dure needs to be analyzed with). This paper introduces project/extend operations
that are capable of accurately modeling properties that are important when an-
alyzing non-trivial programs (sharing, nullity information, destructive recursive
functions, and composite data structures). The techniques we introduce are able
to handle these features while significantly improving the effectiveness of mem-
oizing analysis results (and thus improving analysis performance). Using a range
of well known benchmarks (many of which have not been successfully analyzed
using other existing shape analysis methods) we demonstrate that our approach
results in significant improvements in both accuracy and efficiency over a base-
line analysis.

1 Introduction

Recent work on shape analysis techniques [25,28,1,14,15,9,8] has resulted in a number
of techniques that are capable of accurately representing the properties (connectivity,
interference, and shape) that are needed for a range of optimization and parallelization
applications. However, the computational cost of performing these analyses has limited
their applicability. A significant component of the analysis runtime is due to the need to
perform a context-sensitive interprocedural analysis, where each procedure body may
be analyzed multiple times (once for each different calling context).

The practice of using a memo-table to avoid recomputing analysis results and the use
of a project operation to remove portions of the heap that cannot affect or be affected by
the called procedure are standard techniques for minimizing the number of times each
function needs to be analyzed during interprocedural dataflow analysis [2,17,16,19]. The
two major goals of the project operation are improving the effectiveness of memoizing
analysis results by removing portions of the heap that could cause spurious inequalities

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 245–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

246 M. Marron et al.

between calling contexts and preventing the loss of precision that occurs when recursive
procedures use a summary representation for multiple out-of-scope references (e.g. local
reference variables with the same name but that exist in different call frames).

The project operation for heap models and the utility of locality axioms have been
analyzed in a number of papers [22,21,7,12,4]. These techniques use variations on the
notion of a frame rule as presented in [11,20] and identify a number of features of the
project operation that are of particular importance for interprocedural analysis using
heap domains. A major distinction is made between the projection operation in cutpoint-
free cases, where there are no pointers that cross from a section of the heap that is
unreachable from the procedure arguments into a section of the heap that is reachable
from the procedure arguments, and cases where such pointers may exist.

This paper presents a method for using cutpoints to support interprocedural heap
analysis. We then use the technique to quickly analyze (10’s of seconds) programs that
are larger (by a factor of 2-4) and more varied (in terms of data structures and algo-
rithms) than any other analysis technique to date. Our first contribution is the reformu-
lation of the project/extend operations in [21] so that they can be used in a graph based
(as opposed to an access path based) heap model which allows us to use a very com-
pact and efficient representation of heap connectivity. Our second contribution is the
extension of the original approach to handle two classes of programatic events that are
critical to analyzing real world programs, analyzing programs that involve non-trivial
sharing and composite data structures [1,15] and propagating nullity test information
from callee to caller scope. Finally we use the results of the heap analysis to drive the
parallelization of a range of benchmarks (several of which have not been successfully
analyzed/parallelized using shape information) achieving an average parallel speedup
of 1.69 on a dual-core machine.

2 Example Code

To develop intuition about the mechanism and purpose of project/extend operations
we look at a simple function (Figure 1) that illustrates the basic functioning of the
project/extend operations and the propagation of nullity information from the callee to
the caller scope. Our lists are made of objects of type LNode, each LNode object has
two fields, a nx field which refers to the next element in the list and a field f which
stores a boolean.

LNode LInit(LNode l)
if(l == null)

return;

tin = l.nx;
LInit(tin);
l.f = true;

Fig. 1. Recursive List Initialize

Efficient Context-Sensitive Shape Analysis 247

Accurately analyzing the initialization method (LInit) requires the analysis to propa-
gate information inferred about cutpoints in the callee scope back into the caller scope.
If the analysis is unable to use the l == null test in the callee scope to infer that
l.nx is null in the caller scope then the analysis will not be able to infer that after
the method returns the argument list is either null or must have the true value in all
the f fields.

3 Heap Model

We model the concrete heap as a labeled, directed multi-graph (V,E) where each vertex
v ∈V is an object in the store or a variable in the environment, and each labeled directed
edge e ∈ E represents a pointer between objects or a reference from a variable to an
object. Each edge is given a label that is an identifier from the program, an edge (a,b) ∈
E labeled with p, we use the notation a

p−→ b to indicate that a points to the object b via
the field name (or identifier) p.

A region of memory ℜ is a subset of the objects in memory, with all the pointers that
connect these objects and all the cross-region pointers that start or end at an object in
this region. Formally, let C ⊆V be a subset of objects, and let Pi = {p | ∃a,b ∈C,a

p−→ b}
and Pc = {p | ∃a ∈C,x �∈C,a

p−→ x∨x
p−→ a} be respectively the set of internal and cross-

region pointers for C. Then a region is the tuple (C,Pi,Pc). For a region ℜ = (C,Pi,Pc)
and objects a,b ∈ C, we say a and b are connected in ℜ if they are in the same weakly-
connected component of the graph (C,Pi). Objects a and b are disjoint in ℜ if they are
in different weakly-connected components of the graph.

3.1 Abstract Heap Model

The underlying abstract heap domain is a graph where each node represents a region
of the heap or a variable and each edge represents a set of pointers or a variable target.
The nodes and edges are augmented with additional instrumentation predicates. The
abstract domain evaluates the predicates using a 3-valued semantics: predicates are ei-
ther definitely true, definitely false, or unknown [25]. Our analysis tracks the following
set of instrumentation predicates. Our choice of predicates is influenced by common
predicates tracked in previous papers on shape analysis [5,24,28,20].

Types. For each type t in the program, there is an instrumentation predicate (also written
t) that is true at a concrete heap node if any concrete object represented by the node may
have type t.

Linearity. Each abstract node has a linearity that represents whether it represents at
most one concrete node (linearity 1) or any set of 0 or more concrete nodes (written #).

Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis uses abstract layout predicates Singleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. The List predicate is similar to the inductive List predicate

248 M. Marron et al.

in separation logic [20]. The other predicates correspond to the definitions for Trees,
Dags, and Cycles in the literature, for the formal definitions see [14].

Interference. The heap model uses two properties to track the potential that two refer-
ences can reach the same memory location in the region that a node represents.

The first property is for references that are represented by different edges in the heap
model. Given the concretization function γ and two edges e1,e2 that are incoming edges
to the node n, the predicate that defines inConnected in the abstract domain is: e1,e2 are
inConnected with respect to n if it is possible that ∃r1 ∈ γ(e1)∧∃r2 ∈ γ(e2)∧∃a,b ∈
γ(n) s.t. (r1 refers to a)∧ (r2 refers to b)∧ (a, b connected). For improved precision
we also track may and must aliasing (e1,e2 are inConnected and a = b) between the
references the edges abstract (must aliasing is only meaningful if the edge represents
a single references, see [15] for an approach that generalizes must-aliasing to sets of
references).

The second property is for the case where the references are represented by the same
edge. To model this the interfere property is introduced. An edge e represents interfering
references if there may exist references r1,r2 ∈ γ(e) such that the objects that r1,r2

refer to are connected/aliased. A three-element lattice, np < ip < ap, np for edges with
all non-interfering references and ip for potentially interfering references and ap for
potentially aliasing references, is used to represent the interference property.

The Heap Graph. Each node in the graph either represents a region of the heap or a
variable. The variable nodes are labeled with the variable that they represent. Nodes
representing the concrete heap regions contain a record that tracks the types of the
concrete objects that the node represents (types), the number of objects (either 1 or #)
that may be in the region (count), and the abstract layout of a node (layout). Each node
also tracks the connectivity relation between pairs of incoming edges. A binary relation
connR is used to track the inConnected relation. Although the connectivity relation is
a property of the nodes, for readability in the figures we associate the information with
the edges. Thus, each node is represented as a record of the form [types layout
count].

As in the case of the nodes, each edge contains a record that tracks additional in-
formation about the edge. The offset component indicates the offsets (labels) of the
references that are abstracted by the edge. The number of references that the edge may
represent is tracked with the maxCut property. The interfere property tracks the possi-
bility that the edge represents references that interfere. Finally, we have a field connto
which is a list of all the other edges/variables that the edge may be connected to accord-
ing to the connR relation (we add a (!) for the edges in the list that represent references
which may alias and a (∼) if the edges represent single references that must alias). To
simplify the figures if the connto field is empty we omit it entirely from the record in
the figure. Since the variable edges always represent single references and the offset
label is implicitly the name of the variable the record simply contains the connR infor-
mation or is omitted entirely if the connR relation is empty. To simplify the discussion
of the examples each edge also has a unique label. The pointer edges in the figures are
represented as records {label offset maxCut interfere connto}.

Efficient Context-Sensitive Shape Analysis 249

The abstract heap domain is restricted via a normal form [14,15]. The normal form
ensures that the heap graph remains finite, and that equality comparisons are efficient.
The local data flow analysis is performed using a Hoare (Partially Disjunctive) Power
Domain [13,26] over these graphs. Interprocedural analysis is performed in a context-
sensitive manner and the procedure analysis results are memoized. At each call/return
site the portion of the heap graphs passed to the call are joined into a single graph. The
design of the join operation is such that, in general, information lost in the join can be
recovered when needed later in the program. The decision to perform joins at call sites
(programs tend to have uniform expectations of the portion of the heap passed to and
returned from calls) and to perform the join only on the portion of the heap passed to the
called method results in very little loss of precision while ensuring the abstract model
remains compact.

Abstract Call Stack. Our concrete model for the call stack is a function Sm : (LV×N)
→
O, where LV is the set of local variable names and N represents the depth in the call
sequence (main is at depth 1) and O is the set of all live objects. Thus, the pair (v,4)
refers to the value of the variable v in the scope of the 4th call frame.

To represent the concrete call stack we introduce stack variables which represent the
values of local variables on the stack (for a variation on this approach see [22]). In our
extension each stack variable summarizes all the possible targets (in a given graph) for
a given variable name on the stack. Given a variable name v and a heap graph G we
define a variable name v’ for use in the abstract domain (we will select a better naming
scheme in Section 4) where: v’ is the abstraction of all the variables in the call stack,
∃i ∈ N, node n ∈ G, object on s.t. on ∈ γ(n)∧Sm(v, i) = on.

By associating the set of stack locations that are abstracted with the set of tar-
gets in a given abstract heap graph, we can naturally partition the stack variables
along with the heap graphs. Since each stack variable is associated with only the val-
ues on the stack that point into a region of the heap represented by the given heap
graph, it is straightforward to partition and join them when partitioning the heap
graphs.

Thus, during the local analysis the heap graph represents the portion of the pro-
gram heap that is visible from the local variables and is augmented with some num-
ber of stack variables and cutpoint variables which relate variable values and the heap
in the caller scope to the portions of the heap reachable from callee scope local
variables.

For efficiency and in order to ensure analysis termination the naming scheme we
choose will result in situations where multiple cutpoint (or stack) edges are given the
same name. This may result in some amount of information loss (particularly with re-
spect to reachability and aliasing). To minimize the loss that occurs we introduce an
instrumentation domain for the stack/cutpoint variable edges, nameColl = {pdj, pua,
pa}. Where pdj indicates a cutpoint/stack name representing (a single edge) or edges
where the edges do not represent any pairwise connected references, pua indicates a
name representing multiple edges where there are no pairwise aliases, while pa is the
indicates the name represents edges that they may have pairwise aliasing. Thus, the cut-
point variable edges are represented with records {maxCut interfere connto
nameColl} (stack variables are not used in this example).

250 M. Marron et al.

4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutpoints we need to name the
stack variables as well as the cutpoint edges. We use a simple technique for the stack
variables: given a variable name v defined in the caller function fcaller we use the
name $fcaller*v to represent this variable in the callee scope. This naming scheme
can create false dependencies on the local scope names unless the variable information
is normalized during the comparisons of entries in the memo-table.

Naming edges that cross the cutpoints is more complex since we need to balance the
accuracy of the analysis with the potential of introducing spurious differences resulting
from isomorphic (or nearly so) cutpoint edges being given different names. For the
renaming of the cutpoint edges we assume that special names for the arguments to the
function have been introduced. The first pointer parameter is referred to by the special
variable name p1 and the ith pointer argument is referred to by the variable pi.

Figure 2(c) shows a recursive call to LInit where the special argument name p1
has been added to represent the value of the first argument to the function. In this figure
the edge e1 is a cutpoint edge since it starts in the portion of the heap that is unreachable
from the argument variables and ends in a portion of the heap that is reachable from the
argument variables (this differs slightly from the definition for cutpoints in [21] but
allows us to handle edges uniformly).

For each cutpoint edge we generate a pair of names: one is used in the unreachable
section of the heap graph and one in the reachable section, which allows an abstract heap
model to represent both incoming and outgoing cutpoint edges that are isomorphic and
exist in the same abstract heap component without loss of precision.

If we are adding a cutpoint for the method call fcaller and the edge e, which is a
cutpoint, starting at n and ending at n′, and has edge label fe. We can find the shortest
path (f1 . . . fk) from any of the pi variables to n′ (using lexographic comparison on
the path names to break ties). Using the pi argument variable and the path (f1 . . . fk)
we derive the cutpoint basename = fcaller*pi*f1*. . .*fk*fe We compute a
pair of static names (unreachN, reachN) where unreachN = $basename- and reachN
= $basename+. In Figure 2(d) the cutpoint name $p1+ (for brevity we simply label
the cutpoint with the pi variable) is used to represent the endpoint of the cutpoint edge
in the reachable component of the heap and $p1- to track a dummy node associated
with the cutpoint edge in the unreachable component of the heap.

5 Example

The example program, Figure 1, recursively initializes the f fields in a linked list to the
value true. Figure 2(a) shows the abstract heap model at the entry of the first call to
the procedure (for simplicity we ignore any caller scope variables).

In Figure 2(a), variable l refers to a node that represents LNode objects (types =
{LNode}, abbreviated to LN), that represents a region with no internal connections
(Layout = S), which contains a single object (count = 1), and where all the incoming
edges represent disjoint pointers (the connto lists on the edges are omitted). In this
figure we also have that the elements in the list have unknown truth values in the f

Efficient Context-Sensitive Shape Analysis 251

(a) Heap at Initial Call (b) After tin = l.nx (c) Cross Edge 1st Call

(d) Split Cross Edge 1st Call (e) Into 1st Recursive Call (f) Cross Edge 2nd Call

(g) Split Cross Edge 2nd Call (h) Fix Point / Base Return (i) Merge 2nd Call Return

(j) Patched Cross Edges (k) Merge 1st Call Return (l) Return 1st Recursive Call

Fig. 2. Recursive Calls

fields (f=?). There is a single edge out of this node representing pointers stored in
the nx field of the object represented by the node. This edge represents a single pointer
(maxCut = 1) and all the pointers are non-interfering (interfere = np). Finally, this edge
refers to a node that also represents LNode objects but may represent many of these
objects (count = #) and, since the Layout value is List, we know that the objects may be
connected in a list-like shape. Since there is a single incoming edge and it represents a
single pointer, we can safely assume that this edge refers to the head of the list structure.

Figure 2(b) shows the abstract heap model just after executing the statement tin =
l.nx. Since we know that e1 refers to the head element of the list from Figure 2(a) we
replaced the single List-shaped node with a node representing the unique head element
and a node representing the tail of the list. Since the head element is unique we set the
count of this new node to 1. Additionally, the only possible layout for a node of count 1
is Singleton. Finally, if a node represents a single object then all the outgoing field edges

252 M. Marron et al.

can each represent a single pointer. Thus, we set the outgoing edge to have a maxCut =
1. Also note that after the load the analysis has determined that tin and e1 must alias
(indicated by the ∼e1 and ∼tin entries in the connectivity lists).

Figure 2(c) shows the state of the abstract heap at the entry of the project procedure.
The special name p1 has been added to represent the value of the first pointer argument
to the function and we have added a dotted line to indicate the reachable and unreachable
portions of the heap. Note that the edge e1 is a cutpoint edge according to our definition.

The result of the project operation is shown in Figure 2(d). The e1 edge, which was
a cutpoint edge for the call, has been remapped to a dummy node and the static cutpoint
names $p1- and $p1+ (for brevity we omit the procedure name and edge labels from
the static names) have been introduced at the dummy node and at the target of this edge
in the reachable section. Since this cutpoint edge only represents the single cutpoint
edge generated in this call frame nameColl = pdj. Also note that the analysis has
determined that the formal parameter p1 must alias the cutpoint edge $p1+.

Figure 2(e) shows the resulting abstract heap that is passed into the callee scope for
analysis. Since all the local variables in the caller scope either did not refer to nodes in
the callee reachable section or are dead after the call return we do not have to give them
stack names and can remove them entirely from the heap model. Figure 2(f) shows the
abstract heap at the entry to the project function for the second recursive call. Again
we have a cutpoint edge e2. Note that the reachable cutpoint label, $p1+ introduced in
the previous call is now in the unreachable portion of the heap, thus ($p1+) does not
conflict with the unreachable name added in this call ($p1-). The result of the project
operation is shown in Figure 2(g).

Figure 2(h) shows the eventual fixpoint approximation (above the dotted line) of
the analysis of this function and also the base case return value (below the dotted line).
Notice in the base case return value we were able to determine that the test l == null
implies that l must be null and since we preserved must alias information through the
cutpoint introduction we can infer that l must alias $p1+, which implies the cutpoint
edge ($p1+) must also be null. Thus, the analysis can infer that on return the cutpoint
edge is either null or is non-null and refers to some list in which all the f fields have
been set to true (f=t in the figure).

In Figure 2(i) we show how the fixpoint approximation for the reachable section
of the heap is recombined with the unreachable section of the heap using the extend
operation. After the recombination we get the abstract heap model shown in Figure 2(j).
In Figure 2(i) we have unioned the graphs and are ready to patch up the cutpoint cross
edge information. The static name $p1+ in the reachable portion of the heap has been
used to compute the associated unreachable name ($p1-). Then the algorithm identifies
the edge associated with the dummy node referred to by $p1- (e2) and remapped this
edge to end at the target of $p1+ (tin has been nullified since it is dead).

Figure 2(k) shows the extend operation at the return from the first recursive call
which is similar to the situation in the second recursive call. The resulting abstract heap
is shown in Figure 2(l) which can be joined with the result of the base case test and then
completes the analysis of the method. As desired, the analysis has determined that the
recursive list initialize procedure preserves the list shape of the argument list and that
all of the f fields in the list have been set to true (f=t in the figures).

Efficient Context-Sensitive Shape Analysis 253

6 Project and Extend Algorithms

Project. We assume that before the projectHeap function is invoked all of the special
argument variable names have been added to the heap model. This allows projectHeap
(Algorithm 1 below) to easily compute the section of the heap model that is reachable
in the callee procedure and then compute the set of nodes that comprise the unreachable
portion of the heap model.

Algorithm 1. projectHeap
input : h: the heap model to be partitioned
output: hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
reachNodes ← set of nodes reachable from args;
unreachNodes ← set of nodes unreachable from args;
crossEdges ← set of edges that start in unreachNodes and end in reachNodes;
snu ← /0;
ncs ← /0;
foreach edge e in crossEdges do

(sn, isnew) ← procCrossEdge(h, e, reachNodes);
snu.add(sn);
if isnew then ncs.add(sn);

hu ← subgraph of h on the nodes unreachNodes ∪ {dummy nodes from procCrossEdge};
hr ← subgraph of h on the nodes reachNodes;
return (hr, hu, snu, ncs);

For each edge that crosses from the unreachable section into the reachable section
we add a pair of static names to represent the edge (Algorithm 2). Since the heap model
stores a number of domain properties in each edge, we create a dummy node and remap
the edge to end at this node. Then, the unreachN static name is set to refer to this dummy
node. In the reachable portion of the heap graph we simply set the reachN static name
to refer to the target of the cross edge.

When adding the reachN static name to the reachable section of the heap graph the
name may or may not already be present in the heap graph. If the name is not present
then we add it to the static name map and for later use we note that this is the call where
the name is introduced. Otherwise a name collision has occurred and we must mark
the edges representing the possible cutpoints appropriately (for simplicity we mark all
the edges). If there may be aliasing we note that the cutpoints from different frames
may have aliasing targets (pa) and similarly if the new cutpoint edge may be connected
with an existing cutpoint edge we mark them as being pairwise connected (pua). The
functions makeEdgeForUnreachCutpoint and makeEdgeForReachCutpoint are used to
produce edges to represent the cutpoint (based on the static name and the cutpoint edge
properties) in the unreachable and reachable portions of the heap.

Once all of the cutpoint edges have been replaced by the required static names, the
heap can be transformed into the unreachable version (where all the nodes in the reach-
able section and all the variables/static names that only refer to reachable nodes have

254 M. Marron et al.

been removed) and the reachable version (where the nodes in the unreachable section
and the associated names have been removed).

Algorithm 2. procCrossEdge
input : h: the heap, e: the cross edge, reachNodes: set of reachable nodes
output: rsn: the name used, isnew: true if rsn a new name
ne ← the node e ends at;
ni ← new dummy node;
(ursn, rsn) ← genStaticNamePairForEdge(h, e);
eu ← makeEdgeForUnreachCutpoint(e, ursn);
set endpoint of eu to ni;
add eu as an edge for ursn;
er ← makeEdgeForReachCutpoint(e, rsn);
set endpoint of er to ne;
remap the endpoint of e to ni;
if the name rsn exists and has edges pointing to a node in reachNodes then

rsnes ← {e′|e′ is an edge for the cutpoint var rsn};
add er as an edge for rsn;
if er is inConnected with an edge in rsnes then set edges in rsnes and er to pua;
if er may alias with an edge in rsnes then set edges in rsnes and er to pa;
return (rsn, false);

else
add the name rsn to h;
add er as an edge for rsn;
return (rsn, true);

Extend. After the call return we need to rejoin the unreachable portion of the heap that
we extracted before the procedure call entry with the result we obtained from analyzing
the callee procedure. This is done by looking at each of the static names that was used
to represent a cutpoint edge and reconnecting as required. Then, each of the newly
introduced cutpoint names can be removed from the heap model. The pseudo-code to
do this is shown in Algorithm 3.

This algorithm merges all edges with the same reachable cutpoint name so that there
is at most one target edge for a given cutpoint name in the reachable heap hr (this sim-
plifies the algorithm and is in our experience is quite accurate). The algorithm then pairs
up the two cutpoint names and remaps the edge we saved in the unreachable section to
the target node in the reachable section subject to a number of tests to propagate sharing
information (the nullity information is propagated due to the fact that the dummy node
and all incoming edges are always removed but the foreach loop on the targets of ursn
does not execute since the target set is empty). The er.nameColl = pua test is true if this
edge represents sets of pointers that do not have pairwise aliases. Thus, we mark the
newly remapped edge and er as pairwise unaliased. Similarly, the er.nameColl = pdj
test is true if this edge represents cutpoint/stack edges that are pairwise disjoint. Thus,
we mark the newly remapped edge and er as pairwise disjoint.

Efficient Context-Sensitive Shape Analysis 255

Algorithm 3. extendHeap
input : hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
output: h: the joined heap model
h ← new heap();
h.heapGraph ← mergeGraphs(hr .heapGraph, hu.heapGraph);
foreach static name sn in snu do

ursn ← reachNameToUnreachName(sn);
nr ← the target of sn in hr.nameMap;
foreach node nu that is a target of ursn in hu.nameMap do

er ← the single incoming edge to nu;
remap er to end at the target of nr ;
er .interfere = er.interfere � nr .interfere;
if er.nameColl = pua then set er and nr as unaliased;
if er.nameColl = pdj then set er and nr as disjoint;

hu.removeNodeAllEdges(target of ursn);
hu.unmapStaticName(ursn);
if sn in ncs then hr .unmapStaticName(sn);

h.nameMap ← mergeNameMaps(hr .nameMap, hu.nameMap);
return h

The major components of this algorithm are the separation of the mergeGraphs ac-
tion from the mergeNameMaps action and the elimination of the static cutpoint edge
names that were introduced for this call.

The mergeGraphs function computes the union of the graph structures that represent
the abstract heap objects, while the mergeNameMaps function computes the union of
the name maps (which are maps from the stack/variable/cutpoint names to the nodes in
the graph structure that represent them). This separation allows the algorithm to nullify
the names created for this call which prevents the propagation of unneeded cutpoint
edge targets to the caller scope. The function unmapStaticName is used to eliminate a
given static name from the abstract heap model name map.

Example Name Collision. The introduction of the nameColl domain minimizes the pre-
cision loss that occurs when a cutpoint or stack variable name collision occurs. Figure 3
shows an example of such a situation. In this figure we show part of a heap where the
edges e2 and e3 are both cutpoint edges and they do not represent any pairwise aliasing
pointers (no ! in the connTo lists) although they each represent sets of pointers that may
alias, interfere = ap.

In this example our naming scheme will result in e2 and e3 being represented with
the same cutpoint name. However, our method will mark this cutpoint edge as nameColl
= pua (Figure 3(b)). This means that on return the extend algorithm will set the edges
that are mapped to this cutpoint as being pairwise unaliased (Figure 3(c)) as desired.
Thus, even though there was a name collision for the cutpoints we avoided (in this case
completely) the loss of sharing information about the heap.

256 M. Marron et al.

(a) Colliding Names (b) To Same Cutpoint (c) PUA on Return

Fig. 3. Name Collision

7 Experimental Results

The proposed approach has been implemented and the effectiveness and efficiency of
the analysis have been evaluated on the source code for programs from a variation of the
Jolden [3,18] suite and several programs from SPEC JVM98 [27] (raytrace, modified
to be single threaded, db and compress). The analysis algorithm is written in C++ and
was compiled using MSVC 8.0. The parallelization benchmarks were run using the Sun
1.6 JVM. All runs are from our 2.8 GHz PentiumD machine with 1 GB of RAM.

We ran the analysis with the project/extend operations enabled (the Project column)
and disabled (the No-Project column) and recorded the analysis time, the average num-
ber of times a method needed to be analyzed, and used the resulting shape information to
parallelize the programs, shown in Figure 4. The results indicate that the project/extend
operations have a significant impact on the performance of the analysis, reducing the
number of contexts that each function needs to be analyzed in (on average reducing the
number of contexts by a factor of 4.3) which results in a substantial decrease in analysis
times (by a factor of 18.4). As expected this reduction becomes more pronounced as
the size and complexity of the benchmarks increases, in the case of raytrace the anal-
ysis time without the project/extend operation is impractically large (772.6 seconds)
but when we use the project/extend operations the analysis time is reduced to 35.11
seconds.

We used the shape information from the analysis to drive the parallelization of the
benchmarks by using multiple threads in loops and calls, resulting in the speedup
columns in Figure 4. Given the shape information produced by the analysis it is straight
forward to compute what parts of the heap are read and written by a loop body or method
call and thus which loops and calls can be executed in parallel (in raytrace we treated
the memoization of intersect computations as spurious dependencies). Once the anal-
ysis identified locations that could be parallelized we inserted calls to a simple thread
pool (since our current work is focused on the analysis this is done by hand but can
be fully automated [6,23,10]). In 8 of 9 benchmarks that are suitable for shape driven
parallelization (compress, db and mst do not have any data structure operations that are
amenable to shape driven parallelization) we achieve a promising speedup, averaging a
factor of 1.69 over the benchmarks.

Our experimental results show that the information provided by the analysis can be
effectively used (in conjunction with existing techniques) to drive the parallelization of
programs. To the best of our knowledge this analysis is the only shape analysis that
is able to provide the information required to perform shape driven parallelization for
five of these benchmarks (em3d, health, voronoi, bh and raytrace). Given the speed with

Efficient Context-Sensitive Shape Analysis 257

Benchmark Info No-Project Project
Benchmark Stmt Method Time Avg Cont. Speedup Time Avg Cont. Speedup
bisort 260 13 0.86s 10.6 1.00 0.28s 1.9 1.72
em3d 333 13 0.12s 2.5 1.75 0.08s 1.8 1.75
mst 457 22 0.06s 3.2 NA 0.04s 3.0 NA
tsp 510 13 1.51s 22.4 1.84 0.17s 7.0 1.84
perimeter 621 36 54.57s 105.9 1.00 2.97s 50.2 1.00
health 643 16 3.24s 12.9 1.00 2.26s 4.2 1.76
voronoi 981 63 20.89s 61.4 1.00 2.67s 37.2 1.68
power 1352 29 5.71s 26.8 1.93 0.17s 1.3 1.93
bh 1616 51 8.64s 32.8 1.75 2.68s 7.3 1.75
compress 1102 41 0.29s 2.9 NA 0.18s 2.2 NA
db 1214 30 0.94s 3.7 NA 0.68s 2.8 NA
raytrace 3705 173 772.60s 293.1 1.00 35.11s 15.6 1.76
Overall 12794 523 869.43s 48.2 1.36 47.29s 11.2 1.69

Fig. 4. The Stmt and Method columns list the number of statements and methods for each bench-
mark. The columns for the No-Project and Project variations of the analysis list: the analysis time
in seconds, the average number of times each method was analyzed and parallel speedup achieved
on a 2 core 2.8 GHz PentiumD processor.

which the analysis is able to produce the information needed for the parallelization
and the consistent parallel speedup that is obtained in the benchmarks (1.69 over all
of the benchmarks and 1.77 if we exclude the benchmark mst), we find the results
encouraging.

Of particular interest is the raytrace benchmark. This program is 2-4 times larger than
any benchmarks used in the related work, builds and traverses several heap structures
that have significant sharing between components. It also makes heavy use of virtual
methods and recursion. This benchmark presents significant challenges in terms of the
complexity and size of the program as well as in terms of the range of heap structures
that need to be represented in order to accurately and efficiently analyze the program.
Our analysis is able to manage all of these aspects and is able to produce a precise
model of the heap (allowing us to obtain a speedup of 1.76 using heap based paralleliza-
tion techniques). Further, the analysis is able to produce this result while maintaining a
tractable analysis runtime.

8 Conclusion

We presented and benchmarked project/extend operations for a store-based heap model
that is capable of precisely representing a range of shape, connectivity and sharing prop-
erties. The project and extend operations we introduced are designed to minimize the
analysis time by reducing the number of unique calling contexts for each function and to
minimize the imprecision introduced by the collisions that occur between stack/cutpoint
names.

Our experimental results using the project/extend operations are very positive. The
analysis was able to efficiently analyze benchmarks that build and manipulate a variety

258 M. Marron et al.

of data structures. Our benchmark set includes a number of kernels that were originally
designed as challenge problems for automatic parallelization (the Jolden suite) and sev-
eral benchmarks from the SPEC JVM98 suite (including a single threaded version of
raytrace). Our experimental results demonstrate that the project/extend operations are
effective in minimizing the number of contexts that need to be analyzed (on average a
factor of 4.3 reduction), improving analysis accuracy (seen as improved parallelization
results, in 4 out of 12 benchmarks) and substantially reducing the analysis runtime (by
a factor of nearly 20). Our heap analysis was also able to provide sufficient information
to successfully parallelize the majority of benchmarks we examined, including several
that cannot be successfully analyzed/parallelized using other proposed shape analysis
methods.

Acknowledgments

This work is supported under subcontract R7A824-79200004 from the Los Alamos
Computer Science Institute and Rice University and by the National Science Founda-
tion (grant 0540600). Manuel Hermenegildo is also supported by the Prince of Asturias
Chair at UNM, and projects MEC-MERIT, CAM-PROMESAS, and EU-MOBIUS.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Bruynooghe, M.: A Practical Framework for the Abstract Interpretation of Logic Programs.
J. Log. Program 10, 91–124 (1991)

3. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data struc-
tures in Java. In: PACT (2001)

4. Chong, S., Rugina, R.: Static analysis of accessed regions in recursive data structures. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 463–482. Springer, Heidelberg (2003)

5. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-
directed pointers in C. In: POPL (1996)

6. Ghiya, R., Hendren, L.J., Zhu, Y.: Detecting parallelism in C programs with recursive data
structures. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 159–173. Springer, Hei-
delberg (1998)

7. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap ab-
stractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

8. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-level
software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392.
Springer, Heidelberg (2007)

9. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion synthesis. In:
PLDI (2007)

10. Hendren, L.J., Nicolau, A.: Parallelizing programs with recursive data structures. IEEE
TPDS 1(1) (1990)

11. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
POPL (2001)

Efficient Context-Sensitive Shape Analysis 259

12. Jeannet, B., Loginov, A., Reps, T.W., Sagiv, S.: A relational approach to interprocedural
shape analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 246–264. Springer,
Heidelberg (2004)

13. Manevich, R., Sagiv, S., Ramalingam, G., Field, J.: Partially disjunctive heap abstraction. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg (2004)

14. Marron, M., Kapur, D., Stefanovic, D., Hermenegildo, M.: A static heap analysis for shape
and connectivity. In: Almási, G.S., Caşcaval, C., Wu, P. (eds.) KSEM 2006. LNCS, vol. 4382,
pp. 345–363. Springer, Heidelberg (2007)

15. Marron, M., Majumdar, R., Stefanovic, D., Kapur, D.: Dominance: Modeling heap structures
with sharing. Tech. report, CS Dept., Univ. of New Mexico (August 2007)

16. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: POPL
(2004)

17. Muthukumar, K., Hermenegildo, M.V.: Compile-time derivation of variable dependency us-
ing abstract interpretation. J. Log. Program (1992)

18. Modified Jolden Benchmarks (August 2007), http://www.cs.unm.edu/∼marron
19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg

(1999)
20. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS (2002)
21. Rinetzky, N., Bauer, J., Reps, T.W., Sagiv, S., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL (2005)
22. Rinetzky, N., Sagiv, S.: Interprocedural shape analysis for recursive programs. In: Wilhelm,

R. (ed.) CC 2001. LNCS, vol. 2027, pp. 133–149. Springer, Heidelberg (2001)
23. Rugina, R., Rinard, M.C.: Automatic parallelization of divide and conquer algorithms. In:

PPOPP (1999)
24. Sagiv, S., Reps, T.W., Wilhelm, R.: Solving shape-analysis problems in languages with de-

structive updating. In: POPL (1996)
25. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: POPL

(1999)
26. Smyth, M.B.: Power domains and predicate transformers: A topological view. In: Dı́az, J.

(ed.) ICALP 1983. LNCS, vol. 154, pp. 662–675. Springer, Heidelberg (1983)
27. Standard Performance Evaluation Corporation. JVM98 Version 1.04 (August 1998),

http://www.spec.org/osg/jvm98/jvm98/doc/index.html
28. Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Watt, D.A. (ed.) CC 2000. LNCS,

vol. 1781, pp. 1–17. Springer, Heidelberg (2000)

http://www.cs.unm.edu/~marron
http://www.spec.org/osg/jvm98/jvm98/doc/index.html

Coqa: Concurrent Objects with Quantized

Atomicity

Yu David Liu, Xiaoqi Lu, and Scott F. Smith

Department of Computer Science
The Johns Hopkins University

{yliu,xiaoqilu,scott}@cs.jhu.edu

Abstract. This paper introduces a new language model, Coqa, for deeply
embedding concurrent programming into objects. Every program written
in our language has the desirable behaviors of atomicity, mutual exclusion,
and race freedom automatically built in. A key property of our model is the
notion of quantized atomicity : every concurrent program execution can be
viewed as being divided into quantum regions of atomic execution, greatly
reducing the number of interleavings to consider. Rather than building
atomicity locally, i.e. declaring some code blocks as atomic blocks and
leaving other code segments with no guarantee of any atomicity property,
we build it in globally, so that a form of atomicity, quantized atomicity,
ubiquitously exists at all program points. We justify our approach both
from a theoretical basis by showing that a formal representation, Kernel-
Coqa, has provable quantized atomicity properties, and by implementing
CoqaJava, a Java extension incorporating all of the Coqa features.

1 Introduction

Coqa (for Concurrent objects with quantized atomicity) is a new object-oriented
language aimed at facilitating programming in a multi-core CPU environment.
Programming multi-core CPUs requires much greater programmer skill, and is
one of the most significant new demands programmers will face in the coming
decade. The design goal of Coqa is to build a language in which it is easier to
naturally write concurrent programs with good concurrency properties. Unlike
Java where good properties such as race freedom can only be achieved if the
programmer explicitly declares it by using synchronized, the “default” mode
in Coqa is inverted: good properties of race freedom, mutual exclusion, and
atomicity are preserved unless programmers explicitly declare otherwise.

Existing concurrent object language designs are numerous and include for ex-
ample [Agh90,Arm96,Mil,BST00]. What makes our work novel is the intrinsic
properties Coqa preserves. Most important is atomicity, i.e. the property that a
block of code can always be viewed as occurring atomically no matter what inter-
leaving it is involved in. With tightly coupled computation running on multi-core
CPUs, data sharing between threads is very common and the patterns are more
complex than on a single-core CPU due to random variations in scheduling.
To support atomicity, Coqa takes the route of “atomicity-by-design” for each

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 260–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coqa: Concurrent Objects with Quantized Atomicity 261

method: atomicity is ubiquitous because by default each complete method exe-
cution is observably atomic. Note this is much stronger than the synchronized
methods of Java: the Coqa method and all methods it invokes are viewed as hap-
pening atomically. The synchronized methods in Java only provide a shallow
notion of mutual exclusion.

One particular challenge of whole-method atomicity is that it can be overly
strong, and the resulting executions will not be efficient, or may even deadlock if
there is significant contention across methods. For this reason, Coqa allows pro-
grammers to relax whole-method atomicity by dividing a method into a small
number of discrete zones of atomicity (called quanta in Coqa), and each quan-
tum is serializable regardless of the interleaving of the actual execution. This
property, called quantized atomicity, is preserved for all Coqa programs. The
main appeal is to significantly reduce the number of interleavings possible in
concurrent program runs, and thus to ease the debugging burden. If two pieces
of code each have 100 execution steps, reasoning tools would have to consider
C100

200 (i.e., around 1058) interleaving scenarios; however, if the aforementioned
100 steps can be split into 3 atomic quanta, there are only C3

6 = 20 possibili-
ties to consider. With quantized atomicity, next-generation verification tools can
potentially enumerate all interleaving scenarios, a strategy largely impractical
today. Actors [Agh90,AMST97] were in some sense the starting point for the de-
sign of Coqa: atomicity is preserved for each Actor method because its execution
once initiated does not depend on the state of other actors and each method is
therefore trivially serializable. Actors’ ubiquitous atomicity arises from the fact
that the model supports only asynchronous messaging, and so methods once
initiated cannot receive outside inputs.

Another design goal of Coqa is to make a concurrent language design that
naturally meshes well with object-oriented language features. This stands in
contrast to the non-object-based syntax and semantics commonly used in ex-
isting languages for concurrent programming. Language abstractions such as
library class Thread, thread spawning via its start method and synchronized
blocks in Java, and the atomic blocks in various Software Transactional Mem-
ory (STM) systems that have been adopted into OO languages [CMC+06], are
not that different from what was used three decades ago in non-object-oriented
languages [Lom77].

Existing language models fall short of achieving the goals of both ubiquitous
atomicity and easy OO-style concurrent programming. Ubiquitous atomicity is
a global property of all programs; Java does not have a notion of atomicity
built into the language and the form of atomicity in STM systems is only local
atomicity. STM systems also require rollbacks to deal with atomicity-breaking
contentions and are known to be inapplicable to I/O-intensive applications, such
as GUI and network systems, so they can never be ubiquitous. Out of the desire
of pervasiveness, we take a blocking and not a rollback approach to achieve
atomicity. The Actor model achieves ubiquitous atomicity, but programming in
Actors is very different from what programmers are used to, since with pure
asynchronous messaging any processing of a message reply must be handled by

262 Y.D. Liu, X. Lu, and S.F. Smith

�������messaging
what it is why you should use it

o . m(v) intra-task messaging promotes mutual exclusion and atomicity

o -> m(v) task creation promotes parallelism by starting up a new task

o => m(v) sub-tasking promotes parallelism by encouraging early free

Fig. 1. The Three Messaging Mechanisms and Their Relative Strengths

a completely new message, necessarily chopping up methods into many small
pieces. So, Coqa shares the spirit of ubiquitous atomicity of Actors, but allows
more familiar synchronous messaging syntax to be used which avoids the need
to break up methods.

In this paper, we formalize Coqa in a formal system called KernelCoqa, in
which we prove the properties of quantized atomicity, mutual exclusion and
race freedom. We have also implemented a prototype language CoqaJava as a
Java extension which simply replaces Java threads with our new forms of object
messaging.

2 Informal Overview

The concurrency unit in our language is a task. A task is a unit of execution
that can potentially be interleaved with other units. Tasks are closely related
to (logical) threads, but come with inherent atomicity properties not found in
threads, and we coin a new term to reflect this distinction. Coqa has a very
simple syntax: the only difference from the Java object model is a richer syn-
tax to support object messaging, as summarized in Fig. 1. Beyond the familiar
o . m(v) message sending expression, o -> m(v) and o => m(v) are addition-
ally provided for task creation (a form of thread spawning) and subtasking (a
form of thread open nesting), respectively.

The Running Example. Throughout the section, we will use a simple example of
basic banking operations, including account opening and balance transfer opera-
tions, as shown in Fig. 2. Bank accounts are stored in a hash table, implemented
in a standard manner with bucket lists.

2.1 Task Creation

Tasks are created by simply sending asynchronous messages to objects, using the
o -> m(v) expression. This is a more “object-based” thread creation than the
current practice in Java, where a special Thread class is used. This notion is more
aligned with Actor languages, where all message passings can be viewed as thread
creations. In Fig. 2, the top-level main method starts up three concurrent tasks,
two balance transfers and one account opening, by the invocations of lines M1, M2
and M3. Syntax bk -> transfer("Alice", "Bob", 3) indicates an asynchronous

Coqa: Concurrent Objects with Quantized Atomicity 263

class BankMain {
public static void main (String [] args) {

Bank bk = new Bank();
bk. open("Alice", 10); bk. open("Bob", 20); bk. open("Cathy", 30);
bk -> transfer("Alice", "Bob", 3); //(M1)
bk -> transfer("Cathy", "Alice", 5); //(M2)
bk -> open("Dan", 40); //(M3)

}
}
class Bank {

void transfer (String from, String to, int bal) {
Status status = new Status(); //(A1)
status.log();
Account afrom = (Account)htable. get(from, status); //(A2)
afrom. withdraw(bal); //(A3)
Account ato = (Account)htable. get(to, status); //(A4)
ato. deposit(bal); //(A5)

}
void open(String n, int b) { htable. put(n, new Account(n, b));}
private HashTable htable = new HashTable();

}
class Account {
Account(String n, int b) {name = n; bal = b; }
void deposit(int b) { bal += b; }
void withdraw(int b) {bal -= b; }
private String name;
private int bal;

}
class Status {

void log() {
String sysinfo = ... //prepare system info
info.append(sysinfo);

}
private StringBuffer info = new StringBuffer();

}

Fig. 2. A Banking Program

message transfer sent to object bk with indicated arguments. Asynchronous
message sending returns immediately, so the sender can continue, and a new
task is created to execute the invoked method. This new task terminates when
its method is finished. To keep the language simple, asynchronous invocations
in Coqa do not return values.

264 Y.D. Liu, X. Lu, and S.F. Smith

2.2 Intra-task Messaging

Message sending o . m(v) is the same syntax as Java, but has different semantics
giving stronger atomicity properties: when invoked, object o will be captured by
the invoking task and cannot be used by other tasks until the current task is
complete. Capturing is a blocking mechanism, but unlike Java where program-
mers need to explicitly specify what to lock and when to lock, the capture and
blocking of objects is built into Coqa.

This intuitive definition for o . m(v) is the programmer view, but is not an
efficient implementation strategy: only mutation affects the preservation of atom-
icity, and so we actually only need to capture objects “lazily” when their fields are
read and written. Our notion of “capture” is a standard two-phase non-exclusive
read lock and exclusive write lock [Gra78]. When an object’s field is read, the
object is said to be read captured ; when the field is written, the object is said to
be write captured. The same object can be read captured by multiple tasks at
the same time, but to be write captured, the object has to be exclusively owned,
i.e. not read captured or write captured by another task. Two-phase locking
optimizes our model since reads are overwhelmingly more common than writes
in most programs. Many other optimizations are also possible by static analysis,
a topic we leave to future work.

The preservation of atomicity can be seen in the invocation of the transfer
method of Fig. 2: the HashTable object referenced by htable is captured by a
task, say the task created in line M1, and will not be released until the end of
the method (and hence, the task). Therefore it is not possible for one transfer
task to be reading from the HashTable object while at the same time a different
transfer task is writing to it.

2.3 Subtasking

The model we have presented thus far admits significant parallelism if most
object accesses are read accesses. Blocking is possible, however, when frequent
writes are needed. For instance, consider the parallel execution of the two tasks
spawned by (M1) and (M3). One of them will be blocked as (M1) reads from the
HashTable object, while (M3) attempts to write.1 And the task being blocked
cannot make any progress until the other task completes and releases its captured
object. Intuitively, the task of adding Dan as a new account, (M3), is totally
unrelated to the task of transferring money from Alice to Bob, (M1), except
for their shared access to the HashTable object. There should be at least some
parallelism possible between the two tasks.

Coqa achieves this by allowing programmers to spawn off the access of the
HashTable object (and all objects it indirectly accesses) as a new subtask. The
high-level meaning behind a subtask is that it achieves a relatively independent
goal; its completion signals a partial victory so that the captured objects used
1 Strictly speaking, the read-write conflict happens on the object representing the

bucket list inside the HashTable, but we omit this detail since we do not have space
to give the source code for the internals of the HashTable.

Coqa: Concurrent Objects with Quantized Atomicity 265

to achieve this subtask can be “freed”, i.e. no longer considered captured. In
terms of syntax, the only change to the source code of transfer in Fig. 2 is
to change the dot (.) messagings at (A2) and (A4) to => for subtask creation
messaging. In this case, the task t created at (M1) spawns a subtask t′ at (A2)
via => . The HashTable object will be captured by t′ but not t. More parallelism
is achieved by such subtasking: other tasks waiting to capture the HashTable
object would have to block for the duration of t instead of the much shorter
span of t′ if (.) was used. Subtasking is a synchronous invocation, i.e., the task
executing transfer waits until its subtask executing get returns a result. But
the subtask has a distinct capture set of its own. And like a task, a subtask frees
objects in its capture set when it finishes.

A subtask is also a task, so it prevents arbitrary interleaving. The change in
line (A2) from (.) to => admits interleaving between task (M1) and (M3) that
was not allowed before, but it does not mean that arbitrary interleaving can
occur; for example, if M1 were in the middle of a key lookup M3 still cannot add
a new bucket. We will discuss such concurrency properties in the presence of
subtasking later in this section.

Subtasking is related to open nesting in STM systems [NMAT+07,CMC+06].
Open nesting is used to nest a transaction inside another transaction, where the
nested transaction can commit before the enclosing transaction runs to comple-
tion. While the mechanism of open nesting of transactions can be summarized
as early commit, subtasking can be summarized as early release.

Capture set inheritance. One contentious issue for open nesting is the case where
a nested transaction and the transactions enclosing it both need the same object.
For instance in Atomos [CMC+06], the issue is circumvented by restricting the
read/write sets to be disjoint between the main and nested transaction. When
the same issue manifests itself in the scenario of subtasking, the question is,
“Can a subtask access objects already captured by its enclosing task(s)?”

We could in theory follow Atomos’ approach. This however would significantly
reduce programmability. Let us consider the example of the Status object in the
transfer method. From the programmer’s view, this object keeps track of the
system status throughout the execution of the transfer method. However, if
the Atomos’s approach were taken, a subtask spawned by the transfer task for
accessing the HashTablewould not be able access the Status object because this
object has already been captured by the transfer task. Even worse, a deadlock
would be introduced in this case.

We believe the essence of having a subtasking relationship between a parent
and a child is that the parent should generously share its resources with the
child. Therefore accessing the Status in the subtask is perfectly legal in Coqa.
Observe that the relationship between a task and its subtask is synchronous, so
there is no concern of interleaving between a task and its subtask.

2.4 Properties

Quantized Atomicity Some tasks simply should not be considered wholly atomic
because they are fundamentally needing to share data with other tasks, and

266 Y.D. Liu, X. Lu, and S.F. Smith

for this case it is simply impossible to have full atomicity over the whole task.
The main reason why a programmer wants to declare a subtask is to open a
communication channel with other tasks for such sharing, as was illustrated in
the subtasking example above. With subtasking, objects captured by the subtask
can serve as communication points between different tasks. This is because the
objects freed at the end of one subtask might be recaptured later, and the object
may have been mutated by the original subtask.

Quantized atomicity is the property that for any task, its execution sequence
can be viewed as a sequence of atomic regions, the atomic quanta, demarcated by
task and subtask creation points. This atomicity property is weaker than a whole
task being atomic, but as long as full task atomicity is broken only when it is
really necessary (that is, a minimal number of => and -> messagings are used),
the atomic quanta will each be large, and significant reduction of interleaving
can be achieved. In reality, what matters is not that the entire method must be
atomic, but that the method admits a drastically limited number of interleaving
scenarios. Quantized atomicity aims to strikes a balance between what is realistic
and what is reasonable.

Mutual Exclusion. For objects accessed by synchronous messaging, the property
of mutual exclusion over mutation spans the lifetime of the current task, even
across the boundaries of quanta. For instance, over the entire duration of any
task executing transfer in Fig. 2, the Status object is guaranteed not to be
mutated by any other task before the current transfer ends, even if other tasks
have reference to Status. Our notion of object mutual exclusion is much stronger
than what Java’s synchronized provides: Java only guarantees the object with
the method is itself not mutated by other threads, while we are guaranteeing
the property for all objects which are directly or indirectly sent synchronous
messages to at run time by the method, many of which may be unknown to the
caller.

Race Freedom. In Coqa, we show that two tasks cannot race to access any object
field, except in the case where both may only read from the same object field.

A Simple Memory Model. With these concurrency properties, Coqa eliminates
the need for the overly complex memory model of Java [MPA05].

3 Formalization

In this section we present KernelCoqa, a small formal kernel language of Coqa.
We first define some basic notation used in our formalization. We write xn as

shorthand for a set {x1, . . . , xn}, with ∅ as empty set. −−−−−→xn �→ yn denotes a mapping
{x1 �→ y1, . . . , xn �→ yn}, where {x1, . . . xn} is the domain of the mapping,
dom(H). We also write H(x1) = y1, . . . ,H(xn) = yn. When no confusion arises,
we drop the subscript n for sets and mapping sequences. We write H{x �→ y}
as a mapping update: if x ∈ dom(H), H and H{x �→ y} are identical except that

Coqa: Concurrent Objects with Quantized Atomicity 267

P ::=
−−−−−−−−−−−−→
cn �→ 〈l; Fd;Md〉

Fd ::= fn
Md ::=

−−−−−−−→
mn �→ λx .e

e ::= null | x | cst | this
| new cn
| fn | fn = e
| e.mn(e)
| e ->mn(e)
| e =>mn(e)
| let x = e in e

l ::= exclusive | ε
cst constant
cn class name
mn method name
fn field name
x variable name

H ::=
−−−−−−−−−−−−−→
o �→ 〈cn; R; W ;F 〉

F ::=
−−−−→
fn �→ v

T ::= 〈t; γ; e〉 | T ‖ T ′

N ::=
−−−→
t �→ t′

R,W ::= t
γ ::= o | null
v ::= cst | o | null
e ::= v | wait t

| e ↑ e | . . .
E ::= • | fn = E

| E.m(e) | v.m(E)
| E ->m(e) | v ->m(E)
| E =>m(e) | v =>m(E)
| let x = E in e

o object ID
t task ID

anc(N, t) =

{
{t}, if N(t) = null
{t} ∪ anc(N, t′), if N(t) = t′

Fig. 3. Language Abstract Syntax and Dynamic Data Structure

H{x �→ y} maps x to y; if x /∈ dom(H), H{x �→ y} = H, x �→ y. H\x removes
the mapping x �→ H(x) from H if x ∈ dom(H), otherwise the operation has no
effect.

KernelCoqa is an idealized object-based language with objects, messaging,
and fields. Its abstract syntax is shown on the left of Fig. 3. A program P is
a set of classes. Each class has a unique name cn and its definition consists of
sequences of field (Fd) and method (Md) declarations. To make the formalization
feasible, many features are left out, including types and constructors. Besides
local method invocations via dot (.) notation, synchronous and asynchronous
messages are sent to objects using => and -> , respectively. A class declared
exclusive will have its objects write captured upon any access. This label is
useful for eliminating deadlocks inherent in a two-phase locking strategy, such
as when two tasks first read capture an object, then both try to write capture
the same object and thus deadlock.

Operational Semantics. Our operational semantics is defined as a contextual
rewriting system over states S ⇒ S, where each state is a triple S = (H, N, T)
for H the object heap, N a task ancestry mapping, and T a set of parallel tasks.
Every task has a local evaluation context E. The relevant definitions are given
in Fig. 3. H is a mapping from objects o to field records tagged with their class
name cn. In addition, each o has capture sets, R and W , for recording tasks
that have read or write captured this object. A task is a triple consisting of the
task ID t, the object γ this task currently operates on, and an expression e to
be evaluated.

268 Y.D. Liu, X. Lu, and S.F. Smith

Set

H(γ) = 〈cn; R; W ;F 〉
H ′ =H{γ �→ 〈cn; R;W ∪ {t}; F{fn �→ v}〉} if R ⊆ anc(N, t),W ⊆ anc(N, t)

H,N, 〈t;γ;E[fn = v]〉 ⇒ H ′, N, 〈t; γ;E[v]〉

Get

H(γ) = 〈cn; R; W ; F 〉 P (cn) = 〈l;Md;Fd〉 F (fn) = v

H ′ =

{
H{γ �→ 〈cn; R; W ∪ {t}; F 〉}, if l = exclusive, R ⊆ anc(N, t), W ⊆ anc(N, t)
H{γ �→ 〈cn; R ∪ {t}; W ;F 〉}, if l = ε, W ⊆ anc(N, t)

H, N, 〈t; γ;E[fn]〉 ⇒ H,N, 〈t;γ;E[v]〉

Invoke

H(o) = 〈cn; R; W ; F 〉 P (cn) = 〈l;Fd;Md〉 Md(mn) = λx .e

H, N, 〈t; γ;E[o.mn(v)]〉 ⇒ H,N, 〈t;o;E[e{v/x}↑γ]〉

Task(t, γ,mn, v, o, t′)

t′ fresh

H, N, 〈t; γ;E[o ->mn(v)]〉 ⇒ H,N, 〈t;γ;E[null]〉 ‖ 〈t′; o; this.mn(v)〉

SubTask(t, γ,mn, v, γ, t′)

N ′ = N{t′ �→ t} t′ fresh

H,N, 〈t;γ;E[o =>mn(v)]〉 ⇒ H, N ′, 〈t;γ;E[wait t′]〉 ‖ 〈t′; o; this.mn(v)〉

TEnd(t)

H ′ =
⊎

H(o)=〈cn;R;W ;F 〉

(o �→ 〈cn; R\t; W\t; F 〉) N(t) = null

H,N, 〈t; γ; v〉 ⇒ H ′, N, ε

STEnd(t, v, t′)

H ′ =
⊎

H(o)=〈cn;R;W ;F 〉

(o �→ 〈cn; R\t; W\t;F 〉) N(t) = t′

H,N, 〈t; γ; v〉 ‖ 〈t′; γ′;E[wait t]〉 ⇒ H ′, N\t, 〈t′; γ′;E[v]〉

Fig. 4. KernelCoqa Core Operational Semantics Rules

The core single-step evaluation rules are presented in Fig. 4. The rules for
Let, Return and other standard constructs are omitted here; see [Lu07]. The
rules implicitly operate over some fixed program P . The Invoke rule for intra-
task messaging is interpreted as a standard function application. The Task rule
creates a new task via asynchronous messaging. The SubTask rule creates a
subtask of the current task via synchronous messaging, and the parent task
enters a wait state until the subtask returns. When a task finishes, all objects
it has captured are freed; the TEnd and STEnd are rules for ending a task and
a subtask, respectively. The two-phase locking capture policy is implemented in

Coqa: Concurrent Objects with Quantized Atomicity 269

the Set and the Get rules. The optional exclusive modifier requires an object
to be write captured in both rules. When a task cannot capture an object it
needs, it is implicitly object-blocked on the object until it is entitled to capture
it—the Set/Get rule cannot progress.

Atomicity Theorems. Here we formally establish the informal claims about Ker-
nelCoqa: quantized atomicity, mutual exclusion of tasks, and race freedom.
Proofs are provided in [Lu07]. The key Lemma is the Bubble-Down Lemma,
Lemma 1, which shows that consecutive steps of a certain form in a compu-
tation path can be swapped to give an equivalent path. Then, by a series of
bubblings, each quantum of steps can be bubbled to all be consecutive in an
equivalent computation path, showing that the quanta are serializable: Theorem
1. The technical notion of a quantum is the pmsp below, a pointed maximal sub-
path. These are a series of local steps of one task with a nonlocal step at the end,
which may be embedded in a larger concurrent computation path. We prove in
Theorem 1 that any computation path can be viewed as a collection of pmsp’s,
and all pmsp’s in the path are serializable and thus the whole path is.

Definition 1 (Object State). Recall the global state is a triple S = (H, N, T).
The object state for o, written so, is defined as H(o), the value of the object o
in the current heap H, or null if o �∈ dom(H).

Definition 2 (Local and Nonlocal Step). A step str = (S, r, S′) denotes a
transition S ⇒ S′ by rule r of Figure 4. str is a local step if r is one of the
local rules: either Get, Set, This, Let, Return, Inst or Invoke. str is a
nonlocal step if r is one of nonlocal rules: either Task, SubTask, TEnd or
STEnd.

Every nonlocal rule has a label given in Fig 4, used as the observable.

Definition 3 (Computation Path). A computation path p is a finite se-
quence of steps str1 . . . stri such that str1str2 . . . stri−1stri=(S0, r1, S1) (S1, r2, S2)
. . . (Si−2, ri−1, Si−1) (Si−1, ri, Si).

When no confusion arises, we simply call it a path.

Definition 4 (Observable Behavior). The observable behavior of a path p,
ob(p), is the sequence of labels for the nonlocal steps in p.

Note that this definition encompasses I/O behavior elegantly since I/O in Kernel-
Coqa can be viewed as a fixed object which is sent nonlocal and thus observable
messages.

Definition 5 (Observable Equivalence). Two paths p1 and p2 are observ-
ably equivalent, written p1 ≡ p2, iff ob(p1) = ob(p2).

Definition 6 (Object-blocked). A task t is in an object-blocked state S at
some point in a path p if it would be enabled for a next step str = (S, r, S′) for
which r is a Get or Set step on object o, except for the fact that there is a
capture violation on o: one of preconditions of the Get/Set fails to hold in S
and so str cannot in fact be the next step at that point.

270 Y.D. Liu, X. Lu, and S.F. Smith

Definition 7 (Sub-path and Maximal Sub-path). Given a path p, for some
t a sub-path spt of p is a sequence of steps in p which are all local steps of task
t. A maximal sub-path is a spt in p which is longest: no local t steps in p can
be added to the beginning or the end of spt to obtain a longer sub-path.

Definition 8 (Pointed Maximal Sub-path). For a given path, a pointed
maximal sub-path for t (pmspt) is a maximal sub-path spt with either 1) it has
one nonlocal step appended to its end or 2) there are no more t steps ever in the
path.

The second case is the technical case of when the (finite) path has ended but
the task t is still running. The last step of a pmspt is called its point.

The pmsp’s are the units which we need to serialize: they are all spread out in
the initial path p, and we need to show there is an equivalent path where each
pmsp runs in turn as an atomic unit.

Definition 9 (Task Indexed pmsp). For some fixed path p, define pmspt,i

to be the ith pointed maximal sub-path of task t in p, where all the steps of the
pmspt,i occur after any of pmspt,i+1 and before any of pmspt,i−1.

Definition 10 (Waits-for and Deadlocking Path). For some path p, pmspt1,i

waits-for pmspt2,j if t1 goes into a object-blocked state in pmspt1,i on an object cap-
tured by t2 in the blocked state. A deadlocking path p is a path where this waits-for
relation has a cycle: pmspt1,i waits-for pmspt2,j while pmspt2,i′ waits-for pmspt1,j′ .

From now on we assume in this theoretical development that there are no such
cycles. In Coqa deadlock is an error that should have not been programmed to
begin with, and so deadlocking programs are not ones we want to prove facts
about.

Definition 11 (Quantized Sub-path and Quantized Path). A quantized
sub-path contained in p is a pmspt of p where all steps of pmspt are consecutive
in p. A quantized path p is a path consisting of a sequence of quantized sub-paths.

The main technical Lemma is the following Bubble-Down Lemma, which shows
how local steps can be pushed down in a path. Use of such a Lemma is the
standard technique to show atomicity properties. Lipton [Lip75] first described
such a theory, called reduction; his theory was later refined by [LS89].

Definition 12 (Equivalent Step Swap). For two consecutive steps str1str2

in a path p, where str1 ∈ pmspt1 , str2 ∈ pmspt2 , t1 �= t2 and str1str2 =
(S, r1, S

′)(S′, r2, S
′′),if the step swap of str1str2 , written as st′r2

st′r1
, gives a new

path p′ such that p ≡ p′ and st′r2
st′r1

= (S, r2, S
∗)(S∗, r1, S

′′), then it is an equiv-
alent step swap.

Lemma 1 (Bubble-down Lemma). For any path p with any two consecutive
steps str1str2 where str1 ∈ pmspt1 ,str2 ∈ pmspt2 and t1 �= t2, if it is not the
case that pmspt1 waits-for pmspt2 and if str1 is a local step, then a step swap of
str1str2 is an equivalent step swap.

Coqa: Concurrent Objects with Quantized Atomicity 271

Theorem 1 (Quantized Atomicity) For all paths p there exists an observ-
ably equivalent quantized path p′.

Theorem 2 (Data Race Freedom) For all paths, no two different tasks can
access a field of an object in consecutive steps, where at least one of the two
accesses changes the value of the field.

Theorem 3 (Mutual Exclusion over Tasks) It can never be the case that
two tasks t1 and t2 overlap execution in a consecutive sequence of steps str1 . . . strn

in a path, and in those steps both t1 and t2 write the same object o, or one reads
while the other writes the same object.

4 Discussion and Related Work

Implementation We have implemented a prototype of Coqa, called CoqaJava.
Polyglot [NCM03] was used to construct a translator from CoqaJava to Java.
All language features introduced in Fig. 3 are included in the prototype. The
implementation dynamically enforces the object capture, freeing, and mutual ex-
clusion semantics of Coqa. Refer to [Lu07] for more details about CoqaJava. The
compiler translates CoqaJava to Java. This approach serves as a proof of concept;
it unavoidably suffers additional overhead because it is implemented directly on
top of Java. For example, every object capture operation in CoqaJava requires a
method invocation to realize it in the translated code. The overhead brought by
those method invocations can be huge when a large number of capture opera-
tions are involved. Even with this highly inefficient implementation, preliminary
benchmark results in [Lu07] show that CoqaJava programs on single-core CPUs
have slowdowns of “only” 20% - 60% compared with a Java implementation of
the same problem, a result we consider good given the opportunities available for
improving it. Making our language more expressive and its implementation more
efficient is an important future goal. For instance, we can build a more efficient
CoqaJava by building object capture into the lower level Virtual Machine. It will
also be interesting to add more concurrency-related language features, such as
futures and synchronization constraints. Optimization techniques should also be
able to minimize the amount of capture information that needs to be retained
at runtime since many objects are completely local.

Deadlocks. Deadlock will be a more common occurrence in Coqa: accessing
shared objects without using subtasking can potentially produce deadlocks. A
primary task of writing and debugging Coqa programs will be refactoring code
into the correct quanta to both minimize sharing and avoid deadlock. While
these extra deadlocks may make it sound like a step backward has been taken,
there is reason to be optimistic: Coqa programs will inherently have fewer se-
mantically distinct interleavings, and thus the probability of catching deadlocks
before deployment will be significantly greater since there will a much greater
likelihood of exercising the different interleaving cases during program testing.

272 Y.D. Liu, X. Lu, and S.F. Smith

There are two forms of deadlock arising in Coqa. The first is inherent in two-
phase locking, when an object is read captured by two tasks but neither task can
further write capture it. The second form is cyclically dependent deadlock. The
first form of deadlock can be avoided by declaring the class to be exclusive (see
Sec. 3). Programmers can also explicitly introduce interleaving via => to break
deadlock. There are also many static and dynamic analysis techniques and tools
to ensure deadlock freedom; for an overview, see [Sin89]. Deadlock detection is
an important topic of future work for Coqa. We are interested in applying some
Java-based analysis tools such Java PathFinder [PF] directly to the target Java
code generated by the compiler. The precision of static techniques are reduced
due to the combinatorial explosion of interleaving, but Coqa code inherently
has many fewer interleavings to consider and so stronger analysis results will
de facto be obtained. We are also investigating language design approaches to
write deadlock-free programs. It is known that by organizing objects into run-
time hierarchies [BLR02], deadlock can be effectively avoided; one system we are
considering adapting for this purpose is our Pedigree Types [Liu07].

Blocking vs. Rollback. Rollback is a suitable solution in an open database sys-
tem where the inputs are arbitrary and unknown at the start, and thus a general
purpose lock-based deadlock avoidance technique is not possible. Software appli-
cations on the other hand are largely closed systems in the sense that the code
of an application is often entirely available at deployment time, and so all the
code in all the potentially contending threads is known. Therefore, analyzing ap-
plications for deadlocks is a more realistic approach in a programming language
than in a database system.

Atomicity is commonly addressed in STM systems via rollbacks; example
approaches include Harris and Fraser [HF03], Transactional Monitors [WJH04]
for Java, and Atomos [CMC+06]. Compared with blocking systems like ours,
STM systems have the appeal of not introducing deadlocks. However, there is
a counterpart to deadlock in STM systems, livelock, where rollbacks resulting
from contention might result in further contentions and further rollbacks, etc.
How frequently livelocks occur is typically gauged by experimental methods. In
addition, rollback also may not be as easy as simply discarding the read/write set
and retrying (see AbortHandler, etc. in [CMC+06] and onAbort etc. methods
in [NMAT+07]). In terms of performance there have been no detailed studies
that we know of comparing locking and rollback. A good overview of the pros
and cons of blocking and rollback appears in [WHJ06].

Another reason why Coqa does not take a rollback approach is a desire for
ubiquitous atomicity, even for I/O-intensive applications. Existing STM systems
provide atomicity guarantees only for code explicitly specified by programmers,
say, by declaring a block to be atomic; I/O cannot occur in these regions since
it cannot generally be undone. In order to make sure that the system can roll
back to the state before an abandoned transaction, a STM system needs to
perform bookkeeping on the initial state of every transaction. So programmers
have to be stingy in the number of atomic blocks declared, to avoid the over-
head of such bookkeeping growing unexpectedly large with increasing number

Coqa: Concurrent Objects with Quantized Atomicity 273

of threads and transaction sizes. As a result, in a large number of STM sys-
tems [HF03,WJH04,Cra05], code by default runs in a mode with no atomicity
guarantees, and the interleaving of this code with atomicity-preserving code in
fact can break the atomicity of the latter, an unfortunate consequence known as
weak atomicity [CMC+06].

Atomicity in Actors and Other Languages. Our work is most related to Actor
languages. Actors [Agh90,AMST97] provide a simple concurrent model where
each actor is a concurrent unit. Inter-actor communication is only via asyn-
chronous messaging. Ubiquitous atomicity is preserved in the Actor model be-
cause executing each actor method does not depend on the state of other ac-
tors and so each method execution is trivially serializable. However, the Actor
model’s per-method atomicity is only a local property in the sense that it neither
includes more than one actor nor other methods invoked by the current method.
So, Coqa is a significant extension to the Actor notion of atomicity. Morevoer,
Actors are a model more suited to loosely-coupled distributed programming: for
tightly-coupled message sequences, programming them in the pure Actor model
means breaking off each method after each send and wrapping up the continu-
ation as a new actor method. Typically when Actor languages are implemented
[Arm96,Mil,HO06,YBS86], additional language constructs (such as futures, and
explicit continuation capture) are included to ease programmability, but there
is still a gap in that the most natural mode of programming, synchronous mes-
saging, is not fully supported, only limited forms thereof. We elect to support
full synchronous messaging so that Coqa coding style can be extremely close to
standard programming practice.

Argus [Lis88] pioneered the study of atomicity in object-oriented languages.
Like actors it is focused on loosely coupled computations in a distributed con-
text, so it is quite remote in purpose from Coqa but there is still overlap in some
dimensions. Argus allows nested transactions, called subactions. Unlike our sub-
tasking, when a subaction ends, all its objects are merged with the parent action,
instead of being released early to promote parallelism as a subtask does. Guava
[BST00] was designed with the same philosophy as Coqa: code is concurrency-
aware by default. The property Guava enforces is race freedom, which is a weaker
and more low-level property than the quantized atomicity of Coqa.

5 Conclusion and Future Work

Coqa is a foundational study of how concurrency can be built deeply into object
models; our particular target is tightly coupled computations running concur-
rently on multi-core CPUs. Coqa has a very simple and sound foundation – it
is defined via only three forms of messaging, which account for (normal) lo-
cal message send, thread spawning via asynchronous message send, and atomic
subtasking via synchronous nonlocal send. We formalized Coqa as the language
KernelCoqa, and proved that it observes a wide range of good concurrency prop-
erties, in particular quantized atomicity. We justify our approach by implement-
ing CoqaJava, a Java extension incorporating all of the Coqa features.

274 Y.D. Liu, X. Lu, and S.F. Smith

References

[Agh90] Agha, G.: ACTORS: A model of Concurrent computations in Distributed
Systems. MITP, Cambridge, Mass (1990)

[AMST97] Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor
computation. Journal of Functional Programming 7(1), 1–72 (1997)

[Arm96] Armstrong, J.: Erlang — a Survey of the Language and its Industrial
Applications. In: INAP 1996 — The 9th Exhibitions and Symposium on
Industrial Applications of Prolog, Hino, Tokyo, Japan, pp. 16–18 (1996)

[BLR02] Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming:
preventing data races and deadlocks. In: OOPSLA 2002, Seattle, Wash-
ington, USA, pp. 211–230. ACM Press, New York, NY, USA (2002)

[BST00] Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of java without
data races. In: OOPSLA 2000, pp. 382–400. ACM Press, New York (2000)

[CMC+06] CarlStrom, B., McDonald, A., Chafi, H., Chung, J., Minh, C., Kozyrakis,
C., Olukotun, K.: The atomos transactional programming language. In:
PLDI 2006, Ottawa, Ontario, Canada (June 2006)

[Cra05] Cray Inc. Chapel Specification (2005)

[Gra78] Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Jones,
A.K., Opderbeck, H., Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K.,
Popek, G.J., Saltzer, J.H. (eds.) Operating Systems. LNCS, vol. 60, pp.
393–481. Springer, Heidelberg (1978)

[HF03] Harris, T., Fraser, K.: Language support for lightweight transactions. In:
OOPSLA 2003, pp. 388–402 (2003)

[HO06] Haller, P., Odersky, M.: Event-based programming without inversion of
control. In: Dumke, R.R., Abran, A. (eds.) IWSM 2000. LNCS, vol. 2006,
Springer, Heidelberg (2001)

[Lip75] Lipton, R.J.: Reduction: a method of proving properties of parallel pro-
grams. Commun. ACM 18(12), 717–721 (1975)

[Lis88] Liskov, B.: Distributed programming in argus. Commun. ACM 31(3), 300–
312 (1988)

[Liu07] Liu, Y.D.: Interaction-Oriented Programming, PhD thesis, Johns Hop-
kins University, Baltimore, MD, USA, (2007), electronic copy available at
http://www.cs.jhu.edu/∼yliu/thesis/

[Lom77] Lomet, D.B.: Process structuring, synchronization, and recovery using
atomic actions. SIGOPS Oper. Syst. Rev. 11(2), 128–137 (1977)

[LS89] Lamport, L., Schneider, F.B.: Pretending atomicity. Technical Report
TR89-1005, Digital Equipment Corporation (1989)

[Lu07] Lu, X.: Coqa: A Concurrent Programming Model with Ubiquitous Atomic-
ity. PhD thesis, Johns Hopkins University, Baltimore, MD, USA (Novem-
ber 2007), electronic copy available at
http://www.cs.jhu.edu/∼xiaoqilu/thesis/

[Mil] Miller, M.: The E Language, http://www.erights.org

[MPA05] Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: POPL
2005, pp. 378–391. ACM Press, New York (2005)

[NCM03] Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible com-
piler framework for java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622,
pp. 138–152. Springer, Heidelberg (2003)

http://www.cs.jhu.edu/~yliu/thesis/
http://www.cs.jhu.edu/~xiaoqilu/thesis/
http://www.erights.org

Coqa: Concurrent Objects with Quantized Atomicity 275

[NMAT+07] Ni, Y., Menon, V., Adl-Tabatabai, A.-R., Hosking, A.L., Hudson, R.L.,
Moss, J.E.B., Saha, B., Shpeisman, T.: Open nesting in software transac-
tional memory. In: ACM SIGPLAN 2007 Symposium on Principles and
Practice of Parallel Programming (March 2007)

[PF] Java PathFinder at, http://javapathfinder.sourceforge.net/
[Sin89] Singhal, M.: Deadlock detection in distributed systems. IEEE Com-

puter 22(11), 37–48 (1989)
[WHJ06] Welc, A., Hosking, A.L., Jagannathan, S.: Transparently reconciling trans-

actions with locking for java synchronization. In: Thomas, D. (ed.)
ECOOP 2006. LNCS, vol. 4067, pp. 148–173. Springer, Heidelberg (2006)

[WJH04] Welc, A., Jagannathan, S., Hosking, A.L.: Transactional monitors for con-
current objects. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp.
519–542. Springer, Heidelberg (2004)

[YBS86] Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent pro-
gramming abcl/1. In: OOPLSA 1986: Conference proceedings on Object-
oriented programming systems, languages and applications, pp. 258–268.
ACM Press, New York (1986)

http://javapathfinder.sourceforge.net/

Keep Off the Grass:
Locking the Right Path for Atomicity

Dave Cunningham, Khilan Gudka, and Susan Eisenbach

Imperial College London
{dc04,khilan,sue}@doc.ic.ac.uk

Abstract. Atomicity provides strong guarantees against errors caused
by unanticipated thread interactions, but is difficult for programmers to
implement with low-level concurrency primitives. With the introduction
of multicore processors, the problems are compounded. Atomic sections
are a high level language feature that programmers can use to designate
the blocks of code that need to be free from unanticipated thread inter-
actions, letting the language implementation handle the low-level details
such as deadlock. From a language designer’s point of view, the challenge
is to implement atomic sections without compromising performance.

We propose an implementation of atomic sections that inserts locks
transparently into object-oriented programs. The main advantages of our
approach are: (1) We infer path expressions (that at run-time resolve to
actual objects) for many more accesses in the atomic section than previ-
ous work could infer. (2) We use multi-granularity locking for guarding
iterative traversals. (3) We ensure freedom from deadlock by rolling back
the lock acquisition phase. (4) We release locks as early as possible. In
summary, our approach uses a finer-grained locking discipline than pre-
vious lock inference techniques.

1 Introduction

In shared memory concurrent software, to prevent erroneous behaviour due to
unanticipated thread interactions, programmers ensure that appropriate blocks
of code are atomic [18]. Atomicity is a stronger property than race-freedom
[6], guaranteeing against high-level concurrency bugs such as stale values. A
programmer can reason about atomic blocks with sequential intuition.

In an object-oriented language with locks, a block of code can be made atomic
through the following process: A guarding discipline must be chosen (and obeyed)
that specifies a lock for each shared memory object. For each block of atomic code
and for each object accessed by the block, the appropriate locks must be acquired.
Thus the developer must be aware of accesses internal to any invoked functions
(breaking encapsulation). Furthermore, for correctness, the lock acquisitions and
releases follow a two-phase discipline [5], i.e. the acquisitions must precede all
releases in the block. Finally, locks must be acquired according to the same
partial order to avoid deadlocks. In time, it will become necessary to maintain
the code, where care must be taken to keep the lock acquisitions in sync with

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 276–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Keep Off the Grass: Locking the Right Path for Atomicity 277

newly introduced accesses in the code. The process is unforgiving. Any error
introduces a possible bug (e.g. deadlock, stale value, race condition), which is
hard to reproduce, and troublesome to trace to an underlying cause.

While atomicity allows us to more confidently assert the absence of concur-
rency errors, it cannot be reliably enforced by programmers. The problem of
enforcement would be better solved by the programming language implementa-
tion, and the primitive that sets out to achieve this goal is the atomic section. By
simply marking a block of code as atomic, the programmer can be assured that
the implementation will execute as if all other threads were suspended, without
having to implement any extra machinery.

Although atomic sections allow the programmer to pretend a block is ex-
ecuted sequentially, such an implementation would have poor performance. A
transparent optimisation is for non-interfering threads to be allowed to execute
in parallel with atomic sections. There are a number of proposed methods for ef-
ficient atomic section implementations, which can be divided into two categories:
Optimistic approaches, in the form of Software or Hardware Transactional Mem-
ory [2,11,12,14,17,20,21,22,23], rely on being able to detect thread interference
at runtime and rollback the state to the beginning of the atomic section where it
is known to be uncorrupted. Pessimistic approaches statically attempt to infer
locks sufficient for preventing interference [4,7,15,19,25]. The more efficient im-
plementations of transactions and all lock inference implementations, including
ours, prohibit the access of shared objects outside of atomic sections.

The optimistic approach can detect interference, whereas the nature of static
inference means that only a conservative approximation can be made, reducing
parallelism by taking more locks than required for a particular execution of an
atomic section. On the other hand, the pessimistic approach does not require any
runtime machinery for recording accesses, which if implemented in software can
reduce performance. Additionally, no cycles will be wasted contributing towards
a state which gets rolled back. If contention is high, transactional systems may
spend more time rolling back than making useful progress. Finally, only internal
invisible actions such as memory reads and writes can be rolled back; if an
optimistic approach is to be used, external actions such as IO must not be allowed
in an atomic section. This means that the compiler either has to reject such
programs or transparently move the IO out of the atomic section. Pessimistic
techniques have no such restriction.

We chose to implement atomic sections pessimistically using lock inference.
We face the same challenges as programmers: Taking enough locks at the right
time, striving for fine-grained locking while also trying to minimise the overhead
of locking code, and avoiding deadlocks. We have strived to make our imple-
mentation transparent to the programmer, requiring no additional type or other
annotations.

In Sect. 2, we summarise our approach and describe how we handle an exam-
ple. In Sect. 3, we describe our program analysis in detail. In Sect. 4, we describe
how we use the result of our program analysis to generate locking code, without
deadlocking. In Sect. 5, we report on the use of our approach with part of a real

278 D. Cunningham, K. Gudka, and S. Eisenbach

program. In Sect. 6, we discuss how our approach differs to that of the related
work. We conclude with Sect. 7.

2 General Approach and Features

We use a data-flow analysis, at link or JIT time, to infer the object accesses
performed by each atomic section. This analysis needs to traverse any code that
might be invoked by the block in question, so the whole program is needed. When
the analysis terminates, we know, at each program point, the set of objects that
are accessed from that point until the end of the atomic section. The inferred
accesses then need to be translated into locks. We believe our representation of
accesses is novel, and the most precise to date. As a simplification all objects
after construction are shared. Detecting thread-local heap objects would benefit
many systems like ours, and we do not discuss it here.

We try and use one lock per object, or instance locks, where possible, so that
the parallelism can scale with the data. Sometimes code can access a statically
unbounded number of objects. This happens during iterations over objects, and
when we approximate an array index expression. In such cases, we use the type
of the accessed objects to take a multilock which guards all instances of that type
and subtypes. The semantics of multilocks require that if one thread has taken
the multilock on an object, any other threads attempting to lock a subordinate
instance of that multilock will be blocked until the multilock is released. We also
distinguish between read/write accesses, and we use read/write locks to allow
multiple parallel reads. We need re-entrant locks in case objects happen to be
aliased at runtime, causing the same lock to be taken twice.

The code in Figure 1 is for an instant messaging system, where a client can
send a stream of messages to another client, by name, through a central server.
The Client constructor registers a new client in a centralised hashtable of clients.
This must be an atomic operation in order that the uninitialised value of the
hash entry e.val is not visible to other threads. Our system infers two locks –
the hashtable itself (for reading), and the array of buckets inside the hashtable
(for writing). Although the hash entry is modified, it is a newly constructed
object and thus cannot be seen by other threads. We give the inferred locks as
comments in the code, where ! denotes a write lock.

The atomic section starting on line (53) iterates (HashEntry.findKey is re-
cursive) through a list of hash entries, and thus the analysis has to lock (for
reading) the multilock that subsumes every hash entry. Atomic sections starting
on lines (59) and (63) simply access a pair of clients and a single client object,
and the locking reflects this. The atomic section starting on line (45) is only
ever called from within another atomic section starting on line (59), so does not
have any locking code inserted into it. If it were also called from a pre-emptive
context (i.e. from outside an atomic section), we would have a problem inserting
locking code into it, because this code would also be executed by the atomic
section starting on line (59). We solve this problem by duplicating functions if
they are called from both atomic and pre-emptive contexts.

Keep Off the Grass: Locking the Right Path for Atomicity 279

1 class HashEntry {
2 s t r i n g key ; Object va l ; HashEntry next ;
3 HashEntry (s t r i ng key) { this . key = key ; }
4 HashEntry findKey (s t r i n g key) {
5 i f (this . key==key) {
6 return this ;
7 } else {
8 i f (next==null) { return null ; }
9 else { return next . f indKey (key) ; }

10 } } }
11
12 class HashTable {
13 HashEntry [] buckets ;
14 HashTable () { buckets = new HashEntry [1 0 0] ; }
15 int index (s t r i n g key) {
16 int hash = key . hash % buckets . l ength ;
17 i f (hash <0) { hash = hash + buckets . l ength ; }
18 return hash ;
19 }
20 HashEntry createHashEntry(s t r i n g key) {
21 HashEntry entry = new HashEntry (key) ;
22 int index = index (key) ;
23 entry . next = buckets [index] ;
24 buckets [index] = entry ;
25 return entry ;
26 }
27 HashEntry findHashEntry (s t r i n g key) {
28 HashEntry entry = buckets [index (key)] ;
29 i f (entry==null) { return null ; }
30 return entry . f indKey (key) ;
31 } }
32
33 class Cl i en t {
34 s t r i n g name ; HashTable a l l C l i e n t s ; C l i e n t i n t e r l o c u t o r ;
35 Cl i en t (HashTable a l lC l i e n t s , s t r i n g name) {
36 this . a l l C l i e n t s = a l l C l i e n t s ; this . name = name ;
37 atomic { // lock s : { a l lC l i en t s , ! a l lC l i e n t s . bucke ts}
38 HashEntry e = a l l C l i e n t s . createHashEntry(name) ;
39 e . va l = this ;
40 }
41 run () ;
42 }
43 s t r i n g read () { return "" ; }
44 void accept (C l i e n t source , s t r i n g msg) {
45 atomic { //omitted
46 p r in t "<"+source . name+"> −−−> <"+name+"> "+msg ;
47 } }
48 void run () {
49 while (true) {
50 s t r i ng msg = read () ;
51 i f (msg==" connect") {
52 s t r i n g name = read () ;
53 atomic { // lock s : {HashEntry}
54 HashEntry e = a l l C l i e n t s . f indHashEntry (name) ;
55 i n t e r l o c u t o r = (Cl i en t) e . va l ;
56 } }
57 i f (msg=="send") {
58 s t r i n g cargo = read () ;
59 atomic { // lock s : { th i s , i n t e r l o c u t o r}
60 i n t e r l o c u t o r . accept (this , cargo) ;
61 } }
62 i f (msg==" d i s c onne c t") {
63 atomic { // lock s : { ! t h i s }
64 i n t e r l o c u t o r = null ;
65 } } } } }

Fig. 1. Example source program using atomic sections

280 D. Cunningham, K. Gudka, and S. Eisenbach

Table 1. Example of path graphs inferred at the top of two atomic sections from Fig. 1

Line Path set Path graph

37 allClients
allClients.buckets

53

this
this.allClients
this.allClients.buckets
this.allClients.buckets[*]
this.allClients.buckets[*].next
this.allClients.buckets[*].next.next
...

Our program analysis gives us information about what locks should be held
at every program point in the atomic section. This means we have enough infor-
mation to release locks straight after the last access of any objects they guard.
Releasing locks early reduces contention, at no extra cost.

3 Path Graphs Inference

The keystone of our approach is an analysis that infers the object accesses in
a given block of code. We assume that a control flow graph (CFG) is set up,
with five types of node: Copies e.g. x=y (including assignment of new objects
or null), stores e.g. x.f=y, loads e.g. x=y.f, array stores e.g. x[i]=y, and
array loads e.g. x=y[i]. Our analysis is a backwards ‘may’ analysis. Each edge
initially has no accesses, and we don’t introduce accesses at the exit of the
atomic section. Instead, accesses are generated by the CFG nodes (except for
copy nodes), which also transform accesses. When the analysis terminates, the
complete set of object accesses for the atomic section is left at its entry node.

The state at each edge is a path graph, which we use to represent a possibly-
infinite set of paths. A path is a sequence of field or array accesses starting from a
local variable, and can be used to statically characterise an object access. When
statically analysing an iteration over an object structure, we do not know how
many times the loop will repeat, and thus how many objects will be touched.
Although the analysis can infer an infinite number of paths, the path graph
representation is finite. Table 1 gives an example of two path graphs as produced
by our analysis, and their corresponding path sets. The path sets are prefix-
complete since we cannot access an object unless it is either bound to a variable
before the atomic section began, or can be retrieved through another object.

In general, it will be impractical to record which element of an array was
accessed, e.g. if the index was calculated using a complicated algorithm. The
syntax [*] in the paths represents this. For brevity, in this presentation we
immediately widen array element accesses to [*]. A system which already has
some understanding of integer arithmetic could be more precise.

Path graphs are deterministic finite automata (DFA). The hollow node is the
initial state, and all the other nodes are possible exit states, thus the set of paths
is represented by the path graph. The atomic section starting on line (53), which

Keep Off the Grass: Locking the Right Path for Atomicity 281

a[x = y]n = ∅
a[x = null]n = ∅
a[x = new]n = ∅
a[x = y.f]n = {y → n}
a[x.f = y]n = {x → n}
a[x = y[i]]n = {y → n}
a[x[i] = y]n = {x → n}

t[x = y]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {y → n′|x → n′ ∈ G}
t[x = null]n(G) = G \ {x → n′|x → n′ ∈ G}
t[x = new]n(G) = G \ {x → n′|x → n′ ∈ G}
t[x = y.f]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {n

f−→ n′|x → n′ ∈ G}
t[x.f = y]n(G) = G \ {n′ f−→ _|x → n′ ∈ G, (�z �= x : z → n′ ∈ G), (�n′′′ : n′′′ _−→ n′ ∈ G)}

∪ {y → n′|_ f−→ n′ ∈ G}
t[x = y[_]]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {n

[∗]−−→ n′|x → n′ ∈ G}
t[x[_] = y]n(G) = G ∪ {y → n′|_ [∗]−−→ n′ ∈ G}

Fig. 2. Data flow transfer functions

through iteration can access an unbounded number of objects, requires a cycle
in the path graph in order to keep the representation finite. We represent the
path graph as a set of edges, which are either labelled between a pair of nodes, or
unlabelled between a variable and a node, e.g. the second path graph in Table 1
could be represented with the set:

{this → 1, 1
allClients−−−−−−−→ 2, 2

buckets−−−−−→ 3, 3
[∗]−→ 4, 4

next−−−→ 4}
As this representation allows multiple identically-named arrows from a state, it
is actually a nondeterministic finite automaton (NFA). Our analysis computes
NFAs but for locking purposes we convert them to minimised DFAs [16]. The
numbered nodes in this representation correspond to the index of the CFG node
where the access occurred. Because there are finitely many CFG nodes, variables,
and fields, the set of edges and therefore the state of the analysis is also finite.
It remains to give the transfer functions that compute, at each CFG node, the
entry set from its exit set.

Figure 2 gives two functions, where (\) binds tighter than (∪), x, y, z range
over variables, f, g range over fields, G ranges over path graphs, and _ repre-
sents an unbound variable. Function a gives a path graph representing accesses
generated by the given CFG node with index n. This path graph has meaning
only in the state where the access occurred. Since we intend to lock the objects
represented by this path graph at the top of the atomic section, and the state is
mutated by assignments between these two points, the function t will transform
a path graph to compensate for the side-effect of a given CFG node. At each
CFG node, we compute the entry path graph by applying t to the exit path
graph, and also include the result of a. Translating allows us to handle code
like atomic {x=y ; x.f=42} without requiring that x and y are guarded by the
same lock. Our analysis returns the path y.

When translating path graphs through copy nodes, paths starting with the
lvalue are renamed so they start with the rvalue, except where the rvalue is a new
object or null, where the accesses are simply killed. Load nodes are similar, but
replace accesses of the form x.f1.f2 with y.f.f1.f2. Note that this works only

282 D. Cunningham, K. Gudka, and S. Eisenbach

because a sets up an edge from y to n. Store nodes have to handle aliases, e.g.
in atomic { me.car = you.car ; dave.car.fuel = 100 } it is clear that me,
you, and dave are accessed, but it is not clear which car is accessed. If me was
an alias of dave then the accessed car is described by you.car, otherwise the
assignment has no effect and we must lock dave.car. Alias analysis can help
here, but in this presentation we assume conservatively that everything can be
an alias, hence the function t introduces new edges from y to any node that has
the appropriate field edge leading to it. The only alias we can assert is that x is
an alias of x; in other words, we can kill x.f from the graph. This means killing
an edge like f−→, which we can do only if it is not used by any other paths, which
we require with the two negated existential predicates. Array loads and stores
are similar to their field counterparts.

It is possible to improve the accuracy of the analysis using type information,
e.g. if x : A[] and z : B[] in atomic { x[1] = y ; z[1].f = 10; } then there
is no need to infer the path y. Since the two arrays have different types, x cannot
be an alias of z and thus the access z[*] will suffice. Similarly, we can use type
information to distinguish between identically-named fields in different classes.
Points-to information could also be used.

4 Lock Insertion

In this section we describe in detail our approach for inserting lock acquisition
and release code into an atomic section. We describe how we detect deadlock
and roll back the locking code, and how the analysis supports readers/writers
and early unlocking.

4.1 Inferring Locks from a Path Graph

The path graphs analysis outputs a minimised DFA. We first process this graph
looking for cycles and widened array access edges (i.e.

[∗]−→ edges). Nodes reach-
able from such edges are marked as dirty, and the edges are removed. The graph
is now acyclic and we perform a depth first search to pick out paths to lock. In
the atomic section on line (53) of Table 1 we dirty the far-right node and re-
move the two edges pointing to it. We infer the paths {this, this.allClients,
this.allClients.buckets}, that can be locked directly (in prefix order); we
have to use a multilock to lock the dirty node. We use type information (the
element type of the buckets array) to get the type of the objects represented
by the dirty node (HashEntry), and we lock the multilock associated with this
type. We associate a multilock with each class that guards all instances of the
class. This lock allows subordinate instance locks to be acquired only when it is
not held. Because classes are subsumed by subtyping, we also lock any subtypes
of the class, of which there are none in our example. We also have multilocks for
array types, e.g. for Object[x][y] accesses.

We wanted to use read/write locks, i.e. locks that allow multiple threads to
have the read lock so long as no thread has the write lock. We were surprised

Keep Off the Grass: Locking the Right Path for Atomicity 283

to discover that the path graph representation already encodes this information.
Because each node in the graph is a specific CFG node, and the CFG node
determines the access type (load/store = read/write), the node index can be
used to determine read/write locking. The only caveat is that we have to make
sure that we preserve this information when collapsing the NFA to a minimised
DFA.

Consider atomic { y = x.f ; y.g = 10 }, for which we would lock x,
!x.f. If x was null, then this block would throw a NullPointerException
(NPE). More importantly, so would our locking code. In general, throwing an
exception from the locking code would not preserve the semantics of the atomic
section, as there may be side-effects from before the NPE that now never occur.
We need to either check for null before locking, or catch the NPE. If x is null
we do not lock it, or x.f. There is a similar problem with ClassCastException,
e.g. atomic { y = ((A)x).f ; y.g = 10 }, for which we also infer x,x.f. If
the type of x does not have a field f, then we must cast it to A. We must there-
fore either check that that this is possible, or catch the exception. Null pointer
analysis and points-to information can minimise the number of checks required.

4.2 Deadlock

Existing approaches guarantee the absence of deadlock at compile-time by always
acquiring locks in the same order, and if such an ordering cannot be found they
typically coarsen the granularity. Our type multilocks are static, thus can be
statically ordered, e.g. alphabetically. Our instance locks cannot be statically
ordered, but rather than coarsen the granularity, we detect deadlock and roll back
the lock acquisition phase at run-time. Although this sounds like a transaction,
there are no side effects to roll back, so no transaction log is required. This means
that we have to take all locks at the beginning of the atomic section. We expect
deadlock to be rarer than transaction collision, because the lock acquisition phase
is much shorter than a whole atomic section, so we do not anticipate live locking
to result. It also offers the possibility of high-priority threads forcing low-priority
threads to give up their locks if they are stalled in a lock-acquisition phase.

Deadlock is typically detected at run-time by looking for cycles in a waits-for
graph. Many systems check for deadlock, such as the Java Hotspot VM. This
information is available at runtime, as it is needed by the lock implementation,
but checking for cycles at each failed lock acquisition still incurs a performance
penalty. This is a trade-off however, as we have better granularity as a result of
keeping instance locking. If there are more CPUs than awake threads, this com-
putation will be performed on a CPU which would otherwise be idle, eliminating
the runtime penalty.

4.3 Parole

If an atomic section has finished accessing an object, but still has a lot of com-
putation left to complete, it can release the lock early to gain finer granularity.
We can also demote write locks to read locks, and multilocks to instance locks.

284 D. Cunningham, K. Gudka, and S. Eisenbach

Edge Fixed point Early unlocks Late relocks
1 {!x, !y} {} {}
2 {!x} {!y} {}
3 {x, !x.f} {!x} {x,!x.f}
4 {!x, !y} {} {}
5 {x, !x.f} {!x,!y} {x,!x.f}
6 {!t} {x,!x.f} {!t}
7 {} {!t} {}

Fig. 3. Result of path graph analysis applied to early release

This is particularly important in the context of conservative analysis. Figure 3 is
a simple example that demonstrates much of the power of early unlocking. We
provide, at each edge, the path graph at the fixed point of the analysis, after it
has been converted to a DFA, minimised, and reduced to locks. An exclamation
mark represents a write lock. All of the locks in this example are paths.

At the entry of the atomic section (edge 1), we take the locks {!x, !y} using the
deadlock detection/rollback strategy described above. Once this is successful,
execution will follow one of the branches. One branch (4,5) will cause us to
eventually access both objects, and the other (2,3), only !x, as reflected by the
edges 2 and 4 in the table. The analysis records that at edge 2, only the lock !x
is required, so by subtracting the two sets we can calculate locks to release, i.e.
the Early unlocks column. If the set of locks increases, e.g. from edge 2 to edge 3,
we have to acquire the extra lock in order for a later release to be well-balanced,
we list this in the Late relocks column. Such locks have already been acquired
by the thread, reacquiring them just increases the re-entrant counter. There is
no risk of deadlock. We always acquire before release, to make sure we do not
let the re-entrant counter reach zero. Thus locking remains two-phase.

At an assignment, where locks are translated from one variable to another,
there will usually be a pair of redundant acquire/release actions. We used a
simple alias analysis to remove redundant locking, denoted with strike-through.
This also allows us to avoid redundant locking on known-to-be null or newly
constructed objects. The remaining acquires and releases serve useful purposes:
Unlocking !y at edge 2 allows other threads to proceed in parallel, as this thread
is now certain it will not write to (or read) y. Releasing x and !t at edges 6
and 7 respectively allows the atomic section to terminate with all locks released.
Acquiring x and releasing !x at edge 5 allows other threads to read in parallel,
as this thread no longer needs to write to x. The analysis similarly demotes a
multilock to an instance lock, e.g. when a list is searched for an object which
is then accessed. In the case of array indexing using a computed index, even if
the analysis was equipped with more powerful array access edges and transfer
functions, we would have to take a multilock as we would not statically know
what element will be accessed. However, once the array index has been computed,

Keep Off the Grass: Locking the Right Path for Atomicity 285

the analysis would demote the multilock to an instance lock and similarly allow
other threads to proceed.

The spurious lock of x at edge 3 is necessary because at this time x and x.f
are aliases, and the releases at edges 6 and 7 will serve to release the same lock
twice. Therefore, in the branch we must acquire x once more to balance the
forthcoming releases. Aside from using the alias analysis to remove redundant
locking, we were surprised that we needed no extra mechanism to set up early
lock release. Our path graph analysis turned out to be powerful enough to encode
read/write information and early release information in its basic form.

Sowing unlocking code throughout the invoked functions of an atomic section
causes problems when one of the functions is called from more than one context.
A number of solutions present themselves: Aggressively in-lining functions is
simple and minimises contention, but will increase the size of the program and
may cause performance problems such as cache misses. It should be possible
to release locks after the call has returned, but a reference would have to be
kept to the objects in question in case re-assignment renders them inaccessible.
Alternatively, we could acquire a given lock once for each access, and release it
after each access, but this would introduce more overhead. We chose to use the
first technique, duplicating methods to ensure they are only called from more
than one context in the case of recursion.

4.4 Splitting the Atom

Sometimes, it is desirable to turn off the atomicity of an atomic section for a
period, perhaps to do some lengthy thread-local computation, or to communicate
with other threads. It is possible to refactor the code into two separate atomic
sections, but challenging because atomic sections are lexically scoped. To allow
easy expression, we use a preempt section which when placed inside an atomic
section, releases/reacquires locks to break the atomic section into two distinct
parts. We have used this construct to implement wait/notify semantics.

The implementation of preempt sections uses the same program analysis as
the implementation of atomic sections. A preempt section is represented in an
atomic section’s CFG by a black hole node that blocks the propagation of the
path graph. This induces lock releases before the preempt, and acquisitions after
it. We have to detect deadlock and backtrack when re-acquiring the locks after
the preempt section. Figure 4 is the CFG of an atomic section that called wait()
between a pair of object accesses. We have annotated the edges with the fixed
point locks, acquires, and releases, as in Fig. 3. The grey circular node is the
black hole node. The code for the wait/notify implementation is in Fig. 5.

5 Experiment

We have attempted to evaluate our approach on an existing application. We have
implemented a subset of Java, with primitive types, classes, reference types,
arrays, inheritance, overloading, dynamic binding, branches, loops, and early
returns. All the examples in the paper were written in this language.

286 D. Cunningham, K. Gudka, and S. Eisenbach

Fig. 4. CFG of an atomic section that calls wait(). The fixed point of the analysis
is in italics, early lock release is in roman, e.g. U(!this). We have omitted redundant
lock acquires and releases. The two this locks in the far right function correspond to
the this variables in the wait() function and the converter, which are distinct. Our
sharedObject is an instance of IntList, given in Fig. 5.

class IntList {
IntList next; int cargo;
IntList (IntList next, int cargo) {

this.next = next;
this.cargo = cargo;

} }

class ConditionVariable {
IntList waiters;
void wait() {

atomic {
waiters = new IntList(waiters,threadid);
preempt { park; }

} }
void notify() {

atomic {
unpark waiters.cargo;
waiters = waiters.next;

} }
void notifyAll() {

atomic {
while (waiters!=null) { notify(); }

} } }

Fig. 5. The code for the wait/notify implementation referenced above. The IntList
records a queue of waiting threads, so that notify can wake them up. The keyword
threadid gets the id of the current thread. The unpark and park keywords allow
suspending and resuming of threads, by thread id.

Keep Off the Grass: Locking the Right Path for Atomicity 287

Previous work [19,4] has used the AOLserver [1] source code (which is publicly
available) as a case study. AOLserver is a high performance http server, written
in C, which uses Tcl as a scripting language to drive dynamic content. Although
multiple Tcl interpreters can be running simultaneously, e.g. for simultaneous
client connections, they are essentially orthogonal. The actual concurrency is
handled with C code where a shared store is provided for communication between
Tcl interpreters. The source code was annotated with atomic sections and a form
of guard annotation (which we do not need) by the authors of [19], who kindly
made the source code available to us. The authors of [4] have a lock inference
algorithm which they also benchmarked with the annotated AOLserver. Their
approach was very different to ours, and we were interested in comparing their
results with ours.

Since our analysis has not been implemented for C, we would have to translate
AOLserver in order to process it. AOLserver is a large piece of software, so we
chose one particular compilation unit, tclvar.cwhich the previous work seemed
to find most demanding. We tried to reproduce the original code as closely as
possible. Although it was written in C, the code slipped quite easily into an
object-oriented design. Because our analysis is at this stage a whole-program
analysis, we also had to implement a small part of the Tcl API. Some of the Tcl
functions we left as stubs or only partially implemented, but we were careful to
reproduce any accesses the real Tcl API would perform. As such, we are actually
analysing more code than the previous work.

Although our implementation was naive, using Java data structures to store
the analysis state, we hoped to get reasonable times for the AOLserver code.
For each atomic section, we recorded how many nodes were present in the CFG,
and how long it took to solve on a P4 3.2GHz CPU with 1GB of RAM, running
the Java Hotspot VM v1.6.0. We also give the number of read/write multilocks
(RM,WM), and how many read/write instance locks (RI,WI) taken at the top
each atomic section. These results are presented in Fig. 6. The solve time includes
the time spent minimising the path graph and inferring a set of locks at each
edge. Our analysis is much faster than [4], as it works directly on the CFG
without a costly setup phase, and the solving phase is faster too. Since each
atomic section is treated separately, the time is linear in the number of atomic
sections. Most of the time is spent cloning and garbage collecting.

6 Related Work

A number of techniques exist to verify programmer implementations of atomic-
ity, such as: type checking [3], type inference [8], model checking [13], theorem
proving [9] and run-time analysis [26]. Some of this work has used variants of
ownership types, to specify the guarding relationship between objects. Conse-
quently, they can support more powerful guarding disciplines, where static locks
can be avoided altogether, but at the cost of additional annotations.

As discussed in Sect. 2, transactional memory is an optimistic implementation
of atomicity, but relies on detecting interference from other threads and the

288 D. Cunningham, K. Gudka, and S. Eisenbach

Atomic section CFG Node count Solve time (seconds) RI WI RM WM
1 219 0.566 2 4 4 0
2 242 0.489 2 4 4 0
3 284 0.728 1 4 3 1
4 203 0.345 3 3 3 0
5 319 0.946 1 4 3 1
6 277 0.694 2 4 5 0
7 101 0.119 1 0 4 1
8 286 0.897 2 4 4 0
9 360 2.385 2 4 7 0
10 169 0.164 3 3 4 0
11 272 0.759 1 4 5 0

The results in [4] state 2399 seconds for this file. Our total time was approximately 8 seconds.

Fig. 6. Results of applying our analysis to the AOLserver tclvar.c fragment

ability to roll back. It can allow more parallelism but at the cost of IO, and the
risk of livelock. Software transactional memory has significant runtime overhead.

More recently, there have been several proposals for lock inference. Initially,
[7] was an extension of the authors’ type checking techniques, where incomplete
synchronisation could be statically corrected. The authors admit that the added
locks could introduce deadlock, whereas the following proposals all guarantee
absence of deadlock through establishing a static order on lock allocations. A
from-scratch proposal [19] required guard annotations, which although allowed
the expression of instance locks as well as static locks, seemed not to be as
powerful as the object-object relationships in e.g. [8]. Additionally, programs
were rejected if the assignments interfered with the guarding discipline (they
did not translate paths as we do).

The approaches in [25,15] did not require guard annotations, using just points-
to information to indicate static locks. They handle assignment by increasing the
granularity so that the lock guarding the lvalue and rvalue are the same. While
[25] did have annotations, they were for the orthogonal purpose of partitioning an
object’s fields into separately-locked groups, as opposed to the typical approach
(which we follow) where all an objects fields are guarded by the same lock.
Allowing more parallelism, recent work [4,10] has allowed instance locks without
needing annotations, but only in special aliasing circumstances.

7 Conclusion and Future Work

By solving the deadlock problem with a runtime technique, we were able to take
instance locks rather than static locks. Instance locking is an opportunity for
finer granularity and more parallelism. We embrace this opportunity by statically
inferring accesses (in the form of paths), without having to reject assignments
to variables containing accessed objects. Unlike previous work, we do not merge
the locks of different objects if they once resided in the same variable.

In order to improve the speed of the analysis, it would be useful to analyse
a method in isolation. Then this method summary (consisting of new accesses
and translations) could instantiated in the various places the method is called.

Keep Off the Grass: Locking the Right Path for Atomicity 289

It may be necessary, when dealing with e.g. native code that can’t be analysed,
to provide such a summary manually, to act as a realistic stub.

Using thread-local-object and may-happen-in-parallel analyses such as those
in [10], it would be possible to omit some of the lock acquisitions. This would
reduce the overhead, and less time spent acquiring locks would mean fewer dead-
locks resolved at runtime. Also, if a group of locks are always acquired together,
or not at all, it makes sense to join them into a single lock, also reducing the
overhead of lock acquisition.

If it were possible to infer some form of ownership annotations [3], we might be
able to use instance locks instead of static locks to handle iterations over objects,
and non-trivial array indexes. We would like to try using points-to information,
both as a foundation for multilocks (instead of using type information as we
currently do), to see if this results in better granularity. Points-to information
could also be used by the path graph analysis, to avoid adding so many edges
at store CFG nodes.

Our aim was to create a finer-grained locking discipline than that used by
previous lock inference techniques. This paper describes our approach which
produced promising results. We are now moving our analysis to full Java, using
the Soot [24] framework.

Acknowledgements. We are grateful to EPSRC and Microsoft for supporting
this work. We also thank Tim Harris and the Slurp research group at Imperial
College for interesting discussions, Tristan Allwood for proofreading, and Dossy
Shiobara and the AOLserver project for helpful correspondence.

References

1. AOLserver, a highly scalable, multi-threaded application server,
http://aolserver.com/

2. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: High-Performance Computer Architecture, 2005. HPCA-
11. 11th International Symposium, pp. 316–327 (2005)

3. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universe Types for Race Safety.
In: VAMP 2007, pp. 20–51 (September 2007),
http://pubs.doc.ic.ac.uk/universes-races/

4. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL 2007:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 291–296. ACM Press, New York (2007)

5. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency
and predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976)

6. Flanagan, C., Abadi, M.: Types for safe locking, 91–108 (1999)
7. Flanagan, C., Freund, S.N.: Automatic Synchronization Correction. In: Synchro-

nization and Concurrency in Object-Oriented Languages (SCOOL) (2005)
8. Flanagan, C., Freund, S.N., Lifshin, M.: Type inference for atomicity. In: TLDI

2005: Proceedings of the 2005 ACM SIGPLAN international workshop on Types
in languages design and implementation, pp. 47–58. ACM Press, New York (2005)

http://aolserver.com/
http://pubs.doc.ic.ac.uk/universes-races/

290 D. Cunningham, K. Gudka, and S. Eisenbach

9. Freund, S., Qadeer, S.: Checking concise specifications for multithreaded software.
In: Workshop on Formal Techniques for Java-like Programs (2003)

10. Halpert, R.L., Pickett, C.J.F., Verbrugge, C.: Component-based lock allocation. In:
Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, Springer, Heidelberg (2007)

11. Harris, T., Fraser, K.: Language support for lightweight transactions. ACM SIG-
PLAN Notices 38(11), 388–402 (2003)

12. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pp. 48–60 (2005)

13. Hatcliff, J., Robby, D.M.B.: Verifying atomicity specifications for concurrent
object-oriented software using model-checking. In: Steffen, B., Levi, G. (eds.)
VMCAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004)

14. Herlihy, M., Eliot, J., Moss, B.: Transactional Memory: Architectural Support For
Lock-free Data Structures. In: Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, pp. 289–300 (1993)

15. Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In: Pro-
ceedings of the First ACM SIGPLAN Workshop on Languages Compilers, and
Hardware Support for Transactional Computing (TRANSACT) (June 2006)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

17. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pp. 209–220 (2006)

18. Lomet, D.: Process structuring, synchronization, and recovery using atomic actions.
ACM SIGOPS Operating Systems Review 11(2), 128–137 (1977)

19. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization inference
for atomic sections. ACM SIGPLAN Notices 41(1), 346–358 (2006)

20. Moore, K.E., Hill, M.D., Wood, D.A.: Thread-level transactional memory. TR1524,
Comp. Science Dept. UW Madison (March 31, 2005)

21. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: Proceed-
ings of the 32nd International Symposium on Computer Architecture, pp. 494–505
(2005)

22. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the twenty-fourth annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, pp. 240–248
(2005)

23. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, pp.
204–213 (1995)

24. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: CASCON 1999: Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research, p.
13. IBM Press (1999)

25. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. SIGPLAN Not. 41(1), 334–345 (2006)

26. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Trans. Softw. Eng. 32(2), 93–110 (2006)

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 291–306, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Legacy Binary Code in a Software
Transaction Compiler with Dynamic Binary Translation

and Optimization

Cheng Wang, Victor Ying, and Youfeng Wu

Programming System Lab
Microprocess Technology Labs

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052, USA

{cheng.c.wang,victor.ying,youfeng.wu}@intel.com

Abstract. Transactional memory (TM) has been shown to be a promising
programming model for multi-core systems. We developed a Software-based
Transactional Memory (STM) compiler that generates efficient transactional
code for transactions to run on a STM runtime without the need of transactional
hardware support. Since real-world applications often invoke third party
libraries available only in binary form, it is imperative for our STM compiler to
support legacy binary functions and provide an efficient solution to convert
those invoked inside transactions to the corresponding transactional code. Our
STM compiler employs a Lightweight Dynamic Binary Translation and
Optimization Module (LDBTOM) to automatically convert legacy binary
functions to transactional code. In this paper, we describe our LDBTOM
system, which 1) seamlessly integrates the translated code with the STM
compiler generated code to run on the STM runtime, and 2) optimizes the
translated code taking advantage of dynamic optimization opportunities and
STM runtime information. Although the binary code is inherently harder to
optimize than high-level source code, our experiment shows that it can be
translated and optimized into efficient transactional code by LDBTOM.

1 Introduction

Transactional memory [3][11][12][15][16] provides a powerful programming model
to design concurrent programs. This model guarantees a large region of code, i.e. a
transaction, to be executed atomically, and thus enables ordinary programmers to
write correct and efficient concurrent applications without using locks. Many difficult
issues associated with lock-based programs, such as deadlock, non-scalable
composition, priority inversion, can thus be alleviated or eliminated.

To support Software Transactional Memory (STM [1][7][11][19]) or hardware
assisted software transactional memory (HASTM [2]), memory operations inside a
transaction need to be augmented with STM runtime API calls to check for

292 C. Wang, V. Ying, and Y. Wu

concurrency conflicts and log for transaction rollback. Existing STM compiler [7] for
C/C++ programs can automatically insert the API calls to STM runtime (called
barriers) for memory operations inside the transactions, if the program source code is
available. Unfortunately, real-world applications often invoke third party libraries
available only in binary form not compiled by a STM compiler. It is imperative for
STM compilers to allow legacy binary functions to be called inside transactions.
Otherwise, the usability of STM would be greatly limited. For example, a transaction
may need to call a “qsort” library function. If library functions are not allowed to be
called inside a transaction, the user would have to re-implement it in source code and
compile it with the STM compiler.

We will refer to non-transactional library code the “legacy code”. There are a
number of approaches to support legacy code in STM compiler. One way is for the
library supplier to provide a separate transactional version of the library. This not
only places a significant burden on the library development and validations, but also
poses engineering issues with managing multiple versions of the same library. There
are also old libraries that cannot be recompiled. Another way is to statically translate
library routines called in a transaction to transactional version. However, dynamically
linked library routines may not be available at compiler time. Even if the library code
is available at compile-time, static translation is known to be limited and may not be
able to translate certain routines when indirect branches or calls are present. It is also
possible to use special hardware to trap memory load and store operations so that the
barrier operations can be executed for these operations. That approach, however,
increases hardware costs on die area and power consumption. Our STM compiler [7]
employs a Lightweight Dynamic Binary Translation and Optimization Module
(LDBTOM) [8] to automatically convert the legacy binary functions to transactional
code if they are called inside transactions at runtime.

There are many existing works on STM runtime systems [12][13][19], STM
compilers [1][7][11] and Dynamic Binary Translation techniques [4][8][8][9][17].
However, to seamlessly integrate these techniques together for legacy binary code
support in software transactional memory brings challenges. For example, a normal
dynamic binary translator translates all the binary code in the whole application. But in
our case, LDBTOM must only translate the legacy code, and must not translate the
transactional code generated by STM compiler. Translation of the transactional code
generated by the STM compiler not only slows down the program, but may also cause
severe problems, such as livelocks [5], in the STM runtime. Therefore, we need close
collaborations between the dynamic binary translation and STM compiler to distinguish
the legacy binary code from the transactional code generated by STM compiler.
Sophisticated program analysis may help identify legacy function calls inside
transactions, but it is capable of completely solving the problem, especially in the
present of indirect function calls and indirect branches. As another example, while the
compiler generated code may be shared among different threads, most dynamic binary
translation systems (including our DBT system) implement thread-private code cache
for its simplicity of implementation. The efficient linking between thread-shared
compiler-generated code and the thread-private DBT-generated code is a challenging
issue. Furthermore, most of stack memory are private to the thread and thus do not need
memory conflict checking. However, there are situations where a stack location may be
shared among multiple threads and to generate efficient and correct code for stack
references inside transactions poses challenges for dynamic binary translation.

 Supporting Legacy Binary Code in a Software Transaction Compiler 293

On the other hand, LDBTOM can optimize the translated code taking advantage of
dynamic optimization opportunities. For example, the dynamic optimization allows
us to generate efficient STM code based on the assumption that stack variables are not
shared among different threads. In case the program execution makes it possible for
stack variables in one thread accessible to other threads, we can flush and regenerate
new STM code conservatively before the stack variable sharing actually happens.

Overall, this paper makes the following major contributions.

• We develop a seamless framework to support legacy library code in a STM
compilation system.

• We provide a complete solution to make sure that no legacy code will be
executed without translation and no compiler generated transactional code are
translated, even when the static type checking fails to detect user’s programming
error. We also provide efficient solutions for linking between the thread-shared
compiler-generated code and the thread-private DBT-generated code.

• We developed a number of dynamic optimization techniques, such as stack
variable filtering, dead register and conditional code (%eflags) saving
elimination, redundant barrier elimination, inlining, etc, to dramatically reduce
the overhead of translated code for transactional execution.

• We provide experimental result comparing translated code vs. STM compiler
generated code using SPLASH-2 benchmark and a set of concurrent data
structure benchmarks. Even though legacy binary code usually has very little
high-level information available for sophisticated analysis and optimizations, our
experimental results on SPLASH-2 benchmark shows that LDBTOM only causes
about 1% overhead over compiler optimized STM code. Even for the data
structures benchmarks which spend almost all their execution time inside legacy
functions called inside transactions (to stress test the LDBTOM overhead), the
LDBTOM optimized code runs only about 80% slower than the hand-optimized
STM code. In contrast, straightforward translation would perform more than 8
times slower than the hand-optimized code.

The rest of the paper is organized as follows. Section 0 discusses the related work.
Section 0 overviews the STM compiler. Section 0 describes LDBTOM infrastructure
and transformations. Section 0 discusses optimization strategies. Section 0 provides
experimental results. Section 0 concludes the paper and points out future research
directions.

2 Related Work and Issues

Different kinds of hardware transactional memory mechanisms are described in
[3][16][18]. Software transactional memory was introduced in [12][19]. Efficient
implementations of STM in managed environment were provided in [1][11]. An
efficient implementation of STM in unmanaged environment was developed in [7].
Hybrid transactional memory [14] proposes to combine HW and SW transactional
memory implementations.

294 C. Wang, V. Ying, and Y. Wu

Dynamic binary translation has been an active research topic in recent years. It has
be used to support backward compatibility [4], enhance reliability [8] and security [9],
reduce power consumption [17], as well as improve programmability, as reported in
this paper, to support transactional memory.

JudoSTM [14] annotates the program source code to specify transactions, and
implements a transactional memory system through dynamic binary rewriting. With
program source code available, dynamic binary rewriting for the whole transactions
seems less efficient. Our LDBTOM takes advantages of sophisticated static
compilation and only dynamicaly translates and optimizes the legacy code in
transactions.

There are a number of open issues remaining to support legacy binary code in
STM. Transactions need to support rollback in case a conflict is detected. The users
must ensure that the codes insides transactions do not perform operations that cannot
be rolled back, such as the system calls and input/output operations. System call and
I/O issues are being actively addressed in research community with open nested
transaction [13] and restricted transaction [6]. These are general issues for
transactional memory and are not unique to legacy code so we consider them beyond
the scope of this paper.

There is also the issue with software implemented synchronization operations (e.g.
lock, barrier) in legacy code. Lock based programs can use different locks for
different critical sections, so that critical sections controlled by different locks do not
necessarily synchronize with each other, even when there are conflict memory
accesses among them. But transactions are required to synchronize with each other
whenever there are conflict memory accesses among them, just as if all of them are
controlled by a single lock. Thus the single-lock semantics for transactions is
different from the semantics of the individually locked sections, and straightforwardly
converting locked sections to transactions may result in deadlock [5]. Lock-based
programs may also implement barriers to join multiple threads together, while
transaction can not accomplish the barrier synchronizations easily. These are general
issues with converting lock-based program to transactions, no matter the locks are
used in source code or legacy binary code. We conducted a preliminary study to
address this issue in a separate paper [20].

In this paper, we assume that the user will decide that a library routine does not
invoke system calls, I/O operations, and locked-sections, and can be called inside a
transaction. There are significant portions of legacy code, e.g. majority of routines
provided in LIBC and LIBM, etc, that can be safely called inside transactions as long
as they are translated to check for conflict and log operations for rollback. This paper
targets this portion of libraries. LDBTOM currently report runtime errors when I/O
and system calls in legacy code are translated.

3 STM Compiler

Our STM compiler [7] targets C/C++ programs. The compiler provides programming
language constructs to write programs with transactions. An example code
illustrating the transaction constructs is shown in Fig. 1. The tm_atomic pragma
specifies that the statement (usually a block statement) following it is a transaction (an

 Supporting Legacy Binary Code in a Software Transaction Compiler 295

atomic operation). If a conflict is detected during the execution of a transaction, the
state of the transaction will be rolled back to the same as before the transaction
execution and the transaction is re-executed. Transactions can also be nested. We
support closed nested transactions [13]. In our implementation, when a conflict is
detected in a nested transaction, the outmost transaction is aborted. If a tm_abort()
intrinsic operation is executed inside a nested transaction, the innermost transaction is
rolled back. When an inner transaction completes, its memory updates are not actually
committed until the out-most transaction commits. The tm_commit() intrinsic
operation explicitly commits a transaction before it reaches the end.

The tm_function pragma specifies a transactional function (e.g. foo()) that may be
called inside a transaction. For each transactional function, the STM compiler creates
a transactional clone and calls it inside transactions while calls the original function
outside transactions. For a function called inside a transaction that is not specified as
tm_function, the compiler will treat it as a legacy function and generate code to
convert the function to transactional at runtime. For the example in Fig. 1, the
function qsort() is not declared as a tm_function and is converted to a transactional
routine at runtime.

#pragma tm_function
int foo (int) {…}

extern int qsort(…);
…
#pragma tm_atomic
{

 stmt1
 foo(3); // call TM clone of foo
if (cond1) {

 tm_commit();
return;

}
 #pragma tm_atomic
{

stmt2;
tm_abort();

}
qsort(); // translated at runtime
stmt3

}

Fig. 1. Transaction construct for STM
compiler

 Fig. 2. Dynamic binary translator structure

In order to execute a transaction atomically, the STM compiler needs to insert calls
to STM runtime routines (called barriers) for memory read and write operations inside
the transaction to detect conflict with the memory accesses in other transactions. The
read and write barriers first make sure no other transaction currently owns the data
being accessed. The write barrier then acquires ownership for the data being updated,

296 C. Wang, V. Ying, and Y. Wu

updates the data in place, and keeps the old value in an undo-log in case the
transaction has to rollback. The read barrier logs the data version so it can be checked
at transaction commit time to make sure that the set of data read in the current
transaction is consistent with respect to the committed transactions. In addition to the
barriers, the STM compiler also generates code to checkpoint the live-in values at the
beginning of the transaction, rollback transaction to the initial state when a conflict is
detected or when a tm_abort() intrinsic is invoked, and commit the transaction results
at the end of the transaction.

The primary overhead for STM compiler generated code is the barrier operations.
To reduce the overhead, the STM compiler generates inlined barrier code to reduce
function call overheads. It also uses compiler analysis to determine thread-private
references that can never conflict with accesses in other transactions so as to omit
their barriers. Furthermore, the STM compiler eliminates redundant barriers for data
accesses with the same addresses. With these optimizations, the STM compiler
generated code performs comparative to hand-optimized code and is competitive to
fine-grain lock-based code, and much better than coarse-grain locking version when
running on multiple processors [7].

4 Compiler Integration with DBT

For a library function called inside a transaction, the STM compiler invokes
LDBTOM to convert it to a transactional function at runtime. LDBTOM is based on
our Dynamic Binary Translation (DBT) research framework: StarDBT [8]. The
overall structure of StarDBT is shown in Fig. 2. The DBT runs on top of OS as a user-
level run-time system. The program binary code is dynamically translated and stored
into the code cache. The translated code can be executed under the control of the
DBT, which allows us to apply different dynamic binary translation techniques to
the code.

The DBT consists of three individual modules: the Runtime module, the Frontend
module and the Backend module. The Runtime module provides the system supports
for the DBT. The Frontend module manages the execution for dynamic binary
translation. It dynamically recognizes the original program instructions, translates
them into instructions in the code cache, and controls the code execution in the code
cache. The Frontend module also collects program profiling information during the
code execution and selects hot traces based on the profiling information for run-time
optimization by the Backend. The Backend module performs run-time optimization
for the dynamic binary translations. It builds an intermediate representation (IR) from
the hot traces selected by the Frontend module. It then performs optimizations on the
IR, and finally generates optimized code into the code cache to improve performance.

StarDBT has been used for many research works to improve reliability [9],
enhance security [10], etc. In this work, we leverage a simplified module from
StarDBT called LDBTOM, to support legacy binary code in STM. The compiler
invokes LDBTOM directly in the generated code with the address of the library
function passed as a argument for translation. LDBTOM starts to translate the code at
this address and runs the translated code from the translation code cache.

 Supporting Legacy Binary Code in a Software Transaction Compiler 297

When a translated library function returns to a transaction or calls back to an STM
compiler generated function, the execution should continue to the compiler generated
transactional code without translation. For this purpose, the STM compiler adds all
the entry points in the compiler generated code to LDBTOM’s runtime dispatch table,
including returning points for library functions called in transactions. If LDBTOM
finds the branch/call target in the dispatch table, the branch/call will directly connect
to the targeted code. Otherwise the code at the target will be translated before
execution. Therefore, the added entry points in the dispatch table will naturally cause
LDBTOM to go back to the compiler generated STM code for execution.

Once a library function is translated, subsequent calls to the same function should
not invoke LDBTOM again. To accomplish this, STM compiler builds a table, called
Translation Linkage Table (TLT), similar to the Procedure Linkage Table for shared
libraries, with one entry per static call site that may call a legacy library function in
STM compiler generated code. Each call to a library function is generated as an
indirect call through the corresponding entry in the TLT. The first time a library
function is called, its TLT entry contains LDBTOM’s entry point to translate the
legacy function. After that, the TLT entry contains the starting address of the
translated function, and late call to the function is mostly an indirect call through the
TLT without translation. This scheme works well for direct calls to library functions.
For an indirect call, however, the library function pointed to by the function pointer
may change at runtime. Consequently, we cannot simply place the starting address of
the translated function in the TLT entry. Instead, we place a dispatch table lookup
routine in that entry. The lookup routine searches the dispatch table to determine if the
current function pointer is to an already-translated function. If so, the translated
function is directly called. Otherwise, LDBTOM is invoked to translate the indirectly
called function. The TLT entry for an indirect call may also be expanded to include a
few conditional branches for those frequently called targets.

LDBTOM uses a thread-private code cache for each user thread. For a parallel loop
body, the same static code is executed by multiple threads, and the code needs to be
compiled to work with code in multiple code caches in different threads. Our STM
compiler creates a thread-private TLT for each thread and uses a thread-private
descriptor to direct the static call to use the thread-private TLT to transfer control to
the thread-private code cache.

Specifically, the STM runtime provides a runtime library stmGetTxnDesc() to get a
thread-private transaction descriptor. All the thread-private memory accesses go
through the thread-private transaction descriptor. We add one field in the transaction
descriptor, which points to the thread-private TLT. To access the thread-private TLT,
STM compiler generates a global index variable storing an index to the thread-private
TLT, for each call site to a legacy function. For program with separately compiled
modules, our compiler puts all the index variables into a special segment .tlt in the
object file and the program linker will combine them together into a global index
table (GIT). At the program initialization for STM, we initialize each entry in the GIT
with the TLT table offset. When a thread is initialized, we allocate and initialize a
thread-private TLT for the thread with the same size as the GIT. Then we can save the
thread-private TLT pointer in the transaction descriptor and use the global index
variable to access the entry in the thread-private TLT for a particular function call.
Fig. 3 shows the code for program initialization and thread initialization. GIT_head is
the first index variable in GIT and GIT_tail is the last index variable in GIT. The

298 C. Wang, V. Ying, and Y. Wu

// program initialization
prog_init() {
 ...
 Index = 0;
 for(p = &GIT_head;
 p != &GIT_tail; p++) {
 *p = index++;
 }
 GIT_size = index;
}

// thread initialization
thread_init() {
 ... // allocate transaction descriptor
 desc = stmGetTxnDesc();
 desc->TLT = malloc(GIT_size * ENTRY_SIZE);
 For(index = 0; index < GIT_size; Index++) {
 if (the call site is a direct call)

 desc->TLT[index].proc = LDBTOM;
 else

 desc->TLT[index].proc = dispatch_lookup;
 }
}

(a) program initialization (b) thread initialization

Fig. 3. Initialization for thread-private TLT

STM runtime defines these two index variables and makes sure they are the first entry
and last entry in the GIT. GIT_size is the GIT table size.

Fig. 4 shows the code for a function call to legacy function in transaction. index_L
is the index variable for function call at L. We use the thread-private descriptor and
index_L to access the thread-private TLT entry and make an indirect function call to
LDBTOM. LDBTOM can easily patch the thread-private TLT entry with the
translated code in the thread-private code cache so that future function calls go
directly to the translated code.

int foo (void);

main (…){
 #pragma tm_atomic
 {
 …
 L: foo();
 }
}

int index_L; // in segment .tlt

main (…) {
 #pragma tm_atomic
 {
 …
 desc = stmGetTxnDesc();
 …
 call (*desc-

>TLT[index_L].proc)(…);
 }
}

(a) source code (b) STM code

Fig. 4. Thread-private TLT for legacy function call

Another issue is determining the target of a function pointer and generating correct
code when the function pointer is called inside a transaction. A function pointer
always points to the normal version of a function if it is compiled by the STM
compiler, or a legacy binary function. If it points to an STM compiler generated
function, the transactional version must be called instead. If it points to a legacy
binary function, however, the LDBTOM must be invoked to translate the function to
transactional version.

In the source code, a function pointer can be declared as transactional with a
tm_function pragma, such as fp in Fig. 5(a). The tm_function information can be

 Supporting Legacy Binary Code in a Software Transaction Compiler 299

maintained by the compiler as part of the type of the function declaration. However,
for an unmanaged language like C, the compiler seldom performs strict type
checking, especially when the program modules are compiled separately. For
example, if the code in Fig. 5 (a) and (b) are separately compiled and then linked
together, the program will compile fine without any error or warning, although the
call through fp() actually goes to a binary function (bar), even though it is declared as
a transactional function pointer.

#pragma tm_function
int foo (void);

#pragma tm_function
int (fp *) (void);

main (…) {

 func2();
 #pragma tm_atomic
 {
 …
 foo();
 fp();
}

}

extern int (fp *)
(void);

int bar(void) { … }

func2 (){
 …
 fp = bar;
 …
}

(a) function call (b) function declaration

Fig. 5. Transactional function pointers

// declared to be atomic
#pragma tm_function
int foo(int)
…
fp1 = foo;
fp2 = qsort; // lib

#pragma tm_atomic
{
 (*fp1)(3);
 (*fp2)(…)
}

#pragma tm_atomic
{
if (*fp1== “no-op marker”)
 call **(fp1 – 4)
else
 Invoke_LDBTOM (fp1);
if (*fp2== “no-op marker”)
 call **(fp2 – 4)
else
 Invoke_LDBTOM (fp2);
}

<foo-4>:
address of
transactional clone
 foo_tm
<foo>:
no-op marker
 cmpl %eax, 0xmagic
actual function here
<foo_1>:
 push %ebp;
 …

(a) source code (b) runtime checking code (c) assembly code
supporting runtime check

Fig. 6. Handling function pointers inside transactions

Our STM compiler inserts a special “no-op marker” in the beginning of the normal
version of the function it generated. It also places the address of the transactional
clone at a fixed offset, e.g. 4 bytes, away from the normal function entry. The “no-op
marker” is a special no-op unique to the user application being compiled, such as an
instruction that loads a special STM reserved memory to an unused register. Since a
legacy library function does not have this special marker, this allows a quick runtime
check to determine whether a function is an STM compiler generated function or a
legacy library function. For a call through a function pointer invoked inside a

300 C. Wang, V. Ying, and Y. Wu

transaction, if the pointer points to a STM compiler generated normal function, the
pointer is adjusted and the transactional clone is called. If the pointer points to a
legacy library function, LDBTOM is invoked to translate the code in legacy library.

Fig. 6 shows the indirect calls with function pointers. The transaction first calls the
function foo() through the function pointer fp1. The code generated for the call to
foo() inside the transaction first checks that the first instruction at the function entry is
the no-op marker, and then calls the transactional clone of foo() pointed to by (fp1 –
4). The transaction next calls the function qsort through the function pointer fp2.
Since qsort is a legacy function whose first instruction is not the no-op marker,
LDBTOM is invoked to translate the qsort function to a transactional clone. Outside
the transaction, the call to foo() is simply generated as a call to foo_1(), a function that
is equivalent to foo() except it skips the first no-op marker instruction.

5 Dynamic Optimizations

For each memory reference in a legacy function called in a transaction, LDBTOM
inserts code to save the machine context (e.g. registers), pass the memory address to
the STM runtime, call an STM runtime routine (stmReadBarrier for load and
stmWriteBarrier for write) to check for conflict, and then restore the machine context.
Fig. 7 shows the basic instrumentation for one memory reference. The basic
instrumentation incurs noticeable overhead if not optimized.

movl %eax, DWORD PTR [%ebp+08h]

save %eflags
save caller saved regs
pass PTR [%ebp+08h] to STM runtime
call stmReadBarrier
addl %esp, 0x4h
restore caller saved regs
restore %eflags
movl %eax, DWORD PTR [%ebp+08h]

(a) before translation (b) after translation

Fig. 7. Basic Instrumentation for Legacy code

LDBTOM performs the following optimizations to reduce the barrier overhead.

• Analyze the binary code to identify thread-private memory references, such as
push and pop operations, which do not need barriers.

• Use liveness information to eliminate unnecessary register save/restore. For
example, if a register or the %eflags is dead at a reference, it does not need to be
saved and restored for that reference. For another example, if a register is not
used in a block/trace, it does not need to be saved or restored for each
instrumentation site in the block/trace, and saving/restoring the register at the
block/trace boundary is sufficient.

• Inline the STM runtime call to eliminate the call and return overhead. Since
aggressive inlining increases code size dramatically, we inline only the hot paths
in the STM runtime routines.

 Supporting Legacy Binary Code in a Software Transaction Compiler 301

5.1 Filtering Local References

IA32 program frequently uses stack memory to store local data due to the limited
number of general purpose registers. One benefit of stack data is that it is often
private to a thread, and we may not need to track them for conflict detection.
However, there are cases where the address of a stack data is passed to another thread
and thus the stack data become shared among threads, although this situation happens
very rarely. To filter barriers for stack references safely and aggressively, we need to
solve the following two problems.

1. Decide whether any local data on stack is shared among different threads.
2. Decide which memory operation is a stack local data access.

Neither of the above problems can be easily solved by statically scanning the
binary code. We solve the problems by taking the advantage of the dynamic binary
translation opportunity. To check that no stack data are shared among threads, we
leverage the paging memory protection mechanism provided in IA32 ISA. Each
thread maintains its own paging table and protects the stack area as accessible only by
the owner thread. In case that a thread accesses the stack of other threads, a memory
fault triggers LDBTOM to flush all the translated code in the code cache and
retranslates them without further filtering optimization of the barriers for stack
references.

Stack references often are indexed by the stack pointer register %esp and the stack
frame register %ebp. To check that %esp register points to the thread stack,
LDBTOM examines all instructions that update %esp register with a large constant or
a variable (With this update, the program may switch stack to memory space
unprotected by our memory protection mechanism). If such an update is detected,
LDBTOM flushes the code cache and retranslates the program without further
filtering optimization.

The %ebp registers may be temporarily used as scratch register in leaf functions.
We use the dynamic control flow graph information to track the %ebp status. An
assignment that moves %esp to %ebp will cause %ebp pointing to the stack. If all the
predecessors of a block being translated have %ebp pointing to the stack, the current
block can performs the filtering optimization. If an instructions updates %ebp register
with a large constant or a variable, the stack filtering optimization will not be
performed. In case LDBTOM finds out that %ebp does not point to the stack at the
end of a newly translated block, but a successor block has already been optimized
based on the assumption that %ebp points to the stack, LDBTOM will create a new
version of the successor block to run without filtering optimization. LDBTOM also
dynamically checks %ebp after a function call returns. If %ebp no longer points to
stack after the function call returns, code cache will be flushed and retranslated.

5.2 Dead Saving/Restore Elimination

In the base implementation LDBTOM saves/restores all caller-saved registers (%eax,
%ecx and %edx) and %eflags register at each barrier. This is not always necessary as
some registers may be dead at the barrier site. We use a simple analysis to detect the
liveness of registers, and remove those unnecessary register saves/restores.

302 C. Wang, V. Ying, and Y. Wu

To eliminate dead saving/restores, each unfiltered load/store instruction maintains
a local status word for %eax, %ecx, %edx, and %eflags. A global status word is
initially set with “unknown” for all the registers. During a reverse traversal of the
instructions, when a register is defined as a destination register, it is set as “dead” in
the global status word. If a register is used as source register, it is set as “live”. After
an unfiltered load/store instruction is processed, the global status is assigned to the
local status word of the load/store instruction. After all instructions in the block are
scanned, if a register is never used in the block (with an “unknown” status), we save
the register at the beginning and restore it at end of the block. For the other registers,
we don’t need to save/restore them at an unfiltered load/store if the register is dead in
the local status word.

5.3 Barrier Inlining

Inlining the barrier routines can reduce function call and return overhead. But inlining
the entire barrier increases code size significantly, so we only inline hot paths, and
switch to slow path when conflict detected or READ/WRITE set buffer is full. The
hot paths are identified the same as in the STM compiler [7].

6 Experimental Results

We use a suite of SPLASH-2 benchmark and three concurrent data structure
benchmarks, avltree, btree and hashtable, to demonstrate LDBTOM support in the
STM compiler. We run our experiment on a Unisys ES7000 Linux system, with 16
processors. Each processor is an Intel Xeon MP CPU 3.0G Hz, with 8KB L1 Data
cache, 512K L2 Cache, 4M L3 Cache, and 32M on-board L4 Cache. The system has
a 400MHz system bus, 3.2GB/s front side bus bandwidth, 8G main memory, and a
dual channel DDR 400. Each data point in the result is obtained from the average of
10 runs.

In real-world applications like SPLASH-2, only a small portion of code (on
average 4%) runs in transactions. Among them, three benchmarks, barnes, radiosity
and cholesky, have function calls within transactions, but none of them are external
library calls. To measure the overhead of LDBTOM, we compile the program in two
different ways: 1) declare all the functions called insides transactions as tm_function
so that the compiler will generate transactional code for these functions (denoted as
Compiler in the figures), and 2) do not declare any function called inside transaction
as tm_function so that the compiler will invoke LDBTOM to dynamically translate
them into transactional code (denoted as LDBTOM in the figures). Fig. 8 (a) shows
the performance results running in a single thread. On average, the overhead of
LDBTOM is only about 1%.

Fig. 8 (b) shows the scalability for the benchmark Cholesky. Since the LDBTOM
overhead is very small, the scalability is similar for both versions. The other
benchmarks also show similar scalability between Compiler version and LDBTOM
version.

 Supporting Legacy Binary Code in a Software Transaction Compiler 303

LDBTOM Overhead

0.94

0.96

0.98

1

1.02

1.04

1.06

barnes radiosity cholesky average

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Compiler LDBTOM

Cholesky

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

Threads

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Compiler LDBTOM
(a) (b)

Fig. 8. LDBTOM for SPLASH2

0

2

4

6

8

10

12

avltree btree hashtable geomean

sl
o

w
 d

o
w

n

no-opt filter local inline dead reg

dead eflag barrier elim stm-o3

0.0

0.5

1.0

1.5

2.0

2.5

avltree btree hashtable geomean

sl
o

w
 d

o
w

n

coarse fine STM-comp STM-o3

DBT trans DBT inst DBT stm

(a) (b)

Fig. 9. Optimization benefits and translation overhead

Since the SPLASH-2 has only a small portion of code running in transactions, we
also use a set of concurrent data structures benchmarks, which spend almost all their
execution time inside transactions to stress the LDBTOM overhead. For the
concurrent data structures, each benchmark has hand-coded version optimized for
STM execution, together with a fine-grain locking version and a coarse-grain
transaction version. For the transaction version of the benchmarks, each coarse-grain
locked section is coded as a transaction. Most of the transactions in the programs
consist of a number of function calls. To stress LDBTOM overhead, we treat all the
functions called inside the transactions as library functions translated by LDBTOM.
We measure the performance of LDBTOM, using the hand-optimized version (stm-
o3) as the baseline, with no optimization (no-opt) and with the following
optimizations, running on a single processor.

filtering local: Filter local variables indexed by esp/ebp
inlining: Inlining fast path + Filtering local
dead reg: Eliminate dead register saving/restore+ Inlining
dead eflag: Eliminate dead %eflags and reg saving /restore
barrier elim: Redundant barrier eliminations+dead %eflags

304 C. Wang, V. Ying, and Y. Wu

Fig. 9 (a) shows the optimization benefits. On the average, without optimization
LDBTOM translated code is about 8x slower than hand-coded version. After
optimizations, LDBTOM translated code is only about 80% slower than hand-coded
version. The most beneficial optimizations are local filtering. All other optimizations
contribute to the performance improvement, but not as significantly.

We also classify the overhead in LDBTOM translated code. We compare the
performance for the following cases running with a single thread.

fine: this is the original fine-grain locking version of the benchmarks.
coarse: this is the original coarse-grain locking version of the benchmarks.
STM-o3: this is the hand-coded STM version.
STM-comp: this is the version generated by our STM compiler. This version is

highly optimized and achieves performance similar to or better than
the hand-optimized versions.

DBT trans: this is the transaction version with the functions translated by
LDBTOM, but no STM instrumentation is inserted. This version
demonstrates the overhead of invoking DBT to translate the
function. This version can only run with a single thread, as the
load/stores are not instrumented for conflict detection

DBT inst: this is the same version as DBT trans but also with the
saving/restoring of registers code inserted. The actual calls to STM
runtime routines are not inserted. This version measures the
overhead associated with saving/restoring of machine context. This
version can only run with a single thread.

DBT stm: this is the same version as DBT inst but also with the actual barrier
code for conflict detection being inserted.

btree

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dbt stm-o3 hashtable

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dbt stm-o3

(a) (b)

Fig. 10. Scalability of benchmark

Fig. 9 (b) shows that LDBTOM translation overhead is small (compare bars
marked with DBT trans and fine). This overhead can be even smaller for larger
applications than the data structures, since these benchmarks run only for a short time
and the DBT startup time is more noticeable. The overhead to save/restore machine
context is relatively high, and DBT inst has about 3X higher overhead than DBT
trans. When the STM barriers are inserted, the DBT translated version (DBT stm) is
about 80% slower than the hand-optimized STM code (STM-o3).

 Supporting Legacy Binary Code in a Software Transaction Compiler 305

We also compare the scalability of the code translated by LDBTOM with the hand-
coded version. Fig. 10 (a) shows that LDBTOM generated btree scales similar to the
hand-optimized STM code. For hashtable, however, Fig. 10 (b) shows that the
LDBTOM generated code scales only to five processors. With 6 or more processors,
the LDBTOM generated code for hashtable actually runs slower with more cores.
This is because that currently LDBTOM uses thread-private code cache to store
translated code. Consequently, for a parallel program running with multiple, say 16,
threads, the legacy code in the parallel regions will be translated 16 times, one for
each thread. Since translation for different threads cannot fully be performed in
parallel yet, the translation overhead will increase when running with more threads.
There is also potential issue with the increased pressure on the instruction cache. We
plan to address this issue in two directions in the future: 1) make the LDBTOM
translation and optimization for different threads fully parallel, and 2) implement a
shared code cache so the translated code can be reused by multiple threads. The
zigzag in Fig. 10 (b) also suggests that there are load imbalance issues.

7 Summary and Future Work

In this paper, we develop novel techniques for integrating a dynamic binary
translation module into a STM compilation environment to support transactional
memory for legacy binary code, and evaluate a number of optimization techniques to
reduce the overhead of the translated code. We measure the effectiveness of these
techniques on a suite of SPLASH-2 benchmarks and a set of concurrent data
structures benchmark. For the SPLASH-2 benchmarks, on the average, the LDBTOM
generated code is only about 1% slower than STM compiler generated code. For the
concurrent data structure benchmarks which have almost all the code inside
transactions, LDBTOM generated code is about 80% slower than the hand-optimized
STM code on a single thread, even though binary code is inherently harder to
optimize than high-level source code and a straightforward translation would be more
than 8 times slower than the hand-optimized code.

There are a number of open issues that we want to address in future work. We
currently don’t support I/O or system calls inside transactions. We also don’t consider
signal handling inside a transaction. Software implemented synchronizations using
shared variables pose a challenge to the dynamic binary translator to convert them to
transactional code. The scalability issue with thread-private cache is also an
interesting future research topic.

References

1. Adl-Tabatabai, A., Lewis, B.T., Menon, V.S., Murphy, B.M., Saha, B.: T. Compiler and
runtime support for efficient software transactional memory. In: PLDI 2006 (2006)

2. Adl-Tabatabai, et al.: Hw Acceleration For a Software Transactional Memory System. In:
Micro 2006 (2006)

3. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: 11th International Symposium on High-Performance Computer
Architecture, 2005. HPCA-11, February 12-16, 2005, pp. 316–327 (2005)

306 C. Wang, V. Ying, and Y. Wu

4. Baraz, L., Devor, T., Etzion, O., Goldenberg, S., Skaletsky, A., Wang, Y., Zemach, Y.:
IA-32 Execution Layer: a two-phase dynamic translator designed to support IA-32
applications on Itanium®-based systems. In: Micro-36 2003 (2003)

5. Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing Transactional Semantics: The
Subtleties of Atomicity. In: Annual Workshop on Duplicating, Deconstructing, and
Debunking (WDDD) (June 2005)

6. Blundell, C., Lewis, E.C., Martin, M.M.K.: Unrestricted Transactional Memory: Supporting
I/O and System Calls within Transactions. Technical Report CIS-06-09, Department of
Computer and Information Science, University of Pennsylvania, Philadelphia, PA (April
2006)

7. Wang, C., Chen, W., Wu, Y., Saha, B., Adl-babatabai, A.: Code Generation and
Optimization for Transactional Memory Constructs in an Unmanaged Language. In: CGO
2007 (2007)

8. Wang, C., Hu, S., Kim, H.-s., Nair, S., Breternitz Jr., M., Ying, Z., Wu, Y.: StarDBT: An
Efficient Multi-platform Dynamic Binary Translation System. In: Choi, L., Paek, Y., Cho,
S. (eds.) ACSAC 2007. LNCS, vol. 4697, pp. 4–15. Springer, Heidelberg (2007)

9. Borin, E., Wang, C., Wu, Y., Araujo, G.: Software-Based Transparent and Comprehensive
Control-Flow Error Detection. In: CGO 2006 (2006)

10. Qin, F., Wang, C., Li, Z., Kim, H.-s., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead Practical
Information Flow Tracking System for Detecting Security Attacks. In: Micro-39 2006
(2006)

11. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing Memory Transactions. In:
PLDI 2006 (2006)

12. Herlihy, M., Luchango, V., Moir, M., Scherer, W.N.: Software Transactional Memory for
Dynamic Sized Data Structures. In: PODC 2003 (2003)

13. Hosking, A., Moss, J.E.B.: Nested transactional memory: Model and preliminary Sketches
SCOOL (2005)

14. Olszewski, M., Cutler, J., Steffan, J.G.: JudoSTM: A Dynamic Binary-Rewriting
Approach to Software Transactional Memory. In: PACT 2007 (2007)

15. Moir, M.: Hybrid Transactional Memory. Sun Microsystems Technical Report
16. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-based

Transactional Memory. In: HPCA 2006 (2006)
17. Wu, Q., Reddi, V.J., Wu, Y., Lee, J., Connors, D., Brooks, D., Martonosi, M., Clark,

D.W.: Dynamic Compilation Framework for Controlling Microprocessor Energy and
Performance. In: Micro-38 2005(2005)

18. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing Transactional Memory. In: Proc. of the 32nd
Annual Intl. Symp. On Computer Architecture (June 2005)

19. Shavit, N., Tuitou, D.: Software Transactional Memory. In: PODC 1995(1995)
20. Correct and Consistent Transactional Memory System (submitted for publication)

Author Index

Amarasinghe, Saman 147

Balakrishnan, Gogul 16
Baskaran, Muthu 132
Bergeron, Etienne 178
Bondhugula, Uday 132

Cooper, Keith D. 69
Cunningham, Dave 276

David, Jean Pierre 178
Dymnikov, Constantine 229

Eisenbach, Susan 276

Fähndrich, Manuel 197
Feeley, Marc 178
Franchetti, Franz 116

Grossman, Dan 85
Gudka, Khilan 276

Harvey, Timothy J. 69
Hermenegildo, Manuel 245

Kapur, Deepak 245
Karkare, Bageshri 213
Khedker, Uday P. 213
Krishnamoorthy, Sriram 132

Lashari, Ghulam 100
Lhoták, Ondřej 100
Lim, Junghee 36
Liu, Yu David 260
Logozzo, Francesco 197
Lu, Xiaoqi 260

Male, Chris 229
Marron, Mark 245
McCool, Michael 100
Mössenböck, Hanspeter 193

Nita, Marius 85

Pearce, David J. 229
Potanin, Alex 229
Prokopski, Gregory B. 163
Püschel, Markus 116

Rabbah, Rodric 147
Ramanujam, J. 132
Reps, Thomas 16, 36
Rountev, Atanas 53, 132
Rudolph, Larry 147

Sadayappan, P. 132
Schwartzbach, Michael I. 1
Sharp, Mariana 53
Smith, Scott F. 260
Stefanovic, Darko 245

Verbrugge, Clark 163

Wang, Cheng 291
Waterman, Todd 69
Wimmer, Christian 193
Wong, Weng-Fai 147
Wu, Youfeng 291
Würthinger, Thomas 193

Xu, Guoqing 53

Ying, Victor 291

Zhao, Qin 147

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Design Choices in a Compiler Course or How to Make Undergraduates Love Formal Notation
	Introduction
	Design Choices
	The dOvs Course
	A Case for Large Languages
	Frontend, Backend, or Middle-End?
	Learning to Love Formal Notation
	Explicit Phases through SableCC and AspectJ
	Unit Testing through Phase Mixing
	Incremental Feedback
	The Peephole Contest
	Exams and Grading
	Conclusion and Acknowledgements

	Improved Memory-Access Analysis for x86 Executables
	Introduction
	The Case for Analyzing Machine Code
	CodeSurfer/x86: A Platform for Recovering IRs from Stripped Executables
	GMOD-Based Merge Function
	Experiments
	Related Work

	A System for Generating Static Analyzers for Machine Instructions
	Introduction
	Overview of the TSL System
	TSL from an ISS Developer's Standpoint
	Common Intermediate Representation (CIR)
	TSL from an Analysis Developer's Standpoint
	Generated Transformers
	Measures of Success

	Generation of Static Analyzers
	Creation of a TA Transformer Evaluator for VSA
	Def-Use Analysis (DUA)
	Creation of a UB Transformer Generator for ASI
	Quantifier-Free Bit-Vector (QFBV) Semantics
	Paired Semantics

	Instruction Sets
	IA32
	ARM
	SPARC

	Related Work

	IDE Dataflow Analysis in the Presence of Large Object-Oriented Libraries
	Introduction
	Whole-Program IDE Dataflow Problems
	Interprocedural Dependence Analysis
	Type Analysis

	Summary Generation for Object-Oriented Libraries
	Stage 1: Intraprocedural Summary Generation
	Stage 2: Interprocedural Summary Generation

	Experimental Evaluation
	Related Work
	Conclusions and Future Work

	An Adaptive Strategy for Inline Substitution
	Introduction
	Designing a Parameter Scheme for Inlining
	Adaptive Search of the Parameter Space
	Experimental Results
	Related Work
	Conclusions

	Automatic Transformation of Bit-Level C Code to Support Multiple Equivalent Data Layouts
	Introduction
	Conventional Approaches
	Our Approach
	Outline

	Example
	Description of the Extension
	The Specification Language
	The port Statement
	Translation
	Generation of Flip Functions

	Implementation
	Experience
	Related Work
	Conclusions and Future Work

	Control Flow Emulation on Tiled SIMD Architectures
	Introduction
	Previous Work
	Control Flow Emulation on SIMD Machines
	Program Partitioning
	Temporary Variables
	Dynamic Scheduling Using a Worklist
	Stale State

	Optimizations
	Graph Bipartization
	Node Bypassing

	Experimental Results
	Conclusions and Future Work
	Complexity of Max Node Bypassing

	Generating SIMD Vectorized Permutations
	Introduction
	Background
	Vector SIMD Extensions
	Mathematical Background

	Vector Programs and Matrix Expressions
	Modeling Vector Shuffle Instructions as Matrices
	Translating Matrix Formulas into Vector Programs

	Generating Vectorized Permutation Programs
	Rewriting Rule Set
	Dynamic Programming Search
	Existence and Optimality

	Experimental Results
	Conclusion

	Automatic Transformations for Communication-Minimized Parallelization and Locality Optimization in the Polyhedral Model
	Introduction and Motivation
	Overview of the Polyhedral Framework
	Finding good transformations
	Legality of Tiling Imperfectly-Nested Loops
	Cost Function
	Cost Function Bounding and Minimization
	Iteratively Finding Independent Solutions
	Communication and Locality Optimization Unified
	Space and Time in Transformed Iteration Space
	Fusion

	Example
	Implementation and Preliminary Results
	Related Work
	Conclusions

	How to Do a Million Watchpoints: Efficient Debugging Using Dynamic Instrumentation
	Introduction
	Challenges Faced by Current Approaches
	A New and Practical Alternative

	Interactive Debugging with EDDI
	Efficient Debugging Using Dynamic Instrumentation: Software Watchpoint
	Optimizations for Full Instrumentation (FI)
	Partial Instrumentation (PI)
	Evaluation and Results
	Related Work
	Conclusion

	Compiler-Guaranteed Safety in Code-Copying Virtual Machines
	Introduction
	Related Work
	VM Execution and Code-Copying
	Code-Copying Technique
	Safety

	Design
	Generation of Safely Copyable Code
	GCC Modifications
	Phase V and VI: RTL Markers and Final Verification

	Experimental Results
	Conclusions and Future Work

	Hardware JIT Compilation for Off-the-Shelf Dynamically Reconfigurable FPGAs
	Introduction
	Related Work
	Target Architecture
	Compiler Architecture
	Source Language and High-Level Synthesis
	Technology Mapping
	Place and Route

	Results
	Conclusion

	Visualization of Program Dependence Graphs
	Introduction
	Architecture
	Usage
	Related Work
	Conclusions

	On the Relative Completeness of Bytecode Analysis Versus Source Code Analysis
	Introduction
	Languages
	While-Language
	Three Address Code
	Compilation

	Abstract Interpretation
	Abstract Domains
	Transfer Functions

	Relative Completeness of Precise Analysis of Bytecode
	Notions of Relative Completeness
	Skip
	Sequence
	Assignments
	Assumptions and Assertions
	Conditionals
	Loops

	Conclusions

	Efficiency, Precision, Simplicity, and Generality in Interprocedural Data Flow Analysis: Resurrecting the Classical Call Strings Method
	Introduction
	Background
	Efficiency of Call Strings Approach
	An Efficient Variant of Call Strings Approach
	Concepts and Notations
	Call String Invariants
	Modifying Call Strings Method
	Safety, Precision, Efficiency, and Complexity
	An Example of Points-To Analysis
	An Approximate Version

	Related Work
	Empirical Measurements
	Conclusions and Future Work

	Java Bytecode Verification for @NonNull Types
	Introduction
	Preliminaries
	Non-null Type Verification
	Abstract Store
	Abstract Semantics
	An Example

	Soundness
	Termination
	Correctness

	Implementation
	Case Studies
	Related Work
	Conclusion

	Efficient Context-Sensitive Shape Analysis with Graph Based Heap Models
	Introduction
	Example Code
	Heap Model
	Abstract Heap Model

	Stack Variables, Cutpoint Labels
	Example
	Project and Extend Algorithms
	Experimental Results
	Conclusion

	Coqa: Concurrent Objects with Quantized Atomicity
	Introduction
	Informal Overview
	Task Creation
	Intra-task Messaging
	Subtasking
	Properties

	Formalization
	Discussion and Related Work
	Conclusion and Future Work

	Keep Off the Grass: Locking the Right Path for Atomicity
	Introduction
	General Approach and Features
	Path Graphs Inference
	Lock Insertion
	Inferring Locks from a Path Graph
	Deadlock
	Parole
	Splitting the Atom

	Experiment
	Related Work
	Conclusion and Future Work

	Supporting Legacy Binary Code in a Software Transaction Compiler with Dynamic Binary Translation and Optimization
	Introduction
	Related Work and Issues
	STM Compiler
	Compiler Integration with DBT
	Dynamic Optimizations
	Filtering Local References
	Dead Saving/Restore Elimination
	Barrier Inlining

	Experimental Results
	Summary and Future Work
	References

	Author Index

