
Spanning Trees with Many Leaves in Graphs
without Diamonds and Blossoms

Paul Bonsma� and Florian Zickfeld��

Technische Universität Berlin, Fak. II, Str. des 17. Juni 136, 10623 Berlin, Germany
bonsma,zickfeld@math.tu-berlin.de

Abstract. It is known that graphs on n vertices with minimum degree
at least 3 have spanning trees with at least n/4+2 leaves and that this can
be improved to (n + 4)/3 for cubic graphs without the diamond K4 − e
as a subgraph. We generalize the second result by proving that every
graph with minimum degree at least 3, without diamonds and certain
subgraphs called blossoms, has a spanning tree with at least (n + 4)/3
leaves. We show that it is necessary to exclude blossoms in order to
obtain a bound of the form n/3 + c.

We use the new bound to obtain a simple FPT algorithm, which de-
cides in O(m)+O∗(6.75k) time whether a graph of size m has a spanning
tree with at least k leaves. This improves the best known time complexity
for Max-Leaves Spanning Tree.

1 Introduction

This paper is concerned with finding spanning trees with maximum number of
leaves. This is a well-studied problem with many applications. Different types
of algorithms have been proposed for this NP-hard problem. Constant factor
approximation algorithms appear e.g. in [4,9]. In addition constructive methods
exist that guarantee a certain fraction of the vertices to become leaves, when the
graph satisfies certain properties [2,7,8]. Hence these results give lower bounds,
which are extremal in the sense that examples are given which show that they
are tight for their graph classes. Thirdly, FPT algorithms for the related deci-
sion problem have also received much attention, see [1,2,3,5]. These results are
closely related; lower bounds have been used to find good approximations [4]
and fast FPT algorithms [2,3]. Our contribution is a new extremal lower bound
that generalizes and strengthens previous results, and a fast and simple FPT
algorithm based on this bound.

We first introduce the extremal setting and explain our result. We then explain
how this helps to obtain an improved FPT algorithm. Throughout this paper G
is assumed to be a simple and connected graph on n ≥ 2 vertices. Other graphs
may be multi-graphs, disconnected, or a K1. The minimum vertex degree of G
is denoted by δ(G).
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Linial and Sturtevant first observed that every graph G with δ(G) ≥ 3 has a
spanning tree with at least n/4 + 2 leaves and that this bound is best possible
(unpublished). Kleitman and West give a proof in [8] and also give stronger
bounds for graphs of higher minimum degree.

The examples showing that the bound n/4 + 2 is best possible for graphs of
minimum degree 3 are all obtained from a cycle by replacing every vertex by
a cubic diamond. A diamond is the graph K4 minus one edge, and a diamond
subgraph of a graph G is a cubic diamond if its four vertices all have degree 3
in G, see Figure 1 (a).

(b)(a) (c)

Fig. 1. A cubic diamond (a), a 2-necklace (b), and a 2-blossom (c)

Since these examples are very restricted it is natural to ask if better bounds
can be obtained for graphs without cubic diamonds. This question was answered
by Griggs, Kleitman and Shastri [7] for cubic graphs. They show that a cubic
graph G without diamonds always admits a spanning tree with at least n/3 +
4/3 leaves and that this is best possible. For minimum degree 3 the following
bound is proved in [2]. A graph G with δ(G) ≥ 3, without cubic diamonds,
contains a spanning tree with at least 2n/7+12/7 leaves. Replacing every vertex
of a cycle by the graph from Figure 1 (b) shows that the factor 2/7 cannot
be improved. The following conjecture from [2] therefore seems natural: it was
conjectured that every graph G with δ(G) ≥ 3 and without 2-necklaces contains a
spanning tree with at least n/3+4/3 leaves. Informally speaking, a 2-necklace is a
concatenation of k ≥ 1 diamonds with only two outgoing edges, see Figure 1 (b).
In Definition 1 in the next section a precise definition is given. This statement, if
true, would improve the bound 2n/7+ 12/7 with only a minor extra restriction,
and generalize the n/3 + 4/3 bound for cubic graphs from [7].

In Section 2 we disprove this conjecture by constructing graphs with δ(G) = 3
without 2-necklaces, which do not admit spanning trees with more than 4n/13+
24/13 leaves. On the positive side, we prove that the statement is true after only
excluding one more very specific structure, called a 2-blossom, see Figure 1 (c).
A precise definition is given in Definition 2. We generalize the statement further
by removing any restriction on the minimum degree. This yields Theorem 1,
our main theorem, which is proved in Section 3. Let V≥3(G) denote the set of
vertices in G with degree at least 3 and n≥3(G) its cardinality. Let �(T ) be the
number of leaves of a graph T .

Theorem 1. Let G be a simple, connected, non-trivial graph which contains
neither 2-necklaces nor 2-blossoms. Then, G has a spanning tree T with �(T ) ≥
n≥3(G)/3 + α, where α = 2 if δ(G) ≤ 2, and α = 4/3 otherwise.
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The proof is constructive and can be turned into a polynomial time algorithm
for the construction of a spanning tree. The main technical contribution of this
paper is that we prove this generalization of the statement in [7], and improve-
ment of the statement in [2], without a proof as lengthy as the proofs in these two
papers. This is made possible by extending the techniques and proofs from [7].
In Section 3 we argue that the long case study in [7] actually proves a strong
new lemma, which we use as an important step in the proof of Theorem 1. We
share the opinion expressed in [7] that a significantly shorter proof of the bound
for cubic graphs might not exist. Therefore using that result in order to prove
the more general statement seems appropriate.

In Section 4 we explain the consequences of Theorem 1 for FPT algorithms
(short for fixed parameter tractable) for the following decision problem.

Max-Leaves Spanning Tree (MaxLeaf):
INSTANCE: A graph G and integer k.
QUESTION: Does G have a spanning tree T with �(T ) ≥ k?

When choosing k as a parameter, an algorithm for MaxLeaf is called an
FPT algorithm if its complexity is bounded by f(k)g(n), where g(n) is a polyno-
mial. See [6] for an introduction to FPT algorithms. f(k) is called the parameter
function of the algorithm. Usually, g(n) will turn out to be a low degree polyno-
mial, thus to assess the speed of the algorithm it is mainly important to consider
the growth rate of f(k). Bodlaender [1] constructed the first FPT algorithm for
MaxLeaf with a parameter function of roughly (17k4)!. Since then, consid-
erable effort has been put in finding faster FPT algorithms for this problem.
The fastest algorithms can be found in [3,5,2], which also give an overview of
older results. These papers also establish a strong connection between extremal
graph-theoretic results and fast FPT algorithms. The n/4 + 2 bound mentioned
above is an essential ingredient in [3]. With the same techniques, the 2n/7+12/7
bound is used in [2] to obtain the so far fastest algorithm with a parameter func-
tion in O∗(

(3.5k
k

)
) ⊂ O∗(8.12k). Here the O∗ notation ignores polynomial factors.

Similarly Theorem 1 yields a new FPT algorithm for MaxLeaf.

Theorem 2. There exists an FPT algorithm for MaxLeaf with time complex-
ity O(m) + O∗(6.75k), where m denotes the size of the input graph and k the
desired number of leaves.

This algorithm is the new fastest FPT algorithm for MaxLeaf, both optimizing
the dependency on the input size and the parameter function. It simplifies the
ideas introduced by Bonsma, Brueggemann and Woeginger [3] and therefore is
also significantly simpler than the other recent fast FPT algorithms. Hardly any
preprocessing of the input graph is needed, since Theorem 1 is already formulated
for a very broad graph class.

We end in Section 5 with a discussion of further improvements and applica-
tions of our results. Due to space constraints we cannot include complete proofs
of Theorems 1 and 2 in this extended abstract. Instead we refer the reader to
the full version of this paper for more details.
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2 Obstructions for Spanning Trees with Many Leaves

As mentioned in the introduction, 2-necklaces have been identified as an ob-
struction for the existence of spanning trees with n/3 + c leaves in graphs with
minimum degree 3, see [7,8,2]. In this section we show that they are not the only
such obstruction. We start by precisely defining 2-necklaces and 2-blossoms.

The degree of a vertex v in a graph G is denoted by dG(v) and by d(v) if
ambiguities can be excluded. A vertex v of a subgraph H of G with dH(v) <
dG(v) is called a terminal of H .

Definition 1 (2-Necklace). The graph K4 minus one edge is called a diamond
and denoted by N1. The degree 3 vertices are the inner vertices of the diamond.

For k ≥ 2 the diamond necklace Nk is obtained from the graph Nk−1 and a
vertex disjoint N1 by identifying a degree 2 vertex of N1 with a degree 2 vertex
of Nk−1. The two unique degree 2 vertices of Nk are denoted by c1 and c2.

An Nk subgraph of G is a 2-necklace if it only has c1 and c2 as terminals,
which both have degree 3 in G. See Figures 1 (a) and (b). If G contains an N1
this way, this N1 subgraph is also called a cubic diamond of G.

Definition 2 (2-Blossom). The graph B on seven vertices shown in Figure 2 (a)
is the blossom graph. A blossom subgraph B of G is a 2-blossom if c1 and c2 are its
only terminals, and they both have degree 3 in G, see Figure 1 (c).

c1 c2 (c)(b)(a) G7

Fig. 2. A blossom, five flowers in a tree, and G7

The two outgoing edges of 2-necklaces and 2-blossoms may in fact be the same
edge, in that case G is just a 2-necklace or 2-blossom plus an edge.

The building block for the graph family that shows that the bound n/3 + c
cannot be achieved when only necklaces are excluded, is a graph on ten vertices
called a flower. The graphs obtained from ternary trees by replacing inner ver-
tices with triangles, and leaves with flowers, have no spanning tree with more
than 4n/13+24/13 leaves. Figure 2 (b) shows such a graph and it can be checked
that these graphs have no more than four leaves per flower.

An important graph for our proofs, called G7, is shown in Figure 2 (c). This
is a non-cubic graph without 2-necklaces or 2-blossoms that does not admit a
spanning tree with at least n≥3(G)/3+2 leaves; only four leaves can be obtained.
In fact, a more detailed proof of Theorem 1 shows that G7 is the only such graph.
The cubic examples from [7] show that the bound in Theorem 1 is best possible
(ignoring small differences in the constant, see Section 5). These examples can
also be modified to obtain extremal examples that have vertices of degree 1, 2
and 4, thus Theorem 1 is best possible in a strong sense.
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3 Proof of the Main Theorem

This section is devoted to the proof of Theorem 1. The proof approach is based
on [7]. We first sketch an overview of the proof of [7], then mention how we
extend this method, and later give precise definitions. The two main techniques
of the proof are tree extensions and reduction rules. For certain graphs G, the
following approach can be used to find a tree with the desired number of leaves:
start with a small tree subgraph T of G, which has the proper ratio between the
number of leaves, and the number of vertices of V≥3(G) that it contains. Loosely
speaking, it needs at least one leaf for every three vertices from V≥3(G). This is
expressed more precisely by the value PG(T ) defined below, which should remain
above a certain value (usually 0). Then the initial tree T is extended iteratively,
without decreasing PG(T ). Proving that this is always possible is done with a
case study, which considers the ‘outside’ of T , i.e. the subgraph of G that is not
yet covered by T . When T becomes spanning, the bound follows easily from the
initial lower bound on PG.

However there are certain substructures that are problematic for this ap-
proach. These structures are handled instead by reduction rules, before building
the spanning tree. Every reduction rule works on a certain graph structure, and
removes it. These reduction rules are applied to the graph G as long as possi-
ble, in arbitrary order. The resulting graph G′ is called irreducible, and may be
disconnected. These rules are chosen such that if a tree with the desired number
of leaves is given for every component of G′, it can be used to construct a tree
with the right number of leaves for G. It follows that the extension procedure
only has to be applied for irreducible graphs.

For our proof, it does not suffice to only consider tree extensions: it may be
necessary to start new tree components, so we will actually extend a forest F .
This is no problem when we demand an extra number of leaves for every new
tree component in F . We continue with these extensions until F is a spanning
forest. We add edges to obtain a spanning tree T , for which the bound will follow
from PG(F ) ≥ 0.

We now state the necessary notions and lemmas more precisely, and use these
to prove Theorem 1 formally. The proofs of the lemmas and details of the re-
duction rules are postponed to later sections, or omitted. A vertex with degree
at most 2 will be called a goober. One important convention is that when we
consider a subgraph H of G, goobers in H are always defined with respect to
G, not with respect to H . In our figures, e.g. Figure 3 white vertices indicate
goobers. A high-degree vertex is a vertex of degree at least 4.

In Section 3 the reduction rules are introduced, and it will be shown that all
of them maintain the proper leaf ratio of a spanning tree, when reversed. This
is expressed by the following lemma. Note that F is a maximal forest for G′ if
and only if it consists of a spanning tree for every component of G. A trivial
component is an isolated vertex.

Lemma 1 (Reconstruction Lemma). Let G′ be the result of applying a re-
duction rule to a connected graph G, and let k be the number of non-trivial com-
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ponents of G′, and β ≥ 0. If G′ has a maximal forest with at least n≥3(G′)/3 +
2k − β leaves, then G has a spanning tree with at least n≥3(G)/3 + 2 − β leaves.

This lemma will be used with either β = 0 or β = 2/3. For showing that the graph
G′ in this lemma indeed has a spanning tree with at least n≥3(G′)/3 + 2k − β
leaves, it is important that the reduction rules maintain the conditions stated
in Theorem 1. This is shown by the next lemma, more details about the lemma
are given in Section 3. The multi-graph with two vertices and two parallel edges
is denoted by K2 + e.

Lemma 2. Let G′ be obtained from a simple, connected graph G without 2-
necklaces or 2-blossoms by the application of a reduction rule. Then (i) G′ is
connected, or every component of G′ contains a goober, and (ii) every component
of G′ is either simple or it is a K2 + e, and (iii) G′ contains neither 2-necklaces
nor 2-blossoms, and (iv) if G contains a goober, then G′ contains a goober.

We now state the definitions and lemmas used in proving extendibility of a forest
subgraph. When F and G are graphs, F ⊆ G and F ⊂ G denote the subgraph
resp. proper subgraph relation. Let F ⊆ G. By nG(F ) we denote the number of
non-goober vertices of G that are in V (F ). By �d(F ) we denote the number of
dead leaves of F , that is leaves of F , which have no neighbor in V (G) \ V (F ).
Let cc(F ) denote the number of connected components of F .

Definition 3 (Leaf-Potential). The leaf-potential of a subgraph F ⊆ G is
PG(F )= 2.5�(F ) + 0.5�d(F ) − nG(F ) − 6cc(F ).

We now show that if G has a spanning subgraph F with PG(F ) ≥ 0, then a tree
satisfying the desired bound exists. We may assume that F is a forest. Since all
leaves of F are dead, we have 0 ≤ PG(F ) = 3�(F ) − n≥3(G) − 6cc(F ), and thus
�(F ) ≥ n≥3(G)/3 + 2cc(F ). We can now add cc(F ) − 1 edges to F to obtain a
spanning tree T , losing at most 2(cc(F ) − 1) leaves, so �(T ) ≥ n≥3(G)/3 + 2.

Definition 4 (Extendible). Let F be a subgraph of a graph G. Then F is
called extendible if there exists an F ′ with F ⊂ F ′ ⊆ G and PG(F ′) ≥ PG(F ),
and F ′ is called an extension.

Above we already informally mentioned the subgraph of G ‘outside’ a subgraph
F ⊂ G. This graph may formally be defined as an edge induced graph as follows.
Definition 5 (Graph Outside F ). Let F be a non-spanning subgraph of G.
The subgraph of G outside of F is FC= G[{uv ∈ E(G) : u �∈ V (F )}].

Note that no edges between two vertices that are both in V (F ) are included
in FC . We can now formulate the two lemmas that together show that every
forest subgraph in an irreducible graph without 2-necklaces and 2-blossoms is
extendible. More details are given in Section 3.

Lemma 3 (Start Lemma). Let G �= G7 be an irreducible graph, and let F be
a (possibly empty) subgraph of G such that FC contains at least one high-degree
vertex and contains neither 2-necklaces nor 2-blossoms. Then F is extendible.
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Lemma 4 (Extension Lemma). Let G be an irreducible graph, and let F be
a non-empty subgraph of G such that FC has maximum degree 3 and contains
no 2-necklaces. Then F is extendible.

The following theorem appears in [7] as Theorem 3 (reformulated slightly for
our purposes).

Theorem 3. Every simple, connected, irreducible graph G of maximum degree
exactly 3 has a spanning tree with at least n≥3(G)/3 + α leaves, where α = 4/3
if G is cubic and α = 2 otherwise.

We now have collected all the necessary tools to prove Theorem 1.

Proof of Theorem 1. We prove, by induction over the number of edges, that every
simple, connected, non-trivial graph G without 2-necklaces or 2-blossoms, has
a spanning tree T with �(T ) ≥ n≥3(G)/3 + α, where α = 4/3 if δ(G) ≥ 3, and
α = 2 if δ(G) ≤ 2.

First suppose G is irreducible. If G has maximum degree exactly 3, Theorem 1
follows immediately from Theorem 3. If G has maximum degree at most 2, G
has a spanning tree with at least two leaves (since we assumed that G is not a
K1), which suffices.

If G = G7, then a spanning tree with 4 = n≥3(G)/3 + 5/3 leaves can be
obtained. So we may now assume that G contains at least one high degree
vertex, and is not equal to G7.

We start with an empty subgraph F of G which has PG(F ) = 0. The Start
Lemma (Lemma 3) shows that, as long as there is at least one high degree vertex
not in F , we can extend F while maintaining PG(F ) ≥ 0. When all high degree
vertices are included in F , the Extension Lemma (Lemma 4) can be applied
iteratively, until a spanning subgraph F ′ is obtained with PG(F ′) ≥ 0. By our
observation following Definition 3, it then follows that G has a spanning tree
with at least n≥3(G)/3 + 2 leaves.

It remains to consider the case that G is reducible (the induction step). We
can apply a reduction rule, such that the resulting graph G′ again contains no
2-necklaces or 2-blossoms, and such that every component is either simple or a
K2+e (Lemma 2). First suppose G′ is connected. By Lemma 2, if δ(G) ≤ 2, then
δ(G′) ≤ 2, and by induction G′ has a spanning tree with at least n≥3(G′)/3 +
2 leaves. Lemma 1 then shows that G admits a spanning tree with at least
n≥3(G)/3+2 leaves. Similarly, if δ(G) ≥ 3 then it follows that G has a spanning
tree with at least n≥3(G)/3+4/3 leaves. Now suppose the reduction rule yields a
disconnected graph G′. Then every resulting component has a goober (Lemma 2).
So by induction, every non-trivial component C of G′ has a spanning tree with
at least n≥3(C)/3 + 2 leaves. Thus Lemma 1 implies that G has a spanning tree
with at least n≥3(G)/3 + 2 leaves. �

Reducible Structures. We now present the reduction rules. We introduce five
reduction rules that will be called the high-degree reduction rules. Each consists
of an operation on a certain subgraph, and conditions for when it may be applied.
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Figure 3 shows the graph operations for the five rules. For each rule, on the
left the subgraph is shown that is reduced by the rule, and on the right the
resulting subgraph, which has the same terminal set. The encircled vertices are
the terminals, which may have further incidences, unlike the other vertices. In
some cases outgoing half edges are added to indicate conditions on minimum
vertex degrees. None of the vertices in the figures may coincide, but there are
no restrictions on outgoing edges sharing end vertices. Goobers are shown as
white vertices, but in the case of (R3), vertex v or w may also become a goober,
depending on the original degree. The numbers above the arrows indicate the
decrease in n≥3.

0(R5) u v vu

w

uv

w

u

tt
5(R4)

v vu u
2(R2)

vu

w

u

w

vv

(R3) 2-3

u v u v(R1) 3

Fig. 3. The high-degree reduction rules

The following restrictions are imposed on applying these operations to a
graph G. First, no reduction rule may be applied if (i) it introduces multi-
edges that are incident with a non-goober, or if (ii) it introduces a 2-necklace or
2-blossom. In addition, the following rule-specific restrictions are imposed: for
(R1), dG(v) ≥ 4 is required. For (R2), dG(u) ≥ 4 and dG(v) ≥ 4 are required.
Rule (R3) may not disconnect a component, and may introduce at most one new
goober. Rule (R4) may only be applied if it does disconnect a component. For
(R5), dG(u) ≥ 4 and dG(v) ≥ 4 are required, and uv may not be a bridge. A
bridge is an edge which upon deletion increases the number of components.

Considering these conditions on the applicability of the rules, it is obvious that
Lemma 2 holds for the high-degree reduction rules. For the proof of Lemma 1,
consider Figure 4. This figure shows the tree reconstructions for the high-degree
reduction rules. If the application of a reduction rule on G gives a graph G′, then
without loss of generality, a spanning tree T ′ of G′ has one of the forms shown
on the left. On the right it is shown how to adapt T ′ to obtain a spanning tree of
G. Dashed edges are present in the resulting tree if and only if they are part of
T ′. For the rules (R1), (R2) and (R3), one more leaf is gained, which is enough
since n≥3(G) − n≥3(G′) ≤ 3 for these rules and G′ is connected, i.e. k = 1. For
rule (R4), no leaves are gained, but (R4) disconnects the graph and k = 2. Thus
the increase of n≥3 by 5 is compensated since each of the two components brings
with it an additive term of 2. For (R5), nothing has to be proved, so Lemma 1
holds for the high-degree reduction rules.

Besides the rules (R1)-(R5) we use the seven reduction rules that are defined
in [7], and we call them the low-degree reduction rules. These rules are shown in
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Fig. 4. Spanning tree constructions when reversing the new reduction rules

(1) 6

3

6(5)

(3)
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(2) 0

(4)

(7) 15

6

Fig. 5. The seven low-degree reduction rules

Figure 5. Conditions on their applicability are given in [7] which ensure that both
Lemmas 1 and 2 hold for them. A graph to which none of the twelve reductions
can be applied is called irreducible.

Extension Lemmas. We now sketch the proofs of Lemmas 3 and 4, which handle
the construction of an extension F ′ of a subgraph F ⊆ G. Lemma 3 is proved
by considering all possible neighborhoods of a high-degree vertex v of G that is
not yet included in F . For every possibility, we can either give an extension of
the forest that does not decrease PG, or we can identify a reducible structure
around v, which is a contradiction with the irreducibility of G. For details of
this case study we refer to the full version of this paper. We first consider the
cases where v is at distance at most two of a vertex that is already in F . These
cases are easily handled by extending existing trees. However when v is at a
larger distance from F , we instead build a new tree around v, and add it to the
forest F . Note that for instance adding a star consisting of non-goobers around
a vertex of degree 5 increases PG by 2.5 ·5−6−6 = 0.5, which thus gives a valid
extension. Higher degrees and goobers increase PG even further. For degree 4
vertices v, more cases need to be considered, but a valid extension can always
be found unless v is part of two edge-disjoint triangles and all its neighbors have
degree 3. However, most of these cases are reducible, provided v is not the center
of a 2-blossom. In the remaining cases an extension can be found.

We now argue that the long case study in [7] in fact proves the Extension
Lemma (Lemma 4). First of all we remark that in [7], goobers are defined dif-
ferently, namely as vertices of degree at most two resulting from reduction rules.
Considering the reduction rules, it can be seen that this extra condition adds no



540 P. Bonsma and F. Zickfeld

information (for instance about the possible neighborhoods of goobers). Indeed,
no such information is used in the proofs in [7], and thus goobers may simply
be defined as we do. The case study in Section 4 of [7] proves the following
statement, expressed using our notations.

Lemma 5. Let G be a graph with maximum degree exactly 3, without diamonds,
that is irreducible with respect to the low-degree reduction rules. Let F be a non-
empty tree subgraph of G. Then there exists a tree F ′ with F ⊂ F ′ ⊆ G and

2.5(�(F ′) − �(F )) + 0.5(�d(F ′) − �d(F )) − (nG(F ′) − nG(F )) ≥ 0.

The most important observation is that nowhere in the case study that proves
Lemma 5, any information about the current tree F is used; only information
about what we defined as FC is used. In particular, the fact that F is connected
is never used in the proof, and neither are upper bounds on degrees of vertices
already included in F . So it suffices to state the maximum degree 3 condition
for FC , and the condition that F is a tree may be removed. Furthermore, an
irreducible graph with maximum degree 3 that contains no 2-necklaces does
not contain any diamonds as subgraphs. So we may replace the ‘no diamond’
condition by the ‘no 2-necklace’ condition. Our definition of irreducible implies
irreducibility with respect to the low-degree reduction rules, so this change is
also not a problem. Finally, the graph F ′ that is constructed by Lemma 5 has
the same number of components as F , so the expression in Lemma 5 simply
means that PG(F ′) ≥ PG(F ). Altogether this yields Lemma 4.

4 A Fast FPT Algorithm for MaxLeaf

In this sectionwepresent a fast and relatively simpleFPTalgorithm forMaxLeaf,
which uses Theorem 1 as an essential ingredient. The other two ingredients are a
short preprocessing step, consisting of two reduction rules, and an enumerative pro-
cedure, which is similar to the one introduced in [3], and also applied in [2].

We start by presenting the two reduction rules that constitute the preprocess-
ing phase. Recall that in 2-necklaces and 2-blossoms both terminals have degree
3 in G. The rules we introduce now also reduce diamonds and blossoms whose
two terminals have arbitrary degree. However the two terminals of the subgraph
must still be the two vertices that have degree 2 in the diamond necklace or blos-
som itself. Such a subgraph of G will be called a 2-terminal diamond respectively
a 2-terminal blossom. Rule (F1) in Figure 6, which resembles rule (R2), reduces
2-terminal diamonds. Since a 2-necklace Nk consists of k 2-terminal diamonds,
those are reduced as well by rule (F1). Rule (F2) in Figure 6 reduces 2-terminal
blossoms.

Lemma 6. Let G′ be the result of applying reduction (F1) or (F2) to G. Then
(G′, k − 1) is a YES-instance for MaxLeaf if and only if (G, k) is a YES-
instance for MaxLeaf.

Throughout this section we will denote the set of leaves of a graph G by L(G).
We now explain how to obtain a graph S(G) from a graph G by suppressing
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v v(F2) uvuuv(F1) u
k ↓ 1 k ↓ 1

Fig. 6. Two reduction rules for an instance (G, k) of MaxLeaf

vertices. Suppressing a vertex u of degree 2 means deleting u and adding an edge
between the two end vertices of the incident edges. We allow this operation to
introduce parallel edges and loops, so the degrees of non-suppressed vertices are
maintained. If n≥3(G) = 0, that is G is a path or cycle, then S(G) is the empty
graph. If n≥3(G) > 0 then S(G) is obtained from G by suppressing all degree 2
vertices. So V (S) = L(G)∪V≥3(G), and G is a subdivision of S(G). Hence loops
and non-loop edges of S(G) correspond to cycles and paths of G respectively.
Let uv be a non-loop edge of S(G) where the corresponding path Puv in G has
i internal vertices. We define a cost function c on the non-loop edges of S(G)
which assigns cost c(uv)= min{i, 2} to uv. Thus c(uv) is the maximum possible
number of leaves that a spanning tree of G can have among the internal vertices
of Puv. Now we are ready to present the FPT algorithm in Algorithm 1.

Algorithm 1. An FPT algorithm for MaxLeaf

INPUT: a MaxLeaf instance (G, k).

1) while G has a 2-terminal diamond or 2-terminal blossom subgraph do
G :=the result of applying (F1) or (F2) to G
k := k − 1

2) if n≥3(G) ≥ 3k or |L(G)| ≥ k or k ≤ 2 then return(YES)
3) construct S(G) and c
4) for all L ⊆ V≥3(G) with |L| ≤ k do

if G has a spanning tree T with L ⊆ L(T ) and |L| + |L(T )\V≥3(G)| ≥ k then
return(YES)

5) return(NO)

The decision in Step 4 can be made in polynomial time in the size of S(G). The
essential step is to solve a minimum weight spanning tree problem on S(G)− L,
using edge costs c. We omit the proof of the following lemma’s, noting that the
algorithm is similar to the ones in [3] and [2].

Lemma 7. Let (G, k) be a MaxLeaf instance for which S(G) and c are non-
empty and known. For any L ⊆ V≥3(G), deciding whether G has a spanning tree
T with L ⊆ L(T ) and |L| + |L(T )\V≥3(G)| ≥ k can be done in time polynomial
in the size of S(G).

Lemma 8. Algorithm 1 returns YES if and only if its input (G, k) is a YES-
instance.
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Proof sketch for Theorem 2. It only remains to prove the complexity bound.
The first three steps can be done in linear time by building the proper data
structures. For this it is essential that the degree of non-terminal vertices of 2-
terminal diamonds and blossoms is bounded by a constant. We omit the details.
Since the reductions in Step 1 do not increase the number of vertices or the value
of k, we may assume that n and k are the number of vertices and parameter of
the reduced instance, as it is after Step 1.

Step 4 of the algorithm is only executed when n≥3(G) < 3k and |L(G)| < k.
Furthermore V (S(G)) = L(G)∪V≥3(G), so every iteration of the for-loop of Step
4 takes time polynomial in k (Lemma 7). This for-loop is executed once for every
subset L ⊆ V≥3(G) with |L| ≤ k. Using |V≥3(G)| ≤ 3k, the number of such sets
can be verified to be O(k

(3k
k

)
). Using Stirling’s approximation x! ≈ xxe−x

√
2πx,

we obtain that the loop is executed O∗(6.75k) times. �

5 Conclusions

We conclude with some remarks about possible improvements and further ap-
plications. Theorem 1 can be strengthened at the cost of lengthier proofs. A
full version of this paper shows that n≥3(G)/3 + c leaves can be obtained where
c = 4/3 when G = Q3, the 3-dimensional cube, c = 5/3 when G = G7 or
G �= Q3 is cubic, and c = 2 otherwise. In addition it can be shown that any
graph G has a spanning tree with at least (n≥3(G) − x − y)/3 + c leaves, where
x is the number of 2-necklaces in G and y is the number of 2-blossoms in G.
This is a strong statement since firstly it holds for all graphs (barring the trivial
conditions that G should be simple, connected and non-trivial), and secondly it
not only generalizes the bound from [7], but also the n/4 + 2 bound for graphs
with minimum degree three, and the 2n/7+12/7 bound from [2] (see Section 1),
when substituting the appropriate upper bounds for x and y. The usefulness of
bounds of this form was recently demonstrated in [4], where a similar bound was
used to obtain an improved approximation algorithm.

Theorem 1 can be used to show that the ‘flower tree’ example from Section 2
is extremal: when only 2-necklaces are forbidden, it is always possible to obtain
at least 4n≥3(G)/13 + 24/13 leaves in non-cubic graphs.
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