
C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 52–67, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Composing Components and Services Using
a Planning-Based Adaptation Middleware

Romain Rouvoy1, Frank Eliassen1, Jacqueline Floch2,
Svein Hallsteinsen2, and Erlend Stav2

1 University of Oslo,
P.O. Box 1080 Blindern,

0316 Oslo, Norway
{rouvoy, frank}@ifi.uio.no

2 SINTEF ICT,
7024 Trondheim, Norway

{jacqueline.floch, svein.hallsteinsen, erlend.stav}@sintef.no

Abstract. Self-adaptive component-based architectures provide methods and
mechanisms to support the dynamic adaptation of their structure under evolving
execution context. Dynamic adaptation is particularly relevant in the domain of
ubiquitous computing, which is subject to numerous unexpected changes of the
execution context. In this paper, we focus on changes in the service provider
landscape: business services may dynamically come and go, and their quality of
service may vary. We introduce an extension of the MADAM component-based
planning framework that optimizes the overall utility of applications when such
changes occur. MADAM planning is based on dynamic configuration of
component frameworks. The extended planning framework supports seamless
configuration of component frameworks based on both local and remote
components and services. In particular, components and services can be
plugged in interchangeably to provide functionalities defined by the component
framework. The extended planning framework is illustrated and validated on a
use case scenario.

Keywords: Adaptation planning, component-based architectures, self-adaptation,
service-oriented architectures.

1 Introduction

Self-adaptive architectures provide methods and mechanisms supporting the dynamic
adaptation of their structure under an evolving runtime execution context. Dynamic
adaptation is particularly relevant in the domain of ubiquitous computing, where users
carrying mobile devices move around in ubiquitous computing environments causing
frequent and unexpected changes in the execution context of their applications. For
example, a mobile device is frequently roaming, and its applications have to be
dynamically adapted to remain useful under new network conditions. Such an
adaptation requires the detection of context changes, but also the selection of an

 Composing Components and Services 53

application configuration that maintains a satisfactory Quality of Service (QoS) in the
new context. With the emergence of Service-Oriented Architectures (SOA) [1], both
the availability and the QoS of the services on which the applications depend become
an important part of the context. Thus, SOA is of interest for self-adaptive applications,
because services are reusable and composable entities that can be dynamically
exploited to improve the behavior of an application executed on a mobile device.
Services in a SOA environment can be discovered and accessed without knowledge of
the underlying platform implementation and hence can be exploited in the dynamic
configuration of the applications. Adaptation in MADAM is generally QoS-driven. In
SOA, QoS properties are part of the Service Level Agreements (SLAs) [2] that are
negotiated between a service provider and its end-user consumers. By integrating SLA
negotiation into the adaptation decision process, application adaptation exploiting SOA
can still be QoS-driven.

The MUSIC planning framework introduced in this paper is an extension of the
MADAM planning framework, which supports the adaptation of component-based
architectures [3]. MADAM follows an architecture-centric approach where we
represent architecture models at runtime to allow generic middleware components to
reason about and control adaptation aims at simplifying the development of adaptive
applications. In MADAM applications are modeled as component frameworks where
functionality defined by a component framework can be dynamically configured with
conforming component implementations. The purpose of an adaptation-planning
framework is to compute and evaluate the utility of alternative configurations in
response to context changes, and to select a good one for the current context. The
extension we propose supports self-adaptation of ubiquitous applications to changes
in the service provider landscape. The planning middleware evaluates discovered
remote services as alternative configurations for the functionalities required by an
application. This means that the extended planning framework, when triggering an
adaptation, can support seamless configuration of component frameworks based on
both local and remote components and services. In particular, components and
services can be plugged in interchangeably to provide implementation of
functionalities defined by the component framework. In the case of services, the
planning framework deals directly with SLA protocols supported by the service
providers to negotiate the appropriate QoS for the user.

In this paper, we first introduce a motivating scenario for the support of remote
services in mobile applications (cf. Section 2). After presenting the various
foundations of this work (cf. Section 3), we introduce our planning framework
capable of supporting SOA when adapting applications (cf. Section 4). This planning
framework is illustrated and validated on a use case extracted from the motivating
scenario (cf. Section 5). Finally, related work is discussed (cf. Section 6) before
concluding and presenting our perspectives (cf. Section 7).

2 Motivating Scenario

To further motivate the need for adaptation in service-oriented computing
environments, let us consider the following scenario. A sales agent spends much of
his time visiting customers. To assist him in his work, he is using an extended

54 R. Rouvoy et al.

Customer Relationship Management (CRM) system. The system offers traditional
CRM functionality, such as keeping track of and sharing customer- and business-
related information. In addition, it assists the agent with route planning, detection of
traveling delays and notifying customers affected by such delays.

Scene 1. The scenario starts with the sales agent meeting a customer, and using the
CRM system on his laptop to record agreements with the customer. Before the
meeting terminates, he is notified about an upcoming meeting at another customer site
and decides to prepare for this new meeting. He picks up his smartphone and launches
the mobile CRM application to find the best route and estimate the travel time. For
this, the application uses a location service, a map service, and a route planning
service. There are several providers both for the map service and the route planning
service, and the CRM application has to select providers facilitating a quick and
precise answer to the agent. In this case the location service provided by the WLAN
at the customer site and a route planning service available through the Internet are the
best alternatives.

Scene 2. The agent ends the current meeting, and walks out to his car to go to his next
meeting. As he drives away from the customer’s building, the smartphone looses
connection to the customer WLAN, and the Internet connection is switched
seamlessly to GPRS by the mobile IP software installed on the smartphone. The
connection to the location service, which the CRM application needs to monitor
progress, is lost. The GPRS provider also offers a location service, but with a lower
accuracy. However, the car has a navigation system based on GPS, which provides a
more accurate location service via a Bluetooth connection. The car navigation system
also offers a navigation aid service. The CRM application reconfigures itself to use
these services, since this solution provides a better accuracy, and a increased visibility
to the user because of the larger display of the car navigation system. It also saves
battery life on the smartphone since the navigation aid component of the CRM
application has been replaced by an external service.

Scene 3. Half way to the meeting, the agent runs into a traffic jam caused by an
accident partly blocking the road, resulting in a temporary slowdown of his progress
towards his next destination. The CRM application detects this situation, alerts the
agent that he will be late, estimates the delay using data obtained from the route
planning service and offers the agent to notify affected customers. The agent accepts
this proposal and the CRM application sends text messages to the customers using the
available smartphone interface. The CRM application monitors progress and re-
estimates the arrival time regularly in order to be able to alert the meeting about
changes. Meanwhile the selected route planning service becomes congested, leading
to slow response and out-of-date information. The application detects this and
reconfigures to an alternative service that costs more to use but which provides more
up-to-date information.

3 Foundations

This section introduces the basis of the proposed approach by presenting concepts
related to planning-based middleware (cf. Section 3.1), and service-oriented

 Composing Components and Services 55

architectures (cf. Section 3.2). The section concludes by identifying the assumptions
that are considered in our contribution (cf. Section 3.3).

3.1 Planning-Based Middleware

Planning-based middleware refers to the capability of adapting an application to
changing operating conditions by exploiting knowledge about its composition and
Quality of Service (QoS) metadata associated to the application components [4]. We
therefore consider applications that are developed with a QoS-aware component
model. The QoS model associated with a ubiquitous application defines all the
reasoning dimensions used by the planning-based middleware to select and deploy the
component implementations that contribute to provide the best utility. The utility of
an application grows when its constituting components better fulfill user preferences
while optimizing device resource consumption.

Planning refers to the process of selecting components that make up an application
variant that provides the best possible utility to the end user. This process can be
triggered during several steps of the application life cycle, such as during the
deployment of the application or at runtime if the execution context suddenly
changes. The parts of the application that are considered during planning are called
variation points. These correspond to functionalities (type of behavior) defined in the
component frameworks modeling the application. Thus, each variation point identifies
a functionality of the application that can be implemented differently. In addition,
each component implementation suitable for a variation point is reified as a plan by
the planning-based middleware. A plan mainly consists of a structure that reflects the
type of the component implementation and the QoS properties associated to the
services it provides. In particular, the plan exhibits both requested properties (e.g.,
memory consumption, network bandwidth, network connectivity) and offered
properties (e.g., request throughput, response time, result accuracy) referring to the
QoS model of the application. To estimate the offered properties of a plan, the
planning-based middleware relies on property predictors. The property predictors are
used to predict the offered properties of a component implementation as a function
using the required properties and the current execution context as parameters. The
predictors can also take into account the state of the component implementation
associated to the plan—i.e., described, deployed, or running—to refine the prediction.
The QoS model used by the planning framework can be customized to handle new
QoS dimensions (e.g., monetary cost), while the property predictors can be configured
to support complex heuristics (e.g., QoS negotiation protocols). The predicted
properties are input to a normalized utility function that computes the expected utility
of a composition of plans making up an alternative application configuration. The
planning-based middleware compares the expected utility of all alternate application
configurations, and finally selects the one that provides the highest value.

Fig. 1 illustrates the architecture of the MADAM adaptation middleware. The
component Adaptation Manager supports the planning procedure by operating a
generic reasoning heuristics that exploits metadata included in the available plans. In
particular, the plans are composed based on their type compatibility to describe
alternative application configurations. Then, the heuristics ranks the application
configurations by evaluating their utility with regards to the application objectives.

56 R. Rouvoy et al.

This evaluation is achieved by computing the offered properties using the property
predictors associated to each plan contained in the selected application configuration
and retrieved from the component Plan Repository.

Fig. 1. The Architecture of the MADAM planning-based adaptation middleware

The component Plan Repository provides an interface IPlanBroker for the
Adaptation Manager to retrieve plans associated with a given component type during
planning. The Adaptation Manager may request plans that are compatible with a given
variation point, at which point the Plan Repository will search for matching
component types. Any additional metadata on the required component type will help
the Plan Repository to exclude plans and filter the search space [5]. Plans are typically
published to (and discarded from) the Plan Repository by applications and component
development tools using the interface IPlanRepository, and can thus trigger the
Adaptation Manager for re-planning of the application if needed (e.g., the discarded
plan was associated to a running component).

The reconfiguration process is handled by the component Configurator and consists
of taking the set of plans selected by the component Adaptation Manager and
reconfiguring the application. Before deploying the application configuration selected
by the reasoning engine, the component Configurator brings the current application
into a stable state, by suspending the execution of its contained components. Then, if
the component described by a plan is in the running or deployed state, the associated
component instance is configured for the variation point and connected to other
components using the component Binding Factory. If the component is in the
described state, then the component should be preliminary instantiated and deployed
by the component Platform using the component implementation description
associated to the plan. The result of the reconfiguration (e.g., reference of the
deployed instance) is automatically reflected into the selected plans.

Thus, the MADAM planning-based middleware offers a modular and extensible
approach for adapting applications built with various types of component models. In
particular, the concept of plan can be derived to support heterogeneous artifacts and

 Composing Components and Services 57

their associated states. Furthermore, the components Platform and Binding Factory
provide sufficient abstractions for supporting different middleware platforms (e.g.,
CORBA, J2EE, and Web Services).

3.2 Service-Oriented Architectures

When studying the SOA domain, we observe that there is no standard, universally
accepted definition of Service-Oriented Architectures. Erl [1] proposes to characterize
SOA by a set of fundamental design principles for service-orientation, such as
abstraction, reusability, composition, and loose coupling. SOA can also be considered
as an evolution of component-based architectures. In component-based software
engineering, applications are assembled from components that can be used without
any knowledge of either their implementation or their underlying platform. SOA goes
a step further by introducing an abstract business model defining the concepts of
functionality as a product or an enterprise resource, service provider, service
consumer, and service contract. While the owner of a component-based application is
responsible for the instantiation of components, the service provider is responsible for
the creation and the management of services. The most fundamental principle of
service-orientation is the standardized service contract [6]. In particular, services
express their semantics and capabilities via a service contract. Although SOA was
initially proposed to organize business software, service-orientation provides facilities
that are applicable beyond that scope. For example, support has been developed for
interface type and semantics descriptions, QoS descriptions, service discovery
protocols, and binding factories. Nowadays, the SOA concepts are more and more
exploited in a large set of producer/consumer systems, such as ubiquitous systems.

Service QoS properties are normally negotiated between the service provider and
the service consumer, and are described as part of the service contract as a Service
Level Agreement (SLA). A service level is used to describe the expected performance
behavior, such as response time and availability, or other properties such as billing,
termination terms and penalties in the case of violation of the SLA [1]. An SLA can
simply be created after selection of a fixed service level offer among several pre-
defined offers or, in more complex cases, after customization via a negotiation
process. An SLA may be valid for a limited period, or may be terminated explicitly.
During service provisioning, the provider should monitor the service quality, and
adapt the resources to avoid a violation of an SLA. The consumer may also perform
monitoring as well to avoid blindly trusting the provider.

In our work, support for services is motivated by the possibility to control the
usability, usefulness, and reliability of a ubiquitous application by adapting it to
changes in the service landscape. The following changes are relevant:

1. The service providers add (resp. remove) services in (resp. from) the
environment,

2. New services become accessible depending on changes in the ubiquitous
execution context, such as network conditions or locations,

3. The quality of service becomes better or worse due to context changes,
4. The violation of an SLA (by the user or the provider) leads to the termination

of the SLA.

58 R. Rouvoy et al.

Mechanisms for discovering changes in the service landscape and contract
violations are not discussed in this paper. The planning process is triggered when
changes occur. Planning requires the ability to reason on service properties (including
QoS) and dependencies between service properties and context.

3.3 Assumptions

Although it is also relevant to investigate our planning-based middleware to support
the planning of service compositions, this paper concentrates on the adaptation of
component-based applications operating in service-oriented environments. In
particular, our middleware does not explicitly control the resources in the provider
domain. Thus, we assume that the description and the deployment of SLA contracts,
made available to customers, are realized by the service providers. We assume that
service discovery and service levels identification are performed prior to planning.
Whether a SLA contract or a set of potential SLA contracts are negotiated during
discovery or during planning depends on the flexibility of provider offers and on the
consumer needs. Thus, we aim at providing flexible solutions and foresee that a
service level offered during service discovery may no longer be valid when requested
after selection during planning. Our solution must therefore cope with the possible
denial of the requested service level by the service provider.

4 Service Planning with SOA

Based on the above foundations, the SOA concepts can be integrated in our planning
framework by supporting a common and uniform representation of the different forms
of services—i.e., component descriptions, component instances, and remote services.
This common representation provides all the meta-information that is required to
evaluate the utility of a service for a given application. Thus, when a service is
discovered by the platform, its meta-information needs to be made available to the
planning framework in a suitable form (cf. Section 4.1). And, if selected by the
planning heuristic (cf. Section 4.2), a remote service should be connected to the
ubiquitous application by using a proper binding framework that provides
interoperability between the user- and provider-sides and that contributes to SLA
monitoring (cf. Section 4.3).

4.1 Plan Discovery and Brokering

According to Fig. 2, we propose to extend the component Adaptation Middleware
introduced in Fig. 1 to support the integration of remote services and service level
agreements. In particular, we have introduced new components (the darkest ones in
the figure) to support different types of remote services. To do so, the component
Adaptation Middleware integrates a composite component SOA that isolates the
integration of a given SOA technology (e.g., Web Service, CORBA, or UPnP). This
separation of concerns allows also the adaptation middleware to combine several
SOA technologies using different implementations of the component SOA. This
combination is achieved by extending the component Plan Repository with a

 Composing Components and Services 59

component Plan Broker that federates the local Plan Repository with the components
Service Discovery used to generate plans describing discovered remote services. In
particular, the component Service Discovery encloses the service discovery protocols
integrated in the middleware to advertise any newly discovered services to the Plan
Repository [7]. Plans for these remote services are generated based on contracts
negotiated by the component SLA Negotiation when discovered so that they are
available when the Adaptation Manager initiates an adaptation at a later time. Plans
are automatically discarded and removed from the Plan Repository when remote
services disappear or for some reason become unavailable to the middleware.

Fig. 2. The Architecture of the MUSIC planning-based adaptation middleware

SLA contracts can be either static or allow for some dynamic negotiation [2]. One
example is a service level described by the service provider as QoS properties that are
available at either static or negotiable cost. Furthermore, a service may offer a
predefined set of service levels. When such a service is detected by the component
Service Discovery, it generates a new service plan enclosing structural and behavioral
metadata related to the service (e.g., interface type description and contracts). Then,
for each service level associated to this service, the component Service Discovery
publishes an extended version of the service plan into the Plan Repository to reflect
the alternative service levels available. This service level plan inherits from the
metadata of the service plan and completes it with the additional QoS properties
described by the service level (e.g., service accuracy and cost).

60 R. Rouvoy et al.

4.2 Plan Reasoning

The component Adaptation Manager is then able to take into account each set of
service levels when applying the reasoning heuristics. For planning to be efficient,
service negotiation is a time critical factor that should be resolved as soon as possible.
In our middleware, the negotiation is generally static, meaning that the negotiation is
performed during service discovery for static QoS properties (e.g., service cost)
described by the service levels. The resulting static QoS property values are included
into the service plan so that the property predictors can automatically report them at a
later time.

However, in presence of a flexible service level [1], the negotiation becomes
dynamic, meaning that the SLA contract is negotiated during the planning process.
Dynamic negotiation is particularly useful when the Adaptation Manager needs to
reason about up-to-date QoS properties (e.g., current service accuracy). In this case
the property predictors, when invoked by the reasoning heuristics, delegate to the
component SLA Negotiation the negotiation of the requested property. The negotiation
protocol is driven by Service Level Objectives (SLOs) [8] configured via the interface
IServiceLevelObjectives. These objectives act as pre-defined criteria for negotiating a
SLA contracts. As an example, the agent’s company can define an SLO to minimize
the response time of a service without exceeding its daily phone budget. Furthermore,
the property predictor integrates a cache mechanism to reduce the latency of the
negotiation protocol. This means that if two flexible service levels evaluated by the
planning framework refer to the same QoS property of the associated service, then
the negotiation protocol will be executed only once and the result of this negotiation
will be considered valid for all the service levels associated with this service during
the planning process.

Finally, the utility of application configurations using these service level plans will
also get compared to application configurations based on plans associated with
components, which can be locally deployed on the device, as well as plans
representing the instance of the component or service already used by the application.
The reasoning heuristics will therefore provide a uniform ranking of alternative
application configurations, and the Adaptation Manager will select and deploy the
configuration predicting the highest utility.

4.3 Plan Deployment and Configuration

As mentioned in Section 3.1, the component Configurator generally iterates over the
plans composing the new application configuration to reconfigure the application. The
support of remote services implies that it can now face three different situations. If
the plan refers to an instance of a component, which is already used by the current
application, the Configurator reuses this instance in the new configuration. If the plan
refers to a component for which no instance is currently available, the Configurator
uses the component Platform, to create and deploy a new instance of the component.
Finally, if the plan refers to a remote service available in the environment, the
Configurator uses the component Service Binding to generate a specific component

 Composing Components and Services 61

that will act as a service proxy1. A service proxy is a local representative of the remote
service accessed by the application. In particular, it implements the service type
described by the application components and encapsulates the communication
protocol used to access the remote service. During this binding phase, the SLA
contract associated with the selected plan is provisioned and enforced by the involved
parties. This includes the reservation of computing resources by the provider and the
deployment of SLA monitoring facilities [8]. This means that the SLA contract
associated to the selected service is transferred to the component SLA Monitoring.

The service proxy implements also a disconnection detection algorithm due to the
ubiquitous aspect of the application. This disconnection support is inspired from the
principles of Ambient programming [9]. When loosing the connection to a remote
service, the proxy stores the incoming service requests in a queue and returns a non-
blocking future object to the application. The future object includes a block of code
that is triggered when the service connection is resolved to process the result of the
request. If the connection is lost for a long period, the service proxy breaks the SLA
contract via the component SLA Negotiation. This notification triggers an adaptation
of the application, and transfers the request queue to the new component (or service
proxy) that will be planned and deployed.

Finally, the service proxy is also responsible for monitoring the dynamic QoS
properties associated to the SLA contract agreed with the service [10]. To do so, the
service proxy collects metrics at runtime (e.g., the service response time) and reports
the observed values to the component SLA Monitoring. This component is responsible
for breaking the SLA contract if the observed value violates the value agreed. An
example of violation of this contract can be a response time observed by the service
proxy above the threshold agreed in the SLA. In practice, the component SLA
Monitoring removes the associated service level plan from the Plan Repository to
trigger a new adaptation of the application.

5 Case Study

As a preliminary validation of our approach, in this section we present a case study
based on the scenario described in Section 2.

The architecture of the CRM application is introduced in Fig. 3. It basically supports
two alternative compositions. Both contain a component GUI that presents a graphical
user interface on the smartphone and a component Main that embeds the application
logic and binds the different functionalities together. Main interacts with the CRM
service to retrieve calendar and customer information, and with a Route Planning
service to find the shortest route to reach a meeting location as well as the estimated
travel time. It also uses a Navigation service to provide navigation aid to the user and a
messaging service to alert affected customers about delays. In composition a) the
navigation service is provided by a component Navigation deployed on the smartphone,
which displays a map, the recommended route, and the current location on the
smartphone display using the GUI. This component Navigation depends on a Map
service and a Location service provided by a third party service provider. In

1 Service proxy component bytecode is generated at runtime using the ASM bytecode

manipulation framework (cf. http://asm.objectweb.org). The implementation details are out of
the scope of this paper.

62 R. Rouvoy et al.

composition b) the Navigation service is provided by a third party service provider,
supposed to use the provider’s display to show the same information to the user. The
QoS properties and service types relevant for the case study are specified in Table 1
and 2. Property predictors for the application, specified as functions of the properties of
the services the application depends on, are associated with the compositions in Fig. 3.

Fig. 3. The architecture model of the CRM client application

Table 1. The relevant QoS properties defined in the CRM client application

Property Name Description Value range
cost Cost of using the service 0-?
acc Accuracy, for example of a location 1-10
det Level of detail of a map 1-10
rec Recency of traffic info 1-10
bat Battery units consumed by a component 1-100

Table 2. The service types defined in the CRM client application

Service Name Description Requested properties
loc Locates the device geographically cost, acc
map Provides a map of a limited area cost, det
route Establish the fastest route between two

locations and estimates the travel time
cost, rec

nav Provides navigation aid cost, acc

The landscape of remote services and how it evolves through the scenario is
described in Fig. 4. The services are described by QoS properties that, together with
the resources needed for communicating with them, determine the adaptation of the
application.

 Composing Components and Services 63

Fig. 4. The service landscape for the CRM client application

We did a simulation of the adaptation reasoning on this use case. In the simulation
we also took into account estimation of the power consumption of the different
alternatives, based on predictors for usage of memory, CPU, and network bandwidth.
For the sake of simplicity2, we used a simplified utility function assuming that the
user prefers low cost (i.e., to minimise cost), high accuracy (i.e., to maximise acc),
and needs to save battery (i.e., to minimise bat). Thus, we define the function
evaluating the utility of a CRM application configuration as the weighted sum of the
normalised QoS properties (using the function norm(…)):

)(
)(

)(cos
cos

batnorm

user
accnormuser

tnorm

user
utility bat

acc
t +×+=

Table 3 summarizes the computed utility of the best configurations in different
situations during the scenario.

Table 3. The CRM alternative configurations with their associated normalized utilities

Configuration Utility
Composition loc map route Scene 1&2 Scene 3
Local navigation WLAN Commercial Commercial 0,42 0,42
Local navigation WLAN Free Free 0,40 0,35
Remote navigation Bluetooth Free Free 0,66 0,54
Remote navigation Bluetooth Free Commercial 0,58 0,58

2 In this scenario, we do not demonstrate the direct impact of memory, CPU, or network

bandwidth variations on the computed utility values.

64 R. Rouvoy et al.

During the initial scene of the scenario, when the agent is in a meeting at a
customer site, we observe that among the configurations available in this situation,
composition i) using a WLAN Location service, binding to the commercial route
planning service predicts the highest utility and is therefore chosen. In scene 2,
when entering the car, the services provided by the car navigation system are
discovered by the middleware component Bluetooth Service Discovery, which
publishes the associated service plans (including position accuracy and battery
usage as static QoS properties / response time as a dynamic QoS property) into the
Plan Repository. After the agent has driven out of reach of the customer WLAN, the
WLAN Location service plan is discarded from the Plan Repository and thus triggers
the planning process. The configuration based on composition ii), the Navigation
service of the car GPS and the Free Route Planning service predicts the highest
utility among the possible configurations. The adaptation middleware therefore
reconfigures the CRM application to this configuration by generating Navigation
and Route service proxies. In scene 3, the accuracy of the Free Route Planning
service drops from 4 to 1. The service proxy observes this and notifies the
component SLA Negotiation, which triggers a re-planning. The drop in accuracy of
the Free Route Planning service causes the utility of the running configuration to
fall below the predicted utility of the corresponding configuration with the
Commercial Route Planning service. Therefore the Adaptation Manager selects this
configuration and asks the Configurator to perform the reconfiguration of the
service binding of the application.

6 Related Work

Adaptive Service Grids (ASG) is an open initiative that enables dynamic composition
and binding of services, which is used for provisioning adaptive services [11]. In
particular, ASG proposes a sophisticated and adaptive delivery service composed of
three sub-cycles: Planning, binding, and enactment. The entry point of this delivery
lifecycle is a semantic service request, which consists of a description of what will be
achieved and not which concrete service has to be executed. Compared to our
planning-based middleware, ASG focuses only on the planning per request of service
workflows with regards to the properties defined in the semantic service request.
Thus, ASG does not support a uniform planning of both components and services as
our planning-based framework for ubiquitous applications does. However, we think
that our planning-based middleware can be extended to integrate ASG adaptive
services and seamlessly support dynamic enactment of service workflows that can
provide the services required by a ubiquitous application.

Menasce and Dubey [12] propose an approach to QoS brokering in SOA.
Consumers request services from a QoS broker, which selects a service provider that
maximizes the consumer’s utility function subject to its cost constraint. Utility
functions express the usefulness of a system as a function of several attributes, such as
response time, throughput, and availability. The approach assumes that service
providers register with the broker by providing service demands for each of the

 Composing Components and Services 65

resources used by the services provided as well as cost functions for each of the
services. The QoS broker uses analytic queuing models to predict the QoS values of
the various services that could be selected under varying workload conditions. This
approach is of interest from both the viewpoint of a consumer and a provider. While
the client is relieved from performing service discovery and negotiation, the provider
is given support for QoS management. The approach, however, requires the client
device to be able to access the broker, but this might not be possible in mobile
environments. It also assumes that the consumer is able to determine the expected
service properties. Our approach differs in that it considers the offered properties as
alternatives to determine the best application configuration.

CARISMA is a mobile computing peer-to-peer middleware exploiting the principle
of reflection to support the construction of context-aware adaptive applications [13].
Services and adaptation policies are installed and uninstalled on the fly. CARISMA
can automatically trigger the adaptation of the deployed applications by detecting
execution context changes. CARISMA uses utility functions to select application
profiles, which is used to select the appropriate action for a particular context event. If
there are conflicting application profiles, then CARISMA proceeds to an auction-like
procedure to resolve (both local and distributed) conflicts. Contrary to MUSIC,
CARISMA does not deal with the discovery of remote services that can trigger
application reconfigurations. However, the auction-like procedure used by CARISMA
could be integrated in the MUSIC middleware as a particular implementation of the
component SLA Negotiation.

ReMMoC is a dynamic middleware that supports interoperability between mobile
clients and ubiquitous services [14]. During run-time, the ReMMoC service discovery
component reconfigures itself and the remote service binding to match the protocols
of the discovered ubiquitous services. Like MUSIC, ReMMoC uses architecture
specifications for both the initial configuration and reconfigurations. However,
ReMMoC does not support anything like service planning or discovery of service
implementation alternatives, but applies rule-based policies that are limited to a fixed
set of static component compositions.

7 Conclusion and Perspectives

In this paper we have introduced the design of a QoS-driven generic planning
framework for self-adaptive mobile applications, which seamlessly supports and
mixes component-based and service-based configurations. In particular, we have
shown that the framework is able to adapt to changes in a landscape of ubiquitous
remote services that may dynamically come and go, and where the offered service
quality may vary. The framework exploits these changes to maximize the overall
utility of applications. To that aim, the paper has shown how the planning middleware
evaluates discovered remote services as alternative configurations for the
functionalities required by a mobile application. The planning framework deals
directly with SLA protocols supported by the services to negotiate the best quality of
service for the user.

66 R. Rouvoy et al.

As a preliminary validation of our approach, the paper also explained how the
planning framework handles a use case scenario in which a CRM application of sales
agents exploits ubiquitous services, such as a location service, map service and traffic
information service to improve the utility of the CRM application whenever such
services are available.

In our future work, the presented planning framework will be realized as part of the
MUSIC project. The framework will be validated using real world pilot applications
of the industrial partners of the MUSIC project (http://www.ist-music.eu).

Acknowledgements

Thanks to partners of the MUSIC project and reviewers of the SC symposium for
valuable comments. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166). The scenario was inspired by a
demonstrator application developed in the OSIRIS project (ITEA 04040 –
http://www.itea-osiris.org) to evaluate the OSIRIS service platform.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,
Englewood Cliffs (2006)

2. Dan, A., Ludwig, H., Pacifici, G.: Web service differentiation with service level
agreements. IBM White Paper. pages 24 (May 2003)

3. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
Utility-based Adaptivity Model for Mobile Applications. In: Proceedings of the 21st
International Conference on Advanced Information Networking and Applications
Workshops (AINAW), pp. 556–563. IEEE, Niagara Falls, Ontario, Canada (2007)

4. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, E., Lund, K., Gjørven, E.: Using architecture
models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

5. Brataas, G., Hallsteinsen, S., Rouvoy, R., Eliassen, F.: Scalability of Decision Models for
Dynamic Product Lines. In: International SPLC Workshop on Dynamic Software Product
Line (DSPL). Kyoto, Japan, pages 10 (September 2007)

6. Erl, T.: SOA: Principles of Service Design. Prentice-Hall, Englewood Cliffs (2007)
7. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An Adaptive Middleware to Overcome Service

Discovery Heterogeneity in Mobile Ad Hoc Environments. IEEE Distributed Systems
Online 8(7), 1 (2007)

8. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11(1), 53–81
(2003)

9. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
Oriented Programming. In: Companion of the 20th annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2005)

10. Morgan, G., Parkin, S., Molina-Jimenez, C., Skene, J.: Monitoring Middleware for Service
Level Agreements in Heterogeneous Environments. In: Proceedings of the 5th IFIP
conference on e-Commerce, e-Business, and e-Government (I3E), Poznan, Poland,
October 26-28, 2005, vol. 189, pp. 79–93 (2005)

 Composing Components and Services 67

11. Fahringer, T., et al.: Adaptive Service Grids, White Paper. Deliverable (March 2007),
http://asg-platform.org

12. Menasce, D., Dubey, V.: Utility-based QoS Brokering in Service Oriented Architectures.
In: Proceedings of the International Conference on Web Services (ICWS), Salt Lake City,
Utah (July 9-13, 2007)

13. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications. IEEE Transactions on Software Engineering
29(10), 929–945 (2003)

14. Grace, P., Blair, G., Samuel, S.: ReMMoC: A Reflective Middleware to Support Mobile
Client Interoperability. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1170–1187. Springer, Heidelberg
(2003)

	Composing Components and Services Using a Planning-Based Adaptation Middleware
	Introduction
	Motivating Scenario
	Foundations
	Planning-Based Middleware
	Service-Oriented Architectures
	Assumptions

	Service Planning with SOA
	Plan Discovery and Brokering
	Plan Reasoning
	Plan Deployment and Configuration

	Case Study
	Related Work
	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

