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Abstract. Self-adaptive component-based architectures provide methods and 
mechanisms to support the dynamic adaptation of their structure under evolving 
execution context. Dynamic adaptation is particularly relevant in the domain of 
ubiquitous computing, which is subject to numerous unexpected changes of the 
execution context. In this paper, we focus on changes in the service provider 
landscape: business services may dynamically come and go, and their quality of 
service may vary. We introduce an extension of the MADAM component-based 
planning framework that optimizes the overall utility of applications when such 
changes occur. MADAM planning is based on dynamic configuration of 
component frameworks. The extended planning framework supports seamless 
configuration of component frameworks based on both local and remote 
components and services. In particular, components and services can be 
plugged in interchangeably to provide functionalities defined by the component 
framework. The extended planning framework is illustrated and validated on a 
use case scenario.  

Keywords: Adaptation planning, component-based architectures, self-adaptation, 
service-oriented architectures. 

1   Introduction 

Self-adaptive architectures provide methods and mechanisms supporting the dynamic 
adaptation of their structure under an evolving runtime execution context. Dynamic 
adaptation is particularly relevant in the domain of ubiquitous computing, where users 
carrying mobile devices move around in ubiquitous computing environments causing 
frequent and unexpected changes in the execution context of their applications. For 
example, a mobile device is frequently roaming, and its applications have to be 
dynamically adapted to remain useful under new network conditions. Such an 
adaptation requires the detection of context changes, but also the selection of an 
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application configuration that maintains a satisfactory Quality of Service (QoS) in the 
new context. With the emergence of Service-Oriented Architectures (SOA) [1], both 
the availability and the QoS of the services on which the applications depend become 
an important part of the context. Thus, SOA is of interest for self-adaptive applications, 
because services are reusable and composable entities that can be dynamically 
exploited to improve the behavior of an application executed on a mobile device. 
Services in a SOA environment can be discovered and accessed without knowledge of 
the underlying platform implementation and hence can be exploited in the dynamic 
configuration of the applications. Adaptation in MADAM is generally QoS-driven. In 
SOA, QoS properties are part of the Service Level Agreements (SLAs) [2] that are 
negotiated between a service provider and its end-user consumers. By integrating SLA 
negotiation into the adaptation decision process, application adaptation exploiting SOA 
can still be QoS-driven. 

The MUSIC planning framework introduced in this paper is an extension of the 
MADAM planning framework, which supports the adaptation of component-based 
architectures [3]. MADAM follows an architecture-centric approach where we 
represent architecture models at runtime to allow generic middleware components to 
reason about and control adaptation aims at simplifying the development of adaptive 
applications. In MADAM applications are modeled as component frameworks where 
functionality defined by a component framework can be dynamically configured with 
conforming component implementations. The purpose of an adaptation-planning 
framework is to compute and evaluate the utility of alternative configurations in 
response to context changes, and to select a good one for the current context. The 
extension we propose supports self-adaptation of ubiquitous applications to changes 
in the service provider landscape. The planning middleware evaluates discovered 
remote services as alternative configurations for the functionalities required by an 
application. This means that the extended planning framework, when triggering an 
adaptation, can support seamless configuration of component frameworks based on 
both local and remote components and services. In particular, components and 
services can be plugged in interchangeably to provide implementation of 
functionalities defined by the component framework.  In the case of services, the 
planning framework deals directly with SLA protocols supported by the service 
providers to negotiate the appropriate QoS for the user. 

In this paper, we first introduce a motivating scenario for the support of remote 
services in mobile applications (cf. Section 2). After presenting the various 
foundations of this work (cf. Section 3), we introduce our planning framework 
capable of supporting SOA when adapting applications (cf. Section 4). This planning 
framework is illustrated and validated on a use case extracted from the motivating 
scenario (cf. Section 5). Finally, related work is discussed (cf. Section 6) before 
concluding and presenting our perspectives (cf. Section 7). 

2   Motivating Scenario 

To further motivate the need for adaptation in service-oriented computing 
environments, let us consider the following scenario. A sales agent spends much of 
his time visiting customers. To assist him in his work, he is using an extended 
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Customer Relationship Management (CRM) system. The system offers traditional 
CRM functionality, such as keeping track of and sharing customer- and business-
related information. In addition, it assists the agent with route planning, detection of 
traveling delays and notifying customers affected by such delays.  

Scene 1. The scenario starts with the sales agent meeting a customer, and using the 
CRM system on his laptop to record agreements with the customer. Before the 
meeting terminates, he is notified about an upcoming meeting at another customer site 
and decides to prepare for this new meeting. He picks up his smartphone and launches 
the mobile CRM application to find the best route and estimate the travel time. For 
this, the application uses a location service, a map service, and a route planning 
service. There are several providers both for the map service and the route planning 
service, and the CRM application has to select providers facilitating a quick and 
precise answer to the agent. In this case the location service provided by the WLAN 
at the customer site and a route planning service available through the Internet are the 
best alternatives. 

Scene 2. The agent ends the current meeting, and walks out to his car to go to his next 
meeting. As he drives away from the customer’s building, the smartphone looses 
connection to the customer WLAN, and the Internet connection is switched 
seamlessly to GPRS by the mobile IP software installed on the smartphone. The 
connection to the location service, which the CRM application needs to monitor 
progress, is lost. The GPRS provider also offers a location service, but with a lower 
accuracy. However, the car has a navigation system based on GPS, which provides a 
more accurate location service via a Bluetooth connection. The car navigation system 
also offers a navigation aid service. The CRM application reconfigures itself to use 
these services, since this solution provides a better accuracy, and a increased visibility 
to the user because of the larger display of the car navigation system. It also saves 
battery life on the smartphone since the navigation aid component of the CRM 
application has been replaced by an external service. 

Scene 3. Half way to the meeting, the agent runs into a traffic jam caused by an 
accident partly blocking the road, resulting in a temporary slowdown of his progress 
towards his next destination. The CRM application detects this situation, alerts the 
agent that he will be late, estimates the delay using data obtained from the route 
planning service and offers the agent to notify affected customers. The agent accepts 
this proposal and the CRM application sends text messages to the customers using the 
available smartphone interface. The CRM application monitors progress and re-
estimates the arrival time regularly in order to be able to alert the meeting about 
changes. Meanwhile the selected route planning service becomes congested, leading 
to slow response and out-of-date information. The application detects this and 
reconfigures to an alternative service that costs more to use but which provides more 
up-to-date information. 

3   Foundations 

This section introduces the basis of the proposed approach by presenting concepts 
related to planning-based middleware (cf. Section 3.1), and service-oriented 
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architectures (cf. Section 3.2). The section concludes by identifying the assumptions 
that are considered in our contribution (cf. Section 3.3). 

3.1   Planning-Based Middleware 

Planning-based middleware refers to the capability of adapting an application to 
changing operating conditions by exploiting knowledge about its composition and 
Quality of Service (QoS) metadata associated to the application components [4]. We 
therefore consider applications that are developed with a QoS-aware component 
model. The QoS model associated with a ubiquitous application defines all the 
reasoning dimensions used by the planning-based middleware to select and deploy the 
component implementations that contribute to provide the best utility. The utility of 
an application grows when its constituting components better fulfill user preferences 
while optimizing device resource consumption. 

Planning refers to the process of selecting components that make up an application 
variant that provides the best possible utility to the end user. This process can be 
triggered during several steps of the application life cycle, such as during the 
deployment of the application or at runtime if the execution context suddenly 
changes. The parts of the application that are considered during planning are called 
variation points. These correspond to functionalities (type of behavior) defined in the 
component frameworks modeling the application. Thus, each variation point identifies 
a functionality of the application that can be implemented differently. In addition, 
each component implementation suitable for a variation point is reified as a plan by 
the planning-based middleware. A plan mainly consists of a structure that reflects the 
type of the component implementation and the QoS properties associated to the 
services it provides. In particular, the plan exhibits both requested properties (e.g., 
memory consumption, network bandwidth, network connectivity) and offered 
properties (e.g., request throughput, response time, result accuracy) referring to the 
QoS model of the application. To estimate the offered properties of a plan, the 
planning-based middleware relies on property predictors. The property predictors are 
used to predict the offered properties of a component implementation as a function 
using the required properties and the current execution context as parameters. The 
predictors can also take into account the state of the component implementation 
associated to the plan—i.e., described, deployed, or running—to refine the prediction. 
The QoS model used by the planning framework can be customized to handle new 
QoS dimensions (e.g., monetary cost), while the property predictors can be configured 
to support complex heuristics (e.g., QoS negotiation protocols). The predicted 
properties are input to a normalized utility function that computes the expected utility 
of a composition of plans making up an alternative application configuration. The 
planning-based middleware compares the expected utility of all alternate application 
configurations, and finally selects the one that provides the highest value.  

Fig. 1 illustrates the architecture of the MADAM adaptation middleware. The 
component Adaptation Manager supports the planning procedure by operating a 
generic reasoning heuristics that exploits metadata included in the available plans. In 
particular, the plans are composed based on their type compatibility to describe 
alternative application configurations. Then, the heuristics ranks the application 
configurations by evaluating their utility with regards to the application objectives. 
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This evaluation is achieved by computing the offered properties using the property 
predictors associated to each plan contained in the selected application configuration 
and retrieved from the component Plan Repository.  

 

Fig. 1. The Architecture of the MADAM planning-based adaptation middleware 

The component Plan Repository provides an interface IPlanBroker for the 
Adaptation Manager to retrieve plans associated with a given component type during 
planning. The Adaptation Manager may request plans that are compatible with a given 
variation point, at which point the Plan Repository will search for matching 
component types. Any additional metadata on the required component type will help 
the Plan Repository to exclude plans and filter the search space [5]. Plans are typically 
published to (and discarded from) the Plan Repository by applications and component 
development tools using the interface IPlanRepository, and can thus trigger the 
Adaptation Manager for re-planning of the application if needed (e.g., the discarded 
plan was associated to a running component). 

The reconfiguration process is handled by the component Configurator and consists 
of taking the set of plans selected by the component Adaptation Manager and 
reconfiguring the application. Before deploying the application configuration selected 
by the reasoning engine, the component Configurator brings the current application 
into a stable state, by suspending the execution of its contained components. Then, if 
the component described by a plan is in the running or deployed state, the associated 
component instance is configured for the variation point and connected to other 
components using the component Binding Factory. If the component is in the 
described state, then the component should be preliminary instantiated and deployed 
by the component Platform using the component implementation description 
associated to the plan. The result of the reconfiguration (e.g., reference of the 
deployed instance) is automatically reflected into the selected plans. 

Thus, the MADAM planning-based middleware offers a modular and extensible 
approach for adapting applications built with various types of component models. In 
particular, the concept of plan can be derived to support heterogeneous artifacts and  
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their associated states. Furthermore, the components Platform and Binding Factory 
provide sufficient abstractions for supporting different middleware platforms (e.g., 
CORBA, J2EE, and Web Services). 

3.2   Service-Oriented Architectures 

When studying the SOA domain, we observe that there is no standard, universally 
accepted definition of Service-Oriented Architectures. Erl [1] proposes to characterize 
SOA by a set of fundamental design principles for service-orientation, such as 
abstraction, reusability, composition, and loose coupling. SOA can also be considered 
as an evolution of component-based architectures. In component-based software 
engineering, applications are assembled from components that can be used without 
any knowledge of either their implementation or their underlying platform. SOA goes 
a step further by introducing an abstract business model defining the concepts of 
functionality as a product or an enterprise resource, service provider, service 
consumer, and service contract. While the owner of a component-based application is 
responsible for the instantiation of components, the service provider is responsible for 
the creation and the management of services. The most fundamental principle of 
service-orientation is the standardized service contract [6]. In particular, services 
express their semantics and capabilities via a service contract. Although SOA was 
initially proposed to organize business software, service-orientation provides facilities 
that are applicable beyond that scope. For example, support has been developed for 
interface type and semantics descriptions, QoS descriptions, service discovery 
protocols, and binding factories. Nowadays, the SOA concepts are more and more 
exploited in a large set of producer/consumer systems, such as ubiquitous systems. 

Service QoS properties are normally negotiated between the service provider and 
the service consumer, and are described as part of the service contract as a Service 
Level Agreement (SLA). A service level is used to describe the expected performance 
behavior, such as response time and availability, or other properties such as billing, 
termination terms and penalties in the case of violation of the SLA [1]. An SLA can 
simply be created after selection of a fixed service level offer among several pre-
defined offers or, in more complex cases, after customization via a negotiation 
process. An SLA may be valid for a limited period, or may be terminated explicitly. 
During service provisioning, the provider should monitor the service quality, and 
adapt the resources to avoid a violation of an SLA. The consumer may also perform 
monitoring as well to avoid blindly trusting the provider. 

In our work, support for services is motivated by the possibility to control the 
usability, usefulness, and reliability of a ubiquitous application by adapting it to 
changes in the service landscape. The following changes are relevant: 

1. The service providers add (resp. remove) services in (resp. from) the 
environment, 

2. New services become accessible depending on changes in the ubiquitous 
execution context, such as network conditions or locations, 

3. The quality of service becomes better or worse due to context changes, 
4. The violation of an SLA (by the user or the provider) leads to the termination 

of the SLA. 
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Mechanisms for discovering changes in the service landscape and contract 
violations are not discussed in this paper. The planning process is triggered when 
changes occur. Planning requires the ability to reason on service properties (including 
QoS) and dependencies between service properties and context. 

3.3   Assumptions 

Although it is also relevant to investigate our planning-based middleware to support 
the planning of service compositions, this paper concentrates on the adaptation of 
component-based applications operating in service-oriented environments. In 
particular, our middleware does not explicitly control the resources in the provider 
domain. Thus, we assume that the description and the deployment of SLA contracts, 
made available to customers, are realized by the service providers. We assume that 
service discovery and service levels identification are performed prior to planning. 
Whether a SLA contract or a set of potential SLA contracts are negotiated during 
discovery or during planning depends on the flexibility of provider offers and on the 
consumer needs. Thus, we aim at providing flexible solutions and foresee that a 
service level offered during service discovery may no longer be valid when requested 
after selection during planning. Our solution must therefore cope with the possible 
denial of the requested service level by the service provider. 

4   Service Planning with SOA 

Based on the above foundations, the SOA concepts can be integrated in our planning 
framework by supporting a common and uniform representation of the different forms 
of services—i.e., component descriptions, component instances, and remote services. 
This common representation provides all the meta-information that is required to 
evaluate the utility of a service for a given application. Thus, when a service is 
discovered by the platform, its meta-information needs to be made available to the 
planning framework in a suitable form (cf. Section 4.1). And, if selected by the 
planning heuristic (cf. Section 4.2), a remote service should be connected to the 
ubiquitous application by using a proper binding framework that provides 
interoperability between the user- and provider-sides and that contributes to SLA 
monitoring (cf. Section 4.3). 

4.1   Plan Discovery and Brokering 

According to Fig. 2, we propose to extend the component Adaptation Middleware 
introduced in Fig. 1 to support the integration of remote services and service level 
agreements. In particular, we have introduced new components (the darkest ones in 
the figure) to support different types of remote services. To do so, the component 
Adaptation Middleware integrates a composite component SOA that isolates the 
integration of a given SOA technology (e.g., Web Service, CORBA, or UPnP). This 
separation of concerns allows also the adaptation middleware to combine several 
SOA technologies using different implementations of the component SOA. This 
combination is achieved by extending the component Plan Repository with a  
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component Plan Broker that federates the local Plan Repository with the components 
Service Discovery used to generate plans describing discovered remote services. In 
particular, the component Service Discovery encloses the service discovery protocols 
integrated in the middleware to advertise any newly discovered services to the Plan 
Repository [7]. Plans for these remote services are generated based on contracts 
negotiated by the component SLA Negotiation when discovered so that they are 
available when the Adaptation Manager initiates an adaptation at a later time. Plans 
are automatically discarded and removed from the Plan Repository when remote 
services disappear or for some reason become unavailable to the middleware. 

 

Fig. 2. The Architecture of the MUSIC planning-based adaptation middleware 

SLA contracts can be either static or allow for some dynamic negotiation [2]. One 
example is a service level described by the service provider as QoS properties that are 
available at either static or negotiable cost. Furthermore, a service may offer a 
predefined set of service levels. When such a service is detected by the component 
Service Discovery, it generates a new service plan enclosing structural and behavioral 
metadata related to the service (e.g., interface type description and contracts). Then, 
for each service level associated to this service, the component Service Discovery 
publishes an extended version of the service plan into the Plan Repository to reflect 
the alternative service levels available. This service level plan inherits from the 
metadata of the service plan and completes it with the additional QoS properties 
described by the service level (e.g., service accuracy and cost). 
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4.2   Plan Reasoning 

The component Adaptation Manager is then able to take into account each set of 
service levels when applying the reasoning heuristics. For planning to be efficient, 
service negotiation is a time critical factor that should be resolved as soon as possible. 
In our middleware, the negotiation is generally static, meaning that the negotiation is 
performed during service discovery for static QoS properties (e.g., service cost) 
described by the service levels. The resulting static QoS property values are included 
into the service plan so that the property predictors can automatically report them at a 
later time. 

However, in presence of a flexible service level [1], the negotiation becomes 
dynamic, meaning that the SLA contract is negotiated during the planning process. 
Dynamic negotiation is particularly useful when the Adaptation Manager needs to 
reason about up-to-date QoS properties (e.g., current service accuracy). In this case 
the property predictors, when invoked by the reasoning heuristics, delegate to the 
component SLA Negotiation the negotiation of the requested property. The negotiation 
protocol is driven by Service Level Objectives (SLOs) [8] configured via the interface 
IServiceLevelObjectives. These objectives act as pre-defined criteria for negotiating a 
SLA contracts. As an example, the agent’s company can define an SLO to minimize 
the response time of a service without exceeding its daily phone budget. Furthermore, 
the property predictor integrates a cache mechanism to reduce the latency of the 
negotiation protocol. This means that if two flexible service levels evaluated by the 
planning framework refer to the same QoS property of the associated service, then  
the negotiation protocol will be executed only once and the result of this negotiation 
will be considered valid for all the service levels associated with this service during 
the planning process. 

Finally, the utility of application configurations using these service level plans will 
also get compared to application configurations based on plans associated with 
components, which can be locally deployed on the device, as well as plans 
representing the instance of the component or service already used by the application. 
The reasoning heuristics will therefore provide a uniform ranking of alternative 
application configurations, and the Adaptation Manager will select and deploy the 
configuration predicting the highest utility. 

4.3   Plan Deployment and Configuration 

As mentioned in Section 3.1, the component Configurator generally iterates over the 
plans composing the new application configuration to reconfigure the application. The 
support of remote services implies that it can now face three different situations. If  
the plan refers to an instance of a component, which is already used by the current 
application, the Configurator reuses this instance in the new configuration. If the plan 
refers to a component for which no instance is currently available, the Configurator 
uses the component Platform, to create and deploy a new instance of the component. 
Finally, if the plan refers to a remote service available in the environment, the 
Configurator uses the component Service Binding to generate a specific component 
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that will act as a service proxy1. A service proxy is a local representative of the remote 
service accessed by the application. In particular, it implements the service type 
described by the application components and encapsulates the communication 
protocol used to access the remote service. During this binding phase, the SLA 
contract associated with the selected plan is provisioned and enforced by the involved 
parties. This includes the reservation of computing resources by the provider and the 
deployment of SLA monitoring facilities [8]. This means that the SLA contract 
associated to the selected service is transferred to the component SLA Monitoring. 

The service proxy implements also a disconnection detection algorithm due to the 
ubiquitous aspect of the application. This disconnection support is inspired from the 
principles of Ambient programming [9]. When loosing the connection to a remote 
service, the proxy stores the incoming service requests in a queue and returns a non-
blocking future object to the application. The future object includes a block of code 
that is triggered when the service connection is resolved to process the result of the 
request. If the connection is lost for a long period, the service proxy breaks the SLA 
contract via the component SLA Negotiation. This notification triggers an adaptation 
of the application, and transfers the request queue to the new component (or service 
proxy) that will be planned and deployed. 

Finally, the service proxy is also responsible for monitoring the dynamic QoS 
properties associated to the SLA contract agreed with the service [10]. To do so, the 
service proxy collects metrics at runtime (e.g., the service response time) and reports 
the observed values to the component SLA Monitoring. This component is responsible 
for breaking the SLA contract if the observed value violates the value agreed. An 
example of violation of this contract can be a response time observed by the service 
proxy above the threshold agreed in the SLA. In practice, the component SLA 
Monitoring removes the associated service level plan from the Plan Repository to 
trigger a new adaptation of the application. 

5   Case Study 

As a preliminary validation of our approach, in this section we present a case study 
based on the scenario described in Section 2. 

The architecture of the CRM application is introduced in Fig. 3. It basically supports 
two alternative compositions. Both contain a component GUI that presents a graphical 
user interface on the smartphone and a component Main that embeds the application 
logic and binds the different functionalities together. Main interacts with the CRM 
service to retrieve calendar and customer information, and with a Route Planning 
service to find the shortest route to reach a meeting location as well as the estimated 
travel time. It also uses a Navigation service to provide navigation aid to the user and a 
messaging service to alert affected customers about delays. In composition a) the 
navigation service is provided by a component Navigation deployed on the smartphone, 
which displays a map, the recommended route, and the current location on the 
smartphone display using the GUI. This component Navigation depends on a Map 
service and a Location service provided by a third party service provider. In 
                                                           
1  Service proxy component bytecode is generated at runtime using the ASM bytecode 

manipulation framework (cf. http://asm.objectweb.org). The implementation details are out of 
the scope of this paper. 
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composition b) the Navigation service is provided by a third party service provider, 
supposed to use the provider’s display to show the same information to the user. The 
QoS properties and service types relevant for the case study are specified in Table 1 
and 2. Property predictors for the application, specified as functions of the properties of 
the services the application depends on, are associated with the compositions in Fig. 3. 

 

Fig. 3. The architecture model of the CRM client application 

Table 1. The relevant QoS properties defined in the CRM client application 

Property Name Description Value range 
cost Cost of using the service 0-? 
acc Accuracy, for example of a location 1-10 
det Level of detail of a map 1-10 
rec Recency of traffic info 1-10 
bat Battery units consumed by a component 1-100 

Table 2. The service types defined in the CRM client application 

Service Name Description Requested properties 
loc Locates the device geographically cost, acc 
map Provides a map of a limited area cost, det 
route Establish the fastest route between two 

locations and estimates the travel time 
cost, rec 

nav Provides navigation aid cost, acc 

The landscape of remote services and how it evolves through the scenario is 
described in Fig. 4. The services are described by QoS properties that, together with 
the resources needed for communicating with them, determine the adaptation of the 
application. 
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Fig. 4. The service landscape for the CRM client application 

We did a simulation of the adaptation reasoning on this use case. In the simulation 
we also took into account estimation of the power consumption of the different 
alternatives, based on predictors for usage of memory, CPU, and network bandwidth. 
For the sake of simplicity2, we used a simplified utility function assuming that the 
user prefers low cost (i.e., to minimise cost), high accuracy (i.e., to maximise acc), 
and needs to save battery (i.e., to minimise bat). Thus, we define the function 
evaluating the utility of a CRM application configuration as the weighted sum of the 
normalised QoS properties (using the function norm(…)): 
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Table 3 summarizes the computed utility of the best configurations in different 
situations during the scenario. 

Table 3. The CRM alternative configurations with their associated normalized utilities 

Configuration Utility 
Composition loc map route Scene 1&2 Scene 3 
Local navigation WLAN Commercial Commercial 0,42 0,42 
Local navigation WLAN Free Free 0,40 0,35 
Remote navigation Bluetooth Free Free 0,66 0,54 
Remote navigation Bluetooth Free Commercial 0,58 0,58 

                                                           
2  In this scenario, we do not demonstrate the direct impact of memory, CPU, or network 

bandwidth variations on the computed utility values. 
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During the initial scene of the scenario, when the agent is in a meeting at a 
customer site, we observe that among the configurations available in this situation, 
composition i) using a WLAN Location service, binding to the commercial route 
planning service predicts the highest utility and is therefore chosen. In scene 2, 
when entering the car, the services provided by the car navigation system are 
discovered by the middleware component Bluetooth Service Discovery, which 
publishes the associated service plans (including position accuracy and battery 
usage as static QoS properties / response time as a dynamic QoS property) into the 
Plan Repository. After the agent has driven out of reach of the customer WLAN, the 
WLAN Location service plan is discarded from the Plan Repository and thus triggers 
the planning process. The configuration based on composition ii), the Navigation 
service of the car GPS and the Free Route Planning service predicts the highest 
utility among the possible configurations. The adaptation middleware therefore 
reconfigures the CRM application to this configuration by generating Navigation 
and Route service proxies. In scene 3, the accuracy of the Free Route Planning 
service drops from 4 to 1. The service proxy observes this and notifies the 
component SLA Negotiation, which triggers a re-planning. The drop in accuracy of 
the Free Route Planning service causes the utility of the running configuration to 
fall below the predicted utility of the corresponding configuration with the 
Commercial Route Planning service. Therefore the Adaptation Manager selects this 
configuration and asks the Configurator to perform the reconfiguration of the 
service binding of the application. 

6   Related Work 

Adaptive Service Grids (ASG) is an open initiative that enables dynamic composition 
and binding of services, which is used for provisioning adaptive services [11]. In 
particular, ASG proposes a sophisticated and adaptive delivery service composed of 
three sub-cycles: Planning, binding, and enactment. The entry point of this delivery 
lifecycle is a semantic service request, which consists of a description of what will be 
achieved and not which concrete service has to be executed. Compared to our 
planning-based middleware, ASG focuses only on the planning per request of service 
workflows with regards to the properties defined in the semantic service request. 
Thus, ASG does not support a uniform planning of both components and services as 
our planning-based framework for ubiquitous applications does. However, we think 
that our planning-based middleware can be extended to integrate ASG adaptive 
services and seamlessly support dynamic enactment of service workflows that can 
provide the services required by a ubiquitous application. 

Menasce and Dubey [12] propose an approach to QoS brokering in SOA. 
Consumers request services from a QoS broker, which selects a service provider that 
maximizes the consumer’s utility function subject to its cost constraint. Utility 
functions express the usefulness of a system as a function of several attributes, such as 
response time, throughput, and availability. The approach assumes that service 
providers register with the broker by providing service demands for each of the  
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resources used by the services provided as well as cost functions for each of the 
services. The QoS broker uses analytic queuing models to predict the QoS values of 
the various services that could be selected under varying workload conditions. This 
approach is of interest from both the viewpoint of a consumer and a provider. While 
the client is relieved from performing service discovery and negotiation, the provider 
is given support for QoS management. The approach, however, requires the client 
device to be able to access the broker, but this might not be possible in mobile 
environments. It also assumes that the consumer is able to determine the expected 
service properties. Our approach differs in that it considers the offered properties as 
alternatives to determine the best application configuration. 

CARISMA is a mobile computing peer-to-peer middleware exploiting the principle 
of reflection to support the construction of context-aware adaptive applications [13]. 
Services and adaptation policies are installed and uninstalled on the fly. CARISMA 
can automatically trigger the adaptation of the deployed applications by detecting 
execution context changes. CARISMA uses utility functions to select application 
profiles, which is used to select the appropriate action for a particular context event. If 
there are conflicting application profiles, then CARISMA proceeds to an auction-like 
procedure to resolve (both local and distributed) conflicts. Contrary to MUSIC, 
CARISMA does not deal with the discovery of remote services that can trigger 
application reconfigurations. However, the auction-like procedure used by CARISMA 
could be integrated in the MUSIC middleware as a particular implementation of the 
component SLA Negotiation. 

ReMMoC is a dynamic middleware that supports interoperability between mobile 
clients and ubiquitous services [14]. During run-time, the ReMMoC service discovery 
component reconfigures itself and the remote service binding to match the protocols 
of the discovered ubiquitous services. Like MUSIC, ReMMoC uses architecture 
specifications for both the initial configuration and reconfigurations. However, 
ReMMoC does not support anything like service planning or discovery of service 
implementation alternatives, but applies rule-based policies that are limited to a fixed 
set of static component compositions. 

7   Conclusion and Perspectives 

In this paper we have introduced the design of a QoS-driven generic planning 
framework for self-adaptive mobile applications, which seamlessly supports and 
mixes component-based and service-based configurations. In particular, we have 
shown that the framework is able to adapt to changes in a landscape of ubiquitous 
remote services that may dynamically come and go, and where the offered service 
quality may vary. The framework exploits these changes to maximize the overall 
utility of applications. To that aim, the paper has shown how the planning middleware 
evaluates discovered remote services as alternative configurations for the 
functionalities required by a mobile application. The planning framework deals 
directly with SLA protocols supported by the services to negotiate the best quality of 
service for the user. 
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As a preliminary validation of our approach, the paper also explained how the 
planning framework handles a use case scenario in which a CRM application of sales 
agents exploits ubiquitous services, such as a location service, map service and traffic 
information service to improve the utility of the CRM application whenever such 
services are available. 

In our future work, the presented planning framework will be realized as part of the 
MUSIC project. The framework will be validated using real world pilot applications 
of the industrial partners of the MUSIC project (http://www.ist-music.eu). 
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