

Lecture Notes in Computer Science 4954
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Cesare Pautasso Éric Tanter (Eds.)

Software
Composition

7th International Symposium, SC 2008
Budapest, Hungary, March 29-30, 2008
Proceedings

13

Volume Editors

Cesare Pautasso
University of Lugano
Faculty of Informatics
via Buffi 13, 6900 Lugano, Switzerland
E-mail: c.pautasso@ieee.org

Éric Tanter
University of Chile
Computer Science Department
PLEIAD Lab, Blanco Encalada 2120, Santiago, Chile
E-mail: etanter@dcc.uchile.cl

Library of Congress Control Number: 2008923183

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-78788-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78788-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12244508 06/3180 5 4 3 2 1 0

Preface

The goal of the International Symposia on Software Composition is to advance
the state of the research in component-based software development. We focus
on the challenges related to component development, reuse, verification and, of
course, composition. Software composition is becoming more and more important
as innovation in software engineering shifts from the development of individual
components to their reuse and recombination in novel ways.

To this end, for the 2008 edition, researchers were solicited to contribute
on topics related to component adaptation techniques, composition languages,
calculi and type systems, as well as emerging composition techniques such as
aspect-oriented programming, service-oriented architectures, and mashups. In
line with previous editions of SC, contributions were sought focusing on both
theory and practice, with a particular interest in efforts relating them.

This LNCS volume contains the proceedings of the 7th International Sym-
posium on Software Composition, which was held on March 29–30, 2008, as a
satellite event of the European Joint Conferences on Theory and Practice of
Software (ETAPS), in Budapest, Hungary.

We received 90 initial submissions from all over the world, out of which 70
were considered for evaluation by a Program Committee consisting of 30 in-
ternational experts. Among these submissions, we selected 13 long papers and
6 short papers to be included in the proceedings and presented at the confer-
ence. Each paper went through a thorough revision process and was reviewed by
three to five reviewers. This ensured the necessary quality for publishing these
proceedings in time for the event, a first in the history of the symposium.

We would like to thank all the authors of submitted papers for their hard
work. The ever growing number of submissions since the beginning of SC, shows
that this forum is gaining importance in the area. We are very grateful to the
members of the Program Committee as well as to the external reviewers for
providing high-quality recommendations that enabled us to select a set of diverse
and excellent papers. This has been a key point contributing to the success of SC
2008. Finally, we would like to express our gratitude to the European Network
of Excellence on Aspect-Oriented Software Development (AOSD-Europe); the
International Federation for Information Processing, Technical Committee on
Software: Theory and Practice (IFIP, TC 2); the IBM Zurich Research Lab; and
the Information and Communication Systems research group at ETH Zurich for
supporting this event. Finally we would like to thank the organizers of ETAPS
2008 for hosting and providing an excellent organizational framework for SC
2008.

March 2008 Cesare Pautasso
Éric Tanter

Organization

Program Chairs

Cesare Pautasso, University of Lugano, Switzerland
Éric Tanter, University of Chile, Chile

Program Committee

Uwe Assmann, Dresden University of Technology, Germany
Alexandre Bergel, Trinity College, Dublin, Ireland
Judith Bishop, University of Pretoria, South Africa
Thierry Coupaye, France Télécom, France
Flavio De Paoli, University of Milan, Italy
Theo D’Hondt, Vrije Universiteit Brussel, Belgium
Wolfgang Emmerich, University College London, UK
Johan Fabry, University of Chile, Chile
Harald Gall, University of Zurich, Switzerland
Carlo Ghezzi, Politecnico di Milano, Italy
Thomas Gschwind, IBM Zurich Research Lab, Switzerland
Volker Gruhn, Universität Leipzig, Germany
Thomas Gschwind, IBM Zurich Research Lab, Switzerland
Robert Hirschfeld, Hasso-Plattner-Institut, University of Potsdam, Germany
Nigel Horspool, University of Victoria, Canada
Mehdi Jazayeri, University of Lugano, Switzerland
Luigi Liquori, INRIA, France
Welf Löwe, Växjö University, Sweden
Markus Lumpe, Iowa State University, USA
Jacques Noyé, École des Mines de Nantes, France
Manuel Oriol, ETH Zurich, Switzerland
Claus Pahl, Dublin City University, Ireland
Damien Pollet, Université de Savoie, France
Awais Rashid, Lancaster University, UK
Mario Südholt, École des Mines de Nantes, France
Clemens Szyperski, Microsoft, USA
Wim Vanderperren, VU Brussels, Belgium
Kurt C. Wallnau, Carnegie Mellon, USA
Roel Wuyts, IMEC and KULeuven, Belgium

VIII Organization

Referees

Shahid Alam
Jesper Andersson
Malte Appeltauer
Domenico Bianculli
Matthias Book
Amancio Bouza
Rhodes Brown
Tobias Brueckmann
Neil Burroughs
Alberto Ciaffaglione
Marco Comerio
Rémi Douence
Morgan Ericsson
Pascal Fradet
Florence Germain

Emanuel Giger
Giacomo Ghezzi
Hervé Grall
Michael Haupt
Florian Heidenreich
Tahar Jarboui
Ugo de’ Liguoro
Andrea Maurino
Marino Miculan
Joost Noppen
Marc Poulhies
Didier Parigot
Michela Pedroni
David Pereira
Marco Piccioni

Guillaume Pothier
Claudia Raibulet
Sebastian Richly
Romain Robbes
Ilie Savga
Jean-Guy Schneider
Clemens Schäfer
Mirko Seifert
Rodolfo Toledo
Carla Marina Vairetti
Alessandro Warth
Richard Wettel
Michael Wuersch
Yu Zhou

Steering Committee

Uwe Assmann, Dresden University of Technology, Germany
Judith Bishop, University of Pretoria, South Africa
Thomas Gschwind, IBM Zurich Research Lab, Switzerland
Oscar Nierstrasz, University of Berne, Switzerland
Mario Südholt, École des Mines de Nantes, France

Table of Contents

Composition Languages

Growing a Language: The GLoo Perspective . 1
Markus Lumpe

Superimposition: A Language-Independent Approach to Software
Composition . 20

Sven Apel and Christian Lengauer

Language Support for Managing Variability in Architectural Models 36
Neil Loughran, Pablo Sánchez, Alessandro Garcia, and Lidia Fuentes

Composition Middleware

Composing Components and Services Using a Planning-Based
Adaptation Middleware . 52

Romain Rouvoy, Frank Eliassen, Jacqueline Floch,
Svein Hallsteinsen, and Erlend Stav

Component-Based Access Control: Secure Software Composition
through Static Analysis . 68

Pierre Parrend and Stéphane Frénot

Adding Support for Dynamics Patterns to Static Business Process
Management Systems . 84

René Wörzberger, Nicolas Ehses, and Thomas Heer

Service Composition

Interface Composition for Web Service Intermediaries 92
Sara Forghanizadeh and Eric Wohlstadter

Goal-Oriented Composition of Services . 109
Sebastian Nanz and Terkel K. Tolstrup

Composing Components with Shared Services in the Kmelia Model 125
Pascal André, Gilles Ardourel, and Christian Attiogbé

Performance Optimization

OptBPEL: A Tool for Performance Optimization of BPEL Process 141
Sheng Chen, Liang Bao, and Ping Chen

X Table of Contents

Controlling the Performance Overhead of Component-Based Systems . . . 149
Olivier Lobry and Juraj Polakovic

Profile-Guided Composition . 157
Jesper Andersson, Morgan Ericsson, Christoph Kessler, and
Welf Löwe

Loose Compositions for Autonomic Systems . 165
Luciano Baresi and Giordano Tamburrelli

Applications

Supporting Multidisciplinary Software Composition for Interactive
Applications . 173

Stéphane Chatty

Compositional Modeling for Data-Centric Business Applications 190
Ethan K. Jackson and Wolfram Schulte

A Composition-Based Approach to the Construction and Dynamic
Reconfiguration of Wireless Sensor Network Applications 206

Dharini Balasubramaniam, Alan Dearle, and Ron Morrison

Aspect-Oriented Programming

A Reflective Framework for Fine-Grained Adaptation of
Aspect-Oriented Compositions . 215

Paul Grace, Bert Lagaisse, Eddy Truyen, and Wouter Joosen

Composing Safely—A Type System for Aspects . 231
Florian Kammüller and Henry Sudhof

Practical Conflict Resolution for the Composition of Program
Transformations . 248

Andreas I. Schmied and Franz J. Hauck

Author Index . 263

Growing a Language: The GLOO Perspective

Markus Lumpe

Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218
Hawthorn, VIC 3122, Australia
mlumpe@swin.edu.au

Abstract. The design of programming languages is, in general, geared towards
accumulation rather than composition of features. However, by adding an ever-
increasing number of built-in abstractions, any programming language is eventu-
ally at risk to reach a critical mass at which it may become increasingly difficult
for designers to maintain and for developers to use an evolving language appro-
priately. To tackle this language design paradox, we have developed GLOO, a
small open-ended dynamic language, whose design philosophy aims at a unified
approach in which program and language evolution result directly from the defi-
nition of extensible domain sub-languages. Surprisingly, these extensible domain
sub-languages not only provide a framework to capture domain expertise, but also
give rise to a powerful compositional model for language extension. To demon-
strate the effectiveness of this approach, we develop the Language of Namespaces
and Traits in this paper. We define this extensible domain sub-language as an
aggregate of various forms of object-oriented language support. Using the Lan-
guage of Namespaces and Traits as example, we show that GLOO’s extension
model plays a crucial role in achieving a flexible compositional approach for the
design of readily-available and extensible programming abstractions.

1 Introduction

A major contributing factor for the success or failure of a software system is not only
our understanding of the underlying problem domain, but also the choices of program-
ming languages and their support in the target environment. This poses a particular
challenge for language designers, who often have to choose between the features that a
language has to provide and the ones that would make the language more versatile. A
well-designed programming language can yield a creative medium for making program-
mers write good programs easily [19]. An overloaded language, on the other hand, may
increase the likelihood of occurrences of awkward or lengthy formulations as develop-
ers find it more difficult to proactively organize their solutions within the framework
provided by the language.

But how do we assess language features in practice? What are the practical means to
implement, test, and incorporate new language abstractions into an existing program-
ming language? In addition, the design of industrial-strength programming languages
is, in general, geared towards accumulation rather than composition of language fea-
tures [12]. However, by adding an ever-increasing number of built-in abstractions any

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 1–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Lumpe

domain abstractions

User GLoo
Extension

Mechanism

definitions

domain vocabulary semantic extensions

Fig. 1. The GLOO language extension model

programming language is eventually at risk to reach a critical mass at which it may be-
come increasingly difficult to formally define, use, and maintain the language [25]. So,
can we construct more effective means to “fine-tune” the level of abstraction provided
by a programming language in order to avoid overwhelming both the programming
language and the application programmer?

To study and experiment with different means of language support for software com-
position, we have developed GLOO [16, 15], a small open-ended dynamic pure func-
tional language with a built-in extension mechanism to grow the language on demand.
GLOO allows for both rapid language prototyping and the definition of readily available
language abstractions. For example, we have defined the Language of Java Services [16]
and the Language of Traits [15], two extensible domain sub-languages that provide an
interface to incorporate existing Java software artifacts (i.e., Java classes and objects)
and the concept of traits [24] into the GLOO framework. These domain sub-languages
greatly benefit from the extension mechanism embedded in GLOO that is a key ingre-
dient for the definition of arbitrary domain abstractions ranging from new data types to
complex programming constructs in order to yield a user-centric view of the targeted
problem domain.

The GLOO model for language extension induces two processes: decomposition and
abstraction. The result of the decomposition phase is a set of meta-level domain ab-
stractions that implement required core data types and their relationships in the prob-
lem domain, whereas the abstraction step yields a high-level and user-centric domain
vocabulary to represent a desired specific aspect (or view) of the underlying problem
domain [16]. The resulting domain sub-languages serve as fined-grained extensions to
the GLOO language and can be viewed as subjects [21] or compositional styles [2] that
encapsulate sets of first-class development artifacts to assist developers in solving prob-
lems in a given domain in a more efficient and convenient way. A schematic view of
this technique is shown in Figure 1.

In this work our focus is on rapid prototyping of object- and class-based language
extensions using continuation-passing-style (CPS). Rapid prototyping is a viable engi-
neering technique to explore and validate desirable system characteristics of software
products in a flexible and agile manner. Dynamic programming languages with their
emphasis on developer productivity and software quality provide a good fit for the re-
quired programming approach. However, with the exception of Scheme or Smalltalk,
languages are seldom used or designed to study programming language concepts in
itself.

To explore how GLOO can be used to this purpose we define the Language of Names-
paces and Traits in this paper. More precisely, we demonstrate how to specify the
Language of Namespaces and Traits as aggregations of smaller domain sub-languages

Growing a Language: The GLOO Perspective 3

using the concept of mini parsers. Mini parsers are guarded continuations that mimic
the parsing process of the underlying syntactic categories. The names of these guarded
continuations serve as keywords in the defined sub-language, whereas their bodies de-
fine reusable parsing automata for the corresponding associated keywords. We use the
characterization of “reusable” to denote the fact that the guards of parsing automata
are defined over equivalence classes of permissible continuations, which allows us to
recombine mini parsers to accept new syntactic forms on demand.

The benefit of defining and evaluating language extensions this way is two-fold.
First, the integration of new features into an existing language may impact the under-
lying language processor to an extent at which language experimentation becomes not
feasible anymore. GLOO does not suffer from this problem, as its fine-grained scoping
mechanisms provide us with the means to control the impact and visibility of differ-
ent and, in general, orthogonal language features. Second, the notion of permissible
continuations enables us to compose arbitrary mini parsers by locally defining corre-
sponding equivalence classes, a technique that yields a natural approach for language
composition.

The rest of this paper is organized as follows: in Section 2, we illustrate the main
features of the GLoo programming model. In the Sections 3 and 4, we discuss the
details of defining language extensions in GLOO. We present a model for the Language
of Namespaces and Traits in Section 5. We proceed with a brief review of related work
in Section 6 and conclude with a summary of our main observations in Section 7.

2 Abstraction Definition in GLOO

GLOO is a statically scoped language that uses call-by-value as default parameter pass-
ing mode. The core language of GLOO is based on λF [14], a variant of the λ-calculus
that combines the concepts of dynamic name resolution, explicit namespaces, and for-
eign code gateway in a single formal framework. Dynamic name resolution and explicit
namespaces both are crucial for a software development approach enabling a controlled
admission of new functionality into an existing software base [6]. The foreign code
gateway, on the other hand, allows for an easy integration of glue code that is required
to provide operational support for new language mechanisms [15].

There is however an important aspect to the semantics of name resolution that is
unique to GLOO. GLOO permits for the occurrences of unbound names in expressions.
Unbound names are placeholders for values that may be defined in the future. Unbound
names are not to confused with free names that result in open expressions. In GLOO,
every expression is closed, even the ones containing unbound names. An expression
with occurrences of unbound names is subject to incremental refinement [16] that makes
it possible for programmers to alter the meaning of an expression depending on the
eventual existence of suitable declarations for unbound names. This concept is similar
to the way content types are handled in Web-browsers. If a Web-browser defines a
specific handler for a given content type, then this handler is invoked. Otherwise, the
browser triggers the default behavior or may even ignore that content type altogether.
In GLOO, every expression is evaluated with respect to an actual evaluation context
to assign meaning to occurrences of unbound names. If that context does not define a

4 M. Lumpe

mapping for the occurrence of an unbound name, then that occurrence is substituted
with the empty behavior.

The main programming entity in GLOO is a specification unit, defining a value or
component that can be recombined with additional values or components exported by
other specification units. GLOO specification units add basic data types, an import fa-
cility, term sequences, expression trees, computable binders, and a Java gateway mech-
anism to the core language. In essence, a GLOO specification unit declares a local scope
for both the import of exported abstractions from other units and the definition of new
abstractions that all contribute to the value exported by the current specification unit.

let
load "OpenExtensibleImperativeClass.lf"
load "LanguageOfNamespacesAndTraits.lf"
load "System/Services.lf"

StackNS = load "SampleNS.lf"
in
Namespace TraceNS

Import Stack of StackNS
method top (\():: println "Calling top...";

super.top (||))
endImport

apply (use TReadInt of SampleNS) to Stack
endNamespace

end

Listing 1. The namespace TraceNS in GLOO

Consider Listing 1 that depicts the use of the Language of Namespaces and Traits.
The specification in this example defines the namespace TraceNS. This namespace
exports one class, Stack, that is a refinement of class Stack imported from names-
pace SampleNS. In namespace TraceNS the class Stack is modified twice: we (i)
define method top as an extension to class Stack and (ii) apply trait TReadInt
to it. As a result, in namespace TraceNS we obtain a new version of class Stack
that provides all inherited members defined by class Stack in namespace SampleNS,
overrides method top, and guarantees a sound composition with trait TReadInt.

The structure of TraceNS is typically for programming abstractions defined at the
application level in GLOO. Even though GLOO offers only a few basic constructs, these
language elements suffice to define high-level programming features to build domain
software artifacts easily. The core elements that enable this particular application level
paradigm are functions and function composition. More precisely, the structure-giving
elements are all functions (e.g.,Namespace,Import,of,method, orendImport),
whose names serve as domain-specific keywords, whereas the function bodies imple-
ment continuations that define the semantics and the corresponding verification rules
of the modeled language features. By composing related keyword functions we obtain a
desired new language element and assign it a concrete syntax and semantics. Moreover,
these language elements remain extensible and can, therefore, be recombined to yield
support for other language abstractions.

Growing a Language: The GLOO Perspective 5

However, GLOO is also an open-ended programming language. Therefore, rather
than providing a rich set of predefined operators and statements, GLOO only defines
syntactic support for them. To give operators semantics or to add new language con-
structs like conditionals, loops, or assignment, one has to define language extensions to
borrow appropriate and matching behavior from outside the language. This approach al-
lows for an easy integration of new domain data types into the language and to fine-tune
the existing language features to specific user needs.

%{ // auxiliary Java runtime representation of Cell data type
class CellValue extends LiteralValue
{
private Value val;

public Value get() { return val; }
public void set(Value v) { val = v; }
public CellValue(Value v) { val = v; }
public String toString() { return val.toString(); }

}
}%

let
// gateway functions
makeCell= %{ return new CellValue(aArg); }%

get= %{ Value c = EpsilonValue.EPS;
try { c = ((CellValue)aArg).get(); }
catch (FormException e) { Main.error(e.getMessage()); }
return c; }%

set = %{ try { CellValue c = (CellValue)aArg.select("cell");
Value v = aArg.select("value");
c.set(v); }

catch (FormException e) { Main.error(e.getMessage()); }
return EpsilonValue.EPS; }%

in
// exported Cell data type
(| Cell = (\val:: (| get = (\()::get this),

set = (\nval::set (| cell = this, value = nval |)) |)
[(| this = makeCell val |)]) |)

end

Listing 2. A mutable Cell abstraction

One such language extension is Cell, as shown in Listing 2. The unit defining the
Cell abstraction consists of three parts: (i) the definition of the auxiliary Java code
that defines the (inner) Java class CellValue, (ii) the local declaration of the gateway
functions makeCell, get, and set, and (iii) the definition of the exported function
Cell, a data type constructor for mutable storage cells.

GLOO provides an explicit means to directly incorporate Java code into the scope
of a specification unit in form of gateway code. Gateway code is enclosed in %{...}%
and treated as a single token by the GLOO compiler. The GLOO compiler assembles
the gateway code in a corresponding Java support class and emits appropriate linkage
code to bridge between the GLOO and the Java world [16, 15]. In case of the Cell
abstraction, the gateway code comprises of the definitions for CellValue, a class

6 M. Lumpe

derived from the GLoo runtime type LiteralValue to obtain a mutable container
value type, the data type constructor makeCell, and the property methods get and
set.

We define Cell as a wrapper function that returns a programming interface to
CellValue. The body of Cell contains an expression of the form a[b], called
context, which denotes a term a whose meaning depends on the values defined in b if
a contains free variables. In the case of Cell, the context

[(| this = makeCell val |)]

defines a binding for the variable this, which occurs free in the bodies of the functions
bound to the exported names get and set. The effect of this context specification is
that both functions share the common value this and since this is a mutable storage
cell, we add side effects to the getter and setter.

The particular value of the Cell extension is that it adds a stateful programming
abstraction to the GLOO language. As a pure functional language, GLOO does not
possess any built-in support for assignment. However, certain approaches (e.g. object-
oriented programming) are naturally imperative and allow or require operations to per-
form side effects on the state of other program entities [1]. It is one of the strengths
of GLOO to accommodate orthogonal programming features while providing well-
defined scopes within which these features are available and may impact each other.
In the case of the Cell abstraction, the modeled assignment abstraction appears to
be in fundamental conflict with GLOO’s declarative programming model. However,
the actual Cell object is implemented by means of a read-only literal value (i.e., an
instance of class CellValue, a user-defined class derived from the GLOO runtime
class LiteralValue) that hides its state-altering capability from clients of the Cell
abstraction.

One of the rather subtle aspects in defining extensible software abstractions is nam-
ing. The choice of names can greatly effect our ability to recombine existing software
artifacts as name clashes may occur. Also, sometimes we may not know the precise set
of names to access individual features of software abstractions. For this reason, GLOO

provides computable binders, expressions enclosed in the symbols { and }, that allow
for both discovery and construction of names (i.e., labels of a namespace) at runtime.

let
fix = (\F::h (| {FName} = h |))

[(| h = (\FX::F (\Arg::(FX.{FName} FX) Arg)) |)]
in
(\$Name:: (\FName:: (\F::fix (\{FName}::F))) (getIdString Name))
end

Listing 3. The recursive function builder Rec

A typical application of computable binders occurs in recursive functions. By design,
GLOO does not provide a built-in support for the definition of recursive abstractions.
We can, however, define a simple recursive function builder, as shown Listing 3. The
recursive function builder Rec consists of two parts: (i) the local declaration of the

Growing a Language: The GLOO Perspective 7

call-by-value fixed-point combinatorfix and (ii) the exported definition of Rec, which
constructs the proper recursive image of its argument function F. Both parts rely on
computable binders. In the case of Rec, the computable binder {FName } enables self-
application within the body of the recursive function being defined. For example, to
build a recursive image of a function F we write Rec self F, which is an expression
that yields a function in which self is the name of F in the function’s body.

The feature that enables this particular technique is delayed term evaluation that
enables us to defer the evaluation of arguments to functions until their value is actually
being required [15]. Hence, when using delayed term evaluation, we have to ability
to explicitly define lazy evaluation of function arguments. The need for delayed term
evaluation arises, for example, from choice functions like conditionals in which the
individual branches must not be evaluated before the corresponding guard evaluates to
true. We use the symbol $ to mark an expression delayed. Prefixing an expression e
with the symbol $ yields the expression tree of e. An expression tree comprises of the
syntax tree of the denoted value and its lifetime evaluation context history to maintain
static scoping.

Expression trees for identifiers are of particular interest, as they enable, in combi-
nation with incremental refinement, a macro mechanism [23]. Incremental refinement
allows for open sub-expressions in both function bodies and actual function arguments.
The idea behind this concept is that the target environment for the evaluation of a func-
tion may provide specific local bindings for occurrences of free names. For example,
fix contains two free occurrences of FName. This enables fix to “adapt” to any
function name. The purpose of fix is to generate the required repetitive structure of
a recursive function, but the function name is not known at point of the declaration of
fix. By placing fix underneath the binder (\FName::(\F::fix ...)), we cap-
ture FName and associate it with the name of the function being constructed to achieve
the desired recursive linkage. The actual value of FName is the string denoted by the
expression tree Name. We can use the gateway function getIdString to obtain the
corresponding string representation.

3 Language Composition in GLOO

The definition of new language extensions does not occur in isolation. Programming id-
ioms supported by languages like C# [18], Haskell [5], Java [3], Python [17], Perl [28],
Self [26], Scheme [12, 23], Smalltalk [10], or Tcl [22] offer already a wealth of read-
ily available and well-explored programming abstractions. However, only a few systems
provide built-in support for syntactic and semantic extensions to add or experiment with
new programming concepts.

GLOO’s built-in compositional extension mechanism enables developers to amend
the language through syntactic extensions, semantic extensions, or both. The main pillar
of this compositional approach is the hypothesis that a language must reveal the need
for additional features by removing pertinent weaknesses and restrictions [12]. Users
supply definitions to model the problem domain to the GLOO compiler. The compiler
maps the corresponding domain abstractions to associated representatives in Java sup-
port classes. The extension apparatus of GLOO translates those classes into executable

8 M. Lumpe

Meta Level

Extensible Imperative Class

Open Extensible Imperative Class

Cell

Open Imperative Class

Imperative Class

Dictionary

Namespace

Application Level

Language of Classes

Mini Parsers

Language of Namespaces & Traits

Language of Namespaces Language of Traits

Traits

Fig. 2. A model for class-based programming features in GLOO

semantic extensions and loads them into the current GLOO runtime image [16]. Upon
completion, the user-supplied definitions yield a domain vocabulary, which captures
the modeled problem domain in a user-centric way and therefore facilitates program
development for that domain.

Common to all GLOO domain abstractions is that they are composed from a meta
level, a low-level layer that defines the behavior required to incorporate new domain
abstractions into the GLOO runtime system, and an application level, a high-level layer
that encapsulates the meta level and provides the application programmer with a user-
centric domain vocabulary of the modeled domain. To illustrate this approach, consider
Figure 2 that depicts the architecture of a set of class-based language extensions. These
language extensions provide a Java-like programming model. At the meta level, we
define objects, traits, classes, and dictionaries as first-class values. Furthermore and in
order to obtain an imperative object model, all features use Cell. More precisely, Im-
perative Class, Open Imperative Class, Extensible Imperative Class, Open Extensible
Imperative Class, Dictionary, and Namespace all encapsulate a Cell object and define
an appropriate wrapper to achieve the desired corresponding imperative behavior.

The application level, on the other hand, is composed of Mini Parsers and the domain
sub-languages Language of Classes, Language of Traits, Language of Namespaces, and
Language of Namespaces and Traits. The intriguing aspect in the construction of the
application level is that none of the defined sub-languages incorporates an object model
directly. However, each language contains an occurrence of the unbound name Class
that refers to a class builder. We bind the object model late, that is, rather than resolving
occurrences of name Class within the defining scope, we use incremental refinement
and provide a desired meaning in the importing scope. Consider again Listing 1. In
this specification, we load the definitions for Open Extensible Imperative Class be-
fore we include the Language of Namespaces and Traits into the specification unit for

Growing a Language: The GLOO Perspective 9

TraceNS. As a result, we bind Class within the scope of Language of Namespaces
and Traits to the class builder defined by Open Extensible Imperative Class and obtain
a suitable programming model for the definition of TraceNS.

4 Mini Parsers

For the construction of domain sub-languages at the application level we have devel-
oped the notion of composable mini parsers, which are first-class entities to capture the
keywords of a specific syntactic category. Mini parsers provide an ambiguity-free spec-
ification format like Parsing Expression Grammars (PEGs) [9] to describe the syntactic
structure of the underlying problem domain entities. We use continuation-passing-style
to specify mini parsers. Moreover, as the mini parsers are defined in GLOO itself, we
can avoid the integration of different tools and paradigms [11]. However, GLOO is not
a compiler-compiler. Like Scheme [23], GLOO does presently not provide any support
to alter or enrich its lexical syntax. As a consequence, we can only use identifiers as
structure-giving elements when defining new language extensions.

<Class> ::= ‘Class’ ‘super’ <Class> (<Member>)* ‘endClass’

<Member> ::= [‘static’] ‘var’ <VariableName> <InitValue>
| [‘static’|‘protected’] ‘method’ <MethodName> <Function>

<Object> ::= ‘new’ <Class> <Initializer>

Fig. 3. Syntax of the Language of Classes

method =
(\AST::

if (canProceed method AST SUPER_SEEN)
(\$MethodId::

isMethodUnique (||);
(\Body::

let
// build new method specification
method_class = methodLabel (||)
newAST = (| AST,

{method_class} = (| (| AST->{method_class} |),
{getIdString MethodId} = Body |) |)

in
(\Cont:: Cont (| newAST, {MODIFIER} = DEFAULT |))

end))
(error "Illegal method declaration!"))

Listing 4. The mini parser method for the Language of Classes

Mini parsers define small parsing automata with one explicit state. This state serves
as a guard for the body of the mini parser. Consider, for example, Figure 3 that shows the
syntax of the Language of Classes. This domain sub-language requires a mini parser for
the keyword method, as shown in Listing 4. After receiving the decorated syntax tree
AST, a data structure that contains both attribute values and parser status information,

10 M. Lumpe

<Trait> ::= ‘Trait’ <TraitName>
((‘method’ <MethodName> <Function> |

‘requires’ <MethodName> <MethodName> <String>)*
|

‘join’ <Trait> ‘with’ <Trait>
|

‘refine’ <Trait> (‘alias’ <MethodName> <MethodName> |
‘exclude’ <MethodName>)*)

‘endTrait’

Fig. 4. Syntax of the Language of Traits

we first evaluate the guard for method. This guard (i.e., canProceed) assures that the
actual parser state recorded in AST matches SUPER SEEN, which is an explicit state
defined for the Language of Classes to indicate that we have successfully processed
the super type specification for the current class. As true-continuation of this guard,
we define a function, which consumes MethodId, an expression tree for the method
identifier, a method body Body, and a class continuation Cont. In this function we
also perform the required semantic checks and construct a new decorated syntax tree.
We use sequencing (expressions separated by ;) to compose the individual expressions.
Please note that if the check in isMethodUnique fails, then the current program will
terminate with an error message.

However, rather than just for one state, we define guards for mini parsers to accept
an open set of permissible continuations. The set of permissible continuations forms
an equivalence relation over parser states. By means of the predicate canProceed,
this equivalence relation allows us to equate related explicit parser states across differ-
ent domain sub-languages. More precisely, when analyzing the applicability of a mini
parser, canProceed first compares the actual parser state recorded in AST with the
target state defined by the mini parser. If both are the same, canProceed returns
true immediately. Otherwise, canProceed checks whether the recorded state and the
target state are considered equivalent for the current domain sub-language. If this case,
canProceed returns true also, as desired. But if both tests fail, canProceed returns
false and the current mini parser terminates with an error message.

The key mechanism to enable the reuse or composition of an existing mini parser for
the definition of a new domain sub-language is our ability to dynamically alter the set
of permissible continuations, as required for the definition of the Language of Traits.
Traits provide a simple compositional approach to factor out common behavior and
to easily integrate that behavior soundly into existing classes [24]. A possible way to
capture the syntax of the Language of Traits is shown in Figure 4. We notice that the
syntax for methods resembles closely the one used in the Language of Classes. Indeed,
we can construct the Language of Traits as composition of the Language of Classes and
trait-releated language elements. In particular, we can reuse the mini parser method and
recover our previous development effort for the definition of the Language of Traits. To
accomplish this, we need to declare method a permissible continuation for the keyword
Trait in the Language of Traits using the following expression

addPermissibleState method IN TRAIT

Growing a Language: The GLOO Perspective 11

<Namespace> ::= ‘Namespace’ <NamespaceName>
(<Class> | ‘Import’ <ClassName> (<Member>)* ‘endImport’)*

‘endNamespace’

<Class> ::= ‘Class’ <ClassName> ‘super’ <Class> (<Member>)* ‘endClass’

<ClassName> ::= <PlainClassName> ‘of’ <NamespaceName>

<Object> ::= ‘new’ <ClassName> <Initializer>

Fig. 5. Syntax of the Language of Namespaces

The function addPermissibleState and its inverse function removePer-
missibleState can be used to enlarge or shrink the set of equivalent explicit parser
states for a given mini parser. By adding the explicit state IN TRAIT to the set of
equivalent parser states for mini parser method, we enable, therefore, method to occur
within a trait specification.

We can expect that some form of additional configuration is required to make a
given mini parser meet the requirements of the new context in which it is being used.
The Language of Traits is no exception. In the case to the Language of Traits, this
additional configuration relates to the supported trait operations. A method declaration
must not occur in a context other than a new trait declaration (i.e., neither in a join nor
in a refine specification). Furthermore, methods are always public. No other modifier is
permitted. But these criteria can easily be satisfied, as shown in Listing 5. To guarantee
that method only occurs within the declaration of a new trait, we add an additional
guard to method. This guard uses the AST flag TRAIT BUILD, which records the
current trait operation. The value DEFAULT TRAIT means that we are about to define
a new trait, whereas NEW TRAIT states that we are currently building a new trait. The
exclusion of additional modifiers is standard, as we have not declared them permissible
continuations for the keyword Trait.

method = (\AST::
if (AST.{TRAIT_BUILD} == DEFAULT_TRAIT)

(method (| AST, {TRAIT_BUILD} = NEW_TRAIT |))
(if (AST.{TRAIT_BUILD} == NEW_TRAIT)

(method AST)
(error "Illegal method specification!")))

Listing 5. The mini parser method for the Language of Traits

There is an additional and noteworthy aspect related to the composition of mini
parsers and domain sub-languages. The mini parsers Class and Trait can proceed in
any state. This is due to the fact that both mini parsers represent the root symbol for
their corresponding domain sub-language. Root mini parsers do not depend on any ex-
plicit state. However, to guarantee composability, root mini parsers take a decorated
syntax tree as argument also. But this tree is, in general, empty. When exporting the
mini parsers for root symbols, we bind, therefore, AST to the empty value [14].

12 M. Lumpe

5 Language Composition: The Language of Namespaces and Traits

We construct the Language of Namespaces and Traits in two phases. We first define the
Language of Namespaces as an extension of the Language of Classes. In the second
step, we use the Language of Namespaces and the Language of Traits to build an aggre-
gate of both domain sub-languages to form the Language of Namespaces and Traits.

The Language of Namespaces is defined in the spirit of the classbox concept [4]. A
namespace defines a packaging and scoping mechanism for controlling the visibility of
extensions to portions of class-based systems. In particular, (i) a namespace defines an
explicitly named scope within which classes, methods, and variables are defined and (ii)
namespaces support the local refinement of imported classes by adding or modifying
their features without affecting the originating namespace.

The syntax of the Language of Namespaces is shown in Figure 5. The Language
of Namespaces defines an extension to the Language of Classes. More precisely, we
import the Language of Classes into the local scope of the specification unit of the Lan-
guage of Namespaces to provide a default meaning for imported mini parsers and com-
pose it with the required namespace extensions. This language composition involves
three major activities:1

• define the keywords Namespace, Import, of, endImport, and endNamespace,
• add namespace-related guards to Class, method, var, and endClass, and
• define a new format for the super class specification.

Our compositional approach to language extension reduces greatly the effort re-
quired to construct the new language elements. For example, we can reuse all structure-
giving elements related to member declarations defined in the Language of Classes for
the composition of the syntactic category of class import in the Language of Names-
paces. We simply have to define appropriate guards to distinguish the context within
which member declarations occur. We use the AST flag EXTENSION for this purpose.
EXTENSION is an integer to count the number of methods or variables specified in the
import mode. In case of a class declaration, this flag is simply ignored.

Class = (\AST::
if (canProceed Class AST IN_NAMESPACE)

(\$Classname::
Class (| AST,

{ EXTENSION } = (-1),
{ QID } = buildQualifiedName (getIdString Classname) |))

(error "Illegal class declaration!"))

Listing 6. The mini parser Class for the Language of Namespaces

To adapt imported mini parsers to the new requirements, we define appropriate wrap-
per functions. The wrapper for Class is shown in Listing 6. This wrapper guarantees
that a class declaration can only occur within a namespace declaration. Furthermore,
it also injects the need for an occurrence of a class name between the keywords Class

1 In this presentation, we will only highlight the steps required to reuse imported mini parsers.

Growing a Language: The GLOO Perspective 13

and super. Finally, the wrapper combines the received decorated syntax tree AST with
the attributes EXTENSION and QID. The flag EXTENSION is set to -1 to denote the
context class declaration and QID is set to the fully qualified class name of the class
being parsed. The reader should note that the original mini parser Class (denoted by
the name Class inside the wrapper) is not affected by the extra AST flags, as that mini
parser is blind for those additions. The GLOO semantics guarantees, however, a proper
forwarding of the additional information through the chain of continuations.

The wrapper for endClass (see Listing 7) exhibits a slightly more complex structure.
It (i) checks whether the current parser state in AST is equivalent to SUPER SEEN and
(ii) verifies that endClass occurs within a class declaration. If both conditions are met,
then we build a new class using the attribute values recorded in AST and add that class
to the current namespace as a side effect of buildClass. At the end of the wrapper,
we reset AST and return a continuation to accept further class and import declarations
or endNamespace to close the current namespace specification.

endClass = (\AST::
if ((canProceed endClass AST SUPER_SEEN) &&

(AST.{ EXTENSION } == (-1)))
(buildClass AST;
(\Cont:: Cont (| { STATE } = IN_NAMESPACE,

{ NAMESPACE } = AST->{ NAMESPACE },
{ THIS_NS } = AST.{ THIS_NS } |)))

(error "Illegal class termination declaration!"))

Listing 7. The mini parser endClass for the Language of Namespaces

The wrappers for method and var implement a simple bookkeeping mechanism.
If a method or var occurs within a class declaration (i.e., EXTENSION == (-1)),
then we just forward the AST to the original mini parser. Otherwise, we increment
the EXTENSION count by one and pass the updated decorated syntax tree AST to the
original mini parser, as shown, for example, in Listing 8 for the mini parser var.

var = (\AST::
if (AST.{ EXTENSION } == (-1))

(var AST)
(var (| AST, { EXTENSION } = AST.{ EXTENSION } + 1 |)))

Listing 8. The mini parser var for the Language of Namespaces

The final step in the construction of the Language of Namespaces is the aggregation
of the Language of Classes with the newly defined namespace-related elements. This
aggregation can be expressed by means of GLOO’s form extension operators [14, 16].
Informally2, we can write

Language of Namespaces =
Language of Classes ⊕ namespace extensions [Language of Classes]

2 A detailed technical presentation of this step has been omitted in favor of readability.

14 M. Lumpe

<Namespace> ::= ‘Namespace’ <NamespaceName>
(<Class> |

‘Import’ <CassName> (<Member>)* ‘endImport’ |
<Trait>)*

‘endNamespace’

<Class> ::= ‘Class’ <ClassName> ‘super’ <Class> (<Member>)* ‘endClass’

<ClassName> ::= <PlainClassName> ‘of’ <NamespaceName>

<TraitApplication> ::= ‘apply’ <TraitSelection> ‘to’ <ClassName>

<TraitSelection> ::= ‘use’ <Trait> ‘of’ <NamespaceName>

<Object> ::= ‘new’ <ClassName> <Initializer>

Fig. 6. Syntax of the Language of Namespaces and Traits

to denote the aggregation of the Language of Namespaces in which the operator ⊕
stands for GLOO’s form binding operator. More precisely, this aggregation yields a
new domain sub-language that is composed of the Language of Classes and the newly
defined namespace extensions and in what the original Language of Classes serves as a
local context to resolve occurrence of references to reused mini parsers.

We are now ready to define the Language of Namespaces and Traits, whose syntax
is shown in Figure 6. This language provides a classbox-like programming model with
explicit class extensions in form of traits. The particular value of this language is two-
fold. The Language of Namespaces and Traits, on one hand, provides us with the means
to experiment with different forms of class extensions in one single framework. For
example, when using local refinement, class extensions are integrated into its associated
class immediately through an import declaration, whereas the definition of traits allows
us to reuse or even export extension to classes to refine multiple classes simultaneously.

On the other hand, the Language of Namespaces and Traits also presents us with a
means to reason about a suitable semantics for extensions to classes and their effects on
classes and namespaces. The ability to locally refine classes in a namespace and also to
apply traits to the very same classes poses a particular challenge. Both operations are
rather orthogonal. When should we perform local refinement and when should we apply
traits to classes? Experiments with different semantics definitions of the Language of
Namespaces and Traits have shown that the most reliable way for the support of both
features is to require traits to be applied first to classes. Using this approach we obtain
a semantic model for the Language of Namespaces and Traits that is backwards com-
patible with the Language of Namespaces. Backwards compatibility enables phased
software evolution and, therefore, allows developers to organize their solutions within
the framework of the new language gradually.

The required configuration effort to compose the Language of Namespaces with the
Language of Traits is rather minimal. We need to perform the following steps:

• establish the Language of Namespaces as local context for the Language of Traits,
• define the keyword apply, use, and to,
• define trait-related wrappers for Class, Import, endNamespace, and
• define namespace-related wrappers for Trait and endTrait.

Growing a Language: The GLOO Perspective 15

The first step involves the construction of a proper chaining of defined wrappers for
mini parsers in the Language of Namespaces and Traits. Fortunately, the order in which
different wrappers for the same mini parsers occur is unimportant. Each wrapper has to
be executed eventually. In the case of the Language of Namespaces and Traits, we define
that wrappers defined in the Language of Traits have to be executed before wrappers
for the Language of Namespaces are visited. Informally, this behavior is established by
the following local context

Language of Traits [Language of Namespaces]

that states that all occurrences of names referring to imported mini parsers are now
resolved with respect to the Language of Namespaces.

The next steps are dedicated to the definition of appropriate wrappers for reused mini
parsers. The wrappers for both Class and Import make the corresponding mini parsers
trait-aware as shown, for example, for Class in Listing 9. Again, the original mini
parsers are blind for this extra information. However, the extended state information is
needed to obtain the required behavior in the trait-aware mini parser for method.

Class = (\AST:: Class (| AST, { TRAIT_BUILD } = NEW_TRAIT |))

Listing 9. The mini parser Class for the Language of Namespaces and Traits

The purpose of the wrapper for endNamespace in the Language of Namespaces and
Traits is to finalize all classes defined within the current namespace. In other words, we
first build a new namespace according to the specification in the Language of Names-
paces and then update this namespace by composing all classes in the current names-
paces with applicable traits.

endNamespace = (\AST:: finalizeClasses AST.{ THIS_NS }
(endNamespace AST) AST->trait_applications)

Listing 10. The mini parser endNamespace for the Lang. of Namespaces and Traits

The last two wrappers establish Trait and endTrait as permissible continuations
within a namespace declaration. Moreover, the wrapper for Trait adds the required
bookkeeping mechanism for members, whereas the wrapper for endTrait registers the
newly defined trait with the current namespace.

Trait = (\AST::
if (canProceed Trait AST IN_NAMESPACE)

(Trait (| AST, { EXTENSION } = (-1) |))
(error "Illegal trait specification!"))

Listing 11. The mini parser Trait for the Language of Namespaces and Traits

16 M. Lumpe

endTrait = (\AST::
let

qid = buildQualifiedName AST.traitName
in

AST->{ NAMESPACE }.add qid (endTrait AST)
end;
(\Cont:: Cont (| AST,

{ STATE } = IN_NAMESPACE,
{ NAMESPACE } = AST->{ NAMESPACE },
{ THIS_NS } = AST.{ THIS_NS } |)))

Listing 12. The mini parser endTrait for the Language of Namespaces and Traits

In the final phase, we build the Language of Namespaces and Traits again as an
aggregation that is captured by the following term

Language of Namespaces and Traits =
Language of Namespaces ⊕ Language of Traits [Language of Namespaces] ⊕

new language elements [Language of Traits ⊕ Language of Namespaces]

In other words, the aggregation of the Language of Namespaces and Traits is a new
domain sub-language composed from the Language of Namespaces, the Language of
Traits, and the required new language elements whose mini parsers and wrappers start
evaluation in the Language of Traits, pass through the Language of Namespaces, and
terminate in the Language of Classes.

6 Related Work

Two systems that also provide support for language extension are Camlp5, a prepro-
cessor and pretty-printer for OCaml [7], and Polyglot, an extensible compiler front-end
for the Java programming language [20]. Camlp5 allows for the admission of new ele-
ments to and even the redefinition of the whole syntax of OCaml. Language extensions
in Camlp5 are defined by means of extensible grammar entries that encapsulate stream
parsers. Each grammar entry is associated with a corresponding scanner and grammar
specification. Therefore, Camlp5 also permits the admission of new lexical elements
that gives Camlp5 the flavor of a compiler-compiler. However, the scope of language
extensions is restricted to the defining grammar entries. As a consequence, language
extension by means of composing grammar entries is not possible.

Polyglot, on the other hand, aims at constructing extensible Java compilers. More
precisely, Polyglot provides an extensible compiler for the Java base language. In the
Polyglot framework, language extensions are defined as source-to-source compilers
[20] that translate programs using language extensions to Java source code. For this
purpose, Polyglot includes an extensible parser generator that enables one to specify
language extensions as a set of changes to the Java base language. To assign language
extensions a semantics or to alter the meaning of a given language element, Polyglot
provides the AST Node interface and optionally allows for the refinement of existing
AST node classes. Polyglot’s AST rewriting mechanism guarantees a proper integration
of defined language extensions in the Java base language.

Growing a Language: The GLOO Perspective 17

Our technique of defining composable mini parsers is very similar to parser com-
binators [13], which are, in general, modeled using monads [5]. Unfortunately, not
every programming feature can be modeled by monads [27]. The continuation-based
approach presented here appears to not exhibit this problem even though several ab-
stractions mimic monads. For example, Cell exhibits a semantics very similar to the
IO monad, whereas the keyword continuations resemble the structure of the STATE
monad.

Flatt et al. [8] have recently presented a comprehensive approach to incorporate
object-oriented abstraction into Scheme in a purely compositional fashion. The tech-
niques used by Flatt et al. are similar to the ones presented in this work, though the
Scheme extensions are defined by means of macros [12, 23].

7 Conclusion

A major challenge in programming language design is to find the right balance between
the features a new programming language has to provide and the ones that would make
the new language more versatile. We advocate a compositional language design that
allows for the definition of domain sub-languages, which provides support for the def-
inition of a user-centric domain vocabulary for the underlying problem domain. This
user-centric domain vocabulary can greatly simplify the comprehension, design, im-
plementation, evolution, and reuse of readily available software artifacts. In this paper,
we have illustrated how GLOO supports the compositional language design approach
by defining a set of class-based language extensions. We have also demonstrated that
composable mini parsers can be used as an enabling technology to seamlessly integrate
domain sub-languages into GLOO.

Table 1. Matching object models

Domain Sub-Language Object Model

Language of Classes Imperative Class
Language of Traits Extensible Imperative Class

Language of Namespaces Open Imperative Class
Language of Namespaces and Traits Open Extensible Imperative Class

In general, the most crucial ingredient in defining language support for object-
oriented programming is the design of a suitable object model [1,8,26,24,4,15]. How-
ever, the underlying object model for the language extensions presented in this work
is secondary by design. We can assign each defined domain sub-language a specific
object model, as shown in Table 1. But we are not required to do so, as each language
is designed without targeting a particular object model. The framework provided by
our object-oriented domain sub-languages is based on a compositional language de-
sign. We can, therefore, supply an appropriate and desired object model later, when all
application-specific requirements are known.

GLOO provides a suitable environment for language prototyping in a very direct
way. Unlike Scheme [23] that relies on hygienic macros for the definition of language

18 M. Lumpe

extensions, we can define language extensions in GLOO naturally in terms of func-
tions and function composition. In addition, GLOO provides a scoping mechanism that
allows for a fine-grained control of the visibility of language extensions. In Scheme,
for example, language extensions have to be incorporated into the system at top level,
which means that language extension have global impact.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Achermann, F.: Forms, Agents and Channels: Defining Composition Abstraction with Style.

PhD thesis, University of Bern, Institute of Computer Science and Applied Mathematics
(January 2002)

3. Arnold, K., Gosling, J.: The Java Programming Language. Addison-Wesley, Reading (1996)
4. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Classboxes: Controlling Visibility of Class

Extensions. Journal of Computer Languages, Systems & Structures 31(3-4), 107–126 (2005)
5. Bird, R.: Introduction to Functional Programming using Haskell, 2nd edn. Prentice Hall,

Englewood Cliffs (1998)
6. Dami, L.: A Lambda-Calculus for Dynamic Binding. Theoretical Computer Science 192,

201–231 (1998)
7. de Rauglaudre, D.: Camlp5 - Reference Manual. Institut National de Recherche en Informa-

tique et Automatique, Rocquencourt (January 2008)
8. Flatt, M., Findler, R.B., Felleisen, M.: Scheme with Classes, Mixins, and Traits. In:

Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 270–289. Springer, Heidelberg
(2006)

9. Ford, B.: Parsing Expression Grammars: A Recognition-Based Syntactic Foundation. In:
Proceedings of POPL 2004, pp. 111–122. ACM Press, New York (2004)

10. Goldberg, A., Robson, D.: Smalltalk-80: The Language. Addison-Wesley, Reading (1989)
11. Hughes, J.: Why Functional Programming Matters. Computer Journal 32(2), 98–107 (1989)
12. Kelsey, R., Clinger, W., Rees, J. (eds.): Revised5 Report on the Algorithmic Language

Scheme. ACM SIGPLAN Notices, 33(9) (September 1998)
13. Leijen, D., Meijer, E.: Parsec: Direct Style Monadic Parser Combinators for the Real World.

Technical Report UU-CS-2001-27, Department of Computer Science, Universiteit Utrecht
(2001)

14. Lumpe, M.: A Lambda Calculus With Forms. In: Gschwind, T., Aßmann, U., Nierstrasz, O.
(eds.) SC 2005. LNCS, vol. 3628, pp. 73–88. Springer, Heidelberg (2005)

15. Lumpe, M.: GLoo: A Framework for Modeling and Reasoning About Component-Oriented
Language Abstractions. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W.,
Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 17–
32. Springer, Heidelberg (2006)

16. Lumpe, M.: Application = Components + GLoo. Electronic Notes in Theoretical Computer
Science 182, 123–138 (2007)

17. Lutz, M.: Programming Python, 3rd edn. O’Reilly (2006)
18. Microsoft Corporation. C# Version 3.0 Specification. Microsoft Corporation, Redmond, WA

(May 2006)
19. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press, Cam-

bridge (2003)
20. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An Extensible Compiler Framework

for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer, Heidelberg
(2003)

Growing a Language: The GLOO Perspective 19

21. Ossher, H., Harrison, W., Budinsky, F., Simmonds, I.: Subject-Oriented Programming: Sup-
porting Decentralized Development of Objects. In: Proceedings of the 7th IBM Conference
on Object-Oriented Technology (July 1994)

22. Ousterhout, J.K.: Tcl and the Tk Toolkit. Addison-Wesley, Reading (1994)
23. PLT Scheme (2006), http://www.plt-scheme.org
24. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable Units of Behavior. In:

Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer, Heidelberg (2003)
25. Steele, G.L.: Growing a Language. Higher-Order and Symbolic Computation 12, 221–236

(1999)
26. Ungar, D., Smith, R.B.: SELF: The Power of Simplicity. In: Proceedings OOPSLA 1987.

ACM SIGPLAN Notices, vol. 22, pp. 227–242 (December 1987)
27. Wadler, P.: Monads and composable continuations. List and Symbolic Computation 7, 39–56

(1993)
28. Wall, L., Christiansen, T., Orwant, J.: Programming Perl, 3rd edn. O’Reilly & Associates

(July 2000)

http://www.plt-scheme.org

Superimposition: A Language-Independent

Approach to Software Composition

Sven Apel and Christian Lengauer

Department of Informatics and Mathematics
University of Passau, Germany

{apel, lengauer}@uni-passau.de

Abstract. Superimposition is a composition technique that has been
applied successfully in several areas of software development. In order
to unify several languages and tools that rely on superimposition, we
present an underlying language-independent model that is based on fea-
ture structure trees (FSTs). Furthermore, we offer a tool, called FST-
Composer, that composes software components represented by FSTs.
Currently, the tool supports the composition of components written in
Java, Jak, XML, and plain text. Three nontrivial case studies demon-
strate the practicality of our approach.

1 Introduction

Software composition is the process of constructing software systems from a
set of components. It aims at improving the reusability, customizability, and
maintainability of large software systems.

One popular approach to software composition is superimposition. Super-
imposition is the process of composing software artifacts of different components
by merging their corresponding substructures. For example, when composing two
components, two internal classes with the same name, say Foo, are merged, and
the result is called again Foo.

Superimposition has been applied successfully to the composition of class hier-
archies in multi-team software development [1], the extension of distributed
programs [2,3], the implementation of collaboration-baseddesigns [4,5,6], feature-
oriented programming [7,8], subject-oriented programming [9,10], aspect-oriented
programming [11, 12], and software component adaptation [13]. All these ap-
proaches superimpose hierarchically organized program constructs by matching
their levels, names, and types in the hierarchy.

It has been noted that, when composing software, not only code artifacts
have to be considered but also noncode artifacts, e.g., documentation, grammar
files, makefiles [8,10]. Thus, superimposition, as a composition technique, should
be applicable to a wide range of software artifacts. While there are tools that
implement superimposition for noncode artifacts [8,14,15,16,17,18,19], they are
specific to their underlying languages.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 20–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Superimposition: Language-Independent Software Composition 21

It is an irony that, while superimposition is such a general approach, up
to now, it has been implemented for every distinct kind of software artifact
from scratch. In our recent work, we have explored the essential properties of
superimposition and developed an algebraic foundation for software composition
based on superimposition [20].

We present a model of superimposition based on feature structure trees (FSTs).
An FST represents the abstract hierarchical structure of a software component.
That is, it hides the language-specific details of a component’s implementation.
The nodes of an FST represent the structural elements of a component. However,
an FST contains only nodes that represent the modular component structure
(modules and submodules) and that are relevant for composition.

Furthermore, we have a tool, called FSTComposer, that implements com-
position by superimposition on the basis of FSTs. At present, FSTComposer
is able to compose software components written in Java, Jak,1 XML, and plain
text. Three nontrivial case studies demonstrate the practicality and scalability
of our approach and tool.

2 A Tree Representation of Software Artifacts

A software component is represented as an FST. The nodes of an FST represent
a component’s structural elements. Each node has a name,2 which is also the
name of the structural element that is represented by the node.

FSTs are designed to represent any kind of component with a hierarchical
structure. For example, a component written in Java contains packages, classes,
methods, etc., which are represented by nodes in the FST. An XML document
(e.g., XHTML) may contain tags that represent the underlying document struc-
ture, e.g., chapters, sections, paragraphs. A makefile or build script consists of
definitions and rules that may be nested.

An FST is a stripped-down abstract syntax tree: it contains only the infor-
mation that is necessary for the specification of the structure of a component.
The nature of this information depends on the degree of granularity at which
software artifacts are to be composed [22], as we discuss below.

Principally, a component may contain elements written in different code and
noncode languages, e.g., makefiles, design documents, performance profiles,
mathematical models, diagrams, documentation, or deployment descriptors,
which all can be represented as FSTs [8, 10]. While our work is not limited
to code artifacts, for simplicity, we explain our ideas by means of Java.

Furthermore, type information is attached to the nodes. This is important
during component composition in order to prevent the composition of incom-
patible nodes, e.g., the composition a field with a method.
1 Jak is a Java-like language for stepwise refinement and feature-oriented program-

ming [21]. It extends Java by the keyword refines in order to express subsequent
class extensions.

2 Mapped to specific component languages, a name could be a string, an identifier, a
signature, etc.

22 S. Apel and C. Lengauer

The FSTs we consider are unordered trees. That is, the children of a node
in an FST do not have a fixed order, much like the order of field declarations
in a Java class is irrelevant. However, some languages may require a fixed order
(e.g., the order of sections in a text document matters). This will be addressed
in further work.

Figure 1 depicts an excerpt of the implementation of a Java component Basic-
Stack and its representation in form of an FST. The FST contains nodes that
represent packages, classes, interfaces, fields, and methods, etc. They do not
reflect information about the internal structure of methods or the variable ini-
tializers of fields. That is, our FST only represents the modular substructure of
a software artifact (and not more). The structure and content of modules is not
always modelled completely, e.g., our FST in Figure 1 does not represent the full
Java abstract syntax tree including statements, parameters, or expressions, but
only the main structural elements. A different granularity would be possible [22],
e.g., we could represent only packages and classes but not methods or fields as
FST nodes, or we could also represent statements or expressions. However, we
will demonstrate that the granularity we chose is sufficient for composition, while
it simplifies the overall process. At the same time, reasoning at a finer grain is
still possible, i.e., method bodies can be composed without representing their
substructure, as we will show in Section 3.2.

1 package util;
2 class Stack {
3 LinkedList data = new LinkedList();
4 void push(Object obj) {
5 data.addFirst (obj);
6 }
7 Object pop() {
8 return data.removeFirst();
9 }

10 }
datapush

pop

class

package

BasicStack

util

Stack

fieldmethod

Fig. 1. Java code and FST of the component BasicStack

3 Component Composition by FST Superimposition

Superimposition is the process of composing trees recursively by composing
nodes at the same level (counting from the root) with the same name3 and
type. Our aim is to abstract from the specifics of present tools and languages
and to make superimposition available to a broader range of software artifacts.
Moreover, a general model allows us to study the essence of software composition
by superimposition, apart from language- and tool-specific issues. Our work is

3 Of course, the use of aliasing techniques would allow a programmer to compose
artifacts that have different names [23].

Superimposition: Language-Independent Software Composition 23

motivated by the observation that, principally, composition by superimposition is
applicable to any kind of software artifact that provides a sufficient structure [8,
10], i.e., a structure that can be represented as an FST.

With superimposition, two trees are composed by composing their correspond-
ing nodes, starting from the root and proceeding recursively. Two nodes are com-
posed to form a result node (1) when their parents (if there are parents) have
been composed, i.e., they are on the same level, and (2) when they have the
same name and type. The result node receives the name and type of the nodes
that have been composed. Some nodes (the leaves of an FST) have also content,
which is composed as well (see Sec. 3.2). If two nodes have been composed, the
process of composition proceeds with their children. If a node has no counterpart
to be composed with, it is added as separate child node to the composed parent
node. This recurses until all leaves have been reached.

In Figure 2, we list a Java function compose that implements recursive compo-
sition. In Line 2, two nodes are composed, which succeeds only when the nodes
are compatible (same name and type). In the case that the two nodes are ter-
minals, their content is composed as well. In Lines 4–9, all children of the input
trees (which are in fact subtrees) are composed recursively. That is, for each
node in treeA, findChild returns the corresponding node in treeB, if there is
one. Then, in Lines 8 and 10–13, the remaining nodes that have no counterpart
to be composed with are added to the new parent node.

1 static Tree compose (Tree treeA , Tree treeB) {
2 Node newNode = treeA.node(). composeNode(treeB.node ());
3 i f (newNode != null) {
4 Tree newTree = new Tree(newNode);
5 for(Tree childA : treeA.children ()) {
6 Tree childB = treeB.findChild(childA.name(),childA.type());
7 i f (childB != null) newTree .addChild (compose (childA , childB));
8 else newTree .addChild (childA.copy());
9 }

10 for(Tree childB : treeB.children ()) {
11 Tree childA = treeA.findChild(childB.name(),childB.type());
12 i f (childA == null) newTree .addChild (childB.copy());
13 }
14 return newTree ;
15 } else return null;
16 }

Fig. 2. A Java function for composing FSTs

Figure 3 illustrates the process of FST superimposition with a Java example;
Figure 4 depicts the corresponding Java code. Our component BasicStack is
composed with a component TopOfStack. The result is a new component,
which is called CompStack1, that is represented by the superimposition of
the FSTs of BasicStack and TopOfStack. The nodes util and Stack are
composed with their counterparts, and their subtrees (i.e., their methods and
fields) are composed in turn (i.e., are merged).

24 S. Apel and C. Lengauer

datapush

pop

BasicStack

util

Stack

datapush

pop

TopOfStack

util

Stack

top

util

Stack

top

CompStack 1

Fig. 3. FST superimposition of TopOfStack • BasicStack = CompStack1

1 package util;
2 class Stack {
3 Object top() { return data.getFirst (); }
4 }

•
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList();
4 void push(Object obj) { data.addFirst (obj); }
5 Object pop() { return data.removeFirst(); }
6 }

=
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList();
4 void push(Object obj) { data.addFirst (obj); }
5 Object pop() { return data.removeFirst(); }
6 Object top() { return data.getFirst (); }
7 }

Fig. 4. Java code of TopOfStack • BasicStack = CompStack1

3.1 Terminal and Nonterminal Nodes

Independently of any particular language, an FST is made up of two different
kinds of nodes:

Nonterminal nodes are the inner nodes of an FST. The subtree rooted at
a nonterminal node reflects the structure of some implementation artifact
of a component. The artifact structure is transparent and subject to the
recursive composition process. That is, a nonterminal node has only a name
and a type, and no further content.

Superimposition: Language-Independent Software Composition 25

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may
also be the root of some structure, but this structure is opaque in our model.
The substructure of a terminal does not appear in the FST. That is, a
terminal node has a name, a type, and content.

While the composition of two nonterminals continues the recursive descent in
the FSTs to be composed, the composition of two terminals terminates the
recursion and requires a special treatment. There is a choice of whether and how
to compose terminals:

Option 1: Two terminal nodes with the same name and type cannot be com-
posed, i.e., their composition is considered an error.

Option 2: Two terminal nodes with the same name and type can be composed
in some circumstances; each type has to provide its own rule for composition
(see Sec. 3.2).4

In Java FSTs, packages, classes, and interfaces are represented by nonterminals.
The implementation artifacts they contain are represented by child nodes, e.g.,
a package contains several classes and classes contain inner classes, methods,
and fields. Two compatible nonterminals are composed by composing their child
nodes, e.g., two packages with equal names are merged into one package that
contains the composition of the child elements (classes, interfaces, subpackages)
of the two original packages.

Java methods, fields, imports, modifier lists, and extends, implements, and
throws clauses are represented by terminals (the leaves of an FST), at which
the recursion terminates. Their inner structure or content is not considered in
the FST model, e.g., the fact that a method contains a sequence of statements
or that a field refers to a value or an expression.

Note that the first option of disallowing terminal composition [1] prevents
method extension. But method extension is common practice in many approaches
of software composition [10,24,25,26,27,28,8,6]. Therefore, we choose the second
option: providing language-specific composition rules for composing terminal
nodes.

3.2 Composition of Terminals

In order to compose terminals, each terminal type has to provide its own rule
for composition. Here are seven examples for Java-like languages:

– Two methods are composed if it is specified how the method bodies are com-
posed (e.g., by overriding and using the keywords original [27] or Super [8]
inside a method body).

– Two fields are composed by replacing one value with the value of the other
or by requiring that one has a value assigned and the other has not.

4 Note that it would also be possible to provide specific rules for nonterminal compo-
sition, but we did not encounter this case so far.

26 S. Apel and C. Lengauer

– Two implements clauses are composed by concatenating their entries and
removing duplicates.

– Two extends clauses are composed by replacing one entry with another
entry (in the case of single inheritance) or by concatenating their entries
and removing duplicates (in the case of multiple inheritance).

– Two throws clauses are composed by concatenating their entries and remov-
ing duplicates.

– Two modifier lists are composed by replacement following certain rules, e.g.,
public may replace private, but not vice versa.

– Two import declaration lists are composed by concatenating their entries
and removing duplicates.

Overall, in Java-like languages, there are three kinds of composition rule pat-
terns: overriding (methods), replacement (fields, extends clauses, modifier lists),
and concatenation (imports, implements and throws clauses).

Figures 5 and 6 depict how Java methods are composed during the compo-
sition of the two features EmptyCheck and BasicStack using a wrapping
composition rule. The methods push of EmptyCheck and BasicStack are
composed in CompStack2 by one method (push) wrapping the other
(push wrappee). The two pop methods are composed analogously. The keyword
original [27],5 provides a means to specify (without knowledge of their source
code) how method bodies are merged. This composition rule is also applicable to
other types and languages [8,14]. Other composition rules for composing method
bodies, such as inlining would be possible.

datapush

pop

datapush

pop

push

pop

util

Stack

util

Stack

CompStack

count

BasicStack

util

Stack

count

EmptyCheck

terminal composition wrappers

2

Fig. 5. Composing Java methods (FST representation)

Harrison et al. [23] propose a catalog of more sophisticated composition rules
that permit a quantification over and a renaming of the structural elements of
components. We argue that their rules are not specific to Java and can be reused
to compose components written in other languages.
5 In the composed variant, original is replaced by a call to the wrapper.

Superimposition: Language-Independent Software Composition 27

1 package util;
2 class Stack {
3 int count = 0;
4 void push(Object obj) { original (obj); count ++; }
5 Object pop() {
6 i f (count > 0) { count --; return original (); } else return null;
7 }
8 }

•
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList();
4 void push(Object obj) { data.addFirst (obj); }
5 Object pop() { return data.removeFirst(); }
6 }

=
1 package util;
2 class Stack {
3 int count = 0;
4 LinkedList data = new LinkedList();
5 void push_wrappee(Object obj) { data.addFirst (obj); }
6 void push(Object obj) { push_wrappee(obj); count ++; }
7 Object pop_wrappee() { return data.removeFirst(); }
8 Object pop() {
9 i f (count > 0) { count --; return pop_wrappee(); } else return null;

10 }
11 }

Fig. 6. Composing Java methods

3.3 Discussion

Superimposition of FSTs requires several properties of the language in which
the elements of a component are expressed:

1. The substructure of a component must be hierarchical, i.e., an n-ary tree.
2. Every element of a component must provide a name that becomes the name

of the node in the FST.
3. An element must not contain two or more direct child elements with the

same name and type.
4. Elements that do not have a hierarchical substructure (terminals) must pro-

vide composition rules, or cannot be composed.

These constraints are usually satisfied by object-oriented languages. But also
other (noncode) languages align well with them [8, 14]. Languages that do not
satisfy these constraints do not provide sufficient structural information for a
composition by superimposition. However, they may be enriched by providing
an overlaying module structure [14].

28 S. Apel and C. Lengauer

4 Implementation

We have a tool, called FSTComposer, that implements superimposition based
on the FST model. Currently, it supports the composition of components written
in Java, Jak, XML, and plain text.

FSTComposer expects a list of software components that participate in
a composition. It takes a file as input that contains a list of the component
names. Then, FSTComposer looks up the locations of the components in the
file system.

In FSTComposer, software components are represented by containment hi-
erarchies [8]. A containment hierarchy is a file system directory that contains
all artifacts (code and noncode) that belong to a component; the directory may
contain subdirectories denoting Java packages, etc.

Figure 7 shows the components EmptyCheck and BasicStack contain-
ing source and nonsource code artifacts. The composition ‘EmptyCheck •
BasicStack = CompStack2’ composes both their containment hierarchies
recursively. For example, the resulting artifact Stack.java is composed of its
counterparts in EmptyCheck and in BasicStack, matched by name and type.

util util util

Doc.htmlDoc.htmlStack.java Stack.java

Stack.java Stack.java = Stack.java

Doc.htmlStack.java

2EmptyCheck BasicStack CompStack

Fig. 7. Composing two containment hierarchies

Based on an input list of components (essentially, the paths of the containment
hierarchies), FSTComposer generates an FST per component. There must be a
distinct parser per language. That is, when composing components that contain
Java and XML artifacts, two different parsers create the corresponding FSTs.

Currently, our Java and Jak parsers generate FSTs containing nodes for pack-
ages, classes, interfaces, methods, fields, imports, modifier lists, and implements,
extends, and throws clauses. Packages, classes, and interfaces the nonterminal
nodes of a Java FST. The rest are terminals. We have implemented the seven
composition rules for terminal nodes, that we have explained in Section 3.2, for
Java and for Jak.

Furthermore, we have an XML parser that generates, for each tag, attribute
and piece of raw text content, a distinct node; tags become nonterminals; at-
tributes and pieces of text content become terminals; attributes are composed

Superimposition: Language-Independent Software Composition 29

like fields in Java (cf. Sec. 3.2) and pieces of raw text are composed by concate-
nating their content.

Finally, the text parser is trivial in that it creates nonterminal nodes for
directories and simply stores the content of text files in a terminal node each;
text nodes are composed by concatenation.

Usually, after the composition step, FSTComposer writes out the composed
artifacts. But it can also write out the FSTs of the input and output components
in the form of an XML document (containing all information about the Java,
Jak, XML, or text artifacts). This language-independent program representation
can be the input for further pre- or post-processing of components and compo-
nent compositions, e.g., optimization, visualization, interaction analysis, or error
checking on the basis of FSTs.

The FSTComposer tool along with some examples and case studies can be
downloaded from the FSTComposer Web site.6

5 Case Studies

We have conducted three case studies to demonstrate the practicality of our
approach. Firstly, we have composed a graphical programming tool, called
GUIDSL, out of a set of software components, which has been implemented
by Batory [29]. Secondly, we have composed a series of programs of a small
library of graph algorithms, called graph product line (GPL), which has imple-
mented by Lopez-Herrejon and Batory [30]. Thirdly, we have composed several
variants of a graphical UML editor, which is an open source program that has
been refactored into components by a student. The source code of the three case
studies can be downloaded at the FSTComposer Web site.

5.1 GUIDSL

GUIDSL is a tool for software product line configuration [29]. GUIDSL consists of
26 components. For example, there are components that implement the graphical
user interface, a parser for grammars that define valid configurations, user event
handling, etc. Overall, the code base of GUIDSL contains 294 classes (from which
145 result classes are being composed), implemented by 9,345 lines of Jak code.

GUIDSL was developed in a stepwise manner using components in order to
foster extensibility and maintainability. Basically, there is only one valid con-
figuration that forms a meaningful working tool. Other configurations may be
valid (syntactically correct) but do not contain all necessary features to work
appropriately. We generated a GUIDSL variant consisting of all 26 components,
implemented by 7,684 lines of composed Java code.7

6 http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
7 For comparability of the lines-of-code metric, we formatted the code of our case

studies using a standard Java pretty printer (http://uranus.it.swin.edu.au/~jn/
java/style.htm). Furthermore, we counted only lines that contain more than two
characters (thus, ignoring lines with just a single bracket) and that are not simply
comments (http://www.csc.calpoly.edu/∼jdalbey/SWE/PSP/LOChelp.html)

http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://uranus.it.swin.edu.au/~jn/java/style.htm
http://uranus.it.swin.edu.au/~jn/java/style.htm
http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html

30 S. Apel and C. Lengauer

We checked the correctness of the composition by testing GUIDSL manually.
This was feasible since it is a graphical tool with a fixed set of functions and
options that all could be tested. All parser passes and the generation of the
composed Java program took less than two seconds.

5.2 Graph Product Line

GPL consists of 26 components written in Jak. For example, the basic compo-
nents implement weighted, unweighted, directed, and undirected graph struc-
tures. Further components implement advanced features such as breadth-first
search, depth-first search, cycle checking, the Kruskal algorithm, the Prim al-
gorithm, etc. The overall code base of GPL contains 57 classes (from which 31
result classes are being composed), implemented by 1,308 lines of Jak code.

Beside Jak code, 9 of the 26 GPL components contain an XHTML file that
documents the usage and functionality of the graph structures and algorithms.
The XHTML files have been prepared by Don Batory and Salvador Trujillo
in order to be ready for superimposition [31, 14]. In our case study, we have
applied some minor adaptations to match the syntax of FSTComposer, i.e., we
have given some XHTML tags unique name attributes in order to specify which
tags superimpose other tags. Being superimposed, these XHTML files form the
tailored documentation of GPL, depending on the selected components during
composition. Due to the lack of space, we refer the reader to the FSTComposer
Web site for XHTML examples (of the GPL case study).

Finally, GPL contains some JPEG files that are loaded by the XHTML docu-
mentation. During composition, these files are treated like text documents, but
their content is not read. A composition of two JPEG files is not necessary. Nev-
ertheless, artifacts with completely opaque content, such as images, align well
with the FST model. Artifacts with the same name and type are composed by
replacement (a warning is displayed).

Overall, we generated 10 different variants of graph structures along with com-
patible algorithms with a minimum of 8 and a maximum of 12 components. The
code bases of the generated programs range from 200 to 400 lines of composed
Java code and 200 to 300 lines of composed XHTML code.

We used GUIDSL to guarantee the validity of the generated configurations
[29], e.g., the Kruskal algorithm requires a weighted graph. We checked the
correctness of the composed graph implementation with automated tests. The
entire composition process, including parsing the Jak and XHTML code, took
less than a second per composed program variant.

5.3 Violet

Violet is a graphical UML diagram editor written in Java.8 It has been refac-
tored by a student as a class project at the University of Texas at Austin.9 The
8 http://sourceforge.net/projects/violet/
9 The project was done in the course of the 2006 FOP class at the Department of

Computer Sciences of the University of Texas at Austin.

http://sourceforge.net/projects/violet/

Superimposition: Language-Independent Software Composition 31

refactored version of Violet consists of 88 components ready for superimposition.
They implement support for different UML diagram types as well as drag-and-
drop and look-and-feel functionality. Overall, the refactored code base of Violet
contains 157 classes (from which 67 final classes are being composed), imple-
mented by 5,220 lines of Java code.

Beside Java code, 83 of the 88 Violet component contain, in summary, 98
property files. A property file contains text-based configuration information of
the Violet UML editor, e.g., edge1.tooltip=Association. Individual compo-
nents of Violet provide individual configuration information. Property files are
simply composed by text concatenation. There is no further module structure
that demands a recursive descent in the FST during composition. As with GPL,
Violet contains some JPEG files, but they had not to be composed.

We generated 10 different variants of Violet with a minimum of 51 and a
maximum of 88 components. The code bases of the generated programs range
from 3,100 to 4,100 lines of composed Java code and 160 lines of text in form of
property files.

In order to guarantee their validity, we used the GUIDSL tool for selecting
the components of the 10 variants. We tested the variants manually, which was
feasible since they differed mainly in their options available in the graphical
menus of the editor. All parser passes and the generation of the composed Java
and property files took less than two seconds each.

6 Integrating Further Languages

In the previous section, we have illustrated how the FST model abstracts from
implementation-specific details of programming languages, while capturing well
the abstract hierarchical structure of software components. Currently, FSTCom-
poser supports the composition of components written in Java, Jak, XML, text,
and binaries. Due to the generality of the FST model, FSTComposer can be
extended to compose also further kinds of artifacts.

Suppose we want to compose software components containing Bali grammar
files (a declarative language and tool for processing BNF grammars) [8]. It has
been demonstrated that Bali grammars are ready for composition by super-
imposition. That is, they can be represented as FSTs and composed by super-
imposition using a proprietary tool [8]. Firstly, we would need a parser that
produces FSTs in a format accessible to FSTComposer. Such a parser can be
built by extending an existing parser. Secondly, we would have to define the
types of nodes (by providing a typically empty subclass per type) that may
appear in a Bali FST, e.g., nodes for grammar production rules, axioms, etc.
(analogously to nodes for classes and methods in Java). Finally, we would have
to define Bali-specific composition rules for composing terminal nodes, e.g., pro-
duction rules can be extended by providing additional alternatives, similarly to
method overriding in Java. Section 7 lists a selection of languages that can be
modeled by FSTs.

32 S. Apel and C. Lengauer

7 Related Work

Superimposition is a composition technique that has been applied successfully
in different areas of software development. Superimposition was initially used
for extending distributed programs in multiple places [2, 3]. Subsequently, sev-
eral researchers adopted this idea in order to merge class hierarchies developed
by multiple teams [1], to adapt components [13], to support subject-oriented
programming [9, 10], feature-oriented programming [7, 8], and aspect-oriented
programming [11,12], and to implement collaboration-based designs [6]. Several
languages support composition by superimposition, e.g., Scala [32], Jiazzi [25],
Classbox/J [27], ContextL [33], Jak [8], and FeatureC++ [34].

Batory et al. [8], Tarr et al. [10], and Clarke et al. [15] noted that super-
imposition as a composition technique is not limited to source code artifacts
but applies to any kind of artifact relevant in the software development pro-
cess. Several proprietary tools support the composition of nonsource code arti-
facts [14, 8, 16, 17, 18, 19].

While it has been noted that there is a unique core of all composition mech-
anisms based on superimposition [8, 10], researchers have not condensed the
essence of superimposition into a set of general tools. We believe that our FST
model captures the essence of superimposition. It is language-independent. We
envision tools that operate on FSTs (or their algebraic representations) to com-
pose, visualize, optimize, and verify software components. Thus, the FST model
provides an intermediate format not only for different languages but also for
different tools that aim at reasoning about components.

In a parallel line of research, we have developed an algebra and a calculus (incl.
operational semantics and type system) of feature composition which is consis-
tent with the FST model [20, 35]. It will allow us to explore general properties
of software composition as well as typing issues. Furthermore, it is a means to
infer whether a given language fits the FST model and, more interestingly, which
properties a language must have to be ‘ready’ for FST-based superimposition.

Beside superimposition, also other composition techniques have been pro-
posed. For example, composition by quantification, as used in metaprogram-
ming [36] and aspect-oriented programming [37], is a frequently discussed
technique. In the context of our FST model, quantification can be modeled as
a tree walk [20], in which each node is visited and a predicate specifies whether
the node is modified or not. Harrison et al. [23] propose a sophisticated set of
rewriting rules that are based on tree walks. Aggregation is another compo-
nent composition technique. It can be modeled by FSTs that contain nodes that
represent themselves components, i.e., that contain FSTs. Even aggregated com-
ponents can be superimposed, since they have a hierarchical structure that can
be represented as an FST. In summary, FSTs are a means to model the connec-
tion between different composition techniques and to explore their relationship;
FSTs are not specific to superimposition.

So far, we do not consider inter-language interaction. That is, while FST-
Composer can compose components containing artifacts written in different
languages, it cannot recognize interactions between these artifacts. For example,

Superimposition: Language-Independent Software Composition 33

a Java class may expect some XML document as input, which is defined in an-
other component. Grechanik [38] et al. propose an approach based on recursive
types and type reification to bridge the gap between different languages, which
can be used in concert with FSTComposer.

Finally, superimposition is a specific instance of model weaving in model-
driven development [39] and of graph amalgamation in model theory [40].

8 Conclusion

We model software components by tree structures and component composition
by tree superimposition. The FST model abstracts from the specifics of a partic-
ular programming language or tool. Any reasonably structured software artifact
that can be represented as an FST can be composed by our approach.

As a proof of concept, we have developed a tool that implements FST super-
imposition. Currently, we have parsers for Java, Jak, XML, text, and binaries
that generate FSTs ready for composition. Beside generating code for feature
composition, FSTComposer is able to generate XML documents representing
the FSTs involved in a composition, ready for further processing.

Three case studies have demonstrated the applicability of our approach and
our tool: FST superimposition scales to medium-sized programs (10KLOC).
Scalability to larger programs remains to be shown in further work.

We intend to plug various other languages into the tool in order to demon-
strate the generality of our approach. C# and Bali have been shown to be
compatible with the FST model. Furthermore, we are working on a formaliza-
tion of the FST model and further tools that operate on FSTs, e.g., a tool that
visualizes FSTs and a tool that analyzes interactions between components.

Acknowledgments

We thank Don Batory and Christian Kästner for helpful comments on earlier
drafts of this paper, Sebastian Scharinger for implementing the Java and Jak
parsers of FSTComposer, Don Batory for releasing the source code of GPL
and GUIDSL, and Abhinay Kampasi for refactoring Violet into features.

References

1. Ossher, H., Harrison, W.: Combination of Inheritance Hierarchies. In: Proc. Int’l.
Conf. Object-Oriented Programming, Systems, Languages, and Applications, pp.
25–40. ACM Press, New York (1992)

2. Katz, S.: A Superimposition Control Construct for Distributed Systems. ACM
Trans. Programming Languages and Systems 15, 337–356 (1993)

3. Bouge, L., Francez, N.: A Compositional Approach to Superimposition. In: Proc.
Int’l. Symp. Principles of Programming Languages, pp. 240–249. ACM Press, New
York (1988)

4. VanHilst, M., Notkin, D.: Using Role Components in Implement Collaboration-
based Designs. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 359–369. ACM Press, New York (1996)

34 S. Apel and C. Lengauer

5. Reenskaug, T., Andersen, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O.,
Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.: OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented Systems.
Journal of Object-Oriented Programming 5, 27–41 (1992)

6. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Trans. Software
Engineering and Methodology 11, 215–255 (2002)

7. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Aksit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer,
Heidelberg (1997)

8. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Engineering 30, 355–371 (2004)

9. Harrison, W., Ossher, H.: Subject-Oriented Programming: A Critique of Pure Ob-
jects. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pp. 411–428. ACM Press, New York (1993)

10. Tarr, P., Ossher, H., Harrison, W., Sutton Jr, S.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proc. Int’l. Conf. Software Engineering,
pp. 107–119. IEEE CS Press, Los Alamitos (1999)

11. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: Proc. Int’l. Conf.
Aspect-Oriented Software Development, pp. 90–100. ACM Press, New York (2003)

12. McDirmid, S., Hsieh, W.: Aspect-Oriented Programming with Jiazzi. In: Proc.
Int’l. Conf. Aspect-Oriented Software Development, pp. 70–79. ACM Press, New
York (2003)

13. Bosch, J.: Super-Imposition: A Component Adaptation Technique. Information
and Software Technology 41, 257–273 (1999)

14. Anfurrutia, F., Dı́az, O., Trujillo, S.: On Refining XML Artifacts. In: Baresi, L.,
Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 473–478.
Springer, Heidelberg (2007)

15. Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards
Improved Alignment of Requirements, Design, and Code. In: Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and Applications, pp. 325–
339. ACM Press, New York (1999)

16. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring
Product Lines. In: Proc. Int’l. Conf. Generative Programming and Component
Engineering, pp. 201–210. ACM Press, New York (2006)

17. Bravenboer, M., Visser, E.: Concrete Syntax for Objects: Domain-Specific Lan-
guage Embedding and Assimilation Without Restrictions. In: Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and Applications, pp. 365–
383. ACM Press, New York (2004)

18. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

19. Kamina, T., Tamai, T.: Lightweight Scalable Components. In: Proc. Int’l. Conf.
Generative Programming and Component Engineering, pp. 145–154. ACM Press,
New York (2007)

20. Apel, S., Lengauer, C., Batory, D., Möller, B., Kästner, C.: An Algebra for Feature-
Oriented Software Development. Technical Report MIP-0706, Department of In-
formatics and Mathematics, University of Passau (2007)

21. Batory, D.: Jakarta Tool Suite (JTS). SIGSOFT Softw. Eng. Notes 25, 103–104
(2000)

Superimposition: Language-Independent Software Composition 35

22. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In:
Proc. Int’l. Conf. Software Engineering, ACM Press, New York (2008)

23. Harrison, W., Ossher, H., Tarr, P.: General Composition of Software Artifacts. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 194–210. Springer,
Heidelberg (2006)

24. Hutchins, D.: Eliminating Distinctions of Class: Using Prototypes to Model Virtual
Classes. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pp. 1–19. ACM Press, New York (2006)

25. McDirmid, S., Flatt, M., Hsieh, W.: Jiazzi: New-Age Components for Old-
Fashioned Java. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 211–222. ACM Press, New York (2001)

26. Nystrom, N., Chong, S., Myers, A.: Scalable Extensibility via Nested Inheritance.
In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages, and Ap-
plications, pp. 99–115. ACM Press, New York (2004)

27. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of
Change in Java. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 177–189. ACM Press, New York (2005)

28. Cardone, R., Lin, C.: Comparing Frameworks and Layered Refinement. In: Proc.
Int’l. Conf. Software Engineering, pp. 285–294. IEEE Computer Society Press, Los
Alamitos (2001)

29. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

30. Lopez-Herrejon, R., Batory, D.: A Standard Problem for Evaluating Product-
Line Methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001)

31. Trujillo, S., Batory, D., Dı́az, O.: Feature Refactoring a Multi-Representation Pro-
gram into a Product Line. In: Proc. Int’l. Conf. Generative Programming and
Component Engineering, pp. 191–200. ACM Press, New York (2006)

32. Odersky, M., Zenger, M.: Scalable Component Abstractions. In: Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and Applications, pp. 41–57.
ACM Press, New York (2005)

33. Costanza, P., Hirschfeld, R., de Meuter, W.: Efficient Layer Activation for Switch-
ing Context-Dependent Behavior. In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC
2006. LNCS, vol. 4228, pp. 84–103. Springer, Heidelberg (2006)

34. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In: Glück, R., Lowry, M.
(eds.) GPCE 2005. LNCS, vol. 3676, pp. 125–140. Springer, Heidelberg (2005)

35. Apel, S., Hutchins, D.: An Overview of the gDeep Calculus. Technical Report MIP-
0712, Department of Informatics and Mathematics, University of Passau (2007)

36. Kiczales, G., Des Rivieres, J.: The Art of the Metaobject Protocol. MIT Press,
Cambridge (1991)

37. Masuhara, H., Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mecha-
nisms. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 2–28. Springer,
Heidelberg (2003)

38. Grechanik, M., Batory, D., Perry, D.: Design of Large-Scale Polylingual Systems.
In: Proc. Int’l. Conf. Software Engineering, pp. 357–366. IEEE Computer Society
Press, Los Alamitos (2004)

39. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4,
171–188 (2005)

40. Böcker, S., Bryant, D., Dress, A., Steel, M.: Algorithmic Aspects of Tree Amalga-
mation. J. Algorithms 37, 522–537 (2000)

Language Support for Managing Variability in

Architectural Models�

Neil Loughran1, Pablo Sánchez2, Alessandro Garcia1, and Lidia Fuentes2

1 Computing Department, InfoLab 21
South Drive, Lancaster University, LA1 4WA, UK

{loughran,garciaa}@comp.lancs.ac.uk
2 Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Málaga, Málaga, Spain
{pablo,lff}@lcc.uma.es

Abstract. The effective management and composition of architectural
variabilities has long been of importance to product line architects. Ar-
chitects need to describe how conceptual variabilities are composed and
realised through architectural decompositions of a product line. Archi-
tecture variabilities need to be described in terms of the chosen design de-
compositions, which do not often correspond naturally to feature model
decompositions. Also, the fine-grained nature of certain architectural
variabilities makes it difficult to represent them in a modular fashion,
and describe how they are composed across different views. In order
to address these issues, this paper presents a variability modelling lan-
guage (VML), which supports first-class representation of heterogeneous
forms of architectural variabilities. The language complements existing
architectural modelling approaches for product lines by providing mech-
anisms to: (i) explicitly reference variation points in multiple architec-
tural views, and (ii) support compositions involving both fine-grained
and coarse-grained variabilities in an orthogonal fashion. The complete-
ness and simplicity of VML is assessed through four case studies from
different domains.

1 Introduction

A product-line architecture [1] represents a software architecture which can
rapidly respond effectively to variabilities imposed by different customer re-
quirements and changes within a well defined market segment. It is realised
via core common elements and a plethora of variabilities associated with recur-
ring architecture-wide concerns as opposed to traditional monolithic architecture
designs. Hence, architectural variability modelling has been challenging to soft-
ware product-line engineers over the last decade. One of the key problems is that
the realisation and composition of architecturally-relevant variabilities cannot
be solely expressed using conventional feature models [2] (as illustrated by [3]),
� This work has been supported by European Commission Grants IST-2-004349-NOE

AOSD-Europe and the European Commission STREP Project AMPLE IST-033710.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 36–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Language Support for Managing Variability in Architectural Models 37

apart from its use in relatively small-scale program families. Software architects
need to identify the variation points within the context of multiple architectural
views. Also, the architecture-level variants are of a heterogeneous nature, ranging
from optional component interfaces expressed in a component-connector model
to alternative nodes hosting architecture elements in the deployment view. In
addition, product-line designers also need to express how the optional or alter-
native architectural variants are composed with the core architecture elements.

In this context, the instantiation and evolution of product-line architectures
can easily become cumbersome and error prone if the specification and compo-
sition of architectural variabilities cannot be expressed in a separate fashion. In
fact, a growing number of approaches (e.g. [3,4,5,6]) are emerging to ameliorate
these problems and support the systematic treatment of variabilities throughout
the software lifecycle. However, many of these existing tools tend to concentrate
on implementation-level variabilities, using conditional switches, templates and
annotations. They are also largely unsuited to managing variability in archi-
tectural models due to the lack of underlying abstractions that are meaningful
to product-line architecture stakeholders. In fact, our recent systematic anal-
ysis of existing modelling techniques concluded that they fail to fully support
the orthogonal representation of architecturally-relevant variabilities [7]. Some
variability modelling techniques rely exclusively on the use of feature models
(e.g. [2,5]), while others (e.g. [3,6]) use advanced modelling mechanisms to re-
late feature models and architectural models. However, the latter approaches are
restricted to only documenting variability rather than expressing its composition
with the core common architecture elements.

This paper introduces a technique that facilitates architectural variability
modelling using an expressive, albeit simple, description language. Before pre-
senting the language, we discuss the motivation for our work (Section 2). Then,
in Section 3, we present the variability modelling language (VML), which pro-
vides primitives that support: (i) references to both coarse-grained and fine-
grained architectural elements, and (ii) the composition of architectural variants
to variation points within classical architectural views, such as deployment, in-
teraction, and component-connector models. In order to demonstrate the basic
usage of VML, we base our descriptions using examples from the SmartHome
domain [8]. We then apply and assess VML in the context of a SmartHome
lock control framework (Section 4). Three other case studies were also used to
support the completeness and simplicity evaluation of VML (Section 5). Finally,
Section 6 concludes the paper.

2 Architectural Variability Modelling

Software variability refers to the ability of a software artefact to be changed
or customised to fit a particular context [9]. Variability management refers to
the holistic treatment of variability with respect to its representation in the
problem space (e.g. feature models, domain-specific languages, etc.) through to
its realisation in the solution space (e.g. development of architectural models,

38 N. Loughran et al.

variability mechanisms in code, etc.). However, the development of product line
architectures is challenging due to a number of factors:

1. Variability itself can mean something different to individual architecture
stakeholders involved in the product-line development. For example, a sys-
tem configurator sees variabilities in terms of domain concepts, such as
rooms, floors, accounts, and so forth. The architects see variabilities in terms
of how these domain concepts are realised in terms of architectural ele-
ments, i.e. components, interfaces, configurations, deployments, and compo-
nent interactions. Programmers are concerned with how these architectural
variabilities are realised in code using implementation mechanisms, such as
conditional compilation, aspects, and partial evaluation. Additionally, these
architectural variabilities may also be relevant in different ways to require-
ments engineers, end customers, etc.

2. With respect to the previous point, the mapping of variability decisions
in the problem space (typically expressed in feature models) to variation
points and variants in the early solution space (i.e. components and their
interactions, interfaces, nodes, etc.) are not typically one to one (as Section 4
will illustrate), but one to many, and even occasionally many to many.

3. The way in which variability manifests itself in different kinds of artifacts
cannot easily be generalised to a single unified ‘one size fits all’ mechanism.
For instance, the treatment of variability in code-based assets (e.g. condi-
tional compilation) will not suffice for architectural models.

4. Architectural variabilities will often have complex dependencies with core
architectural elements and with other variabilities. The sole use of feature
models is not enough because their composition mechanisms are not tailored
to express architecture-level variabilities [3,7].

Providing effective support to alleviate these factors is crucial for product-line
software architecture design. Many of the current approaches to managing vari-
ability require that architectural artifacts are specially annotated with invasive
directives e.g. [5,6]. However, this strategy is not suitable for variability in ar-
chitectural models as often the information that design tools produce (e.g. XMI
descriptions) is complex, with variable architectural elements appearing numer-
ous times across an XMI description. Bachmann and Pohl et al [4,3] were among
the first authors to suggest the use of orthogonal variability modelling (OVM).
OVM provides a means to describe variability separately without extending ar-
chitectural models with new notations. This separation allows variability itself
to be treated as a new architectural view (i.e. the variability model). From the
literature, the OVM approach was designed to solely document variability. Thus,
there are no explicit mechanisms to define how variable elements in architectural
models are referenced and composed. Our work extends the notion of OVM to
capture the referencing and composition of architectural variabilities using an
innovative modelling language.

Language Support for Managing Variability in Architectural Models 39

3 Variability Modelling Language

This section discusses how design of the variability modelling language for
product-line architectures (Section 3.1) is conceived to address the problems dis-
cussed in Section 2. Then, it describes the key language elements (Section 3.2)
and the support to express variability dependencies emerging in the product-line
architecting process (Section 3.2).

3.1 Aims and Objectives of VML

The primary aim of VML is to provide a means to compose together variable
elements in architectural models. In order to achieve this, the VML provides
a number of primitives for referencing and invoking decisions which result in
the composition of architectural elements. In effect, the VML acts as a domain
specific language for architectural composition, providing the mapping from the
problem space, i.e. the feature configuration model, and the solution space, i.e.
architectural models, by allowing features to invoke operations which compose
together variable in architectural elements (Figure 1).

A configuration is created from a feature model by a system configurator
which invokes variation points pertaining to specific concerns as designated

VP2 (alt.)

VP2 (alt.)

Concern A

V1 V2 V3

VP1 (alt.)

invoke(VP2(V1))

invoke(VP3)

VP1 (alt.)

VP3 (opt.)

Component View Interaction View Deployment View

Architectural Models

Variability Model

invoke(B.VP1(V1))

invoke(A.VP1(V2))

V1 V2 V3

V1 V2 V3

V1 V2 V3

References and actions
on different architectural

elements

A configuration from feature model

Concern B

Configurator

Domain
Architect

Variation Point

Variant

Key

alt. Alternative

opt. Optional

VP2 (alt.)

VP2 (alt.)

Concern A

V1 V2 V3

VP1 (alt.)

invoke(VP2(V1))

invoke(VP3)

VP1 (alt.)

VP3 (opt.)

Component View Interaction View Deployment View

Architectural Models

Variability Model

invoke(B.VP1(V1))

invoke(A.VP1(V2))

V1 V2 V3V1 V2 V3

V1 V2 V3V1 V2 V3

V1 V2 V3V1 V2 V3

References and actions
on different architectural

elements

A configuration from feature model

Concern B

Configurator

Domain
Architect

Variation Point

Variant

Key

alt. Alternative

opt. Optional

Fig. 1. High level overview of the intention of VML

40 N. Loughran et al.

by the domain architect. Then, the composition primitives (actions) contained
within those variation points facilitate the composition of variable architectural
elements in the different views. The approach avoids the need to include vari-
ability notations within software architecture descriptions and can be viewed as
an extension to Bachmann and Pohl’s OVM approach with the addition of an
explicit referencing language and actions for invoking compositions. In essence,
the VML can be said to complement existing variability management approaches
such as [3,4,5,6] rather than replace them.

3.2 Language Elements

This section describes the different elements which make up the VML language.
We focus on the presentation of the key VML abstractions; a full description of
the VML meta-model and more examples can be found in [8]. Before illustrating
the different elements in the variability language it is helpful to understand a
number of different concepts from the perspective of a product line:

– A product line architecture contains many concerns ;
– Each concern will have variation points associated with them (e.g. a security

concern may have the variations in respect of encryption algorithms and so
forth);

– A variation point has a name and a variation kind (i.e. optional, alternative,
parameter);

– A variation point may offer a number of variants ;
– Variation points and variants should reference architectural elements within

architectural views as illustrated in Figure 1 (e.g. component view, interac-
tion view and deployment view, etc.) using expressions;

– There may be dependencies between variation points and/or variants.

Therefore the main elements in the language are concerns, variation kinds,
variation points and variants i.e. the basic variability framework (described in
Section 3.2). The concerns might be either features defined in the feature models,
or other architectural concerns arising at the design stage and relevant to differ-
ent architecture stakeholders. Additionally, the domain architect will also need
to be able express references to architectural elements and actions (composition
primitives, which are described in Section 3.2) on different kinds of architectural
elements in order to activate decisions relating to architectural composition.
Lastly, we also need to be able to define dependencies, i.e. requires and excludes,
between variation points and variants (which we describe in Section 3.2).

Variability Framework. A concern, with respect to VML, is a high-level
abstraction encapsulating variation points which relate to a particular feature or
any other architectural concern. For example, a security concern in VML would
capture all variabilities relating to authentication, authorisation, and so forth. A
variation point identifies a particular concept within a concern as being variable
(e.g. choice of authentication device). A variation point has a name and a kind

Language Support for Managing Variability in Architectural Models 41

Concern SafetyDevices {
VariationPoint FireSprinkerType {

Kind: alternative;
Variant Water { … actions on arch elements}
Variant Foam { … actions on arch elements}

}
VariationPoint VisualAlarm {

Kind: optional;
… actions

}
}

Fig. 2. Partial VML description for SafetyDevices concern

i.e. option, alternative or parameter. A variant describes a particular variability
decision, such as a specific choice of authentication device (e.g. card reader).
A variant uses actions and expressions to invoke compositions of architectural
elements. Figure 2 illustrates a simple example (with actions omitted) where
variation points relating to safety devices are illustrated. The first variation
point FireSprinklerType has two variants, namely Water and Foam of which one or
none must be chosen. The second variation point describes an optional feature
for a visual alarm.

References and Actions. In order to explain the numerous primitives in this
section we will refer to Figure 3 which illustrates a number of the architec-
tural composition primitives. A reference associates architectural elements with
a name in order to simplify expressions when used within actions. A named
reference uses expressions and designators to provide quantification power and
expressiveness over architectural elements. The possible architectural elements
are any of the abstractions present in component view, interaction view, and
deployment view (Figure 1). For example the reference in Figure 3a would
associate the FireManagement component and its required interface ISprinkler as
SprinklerVP.

Actions provide the means to activate decisions which will result in archi-
tectural compositions between architectural variants and the common core ele-
ments. Actions might entail fine-grained or coarse-grained compositions of
architectural elements. The key fine-grained composition mechanisms provided
are connect, add, remove and deploy, which work at the level of individual elements
within the models. The merge action represents a coarse-grained mechanism in
that it works at the package level where these packages encapsulate multiple
architectural elements rather than individual ones. The following subsections
describe these individual actions in more detail.

Invoke. The invoke action activates either variation points or variants within
those variation points. For example, the action in Figure 3b would invoke the
variation point FireSprinklerType in the SafetyDevices concern (as originally shown
in Figure 1) and select the Water variant. It may be decided that low-level details

42 N. Loughran et al.

Reference SprinklerVP {
component(FireManagement.r:ISprinkler);

}

invoke(SafetyDevices.FireSprinklerType(Water));

connect(SmartHomeControl.r:IAlarm::MonitoredAlarm.p:IAlarm);

add interface(r:ILight) to component (SmartHomeControl);

remove interface(r:ISprinkler) from component(Control);

deploy component(MotionSensor) in node(CentralProcessor);

openCommsPath node(Server) to device(FireSensor);

after SmartHomeControl.soundAlarm () {
add(send(SmartHomeControl.activateVisualAlarm ()) &&

receive(VisualAlarm))) using(IVisualAlarm);
}

merge (FireManagement) into (SmartHomeBase);

a

b

c

d

e

f

g

h

i

Reference SprinklerVP {
component(FireManagement.r:ISprinkler);

}

invoke(SafetyDevices.FireSprinklerType(Water));

connect(SmartHomeControl.r:IAlarm::MonitoredAlarm.p:IAlarm);

add interface(r:ILight) to component (SmartHomeControl);

remove interface(r:ISprinkler) from component(Control);

deploy component(MotionSensor) in node(CentralProcessor);

openCommsPath node(Server) to device(FireSensor);

after SmartHomeControl.soundAlarm () {
add(send(SmartHomeControl.activateVisualAlarm ()) &&

receive(VisualAlarm))) using(IVisualAlarm);
}

merge (FireManagement) into (SmartHomeBase);

a

b

c

d

e

f

g

h

i

Fig. 3. Composition primitives in VML

(i.e. variations in the solution space) are invoked from other higher level variation
points, rather than directly from the feature model. In other words, a high-level
variation point might be structured as a composite variation point consisting of
a set of lower level variation points. Such a scenario may arise when dealing with
sets of low-level variation points (e.g. algorithm choice) that map to conceptual
variations in the feature models (e.g. processor type and memory size).

Connect. The connect action is a fine-grained composition mechanism for binding
architectural elements in the component view. The action in Figure 3c would
connect the SmartHomeControl component to the MonitoredAlarm component via
their respective required and provided (as denoted by p and r) IAlarm interfaces.

Add. The add action is also a fine-grained mechanism that supports the addition
of architectural elements. For example, the action in Figure 3d would add the
required interface ILight to the SmartHomeControl component.

Remove. The remove action is a fine-grained mechanism for removing archi-
tectural elements in any view. It is expressed using the remove operator. For
example, the action in Figure 3e would remove the required interface ISprinkler

from the Control component.

Deploy. The deploy action allows architectural elements, such as components, to
be assigned to a node, i.e. model elements representing computational resources
(e.g. computers, sensors, etc.). The action in Figure 3f adds a MotionSensor com-
ponent to the CentralProcessor node.

OpenCommsPath. Additionally architectural variabilities may also require to
open communication paths to devices i.e. connect devices. This is done using
the openCommsPath designator. The action in Figure 3g opens a communications
path from the Server node to a FireSensor device.

Language Support for Managing Variability in Architectural Models 43

Interaction view specific actions. The interaction view deals with sequences of op-
erations between architectural elements. There are constructs specifying where,
i.e. before, after, start and end, in the program flow an interaction should
be added. For example, the action in Figure 3h simply states that after the
soundAlarm operation in the SmartHomeControl component is called, we would
like to add a new interaction from the SmartHomeControl component to the Vi-

sualAlarm component involving the operation activateVisualAlarm via the interface
IVisualAlarm. The callee would represent the required part and the recipient the
provided.

Merge. The merge works by composing elements of a package (a container for
multiple architectural elements) with a base package. For example, the action
in Figure 3i would merge the elements of the FireManagement package into the
SmartHomeBase package. Merge is a new composition mechanism between pack-
ages introduced by UML 2.0. The principal reason for using merge over other
actions is to allow more complex collections of architectural elements to be com-
posed which would otherwise result in verbose VML descriptions. The merge
represents a coarse-grained mechanism as the architects using VML can be ag-
nostic to inner details of packages, i.e. all the package’s internal architectural
elements. However, fine-grained variabilities inside the packages can be refer-
enced using the other actions (e.g. connect, add, etc.) and provide the architect
with maximum flexibility.

Dependencies. VML allows dependencies between variabilities to be specified.
Dependencies are expressed using requires and excludes designators with param-
eters indicating the name of the corresponding variation point or variant. The
following example expression indicates that the Sprinkler variation point cannot
be selected unless the Luxury variant within the Edition variation point is also
selected:

VariationPoint Sprinkler requires(Edition.Luxury){. . . }

Excludes dependencies are expressed in a similar fashion using the excludes

designator. It is also possible to express dependencies and constraints between
variabilities independently of VML descriptions via a separate dependency view.
The dependency view only contains the names of variation points and variants
along with their respective dependencies. In this manner, dependencies can be
viewed in their own space improving their understandability and changeability.

4 Case Study

This section details the usage of the VML in the composition of variabilities re-
lating to the lock control framework in a SmartHome product line. The example
is similar to the framework described in [3], and thus provides an ideal frame of
reference for those wishing to further understand the relationship between the
OVM and VML.

44 N. Loughran et al.

Door Lock

Authentication
Device

SQL Card
Reader

Fingerprint
Reader

Keypad
Reader

Entry

ElectronicManual

Door Opener

<requires>

alternative

optional

mandatory

Key
Door Lock

Authentication
Device

SQL Card
Reader

Fingerprint
Reader

Keypad
Reader

Entry

ElectronicManual

Door Opener

<requires>

alternative

optional

mandatory

Key

alternative

optional

mandatory

alternative

optional

mandatory

Key

Fig. 4. Feature diagram for lock control

4.1 SmartHome Lock Control

In the SmartHome architecture there is the need to develop different products
which have different compositions of features. In turn, these different feature
compositions will entail changes to architectural elements in different architec-
tural views. The lock control provides an interesting candidate for demonstrating
such changes. In order to understand the variabilities in the lock control consider
the feature diagram, using the classical notation from [2], in Figure 4.

The feature diagram illustrates that a lock control can be developed for use
with different authentication devices, i.e. keypad, card and fingerprint readers,
and provide a manual (open via a physical key) or electronic door lock alterna-
tives (unlock via a an actuator upon authentication). Selection of the manual
alternative requires that the user is authenticated once inside the house. Addi-
tionally, there is an option for the door to open using an actuator, although this
is only available if the electronic alternative is chosen. A component diagram for
the lock control is illustrated in Figure 5. As there is no satisfactory variability
notation that describes the complete set of variabilities in a single space, we
have used an ad hoc one similar to that of Clauss [10]. The figure should not be
taken as a contribution of the paper as such, but more a demonstration of the
problems of describing variabilities in a visual manner.

The UserControl, AuthenticationManager and LockControl components represent
the core common framework. The hatched lines represent variable elements. Ad-
ditionally, the diagram uses <optional> <alternative> and <requires> annotations
to indicate the kinds of variabilities and dependencies between architectural el-
ements. As can be seen from the component diagram, many of the architectural
elements correspond directly with features, but many do not. For example se-
lection of the electronic entry option would entail connecting the ElectronicLock

component to the LockControl and AuthenticationManager components, and also
the LockActuator component to the LockControl component.

Additionally, a new ‘required’ interface has to be added to the Authentication-

Manager and thus a new interaction will occur between this‘component and the
ElectronicLock component. Additionally, each authentication device will require

Language Support for Managing Variability in Architectural Models 45

Electronic
Lock

IDoorLock

ILockActuator

Lock
Actuator

Keypad
Reader

C

Simple
Algorithm

IAuthAlgorithm

Manual
Lock

IUserAuth

User Control

Lock Control
Authentication

Manager

Card
Reader

Fingerprint
Reader

IAuthDevice

IUser

Key

provided interface

required interface

variable element

common element

ILockAuth

IDoorActuator

Door
Actuator

<requires>

<optional>

<requires>

Fingerprint
Algorithm

<requires>
<requires>

<alternative> <alternative>

<alternative> <alternative> <alternative>

Electronic
Lock

IDoorLock

ILockActuator

Lock
Actuator

Keypad
Reader

C

Simple
Algorithm

IAuthAlgorithm

Manual
Lock

IUserAuth

User Control

Lock Control
Authentication

Manager

Card
Reader

Fingerprint
Reader

IAuthDevice

IUser

Key

provided interface

required interface

variable element

common element

Key

provided interface

required interface

variable element

common element

ILockAuth

IDoorActuator

Door
Actuator

<requires>

<optional>

<requires>

Fingerprint
Algorithm

<requires>
<requires>

<alternative> <alternative>

<alternative> <alternative> <alternative>

Fig. 5. Component diagram for lock control

an authentication algorithm. The KeypadReader and CardReader components re-
quire the SimpleAlgorithm component which simply confirms that the information
obtained through the authentication device matches. The FingerprintReader com-
ponent requires a more complex algorithm, contained within the FingerPrintAl-

gorithm component, which is based upon biometrics rather than simple match-
ing. As can be ascertained from the component diagram, even a simple feature
description, such as the one in Figure 4 may entail a complex set of emerg-
ing variabilities through architectural decomposition. In the following sections
we will describe the variability in the lock control using the VML language
constructs.

4.2 Fine-Grained VML Description

This section illustrates how architectural variability in the lock control can be
described using the fine-grained primitives in the VML. Figure 6 illustrates a
partial VML description indicating a number of variation points associated with
the lock control framework. In the interest of brevity and clarity, we will only de-
tail the AuthenticationDevice and Entry variation points1. The first variation point
AuthenticationDevice provides three alternative variants namely Keypad, Card and
Finger. Two references, AuthDeviceVP and AlgorithmVP, are created for the purpose
of simplifying the syntax when used in the actions as they are repeated through-
out the description. AuthDeviceVP references the IAuthDevice required interface
on the LockControl component, while AlgorithmVP references the IAuthAlgorithm

1 http://www.comp.lancs.ac.uk/̃loughran/VML.html contains the complete descrip-
tion.

46 N. Loughran et al.

Concern LockControl {

VariationPoint AuthenticationDevice {
Kind: Alternative;
Reference AuthDeviceVP {component (LockControl.r:IAuthDevice);}
Reference AlgorithmVP {component (AuthenticationManager.r:IAuthAlgorithm);}

Variant Keypad {
connect (AuthDeviceVP::KeypadReader.p:IAuthDevice);
connect (AlgorithmVP::SimpleAlgorithm.pIAuthAlgorithm);
deploy component (KeypadReader) in node(AuthenticationDevice);
deploy component (SimpleAlgorithm) in node(SmartHomeControl);

}

Variant Card {…}
Variant Finger { …}

}

VariationPoint Entry {
Kind: Alternative;
Reference LockControlVP {component (LockControl.r:IDoorLock);}

Variant Manual {
connect (LockControlVP::ManualLock.p:IDoorLock);
deploy component (ManualLock) in node(SmartHomeControl);

}

Variant Electronic {
connect (LockControlVP::ElectronicLock.p:IDoorLock);
add interface (r:ILockAuth) to component (AuthenticationManager);
add interface (p:ILockAuth) to component (ElectronicLock);
connect (ElectronicLock.r:ILockAuth::AuthenticationManager.r:ILockAuth);
add interface (r:ILockActuator) to component (LockControl);
connect (LockControl.r:ILockActuator::LockActuator.p:ILockActuator);

after AuthenticationManager.authenticated () {
add(send(AuthenticationManager.unlock ()) &&

receive (ElectronicLock))) using(ILockAuth);
}
deploy component (ElectronicLock) in node(SmartHomeControl);
deploy component (LockActuator) in node(SmartHomeControl);
…

}
}

VariationPoint DoorOpener requires Entry(Electronic) {
Kind: Option;
…

}
}

Fig. 6. Partial fine-grained VML description of lock control

required interface on the AuthenticationManager component. A number of actions
are then created for connecting components and deploying them in their respec-
tive nodes. As the descriptions for these variants are very similar we will only
describe the Keypad variant. The first statement connects the LockControl to the
KeypadReader component via the IAuthDevice interface.

Next, the AuthenticationManager and SimpleAlgorithm components are connected
(note that in the Finger variant the FingerPrint algorithm would be connected in-
stead) via the IAuthAlgorithm interface. Finally, the KeypadReader and SimpleAlgo-

rithm components are deployed in the AuthenticationDevice and SmartHomeControl

nodes respectively.

Language Support for Managing Variability in Architectural Models 47

The Entry variation point provides the most complex and interesting set of
VML primitives within the lock control description. It describes two variants,
namely, Manual and Electronic. The Manual variant simply connects the Manual-

Lock and LockControl components together via the IDoorLock interface, and then
deploys the ManualLock component in the SmartHomeControl node. The Electronic

variant represents a more complex VML description incorporating the composi-
tion of multiple architectural elements. First, the ElectronicLock and LockControl

components are connected via the IDoorLock interface. Following this, required
and provided ILockAuth interfaces are added to the AuthenticationManager and Elec-

tronicLock components respectively, and then these components are connected.
Next the required interface ILockActuator is added to the component LockControl

and then the LockControl and LockActuator components are connected. The next
VML description illustrates the usage of the interaction actions. The interaction
simply states that after the authenticated operation within AuthenticationManager

is executed, a new message should be added that sends an unlock operation (the
call) from the AuthenticationManager (required) component to the ElectronicLock

component (provided) via the IAuth interface . Finally, the ElectronicLock and
LockActuator components are deployed in the SmartHomeControl node.

4.3 Coarse -Grained VML Description

This section reports how the lock control can be described using the coarse-
grained merge composition mechanism. The merge action relies on the architect
to define a core and then decompose related variabilities into separate packages
using the merge decomposition mechanism. The VML merge has the same se-
mantics as UML merge2. Using UML merge, an architecture can be decomposed
into several packages, each one of them representing an architectural increment,
delta or slice. Ideally, each package encapsulates one variant, although this might
not always be the case as a variant could be encapsulated into a set of inter-
connected packages. The main advantage is not the one-to-one encapsulation of
variants into packages, but the separation of variants from the core. Using merge,
the VML descriptions then simply need to refer to the names of the packages
that represents variants and specify how they should be merged with the core or
other packages (variants of variants), as shown in Figure 7. As a wide range of
variable elements are encapsulated into a packages, merge reduces the verbosity
of VML descriptions, as all the expressions required to introduce each variable
element contained in one package are replaced by a single “merge” expression.

However, there are some disadvantages with this approach:

1. Firstly, while UML package merge has a well-defined semantics for structural
views or diagrams, such as component and deployment views, the semantics
are not well-defined for behavioural diagrams, which can be problematic
if behavioural views, such as interactions between components or state-
machines representing component protocols, are to be merged.

2 UML 2.0 specification,http://www.omg.org/docs/formal/05-07-04.pdf, pages 107-
115.

48 N. Loughran et al.

Concern LockControl {
VariationPoint AuthenticationDevice {

Kind: Alternative;

Variant Keypad {
merge(Keypad) into(LockBase);

}
Variant Finger {

merge(FingerPrintReader) into(LockBase);
}

}

VariationPoint Entry {
Kind: Alternative;

Variant Manual {
merge(ManualEntry) into(LockBase);

}
Variant Electronic {

merge(ElectronicEntry) into(LockBase);
}

}

VariationPoint DoorOpener requires Entry(Electronic){
Kind: Option;
merge(DoorOpener) into(LockBase);

}
}

Fig. 7. Complete coarse-grained VML description of lock control

2. Secondly, it is not possible to remove elements in a natural way using UML
merge, so in case negative variability is required, we need to use UML merge
in combination with other VML operators, i.e. the remove action.

3. Finally, when applied to single fine-grained variabilities, e.g. the presence of
a single operation in the interface of a device, the UML merge would lead
to the creation of packages which contain only a few elements, increasing
the number of packages, and therefore leading to a complex network of in-
terconnected packages which could be really complex to manage. Therefore,
for small variabilities, the use of fine-grained VML primitives is encouraged.

This brings about a case where the need for both fine-grained and coarse-
grained VML primitives may offer the balance required to attain flexibility and
reduce verbosity and complexity induced by fine-grained descriptions alone.

5 Discussion and Related Work

The previous section detailed the usage of VML within the context of a Smart
Home lock control framework. However, we also applied the VML to three other
case studies in order to assess the completeness of the VML language itself.
The other three case studies involved the development of a persistence manager
framework [11], a multi-agent system framework [12], and an aspectual frame-
work for persistence and distribution [13] which was used in a program family

Language Support for Managing Variability in Architectural Models 49

Table 1. Case studies exploiting VML constructs

VML Constructs
Case Studies

Lock Control
Framework

Persistence
Manager

Multi-agent
Product Line

Health Watcher
Framework

invoke Yes Yes Yes Yes

connect Yes Yes Yes Yes

add Yes Yes Yes Yes

remove No Yes No Yes

merge Yes No No No

after Yes Yes No Yes

before No No Yes Yes

deploy Yes No Yes Yes

openCommsPath Yes No Yes Yes

for health management in public institutions3. We have selected these case stud-
ies because they are from heterogeneous domains and their architectures were
documented using different modelling languages.

Table 1 summarises whether the different VML constructs were used or
not in each of the four case studies. The results illustrate that the VML language
was expressive enough to cope with all of the variabilities encountered within
our case studies. Another interesting observation was that it was straightforward
to use VML in conjunction with different architectural modelling notations. The
architecture modelling of the lock control framework and the persistence man-
ager are based on UML 2.0. The descriptions of the multi-agent product line
and the Health Watcher framework use an aspect-oriented architecture mod-
elling notation, called AOGA [14]. However, after our case studies were com-
plete we believe that an additional primitive could be helpful in reducing the
verbosity of VML descriptions. A primitive which allows the architect to create
multiple architectural elements in a single place (e.g. components along with
their interfaces) as opposed to the using multiple add primitives could prove to
be useful. Additionally, the merge primitive has only been applied to one case
study thus far (Table 1). We therefore need to investigate to what degree the
usefulness of this composition operator increases in large-scale product lines. Per-
haps more importantly, we would like to investigate how the addition of a visual
front end to the VML can help with the specification of complex architectural
descriptions.

While there are a number of variability management approaches per se, e.g.
[5,6], to name but only two, there are relatively few approaches which con-
sider variability of architectural models. Koala [15] is an example of a compo-
nent based engineering approach using an ADL. Coarse-grained variabilities can
be expressed in terms of different component compositions, while fine-grained
variabilities are catered for using diversity interfaces (realised by conditional

3 These case studies can be viewed at
http://www.comp.lancs.ac.uk/̃loughran/VML.html

50 N. Loughran et al.

compilation switches in the code). In the work of Clauss [10], UML architectural
models annotated with stereotypes denoting variable elements, e.g. optional, al-
ternative and dependencies. However, due to the embedding of variability within
the model, as the number of variabilities increase it becomes increasingly difficult
to understand.

Hendrickson and van der Hoek [16] use an approach to variability management
using configuration management principles. In their approach product-line archi-
tectures are documented and maintained as a set of separate packages or ‘slices’.
In effect this is similar to the VML merge approach. However, the authors only
consider the component view. MATA [17] is an approach to model composition
based on graph rewriting formalisms where stereotypes denoting variability are
applied to individual architectural elements. We believe that VML could provide
a front end to this approach and further facilitate their composition process via
higher level abstractions.

6 Conclusions

The specification of architectural variabilities and their mapping from problem
space to solution space is challenging for a number of reasons. Features do not
map directly to architectural models in a simple fashion, and many variability-
specific decisions are dependent on the nature of design decompositions expressed
in different architectural views. This paper presented a variability modelling
language (VML) as a novel technique to allow for heterogeneous forms of ar-
chitectural variabilities to be specified in a non-invasive manner. With VML,
it is possible to modularly define all the variabilities pertaining to a particular
architectural concern in a single place, thus facilitating its change and evolu-
tion. VML is a textual language that complements GUI-based tools, such as
pure::variants4, and provides a succinct yet flexible representation which can
be easily understood by software product-line architects. VML also support a
variety of mechanisms which facilitate variability modelling and composition,
whereby individual architectural elements can be added and/or removed from
a core model using a simple set of architecturally-significant actions. Our work
is clearly influenced by Pohl and Bachmann’s work [3,4] on OVM. However, we
take their variability documentation approach and add primitives for perform-
ing composition of architectural variabilities. VML has been illustrated in this
document in conjunction with architectural models. However, there is no funda-
mental reason why the VML, when given suitable referencing and actions for a
particular context, could not be used with other kinds of software artifacts such
as implementation-level code, documentation or scripts. In the future, we plan
to investigate how the VML can be used in such scenarios, and assess how VML
supports enhanced evolution of product-line architectures using a conventional
stability metrics suite [18,19].

4 http://www.pure-systems.com

Language Support for Managing Variability in Architectural Models 51

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, 3rd
edn. Addison-Wesley, Reading (2001)

2. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

3. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer, Heidelberg (2005)

4. Bachmann, F., et al.: A meta-model for representing variability in product family
development. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 66–80.
Springer, Heidelberg (2004)

5. Pure: variants, http://www.pure-systems.com
6. Gears-BigLever Software Inc, http://www.biglever.com
7. Loughran, N., et al.: Synthesis of state-of-the-art in spl architecture design and

mdd-based architecture design. Technical Report D2.1, AMPLE Project (2007)
8. Sánchez, P., et al.: A metamodel for designing software architectures of aspect-

oriented software product lines. Technical Report D2.2, AMPLE Project (2007)
9. van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of Systems

and Software 61(2), 105–119 (2002)
10. Clauß, M.: Modelling variability with uml. In: Proc. of the Young Researchers

Workshop, 3rd GCSE, Erfurt (2001)
11. Rashid, A., Chitchyan, R.: Persistence as an aspect. In: Proc. of the 2nd Int. Conf.

on AOSD, Boston, USA, pp. 120–129 (2003)
12. Garcia, A., et al.: Agents in object-oriented software engineering. Software Practice

and Experience 34(5), 489–521 (2004)
13. Soares, S., et al.: Implementing distribution and persistence aspects with aspectj.

In: Proc. of the 22nd Conf. on OO Programming, Systems, Languages and Appli-
cations (OOPSLA), Seattle, USA, pp. 174–190 (2002)

14. Kulesza, U., et al.: Towards a method for developing aspect-oriented generative
approaches. In: Proc. of the Workshop on Early Aspects (EA), 24th OOPSLA,
Vancouver, Canada (2004)

15. van Ommering, R., et al.: The koala component model for consumer electronics
software. IEEE Computer 33(3), 78–85 (2000)

16. Hendrickson, S.A., van der Hoek, A.: Modeling product line architectures through
change sets and relationships. In: Proc. of the 29th Int. Conf. on Software Engi-
neering (ICSE), Minneapolis, USA, pp. 189–198 (2007)

17. Whittle, J., Jayaraman, P.: Mata: A tool for aspect-oriented modeling based on
graph transformation. In: Proc. of the 11th Workshop on AOM, 10th MODELS,
Nashville, USA (2007)

18. Greenwood, P., et al.: On the impact of aspectual decompositions on design sta-
bility: An empirical study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp.
176–200. Springer, Heidelberg (2007)

19. Molesini, A., et al.: On the quantitative analysis of architecture stability in aspec-
tual decompositions. In: Proc. of the 7th Working IEEE/IFIP Conf. on Software
Architecture (WICSA), Vancouver, Canada (2008)

http://www.pure-systems.com
http://www.biglever.com

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 52–67, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Composing Components and Services Using
a Planning-Based Adaptation Middleware

Romain Rouvoy1, Frank Eliassen1, Jacqueline Floch2,
Svein Hallsteinsen2, and Erlend Stav2

1 University of Oslo,
P.O. Box 1080 Blindern,

0316 Oslo, Norway
{rouvoy, frank}@ifi.uio.no

2 SINTEF ICT,
7024 Trondheim, Norway

{jacqueline.floch, svein.hallsteinsen, erlend.stav}@sintef.no

Abstract. Self-adaptive component-based architectures provide methods and
mechanisms to support the dynamic adaptation of their structure under evolving
execution context. Dynamic adaptation is particularly relevant in the domain of
ubiquitous computing, which is subject to numerous unexpected changes of the
execution context. In this paper, we focus on changes in the service provider
landscape: business services may dynamically come and go, and their quality of
service may vary. We introduce an extension of the MADAM component-based
planning framework that optimizes the overall utility of applications when such
changes occur. MADAM planning is based on dynamic configuration of
component frameworks. The extended planning framework supports seamless
configuration of component frameworks based on both local and remote
components and services. In particular, components and services can be
plugged in interchangeably to provide functionalities defined by the component
framework. The extended planning framework is illustrated and validated on a
use case scenario.

Keywords: Adaptation planning, component-based architectures, self-adaptation,
service-oriented architectures.

1 Introduction

Self-adaptive architectures provide methods and mechanisms supporting the dynamic
adaptation of their structure under an evolving runtime execution context. Dynamic
adaptation is particularly relevant in the domain of ubiquitous computing, where users
carrying mobile devices move around in ubiquitous computing environments causing
frequent and unexpected changes in the execution context of their applications. For
example, a mobile device is frequently roaming, and its applications have to be
dynamically adapted to remain useful under new network conditions. Such an
adaptation requires the detection of context changes, but also the selection of an

 Composing Components and Services 53

application configuration that maintains a satisfactory Quality of Service (QoS) in the
new context. With the emergence of Service-Oriented Architectures (SOA) [1], both
the availability and the QoS of the services on which the applications depend become
an important part of the context. Thus, SOA is of interest for self-adaptive applications,
because services are reusable and composable entities that can be dynamically
exploited to improve the behavior of an application executed on a mobile device.
Services in a SOA environment can be discovered and accessed without knowledge of
the underlying platform implementation and hence can be exploited in the dynamic
configuration of the applications. Adaptation in MADAM is generally QoS-driven. In
SOA, QoS properties are part of the Service Level Agreements (SLAs) [2] that are
negotiated between a service provider and its end-user consumers. By integrating SLA
negotiation into the adaptation decision process, application adaptation exploiting SOA
can still be QoS-driven.

The MUSIC planning framework introduced in this paper is an extension of the
MADAM planning framework, which supports the adaptation of component-based
architectures [3]. MADAM follows an architecture-centric approach where we
represent architecture models at runtime to allow generic middleware components to
reason about and control adaptation aims at simplifying the development of adaptive
applications. In MADAM applications are modeled as component frameworks where
functionality defined by a component framework can be dynamically configured with
conforming component implementations. The purpose of an adaptation-planning
framework is to compute and evaluate the utility of alternative configurations in
response to context changes, and to select a good one for the current context. The
extension we propose supports self-adaptation of ubiquitous applications to changes
in the service provider landscape. The planning middleware evaluates discovered
remote services as alternative configurations for the functionalities required by an
application. This means that the extended planning framework, when triggering an
adaptation, can support seamless configuration of component frameworks based on
both local and remote components and services. In particular, components and
services can be plugged in interchangeably to provide implementation of
functionalities defined by the component framework. In the case of services, the
planning framework deals directly with SLA protocols supported by the service
providers to negotiate the appropriate QoS for the user.

In this paper, we first introduce a motivating scenario for the support of remote
services in mobile applications (cf. Section 2). After presenting the various
foundations of this work (cf. Section 3), we introduce our planning framework
capable of supporting SOA when adapting applications (cf. Section 4). This planning
framework is illustrated and validated on a use case extracted from the motivating
scenario (cf. Section 5). Finally, related work is discussed (cf. Section 6) before
concluding and presenting our perspectives (cf. Section 7).

2 Motivating Scenario

To further motivate the need for adaptation in service-oriented computing
environments, let us consider the following scenario. A sales agent spends much of
his time visiting customers. To assist him in his work, he is using an extended

54 R. Rouvoy et al.

Customer Relationship Management (CRM) system. The system offers traditional
CRM functionality, such as keeping track of and sharing customer- and business-
related information. In addition, it assists the agent with route planning, detection of
traveling delays and notifying customers affected by such delays.

Scene 1. The scenario starts with the sales agent meeting a customer, and using the
CRM system on his laptop to record agreements with the customer. Before the
meeting terminates, he is notified about an upcoming meeting at another customer site
and decides to prepare for this new meeting. He picks up his smartphone and launches
the mobile CRM application to find the best route and estimate the travel time. For
this, the application uses a location service, a map service, and a route planning
service. There are several providers both for the map service and the route planning
service, and the CRM application has to select providers facilitating a quick and
precise answer to the agent. In this case the location service provided by the WLAN
at the customer site and a route planning service available through the Internet are the
best alternatives.

Scene 2. The agent ends the current meeting, and walks out to his car to go to his next
meeting. As he drives away from the customer’s building, the smartphone looses
connection to the customer WLAN, and the Internet connection is switched
seamlessly to GPRS by the mobile IP software installed on the smartphone. The
connection to the location service, which the CRM application needs to monitor
progress, is lost. The GPRS provider also offers a location service, but with a lower
accuracy. However, the car has a navigation system based on GPS, which provides a
more accurate location service via a Bluetooth connection. The car navigation system
also offers a navigation aid service. The CRM application reconfigures itself to use
these services, since this solution provides a better accuracy, and a increased visibility
to the user because of the larger display of the car navigation system. It also saves
battery life on the smartphone since the navigation aid component of the CRM
application has been replaced by an external service.

Scene 3. Half way to the meeting, the agent runs into a traffic jam caused by an
accident partly blocking the road, resulting in a temporary slowdown of his progress
towards his next destination. The CRM application detects this situation, alerts the
agent that he will be late, estimates the delay using data obtained from the route
planning service and offers the agent to notify affected customers. The agent accepts
this proposal and the CRM application sends text messages to the customers using the
available smartphone interface. The CRM application monitors progress and re-
estimates the arrival time regularly in order to be able to alert the meeting about
changes. Meanwhile the selected route planning service becomes congested, leading
to slow response and out-of-date information. The application detects this and
reconfigures to an alternative service that costs more to use but which provides more
up-to-date information.

3 Foundations

This section introduces the basis of the proposed approach by presenting concepts
related to planning-based middleware (cf. Section 3.1), and service-oriented

 Composing Components and Services 55

architectures (cf. Section 3.2). The section concludes by identifying the assumptions
that are considered in our contribution (cf. Section 3.3).

3.1 Planning-Based Middleware

Planning-based middleware refers to the capability of adapting an application to
changing operating conditions by exploiting knowledge about its composition and
Quality of Service (QoS) metadata associated to the application components [4]. We
therefore consider applications that are developed with a QoS-aware component
model. The QoS model associated with a ubiquitous application defines all the
reasoning dimensions used by the planning-based middleware to select and deploy the
component implementations that contribute to provide the best utility. The utility of
an application grows when its constituting components better fulfill user preferences
while optimizing device resource consumption.

Planning refers to the process of selecting components that make up an application
variant that provides the best possible utility to the end user. This process can be
triggered during several steps of the application life cycle, such as during the
deployment of the application or at runtime if the execution context suddenly
changes. The parts of the application that are considered during planning are called
variation points. These correspond to functionalities (type of behavior) defined in the
component frameworks modeling the application. Thus, each variation point identifies
a functionality of the application that can be implemented differently. In addition,
each component implementation suitable for a variation point is reified as a plan by
the planning-based middleware. A plan mainly consists of a structure that reflects the
type of the component implementation and the QoS properties associated to the
services it provides. In particular, the plan exhibits both requested properties (e.g.,
memory consumption, network bandwidth, network connectivity) and offered
properties (e.g., request throughput, response time, result accuracy) referring to the
QoS model of the application. To estimate the offered properties of a plan, the
planning-based middleware relies on property predictors. The property predictors are
used to predict the offered properties of a component implementation as a function
using the required properties and the current execution context as parameters. The
predictors can also take into account the state of the component implementation
associated to the plan—i.e., described, deployed, or running—to refine the prediction.
The QoS model used by the planning framework can be customized to handle new
QoS dimensions (e.g., monetary cost), while the property predictors can be configured
to support complex heuristics (e.g., QoS negotiation protocols). The predicted
properties are input to a normalized utility function that computes the expected utility
of a composition of plans making up an alternative application configuration. The
planning-based middleware compares the expected utility of all alternate application
configurations, and finally selects the one that provides the highest value.

Fig. 1 illustrates the architecture of the MADAM adaptation middleware. The
component Adaptation Manager supports the planning procedure by operating a
generic reasoning heuristics that exploits metadata included in the available plans. In
particular, the plans are composed based on their type compatibility to describe
alternative application configurations. Then, the heuristics ranks the application
configurations by evaluating their utility with regards to the application objectives.

56 R. Rouvoy et al.

This evaluation is achieved by computing the offered properties using the property
predictors associated to each plan contained in the selected application configuration
and retrieved from the component Plan Repository.

Fig. 1. The Architecture of the MADAM planning-based adaptation middleware

The component Plan Repository provides an interface IPlanBroker for the
Adaptation Manager to retrieve plans associated with a given component type during
planning. The Adaptation Manager may request plans that are compatible with a given
variation point, at which point the Plan Repository will search for matching
component types. Any additional metadata on the required component type will help
the Plan Repository to exclude plans and filter the search space [5]. Plans are typically
published to (and discarded from) the Plan Repository by applications and component
development tools using the interface IPlanRepository, and can thus trigger the
Adaptation Manager for re-planning of the application if needed (e.g., the discarded
plan was associated to a running component).

The reconfiguration process is handled by the component Configurator and consists
of taking the set of plans selected by the component Adaptation Manager and
reconfiguring the application. Before deploying the application configuration selected
by the reasoning engine, the component Configurator brings the current application
into a stable state, by suspending the execution of its contained components. Then, if
the component described by a plan is in the running or deployed state, the associated
component instance is configured for the variation point and connected to other
components using the component Binding Factory. If the component is in the
described state, then the component should be preliminary instantiated and deployed
by the component Platform using the component implementation description
associated to the plan. The result of the reconfiguration (e.g., reference of the
deployed instance) is automatically reflected into the selected plans.

Thus, the MADAM planning-based middleware offers a modular and extensible
approach for adapting applications built with various types of component models. In
particular, the concept of plan can be derived to support heterogeneous artifacts and

 Composing Components and Services 57

their associated states. Furthermore, the components Platform and Binding Factory
provide sufficient abstractions for supporting different middleware platforms (e.g.,
CORBA, J2EE, and Web Services).

3.2 Service-Oriented Architectures

When studying the SOA domain, we observe that there is no standard, universally
accepted definition of Service-Oriented Architectures. Erl [1] proposes to characterize
SOA by a set of fundamental design principles for service-orientation, such as
abstraction, reusability, composition, and loose coupling. SOA can also be considered
as an evolution of component-based architectures. In component-based software
engineering, applications are assembled from components that can be used without
any knowledge of either their implementation or their underlying platform. SOA goes
a step further by introducing an abstract business model defining the concepts of
functionality as a product or an enterprise resource, service provider, service
consumer, and service contract. While the owner of a component-based application is
responsible for the instantiation of components, the service provider is responsible for
the creation and the management of services. The most fundamental principle of
service-orientation is the standardized service contract [6]. In particular, services
express their semantics and capabilities via a service contract. Although SOA was
initially proposed to organize business software, service-orientation provides facilities
that are applicable beyond that scope. For example, support has been developed for
interface type and semantics descriptions, QoS descriptions, service discovery
protocols, and binding factories. Nowadays, the SOA concepts are more and more
exploited in a large set of producer/consumer systems, such as ubiquitous systems.

Service QoS properties are normally negotiated between the service provider and
the service consumer, and are described as part of the service contract as a Service
Level Agreement (SLA). A service level is used to describe the expected performance
behavior, such as response time and availability, or other properties such as billing,
termination terms and penalties in the case of violation of the SLA [1]. An SLA can
simply be created after selection of a fixed service level offer among several pre-
defined offers or, in more complex cases, after customization via a negotiation
process. An SLA may be valid for a limited period, or may be terminated explicitly.
During service provisioning, the provider should monitor the service quality, and
adapt the resources to avoid a violation of an SLA. The consumer may also perform
monitoring as well to avoid blindly trusting the provider.

In our work, support for services is motivated by the possibility to control the
usability, usefulness, and reliability of a ubiquitous application by adapting it to
changes in the service landscape. The following changes are relevant:

1. The service providers add (resp. remove) services in (resp. from) the
environment,

2. New services become accessible depending on changes in the ubiquitous
execution context, such as network conditions or locations,

3. The quality of service becomes better or worse due to context changes,
4. The violation of an SLA (by the user or the provider) leads to the termination

of the SLA.

58 R. Rouvoy et al.

Mechanisms for discovering changes in the service landscape and contract
violations are not discussed in this paper. The planning process is triggered when
changes occur. Planning requires the ability to reason on service properties (including
QoS) and dependencies between service properties and context.

3.3 Assumptions

Although it is also relevant to investigate our planning-based middleware to support
the planning of service compositions, this paper concentrates on the adaptation of
component-based applications operating in service-oriented environments. In
particular, our middleware does not explicitly control the resources in the provider
domain. Thus, we assume that the description and the deployment of SLA contracts,
made available to customers, are realized by the service providers. We assume that
service discovery and service levels identification are performed prior to planning.
Whether a SLA contract or a set of potential SLA contracts are negotiated during
discovery or during planning depends on the flexibility of provider offers and on the
consumer needs. Thus, we aim at providing flexible solutions and foresee that a
service level offered during service discovery may no longer be valid when requested
after selection during planning. Our solution must therefore cope with the possible
denial of the requested service level by the service provider.

4 Service Planning with SOA

Based on the above foundations, the SOA concepts can be integrated in our planning
framework by supporting a common and uniform representation of the different forms
of services—i.e., component descriptions, component instances, and remote services.
This common representation provides all the meta-information that is required to
evaluate the utility of a service for a given application. Thus, when a service is
discovered by the platform, its meta-information needs to be made available to the
planning framework in a suitable form (cf. Section 4.1). And, if selected by the
planning heuristic (cf. Section 4.2), a remote service should be connected to the
ubiquitous application by using a proper binding framework that provides
interoperability between the user- and provider-sides and that contributes to SLA
monitoring (cf. Section 4.3).

4.1 Plan Discovery and Brokering

According to Fig. 2, we propose to extend the component Adaptation Middleware
introduced in Fig. 1 to support the integration of remote services and service level
agreements. In particular, we have introduced new components (the darkest ones in
the figure) to support different types of remote services. To do so, the component
Adaptation Middleware integrates a composite component SOA that isolates the
integration of a given SOA technology (e.g., Web Service, CORBA, or UPnP). This
separation of concerns allows also the adaptation middleware to combine several
SOA technologies using different implementations of the component SOA. This
combination is achieved by extending the component Plan Repository with a

 Composing Components and Services 59

component Plan Broker that federates the local Plan Repository with the components
Service Discovery used to generate plans describing discovered remote services. In
particular, the component Service Discovery encloses the service discovery protocols
integrated in the middleware to advertise any newly discovered services to the Plan
Repository [7]. Plans for these remote services are generated based on contracts
negotiated by the component SLA Negotiation when discovered so that they are
available when the Adaptation Manager initiates an adaptation at a later time. Plans
are automatically discarded and removed from the Plan Repository when remote
services disappear or for some reason become unavailable to the middleware.

Fig. 2. The Architecture of the MUSIC planning-based adaptation middleware

SLA contracts can be either static or allow for some dynamic negotiation [2]. One
example is a service level described by the service provider as QoS properties that are
available at either static or negotiable cost. Furthermore, a service may offer a
predefined set of service levels. When such a service is detected by the component
Service Discovery, it generates a new service plan enclosing structural and behavioral
metadata related to the service (e.g., interface type description and contracts). Then,
for each service level associated to this service, the component Service Discovery
publishes an extended version of the service plan into the Plan Repository to reflect
the alternative service levels available. This service level plan inherits from the
metadata of the service plan and completes it with the additional QoS properties
described by the service level (e.g., service accuracy and cost).

60 R. Rouvoy et al.

4.2 Plan Reasoning

The component Adaptation Manager is then able to take into account each set of
service levels when applying the reasoning heuristics. For planning to be efficient,
service negotiation is a time critical factor that should be resolved as soon as possible.
In our middleware, the negotiation is generally static, meaning that the negotiation is
performed during service discovery for static QoS properties (e.g., service cost)
described by the service levels. The resulting static QoS property values are included
into the service plan so that the property predictors can automatically report them at a
later time.

However, in presence of a flexible service level [1], the negotiation becomes
dynamic, meaning that the SLA contract is negotiated during the planning process.
Dynamic negotiation is particularly useful when the Adaptation Manager needs to
reason about up-to-date QoS properties (e.g., current service accuracy). In this case
the property predictors, when invoked by the reasoning heuristics, delegate to the
component SLA Negotiation the negotiation of the requested property. The negotiation
protocol is driven by Service Level Objectives (SLOs) [8] configured via the interface
IServiceLevelObjectives. These objectives act as pre-defined criteria for negotiating a
SLA contracts. As an example, the agent’s company can define an SLO to minimize
the response time of a service without exceeding its daily phone budget. Furthermore,
the property predictor integrates a cache mechanism to reduce the latency of the
negotiation protocol. This means that if two flexible service levels evaluated by the
planning framework refer to the same QoS property of the associated service, then
the negotiation protocol will be executed only once and the result of this negotiation
will be considered valid for all the service levels associated with this service during
the planning process.

Finally, the utility of application configurations using these service level plans will
also get compared to application configurations based on plans associated with
components, which can be locally deployed on the device, as well as plans
representing the instance of the component or service already used by the application.
The reasoning heuristics will therefore provide a uniform ranking of alternative
application configurations, and the Adaptation Manager will select and deploy the
configuration predicting the highest utility.

4.3 Plan Deployment and Configuration

As mentioned in Section 3.1, the component Configurator generally iterates over the
plans composing the new application configuration to reconfigure the application. The
support of remote services implies that it can now face three different situations. If
the plan refers to an instance of a component, which is already used by the current
application, the Configurator reuses this instance in the new configuration. If the plan
refers to a component for which no instance is currently available, the Configurator
uses the component Platform, to create and deploy a new instance of the component.
Finally, if the plan refers to a remote service available in the environment, the
Configurator uses the component Service Binding to generate a specific component

 Composing Components and Services 61

that will act as a service proxy1. A service proxy is a local representative of the remote
service accessed by the application. In particular, it implements the service type
described by the application components and encapsulates the communication
protocol used to access the remote service. During this binding phase, the SLA
contract associated with the selected plan is provisioned and enforced by the involved
parties. This includes the reservation of computing resources by the provider and the
deployment of SLA monitoring facilities [8]. This means that the SLA contract
associated to the selected service is transferred to the component SLA Monitoring.

The service proxy implements also a disconnection detection algorithm due to the
ubiquitous aspect of the application. This disconnection support is inspired from the
principles of Ambient programming [9]. When loosing the connection to a remote
service, the proxy stores the incoming service requests in a queue and returns a non-
blocking future object to the application. The future object includes a block of code
that is triggered when the service connection is resolved to process the result of the
request. If the connection is lost for a long period, the service proxy breaks the SLA
contract via the component SLA Negotiation. This notification triggers an adaptation
of the application, and transfers the request queue to the new component (or service
proxy) that will be planned and deployed.

Finally, the service proxy is also responsible for monitoring the dynamic QoS
properties associated to the SLA contract agreed with the service [10]. To do so, the
service proxy collects metrics at runtime (e.g., the service response time) and reports
the observed values to the component SLA Monitoring. This component is responsible
for breaking the SLA contract if the observed value violates the value agreed. An
example of violation of this contract can be a response time observed by the service
proxy above the threshold agreed in the SLA. In practice, the component SLA
Monitoring removes the associated service level plan from the Plan Repository to
trigger a new adaptation of the application.

5 Case Study

As a preliminary validation of our approach, in this section we present a case study
based on the scenario described in Section 2.

The architecture of the CRM application is introduced in Fig. 3. It basically supports
two alternative compositions. Both contain a component GUI that presents a graphical
user interface on the smartphone and a component Main that embeds the application
logic and binds the different functionalities together. Main interacts with the CRM
service to retrieve calendar and customer information, and with a Route Planning
service to find the shortest route to reach a meeting location as well as the estimated
travel time. It also uses a Navigation service to provide navigation aid to the user and a
messaging service to alert affected customers about delays. In composition a) the
navigation service is provided by a component Navigation deployed on the smartphone,
which displays a map, the recommended route, and the current location on the
smartphone display using the GUI. This component Navigation depends on a Map
service and a Location service provided by a third party service provider. In

1 Service proxy component bytecode is generated at runtime using the ASM bytecode

manipulation framework (cf. http://asm.objectweb.org). The implementation details are out of
the scope of this paper.

62 R. Rouvoy et al.

composition b) the Navigation service is provided by a third party service provider,
supposed to use the provider’s display to show the same information to the user. The
QoS properties and service types relevant for the case study are specified in Table 1
and 2. Property predictors for the application, specified as functions of the properties of
the services the application depends on, are associated with the compositions in Fig. 3.

Fig. 3. The architecture model of the CRM client application

Table 1. The relevant QoS properties defined in the CRM client application

Property Name Description Value range
cost Cost of using the service 0-?
acc Accuracy, for example of a location 1-10
det Level of detail of a map 1-10
rec Recency of traffic info 1-10
bat Battery units consumed by a component 1-100

Table 2. The service types defined in the CRM client application

Service Name Description Requested properties
loc Locates the device geographically cost, acc
map Provides a map of a limited area cost, det
route Establish the fastest route between two

locations and estimates the travel time
cost, rec

nav Provides navigation aid cost, acc

The landscape of remote services and how it evolves through the scenario is
described in Fig. 4. The services are described by QoS properties that, together with
the resources needed for communicating with them, determine the adaptation of the
application.

 Composing Components and Services 63

Fig. 4. The service landscape for the CRM client application

We did a simulation of the adaptation reasoning on this use case. In the simulation
we also took into account estimation of the power consumption of the different
alternatives, based on predictors for usage of memory, CPU, and network bandwidth.
For the sake of simplicity2, we used a simplified utility function assuming that the
user prefers low cost (i.e., to minimise cost), high accuracy (i.e., to maximise acc),
and needs to save battery (i.e., to minimise bat). Thus, we define the function
evaluating the utility of a CRM application configuration as the weighted sum of the
normalised QoS properties (using the function norm(…)):

)(
)(

)(cos
cos

batnorm

user
accnormuser

tnorm

user
utility bat

acc
t +×+=

Table 3 summarizes the computed utility of the best configurations in different
situations during the scenario.

Table 3. The CRM alternative configurations with their associated normalized utilities

Configuration Utility
Composition loc map route Scene 1&2 Scene 3
Local navigation WLAN Commercial Commercial 0,42 0,42
Local navigation WLAN Free Free 0,40 0,35
Remote navigation Bluetooth Free Free 0,66 0,54
Remote navigation Bluetooth Free Commercial 0,58 0,58

2 In this scenario, we do not demonstrate the direct impact of memory, CPU, or network

bandwidth variations on the computed utility values.

64 R. Rouvoy et al.

During the initial scene of the scenario, when the agent is in a meeting at a
customer site, we observe that among the configurations available in this situation,
composition i) using a WLAN Location service, binding to the commercial route
planning service predicts the highest utility and is therefore chosen. In scene 2,
when entering the car, the services provided by the car navigation system are
discovered by the middleware component Bluetooth Service Discovery, which
publishes the associated service plans (including position accuracy and battery
usage as static QoS properties / response time as a dynamic QoS property) into the
Plan Repository. After the agent has driven out of reach of the customer WLAN, the
WLAN Location service plan is discarded from the Plan Repository and thus triggers
the planning process. The configuration based on composition ii), the Navigation
service of the car GPS and the Free Route Planning service predicts the highest
utility among the possible configurations. The adaptation middleware therefore
reconfigures the CRM application to this configuration by generating Navigation
and Route service proxies. In scene 3, the accuracy of the Free Route Planning
service drops from 4 to 1. The service proxy observes this and notifies the
component SLA Negotiation, which triggers a re-planning. The drop in accuracy of
the Free Route Planning service causes the utility of the running configuration to
fall below the predicted utility of the corresponding configuration with the
Commercial Route Planning service. Therefore the Adaptation Manager selects this
configuration and asks the Configurator to perform the reconfiguration of the
service binding of the application.

6 Related Work

Adaptive Service Grids (ASG) is an open initiative that enables dynamic composition
and binding of services, which is used for provisioning adaptive services [11]. In
particular, ASG proposes a sophisticated and adaptive delivery service composed of
three sub-cycles: Planning, binding, and enactment. The entry point of this delivery
lifecycle is a semantic service request, which consists of a description of what will be
achieved and not which concrete service has to be executed. Compared to our
planning-based middleware, ASG focuses only on the planning per request of service
workflows with regards to the properties defined in the semantic service request.
Thus, ASG does not support a uniform planning of both components and services as
our planning-based framework for ubiquitous applications does. However, we think
that our planning-based middleware can be extended to integrate ASG adaptive
services and seamlessly support dynamic enactment of service workflows that can
provide the services required by a ubiquitous application.

Menasce and Dubey [12] propose an approach to QoS brokering in SOA.
Consumers request services from a QoS broker, which selects a service provider that
maximizes the consumer’s utility function subject to its cost constraint. Utility
functions express the usefulness of a system as a function of several attributes, such as
response time, throughput, and availability. The approach assumes that service
providers register with the broker by providing service demands for each of the

 Composing Components and Services 65

resources used by the services provided as well as cost functions for each of the
services. The QoS broker uses analytic queuing models to predict the QoS values of
the various services that could be selected under varying workload conditions. This
approach is of interest from both the viewpoint of a consumer and a provider. While
the client is relieved from performing service discovery and negotiation, the provider
is given support for QoS management. The approach, however, requires the client
device to be able to access the broker, but this might not be possible in mobile
environments. It also assumes that the consumer is able to determine the expected
service properties. Our approach differs in that it considers the offered properties as
alternatives to determine the best application configuration.

CARISMA is a mobile computing peer-to-peer middleware exploiting the principle
of reflection to support the construction of context-aware adaptive applications [13].
Services and adaptation policies are installed and uninstalled on the fly. CARISMA
can automatically trigger the adaptation of the deployed applications by detecting
execution context changes. CARISMA uses utility functions to select application
profiles, which is used to select the appropriate action for a particular context event. If
there are conflicting application profiles, then CARISMA proceeds to an auction-like
procedure to resolve (both local and distributed) conflicts. Contrary to MUSIC,
CARISMA does not deal with the discovery of remote services that can trigger
application reconfigurations. However, the auction-like procedure used by CARISMA
could be integrated in the MUSIC middleware as a particular implementation of the
component SLA Negotiation.

ReMMoC is a dynamic middleware that supports interoperability between mobile
clients and ubiquitous services [14]. During run-time, the ReMMoC service discovery
component reconfigures itself and the remote service binding to match the protocols
of the discovered ubiquitous services. Like MUSIC, ReMMoC uses architecture
specifications for both the initial configuration and reconfigurations. However,
ReMMoC does not support anything like service planning or discovery of service
implementation alternatives, but applies rule-based policies that are limited to a fixed
set of static component compositions.

7 Conclusion and Perspectives

In this paper we have introduced the design of a QoS-driven generic planning
framework for self-adaptive mobile applications, which seamlessly supports and
mixes component-based and service-based configurations. In particular, we have
shown that the framework is able to adapt to changes in a landscape of ubiquitous
remote services that may dynamically come and go, and where the offered service
quality may vary. The framework exploits these changes to maximize the overall
utility of applications. To that aim, the paper has shown how the planning middleware
evaluates discovered remote services as alternative configurations for the
functionalities required by a mobile application. The planning framework deals
directly with SLA protocols supported by the services to negotiate the best quality of
service for the user.

66 R. Rouvoy et al.

As a preliminary validation of our approach, the paper also explained how the
planning framework handles a use case scenario in which a CRM application of sales
agents exploits ubiquitous services, such as a location service, map service and traffic
information service to improve the utility of the CRM application whenever such
services are available.

In our future work, the presented planning framework will be realized as part of the
MUSIC project. The framework will be validated using real world pilot applications
of the industrial partners of the MUSIC project (http://www.ist-music.eu).

Acknowledgements

Thanks to partners of the MUSIC project and reviewers of the SC symposium for
valuable comments. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166). The scenario was inspired by a
demonstrator application developed in the OSIRIS project (ITEA 04040 –
http://www.itea-osiris.org) to evaluate the OSIRIS service platform.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,
Englewood Cliffs (2006)

2. Dan, A., Ludwig, H., Pacifici, G.: Web service differentiation with service level
agreements. IBM White Paper. pages 24 (May 2003)

3. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
Utility-based Adaptivity Model for Mobile Applications. In: Proceedings of the 21st
International Conference on Advanced Information Networking and Applications
Workshops (AINAW), pp. 556–563. IEEE, Niagara Falls, Ontario, Canada (2007)

4. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, E., Lund, K., Gjørven, E.: Using architecture
models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

5. Brataas, G., Hallsteinsen, S., Rouvoy, R., Eliassen, F.: Scalability of Decision Models for
Dynamic Product Lines. In: International SPLC Workshop on Dynamic Software Product
Line (DSPL). Kyoto, Japan, pages 10 (September 2007)

6. Erl, T.: SOA: Principles of Service Design. Prentice-Hall, Englewood Cliffs (2007)
7. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An Adaptive Middleware to Overcome Service

Discovery Heterogeneity in Mobile Ad Hoc Environments. IEEE Distributed Systems
Online 8(7), 1 (2007)

8. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11(1), 53–81
(2003)

9. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
Oriented Programming. In: Companion of the 20th annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2005)

10. Morgan, G., Parkin, S., Molina-Jimenez, C., Skene, J.: Monitoring Middleware for Service
Level Agreements in Heterogeneous Environments. In: Proceedings of the 5th IFIP
conference on e-Commerce, e-Business, and e-Government (I3E), Poznan, Poland,
October 26-28, 2005, vol. 189, pp. 79–93 (2005)

 Composing Components and Services 67

11. Fahringer, T., et al.: Adaptive Service Grids, White Paper. Deliverable (March 2007),
http://asg-platform.org

12. Menasce, D., Dubey, V.: Utility-based QoS Brokering in Service Oriented Architectures.
In: Proceedings of the International Conference on Web Services (ICWS), Salt Lake City,
Utah (July 9-13, 2007)

13. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications. IEEE Transactions on Software Engineering
29(10), 929–945 (2003)

14. Grace, P., Blair, G., Samuel, S.: ReMMoC: A Reflective Middleware to Support Mobile
Client Interoperability. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1170–1187. Springer, Heidelberg
(2003)

Component-Based Access Control:

Secure Software Composition
through Static Analysis�

Pierre Parrend and Stéphane Frénot

INRIA ARES / CITI, INSA-Lyon, F-69621, France
Tel.: +334 72 43 71 29; Fax.: +334 72 43 62 27

{pierre.parrend, stephane.frenot}@insa-lyon.fr

Abstract. Extensible Component Platforms support the discovery, in-
stallation, starting, uninstallation of components at runtime. Since they
are often targeted at mobile resource-constrained devices, they have
both strong performance and security requirements. The current security
model for Java systems – Permissions – is based on call stack analysis.
This is very time-consuming, which makes it difficult to use in production
environments.

We therefore define the Component-Based Access Control (CBAC)
Security Model, which emulates Java Permissions through static analysis
at the installation phase of the components. CBAC is based on a fully
declarative approach that makes it possible to tag arbitrary methods as
sensitive. A formal model is defined to guarantee that a given component
have sufficient access rights, and that dependencies between components
are taken into account.

A first implementation of the model is provided for the OSGi Plat-
form, using the ASM library for code analysis. Performance tests show
that the cost of CBAC at install time is negligible, since it is executed
together with digital signature verification which is much more costly.
Moreover, unlike Java Permissions, the CBAC security model does not
have any runtime overhead.

1 Introduction

Extensible Component Platforms enable the composition of components which
are provided by several issuers and that can be loaded, installed and uninstalled
at runtime. In the Java world, such platforms can be Java Cards [17], MIDP [12],
or the OSGi platform [14]. The functional composition is supported for instance,
in the case of the OSGi Platform, through efficient support of dependency reso-
lution. Composition of non-functional properties, such as security, are so far not
supported in such systems.

To support the composition of access rights of components, we propose the
Component-based Access Control (CBAC) Security Model. The objective is to

� This work is partially funded by MUSE II IST FP6 Project n026442.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 68–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

CBAC: Secure Software Composition through Static Analysis 69

replace Java Permissions through validation of the access rights via static code
analysis. Permissions prove to be difficult to use in production environments
due to the excessive overhead they imply at runtime1. To reduce this, we take
advantage of the installation phase of the bundles to perform suitable checks to
free the runtime phase from costly checks. The advantages of this approach based
on static-analysis are numerous. The main ones are the gain of performance
at runtime, the absence of program interruption, and the flexibility of policy
expression. The latter is fully declarative, which makes it possible to protect
additional JVM methods (Threads, ClassLoader) and component methods.

This paper is organized as follows. Section 2 presents the existing security
models for Java Component Platforms. Section 3 presents the CBAC Security
Model. Section 4 presents the validation of our approach. Section 5 concludes
this work.

2 Security Models for Java Component Platforms

Since it has been designed with security in mind and since it has been subjected
to extensive testing by the community after its initial releases, the Java Virtual
Machine [13] is usually considered a very secure execution platform.

Various security mechanisms have been proposed to build secure Java Plat-
forms. In this section, we review them to identify whether they provide suitable
solutions for Component Platforms. First, the J2SE security mechanisms are
presented. Then, optimizations for access control through static analysis, which
limit verification overhead at runtime, are discussed. Lastly, security mechanisms
for Component Systems are presented.

2.1 Java Security

The security properties of the Java Component Platform are supported by the
Virtual Machine itself, which provides a platform that is able to fully isolates
the applications from their environment. These mechanisms build a sound basis
to support a specific Access Control mechanism based on method calls stack
inspection: Stack-based Access Control (SBAC).

The Java Virtual Machine is characterized by following built-in security fea-
tures that makes it safe: type safety, automatic memory management, Bytecode
validation and secure class loading.

Type Safety ensures that programs cannot contain type mismatches, and can-
not execute elements that are not functions [21]. It prevents the use of pointers
to execute arbitrary code and to prevent buffer overflows.

Automatic memory management is performed through Garbage Collection. It
prevents memory leaks and thereby relieves the developer from memory man-
agement, which is error prone.

Bytecode validation consists of checking the compliance of the executable
code to the JVM specification before it is loaded for execution. In particular,
1 Our tests show that the performance loss amounts between 55% and 144% for specific

calls.

70 P. Parrend and S. Frénot

this prevents the delivery of malicious code in an untrusted component that
could be contrived to abuse the platform.

Secure class-loading provides a sound namespace isolation between different
ClassLoaders. The namespace isolation ensures that no conflict occurs when in-
dependent components provides classes with the same name and that no access
is possible to objects and classes that are not purposely made publicly available.
Some platforms have been developed that allow to re-establish and control the
access between ClassLoaders: the OSGi platform is an example [14]. Secure class-
loading therefore allows the concurrent execution of applications that should not
interact with each others.

Thanks to these language-level security properties, access control models can
be defined in Java-based System. The initial paradigm is Sandboxing, which
prevents an untrusted application (such as an Applet) to access the host system
[9]. This restrictive view of security has been extended to allow secure execution
of partially trusted code [10]: an application could need to access the file system,
but may not be trusted to perform network communications to avoid backdoors.
In this case, granted permissions would encompass ‘FilePermission’, but not
‘SocketPermission’, for instance.

To support such a security model, Stack-based Access Control (SBAC) is
used. Whenever a sensitive call is reached, the whole call stack is re-built, and
the different Protection Domains of the code are identified. A Protection Domain
matches a code signer (i.e. code provider) or a specific code location on the local
file system. For each Protection Domain access is granted to a certain number of
actions. If all Protection Domains are associated with sufficient grants to execute
the whole call stack, the sensitive call is executed. Otherwise, the call is aborted
and an Exception is launched.

SBAC provides a fine-grained security model that is tightly integrated in the
JVM and in the application. However, it has also several limitations. First, the
permissions are defined programmatically and cannot be extended for additional
methods. Secondly, the program aborts if no sufficient permissions are avail-
able, which can cause significant user trouble. Thirdly, the runtime performance
overhead is excessive, and often causes the security features to be neglected in
production systems. Significant optimization efforts have been done [11], but
performance overhead in unavoidable when the whole call stack is to be rebuilt
at each check.

2.2 Static Analysis for Optimization of Runtime Checks

The performance overhead at runtime that is implied by the SBAC paradigm
urges the optimization of the verification process. Two main solutions exist:
optimization of runtime analysis, and identification and removal of redundant
checks.

The first approach to SBAC optimization is to perform optimization of run-
time analysis through static analysis before the execution. This approach avoids
rebuilding the call stack at each security check.

CBAC: Secure Software Composition through Static Analysis 71

The process is the following: an abstract model of the code is built out of the
program code. This model is exploited at the check point instead of the actual
call stack. One method used to perform validation and to make this abstract
model available throughout the code is Security Passing Style (SPS) [19,20].
SPS consists in rewriting method calls to add an additional parameter which is
a pointer to the abstract model. This method can be used to enforce arbitrary
security model. Its application to SBAC is presented by [19,20].

Optimization can be done through two different strategies: eager [5,4] and
lazy [8] computation of the program state. The eager approach avoids numerous
re-computation when the number of security checks is high. The lazy approach
provides usually better performances since security checks are usually scarce in
the code. Both strategies are proved to be formally equivalent [3].

The main limitation of static analysis is that the abstract model of the pro-
gram builds a slightly bigger set than the actual call stack. This causes a (limited)
number of false positive.

The second approach to SBAC optimization is the identification and removal
of redundant checks. Actually, when a given piece of code has the right to access
a given file, this right will not be withdrawn if the same code - with the same
call stack - have a renewed access to the file.

Removal of redundant checks and of dead code is defined in an abstract way
by [6]. Algorithmic example of such removal is given by [3]. The implementation
of these models can be done with call graphs [8].

Removal of redundant checks is performed as a complement to optimization
of call stack computation and uses the same techniques of code rewriting. It
implies an additional overhead during code analysis but provides only limited
performance gain at runtime.

Such optimizations do not solve all drawbacks of the SBAC model. The run-
time overhead is still non negligible, and the conservation of runtime checks
preserves program interruption which is not compatible with a satisfactory user
experience.

2.3 Securing Java Components

The strong security features that are provided by the JVM and the sound mod-
ular support enables Component Platforms to be defined that enable the re-
alization of complex applications through software composition. Securing these
component platforms is done in two steps. First, the deployment must be se-
cured. For more information related to this aspect, see [15] and [16]. It will not
be considered further here. Secondly, access control must be adapted to support
the dynamic life-cycle of the components.

Dynamic Permissions. In single application Java systems, permissions to access
sensitive methods are set statically in the java.policy file. In extensible compo-
nent platforms, where components are installed, started, stopped and uninstalled
at runtime, these permissions must be set at runtime. Dynamic permissions are
therefore defined: for each issuer, a specific permission set is given. When com-
ponents from new issuers are installed, a suitable permission set is introduced.

72 P. Parrend and S. Frénot

Dynamic permissions are defined both in MIDP [1], and in OSGi [14]. However,
few implementations seem to be actually available, which let think that the spec-
ified solutions do not match widespread use cases with a satisfactory usability
level. The main restriction is the following: dynamic permissions are often set by
the user when required. This causes an uncomfortable alternative: either the pro-
gram crashes in the middle of a computation, or the user is disturbed every now
and then to add new permissions which consequences she does not understand.
Moreover, software composition and the interdependence between components
is not taken into account. Dynamic permissions also have the same drawbacks
as standard permission: runtime performance overhead, and the impossibility
of defining new permissions types, which could be necessary in highly dynamic
environments. Due to a lack of maturity, the current dynamic permissions for
software component platforms do not seem to be well suited for their target
applications.

Taking Composition into Account for building secure Systems. The specific pro-
gramming paradigm that is implied by software composition provides new an-
chors to build secure software: the component life-cycle management support,
and the interaction between the components. However, none of them are so far
exploited in security specifications, which are directly derived from monolithic
security mechanisms.

The life-cycle support provides a suitable check point for security control
that enable disturbance free execution: the install phase. Currently, only digital
signature validation is performed at this moment. More control, such as static
analysis, could be introduced to free the runtime from performance overhead
and impaired user experience that is caused by standard execution permissions.

The interaction between the components can be exploited at this install time
check point. Actually, dependency resolution is performed during this phase.
Extending the performed computation with security checks would prevent a
later analysis of the program state and call stack, and makes it possible to
validate the security properties of the applications before they are launched.
Consequently, runtime checks would be greatly limited, which would prevent
unpleasant program interruption - or dangerous user intervention.

3 The CBAC Security Model

The CBAC - Component-based Access Control - Security Model aims at taking
advantages of the specific properties of software composition to propose a secu-
rity model that is both more performant and more suitable to the use cases of
Java Component Platforms.

3.1 Principles

The principle of the CBAC Security Model is to perform an install time analysis
of the installed components, while taking the emerging compositional properties
into account.

CBAC: Secure Software Composition through Static Analysis 73

The access rights for a component that is to be installed are checked im-
mediately before its installation. If the rights are sufficient, the component is
installed. It they are not, the component is rejected. The access rights must be
computed in two complementary fashions: first, the component must not perform
forbidden actions itself; secondly, the component must not depend on compo-
nents that perform actions that it is not allowed to perform. This interdiction
must consider two specific cases: privileged components that can perform sensi-
tive actions on behalf of others with less rights (for instance a log service must
access the file system, but the logged component need not to have itself the
access right to the log file); services, which build runtime dependencies, and are
used in Service-Oriented Programming [7] environments.

3.2 Hypotheses

The CBAC Security Model is valid when the two following hypotheses are valid:

– the component platform itself is not modified i.e. the process of access right
verification cannot be tampered with. This can be obtained through the use
of a Trusted Computing Base [2].

– each component contains a valid digital signature, which guarantees that no
modification has been done to the component archive and that the compo-
nent signer name is unique and known by the platform2.

The CBAC Security Model is defined to fully support secure OSGi appli-
cations. Since it considers fundamental properties of software composition, it
should be easily adaptable to other specifications of component platforms. How-
ever, it may be that specific options or features are not defined.

3.3 Modelization

The definition of CBAC is performed in two steps.
First, CBAC is defined for one component. When a single component is in-

stalled, does it own the rights to execute all the method calls it performs ? The
dependencies to other bundles are not considered, and sensitive methods from
the platform API only are considered.

Secondly, CBAC is defined for N components, taking into account the pro-
tection of component methods. When a component is installed that has depen-
dencies to other, does it have sufficient rights to execute the method calls it
performs both directly and indirectly via the dependencies ? Suitable grants are
to be available for the whole call stack. The methods provided by the platform
can be tagged as ‘sensitive’, as well as the ones provided by bundles. This means
that if a given bundle has a method that triggers a malicious action, such as e.g.
sending private data over the network, its access can be restricted.

2 In particular, this implies that default Java Archive signature verification tools
should not be used [16].

74 P. Parrend and S. Frénot

Static Permissions for one Component. Hypotheses Following parameters are
defined to describe security policy-related entities in a dynamic extensible com-
ponent platform:

b: a given bundle,
pf : the Component Platform,
C: the set of calls made by a bundle,
S: the set of all sensitive method calls in the Platform API,
I: the set of all innocuous method calls in the Platform API,
CS = C

⋂
S: the set of all sensitive method calls made by a bundle,

CI = C
⋂

I: the set of all innocuous method calls made by a bundle,
{p}: the set of bundle providers,
Ap: the set of authorized sensitive calls for the provider p ∈ {p}, i.e. the policy

for the provider p.

Theorem. CBAC permissions for one component (CBAC 1C) are valid if:

p, pf, b � CS ∧ Ap, CI (1)
with PSCpf,b = CS

Which means that for a given platform (pf) with a given bundle (b) and a given
bundle provider (p), calls are either innocuous (CI) or sensitive and authorized
for this provider (CS ∧ Ap). PSCpf,b is the set of Performed Sensitive Calls by
the bundle b on the Platform pf . This means that the set of Performed Sensitive
Calls by the bundle b on the Platform pf is the set of sensitive calls that are
identified in the bundle. Otherwise, that is to say if some sensitive calls that b
may perform is not allowed by the policy, the bundle is rejected. This mechanism
supports robust coarse-grained access control policies.

Proof. A bundle b is associated with the calls C it performs on the platform.
A platform pf is associated with the set of sensitive calls S, and the set of
innocuous calls i it makes available. C is a part of S and I. Thus, the platform
pf and the bundle b are associated to C, and consequently to the set of sensitive
calls it performs CS , which is a subset of C.

The bundle provider p is associated with the policy Ap, which is defined at
the platform level. If the permission is given, the performed sensitive calls CS

build a subset of the policy for p. Consequently, CS and Ap build a coherent
policy for the bundle b provided by p on the platform pf . b can thus be installed.
If the permission is denied, CS is not a subset of p, and CS and Ap do not build
a coherent policy. b cannot be installed.

A demonstration with Sequent Calculus is given in appendix A3.

Static Permissions for N Components - with Protection of Platform and Bundle
Calls. The computation of the component validation status for a new component
must consider two types of bundles in the dependency tree:
3 http://www.rzo.free.fr/publis/parrend08cbac appendix.pdf

CBAC: Secure Software Composition through Static Analysis 75

– Leaves L: the components that have dependencies to platform-provided pack-
ages only (simple applications, or libraries),

– Nodes N: the components that have dependencies both to the Platform and
to other components (complex applications, GUI ...).

The Figure 1 shows an example of a dependency tree for a default configura-
tion of the Apache Felix platform (version 1.0), which is an implementation of
the OSGi R4 Specifications.

Fig. 1. The Dependency Tree for a default Configuration of the Apache Felix Platform

Hypotheses. Following parameters are defined to describe security policy-
related entities in a dynamic extensible component platform for N components:

bi: the ID of the considered bundle,
{b}i: the list of bundles on which the bundle i depends,
CSpf,bi

: the sensitive calls performed by the bundle i directly to the platform,
or directly to the bundles on which it depends,

Api : the set of authorized sensitive calls for the provider p of the bundle i,
PSCbi: the set of Performed Sensitive Calls by the bundle i, directly to the

Platform or via method calls to other bundles,
PSCpf,bi : the set of Performed Sensitive Calls by the bundle i that are made

directly to the Platform, or directly to the bundles on which it depends,
PSC{b}i

: the set of Performed Sensitive Calls by the bundles on which the
bundle i depends. PSC{b}i

=
∑

bj in {b}i
PSCbj .

Theorem. The computation of the validation status of a component can be
made recursively.

• A leaf component bi ∈ L is valid if:

bi, pi, pf � Api ∧ CSpf,bi
, CIpf,bi

(2)
with PSCpf,bi = CSpf,bi

76 P. Parrend and S. Frénot

Which matches the case for one single component.
• A node component N is valid if:

bi, pi, pf � Api ∧ PSC{b}i
, ¬PSC{b}i

(3)
with PSCbi = CSpf,bi

∨ PSC{b}j
(4)

PSCbi is the set of Performed Sensitive Calls by the bundle bi b on the
Platform pf or on the bundles on which it depends. This means that a bundle
can be installed when the sensitive calls that are made directly to the platform
or to other bundles and all sensitive calls that are made via other bundles are
allowed by the current policy.

Proof. This can be demonstrated with the following argument through
recursion.

Suppose that the set of Performed Sensitive Calls for the bundle k, PSCbk
, is

available for all bundles k that are already installed on the gateway. The bundle
i, which has dependencies to a set of bundle bj , can be installed if its execution
does not break the access control policy through direct or indirect calls. The
value of PSCbi , the set of Performed Sensitive Calls for the bundle i, can then
be extracted.

A demonstration with Sequent Calculus is given in appendix B4.
The implementation of the CBAC security model for N components requires

two complementary mechanisms: checking at install time for the calls that are
made directly from the bundle to be installed to the platform, and building of
the dependency tree to verify that the required permissions are granted. The
bundle bi can only be installed if a valid dependency tree can be identified.

The mechanism presented so far provides a minimal enforcement process for
execution permissions that can yet be used to protect real applications. As
for the CBAC model for one component, the benefits are the absence of run-
time overhead, and the declarative - and thus extensible - policy declaration
mechanism.

The limitations are the following. First, the validation is performed at a quite
coarse-grain level. For instance, the installation of an application can be denied
since it relies on a library that contains forbidden sensitive methods, even though
these methods are never called. This can occurs for instance in the case of con-
ditional instructions. Secondly, it is not possible to define sensitive method calls
that would be provided by the components themselves.

The mechanism of protection of bundle calls shows both the flexibility and
limitation of component-grained static access control. The advantage is that per-
missions can be set in a declarative manner, that is to say that unlike default
Java Permissions, any call can be considered as ‘sensible‘ - for instance for a par-
ticular application type, or in case a vulnerability is discovered. The limitation
is that component-grained access control does not provide the policy designer
with context-dependent behavior: if a given sensitive method is used only in
rare cases or is never used, but forbidden by the policy, the bundle cannot be
installed.
4 http://www.rzo.free.fr/publis/parrend08cbac appendix.pdf

CBAC: Secure Software Composition through Static Analysis 77

Advanced Features. To as to provide a proper protection of OSGi-based appli-
cations, several advanced features have to be defined.

The first feature is Privileged Method Calls. Privilege calls means that a
given component can execute sensitive calls, even though the initial caller of
the method does not own sufficient rights. This is for instance the case of log-
ging mechanisms. An component from a less trusted provider can log its action
on a file through the platform logger without having access rights to the file
system.

The second advanced feature which is provided by the CBAC model thanks to
its declarative nature is the support of both Positive and Negative Permissions.
Negative permissions are set by identifying a given method call as ‘sensitive’.
Positive Permissions are set by allowing a given signer to execute some methods.
A more flexible expression could be introduced in the future, in particular to
support negative permissions without impacting the policies for other providers.

The last required feature is to support Access Control for Service Calls. The
OSGi Platform support Service Oriented Programming (SOP) [7], and thus calls
through services that are published inside the platform. Since the services are
resolved at runtime, a runtime mechanism is to be defined that enforces the
CBAC policy for these service. Otherwise, package level access control can be
by-passed through service calls.

4 Validation

The validation of the Component-Based Access Control model is performed
through its implementation, performance analysis and identification of the ad-
vantages and drawbacks of the current prototype.

The principle of CBAC is the following. When an OSGi bundle is to be in-
stalled on an OSGi Platform, its digital signature is checked. If this latter is valid,
the CBAC Engine verifies whether the bundle signers have sufficient rights to
execute all the code that is contained in the archive. If enforced policies do al-
low it, the bundle is installed, and then executed without further constraints.
Otherwise, it is rejected.

The innovation of the approach is to take advantage of the installation phase
of the OSGi bundles to perform access right verification.

4.1 Implementation

The implementation of the CBAC security model is presented in this section.
Development choices are justified, and the integration with the Secure Felix 5

platform is explained. Expression of CBAC policies are then given, along with
an example.

The implementation of the CBAC Model is performed on the Felix6 imple-
mentation of the OSGi framework. Static Bytecode analysis is performed with
5 http://sfelix.gforge.inria.fr
6 http://felix.apache.org/

78 P. Parrend and S. Frénot

Table 1. Example of the cbac.policy File

sensitiveMethods {

java.io.ObjectInputStream.defaultReadObject;

java.io.ObjectInputStream.writeInt;

java.security.*;

java.security.KeyStore.*;

java.io.FileOutputStream.<init>;

};

sensitiveManifestAttributes {

Fragment-Host;

}

grant Signer:bob {

Fragment-Host;

java.io.ObjectInputStream.defaultReadObject;

java.io.ObjectInputStream.writeInt;

java.io.FileOutputStream.<init>;

java.security.Security.addProvider;

java.security.NoSuchAlgorithmException.<init>;

java.security.KeyStore.getInstance;

...

};

the ASM7 library, which is much smaller than other libraries for Bytecode ma-
nipulation, such as BCEL 8 or SERP9. An earlier prototype has also been built
using the Findbugs framework, which often implies an overhead of more than
100% in performance.

The CBAC model is part of a research project conducted at the Amazones
Team of the INRIA (CITI Laboratory, INSA-Lyon, France) that aims at defining
a secure OSGi platform. It is therefore integrated with SFelix, which support
a proper verification of the digital signature of OSGi bundles [16]. SFelix is
modified to make the list of valid signers available for the CBAC Engine. This
latter can then check whether the signers have suitable rights to execute all the
methods that it contains.

An example of CBAC policy is given in the listing 1: a policy file cbac.policy,
defines sensitive methods and required grants for a given signer. The syntax is
similar to Java Permissions ‘java.policy’ files.

CBAC policy is defined as follows. A list of sensitive methods, and one of sen-
sitive OSGi-related meta-data are defined. If a bundle contains sensitive meth-
ods or meta-data, its provider must be granted the right to execute them all.
Otherwise, it is rejected at install time. The policies are defined according to a

7 http://asm.objectweb.org/
8 http://jakarta.apache.org/bcel/
9 http://serp.sourceforge.net/

CBAC: Secure Software Composition through Static Analysis 79

declarative approach: it is possible to mark any method call as being sensitive.
This makes it possible to protect the framework against vulnerabilities that are
discovered after the release of the platform. On the contrary, Java Permissions
mechanisms that are coded in the framework itself freeze the set of sensitive
methods when the platforms (or any application) is released.

4.2 Performances

The main objective of the CBAC model is to relieve the OSGi platforms which
are often executed in resource-constrained environments from the overhead that
is implied by Java Permissions at runtime. It is therefore important to control
that the performances of the system are not too much impacted by this new
mechanism.

Tests have been performed with the implementation of the CBAC security
model for one component. Figure 2 shows the duration of the CBAC check only,
and Figure 3 shows the performance of Digital Signature validation and CBAC
Check, which are to be performed together to ensure the validity of the analysis.
It highlights the fact that for a limited number of sensitive methods (which is
usually the case), the overhead implied by CBAC is negligible when compared
to the duration of digital signature check. Note that the abscissa is not linear,
but represents the size of the various bundles that are available in the Felix
distribution of the OSGi Platform.

Fig. 2. Performances of OSGi Security: CBAC Check only

The test are conducted for all the bundles that are provided together with the
Apache Felix distribution, utility bundles and tests bundles. The performance

80 P. Parrend and S. Frénot

Fig. 3. Performances of OSGi Security: Signature and CBAC Check

overhead for small bundles (less that 25 KBytes) is less than 20 ms (between 3,2%
and 6,7% of the total validation process). For bigger ones (up to 130 KBytes),
less than 40 ms are required (less than 7,7% of the total validation process).
Out of the 59 test bundles, only five have a longer verification time. The bigger
bundles are 350 KBytes, 356 and 602 KBytes big, and require respectively 115,
116 and 141 ms. Since the digital signature for these bundles is checked in more
that one second, the overhead implied by CBAC can be considered as negligible.

4.3 Advantages and Limitations

The innovation of the CBAC approach is to take advantage of the installation
phase of the OSGi bundles to perform access right verification. Identified advan-
tages and known drawbacks are now presented.

The CBAC Model, when used together with a Hardened Version of the OSGi
Platform [15], supports a better protection that other available security mecha-
nism such as Java Permissions. This is shown in Figure 4. The 25% of unprotected
vulnerabilities are presented in our Technical Report on OSGi vulnerability [15],
and, interestingly enough, are due to the Java Virtual Machine, and not to
the OSGi Platform. This means that other Java Platforms also present these
weaknesses.

The identified advantages of CBAC are the following:

– no runtime overhead (unlike Java Permissions),
– no application interruption due to unsufficient execution rights (unlike Java

Permissions),
– no unsecure behavior of the users, which are driven with classical permissions

into allowing the execution of all untrusted code [18],

CBAC: Secure Software Composition through Static Analysis 81

Fig. 4. Protection Rate of existing OSGi Security Mechanisms: CBAC and others

– possibility of defining arbitrary sensitive methods and meta-data, which
makes it possible to protect the system from vulnerabilities that are dis-
covered after the platform release.

Moreover, the expression of policies is simpler that in the case of Java Permission,
since it is declarative rather that programmative. Since the syntax is very similar,
they can very easily be learned by Java developers.

The known drawback of the CBAC approach are the following:

– false positives are to be expected when compared to Java Permission. This
may not be a problem if the configuration (e.g. the trusted signers, the ap-
plicative bundles) of the target platforms is known beforehand, as is currently
the case in most OSGi-based systems: sufficient permissions can be set at
design time. However, it can be a restriction for pervasive systems, which
require an important interoperability of mutually unknown code.

– install time overhead (negligible, as shown in Figures 2 and 3),
– disk space consumption (333 KBytes, 319 KBytes of which are built by the -

unmodified - ASM library). Our current prototype is much smaller than the
original implementation as Findbugs Plugin (2,026 MBytes, mostly because
of the Findbugs and BCEL libraries that amounts to 2,003 MByte), and
much more performant (between 40 and 60 % of benefits for the various
archives). To be used in embedded systems, the unused code of the library
is to be pruned.

The formalization of CBAC is given in this study, and a first validation is given
based both on qualitative and quantitative criteria, which show that the CBAC
model is a performant and useful approach to Access Control for Extensible
Component Platforms, such as the OSGi Platform.

82 P. Parrend and S. Frénot

5 Conclusions and Perspectives

We propose the Component-Based Access ControL (CBAC) Security Model for
enforcing access control in Extensible Component Platforms. The principle is
to take advantage of the installation phase of the components to perform static
analysis, and to check that the composition of software components does not
break the defined policies.

CBAC is in particular defined to overcome the known limitation of standards
Java Permissions, which are often considered as too heavyweight to be used in
production environments. The tests that we perform show that this objective
is achieved, even though at the cost of additional false positives. The current
limitations of our implementation is that the support of dependencies (CBAC
for N components) is currently defined, but not yet implemented. Moreover, the
validation in a real system is still to be performed to check whether the defined
policy language is flexible enough. So far, there is no reason to think that this
is not the case.

Two directions of future works are to be considered. First, the CBAC security
model is to be tested for other specifications of component platforms, for instance
Java MIDP Profile, or non-Java environments. Our prototype has been tested
over the OSGi Platform, but only a limited set of OSGi-specific features have
been introduced, and adaptation should not introduce major issues.

Secondly, the prototype is to be validated in resource-constrained environ-
ments, to ensure that the process is lightweight enough to be used in PDA or
set-top boxes.

References

1. Porting Guide - Sun Javatrademark Wireless Client Software 2.0 - Java Platform,
Micro Edition. Sun Microsystem (May 2007)

2. Arbaugh, W.A., Farber, D.J., Smith, J.: A secure and reliable bootstrap architec-
ture. IEEE Symposium on Security and Privacy, 65–71 (1997)

3. Banerjee, A., Naumann, D.A.: A simple semantics and static analysis for java
security. Technical Report 2001-1, Stevens Institute of Technology (2001)

4. Bartoletti, M.: Language-based security: access control and static analysis. PhD
thesis, Universita degli Studi di Pisa (2005)

5. Bartoletti, M., Degano, P., Ferrari, G.L.: Static analysis for eager stack inspection.
In: Workshop on Formal Techniques for Java-like Programs (FTfJP 2003) (2003)

6. Bartoletti, M., Degano, P., Ferrari, G.L.: Stack inspection and secure program
transformations. International Journal of Information Security 2, 187–217 (2004)

7. Bieber, G., Carpenter, J.: Introduction to service-oriented programming (rev 2.1).
OpenWings Whitepaper (April 2001)

8. Chang, B.-M.: Static check analysis for java stack inspection. ACM SIGPLAN
Notices 41(3), 40–48 (2006)

9. Dean, D., Felten, E.W., Wallach, D.S.: Java security: From hotjava to netscape
and beyond. In: SP 1996: Proceedings of the 1996 IEEE Symposium on Security
and Privacy, p. 190. IEEE Computer Society Press, Washington, DC, USA (1996)

CBAC: Secure Software Composition through Static Analysis 83

10. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going beyond the sand-
box: An overview of the new security architecture in the java development kit 1.2.
In: Proceedings of the USENIX Symposium on Internet Technologies and Systems
(1997)

11. Gong, L., Schemers, R.: Implementing protection domains in the java development
kit 1.2. In: Network and Distributed System Security Symposium (1998)

12. JSR 118 Expert Group. Midp 2.0. Sun Specification (November 2002)
13. Lindholm, T., Yellin, F.: The Java(TM) Virtual Machine Specification, 2nd edn.

Prentice-Hall, Englewood Cliffs (1999)
14. OSGI Alliance. Osgi service platform, core specification release 4. Draft, 07 (2005)
15. Parrend, P., Frenot, S.: Java components vulnerabilities - an experimental classifi-

cation targeted at the osgi platform. Research Report RR-6231, INRIA, 06 (2007)
16. Parrend, P., Frenot, S.: Supporting the secure deployment of osgi bundles. In: First

IEEE WoWMoM Workshop on Adaptive and DependAble Mission- and bUsiness-
critical mobile Systems (ADAMUS 2007), Helsinki, Finland (June 2007)

17. Sun Inc. Java card platform specification 2.2.2 (March 2006)
18. Takesue, M.: A scheme for protecting the information leakage via portable devices.

In: International Conference on Emerging Security Information, Systems and Tech-
nologies, IARIA SecurWare (2007)

19. Wallach, D.S.: A New Approach to Mobile Code Security. PhD thesis, Department
of Computer Science, Princeton University (1999)

20. Wallach, D.S., Appel, A.W., Felten, E.W.: Safkasi: A security mechanism for
language-based systems. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 9(4), 341–378 (2000)

21. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (1994)

Adding Support for Dynamics Patterns to Static

Business Process Management Systems

René Wörzberger, Nicolas Ehses, and Thomas Heer

Department of Computer Science 3 - Software Engineering
RWTH Aachen, Germany

{woerzberger,ehses,heer}@i3.informatik.rwth-aachen.de

Abstract. Many companies use business process management systems
(BPMS) for modeling and execution support of their business processes.
Many processes are highly dynamic and require changes even during
execution. Common commercial BPMS fail to support such processes
appropriately since they work in a rather static manner, i.e. they demand
that the structure of a process is fixed before execution.

Our research group cooperates with an industry partner who uses a
static BPMS. This paper describes an approach that posteriorly extends
this static BPMS inasmuch as dynamic changes of processes during ex-
ecution are supported. The benefit of this approach is that our partner
in industry gains support of dynamic processes but still use the existing
BPMS and save investments related to it.

1 Introduction

The organization of most modern companies is aligned to their business pro-
cesses. Business process management systems (BPMS) provide means to define,
control and monitor business processes, which are often called workflows in this
context.

Common BPMS distinguish between build time and run time with regard
to processes. During build time workflow definitions are specified, which model
a certain process type, e.g. “adjustment of a claim” in an insurance company.
At run time, for each actual process case a workflow instance is created and
executed according to a certain workflow definition.

Although companies strive for automation of their business processes, most
processes are at least partly conducted by humans. These processes are often
dynamic, i.e. the structure of such processes evolves during process execution.
Most commercial BPMS support rapid adaptions of workflow definitions but
prohibit dynamic changes in workflow instances, like adding missing activities.
Thus, they cannot optimally support dynamic processes. This problem gave rise
to a new research field [1,2,3].

Within the collaborative research center IMPROVE [4] our research group
has realized the prototype AHEAD [5], which aims at the management of highly
dynamic development processes and interdigitates build time and run time. In
an ongoing research project we transfer our concepts to industry in cooperation

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 84–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adding Support for Dynamics Patterns to Static BPMS 85

with our partner AMB Generali Informatik Services (AMB-Informatik). Our
partner is the information technology service provider for the Generali Group,
which is a combine of insurance companies.

AMB-Informatik uses the WebSphere BPMS consisting of the workflow defini-
tion tool WebSphere Integration Developer (WID) and the run time environment
WebSphere Process Server (WPS)1 as solution basis for their customers. Web-
Sphere BPMS is rather oriented towards highly automated and predictable pro-
cesses. The support for dynamic processes is not in its focus. However, these dy-
namic processes occur and must also be handled by insurance companies. Thus,
we transfer the concepts of the prototype AHEAD by extending WebSphere
BPMS. Thereby, we gain support for dynamic processes while investments of
our partner in the WebSphere-based infrastructure can be saved.

The paper is structured as follows: Section 2 clarifies terms related to flexibility
and dynamics of BPMS. Dynamics can be categorized according to patterns,
which are described in Section 3. Section 4 explains our approach with regard to
the patterns and the extended WebSphere BPMS. Connections to other research
approaches are illustrated in Section 5. Section 6 concludes this paper with an
outlook on future work.

2 Flexibility and Dynamics of Workflows

Most workflow definition languages provide construct types like decision or iter-
ation to define at build time execution sequences of activities, which are valid at
run time. These construct types allow for some build time flexibility, that is, one
workflow definition specifies a (possibly infinite) set of valid execution sequences.
The workflow definition depicted in Figure 1(a), a simple review process, allows
for two execution sequences: one with Add Corrections and one without.

(a) Workflow definition (b) Definition with additional Check Style

Fig. 1. Example for run time dynamics

According to our industry partner, for a non-trivial process type it is neither
possible due to limited anticipatability nor desired because of lower maintain-
ability to build a workflow definition that covers all reasonable execution se-
quences. For instance, it might turn out during execution of Check Spelling that
the particular document is written in a bad style. Then, there is a need for an
additional activity Check Style before Add Corrections in the respective workflow
instance. In this case, it would be appropriate to dynamically change the running

1 All WebSphere trademarks are in possession of IBM Corp. (http://www.ibm.com).

86 R. Wörzberger, N. Ehses, and T. Heer

workflow instance (run time dynamics) such that the instance would conform to
the hypothetical workflow definition of Figure 1(b).

3 Dynamics Patterns

In most cases, the necessity to modify a workflow instance is recognized by
workflow participants of the respective workflow instance and should therefore
be conducted by them.

A workflow modeler normally needs the full set of constructs types at build
time to cover all reasonable execution sequences he is able to envisage. In con-
trast, at run time a workflow participant just uses a small subset of the available
construct types. That is because he does not consider workflow modeling as his
primary task but rather wants to satisfy current or oncoming exigencies for a
single workflow instance by a dynamic modification. Furthermore, we think that
most dynamic modifications follow certain patterns, which we exemplify in the
following by a simplified process type of a medical practice (cf. Fig. 2(a)).

(a) Workfl. def. (b) Adding (c) Removing (d) Realization (e) Iteration

Fig. 2. Examples for dynamics patterns

Dynamic Adding. During the enactment of diagnosis in a certain workflow in-
stance the doctor might recall a research project concerning the effectiveness of
certain treatments. Since the patient is willing to partake, the doctor has to assure
that the evaluation of the treatment will be executed after the treatment itself. The
best way to do this is to dynamically add an additional activity evaluate treatment
between the existing activities treatment and invoice (cf. Fig. 2(b)).

Dynamic Removing. In the process of the medical practice it is possible that
there are no findings resulting from diagnosis because the patient just suffers
from a slight indisposition. Consequently, the doctor dynamically removes the
activity treatment from the respective workflow instance (cf. Fig. 2(c)).

Adding Support for Dynamics Patterns to Static BPMS 87

Dynamic Realization. In a hierarchically defined workflow, where activities are
actually realized via sub-workflows, the best realization can often not be iden-
tified before run time. E.g., the doctor might dynamically realize diagnosis by
normal diagnosis conducted by himself or by a referral to a specialist (cf. Fig. 2(d)).
This decision is specific to each particular workflow instance.

Dynamic Iteration. In the medical process, errors might occur in each activity.
For instance, a severe mistake is a wrong finding resulting from a faulty diagnosis.
Such an error might be recognized during execution of treatment. Then, the
affected activities of the workflow instance, namely, diagnosis and its successor
activity treatment have to be dynamically re-iterated, i.e., they are carried out
again such that the data they produce can be corrected (cf. Fig. 2(e)).

4 Approach: Simulate Dynamics on a Static BPMS

In this section we describe our approach to provide support for the dynamics
patterns described in Section 3. The distinctive feature of this approach is that
our prototype is not implemented from scratch. Instead, we rather add another
layer on top of an existing BPMS by which we simulate a dynamic BPMS (cf.
Fig. 3). The fact that the underlying BPMS is static is hidden from both the
workflow modeler at build time and from the workflow participant at run time.
Although we have implemented a prototype on top of the concrete system Web-
Sphere BPMS in order to verify our approach, we think that it can be easily
adapted to other BPMS.

4.1 Approach Overview

At build time a WS-BPEL transformer augments workflow definitions modeled
in the language WS-BPEL2 via WID by additional WS-BPEL activities (e.g.
<invoke>, <switch>, <while>) yielding an augmented workflow definition Xa.
The transformer requires no user interaction. Hence, the additional dynamics
layer is opaque to the workflow modeler.

The run time counterpart of the WS-BPEL transformer is the dynamics com-
ponent. This component is accessed through two interfaces that serve different
purposes: (1) The dynamics component stores instance specific run time infor-
mation, e.g. actual variable values and routing informations for sub-workflow
calls. This run time information is accessed by the WPS through the WPS inter-
face. WPS uses this information for those WS-BPEL activities that have been
added at build time by the WS-BPEL transformer. (2) Likewise the WS-BPEL
transformer hides the dynamic aspect at build time, the dynamics component
hides the additional WS-BPEL activities from a workflow participant at run
time. Instead, it provides a participant interface which is used by a participant
GUI to render a graphical view of dynamic workflow instances. Furthermore, the

2 http://www.oasis-open.org/committees/wsbpel/

88 R. Wörzberger, N. Ehses, and T. Heer

existing systems
WebSphere BPMS

dynamics layer

workflow definition editor
WebSphere Integration
Developer (WID)

WS-BPEL transformer

workflow runtime environment
WebSphere Process Server (WPS)

build time run time

deploy-
ment

dynamics component

instance 1 of
definition A
instance 1 of
definition A

instance 1 of
definition A
instance 1 of
definition A

participant interface

WPS interface

DRD
assignments

DID
assignments

add DAIsadd DRDs add DIDs

dynamic views
on workflows

change
operations

lookup of
augmented variable

assignments

dynamic creation of
workflow instances

original
workflow
definition

X

augmented
workflow
definition
Xa

receive

DAI1

A

DAI2

B

DAI3

reply

receive

A

B

reply

receive

DAI1

A

DAI2

B

DAI3

reply
augmented workflow

instance Ya.1

DAI 1

C

DAI 2

receive

reply

augmented workflow
instance Xa.1

DAI bindings
noop

noop

noop

noop

Xa.1.DAI1

Xa.1.DAI2

Xa.1.DAI3

Ya.1.DAI1

Ya.1.DAI2

Y.1

workflow instance

A

C

B

Add Activity

Remove Activity

Set Realization

Re-iterate

after:

new:

before:

OK

A

B

C

1

2

3

4

5

DRI
bindings

Fig. 3. System overview and example for Dynamic Adding support

participant interface of the dynamics component offers operations that can be in-
voked by a workflow participant via the participant GUI to perform a dynamic
change in the graphical view.

4.2 Realization of Dynamic Adding

The approach is aligned to the dynamics patterns explained in Section 3. In order
to keep our explanation brief, we just exemplify our approach with Dynamic
Adding in a rather small workflow.

Build Time. Enabling a workflow definition to support Dynamic Adding (s.
Sec. 3) requires the addition of <invoke> activities which we call Dynamic

Adding Support for Dynamics Patterns to Static BPMS 89

Adding Invocations (DAI) in the following. DAIs serve as placeholders for pos-
sible additional activities. Since Dynamic Adding might take place in arbitrary
positions, the WS-BPEL transformer inserts a DAI before and after each activity.

The left hand side of Figure 3 exemplifies the transformation of a simple
workflow X definition, which just consists of the sequential <invoke> activities A
and B, depicted as rounded rectangles. The transformation yields an augmented
workflow definition Xa3 with three more <invoke> activities DAI1 to DAI3.

Run Time. A Dynamic Adding edit operation is initiated by a workflow partic-
ipant via his participant GUI (1). He specifies which activity is to be inserted at
which position in the control flow. In this case, during the execution of activity
A, the participant inserts a new activity C right after the existing activity A
and before B. The participant GUI notifies the dynamics component about this
edit operation (2). Consequently, the dynamics component replaces the default
noop-binding4 of DAI2 in workflow instance Xa.1 by a sub-workflow call to a
workflow instance Ya.1 (3). When the control flow reaches DAI2, this activity
calls the dynamics component (4) which creates a new workflow instance Ya.1
(5). After Ya.1 is completed, the control flow returns to Xa.1, which proceeds
with activity B.

The other dynamics patterns can similarly be realized (in combination with
each other), e.g. by means of so called Dynamic Removing Decisions (DRD)
and Dynamic Iteration Decisions (DID). Both require additional transformation
steps in the WS-BPEL transformer and additional run time data in the dynamics
component (cf. Fig. 3). Dynamic Realization Invocations (DRI) are similar to
DAIs but refer to activities, which are already part of the original workflow
definition like A or B in Figure 3.

5 Related Work

Flexibility and Dynamics. Our distinction between build time flexibility and run
time dynamics is clearly aligned with the common distinction between build time
and run time in workflow management systems. A similar distinction between
“a-priori flexibility” versus “a-posteriori flexibility” and “offline changes” versus
“online changes” is made by Joeris [6] and Bandinelli et al. [7], respectively.

Dynamic WfMS. There are several workflow and process management systems,
which support run time dynamics to some extend. A comparison of some aca-
demic prototypes like ADEPT [8] or WIDE [9] and commercial systems is given
by Weber et al. [10]. There is no approach known to us that posteriorly ex-
tends an existing workflow management system with a given workflow definition
language by support for run time dynamics.

3 In the figure we use a restricted subset of the notation for UML activity diagrams
since there is no official graphical notation for WS-BPEL.

4 “Noop” stands for “no operation”.

90 R. Wörzberger, N. Ehses, and T. Heer

Patterns. Aalst et al. [11] introduced a classification for workflow languages based
on patterns which concentrates on build time flexibility. Voorhoeve [12] et al. make
an implicit classification for run time dynamics with regard to preservation of cer-
tain consistency properties of petri nets. Weber et al. [10] also range run time dy-
namics but not with regard to a concrete technical implementation basis.

6 Conclusion

Summary. In this paper we described how support for run time dynamics, e.g.
dynamic modifications of workflows, can be realized by an additional dynamics
layer based on a static workflow management system. Our approach is motivated
by requirements of our industrial partners at AMB-Informatik who want to sup-
port dynamic processes but also keep the existing static WebSphere BPMS. We
classified dynamic changes according to dynamics patterns. In our twofold ar-
chitecture, consisting of a WS-BPEL transformer for build time and a dynamics
component for run time, there is dedicated support for each dynamics pattern.

State of Implementation. Presently, we are implementing the dynamics layer
and the graphical participant GUI only using common and publicly available
technologies. The WS-BPEL transformer is realized with XSL Transformations
whereas the dynamics component is written in plain Java. The graphical partic-
ipant GUI is implemented using the Graphical Editing Framework (GEF) of the
Eclipse Foundation. Though the implementation is still in an early phase, first
results already substantiated the suitability of our approach.

Current Limitations and Future Work. In the original workflow definition X in
Figure 3 we only used a small subset of all WS-BPEL construct types. Actu-
ally, occurrences of complex construct types like decisions and iterations but not
yet compensation and fault handlers. We will also deal with problems arising
from the concurrency and distribution of workflows. Here, we can continue work
that has been done in a preceding project of our group [13]. Generalization of
the approach is another important goal beginning with the adaption of other
WS-BPEL-based workflow management systems and proceeding with workflow
management system of other kinds. Optimizations will be applied particularly to
the WS-BPEL transformer in order to reduce the size of the augmented workflow
definitions. Besides the work presented in this paper there are other related parts
in our cooperation with our partner AMB-Informatik again carrying on preced-
ing work. Dynamic changes made by workflow participants have to be checked
against certain constraints in order to guarantee technical consistency, e.g. data
dependencies between activities. Furthermore, professional constraints have to
be enforced, e.g. non-deletability of strictly mandatory activities. Both will be
supported by a consistency checker. We will also build a tool that provides a
condensed view of completed workflow instances with dynamic changes to the
workflow modeler. By using this tool, the modeler can identify similar dynamic
changes among the workflow instances and copy them to the workflow definition
where appropriate.

Adding Support for Dynamics Patterns to Static BPMS 91

References

1. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COOCS, pp. 10–21. ACM Press, New York (1995)

2. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification
of issues and solutions. International Journal of Computer Systems Science and
Engineering 15(5), 267–276 (2000)

3. Bernstein, A., Dellarocas, C., Klein, M.: Towards adaptive workflow systems:
CSCW-98 workshop report. SIGGROUP Bull. 20(2), pp. 54–56 (1999)

4. Nagl, M., Marquardt, W. (eds.): Collaborative and Distributed Chemical Engi-
neering Design Processes / From Understanding to Substantial Support. Springer,
Heidelberg (2008)

5. Westfechtel, B.: Ein graphbasiertes Managementsystem für dynamische Ent-
wicklungsprozesse. Informatik Forschung und Entwicklung 16(3), 125–144 (2001)

6. Joeris, G.: Flexibles und adaptives Workflowmanagement für verteilte und dy-
namische Prozesse. PhD thesis, University of Bremen (2000)

7. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Policies and Mechanisms to Support
Process Evolution in PSEEs. In: Proceedings of the 3rd International Conference
on the Software Process, pp. 9–20. IEEE Computer Society Press, Los Alamitos
(1994)

8. Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

9. Casati, F.: Models, Semantics, and Formal Methods for the Design of Workflows
and their Exceptions. PhD thesis, Politecnico di Milano (1998)

10. Weber, B., Rinderle, S.B., Reichert, M.U.: Change patterns and change support
features in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

11. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

12. Voorhoeve, M., Van der Aalst, W.: Ad-hoc Workflow: Problems and Solutions. In:
Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, p. 36. Springer, Heidelberg (1997)

13. Heller, M., Wörzberger, R.: A Management System Supporting Interorganiza-
tional Cooperative Development Processes in Chemical Engineering. Journal of
Integrated Design and Process Science: Transactions of the SDPS 10(2), 57–78
(2007)

Interface Composition for Web Service Intermediaries

Sara Forghanizadeh and Eric Wohlstadter

University of British Columbia

Abstract. The use of XML as a format for message exchange makes Web ser-
vices well suited for composition of heterogeneous components. However, since
clients must manage differences in message schemas between services, interop-
erability is still a significant problem. Interoperability currently can be supported
through the use of transformations provided by a Web service intermediary. How-
ever, intermediary technologies do not provide a way for clients to reason about
the composition of services and intermediaries. We propose an approach to pro-
vide clients with an interface composed of schema information from a Web service
and an intermediary. Composition is performed by applying rewriting rules, de-
fined by the intermediary, to the server interface schema. This new interface takes
into account what transformations are available at an intermediary. The advan-
tage of the approach is that clients can continue to benefit from code-generation
and static type-checking offered by interface definition languages such as WSDL;
while still making use of the flexibility offered by intermediary transformations.
We provide the algorithmic details of composition, including a proof of correct-
ness and an upper bound on complexity. We demonstrate the approach in the con-
text of a Web service composition of three publicly available Web services.

1 Introduction

Web services are flourishing on the Web as an important part of the information tech-
nology infrastructure. They provide building blocks for clients who can compose new
applications or services out existing reusable services. Here, a client could also be a ser-
vice itself, made up of a “mash-up” of existing services. The use of XML as a message
exchange format makes Web services well suited for composition of heterogeneous
components. The schemas [1] of these messages define the service’s interface and are
often described by an interface definition language such as the Web Services Definition
Language (WSDL) [2]. However, since clients must manage differences in schemas be-
tween services, interoperability is still a significant problem. There is often some level
of semantic overlap between schemas even when there is no syntactic match.

Since distinct services will naturally have certain distinct semantics, we cannot re-
alistically hope to completely shield clients from differences in schemas. So, we are
investigating support for interoperability through the use of element-wise type-based
adaptation. This partial approach to adaptation is motivated by the desire to keep client
applications simple. Complexity is reduced because clients only have to understand
one particular schema for those XML elements where the types of multiple schemas
semantically overlap (i.e. intersect).

Previous work on type-based adaptation [3,4] has solved problems related to the
reuse of components in contexts that were not originally anticipated. The core problem

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 92–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interface Composition for Web Service Intermediaries 93

is to take a typed interface provided by a component, a typed interface required by a
client, and to help produce or locate a type adaptor which adapts between the required
and provided interface. This helps a developer who takes components “off-the-shelf”
and needs a way to connect them, as illustrated in Figure 1.a.

We seek to extend this line of work to an element-wise approach, for use in a Web
services setting. Using Web service middleware, clients can make use of adaptive mes-
sage transformations provided by a Web service intermediary [5]. Transformations can
be implemented using handlers (described in Section 3) which can be applied to in-
dividual elements of XML messages. In our setting, an intermediary could either be a
network proxy (e.g. Enterprise Service Bus [6]) or a local middleware layer. The im-
portant property of an intermediary is that it can be managed separately from the client
business logic.

Consider a company that uses Web services to schedule shipments with companies
such as FedEx and UPS. Naturally, FedEx and UPS share many semantic elements in
common. In this case, the intermediary for the company could be programmed to trans-
form to and from the company schema to FedEx and UPS. Here is how our approach
would apply: when a developer at the company starts to write client code to commu-
nicate with FedEx or UPS, they can see what the FedEx and UPS interfaces (WSDL)
look like, after the semantically overlapping elements have been replaced with their in-
ternal schema. This way they can reason about the composition of their intermediary
with either the FedEx or UPS service. We call this a composite schema.

So we extend previous work in the following way: given a target Web service schema,
T S , and an intermediary, we generate a composite schema, CS. Once this composite
interface is provided to the client, it can then use it to generate stub code and perform
type-checking. In our research the adaptations are known variables and the interface
the client can use is an unknown variable, as opposed to the interfaces being the known
variable and calculating the adaptors for the conversion between them. Our setup is then
shown in Figure 1.b.

Our contribution is to demonstrate an architecture and algorithm for intermediary
interface composition. We provide the algorithmic details including a proof of correct-
ness and an upper bound on complexity. We demonstrate the approach in the context of
a mash-up of three publicly available Web services.

The rest of the paper is as follows: Section 2 presents a motivating scenario, Section 3
describes background material, Section 4 presents an architectural overview, Section 5

Fig. 1. (a) Interface adaptation, and (b) Intermediary interface composition. Dotted lines represent
the unknown variable and solid lines show known variable.

94 S. Forghanizadeh and E. Wohlstadter

presents technical details, Section 6 presents the example scenario in more detail, Sec-
tion 7 presents related work and Section 8 concludes the paper.

2 Motivating Scenario

We consider a typical mash-up scenario where a Web service is built by composing
services from eBay, FedEx, and UPS. Let’s examine a typical business process flow for
the mash-up.

First, a request is made to the GetSellerTransactions operation for eBay.
This provides information regarding auctions managed by a particular user. The re-
sponse contains transaction information, including a shipping address and a choice of
shipping options for auction winners. Here we assume FedEx was chosen by some auc-
tion winner.

Second, the mash-up company wants to verify the address of the buyer before
scheduling a shipment with FedEx. Unfortunately, the FedEx service does not include
a separate operation for validating address information, but UPS does. So, the mash-up
sends an AVRequest (address validation) to UPS. A part of the information in this
message is specific to UPS, such as the UPS account number. On the other hand the
address to be validated can be extracted from the response message received from eBay
and simply routed to UPS.

Finally, after address validation, the mash-up must additionally transform address in-
formation to FedEx before sending a final FDXShipRequest request. This motivates
transformation of the address information between eBay, UPS, and FedEx formats, but
complicates things for the programmer without additional support.

Motivated by this scenario, a separate transformation layer deployed on a intermedi-
ary could be implemented which imports and exports address information in a common
format. This has the benefit of factoring the entire transformation concern out of the
core mash-up business logic. This could simplify the mash-up implementation since
the address format will be a common element in many operations for all three services.
However, without additional support, this would break the sound engineering process of
writing software against statically defined interfaces. The WSDL of the three services
does not take into account the intermediary transformations so their presence is implicit
and not explicitly accounted for in a typed interface. The client could not generate stub-
code from the WSDL that accounts for the transformations or type-check against these
stubs.

3 Background

3.1 Handlers

Intermediaries are often a repository of message handlers (i.e. interceptors [7]) which
read and write elements of XML-based messages. For example, a handler might be
responsible for just the translation of elements representing shipping addresses in two
schemas with disparate formats. Traditional handlers could be modeled as a function

Interface Composition for Web Service Intermediaries 95

with a type Document→Document, since they accept any XML document type and
do not place any guarantees on the output document type.

This type does not provide useful information for reasoning about the composition
of document handlers. On the other hand, if handlers specified specific types at the
granularity of entire documents, for example PlaceEBayOrder→PlaceAmazon-
Order, the types could be too specific. This is because document handlers might ap-
ply specific element-wise transformations. For example, they might transform just the
address information in an eBay or Amazon order. These problems help motivate a dif-
ferent approach based on element-wise type information.

3.2 XML Schema

WSDL [2] is based on the standard W3C XML Schema [1] grammar for defining types
of XML documents. Web service developers use this grammar to specify sets of XML
documents that are accepted or provided by service operations. A document instance
that is a member of the set, defined by a type, is said to be valid for the type. Figure 2
provides the grammar and notation of a mini-schema language that we use throughout
the paper to model salient properties of XML Schema.

Here a schema consists of a root ElementType which defines an XML element
tag name and the ContentModel. The types of elements can also be declared through
reference to existing definitions by use of an ElementRef. The content model defines
the valid structure of nested children. The content model1 is either a Primitive type
or a regular expression of element types. The use of recursion to other ElementTypes
in an expression is what gives XML Schema its power to express tree structures; as
opposed to flat strings which are normally described by regular expressions.

Web services middleware can perform validation to ensure messages match the types
defined in their WSDL. Our approach combines the mechanism of message validation
with a message transformation mechanism. Here we describe some technical details
of standard message validation mechanisms so we can build on this background to
describe details of our approach.

Message validation can be performed by middleware at runtime using a parser. An
important property of the W3C XML Schema specification is that many aspects of the
specification are motivated by the requirement to keep this parsing process simple. In
particular, the schema language is designed to prevent parsers from needing to back-
track at runtime2. This is achieved by restricting the regular expressions describing a
ContentModel to those that are unambiguous.

This property allows XML Schema parsers to be implemented using only small ex-
tensions to standard deterministic finite automaton (DFAs). As usual, a DFA is a mech-
anism for parsing sequences of strings which consists of: a set of states and a set of
transitions between states. One state is distinguished to be the initial state and some
subset of states are final (accepting) states. Each transition is associated with a symbol

1 For simplicity, we do not currently deal with some features of XML Schema, such as nu-
meric occurence indicators or the all content model. These features could be added using the
approach in [8].

2 This is called Unique Particle Attribution in W3C parlance.

96 S. Forghanizadeh and E. Wohlstadter

ElementType ::= name[ContentModel] //Named element with child content
ElementRef //Reference to a named element

ContentModel ::= Primitive //primitive type
ContentModel, ContentModel //sequence
ContentModel || ContentModel //choice
ContentModel* //unbounded occurences
ContentModel? //optional occurence
ElementType //recursive nesting of elements

Fig. 2. Mini XML schema language BNF. Note: This figure defines a grammar language, Mini-
Schema, in terms of another grammar language, BNF. We avoid using any symbols from the BNF
language except for the non-terminal assignment (::=). Non-terminal alternatives are separated by
newlines. All other symbols are part of the defined Mini-Schema language. Terminals are shown
in italics. Java-style comments are used.

Fig. 3. A parser for the ElementType: Person[Name[string], PhoneNumber[string]?]. Parsing
begins at the root (top-most) DFA and its final state is the final state for validating a complete
document. Final states of internal DFAs are used to determine if transitions in a parent DFA are
successful.

from some alphabet. Parsing begins at the initial state and is driven by reading symbols
of an input string from left to right. As each symbol is read, the current state is changed
by following a transition labelled with that symbol. If the sequence is consumed and
the automaton is in a final state then the string is accepted.

But XML documents consist of trees instead of strings! Still, Thompson shows how
XML Schema is parsed using a set of cooperating DFAs [9]. Intuitively, each level of
sibling elements in the hierarchy of the XML tree is considered as a separate string.
When an element is consumed, the parser processes the content of the element using
a different DFA, before allowing the transition to occur. Parsing of XML trees is thus
handled through this nesting of operations on separate DFAs. This process is illustrated
in Figure 3.

Our approach to composition involves integrating this parsing process with the pro-
cess of message transformation. This is achieved by building automata that are aware
of the transformations that handlers can make.

Interface Composition for Web Service Intermediaries 97

3.3 Regular Expression Types

We use the paradigm of regular expression types [10] for added flexibility during the
process of creating a composite schema. Unlike popular OO languages, under this disci-
pline a sub-type relationship holds for two types if the set of instances described by one
type completely contains (i.e. subsumes) the set of instances described by another type.
This is different from typing in standard OO languages where a sub-type relationship
needs to be explicitly declared.

So under regular expression typing, person (below) would be a sub-type of
personExtra because the set of documents validated by personExtra in-
cludes all of the those validated by person. Here new types are declared using an
element keyword in the obvious way. Intuitively, a person can be used wherever
a personExtra is expected. This is commonly notated using the sub-type operator
(<:), as in, person <: personExtra.

element person = Person[Name[string]]
element personExtra = Person[Name[string], PhoneNumber[string]?]

We will especially take advantage of these two axioms of regex typing:
Axiom 1. (a <: b) implies (a <: (b || c)), for all types a, b, and c.
Axiom 2. (a || a) = a, for all types a.

Axiom 1 is clear since (b || c) accepts a larger set of documents than b alone.
Axiom 2 simply says that a choice between a type and itself is idempotent.

4 Overview of the Approach

Our approach is divided into two stages: interface composition and handler compo-
sition. We describe how these stages work from a high-level architectural viewpoint
before going into low-level details in Section 5.

4.1 Interface Composition

One technical challenge is to return a new composed schema, CS, to the client. This
is an extended version of some target schema, T S. This requires that programmers
assign a typed interface to each handler on an intermediary (Section 5.1). This interface
composition process (Section 5.2) occurs off-line at development-time, not during the
actual execution of a deployed system. Our middleware uses our algorithm described in
Section 5.3 to compose handler type information with a Web service’s type information.

The data-flow of this process is shown in Figure 4. First (1), a client chooses some
T S that it wants to compose with an intermediary. It submits T S to any intermediary
that makes use of our prototype middleware. Second (2), the intermediary runs an al-
gorithm using T S and handlers deployed on the intermediary, to compose their type
information. Certain information about the algorithm execution is stored in a composi-
tion trace. This information will serve as handler dispatching instructions at run-time
(Section 5.4). Finally (3), the client receives the composed interface, CS from the inter-
mediary. The client can now use CS to generate stub code and type-check against.

98 S. Forghanizadeh and E. Wohlstadter

Fig. 4. Data-flow in Interface Composition. The composition service produces a composite
schema, given the set of handlers and some server interface chosen by the client. A digest of
this process is saved by the intermediary for use at run-time. We place certain terms in italics;
these terms will be referred to as Java objects in the algorithm of Figure 7.

4.2 Handler Composition

At run-time, our middleware dispatches the handlers to execute transformations. This
occurs when the intermediary receives a message from a client (or server reply). The
data-flow of this process is illustrated in Figure 5. In this paper, we focus only on the
algorithmic details and complexity of our approach. In an online technical report [11],
we have provided some initial benchmarks of our prototype performance.

First (1), a client sends a message valid for CS, which is intercepted by the interme-
diary. Second (2), client messages are validated and transformed by the intermediary.
Our prototype middleware decides which handlers should be executed, on which mes-
sage elements, and in what order. These decisions are guided by the composition trace
derived off-line, so no complex processing is required at this time. Finally (3), a mes-
sage valid for the T S is forwarded by the intermediary. This process is described in
more detail in Section 5.4. The reverse process for server replies is similar so we do not
show this data-flow in the figure or discuss the details specifically.

Fig. 5. The intermediary dispatches the handlers at run-time to make the message compatible with
the Web service, using the digest derived at development-time

5 Technical Details

5.1 Handler Interfaces

Our composition mechanism requires a formal representation of the input and output
types of handler components. We provide support for programmers to describe
element-wise interfaces using XML Schema.

Interface Composition for Web Service Intermediaries 99

Definition 1. Element-Wise Interface. An element-wise interface is a pair of
ElementTypes, (input, output). The contract for a handler which implements the
interface specifies that the handler can transform any element of type input in a
document to some element of type output.

The implementation of the handler can be written as either Java or XSLT and
can perform arbitrarily complicated computation to make a transformation. The
implementation could be as simple as the logic required to convert between postal
code formats or as complicated as contacting an external service to perform a currency
conversion. Our tool uses the element-wise interfaces as input to schema composition
and associates an identifier with some implementation component which will be used
as a call-back by our intermediary middleware. In our algorithm we assume each
handler has a unique identifier, denoted as handler.id. The input and output element
types are denoted handler.input and handler.output respectively.

To motivate how element-wise interfaces are used, consider the simple example of
Figure 6. Here there are three type definitions for some user contact information in dif-
ferent formats i.e. contact1-3. Following there are two element-wise interfaces for some
handlers listed: hander1-2. Notice that from the type information, we can infer that a
message of type contact1 can be transformed into a message of type contact2 by apply-
ing handler1 to the Number element embedded within a contact1 message. From there
we can now apply handler2 on the whole message to obtain a message of type contact3.

Composition in this case is not achievable by a traditional composition of function
types. Here, the output type of handler1 does not match the input type of handler2. Still,
composition is achievable if we consider element-wise composition. So we need a new
approach for composition in this setting.

element contact1 = Contact[Person[string], Number[string]]
element contact2 = Contact[Person[string], Phone[string]]
element contact3 = Person[Name[string], PhoneNumber[string]?]

element numberType = Number[string]
element phoneType = Phone[string]
handler1: numberType ↪→ phoneType

handler2: contact2 ↪→ contact3

Fig. 6. If we apply handler1 to an instance of contact1 (element-wise) and then handler2 to that
result, we are guaranteed an instance of contact3

5.2 Interface Composition

At development-time an intermediary can be composed with the interface of a server.
Our middleware prototype exposes a Web service operation to accept WSDL schemas
from clients. The schema is processed into a composite schema and returned. Here we
explain how our middleware can reason over the composition of element-wise transfor-
mations in an efficient way.

100 S. Forghanizadeh and E. Wohlstadter

Using a naive approach, determining the correct composition of handlers could take
exponential time in the number of handlers, because all permutations may need to be
examined. Also, if handlers are allowed to execute multiple times (for example to per-
form element-wise operations) the problem is even more complicated. Here, we limit
our approach to handlers providing optional transformation. This enables us to imple-
ment a tractable solution. This is exactly the case we have motivated: intermediaries
provide transformations as an optional convenience for clients. These optional handlers
are in contrast to handlers which enforce policies such as security. Our work does not
address that kind of mandatory interposition of intermediaries.

Using the interfaces of handlers deployed on an intermediary, an inference al-
gorithm is performed to determine the composed interface exposed to the client.
This process makes use of a rewrite rule which is a transformation to the server
schema itself; as opposed to the transformations made by handlers at run-time
on a message instance. We use the term “rewrite” here, rather than “transform”, to
keep it clear when changes are being applied to schema types versus message instances.

Definition 2. Rewrite Rule. Assume there exists a handler with the element-wise
interface, (input, output), and also there exists an element type, t somewhere in the
target server schema. If output is a sub-type of t, then any reference to t should be
rewritten to the choice type: t || input.

Notice that we are matching outputs and then adding inputs to the schema. Intu-
itively, this process infers, in reverse, the transformations that handlers will be capable
of making at run-time.

In our algorithm, we repeatedly apply the rewrite rule until it is no longer useful.
Notice that since rewriting only causes the schema to grow, we do not need to worry
about what order we apply the rewrite rules. This is because some application of the
rewrite rule using one handler interface will never prevent the application of another
rewrite rule, at any later point in time (by Axiom 1). In other words, the types of the
schema only get wider.

However, we do need information to know at what point to terminate the algorithm.
Termination occurs when only idempotent rewrites can be made (as in Axiom 2).
For this purpose we introduce annotations on the composed schema that we call a
composition trace. The trace also records the ”backwards” type inference so that
the trace can be followed in the forwards direction at run-time to actually transform
message instances.

Definition 3. Composition Trace. Whenever a rewrite rule for the handler, h,
with interface, (input, output), is applied at an element type t, we add an annotation
on the reference to input that is created. The annotation is a sequence of handler
identifiers, consisting of the identifier for h appended to the beginning of any existing
sequence which annotates t. If t has no such annotation already, then the annotation is
simply the single handler identifier.

As a convenience for clients, our intermediary supports an additional post-processing
step to filter large composite schemas. Clients can provide preferences in the form of a

Interface Composition for Web Service Intermediaries 101

partial-ordering on XML Schema namespaces. If a choice exists between two element
types, a and b, and the namespace of a is preferred over b, then b will be removed as
a choice. An example of this is demonstrated in Section 6.

With these definitions in place, we can define an algorithm that computes a com-
posed schema. The question we need to answer is: given an intermediary and a server
schema, what is the schema which describes all documents that can be transformed into
a document valid for the server schema, using any combination of the element-wise
handlers?

5.3 Interface Composition Algorithm

The composite schema begins as a copy of the target schema, in Figure 7 line 1. The
algorithm is structured as a comparison between all element types in the schema and all
handler outputs. This is implemented as a double nested-loop, as in lines 3-4. Whenever
the schema is changed by a rewrite, the entire process begins again, because references
to new element types are added through the rewriting. This “restart” can be seen by the
break statement on line 10, which breaks out to line 2. This is certainly not the most
efficient implementation but it simplifies presentation of the algorithm and worst-case
analysis.

Now, we can see that the algorithm will continue to execute until one of the if
statements on line 5-6 fails for all iterations. The first if statement (line 5) implements
part of the rewrite rule that checks whether the handler output type (as in Definition 1)
is a subtype of some schema element type. The second if statement (line 6) checks
the trace annotation (as in Definition 3) on the existing schema type to ensure this
rewrite would not be idempotent. If both of these checks succeed then a new reference
to the handler input type is created (line 7). The trace annotation on the new reference
is updated (line 8), according to Definition 3. Finally, the schema is rewritten (line 9),
according to Definition 2.

Before proving the correctness and complexity of the algorithm. We walk through
a specific example where a target schema is composed with handler information. The
example makes use of the previous type definitions and handlers of Figure 6. In Figure
8, we see four schema files which consist of type definitions enclosed in curly braces.
The first file, T S, is the original schema chosen by the client. The next three files are
versions of the composite schema as it is rewritten. We use a subscript to denote the
number of rewriting steps.

CS0 starts out as a copy of T S. Then, in CS1, handler2.output is matched, so han-
dler2.input is added to the schema and added as a new choice. Next, in CS2, han-
dler1.output is matched (element-wise), so handler1.input is added to the schema and
added as a new choice. At that point no new matches can be made so the algorithm
terminates. The superscripts on types are the composition trace and will be discussed in
Section 5.4.

Termination Proof: Termination is guaranteed because each rewrite does not actually
copy the type information for some handler.input type into a new location in the

102 S. Forghanizadeh and E. Wohlstadter

composite schema. Instead, a reference to that type is used as an alternative in the
additional choice.

We know that the algorithm starts out with a fixed number of named types avail-
able as input at the beginning of execution. During execution, no new named types are
created. Since the algorithm will not add any idempotent choices, it must eventually
run out of rewrites that can be made and line 6 in the algorithm must fail for an entire
iteration of both loops.

1. CS = TS;
2. loop:
3. forall(element in CS.elements)
4. forall(handler in intermediary)
5. if(handler.output.isSubTypeOf(element))
6. if(!element.trace.idempotent(handler.id))) {
7. ref = new ElementRef(handler.input);
8. ref .trace = concat(handler.id, element.trace);
9. CS.rewrite(element, new Choice(element, ref));
10. break loop;
11. }

Fig. 7. Composition Algorithm, shown in Java pseudo-code. Local variable dec-
larations are elided. Local variables shown in italics. We assume a method
Schema.rewrite(SchemaElement, SchemaElement) which replaces the oc-
curence of the first argument with the second argument by mutating the target schema. The
constructors Choice and ElementRef simply model the construction of new schema
productions as given in Figure 2.

Correctness Proof: We need to show that a message, msg, is a CS message if and only
if there is a sequence of element-wise transformations that can be performed on msg
to create a T S message. This can be shown in two directions. First, we show that (1) if
msg is a CS message, then it can be transformed into a T S message. Second, we show
that (2) if msg can be transformed into a T S message, then it is a CS message.

1. This is shown by induction on the sequence of rewrites (line 9) performed during
algorithm execution.

Base Case: When the algorithm begins, CS equals T S . So, if msg is valid for CS,
it is already a valid T S message.

Induction: We assume that all valid CSk−1 messages can be transformed into T S
messages. Now, we show, that CSk messages can be transformed into T S messages.
We know on the kth rewrite, one additional choice is added by some handler’s interface
to CSk−1. So assume there is some message that is valid for CSk but not for CSk−1.
We know the message can only differ from a CSk−1 message by use of this additional
alternative. However, we also know we can transform the alternative type back to one
accepted by CSk−1 using the same handler. By the assumption, all CSk−1 messages are
CSk messages. Therefore, by induction, after the termination of the algorithm, all CSi

messages can be transformed to T S messages for any integer i.

Interface Composition for Web Service Intermediaries 103

TS = { element contact3 = Person[..]; }

CS0 = { element contact3 = Person[..]; }

CS1 = { element contact3 = Person[..] || contact2(h2);
element contact2 = Contact[Person[string], Phone[string]];

}

CS2 = { element contact3 = Person[..] || contact2(h2);
element contact2 = Contact[PersonName[string],

Phone[string] || numberType(h1)];
element numberType = Number[string];

}

Fig. 8. Composing a schema. The example makes use of the previous type definitions and handlers
of Figure 6. We use a subscript on CS to denote the number of rewriting steps. The superscripts
on types are the composition trace and will be discussed in Section 5.4.

2. This direction is straightforward. msg is valid for T S, and T S is a sub-type of CS
by Axiom 1 and Definition 2. Therefore, msg is valid for CS.

Complexity: We show that our offline algorithm runs in polynomial-time with respect
to the input size. This suffices to show that the algorithm is tractable. In other words,
execution will not suffer from “exponential explosion”. In the future we plan to give a
tighter upper-bound.

As was described, the input to the algorithm consists of n handlers and T S. Let the
sum of the sizes of all handler inputs and outputs be denoted |H |. Let the size of T S be
denoted |TS|. These sizes are in terms of the length of the respective type definitions.

In the pathological case, the output of all handlers could match every element type in
T S , and also every element type in the input of all handlers. Recall that handler.input
types become referenced by the schema as the algorithm progresses, so they become
fair game for matching. So the schema could have a maximum of (|H |+ |TS|) element
types. Each element type could be a choice between all types, giving a size of (|H | +
|TS|)2. To simplify analysis we assume that each match might require n∗ (|H |+ |TS|)
iterations of the double loop. In other words, we conservatively assume that matching
fails all the way up to the last evaluation of the loop body. Also, for clarity we assume
(|H |+|TS|) is much larger than n. Therefore we have O(|H |+|TS|)3 total evaluations
of the loop body.

The only step of the loop body which cannot be implemented in constant time is the
check for sub-types (line 5). This check can be performed in polynomial-time [9] with
respect to the size of the input types3. So, then the total complexity is this polynomial
sub-typing cost times the number of loop body evaluations, which is clearly polynomial.

As in the case of all XML Schemas, the composite schema should be unambiguous
as in Section 3.2. We can check that this is the case using the algorithm from [9] in
polynomial time.

3 As described in [9], this is because the regular expression types are restricted to be
unambiguous.

104 S. Forghanizadeh and E. Wohlstadter

5.4 Handler Composition

When an intermediary receives a particular XML message, the intermediary needs to
determine: for this message exactly which handlers should be used, on which message
elements, and in what order? We use the trace information from the interface compo-
sition to construct a transformation-aware automata. This allows handlers to be dis-
patched as part of the standard message validation process.

Revisiting Figure 8 we now see how annotations were added during rewriting. These
annotations are shown as superscripts on types: (h1) and (h2) for handler1-2. When
a message is received by our intermediary, we validate that message according to the
algorithm published by Thompson [9]. When some element validates to a type with
a trace we know that type is not actually valid according to the target server schema.
However, the trace annotation tells us the series of handlers which can be applied to
create a valid message element. So, we dispatch the sub-tree rooted at that element to
the sequence of handlers specified in the trace.

Finally, a transformation-aware automata is now illustrated by the example in Fig-
ure 9. Certain transitions introduced by rewriting are attached to handlers. When these
transitions are followed, the handler is fed the XML message element for transformation.

Fig. 9. Transformation-aware automata for the type constructed in Figure 8:
Person[..] || Contact[PersonName[..], Phone[..] || Number[..]].

6 Example Revisited

Recall the example client implements a mash-up of three services: eBay, FedEx, and
UPS. This client prefers to use data formatted according to FedEx standards. So, they
develop several transformation handlers, two of which are listed in Figure 10. Next, they
compose these handlers with both the eBay and UPS schemas. Now we consider each
of these in turn. We qualify elements with namespaces using a (:) to avoid confusion.

In Figure 11, on the left, we see part of the original type definition for the eBay
GetSellerTransactions operation response. This is the first operation called by
the client in our example workflow. On the right, is the composed type definition after
being processed by the intermediary. Notice that the operation can now return addresses

Interface Composition for Web Service Intermediaries 105

eBay to eBay:address[Address] ↪→
FedEx FDX:destination[Destination]
FedEx to FDX:destination[Destination] ↪→
UPS Validator Address UPS:address[AVContent]

Fig. 10. eBay, FedEx, UPS handlers

element SellTxResponseT =
eBay:getSellerTxResponse[
transaction[

buyer[..,
address[..]

],
..],

..]

element SellTxResponseT =
eBay:getSellerTxResponse[

transaction[
buyer[..,

address[..] ||
UPS:address[..] ||
FDX:destination[..]

],
..],

..]

Fig. 11. Original and composite eBay GetSellerTransactions response using transformations from
Figure 10

element AVType =
UPS:AVRequest[

RequestElement,
address[AVContent]

]

element AVType =
UPS:AVRequest[

RequestElement,
address[AVContent] ||
eBay:address[Address] ||
FDX:destination[Destination]

]

Fig. 12. Original and composite UPS Address Validation message using transformations from
Figure 10. Elements in italics are references to schema elements not shown.

in either one of three formats. If the client needs to pass this returned information to
another service as part of the mash-up, the client may no longer need to embed data
formatting conversion as part of the mash-up business logic. This can be seen by con-
sidering the next operation in the example workflow.

Recall the second operation in the workflow was to validate the address returned from
eBay. This is done through the UPS AVRequest operation, as shown on the left of
Figure 12. Some of this information is specific to UPS, such as the RequestElement
which carries UPS account information. We could not hope to provide any conversion
from eBay account information to UPS. Still, we can see in the composite on the right of
Figure 12, that at least the address information can be made uniform. Finally, in Figure
13 we see both the composite types after being filtered for a preference to FedEx, using
the described post-processing step. Now, when the client receives an eBay response it
will already include an address in FedEx format. That address can be taken and passed

106 S. Forghanizadeh and E. Wohlstadter

element SellTxResponseT =
eBay:GetSellerTxResponse[
transaction[

buyer[..,
FDX:destination[..]

],
..],

..]

element AVType =
UPS:AVRequest[

RequestElement,
FDX:destination[Destination]

]

Fig. 13. Composite types for both eBay and UPS after being post-processed with a preference for
FedEx

directly to the UPS address validation operation. So we can see how the implementation
of the client might be simplified by making use of only the FedEx format whenever
possible.

7 Related Work

7.1 Web Services

The standard language for XML transformation is the eXtensible Stylesheet Language
Transformation (XSLT). XSLT does not support any kind of inference for reasoning
about the composition of templates. We see our work, not as an alternative to such lan-
guages but as complementary. Our approach applies at the level of interface definition
languages. So, it is agnostic to the implementation language that is used.

Several tools [12] have been developed to type check an XSLT program given an
input and output type, but this does not address the motivation described in this paper
where a composite type definition should be provided given a particular target output
type.

In previous work [13] we proposed an AOP approach to programming transformation
using the familiar advice-pointcut style. However that work did not address the genera-
tion of a composite schema or automatic middleware dispatching and shares very little
in terms of technical details to the research here.

Work on the semantic web [14] including standards for semantic web services
(WSDL-S) could help to ease the task of manually programming transformations for
interoperability. However, since many enterprises still do not have semantic standards,
we have focused on helping automate handler composition where the transformation
handlers are programmed manually by developers using common languages such as
Java and XSLT.

Ponnekanti [15] presented a taxonomy of Web service interface mismatches that
can occur when interfaces are allowed to evolve independently as well as a static and
dynamic analysis tool to discover mismatches in WSDL. We think their taxonomy pro-
vides a good overview to the kinds of problems where an intermediary can be useful.

Interface Composition for Web Service Intermediaries 107

7.2 Adapters for Components

Purtilo et al. [16] show how external adaptation can be valuable to reduce the non-
functional constraints affecting application code. They provide a new language called
Nimble that is used to generate adaptation code. In some cases, the generation of
adapters can be automated [17] using type-based inference.

Gschwind et al. [3] provide a solution for the problem of composing software com-
ponent interfaces and software built on different component models. That work was
done under the paradigm of OO typing where sub-type relationships are explicitly de-
clared. So an element-wise transformation approach was not applicable. To address
element-wise transformation in a Web service environment, we have provided a new
composition algorithm.

Other works [18] concentrate on mismatches between components at the behavioural
level (i.e., the protocol between components). We have not addressed this issue in our
research.

8 Conclusion

The transformation of an entire schema can be broken down into handlers responsible
for only specific pieces. This comes at a price to service clients who are then unable
to reason about the composition of an intermediary and a service. Our approach is to
provide the flexibility of transformation without sacrificing an explicit interface contract
for clients.

Currently we are planning an empirical study of the performance of our prototype
implementation. We expect the performance overhead should not be prohibitive because
the complex processing in our approach occurs mainly offline. We expect that at run-
time the actual message transformations will dominate the time for handler dispatching.
Thus far this has been the case in our initial studies [11]. In addition to standard valida-
tion mechanisms, our approach only adds constant-time hashtable lookups to dispatch
handlers at run-time. For high-performance applications, additional consideration will
be needed to determine how the buffers which hold message streams should be allocated
and copied. We have not yet considered these fine-grained performance characteristics.

This paper described an architecture and algorithm for composition of Web ser-
vice interfaces with intermediaries. We provided a proof of algorithm correctness and
showed that it executes in polynomial-time. Finally, we motivated and demonstrated a
realistic mash-up scenario as an illustration of our approach.

References

1. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1: Structures.
W3C Recommendation (2004)

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Language
2.0 Part 1: Core Language. W3C Recommendation (2007)

3. Gschwind, T.: Type based adaptation: An adaptation approach for dynamic distributed sys-
tems. In: Proc. of the International Workshop on Software Engineering and Middleware
(2002)

108 S. Forghanizadeh and E. Wohlstadter

4. Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna component framework enabling com-
position across component models. In: International Conference on Software Engineering
(2003)

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans-
actions on Internet Technology 2(2), 115–150 (2002)

6. Chappell, D.A.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)
7. Wang, N., Parameswaran, K., Schmidt, D.: The design and performance of meta-

programming mechanisms for object request broker middleware. In: Proc. of the COOTS,
pp. 677–694 (2000)

8. Thompson, H.S.: Efficient implementation of content models with numerical occurrence con-
straints. In: Proc. of the European XML Conference (XTech) (2006)

9. Thompson, H.S.: Using finite state automata to implement W3C XML Schema content model
validation and restriction checking. In: Proc. of the European XML Conference (2003)

10. Hosoya, H., Pierce, B.: Xduce: A statically typed xml processing language (2002)
11. Forghanizadeh, S., Minevskiy, I., Wohlstadter, E.: Interfaces for web services intermediaries

(Tech Report), http://www.cs.ubc.ca/∼wohlstad/extended.pdf
12. Kirkegaard, C., Moller, A., Schwartzbach, M.I.: Static analysis of XML transformations in

Java. IEEE Trans. on Software Engineering (2004)
13. Wohlstadter, E., Volder, K.D.: Doxpects: aspects supporting xml transformation interfaces.

In: Aspect-Oriented Software Development (2006)
14. Halpin, H., Thompson, H.: One document to bind them: Combining xml, web services, and

the semantic web. In: World Wide Web Conference (2003)
15. Ponnekanti, S., Fox, A.: Interoperability among independently evolving web services. In:

Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–351. Springer, Heidelberg
(2004)

16. Purtilo, J.M., Atlee, J.M.: Module reuse by interface adaptation. Software Practice and Ex-
perience 21(6) (1991)

17. Thatte, S.R.: Automated synthesis of interface adapters for reusable classes. In: Proc. of
Symposium on Principles of programming languages (1994)

18. DeLine, R.: Avoiding packaging mismatch with Flexible Packaging. In: Proceedings of the
21st International Conference on Software Engineering (1999)

http://www.cs.ubc.ca/~wohlstad/extended.pdf

Goal-Oriented Composition of Services

Sebastian Nanz and Terkel K. Tolstrup

Informatics and Mathematical Modelling
Technical University of Denmark

{nanz,tkt}@imm.dtu.dk

Abstract. One fundamental issue in service-oriented computing con-
cerns the question whether services can be composed in a manner that
allows them to achieve their individual goals. In this paper we use a
variant of interface automata as an abstraction of the input/output be-
haviour of services, which are themselves represented as terms in the
π-calculus extended with an action for expressing service collaboration.
In this setting, the question whether two or more services can mean-
ingfully compose is then reduced to checking a simple property of the
product automaton of the involved interfaces.

1 Introduction

Service-oriented computing [17] has evolved from component-based software de-
velopment as an effective approach to building distributed applications. A service
can be described as a process that can be addressed and used by other services
on a network, based on its published interface that identifies the capability it
provides. Two of the main research problems arising from this approach are thus
concerned with the design of this interface: in order for it to enable the discovery
of services that may achieve a certain computational task; and, to facilitate the
composition of services.

Web Services [1] are the example of the services paradigm that is currently
developed furthest. Here, the static interface of a service can be described in the
Web Services Description Language (WSDL) [4], an XML-based format which
contains a definition of the messages and ports that are involved in a communi-
cation with a service. This description limits severely the behavioural complexity
the service can implement, since interactions can only be described with a lim-
ited variety of message exchange patterns. In an advanced service model, services
could offer complex functionality that likewise may result in more complex in-
teractions with other services. For such a model to be successful, it has to be
supported by interface descriptions that allow to check the compatibility of ser-
vices with respect to their communication behaviour, e.g. to ensure that services
do not deadlock waiting for each other’s input.

In this paper we suggest a variant of interface automata [5] as a means to
provide this interface information. Transitions in an automaton are labelled with
the types of ports and message formats or internal actions, and describe the
input/output behaviour of the service. We view these automata as abstractions

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 109–124, 2008.
© Springer-Verlag Berlin Heidelberg 2008

110 S. Nanz and T.K. Tolstrup

Table 1. Syntax of the polyadic π-calculus with service collaborations

P ::= 0 nil process

| ∑
i∈I πi.Pi guarded sum

| P1 | P2 parallel composition

| (new x) P restriction

| !P process replication

π ::= xỹ reception

| xỹ sending

| com x collaboration initiation

| τ unobservable action

of processes which implement the actual service. Such processes are written in
a variant of the polyadic π-calculus [15] that enriches the usual syntax with
an action to express the initiation of a service collaboration. We define a type
system to statically describe the conformance of the abstract interface with its
implementing process. We prove for typed processes whose interface automata
compose optimistically [5] (i.e. there is some sequence of interactions to lead to
a final state) that the process composition also evolves in a way that the goals
of the collaboration can be achieved.

The remainder of this paper is structured as follows. In Section 2 we de-
scribe our extension of the π-calculus syntax and semantics that allows us to
describe service collaborations, and we introduce the running example of the pa-
per. Section 3 presents interface automata and their use as process abstractions.
Also, a non-standard semantics is introduced which describes the execution of
interface-conformant processes. In Section 4 we complement this dynamic view of
conformance with static type checking, and in Section 5 we discuss goal-oriented
compositions of interface automata. We present related work in Section 6 and
conclude in Section 7.

2 Modelling of Service Composition

The π-calculus [15] is a fundamental process algebraic approach to describing
concurrent systems whose configuration may change during the computation. We
use the π-calculus in its polyadic form as a basis for the description of services
with complex interactive behaviour, adding an action which explicitly describes
the agreement of two processes to collaborate.

2.1 A Process Model for Services

The polyadic π-calculus models two entities: processes and names. Processes
interact by synchronising on channels where they exchange a sequence of data
values; both channels and data are uniformly described by names. Names are
(unstructured) values drawn from the infinite set N .

The syntax of processes is shown in Table 1 and its entities can be infor-
mally described as follows. The terminated process is represented by 0. The term∑

i∈I πi.Pi models an external choice, that allows one action πi to be executed

Goal-Oriented Composition of Services 111

Table 2. Structural congruence of the π-calculus

P | 0 ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
!P ≡ !P | P

(new x) (P | Q) ≡ P | (new x) Q if x �∈ fn(P)
(new x) 0 ≡ 0

(new x) (new y) P ≡ (new y) (new x) P

Table 3. Reaction rules of the π-calculus with service collaborations

τ.P + M → P
|ỹ| = |z̃|

(xỹ.P + M) | (xz̃.Q + N) → P [z̃/ỹ] | Q

Γ (x) = Γ (y) z fresh

(com x.P + M) | (com y.Q + N) → (new z) (P [z/x] | Q[z/y])

P → P ′

P | Q → P ′ | Q

Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′
P → P ′

(new x) P → (new x) P ′

and to continue with Pi. In our syntax variant, there are the four types of
actions; we describe first the three classical ones: an input process xỹ.P receives
a sequence of names along channel x and substitutes it for ỹ in P; an output
process xỹ.P sends ỹ along channel x; and an internal action τ executes without
interaction.

As an extension of the standard syntax, we add an action comx which de-
scribes the readiness of a process to compose with some other process on channel
x; in the term comx.P , the action comx binds x in P . Two processes running
in parallel com x.P | com y.Q, which are both ready to compose, can then evolve
to (new z) (P [z/x] | Q[z/y]), i.e. collaborate using a fresh name z as a common
channel. The intuition is that executing a com-action describes a handshake tak-
ing place between two processes. While this could be expressed also with stan-
dard syntax, having an explicit syntax element available enables us to identify
the starting points of a collaboration, which is important for our analysis.

Processes are composed in parallel by P1 | P2, and replication !P represents
an infinite number of copies of P . The expression (new x) P creates a new name
with scope P .

As in the original π-calculus, we present a formal semantics based on a struc-
tural congruence and a reaction relation. The structural congruence is the least
equivalence relation that is generated by the rules in Table 2, and is standard.

Also the reaction rules of Table 3 are standard, with the exception of the rule
for composition which implements the semantics explained informally above. In
addition, we introduce a typing environment Γ that maps names into a finite
set of channel types, and require that collaborations can only take place if both
collaboration partners expect the same channel type. We omit to associate Γ
explicitly with the reaction rules, as Γ is defined globally.

112 S. Nanz and T.K. Tolstrup

2.2 Example: Web Auctions

In order to illustrate our π-calculus extension as a formalism to describe service
interactions, we present an example from the area of web-based auctions.

Buyer � !com buyer.

(new bid) (new item) buyer(bid, item, buyer).
(buyer(lost, item).0 + buyer(won, item, product).0)

A buyer can place a bid on a certain item, using a channel buyer that will be
determined by a new collaboration. We imagine that the buyer might both try
to directly collaborate with the web auction or through an auction agent, both
of which are services as well. The buyer immediately places his maximum bid.
As the result of the auction, the buyer expects to receive either the message to
have lost the auction, or to have won, and then get the product.

Auction � !comauction.
auction(bid, item, buyer).

!(auction(higherbid, item).
(auction(bid, item, buyer).0 + τ.0)

+
auction(won, item, product).0)

The auction service waits for bids on items it receives via the auction channel
which is also determined by a new collaboration. On this channel, it can an-
nounce two outcomes. First, it can send a message to the bidder that it has
received a higher bid than the current bid. It will then give the bidder the pos-
sibility to raise its bid by sending another bid message on the same channel, or
it terminates after executing τ , meaning that the auction is over and lost by the
bidder. Second, it can output the message that the bidder has won the item, and
send along the product.

Note that throughout the examples we resolve + with external choice,
which would be problematic for example in the case of a buyer missing the
buyer(lost, item).0 branch: the buyer could then always force the winning branch
of the auction. In this case we could however modify our examples by using in-
ternal choice, i.e. by prefixing the actions in sums with τ .

Finally, the auction agent can collaborate with two other services in order
to bid on behalf of a service in a certain auction. With its first collaborator,
it expects a bidding instruction via the client channel. On reception it will
start a second collaboration on the bidding channel, in order to pass on this
bidding instruction. The agent then expects either to be outbid and receive the
higherbid message, or to win the item and receive the product. In the first case,
it will decide according to its bidding algorithm either to place another bid (and
restart, using replication), or communicate on the client channel that this item
is considered lost. In the second case, it will send the product on to the service
that placed the original bidding instruction.

Goal-Oriented Composition of Services 113

Agent � !com client.
client(bid, item, client).

com bidding.

(new bid′) bidding(bid′, item, client).
!(bidding(higherbid, item).

(client(higherbid, item).0
+
(new bid′) bidding(bid′, item, client).0)

+
bidding(won, item, product).

client(won, item, product).0)

In terms of composition, we may confirm by inspection that it should be possible
for Buyer to use Agent in order to bid conveniently on a certain item offered by
Auction. However, it is hard to establish this compatibility automatically when
working directly with process descriptions. We therefore propose in the following
section interface automata as a process abstraction, that enables the automatic
inference of this result.

Furthermore, if we assume that all collaboration channels exhibit the same
channel type, i.e. Γ (buyer) = Γ (auction) = Γ (client) = Γ (bidding), collabora-
tions turn out to be completely promiscuous: in addition to the already described
collaborations, Buyer might potentially bid directly using the Auction service,
or – as depicted below – auction agents might rely on other auction agents
(maybe with advanced algorithms for specific types of auctions) in order to do
the bidding.

Buyer Agent · · · Agent Auction

As a matter of fact, entities may also try to compose with themselves, for ex-
ample Buyer with Buyer. Not all these compositions would lead to successful
computations (clearly, Buyer with Buyer would not), but using our approach,
we will be able to select the meaningful ones.

3 Automata-Based Abstractions of Processes

Interface theory provides an approach to describing the interfaces of components,
where each component is represented by its input and output behaviour, and
interface composition is the key operator. One is usually interested to have two
properties on interfaces, namely that a component conforms to its interface,
and that composed components have compatible interfaces. In the following we
shall use a variant of a popular interface theory, interface automata [5], as an
abstraction that describes the behaviour of services.

3.1 Interface Automata

Interface automata [5] are finite state transition systems in a concurrent set-
ting. An interface automaton describes a computational component by its input,

114 S. Nanz and T.K. Tolstrup

output, collaboration, and internal actions. The automata synchronise on com-
munications and are interleaved on internal actions.

Definition 1 (Interface Automaton). An interface automaton A is a 5-tuple
(S, Σ, δ, s0, F) where S is a finite set of states, Σ = ΣO ∪ ΣI ∪ ΣC ∪ {τ} an
alphabet with output actions ΣO, input actions ΣI , collaboration actions ΣC,
and the internal action τ , δ : S × Σ → S a transition function, s0 ∈ S an initial
state, and F a set of final states.

Note that interface automata are deterministic, and that we can thus use equa-
tions like δ(s, σ) = s′ to describe the transition function; given an interface
automaton A with transition function δ, we may then also write A(s, σ) = s′.

Interface automata distinguish themselves from I/O automata [13,14] by not
being input-enabled, i.e. it is not required that the transition function δ is defined
on all combinations of states and input actions. Instead one takes an optimistic
approach by assuming that the environment never generates unmatched inputs.
Interface automata come with a theory for interface conformance and the com-
position of components. In our variant approach, we redefine these terms in
order to have interface automata serve as abstractions for π-processes, and to
describe their goal-oriented composition. For this reason we have added in Defi-
nition 1 a notion of final states (that correspond to goals), which is not present
in the original approach. In the following, we describe informally how processes
are abstracted by automata, and elaborate on this using our running example;
Section 3.2 establishes the formal connection.

The main idea of the abstraction is to have the actions of a process matched by
transitions in the interface automata. The alphabet Σ of the interface automaton
is defined and interpreted as follows: in the case of input and output actions,
we take α〈k〉 and α〈k〉, respectively, where α is the type and k the arity of the
channel; in the case of collaboration actions, we take α〈c〉; and for τ actions
simply τ . For example, an output process xỹ.P with Γ (x) = α and |ỹ| = 3 can
be described by the following automaton, where the behaviour of P is described
starting with state 2:

���������	1
α〈3〉 ���������	2

... ��

We use the meta-variable σ to range over the elements of Σ, and may sometimes
write σ to denote α〈k〉 when σ is given by α〈k〉.

We shall abstract each parallel process and each process in a sum by its own
interface automaton. If a process splits into several processes, e.g. in the case of
τ.(xy.P | uv.Q) or τ.(xy.P +uv.Q), we abstract this by having a branch for each
process in the automaton:

�������	3
... ��

���������	1
τ ���������	2

Γ (x)〈1〉 �������

Γ (u)〈1〉 �����
��

�������	4
... ��

Goal-Oriented Composition of Services 115

�������	
������4

���������	1
β〈c〉 ���������	2

β〈3〉���������	3

β〈2〉 �������

β〈3〉 �����
��

�������	
������5

�������	v

�������	iv

α〈3〉 �������

τ �����
��

���������	i
α〈c〉�� �������	ii

α〈3〉�� �������	iii

α〈2〉 		�����

α〈3〉 �����
��

�������	��������vi

������ !�������	vii

Buyer Auction

Fig. 1. Interface automata for the processes Buyer and Auction

An automaton abstracting process replication !P is given by the automaton ab-
stracting P . The introduction of new names is likewise ignored in the abstraction.

We take a state in the abstraction to be a final state if the corresponding
process has reached a termination point 0, and if in addition the goal of the
interaction has been reached. Such goals should match the identified functional
goals [11] of the service. Final states are thus annotations that depend on the
intended process semantics. We could however generate them automatically from
a process by having an additional syntax element 0g for terminated goal states
that otherwise behaves like 0.

Example. We illustrate the abstraction of processes by interface automata by
considering our running example. The buyer process is ready to collaborate in the
start state and, after the handshake, accepts communication over the channel
buyer on which it outputs a bid message (arity 2) and accepts input that is
either win (arity 3) or lose (arity 2). Assuming β as type of the buyer channel,
the abstracting automaton Buyer is given in Figure 1. Note that both the win
and the lose situation determine goals of the buyer’s collaboration, and are thus
represented by final states. The process abstraction of Auction can be argued
for similarly, where α is the type of the auction channel.

The interface automaton for Agent is depicted in Figure 2. The automaton
communicates with the client, i.e. the Buyer or another Agent, on the channel
client with type γ1, and bids on an Auction (possibly through another Agent)
using the channel bidding with type γ2. The intuition behind these automata is
that they can compose by connecting all channels of a given type, thus one way
of composing the example automata would be connecting β ↔ α, this correspond
to connecting the Buyer and Auction directly. Another composition would result
from connecting β ↔ γ1 and γ2 ↔ α, here the Buyer is connected to the Agent,
which in turn is connected to the Auction.

3.2 Interface Semantics

In order to formalise the conformance of an interface automaton with a process
in our π-calculus variant, we propose a non-standard semantics, called interface
semantics, that describes the behaviour of tagged processes. A tagged process

116 S. Nanz and T.K. Tolstrup

�������	g

�������	f

γ2〈3〉 �������

γ1〈2〉 �����
��

���������	a
γ1〈c〉���������	b

γ1〈3〉�� ��������c
γ2〈c〉���������	d

γ2〈3〉���������	e

γ2〈2〉 �������

γ2〈3〉 �����
��

�������	
������h

�������	j

γ1〈3〉 �����
��

�������	
������k

Agent

Fig. 2. Interface automaton for the process Agent

[P]A,s relates the process behaviour P with the interface automaton A abstract-
ing it, together with the state s the automaton is currently in. For example,
we have argued earlier that the Buyer automaton of Figure 1 describes the be-
haviour of the process Buyer in Section 2.2. This means we can use the tagging
[Buyer]Buyer,1. Once Buyer has agreed to a collaboration and sent its first bid,
the tagging corresponds to

[buyer(lost, item).0 + buyer(won, item, product).0]Buyer,3,

meaning that we are now in state 3 of the describing automaton.
The interface semantics checks this agreement of processes and their tags

explicitly. We first present in Table 4 a structural congruence ≡t for tagged
processes. The creation of new names is abstracted away by our automaton
model and therefore the new name construct can leave the tagged process. We
explicitly require a scope extrusion rule in the tagged semantics since it cannot
be inferred from the standard congruence in all cases. Parallel processes using
the same tag are equivalent to a tagging of their composition. And if processes
are equivalent using the standard congruence ≡, they are equivalent under the
same tag.

The equivalence rule for new name creation shows that we can have both
tagged and untagged elements in this semantics. We use calligraphic lettering to
express this situation:

Q ::= [P]A,s | Q1 | Q2 | (new x) Q

Using this syntactic convention, we can now describe the reaction rules in the
interface semantics (Table 5). The rule for τ expresses that a process, tagged
with automaton A at state s, can only execute a τ -action if the automaton has
a corresponding τ -transition from s to a state s′; the resulting process is [P]A,s′ .
Likewise, in the case of an interaction where the input process is tagged with
(A, s) and the output process with (B, t), we require that these automata contain
transitions labelled with the channel type Γ (x), the communication direction,

Goal-Oriented Composition of Services 117

Table 4. Structural congruence for tagged processes

[(new x) P]A,s ≡t (new x) [P]A,s

(new x) ([P]A,s | [Q]B,t) ≡t [P]A,s | (new x) [Q]B,t if x /∈ fn(P)
[(P | Q)]A,s ≡t [P]A,s | [Q]A,s

[P]A,s ≡t [Q]A,s if P ≡ Q

and the arity |z̃| of the corresponding message. As an example, the buyer and
auction processes

[buyer(bid, item, buyer).P]Buyer,2 | [buyer(bid, item, buyer).Q]Agent,b

could interact by connecting the channels β and γ1, because Γ (buyer) = β and
in automaton Buyer there is a transition labelled β〈3〉 from state 2 and in the
Agent automaton there is a matching transition γ1〈3〉 from state b.

In the collaboration rule note that we require collaboration channels to be of
the same type. The remaining rules for parallelism, structural congruence, and
name creation are straightforward.

The following result for the interface semantics is straightforward: if processes
can be executed under some tagging, they can be executed in the standard
semantics. In order to formulate the theorem we introduce the notation 	P

which strips all tags off the processes of P :

	[P]A,s
 = P
	Q1 | Q2
 = 	Q1
 | 	Q2

	(new x) Q
 = (new x) 	Q

Then the theorem can be presented in the following concise form:

Theorem 1. If P →t P ′ then 	P
 → 	P ′
.

Proof. The result is proved by induction over the inference of P →t P ′, using
Table 5 and Table 3. ��

4 Interface Conformance

In this section we present an approach for checking conformance between pro-
cesses and their abstractions, which are given as interface automata. We use a
type system for specifying whether an abstraction conforms to a process. The
judgements are of the following form:

Γ, s P : A

Here Γ is a typing environment (see Section 2.1), s is the state in which the
conformance check starts, and A is the smallest interface automaton that con-
forms to the process P . The typing rules for processes are given in Table 6 and
for actions in Table 7.

118 S. Nanz and T.K. Tolstrup

Table 5. Reaction rules with interface semantics

A(s, τ) = s′

[τ.P + M]A,s →t [P]A,s′

A(s, Γ (x)〈|ỹ|〉) = s′ B(t, Γ (x)〈|z̃|〉) = t′ |ỹ| = |z̃|
[xỹ.P + M]A,s | [xz̃.Q + N]B,t →t [P [z̃/ỹ]]A,s′ | [Q]B,t′

A(s, Γ (x)〈c〉) = s′ B(t, Γ (y)〈c〉) = t′ Γ (x) = Γ (y) z fresh

[com x.P + M]A,s | [com y.Q + N]B,t →t (new z) ([P [z/x]]A,s′ | [Q[z/y]]B,t′)

P →t P ′

P | Q →t P ′ | Q
Q ≡t P P →t P ′ P ′ ≡t Q′

Q →t Q′

P →t P ′

(new x) P →t (new x) P ′

Table 6. Type checking of processes

Γ, s � 0 : s
Γ, s � πi : {s

σ−→ si} Γ, si � Pi : Ai

Γ, s �
∑

i∈I πi.Pi :
⋃

i({s
σ−→ si} ∪ Ai)

Γ, s � P : A

Γ, s �!P : A

Γ, s � P1 : A Γ, s � P2 : B

Γ, s � P1 | P2 : A ∪ B

Γ, s � P : A

Γ, s � (new x) P : A

The rules match the intuition behind the abstractions we have introduced
informally in Section 3.1. A nil-process can be abstracted by a single state s.
In the rule for replication, we only require the conformance of the replicated
process and the automaton. The conformance of the automaton associated with
parallel processes follows from the union of the automata that conform to each
process. The introduction of new names is abstracted away.

The rule for summation makes use of the auxiliary judgement for actions,
and requires that for every occurring action πi, we can find an outgoing edge
abstracting it and leading to some state si, and a conformance check taken
from si will take care of the continuation process Pi. The judgements for actions
simply ensure that actions are directly matched by transitions in the automaton.

Type soundness. Before stating the soundness of the type system we first intro-
duce a convention. Note that if we have two typings Γ, s P : A and Γ, s P : B,
the automata A and B have isomorphic structure but may differ in the names of
the states they contain. When relating two automata, we will therefore assume
in the following that their states are already renamed in the proper manner.

The following two simple properties express that conformance is preserved
under substitution and structural congruence.

Lemma 1. If Γ, s P : A and Γ (x) = Γ (y) then Γ, s P [y/x] : A.

Goal-Oriented Composition of Services 119

Table 7. Type checking of actions

Γ, s � xỹ : {s
Γ (x)〈|ỹ|〉−−−−−−→ s′} Γ, s � xỹ : {s

Γ (x)〈|ỹ|〉−−−−−−→ s′}

Γ, s � com x : {s
Γ (x)〈c〉−−−−−→ s′} Γ, s � τ : {s

τ−→ s′}

Lemma 2. If Γ, s P : A and P ≡ Q then Γ, s Q : A.

In order to formulate the theorem we introduce the notation E(Q) for the set of
tagged processes in Q:

E([P]A,s) = {[P]A,s}
E(Q1 | Q2) = E(Q1) ∪ E(Q2)
E((new x) Q) = E(Q)

Furthermore we write A �s B whenever the same states are reachable from a
state s in both A and B, i.e. if the following holds

A �s B iff ∀ ω. A∗(s, ω) = B∗(s, ω)

where as usual δ∗(s, σω) = δ∗(δ(s, σ), ω).
The subject reduction result states that conformance of processes to the as-

sociated automata is preserved under the operational semantics.

Theorem 2 (Subject Reduction). If [Pi]Ai,si ∈ E(P) and Γ, si Pi : Bi

such that Ai �si Bi and 	P
 → P ′ then there exists a P ′ and indices k and j
such that P ′ = 	P ′
 and [Qj]Aj ,tk

∈ E(P ′) and Γ, tk Qj : Bj and Ak �tk
Bj.

Proof. The result follows from induction in the shape of P , matching the con-
ditions from the type system to those of the interface semantics while applying
Lemmas 1 and 2. ��

5 Goal-Oriented Compositions

In the previous sections we have seen how interface automata can be used as
abstractions for processes. The aim of this development is to obtain a strong
compositionality result for processes from the composition of interface automata,
which we define in this section. We define the composition of interface automata
as the following product automaton:

Definition 2 (Composition of Interface Automata). The composition
A1 ⊗α1↔α2 A2 of two interface automata A1 = (S1, Σ1, δ1, s1, F1) and A2 =
(S2, Σ2, δ2, s2, F2) with σ1 = α1〈k〉 ∈ ΣI

1 and σ2 = α2〈k〉 ∈ ΣI
2 is defined by

A1 ⊗α1↔α2 A2 = (S1 × S2, (Σ1 ∪ Σ2) \ {σ1, σ1, σ2, σ2}, δ, (s1, s2), F1 × F2)

where δ is given by:

1. If δ1(s1, σ1) = s′1 and δ2(s2, σ2) = s′2 then δ((s1, s2), τ) = (s′1, s′2)
2. A symmetrical rule to 1.

120 S. Nanz and T.K. Tolstrup

������ !3, g

������ !3, f

γ2[3] �������

τ ������
�

�� ������ !1, a
τ �� ������ !2, b

τ �� ������ !3, c
γ2[c]�� ������ !3, d

γ2[3]�� ������ !3, e

γ2[2] 		�����

γ2[3] �������
������ !�������	4, h

������ !3, j

τ �������

������ !�������	5, k

Fig. 3. Composed Automaton: Buyer ⊗β↔γ1 Agent

3. If δ1(s1, σ) = s′1 and σ /∈ {σ1, σ1, σ2, σ2} then δ((s1, s2), σ) = (s′1, s2)
for all s2 ∈ S2

4. A symmetrical rule to 3.
5. If δ1(s1, α1〈c〉) = s′1 and δ2(s2, α2〈c〉) = s′2 then δ((s1, s2), τ) = (s′1, s

′
2)

Note that although ⊗α1↔α2 is a binary operator, we can of course com-
pose arbitrarily many automata together by composing them in sequence, i.e.
A1 ⊗α1↔β1 A2 ⊗α2↔β2 · · · ⊗αn↔βn An, where we assume left-associativity of the
composition operator.

In contrast to the approach of [5] where all shared channels are used for com-
position, we explicitly parametrise the composition operator ⊗α1↔α2 with the
channels α1 and α2 that get connected in the resulting system. These channels
are subsequently removed from the alphabet of the resulting automaton, and this
automaton contains a τ -transition instead (rules 1 and 2). Channels that are not
mentioned in the composition parameter are kept in the result automaton (rules
3 and 4). Also matching collaborations are replaced by a single τ -transition (rule
5). The product thus coincides with the composition of input-enabled automata,
such as I/O-automata [14], however, some steps present in A or B may not be
present in the product, as not all inputs have to be matched by outputs.

As shown in Definition 2, we also extend the common notion of composition to
take the final states of the automata into account by saying that a composition is
goal-oriented or meaningful if a final state is reachable, and hence the individual
goals of the services are preserved.

Definition 3 (Goal-oriented Composition). A composition A1 ⊗α1↔α2 A2

is said to be goal-oriented if it contains a reachable final state.

A composition is said to be closed whenever all the necessary interactions are
available in the composed processes (and hence no interaction from the envi-
ronment is needed) and furthermore a final state is reachable in the product
automaton.

Definition 4 (Closedness). (A, s) is said to be closed if, starting from s, there
is a final state reachable following only τ transitions.

Goal-Oriented Composition of Services 121

"#$%&'()3,g,v "#$%&'()4,h,iv

τ

				
	

"#$%&'()3,f,iv
τ

��					
τ ��

τ 				
	

"#$%&'()������ !4,h,vi

�� "#$%&'()1,a,i
τ �� "#$%&'()2,b,i

τ �� "#$%&'()3,c,i
τ �� "#$%&'()3,d,ii

τ �� "#$%&'()3,e,iii

τ ��

τ

				
"#$%&'()3,f,vi

τ

��

*+,-./013,j,vii

τ 				
	

*+,-./01"#$%&'()5,k,vii

Fig. 4. Composed Automaton: Buyer ⊗β↔γ1 Agent ⊗γ2↔α Auction

Observe that the traditional definition of closedness is more restrictive than ours,
as we only require the existence of one path consisting of internal actions, and
not every transition to be internal. This allows us to be more flexible because a
service may have more than one option to achieve some acceptable goal, and we
require that only one is reachable. As an example, consider a scenario where a
service acting on behalf of a traveller wishes to compose with either a train ticket
service or a plane ticket service. Here it is the case that although the traveller
has goals representing both successful train and plane ticket reservations, the
agencies provide only one kind of tickets.

Example. As an example of goal-oriented composition, Figure 3 shows the prod-
uct automaton Buyer ⊗β↔γ1 Agent. The automata is connected on the channels
β and γ1, resulting in τ -transitions replacing these in the product automaton.
The γ2 channel present in the Agent remains unconnected, hence making fur-
ther composition possible. Indeed, the automaton can be composed further with
Auction, as shown in Figure 4. Observe that the resulting composition is closed,
as there exists paths containing only τ -transitions that reach final states.

The composition of the buyer and auction automaton, illustrated in Figure 5,
shows how transitions might be lost during composition. Here the buyer places
his maximum bid immediately and, when outbid, accepts defeat. The auction
however is willing to take another bid from the buyer after the first one is out-
bid. The composition succeeds because there are still goal states present in the
composed automaton; in fact the resulting automaton is closed.

Properties. The main result we establish in this section tells us under which
conditions the composition of services leads to a situation where common goals
are achieved. More precisely it expresses the following: if the product automaton
of process-conformant automaton is closed, then there exists an execution of the
processes such that they reach their common goal as specified in the automaton.

Theorem 3. For i = 1, . . . , n, let [Pi]Ai,si ∈ E(P) and Γ, si Pi : Ai be a
typing, and let A = A1 ⊗α1↔β1 A2 ⊗α2↔β2 · · · ⊗αn↔βn An be the composition of

122 S. Nanz and T.K. Tolstrup

������ !4,iv

τ �������

�� ������ !1,i
τ �� ������ !2,ii

τ �� "#$%&'()3,iii

τ �������

τ ��
������ !�������	4,vi

"#$%&'()������ !5,vii

Fig. 5. Composed Automaton: Buyer ⊗β↔α Auction

all Ai. If (A, (s1, . . . , sn)) is closed, then P | Q →∗
t P ′ | Q′ and [P ′

i]Ai,s′
i
∈ E(P ′)

and (s′1, . . . , s
′
n) is a final state in A.

Note that the property expressed in this theorem can be seen as a relaxation of
the common notion of liveness by exploiting the optimistic approach: we ensure
that from the state we compose in we can always choose a right path to end up
in a desired state (i.e. such a path will always exist).

6 Related Work

Previous work on service oriented computing has primarily focused on web ser-
vices, for which the Web Services Description Language (WSDL) [4] has been
influential in describing the static interfaces of services. Another line of work has
focused on the choreography of web services, for which the Web Services Chore-
ography Description Language (WS-CDL) [10] is a recent attempt at a standard.
In this paper we deal with the orthogonal topic of composing services. Several
approaches to composing systems based on process algebras and automata have
been proposed. However, many of these [16,20,19] have limitations that do not
allow them to describe systems in a modular manner, and checking compat-
ibility cannot be performed with a feasible complexity. Canal et al. [3,2] use
roles to define protocol specifications, making them modular, yet the computa-
tional complexity of composing systems remains NP-hard. One main benefit of
choosing interface automata over other alternatives such as process algebras or
input-enabled automata is that the compatibility of services can be checked in
linear time [5].

Another approach that deals with these issues is session types. The use of
session types [8,9] was introduced to describe structured communication. Gay
and Hole [6,7] introduced subtypes for compatibility and conformance testing
of processes. Vallecillo et al. [18] continued the investigation of composition
of compatibility of session types, applying their approach in the commercial
environment CORBA. The present work differs from session types in a core
point, namely the fact that goal-oriented composition allows us to express when
composition is meaningful. Another novel feature is the ability to compose ser-
vices component-wise, allowing arbitrarily large dynamic composition scenarios,
rather than focusing on two sessions being dual or complementary.

Goal-Oriented Composition of Services 123

Recently, Larsen et al. [12] have presented an interface theory, modal I/O
automata, that adds modalities to interface automata such that requirements of
the system can be directly modelled. As modal I/O automata are more general
than the interface automata, it would be interesting to see what benefits can be
gained by lifting our abstractions to this approach.

Goal-orientation is an important term in requirements engineering [11]. In this
field the term is used to describe techniques to identify and refine requirements
guided by goals. In our work we use goals to guide the composition of services.
Hence our work is orthogonal to these techniques.

7 Conclusion

We have extended the π-calculus with an explicit action for service collabo-
rations, and have presented an interface automata-based abstraction of these
processes in order to reason about the meaningfulness of the arising process
compositions. A type checking algorithm has been provided for ensuring the
conformance between a process and its abstracting automaton, and we have
extended the theory of composition of interface automata by introducing goal
conditions. The notion of closedness of compositions could then be relaxed in a
way that only the required interactions needed to be part of a composition, thus
establishing a very flexible notion of compositionality.

In future work we would like to investigate the flexibility of having optional as
well as required goal states, resulting in an even more fine grained specification of
meaningful service composition. Furthermore, we could strengthen the semantics
of the collaboration action by transforming it from a mere annotation of the start
of a collaboration to an action which checks compositionality before executing,
allowing us to express statically when a process is safe with respect to goal-
oriented composition.

Acknowledgements. This work has been partially sponsored by the project
SENSORIA, IST-2005-016004, and by Deloitte Business Consulting, Denmark.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tecture and Applications. Springer, Heidelberg (2004)

2. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles
to CORBA objects. IEEE Transactions on Software Engineering 29(3), 242–260
(2003)

3. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Science of Computer Programming 41(2), 105–138 (2001)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) (March 2001), http://www.w3.org/TR/wsdl

5. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 109–120. Springer, Heidelberg (2002)

http://www.w3.org/TR/wsdl

124 S. Nanz and T.K. Tolstrup

6. Gay, S.J., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra,
S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999)

7. Gay, S.J., Hole, M.: Subtyping for session types in the pi-calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

8. Honda, K.: Types for dynamic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language (WS-CDL) (November 2005),
http://www.w3.org/TR/ws-cdl-10/

11. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
5th IEEE Intl. Symposium on Requirements Engineering (RE 2001), pp. 249–262.
IEEE Computer Society Press, Los Alamitos (2001)

12. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

13. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: 6th Annual Symposium on Principles of Distributed Computing (PODC 1987),
pp. 137–151 (1987)

14. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-
Quarterly 2(3), 219–246 (1989)

15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Information and Computation 100(1), 1–77 (1992)

16. Nierstrasz, O.: Regular types for active objects. In: 8th Annual Conference Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 1993), pp. 1–15. ACM Press, New York (1993)

17. Singh, M.P., Huhns, M.N.: Service-oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Chichester (2005)

18. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of software com-
ponents using session types. Fundamenta Informaticae 73(4), 583–598 (2006)

19. Wehrheim, H.: Behavioral subtyping relations for active objects. Formal Methods
in System Design 23(2), 143–170 (2003)

20. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

http://www.w3.org/TR/ws-cdl-10/

Composing Components with Shared Services in

the Kmelia Model

Pascal André, Gilles Ardourel, and Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

{Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe}@univ-nantes.fr

Abstract. TheKmelia abstract componentmodel is extended to allow the
description of component compositionswithmultipart interactions leading
to simultaneous communications between more than two services. Shared
services are defined to explicitly control multipart interactions. Accord-
ingly the communication actions of Kmelia are extended.The formal defini-
tions of the Kmelia model, the composition of components via their services
and their analysis are revisited to integrate the extension of the model. An
example illustrates the need and the usage of shared services.

Keywords: Component, Composition, Shared services, Multipart
Communication.

1 Introduction

The Kmelia component model [3] was introduced as an abstract formal compo-
nent model dedicated to the specification and development of correct compo-
nents. The model is equipped with a language which is evolving together with
the expressive power of the model. In [3] we have distinguished two semantics for
the link between component services. Only one, monadic semantics, was treated
in this previous article. The second one, polyadic semantics, was not treated.
The hypothesis for the monadic semantics is: only one provided service may be
associated to a required service; a component is both a component type and the
unique instance of it; a required service may be linked to at most one provided
service; only one instantiation of a service exists at any time.

In the current article we consider the polyadic semantics: a provided service
may be linked with various required services (allowing broadcast communica-
tions); as an example, a chat system provides an interaction service for multiple
clients. In the same way a required service may be linked to various provided
services. We present the new features of our Kmelia model, the language aspects
that support these features and how these improvements are integrated with the
previous works on Kmelia.

Motivations. The modelling of various real life systems such as auction systems,
chat systems, distributed brokers, etc requires the use of several components
of the same type or several services with identical functionalities but coming

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 P. André, G. Ardourel, and C. Attiogbé

from different components. This leads to the need of interaction means to sup-
port the assembly and the composition w.r.t to the multiplicity of services that
may be connected. The current Kmelia model and language provide a one to
one service/component interaction even if several components participate in the
assembly. This does not cover the kind of systems listed above.

Contribution. The contribution of this article is the improvement of the expres-
sivity of the Kmelia component model with shared services, multipart interac-
tion based on synchronous n-ary communications. We extend Kmelia to support
multiple connections between services. Also, we explicitly distinguish between
component types and components (as elements), hence we may use several com-
ponents of the same type in an assembly. Accordingly, the interaction between
Kmelia services is updated.

The article is structured as follows. In Section 2 we give an overview of the
Kmelia abstract model and we mention some new features introduced in this
article. Section 3 is devoted to multiple links on the same service and the impact
on the interaction between services. In Section 4 we deal with shared services
and their impact on the assembly description. Section 5 shows an example of a
component-based system with shared services and related interactions; Formal
analysis issue is treated. The article is concluded in Section 6 where we discuss
related works and give some perspectives to this work.

2 Overview of the Kmelia Model and New Features

2.1 Overview of the Kmelia Component Model

In [3,2] we have presented various aspects of our abstract component model called
Kmelia. Here we recall the main elements of this component model and we build on
them in order to improve the model according to the new communication features.

A Kmelia abstract component is a mathematical model of an open multiservice
system that supports synchronous communication with its environment.

The main specification of a component [3] is preserved and referred to as the
specification of a component type. The interface of a component is still made of
required services and provided services. The core specification of a service is not
changed. We recall the definition of a component; it stands now explicitly for a
component type.

Component Type Specification. A component type (C) is a 8-tuple 〈W ,
Init, A, N , I, DS , ν, CS〉 with:
– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of

variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;
– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoints finite sets: Ip

the set of names of the provided services that are visible in the component
environment and Ir the names of required services. We have I ⊆ N .

Composing Components with Shared Services 127

– DS is the set of service descriptions which is partitioned into the provided
services (DSp) and the required services (DSr).

– ν : N → DS is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp ∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The behaviour of the component relies on the behaviours of its services. A
service is activated by a call; It may activate other services during its evolution.
Only one action of an activated service may be observed at time. Due to de-
pendencies between services and interaction between components, the actions of
several activated services may interleave or synchronise. The constraint CS de-
scribes general conditions on the service usage: it can be an ordering of services
or a predicate (safety properties, ...). Specific Kmelia provided services (called
protocols) can implement a Component Behaviour Protocol in the sense of [9,13].
Kmelia allows the use of several protocols for the same component.

A service of a Kmelia component is defined with an interface and a behaviour.
The interface is made of a signature, a pre-condition, a post-condition, a service
dependency which gives the services on which the current one depends (subs:
the subprovided services, cals: the service required from the caller, reqs: the ser-
vices required from any component, ints: the internal services). The behaviour
of a service is described with an extended labelled transition system. The labels
may be either elementary actions (assignments, function call, ...) or communi-
cation actions which support the interaction between Kmelia services. Therefore
a Kmelia service is not reduced to a single running stream from its start to its
termination, when a service is called, it may have interaction with the caller or
with other services.

A communication action is either a service call/response or a message send/
receive. The Kmelia syntax of a communication action (inspired by the Hoare’s
CSP) is: channel(!|?|!!|??) message(param*). Therefore communication ac-
tions are matching pairs:

send message(!) - receive message(?),
call service(!!) - wait service start(??),

emit service result(!!) - wait service result(??)

We use the channel identifier CALLER to denote the channel associated to a
service for a call.

A Kmelia service s has callers (the services that call s) and callees (the required
services that are called by s). When a service reqServ is required by a service
s, the latter uses the channel named reqServ to communicate with the service
linked with reqServ in assemblies.

Assembly. An assembly is a set of components that are linked (composed)
through their services; they interact via their activated services which commu-
nicate through the abstract channels that support the links established between
the services. Graphically, a component is depicted as a box (See Fig. 1). On the

128 P. André, G. Ardourel, and C. Attiogbé

frontier of the component box, required services are depicted as empty small
boxes included in the component box (like rs1). Provided services are depicted
as empty small boxes outside the component box (like ps1).

2.2 New Features of the Kmelia Model

Component. A component is one element of a component type (see above
Sect. 2.1). A component is referred to with a variable typed using the component
type; for example c1: CT where c1 is a variable and CT a component type. Several
components of the same type will be denoted with c[n]:CT where n is a natural
number. In the same way an assembly is one element of an Assembly Type.

Shared Service. Sharing is concerned with services and at low level with com-
munication actions: several services may be involved in a communication, like in
the broadcast messages.

A shared provided service is a provided service that can simultaneously inter-
act with several services from other components. Therefore a subset Isp of the
interface I (where I = Ip ∪ Ir) of a component constitutes the shared provided
services of the component. Accordingly, Isp ⊆ Ip.

As far as required services are concerned, we now allow that a (provided)
service performs a simultaneous communication with the (provided) services
that are linked to its required services. Therefore required services may also
be shared. Sharing a required service forces the synchronisation of the linked
services. A subset Isr of the interface I of a component constitutes the shared
required services of the component: Isr ⊆ Ir .

Multipart communication. Within an assembly, a service may be linked to
several other services, leading to a multipart communication between the in-
volved services. For instance a provided service may send a message simultane-
ously to several callers or wait for a message coming from several callers. In the
same way a service may simultaneously call all the services linked to its required
service (reqServ) using the channel named reqServ. A shared provided service
may wait using ?? (resp. ?) for a call (resp. a message emission) from several
other services linked with it. Consequently the shared provided service sends a
response (resp. a message) with !! (resp. !) to all its callers.

We also introduce the role concept to qualify some links and the related
interactions.

In the following we give the details, the constraints of these kinds of interaction
and the associated communication actions.

3 Shared Services: Impact on Service Interactions

The context here is multipart interaction between components via their services.
The actions performed by the interacting services are interleaved but the services
synchronise on communication actions. In our previous work, pairwise interac-
tions are considered between components; only one-to-one linked services are

Composing Components with Shared Services 129

involved, and only one provided service may be linked to a required one. We
consider now the cases where the interactions between several components are
not restricted to one-to-one links between the services.

In the following we examine the various interaction cases with multiple ser-
vices with respect to the expressivity of the Kmelia model. First we consider
several provided services linked to one required, and one provided related to
several required services. Then we generalise to a service interacting, even with
synchronising communications, with several callers or several callees.

3.1 Linking Several Provided Services with one Required Service

A service rs required by a component may be fulfilled by one or several other
services ps from one or several components (see Fig. 1). Each one of the ps
services should be compatible with the requirement. Thus, at the specification
level all the provided services linked with rs should be compatible with rs. The
compatibility between services is already defined in [3].

Fig. 1. Assemblies with Shared Required Services

If the provided services are from the same component (Fig. 1 (a)) or from differ-
ent components (Fig. 1 (b)), the interaction may result in a synchronous multipart
communication between, on the one hand, the provided services and on the other
hand, the service that uses the required one (which should then be shared).

If the provided services are from components of the same component type
(Fig. 1 (c)), the interaction may be specifically done with one component (pro-
vided that there is only one at time) or with several (or all) components if the
caller service (associated to the required one) is designed to behave like this.

The expressive power of the Kmelia model had to be extended to cover the case
depicted in Fig. 1 (a) and Fig. 1 (b) by considering simultaneous calls, message
sending, call response, or message receiving from the provided services via the
shared required service.

To handle the case represented by Fig. 1 (c), a service may call simultane-
ously all the provided services linked with it1; the called services may respond to
1 There are other hypothesis that do not involve all the provided services; they are

not considered here.

130 P. André, G. Ardourel, and C. Attiogbé

their common caller. Specific communication actions are needed to handle this
kind of interaction which should be distinguished from those already existing in
the Kmelia model (they are binary). From the semantic point of view, the called
services evolve simultaneously and send their results back to the caller. We main-
tain here the use of a synchronous communication. The needed communication
actions are introduced later in this section.

3.2 Linking one Provided Service with Several Required Services

In an assembly of components, several components may use one component and
its provided services. In this case a given provided service may be linked with
several required services (see Fig. 2). Practically, several services may call their
shared provided either in exclusion with the other callers or simultaneously.

Fig. 2. Assemblies with Shared Provided Services

If we assume the exclusion between the running of the actions of the in-
teracting services, the cases depicted with Fig. 2 (a) and Fig. 2 (b) will be
correct interactions with respect to the current Kmelia model; but in this case
the provided service (not shared) does not use multipart synchronous commu-
nication actions. However, sharing the provided service may force to multipart
synchronous communication using a wait for all. Thus we consider simultaneous
calls to the shared provided service (this also includes the case depicted in Fig. 2
(c), where several services of components of the same type are interacting with
the same provided service), then the interaction between the provided service
and the linked required services is not straightforward. We have a one-provided
to n-required relationship. In this case the provided service should be shared: its
communications are shared among the n callers which either belong to different
components types (Fig. 2 (b)) or are components of the same type (Fig. 2 (c)).
It does not matter to link a non-shared provided service to several callers, be-
cause each caller will interact separately in its call context. It is the provided
service designer which should consider the ability to interact with several callers,
otherwise there is no sharing.

To sum up we have to deal with the composition of a shared provided service
with several services. The new feature to be treated is the composition of one

Composing Components with Shared Services 131

shared provided service with several required ones. From the caller side, there
is no new requirement for the interaction. From the callee side, the interaction
may be performed either with one specific caller, or with any caller, or with all
the callers; it depends on the designer.

In the following we present the proposals to improve the communication ac-
tions of Kmelia in order to encompass the new communication needs.

3.3 Interaction with Shared Services

In this section we extend the communication actions of the Kmelia model to deal
with the new kinds of interaction due to shared services.

Consider sp as a shared provided service; it may be called by several other
services (the callers). The service sp may communicate with one specific caller,
all the callers, or one among the callers. The interaction between the linked
services is explicitly achieved from the shared provided service using different
identifiers for the caller services. The communication actions (see Sect. 2.1) are
now extended as multipart communication actions using a channel selector:

channel[<selector>](!|?|!!|??)message(param*)
The values of <selector> are: ALL, i and :i. For instance, CALLER[ALL] identi-
fies all the callers; CALLER[i] identifies precisely the caller i where i is a natural
number; CALLER[:i] will identify one of the callers, the identifier of which is
then bound to i. These two last cases of communication are not detailed in this
article. ALL stands for all the callers that are currently linked to a channel end.
We introduce in Kmelia, additional communication actions (Tab. 1) to support
the interaction between a shared provided service and its callers.

Table 1. Communication actions from a shared provided service to its callers

CALLER[i]!msg(val) Emission of msg(val) to the caller i
CALLER[ALL]!msg(val) Broadcast of msg(val) to all the callers

CALLER[i]?msg(x: x Type) Reception of a value from the caller i
CALLER[:i]?msg(x: x Type) Reception of a value from any caller i; the other

received values are not taken into account.

tab x := Reception of values from all the callers,
CALLER[ALL]?msg(x: x Type) the received values are collected in a structure

tab x indexed with the identifiers i of the callers

CALLER[i]!!subServ(val) Call of a sub-service of the caller i
CALLER[ALL]!!subSerb(val) Broadcast of a sub-service call to the callers

CALLER[i]??subServ(x: x Type) Wait the return of a sub-service from the caller i
CALLER[ALL]??subServ(x:x Type) Wait the return of all sub-services from all the

callers

In the current case, the communications are all synchronous. The case of
CALLER[:i]?msg(x: x Type) may be asynchronously treated but this is not
the concern of the current article; only the synchronous semantics is considered.

132 P. André, G. Ardourel, and C. Attiogbé

As far as a shared required service sr is concerned, the services linked to sr
are referred to using the default channel sr. The extensions of communication
actions are similar to those in the Tab. 1 replacing the channel CALLER with sr.

3.4 Adding Roles to Interactions

When several services call a shared provided service, they may play different
roles in the interaction. For example in a chat system where several members
achieve a connection to a server and participate in discussions, one member
may play the role of moderator. Distinguishing between several callers’ roles
gives more flexibility in the assemblies. Roles can be shared or not: for instance,
moderator could be a non-shared role. A shared provided service can support
multiple roles by suffixing the channel by the role identifier in communications
that only concern a specific role. From the syntactic point of view we use the
following form for the communication actions.

channel:<RoleId>[<selector>](!|?|!!|??)message(param*)
<RoleId> is a role identifier that qualifies the communication channel.
All the roles supported by a service ps should be fulfilled and every caller of

the service should assume a role. Therefore considering a role of ps from a service
cs can be done in two ways: either in the behaviour of cs by using a <RoleId>
suffix in all its communication actions with ps or in the assembly by assigning
<RoleId> to the link.

4 Shared Services and Component Assembly

4.1 Specification of Shared Services in Kmelia

It is the role of the specifier to qualify a provided or required service as shared. In
the behaviour of a shared service, some transitions are labelled with the multipart
communication actions described in Sect. 3.3. But a service may be declared to
be shared without using the specific communication actions; it does not matter.

In the same way as it was done for the use of protocols in our model [2], we
propose the use of qualifier. Therefore the interface of a shared provided service
has the following forms (the same holds for shared required services):

shared provided serviceName(parameters)
{... specification of the service ...}

or equivalently

provided serviceName(parameters)
properties = {shared, ... }
{... specification of the service ...}

An analysis of a service behaviour may lead to determine that it is shared or
not. Formally we check that a provided service is effectively shared by checking
the type of communication actions used in its behaviour. In the same way, we

Composing Components with Shared Services 133

formally check that a required service is effectively shared, by examining the
communication labels of the services that use it.

A shared service (or subservice) may be used by a non-shared service
(sub-service).

4.2 Composition: Component Assembly

The new communication means do not impact the definition of the assembly of
components but they do impact the assembly correctness.

We recall that the composition of services is based on the links that support
the interaction between the services. According to the use of component types,
components and shared services, the following points are revisited:

– Assembly of components (explicitly the elements of given component types).
An assembly as it is defined until now [3], is specified by considering com-
ponents; therefore there is no changes to the assembly specification.

– Assembly of component types. It is an assembly defined from component
types; it results in an assembly type and should be instantiated by specific
components in place of the component types used in the assembly. A com-
ponent type may appear more than once in an assembly.

– Component Composition. A component composition (via their services) is
defined until now by considering the links and sublinks established via an
assembly of components, by linking required and provided services. Now, we
also permit the link of one provided service with several required ones. But,
as shared provided/required services are provided/required services (inclu-
sion property), the link and sublink definitions are still correct; they include
shared provided services.

– Interaction and simultaneous evolving. The services in different components
may evolve simultaneously with interleaving; an activated service may in-
teract with another activated one which is linked to it. With the current
improvement of the Kmelia model, a service may synchronise with several
activated services from different components via the introduced communica-
tion actions (see Sect. 3.3).

In the following formal definitions, we use a set theory notation close to that
of the Z or B languages where X ↔ Y denotes the relation from X to Y (a set of
pairs); dom and ran denote respectively the domain and the range of a relation;
a �→ b denotes the pair (a, b).

In the remainder let C be a set of Ck components with k ∈ 1..n and Ck =
〈〈Tk, Vk, VT k, Invk〉, Initk, Ak, Nk, Ik, DSk, νk, CSk〉 as defined in Sect. 2. Let N
be the set of service names of C (N =⋃

k∈1..nNk).
The formalisation of an assembly [3] remains mainly unchanged (for com-

ponent and assembly) when we integrate the new communication actions of the
Kmelia model. However we now distinguish explicitly components and component
types; therefore we update here the involved parts of the existing formlisation.

134 P. André, G. Ardourel, and C. Attiogbé

Component Assembly Type. An assembly of components (recall from [3])
results in an Assembly Type; it is a composition of components described by a
tuple A = (C, links, subs) where C is a set of components, links is a set of links
between the component services and subs is a relation from links to sublinks. It
may be abstracted as (CT , links, subs) by considering in CT the types of the
components C:

links ⊆ Link ∧
(1) (∀(Ci, sn1, Cj , sn2) : links • Ci ∈ C ∧ Cj ∈ C ∧

((sn1 ∈ Ipi ∧ sn2 ∈ Irj) ∨ (sn1 ∈ Iri ∧ sn2 ∈ Ipj)))
subs : Link ↔ SubLink ∧
(2) dom subs = links ∧
(3) (∀((Ci, sn1, Cj , sn2) �→(Ck, sn3, Cl, sn4))∈subs • Ci = Ck ∧ Cj = Cl) ∧
(4) (∀(Ci, sn1, Cj , sn2) : ran subs • ((νi(sn1)∈DSpi

) xor (νj(sn2)∈DSpj
)))

The linked components are the components of the assembly (1). The sublinks
are related to links (2) that concern the same components (3). Provided services
are linked to required services (1 and 4).

The links (Link) and sublinks (SubLink) between component services are
specified as follows. The links are 4-tuple of component and service names with
the following properties: (1) the service names are those of their owner compo-
nents, (2) any component service is not linked to itself (not recursive).

BaseLink : IP (C × N × C × N)
(1) ∀(Ci, sn1, Cj , sn2) : BaseLink • sn1 ∈ Ni ∧ sn2 ∈ Nj

(2) ∀Ci : C, sn1 : Ni • (Ci, sn1, Ci, sn1) /∈ BaseLink

A link connects two services of the interfaces of their owner components.

Link ⊆ BaseLink ∧ ∀(Ci, sn1, Cj , sn2) : Link • sn1 ∈ Ii ∧ sn2 ∈ Ij

Assembly of Components. In the same way as a component is an element
of a component type, a component assembly is one element of a component
assembly type (viewed as a set of possible values of the defined assembly type
and related properties, see above). A component assembly is referred to with a
variable typed using the component assembly type; for example ca: CAT where
ca is a variable and CAT a component assembly type.

Well-Formed Assembly Revisited. The well-formedness is modified as fol-
lows. A component assembly described by the triple A = (C, links, subs) is a
well-formed component assembly if the following properties hold:

– all the members of C are components;
– the services in the sublinks are not in the involved component interfaces, but

they are in the dependencies of the involved services (w.r.t sublinks).

(5) ∀(l, sl) ∈ subs | l = (Ci, sn1, Cj , sn2) ∧ sl = (Ck, sn3, Cl, sn4) •
((sn3, sn1) ∈ dependsi

∗ ∨ (sn4, sn2) ∈ dependsj
∗)

Composing Components with Shared Services 135

where dependsi
∗ is the transitive closure of dependsi. The relation dependsk

between component services is defined as a part of the service dependency
in a component Ck where sm = νk(m):

dependsk : Nk ↔ Nk

∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

Practically a link establishes an implicit communication channel between the
involved services. This channel is shared with the sub-services.

– when a service with a dependency (subs: the subprovided services, cals:
the service required from the caller, reqs: the services required from any
component, ints: the internal services) is shared, its dependencies subs are
also shared.

– shared provided services are linked with one or several required services from
one or several components. But non-shared provided services may also be
linked with several required service. Therefore there is no specific assembly
constraints. Correctness is checked w.r.t behaviours.

– only shared required services may be linked with several provided services.
Let linkedWithC(C, sn) be the set of links with the service sn of the com-
ponent C; we have to check for the services linked to several other services
(hence the use of card, the cardinal of a set).

linkedWithC(C, sn) = {(Ci, sni, Ck, snk) ∈ link | Ci = C ∧ sni = sn}

Let sharedRequired(C) be a function that denotes the set of the shared re-
quired services of the component C. They are the services of Ir (the required
services of C) which have the property shared.

(6) ∀(C, sn) | C ∈ C ∧ sn ∈ N ∧ sn ∈ Ir •
card(linkedWithC(C, sn)) > 1 ⇒ sn ∈ sharedRequired(C)

From the practical point of view, the parser-compilers of Kmelia specifications
should be updated in order to raise some errors when the added well-formedness
rules are not respected.

4.3 Composition: Composite Component

An encapsulation of a well-formed component assembly within a component type
results in a composite component type. We have defined an operator named com-
pose that builds a new component type by combining one or several components
(see [3]). Inner component services are promoted at the interface of the compos-
ite component; the properties of the services are preserved by the promotion (for
instance a shared service remains shared). In this paper, we do not emphasize
other aspects of composition such as the access rules to inner components.

A well-formed assembly type cannot be used to build a composite component.
It should be first instantiated with components. Informally, the instantiation of
an assembly type AT = (CT , links, subs) consists in replacing each component
type CT of CT by a component with the type CT.

136 P. André, G. Ardourel, and C. Attiogbé

4.4 Revisiting Behavioural Compatibility Analysis

The behavioural compatibility of an assembly of components with multipart
communication actions follows the general principle already formalised in the
previous version of Kmelia [3], where we defined composability and behavioural
compatibility analysis. The principle is: first, to consider a service si of a compo-
nent Ci, one required service req of si, and one service sj (of a component Cj)
that is linked to req; the triple (si, req, sj) constitutes the analysis context to
check each service of Ci. Second, considering the labelled transitions Bi and Bj ,
that describe the behaviours of si and sj , after checking the composability at
service and component level, one should ensure compatible(Bi, Bj) which is the
interleaving of elementary actions and the matching of communication actions.

Now, the matching of communication actions is extended to multipart com-
munications. To capture this aspect, we proceed as follows. The context of a
service analysis, previously defined as a triple, is extended to: one service si, one
required service req of si, and SJ the services linked to req. The third element
of the triple may now be a set of services. Therefore checking the behavioural
compatibility of (si, req, SJ), with Bi the behaviour of si and BJ the set of
behaviours of the services sj in SJ , results in:
i) checking (si, req, sj) for each sj ∈ SJ ; that is denoted with:

compatible gen(si, SJ) ⇔ ∀sj ∈ SJ | compatible(Bi, Bj)
with Bi the behaviour of si and Bj the behaviour of sj

ii) checking one-to-n matching between si and SJ . They match if at each com-
munication point we have the following matching conditions:
when si performs req[ALL]?msg(...) each sj in SJ performs CALLER!msg(...);
when si performs req[ALL]!msg(...) each sj in SJ performs CALLER?msg(...);
when si performs req[ALL]??srv(...) each sj in SJ performs CALLER!!srv(...);
when si performs req[ALL]!!srv(...) each sj in SJ performs CALLER??srv(...).

Formally this results in a synchronous communication between n commu-
nicating entities, where one of the entities synchronise with the other entities
considered together. Recall the specification of the extended labelled transition
system of a service si (from [3]): si =̂ 〈Ssi , Lsi , δsi , Φsi , S0si

, SFsi
〉. The set S0si

contains the initial state of si; it may be used as the current state of si. Thus
if S0si

is {csti} then ((csti, ll), nsti) ∈ δsi means that there is a transition
labelled with ll from the current state csti to the state nsti.

Using the previous matching conditions, we specify one-to-n matching(si, SJ)
as follows (only the first condition is expressed, the other ones are similar):

si =̂ 〈Ssi
, Lsi

, δsi
, Φsi

, {csti}, SFsi
〉 ∧ ((csti, req[ALL]?msg(...)), nsti) ∈ δsi

∧
∀sj ∈ SJ | sj =̂ 〈Ssj

, Lsj
, δsj

, Φsj
, {cstj}, SFsj

〉 ∧

((cstj , CALLER!msg(...)), nstj) ∈ δsj

one-to-n matching(si, SJ)

Consequently behavioural compatibility is generalised to (si, req, SJ) with:

compatible gen(si, SJ) ∧ one-to-n matching(si, SJ)
beh compatible gen(si, SJ)

Composing Components with Shared Services 137

From now on, the Kmelia model includes multipart interactions, synchronous
synchronisation of several interacting services, and an up-to-date behavioural
compatibility checking.

5 Experimentations and Formal Analysis

5.1 A Chat System with Shared Services

Consider a chat system made of a server component with the type CHAT SRV
and several client components with the type CHAT CLT, see Fig. 3.

COMPONENT CHAT_SRV

INTERFACE

provided: {connection,interaction}

required: {}

SERVICES

provided connection()

{...}

shared provided interaction()

// sends ’news’

// receives ’msg’, ’close’

{...}

news ()

{...}

END_SERVICES

COMPONENT CHAT_CLT

INTERFACE

provided: {chat_session}

required: {interaction}

SERVICES

required interaction()

// receives ’news’

// sends ’msg’, ’close’

{...}

provided chat_session()

{...}

END_SERVICES

Fig. 3. The components CHAT SRV and CHAT CLT

In this system the server provides the services: connection to wait for connec-
tion from clients and interaction to exchange with the clients. Several clients
may simultaneously interact with the server (the service interaction of the
server is then shared). The actions performed during the interaction are: msg
to receive/send messages from/to clients, news to broadcast messages to clients,
etc. At any time a client may connect to the server, close the connection, send a
message to the server, receive (and display) a message received from the server.
Consider an assembly with one server (srv1) and three clients (clt[3]). The
assembly is specified in Kmelia as depicted in Fig. 4. The behaviour of the main
service (chat session) of a chat client is depicted in Fig. 5.

COMPOSITION
{ srv1: CHAT_SERV

clt[3]: CHAT_CLT }
{ (p-r srv1.interaction, clt[3].interaction) }

Fig. 4. An assembly with one chat server and three clients

138 P. André, G. Ardourel, and C. Attiogbé

Fig. 5. A part of the behaviour of the chat session service of the chat client

The behaviour of the service interaction, provided by the server component
(CHAT SRV), is depicted in Fig. 6.

Fig. 6. A part of the behaviour of the interaction service of the chat server

5.2 Formal Analysis

Since the beginning we have designed the Kmelia model with the sake of prag-
matism. For that purpose the COSTO toolbox [1] is being built.

The toolbox already enables us to parse Kmelia specifications, and to check be-
havioural compatibilityusing external tools suchasLOTOS [10].Wedefinedbridges
that translate Kmelia service specifications into LOTOS processes and we use the
LOTOS/CADP2[6] toolbox to check service properties including behavioural
compatibility. Now, we have extended the expressive power of the Kmelia model;
we have to provide or extend the tools to analyse Kmelia specifications. As far as
behavioural compatibility is concerned we have to deal with multipart interactions
involving synchronous n-ary communications.

N-ary communication supports are not generally provided by formal analysis
frameworks. However LOTOS offers the negotiated multiway rendez-vous [10,7]
that can be used for instance to model broadcast. We target this n-ary communi-
cation mechanism to partially analyse Kmelia multiway communications. Indeed
several LOTOS processes may synchronise on the same gate G to exchange
values. Thus the following communication actions from four LOTOS processes
2 www.inrialpes.fr/vasy/

Composing Components with Shared Services 139

synchronise: G!val, G?var1:T, G?var2:T and G?var3:T. After the synchronisa-
tion the variables var1, var2, var3 receive the value val sent by one of the
processes on the gate G.

Processes may use negotiation to wait for a specific value; this is expressed
with a guard (a predicate) following the wait action (G?var:T [guard]). The
negotiated value is the one that satisfies the predicate of all the involved guards.
It is also possible to synchronise with more than one emitted values (but they
should be the same).

The new multipart communication actions may be performed using LOTOS
processes. It is the case with CALLER[ALL]!msg(...) and CALLER[ALL]!!srv(...)

which are broadcast. They are translated as a multiway communication between
the processes associated to the caller services and the current process. The case
of CALLER[ALL]?msg(...) is not straightforward; we have to collect all the values
proposed by the environment; therefore we have to generate matching actions
w.r.t the involved processes.

The current work in this direction is the extension of our translation mod-
ules of the COSTO tool in order to generate the LOTOS processes with the
communication actions appropriate to the new features.

6 Discussion and Conclusion

Summary. In this paper we have presented some extensions to the Kmelia ab-
stract component model: multipart interaction with synchronous communica-
tion; shared services; composition of component with shared services and mul-
tiway communication. The formal specification and analysis of the model are
revisited accordingly.

Related works. In [12], a survey of component-based specification and architectur-
ing languages is presented. The distinction between component types and their
elements is widely used, it is the case for example with Wright[8], SOFA[13] and
Fractal[4]. But some architecture description languages use a specific language
to deal with type (Rapide[11] for instance). To our knowledge, component mod-
els do not support simultaneous interaction at the service level, but they allow
multiple components connection (via connectors). SOFA and CCM3 permits a
connection from one to many components but no multipart communication be-
tween the services. Sharing is treated at component level in Fractal, in Kmelia we
deal with communication and sharing at service level. More generally, the mul-
tiway communication among component services is not well-studied; one reason
for that is the fact that several component models consider programming level
instead of specification level. Component models based on the CSP process al-
gebra may benefit from the synchronising n-ary rendez-vous to handle multipart
synchronising interactions. Component models relying on programming levels
(EJB, .NET) implicitely base synchonisation on execution threads. The current

3 www.cca-forum.org

140 P. André, G. Ardourel, and C. Attiogbé

work engages a long-term investigation on this challenging subject through dif-
ferent abstraction levels.

Perspectives. Many aspects remain to deal with regarding sharing and the re-
lated properties, composition and correctness of component assemblies. We plan
to investigate further the issues on multipart communication by considering the
cases on selecting specific entities for a given communication. Another challeng-
ing point is the support for interoperability with other component models. The
ideas under investigation are the structuring of the component interface (which
should be more expressive) and the adaptation of the models with respect to the
structuring of the information coming from other component model interfaces.

References

1. André, P., Ardourel, G., Attiogbé, C.: A Formal Analysis Toolbox for the Kmelia
Component Model. In: Proceedings of ProVeCS’07 (TOOLS Europe), Technical
Report. ETH Zurich, 567 (2007)

2. André, P., Ardourel, G., Attiogbé, C.: Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model. In: 6th International Symposium
on Software Composition, SC 2007. LNCS, vol. 4829. Springer, Heidelberg (2007)

3. Attiogbé, C., André, P., Ardourel, G.: Checking Component Composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089. Springer, Heidelberg
(2006)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Frac-
tal Component Model and Its Support in Java. Software Practice and Experi-
ence 36(11-12) (2006)

5. Bruneton, E., Coupaye, T., Stefani, J.: Recursive and Dynamic Software Composi-
tion with Sharing. In: Proceedings of the 7th ECOOP International Workshop on
Component-Oriented Programming (WCOP 2002) (2002)

6. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu,
M.: CADP: A Protocol Validation and Verification Toolbox. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg (1996)

7. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation Using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

8. Garlan, D., Allen, R.: Formalizing Architectural Connection. In: Proceedings of
the 16th ICSE, pp. 71–80. IEEE Computer Society Press, Los Alamitos (1994)

9. Giannakopoulou, D., Kramer, J., Cheung, S.-C.: Behaviour Analysis of Distributed
Systems Using the Tracta Approach. ASE 6(1), 7–35 (1999)

10. ISO LOTOS. A Formal Description Technique Based on The Temporal Order-
ing of Observational Behaviour. International Organisation for Standardization -
Information Processing Systems - Open Systems Interconnection, Geneva (1988)

11. Luckham, D.C., et al.: Specification and Analysis of System Architecture Using
Rapide. IEEE Transactions on Software Engineering 21(6), 336–355 (1995)

12. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26(1), 70–93 (2000)

13. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, 2002. IEEE
Transactions on SW Engineering, 28(9) (2002)

OptBPEL: A Tool for Performance Optimization

of BPEL Process

Sheng Chen, Liang Bao, and Ping Chen

Software Engineering Institute, Xidian University.
Xi’an, 710071, China

chensheng cs@yahoo.com, baoliang@mail.xidian.edu.cn,
chenping@sei.xidian.edu.cn

Abstract. The Business Process Execution Language (BPEL) is now a
de facto standard for specifying and executing business process for web
service composition and orchestration. As more and more web services
are composed using BPEL, tuning these compositions and gain better
performance becomes increasingly important. This paper presents our
approach for optimizing the BPEL process and introduces OptBPEL, a
tool for performance optimization of BPEL process. The approach starts
from the optimization of synchronization structure concerning link in
BPEL. After that, some concurrency analysis techniques are applied to
obtain further performance improvement. Finally, we give some experi-
ments and prove the efficiency of these optimization algorithms used in
OptBPEL.

Keywords: Performance Optimization, OptBPEL, Synchronization
Analysis, Concurrency Analysis, Optimization Algorithms.

1 Introduction

Service-Oriented Architecture (SOA) is now a prevalent architectural style for
creating an enterprise IT architecture that exploits the principles of service-
orientation computing to achieve a tighter relationship between the business
and the information systems that support the business [1].

With the growing adoption of service oriented computing, Web services com-
position is an emerging paradigm for enabling application integration within and
across organizational boundaries. Business Process Execution Language (BPEL)
[2] is now a promising and de facto language describing the Web services com-
position in form of business process.

BPEL supports concurrency and synchronization, hence BPEL processes may
suffer from deadlocks and time-dependent data races [3] due to the erroneous
use of flow and link like any other multi-threaded programs. For these reasons,
while orchestrating processes, business modelers may hesitate to use concurrent
paradigm, they prefer to invoke services sequentially even they could be executed
concurrently. In this paper, we propose OptBPEL, a tuning tool for performance
optimization of BPEL process. It first reads a BPEL process and performs some

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 141–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 S. Chen, L. Bao, and P. Chen

synchronization analysis on the link structure in process, generates a refined
BPEL process. After that, the refined process is transformed by applying some
concurrency analysis techniques and gains further optimization promotion.

2 Tool Description

Fig. 1 depicts the role of OptBPEL in the design and execution of BPEL process.
The BPEL process may be manually written or generated by a BPEL design
tool, e.g. ActiveBPEL Designer [4]. OptBPEL takes the BPEL code as input
and performs some synchronization related optimization (in synchronization op-
timizer), generates the refined BPEL process. After that, concurrency related
optimization (in concurrency optimizer) is applied to this refined BPEL process
and gives the final optimized BPEL process. In section 3 and 4, we describe
these two types of optimization that currently supported by OptBPEL.

Fig. 1. The architecture of OptBPEL

3 Synchronization Optimization

In this section, we focus on the optimization opportunities with respect to the
link construct in BPEL. These opportunities can categorized into three types:
namely refining synchronization granularity, removing unnecessary link and aug-
menting concurrency.

When optimizing a process, it is critical to guarantee that the original process
and its optimized version have equivalent semantics. Since this issue may take
pages to describe formally, in this paper, we concentrate on the data race and
deadlock aspect. If optimization operations that are related to link only don’t
induce data race and deadlock, then we can safely say that the optimized process
is equivalent to the original one.

3.1 Transform BPEL Process to BSG

The approach we exploited focuses on activity segment [5] rather than activity
itself, in order to reduce complexity and thus enhance efficiency. BPEL uses flow
and link to express concurrency and synchronization respectively. While the
flow could be modeled as fork and join, the link could be modeled as wait and
notify, as the semantics of them stated in BPEL specification [2]. To concentrate

OptBPEL: A Tool for Performance Optimization of BPEL Process 143

on how we tune the process, we intentionally omit the details as how to handle
the transition condition of the link and the join condition of activity.

The activity segments and their relation are captured by abstract graph
model, which we call BPEL Segment Graph (BSG), is a directed graph G =<
S, E >. Where the non-empty set of segments S contains all the segments in
G, the edges set E expresses the relation among them. We classify the edges
into two types: the first is sequential edge represented by SEQ used to express
sequential relation; the second, and more important type is the synchronization
edge represented by SYN used to express synchronization dependencies.

The BSG of a BPEL process can be established statically by the virtue of
BPEL synchronization semantics and that BPEL can not create thread dynam-
ically [2]. Koenraad [6] provided great details about how to construct series-
parallel tack graph for parallel program, the construction of BSG for a BPEL
process is kind of similar to that.

3.2 Optimization Algorithm

A deadlock can not arise during the optimizing process due to the fact that any
type of the three optimization operations that impairs the synchronization of
the process may in turn incur data races. If any two segments in the BSG will
not conflict in variable access, then the process is free from data race.

Two legs of the race detection between two segments are their concurrency and
variable sharing. Whether two segments are concurrent or not can be obtained by
deciding they are reachability in BSG. Given two segments, if there exist a path
from one segment to the other, then they are ordered. Otherwise, they are concur-
rent. When two concurrent segments access the same variable, and, at least one
access is write, then the race occurs. Since BPEL can not create variable dynam-
ically, the read/write variables set of a segment can calculated statically [2].

The ”Link Optimizing” algorithm, which takes BSG as its parameter and
optimizes it, sketches the optimizing process. The algorithm terminates when no
optimizing can be done any more. During each iteration of while, we inspect
each SYN edge in bsg for optimizing opportunities. In the part marked (1), we
survey the edge if it can be removed, if we get it, then no further optimizing is
need. Otherwise, in part (2), we try to refine it. We keep on refining a SYN edge
until it can be removed or it can not be refined any more. In part (3), we deal
with the augmenting of concurrency.

4 Concurrency Optimization

4.1 Process Modeling and PDGs

In order to apply static analysis to a BPELprocess,we must first convert the BPEL
process into its equivalent representation of TCFG. As described in [7], the trans-
formation is straightforward. Note we distinguish the interaction nodes (represen-
tation of reply, receive and invoke activities) and calculation nodes (representation

144 S. Chen, L. Bao, and P. Chen

Input: BSG bsg
Output: Optimized bsg
while 1 do

foreach SYN edge se in bsg do
let t and h be the tail and head node of se respectively;
if exist a path from t to h besides se then // (1)

remove se from bsg;
else if no node in bsg conflict with h then // (2)

heads = (s) | (h, s) ∈ E in bsg;
add a SYN edge from t to each node in heads, remove se; continue;

end
seq nodes=the set of nodes that are reachable from h by sequential edges
merely and are not reachable from t, excluding h;
if no node in bsg conflicts with none of seq nodes then // (3)

delete the sequential edges entering and leaving h;
end
if no optimizing operation is done during this iteration then break;

end

Algorithm 1. Link Optimizing

Fig. 2. The TCFG representation of BPEL process

of other activities). This distinction is meaningful because the experiment result
in [8] shows that the time cost of execution of interaction nodes is at least 5–10
times higher than that of calculation nodes. Fig. 2 shows an example of TCFG, the
interaction nodes are represented by rectangular boxes and the calculation nodes
by rounded boxes.

To obtain a program dependence graph (PDG) representation of this process,
we need to insert control and data dependency that model the partial ordering
on activities in the BPEL process that must be followed to preserve the semantic
of the original process, [8] gives a detailed description.

4.2 Node Partitioning and Merging

In this section, we describe a simple algorithm called merge-reorder partitioning
algorithm. The aim of this algorithm is to determine the best partition at which

OptBPEL: A Tool for Performance Optimization of BPEL Process 145

Fig. 3. Time cost model

each calculation node must be executed in some interaction nodes in order to
minimize the total execution time of the BPEL process.

Before giving the description of the algorithm, we first define the time cost
model of the execution. Fig. 3 shows the time cost under different (basic) situa-
tion (Note T(Ai) represents the time cost of the execution of activity Ai).

Merge-reorder algorithm. An informal description of the merging and re-
ordering algorithm is as follows:

1. Locate a control node, in the PDG whose child nodes are all leaf nodes. For
all nodes that have the same control dependence condition on, repeat steps
2 through 6. Continue till all control nodes have been processed.

2. Merging: identify the set of dependence edges E, that pertain to a depen-
dence between siblings with the control dependence condition chosen in step
1, such that at least one of the sibling is a calculation node. Pick an edge
in E and merge the source and destination nodes of the edge. The resultant
dependence of the merged task is the union of the component nodes.

3. When a calculation node gets merged with an interaction node, the combined
node is an interaction node. When a calculation node gets merged with an-
other calculation node, the combined node is also marked as a calculation
node.

4. Reordering: for all configurations generated in step 4, using the time cost
model to choose the merging configuration that likely to yield the minimum
time cost value. For all partitions that only have one single calculation node,
merge them into other different partitions averagely.

5. Exhaustively consider all merging configurations of siblings that can be gen-
erated by merging some subset of the dependence edges in E. Since the size
of E for a single region is usually small, this exhaustive search is usually
feasible in practice.

6. Once a region (subgraph) has been merged, we treat the whole subgraph
as a single node for the purpose of merging at the next higher level. The
dependence of the merge is a union of all dependence.

This algorithm is revised from the one in [8], the main difference between them
is that in [8], author finds the partitions to maximize throughput, whereas the

146 S. Chen, L. Bao, and P. Chen

objective function we used here is to minimize completion time, another differ-
ence is that the our algorithm must create partitions such that each partition
has exactly one interaction node and zero or more calculation nodes.

5 Performance Evaluation

Our experimental setup for testing optimized orchestration is as follows. We use
a cluster of Intel Pentium based Windows machines (2.8G, 512MB RAM) con-
nected by a 100 Mb/s LAN. Each test case we use runs on ActiveBPEL+Axis2
and RCbpel+RCWS respectively. RCbpel is a portable engine which is BPEL
specification compliant developed by our research center implemented in C++,
and RCWS is a web service container implemented by means of hybrid program-
ming in C++ and Python. The reason why we use two settings is to demonstrate
that performance enhance brought by OptBPEL is generic and not BPEL en-
gine dependent, rather to compare execution duration and resource consumption
between them.

Since BPEL is a relatively new language, there are currently no standardized
BPEL benchmarks that we could use in our performance evaluation. However, we
have tested many BPEL process including these taken from real-world, such as
banking system. Fig. 4(a) presents the result of the optimization of travel reserve
process (note the letter R represents the RCbpel engine and A represents the
ActiveBPEL engine in these figures), Fig. 4(b) shows the optimization result of
online book purchase process. The gain is minor when average service response
time is relatively short, this is because the gain is offset by lengthy and frequent
network connecting to some extent. However, when average service response time
is long, as is the most case of real services, and the network connecting impact
is negligible, we see drastic performance enhancement.

Fig. 4. Experimental results

OptBPEL: A Tool for Performance Optimization of BPEL Process 147

Fig. 4(c),(d) show the optimization result by OptBPEL of two complex BPEL
processes, the left one is a banking process and the other is a real-life train
ticket purchase process, both them consist of hundreds of invoke and receive
activities and twisted control flow. We once more see a significant performance
improvement after the optimization by OptBPEL. The performance gain, which
is average service response time correlated, ranges from 15% to 57%. When
the process is complicated, there is always, as can be seen in banking process
and ticket purchase process, bundles of performance optimization opportunities.
OptBPEL taps and exploits all these opportunities, and thus speeding up the
process dramatically.

6 Related Works

There has been considerable research effort paid to BPEL. WofBPEL [9] trans-
lates BPEL processes to Petri nets and imposes existing Petri nets analysis
techniques to perform static analysis on processes, [10] modifies the CWB to
support BPE-calculus by means of PAC to ensure that each link has one source
and target activity exactly, and to guarantee that the process is free of dead-
locks. Mads [11] describes some region-based memory techniques for programs
that perform dynamic memory allocation and de-allocation, which is similar with
our merge-reorder algorithm.

A mathematical performance model of BPEL process is addressed in [12], thus
we may capture a deeper understanding of the performance of a process; on the
other hand, it does not mention how to optimize a process.

Much work has been done on automatic parallelization of sequential programs
based on PDGs, e.g. [13]. In contrast, this paper focuses on the use of PDGs in
partitioning of composite web service applications for reducing execution time
of BPEL process. Although the IBM Symphony project [8] employs a similar
way of partitioning composite web services, its final goal is to implement the
decentralized orchestration, which is a totally different problem.

7 Conclusions and Future Work

This paper presents our approach for tuning and optimizing the BPEL pro-
cess and introduces OptBPEL, a tool for performance optimization of BPEL
process. The approach starts from the architecture of OptBPEL, which contains
two optimizers, namely synchronization optimizer and concurrency optimizer re-
spectively. Then two important analysis methods, synchronization analysis and
concurrency analysis, are introduced. We argue the efficiency of these algorithms
used in OptBPEL and give some experiments to prove it.

Our further work will focus on the following three issues: 1) in some specific
situations(e.g. grid computing), the resources, particularly computing resources,
may be restricted. While optimizing under these circumstances, we will take the
constraints into account. 2) the approach imposed in synchronization optimizer
will emphasize on activity level rather than activity segment level since the

148 S. Chen, L. Bao, and P. Chen

current algorithm misses some optimizing opportunities; and 3) the elaborate
time cost model of BPEL execution is needed and more efficient merge-reorder
algorithm deserves a deeper observation.

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and direc-
tions. In: 4th International Conference on Web Information Systems Engineering
(WISE), pp. 3–12. IEEE Press, New York (2003)

2. Jordan, D.: Web services business process execution language version 2.0. OASIS
Specification (2007)

3. Savage, S., Burrows, M., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data race
detector for multi-threaded programs. ACM Transactions on Computer Systems 15,
391–411 (1997)

4. Active-Endpoints: Active Endpoints Corp. (2007),
http://www.active-endpoints.com/active-bpel-designer.htm

5. Christiaens, M., Bosschere, K.: Trade: a topological approach to on-the-fly race
detection in java programs. In: Java Virtual Machine Research and Technology
Symposium (JVM), Usenix Association (2001)

6. Audenaert, K., Levrouw, L.: Space efficient data race detection for parallel pro-
grams with series-parallel task graphs. In: 3rd Euromicro Workshop on Parallel
and Distributed Processing, pp. 508–515. IEEE Press, New York (1995)

7. Yuan, Y., Li, Z.J., Sun, W.: A graph-search based approach to bpel4ws test gen-
eration. In: International Conference on Software Engineering Advance (ICSEA),
pp. 16–22. IEEE Computer Society Press, Los Alamitos (2006)

8. Nanda, M., Chandra, S., Sarkar, V.: Decentralizeing execution of compostite web
services. In: 19th Object-Oriented Programming, System, Languages, and Appli-
cations (OOPSLA), pp. 170–187. ACM Press, New York (2004)

9. Ouyang, C., Wil, M.P., van der Aalst, Breutel, S.: Wofbpel: A tool for automated
analysis of bpel processes. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 484–489. Springer, Heidelberg (2005)

10. Koshkina, M., Breugel, F.: Modelling and verifying web service orchestration by
means of the concurrency workbench. TAV-WEB Proceedings/ACM SIGSOFT
29–5 (2004)

11. Tofte, M., Talpin, J.-P.: Region-based memory management. Information and Com-
putation 132, 109–197 (1997)

12. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of ws-bpel-based
web service compositions. In: IEEE Services Computing Workshops (SCW), pp.
140–147. IEEE Computer Society Press, Los Alamitos (2006)

13. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems 9
(1987)

http://www.active-endpoints.com/active-bpel-designer.htm

Controlling the Performance Overhead of

Component-Based Systems�

Olivier Lobry1 and Juraj Polakovic2,��

1 France Telecom R&D, Issy-les-Moulineaux, France
olivier.lobry@orange-ftgroup.com
2 STMicroelectronic, Grenoble, France

juraj.polakovic@st.com

Abstract. Flexibility can significantly impact performance. Some
component-based frameworks come with a near to zero overhead but
provide only build-time configurability. Other solutions provide a high
degree of flexibility but with an uncontrollable and a possibly unaccept-
able impact on performance. We believe that no flexible systems give
programmers a means to control the inherent overhead introduced by
flexibility. This prevents from reaching acceptable tradeoffs between per-
formance and flexibility, according to the applications needs or hardware
targets. This paper presents an ongoing work that aims to redesign the
existing Think component framework. Once revisited, the framework
makes possible to finely adjust the flexibility to the actually desired
needs and thus better control the induced performance overhead. A cat-
egorization of the dimensions of flexibility is also introduced in order to
articulate our proposition.

1 Introduction

In the domain of embedded devices, Component-Based Software Engineering
(CBSE) enables programmers to build operating systems tailored to specific plat-
forms or application needs. Systems like OSKit [8], eCos [3] or TinyOS [9] pro-
vide tools, languages and compilers to construct, out of components, customized
kernels of embedded operating systems. Programmers generate binary images of
a system by specifying the desired modules through some configuration file or
architecture description. Such solutions are able to produce efficient systems but
with however no reconfiguration capabilities (that is, flexibility at runtime).

On the opposite, some other component-based solutions like MMLite [13],
SPIN [4], Synthetix [11], Contiki [6] or lately K42 [12] implement various
mechanisms that achieve run-time flexibility. In such systems, components are
runtime entities that constitute as many points of flexibility in the architecture.
They expose some kind of control interfaces in order to change its architecture
or behavior. While they provide efficient mechanisms that bring flexibility, this

� This work has been partially supported by the ANR/RNTL project Flex-eWare.
�� This work was done while the author was a PhD student at France Telecom R&D.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 149–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 O. Lobry and J. Polakovic

provided flexibility is however tied to the architecture of the system to build.
More precisely, such systems lack the possibility to finely choose where, when
and how to pay for it: given a same architecture, it is not possible to produce
different binaries having different number of flexible points, associated control
interfaces or implementation directives, and thus, providing different tradeoffs
between flexibility and performance.

This paper presents an ongoing work that intends to redesign the Think
component framework, that already provides flexibility [7,10] but in a rather
fixed manner, in order to reach our goals. Section 2 proposes a categorization
of the ability to tune the provided flexibility. Section 3 gives an overview of the
flexibility provided by the Think component while section 4 details the necessary
design changes to be made and how we did them. Section 5 concludes the paper.

2 Dimensions of Flexibility

The ability of a component framework to adapt the injected flexibility to actual
application needs can be characterized along the following dimensions1.

Where. Component-based systems provide flexibility points at component bound-
aries. Unfortunately, the presence of a component often imposes a point of flexibil-
ity. This may lead to a prohibitive overhead, thus preventing from encapsulating
small services into components. This unfortunately results in loosing other bene-
fits of CBSE that go far beyond the ability to generate flexible systems [14].

What. The nature of flexibility is generally defined by the provided control
interfaces. A system may simply provide introspection interfaces to query the
architectural state of a component or it may provide more advanced interfaces to
change a binding between two components, replace a component with another,
add a stub before, etc. As all possible kinds of flexibility are not necessarily
always wanted for any component, a component-based system should not impose
a set of control interface.

How. Flexibility may be implemented in different ways with different impacts
on performance. For example, one implementation of a control interface may op-
timize memory footprint whereas another may reduce CPU or power consump-
tion. Also, implementations that take advantage of hardware specificities may
not have the same overhead on all platforms. Therefore, programmers should be
able to choose between different implementations so as to match the constraints
imposed by the targeted platforms and application needs.

When. The requirement for flexibility may evolves over the release timeline of the
system software. Consider the case of semaphores. Conceptually, implementing
semaphores with (very small) components makes sense since they participate to

1 These dimensions characterize control over the specification and implementation of
flexibility, not flexibility itself for which a classification can be found in [2].

Controlling the Performance Overhead of Component-Based Systems 151

the architecture of the system. Code for monitoring their state may help during
debugging phases but may however be removed in production releases because of
memory constraints. Programmers should then be able to specify when flexibility
is actually required and not pay for it when it is not.

3 Flexibility in Think

Think is an open-source implementation of the Fractal model, a hierarchi-
cal and reflective component model intended to implement, deploy and manage
software systems [5]. A Fractal component is both a design and a runtime
entity that constitutes a unit of encapsulation, composition and configuration.
Components provide server interfaces as access points to the services that they
implement while functional requirements are expressed by client interfaces. Com-
ponents interact through bindings between client and server interfaces. Finally,
a component may have attributes that represent primitive properties.

The model is hierarchical since components may contain functional code
and/or sub-components. The Fractal model also defines standard control in-
terfaces to observe and manipulate the internal structure of a component at
runtime. In particular, a component may implement the ComponentIdentity
interface to give access to its server interfaces, the BindingController interface
to rebind its client interfaces, the AttributeController interface to query and
change attribute values and/or the ContentController interface to list, add or
remove subcomponents.

The Think compiler (written in Java) takes as input the description of an
architecture — written in a textual Architecture Description Language (ADL)
— and a component repository. The HelloWorld example shown below gives an
overview of the Think ADL2.

component he l l owor ld {
contains main = hwMain
contains termConsole = terminalConsol e
binds main . conso l e to termConsole . con so l e

}
component hwMain {

provides a c t i v i t y . ap i . Main as main
requires v ideo . ap i . Console as conso l e
attribute i n t p o s i t i o n = 10
content hwMain

}

The helloworld component contains two components main and termConsole
bound to each other through their console interface. The hwMain component
provides a server interface main, requires a client interface console and an at-
tribute position of type int with an initial value of 10. Finally, the file hwMain.c
that contains the functional code is listed bellow:
2 To simplify, the component definition terminalConsole is not given here.

152 O. Lobry and J. Polakovic

1 struct hwMaindata {
2 Rvideo ap i Console ∗ conso l e ;
3 int p o s i t i o n ;
4 } ;
5 static void mainentry (struct hwMaindata∗ s e l f ,
6 int argc ,
7 char∗∗ argv) {
8 s e l f −>console −>putcxys−>proc (
9 s e l f −>console −>s e l f d a t a ,

10 0 , s e l f −>pos i t i on , ” He l lo World ! ”) ;
11 }
12 struct Mact iv i ty ap i Main hwMain mainmeth={main : mainentry } ;

Beyond the difficulty of writing such a functional code, this simple example
shows that the programming approach is strongly tied to the glue implementa-
tion choices. For example interface calls are implemented using as indirect func-
tion calls (lines 8), the self of component is systematically declared in method
declarations (line 5) and passed when called (line 9), attributes are implemented
as struct fields (line 3), etc. Should we change the structure of the produced
meta-data, the the compiler would no longer accept the above code. This un-
fortunately prevents for doing any optimization or providing a way to choose
among glue implementation alternatives.

As an implementation of the Fractal model, Think allows developers to
produce highly flexible systems. The framework however imposes, for a given
architecture, what, where, when and how to implement this flexibility. Indeed,
flexibility points are imposed by the architecture description (where dimension)
since bindings are always dynamic, attributes are always variable, etc., Moreover,
the control interfaces are imposed (what dimension) and there is no possibility
to choose between alternative implementations (how dimension). Discussing the
when dimension is pointless since there is no degree of freedom on the other
ones.

Consequently, one can never adjust the performance vs. flexibility tradeoff
of a given application according to its needs and the targeted platforms. Our
proposition is then to redesign the framework so that it produces code and
meta-data only where flexibility is desired (in a given release), with the ability
to choose among several implementations. Once redesigned, Think will still be
able to produce highly flexible systems as before. But it will also better address
the embedded world with the ability to produce different binary images of a same
system with varying degrees of flexibility and varying implementation choices of
flexibility, according to the constraints of targeted platforms.

4 Redesigning the Think Framework

This section first discusses the necessary design requirements to reach our objec-
tive before we show what we have been developing to satisfy these requirements.

Controlling the Performance Overhead of Component-Based Systems 153

4.1 Requirements

Specification of Flexibility. Think provides flexibility points to any component,
binding or attribute. To make them optional the framework must permits pro-
grammers to selectively specify that a binding is static, an attribute is constant,
etc. Also, programmers must be able to specify which control interfaces must be
added and how to implement the different instances of the model entities.

Separation of concerns. As the flexibility requirements may change over the
development cycle of a system, the above-mentioned specification must be sep-
arated from the description of the architecture itself. With such a separation,
an architecture description will be reusable in different moments of the system
release timeline, according to different flexibility requirements.

Glue-agnostic programming. Based on this specification, the compiler must be
able to produce meta-data and code that add flexibility (and hence overhead)
only where desired without having to change the functional code. A necessary
condition is that the provided programming language does not make any as-
sumption on the organization of the produced meta-data and code.

AST-based code generation. While independent in terms of decisions, builders
need to exchange information concerning the produced code and the meta-data.
They produce types and variables that may depend on types and variables pro-
duced by other builders. This implies the need for a tool to produce and represent
an abstraction of produced code.

4.2 Implementation

Specification of Flexibility. We extended the Think ADL so that entities
can be tagged with textual properties that can be used to express flexibility as
shown with the following annotated HelloWorld example:

component he l l owor ld {
contains main = hwMain [single=true]
contains conso l e = terminalConsole [single=true]
binds main . conso l e to conso l e . con so l e [static=true]

}
component hwMain {

provides a c t i v i t y . ap i . Main as main
requires v ideo . ap i . Console as conso l e
attribute i n t p o s i t i o n = 10 [const=true]
content hwMain

}

Here, the components are specified as single instances of their respective com-
ponent types, the binding is set as static and the attribute position is constant.
We choose to extend the ADL instead of defining a new language to limit the
number of languages to learn to program Think components.

154 O. Lobry and J. Polakovic

Separation of concerns. To specify flexibility separately from the description
of the architecture, we adopt an approach close to aspect-oriented programming
(AOP) applied to architectural description. This is done through the notion
of global extensions. A mechanism is introduced in the compiler in order to
automatically extend component definitions. For example, the following global
extension makes static any binding of any component (where dimension):

component ∗ {
binds ∗ to ∗ [static=true]

}

In a similar manner, one can also specify to add an attribute controller to any
component that has at least one attribute (what dimension):

component ∗ {
provides At t r i bu t eCon t r o l l e r as ac i f hasAttribute
content att−c o n t r o l l e r i f hasAttribute

}

Global extensions can be seen as the equivalent of pointcuts in AOP3, where
the set of points is essentially expressed using regular expressions on the name
of flexibility points (component, interfaces, attributes, ...) and predicates over
component definitions (like the hasAttribute predicate in the above global ex-
tension).

Finally, programmers can use global extensions to specify the builders to be
called during compilation:

component ∗ [builder=MyCompBuilder] {
attribute ∗ ∗ [builder=MyAttr ibuteBuilder]
provides ∗ as ∗ [builder=MyServerI t fBui lder]
requires ∗ as ∗ [builder=MyCl i en t I t fBu i ld e r]
implementation ∗ [builder=MyImplementationBuilder]

}

This time the mechanism is used to tweak the build process, and hence, to
produce glue code and data that suit the platform constraints or application
requirements (how dimension). For that reason, this approach provides some
kind of compile-time meta-programming facility.

Using global extensions, it is now possible to specify what, where and how
flexibility should be implemented. Besides, this specification can be completely
separated from the architecture description, thus enabling different flexibility
capabilities given a same architecture (when dimension).

3 However quite simpler that the usual pointcut meaning since there is no notion of
workflow here.

Controlling the Performance Overhead of Component-Based Systems 155

AST-based code generation. In order to help the collaboration of builders
in the process of generating code and meta-data, we developed the CodeGen
Java package. CodeGen aims to represent, manipulate and produce C code.
The package provides a collection of classes to abstract semantic entities of the
C language (types, variables, expressions, declarations, etc.) and functions to
gradually produce C Abstract Syntax Trees (AST).

The CodeGen package includes a C parser that can transform a C translation
unit into an AST. The parser notifies parsing events through a listener interface
when it encounters interesting statements: new type and variable declarations,
undefined symbols, etc. The parser also handles and notifies annotations found
in comments.

Functional code is parsed by the CodeGen parser which notifies Think of
annotations and code parsing events. For example, when parsing the pos symbol
of the example bellow, Think is notified that this symbol is undefined. An
attribute builder is called to return the right expression as a CodeGen AST:
access to the corresponding variable if the attribute is modifiable or its initial
value if it is constant. Other optimizations like removing the self parameter in
calls to single components, produce direct calls for static bindings can be perform
in a similar way.

Glue-agnostic programming. Using CodeGen we can propose a new com-
ponent programming language, called NuptC, to program functional code, ex-
clusively based on annotations:

1 // @@ At t r i bu t e (pos i t i on , pos) @@
2 // @@ ClientMethod (conso le , putxycs , pu txycs) @@
3 // @@ ServerMethod (main , main , mainentry) @@
4 void mainentry (int argc , char∗∗ argv) {
5 putxycs (0 , pos , ” He l l o World ! ”) ;
6 }

Annotations are here used to express the mapping between architectural en-
tities and C symbols: attribute position is represented by symbol pos (line 1),
putxycs method of interface console is represented by symbol putxycs (line 2)
and server method main of interface main is represented by symbol mainentry
(line 3). These symbols can then be used in the functional code to define server
methods (lines 4-6), call client methods (line 5) or access the attributes (line 5).

This new programming approach does not make assumption on the produced
meta-data. For instance, it does not impose to pass a self parameter when calling
interfaces, implement interface calls as indirect function calls, or implement an
attribute as a variable.

5 Conclusion

This paper showed a work-in-progress that consists in redesigning the Think
framework to make it able to generate, given a same architecture description,

156 O. Lobry and J. Polakovic

different system images having different flexibility versus performance tradeoffs.
The new version, called Nuptse, exploits the possibility provided by the Code-
Gen Java package designed to transform and produce C code in a collaborative
way4. We also propose NuptC, a component programming language based on
annotations that does not make assumption on the generated meta-data, hence
enabling optimizations and implementation alternatives. The ADL has been ex-
tended to enable the specification of flexibility properties and a global extension
mechanism based on pattern-matching is introduced in order to separate, if de-
sired, this specification from the architectural description.

As a work-in-progress, our proposition needs better evaluation. At the concep-
tual level, we need to better formalize the approach, identify its limitations and
compare it to aspect-oriented programming and compile-time meta-programming
[1]. At the technical level, we need to evaluate the performance gain that we can
actually obtain on a real case-study.

References

1. Assmann, U.: Invasive Software Composition. Springer, New York (2003)
2. Denys, G., Piessens, F., Matthijs, F.: A survey of customizability in operating

systems research. ACM Comput. Surv. 34(4), 450–468 (2002)
3. eCos, http://sources.redhat.com/ecos
4. Bershad, et al.: Extensibility safety and performance in the SPIN operating system.

In: Proc. of the 15th ACM Symposium on Operating Systems Principles (1995)
5. Bruneton, et al.: The Fractal Component Model and its Support in Java. Software

- Practice and Experience, special issue on Experiences with Auto-adaptive and
Reconfigurable Systems (2006)

6. Dunkels, et al.: Contiki - A Lightweight and Flexible Operating System for Tiny
Networked Sensors. In: LCN 2004: Proc. of the 29th Annual IEEE Intl. Conf. on
Local Computer Networks (LCN 2004) (2004)

7. Fassino, et al.: Think: a software framework for component-based operating system
kernels. In: Proc. of the 2002 USENIX Annual Technical Conference (June 2002)

8. Ford, et al.: The Flux OS Toolkit: Reusable Components for OS Implementation.
In: Proc. of the 6th Workshop on Hot Topics in Operating Systems (1997)

9. Hill, et al.: System architecture directions for networked sensors. In: Proc. of the
ninth Intl. Conf. on Architectural support for programming languages and operat-
ing systems (ASPLOS) (2000)

10. Polakovic, et al.: Building reconfigurable component-based OS with THINK. In:
32nd Euromicro Conf. on Software Engeneering and Advanced Applications (2006)

11. Pu, C., et al.: Optimistic incremental specialization: Streamlining a commercial op-
erating system. In: Proc. of the 15th Symp. on Operating System Principles (1995)

12. Soules, et al.: System support for online reconfiguration. In: Proc. of the 2003
USENIX Annual Technical Conference (June 2003)

13. Helander, J., Forin, A.: MMLite: a highly componentized system architecture. In:
EW 8: Proc. of the 8th ACM SIGOPS European workshop on Support for com-
posing distributed applications (1998)

14. Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)

4 Think and CodeGen are freely available at http://think.objectweb.org

http://sources.redhat.com/ecos

Profile-Guided Composition

Jesper Andersson1, Morgan Ericsson1, Christoph Kessler2, and Welf Löwe1

1 Software Technology Group, MSI, Växjö University, Sweden
{jesan,mogge,wlo}@msi.vxu.se

2 Programming Environments Laboratory, IDA, Linköping University, Sweden
chrke@ida.liu.se

Abstract. We present an approach that generates context-aware, op-
timized libraries of algorithms and data structures. The search space
contains all combinations of implementation variants of algorithms and
data structures including dynamically switching and converting between
them. Based on profiling, the best implementation for a certain con-
text is precomputed at deployment time and selected at runtime. In our
experiments, the profile-guided composition outperforms the individual
variants in almost all cases.

1 Introduction

Libraries of predefined and reusable algorithms and data structures, e.g. the
Java class libraries, LEDA [10] and the Standard Template Library (STL) for
C++, and the .NET foundation classes, have improved the productivity of soft-
ware developers. However, by making a library reusable in as many contexts as
possible, the library cannot be tailored to any particular platform. Therefore,
many libraries provide a wide range of different algorithms and data structures,
or even several implementation variants thereof, and leave it to the developer to
pick the best.

A library that allows to change algorithm and data structure implementations
can be designed using well-known design patterns. The change of algorithm im-
plementation variant is enabled by the Strategy pattern [5]. In the library de-
sign, the abstract data structure constitutes a context, each abstract algorithm
a strategy, and each implementation variant a concrete strategy. Changing the
data representation variant is possible as long as all algorithm implementations
access the data via the interface provided. However, efficient algorithms often
require refined implementations of the data representations and, moreover, the
data structure itself may be in a refinement hierarchy orthogonal to the refine-
ment towards different data representations. This problem is solved using the
Bridge pattern [5]. Similar designs have been suggested earlier [4,9].

However, many of the algorithms and data structures in the library internally
use other library components. So, even if a developer may pick the best-fitting
variants at the shallow, they may refer to others deep down in the library that do
not fit at all. Especially, algorithms and data structures may recursively depend
on themselves, and it is well known that often different implementation variants

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 157–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J. Andersson et al.

are optimal for different problem sizes. We suggest a solution that better sepa-
rates the roles of library designer and library user and reduces the effort of both
roles. The library designer defines interfaces for algorithms and data structures
in a straightforward way, ignoring performance aspects. Additionally, the library
designer provides interface functions in the data structures probing performance-
relevant properties of the data. Finally, the library designer provides a sample
input data generator interface and a default implementation thereof for gener-
ating data varying over the performance-relevant properties. The library user
selects the subset of performance-relevant properties of the data that actually
may occur in the application context. The library user starts a training phase, af-
ter which an optimization algorithm determines the algorithm variants and data
structures that are expected optimal with respect to the properties selected and
the data generated. The results are stored in look-up tables that are finally used
in automated composition of algorithm and data representation implementations
at runtime.

2 Profile-Guided Composition

This section introduces our profile-guided composition approach for the dynamic
selection of algorithm implementation variants based on training at deployment
time and dynamic composition at runtime. This is described in Sections 2.2
and 2.1, respectively. Section 2.3 generalizes the approach to also select the
implementations of the data representations in a profile-guided way.

2.1 Dynamic Composition

The dynamic composition is based on the design presented earlier [6]. Each
call to the adaptive library represents a variation point encoded by a dispatch
mechanism. Whenever a call to a variation point is executed, it triggers a lookup
in the dispatch table and an invocation of the implementation returned by the
lookup.

We assume that all implementation variants Algoimpl of an abstract algorithm
Algo implement the same signature Algoimpl : Arg0×Arg1× . . .×Argm → Res.
In order to define a call context, we assume a set of property functions, i.e.
property1 : Arg0×Arg1× . . .×Argm×Res → P1. Any statically or dynamically
observable property can be included. However, all property functions must be
evaluable before the call, e.g., properties defined on the value of the result are
not admissible while properties defined on its type are.

The lookup function chooses the most appropriate algorithm implementation
based on the context. It is a function from a domain of property types to the
range of possible implementations lookup : P1 × P2 × . . . × Pn → Algo. The
function is implemented with the help of a dispatch table generalizing the dy-
namic dispatch of polymorphic calls in object-oriented programming languages.
It is constructed based on profiling in the training phase, cf. Section 2.2. Fi-
nally, the selected algorithm implementation variant is invoked and delivers the
algorithm’s result invoke : Algo → Res.

Profile-Guided Composition 159

2.2 Training

The goal of the training phase is to identify the implementation variant that per-
forms best for a certain context. A sample data generator gen :→ Arg0 ×Arg1 ×
. . .×Argm defines the call contexts profiled. We cannot generate data for all con-
texts. Therefore, we assume a function sample : Arg0 ×Arg1 × . . .×Argm → Id
that maps each call context to a profiled sample that represents it best.

The sample id is used as the index in our dispatch table. For each sample and
each implementation variant, we calculate and compare the expected execution
times. Hence, for each Algoimpl ∈ Algo, we expect a function for computing the
execution times timealgo

impl : Arg0 × Arg1 × . . . × Argm × Res → T ime. The time
functions can be implemented as measurement functions, using mathematical
models for the approximations, or a combination.

Training can now be described as iteratively generating profile data using gen,
finding the corresponding samplenumber sample(gen),measuring/approximating
the corresponding execution times using timealgo

impl(gen), and setting lookup(gen)
to the implementation Algoimpl ∈ Algo with the minimum execution time.

Internal library calls may refer to and try to invoke a context that has not
been trained yet and the time for this invocation is then difficult to estimate.
For non-recursive implementations, the solution is straight-forward. We compute
a conservative dependency graph over all library algorithms, where nodes are
algorithms and edges potential usage. The implementation variants are then
trained in topological order of their dependencies. For recursive algorithms, we
generate sample data in an ordered way such that recursive calls always refer
to call contexts that have been trained before. We generate call contexts for all
the non-recursive base-cases first and then for the more complex recursive cases,
iteratively in reverse recursion order.

2.3 Composition of Algorithms and Data Representations

Before each call to a library method, we select the best-fitting data representation
implementation together with the best-fitting algorithm implementation. Each
call triggers a dynamic selection, now in three instead of two steps: between the
lookup of the best algorithm implementation and its actual invocation, a second
lookup triggers data representation conversions if appropriate. Therefore, our li-
brary design needed to assume that all data representation implementation vari-
ants Dataimpl ∈ Data implement a converter cloneimpl : Dataimpl′ → Dataimpl,
which converts data from an arbitrary other Dataimpl′ to the own representa-
tion implementation. Moreover, we assume a lookup function choosing the most
appropriate data representation implementation for this argument based on the
call contexts. Call contexts are defined by the property functions as before. Ad-
ditionally, we assume special properties determining the current implementation
of the arguments data1 : Arg0 → Pn+1 . . . datam : Argm → Pn+m.

A lookup for the best representation implementation of argument i is a func-
tion from a domain of properties to the set of possible representation implemen-
tations lookupi

data : P1 × P2 × . . . × Pn × Pn+1 . . . × Pn+m → Data.

160 J. Andersson et al.

The training phase constructing the conversion tables is a straightforward
generalization of the dispatch table generation: the sample generator gen needs
to generate each original context for all possible data representation imple-
mentations. Measuring or approximating the corresponding execution times of
algoimpl ∈ Algo again uses timealgo

impl(gen). However, it is preceded by all possible
conversions of data representation implementations that have to be measured as
well. If an algorithm implementation is not applicable on a certain data represen-
tation implementation, its time is defined as timealgo

impl := ∞. The best algorithm
is stored in a lookup table. Additionally, the best conversion for each argument
i is stored in a conversion table lookupi

data.

3 Experiments

We conducted two experiments on matrix multiplication, one where we altered
the algorithm used to perform matrix multiplication, and a second one where
we additionally altered the data representation of the matrices.

The matrix data is captured in two vectors of vectors, representing the ma-
trix in row- and column-major order. We selected between four different matrix
multiplication algorithms: Baseline, Inlined, Recursive, and Strassen. Baseline
is the naive O(n3) algorithm with each multiplication step implemented via a
function call. Inlined is the same algorithm as Baseline but with all the functions
inlined. Recursive applies a straight-forward recursive multiplication schema as
defined in [2]. Strassen [14] uses a recursive schema similar to Recursive but
recursively reduces a multiplication to 7 rather than 8 multiplications of sub-
matrices, hence reducing the complexity to ≈ O(22.81). Recursive and Strassen
are only applicable to square matrices.

Each experiment is divided into two stages, training and execution. For train-
ing, we generate square matrices of sizes 1 to 256 in steps of 16. For each matrix
size s, we generated matrices A and B with double precision values between 0
and 1, randomly and equally distributed. We then execute all the implemen-
tation variants 1024/s times for each problem size and implementation variant.
The on-average fastest implementation variant is recorded for each problem size.
During the execution stage, we measure the execution time for square matrices
of size 1 to max. 1000 in steps of 10. The different sizes and step sizes are in
order to avoid measuring the exact same data as we used to train. We invoked
for a problem of size s the best the implementation variant for the largest s′ ≤ s
that we have trained before.

3.1 Dynamic Composition of Algorithms

The profile-guided versions of both Recursive and Strassen recursively invoke
the profile-guided matrix multiplication via the abstract Matrix Multiplication
interface which, in turn, looks up and invokes the best matrix multiplication algo-
rithms implementation for the sub-matrix multiplications. The original versions
use the Recursive and Strassen multiplication for recursive calls, respectively,

Profile-Guided Composition 161

0

50000

100000

150000

200000

250000

300000

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

Baseline

Strassen

Inlined

Recursive

Optimized

Fig. 1. Original vs. optimized matrix multiplication (times in ms)

if the sub-matrices are square and Inlined, otherwise. The measured execution
times are averaged for each matrix size and each implementation variant. Fig-
ure 1 shows the measurement result.

The profile-guided (optimized) implementation variant starts outperforming
the others on problems of size 256. Even for smaller problem sizes, it is compa-
rable with the best of the original variants. When analyzing the lookup table, we
observe that Strassen is selected for problems of sizes larger than 128. This might
be surprising at the first glance since the original Strassen algorithm performs
worst in almost all problems measured. However, the reason for originally being
slow is the poor performance of Strassen on small problems. The profile-guided
variant avoids this by automatically switching to the faster Inlined implementa-
tion for small problems. Therefore, the profile-guided variant is able to exploit
the better asymptotic performance of Strassen already for medium size prob-
lems. Note that the derivatives of the original Strassen and the profile-guided
variant using Strassen are almost identical.

3.2 Experiments Composing Algorithm and Data Representations

For testing the full concept, we needed some extension to the original implemen-
tation. First, we designed an alternative data representation for matrices. It is
based on sparse vectors that store only non-Null elements. Converters between
the two, the original dense and the new sparse implementation, are implemented
in a straightforward way using the set and get iterators defined in the abstract
data representation class. Second, we introduced two new properties isDense
and isDenseImpl. The former predicate holds for matrices with more than 10%
non-null entries, the latter predicate holds for matrices which are captured by
the original (dense) matrix representation implementation. Third, we introduced
a new algorithm variant BaselineSparse which tests Null -vectors and -elements

162 J. Andersson et al.

0

50000

100000

150000

200000

250000

300000

350000

400000

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

0

100000

200000

300000

400000

500000

600000

700000

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Inlined

Baseline

BaselineSparse

Recursive

Strassen

Optimized

Fig. 2. Execution times (in ms) of scenarios (i) left and (ii) right

in the argument vectors and fields, respectively. It may then directly return the
respective Null -results without further computation and, hence, do obviously
less work for sparse matrices and vectors. These extensions, however, have an
effect on the solution space that needs to be covered in training: for each prob-
lem size, we need to create a sparse and a dense matrix implementations for the
arguments A and B and the result C, leading already to 8 scenarios. Addition-
ally, each of A and B needs to be filled with values, sparsely or densely, which
additionally quadrupled the number of scenarios.

Training was done on a profile-guided version using all 5 original algorithms,
all 16 scenarios, testing all 4 conversion schemata. Execution time measurements
executed the original and the profile-guided versions of matrix multiplication.
Results for two representative scenarios – (i) sparse matrices, with matrix A in
dense, B in sparse representation (left) and (ii) dense matrices, both in dense
representation (right) – are shown in Figure 2. In the scenario (i), the Optimized
version benefits from always selecting BaselineSparse after converting the first
matrix to the sparse representation. The original BaselineSparse cannot keep up
with the performance since matrix A is in the wrong representation. The same
effect can be observed in all scenarios with sparse matrices involved. In the sce-
nario (ii), the Optimized version benefits from selecting Strassen for medium-size
and large problems and switching to Inlined for the smaller problems. Convert-
ing in this and the other dense matrix scenarios systematically leads to the same
representations for both matrices.

4 Related Work

In object oriented library design, flexibility is a key property. From the start,
the focus was on compile-time or load-time flexibility with parameterized types
and dynamic libraries. More recent work, such as Mixins [13], Policy-based de-
sign [1], and Aspect-oriented programming [7] provide mechanisms that extends
flexibility, even into run-time. These techniques are general and do not directly
support profile-guided composition as described above, although they are still

Profile-Guided Composition 163

suitable as implementation techniques. Several predicate based dispatch meth-
ods exist, for instance JPred [11], which is an extension to Java that provides a
general dynamic dispatch driven by predicates.

In high-performance computing, adaptive optimization has received increas-
ing attention, e.g., for optimizing the cache behavior. Yu and Rauchwerger [15]
apply it to self-optimizing reduction parallelization. They assess a machine pro-
file in a training phase and use it for the selection of reduction algorithms during
parallelization. Orthogonal to the selection of algorithms and data representa-
tion implementation, the expected best schedule and processor allocation for
independent subtasks can be looked up at runtime in tables computed off-line,
as we demonstrated in earlier work [3,6].

Automatic program specialization is a concern when the costs of genericity is
sometimes unacceptable. For object-oriented languages, the work of Schultz et
al. [12] demonstrates how advices from developer may be used to automatically
specialize applications. The work most closely related to ours is that of Li et al.
[8]. Using sorting algorithms, they implemented a library generator that also uses
dynamic tuning to adapt the library to the target machine. A number of machine
parameters, input size and the distribution of input data, are parameters to a
machine learning algorithm that is trained to pick the best algorithm. Similar
to our results, the best algorithm is always picked. However, data representation
conversions are not considered.

5 Conclusion and Future Work

The work presented improves the design and reuse of libraries by automatically
optimizing the algorithms and data representation implementations during the
library’s deployment. More specifically, in a training phase the best implemen-
tations are determined for sample data and stored in tables for algorithm imple-
mentations and data representation conversions. Under execution, the sample
that comes closest to the actual call scenario is determined and the correspond-
ing algorithm and conversions are executed. In contrast to earlier approaches
to the design of flexible and efficient libraries, it clearly separates the roles of
library and application designers. The library designer provides implementa-
tion variants, implementations for probing the properties of call scenarios that
could be performance relevant, a profiling infrastructure including sample data
generator interface and default implementation, and execution time measure-
ment/approximation. The application designer selects the properties actually
relevant in the application context and may add more appropriate sample data
generator implementations. The optimization is then done automatically at de-
ployment and run time.

Quite a few issues should be addressed before applying our approach to exist-
ing libraries like the Java class libraries and the .NET foundation classes. First,
we need to extend the experimental evidence to cover more languages and prob-
lems. Second, finding the representative sample data has shown to be crucial
for the success of our approach. One way to improve this is to use production

164 J. Andersson et al.

runs and if needed adjust the selection tables, i.e., integrate profiling into the
application execution. We are currently designing and implementing the needed
infrastructure. Finally, we want to apply this integrated profiling to parallel
programs, where the selection of the algorithm and the best schedule are matter
of profile-guided optimizations.

References

1. Alexandrescu, A.: Modern C++ design: generic programming and design patterns
applied. Addison-Wesley, Reading (2001)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (2000)

3. Eriksson, M., Kessler, C., Chalabine, M.: Load balancing of irregular paral-
lel divide-and-conquer algorithms in group-spmd programming environments. In:
PASA 2006, 8th Workshop on Parallel Systems and Algorithms. Lecture Notes in
Informatics (LNI), GI vol. P-81 (2006)

4. Frick, A., Goos, G., Neumann, R., Zimmermann, W.: Construction of robust class
hierarchies. Software Practice and Experience 30(5), 481–543 (2000)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Kessler, C., Löwe, W.: A framework for performance-aware composition of explic-
itly parallel components. In: Proc. ParCo 2007, Parallel Computing: Architectures,
Algorithms and Applications, Jülich/Aachen, Germany, IOS Press, Amsterdam
(2008)

7. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28(4), 154 (1996)
8. Li, X., Garzarán, M.J., Padua, D.: A dynamically tuned sorting library. In: CGO

2004: Int. Symp. on Code Generation and Optimization, p. 111 (2004)
9. Löwe, W., Neumann, R., Trapp, M., Zimmermann, W.: Robust dynamic exchange

of implementation aspects. In: TOOLS 29—Technology of Object-Oriented Lan-
guages and Systems, pp. 351–360. IEEE Computer Society Press, Los Alamitos
(1999)

10. Mehlhorn, K., Näher, S.: Leda: a platform for combinatorial and geometric com-
puting. Commun. ACM 38(1), 96–102 (1995)

11. Millstein, T.: Practical predicate dispatch. SIGPLAN Not. 39(10), 345–364 (2004)
12. Schultz, U., Lawall, J., Consel, C., Muller, G.: Towards automatic specialization

of Java programs. In: Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp.
367–390. Springer, Heidelberg (1999)

13. Smaragdakis, Y., Batory, D.: Implementing layered designs with mixin layers. In:
Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 550–570. Springer, Heidelberg
(1998)

14. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 14(3),
354–356 (1969)

15. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduc-
tion parallelization. IEEE Transactions on Parallel and Distributed Systems PDS-
17(10), 1084–1096 (2006)

Loose Compositions for Autonomic Systems

Luciano Baresi and Giordano Tamburrelli

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Golgi 40 – 20133 Milano, Italy

{baresi|tamburrelli}@elet.polimi.it

Abstract. Autonomic computing is one of the most promising tech-
niques for managing the complexity of modern software applications. It
fosters the idea of systems able to autonomously detect anomalies and
react accordingly. Supervision and actual business logic are intertwined
and work together to supply the autonomic features.

The paper presents our ongoing work on loose compositions for au-
tonomic systems and introduces the first ideas of a framework based on
Java, aspect oriented programming, and rules. The paper also sketches
a first prototype implementation, based on the DIET agent framework.

1 Introduction

Software systems composed of heterogeneous and changing elements are becom-
ing quite common, and managing their complexity is one of the key challenges for
the efficient release of modern software systems. Recently, autonomic computing
([5,4]) has been imposing as a promising approach to address all these issues.
Autonomic systems can autonomously react to anomalies and self-adapt their
behavior to keep themselves on track and offer the same (best) quality of ser-
vice without any external (human) intervention. An autonomic system comprises
a set of autonomic elements that both execute the business logic and oversee
it. Managing and managed entities define a control loop where the autonomic
element becomes aware of the current situation through monitoring, analyzes
acquired data, plans a reaction (if needed), and finally executes it.

Our approach elaborates on the idea of autonomic element and proposes a
general-purpose solution useful to develop flexible and decentralized autonomic
applications. This holistic view blurs the border between the execution of the ac-
tual business logic and its supervision and exploits the idea of composition in two
orthogonal ways. Autonomic elements are composed, to create an application,
and further grouped, usually with a granularity finer than the one used above,
for their decentralized and extrinsic supervision. In the former case, we use the
term federation, to identify the (loose) cooperation among the elements that
belong to the application. The logic used to select and federate components is
application-specific: for example, we might be interested in linking all the agents
running on the mobile devices of the clients of a shopping center. In the latter
case, we exploit clusters as means to further organize these elements and we
exploit used-defined metrics to create them. In this paper, we do not thoroughly

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 165–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

166 L. Baresi and G. Tamburrelli

discuss the first concept, but we concentrate on the use of clusters as basis for
the extrinsic supervision of autonomic applications. Besides autonomous reac-
tions, where each single component acts in isolation, clusters let users implement
and customize higher-level supervision policies without imposing any centralized
control.

Besides the conceptual model, we are also conceiving a general-purpose frame-
work for autonomic applications implemented in Java. Our proposal exploits
aspect-oriented programming (AOP [1]) both to retrieve significant data from
the field and to alter the behavior of each single component transparently. AOP
probes work directly on the byte code of the application. Nothing is directly
hard-wired in the application code, but configuration directives define how to
set the probes (and the actuators).

The rest of the paper is organized as follows. Section 2 briefly surveys some
related proposals, Section 3 illustrates how our approach works and Section 4
presents an agent-based prototype used for smart advertising in big shopping
centers. Section 5 concludes the paper.

2 Related Work

Proposals for autonomic systems have been both for specific applications, like
GRID computing [2] or power management [16], and for general-purpose infras-
tructures [9,12]. Despite the latter proposals, we believe that general purpose
solutions still need further attention to provide fully decentralized control of
transparently cooperating elements.

Many of the existing autonomic frameworks propose a centralized structure
with a single central controller that easily becomes the bottleneck and the single
point of failure of the whole system. For example, Silva et al. [6] describe a
stream processing infrastructure in which a central component is in charge of
job orchestration, optimization, and resource management. Failures are dealt
with by means of centralized and persistent check-pointing. Ruth et al. [15]
propose another example in which a shared distributed infrastructure is formed
by federating computing resources of multiple domains, but a single centralized
component is in charge of reallocating the different tasks.

Since our research goal is that autonomic infrastructures must provide the
decentralized supervision of components that can change frequently, the com-
munication infrastructure among all these components becomes a key element.
Chakravarti et al. [2] provide a similar example where an overlay network self-
organizes the computation on a peer-to-peer network. Similarly, Seshasayee et
al. [16] propose an overlay network composed of cooperating mobile devices to
minimize power consumption.

The last characterizing element is the way extrinsic supervision [7] grabs sig-
nificant data from application elements. A widely adopted solution wraps man-
aged elements in components that expose a standardized management interface
(e.g., [17]), but this approach forbids code-level monitoring, and requires that a

Loose Compositions for Autonomic Systems 167

proper wrapper be developed for each managed resource. Kernel level abstrac-
tions (e.g., [13]), on the other hand, do not require wrappers, but usually involve
the development of kernel modules. This technique is useful to monitor low-
level resources, like CPU utilization or network traffic, to guarantee a particular
quality of service, but it does not facilitate fine-grained application-specific mon-
itoring. Code injection [7] would provide required support, but it also imposes
that monitored applications be modified, thus compromising their transparency.
Finally, external monitoring [8] does not require that managed applications be
modified, but it only supports limited monitoring capabilities (like wrapping
techniques, but without a common management interface).

3 Proposed Approach

The main goal of our approach is to enforce autonomic behaviors on application’s
components through decentralized and transparent supervision. Since we want
to be transparent and totally independent of the supervised system, we propose
an aspect-oriented solution [1] as means to inject the autonomic features. Since
we believe that supervision is a crosscutting concern over supervised elements,
aspects allow us to factor out supervision and deal with it separately.

Each element can either distribute its data autonomously (i.e., push mode),
or be queried periodically by the supervision (i.e., pull mode), but in both cases,
special-purpose aspects govern the process and allow us to be application trans-
parent (i.e., extrinsic) and support low level probing, down to instruction level.
More precisely, bindings, expressed through the powerful JBoss AOP expression
language ([1]), indicate particular instructions of the supervised software that
act as hooks between supervised elements and supervision. When the execution
reaches these bindings, we execute the corresponding aspects to collect signifi-
cant data (called contexts) and trigger the execution of supervision policies.

As example, we can consider a system for smart advertising in big shopping
centers. The autonomic application comprises a number of mobile devices, which
can come and go along with the clients in the mall, and some big screens to
display the advertisements. The application is “smart” since while customers
move around, their mobile devices interact with the screens closer to them to
communicate users’ preferences and let them customize displayed advertisements
on retrieved data. Each screen ranks the different requests and only shows the
top scorers.

If we think of each single element in isolation, we could say that aspects are
in charge of analyzing collected data and decide reactions autonomously. This
way, we can only enforce autonomic behaviors on single components and thus we
need a technique that correlates the different contexts to deal with multiple and
distributed components (e.g, we want to monitor properties that involve multiple
elements or properties that check data spread across components). Figure 1
sketches our solution and introduces the idea of cluster. For the sake of simplicity,
components are split in supervised elements, which represent the application’s
components, and supervisors, which can be thought as dedicated components

168 L. Baresi and G. Tamburrelli

Supervised
element

Automatic Reaction

Supervised
element

Automatic Reaction
Supervisor

Supervised
element

Automatic Reaction

Supervised
element

Automatic Reaction
Supervisor

Autonomic Reaction

Autonomic Reaction

Autonomic Reaction

Autonomic Reaction

Fig. 1. Autonomic Framework

designed for aggregating and analyzing data collected from supervised entities.
More precisely, supervisors are in charge of implementing system-wide auto-
nomic features. It is important to notice that we do not want to consider the
obvious solution where all the supervised elements send their data to a single
controller that manages the whole system. This option would impose too heavy
constraints and would also not leave room for possible changes in the topology
of the application without requiring tedious re-configurations. In contrast, we
want a fully decentralized and scalable autonomic architecture.

The first step of our solution consists in creating suitable clusters of supervised
elements. The metrics used to create them is application specific (e.g., signal power
in wireless networks). Our only constraint is that each cluster comprises (at least)
one supervisor. Dedicated techniques, which are in charge of dynamically creating
and maintaining clusters (e.g.,[11]), help us deal with systems whose set of com-
ponents evolves at run-time. Each element is supposed to send its data (messages)
to the supervisor. If we recall the example, software components installed on mo-
bile devices represent supervised elements and a supervisor is associated with each
area. At run-time, every cluster contains at least a screen, a supervisor, and some
users (e.g., those that are close enough to the screen).

If we wanted to monitor the behavior of the different screens, local monitoring
would not be enough. Even if the different mobile devices send users’ preferences
to the supervisor, it would only have a partial knowledge of the system, that is, it
would only know the preferences of the users in its cluster, but it would not know
the preferences of all the users in the area. This way, each supervisor only has a
“partial” view of the application and thus it is not be able to take any system-
wide decision. The solution is the adoption of clusters that are not fully disjoint,
but the overlapping between two of them only comprises the supervisors of the
two clusters (as in Figure 1). Each supervisor oversees the elements of its cluster,

Loose Compositions for Autonomic Systems 169

but it also becomes a supervised element of the other cluster. The key difference
with respect to the other “plain” elements is that it provides the correlated
information collected in its cluster. The obvious problems with this solution is
that each supervisor must receive the information about all the other parts of the
system, and it must receive it only once. Currently, we are experimenting with
both a publish/subscribe middleware [3] and a dynamic overlay network [2,16]
to implement efficient and effective solutions.

Finally, as for reaction planning, we adopt a rule-based approach [14] to state
scope-wide solutions to react in case of anomalies detected through correlated
data. Since each supervisor knows all the information needed to decide, its re-
actions are local to the elements in the cluster. While AOP techniques work
locally, and only execute automatic reactions, rules take a wider perspective and
allow the user to define more sophisticated and specialized reaction policies that
are then communicated to the different components (in a cluster) through the
aspects introduced so far. Autonomic reactions are thus plug-able fragments of
code that define how the user wants to deal with retrieved contexts (i.e., the data
about the execution). They are triggered by the AOP probes, as soon as the ex-
ecution reaches the corresponding code binding, to analyze retrieved correlated
data and provide proper solutions. External rules also allow for a neater mod-
eling of the different aspects by fostering the separation between business and
supervision logic. This modularity enables developers to write, deploy, modify,
and manage their policies easily and seamlessly without any need for modifying
production code and rebuilding the application. The two types of reactions also
correspond to the two control loops embedded in the framework. Automatic reac-
tions act like a low-level control loop, while a higher-level control loop, based on
the autonomic reactions introduced so far, provides system-wide reasoning capa-
bilities. If an automatic behavior is not able to recover from detected anomalies,
it forwards the context to the supervisor, which analyses it and checks whether
it triggers any autonomic reaction. A detailed description of the rule engine
adopted in our framework can be found in [14].

In the end, it is important to notice how the loose composition of supervisors
leads to a fully decentralized architecture in which every supervisor manages a
cluster of supervised elements and assesses properties that involve the whole sys-
tem without any centralized control. Moreover, the flexibility of our proposal also
helps us conceive fault tolerant systems since supervisors can easily be backed
up, injected in clusters, and promoted by means of special-purpose autonomic
reactions.

4 Case Study

The proof of concept described in this section implements the aforementioned
system for smart advertising. To keep things simple, user preferences are nothing
but colors, and thus each screen is supposed to display the color with the highest
number of requests (from its nearby customers). Figure 2 shows a basic simulated
environment to fully control and visualize the key aspects of the case study.

170 L. Baresi and G. Tamburrelli

Fig. 2. Our simulated shopping center

Our prototype is implemented on top of the DIET (Decentralized Information
Ecosystem Technologies [10]) agent framework, which is a middleware platform
conceived for developing agent-based applications in Java. DIET supports the
bottom-up and ecosystem-inspired design and development of scalable, adaptive,
and robust systems by means of lightweight agents: the authors claim that we
might have up to several hundreds thousands agents on a single machine.

Each DIET agent resides in an environment that enables the creation, de-
struction, and migration of agents and also the communication among them.
On the other hand, a DIET world is a placeholder for environments. It man-
ages functionality that can be shared by environments, such as agent migration.
Usually, in a DIET application, there is one world per Java virtual machine
and, inside it, we can create as many environments as we need. Agents can only
communicate with other agents in the same environment through connections,
that is, bi-directional communication channels between couples of agents. DIET
agents exchange text messages and optionally plain Java objects. We can also
have inter-environment communications, but in this case, we need to use dedi-
cated agents.

In our example application, the areas of the mall are implemented through
DIET environments, each containing some advertisement screens. Customers’
devices run special-purpose agents, while each area hosts other agents to detect
user preferences and display them on its screens by following a particular policy
(e.g., the color of the majority). More specifically, at a given point, each envi-
ronment contains as many user agents as the customers in the area, a screen
agent, for each screen in the area, and a supervisor agent for each cluster.

Figure 2 shows a possible configuration of the system in which we only consider
one environment, six users, two screens, and two supervisor agents. For the
sake of simplicity, we assume display-related clusters and thus clients are group

Loose Compositions for Autonomic Systems 171

based on their proximity to the two screens. When a user enters the room, the
clustering algorithm starts considering it and adds the agent to the most suitable
cluster. Then the user agent sends an identification message to the supervisor.
The message contains the user’s identity along with his/her preferences (i.e., the
requested color). At fixed intervals, each supervisor correlates received data, that
is, it ranks the different colors and provides the screen agent with the color to
be displayed on the screen. This activity also enables the supervisor to become
another application agent for the other cluster and then it sends its data to the
other supervisor.

We also decided to adopt a slightly different approach and use the supervisor
to assess the correctness of displayed colors. The big screens are controlled by
direct interactions among them and the users in the area, but now they send
their data to the supervisor in the cluster as the other application elements
(user agents). To study faulty behaviors, we decided to inject a failure in the
screen agent that then communicates wrong data to the supervisor agent, and
thus displayed colors do not match user preferences. This is enough to allow us
to check whether the panels are fed with the right colors with respect to the
supervised application. The autonomic reaction resets the screen as soon as a
fault is detected.

5 Conclusions and Future Work

The paper presents our first ideas and results for the definition of an auto-
nomic framework for Java-based distributed components based on loose compo-
sitions. The key concepts are the adoption of an extrinsic supervision approach,
the dynamic composition of application elements through clustering techniques,
and the use of aspect-oriented programming and rules to implement the typical
model-analyze-plan-execute loop. The paper also sketches our first prototype
implementation and a simple case study used to validate the proposal.

Our future work comprises further experiments to better understand the dy-
namic creation of clusters and to support the communication among the elements
in each cluster. We also need to continue refining the idea of automatic and au-
tonomic reactions and apply them to other more complex case studies. All these
initiatives are aimed to the definition of a complete and sophisticated autonomic
infrastructure based on extrinsic and decentralized supervision.

References

1. JBoss AOP, http://labs.jboss.com/jbossaop/
2. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The organic grid: self-organizing

computation on a peer-to-peer network. Systems, Man and Cybernetics, Part A,
IEEE Transactions on 35(3), 373–384 (2005)

3. Cugola, G., Picco, G.P.: Reds: a reconfigurable dispatching system. In: SEM 2006:
Proceedings of the 6th international workshop on Software engineering and mid-
dleware, pp. 9–16. ACM, New York (2006)

http://labs.jboss.com/jbossaop/

172 L. Baresi and G. Tamburrelli

4. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Systems Journal 42(1), 5–18 (2003)

5. Horn, P.: Autonomic Computing: IBMs Perspective on the State of Information
Technology. IBM TJ Watson Labs, NY (October 15, 2001)

6. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle, R.: Towards au-
tonomic fault recovery in system-s. In: Proceedings of the 4th IEEE International
Conference on Autonomic Computing (2007)

7. Kaiser, G., Gross, P., Kc, G., Parekh, J., Valetto, G.: Columbia Univ. New York.
An Approach to Autonomizing Legacy Systems. Defense Technical Information
Center (2005)

8. Kaiser, G., Parekh, J., Gross, P., Valetto, G.: Kinesthetics eXtreme: an external in-
frastructure for monitoring distributed legacy systems. In: Autonomic Computing
Workshop, 2003, pp. 22–30 (2003)

9. Koehler, J., Giblin, C., Gantenbein, D., Hauser, R.: On Autonomic Computing
Architectures. Research Report (Computer Science) RZ, 3487 (2003)

10. Marrow, P.: The diet project: building a lightweight, decentralised and adaptable
agent platform. AgentLink News 3(12), 3–6 (2003)

11. Di Nitto, E., Dubois, D.J., Mirandola, R.: Self-Aggregation Algorithms for Auto-
nomic Systems. Bionetics (2007)

12. Parashar, M., Hariri, S.: Autonomic computing: An overview. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 257–
269. Springer, Heidelberg (2005)

13. Poellabauer, C., Abbasi, H., Schwan, K.: Cooperative run-time management of
adaptive applications and distributed resources. In: Proceedings of the tenth ACM
international conference on Multimedia, pp. 402–411 (2002)

14. JBoss Rules, http://www.jboss.com/products/rules
15. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic Live Adapta-

tion of Virtual Computational Environments in a Multi-Domain Infrastructure. In:
Proc. IEEE ICAC, pp. 5–14 (2006)

16. Seshasayee, B., Nathuji, R., Schwan, K.: Energy-aware Mobile Service Overlays:
Cooperative Dynamic Power Management in Distributed Mobile Systems. In: Pro-
ceedings of the IEEE International Conference on Autonomic Computing (ICAC)
(2007)

17. WSDM Specification, http://www.oasis-open.org/committees/

http://www.jboss.com/products/rules
http://www.oasis-open.org/committees/

Supporting Multidisciplinary Software
Composition for Interactive Applications

Stéphane Chatty1,2

1 ENAC
Laboratoire d’Informatique Interactive

31055 Toulouse, France
chatty@enac.fr

2 IntuiLab
Les Triades A, rue Galilée

31672 Labège, France
chatty@intuilab.com

Abstract. Producing interactive applications is a multidisciplinary soft-
ware composition activity. This, and the nature of user interface code,
puts particular requirements on component composition frameworks. We
describe a component model that relies on a hierarchical tree of hetero-
geneous elements communicating through events and data flows. This
model allows to assemble, reuse and apply late binding techniques to
components as diverse as data management, algorithms, interaction wid-
gets, graphical objects, or speech recognition rules at all levels of gran-
ularity. We describe implementations of the model and example uses.
Finally, we outline research directions for making the model more com-
plete and compatible with mainstream software models.

1 Introduction

Graphic designers and usability experts are increasingly involved in the design
of applications, especially when the user interface goes beyond traditional wid-
gets. Until recently, they did it by producing specifications that programmers
tried to follow. This process was not optimal: work was duplicated, mistakes or
technical constraints altered the original design, and it forced a sequential work-
flow between actors. It also impeded the redesign of applications. If a medical
imaging company acquired a solution for analysing images, wanted to merge it
with their image capture solution, and had consistency problems between the
two user interfaces, they had to reprogram major parts of the software.

An emerging alternative process is the multidisciplinary production of soft-
ware [1]. Graphic designers produce the visual parts, interaction designers pro-
duce interactive behaviours, and programmers only produce the functional core
(data management and algorithms) and the overall application structure. This
reduces the global amount of work, eliminates programmer-induced mistakes as
well as incompatibilities, and allows for concurrent engineering: all actors can
work in parallel and assemble their work just before delivering.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 173–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 S. Chatty

In this article we propose a component model to support this new process.
The main contributions are:

– an analysis of how this process and the nature of interactive software call for
a software composition model, applicable to all types of user interfaces and
to the functional core at all granularities of code;

– the description of a hierarchical component model using events and data
flows for communications among components, aimed at addressing the cor-
responding requirements.

Contrasting with most models that describe graphical interactive components,
our model is aimed at describing all parts of an application, including non-visual
interaction as well as the parts that do not belong to the user interface. We
examplify the use of this model through several development scenarios, involving
various degrees of interaction. Finally, we outline some research directions.

2 Motivation: Assembling Interactive Software

Interactive software is hard to develop [2]. This is in part because the user inter-
face per se, which accounts for half of the size of interactive applications, obeys
different principles than the other half. It has external control, deals with state
rather than computation, and heavily uses references because its objects have
multiple interdependencies. With imperative or functional languages, its object
behaviours tend to be split across multiple functions. The architecture patterns
used for interactive components even give them concurrent semantics [3].

But most of all, the way interactive software is designed and produced poses a
software composition problem that must be addressed. If software composition is
about assembling components that have not be planned and designed together,
then building an interactive application is a continuous software composition
activity: from the beginning, unplanned reorganisation is the rule rather than
the exception. Moreover, it deals with elements produced by actors with varied
backgrounds and methods at any level of granularity and any degree of locality.

2.1 Varied Stakeholders

Interactive software requires skills from usability experts, domain experts, users,
programmers, interaction designers and graphical designers. Their contribution
can be very concrete in the actual production of software, whether during the
development or later during application ’revamping’ or customisation:

– domain experts define sequences of user tasks (game levels, for instance);
– graphical designers define all the graphics and the geometrical layout;
– natural language grammar designers, sound designers or other specialists

may also produce parts of the application;
– usability experts or interaction designers may define the fine behaviour of

interactive components: should buttons highlight when one enters them from
the side or only when pressing directly?

Supporting Multidisciplinary Software Composition 175

– users or support staff may redefine the layout or alternate input configura-
tions to suit their special needs.

All of these are the owners of concerns that should legitimately form individual
components. All have their own abstractions and tools to manipulate them, but
in the end their productions must be assembled and run together.

2.2 Planning Issues

The above actors do not follow the traditional schedules of software development.
As already mentioned, their tasks are best achieved in parallel. More, the design
is iterative: because user needs are difficult to elicit, iterative processes based on
prototyping and evaluation have been devised. The iterations may continue and
important design decisions may be delayed while the rest of the software is being
developed: from the beginning, the application is in an unplanned customisation
phase. This creates difficulties in large projects such as air traffic control systems:
one both has to delay interface design issues and choose an architecture very
early, which often leads to architecture conflicts later in the project. Only a
component model suiting all types of user interfaces would alleviate this problem.

Interactive software also has the classical issues of application redesign: graph-
ics instead of text dialogue, post-WIMP1, interfaces instead of widgets, or fusion
of several applications under a unified interface. The adaptation to varying plat-
forms (screen size, input devices) also requires a redesign or even a dynamic
adaptation of the visual layout, the dialogue sequence, or even the interaction
style (a button does not work the same with a mouse or a touch screen). This
will culminate with the ubiquitous computing paradigm, when applications will
discover their execution context at run time. In summary, software composition
occurs at any time from initial development to run-time.

2.3 Component Granularity

The components that are assembled or interchanged can have very different size
and complexity. At the largest scale is the integration of two applications into
one: an email application and a Web browser, for instance. At a smaller scale, a
given widget must sometimes be replaced: changing a classic rectangular menu
in favour of a pie-shaped one that works better on tabletop user interfaces, for
instance. In some cases the replacement is at an even smaller scale: switching
from a mouse interface to a touch screen interface just requires to change a
part of the internals of some interactors2. For interaction designers this is best
seen as a change of sub-interactor sized components from their own library of
components: in buttons for instance, replacing the behaviour that reacts only
to clicks initiated on the graphical object (’mouse-oriented’ behaviour) with one
that allows to start beside then enter (’touch-screen-oriented’ behaviour).
1 Interfaces that do not rely on the Windows-Icons-Mouse-Pointing paradigm.
2 Components that deal with a given interaction: a widget, a drag and drop sequence,

a speech-enabled dialogue box.

176 S. Chatty

Furthermore, these various granularities cannot be handled independently:
one often has to replace a component by another of a very different size. Consider
a desktop metaphor in which applications are shown as pages in a book. When
turning the pages, you see an image on each page; but as soon as a page is flat,
the image is replaced with the actual running application. As another example,
when adding animation to user interfaces so that visual changes are not too
sudden, one has to replace assignments of numerical values by whole animation
sequences: instead of jumping to its position, the temperature dial of a cooler
will make a continuous movement. And the target itself can be a constant, or
can be obtained by activating a speech grammar rule, or through a ’wizard’
application that helps the user make the choice.

2.4 Crosscutting Concerns

Not all changes are as local as the ones above. When ’re-skinning’ a user interface,
designers only change the graphics but all the visual components in the applica-
tion are modified. Many facets of user interfaces are “crosscutting concerns” in the
sense of aspect-oriented programming: graphical style, geometrical layout, ani-
mation, drag and drop management, localisation, time constants, etc. Spaghetti
of code is still the norm today in most reasonable-size interactive applications
because of this. For instance, building drag and drop behaviour as a component
rather than a black box or a series of code fragments is still a challenge.

3 Requirements on Component Models

The situation described above generates requirements on the component model
used for organising applications. Some are not new and have been adressed
individually in the past. But the new multidisciplinary processes and post-WIMP
interaction exacerbate them and make it important to address them collectively.

Unified framework. Because of the planning issues described above, it is desirable
to have a unique model for all components in an application, so as not to limit
how and when components can be interchanged and connected. This applies to
components in the user interface as well as the functional core: for instance, an
animated object such as a scrollbar index can be connected to the mouse, to a
clock, or to the file-loading component at different times. Post-WIMP interface
designers rely heavily on this, whereas most user interface component models
apply only to graphical interactive components, and to their sub-components as
long as they are themselves graphical interactive components. This only covers
very few composition scenarios, and forces programmers to use several software
composition models in the same application.

Heterogeneity support. An interactive application is a heterogeneous system by
itself. Not only do developers come from different backgrounds, not only do
they manipulate very different entities, but their preferred computation models

Supporting Multidisciplinary Software Composition 177

are also very different. Some interaction styles are best defined through state
machines; others are easier with data flows. Graphics are often seen as pure
declarative objects. Some dialogue sequences are purely linear (levels in a game,
steps in a wizard) but concurrency is always present, if only to provide animated
feedback. Gesture recognition and similar algorithms, like computations, are well
described with functional programming, while input handling calls for reactive
programming [5]. Within the proposed model, it must be possible to build com-
ponents as different as graphical objects, computations, interactive behaviours
or speech grammar rules, by taking any of these points of views.

Multiple granularities. Heterogeneity also exists in the granularity of compo-
nents, as identified in the previous section. The model must therefore have a
component concept that is the same at all scales, from basic instructions to
whole applications, like does functional programming.

Modularity. Not all user interfaces are only graphical. Some have sound, speech
recognition, or video capture. Some even change over time: an application can
act as a voice server when you are away from the office and launch a graphical
interface when you use your computer. It is important that the parts of the
framework that manage these modalities are as modular as dynamic libraries
are today, and that developers can choose to use them or not.

Behaviour checking. The model must provide support for checking component
composition, because interactive software also has the issues of traditional soft-
ware. It is particularly important to check the compatibility of component be-
haviours, and not only data types [6].

Declarativeness. Some stakeholders in the development use purely graphical
tools. If they are to contribute efficiently, they must be allowed to modify appli-
cations without the help of programmers. Therefore the model must support a
declarative style of composition, that is a style in which the existence of a given
component at a given location fully determines its semantics.

External control flows. In user interfaces, what triggers an action is not a con-
trol flow from the main program but an external condition: user’s action, clock
signal, etc. Function calls do not properly support this because they require that
the source of the control flow has information about the recipient and thus is
developed after it. It usually is developped before: device drivers and interactive
components predate applications. Function references and callbacks, or the use
of late binding for that purpose are workarounds that sometimes induce pro-
grammers into mistakes [3]. Events are more useful than functions, especially
with post-WIMP user interfaces.

Concurrency. Some interactive components require concurrent semantics, for
instance when two users manipulate two menus on a tabletop interface. Concur-
rency also shows more subtly when two programmers subscribe two components

178 S. Chatty

to the same event without knowing about the other, and a third programmer
combines their components and expects them to respect some sequencing prop-
erties. Not only does the model need to support concurrency, it also needs to
provide ways of reasoning about it and expressing ordering constraints.

4 The I* Component Model

To address the above requirements we propose a hierarchical component model
named I*, that combines features of computer graphics scene graphs, interactive
software models, and component models. Successive versions of it have been
implemented in the IntuiKit model-oriented programming framework and used
in an industrial context since 2003. Its major features are its tree of elements,
its event-based communication model, and its modular execution model.

4.1 The Element Tree

In the I* model, an application is a tree of elements. An element is made of:

– a set of named properties, that store its state;
– a set of named children elements;
– an interface that exports the names of certain children, properties and events,

and manages internal operations on children element and properties.

Some elements, called atomic, are built using the host language and their
internals are not accessible within the model. All others, called components, are
built by assembling elements, creating properties and defining interfaces. The I*
model consists of the description of elements and operations on them, of a set
of atomic elements that describe control, and of their execution semantics.

Application structure. The tree of elements not only represents the architecture
of the application, but also the logical structure of its interface. It provides a
reference framework for all actors of the development. For instance, a classical
image editing program is made of a palette component, a menu bar component,
a drawing area component, and a few pop-up dialogue box components. The
palette contains buttons, and so on recursively. All interactors are components,
and their children are components (smaller interactors) or atomic elements.

Atomic elements. In most user interface models, interactors are atomic. Here,
atomic elements are smaller and more heterogeneous: computations, graphical
objects, speech rules, state machines, event notifications, property assignments.
The model allows a mapping from object-oriented classes to atomic elements, so
as to facilitate integration with the host language. To build an atomic element
one takes a class and turns an instance of it into an element, selecting some class
members as exported properties and some methods as exported children.

Graphical objects and graphical context objects (brushes, gradients, etc) are
atomic elements. For instance, a rectangle is an element, and thus forms a

Supporting Multidisciplinary Software Composition 179

legitimate application; running it actually displays a rectangle on the screen. The
code below shows how this is done with the IntuiKit Perl programming interface:

my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 100, -height => 100);

$r->run;

The same principle applies to other interaction media; for instance, the In-
tuiKit environment also implements elements that represent 3D sounds and
speech grammar rules. One of the classical techniques for describing the be-
haviour of interactors is the use of finite state machines. These, as well as data-
flow connections for continuous behaviours and algorithms that recognise ges-
tures from trajectories, are also implemented as atomic elements.

Finally, an interactive application also contains computation code and appli-
cation domain objects. These too are elements, and are currently most often
implemented as atomic elements by application programmers.

Element aggregation. Components are built by assembling other elements. Some-
times mere juxtaposition is enough, for instance when building a multimodal
dialogue box by assembling a rectangular frame, two buttons (Yes and No), and
a speech grammar rule that recognises “yes” and “no”. More usually, elements
need to be interconnected so as to exchange events or values, for instance when
coupling a writing zone, a gesture recognition element, and a text element that
shows what has been recognised; we will later see how event and data-flow prop-
agation are described through specialised atomic elements.

But in some cases the children elements are too fine grain to have a significant
semantics as such, and must be combined tightly to produce a significant effect:
the state of a state machine has a meaning only if it is also the state of a
perceptible element. By extending the model to sub-interactor elements, we have
lost the natural sharing of data between the two parts of an interactor. Using
event communication would be a solution, but at the cost of a poorly justified
memory overhead. To avoid it, a tight aggregation mechanism called property
merging is proposed, and managed in the parent component’s interface. The
result is that a memory slot for one property only is used, and this property is
accessible under different names from the children elements. Control propagation
when the property changes occurs as a special case of data-flow.

For instance, here is how one would describe a button made of arbitrary
graphics for each of its two states, with an element of type Switch that uses its
branch property to choose which of its children is active at a given time:

$btn = new Component;

$sw = new Switch (-parent => $btn);

$on = load Element (-parent => $sw, -name => ’on’, -file => ’on.svg’);

$off = load Element (-parent => $sw, -name => ’off’, -file => ’off.svg’);

$fsm = load Element (-parent => $btn, -file => ’behaviour.xml’);

$btn->merge (-names => [$fsm->state, $sw->branch]);

$b->run;

180 S. Chatty

Because it allows to delay the association of graphics (or any other perceptive
channel) and behaviour, merging is useful for managing heterogeneity in a group
of developers. Once a convention has been established about the names of ele-
ments and their properties, a programmer can build a component in which he or
she just names the children and specifies the merged properties, an interaction
designer builds a state machine that describes how the user’s input is managed,
and a graphic designer builds a set of graphical objects; the final component is
assembled in a compilation or linking phase, just prior to executing the program.

Information hiding. The names given to children elements and properties are
visible to all children of a component, as well as the events defined by children.
From this internal symbol table is built an external one, by deciding what names
are visible; during that operation, renaming is also allowed. Note that merging
is also a manipulation of symbol tables within the component’s interface.

Name hiding is for classical software engineering purposes. Renaming is for
interactive software architecture purposes. Interactive components are defined in
terms of interaction concepts; names such as ’button’, ’icon’, ’click’, ’press’, or
’drag’ are used. At some point, they need to be connected to the functional core
that uses names such as ’file’, ’application’, ’launch’, or ’ship’, ’profile’, ’match’.
This connection implies two operations. First, one needs to match concepts;
for instance, a ship is represented as an icon, a profile as a button, and the
’match’ operation is associated to the ’press’ event. Then, because the names are
different, one needs to translate them. This is called functional core adaptation;
in object-oriented frameworks, it is implemented with classes whose only role is
to glue objects of incompatible types together. Here, renaming makes functional
core adaptation a framework-level feature, optimised out at compile time.

Another peculiarity is that there are different publics to hide information
from. Application programmers do not need to see the implementation details of
a button, but designers who customise an application do need it; symmetrically
they do not care about the external interface of the button. This is currently
handled at the implementation level only: name hiding applies to all program-
ming interfaces to the I* tree languages such as Perl, C++ or Java, and not to
interfaces in languages for designers such as CSS.

4.2 Communication and Control

The prevalent execution model in user interfaces, and particularly post-WIMP
user interfaces, is the reactive model. This model usually coexists with the pro-
cedural model brought by the programming language. To satisfy the uniform
framework requirement, I* solely relies on event communication and a variant:
data-flow communication.

Events. Some elements in the tree are able to emit events when certain conditions
are met. A clock emits events at regular intervals, a graphical object emits events
when it is clicked on with the mouse, a finite state machine when it changes
state, an animation when it ends, a button when its state machine changes

Supporting Multidisciplinary Software Composition 181

state. Functional core elements can also be sources: a plane emits an event when
it changes altitude or position, a file when it changes size, and so on. Event
subscriptions are represented as Bindings, that is atomic elements that associate
actions to conditions. A Binding is defined with:

– a reference to a source, that is a property or an element that may emit events;
– an event specification, that is a source-specific expression that describes what

events are selected;
– a reference to an action, that is an element that is executed when a matching

event is emitted.

For instance, this creates a rectangle whenever a multitouch surface is touched:

my $table = find Element (-uri => ’input:/intuiface’);

my $b = new Binding (-source => $table->pointers,

-spec => ’add’,

-action => "GUI::Rectangle (-x => %X, -y => %Y)");

A finite state machine is an atomic element made of a set of bindings that
are only active when the machine is in a given state. Atomic actions named
Notification allow component builders to emit their own events. Others named
Assignment set the values of properties. Callback functions in the host language
can be encapsulated as actions named NativeCode.

The Binding elements make behaviour declarative: one creates a control flow
just by adding the appropriate Binding. It also helps to create state-dependent
behaviours, by making bindings or state machines active or not depending on
a state, without having to introduce hierarchical state machines or Statecharts:
hierarchy is represented by the I* tree.

Data-flow. Data-flow is a special case of event communication. Properties are
event sources, and atomic elements called Connectors are Bindings defined from
two properties: they trigger an implicit action that copies the value of the first
property into the second when it changes. For instance with the following code
a rectangle follows the finger on a touchscreen.

my $t = find Element (-uri => ’input:/touchscreen’);

my $r = new GUI::Rectangle (-width => 10, -height => 10);

my $xc = new Connector (-in => $t->X, -out => $r->x);

my $yc = new Connector (-in => $t->Y, -out => $r->y);

Atomic elements named Watchers are used within elements to bind actions to
changes of their own properties. This allows to build data-flow bricks such as
those described in [4] or [7], and produces the control flows associated to merging.

This definition of data-flow does not only provide a declarative way of building
behaviours. It also allows to define a consistent scheduling for event and data-flow
propagation, so that mixing them leads to predictable results. Implementations
of I* include a scheduling algorithm based on properties, comparable to those
used in synchronous programming.

182 S. Chatty

5 Implementing Element Semantics

We have built two implementations of the I* model named IntuiKit Perl and
IntuiKit C++. We now describe what semantics they give to elements and how
their architecture helps fulfill the initial requirements.

5.1 A Model-Based Implementation

For each type of elements, an XML format has been defined. For instance, the
SVG format is used for graphics. IntuiKit includes parsers for these formats, in
addition to a programming interface for instantiating elements, cloning them, or
creating components. Developers can thus build the application tree by loading
XML files, instantiating elements from code, or both.

Using XML files has allowed to use IntuiKit in a research project as the fi-
nal execution engine in a model transformation chain. It also helps manage the
heterogeneity of actors and the planning issues: graphic designers use their own
tools to build graphics and export them as SVG. Programmers or interaction
designers can build the rest of the application in code or XML. Then one can
choose to load the XML files at run time, thus delaying integration to the last
minute, or to generate code from them. Using XML also allows to migrate appli-
cation parts from one IntuiKit implementation to another. The typical intended
use for this is to carry out iterative prototyping with the Perl implementation,
then export the graphics, behaviours, and structure of the application tree in
XML and reuse them in the final C++ development.

The manipulation of part of the tree as data files introduces preliminary phases
in the execution of applications: the loading or instantiation of elements, then
their linking, prior to executing the tree. So as to make the programming inter-
faces for instantiating elements compatible with element creation in graphical
editors, instantiation has been defined along the lines of prototype-oriented lan-
guages: elements can be copied from others, then modified.

5.2 Modules and Rendering Engines

Following the construction of the tree, IntuiKit takes charge of executing (’run-
ning’) it. The associated semantics is that each element represents an instruction
for a part of the execution environment named a module: graphical objects are
rendered by a graphical engine, speech grammar rules are managed by a speech
engine, bindings, actions and other behaviour-oriented elements are executed by
the core module. This addresses the modularity requirement: each module is in
charge of a set of element types.

Each module defines an XML namespace and implements the associated
parser, provides a programming interface for instantiating the elements it defines,
and includes a rendering engine for them. Leaving aside user-defined modules
that contain user-assembled components such as WIMP interactors (buttons,
menus, dialogue boxes) or dials for cockpits, most modules introduce atomic
elements. The core module provides the central concepts of the model and a

Supporting Multidisciplinary Software Composition 183

few types of control elements: bindings, connectors, state machines. Other mod-
ules are used only when required: a GUI module for graphical objects and basic
WIMP objects such as windows, mouse and cursors; an input module for atypical
input devices; an animation module for animation trajectories; a speech recog-
nition module for grammar rules. Such modules are implemented by reusing an
existing rendering engine, either as a library or a server, and encapsulating its
primitives into the execution methods of atomic elements.

Using modules provides support for the management of crosscutting concerns
while preserving declarativeness: to enrich a component with a new media, one
just needs to add a child element from the corresponding module. All other
complexity is hidden in the module internals. Furthermore, modules interact
nicely with the application architecture, creating a two-dimensional structure:
one dimension is the set of modules, the other is the application tree that drives
the rendering in all modules. In our view, this is the key for providing an clear
architecture for multimodal applications.

We have encountered two types of rendering engines with that regard. Some,
such as OpenGL, do not store the objects they render and need to be called
periodically. In this case, the I* tree serves not only as the application structure
but also as the basis for rendering: once the tree is run, the graphical module
periodically traverses the tree, updates its rendering context or the engine’s,
and has graphical objects rendered by the engine as it encounters them. In other
words, the restriction of the tree to containers and graphical elements has the
semantics of a graphical scene graph. Other rendering engines do manage their
own internal structure. In that case the tree is only traversed once to create this
structure, and the engine is then notified of changes in the tree that concern it;
the engine acts as a server, and one can interpret this as an extension of event
communication to the rendering itself.

6 Example Applications

IntuiLab and their partners have used IntuiKit during five years for developing
dozens of interactive applications as diverse as car dashboard and multimedia
displays, air traffic control tools, geographical information systems on tabletops,
multimodal information query systems or lotto kiosks. We describe here some
example uses that demonstrate the robustness of the I* model.

6.1 Skinning a Visual Component

Figure 1 shows the tree structure of a component that was built for a car mul-
timedia system. It has a static background, four tabs that represent four parts
of an application, a Switch element, and a finite state machine. The transitions
of the state machine are bound to events from a set of keys located near the
steering wheel, and its state is merged with that of the Switch. Depending on
the SVG file used for the graphical elements, the result looks as in Figure 2a or
Figure 2b.

184 S. Chatty

Fig. 1. An set of tabs for a car multimedia system

(a) (b)

Fig. 2. (a) With one graphics file. (b) and another.

6.2 Building a Multimodal Dialogue Box

The following code shows how one builds a simple multimodal Yes/No dialogue
box from atomic elements: a rectangular frame; two rectangles and bindings on
them that emit Y (resp. N) events when they are pressed on; a speech grammar;
two bindings on the recognition of words by the grammar. For concision the
parent component does not appear here, nor the arguments that create the
elements within this parent.

my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 200, -height => 100);

my $y = new GUI::Rectangle (-x => 20, -y => 30, -width => 60, -height => 40);

new Binding (-source => $y, -spec => ’ButtonPress’, -action => "notify(’Y’)");

my $n = new GUI::Rectangle (-x => 120, -y => 30, -width => 60, -height => 40);

new Binding (-source => $n, -spec => ’ButtonPress’, -action => "notify(’N’)");

my $g = new Speech::Grammar (-grammar => ’yes-no’);

new Binding (-source => $g, -spec => [command => ’yes’], -action => "notify(’Y’)");

new Binding (-source => $g, -spec => [command => ’no’], -action => "notify(’N’)");

The same events are emitted by this dialogue box whether the mouse or voice
is used. The speech grammar, since it is a child element of the dialogue box, is
only active when the box is active; the same holds for the rectangles and the
bindings of course.

Supporting Multidisciplinary Software Composition 185

6.3 Application Design and Development

Figure 3 illustrates the use of IntuiKit in a phase of the multidisciplinary process
described in the introduction of this article. The illustrated air traffic control
project involved “virtual paper”: objects that felt like paper strips through a
combination of visual effects, animation and gesture recognition. A first phase
of iterative design yielded a paper prototype that outlined the structure and the
behaviour of the application. Designers and programmers used this prototype
to define an I* tree and give names to elements to be produced by designers.
Then each started to program, draw or otherwise build their elements and give
them the appropriate names. For test purposes, someone in the group quickly
produced very crude graphics, gave them the agreed names and saved them in a
SVG file. This allowed programmers to test their work by loading these elements
from the SVG file (left). When the final data management, behaviour, animation
and graphical elements were ready, the programmers just had to put XML files
delivered by designers at the right place, and test the application (right). This
application later had several sets of graphics for different customers in Europe.

Measurements carried out on this case study (comparison with a project of
similar size and complexity, by the same team, using a linear process) showed
a reduction of project duration by about 50%, expenses by about 30%, and a
dramatic decrease of coordination costs (estimated number of phone calls) [1].

Fig. 3. ATC application before and after final integration

6.4 Transferring More Tasks to Designers

In the above example, graphic designers only produced graphics. However, some
are willing to take more tasks from programmers, and particularly visual layout
and its adaptation to size changes. We have designed artistic resizing [9], a tech-
nique where graphic designers provide examples of graphical objects at different
sizes, and the system interpolates their appearance for any chosen size.

186 S. Chatty

Implementing the artistic resizing algorithm with IntuiKit was a simple appli-
cation of the I* model: we built a new atomic element that has properties width
and height, implements the artistic resizing algorithm, is defined by passing
it the examples as children elements, and then behaves as a single graphical
element. This new element can then be placed in the tree wherever a resiz-
able graphic element is desired, and its properties connected to the size of the
available window. From then on, the graphical object adapts to the size of the
window, respecting the designer’s non-linear transformations.

6.5 Input Management

One of the future challenges for interactive software is that when building an
application, developers will not have a precise idea of what input devices will be
available at run time. We have been able to build an IntuiKit module to address
this problem, by slightly extending the semantics of the I* model.

Input devices are event sources and hence candidate tree elements, but they
are out of control of developers. It makes sense to decide that the application
tree is just an element of a larger I* tree that contains the computer devices.
Therefore, we just had to create a new element set and element discovery func-
tions to allow programmers to test and use input devices [8]. Using a technique
used for communicating dynamic data creation from the functional core to the
user interface, the hot-plugging of devices is reported as an event by the set of
input devices, which is an automatically managed component that contains all
input device elements. In that context, multimodal fusion, that is the combi-
nation of inputs from different sources, becomes a matter of creating elements
that subscribe to different sources and implement one combination policy or the
other: time windows, for instance.

7 Research Directions

The I* model and its implementations have allowed us to turn innovation in user
interfaces into a more industrial activity. But questions remain to be addressed,
to give the model more solid foundations and to cover issues currently not ad-
dressed. First of all, the control structures described above are insufficient for
building all of the functional core; this forces developers to build it as a set of
atomic elements, and breaks the requirement for a uniform model. Similarly,
one needs to devise a data-passing scheme that makes the implementation of
data-flow elements as easy as functions in a functional framework, as well as a
typing system for controlling bindings and connections. We may also need to
propose a “service call” communication system on top of event communication,
for the few cases where the caller is defined after the callee.

In another direction, defining a formal semantics for the I* tree and its com-
munications would provide developers with an unmbiguous understanding of how
their components behave, and help compare with more general frameworks. It

Supporting Multidisciplinary Software Composition 187

could also serve as the basis for compiling components rather than just interpret-
ing them: whereas during execution IntuiKit, even in Perl, compares favourably
with all rich graphics frameworks, interpretation times are not satisfactory.

Finally, a strong similitude appears between elements and processes in reactive
systems or other concurrent models, but the consequences of choosing a given
semantics need to be explored. In particular, we must understand what level of
control programmers and designers need over the sequencing of their actions,
and how it fits in the available models of concurrency.

8 Related Work

Many composition scenarios and requirements have been studied by user in-
terface software specialists. The proposed solutions either have been high level
guidelines or patterns focused on a given requirement: for instance MVC or
PAC [10] for separing the interface from the functional core; the use of active
values (examplified recently by Cocoa’s bindings) then data flows or one way con-
straints for describing user input, layout or animation [4,11]; hierarchies of visual
components as in Self [12]; the Java source/listener and Qt signal/slot patterns
for event communication. Most such patterns implement a reactive composition
model on top of an existing function-oriented language (using inheritance, for in-
stance), thus not addressing the uniform framework requirement. None of these
have explored the heterogeneity requirement.

Recent products support the new development processes. Flash allows graph-
ical designers to build complete applications; programmers can extend these
using a dedicated language or even a mainstream language. Other solutions for
Web applications, such as SVG+Javascript or Microsoft Silverlight, take a sim-
ilar hybrid approach. However, such solutions are very specific to graphics, and
do not propose a unified framework for complex applications: Flash has limited
encapsulation features and the others fall in the hybrid model category.

Solutions for programming user interfaces have been proposed for nearly ev-
ery programming paradigm: object-oriented programming of course, but also
reactive programming [13], functional programming [5], etc. Many of these ap-
proaches, with the notable exception of reactive programming and the Smalltalk
language [14], consist in providing patterns that extend or alter the semantics
of the original framework to support interactive components.

With the advent of large heterogeneous systems [15], research on software ar-
chitecture and software composition addresses requirements that are very similar
to ours. The I* tree can be compared to the hierarchy of components in the Frac-
tal framework [16]; component interfaces, including the experimental behaviour
inspection features, and some aspects of internal control in I* components not
described here can be compared to Fractal membranes. The main difference is
probably that Fractal is service-oriented while I* is event-oriented. Aspect pro-
gramming [17] also shares requirements with I*, particularly modularity (for han-
dling cross-cutting concerns) and external control. One can interpret point-cuts
and advices as the I* binding of actions to particular sources, with a particular

188 S. Chatty

event specification language. The main difference is that this event communi-
cation is the main control construction in I* whereas aspect programming uses
it only for particular software engineering cases. I* can also be considered as
an architecture description language, but one that would aim at describing the
internal architecture of components as well, down to the level of instructions.

9 Conclusion

We have analysed in this article how the new multidisciplinary processes used
for interactive software influence software architecture and composition. They
create a need for a component model that unifies the heterogeneous concepts
used by the various stakeholders, that combines with the more traditional re-
quirements of user interface software. We have described the main features of
the I* component model that addresses these issues. In particular, the ability to
apply late binding techniques to heterogeneous components such as behaviours,
graphical objects, speech rules or computations allows to implement concurrent
development processes. One of the main challenges now is to compare our model
with more mainstream results in software engineering. Understanding the links
between interactive software and other heterogeneous systems may prove fer-
tile, as well as comparing I* with formal models for describing concurrency. In
the long term, our objective is to reconcile user interface design with software
engineering theories, practices and tools.

Acknowledgements

This work was partly funded by the French government through the ITEA
Emode project and by Agence Nationale de la Recherche through the Digitable
and Istar projects. L. Bass, R. Kazman and S. Conversy provided useful advice
on this article. The anonymous reviewers helped a lot to improve it.

References

1. Chatty, S., et al.: Revisiting visual interface programming: creating GUI tools for
designers and programmers. In: Proc. of the ACM UIST, Addison-Wesley, Reading
(2004)

2. Myers, B.A.: Why are human-computer interfaces difficult to design and imple-
ment? Technical Report CMU-CS-93-183, Carnegie Mellon University (1993)

3. Chatty, S.: Programs = data + algorithms + architecture. In: Proc. of the 2007
conference on Engineering Interactive Systems. LNCS, vol. 4940, Springer, Heidel-
berg (to appear, 2008)

4. Chatty, S.: Defining the behaviour of animated interfaces. In: Proceedings of the
IFIP WG 2.7 working conference, pp. 95–109. North-Holland, Amsterdam (1992)

5. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (1997)

6. Accot, J., et al.: Formal transducers: models of devices and building bricks for the
design of highly interactive systems. In: Proc. of DSVIS 1997, Springer, Heidelberg
(1997)

Supporting Multidisciplinary Software Composition 189

7. Dragicevic, P., Fekete, J.D.: Support for input adaptability in the Icon toolkit. In:
Proceedings of ICMI 2004, pp. 212–219. ACM Press, New York (2004)

8. Chatty, S., et al.: Multiple input support in a model-based interaction framework.
In: Proceedings of Tabletop 2007, IEEE Computer Society Press, Los Alamitos
(2007)

9. Dragicevic, P., et al.: Artistic resizing: A technique for rich scale-sensitive vector
graphics. In: Proceedings of the ACM UIST (2005)

10. Coutaz, J.: PAC, an implementation model for dialog design. In: Proceedings of
the Interact 1987 Conference, pp. 431–436. North-Holland, Amsterdam (1987)

11. Myers, B.: Separating application code from toolkits: Eliminating the spaghetti of
callbacks. In: Proceedings of the ACM UIST (1991)

12. Smith, R.B., et al.: The Self-4.0 User Interface. In: OOPSLA 1995 conference pro-
ceedings, pp. 47–60 (1995)

13. Clement, D., Incerpi, J.: Programming the behavior of graphical objects using
Esterel. In: Díaz, J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 352, Springer,
Heidelberg (1989)

14. Kay, A.C.: The early history of Smalltalk. ACM SIGPLAN (3), 69–75 (1993)
15. Hardebolle, C., et al.: A generic execution framework for models of computation. In:

Proceedings of MOMPES 2007, pp. 45–54. IEEE Computer Society, Los Alamitos
(2007)

16. Bruneton, E., et al.: An open component model and its support in Java. In:
Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, Springer, Heidelberg (2004)

17. Kiczales, G.: Aspect-oriented programming. ACM Comp. Surveys 28(4es) (1996)

Compositional Modeling for Data-Centric

Business Applications

Ethan K. Jackson and Wolfram Schulte

Microsoft Research,
One Microsoft Way, Redmond, WA

{ejackson,schulte}@microsoft.com

Abstract. Data-centric business applications comprise an important
class of distributed systems that includes on-line stores, document man-
agement systems, and patient portals. However, their complexity makes
it difficult to design and implement them. We address these issues from
a model-driven perspective by developing a formal, compositional, and
domain-specific set of abstractions for the specification and analysis of
data-centric business applications. Our technique allows us to formally
analyze the specified system at design time; in particular we can ana-
lyze whether the system is resilient to abnormal conditions, i.e. that key
system invariants can always be re-established.

1 Introduction

Data-centric business applications comprise an important class of distributed
systems that includes on-line stores, document management systems, and pa-
tient portals. However, many foundational issues make the design of correct
business applications a non-trivial problem: Implementation technologies are di-
verse and problematic, e.g. the security of Web 2.0 applications is flawed [1].
Difficult non-functional requirements, such as privacy [2], are often overlooked.
Anecdotally, even mature and well-tested distributed systems still fail under
unexpected conditions [3].

A number of approaches have been suggested to address these issues: Model-
driven architecture (MDA) [4] attempts to disentangle the implementation plat-
form from the business logic, enterprise patterns [5] distill isolated kernels of
programmer wisdom, and formal work-flow models [6] focus on arrangement and
communication of processing tasks. Each approach addresses some aspect of the
overall design problem, but no existing approach combines the specification of
the business logic, its distributed implementation, and its formal analysis.

We address these issues from a model-driven perspective by developing a for-
mal, compositional, and domain-specific set of abstractions for the specification
and analysis of data-centric business applications. Our contributions are:

– We provide a new specification technique for modeling distributed and data-
centric business applications. This is accomplished by the specification and
composition of threemodels:A datamodel (Section 2) enumerates the essential

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 190–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compositional Modeling for Data-Centric Business Applications 191

data and data invariants of the system. An operation model (Section 3) char-
acterizes the set of data manipulation operations. A connectivity model (Sec-
tion 4) defines the agents of the system, the information flow between agents,
and the bindings of data to agents, thereby generalizing data and operations
over networks.

– We give these models a formal semantics based on term algebras and infer-
ence over terms using Horn logic extended with stratified negation [7]. With
this framework we can characterize the unstable states, which are those dis-
tributed states that temporarily violate invariants of the data model.

– We show in Section 5 that for any system specified with BAM there ex-
ists a finite set of equivalence classes of unstable states of finite size. This
allows the application of finite model checking to determine if a system
is self-stabilizing; i.e. that a BAM system has adequate operations for re-
establishing invariants.

We discuss related work in Section 6 and future work in Section 7.

1.1 Running Example: A Document Management System

The high-level requirements of data-centric applications are often straightfor-
ward. For example, the requirements for a document management system are:

1. Authorized users can view, create, and modify their documents, from a local
client.

2. Authorized users can manage their documents, even if not connected to a server.
3. One or more servers synchronize with clients to record the latest versions of

documents.

This example, while simple, still illustrates some important characteristics of
data-centric business applications. First, the key data elements are readily ap-
parent – e.g. servers contain copies. Second, data can be manipulated by some
small set of (simple) operations – e.g. clients create documents. Third, heteroge-
neous agents act upon the data, and different agents have different capabilities
– e.g. servers must synchronize with clients, while clients are free to modify the
documents they own.

2 Data Model

BAM data models capture the data states of a business application using meta-
models employing a notation similar to UML class diagrams [8]. Figure 1 shows
a data model for our document management system. For example, the Document

construct contains two pieces of information: The user who created it an its ti-

tle. A Snapshot contains a set of DocumentCopy items. The consistency between
Documents and DocumentCopies are specified with a set of formal invariants; these
appear in the gray boxes on the right-hand side. (The invariants will be described
in more detail later.)

192 E.K. Jackson and W. Schulte

Document

user: string
title: string

Field

name: string
data: any

DocumentCopy

user: string
title: string

Field

name: string
data: any

Snapshot

0..*

0..*

0..*

MissingCopy

malform(snapshot(X)) ⇐ snapshot(X), document(ID, U, T),
¬copyof(X, ID)

MissingField

malform(documentCopy(ID2, U, T)) ⇐ document(ID1, U, T), documentCopy(ID2, U, T),
field(X, N, D), contains(ID1, X),¬copyofF ield(ID2, N, D)

ExtraField

malform(documentCopy(ID2, U, T)) ⇐ document(ID1, U, T), documentCopy(ID2, U, T),
field(X, N, D), contains(ID2, X),¬fieldInDoc(ID1, N, D)

Fig. 1. Data model for document management system

Our terminology and formalization of metamodels and model transformations
builds on previous work [9]. We briefly repeat necessary concepts below; for more
details consult the reference.

Formally, a data model expresses a four-tuple D = 〈Υ, ΥC , Σ, C〉 called a
domain, where Υ is a finite signature representing the data constructs, ΥC is
a finite signature for representing derived properties, Σ is a set of values, and
C is a set extended Horn axioms defined over Υ, ΥC , Σ for deriving properties.
These axioms are used to capture data invariants. The set of all possible data
states is the powerset of the term algebra over Υ generated by Σ. This is written
P(TΥ (Σ)). A member s ∈ P(TΥ (Σ)) is a concrete instantiation of data, and
describes the state of the management system at some time.

Returning to the example, Figure 2 shows a visualization for a particular state
s. It contains two documents, entitled EmailToBob and ExpenseReport. The box la-
beled Snapshot contains several document copies, entitled EmailToBob and Payroll.
Under the title of each document/copy is the user who created the document
and the associated fields.

Table 1 shows the terms used to encode s, grouped by function symbol. For
example, a document is represented by a term document(ID, User, T itle), where
document(·, ·, ·) is ternary function symbol and {ID, User, T itle} ⊂ Σ are values
for the unique ID of the document, the user who created the document, and the
document’s title. The Field, DocumentCopy, and Snapshot occurrences are encoded
in a similar fashion. Containment of one occurrence within another is represented
by the function symbol contains(·, ·), where a term contains(ID1, ID2) denotes
that the data with ID1 contains the data with ID2.

The data invariants are expressed using the help of a standard function sym-
bol, malform(·). A data state s is inconsistent, violates invariants, if it is possible
to derive any malform(·) terms.

For example, the axiom below explains that it is possible to derive a term
of the form malform(contains(ID1, ID2)) if the state s has terms encoding the
containment of a Document within a Snapshot.

malform(contains(ID1, ID2)) ⇐ contains(ID1, ID2), snapshot(ID1),
document(ID2, U, N)

(1)

Compositional Modeling for Data-Centric Business Applications 193

Snapshot

EmailToBob
Joe

SendTo: Bob
EmailSubject: Payroll

Payroll
Alice

BarkerTheDog: 500

EmailToBob
Joe

SendTo: Bob
EmailSubject: ExpenseReport

ExpenseReport
Bob

TripTo: Mars Cost: 5000

Fig. 2. An example state of a management system

Table 1. Abstraction of document management state as a set of terms

Signature Terms

document(·, ·, ·) document(1, Joe, EmailToBob), document(2, Bob, ExpenseRep)
field(·, ·, ·) field(3, SendTo, Bob), field(4, EmailSubject, ExpenseReport),

field(5, TripTo, Mars), field(6, Cost, 5000)
contains(·, ·) contains(1, 3), contains(1, 4), contains(2, 5), contains(2, 6)
snapshot(·) snapshot(7)

documentCopy(·, ·, ·) documentCopy(8, Joe, EmailToBob),
documentCopy(9, Alice, Payroll)

field(·, ·, ·) field(10, SendTo, Bob), field(11, EmailSubject, Payroll),
field(12, BarkerTheGuardDog, 100)

contains(·, ·) contains(7, 8), contains(7, 9), contains(8, 10), contains(8, 11),
contains(9, 12)

Returning to the original data model, indeed we see that Documents cannot be
contained in Snapshots. This is a simple invariant, but the data model can capture
more complex invariants that are implied by the high-level requirements. These
invariants a shown on the right-hand side of Figure 1. For example, we require
that a Snapshot should contain a copy of any known Document. The invariant
labeled MissingCopy expresses this

malform(snapshot(ID1)) ⇐ snapshot(ID1), document(ID2, U, T),
¬copyof(ID1, ID2)

(2)

using the auxiliary axiom:

copyof(ID1, ID2) ⇐ snapshot(ID1), document(ID2, U, T),
documentCopy(ID3, U, T), contains(ID1, ID3)

(3)

Note that this expresses the synchronization between documents and copies in
a data-centric manner, without explaining the protocols and services necessary
to implement this synchronization. The remaining invariants, MissingField and

194 E.K. Jackson and W. Schulte

ExtraField, define those states with discrepancies between the fields of documents
and copies. For notational convenience, let models(D) denote the set of data
states that satisfy invariants.

3 Operation Model

Data-centric business applications inevitably require some basic operations on
data, and the BAM operation model captures these essential operations as model
transformations. A model transformation changes the current data state s by
adding new terms to s and/or deleting existing terms from s.

Formally, a model transformation λ = (t+λ , t−λ) is comprised of two sets of
Horn axioms. The axioms of t+λ derive the terms that should be added to s, and
the axioms of t−λ derive the terms that should be removed. If the data state is
s, then an operation λ changes the state to sλ according to the state update
equation:

sλ =
(

s ∪ �s�t+λ

)

− �s�t−
λ (4)

where � �t is the map that takes a set of terms s to the set of new terms derivable
from s by axioms t.

3.1 Parameterless Operations

Figure 3.B shows a parameterless BAM operation, called CopyFields, that finds
all the fields contained in a document that are not contained in its correspond-
ing copy. This operation then adds these missing fields to the copy so that it is

Fig. 3. Two BAM operations used by the document management system

Compositional Modeling for Data-Centric Business Applications 195

consistent with the original document. Formally, the CopyFields operation has the
following axioms in t+λ :

field(new(ID3), N, D), contains(ID2, new(ID3)) ⇐ document(ID1, U, T),
documentCopy(ID2, U, T), field(ID3, N, D),

contains(ID1, ID3), ¬copyofF ield(ID2, ID3)
(5)

copyofF ield(ID2, ID3) ⇐ documentCopy(ID2, U, T), field(ID3, N, D),
contains(ID2, ID3)

(6)

where new(·) creates new identifiers that are not currently in the state s.1

3.2 Parameterized Operations

Some operations must take input from the external environment. A user U may
wish to create a new document with title T that does not exist in the current
state. This issue can be addressed by parameterizing the transformation axioms
of λ to create a family of concrete operations. A parameterized transformation
λ(p1, p2, . . . , pn) has n parameters and is concretized by assigning each pi = σi ∈
Σ. The concrete transformation is a model transformation formed by replacing
every occurrence of pi with σi in the transformation axioms of λ(p1, . . . , pn).

The CreateField operation in Figure 3.A illustrates a parameterized operation.
This operation has four parameters: pu, pt, pn, pd. The parameters pu, pt are used
to find an existing document created by user pu titled pt. If such a document is
found, then a new field named pn with data pd is created within this document.
The parameterized axiom for CreateField is as follows:

field(new(ID1), pn, pd), contains(ID1, new(ID1)) ⇐ document(ID1, pu, pt), (7)

For example, the operation CreateField(Bob,ExpenseReport,Taxi,50) adds a field to
Bob’s expense report indicating that he spent 50 dollars on a taxi.

4 Connectivity Model

The data and operation models specify the core functionality of data-centric busi-
ness applications. The third BAM model, called the connectivity model, describes
how data an operations interact across logical networks. The formal semantics
of BAM uses this information to generalize the satisfaction of data invariants
and calculation of state updates over arbitrary network topologies.

Formally, a connectivity model is a triple Gconn = 〈A, F, ρ〉 where A is the
set of agent types, F ⊆ A × A is the information flow between agent types,
and ρ : A → P(Υ) is a mapping from agent types to function symbols of the
data model. The mapping ρ provides an access control mechanism, i.e. agents
of type a ∈ A can only access data of types ρ(a). This access control respects

1 Formally, new(·) is a state-dependent bijection new : Σ → Σ such that for each
element σ appearing in s, new(σ) is not in s.

196 E.K. Jackson and W. Schulte

Fig. 4. (A) Connectivity model of document management system (B) Example of a
composite state

containment relationships between data: If f ∈ ρ(a) and occurrences of f can
contain occurrences of g then g ∈ ρ(a).

Figure 4.A shows the connectivity model for the document management sys-
tem. There are two types of agents: ClientType and ServerType agents. Each agent
has some data structures bound to it. For example, only ClientType agents con-
tain Document items, while Snapshot items are only present in ServerType agents.
The double-headed edges (�−−�) define which types of agents can communicate
with each other, e.g. ClientType and ServerType agents can communicate. Notice
that information flow must be explicitly defined, even for flow between agents of
the same type. In this example information can pass between ServerType agents,
but not ClientType agents. The connectivity model for the document management
system is:

A = {ClientType, ServerType},
F = {(ClientType, ServerType), (ServerType,ServerType), . . .}
ρ(ClientType) =

{
document(·, ·, ·), field(·, ·, ·), contains(·, ·)

}

ρ(ServerType) =
{
snapshot(·), documentCopy(·, ·, ·), field(·, ·, ·), contains(·, ·)

}

4.1 Composite States

Instead of viewing the system behaviors as a sequence of transitions through data
states (s0 → s1 → . . .), we can now view the system as transitioning through
composite states (C0 → C1 → . . .), which take into account the distributed state
of the network.

Let D be a domain (as given by the data model) and Gconn be the connectivity
model, then C(D, Gconn) is a composite state parameterized by D, Gconn.

Definition 1. A composite state C(D, Gconn) = 〈V, E, type, δ, Λ〉 is a quintuple
where:

1. (V, E) is a finite undirected graph, where V is the set of agents and E is the
information flow between agents. We call this the connectivity state.

2. type : V → A is a mapping from agents to agent types, denoting the type of
each agent.

Compositional Modeling for Data-Centric Business Applications 197

3. δ : V → P(TΥ (Σ)) is mapping from agents to data states. If u ∈ V is an
agent, then δ(u) is its local data state. We call δ the global data state.

4. Λ is the set of operations available from the current state; it is called the
operation state.

In order for a structure C to be a valid composite state it must respect the
various models that parameterize it. First, the connectivity state must respect
the connectivity model Gconn. This holds if the logical connectivity between
agents respects the information flow:

∀(v, u) ∈ E, (type(v), type(u)) ∈ F (8)

Also, the local data state of each agent must respect the access control of the
connectivity model:

∀v ∈ V, δ(v) ⊂ Tρ(type(v))(Σ) (9)

In other words, the terms of the data state are a subset of a smaller term algebra
created over the smaller signature ρ(type(v)). Finally, the operations of the oper-
ation state must defined over the signature Υ and alphabet Σ of the domain D.

Composite states have a preorder ≤ with respect to the data contained by
the vertices. We say that C′ ≤ C if the states have the same topology, but each
vertex in C′ contains the same or less data than the corresponding vertex in C.

Definition 2. Let ≤ be an ordering over composite states where C′ ≤ C if:

1. (V ′, E′) ∼= (V, E); the graphs are isomorphic as witnessed by π.
2. type(π(v)) = type(v); the types are preserved between states.
3. δ(π(v)) ⊆ δ(v); vertices in C′ contain the same or less data.

This ordering over composite states will become important in the latter sections.

4.2 Stability in Composite States

The invariants of the data model must also be extended to composite states. One
solution might be to consider invariants over the union of the global data state⋃

v∈V δ(v). Figure 4.B shows a composite state for the document management
system that illustrates why this approach fails. This state has two ServerAgent

nodes SA, SB and two ClientAgent nodes C1, C2. Information flows between SA

and C1, as well as between SA and C2. Attached to each vertex v is its data state
δ(v). Consider server SB, which does not contain any copies of documents. If
invariants were checked over the union of the data state, then SB would fail the
requirement that snapshots contain copies of existing documents. However, no
information can flow between the clients C1, C2 and SB; this should alleviate SB

from the burden of satisfying this invariant. Information flow naturally induces
a relaxation of the invariants. This suggests that invariants should be checked
over the data models formed by connected components. However, this assumes
a transitive flow of information that usually does not hold. For example, the two

198 E.K. Jackson and W. Schulte

clients are not connected and will not be able to observe each others documents,
even though they are transitively connected through the server.

We propose evaluating invariants over the maximal cliques of the connectivity
state. These maximal cliques are the maximal subgraphs where information can
flow between all agents in the subgraph.2 A composite state C is stable if the data
state formed by each maximal clique is consistent (i.e. satisfies the invariants):

∀m ∈ maxcliques(C), (
⋃

v∈m

δ(V)) ∈ models(D) (10)

Figure 4.B shows the maximal cliques outlined in blue. Under this interpretation
SB does not cause the state to be unstable. Mathematically, our maximal clique
semantics partitions the network into symmetric subgraphs where information
flow is universal within the subgraph. We shall see that this symmetry provides
a powerful foundation for reasoning about distributed systems. Returning to
Figure 4.B, notice that this state is still unstable because SA does not have
a copy of the ExpenseReport document in client C2. (See Figure 2 for a larger
view of the snapshot on server SA.) This situation can be rectified by applying
an operation that copies new documents from the client to the server. However,
this requires generalizing operations over arbitrary topologies, which we describe
in the next section.

4.3 Operations over Composite States

Two issues must be addressed when operations are performed over arbitrary
topologies. First, how many nodes in the network are involved in an operation?
Second, how is distributed data state aggregated to form the input to an op-
eration, and how are the effects of an operation propagated across nodes? To
address these issues, we define the notion of an information extent.

The information extent of an operation λ, written iext λ, describes the data
types it must access to operate. In particular, iext λ is a multiset of function
symbols found in the transformation axioms.3 The cardinality of a symbol f in
iext λ determines the lower bound on the number of distinct network nodes that
participate in the distributed operation.

For example, the operations of Figure 3 have information extent:

iext CreateField =
{
document(·, ·, ·), f ield(·, ·, ·)

}

iext CopyFields =
{
document(·, ·, ·), documentCopy(·, ·, ·), f ield(·, ·, ·)

} (11)

where each function symbol has cardinality 1.

2 Formally, a clique is a set m ⊆ V such that ∀v, u ∈ m, (v, u) ∈ E. The clique m is
maximal if for every w ∈ (V − m) then m ∪ {w} is not a clique.

3 By a multiset, we mean a set X equipped with a function # : X → N assigning
a positive non-zero cardinality to each element in X. We write #(f, X) to denote
the cardinality of function symbol f in multiset X. Given two multisets X, Y , then
X ≤ Y if ∀f ∈ X, (f ∈ Y) ∧ (#(f, X) ≤ #(f, Y)).

Compositional Modeling for Data-Centric Business Applications 199

A set of nodes V ′ in the network also has an information extent, which is the
multiset of data types collectively accessible by those nodes. (The notation
denotes multiset union.)

iext V ′ =
⊎

v∈V ′

ρ(type(v)) (12)

A node n can execute operation λ, if there is some “reasonable” set of nodes
V ′ such that (iext λ) ≤ (iext V ′). We calculate this set by growing a horizon
from the node n out through the network until the information requirements
are satisfied. This information horizon depends on the node n executing the
operation, the operation λ, and the composite state C:

ihr0(n, λ, C) =

{
{n} if (iext n) ∩ (iext λ) �= ∅
∅ otherwise

ihri+1(n, λ, C) =
{

u ∈ N(ihri)
∣
∣
∣
∣ ∃f ∈ (iext u)

(
#(f, iext ihri) <
#(f, iext λ)

)}

ihr(n, λ, C) =ihr∞(n, λ, C)

where N(ihri) denotes the neighbors of the set ihri in the connectivity graph.
Effectively, the information horizon ihr is the least k such that ihrk = ihrk+1.

The information horizon has several important properties. First, every node in
the information horizon must have access to some of the data types accessed by
the operation. This prevents a node from calling operations that are not related
to data on that node, effectively extending access control to operations. Second,
the information horizon stops growing once all the nodes in the horizon satisfy
the requirements of the operation. This limits the effects of the operation to a
small horizon beyond n.

Figure 5 illustrates some information horizons generated by certain nodes in a
composite state. The horizons in the left of the figure result from clients creating
new documents. As one might expect, these operations are localized around the
clients and do not involve any other nodes in the network. On the other hand,
if a client wishes to reconcile documents with a server by calling the CopyFields

operation, then this only involves the client and the server (center of the figure).
However, if a server calls CopyFields it effects all the clients in its immediate

CreateField

C1
SA

SB
C2

C1

C2

CopyFields

C1
SA

SB
C2

SA

C2
CopyFields

C1
SA

SB
C2

C1
SA

C2

Fig. 5. Information horizons generated by various nodes and operations

200 E.K. Jackson and W. Schulte

horizon (right-hand side of the figure). All of these behaviors fall naturally from
our characterization of the information horizon.

Once an information horizon has been determined, the nodes in the horizon
must communicate their data state to aggregate data and calculate the result of
an operation. Again, it may be both dangerous (from the security perspective)
and inefficient (from the implementation perspective) to aggregate all of the
data from all the nodes in the entire horizon. Instead, we reuse the approach
from the previous section, and apply multiple instances of the operation over
the maximal cliques of the information horizon. This limits communication to
those nodes that are logically nearby and have explicit information paths. Let
C[n, λ] denote the induced subgraph of ihr(n, λ, C) and maxcliques(G, n) =
{m|m ∈ maxcliques(G), n ∈ m} be the set of all maximal cliques in a graph G
containing a vertex n. For a maximal clique m, the aggregate data state formed
by the nodes in the clique is s(m) =

⋃
v∈m δ(m). Thus, an operation yields a set

of state updates similar to Equation 4. For each vertex v ∈ ihr(n, λ, C) the local
data state changes to δ′(v) according to:

δ′(v) =
⋃

m∈maxcliques(C[n,λ],v)

(
(
�s(m)�t+λ ∪ δ(v)

)
− �s(m)�t−

λ

)

∩Tiext v(Σ) (13)

This semantics dispatches a copy of λ to each maximal clique. The expression(
�s(m)�t+λ ∪δ(v)

)
−�s(m)�t−

λ denotes λ applied to a maximal clique m containing
a vertex v. Finally, the results of the operations are projected against the data
types that v is allowed to access: (. . .) ∩ Tiext v(Σ).

5 Finitization

Distributed systems exhibit global behaviors that emerge from interacting local
agents; predicting these global behaviors is key to validating correctness. In this
section we show that the unstable states of the system can be understood in terms
of a finite set of composite states. Understanding how instability occurs gives a
basis for calculating if the operations are sufficient to correct these instabilities.

We introduce the notion of acceptors to represent the ways that invariants
can be violated. Formally, an acceptor α = (p, n) is a pair such that p and n are
sets of terms from some term algebra TΥ (Σ). The data state s is accepted by α
(written s |= α) if:

1. There exists some term automorphism π where π(p) ⊆ s.
2. If n �= ∅ then for all term automorphisms π′ it holds:

π(p) = π′(p) ⇒ π′(n) � s

Returning to our example, an acceptor for MissingField invariant is shown
below:

p = {document(7, 2, 3), documentCopy(1, 2, 3), f ield(8, 9, 10), contains(7, 8)}
n = {field(38, 9, 10), contains(1, 38)}

(14)

Compositional Modeling for Data-Centric Business Applications 201

The numerical arguments to the function symbols are just placeholder constants.
Consider once again the data state s in Figure 2 where there exists a document
called EmailToBob containing a field EmailSubject: ExpenseReport. There is a copy
of this document, but the copy does not have a field matching this one. Thus,
this state is accepted by the MissingField acceptor as witnessed by the following
renaming function π:

π(1) �→ 8, π(2) �→ Joe, π(3) �→ EmailToBob, π(7) �→ 1,
π(8) �→ 4, π(9) �→ EmailSubject, π(10) �→ ExpenseReport

(15)

The reader may confirm that π(p) ⊂ s and that there is no renaming function
π′ that agrees with π(p) and has π′(n) ⊆ s.

The set of acceptors I expresses the invariants as a set of scenarios. Each set
of positive terms p from any acceptor α ∈ I describes one scenario of instability.
In another words, if we take the data state s to be exactly equal to some p,
then this state is unstable. By calculating the set of acceptors I from the in-
variants, we derive a special set of data states that characterize all the possible
forms of instability. If some arbitrary state s′ is unstable, then there must be
an embedding of some p in s′, and the scenarios causing s′ to be unstable can
be identified. Thus, the acceptors provide a finite description of the unstable
data states; we now carry this result over to the more complex composite states.
(Note that a term automorphism π (renaming) can be extended to composite
states by renaming the data state δ(v) assigned to each vertex v.)

Composite states complicate analysis because the data state is distributed
over the topology, and invariants are relaxed so that they hold over maximal
cliques. Our first task is to show that every unstable composite state can be
understood in terms of a finite set of scenarios, regardless of the size of the
network. We begin by defining a relationship between composite states called a
folding; this is similar to the familiar graph homomorphism:

Definition 3. Given composite states C, C′, a folding morphism ϕ : V → V ′

assigns vertices of C to vertices of C′ such that:

1. ϕ is onto.
2.

[
(u = w) ∨ (u, w) ∈ E

]
⇔

[(
ϕ(u) = ϕ(w)

)
∨

(
ϕ(u), ϕ(w)

)
∈ E′]

3. ϕ is type-preserving: type(u) = type′(ϕ(u))
4. ϕ is data-preserving: δ′(u′) =

⋃
{u|u′=ϕ(u)} δ(u).

We say that C′ is a folding of C if there exists a folding morphism from C to C′.
Foldings can be combined with the preorder ≤ to form a more general preorder
� over composite states with varying topologies.

Definition 4. Given composite states C′, C then C′ � C if there exists a C′′ where
C′′ is a folding of C and C′ ≤ C′′.

This ordering is essential to characterizing the types of instabilities that can
occur.

In the general case invariants are evaluated against cliques, so we now turn
our attention to complete graphs:

202 E.K. Jackson and W. Schulte

Lemma 1. Let Kn be a composite state where the topology is a complete graph
of size n. Furthermore, let Km be any folding of Kn. In this case, (s(Kn) |=
I) ⇔ (s(Km) |= I).

This lemma explains that when the network topology of C is a complete graph,
then the invariants that hold on C are preserved by folding. It it necessarily the
case that any folding of a Kn yields a smaller complete graph of size m ≤ n.
This allows Lemma 1 to be repeatedly applied until no smaller m exists. From
the definition of folding morphism, the smallest complete graph that is a folding
of Kn must have at least as many vertices as their are types in the composite
state Kn. The next lemma shows that this lower bound always exists.

Lemma 2. Let Kn be a composite state with connectivity that is a complete
graph. There exists a folding Km where m is the number of types in Kn: m =
|{type(u)|u ∈ V }|. There is no composite state C′ with fewer vertices or fewer
edges for which C′ is a folding of Kn.

Combining Lemmas 1 and 2 we conclude that if any complete graph fails an
invariant (or is accepted by some α ∈ I), then it can be folded into a minimum
complete graph that also fails the invariant. Since these minimum complete
graphs are determined only by the number of types in the system, they can be
finitely enumerated.

Let ∅ ⊂ T ⊆ A be a set of agent types, then K(T) denotes the set of all
completely connected composite states with exactly one vertex for each type
in T . Each K(T) still contains an infinite number of states due to the data
states. However, not all of these data states are important from the perspective
of invariants. The only interesting composite states are those with aggregated
data states s(Km) = p for some α ∈ I. Let K(T, s) be the set of all composite
states Km in K(T) with aggregated data state s(Km) = s:

Lemma 3. Given a finite set of acceptors I and a finite set of agent types A,
then the set IK is finite.

IK =
⋃

T⊆A

{

C ∈ K(T, p)
∣
∣ ∃(p, n) ∈ I

}

(16)

This set contains all completely connected composite states that are topologically
minimal and have data states from some scenario in I. The number of acceptors
α ∈ I is finite, each p is a finite set of data, and every minimal topology contains

Title
User

Name: Value

Title
User

Snapshot

C S

Title
User

Name: Value

SnapshotTitle
User

C S

SnapshotTitle
User

C SMissingField ExtraField MissingDocument

Fig. 6. Key unstable scenarios generated from BAM model of document management
system

Compositional Modeling for Data-Centric Business Applications 203

a finite number of nodes. Putting these together, there are only a finite number
of ways that each p can be split across a fixed topology so IK must contain a
finite number of composite states.

In the general case of an arbitrary unstable composite state C there must be
some maximal clique m where the data state s(m) over the clique violates an
invariant (Equation 10). This maximal clique is a completely connected com-
posite state Kn and so it has a folding onto some Kl ∈ K(T) where T is the
set of types that appear in the clique. Furthermore, the data state s(m) must
embed some p from an acceptor; Kl also embeds this p as folding preserves data.
Therefore, there is some scenario i ∈ IK and some term automorphism π (i.e.
renaming of constants) such that π(i) � m.

Theorem 1. If C is an unstable composite state, then there exists a maximal
clique m in C such that π(i) � m for some i ∈ IK and some renaming π.

This result shows that IK contains the fundamental ways that an arbitrary state
can be unstable, and these can be calculated automatically from a BAM model.

Figure 6 shows the key scenarios generated from the BAM model of the doc-
ument management system. The MissingField scenario occurs when a document
has a field not found in its copy. Similarly, the ExtraField scenario occurs when a
copy has a field not found in the original document. Finally, the MissingDocument

scenario occurs when a snapshot does not have a copy of a document.

6 Related Works

This work uses the techniques of model-based design [10], which constructs com-
plex systems through formal domain-specific abstractions and code synthesis
techniques. Model-based design has been successfully applied to safety critical
embedded systems [11] where behavioral properties must be guaranteed before
deployment. Other successful applications of model-based design are security
models [12] and patient portals [13].

Two key concepts in model-based design are meta-modeling [14] and model
transformations [15], which create and relate domain specific abstractions. The
semantics of model transformations has been extensively studied in the mod-
eling community, where they are formalized as graph rewriting [16] systems,
graph grammars [17], and production systems [15]. Like meta-modeling, model
transformations are advantageous because they have a compact notation, formal
foundation, and tool support. Model transformations are normally used for off-
line model synthesis; model-driven architecture (MDA) [18] and code synthesis
[19] are two exemplars.

Modern business applications are now commonly implemented as service-
oriented architectures (SOAs) deployed over the Web [20]. The composition of
the different services has been studied in the context of work-flows, using formal
techniques ranging from Petri-Nets [21] to Pi-Calculus [22].

204 E.K. Jackson and W. Schulte

7 Discussion and Conclusion

We presented BAM, a model-based framework for designing data-centric busi-
ness applications. A system is described with three interrelated models: The data
model provides an abstract characterization of the data states in which the sys-
tem may find itself; high-level invariants added to the data model characterize
which data states are problematic. The operation model provides an expressive
framework for capturing the basic operations of the business applications. The
connectivity model extends operations over arbitrary topologies while preserving
the semantics of data access, information flow, and state-update. An analysis of
these models yields a finite representation of the unstable states that the system
might reach.

In future work, we intend to apply model checking [23] to the scenarios of
IK to determine if the operations are sufficient to correct the instabilities in the
system. In fact, model checking derives the sequence of operations that evolve
a system to a consistent state, and this can be used for protocol synthesis. The
amount of model checking can be reduced by applying folding morphisms to
the information horizons of the operations, which also produces a finite charac-
terization of the distinct topologies touched by operations. Our final goals are
(1) to decide if there exists a sequence of operations to stabilize any unstable
system (2) to synthesize a protocol (sequence of operations) that stabilizes any
unstable system. BAM makes this possible via a unique compositional language
for specifying and analyzing this important class of systems. Finally, tools from
model-based design make it possible to readily implement BAM.

References

1. Claessens, J., Preneel, B., Vandewalle, J.: A tangled world wide web of security
issues. First Monday 7(3) (2002)

2. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: S&P, pp. 184–198 (2006)

3. Neumann, P.G.: System and network trustworthiness in perspective. In: ACM Con-
ference on Computer and Communications Security, pp. 1–5 (2006)

4. Object Management Group: Mda guide version 1.0.1. Technical report (2003)
5. Fowler, M., Rice, D., Foemmel, M.: Patterns of Enterprise Application Architec-

ture. Addison-Wesley, Reading (2002)
6. Aldred, L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Communi-

cation abstractions for distributed business processes. In: Krogstie, J., Opdahl, A.,
Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 409–423. Springer, Heidelberg
(2007)

7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

8. Object Management Group: Unified modeling language: Superstructure version
2.0, 3rd revised submission to omg rfp. Technical report (2003)

9. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. In: Proceedings of the Sixth ACM International Conference
on Embedded Software (EMSOFT 2006), pp. 53–62 (October 2006)

Compositional Modeling for Data-Centric Business Applications 205

10. Liu, X., Liu, J., Eker, J., Lee, E.A.: Heterogeneous Modeling and Design of Control
Systems. pp. 105–122. IEEE Press and Wiley-Interscience (2003)

11. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a
synchronous language. In: ICCAD, pp. 433–440 (2003)

12. Jürjens, J., Shabalin, P.: Tools for secure systems development with uml. STTT
9(5–6), 527–544 (2007)

13. Masys, D., Baker, D., Butros, A., Cowles, K.E.: Giving patients access to their
medical records via the internet: the pcasso experience. Journal of the American
Medical Informatics Association 9(2), 181–191 (2002)

14. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91, 145–164 (2003)

15. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D.: Viatra: Vi-
sual automated transformations for formal verification and validation of uml mod-
els. In: 17th IEEE International Conference on Automated Software Engineering
(September 2002)

16. Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain model
translation using graph transformations. In: ECBS, pp. 159–167 (2003)

17. Königs, A., Schürr, A.: Multi-domain integration with mof and extended triple
graph grammars. In: Language Engineering for Model-Driven Software Develop-
ment (2004)

18. Bezivin, J., Gerbé, O.: Towards a precise definition of the omg/mda framework
(2001)

19. Neema, S., Kalmar, Z., Shi, F., Vizhanyo, A., Karsai, G.: A visually-specified code
generator for simulink/stateflow. In: VL/HCC, pp. 275–277 (2005)

20. Breu, R., Breu, M., Hafner, M., Nowak, A.: Web service engineering - advancing a
new software engineering discipline. In: ICWE, pp. 8–18 (2005)

21. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8, 21–66 (1998)

22. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

23. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In:
POPL, pp. 342–354 (1992)

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 206–214, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Composition-Based Approach to the Construction and
Dynamic Reconfiguration of Wireless Sensor Network

Applications

Dharini Balasubramaniam, Alan Dearle, and Ron Morrison

School of Computer Science, University of St Andrews,
St Andrews KY16 9SX, UK

{dharini,al,ron}@cs.st-andrews.ac.uk

Abstract. Wireless sensor network (WSN) applications are often characterised
by close coupling between their software and hardware components, which may
result in ad-hoc, platform-specific software, together with the loss of portability
and evolvability. We introduce a fractal composition-based approach for
constructing and dynamically reconfiguring WSN applications. The approach
uses π-calculus semantics to unify the models of interaction for both software
and hardware components, on both local and remote nodes. Applications are
constructed by forming compositions of interacting components, and can be
decomposed and reconfigured into different topologies. The advantages of the
approach are that it reduces the complexity of WSN programming; results in
portable and evolvable software; and allows changes to be managed during
execution without having to take the system off-line. We present an outline of
the approach, and illustrate it with an example specified in the Insense
language.

Keywords: channel, component, composition, decomposition, dynamic evolution,
reconfiguration, and wireless sensor network.

1 Introduction

A wireless sensor network (WSN) [1] consists of a number of typically small and
resource constrained devices or nodes, which cooperate to achieve a common goal:
customarily the generation, transmission and processing of data pertinent to the
application domain. The nodes in a WSN comprise one or more sources that contain
sensors to generate the required data, sinks that are the intended recipients of the data
and, optionally, routing nodes that pass data from sources to sinks.

WSN applications are often characterised by close coupling between their software
and hardware components. For example, the software may need to interact with the
hardware in order to generate, receive or transmit data, or operations may need to be
synchronised with a hardware clock. Without suitable software abstractions for the
hardware components, the software becomes very specialised to the hardware being
used. This characteristic, and the availability of limited resources on WSN nodes,
have traditionally impacted on the development process, and resulted in ad-hoc,
platform-specific software, characterised by a loss of portability and evolvability.

 The Construction and Dynamic Reconfiguration of WSN Applications 207

We introduce an approach for constructing and dynamically reconfiguring WSN
applications, based on fractal composition [2]. The approach uses communication
semantics of the π-calculus [3] to unify the models of interaction for software and
hardware components, on local and remote nodes. Applications are constructed by
forming compositions of interacting components. Uniform models for composition
and interaction of components enable applications to be decomposed and
reconfigured during execution with minimal disturbance to unaffected parts.

The advantages of our approach are that it reduces the complexity of WSN
programming through the use of uniform models for composition and interaction;
results in portable and evolvable software; and allows changes in user requirements
and operating environment to be managed during execution without having to take the
system off-line. We present an outline of the approach, and illustrate it with an
example specified in a language called Insense [4] developed for WSN programming.

2 A Sensor Network Example

A farmer wishes to measure average temperatures in different parts of a field. This
information can be used, for example, to adjust the conditions under which a crop is
grown. A WSN is to be used to obtain the required measurements. The requirements
are that temperature sensors are distributed throughout the field, and the data from the
sensors, averaged over short intervals, is sent to a sink.

For the purpose of this paper, we will assume that only the software needs to be
constructed. Based on the positions for the temperature sensors indicated by the
customer, the placement of hardware has been decided as shown in Fig 1.

Fig. 1. The Required Placement of Nodes in Field and Possible Interactions among them

The octagonal nodes, TS-1 to TS-5, contain temperature sensors. The radio range
of the nodes is such that, while TS-3 is able to communicate directly with the sink, the
other sensor nodes cannot. Routing nodes R-1 and R-2 are introduced to solve this
problem. They do not support any sensing capabilities but merely forward the data
from sensor nodes towards the sink. Thus, TS-1 and TS-4 can route their data via R-1
and TS-3 to the sink. Similarly TS-2 and TS-5 can route their data via R-2 and TS-3.

208 D. Balasubramaniam, A. Dearle, and R. Morrison

The following sections of the paper show how a WSN application that executes on
this topology may be constructed and evolved.

3 The Insense Language

We provide a brief overview of the Insense language in this section. Components are
units of concurrent computation and form the building blocks of Insense applications.
They interact with one another by communicating messages via typed channels. The
communication semantics are based on the π-calculus. A component may present one
or more interfaces, which list the channels available for communication with the
component.

An instance of a component is created by invoking a constructor defined by the
component. Each instance represents a thread of control and begins execution on
creation. Systems are constructed by wiring instances together to enable interaction.
The Insense code to wire two component instances is given in Fig 2 below.

type TempGaugeIF is interface(in real input;
 in integer ticks;
 out real output)
component TempGauge presents TempGaugeIF {
 constructor() {}

 behaviour {
 receive tick from ticks
 receive temp from input
 send temp on output }
}
type TempAveragerIF is interface(in real input;
 out real output)
component TempAverager presents TempAveragerIF {
 // definition of TempAverager body
}

gauge = new TempGauge()
averager = new TempAverager()
connect gauge.output to averager.input

Fig. 2. Instantiation and Wiring of Components

The interface presented by the TempGauge component contains three channels:
input to receive temperature values, a timer channel ticks to regulate the input and
output to send the received temperature values. The behaviour of a component repeats
itself indefinitely until stopped by itself or another component. In this case, the
behaviour repeatedly receives a tick from ticks, receives a temp value from the input
channel, and sends the value on the output channel.

TempAverager is a component that calculates the average of temperature values
received via the input channel and sends it on the output channel.

 The Construction and Dynamic Reconfiguration of WSN Applications 209

The new operator instantiates the named component. In Fig 2, gauge and averager
are instances of components. They begin to execute as soon as they are created. The
connect statement wires the output channel of gauge to the input channel of averager
to enable communication which is otherwise blocked. It is the wiring that forms the
basis of composition.

4 Fractal Composition

Insense applications are constructed based on a fractal composition model. A
component may connect instances of other components to produce a hierarchical
composition. These instances may be instantiated within the component, or received
by the component either as parameters to a constructor or via a channel. Instances
created within a component are not visible outwith its behaviour. Components are
self-contained and there is no shared state. Thus connection (wiring) is the sole
mechanism for enabling both composition and interaction of components.

One of the novel features of our approach is its support for a uniform model of
interaction between all components, namely communication via typed channels. This
model applies to software and hardware components, on local and remote nodes.
Communication with remote nodes is asynchronous while two software components
on the same node communicate synchronously. Hardware components are non-
blocking and thus communication with them will always succeed immediately.

In Insense, parts of hardware, such as the sensors on a node, may also be treated as
components. Each hardware component exposes pre-defined channels, which are the
only means of access to that component. Fig 3 shows how a channel for accessing the
values captured by the temperature sensor may be created, and used in composition
using the same mechanism as for channels from software components.

sensor_output = get_temp_sensor_channel()
connect gauge.input to sensor_output

Fig. 3. Wiring Hardware Components

A call to the pre-defined function get_temp_sensor_channel returns a channel of
type in real. A receive operation on the channel returns the current value of the
temperature sensor. This channel is then connected to the input channel of gauge.

Once the wiring is complete, the gauge can receive temperature readings from the
sensor as though it was another software component. The underlying differences in
interactions are handled by the language implementation. However, since a
temperature value is always available, the receive operation will always proceed
immediately, retrieving the current value in the sensor. Any synchronisation with
other components is based on the send operation or added as an extra communication.

This uniform model of communication and composition contributes to both
portability and evolvability of WSN applications.

210 D. Balasubramaniam, A. Dearle, and R. Morrison

5 Dynamic Evolution in the Compositional Model

Component-based development and uniform models of interaction and composition
allow Insense applications to evolve during execution. A composition can be
decomposed [5], and components can be added or replaced, and then recomposed
again. In this section, we concentrate on changes taking place on the same node.

Evolution of a system may be triggered during execution as a result of changes in
user requirements, or feedback from monitoring the system. Insense provides a
disconnect clause to undo a composition created by the connect statement.
Disconnecting a channel will remove any bindings made between that channel and
any other channels.

We illustrate dynamic reconfiguration using a scenario from the example. We wish
to change the behaviour of the averaging component so that it calculates the mode of
the values rather than the arithmetic mean. Fig 4 below shows the replacement.

component TempModeAverager presents TempAveragerIF {
 //definition of new component body
}

// Instantiate the new averager component
new_averager = new TempModeAverager()

// Disconnect the original wiring
disconnect gauge.output

// Reconnect with the new averager instance
connect gauge.output to new_averager.input

Fig. 4. Reconfiguration with the new_averager Component

TempModeAverager is defined to calculate the mode of the values. The interface of
the component has not changed. An instance of the new component, new_averager, is
created. The connection between gauge and averager components is disconnected.
After disconnection, these components will continue to execute until they reach
their reduction limit, namely a communication via a disconnected channel. The
new_averager instance is then wired to gauge, forming a new composition.

In the case of intra-node reconfiguration being considered in this section, this code
must already exist on the relevant node, possibly as part of the main program. It may
perform the initial configuration of components, and on receipt of a trigger for
change, execute the code in Fig 4 to reconfigure the application.

6 Composition and Reconfiguration across the WSN

In a WSN, components on a node need to communicate with others on different nodes
in order to send data from sources or sinks, or to evolve the overall application.

We have determined that the following set of additional facilities are required in
order to enable interaction, composition and reconfiguration across a WSN:

 The Construction and Dynamic Reconfiguration of WSN Applications 211

• to discover all the top-level instances of components executing on a node;
• to iterate through all the channels in an interface;
• to expose the internal details of a component;
• to discover the application topology by following connections made to channels;
• to treat nodes as components; and,
• to find the set of neighbouring nodes (i.e. those within communication range).

These facilities do not assume a global name space, but rely on discovering
software and hardware resources available on a node. Thus, they are mainly
introspective.

Returning to our example, we assume the definition of an additional component
called TempRouter to receive and pass on messages on router nodes. It repeatedly
receives a value on the input channel and sends it on the output channel. Given the
topology of the WSN in Fig 1, we would expect an instance each of TempGauge, and
TempAverager, and a sensor_output channel to be present on every sensor node, and an
instance of TempRouter to be available on every routing node as well as TS-3. These
instances have to communicate across the nodes to deliver the data from sources to sink.
For example, the averager on TS-2 must send its data to the router on R-2.

Our approach enables the required wiring by treating nodes as components. The
channels from components that are available for inter-node communication are
published by the application on each node. The set of these published channels on a
node implicitly forms the interface for that node. Publication does not affect a
channel’s ability to communicate internally. Fig 5 below shows how the input and
output channels of an instance of the TempRouter component are published.

router = new TempRouter()
publish router.input, router.output

Fig. 5. A router Instance with Published Channels

The next step in establishing communication is to identify the nodes with which
interactions should take place. We will assume that the main program on each sensor
node is designed to do this. A pre-defined function getNeighbours is provided to
probe all nodes within communication range and gather their interfaces using an
underlying mechanism similar to keep-alive messages. The identities of the nodes are
tied to the interfaces returned by them. We introduce the foreach construct in Insense
to iterate through a collection. Fig 6 shows how TS-2 may identify and bind to R-2.

foreach (iface in getNeighbours()) {
 project iface as matched onto {
 TempRouterIF: {
 connect averager.output to matched.input }
 default: {} } }
}

Fig. 6. Identification and Connection of a Remote Component

212 D. Balasubramaniam, A. Dearle, and R. Morrison

We wish to connect the output channel of averager on TS-2 to the input channel of
router on R-2. Insense supports an environment type env, which is a collection of
bindings. Interfaces, components and nodes can be treated as being of type env in
addition to the results of pre-defined functions such as getNeighbours. The foreach
construct iterates through an environment, with the control variable taking on the
value of the next binding with each iteration. Thus, in Fig 6, the iface variable
represents the interfaces of all neighbouring nodes. When an interface of the required
type, TempRouterIF, is found, the connection can be made. In the case of TS-2, both
R-2 and TS-5 are within communication range. However only the interface of R-2,
exposed by its router instance, is of the required type. Connections are similarly made
between the components on the other nodes to enable data to flow from the sensor
nodes to the sink. The Insense interaction model entirely abstracts over the details of
the radio, with the language implementation managing these details.

The interface of each node also has a standard channel of the type in updater,
where type updater is defined as interface(in env globalEnv). Each node is designed
to receive a component, which, when connected as required, receives an environment
with all the global instances of components. The connection is shown in Fig 7.

outEnv = new out env
receive updater on update_channel
connect updater.globalEnv to outEnv
send getGlobalEnv() on outEnv

Fig. 7. Receiving and Binding an Updater Component

The program on the receiving node defines an outEnv channel of type out env.
When the updater component is received, it connects the globalEnv channel of the
updater to outEnv. The result of a call to the pre-defined getGlobalEnv function,
which returns an env with all the global bindings, is then sent on outEnv. Thus, the
updater component discovers all the global components at the target node. The
updater component to perform the reconfiguration shown in Fig 4 is defined as:

type UpdaterIF is interface(in env globalEnv)
component Updater presents UpdaterIF {
 constructor() {}
 behaviour {
 receive global on globalEnv
 use global with TempAveragerIF averager,
 new_averager;
 TempGaugeIF gauge in {
 disconnect gauge.output
 connect new_averager.input to gauge.output }
 stop }
}

Fig. 8. The Behaviour of an Updater Component

 The Construction and Dynamic Reconfiguration of WSN Applications 213

The updater receives a global environment global on its globalEnv channel. The
use clause is used to project a binding of known name and type from an environment.
In this case, the behaviour projects the original averager, the new_averager and the
gauge instances from the global environment. Once it obtains handles to these values,
it can perform the required decomposition and reconfiguration. Since the changes
need only be carried out once, the behaviour contains a stop statement at the end,
which ensures that the behaviour terminates after one iteration.

7 Conclusions, Implementation Status and Future Work

We have introduced a fractal composition-based approach for developing and
reconfiguring wireless sensor network applications. Applications are constructed as
hierarchical compositions of components. Elimination of implicit dependencies
between components, and a uniform model of interaction for all components allow
compositions to be decomposed and reconfigured at execution time with minimal
disturbance to the rest of the system. The approach is illustrated using an example
specified in the Insense language, developed for building WSN applications.

A prototype implementation of the Insense language has been built on top of the
Contiki WSN operating system [6], and is being used as the basis for further
implementation and evaluation of the compositional approach. The Insense compiler
is written in Java and generates C source code.

The current implementation supports the concepts of components, instantiation,
composition by connection (wiring), disconnection, and internal reconfiguration.

There are two avenues of further work in this area. The implementation of Insense
is to be extended to include support for reflection, mobility of components between
nodes, and the reconfiguration of components on remote nodes. We also intend to
develop tools to support the compositional approach. For example, a graphical
development tool for WSN applications, and an extended compiler to determine the
worst-case space and time requirements of Insense programs are planned.

Another important aspect of future work is the evaluation of the approach and the
Insense language in improving the portability and evolvability of WSN applications.

Acknowledgments. This work is supported by the EPSRC grant “Design, Implemen-
tation and Adaptation of Sensor Networks through Multi-dimensional Co-design”
(EP/C014782/1).

References

1. Raghavendra, C.S., Sivalingam, K., Znati, T. (eds.): Wireless Sensor Networks. Kluwer
Academic Publishers, Dordrecht (2004)

2. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. ObjectWeb,
http://fractal.objectweb.org/specification/index.html

3. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge University
Press, Cambridge (1999)

214 D. Balasubramaniam, A. Dearle, and R. Morrison

4. Dearle, A.: Insense Tutorial. University of St. Andrews Report,
http://dias.dcs.st-and.ac.uk/inSense/manual.pdf

5. Warboys, B.C., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K.,
Morrison, R., Munro, D.S.: Collaboration and Composition: Issues for a Second Generation
Process Language. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999.
LNCS, vol. 1687, pp. 75–91. Springer, Heidelberg (1999)

6. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In: First IEEE Workshop on Embedded Networked
Sensors. Tampa (2004)

A Reflective Framework for Fine-Grained

Adaptation of Aspect-Oriented Compositions

Paul Grace�, Bert Lagaisse, Eddy Truyen, and Wouter Joosen

Department of Computer Science, K.U. Leuven, Leuven, Belgium
p.grace@lancaster.ac.uk,

{Bert.Lagaisse,Eddy.Truyen,Wouter.Joosen}@cs.kuleuven.be

Abstract. Dynamic Aspect Oriented Programming (AOP) technologies
typically provide coarse-grained mechanisms for adapting aspects that
cross-cut a system deployment; i.e. whole aspect modules can be added
and removed at runtime. However, in this paper we demonstrate that
adaptation of the finer-grained elements of individual aspect modules is
required in highly dynamic systems and applications. We present Aspec-
tOpenCOM, a principled, reflection-based component framework that
provides a meta object protocol capable of fine-grained adaptation of
deployed aspects. We then evaluate this solution by eliciting a set of
requirements for dynamic fine-grained adaptation from a series of case
studies, and illustrate how the framework successfully meets these crite-
ria. We also investigate the performance gains of fine-grained adaptation
versus a coarse-grained approach.

1 Introduction

Component frameworks must now support complex compositions of application
components, including a broad range of services that deal with non-functional con-
cerns. Aspect-component frameworks e.g. JAC [14], JBoss AOP [7], Spring [16],
and Prose [15] have contributed to improving the modularization of such com-
plex applications, by supporting an aspect-component model that offers aspect-
oriented composition (AO composition) alongside traditional composition of
provided and required interfaces. The core concept in AO composition is the as-
pect [5]: a first-class citizen that encapsulates one specific (often crosscutting) con-
cern in a separate software module. An aspect defines behaviour and composition
logic describing where and when this behaviour is executed. Aspect-component
frameworks often separate aspect behaviour and composition logic, for the pur-
pose of reusing aspect-behaviour across applications. Composition logic is speci-
fied declaratively, e.g. in the form of: whenever event X in the application occurs,
execute method behaviour Y of component Z. For example, whenever a component
operation is executed, execute the enforcement method of the authorization com-
ponent. The search for expressive composition mechanisms is an ongoing track in
the research community, yet the composition logic of a real world application re-
mains complex and is subject to runtime changes. Therefore, there are increasing
� While on leave from Lancaster University, UK.

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 215–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 P. Grace et al.

requirements to adapt the composition logic at runtime, as exemplified by auto-
nomic, self-repairing and self-optimising systems [8].

A recent advance in aspect-component frameworks is the ability to express
dynamic AO compositions that weave and unweave aspects at runtime. For the
purpose of this paper, we identify two styles of adaptation of dynamic AO com-
positions:

– Coarse-grained adaptation. An entire aspect (i.e. behaviour and composition
logic) is added to or removed from the application.

– Fine-grained adaptation. The fine-grained elements that compose an aspect
are reconfigured. For example, the composition logic is altered to change
where the behaviour is executed. Similarly the aspect behaviour can be
adapted.

However, state of the art dynamic AOP frameworks [14,16,15] typically only
provide coarse-grained adaptation. In this paper, we present AspectOpenCOM1

a component framework for fine-grained, runtime adaptation of aspects. Aspec-
tOpenCOM is an extension of the OpenCOM reflective component model [2]. A
reflective system maintains a representation of itself that is causally connected
to the underlying system, and provides a meta object protocol (MOP) with a set
of methods to introspect and adapt this meta-representation [12]. AspectOpen-
COM adds two features to OpenCOM: i) AO compositions, and ii) the aspect
MOP which provides two key functions to the developer: aspect introspection,
where the deployed aspects can be enumerated and inspected e.g. in terms of
composition logic and behaviour descriptions; and aspect adaptation, whereby
deployed aspects are adapted in-situ.

We evaluate AspectOpenCOM using a set of requirements elicited from a se-
ries of case studies and illustrate how the framework is used to meet these require-
ments compared against coarse-grained adaptations.We demonstrate that fine-
grained adaptation has the following benefits over a coarse-grained approach:

– Flexibility and robustness of adaptation. The wider range of introspection and
adaptation operations available in the fine-grained method provides more
support for informing and performing complex adaptations.

– Conflict resolution. A well established problem of dynamic AO compositions
is that the behaviour from separate aspects can conflict once deployed [5]. A
fine-grained approach can resolve this by adapting behaviour at a location
without recomposing multiple system-wide aspects.

– Performance improvement. An AO composition can cross-cut a large number
of system modules; hence, coarse-grained adaptation can disrupt portions of
the system unnecessarily and degrade the adaptation time, whereas targeted
fine-grained adaptation only adapts the required elements improving perfor-
mance.

The remainder of the paper is structured as follows. Section 2 provides a brief
background on reflection and dynamic AOP technologies. Section 3 presents
1 Available for download from https://sourceforge.net/projects/gridkit/

https://sourceforge.net/projects/gridkit/

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 217

the series of case studies that require fine-grained aspect adaptation. Section 4
presents the concepts and implementation of the AspectOpenCOM component
framework and the Aspect MOP, which is then evaluated in section 5. Section 6
provides analysis against related work, and finally section 7 draws concluding
remarks and identifies areas of future research.

2 Background on AOP and Reflection

A key element in the specification of the aspect composition logic is the concept
of a pointcut which is a description of a set of join points where aspects execute.
Join points represent i) dynamic, runtime conditions that arise during program
execution or ii) locations in the structure of the program code. The occurrence
of such a condition or location can trigger the execution of aspect behaviour.
Advice specifies what aspect behaviour should be executed and when the aspect
behaviour should be executed (typically before, after or around the event) [9].

Pointcuts select join points by declaratively specifying the kind and context
of join points. The kind of a join point refers to the type of instruction being
executed. For example, two different kinds of join points are method call and
field access. The context of joint points refers to additional information that
can be made available to constrain the pointcut such as the method signature,
the interface of the component and the component. Which kind of context and
which available context that are supported by an aspect component framework,
are defined by the framework’s join point model [4].

Reflection is the capability of a system to reason about itself and act upon this
information. For this purpose, a reflective system maintains a representation of
itself that is causally connected to the underlying system that it describes [12].
Operations to introspect and make changes to the meta-representation are com-
monly referred to as the Meta Object Protocol (MOP). In component-based
frameworks, two styles of reflection have emerged. Structural reflection is con-
cerned with the underlying structure of objects or components i.e. it is possible
to inspect interface information, and adapt software architecture topology. Be-
havioural reflection is concerned with activity in the underlying system, e.g. in
terms of the sending and dispatching of invocations.

3 The Case for Fine-Grained Aspect Adaptation

To motivate fine-grained adaptation of aspects we consider the following re-
configuration rich use case scenario. A banking application has a façade-based
architecture as seen in Figure 1; the façade bankingservice is a component which
is accessed by remote clients; in this layered architecture the façade then inter-
acts with entity components (e.g. Account and BasicBanking) at greater depths.
We now illustrate scenarios involving tracing, security and caching aspects and
elicit a set of requirements for fine-grained adaptation.

218 P. Grace et al.

Fig. 1. Join point set adaptation

3.1 Join Point Set Adaptation

This use case illustrates the need for adaptation of the join point set of indi-
vidual aspects. We show this in two cases: i) enforcing stricter security policy
in the banking application, and 2) optimising resource usage while tracing the
system.

Security policy enforcement. An authorization aspect is used in the bank-
ing application to check the current user’s rights; this typically occurs (and must
occur) at the façade component: bankingservice. However, a more severe enforce-
ment of the authorization policy can apply in the case of suspicious behaviour
(e.g. detected and triggered by an intrusion detection system). This dynamic
detection of suspicious behaviour can be based on i) malformed incoming mes-
sages on the network, ii) a suspicious number of authentication attempts by
the user (e.g. 3+), or iii) a suspicious (accumulative) amount in the financial
transaction executed by the authenticated user. The more severe enforcement
includes executing the authorization advice deeper in the control flow of the
incoming messages: e.g. also at the Account and BasicBanking components (by
reconfiguring the join point set).

Tracing. In the layered set of components as depicted in Figure 1 the application
requires that a monitoring aspect applies a set of advices to create a trace of
the call flow. Depending upon the load of the system, the call flow depth of the
trace is dynamically adapted at runtime: at a high load detailed tracing can
impact the system throughput, hence only the called operations on the façade
(bankingservice) are traced (using pointcut P3). When the load is lower for the
system, a deeper trace is created (e.g. pointcut P2 selects all join points up to
a 2-layer depth, pointcut P1 selects all join points up to a depth of 3 layers.
Hence, the scenario requires switching at runtime between these 3 pointcuts
while maintaining the state of the aspect.

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 219

3.2 Aspect Behaviour Adaptation

Here we examine separate use cases that illustrate the need to adapt the advice
deployments that form the behaviour of aspects. In the banking application, when
the intrusion detection system is triggered an additional audit advice must be ap-
plied to all those operations in the control flow of the user’s session to construct
an irrefutable behavioural audit trail of the session. This trail is typically used as
a security measure to detect fraud or tampering a posteriori. This is carried out
by adding a new audit advice to the existing security aspect.

Alternative to the banking application, consider a traditional client-server
system with no initial aspects woven into the system. However, when the mean
execution time of client requests deteriorates beyond some predetermined thresh-
old due to network latency, a cache aspect is woven into the system. This aspect
intercepts client requests and checks a local cache to see whether the same re-
quest has already been issued. Later, when the system must operate in a secure
mode, an authentication aspect is dynamically woven into the system; this con-
sists of an advice that denies the client access to the server until they provide
correct identification credentials. These two aspects execute at the same join
point, and their order is critical for the correct operation of the system. If the
cache advice is executed before the authentication advice, clients are able to get
access to resources without authenticating themselves first. Hence, in order to
determine if there is a conflict it must be possible for a third-party program to
inspect the current state of aspect compositions; if there is a conflict the
same program must re-order the advices.

3.3 Requirements

From the bold text in the previous scenarios we elicit four requirements; these
must be met to fully support fine-grained adaptation of aspect compositions. We
believe that these cover a broad range of requirements across scenarios, although
this is not exhaustive and other requirements may emerge from alternative
scenarios.

1. Dynamically adapt the pointcut expression to change the join points where
an aspect is deployed.

2. Add advices to an already defined set of join points in an existing aspect.
Also replace and remove advices.

3. Inspect information about current aspect deployments to provide informa-
tion to third-party reconfiguration programs.

4. Dynamically reconfigure the order of advices at a join point.

4 The AspectOpenCOM Framework

In this section we discuss the AspectOpenCOM framework for supporting fine-
grained aspect adaptation. We first introduce the underlying component and
aspect composition mechanisms. Subsequently, we discuss the reflective meta-
object protocol that allows third parties to adapt system aspects.

220 P. Grace et al.

4.1 A Reflective Component Model

An overview of the AspectOpenCOM architecture for composing components
and aspects is presented in Figure 2. Notably, reflection is at the core of this
architecture, as we believe this technique is the most principled approach to
dynamic adaptation; information is available about the current system state to
inform both adaptation decisions and the verification of changes. We essentially
extend the well-established OpenCOM component kernel [2] to include AO com-
positions. The key features of the original component composition model are as
follows. Components are encapsulated units of functionality and deployment that
interact with other components exclusively through interfaces and receptacles.
Interfaces are expressed in terms of sets of operation signatures and associated
datatypes. Receptacles are “required” interfaces that are used to make explicit
the dependencies of a component on other components. Bindings are associa-
tions between a single interface and a single receptacle. The kernel provides an
API to create new components and aspect components and the bindings between
them. In Figure 2 there are two components bound by a receptacle and interface,
and an aspect component bound to component’s interface.

Fig. 2. The AspectOpenCOM Component Kernel Architecture

The kernel also maintains a set of four meta-object protocols each supporting
the inspection and adaptation of a distinct system view. Changes made via these
MOPs are reflected in the underlying compositions using a causal connection.
We will show later how these MOPs can be combined to implement fine-grained
aspect adaptation (i.e. we can re-use common reflection behaviour). The MOPs
are briefly described as follows; we will examine the aspect MOP solely in this
paper; for more information about the other three see [1].

– The interface MOP supports inspection of a component’s provided and re-
quired interfaces. Typically, you can examine the operations available on
these interfaces, and or dynamically invoke one of the operations.

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 221

– The architecture MOP accesses the software architecture of a component
represented by a component graph; which is a meta-data description of com-
ponents and bindings, where a binding maps between a required and pro-
vided interface in the same address space.

– The interception MOP enables the dynamic insertion of interceptors, which
support the insertion of pre-, around and post- behaviour on to interfaces.
The interceptors are executed before and after each operation invocation.
Hence, the interception MOP provides similar behaviour to traditional as-
pect compositions, however interceptors are interface specific and do not
support the deployment of system wide cross-cutting concerns; hence, it isn’t
suitable as a full aspect MOP, rather here it forms the underlying weaving
mechanism (discussed later).

– The aspect MOP supports fine-grained introspection and adaptation of as-
pect compositions.

4.2 AO Compositions

In AspectOpenCOM, the kind of a join point is a method call on a component
interface, either at the caller (on the receptacle) or the called side (on the inter-
face). Table 1 describes the key elements of a pointcut expression that locates
the join points; i.e. what kind, and a set of regular expressions to match to el-
ements in the component graph. Further, advice behaviour is encapsulated in
aspect components. Table 2 describes the elements of a created advice i.e. how it
is executed (either before, after or around the original method call), and where
that operation is hosted on an aspect component.

The runtime composition of aspects differs from a standard component to com-
ponent binding (which is a direct reference from a receptacle to an interface). This
binding infrastructure is illustrated in Figure 3. Each interface (execution join

Table 1. Elements of an AspectOpenCOM pointcut expression

Field Description

PointcutType Where applied: Call (receptacle) or Execution (Interface)
ComponentExpression Regular expression for matching against component types
InterfaceExpression Regular expression for matching against interface types
MethodExpression Regular expression for matching against method signatures

Table 2. Elements of an AspectOpenCOM advice

Field Description

AdviceRole Before, After or Around advice
InstantiationScope Singleton component per address space, per aspect, etc.
ComponentType Type of advice component

Interface Interface declaring advice operations
Method Advice operation name

222 P. Grace et al.

Fig. 3. Proxy-based advice execution chain

point) and receptacle (call join point) has a proxy that redirects the original call
through a chain of advices. The call towards the original operation invokes pre
and around advices in the order encountered (by redirecting to the corresponding
advice component), ignoring post operations. After the call, the post and around
advices are executed in the order encountered. Hence, in Figure 3 the order is:
Pre0, Around (part before proceed), Pre1, Foo, Post1, Post0, Around (part after
proceed).

4.3 Aspect Meta-Object Protocol

There are three parts to the aspect meta object protocol of AspectOpenCOM:
i) the meta-representation of the deployed aspects, ii) the set of operations that
act upon the meta-representation, and iii) the causal connection that ensures
consistency between the base and meta-level.

The meta representation is illustrated in Figure 4; essentially the aspect
MOP maintains two related data sets: one containing Aspect descriptions and
one containing join point descriptions (i.e. locations in the component graph);
these are related where an aspect is deployed at 0 or more join points, and a
join point can have 0 or more aspects. The Aspect type is the description of the
pointcut (described in table 1) related to a set of advices (whose attributes e.g.
AdviceRole are discussed in table 2).

The reflection operations are also documented in Figure 4. The introspec-
tion operations are as follows. The getAspectInfo method returns the meta-data
about a current aspect deployment; enumerateAspects lists all currently deployed
aspects; enumAdvices lists the advices at either an individual join point or for
a deployed aspect; enumPoints describes all the join points where an aspect is
currently active at; finally, AspectIntersect takes two aspect deployments and
calculates the set of join points where they are both active.

The dynamic adaptation operations are as follows. The replacePointcut
method allows the developer to pass a new pointcut expression and the ex-
isting aspect behaviour will be moved from the prior join point set to the new
join point set. Further, addAdvice adds new advice code to either an aspect
composition or to an individual join point (removeAdvice the opposite); finally,
reorderAdvices takes the new advice order for a join point location and adapts
the behaviour accordingly. We also include coarse-grained adaptation with the

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 223

Fig. 4. The Aspect MOP

addAspect operation; this composes a new aspect into the running system and
removeAspect removes it.

The causal connection is the key element of the aspect MOP implemen-
tation. Figure 2 illustrates this architecture. The Notify interface relationship
between the kernel and the component implementing the MOP is a one-way no-
tification mechanism that informs the meta-level of all base-level operations i.e.
new component creations (including advice components), new binding compo-
sitions, component removals, etc. The MOP component then updates its meta-
data to reflect the base level changes. It also ensures that Aspects are correctly
applied, for example when new components are introduced whose join points
match the composition logic of already deployed aspects then the meta-level
automatically deploys these aspects to the newly introduced join points.

To perform the previously described introspection and adaptation operations,
the aspect MOP interacts with the three additional reflective MOPs described
earlier. For example, advice components can be created using the architectural
MOP, composition of advices into the join point proxy chain is performed using
the interception MOP, and join points can be discovered by introspecting the
architecture, and interface MOPs. For brevity, we do not provide a complete
description of how all fine-grained operations are performed; instead we examine
the replacePointcut operation.

The pseudocode in Figure 5 illustrates the implementation of a reconfiguration
of an aspect’s pointcut description at runtime. The deployed aspect and new
pointcut logic are passed as parameters to the replacePointcut meta operation.
First the intersection of the two pointcuts is calculated to discover which join
points will remain the same. Second, the difference between the original aspect’s
join point set and the intersection is calculated, and all of the aspect’s advices
are removed from these join points (n.b. the interception MOP is utilised for this
behaviour). Finally, the intersection and new pointcut’s join points is evaluated
and all the aspect’s advices are composed to this set.

224 P. Grace et al.

1 ReplacePointcut (Aspect A, Pointcut B)
2 List<Joinpoint> i s e c t = Aspec t In t e r s e c t (A, new Aspect (B, null)) ;
3 List<Joinpoint> rD i f f = JPSetDi f f e r ence (enumPoints (A. pcut) , i s e c t) ;
4 Foreach Jo inpo int jp in rD i f f
5 Foreach Advice adv in A. adv i c eL i s t
6 Delegator de l = InterceptionMOP . getDe l egator (jp) ;
7 de l . removeOperation (adv . operat ion) ;
8 List<Joinpoint> aD i f f = JPSetDi f f e r ence (enumPoints (B) , i n t e r s e c t) ;
9 Foreach Jo inpo int jp in aD i f f

10 Foreach Advice adv in A. adv i c eL i s t
11 Delegator de l = InterceptionMOP . getDe l egator (jp) ;
12 de l . addOperation (adv . operat ion) ;

Fig. 5. Pseudocode describing the implementation of replacePointcut

5 The Benefits of Fine-Grained Adaptation

5.1 Meeting the Requirements of Fine-Grained Adaptation

We examine how AspectOpenCOM meets the requirements described in section 3
and show that the framework provides a robust, flexible method to better support
the developer perform complex adaptations; we also compare this against im-
plementations of the same adaptation behaviour using traditional coarse-grained
weaving and unweaving of complete aspect modules. Further, we show how prob-
lems such as conflicting aspect deployments can be overcome in a fine-grained
manner.

Requirement 1: Dynamically adapt the pointcut expression to change join
points where an aspect is deployed. Figure 6 illustrates the simple 2 lines of
code for performing the reconfiguration from pointcut P1 to P2 as illustrated in
Figure 1; first the new pointcut description is defined (this is an execution type
applied to interface join points, the second parameter is the component expres-
sion i.e. all BasicBanking and BankingService components, the final two param-
eters indicate any interface and method on these components. Subsequently, the
replacePointcut operation is called. This is comparable to a coarse-grained ap-
proach where the entire aspect must first be removed, a new aspect module must
be created, then this must be dynamically woven as the replacement. This per-
forms unnecessary adaptation at join points whose behaviour does not change,
and is more complex to manage due to multiple instances of the same aspect.

1 Pointcut expr = new Pointcut (PointcutType .EXECUTION,
2 ”BasicBanking ∗ | | BankingService ∗” , ”∗” , ”∗”) ;
3 aspectMOP . r ep lacePo in t cu t (traceAspect , expr) ;

Fig. 6. Java code for performing join point set adaptation

Requirement 2: Add advices to an already defined set of join points in an ex-
isting aspect. Figure 7 shows the code to create a new meta data description of
the audit advice (described in the use case scenario) and then add this to the

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 225

security aspect using the addAdvice MOP operation. Hence, the auditOperation
hosted on the IAudit interface of the singleton AuditComponen is applied before
execution of the operation. Note, if the advice component (AuditComponent)
already exists it will be re-used, otherwise it will be created during the meta op-
eration. As with the previous requirement, coarse-grained adaptation can mimic
this behaviour by removing the complete existing aspect and replacing it with a
new aspect that contains the additional advice. However, if multiple advices are
deployed per aspect these will be unnecessarily adapted.

1 Advice audit = new Advice (AdviceRole .BEFORE, In s t an t i a t i onScope . SINGLE,
2 ”AuditComponent” , ” IAudit ” , ” auditOperat ion ”) ;
3 aspectMOP . addAdvice (secur i tyAspect , audi t) ;

Fig. 7. Java code for adding an advice dynamically

Requirement 3: Inspect information about current aspect deployments to in-
form decisions. There are 5 introspection operations that allow the developer to
fully discover the state of aspect configurations. Figure 8 shows how the aspect-
Intersect operation is used to find where two conflicting aspects are deployed (in
this case two aspects, one role-based access control the other credential based)
and then deploy an advice at each resulting join point location using addAdvice
to resolve this conflict (the resolve advice ensures authentic users are not denied
by the conflicting access control method). Coarse-grained technologies typically
provide only limited introspection capabilities that reflect the coarse-grained
modules deployed, and as such do not support this behaviour.

1 Advice r e s o l v e = new Advice (AdviceRole .BEFORE, AdviceSty le .SINGLETON,
2 ” Reso lver ” , ” IReso lve ” , ” r e s o l v e ”) ;
3 Vector<JoinPoint> l s tJP = aspectMOP . a s p e c t I n t e r s e c t (Role , Credent i a l) ;
4 for (int i =0; i<l s tJP . s i z e () ; i++){
5 aspectMOP . addAdvice (l s tJP . get (i) , r e s o l v e) ;
6 }

Fig. 8. Java code introspecting aspect behaviour

Requirement 4: Dynamically reconfigure the order of advices at a join point.
Figure 9 illustrates how the security and cache conflict in section 3.2 can be
resolved (note we assume only 2 aspects are deployed in this code). First we find
the join point set of the security aspect, and calculate if the advices deployed
here are in conflict; if so they are re-ordered. Coarse-grained adaptations do not
have the fine-grained knowledge to re-order advices, one alternative is to remove
all aspects and then add them in the correct order; again, this will perform
unnecessary addition and removals of system elements.

226 P. Grace et al.

1 Vector<JoinPoint> l s tJP = aspectMOP . enumPoints (s e cur i tyAspec t) ;
2 Vector<Advice> cor rec tOrder = new Vector<Advice >({ s e cu r i t y , cache }) ;
3 for (int i =0; i<l s tJP . s i z e () ; i++){
4 Vector<Advice> adLis t = aspectMOP . enumAdvices (l s tJP . get (i)) ;
5 I f (a f t e r (s e cu r i t y , cache , adLis t))
6 aspectMOP . reorderAdv ices (l s tJP . get (i) , co r rec tOrder) ;
7 }

Fig. 9. Java code for reordering advices at a join point

5.2 Analysis of Fine-Grained Versus Coarse-Grained Adaptation

This demonstrates the flexibility of the AspectOpenCOM framework to robustly
support a wide range of complex fine-grained adaptation requirements. We sum-
marise in table 3 the differences in how the four requirements can be met us-
ing both fine and coarse-grained approaches. It can be seen that fine-grained
fully meets all the requirements, and where both offer support fine-grained does
so without performing unnecessary adaptations. Coarse-grained approaches par-
tially meet the first two requirements, in that complete module adaptation mim-
ics the behaviour, however, this performs unnecessary adaptation, has the po-
tential to lose state (when advices are removed) and increases the time taken to
perform reconfiguration. We illustrate these issues further in the next section.

Table 3. Meeting the adaptation requirements

Requirement fine-grained coarse-grained

1 join point set adaptation YES PARTIAL
2 aspect behaviour adaptation YES PARTIAL
3 deployment introspection YES NO
4 advice re-ordering YES NO

5.3 Investigating Performance Gains

We now investigate the performance benefits of fine-grained adaptation versus
coarse-grained adaptation in terms of changing the join point set. For this we
created an experimental application with a set of components and pointcuts as
illustrated in Figure 10(a). Here there are two component types (A and B) with
a set of 10 join points on each. P1 is the initial pointcut that activates all join
points on component A (illustrated by the filled circles); we then reconfigure to
poincut P2, which matches all methods starting with ”b” on both components.
Hence, we have a join point set size of 10 in both cases, where 5 join points
remain the same and 5 new ones are activated (i.e. 50 % remains unchanged). In
subsequent experiments, we change the percentage of join points that stay the
same by increasing the ”b” join points on component A and reducing them on
B (90% = 9 on A and 1 on B, 20% = 2 on A and 8 on B etc.,). Finally, to test
scalability we increase the join point set size from 10 upwards by deploying more
instances of components A and B (e.g. 10 of A and 10 of B equals a join point

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 227

Fig. 10. (a) The application adaptation, (b) Unnecessary reconfigurations in coarse-
grained adaptations

set size of 100). All experiments were executed in a single instance of a Java
1.5.0.10 virtual machine on a laptop with a 1.7 GHz Pentium 4 processor, 512
Mbyte of RAM and running Windows XP. For fine-grained adaptations (FG) we
utilise the replacePoincut operation, for the coarse-grained approach (CG) we
use the removeAspect followed by addAspect operations.

The first experiment illustrates the number of unnecessary reconfigurations
undertaken by a coarse-grained approach. We created the application as de-
scribed above with a join point set size of 100 and then traced the number of
reconfigurations in terms of removing and adding advice behaviour. We did this
for pointcut transformations between 0% of the set staying the same through to
90% of the set remaining unchanged. The results in Figure 10(b) indicate that
in the worst case, where there are minimal changes to the join points, many
unecessary adaptations are performed e.g. 180 at 90%.

Our second experiment illustrates the effect this has on the performance of the
system in terms of the time taken to perform reconfigurations. For this, we timed
the transformations from P1 to P2 for coarse-grained, and fine-grained with 0%,
30%, 60% and 90% of the join point remaining unchanged. Each of these five
styles was measured with increasing join point set sizes from 10 up to 5000.
Note, to discount anomolous results each measure was repeated 5 times with
the median value being taken. Figure 11 illustrates the performance gains of the
fine-grained approach. It can be first seen in Figure 11(a) that as the percentage
of the join point set that stays unchanged increases then the adaptation takes
considerably less time. Note, for 0% unchanged (which is equivalent to coarse-
grained adaptation) the measurements are similar to the CG timings; this shows
that the overhead of fine-grained reflection (e.g. calculating the changes) is not
prohibitive even when all the join points must be changed. To demonstrate
this further, Figure 11(b) shows the percentage performance increases of FG
compared to the equivalent CG adaptation with much larger applications sizes;
this illustrates the improvement is related to the change in the join point set (less

228 P. Grace et al.

Fig. 11. Comparison of the performance of fine-grained and course-grained adaption
(a) Time to Adapt, (b) % performance increase of FG over CG

change implies bigger performance gains), and that this effect is maintained as
the system scales.

To conclude, we can see that the performance of adaptation is related to
the number of unnecessary adaptations performed in a coarse-grained approach.
Where elements of a join point set remain unchanged significant performance
benefits can be realised using fine-grained adaptation.

6 Related Work

A number of dynamic AOP technologies have been developed; these typically
vary in how aspects are weaved (e.g. efficient bytecode rewriting, dynamic prox-
ies, etc.), when aspects are weaved (i.e. load-time or run-time), and where aspects
are weaved (i.e. internal or external to the component module). JBoss dynamic
AOP [7] weaves interceptor-based advices (i.e it relies on Java dynamic proxies)
to Java-based components within an application server; notably, the component
join points must be pre-prepared at compile-time for aspects to be applied at
run-time, hence it may not be able to facilitate all unanticipated adaptations.
Prose [15] uses JIT compiling techniques to weave advice implementation dy-
namically at join points of plain Java objects. The JAC framework [14] composes
aspect-components to core Java-based components at run-time using byte-code
rewriting; the framework also provides a set of reusable aspects, namely per-
sistence, caching. Each of these technologies typically focus on coarse-grained
composition of aspects. ByteSurgeon [3] is a bytecode manipulation framework
supporting fine-grained computational reflection at runtime (as opposed to load-
time), and offers an alternative implementation approach for our Aspect MOP.

However, some dynamic AOP solutions provide features for finer-grained adap-
tation as discussed in this paper; for example, PROSE contains operations to in-
spect some elements of the aspect composition, and also adapt advice behaviour.
Similarly, JAC and JBoss can manipulate the advices deployed at join points.
However, these have been added to the technologies via ad-hoc extensions, no so-
lution currently provides a principled adaptation interface (cf reflection) with a

A Reflective Framework for Fine-Grained Adaptation of AO Compositions 229

complete set of fine-grained operations as advocated in this paper. Furthermore,
none of these technologies supports join point set adaptations. In this respect, mor-
phing aspects [6] is the closest to this concept; the join point shadow is morphed to
apply only where required (reducing unnecessary checks to see if the aspect applies
at the join point at a certain point in time). Our approach differs in that the mor-
phing aspects are created at design time, and hence are not subject to third-party
adaptations as available in a reflective approach.

Finally, the highly related nature of reflection and aspects (they are both
meta-level technologies) means they are commonly combined. The Reflex AOP
kernel [17] is a notable example of this; a partial reflection approach is developed
that allows the meta-level to be tailored to particular requirements, in turn re-
ducing the complexity of meta programming, and reducing resource usage; the
kernel then utilises partial reflection for versatility, for example underpinning
aspects from multiple languages. Alternatively, Kojarski et al. [10] explore the
two-way relationship between aspects and reflection; they argue that AOP is an-
other computational reflection mechanism, where a join point model reflects the
program’s behaviour and the advice provides the intercession capability. Further,
they identify that AOP can be implemented atop reflection; pointcut descriptions
rely on introspection information from structural MOPs, and advices rely on be-
havioural MOPs. Notably, they also identify that reflection can be implemented
atop aspects i.e. using aspects to generate data provided by Java reflection (e.g.
field introspection). Our approach differs from these related frameworks, in that
we introduce an Aspect MOP with a richer set of fine-grained operations to
support principled third-party adaptation of aspect compositions at run-time.

7 Concluding Remarks and Future Work

In this paper we have illustrated the need for fine-grained adaptation of as-
pect compositions. We have demonstrated scenarios where fine-grained adapta-
tions are needed, and shown that significant performance gains can be attained
compared against a coarse-grained approach. The AspectOpenCOM MOP was
presented as a solution to meet the requirements for fine-grained adaptation,
providing key operations to inspect all elements of aspects and adapt them e.g.
changing the join point set, re-ordering advices and others. Notably, we advo-
cated reflection as a key technology in underpinning the adaptation of deployed
aspects.

In future work we plan to investigate the wider application of this technology.
Distributed aspects are more likely to be affected by coarse-grained adapta-
tions; this is because reconfigurations times are longer due to safety, security
and verification mechanisms typically involving the shutting down (placing in
a safe state) of remote components. Hence, unnecessary adaptations must be
avoided. For this purpose, we will examine how to introduce fine-grained adap-
tations into distributed aspect composition technologies such as DyMAC [11]
and AWED [13].

230 P. Grace et al.

References

1. Blair, G., Coulson, G., et al.: The design and implementation of Open ORB 2.
IEEE Distributed Systems Online 2(6) (September 2001)

2. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A component
model for building systems software. In: IASTED Conference on Software Engi-
neering and Applications (SEA 2004), Cambridge, MA, USA (November 2004)

3. Denker, M., Ducasse, S., Tanter, E.: Runtime Bytecode Transformation for
Smalltalk. Journal of Computer Languages, Systems and Structures 32(2-3), 125–
139 (2006)

4. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley, Reading (2004)

5. Greenwood, P., Blair, L.: Policies for an AOP based auto-adaptive framework. In:
Proceedings of the NetObjectDays Conference, Erfurt, Germany (September 2005)

6. Hanenberg, S., Hirschfeld, R., Unland, R.: Morphing aspects: incompletely woven
aspects and continuous weaving. In: AOSD 2004: Proceedings of the 3rd Inter-
national Conference on Aspect-Oriented Software Development, pp. 46–55. ACM,
New York, USA (2004)

7. JBoss. Jboss AOP. (last checked, October 2007),
http://labs.jboss.com/jbossaop

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of aspectj. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

10. Kojarski, S., Lieberherr, K., Lorenz, D., Hirschfeld, R.: Aspectual reflection. In:
AOSD 2003 Workshop on Software-engineering Properties of Languages for Aspect
Technologies (2003)

11. Lagaisse, B., Joosen, W.: True and transparent distributed composition of aspect-
components. In: Middleware 2006, pp. 42–61 (November 2006)

12. Maes, P.: Concepts and experiments in computational reflection. In: OOPSLA
1987: Conference proceedings on Object-oriented programming systems, languages
and applications, Orlando, Florida, United States, pp. 147–155. ACM Press, New
York (1987)

13. Navarro, L.B., Sudholt, M., Vanderperren, W., De Fraine, B., Suvée, D.: Explicitly
distributed AOP using AWED. In: AOSD 2006: Proceedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Development, pp. 51–62. ACM
Press, New York, USA (2006)

14. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli,
L.: JAC: an aspect-based distributed dynamic framework. Software Practice and
Experience 34(12), 1119–1148 (2004)

15. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect oriented pro-
gramming. In: Proceedings of the 1st International Conference on Aspect-Oriented
Software Development, pp. 141–147, Enschede, The Netherlands, April 2002 (2002)

16. SpringSource. Spring framework (last checked October 2007),
http://www.springframework.org

17. Tanter, E.: From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, University of Nantes and University of Chile (November
2004)

http://labs.jboss.com/jbossaop
http://www.springframework.org

Composing Safely — A Type System for Aspects

Florian Kammüller and Henry Sudhof�

Technische Universität Berlin
Insititut für Softwaretechnik und Theoretische Informatik

Abstract. In this paper we present an approach towards safe software
composition based on aspect-orientation. Aspects enable the systematic
addition of code into existing programs but often they also introduce er-
rors. In order to provide safe aspects for software composition we address
the verification of the aspect-oriented language paradigm. We construct
a basic calculus for aspects with types and prove formally type safety.
More precisely, this paper presents the following contributions (a) a fully
formalized type system for the Theory of Objects including the proof
of type safety, (b) a theory of aspects based on the Theory of Objects
including a type system for aspects, and (c) the definition of a notion of
type safety for aspects including its proof. The entire theory and proofs
are carried out in the theorem prover Isabelle/HOL.

1 Introduction

Aspect-orientation has enjoyed major attention for years and is supported by
many major programming languages. There are, however, serious problems in
the current implementations of aspect-oriented languages. In [13] we show how
the lack of typing produces unforeseen runtime-errors. Jagadeesan et al. have
more recently shown [11] that there are even contradictions in other seemingly
simple situations. The described problem arises when using conform redefinition
of functions in the base code, which causes a covariance issue at runtime.

But, even without considering inheritance, crashes can be produced. For in-
stance, the predominant aspect-oriented language AspectJ still relies on partially
untyped expressions, resulting in runtime failure.The programdepicted inFigure 1
will compile without issue, but crash with a runtime error. This is obviously con-
flicting with the expected behaviour of well-typed programs. In fact, here, aspects
are not typed at all. This essentially removes the ability to view aspects as compo-
sitional modules, as the aspect breaks the base code without any static hint that
it might do so.

Automated formal analysis with proof assistants provides a strong support for
the analysis of safety properties of programming languages [12]. Our approach to
support the verification of systems consists of providing a fully formalized basis
for aspect-oriented programming in Isabelle/HOL [10]. We construct a core calcu-
lus of objects and aspects with types in an object–oriented setting as an instance
of the generic theorem prover Isabelle/HOL. The resulting framework serves to
experiment with language features – like weaving functionality and pointcut
� This work was supported by the DFG project Ascot (grant Ja 379/18-1).

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 231–247, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 F. Kammüller and H. Sudhof

public class Test {

public Test test() {

return this;

}

}

public aspect asp {

Object around() : call(* *.test(..)) {

return "oops";

}

}

Fig. 1. This code compiles using the current AspectJ compiler. It terminates with a
ClassCastException whenever test is called.

selectors – and properties – like type safety and compositionality. At the same
time, these experiments are on a firm basis. The results have mathematical preci-
sion and are mechanically verified. Moreover, we try to keep the formal model of
the aspect calculus as constructive as possible. Thereby, we can extract executable
protoypes for evaluators and type checkers from the Isabelle/HOL framework.

The basic idea of our calculus of aspects is similar to the theory of aspects
[14] but we start from the Theory of Objects, unlike the former that is based
on the λ-calculus. These models of aspects simply introduce labels in the base
program. The labels represent so-called join-points, i.e. points at which advice
might be woven in.1 Given these labels, we can quite naturally define weaving.
The idea is that advice is given as a function f that can be applied to a labelled
term l〈t〉, replacing the original term t bf f(t). So, given an aspect as a pair 〈L.f〉
of pointcuts L and an advice f that shall be applied at all points specified by
L, weaving can be simply constructed using function application, as illustrated
in the following example, where weaving is represented as an infix downwards
arrow ⇓ and functions and application using λ-calculus.

〈L.λ x. e〉 ⇓ (v1 + l1〈v2〉) l1∈L−→ v1 + e[v2/x]

Moreover, we can now attach types to join-points by typing labels. Then, a
failure like the one illustrated in Figure 1 would be detected at compile-time.

A major difficulty for the definition of a simple and precise calculus for aspect-
orientation is obliviousness — one of the major criteria of aspect-oriented pro-
gramming languages according to the widely accepted definition of Filman and
Friedman [8]. Obliviousness means that a programmer can adapt a base program
by aspects while being oblivious of the exact details of this base program. This
serves to guarantee maximal freedom and flexibility of adaptation. At first sight,
our concept of placing labels from start into a base program seems to clash with
this idea. There are several answers to this. In our view, even though complete
obliviousness might seem an appealing idea, it cannot be achieved. At least, the
programmer has to be aware that there are points in a program where it is already
syntactically impossible to add an advice, for example, in the middle of a keyword.
Conceptually, we consider our aspect labels as the set of all syntactically possible
1 Representing pointcuts as sets of labels corresponds to the intuition that mathe-

matically a predicate is equivalent to the set of all elements fulfilling that predicate.
Thus the pointcut-selector predicate may as well be denoted by the set of all points
that fulfill the predicate.

Composing Safely — A Type System for Aspects 233

join-points of a program. That is, all possible points where an advice might be wo-
ven into the base program are marked by a label. Using this global assumption,
we lose no generality. Ligatti et al. [14] take a different line of argument to justify
labels. They construct a core calculus that serves as the target code for a high-level
aspect-oriented language. This high-level language is oblivious while the core cal-
culus is not. However, type preserving compilation between the two yields prop-
erty preservation. De Moore et al. produce yet another justification of the label
concept [3] by showing through practical solution that pointcut descriptors may
be statically resolved into labels. Hence, they practically show that labels do not
interfere with obliviousness.

The remainder of the paper is organized as follows. We begin in Section 3
with a short presentation of the Theory of Objects and its formalization in
Isabelle/HOL [18]. Section 4 is dedicated to the type system and proof of type
safety for the ς-calculus. In Section 5 we introduce our extension of this base
calculus to a calculus for aspects introducing weaving functionality and a type
system for aspects. We present the definition and proof of type safety for aspects.
Finally, we conclude with a comparison to other approaches and an outlook to
future work in Section 6. Before we start delving into the technical presentation
we use Section 2 to provide a proper introduction to the relevant features of the
theorem prover Isabelle/HOL, a brief introduction to the ς-calculus, and some
basic techniques we had to provide for our aspect theory.

2 Preliminaries

2.1 Isabelle/HOL

Isabelle [15] is an interactive ML-based theorem prover. It was initially developed
by Lawrence Paulson at the University of Cambridge and is today maintained
there and at the TU Munich. Unlike many other interactive provers, Isabelle was
written to serve as a framework for various logics, so-called object-logics. Today,
mostly the object-logic for Higher-Order-Logic (HOL) and – on a smaller scale –
the one for Zermelo-Fraenkel set theory are in widespread use. Isabelle has a
meta-logic serving as a deductive framework for the embedded object-logics. This
meta-logic is itself a fragment of HOL solely consisting of the universal quantifier
and the implication. Isabelle features a powerful simplifier, and automated proof
strategies; moreover, it is supported by the generic ProofGeneral user interface.
For this paper, Isabelle/HOL [18] was used, e.g. Isabelle in its instantiation to
HOL. In Isabelle/HOL automatic code generation is possible for constructive
parts of a formalization, like datatypes and inductive definitions (see below),
but also for constructive proofs.

The following meta-logical formula is an example illustrating the universal
quantification with

∧
, higher order variables P and Q, and implication =⇒ of

Isabelle’s meta-logic (the square brackets �� act as a pseudo-conjunction).
�

P Q x. � P x; Q x � =⇒ P x

234 F. Kammüller and H. Sudhof

The embedding of object-logics, like HOL, adds additional types, constants, and
definitions gathered in a so-called theory. This extension of the meta-logic is per-
formed according to a principle of conservative extension: new types and related
constructors are defined on existing types; non-emtpiness of the new types must
be proved; properties of new types are derived from their definition. Thereby,
conservative extension guarantees soundness. Type definition for a restricted
class of inductive types is more specifically supported by the datatype package
in Isabelle/HOL. This feature resembles much an ML-style datatype definition.
It is advisable to use this construction principle whenever possible for one’s
object-logic’s specification because induction principles, distinction and exhaus-
tion properties come along automatically with a structure defined as a datatype.
In addition, functions over a datatype may be defined using primitive recursion
which helps automated simplification in proofs and code generation from spec-
ifications. We will use the datatype feature, for example, to define the type of
ς-terms in Section 3.1.

Isabelle/HOL features an additional inductive definition package enabling the
definition of a minimal set of elements closed under given inductive rules. We
will use inductive definition for the definitions of the type systems in Sections 4
and 5. A very generic parser enables application-specific definition of concrete
syntax (so called mixfix syntax) making Isabelle formulae and proofs almost
identical to pen-and-paper formalizations. We will point out the use of mixfix
syntax in our formalization. In general, any Isabelle/HOL specific syntax that
we will be using throughout the paper is going to be explained when we use it.

2.2 The ς-Calculus

In a Theory of Objects[1] Abadi and Cardelli developed the ς-family of calculi to
formally study object-orientation. These calculi are widely accepted as concep-
tual equivalents of the λ-calculus for objects, since the objects can be directly
used as a basic construct without having to be simulated through λ-expressions.

In the ς-calculi, an object is defined as a set of labelled methods. Each method
is a ς-term in its own right and has a parameter self, in which the enclosing
object is contained. There are three flavors of primitives from which to build
such terms: object definitions, method invocation and field update, which are
presented in Figure 2. Methods not using the self parameter are considered to
be fields. There are various formalizations of the ς-calculus in interactive theorem
provers, e.g. [7]. However, mechanizing aspects in Isabelle/HOL necessitates the
following steps to accomodate the Theory of Objects.

Let o ≡ [li = ς(xi)bi
i∈1..n] (li distinct)

o is an object with method names li and methods ς(xi)bi

o.lj → bj{xj ← o}(j ∈ 1..n) selection / invocation

o.lj ⇐ ς(y)b → [lj = ς(y)b, li = ς(xi)b
i∈(1..n)−j
i](j ∈ 1..n) update / override

Fig. 2. The primitive semantics of the ς-calculus as introduced in [2]

Composing Safely — A Type System for Aspects 235

2.3 Finite Maps for Isabelle/HOL

For the definition of ς-terms it is necessary to first introduce a generic type of
finite maps for the representation of objects. Defining a type of finite maps is a
simple enough exercise, but defining it in a generic way is quite tricky.

We define a type constructor fmap for finite maps. For any finite type α and
any β our type constructor enables now the definition of the new type α⇀β of
finite maps from elements of α to elements of β. Moreover, existing Isabelle/HOL
machinery for (infinite) maps is reused so that we can construct new finite maps
from old ones using the predefined notations, e.g. f(x �→y) to update finite
map f at point x with value y. We omit the technicalities of the Isabelle/HOL
construction of fmap (see the web-page for full details).

We furthermore derive the necessary infrastructure to support the use of finite
maps in proofs. We establish an induction scheme for finite types. Then using a
representation of finite maps as finite sets of pairs that behave like functions, we
derive the following induction scheme for the new generic type fmap from the
induction scheme for finite sets by using a domain isomorphism between fmap
and the set of pairs with function properties.

The type label is a concrete finite type defined to represent a type for field
names of objects in the following definition of ς-terms.

� P empty;�
x (F::label �→ dB) y . � P F; x /∈ dom F � =⇒ P (F(x �→ y))

� =⇒ P F

Fig. 3. The induction scheme on finite maps. If a predicate is true for the empty finite
map and stays true when adding an element, it holds true for all finite maps.

2.4 Binding with de Bruijn Indices

It is a known difficult problem how to represent binders when formalizing pro-
gramming languages for meta-theoretical reasoning [4]. One very recent way of
dealing with this problem is provided by Nominal Techniques [19]. Here, ba-
sically an implicit factorization over concrete variable names, using a so called
“support” representing all possible permutations of variables, enables to abstract
from concrete names of variables. We have experimented with a recent imple-
mentation of a package for Nominal Techniques in Isabelle/HOL, but had to find
out that neither recursive datatypes nor fancier constructs like our fmap are cur-
rently being supported. We decided to use the classical technique of de Bruijn
indices. De Bruijn indices overcome the problem of concrete variable names,
and thus α-conversion, by simply eliminating them. A variable is replaced by
a natural number that represents the distance — in terms of nesting depth —
of this variable to its binder. Thereby terms contain only numbers, no variable;
α-conversion becomes obsolete. This is a considerable advantage as α-conversion
is a difficult problem both from a practical point of view and for mechanical

236 F. Kammüller and H. Sudhof

proofs. An example for illustrating the use of de Bruijn indices is given by the
following simple λ-term.

λx.λy.(λz. x z)y = Abs(Abs(Abs(V ar 2)$(V ar 0))(V ar 0))

Note that, different variables may be represented by the same number, e.g., z
and x both are V ar 0 . De Bruijn indices relieves one from having to deal with
α-conversion: for example both λx.x and its α-equivalent λy.y are represented by
Abs(V ar0). The disadvantage of de Bruijn indices is that substitution, normally
used for the definition of application, is difficult to construct. A term has to be
“lifted”, that is, his “variables” have to be increased by one, when it moves into
the scope of an abstraction in the process of substitution.

3 The Theory of Objects in Isabelle/HOL

3.1 Formalizing ς-Terms

The type dB of ς-terms in Isabelle/HOL is given by the following datatype decla-
ration. Note, that there are two types of labels: label represents the method de-
scriptors in an object while Label is the type of aspect labels. Both actual types
are just type synonyms for nat, the type of natural numbers in Isabelle/HOL.

datatype dB = Var nat

| Obj (label ⇀ dB) type

| Call dB label

| Upd dB label dB

| Asp Label dB ("〈 _ 〉")

The constructor Var builds-up a new term dB from a nat representing the de
Bruijn index of the variable. In the constructor Obj for objects we see now
our fmap constructor being used: an object is recursively defined by a finite
map from label, the predefined types of “field names”, to arbitrary terms of
type dB. The second argument of type type to the dB-constructor Obj is the
Object’s type. It will be formally introduced in Section 4. We insert the type
with an object in order to render the typing relation unique (see Section 4).
The cases Call and Update similarly represent, field selection and update of
an object’s field. The field constructor Asp enables the insertion of aspect la-
bels into object terms. We do not assign any semantics to labels until we de-
fine weaving in Section 5. The annotation behind the constructor in quotation
marks defines the mixfix syntax: we can use the notation l〈t〉 as abbreviation for
Asp l t.

Next, we need to define lifting and substitution in order to arrive at a reduc-
tion relation for our object-terms. These definitions are very technical, so we skip
them here. For a full account see the Isabelle/HOL sources at the authors’ web
page [10]. The Isabelle/HOL mixfix syntax enables a definition of substitution

Composing Safely — A Type System for Aspects 237

for ς-terms as t[s/n] meaning replace n by s in t. We define a small step
operational semantics by a relation →β using an inductive definition.

inductive →β

intros

beta: l ∈ dom f f =⇒ Call (Obj f) l →β the(f l)[(Obj f)/0]

upd : l ∈ dom f =⇒ Upd (Obj f T) l a →β Obj (f (l �→ a) T)

sel : s →β t =⇒ Call s l →β Call t l

updL: s →β t =⇒ Upd s l u →β Upd t l u

updR: s →β t =⇒ Upd u l s →β Upd u l t

obj : � s →β t; l ∈ dom f �
=⇒ Obj (f (l �→ s) T) →β Obj (f (l �→ t) T)

asp : s →β t =⇒ l 〈 s 〉 →β l 〈 t 〉

The rules sel, updL, and updR merely encode that reduction can be performed
in contexts. The others represent quite closely the original semantics of ς (cf.
Figure 2). The substitution [(Obj f T)/0] in the rule beta replaces the self
parameter for the outermost variable in the object’s lth field f l. The operator
the selects an α-element in an option datatype when it is defined, i.e. unequal
to None. The cases upd and obj just replace inside objects. Additionally in some
cases, the additional proviso l ∈ dom f assures that there is no call out of range
of an object. The case asp enables, similar to the rules sel, updL, and updL, to
evaluate in a labelled context. There is no other case for labels corresponding to
the fact that no semantics is attached to labels until later.

This is the basic machinery for ς-terms in Isabelle/HOL with which we can
represent any object term and evaluate it. The original notation used by Abadi
and Cardelli (see Section 2.2) does not differ very much from our notation in
Isabelle/HOL. The object [l = ς(x)x.l, n = ς(x)x] is, for example, represented
as Obj(∅(l �→Call(Var 0) l)(n �→(Var 0))) T for some suitable T where ∅

represents the empty map. It would be easy to add more syntactic sugar by
defining additional mixfix syntax to achieve even closer resemblance.

The next important property to examine is determinacy of the evaluation.

3.2 Confluence

Confluence means that the reduction relation is deterministic. That is, whenever
the reduction of an expression x of the language can return differing results y
and z there are further reductions possible to a term u such that x and y can be
further reduced to u. Formally, this property is based on the diamond property
of a relation ∼.

diamond(∼) ≡df ∀ x y. x ∼ y −→ ∀ z. x ∼ z −→ ∃ u. y ∼ u ∧ z ∼ u

Confluence of a relation ∼ is defined as diamond(∼∗) where ∗ denotes the re-
flexive, transitive closure of a relation. We proved confluence of the reduction
→β in Isabelle/HOL.

238 F. Kammüller and H. Sudhof

Theorem 1 (Confluence of →β)

diamond (→∗
β)

We were able to re-use the existing structure of the confluence proof from our
earlier experiment [9], which used Nipkow’s framework for the classical Church-
Rosser proof as described by Barendregt in [5]. The classical trick already used
in the application for the λ-calculus is to use a so-called parallel reduction →‖ for
which the diamond property is true. Indeed, in general, the original reduction
relation →β does not verify diamond →β , and proving diamond →∗

β directly
is very difficult. Thanks to the following theorem, we only have to show the
inclusion of the parallel reduction relation in between the original reduction
relation →β and its transitive, reflexive closure.

� diamond →‖; →β ⊆ →‖; →‖ ⊆ →∗
β � =⇒ confluent →β

Naturally, there were numerous adjustments to be made to the proofs in [9].
These were partly due to the – compared to plain lists – relative lack of pre-
pared lemmas for finite maps. Especially the automatically generated induction
schemas for datatypes using finite maps were not readily usable and had to be
replaced by manually proved counterparts.

4 Type Safety for Objects

Generally, types in programming languages are a means to ensure statically
as much soundness as possible. A type system defining types in an inductive
style encodes therefore a decidable portion of the semantics of the language in
question. Type safety entails that, whenever a program can be typed according
to the type system, it fulfils the semantic property that is encoded in the type
system. Classically, type systems encode the properties progress and preservation
[20]. Progress describes the property that a well typed term is either a value or
can be reduced further according to the evaluation relation. Preservation states
that reduction does not change the type of a term, thereby ensuring that the
evaluation does not endanger the semantic properties. When encoding a type
system in Isabelle/HOL we implicitly prove the decidability of this type system
by expressing the rules of the type system as rules of an inductive definition.
This is a nice by-product of using a theorem prover.

The type system we define is derived from the original simple type system
that Abadi and Cardelli presented in their work [2]. However, we could simplify
it by omitting their “outcome” function which they use to describe definedness.
Instead we use the explicitness readily available in our model: since finite maps
are functions we can use the notion of “domain” to describe that a call is within
the range of an object. Since the ς-calculus does not contain values, we consider
that a value is reached whenever a term is an object even though inside the object
further reduction might be possible. This is as much as we can get because in
the ς-calculus non-terminating objects may well be defined. For example, the
ς-term [l = ς(x)x.l] enters a non-terminating reduction, and — what is more

Composing Safely — A Type System for Aspects 239

important for safety – reproduces itself. Hence, there is generally no progress
unless we refrain from evaluation inside objects — as we will prove shortly.

In the ς-calculus every term is an object. Hence, the following recursive Is-
abelle/HOL datatype defines the possible types.

datatype type = Object (label ⇀ type)

To access the actual type at a given label we define the following projection.

(Object l)!n = the (l n)

The type system for ς-term is defined by an inductive typing relation. This
relation typing is given as a set of triples containing the type environment, the
term, and its type.

typing :: (type list × dB × type) set

We use Isabelle’s mixfix possibilities to define the syntax env � x : T conve-
niently annotating that term x has type T in environment env, or, more formally,
(env,x,T) ∈ typing. Type environments, like env, are defined such that they
can be simply extended using a stack operator that we defined for this purpose.
For example, env〈0:A〉 denotes the environment env extended with the type
assumption that the outermost variable has type A.

Now, the inductive definition for the typing relation consists of the following
rules.

inductive typing

intros

T_Var : � x < length env; (env ! x) = T � =⇒ env � Var x : T

T_Obj : � dom b = dom B; ∀ l ∈ dom B. env〈0:B〉 � the(b l) : B!l �
=⇒ env � Obj b B : B

T_Call: � env � a : A; l ∈ dom A � =⇒ env � Call a l : A!l

T_Upd : � env � a : A; l ∈ dom A ; env〈0:A〉 � n : A!l �
=⇒ env � Upd a l n : A

The variables A and B range over types. The variable env represents a type
environment containing type assumptions for variables. A type environment is
a mapping from variables to types, its extension by a new assumption of “x
has type A” is annotated as env〈x:A〉 (where x is a natural number in our de
Bruijn representation). The operator ! is used for selecting the nth element of
a type environment. It is already provided in Isabelle/HOL for selecting the
nth element of a list. Note, that we also use it in an overloaded fashion as the
projection for object types. The rule T Var accesses the type environment env to
ensure variable types. The rule T Obj describes how an object’s type is derived
from its constituents. An object of type B is formed from bodies the(b l) of
types B!l that may use the self parameter fixed as 0 in the type environment.
When a method l is invoked on an object a of type A the result Call a l
has type A!l (T Call). Similarly an update of a method may take place in a
position l of an object that has the right body type under the assumption of
the self parameter (T Upd).

240 F. Kammüller and H. Sudhof

Given this type system we prove type safety first for the ς-calculus in Is-
abelle/HOL. We prove the following two theorems.

Theorem 2 (Progress)

� [] � t : A; � ∃ c. t = Obj c � =⇒ ∃ t’. t →β t’

The second theorem is the preservation theorem, sometimes also called subject
reduction.

Theorem 3 (Subject Reduction)

� env � t : A; t →β t’ � =⇒ env � t’ : A

For the proofs of these Theorems, we could gather some initial inspiration from
the type safety proof for the typed λ-calculus that has been performed by Nip-
kow [16]. Although the preservation theorem for the λ-calculus has a lot in
common with our case, the progress theorem differs already in its formulation
(for the simply typed λ-calculus strong normalization is proved which includes
termination). Consequently the proof for progress is quite different in the two
formalizations.

We were also able to show the uniqueness of the types.

Theorem 4 (Uniqueness)

� env � t : T; env � t : T’ � =⇒ T = T’

This property would not hold true without the type annotation introduced in the
initial datatype declaration. For example, the object [l = ς(x)x] would have types
Object (empty (l �→ T)) for any type T, if we had not fixed the type inside
the object. Accidentally, we would have introduced some kind of polymorphic
functions.

5 Aspects, Weaving, and Types for Aspects

The ingredients of an aspect-oriented program are a base program written in an
object-oriented language, and a set of aspects. The aspects consist of a selection
of pointcuts and an advice that shall be applied at those points. The process of
actually plugging in the advice at the specified pointcuts is called weaving. In
this section we present these features in Isabelle/HOL for the ς-calculus together
with a type system for aspects.

5.1 Aspects

An aspect can be simply defined as a selection of pointcuts and an advice. Since
our model is in Higher Order Logic, where sets are isomorphic to predicates,
we can assume that our selection of pointcuts is a set of labels. The advice is
a ς-term with a free variable thereby mimicking a function over subexpressions

Composing Safely — A Type System for Aspects 241

of a ς-program marked by labels. Hence, in Isabelle/HOL aspects can be simply
defined as follows.

datatype aspect = Aspect (Label list) dB ("〈 _._ 〉")

The first element is the pointcut set and the second element the advice to be
applied to all points matching the pointcut description, i.e. being member of this
set. The mixfix syntax at the righthandside enables the annotation of an aspect
as 〈L.a〉.

5.2 Weaving

Given a base program in the ς-calculus readily labelled with aspect labels and
given some aspects, the weaving function now only has to step through the
term while applying the aspect. We consider this approach to resemble static
weaving, but given the functional nature of our calculus, we consider the result
to be valid for dynamic approaches as well. Therefore, we define a function
“weave”, represented as ⇓, that takes a ς-program and an aspect and returns a
ς-program. The second operator weave option is an auxiliary function that is
needed to “map” the weaving function over the finite maps representing objects.

weave :: [dB, aspect] ⇒ dB ("⇓")
weave_option :: [dB option, aspect] ⇒ dB option ("⇓opt")

We define the weaving function for the simple case of applying one aspect to a
program. The general case is later derived by repeated application. The definition
of the simple case is given below in a mutual recursive definition defining the
semantics of weave and weave option by simple equations. In case of weaving
an aspect onto a variable Var n the advice has no effect. The case l〈t〉 is the
interesting one because now the ς-term for aspects, Asp, is finally equipped
with semantics. In case that the label is in the pointcut specified by the first
component of the aspect, the aspect matches. Consequently, the advice part
of the aspect a is applied to the current term t. Otherwise the aspect has no
effect. The label is not eliminated during the weaving process to enable repeated
weaving.

primrec

(Var n) ⇓ 〈L.a〉 = Var n

l 〈 t 〉 ⇓ 〈L.a〉 = if l ∈ set(L) then l 〈 a[(t ⇓ 〈L.a〉)/0] 〉
else l 〈 t ⇓ 〈L.a〉 〉

The Isabelle/HOL projection set transforms a list (here, of labels) into the set
of all elements contained in the list. Note, that the functional application of the
advice a to the term t is realized using substitution for 0 using the same idea
as in the rule beta of the reduction relation.

The next two equalities for Call and Upd simply define that the weave process
is to be passed through to the corresponding sub-terms.

(Call s l) ⇓ A = Call (s ⇓ A) l

(Upd s l t) ⇓ A = Upd (s ⇓ A) l (t ⇓ A)

242 F. Kammüller and H. Sudhof

The primitive recursive equations defining the semantics for Obj is now the
point where the recursion changes to the auxiliary operator weave option. The
auxiliary operator enables the pointwise definition of advice on the fields of the
object by lifting the weaving function over the λ to argument position. In the
defining equations for weave option (⇓opt) we see the benefit gained by using
the option type: we can explicitly use pattern matching to distinguish the case
for unused field labels (None) and actual object fields matching out the field
value with Some.

(Obj f T) ⇓ A = Obj (λ l. ((f l) ⇓opt A)) T

None ⇓opt A = None

(Some t) ⇓opt A = Some (t ⇓ A)

The generalization of the weaving function to lists of aspects is simply defined
using the predefined functor foldl. This realizes the application of a function
repeatedly to an argument taking second arguments from a list. This is exactly
what we need: iterated application of weaving to a ς-term t using advice from a
list of advice l.

Weave t l ≡df delabel(foldl (op ⇓) t l)

The function delabel is a simple recursive function that deletes all labels from
the weaving result thereby producing a “label-free” ς-calculus term. This final
step is necessary to arrive at an unambiguous term at the end of weaving. Oth-
erwise we would have to consider equivalence classes of labelled terms.

5.3 Type System

We next present a type system for aspects. We have succeeded in designing
this type system for aspects and proved type safety completely in the theorem
prover Isabelle/HOL. Here, we introduce the major definitions and the proved
theorems. The entire proof development in Isabelle/HOL is available on the
authors’ web-page [10].

The basic idea of the type system is that we attach types to aspect labels.
Any advice that may be woven in at a particular point has to be conform to the
type attached to this point’s label. For type safety, we found an elegant way of
proving that aspect weaving respects types. This general results grants to recover
type safety for weaving from the previous type safety results for the typed ς-
calculus (see Section 4). We extend this basic type system of our Isabelle/HOL
formalization for objects of the ς-calculus. We use a second environment L –
besides the basic type environment – to keep track of label types during the
process of typing.

Compared to the rules dealing with the existing, pure, ς-constructors in the
dB datatype (cf. Section 4) the only notable change is that the environments now
are complemented by a label environment L. Hence, the new inductive relation
typing has four parameters. The additional label environment L maps labels to
types. It enforces that a given label has the same type at all occurrences.

Composing Safely — A Type System for Aspects 243

For instance, the Var case features now an additional environment L of label
types.

T_Var : � x < length env; (env ! x) = T � =⇒ env, L � Var x : T

Similarly, the other three rules are identical to the rules for the pure ς-calculus
(see Section 4), except for the additional parameter L as the label type environ-
ment in all typing judgements.

Finally, we add one new rule for the typing of labels. It states that a label has
the type assigned in the environment and that a labelled term’s type has to be
conform to the label type. Given a term a of type A we can insert a label l in
front of a if we are in the same environment.

T_lab : � l!i = A; i < length L; env, L � a : A � =⇒ env, L � l〈a〉 : A

The introduction of the second parameter has little impact on the proofs pre-
sented in the previous section. These are all additions we made to the type
system. Still, one decisive information for a meaningful static analysis is miss-
ing. We know how to type aspect labels now and we know how to type labelled
programs. However, in aspect-orientation, the process of weaving plays a rôle in
the semantics. So, we need to lift the typing to the weaving operation. Since we
added weaving not as a term constructor of the actual term language of labelled
ς-terms dB, the typing for the weaving function is not part of the type system
seen above.

But, as we are in HOL weaving is a function of the meta-level, i.e. Isabelle/HOL,
and we can introduce the well–formedness of weaving also at the meta-level. There-
fore, our expressivity is not lessened. First, we define a predicate that ensures that
a set of pointcuts and an advice are compatible.

wf_adv L 〈L. a〉 ≡df ∀ l ∈ set(L). ∃ A. L!l = A ∧ []〈0: A〉, L � a : A

This predicate enforces that there must be one environment (empty base-types
and some appropriate label-types) such that all labels in the pointcut set of the
aspect can be typed according to the advice. Note, that an advice is thereby
constrained to have identical input and output type. Further loosening of this
constraint towards some kind of conform subtyping here is future work (see
Section 6.3).

Given this internal well-formedness of aspects, we can lift it up to define well-
formedness between an aspect and a base program.

wf_at L t a ≡df ∃ T. wf_adv L a ∧ [], L � t: T

This predicate can again be lifted to sets of aspects.

wf L t A ≡df ∀ a ∈ set(A) . wf_at L t a

With all these preparations we are now able to identify a theorem that encodes
the preservation of typing through weaving.

244 F. Kammüller and H. Sudhof

Theorem 5 (Weaving Preservation)

� wf L t A; [], L � t : T � =⇒ [], L � t ⇓ A : T

This theorem is the central theorem for type safety for aspects in our setting
because the usual type safety theorems, progress and preservation, are simply
implied by it.

Corollary 1 (Aspect Progress)

� wf L t A; [], L � t A: T; � ∃ c B. t ⇓ A = Obj c B �
=⇒ ∃ t’. t ⇓ A →β t’

Corollary 2 (Aspect Preservation)

� wf L t A; [], L � t : T ; t ⇓ A →β t’ � =⇒ env, L � t’ : T

6 Conclusions

In this paper we have presented a formalization of our theory of aspects in the
theorem prover Isabelle/HOL. It consists of the ς-calculus with an extension by
so-called labels for the representation of join-points and definitions of weaving
functions. We have proved the confluence and type-safety of the basic language
of ς-objects and for the extension to aspects.

6.1 Related Work

There are some, partly still ongoing, strands of research concerning theoretical
work for the support of aspects. The approach which is probably closest to ours is
the work by Ligatti et al. [14]. We differ from their approach in that we use the
ς-calculus as a basis, thus being object-oriented in the core-calculus, whereas
they start from some λ-like functional language. Clifton and Leavens devised
their MiniMao language [6] which is a typed aspect-oriented language based on
a small imperative Java-subset. Another approach taken by Jagadeesan et al [11]
concentrates on generics and uses a FeatherweightJava based calculus.

However, none of the above mentioned theoretical accounts provides a mecha-
nization in a theorem prover or similar tool. We are not aware that there are any
attempts to formalize a theory of aspects inside a theorem prover. In particular,
in the field of language semantics and type systems we consider definitions and
proofs sufficiently complex to render automated proofs an imperative condition
for high quality developments.

6.2 Compositionality and Run-Time Weaving

An important question for aspects and their practical usability is the composi-
tionality of weaving. A similar question is whether run-time weaving is possible.
Figure 4 illustrates this question graphically: when does this diagram commute?

Composing Safely — A Type System for Aspects 245

(psc, ptcsc, advsc)

〈comp,ptccomp,comp〉��

weave sc �� p′
sc

comp��
(pbc, ptcbc, advbc)

weave bc �� p′
bc

Fig. 4. Do compile-time and run-time weaving commute?

(index sc stands for source, bc for bytecode, p for program, and ptc and adv for
pointcut and advice.)

An immediate success of our formalization is that we have made one step
towards identifying the conditions for a precise analysis for this question. In the
aspect-calculus that we have presented in this paper we can state the corre-
sponding compositionality proposition as follows.

� t →β t’; a →β a’ � =⇒ t ⇓ 〈 L. a 〉 →β t’ ⇓ 〈 L.a’ 〉

Essentially the condition states that advice can be reduced prior to weaving with-
out changing the semantics compared to reduction after weaving. Compilation
is here replaced by interpretation because our calculus is functional.

6.3 Future Work

As we have seen in Section 5.3 the type system for aspects is constrained to
have identical input and output types. We are considering the extension of our
simple type system with sub-types. This would, in principle, give the means
to relax the constraints on aspect types. However, neither a contravariant nor
a covariant type refinement is possible for aspects in general: counterexamples
may be constructed (see Jagadeesan et al. [11]).

As noted earlier (2.4), we have used the classical technique of DeBruijn indices
to avoid α–conversion. Our experiments with the more elegant nominal approach
[19] revealed that the datatype support is not yet sufficient for our purposes. We
are in the process of evaluating the use of a locally–nameless solution [4].

6.4 Discussion

We did not embed weaving as a first-class function into our term language. This
might at first sight seem odd, but we do not need to make weaving first-class.
As we are in Higher Order Logic, we can reason about a meta-level function
over ς-terms also in the object-logic. It has proved to be, on the contrary, an
advantage to formalize weaving as a meta-logical HOL-function because we did
succeed, in addition, to express its semantics using primitive recursion. The fact
that weaving is a HOL-function implicitly grants us many useful properties –
function properties combined with a primitive recursive definition save us a lot
of explicit proof work because they are well supported in Isabelle/HOL.

One part of any aspect-oriented language is an object-oriented language for
writing the base program and the advice. Therefore we chose the Theory of Ob-
jects by Abadi and Cardelli [1] as a basis for our mechanized theory of aspects.

246 F. Kammüller and H. Sudhof

Although this base language is fairly small, it does – similar to the λ-calculus –
enable the construction of all object-oriented features. On the other hand, this
choice preserves generality of our approach: we stay independent of any partic-
ular implementation language, say Java, when we consider features and their
related properties. Certainly, it must be shown that a small core language like
the ς-calculus and our extension to aspects are equivalent to realistic program-
ming language. Therefore, we intend to follow the approach taken in [14], where
a type-preserving compilation is finally added from a real-world aspect-oriented
language to the core-calculus.

Apart from providing a theoretical calculus for aspect-orientation, that is
moreover mechanically verified, we believe our work to contribute to the safe
use of this paradigm for the adaptable systems of the future. Our formalisation
is a tool to experiment with different language constructs using the mechanical
proof support to verify gradually type-safety and other more advanced properties
like non-interference. In addition, a formalization as constructive as ours enables
extraction of executable programs.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)

2. Abadi, M., Cardelli, L.: A Theory of Primitive Objects. In: Hagiya, M., Mitchell,
J.C. (eds.) TACS 1994. LNCS, vol. 789, Springer, Heidelberg (1994)

3. Avgustinov, P., et al.: Semantics of Static Pointcuts in Aspect. In: Principles of
Programming Languages, POPL 2007, ACM Press, New York (2007)

4. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
Formal Metatheory. In: Principles of Programming Languages, POPL 2008, ACM
Press, New York (2008)

5. Barendregt, H.P.: The Lambda Calculus, its Syntax and Semantics, 2nd edn.
North-Holland, Amsterdam (1984)

6. Clifton, C., Leavens, G.: Minimao: Investigating the semantics of proceed. In: Foun-
dations of Aspect-Oriented Languages, FOAL 2005 (2005)

7. Ciaffaglione, A., Liquori, L., Miculan, M.: Reasoning about object-based calculi
in (co)inductive type theory and the theory of contexts. Journal of Automated
Reasoning 39, 1–47 (2007)

8. Filman, R., Friedman, D.: Aspect-Oriented Programming is Quantification and
Obliviousness. In: Workshop on Advanced Separation of Concerns, OOPSLA 2000,
October 2000, Minneapolis, USA (2000)

9. Henrio, L., Kammüller, F.: A Mechanized Model of the Theory of Objects. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, Springer,
Heidelberg (2007)

10. Jähnichen, S., Kammüller, F.: Ascot: Formal, mechanical foundation of
aspect-oriented and collaboration-based languages. DFG (2006), Web-page at,
http://swt.cs.tu-berlin.de/∼flokam/ascot/index.html

11. Jagadeesan, R., Jeffrey, A., Riely, J.: Typed Parametric Polymorphism for Aspects.
In [17], 267–296

12. Kammüller, F.: Interactive Theorem Proving in Software Engineering. Habilita-
tionsschrift (habilitation thesis), Technische Universität Berlin (2006)

http://swt.cs.tu-berlin.de/~flokam/ascot/index.html

Composing Safely — A Type System for Aspects 247

13. Kammüller, F., Vösgen, M.: Towards Type Safety of Aspect-Oriented Languages.
In: Foundations of Aspect-Oriented Languages, FOAL 2006 (2006)

14. Ligatti, J., Walker, D., Zdancewic, S.: A type-theoretic interpretation of pointcuts
and advice. In [17], pp. 240–266

15. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
16. Nipkow, T.: More Church Rosser Proofs. Journal of Automated Reasoning 26,

51–66 (2001)
17. Science of Computer Programming: Special Issue on Foundations of Aspect-

Oriented Programming. vol. 63(3), Elsevier (2006)
18. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
19. Urban, C., Tasson, C.: Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R.

(ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)
20. Wright, A., Felleisen, M.: A Syntactic Approach to Type Soundness. Information

and Computation 115, 38–94 (1994)

Practical Conflict Resolution for the Composition
of Program Transformations

Andreas I. Schmied and Franz J. Hauck

Institute of Distributed Systems, Ulm University, Germany
{andreas.schmied,franz.hauck}@uni-ulm.de

Abstract. The composition of separate concerns is a cornerstone for the
construction of complex software. By now, aspect-oriented techniques
have been established as the sine qua non in several application areas.
However, their abilities to cope with composition conflicts are mostly
limited to the linear ordering of aspects. This paper describes a more
general and practical approach for the resolution of composition conflicts
as it is realised in our general-purpose transformation system LLTS.

Our system divides a composition into two phases. In the expansion
phase separate transformations add concern code within their isolated
copies of the base code. In the subsequent contraction phase the manip-
ulations of the first phase are compared and merged wherever possible.
A hinting mechanism guides the semi-automatic merging on three levels:
Conflicts are detected using compatibility relations between operators,
by reconciling annotations of complex transformation tasks, and based
on semantic predicates of the base code language. Conflicts are reported
to the user with a comprehensive explanation and can be resolved with
manual by-case deviations from the original transformation code. As a
result, conflicts can be remedied on a finer granularity, e.g., by revising
only parts of a transformation in a certain context.

Keywords: Software Transformation, Transformation Language, Soft-
ware Composition, Conflict Resolution.

1 Introduction

Complex software is commonly built from a large number of modularised soft-
ware artefacts, which are to be composed by software engineering techniques. A
large number of composition concepts have evolved and have been successfully
put into practice with a plethora of technical implementations. Prominent repre-
sentatives are the instrumentation of base code with code weaving, client migra-
tion and merging by correspondence, and interception/wrapping techniques [1].
These concepts provide convenient means to compose an application from sev-
eral separated concerns. Also, a range of composition conflicts have been taken
into consideration.

AspectJ [2], for instance, permits adding of more than one superclass only
if they are in a common subtype hierarchy. Since aspects are a means for the
separation of concerns, they are often designed independently of each other,

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 248–262, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Practical Conflict Resolution 249

or they are obtained from different third-party developers. Then, a superclass
conflict can only be solved by introducing a static prioritisation from within
auxiliary aspects. It is questionable whether this approach always reflects the
meaning of the composition with respect to the intended application semantics.
Another frequent source of conflicts are signature collisions among inter-type
declarations. To avoid them with private introductions, the aspect source code
must be available.

In general, incompatibilities between independently developed aspects are
hard to solve. For simple conflict cases, the current technologies provide rela-
tively simple mechanisms. On the one hand they are easy to understand and to
apply, but on the other hand they fail for even slightly more difficult problems.
For instance, a strict ordering of aspects may solve one part of a problem but
raise another or even disrupt the intended semantics. In [3] the authors illus-
trate theses doubts concerning independent extensibility with the door example:
A pair of methods start and end shall each get two before-advices, which are
described in separate aspects. The first aspect needs to call openTheDoor and
closeTheDoor before these methods. The second aspect needs to call goInside
and goOutside before them. In any case, there is no proper ordering by priority
that allows one to enter the room after opening the door and leaving it before
closing the door. We will show that this composition can be solved with our
approach.

The remainder of this paper is structured as follows: Sections 2 and 3 present a
compact outline of our solution, the data model, and the LLTS 1 transformation
language. We define the term composition in Section 4 and discuss a classifi-
cation of conflicts, their detection and resolution strategies in Sections 4.1-4.3.
Section 4.4 briefly reflects on the complexity of our approach and possible op-
timisations. After a discussion of related work in Section 5, we conclude with a
summary of our current activities.

2 Solution Sketch

Owing to the insight that there is no general and perfect solution for composi-
tion conflicts, we propose a practical approach to handle conflicts and to create
application-specific solutions.

We deal with composition issues from the perspective of our general-purpose
code transformation system LLTS. Its data model is lean but powerful enough
to represent arbitrary source code. In this paper, terms for code artefacts refer
to Java since this is our primary application language. We follow the MDA [4]
approach and name the analysed source code files of a base application a model
that conforms to a metamodel. The model contains typed elements, which main-
tain named, directed links to each other and may carry a single primitive value.
This generic structure of an attributed, directed graph, reflects both the syntac-
tic structure of the input data as well as semantic relations between elements

1 Low-Level Transformation System, pron. 'iltis, German for polecat.

250 A.I. Schmied and F.J. Hauck

(type graph, control flows, usage references). The metamodel is implemented
as a pluggable part of the transformation system. It defines the parser for the
input data, the pretty printer for the output, the element types, and the sorts of
links. Routines that enforce the type system conformity and the syntactic and
semantic rules of a language are also defined in the metamodel.

In LLTS, we express concerns as a combination of code fragments and trans-
formation tasks. These procedure-like tasks use low-level operators — such as
creating elements, managing links, changing the primitive value — to adapt the
base code for the needs of a concern and integrate its code fragments at the
appropriate locations.

The main idea for the composition of concerns is to divide a composition into
two phases, namely an expansion phase and a subsequent contraction phase.
Figure 1 illustrates the entire process, which can also be nested for a more
detailed composition of sub-transformations.

...

...

Branch SetOrigin Merged

Nested Branch Set

Input Model Data
Source Files, Repositories

Output Model DataCorrection

ComparisonModel
Graph

Changes

Fig. 1. Nested branch sets with comparison and correction

In the expansion phase each transformation manipulates an isolated copy of
the base code, the so-called branch of the origin model. As every branch manages
a single self-contained concern its transformation is considered to be conflict-free.
The separation of the branches is accomplished by the data model of our system
and uses an efficient copy-on-write mechanism: Data is principally read from the
origin model, which is immutable during the expansion phase; only the parts
to be transformed are copied to the branch. The contraction phase combines
an automated conflict detection between branches with an incremental conflict
resolution by the user. Conflicts are detected by comparing annotations that
have to be defined by the transformation developer, and by inspecting possible
incompatibilities at locations of multiple operator execution. In contrast to more
abstracting techniques, such as aspect weaving or refactoring, we take advantage
of a dual view on both low-level operators and higher-level tasks. The prior define
primitive manipulations and the latter can be engaged to form abstract concepts,
such as entire refactorings or weaving instructions.

The transformation engine produces a detailed conflict report, which has to
be interpreted by the user. Based on the report, the user eliminates conflicts by

Practical Conflict Resolution 251

enhancing the composition with corrective operators. This involves her domain
knowledge about the concerns. Because this procedure may in general intro-
duce new collisions, its termination cannot be guaranteed. The user needs to
abort the comparison–correction cycle manually, if he reckons a lifelock or con-
siders a composition unachievable. Eventually, if all branches are conflict-free
then their manipulations are merged back as a composite transformation into
the origin model. Our current merging algorithm implements a combination of
intensional replay of the manipulating operators and the extensional copying of
actual changes. The metamodel implementation oversees the composite trans-
formation and reports a conflict should the model semantics be violated.

3 The LLTS Transformation Language

We use the LLTS language syntax throughout this paper to illustrate our ap-
proach. It is an imperative, dynamically-typed language that adopts a mix of
XPath [5] and LISP [6] style for the purpose of being both concise and precise for
multi-valued hierarchical expressions. The first item of a list determines whether
the expression is grouping for precedence, a declaration (task X...), or an action,
such as a call to a task (X ...) or an operator (attach ...). The navigation within
the model is accomplished by dot-separated path expressions; elements are se-
lected with predicates written in square brackets. An important consequence of
path expressions is that every action is evaluated within a context element. For
instance, Class[name ~matches~ "Bean$"].(AddInterface 〈arguments〉...) runs the task
(AddInterface ...) for every class whose name ends on “Bean”; the context of this
task is the respective class element.

The following example illustrates parts of the transformation of a simple Java
model: An additional interface is being added to a set of existing classes using a
task (AddInterface). The example uses expression labels of the form 〈expr〉=label.

(task main
(load java "src={llts.home}/samples/src ...") ; load a model with Java metamodel
Package["samples.basic.java"] ; select a certain package

.Class [name ~matches~ "Bean$"] ; therein a set of classes

.(AddInterface "java.io.Serializable")) ; call the task for each class
(task AddInterface

(context Class) ; context declaration for runtime checks
(argument @text=Iname) ; one textual argument, label Iname
(JavaLookup Iname)=Iface ; find the interface element, label Iface
(assert Iface ~instanceof~ Interface ; runtime type check...

"argument must be an interface name") ; may abort with error message
(if Implements.Type.target ~!contains~ Iface ; if not already implementing Iface...

Implements.(attach (JavaTyperef Iface)))) ; add it to implements statement

Please note: We leave details, such as modularisation issues, model persistence,
name disambiguation, and fully-qualified signatures, to the reader’s imagination
to improve the conciseness of the examples and to focus on the ideas of this
paper. Please refer to our technical report [7] for further information.

252 A.I. Schmied and F.J. Hauck

4 Composition of Transformations

The LLTS system allows the modular composition of built-in and user-defined
tasks as in regular procedural programming languages. Likewise, an author has to
spend some reasonable effort and needs a fair knowledge of the transformation
internals to orchestrate the enlisted operations towards a sensible result. The
outcome is a self-contained transformation that is able to accomplish some well-
defined task, such as integrating one concern into the base code.

However, our actual interest lies in the further composition of such self-
contained transformation tasks. The crucial point is that these tasks could have
been developed separately and for independent concerns. Their composition may
happen within a completely different development environment. Hence, the ex-
act composition scenario and the participating transformations are unknown in
advance from the perspective of their original developers.

A composition is expressed in LLTS with the (compose) operator that enters
the expansion phase by declaring at least two branches. Each branch stands for
a self-contained transformation that integrates a certain concern independently
into the base code. Each branch declaration contains a name and states a start-
up task. This so-called branch set is optionally followed by conflict resolution
statements (see below). Embedded into a task declaration, we form a composite
task:

(task composite
(compose

(branch name1 task1)
...
(branch nameN taskN)

))

The goal of a composition is to bring the modifications of the entire branch
set into a valid execution sequence. Due to the independence of concerns, any
order could be valid. In particular, it may not exactly be possible to find an
order of whole branches, but to find an order of sub-tasks. In advance, an
(order 〈branchname〉+) declaration within (compose) imposes coarse restrictions
for the later resolution of conflicts.

4.1 Conflict Classification

The composition of transformations may reveal several kinds of interference.
On the positive side, some transformations may have common parts that could
be reused, e.g. by creating scaffolding code only once. We will get back to this
case in Section 4.4. For now, we distinguish three kinds of negative interference:
namely, operator conflicts, task conflicts, and metamodel conflicts.

Operator conflicts are low-level conflicts, which carry a weak semantics due
to the locality of their effect to single elements. They are useful for detecting
disagreements about the links of an element or its primitive value. For instance,

Practical Conflict Resolution 253

the (clear) operator, which detaches all elements from a link at one stroke, is con-
flicting with the (attach) operator at the same link. Two (set) operators conflict at
the same element, because they are changing its primitive value. Also, attaching
more elements at a certain link than allowed by its cardinality is considered a
collision. This applies to the parent link inhibiting more than one element from
being attached.

Task conflicts appear between complex transformation tasks. To enable their
detection, the tasks must be prepared by the task author. We enrich tasks with
(conflict) annotations that declare a conflict class and describe the scope of search
for potential conflicts. For instance, our transformation library provides a num-
ber of AOP-like tasks, including (BeforeExec), which resembles AspectJ’s before
execution advice. This task can be applied to a Method context and declares the
samecontext conflict class:

(task BeforeExec
(context Method) ; required context element type
(conflict samecontext) ; conflict class declaration
...

)

Thus, the task principally conflicts with any other (BeforeExec) executed at
the same context element: It would not be decidable which of the tasks should
be chosen as the very first to implement the before all others correctly. As a
generalisation, the task conflict class relates a selection of different tasks. The
following code fragments shows the conflict declaration between the refactoring
(RenameClass) and the creational task (AddMethod) from our Java support library.
In order to avoid new constructors being added with reference to the obsolete
class name, adding a method with the same name as the (yet unchanged) class
name is inhibited:

(task RenameClass
(context Class)
(conflict task AddMethod samecontext (argument name==@this.name))
...

)

Other conflict classes involve a search among the sub-elements of the context
or in the entire model. For instance, a task modifying the coordination strategy
of a single method needs to rule out any other task modifying the synchronized
modifier or synchronized statements within the method body. In the following
code fragment, the task uses the modification conflict class to shield the modifier
as well as any coordination block from foreign modification:

(task changeMethodCoordination
(context Method)
(conflict modification Modifier["synchronized"])
(conflict modification [[transitive]].Synchronized.Arg)
...

)

254 A.I. Schmied and F.J. Hauck

However, this preparation is only possible in a precise manner for co-developed
tasks; just as it is the case for a self-contained transformation library having the
entire transformation code available.

Metamodel conflicts occur when the conditions of a metamodel are vio-
lated, e.g., when a method with the same signature is being added twice, or if an
abstract type is used for an object creation statement. Metamodel conflicts have
an exceptional position. They may already appear during an erroneous trans-
formation within a branch, whereas operator and task conflicts only make sense
during the contraction of branches.

4.2 Conflict Detection

We define per branch that a completely passed transformation be valid with
respect to its own exclusive model view. The author of a transformation has
to ensure this property by profiting from her domain knowledge and by writ-
ing sensible modifications. Before and after an element is being changed, the
metamodel implementation performs pre-/postcondition checks. Normally, any
violation of these conditions creates a metamodel conflict, which results in an
immediate abort of the entire transformation. Yet, to allow extensive model
changes with temporal inconsistencies, the checks can be postponed until a group
of modifications reach a consistent state again. This process of verified low-level
transformations is akin to the approach in [8].

All changes are tracked together with an execution record about their model
context and the causing operators and tasks. This information is the basis for
the following contraction phase. The contraction phase is an incremental process
of repeated conflict detection and continuous conflict resolution. Conflicts are
detected automatically by the system and are solved by intervention of the user.

The conflict detection mechanism runs in several stages. It begins with a
pairwise comparison of all related branches of a branch set to reveal mutual
conflicts. This part is illustrated in Figure 2, where the branches of an origin
model are compared with each other.

Branch SetOrigin

A

B

C

A

B

C

?

AC

AB

BC
Conflict?

Composable

Composable

Time

Fig. 2. Pairwise conflict detection between branches

Practical Conflict Resolution 255

In this so-called intensional comparison, we compare the tasks from the ex-
ecution record of two branches at a time and report conflicts based on task
annotations. Predefined (order) declarations between branches are taken into ac-
count to minimise order-related conflicts. After all conflicts could be eliminated
by the user and a clean task comparison could be executed, the so-called ex-
tensional comparison follows. Now, the branches are compared at the operator
level. In every branch every changed element is inspected whether the related
element in any other branch has been changed, too. If so, the operators used for
the overlapping manipulation are compared for operator conflicts. The summary
of conflicts is again reported to the user for further measures.

The following example recalls the door example and shows the conflict detec-
tion. The task door_example initiates a composition in line 2, calling two tasks
aspectDoor/Go in separate branches:

1 (task door_example
2 SomeClass.(compose
3 (branch A aspectDoor) (branch B aspectGo)))

Both tasks use the (BeforeExec) task to insert a call to an aspect method at the
respective beginning of the base code methods. We use a helper task (CallMethod)
to hide details of the metamodel in the example code:

4 (task aspectDoor
5 Method["start"].Body.(BeforeExec (CallMethod "openTheDoor"))
6 Method["end"]. Body.(BeforeExec (CallMethod "closeTheDoor"))
7)
8

9 (task aspectGo
10 Method["start"].Body.(BeforeExec (CallMethod "goInside"))
11 Method["end"]. Body.(BeforeExec (CallMethod "goOutside"))
12)

After a successful execution in the branches, the conflict detection proceeds
using the fact that the (BeforeExec) task declares (conflict samecontext). Because
the calls to (BeforeExec) in lines 5, 10 refer to a context element Body of the same
Method["start"], the pair will be reported to be conflicting. The same happens to
lines 6, 11 for the Method["end"].

4.3 Conflict Resolution

The conflict resolution has to be accomplished by the developer. Based on the
conflict report the (compose) statement is being enhanced with corrective state-
ments. The transformation engine unveils the cause of a conflict together with
its element context and the task call history. Finding an appropriate correction
requires understanding the effect of both involved transformations. To guide the
user’s decision a transformation developer should choose intention-carrying task
names or should add (intent) annotations to his code with a textual description

256 A.I. Schmied and F.J. Hauck

of its meaning. The benefit for the report is a narrative semantics which is grad-
ually refined along the call history of a conflicting task. For the door example
the following listing summarises the annotations for the branch tasks and the
conflicting (BeforeExec) task. The above scattered listings have been combined
for easier reference and are reduced to the Method["start"] case:

1 (task BeforeExec
2 (intent "code to be executed before any other code in a method body")
3 (context Method)
4 (conflict samecontext) ...)

5 (task aspectDoor
6 (intent "adds opening/closing of the door at the start/end methods")
7 Method["start"].Body.(BeforeExec (CallMethod "openTheDoor")) ...)

8 (task aspectGo
9 (intent "adds entering/leaving through the door at the start/end methods")

10 Method["start"].Body.(BeforeExec (CallMethod "goInside")) ...)

11 (task door_example
12 (intent "combines opening/closing a door with entering/leaving")
13 SomeClass.(compose
14 (branch A aspectDoor)
15 (branch B aspectGo)
16))

The following listing shows parts of the corresponding conflict report in its
plain textual representation; the line numbers have been adjusted to the com-
bined listing:

Task Conflict at BeforeExec: samecontext

Branches: A, B
Context: SomeClass, Method "start", Body

Branch A:
door_example: (line 11)

combines opening/closing a door with entering/leaving
aspectDoor: (line 5)

adds opening/closing of the door at the start/end methods
BeforeExec: (line 1)

code to be executed before any other code in a method body

Branch B:
door_example: (line 11)

combines opening/closing a door with entering/leaving
aspectGo: (line 8)

adds entering/leaving through the door at the start/end methods
BeforeExec: (line 11)

code to be executed before any other code in a method body

Composition conflicts are solved by enhancing the (compose) statement with
corrective statements. To solve the above problem, the user would use (taskorder)

Practical Conflict Resolution 257

statements to rearrange the conflicting sub-tasks. As a side effect, the problem of
the door example is solved: We now goInside after openTheDoor, but goOutside
before closeTheCoor. This is not feasible to declare with simple prioritisation.
Hence, we decided to use per-conflict corrections of the relevant parts inside a
transformation:

SomeClass.(compose

(branch A aspectDoor)
(branch B aspectGo)

(solve
(conflict samecontext)
(context Method["start"].Body) ; in context Method["start"].Body
(taskorder A:BeforeExec B:BeforeExec)) ; the order is first A, then B

(solve
(conflict samecontext)
(context Method["end"].Body) ; in context Method["end"].Body
(taskorder B:BeforeExec A:BeforeExec)) ; the order is reversed

)

It is necessary for a robust resolution to identify conflicting locations more
precisely, e.g., with the LLTS annotation mechanism (not shown here). This
avoids ambiguities between multiple occurrences of similar, potentially conflict-
ing tasks/operators, and relates a certain conflict with its specific resolution.

Apart from (taskorder), and (oporder) for operator conflicts, the user can choose
among several correction operators, depending on the type of conflict. For ex-
ample, (ignore) is used to wipe out false positives. Not every seeming conflict
is a real one, or in the application context the composite effect is negligible or
even appreciated. The (eliminate) operator suppresses the execution of parts of
one branch. This is of use if the other conflicting branch would overwrite the
changes of the first one or render them dispensable. For instance, modifications
in a method that is deleted completely in the other branch may be superfluous
in some applications. The user has to decide whether the elimination is without
consequences for the composite semantics or not. As a last resort, one branch
can be designated to be the corrective branch for a certain conflict. As a conse-
quence, this enforces that the ordering of the corrective branch in relation to the
conflicting ones be specified explicitly. We apply corrective branches in a meta-
transformation setting: They are used to adjust the parametrisation of tasks in
order to eliminate signature collisions.

4.4 Complexity and Optimisation

The amount of pairwise branch comparisons has quadratic growth in the size of
the branch set. Currently a low (< 5) number of branches satisfies our needs, so
this complexity is acceptable for the time being. The further development of our
concept certainly has to take larger branch sets into consideration. The number
of called tasks per branch and their amount of operator calls has a determining

258 A.I. Schmied and F.J. Hauck

influence on the overall complexity of the process. The comparison of tasks is
pairwise commutative, hence for tA, tB tasks per branch A, B we have tA · tB
comparisons, which also has quadratic complexity. The comparison of operators
is assumed to be linear in the number of operators, because only few of them
have to be inspected at conflicting elements. Non-overlapping modifications of
two models do not need to be compared anyway and the remaining operator
conflicts will have been solved implicitly during task corrections.

However, the total number of comparisons can become quite large. We are
currently investigating optimisation strategies to reduce the comparisons to a
minimum. One approach is to execute branches concurrently and implement a
fast-fail detector for both task and operator conflicts. This also gives us the
opportunity to gain a speed-up by parallelism. Another approach for conflict
reduction is to mark shareable transformation parts between branches. For in-
stance, the creation of scaffolding code for the integration of AOP-like around
advice can be designed to be reusable. We anticipate large shareable parts in our
application domain of transformations for middleware-based source-code.

5 Related Work

A large part of the current work about transformation and composition is con-
cerned with aspect weaving and the composition of refactorings. Often, a pro-
posed formalism is taken as a foundation for an a-priori reasoning about sequen-
tial and non-deterministic composition, dependencies, conflicts, and resolution
strategies. This is particularly appropriate for the well-defined nature of high-
level aspects and refactorings.

In Condor [9] conditional transformations are used as a foundation for com-
posite refactorings. A major contribution of their work is that a joint precondi-
tion of the composition can be derived automatically. Consequently, a composite
refactoring is either proven in advance to be non-conflicting or it is not executed
at all. This work has also been compared in [10] to AGG [11], which detects
dependencies and so-called parallel conflicts by comparing the preconditions of
critical pairs in graph transformations. Another explicitly graph-based model
for composition conflicts has been shown in [12]. The base program itself, code
introductions, and violation rules are represented as graph (matching) patterns.
The transitions are labelled to express syntactic and semantic relationships as
well as transformation-related information.

A first process-algebraic foundation for proving the correctness of aspect weav-
ing algorithms is presented in [13]. In [14] composition operators build robust
sequences of aspects by transferring control at certain crosscut events. Along with
composition adapters, conflicts between aspects can be resolved by transforma-
tion, for instance, by ordering or partially ignoring interacting aspects. Their
concept of composition adapters is closely related to our corrective approach.
The Reflex AOP kernel [15] detects aspect interaction based on the reflection
of links between cuts and actions as an abstraction of several AOP conceptions.

Practical Conflict Resolution 259

Reported conflicts must be resolved by the user grounded on pre-defined kernel
operators, e.g., for ordering and nesting.

In contrast to the above group of related work, we use an a-posteriori com-
parison of branches on tasks and low-level operators. We consider this rather
practical approach helpful for per-conflict resolution strategies that go well with
the composition of independent, low-level transformations since they may have
arbitrary side-effects. It should yet be profitable to investigate whether a more
formal approach can be applied to our perspective on composition issues.

The concept of high-level conflict declarations, as it is adopted in our work, is
reversed in [16]. Aspect integration contracts declare which interference is per-
mitted and enhance the comprehensibility of aspect composition as a basis for
later conflict analysis. In [17] this concept is adjusted to a more coarse-grained
component model within an aspect-oriented middleware and uses contracts for
conflicts, dependencies, and resolution. The CompAr language [18] allows the
specification of the execution environment of aspects and their inter-aspect con-
straints as a concise, abstract aspect program. The CompAr compiler, which
can be used as a supporting utility for other AOSD techniques, shows constraint
violations for a composition of aspects in context with the relevant execution
trace. The conflict detection for a combined sequence of operations per abstract
resource is presented in [19]. Although on a higher abstraction level, this ap-
proach is comparable to a match of conflict declarations on the same context in
our concept. The resolution of aspect dependencies on the knowledge of their
algebraic properties is shown in [20]. Especially, pseudo-commutativity and the
sandwiching technique shown in this paper has a relation to the correction of
sub-tasks in our approach. Interactive support for the detection of conflicts is
presented by [21]. Based on a dependency-graph analysis, interference criteria
check for undefined advice precedence. A user interface presents appropriate
conflict reports.

Although in a different context, object-oriented languages need to deal with
composition issues, especially concerning multiple inheritance and mixin com-
position. The research community has produced solutions that share a lot with
our approach of corrective operators. After a symmetric combination of Traits
[22] a conflict due to identically named methods can be solved by redefinition,
aliasing, and exclusion of these methods. To overcome the same problem, Eiffel
allows the renaming of methods within the inheriting class [23].

6 Conclusion and Future Work

This paper presents a practical mechanism for the composition of program trans-
formations that are based on low-level modification operators written in the
LLTS transformation language. Its main contribution is to partition a compo-
sition into an expansion phase, in which transformations operate on separated
model branches, and a contraction phase, wherein the transformation engine
detects composition conflicts and merges the separate modifications, combined
with user-defined corrections, back into the origin model.

260 A.I. Schmied and F.J. Hauck

We have shown several conflict classes that appear on different abstraction
levels in the code. Task conflicts are detected based on user-defined annota-
tions that describe several classes of incompatibilities between tasks in different
contexts. Operator conflicts are raised by pairwise incompatibilities between op-
erators. Finally, the metamodel implementation checks every modification in a
branch for violations of its conditions, and the composite transformation for the
overall model semantics. The user has to interpret a generated conflict report
that is enriched with an execution record and a narrative semantics of the con-
flicting tasks. Based on this information the user enhances the composite task
by adding corrective operators that directly influence each conflict. This process
of automatic detection and manual correction has to be repeated until either all
conflicts are solved or the user considers the composition unachievable.

For now, we aimed for the composition and conflict resolution for specific ap-
plications. As a next step, we consider the generalisation of compositions towards
self-contained, reusable composite transformations. With a careful construction
of resolutions using the right repertoire of corrective operators, it should be pos-
sible to incrementally improve composite transformations towards a decreasing
probability of conflicts. We are currently investigating further conflict classes
and are looking for means to increase the semi-automatism of our system. For
instance, it is possible to aid the conflict resolution by finding tasks that ren-
der others dispensable. In this case the system may suggest the appropriate
resolution strategy (eliminate). This is also an opportunity to optimise the sys-
tem performance: The analysis of dispensable transformation parts can be de-
ferred to decrease the number of comparisons. Furthermore, the resolution of
order-related conflicts can be effectively aided by adding the anticipated solu-
tion strategy directly to the task declaration. This is a recognised strategy within
several other approaches in our field and should be implementable for the LLTS
engine with reasonable effort. For instance, a sound ordering of (AddMethod) and
(RenameClass) for the same context could be pre-declared and suggested by the
system in case of a conflict. We have developed an Eclipse-based debugger that
allows to trace the internal behaviour in details. A tighter integration of the
conflict resolution mechanism is currently being implemented, which promises a
better comprehension of conflict reports.

Acknowledgements. We thank the reviewers for their constructive comments on
our paper and the helpful hints towards a broader view on related work.

References

1. Elrad, T., Filman, R., Bader, A.: Editorial: Aspect-oriented programming (and
following articles). In: Elrad, T., Filman, R., Bader, A. (eds.) Communications of
the ACM, vol. 44(10) (2001)

2. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355. Springer, Heidelberg (2001)

Practical Conflict Resolution 261

3. Ostermann, K., Kniesel, G.: Independent extensibility - an open challenge for as-
pectj and hyper/j. In: Lopes, C.V. (ed.) ECOOP 2000 Workshop on Aspects and
Dimension of Concerns (2000)

4. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The model driven architecture:
practice and promise. Addison-Wesley, Reading (2003)

5. W3C: XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/
6. Steele, G.: COMMON LISP: the language. Digital Press (1990), ISBN 1-55558-

041-6
7. Schmied, A.I.: The LLTS Transformation Language. Technical Report TR-2007-

1, Institute of Distributed Systems, Ulm University, Germany (online publication
pending) (2007)

8. Heuzeroth, D., Aßmann, U., Trifu, M., Kuttruff, V.: The COMPOST, COMPASS,
Inject/J and RECODER tool suite for invasive software composition: Invasive
Composition with COMPASS aspect-oriented connectors. In: Lämmel, R., Saraiva,
J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, Springer, Heidelberg (2006)

9. Kniesel, G., Koch, H.: Static composition of refactorings. Sci. Comput. Pro-
gram. 52(1-3), 9–51 (2004)

10. Mens, T., Kniesel, G., Runge, O.: Transformation dependency analysis - a com-
parison of two approaches. In: Rousseau, R., Urtado, C., Vauttier, S., (eds.) LMO,
Hermès Lavoisier, pp. 167–184 (2006)

11. Taentzer, G.: AGG: A graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, Springer, Heidelberg (2004)

12. Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: A graph-based approach to mod-
eling and detecting composition conflicts related to introductions. In: Barry, B.M.,
de Moor, O. (eds.) AOSD, pp. 85–95. ACM, New York (2007)

13. Andrews, J.H.: Process-algebraic foundations of aspect-oriented programming. In:
Yonezawa, A., Matsuoka, S. (eds.) Reflection 2001. LNCS, vol. 2192, pp. 187–209.
Springer, Heidelberg (2001)

14. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis
of stateful aspects. In: Murphy, G.C., Lieberherr, K.J. (eds.) AOSD, pp. 141–150.
ACM, New York (2004)

15. Tanter, É.: Aspects of composition in the Reflex AOP kernel. In: Löwe, W., Südholt,
M. (eds.) SC 2006. LNCS, vol. 4089, pp. 98–113. Springer, Heidelberg (2006)

16. Lagaisse, B., Joosen, W., De Win, B.: Managing semantic interference with aspect
integration contracts. In: International Workshop on Software-Engineering Prop-
erties of Languages for Aspect Technologies (SPLAT), Lancaster, United Kingdom
(2004)

18. Pawlak, R., Duchien, L., Seinturier, L.: CompAr: Ensuring safe around advice
composition. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535,
pp. 163–178. Springer, Heidelberg (2005)

20. Apel, S., Liu, J.: On the notion of functional aspects in aspect-oriented refactoring.
In: Proceedings of ADI 2006 Aspects, Dependencies, and Interactions Workshop,
held at ECOOP, Lancaster University (2006)

17. Greenwood, P., Lagaisse, B., Sanen, F., Coulson, G., Rashid, A., Truyen, E.,
Joosen, W.: Interactions in AO middleware. In Proceedings of Workshop on As-
pects, dependencies and Interactions at ECOOP 2007 (2007)

19. Durr, P., Bergmans, L., Aksit, M.: Reasoning about semantic conflicts between as-
pects. In: Proceedings of ADI 2006 Aspect, Dependencies, and Interactions Work-
shop, held at ECOOP, Lancaster University (2006)

:

http://www.w3.org/TR/xpath20/

262 A.I. Schmied and F.J. Hauck

21. Störzer, M., Sterr, R., Forster, F.: Detecting precedence-related advice interference.
In: 21st IEEE International Conference on Automated Software Engineering (ASE
2006) (2006)

22. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: A mech-
anism for fine-grained reuse. ACM Transactions on Programming Languages and
Systems 28(2), 331–388 (2006)

23. Meyer, B.: Harnessing multiple inheritance. JOOP (Journal of Object-Oriented
Programming) 1(4), 48–51 (1988)

Author Index

Andersson, Jesper 157
André, Pascal 125
Apel, Sven 20
Ardourel, Gilles 125
Attiogbé, Christian 125

Balasubramaniam, Dharini 206
Bao, Liang 141
Baresi, Luciano 165

Chatty, Stéphane 173
Chen, Ping 141
Chen, Sheng 141

Dearle, Alan 206

Ehses, Nicolas 84
Eliassen, Frank 52
Ericsson, Morgan 157

Floch, Jacqueline 52
Forghanizadeh, Sara 92
Frénot, Stéphane 68
Fuentes, Lidia 36

Garcia, Alessandro 36
Grace, Paul 215

Hallsteinsen, Svein 52
Hauck, Franz J. 248
Heer, Thomas 84

Jackson, Ethan K. 190
Joosen, Wouter 215

Kammüller, Florian 231
Kessler, Christoph 157

Lagaisse, Bert 215
Lengauer, Christian 20
Lobry, Olivier 149
Loughran, Neil 36
Löwe, Welf 157
Lumpe, Markus 1

Morrison, Ron 206

Nanz, Sebastian 109

Parrend, Pierre 68
Polakovic, Juraj 149

Rouvoy, Romain 52

Sánchez, Pablo 36
Schmied, Andreas I. 248
Schulte, Wolfram 190
Stav, Erlend 52
Sudhof, Henry 231

Tamburrelli, Giordano 165
Tolstrup, Terkel K. 109
Truyen, Eddy 215

Wohlstadter, Eric 92
Wörzberger, René 84

	Title Page
	Preface
	Organization
	Table of Contents
	Growing a Language: The \sc GLoo Perspective
	Introduction
	Abstraction Definition in \sc GLoo
	Language Composition in \sc GLoo
	Mini Parsers
	Language Composition: The Language of Namespaces and Traits
	Related Work
	Conclusion

	Superimposition: A Language-Independent Approach to Software Composition
	Introduction
	A Tree Representation of Software Artifacts
	Component Composition by FST Superimposition
	Terminal and Nonterminal Nodes
	Composition of Terminals
	Discussion

	Implementation
	Case Studies
	GUIDSL
	Graph Product Line
	Violet

	Integrating Further Languages
	Related Work
	Conclusion

	Language Support for Managing Variability in Architectural Models
	Introduction
	Architectural Variability Modelling
	Variability Modelling Language
	Aims and Objectives of VML
	Language Elements

	Case Study
	SmartHome Lock Control
	Fine-Grained VML Description
	Coarse -Grained VML Description

	Discussion and Related Work
	Conclusions

	Composing Components and Services Using a Planning-Based Adaptation Middleware
	Introduction
	Motivating Scenario
	Foundations
	Planning-Based Middleware
	Service-Oriented Architectures
	Assumptions

	Service Planning with SOA
	Plan Discovery and Brokering
	Plan Reasoning
	Plan Deployment and Configuration

	Case Study
	Related Work
	Conclusion and Perspectives
	References

	Component-Based Access Control: Secure Software Composition through Static Analysis
	Introduction
	Security Models for Java Component Platforms
	Java Security
	Static Analysis for Optimization of Runtime Checks
	Securing Java Components

	The CBAC Security Model
	Principles
	Hypotheses
	Modelization

	Validation
	Implementation
	Performances
	Advantages and Limitations

	Conclusions and Perspectives

	Adding Support for Dynamics Patterns to Static Business Process Management Systems
	Introduction
	Flexibility and Dynamics of Workflows
	Dynamics Patterns
	Approach: Simulate Dynamics on a Static BPMS
	Approach Overview
	Realization of Dynamic Adding

	Related Work
	Conclusion

	Interface Composition for Web Service Intermediaries
	Introduction
	Motivating Scenario
	Background
	Handlers
	XML Schema
	Regular Expression Types

	Overview of the Approach
	Interface Composition
	Handler Composition

	Technical Details
	Handler Interfaces
	Interface Composition
	Interface Composition Algorithm
	Handler Composition

	Example Revisited
	Related Work
	Web Services
	Adapters for Components

	Conclusion
	References

	Goal-Oriented Composition of Services
	Introduction
	Modelling of Service Composition
	A Process Model for Services
	Example: Web Auctions

	Automata-Based Abstractions of Processes
	Interface Automata
	Interface Semantics

	Interface Conformance
	Goal-Oriented Compositions
	Related Work
	Conclusion

	Composing Components with Shared Services in the \textsf{Kmelia} Model
	Introduction
	Overview of the \textsf{Kmelia} Model and New Features
	Overview of the \textsf{Kmelia} Component Model
	New Features of the \textsf{Kmelia} Model

	Shared Services: Impact on Service Interactions
	Linking Several Provided Services with one Required Service
	Linking one Provided Service with Several Required Services
	Interaction with Shared Services
	Adding Roles to Interactions

	Shared Services and Component Assembly
	Specification of Shared Services in \textsf{Kmelia}
	Composition: Component Assembly
	Composition: Composite Component
	Revisiting Behavioural Compatibility Analysis

	Experimentations and Formal Analysis
	A Chat System with Shared Services
	Formal Analysis

	Discussion and Conclusion

	OptBPEL: A Tool for Performance Optimization of BPEL Process
	Introduction
	Tool Description
	Synchronization Optimization
	Transform BPEL Process to BSG
	Optimization Algorithm

	Concurrency Optimization
	Process Modeling and PDGs
	Node Partitioning and Merging

	Performance Evaluation
	Related Works
	Conclusions and Future Work

	Controlling the Performance Overhead of Component-Based Systems
	Introduction
	Dimensions of Flexibility
	Flexibility in Think
	Redesigning the Think Framework
	Requirements
	Implementation

	Conclusion

	Profile-Guided Composition
	Introduction
	Profile-Guided Composition
	Dynamic Composition
	Training
	Composition of Algorithms and Data Representations

	Experiments
	Dynamic Composition of Algorithms
	Experiments Composing Algorithm and Data Representations

	Related Work
	Conclusion and Future Work

	Loose Compositions for Autonomic Systems
	Introduction
	Related Work
	Proposed Approach
	Case Study
	Conclusions and Future Work

	Supporting Multidisciplinary Software Composition for Interactive Applications
	Introduction
	Motivation: Assembling Interactive Software
	Varied Stakeholders
	Planning Issues
	Component Granularity
	Crosscutting Concerns

	Requirements on Component Models
	The I* Component Model
	The Element Tree
	Communication and Control

	Implementing Element Semantics
	A Model-Based Implementation
	Modules and Rendering Engines

	Example Applications
	Skinning a Visual Component
	Building a Multimodal Dialogue Box
	Application Design and Development
	Transferring More Tasks to Designers
	Input Management

	Research Directions
	Related Work
	Conclusion

	Compositional Modeling for Data-Centric Business Applications
	Introduction
	Running Example: A Document Management System

	Data Model
	Operation Model
	Parameterless Operations
	Parameterized Operations

	Connectivity Model
	Composite States
	Stability in Composite States
	Operations over Composite States

	Finitization
	Related Works
	Discussion and Conclusion

	A Composition-Based Approach to the Construction and Dynamic Reconfiguration of Wireless Sensor Network Applications
	Introduction
	A Sensor Network Example
	The Insense Language
	Fractal Composition
	Dynamic Evolution in the Compositional Model
	Composition and Reconfiguration across the WSN
	Conclusions, Implementation Status and Future Work
	References

	Reflective Framework for Fine-Grained Adaptation of Aspect-Oriented Compositions
	Introduction
	Background on AOP and Reflection
	The Case for Fine-Grained Aspect Adaptation
	Join Point Set Adaptation
	Aspect Behaviour Adaptation
	Requirements

	The AspectOpenCOM Framework
	A Reflective Component Model
	AO Compositions
	Aspect Meta-Object Protocol

	The Benefits of Fine-Grained Adaptation
	Meeting the Requirements of Fine-Grained Adaptation
	Analysis of Fine-Grained Versus Coarse-Grained Adaptation
	Investigating Performance Gains

	Related Work
	Concluding Remarks and Future Work

	Composing Safely — A Type System for Aspects
	Introduction
	Preliminaries
	Isabelle/HOL
	The ς-Calculus
	Finite Maps for Isabelle/HOL
	Binding with de Bruijn Indices

	The Theory of Objects in Isabelle/HOL
	Formalizing ς-Terms
	Confluence

	Type Safety for Objects
	Aspects, Weaving, and Types for Aspects
	Aspects
	Weaving
	Type System

	Conclusions
	Related Work
	Compositionality and Run-Time Weaving
	Future Work
	Discussion

	Practical Conflict Resolution for the Composition of Program Transformations
	Introduction
	Solution Sketch
	The LLTS Transformation Language
	Composition of Transformations
	Conflict Classification
	Conflict Detection
	Conflict Resolution
	Complexity and Optimisation

	Related Work
	Conclusion and Future Work

	Author Index

