On Injective Colourings of Chordal Graphs

Pavol Hell'>*, André Raspaud?, and Juraj Stacho!

1 School of Computing Science, Simon Fraser University
8888 University Drive, Burnaby, B.C., Canada V5A 1S6
{pavol, jstacho}@cs.sfu.ca
2 LaBRI, Université Bordeaux I
351 Cours de la Libération, F33405 Talence Cedex, France
raspaud@labri.fr

Abstract. We show that one can compute the injective chromatic num-
ber of a chordal graph G at least as efficiently as one can compute the
chromatic number of (G — B)?, where B are the bridges of G. In particu-
lar, it follows that for strongly chordal graphs and so-called power chordal
graphs the injective chromatic number can be determined in polynomial
time. Moreover, for chordal graphs in general, we show that the decision
problem with a fixed number of colours is solvable in polynomial time. On
the other hand, we show that computing the injective chromatic number
of a chordal graph is N P-hard; and unless NP = ZPP, it is hard to
approximate within a factor of n'/37¢, for any € > 0. For split graphs,
this is best possible, since we show that the injective chromatic number
of a split graph is ¢/n-approximable. (In the process, we correct a result
of Agnarsson et al. on inapproximability of the chromatic number of the
square of a split graph.)

1 Introduction

In this paper, a graph is always assumed to be undirected, loopless and simple.
An injective colouring of a graph G is a colouring ¢ of the vertices of G that
assigns different colours to any pair of vertices that have a common neighbour.
(That is, for any vertex v, if we restrict ¢ to the (open) neighbourhood of v, this
mapping will be injective; whence the name.) Note that injective colouring is
not necessarily a proper colouring, i.e., it is possible for two adjacent vertices to
receive the same colour. The injective chromatic number of G, denoted x;(G),
is the smallest integer k such that G' can be injectively coloured with &k colours.

Injective colourings are closely related to (but not identical with) the notions
of locally injective colourings [9] and L(h, k)-labellings [2I8IT1]. In particular,
L(0, 1)-labellings unlike injective colourings assign distinct colours only to non-
adjacent vertices with a common neighbour.

Injective colourings were introduced by Hahn, Kratochvil, Sirdn and Sotteau
in [I2]. They attribute the origin of the concept to complexity theory on Ran-
dom Access Machines. They prove several interesting bounds on x;(G), and also

* Supported by a Discovery Grant from NSERC.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 520-(30} 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Injective Colourings of Chordal Graphs 521

show that, for k > 3, it is N P-complete to decide whether the injective chro-
matic number of a graph is at most k. Here we look at the complexity of this
problem when the input graphs G are restricted to be chordal. A graph is chordal
if it does not contain any induced cycle of length four or more [I0]. Several diffi-
cult combinatorial problems that are N P-complete in general (including graph
colouring [10], and many variants [SI7/T3]) admit a polynomial time solution in
chordal graphs.

In Section @l we show that determining y;(G) is still difficult when restricted
to chordal graphs. In fact, it is not only N P-hard, but unless NP = ZPP, the
injective chromatic number of a chordal graph cannot be efficiently approximated
within a factor of n!'/3~¢, for any ¢ > 0. (Here ZPP is the class of languages
decidable by a randomized algorithm that makes no errors and whose expected
running time is polynomial.) For split graphs, this is best possible since we show
an /n-approximation algorithm for the injective chromatic number of a split
graph.

On the positive side, we show in Section [that for any fixed number k, one
can in linear time determine whether a chordal graph can be injectively coloured
using no more than k colours. Moreover, we describe large subclasses of chordal
graphs that allow computing the injective chromatic number efficiently. We show
that for a chordal graph G, one can efficiently compute the injective chromatic
number of G from the chromatic number of the square of G — B(G), that is,
the graph G with its bridges B(G) removed. It follows that for strongly chordal
graphs and power chordal graphs (the graphs whose powers are all chordal) the
problem is polynomial time solvable.

2 Preliminaries

We follow the terminology of [4I20]. For a subset S of the vertices (edges) of G,
we denote G[S] the subgraph of G induced on the vertices (edges) of S, and G—S
the subgraph of G that is obtained by removing from G the vertices (edges) of
S. In the case that S consists only of a single element x, we write G — = instead
of G — {z}.

For a connected graph G, a vertex u is a cutpoint of G if the graph G — u is
disconnected. An edge e = wv is a bridge of G if the graph G — e is disconnected.
A subset S of vertices of G is a separator of G if G — S is disconnected. As usual,
a clique of G is a complete subgraph of G, and an independent set of G is a
subgraph of G having no edges. For any graph G, we denote by x(G) and «(G),
the chromatic number of GG, and the size of a maximum independent set in G,
respectively. We denote by G* the k-th power of G, i.e., the graph obtained from
G by making adjacent any two vertices in distance at most k£ in G. We denote by
n, respectively m, the number of vertices, respectively edges of G. For a vertex u
in G, we denote by N (u) the set of vertices of G adjacent to u (the neighbourhood
of u); and for a subset S of vertices of G, we denote by N(5) the set of vertices
of G — S adjacent to at least one vertex of S. We let deg(u) = |N(u)| be the
degree of u, and let A(G) be the maximum degree among the vertices of G.

522 P. Hell, A. Raspaud, and J. Stacho

A split graph is a graph which can be partitioned into a clique and an inde-
pendent set with no other restriction on the edges between the two. Any split
graph is also chordal. A tree-decomposition (T, X) of a connected graph G is a
pair (T, X) where T is a tree and X is a mapping from V(7T) to the subsets
of V(G), such that (i) for any edge ab € E(G), there exists u € V(T) with
a,b € X(u), and (i) for any vertex a € V(G), the vertices u € V(T') with
a € X (u) induce a connected subgraph in T'. A clique-tree of a chordal graph G
is a tree-decomposition (7', X') of G where {X(u) | u € V(T)} is precisely the
set of all maximal cliques of G.

3 Basic Properties

We have the following simple observation.

Observation 1. For any graph G, x:(G) > A(G) and x(G?) > A(G) + 1.
For trees this is also an upper bound.

Proposition 2. For any tree T, x;(T) = A(T) and x(T?) = A(T) + 1.

Proof. Let u be a leaf in T' and v the parent of u. Then clearly, x(7?) =
max {deg(v) +1,x((T —u)?)} and x;(T) = max{deg(v), x;(T —u))}. The claim
follows by induction on |V (T)|. O

Now we look at the general case. Let G®) be the common neighbour graph
of a graph G, that is, the graph on the vertices of G in which two vertices are
adjacent if they have a common neighbour in G. It is easy to see that the injective
chromatic number of G is exactly the chromatic number of G(?). In general, as
we shall see later, properties of the graph G(®) can be very different from those
of G. For instance, even if G is efficiently colourable, e.g. if G is perfect, it may
be difficult to colour G, Note that any edge of G® must be also an edge of
G? (but not conversely). This yields the following inequality.

Proposition 3. For any graph G, we have x;(G) < x(G?).

In fact, this inequality can be strengthened. Let F(G) be the set of edges of G
that do not lie in any triangle. Note that an edge of G is also an edge of G2 if
and only if it belongs to a triangle of GG. This proves the following proposition.

Proposition 4. For any graph G, we have x;(G) = x(G? — F(Q)).
Now we turn to chordal graphs. The following is easy to check.
Observation 5. Any edge in a bridgeless chordal graph lies in a triangle.

Let B(G) be the set of bridges of G. Since a bridge of a graph can never be in a
triangle, we have the following fact.

Proposition 6. For any chordal G, we have x;(G) = x(G? — B(G)).

On Injective Colourings of Chordal Graphs 523

Now since B(G — B(G)) = (), we have the following corollary.
Corollary 7. For any chordal G, x;(G — B(G)) = x((G — B(G))?).

It turns out that there is a close connection between x;(G — B(G)) and both
xi(G) and x(G?).

Proposition 8. For any G, x(G?) = max {A(G) + 1, x((G — B(G))?)}

Proof. Let k = max {A(G)+1, x((G—B(G))?)}. It follows from Observation[]
and Corollary[that x(G?) > k. Now fix a set of k colours (k > x ((G—B(G))?)),
and consider a colouring of (G — B(G))? using these k colours. We now add the
bridges of G one by one, modifying the colouring accordingly. Let uv be a bridge
of G and let X and Y be the connected components which become connected
by the addition of wv. Suppose that v € X and v € Y. We can permute the
colours of X and Y independently so that u and v obtain the same colour 1.
Since we have k > A(G) + 1 colours, there must be a colour j # ¢ not used in
the neighbourhood of v in Y. By the same argument for u, we may assume that
j is not used in the neighbourhood of u in X. Finally, we exchange in X the
colours i and j. It is easy to see that after adding all bridges of G one by one,
we obtain a proper colouring of G2. (]

A similar argument proves the next proposition.
Proposition 9. For any split graph G, x;(G) = max{A(G), x:(G — B(G))}

Finally, combining Corollary[d, and Propositions[§and B we obtain the following
tight lower bound on the injective chromatic number of a chordal graph.

Proposition 10. For any chordal graph G, we have

X(G?) =1 < max{A(G), xi(G — B(G))} < xi(G) < x(G?)

4 Hardness and Approximation Results

In this section, we focus on hardness results for the injective chromatic number
problem. We begin by observing that it is N P-hard to compute the injective
chromatic number of a split graph. This also follows from a similar proof in [12];
we include our construction here, since we shall extend it to prove an accompa-
nying inapproximability result in Theorem

Theorem 11. [t is N P-complete for a given split (and hence chordal) graph G
and an integer k, to decide whether the injective chromatic number of G is at
most k.

Proof. First, we observe that the problem is clearly in NV P. We show it is also
N P-hard. Consider an instance of the graph colouring problem, namely a graph
G and an integer [. We may assume that G is connected and contains no bridges.
Let H¢g be the graph constructed from G by first subdividing each edge of G and

524 P. Hell, A. Raspaud, and J. Stacho

then connecting all the new vertices. That is, V(Hg) = V(G)U{xy, | uv € E(G)}
and E(Hg) = {uyp, vy | wv € E(G)} U {xgayy | uv, st € E(G)}. The graph
H¢ can clearly be constructed in polynomial time. It is not difficult to see that
Hg is a split graph, hence it is also chordal. Moreover, one can check that the
subgraph of H2 induced on the vertices of G is precisely the graph G. Since
G is bridgeless, H¢ is also bridgeless, hence using Proposition [0l we have the
following.

xi(Ha) = x(HE) = x(G) +m

Therefore x;(H¢) is at most k = [+ m if and only if x(G) is at most /. That
concludes the proof. O

By Proposition[IT] for any chordal graph G, the injective chromatic number of G
is either x(G2) or x(G?) — 1. Interestingly, merely distinguishing between these
two cases is already N P-complete.

Theorem 12. [t is N P-complete to decide, for a given split (and hence chordal)
graph G, whether x;(G) = x(G?) — 1. O

Now we extend the proof of Theorem [IIlto show that under a certain complexity
assumption, it is not tractable to approximate the injective chromatic number
of a split (chordal) graph within a factor of n'/3¢ for all € > 0.

Theorem 13. Unless NP = ZPP, for any € > 0, it is not possible to efficiently
approzimate x(G?) and x;(G) within a factor of n'/3=¢, for any split (and hence
chordal) graph G.

Proof. In [§], it was shown that for any fixed e > 0, unless NP = ZPP,
the problem of deciding whether x(G) < n or o(G) < n€ for a given graph
G is not solvable in polynomial time. Consider an instance of this problem,
namely a graph G. Again, as in the proof of Theorem [ITl we may assume that
G is connected and bridgeless. Let Hy ¢ be the split graph constructed from &
copies of H¢ (the graph used in the proof Theorem [[I]) by identifying, for each
wv € E(G), all copies of x,,. That is, if v1,va,..., v, are the vertices of G, we
have in Hy, ¢ vertices V(Hy.q) = Y {vi, vh, ..., 0.} U{zu | wo € B(G)}, and
edges E(Hy,q) = Uifc:l{uiacuv7 Vizyy | uv € B(G)} U{zwrs | uv, st € B(G)}.

Now since G is bridgeless, Hy ¢ is also bridgeless. Consider an independent
set I of H 13,(;- It is not difficult to check that either I trivially contains only a
single vertex T, or for each pair of vertices u’,v’ € I, the vertices u and v
are not adjacent in G. Hence it follows that from any colouring of H %)G one can
construct a fractional k-fold colouring of G (i.e., a collection of independent sets
covering each vertex of G at least k times) by projecting each non-trivial colour
class of Hf ; to G, i.e., mapping each u’ to u. Using this observation we obtain
the following inequalities.

k-n

(@) +m <k-xf(G)+m < x(H{) = xi(Hrc) <k-x(G) +m

On Injective Colourings of Chordal Graphs 525

Therefore if x(G) < n¢ then X(ng,c) < k-n+4m, and if o(G) < n® then
X(H;ic) > k-n'=¢ 4+ m. Now we fix k = m, and denote by N the number of
vertices in H,, ¢. For n > 21/¢ we obtain the following.

o l—€
m-n +m2 1n17262n1*362(m~n—|—m)é(1736)ZNé76
m-nt+m 2
Hence if we can efficiently (N3~ ¢)-approximate the colouring of H?, then
we can decide whether x(G) < n€ or a(G) < n°. That concludes the proof. [

Note that a seemingly stronger result appeared in [I]. Namely, the authors
claim that the chromatic number of the square of a split graph is not (nl/ 2-e).
approximable for all € > 0. However this result is not correct. In fact, we show
below that there exists a polynomial time algorithm ¢/n-approximating the chro-
matic number of the square of a split graph G, and also /n-approximating the
injective chromatic number of G. Note that this is also a strengthening of best
known y/n-approximation algorithm for the chromatic number of the square in
general graphs (cf. [1]). We need the following lemma.

Lemma 14. For chordal graphs, the injective chromatic number is a-approxi-
mable if and only if the chromatic number of the square is a-approximable. O

Theorem 15. There exists a polynomial time algorithm that given a split graph
G approzimates x(G?) and x;(G) within a factor of {/n.

Proof. Let G be a connected split graph with a clique X and an independent
set Y. Denote by H the subgraph of G? induced on Y. Let p = |X|, N = |V(H)|,
and M = |E(H)|. Clearly, x(G?) = p + x(H). Consider an optimal colouring
of H with colour classes V1, Va,...,Vy(m). Let Ej;; be the edges of H between
Vi and Vj. Clearly, for each edge uv € Ej;; there must exist a vertex z,, in X
adjacent to both u and v. Moreover, for any two edges uv,st € FE;; we have
Tuy F T, since otherwise we obtain a triangle in H[V; U V;] which is bipartite.
Hence p > |E;;| and considering all pairs of colours in H we conclude that
p > M/(UD) = 2M/X*(H).

A simple edge count shows that any graph with ¢ edges can be coloured with
no more than 1/2+ \/215 + 1/4 colours. Such a colouring can be found by a simple
greedy algorithm [4]. We can apply this algorithm to H, and use additional p
colours to colour the vertices of X. This way we obtain a colouring ¢ of G2 using
at most p+1-4+/2M colours. Using the lower bound from the previous paragraph
one can prove the following inequalities (assuming M > 6 or p > 17).

p+1+V2M <p+1+\/2M
) <
x(G?) p+\/2ﬁ4

Hence, the colouring ¢ is an /n-approximation of x(G?), and by Lemma [[4]
we can obtain a /n-approximation of y;(G). O

526 P. Hell, A. Raspaud, and J. Stacho
5 Exact Algorithmic Results

Now we focus on algorithms for injective colouring of chordal graphs. Although,
computing the injective chromatic number of a chordal graph is hard, the asso-
ciated decision problem with a fixed number of colours has a polynomial time
solution, i.e., the problem is fixed parameter tractable. We need the following
lemma.

Lemma 16. For any chordal G, the trecwidth of G* is at most }A(G)? +
A(G). O

Theorem 17. Given a 2chorclal graph G and a fized integer k, one can decide
in time O(n -k - k(k/2+1)) whether x;(G) < k and also whether x(G?) < k.

Proof. It is easy to see that if x;(G) < k or if x(G?) < k, then A(G) must be
at most k. Thus if A(G) > k, we can reject G immediately. Using Lemma [T6] we
can construct in time O(nk?) a tree decomposition (T, X) of G? whose width is
at most k2 /4 + k. Now, using standard dynamic programming techniques on the
tree T (cf. [A7]), we can decide in time O(n - k - k*/271%) whether x(G?) < k
and whether x;(G) < k. O

Now we show that for certain subclasses of chordal graphs, the injective chro-
matic number can be computed in polynomial time (in contrast to Theorem []).
First, we summarise the results; the details are presented in subsequent sections.

We call a graph G a power chordal graph if all powers of G are chordal. Recall
that in Propositions B and @ we showed how, from the chromatic number of
the square of the graph G — B(G), one can compute x(G?) for any graph G,
respectively x;(G) for a split graph G. The following theorem describes a similar
property for the injective chromatic number in chordal graphs. The proof will
follow from Corollary 25 and Theorem 28 which we prove in sections 5.2 and [5.4]
respectively.

Theorem 18. There exists an O(n + m) time algorithm that computes x;(G)
given a chordal graph G and x;(G — B(Q)). Using this algorithm one can also
construct an optimal injective colouring of G from an optimal injective colouring

of G — B(G) in time O(n +m).

A class C of graphs is called induced-hereditary, if C is closed under taking induced
subgraphs. For an induced-hereditary subclasses of chordal graphs we have the
following property.

Proposition 19. Let C be an induced-hereditary subclass of chordal graphs.
Then the following statements are equivalent.

(i) One can efficiently compute x(G?) for any G € C.
(i) One can efficiently compute x;(G — B(G)) for any G € C.
(ii) One can efficiently compute x;(G) for any G € C.

On Injective Colourings of Chordal Graphs 527

This follows from Theorem [I8, Proposition Bl and the fact that each connected
component of G — B(G) must be in C. In some cases, e.g., in the class of power
chordal graph, this is true even if C is not induced-hereditary. The following corol-
lary will follow from Theorem [[§ and Corollary 27 which we prove in section 2.3l

Corollary 20. The injective chromatic number of a power chordal graph can be
computed in polynomial time.

Thus the injective chromatic number of a strongly chordal graph can also be
computed in polynomial time.

Finally, observe that due to Theorem [I2] one cannot expect the property from
Proposition [[9 to hold for any subclass of chordal graphs.

5.1 Injective Structure

In order to prove Theorem [I] we investigate the structural properties of graphs
G that allow efficient computation of x;(G). In this section, G refers to an
arbitrary connected graph (not necessarily chordal).

A clique separator of G is a separator of G which induces a clique in G. A
tree decomposition (7', X') of G is a decomposition by clique separators, if for any
uv € E(T), the set X (u) N X (v) induces a clique in G. This type of decompo-
sition of graphs was introduced and studied by Tarjan [19]. The decomposition
turns out to be particularly useful for the graph colouring problem; namely, one
can efficiently construct an optimal colouring of G from optimal colourings of
G[X (u)] for all u € V(T'). We define and study a similar concept for the injective
colouring problem. Recall that G2} denotes the common neighbour graph of G
defined in section

We say that a subset S of vertices of G is injectively closed, if for any two
vertices x,y € S having a common neighbour in G, there exists a common
neighbour of z and y that belongs to S. A subset S of vertices of G is called an
injective clique, if S induces a clique in G(?). Note that an injective clique is not
necessarily injectively closed in G. A subset of vertices S of G is called an injective
separator of G, if S is injectively closed in G, S is a separator of G(?), and G
is connected. Note that G(?) can be disconnected even if G is connected, e.g., if
G is bipartite. An injective decomposition of G is a tree decomposition (T, X) of
G such that for any wv € E(T), the set X (u) N X (v) is an injective separator
of G. An injective separator S is an injective clique separator, if S is also an
injective clique. An injective clique decomposition is an injective decomposition
(T, X) such that for any uv € E(T), the set X (u) N X (v) is an injective clique.
Note that any injective clique decomposition of G is a decomposition of G and
G? by clique separators.

We have the following properties.

Lemma 21. Let (T, X) be an injective decomposition of a graph G. Then for
each u € V(T), the set X (u) is injectively closed. O

Theorem 22. Let (T, X) be an injective clique decomposition of a graph G.
Then

528 P. Hell, A. Raspaud, and J. Stacho

. - (2)y = (2) -)

xi(G) = x(G®) uén‘%)x(G (X)) e X (clxw)).
Proof. The first equality is by definition. We obtain the second equality from
the fact that (T, X) is a decomposition of G by clique separators. The last
equality follows easily, since by Lemma I we have G [X (u)] = G[X (u)]®,
and by definition x (G[X (v)]®) = x; (G[X (u)]). O

5.2 Computing x;(G) in Chordal Graphs

In this section, we focus on injective clique decompositions of chordal graphs.
The following is easy to check.

Observation 23. Let H be a bridgeless graph having a dominating vertex. Then
H is an injective clique. O

We say that a graph G is decomposable, if G contains an an injective clique
separator S; we say that S decomposes G. A graph G is indecomposable, if it is
not decomposable. A graph G is called perfectly tree-dominated, if G contains an
induced tree T', such that any vertex and any connected component of G —V (T')
has exactly one neighbour in T'. For such T, we say that T perfectly dominates
G, or that G is perfectly dominated by T.

The following statement relates indecomposable chordal graphs and perfectly
tree-dominated graphs.

Proposition 24. Any perfectly tree-dominated graph is indecomposable. Any
indecomposable chordal graph is either perfectly tree-dominated or bridgeless. O

The property above has an important corollary.

Corollary 25. For any chordal graph G, there exists an injective clique decom-
position (T, X) of G, such that for any u € V(T), the set X (u) induces either a
bridgeless graph or a perfectly tree-dominated graph. This decomposition can be
constructed in time O(n 4+ m).

Proof. First, we find the bridges B(G) of G. Then, we construct a tree decom-
position (T, X) of G such that for u € V(T'), the set X (u) is either a connected
component of G — B(G), or a connected component T' of G[B(G)] augmented
with the neighbours of T in G. It follows from the proof of Proposition 24] that
(T, X) is a injective clique decomposition. |

5.3 Bridgeless Chordal Graphs

In this section, we describe some classes of chordal graphs G that allow efficiently
computing x(G?).

We focus on chordal graphs whose square is also a chordal graph. Clearly, for
any such graph G, one can efficiently colour the square of G. Chordal graphs
whose powers are also chordal were already studied in the past. In particular,

On Injective Colourings of Chordal Graphs 529

it was shown by Duchet [I6] that for any k, if G¥ is chordal, then also G**+2 is
chordal. Therefore, if a chordal graph G has a chordal square, then any power
of G must be chordal, that is, G' is power chordal. Interestingly, many known
subclasses of chordal graphs, e.g. trees, interval graphs, and strongly chordal
graphs, were shown to be power chordal [I]. Moreover, Laskar and Shier [16]
found the following subgraph characterisation of power chordal graphs. A k-sun
is a graph formed by a cycle vg, v1, . . ., vk—1 with edges v;v; 41 (and possibly other
edges), and an independent set wg, wr, ... wg_1, where w; is adjacent only to v;
and v;+1 (all indices are taken modulo k). A k-sun of a graph G is suspended in
G, if there exists a vertex z in G adjacent to w; and w; where j # ¢ and j #1£1
modulo k.

Theorem 26. [16] A graph G is power chordal if and only if any k-sun of G,
k >4, is suspended.

Based on this characterisation, it is easy to check the following.
Corollary 27. IfG is power chordal, the graph G — B(G) is also power chordal. O

Note that by Theorem 28] strongly chordal graphs are trivially power chordal,
since no strongly chordal graph can contain an induced k-sun, & > 3 [6]. Also
notice, that the class of power chordal graphs is not induced-hereditary (closed
under taking induced subgraphs), since a graph that contains a k-sun can be
power chordal, but the k-sun itself (taken as an induced subgraph) is not.

5.4 Perfectly Tree-Dominated Graphs

In this section, we show how to efficiently compute the injective chromatic num-
ber of a perfectly tree-dominated graph.

Let G be a perfectly tree-dominated graph. If G is a tree, then by Proposition
Bl we have x;(G) = A(G), and a greedy injective colouring of G will be optimal.
Otherwise, let T be a minimal tree perfectly dominating G. We define a tree
decomposition (T, X) of G as follows. We set T = T, and for u € V(T), we
set X(u) = N(u) U {u}. Clearly, X(u) N X(v) = {u,v} is injectively closed,
and the set X (u) N X (v) is a separator of G(?). Hence (T, X) is an injective
decomposition of G. Note that for any u € V(T'), the graph G[X (u)] admits
only deg(u) different injective colourings, up to renaming colours. It follows,
that using dynamic programming on the rooted tree T, one can determine y;(G)
and an optimal injective colouring of G, by computing, for each u € V(T') and
each colouring of G[X (u)], the minimum number of colours needed to injectively
colour the subgraph of G induced on the union of X (u) and the sets X (v) for all
descendants v of u. Using an additional simple argument it can be shown that
the algorithm we just described can be performed in time O(n + m). Hence we
have the following theorem.

Theorem 28. The injective chromatic number x;(G) and an optimal injec-
tive colouring of a perfectly tree-dominated graph G can be computed in time
O(n +m).

530 P. Hell, A. Raspaud, and J. Stacho

The above algorithm turns out to be an instance of a more general approach to
graph colouring problems [I§].

Note added in proof

We have just learned of a related result of Kral'[I5] showing that x(G?) =
O(A(G)3/?) for any chordal G. This is easily seen to allow strengthening Theo-
rem [[7] from split to chordal graphs.

References

1. Agnarsson, G., Greenlaw, R., Halldorsson, M.: On Powers of Chordal Graphs and
Their Colorings. Congress Numerantium 100, 41-65 (2000)

2. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for \-
Coloring of Graphs. The Computer Journal 47, 193-204 (2004)

3. Calamoneri, T.: The L(h, k)-Labelling Problem: A Survey and Annotated Bibliog-
raphy. The Computer Journal 49, 585-608 (2006)

4. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2005)

5. Ekim, T., Hell, P., Stacho, J., de Werra, D.: Polarity of Chordal Graphs. Discrete
Applied Mathematics (to appear)

6. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathematics 43,
173-189 (1983)

7. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of
chordal graphs. Theoretical Computer Science 349, 52-66 (2005)

8. Feige, U., Killian, J.: Zero Knowledge and the Chromatic Number. Journal of
Computer and System Sciences 57, 187-199 (1998)

9. Fiala, J., Kratochvil, J.: Partial covers of graphs. Discussiones Mathematicae Graph
Theory 22, 89-99 (2002)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM
Journal on Discrete Mathematics 5, 586-595 (1992)

12. Hahn, G., Kratochvil, J., Sirén, J., Sotteau, D.: On the injective chromatic number
of graphs. Discrete Mathematics 256, 179-192 (2002)

13. Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into
independent sets and cliques. Discrete Applied Mathematics 141, 185-194 (2004)

14. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience Series in Dis-
crete Mathematics. Wiley, New York (1995)

15. Kral, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathe-
matics 18, 451-461 (2005)

16. Laskar, R., Shier, D.: On powers and centers of chordal graphs. Discrete Applied
Mathematics 6, 139-147 (1983)

17. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring
planar graphs. In: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing (STOC), pp. 571-575.

18. J. Stacho: Ph.D. Thesis, Simon Fraser University (2008)

19. Tarjan, R.: Decomposition by clique separators. Discrete Mathematics 55, 221-232

1985
20. gNest,)D.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (1996)

	On Injective Colourings of Chordal Graphs
	Introduction
	Preliminaries
	Basic Properties
	Hardness and Approximation Results
	Exact Algorithmic Results
	Injective Structure
	Computing i(G) in Chordal Graphs
	Bridgeless Chordal Graphs
	Perfectly Tree-Dominated Graphs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

