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Abstract. We show that one can compute the injective chromatic num-
ber of a chordal graph G at least as efficiently as one can compute the
chromatic number of (G−B)2, where B are the bridges of G. In particu-
lar, it follows that for strongly chordal graphs and so-called power chordal
graphs the injective chromatic number can be determined in polynomial
time. Moreover, for chordal graphs in general, we show that the decision
problem with a fixed number of colours is solvable in polynomial time. On
the other hand, we show that computing the injective chromatic number
of a chordal graph is NP -hard; and unless NP = ZPP , it is hard to
approximate within a factor of n1/3−ε, for any ε > 0. For split graphs,
this is best possible, since we show that the injective chromatic number
of a split graph is 3

√
n-approximable. (In the process, we correct a result

of Agnarsson et al. on inapproximability of the chromatic number of the
square of a split graph.)

1 Introduction

In this paper, a graph is always assumed to be undirected, loopless and simple.
An injective colouring of a graph G is a colouring c of the vertices of G that
assigns different colours to any pair of vertices that have a common neighbour.
(That is, for any vertex v, if we restrict c to the (open) neighbourhood of v, this
mapping will be injective; whence the name.) Note that injective colouring is
not necessarily a proper colouring, i.e., it is possible for two adjacent vertices to
receive the same colour. The injective chromatic number of G, denoted χi(G),
is the smallest integer k such that G can be injectively coloured with k colours.

Injective colourings are closely related to (but not identical with) the notions
of locally injective colourings [9] and L(h, k)-labellings [2,3,11]. In particular,
L(0, 1)-labellings unlike injective colourings assign distinct colours only to non-
adjacent vertices with a common neighbour.

Injective colourings were introduced by Hahn, Kratochv́ıl, Širáň and Sotteau
in [12]. They attribute the origin of the concept to complexity theory on Ran-
dom Access Machines. They prove several interesting bounds on χi(G), and also
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show that, for k ≥ 3, it is NP -complete to decide whether the injective chro-
matic number of a graph is at most k. Here we look at the complexity of this
problem when the input graphs G are restricted to be chordal. A graph is chordal
if it does not contain any induced cycle of length four or more [10]. Several diffi-
cult combinatorial problems that are NP -complete in general (including graph
colouring [10], and many variants [5,7,13]) admit a polynomial time solution in
chordal graphs.

In Section 4, we show that determining χi(G) is still difficult when restricted
to chordal graphs. In fact, it is not only NP -hard, but unless NP = ZPP , the
injective chromatic number of a chordal graph cannot be efficiently approximated
within a factor of n1/3−ε, for any ε > 0. (Here ZPP is the class of languages
decidable by a randomized algorithm that makes no errors and whose expected
running time is polynomial.) For split graphs, this is best possible since we show
an 3

√
n-approximation algorithm for the injective chromatic number of a split

graph.
On the positive side, we show in Section 5 that for any fixed number k, one

can in linear time determine whether a chordal graph can be injectively coloured
using no more than k colours. Moreover, we describe large subclasses of chordal
graphs that allow computing the injective chromatic number efficiently. We show
that for a chordal graph G, one can efficiently compute the injective chromatic
number of G from the chromatic number of the square of G − B(G), that is,
the graph G with its bridges B(G) removed. It follows that for strongly chordal
graphs and power chordal graphs (the graphs whose powers are all chordal) the
problem is polynomial time solvable.

2 Preliminaries

We follow the terminology of [4,20]. For a subset S of the vertices (edges) of G,
we denote G[S] the subgraph of G induced on the vertices (edges) of S, and G−S
the subgraph of G that is obtained by removing from G the vertices (edges) of
S. In the case that S consists only of a single element x, we write G − x instead
of G − {x}.

For a connected graph G, a vertex u is a cutpoint of G if the graph G − u is
disconnected. An edge e = uv is a bridge of G if the graph G−e is disconnected.
A subset S of vertices of G is a separator of G if G−S is disconnected. As usual,
a clique of G is a complete subgraph of G, and an independent set of G is a
subgraph of G having no edges. For any graph G, we denote by χ(G) and α(G),
the chromatic number of G, and the size of a maximum independent set in G,
respectively. We denote by Gk the k-th power of G, i.e., the graph obtained from
G by making adjacent any two vertices in distance at most k in G. We denote by
n, respectively m, the number of vertices, respectively edges of G. For a vertex u
in G, we denote by N(u) the set of vertices of G adjacent to u (the neighbourhood
of u); and for a subset S of vertices of G, we denote by N(S) the set of vertices
of G − S adjacent to at least one vertex of S. We let deg(u) = |N(u)| be the
degree of u, and let Δ(G) be the maximum degree among the vertices of G.
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A split graph is a graph which can be partitioned into a clique and an inde-
pendent set with no other restriction on the edges between the two. Any split
graph is also chordal. A tree-decomposition (T, X) of a connected graph G is a
pair (T, X) where T is a tree and X is a mapping from V (T ) to the subsets
of V (G), such that (i) for any edge ab ∈ E(G), there exists u ∈ V (T ) with
a, b ∈ X(u), and (ii) for any vertex a ∈ V (G), the vertices u ∈ V (T ) with
a ∈ X(u) induce a connected subgraph in T . A clique-tree of a chordal graph G
is a tree-decomposition (T, X) of G where {X(u) | u ∈ V (T )} is precisely the
set of all maximal cliques of G.

3 Basic Properties

We have the following simple observation.

Observation 1. For any graph G, χi(G) ≥ Δ(G) and χ(G2) ≥ Δ(G) + 1.

For trees this is also an upper bound.

Proposition 2. For any tree T , χi(T ) = Δ(T ) and χ(T 2) = Δ(T ) + 1.

Proof. Let u be a leaf in T and v the parent of u. Then clearly, χ(T 2) =
max

{
deg(v)+1, χ

(
(T −u)2

)}
and χi(T ) = max{deg(v), χi(T −u))}. The claim

follows by induction on |V (T )|. �

Now we look at the general case. Let G(2) be the common neighbour graph
of a graph G, that is, the graph on the vertices of G in which two vertices are
adjacent if they have a common neighbour in G. It is easy to see that the injective
chromatic number of G is exactly the chromatic number of G(2). In general, as
we shall see later, properties of the graph G(2) can be very different from those
of G. For instance, even if G is efficiently colourable, e.g. if G is perfect, it may
be difficult to colour G(2). Note that any edge of G(2) must be also an edge of
G2 (but not conversely). This yields the following inequality.

Proposition 3. For any graph G, we have χi(G) ≤ χ(G2).

In fact, this inequality can be strengthened. Let F(G) be the set of edges of G
that do not lie in any triangle. Note that an edge of G is also an edge of G(2) if
and only if it belongs to a triangle of G. This proves the following proposition.

Proposition 4. For any graph G, we have χi(G) = χ(G2 − F(G)).

Now we turn to chordal graphs. The following is easy to check.

Observation 5. Any edge in a bridgeless chordal graph lies in a triangle.

Let B(G) be the set of bridges of G. Since a bridge of a graph can never be in a
triangle, we have the following fact.

Proposition 6. For any chordal G, we have χi(G) = χ(G2 − B(G)).
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Now since B(G − B(G)) = ∅, we have the following corollary.

Corollary 7. For any chordal G, χi(G − B(G)) = χ
(
(G − B(G))2

)
.

It turns out that there is a close connection between χi(G − B(G)) and both
χi(G) and χ(G2).

Proposition 8. For any G, χ(G2) = max
{
Δ(G) + 1, χ

(
(G − B(G))2

)}

Proof. Let k = max
{
Δ(G)+1, χ

(
(G−B(G))2

)}
. It follows from Observation 1

and Corollary 7 that χ(G2) ≥ k. Now fix a set of k colours (k ≥ χ
(
(G−B(G))2

)
),

and consider a colouring of (G − B(G))2 using these k colours. We now add the
bridges of G one by one, modifying the colouring accordingly. Let uv be a bridge
of G and let X and Y be the connected components which become connected
by the addition of uv. Suppose that u ∈ X and v ∈ Y . We can permute the
colours of X and Y independently so that u and v obtain the same colour i.
Since we have k ≥ Δ(G) + 1 colours, there must be a colour j �= i not used in
the neighbourhood of v in Y . By the same argument for u, we may assume that
j is not used in the neighbourhood of u in X . Finally, we exchange in X the
colours i and j. It is easy to see that after adding all bridges of G one by one,
we obtain a proper colouring of G2. �

A similar argument proves the next proposition.

Proposition 9. For any split graph G, χi(G) = max{Δ(G), χi(G − B(G))}

Finally, combining Corollary 7, and Propositions 8 and 3, we obtain the following
tight lower bound on the injective chromatic number of a chordal graph.

Proposition 10. For any chordal graph G, we have

χ(G2) − 1 ≤ max{Δ(G), χi(G − B(G))} ≤ χi(G) ≤ χ(G2)

4 Hardness and Approximation Results

In this section, we focus on hardness results for the injective chromatic number
problem. We begin by observing that it is NP -hard to compute the injective
chromatic number of a split graph. This also follows from a similar proof in [12];
we include our construction here, since we shall extend it to prove an accompa-
nying inapproximability result in Theorem 13.

Theorem 11. It is NP -complete for a given split (and hence chordal) graph G
and an integer k, to decide whether the injective chromatic number of G is at
most k.

Proof. First, we observe that the problem is clearly in NP . We show it is also
NP -hard. Consider an instance of the graph colouring problem, namely a graph
G and an integer l. We may assume that G is connected and contains no bridges.
Let HG be the graph constructed from G by first subdividing each edge of G and
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then connecting all the new vertices. That is, V (HG) = V (G)∪{xuv | uv ∈ E(G)}
and E(HG) = {uxuv, vxuv | uv ∈ E(G)} ∪ {xstxuv | uv, st ∈ E(G)}. The graph
HG can clearly be constructed in polynomial time. It is not difficult to see that
HG is a split graph, hence it is also chordal. Moreover, one can check that the
subgraph of H2

G induced on the vertices of G is precisely the graph G. Since
G is bridgeless, HG is also bridgeless, hence using Proposition 6 we have the
following.

χi(HG) = χ(H2
G) = χ(G) + m

Therefore χi(HG) is at most k = l + m if and only if χ(G) is at most l. That
concludes the proof. �

By Proposition 10, for any chordal graph G, the injective chromatic number of G
is either χ(G2) or χ(G2) − 1. Interestingly, merely distinguishing between these
two cases is already NP -complete.

Theorem 12. It is NP -complete to decide, for a given split (and hence chordal)
graph G, whether χi(G) = χ(G2) − 1. �

Now we extend the proof of Theorem 11 to show that under a certain complexity
assumption, it is not tractable to approximate the injective chromatic number
of a split (chordal) graph within a factor of n1/3−ε for all ε > 0.

Theorem 13. Unless NP = ZPP , for any ε > 0, it is not possible to efficiently
approximate χ(G2) and χi(G) within a factor of n1/3−ε, for any split (and hence
chordal) graph G.

Proof. In [8], it was shown that for any fixed ε > 0, unless NP = ZPP ,
the problem of deciding whether χ(G) ≤ nε or α(G) < nε for a given graph
G is not solvable in polynomial time. Consider an instance of this problem,
namely a graph G. Again, as in the proof of Theorem 11, we may assume that
G is connected and bridgeless. Let Hk,G be the split graph constructed from k
copies of HG (the graph used in the proof Theorem 11) by identifying, for each
uv ∈ E(G), all copies of xuv. That is, if v1, v2, . . . , vn are the vertices of G, we
have in Hk,G vertices V (Hk,G) =

⋃k
i=1{vi

1, v
i
2, . . . , v

i
n} ∪ {xuv | uv ∈ E(G)}, and

edges E(Hk,G) =
⋃k

i=1{uixuv, vixuv | uv ∈ E(G)} ∪ {xuvxst | uv, st ∈ E(G)}.
Now since G is bridgeless, Hk,G is also bridgeless. Consider an independent

set I of H2
k,G. It is not difficult to check that either I trivially contains only a

single vertex xuv, or for each pair of vertices ui, vj ∈ I, the vertices u and v
are not adjacent in G. Hence it follows that from any colouring of H2

k,G one can
construct a fractional k-fold colouring of G (i.e., a collection of independent sets
covering each vertex of G at least k times) by projecting each non-trivial colour
class of H2

k,G to G, i.e., mapping each ui to u. Using this observation we obtain
the following inequalities.

k · n
α(G)

+ m ≤ k · χf (G) + m ≤ χ(H2
k,G) = χi(Hk,G) ≤ k · χ(G) + m
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Therefore if χ(G) ≤ nε then χ(H2
k,G) ≤ k · nε + m, and if α(G) < nε then

χ(H2
k,G) > k · n1−ε + m. Now we fix k = m, and denote by N the number of

vertices in Hm,G. For n ≥ 21/ε we obtain the following.

m · n1−ε + m

m · nε + m
≥ 1

2
n1−2ε ≥ n1−3ε ≥ (m · n + m)

1
3 (1−3ε) = N

1
3−ε

Hence if we can efficiently (N
1
3−ε)-approximate the colouring of H2

m,G then
we can decide whether χ(G) ≤ nε or α(G) < nε. That concludes the proof. �

Note that a seemingly stronger result appeared in [1]. Namely, the authors
claim that the chromatic number of the square of a split graph is not (n1/2−ε)-
approximable for all ε > 0. However this result is not correct. In fact, we show
below that there exists a polynomial time algorithm 3

√
n-approximating the chro-

matic number of the square of a split graph G, and also 3
√

n-approximating the
injective chromatic number of G. Note that this is also a strengthening of best
known

√
n-approximation algorithm for the chromatic number of the square in

general graphs (cf. [1]). We need the following lemma.

Lemma 14. For chordal graphs, the injective chromatic number is α-approxi-
mable if and only if the chromatic number of the square is α-approximable. �

Theorem 15. There exists a polynomial time algorithm that given a split graph
G approximates χ(G2) and χi(G) within a factor of 3

√
n.

Proof. Let G be a connected split graph with a clique X and an independent
set Y . Denote by H the subgraph of G2 induced on Y . Let p = |X |, N = |V (H)|,
and M = |E(H)|. Clearly, χ(G2) = p + χ(H). Consider an optimal colouring
of H with colour classes V1, V2, . . . , Vχ(H). Let Eij be the edges of H between
Vi and Vj . Clearly, for each edge uv ∈ Eij there must exist a vertex xuv in X
adjacent to both u and v. Moreover, for any two edges uv, st ∈ Eij we have
xuv �= xst, since otherwise we obtain a triangle in H [Vi ∪ Vj ] which is bipartite.
Hence p ≥ |Eij | and considering all pairs of colours in H we conclude that
p ≥ M/

(
χ(H)

2

)
≥ 2M/χ2(H).

A simple edge count shows that any graph with t edges can be coloured with
no more than 1/2+

√
2t + 1/4 colours. Such a colouring can be found by a simple

greedy algorithm [4]. We can apply this algorithm to H , and use additional p
colours to colour the vertices of X . This way we obtain a colouring c of G2 using
at most p+1+

√
2M colours. Using the lower bound from the previous paragraph

one can prove the following inequalities (assuming M ≥ 6 or p ≥ 17).

p + 1 +
√

2M

χ(G2)
≤ p + 1 +

√
2M

p +
√

2M
p

≤ (2M)1/6 ≤ N1/3 ≤ n1/3

Hence, the colouring c is an 3
√

n-approximation of χ(G2), and by Lemma 14
we can obtain a 3

√
n-approximation of χi(G). �
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5 Exact Algorithmic Results

Now we focus on algorithms for injective colouring of chordal graphs. Although,
computing the injective chromatic number of a chordal graph is hard, the asso-
ciated decision problem with a fixed number of colours has a polynomial time
solution, i.e., the problem is fixed parameter tractable. We need the following
lemma.

Lemma 16. For any chordal G, the treewidth of G2 is at most 1
4Δ(G)2 +

Δ(G). �

Theorem 17. Given a chordal graph G and a fixed integer k, one can decide
in time O

(
n · k · k(k/2+1)2

)
whether χi(G) ≤ k and also whether χ(G2) ≤ k.

Proof. It is easy to see that if χi(G) ≤ k or if χ(G2) ≤ k, then Δ(G) must be
at most k. Thus if Δ(G) > k, we can reject G immediately. Using Lemma 16, we
can construct in time O(nk2) a tree decomposition (T, X) of G2 whose width is
at most k2/4+k. Now, using standard dynamic programming techniques on the
tree T (cf. [4,7]), we can decide in time O(n · k · k(k/2+1)2) whether χ(G2) ≤ k
and whether χi(G) ≤ k. �

Now we show that for certain subclasses of chordal graphs, the injective chro-
matic number can be computed in polynomial time (in contrast to Theorem 11).
First, we summarise the results; the details are presented in subsequent sections.

We call a graph G a power chordal graph if all powers of G are chordal. Recall
that in Propositions 8 and 9, we showed how, from the chromatic number of
the square of the graph G − B(G), one can compute χ(G2) for any graph G,
respectively χi(G) for a split graph G. The following theorem describes a similar
property for the injective chromatic number in chordal graphs. The proof will
follow from Corollary 25 and Theorem 28 which we prove in sections 5.2 and 5.4
respectively.

Theorem 18. There exists an O(n + m) time algorithm that computes χi(G)
given a chordal graph G and χi(G − B(G)). Using this algorithm one can also
construct an optimal injective colouring of G from an optimal injective colouring
of G − B(G) in time O(n + m).

A class C of graphs is called induced-hereditary, if C is closed under taking induced
subgraphs. For an induced-hereditary subclasses of chordal graphs we have the
following property.

Proposition 19. Let C be an induced-hereditary subclass of chordal graphs.
Then the following statements are equivalent.

(i) One can efficiently compute χ(G2) for any G ∈ C.
(ii) One can efficiently compute χi(G − B(G)) for any G ∈ C.
(iii) One can efficiently compute χi(G) for any G ∈ C.
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This follows from Theorem 18, Proposition 8, and the fact that each connected
component of G − B(G) must be in C. In some cases, e.g., in the class of power
chordal graph, this is true even if C is not induced-hereditary. The following corol-
lary will follow from Theorem 18 and Corollary 27 which we prove in section 5.3.

Corollary 20. The injective chromatic number of a power chordal graph can be
computed in polynomial time.

Thus the injective chromatic number of a strongly chordal graph can also be
computed in polynomial time.

Finally, observe that due to Theorem 12 one cannot expect the property from
Proposition 19 to hold for any subclass of chordal graphs.

5.1 Injective Structure

In order to prove Theorem 18, we investigate the structural properties of graphs
G that allow efficient computation of χi(G). In this section, G refers to an
arbitrary connected graph (not necessarily chordal).

A clique separator of G is a separator of G which induces a clique in G. A
tree decomposition (T, X) of G is a decomposition by clique separators, if for any
uv ∈ E(T ), the set X(u) ∩ X(v) induces a clique in G. This type of decompo-
sition of graphs was introduced and studied by Tarjan [19]. The decomposition
turns out to be particularly useful for the graph colouring problem; namely, one
can efficiently construct an optimal colouring of G from optimal colourings of
G[X(u)] for all u ∈ V (T ). We define and study a similar concept for the injective
colouring problem. Recall that G(2) denotes the common neighbour graph of G
defined in section 3.

We say that a subset S of vertices of G is injectively closed, if for any two
vertices x, y ∈ S having a common neighbour in G, there exists a common
neighbour of x and y that belongs to S. A subset S of vertices of G is called an
injective clique, if S induces a clique in G(2). Note that an injective clique is not
necessarily injectively closed in G. A subset of vertices S of G is called an injective
separator of G, if S is injectively closed in G, S is a separator of G(2), and G(2)

is connected. Note that G(2) can be disconnected even if G is connected, e.g., if
G is bipartite. An injective decomposition of G is a tree decomposition (T, X) of
G such that for any uv ∈ E(T ), the set X(u) ∩ X(v) is an injective separator
of G. An injective separator S is an injective clique separator, if S is also an
injective clique. An injective clique decomposition is an injective decomposition
(T, X) such that for any uv ∈ E(T ), the set X(u) ∩ X(v) is an injective clique.
Note that any injective clique decomposition of G is a decomposition of G(2) and
G2 by clique separators.

We have the following properties.

Lemma 21. Let (T, X) be an injective decomposition of a graph G. Then for
each u ∈ V (T ), the set X(u) is injectively closed. �

Theorem 22. Let (T, X) be an injective clique decomposition of a graph G.
Then
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χi(G) = χ(G(2)) = max
u∈V (T )

χ
(
G(2)[X(u)

])
= max

u∈V (T )
χi

(
G

[
X(u)

])
.

Proof. The first equality is by definition. We obtain the second equality from
the fact that (T, X) is a decomposition of G(2) by clique separators. The last
equality follows easily, since by Lemma 21, we have G(2)[X(u)] = G[X(u)](2),
and by definition χ

(
G[X(u)](2)

)
= χi

(
G[X(u)]

)
. �

5.2 Computing χi(G) in Chordal Graphs

In this section, we focus on injective clique decompositions of chordal graphs.
The following is easy to check.

Observation 23. Let H be a bridgeless graph having a dominating vertex. Then
H is an injective clique. �

We say that a graph G is decomposable, if G contains an an injective clique
separator S; we say that S decomposes G. A graph G is indecomposable, if it is
not decomposable. A graph G is called perfectly tree-dominated, if G contains an
induced tree T , such that any vertex and any connected component of G−V (T )
has exactly one neighbour in T . For such T , we say that T perfectly dominates
G, or that G is perfectly dominated by T .

The following statement relates indecomposable chordal graphs and perfectly
tree-dominated graphs.

Proposition 24. Any perfectly tree-dominated graph is indecomposable. Any
indecomposable chordal graph is either perfectly tree-dominated or bridgeless. �

The property above has an important corollary.

Corollary 25. For any chordal graph G, there exists an injective clique decom-
position (T, X) of G, such that for any u ∈ V (T ), the set X(u) induces either a
bridgeless graph or a perfectly tree-dominated graph. This decomposition can be
constructed in time O(n + m).

Proof. First, we find the bridges B(G) of G. Then, we construct a tree decom-
position (T, X) of G such that for u ∈ V (T ), the set X(u) is either a connected
component of G − B(G), or a connected component T of G[B(G)] augmented
with the neighbours of T in G. It follows from the proof of Proposition 24 that
(T, X) is a injective clique decomposition. �

5.3 Bridgeless Chordal Graphs

In this section, we describe some classes of chordal graphs G that allow efficiently
computing χ(G2).

We focus on chordal graphs whose square is also a chordal graph. Clearly, for
any such graph G, one can efficiently colour the square of G. Chordal graphs
whose powers are also chordal were already studied in the past. In particular,
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it was shown by Duchet [16] that for any k, if Gk is chordal, then also Gk+2 is
chordal. Therefore, if a chordal graph G has a chordal square, then any power
of G must be chordal, that is, G is power chordal. Interestingly, many known
subclasses of chordal graphs, e.g. trees, interval graphs, and strongly chordal
graphs, were shown to be power chordal [1]. Moreover, Laskar and Shier [16]
found the following subgraph characterisation of power chordal graphs. A k-sun
is a graph formed by a cycle v0, v1, . . . , vk−1 with edges vivi+1 (and possibly other
edges), and an independent set w0, w1, . . . wk−1, where wi is adjacent only to vi

and vi+1 (all indices are taken modulo k). A k-sun of a graph G is suspended in
G, if there exists a vertex z in G adjacent to wi and wj where j �= i and j �= i±1
modulo k.

Theorem 26. [16] A graph G is power chordal if and only if any k-sun of G,
k ≥ 4, is suspended.

Based on this characterisation, it is easy to check the following.

Corollary 27. If G is power chordal, the graph G−B(G) is also power chordal. �
Note that by Theorem 26, strongly chordal graphs are trivially power chordal,
since no strongly chordal graph can contain an induced k-sun, k ≥ 3 [6]. Also
notice, that the class of power chordal graphs is not induced-hereditary (closed
under taking induced subgraphs), since a graph that contains a k-sun can be
power chordal, but the k-sun itself (taken as an induced subgraph) is not.

5.4 Perfectly Tree-Dominated Graphs

In this section, we show how to efficiently compute the injective chromatic num-
ber of a perfectly tree-dominated graph.

Let G be a perfectly tree-dominated graph. If G is a tree, then by Proposition
2, we have χi(G) = Δ(G), and a greedy injective colouring of G will be optimal.
Otherwise, let T be a minimal tree perfectly dominating G. We define a tree
decomposition (TG, X) of G as follows. We set TG = T , and for u ∈ V (T ), we
set X(u) = N(u) ∪ {u}. Clearly, X(u) ∩ X(v) = {u, v} is injectively closed,
and the set X(u) ∩ X(v) is a separator of G(2). Hence (T, X) is an injective
decomposition of G. Note that for any u ∈ V (T ), the graph G[X(u)] admits
only deg(u) different injective colourings, up to renaming colours. It follows,
that using dynamic programming on the rooted tree T , one can determine χi(G)
and an optimal injective colouring of G, by computing, for each u ∈ V (T ) and
each colouring of G[X(u)], the minimum number of colours needed to injectively
colour the subgraph of G induced on the union of X(u) and the sets X(v) for all
descendants v of u. Using an additional simple argument it can be shown that
the algorithm we just described can be performed in time O(n + m). Hence we
have the following theorem.

Theorem 28. The injective chromatic number χi(G) and an optimal injec-
tive colouring of a perfectly tree-dominated graph G can be computed in time
O(n + m).
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The above algorithm turns out to be an instance of a more general approach to
graph colouring problems [18].

Note added in proof

We have just learned of a related result of Král’[15] showing that χ(G2) =
O(Δ(G)3/2) for any chordal G. This is easily seen to allow strengthening Theo-
rem 15 from split to chordal graphs.
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